* gdb.base/unload.exp: Link with -dl on *-*-solaris*.
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "bfd.h"
29 #include "sysdep.h"
30 #include "bfdlink.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/ppc64.h"
34 #include "elf64-ppc.h"
35
36 static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38 static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58 #define TARGET_LITTLE_NAME "elf64-powerpcle"
59 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60 #define TARGET_BIG_NAME "elf64-powerpc"
61 #define ELF_ARCH bfd_arch_powerpc
62 #define ELF_MACHINE_CODE EM_PPC64
63 #define ELF_MAXPAGESIZE 0x10000
64 #define elf_info_to_howto ppc64_elf_info_to_howto
65
66 #define elf_backend_want_got_sym 0
67 #define elf_backend_want_plt_sym 0
68 #define elf_backend_plt_alignment 3
69 #define elf_backend_plt_not_loaded 1
70 #define elf_backend_got_symbol_offset 0
71 #define elf_backend_got_header_size 8
72 #define elf_backend_can_gc_sections 1
73 #define elf_backend_can_refcount 1
74 #define elf_backend_rela_normal 1
75
76 #define bfd_elf64_mkobject ppc64_elf_mkobject
77 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
78 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
79 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
80 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
81 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
82 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
83
84 #define elf_backend_object_p ppc64_elf_object_p
85 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
86 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
87 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
88 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
89 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
90 #define elf_backend_check_directives ppc64_elf_check_directives
91 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
92 #define elf_backend_check_relocs ppc64_elf_check_relocs
93 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
94 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
95 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
96 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
97 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
98 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
99 #define elf_backend_relocate_section ppc64_elf_relocate_section
100 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104 #define elf_backend_special_sections ppc64_elf_special_sections
105
106 /* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110 /* The size in bytes of an entry in the procedure linkage table. */
111 #define PLT_ENTRY_SIZE 24
112
113 /* The initial size of the plt reserved for the dynamic linker. */
114 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116 /* TOC base pointers offset from start of TOC. */
117 #define TOC_BASE_OFF 0x8000
118
119 /* Offset of tp and dtp pointers from start of TLS block. */
120 #define TP_OFFSET 0x7000
121 #define DTP_OFFSET 0x8000
122
123 /* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126 #define PLT_CALL_STUB_SIZE (7*4)
127 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133 #define BCTR 0x4e800420 /* bctr */
134
135
136 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141 /* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143 #define GLINK_CALL_STUB_SIZE (16*4)
144 #define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145 #define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146 #define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147 #define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148 #define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149 #define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150 #define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152 #define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161 /* Pad with this. */
162 #define NOP 0x60000000
163
164 /* Some other nops. */
165 #define CROR_151515 0x4def7b82
166 #define CROR_313131 0x4ffffb82
167
168 /* .glink entries for the first 32k functions are two instructions. */
169 #define LI_R0_0 0x38000000 /* li %r0,0 */
170 #define B_DOT 0x48000000 /* b . */
171
172 /* After that, we need two instructions to load the index, followed by
173 a branch. */
174 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177 /* Instructions used by the save and restore reg functions. */
178 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184 #define LI_R12_0 0x39800000 /* li %r12,0 */
185 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188 #define BLR 0x4e800020 /* blr */
189
190 /* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194 #ifndef NO_OPD_RELOCS
195 #define NO_OPD_RELOCS 0
196 #endif
197 \f
198 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200 /* Relocation HOWTO's. */
201 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203 static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864 };
1865
1866 \f
1867 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870 static void
1871 ppc_howto_init (void)
1872 {
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884 }
1885
1886 static reloc_howto_type *
1887 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889 {
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106 };
2107
2108 /* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110 static void
2111 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113 {
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])));
2123 cache_ptr->howto = ppc64_elf_howto_table[type];
2124 }
2125
2126 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2127
2128 static bfd_reloc_status_type
2129 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2130 void *data, asection *input_section,
2131 bfd *output_bfd, char **error_message)
2132 {
2133 /* If this is a relocatable link (output_bfd test tells us), just
2134 call the generic function. Any adjustment will be done at final
2135 link time. */
2136 if (output_bfd != NULL)
2137 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2138 input_section, output_bfd, error_message);
2139
2140 /* Adjust the addend for sign extension of the low 16 bits.
2141 We won't actually be using the low 16 bits, so trashing them
2142 doesn't matter. */
2143 reloc_entry->addend += 0x8000;
2144 return bfd_reloc_continue;
2145 }
2146
2147 static bfd_reloc_status_type
2148 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2149 void *data, asection *input_section,
2150 bfd *output_bfd, char **error_message)
2151 {
2152 if (output_bfd != NULL)
2153 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2154 input_section, output_bfd, error_message);
2155
2156 if (strcmp (symbol->section->name, ".opd") == 0
2157 && (symbol->section->owner->flags & DYNAMIC) == 0)
2158 {
2159 bfd_vma dest = opd_entry_value (symbol->section,
2160 symbol->value + reloc_entry->addend,
2161 NULL, NULL);
2162 if (dest != (bfd_vma) -1)
2163 reloc_entry->addend = dest - (symbol->value
2164 + symbol->section->output_section->vma
2165 + symbol->section->output_offset);
2166 }
2167 return bfd_reloc_continue;
2168 }
2169
2170 static bfd_reloc_status_type
2171 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2172 void *data, asection *input_section,
2173 bfd *output_bfd, char **error_message)
2174 {
2175 long insn;
2176 enum elf_ppc64_reloc_type r_type;
2177 bfd_size_type octets;
2178 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2179 bfd_boolean is_power4 = FALSE;
2180
2181 /* If this is a relocatable link (output_bfd test tells us), just
2182 call the generic function. Any adjustment will be done at final
2183 link time. */
2184 if (output_bfd != NULL)
2185 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2186 input_section, output_bfd, error_message);
2187
2188 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2189 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2190 insn &= ~(0x01 << 21);
2191 r_type = reloc_entry->howto->type;
2192 if (r_type == R_PPC64_ADDR14_BRTAKEN
2193 || r_type == R_PPC64_REL14_BRTAKEN)
2194 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2195
2196 if (is_power4)
2197 {
2198 /* Set 'a' bit. This is 0b00010 in BO field for branch
2199 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2200 for branch on CTR insns (BO == 1a00t or 1a01t). */
2201 if ((insn & (0x14 << 21)) == (0x04 << 21))
2202 insn |= 0x02 << 21;
2203 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2204 insn |= 0x08 << 21;
2205 else
2206 goto out;
2207 }
2208 else
2209 {
2210 bfd_vma target = 0;
2211 bfd_vma from;
2212
2213 if (!bfd_is_com_section (symbol->section))
2214 target = symbol->value;
2215 target += symbol->section->output_section->vma;
2216 target += symbol->section->output_offset;
2217 target += reloc_entry->addend;
2218
2219 from = (reloc_entry->address
2220 + input_section->output_offset
2221 + input_section->output_section->vma);
2222
2223 /* Invert 'y' bit if not the default. */
2224 if ((bfd_signed_vma) (target - from) < 0)
2225 insn ^= 0x01 << 21;
2226 }
2227 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2228 out:
2229 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2230 input_section, output_bfd, error_message);
2231 }
2232
2233 static bfd_reloc_status_type
2234 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 /* If this is a relocatable link (output_bfd test tells us), just
2239 call the generic function. Any adjustment will be done at final
2240 link time. */
2241 if (output_bfd != NULL)
2242 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244
2245 /* Subtract the symbol section base address. */
2246 reloc_entry->addend -= symbol->section->output_section->vma;
2247 return bfd_reloc_continue;
2248 }
2249
2250 static bfd_reloc_status_type
2251 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254 {
2255 /* If this is a relocatable link (output_bfd test tells us), just
2256 call the generic function. Any adjustment will be done at final
2257 link time. */
2258 if (output_bfd != NULL)
2259 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd, error_message);
2261
2262 /* Subtract the symbol section base address. */
2263 reloc_entry->addend -= symbol->section->output_section->vma;
2264
2265 /* Adjust the addend for sign extension of the low 16 bits. */
2266 reloc_entry->addend += 0x8000;
2267 return bfd_reloc_continue;
2268 }
2269
2270 static bfd_reloc_status_type
2271 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274 {
2275 bfd_vma TOCstart;
2276
2277 /* If this is a relocatable link (output_bfd test tells us), just
2278 call the generic function. Any adjustment will be done at final
2279 link time. */
2280 if (output_bfd != NULL)
2281 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2282 input_section, output_bfd, error_message);
2283
2284 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2285 if (TOCstart == 0)
2286 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2287
2288 /* Subtract the TOC base address. */
2289 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2290 return bfd_reloc_continue;
2291 }
2292
2293 static bfd_reloc_status_type
2294 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2295 void *data, asection *input_section,
2296 bfd *output_bfd, char **error_message)
2297 {
2298 bfd_vma TOCstart;
2299
2300 /* If this is a relocatable link (output_bfd test tells us), just
2301 call the generic function. Any adjustment will be done at final
2302 link time. */
2303 if (output_bfd != NULL)
2304 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2305 input_section, output_bfd, error_message);
2306
2307 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2308 if (TOCstart == 0)
2309 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2310
2311 /* Subtract the TOC base address. */
2312 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2313
2314 /* Adjust the addend for sign extension of the low 16 bits. */
2315 reloc_entry->addend += 0x8000;
2316 return bfd_reloc_continue;
2317 }
2318
2319 static bfd_reloc_status_type
2320 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2321 void *data, asection *input_section,
2322 bfd *output_bfd, char **error_message)
2323 {
2324 bfd_vma TOCstart;
2325 bfd_size_type octets;
2326
2327 /* If this is a relocatable link (output_bfd test tells us), just
2328 call the generic function. Any adjustment will be done at final
2329 link time. */
2330 if (output_bfd != NULL)
2331 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2332 input_section, output_bfd, error_message);
2333
2334 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2335 if (TOCstart == 0)
2336 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2337
2338 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2339 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2340 return bfd_reloc_ok;
2341 }
2342
2343 static bfd_reloc_status_type
2344 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2345 void *data, asection *input_section,
2346 bfd *output_bfd, char **error_message)
2347 {
2348 /* If this is a relocatable link (output_bfd test tells us), just
2349 call the generic function. Any adjustment will be done at final
2350 link time. */
2351 if (output_bfd != NULL)
2352 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2353 input_section, output_bfd, error_message);
2354
2355 if (error_message != NULL)
2356 {
2357 static char buf[60];
2358 sprintf (buf, "generic linker can't handle %s",
2359 reloc_entry->howto->name);
2360 *error_message = buf;
2361 }
2362 return bfd_reloc_dangerous;
2363 }
2364
2365 struct ppc64_elf_obj_tdata
2366 {
2367 struct elf_obj_tdata elf;
2368
2369 /* Shortcuts to dynamic linker sections. */
2370 asection *got;
2371 asection *relgot;
2372
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2378 sections means we potentially need one of these for each input bfd. */
2379 union {
2380 bfd_signed_vma refcount;
2381 bfd_vma offset;
2382 } tlsld_got;
2383 };
2384
2385 #define ppc64_elf_tdata(bfd) \
2386 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2387
2388 #define ppc64_tlsld_got(bfd) \
2389 (&ppc64_elf_tdata (bfd)->tlsld_got)
2390
2391 /* Override the generic function because we store some extras. */
2392
2393 static bfd_boolean
2394 ppc64_elf_mkobject (bfd *abfd)
2395 {
2396 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2397 abfd->tdata.any = bfd_zalloc (abfd, amt);
2398 if (abfd->tdata.any == NULL)
2399 return FALSE;
2400 return TRUE;
2401 }
2402
2403 /* Fix bad default arch selected for a 64 bit input bfd when the
2404 default is 32 bit. */
2405
2406 static bfd_boolean
2407 ppc64_elf_object_p (bfd *abfd)
2408 {
2409 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2410 {
2411 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2412
2413 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2414 {
2415 /* Relies on arch after 32 bit default being 64 bit default. */
2416 abfd->arch_info = abfd->arch_info->next;
2417 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2418 }
2419 }
2420 return TRUE;
2421 }
2422
2423 /* Support for core dump NOTE sections. */
2424
2425 static bfd_boolean
2426 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2427 {
2428 size_t offset, size;
2429
2430 if (note->descsz != 504)
2431 return FALSE;
2432
2433 /* pr_cursig */
2434 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2435
2436 /* pr_pid */
2437 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2438
2439 /* pr_reg */
2440 offset = 112;
2441 size = 384;
2442
2443 /* Make a ".reg/999" section. */
2444 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2445 size, note->descpos + offset);
2446 }
2447
2448 static bfd_boolean
2449 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2450 {
2451 if (note->descsz != 136)
2452 return FALSE;
2453
2454 elf_tdata (abfd)->core_program
2455 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2456 elf_tdata (abfd)->core_command
2457 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2458
2459 return TRUE;
2460 }
2461
2462 /* Merge backend specific data from an object file to the output
2463 object file when linking. */
2464
2465 static bfd_boolean
2466 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2467 {
2468 /* Check if we have the same endianess. */
2469 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2470 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2471 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2472 {
2473 const char *msg;
2474
2475 if (bfd_big_endian (ibfd))
2476 msg = _("%B: compiled for a big endian system "
2477 "and target is little endian");
2478 else
2479 msg = _("%B: compiled for a little endian system "
2480 "and target is big endian");
2481
2482 (*_bfd_error_handler) (msg, ibfd);
2483
2484 bfd_set_error (bfd_error_wrong_format);
2485 return FALSE;
2486 }
2487
2488 return TRUE;
2489 }
2490
2491 /* Add extra PPC sections. */
2492
2493 static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2494 {
2495 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2496 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2497 { ".plt", 4, 0, SHT_NOBITS, 0 },
2498 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2499 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2500 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2501 { NULL, 0, 0, 0, 0 }
2502 };
2503
2504 struct _ppc64_elf_section_data
2505 {
2506 struct bfd_elf_section_data elf;
2507
2508 /* An array with one entry for each opd function descriptor. */
2509 union
2510 {
2511 /* Points to the function code section for local opd entries. */
2512 asection **func_sec;
2513 /* After editing .opd, adjust references to opd local syms. */
2514 long *adjust;
2515 } opd;
2516
2517 /* An array for toc sections, indexed by offset/8.
2518 Specifies the relocation symbol index used at a given toc offset. */
2519 unsigned *t_symndx;
2520 };
2521
2522 #define ppc64_elf_section_data(sec) \
2523 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2524
2525 static bfd_boolean
2526 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2527 {
2528 struct _ppc64_elf_section_data *sdata;
2529 bfd_size_type amt = sizeof (*sdata);
2530
2531 sdata = bfd_zalloc (abfd, amt);
2532 if (sdata == NULL)
2533 return FALSE;
2534 sec->used_by_bfd = sdata;
2535
2536 return _bfd_elf_new_section_hook (abfd, sec);
2537 }
2538
2539 static void *
2540 get_opd_info (asection * sec)
2541 {
2542 if (sec != NULL
2543 && ppc64_elf_section_data (sec) != NULL
2544 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2545 return ppc64_elf_section_data (sec)->opd.adjust;
2546 return NULL;
2547 }
2548 \f
2549 /* Parameters for the qsort hook. */
2550 static asection *synthetic_opd;
2551 static bfd_boolean synthetic_relocatable;
2552
2553 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2554
2555 static int
2556 compare_symbols (const void *ap, const void *bp)
2557 {
2558 const asymbol *a = * (const asymbol **) ap;
2559 const asymbol *b = * (const asymbol **) bp;
2560
2561 /* Section symbols first. */
2562 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2563 return -1;
2564 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2565 return 1;
2566
2567 /* then .opd symbols. */
2568 if (a->section == synthetic_opd && b->section != synthetic_opd)
2569 return -1;
2570 if (a->section != synthetic_opd && b->section == synthetic_opd)
2571 return 1;
2572
2573 /* then other code symbols. */
2574 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2575 == (SEC_CODE | SEC_ALLOC)
2576 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2577 != (SEC_CODE | SEC_ALLOC))
2578 return -1;
2579
2580 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2581 != (SEC_CODE | SEC_ALLOC)
2582 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2583 == (SEC_CODE | SEC_ALLOC))
2584 return 1;
2585
2586 if (synthetic_relocatable)
2587 {
2588 if (a->section->id < b->section->id)
2589 return -1;
2590
2591 if (a->section->id > b->section->id)
2592 return 1;
2593 }
2594
2595 if (a->value + a->section->vma < b->value + b->section->vma)
2596 return -1;
2597
2598 if (a->value + a->section->vma > b->value + b->section->vma)
2599 return 1;
2600
2601 return 0;
2602 }
2603
2604 /* Search SYMS for a symbol of the given VALUE. */
2605
2606 static asymbol *
2607 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2608 {
2609 long mid;
2610
2611 if (id == -1)
2612 {
2613 while (lo < hi)
2614 {
2615 mid = (lo + hi) >> 1;
2616 if (syms[mid]->value + syms[mid]->section->vma < value)
2617 lo = mid + 1;
2618 else if (syms[mid]->value + syms[mid]->section->vma > value)
2619 hi = mid;
2620 else
2621 return syms[mid];
2622 }
2623 }
2624 else
2625 {
2626 while (lo < hi)
2627 {
2628 mid = (lo + hi) >> 1;
2629 if (syms[mid]->section->id < id)
2630 lo = mid + 1;
2631 else if (syms[mid]->section->id > id)
2632 hi = mid;
2633 else if (syms[mid]->value < value)
2634 lo = mid + 1;
2635 else if (syms[mid]->value > value)
2636 hi = mid;
2637 else
2638 return syms[mid];
2639 }
2640 }
2641 return NULL;
2642 }
2643
2644 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2645 entry syms. */
2646
2647 static long
2648 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2649 long static_count, asymbol **static_syms,
2650 long dyn_count, asymbol **dyn_syms,
2651 asymbol **ret)
2652 {
2653 asymbol *s;
2654 long i;
2655 long count;
2656 char *names;
2657 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2658 asection *opd;
2659 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2660 asymbol **syms;
2661
2662 *ret = NULL;
2663
2664 opd = bfd_get_section_by_name (abfd, ".opd");
2665 if (opd == NULL)
2666 return 0;
2667
2668 symcount = static_count;
2669 if (!relocatable)
2670 symcount += dyn_count;
2671 if (symcount == 0)
2672 return 0;
2673
2674 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2675 if (syms == NULL)
2676 return 0;
2677
2678 if (!relocatable && static_count != 0 && dyn_count != 0)
2679 {
2680 /* Use both symbol tables. */
2681 memcpy (syms, static_syms, static_count * sizeof (*syms));
2682 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2683 }
2684 else if (!relocatable && static_count == 0)
2685 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2686 else
2687 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2688
2689 synthetic_opd = opd;
2690 synthetic_relocatable = relocatable;
2691 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2692
2693 if (!relocatable && symcount > 1)
2694 {
2695 long j;
2696 /* Trim duplicate syms, since we may have merged the normal and
2697 dynamic symbols. Actually, we only care about syms that have
2698 different values, so trim any with the same value. */
2699 for (i = 1, j = 1; i < symcount; ++i)
2700 if (syms[i - 1]->value + syms[i - 1]->section->vma
2701 != syms[i]->value + syms[i]->section->vma)
2702 syms[j++] = syms[i];
2703 symcount = j;
2704 }
2705
2706 i = 0;
2707 if (syms[i]->section == opd)
2708 ++i;
2709 codesecsym = i;
2710
2711 for (; i < symcount; ++i)
2712 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2713 != (SEC_CODE | SEC_ALLOC))
2714 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2715 break;
2716 codesecsymend = i;
2717
2718 for (; i < symcount; ++i)
2719 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2720 break;
2721 secsymend = i;
2722
2723 for (; i < symcount; ++i)
2724 if (syms[i]->section != opd)
2725 break;
2726 opdsymend = i;
2727
2728 for (; i < symcount; ++i)
2729 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2730 != (SEC_CODE | SEC_ALLOC))
2731 break;
2732 symcount = i;
2733
2734 count = 0;
2735 if (opdsymend == secsymend)
2736 goto done;
2737
2738 if (relocatable)
2739 {
2740 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2741 arelent *r;
2742 size_t size;
2743 long relcount;
2744
2745 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2746 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2747
2748 if (! relcount
2749 || ! (*slurp_relocs) (abfd, opd, static_syms, FALSE))
2750 goto done;
2751
2752 size = 0;
2753 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2754 {
2755 asymbol *sym;
2756
2757 while (r < opd->relocation + relcount
2758 && r->address < syms[i]->value + opd->vma)
2759 ++r;
2760
2761 if (r == opd->relocation + relcount)
2762 break;
2763
2764 if (r->address != syms[i]->value + opd->vma)
2765 continue;
2766
2767 if (r->howto->type != R_PPC64_ADDR64)
2768 continue;
2769
2770 sym = *r->sym_ptr_ptr;
2771 if (!sym_exists_at (syms, opdsymend, symcount,
2772 sym->section->id, sym->value + r->addend))
2773 {
2774 ++count;
2775 size += sizeof (asymbol);
2776 size += strlen (syms[i]->name) + 2;
2777 }
2778 }
2779
2780 s = *ret = bfd_malloc (size);
2781 if (s == NULL)
2782 {
2783 count = 0;
2784 goto done;
2785 }
2786
2787 names = (char *) (s + count);
2788
2789 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2790 {
2791 asymbol *sym;
2792
2793 while (r < opd->relocation + relcount
2794 && r->address < syms[i]->value + opd->vma)
2795 ++r;
2796
2797 if (r == opd->relocation + relcount)
2798 break;
2799
2800 if (r->address != syms[i]->value + opd->vma)
2801 continue;
2802
2803 if (r->howto->type != R_PPC64_ADDR64)
2804 continue;
2805
2806 sym = *r->sym_ptr_ptr;
2807 if (!sym_exists_at (syms, opdsymend, symcount,
2808 sym->section->id, sym->value + r->addend))
2809 {
2810 size_t len;
2811
2812 *s = *syms[i];
2813 s->section = sym->section;
2814 s->value = sym->value + r->addend;
2815 s->name = names;
2816 *names++ = '.';
2817 len = strlen (syms[i]->name);
2818 memcpy (names, syms[i]->name, len + 1);
2819 names += len + 1;
2820 s++;
2821 }
2822 }
2823 }
2824 else
2825 {
2826 bfd_byte *contents;
2827 size_t size;
2828
2829 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2830 {
2831 if (contents)
2832 {
2833 free_contents_and_exit:
2834 free (contents);
2835 }
2836 goto done;
2837 }
2838
2839 size = 0;
2840 for (i = secsymend; i < opdsymend; ++i)
2841 {
2842 bfd_vma ent;
2843
2844 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2845 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2846 {
2847 ++count;
2848 size += sizeof (asymbol);
2849 size += strlen (syms[i]->name) + 2;
2850 }
2851 }
2852
2853 s = *ret = bfd_malloc (size);
2854 if (s == NULL)
2855 {
2856 count = 0;
2857 goto free_contents_and_exit;
2858 }
2859
2860 names = (char *) (s + count);
2861
2862 for (i = secsymend; i < opdsymend; ++i)
2863 {
2864 bfd_vma ent;
2865
2866 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2867 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2868 {
2869 long lo, hi;
2870 size_t len;
2871 asection *sec = abfd->sections;
2872
2873 *s = *syms[i];
2874 lo = codesecsym;
2875 hi = codesecsymend;
2876 while (lo < hi)
2877 {
2878 long mid = (lo + hi) >> 1;
2879 if (syms[mid]->section->vma < ent)
2880 lo = mid + 1;
2881 else if (syms[mid]->section->vma > ent)
2882 hi = mid;
2883 else
2884 {
2885 sec = syms[mid]->section;
2886 break;
2887 }
2888 }
2889
2890 if (lo >= hi && lo > codesecsym)
2891 sec = syms[lo - 1]->section;
2892
2893 for (; sec != NULL; sec = sec->next)
2894 {
2895 if (sec->vma > ent)
2896 break;
2897 if ((sec->flags & SEC_ALLOC) == 0
2898 || (sec->flags & SEC_LOAD) == 0)
2899 break;
2900 if ((sec->flags & SEC_CODE) != 0)
2901 s->section = sec;
2902 }
2903 s->value = ent - s->section->vma;
2904 s->name = names;
2905 *names++ = '.';
2906 len = strlen (syms[i]->name);
2907 memcpy (names, syms[i]->name, len + 1);
2908 names += len + 1;
2909 s++;
2910 }
2911 }
2912 free (contents);
2913 }
2914
2915 done:
2916 free (syms);
2917 return count;
2918 }
2919 \f
2920 /* The following functions are specific to the ELF linker, while
2921 functions above are used generally. Those named ppc64_elf_* are
2922 called by the main ELF linker code. They appear in this file more
2923 or less in the order in which they are called. eg.
2924 ppc64_elf_check_relocs is called early in the link process,
2925 ppc64_elf_finish_dynamic_sections is one of the last functions
2926 called.
2927
2928 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2929 functions have both a function code symbol and a function descriptor
2930 symbol. A call to foo in a relocatable object file looks like:
2931
2932 . .text
2933 . x:
2934 . bl .foo
2935 . nop
2936
2937 The function definition in another object file might be:
2938
2939 . .section .opd
2940 . foo: .quad .foo
2941 . .quad .TOC.@tocbase
2942 . .quad 0
2943 .
2944 . .text
2945 . .foo: blr
2946
2947 When the linker resolves the call during a static link, the branch
2948 unsurprisingly just goes to .foo and the .opd information is unused.
2949 If the function definition is in a shared library, things are a little
2950 different: The call goes via a plt call stub, the opd information gets
2951 copied to the plt, and the linker patches the nop.
2952
2953 . x:
2954 . bl .foo_stub
2955 . ld 2,40(1)
2956 .
2957 .
2958 . .foo_stub:
2959 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2960 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2961 . std 2,40(1) # this is the general idea
2962 . ld 11,0(12)
2963 . ld 2,8(12)
2964 . mtctr 11
2965 . ld 11,16(12)
2966 . bctr
2967 .
2968 . .section .plt
2969 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2970
2971 The "reloc ()" notation is supposed to indicate that the linker emits
2972 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2973 copying.
2974
2975 What are the difficulties here? Well, firstly, the relocations
2976 examined by the linker in check_relocs are against the function code
2977 sym .foo, while the dynamic relocation in the plt is emitted against
2978 the function descriptor symbol, foo. Somewhere along the line, we need
2979 to carefully copy dynamic link information from one symbol to the other.
2980 Secondly, the generic part of the elf linker will make .foo a dynamic
2981 symbol as is normal for most other backends. We need foo dynamic
2982 instead, at least for an application final link. However, when
2983 creating a shared library containing foo, we need to have both symbols
2984 dynamic so that references to .foo are satisfied during the early
2985 stages of linking. Otherwise the linker might decide to pull in a
2986 definition from some other object, eg. a static library.
2987
2988 Update: As of August 2004, we support a new convention. Function
2989 calls may use the function descriptor symbol, ie. "bl foo". This
2990 behaves exactly as "bl .foo". */
2991
2992 /* The linker needs to keep track of the number of relocs that it
2993 decides to copy as dynamic relocs in check_relocs for each symbol.
2994 This is so that it can later discard them if they are found to be
2995 unnecessary. We store the information in a field extending the
2996 regular ELF linker hash table. */
2997
2998 struct ppc_dyn_relocs
2999 {
3000 struct ppc_dyn_relocs *next;
3001
3002 /* The input section of the reloc. */
3003 asection *sec;
3004
3005 /* Total number of relocs copied for the input section. */
3006 bfd_size_type count;
3007
3008 /* Number of pc-relative relocs copied for the input section. */
3009 bfd_size_type pc_count;
3010 };
3011
3012 /* Track GOT entries needed for a given symbol. We might need more
3013 than one got entry per symbol. */
3014 struct got_entry
3015 {
3016 struct got_entry *next;
3017
3018 /* The symbol addend that we'll be placing in the GOT. */
3019 bfd_vma addend;
3020
3021 /* Unlike other ELF targets, we use separate GOT entries for the same
3022 symbol referenced from different input files. This is to support
3023 automatic multiple TOC/GOT sections, where the TOC base can vary
3024 from one input file to another.
3025
3026 Point to the BFD owning this GOT entry. */
3027 bfd *owner;
3028
3029 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3030 TLS_TPREL or TLS_DTPREL for tls entries. */
3031 char tls_type;
3032
3033 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3034 union
3035 {
3036 bfd_signed_vma refcount;
3037 bfd_vma offset;
3038 } got;
3039 };
3040
3041 /* The same for PLT. */
3042 struct plt_entry
3043 {
3044 struct plt_entry *next;
3045
3046 bfd_vma addend;
3047
3048 union
3049 {
3050 bfd_signed_vma refcount;
3051 bfd_vma offset;
3052 } plt;
3053 };
3054
3055 /* Of those relocs that might be copied as dynamic relocs, this macro
3056 selects those that must be copied when linking a shared library,
3057 even when the symbol is local. */
3058
3059 #define MUST_BE_DYN_RELOC(RTYPE) \
3060 ((RTYPE) != R_PPC64_REL32 \
3061 && (RTYPE) != R_PPC64_REL64 \
3062 && (RTYPE) != R_PPC64_REL30)
3063
3064 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3065 copying dynamic variables from a shared lib into an app's dynbss
3066 section, and instead use a dynamic relocation to point into the
3067 shared lib. With code that gcc generates, it's vital that this be
3068 enabled; In the PowerPC64 ABI, the address of a function is actually
3069 the address of a function descriptor, which resides in the .opd
3070 section. gcc uses the descriptor directly rather than going via the
3071 GOT as some other ABI's do, which means that initialized function
3072 pointers must reference the descriptor. Thus, a function pointer
3073 initialized to the address of a function in a shared library will
3074 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3075 redefines the function descriptor symbol to point to the copy. This
3076 presents a problem as a plt entry for that function is also
3077 initialized from the function descriptor symbol and the copy reloc
3078 may not be initialized first. */
3079 #define ELIMINATE_COPY_RELOCS 1
3080
3081 /* Section name for stubs is the associated section name plus this
3082 string. */
3083 #define STUB_SUFFIX ".stub"
3084
3085 /* Linker stubs.
3086 ppc_stub_long_branch:
3087 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3088 destination, but a 24 bit branch in a stub section will reach.
3089 . b dest
3090
3091 ppc_stub_plt_branch:
3092 Similar to the above, but a 24 bit branch in the stub section won't
3093 reach its destination.
3094 . addis %r12,%r2,xxx@toc@ha
3095 . ld %r11,xxx@toc@l(%r12)
3096 . mtctr %r11
3097 . bctr
3098
3099 ppc_stub_plt_call:
3100 Used to call a function in a shared library. If it so happens that
3101 the plt entry referenced crosses a 64k boundary, then an extra
3102 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3103 xxx+16 as appropriate.
3104 . addis %r12,%r2,xxx@toc@ha
3105 . std %r2,40(%r1)
3106 . ld %r11,xxx+0@toc@l(%r12)
3107 . ld %r2,xxx+8@toc@l(%r12)
3108 . mtctr %r11
3109 . ld %r11,xxx+16@toc@l(%r12)
3110 . bctr
3111
3112 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3113 code to adjust the value and save r2 to support multiple toc sections.
3114 A ppc_stub_long_branch with an r2 offset looks like:
3115 . std %r2,40(%r1)
3116 . addis %r2,%r2,off@ha
3117 . addi %r2,%r2,off@l
3118 . b dest
3119
3120 A ppc_stub_plt_branch with an r2 offset looks like:
3121 . std %r2,40(%r1)
3122 . addis %r12,%r2,xxx@toc@ha
3123 . ld %r11,xxx@toc@l(%r12)
3124 . addis %r2,%r2,off@ha
3125 . addi %r2,%r2,off@l
3126 . mtctr %r11
3127 . bctr
3128 */
3129
3130 enum ppc_stub_type {
3131 ppc_stub_none,
3132 ppc_stub_long_branch,
3133 ppc_stub_long_branch_r2off,
3134 ppc_stub_plt_branch,
3135 ppc_stub_plt_branch_r2off,
3136 ppc_stub_plt_call
3137 };
3138
3139 struct ppc_stub_hash_entry {
3140
3141 /* Base hash table entry structure. */
3142 struct bfd_hash_entry root;
3143
3144 enum ppc_stub_type stub_type;
3145
3146 /* The stub section. */
3147 asection *stub_sec;
3148
3149 /* Offset within stub_sec of the beginning of this stub. */
3150 bfd_vma stub_offset;
3151
3152 /* Given the symbol's value and its section we can determine its final
3153 value when building the stubs (so the stub knows where to jump. */
3154 bfd_vma target_value;
3155 asection *target_section;
3156
3157 /* The symbol table entry, if any, that this was derived from. */
3158 struct ppc_link_hash_entry *h;
3159
3160 /* And the reloc addend that this was derived from. */
3161 bfd_vma addend;
3162
3163 /* Where this stub is being called from, or, in the case of combined
3164 stub sections, the first input section in the group. */
3165 asection *id_sec;
3166 };
3167
3168 struct ppc_branch_hash_entry {
3169
3170 /* Base hash table entry structure. */
3171 struct bfd_hash_entry root;
3172
3173 /* Offset within .branch_lt. */
3174 unsigned int offset;
3175
3176 /* Generation marker. */
3177 unsigned int iter;
3178 };
3179
3180 struct ppc_link_hash_entry
3181 {
3182 struct elf_link_hash_entry elf;
3183
3184 /* A pointer to the most recently used stub hash entry against this
3185 symbol. */
3186 struct ppc_stub_hash_entry *stub_cache;
3187
3188 /* Track dynamic relocs copied for this symbol. */
3189 struct ppc_dyn_relocs *dyn_relocs;
3190
3191 /* Link between function code and descriptor symbols. */
3192 struct ppc_link_hash_entry *oh;
3193
3194 /* Flag function code and descriptor symbols. */
3195 unsigned int is_func:1;
3196 unsigned int is_func_descriptor:1;
3197
3198 /* Whether global opd sym has been adjusted or not.
3199 After ppc64_elf_edit_opd has run, this flag should be set for all
3200 globals defined in any opd section. */
3201 unsigned int adjust_done:1;
3202
3203 /* Set if we twiddled this symbol to weak at some stage. */
3204 unsigned int was_undefined:1;
3205
3206 /* Contexts in which symbol is used in the GOT (or TOC).
3207 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3208 corresponding relocs are encountered during check_relocs.
3209 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3210 indicate the corresponding GOT entry type is not needed.
3211 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3212 a TPREL one. We use a separate flag rather than setting TPREL
3213 just for convenience in distinguishing the two cases. */
3214 #define TLS_GD 1 /* GD reloc. */
3215 #define TLS_LD 2 /* LD reloc. */
3216 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3217 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3218 #define TLS_TLS 16 /* Any TLS reloc. */
3219 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3220 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3221 char tls_mask;
3222 };
3223
3224 /* ppc64 ELF linker hash table. */
3225
3226 struct ppc_link_hash_table
3227 {
3228 struct elf_link_hash_table elf;
3229
3230 /* The stub hash table. */
3231 struct bfd_hash_table stub_hash_table;
3232
3233 /* Another hash table for plt_branch stubs. */
3234 struct bfd_hash_table branch_hash_table;
3235
3236 /* Linker stub bfd. */
3237 bfd *stub_bfd;
3238
3239 /* Linker call-backs. */
3240 asection * (*add_stub_section) (const char *, asection *);
3241 void (*layout_sections_again) (void);
3242
3243 /* Array to keep track of which stub sections have been created, and
3244 information on stub grouping. */
3245 struct map_stub {
3246 /* This is the section to which stubs in the group will be attached. */
3247 asection *link_sec;
3248 /* The stub section. */
3249 asection *stub_sec;
3250 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3251 bfd_vma toc_off;
3252 } *stub_group;
3253
3254 /* Temp used when calculating TOC pointers. */
3255 bfd_vma toc_curr;
3256
3257 /* Highest input section id. */
3258 int top_id;
3259
3260 /* Highest output section index. */
3261 int top_index;
3262
3263 /* List of input sections for each output section. */
3264 asection **input_list;
3265
3266 /* Short-cuts to get to dynamic linker sections. */
3267 asection *got;
3268 asection *plt;
3269 asection *relplt;
3270 asection *dynbss;
3271 asection *relbss;
3272 asection *glink;
3273 asection *sfpr;
3274 asection *brlt;
3275 asection *relbrlt;
3276
3277 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3278 struct ppc_link_hash_entry *tls_get_addr;
3279 struct ppc_link_hash_entry *tls_get_addr_fd;
3280
3281 /* Statistics. */
3282 unsigned long stub_count[ppc_stub_plt_call];
3283
3284 /* Set if we should emit symbols for stubs. */
3285 unsigned int emit_stub_syms:1;
3286
3287 /* Set on error. */
3288 unsigned int stub_error:1;
3289
3290 /* Flag set when small branches are detected. Used to
3291 select suitable defaults for the stub group size. */
3292 unsigned int has_14bit_branch:1;
3293
3294 /* Temp used by ppc64_elf_check_directives. */
3295 unsigned int twiddled_syms:1;
3296
3297 /* Incremented every time we size stubs. */
3298 unsigned int stub_iteration;
3299
3300 /* Small local sym to section mapping cache. */
3301 struct sym_sec_cache sym_sec;
3302 };
3303
3304 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3305
3306 #define ppc_hash_table(p) \
3307 ((struct ppc_link_hash_table *) ((p)->hash))
3308
3309 #define ppc_stub_hash_lookup(table, string, create, copy) \
3310 ((struct ppc_stub_hash_entry *) \
3311 bfd_hash_lookup ((table), (string), (create), (copy)))
3312
3313 #define ppc_branch_hash_lookup(table, string, create, copy) \
3314 ((struct ppc_branch_hash_entry *) \
3315 bfd_hash_lookup ((table), (string), (create), (copy)))
3316
3317 /* Create an entry in the stub hash table. */
3318
3319 static struct bfd_hash_entry *
3320 stub_hash_newfunc (struct bfd_hash_entry *entry,
3321 struct bfd_hash_table *table,
3322 const char *string)
3323 {
3324 /* Allocate the structure if it has not already been allocated by a
3325 subclass. */
3326 if (entry == NULL)
3327 {
3328 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3329 if (entry == NULL)
3330 return entry;
3331 }
3332
3333 /* Call the allocation method of the superclass. */
3334 entry = bfd_hash_newfunc (entry, table, string);
3335 if (entry != NULL)
3336 {
3337 struct ppc_stub_hash_entry *eh;
3338
3339 /* Initialize the local fields. */
3340 eh = (struct ppc_stub_hash_entry *) entry;
3341 eh->stub_type = ppc_stub_none;
3342 eh->stub_sec = NULL;
3343 eh->stub_offset = 0;
3344 eh->target_value = 0;
3345 eh->target_section = NULL;
3346 eh->h = NULL;
3347 eh->id_sec = NULL;
3348 }
3349
3350 return entry;
3351 }
3352
3353 /* Create an entry in the branch hash table. */
3354
3355 static struct bfd_hash_entry *
3356 branch_hash_newfunc (struct bfd_hash_entry *entry,
3357 struct bfd_hash_table *table,
3358 const char *string)
3359 {
3360 /* Allocate the structure if it has not already been allocated by a
3361 subclass. */
3362 if (entry == NULL)
3363 {
3364 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3365 if (entry == NULL)
3366 return entry;
3367 }
3368
3369 /* Call the allocation method of the superclass. */
3370 entry = bfd_hash_newfunc (entry, table, string);
3371 if (entry != NULL)
3372 {
3373 struct ppc_branch_hash_entry *eh;
3374
3375 /* Initialize the local fields. */
3376 eh = (struct ppc_branch_hash_entry *) entry;
3377 eh->offset = 0;
3378 eh->iter = 0;
3379 }
3380
3381 return entry;
3382 }
3383
3384 /* Create an entry in a ppc64 ELF linker hash table. */
3385
3386 static struct bfd_hash_entry *
3387 link_hash_newfunc (struct bfd_hash_entry *entry,
3388 struct bfd_hash_table *table,
3389 const char *string)
3390 {
3391 /* Allocate the structure if it has not already been allocated by a
3392 subclass. */
3393 if (entry == NULL)
3394 {
3395 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3396 if (entry == NULL)
3397 return entry;
3398 }
3399
3400 /* Call the allocation method of the superclass. */
3401 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3402 if (entry != NULL)
3403 {
3404 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3405
3406 eh->stub_cache = NULL;
3407 eh->dyn_relocs = NULL;
3408 eh->oh = NULL;
3409 eh->is_func = 0;
3410 eh->is_func_descriptor = 0;
3411 eh->adjust_done = 0;
3412 eh->was_undefined = 0;
3413 eh->tls_mask = 0;
3414 }
3415
3416 return entry;
3417 }
3418
3419 /* Create a ppc64 ELF linker hash table. */
3420
3421 static struct bfd_link_hash_table *
3422 ppc64_elf_link_hash_table_create (bfd *abfd)
3423 {
3424 struct ppc_link_hash_table *htab;
3425 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3426
3427 htab = bfd_zmalloc (amt);
3428 if (htab == NULL)
3429 return NULL;
3430
3431 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3432 {
3433 free (htab);
3434 return NULL;
3435 }
3436
3437 /* Init the stub hash table too. */
3438 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3439 return NULL;
3440
3441 /* And the branch hash table. */
3442 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3443 return NULL;
3444
3445 /* Initializing two fields of the union is just cosmetic. We really
3446 only care about glist, but when compiled on a 32-bit host the
3447 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3448 debugger inspection of these fields look nicer. */
3449 htab->elf.init_refcount.refcount = 0;
3450 htab->elf.init_refcount.glist = NULL;
3451 htab->elf.init_offset.offset = 0;
3452 htab->elf.init_offset.glist = NULL;
3453
3454 return &htab->elf.root;
3455 }
3456
3457 /* Free the derived linker hash table. */
3458
3459 static void
3460 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3461 {
3462 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3463
3464 bfd_hash_table_free (&ret->stub_hash_table);
3465 bfd_hash_table_free (&ret->branch_hash_table);
3466 _bfd_generic_link_hash_table_free (hash);
3467 }
3468
3469 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3470
3471 void
3472 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3473 {
3474 struct ppc_link_hash_table *htab;
3475
3476 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3477
3478 /* Always hook our dynamic sections into the first bfd, which is the
3479 linker created stub bfd. This ensures that the GOT header is at
3480 the start of the output TOC section. */
3481 htab = ppc_hash_table (info);
3482 htab->stub_bfd = abfd;
3483 htab->elf.dynobj = abfd;
3484 }
3485
3486 /* Build a name for an entry in the stub hash table. */
3487
3488 static char *
3489 ppc_stub_name (const asection *input_section,
3490 const asection *sym_sec,
3491 const struct ppc_link_hash_entry *h,
3492 const Elf_Internal_Rela *rel)
3493 {
3494 char *stub_name;
3495 bfd_size_type len;
3496
3497 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3498 offsets from a sym as a branch target? In fact, we could
3499 probably assume the addend is always zero. */
3500 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3501
3502 if (h)
3503 {
3504 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3505 stub_name = bfd_malloc (len);
3506 if (stub_name != NULL)
3507 {
3508 sprintf (stub_name, "%08x.%s+%x",
3509 input_section->id & 0xffffffff,
3510 h->elf.root.root.string,
3511 (int) rel->r_addend & 0xffffffff);
3512 }
3513 }
3514 else
3515 {
3516 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3517 stub_name = bfd_malloc (len);
3518 if (stub_name != NULL)
3519 {
3520 sprintf (stub_name, "%08x.%x:%x+%x",
3521 input_section->id & 0xffffffff,
3522 sym_sec->id & 0xffffffff,
3523 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3524 (int) rel->r_addend & 0xffffffff);
3525 }
3526 }
3527 return stub_name;
3528 }
3529
3530 /* Look up an entry in the stub hash. Stub entries are cached because
3531 creating the stub name takes a bit of time. */
3532
3533 static struct ppc_stub_hash_entry *
3534 ppc_get_stub_entry (const asection *input_section,
3535 const asection *sym_sec,
3536 struct ppc_link_hash_entry *h,
3537 const Elf_Internal_Rela *rel,
3538 struct ppc_link_hash_table *htab)
3539 {
3540 struct ppc_stub_hash_entry *stub_entry;
3541 const asection *id_sec;
3542
3543 /* If this input section is part of a group of sections sharing one
3544 stub section, then use the id of the first section in the group.
3545 Stub names need to include a section id, as there may well be
3546 more than one stub used to reach say, printf, and we need to
3547 distinguish between them. */
3548 id_sec = htab->stub_group[input_section->id].link_sec;
3549
3550 if (h != NULL && h->stub_cache != NULL
3551 && h->stub_cache->h == h
3552 && h->stub_cache->id_sec == id_sec)
3553 {
3554 stub_entry = h->stub_cache;
3555 }
3556 else
3557 {
3558 char *stub_name;
3559
3560 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3561 if (stub_name == NULL)
3562 return NULL;
3563
3564 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3565 stub_name, FALSE, FALSE);
3566 if (h != NULL)
3567 h->stub_cache = stub_entry;
3568
3569 free (stub_name);
3570 }
3571
3572 return stub_entry;
3573 }
3574
3575 /* Add a new stub entry to the stub hash. Not all fields of the new
3576 stub entry are initialised. */
3577
3578 static struct ppc_stub_hash_entry *
3579 ppc_add_stub (const char *stub_name,
3580 asection *section,
3581 struct ppc_link_hash_table *htab)
3582 {
3583 asection *link_sec;
3584 asection *stub_sec;
3585 struct ppc_stub_hash_entry *stub_entry;
3586
3587 link_sec = htab->stub_group[section->id].link_sec;
3588 stub_sec = htab->stub_group[section->id].stub_sec;
3589 if (stub_sec == NULL)
3590 {
3591 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3592 if (stub_sec == NULL)
3593 {
3594 size_t namelen;
3595 bfd_size_type len;
3596 char *s_name;
3597
3598 namelen = strlen (link_sec->name);
3599 len = namelen + sizeof (STUB_SUFFIX);
3600 s_name = bfd_alloc (htab->stub_bfd, len);
3601 if (s_name == NULL)
3602 return NULL;
3603
3604 memcpy (s_name, link_sec->name, namelen);
3605 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3606 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3607 if (stub_sec == NULL)
3608 return NULL;
3609 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3610 }
3611 htab->stub_group[section->id].stub_sec = stub_sec;
3612 }
3613
3614 /* Enter this entry into the linker stub hash table. */
3615 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3616 TRUE, FALSE);
3617 if (stub_entry == NULL)
3618 {
3619 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3620 section->owner, stub_name);
3621 return NULL;
3622 }
3623
3624 stub_entry->stub_sec = stub_sec;
3625 stub_entry->stub_offset = 0;
3626 stub_entry->id_sec = link_sec;
3627 return stub_entry;
3628 }
3629
3630 /* Create sections for linker generated code. */
3631
3632 static bfd_boolean
3633 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3634 {
3635 struct ppc_link_hash_table *htab;
3636 flagword flags;
3637
3638 htab = ppc_hash_table (info);
3639
3640 /* Create .sfpr for code to save and restore fp regs. */
3641 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3642 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3643 htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
3644 if (htab->sfpr == NULL
3645 || ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
3646 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3647 return FALSE;
3648
3649 /* Create .glink for lazy dynamic linking support. */
3650 htab->glink = bfd_make_section_anyway (dynobj, ".glink");
3651 if (htab->glink == NULL
3652 || ! bfd_set_section_flags (dynobj, htab->glink, flags)
3653 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3654 return FALSE;
3655
3656 /* Create .branch_lt for plt_branch stubs. */
3657 flags = (SEC_ALLOC | SEC_LOAD
3658 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3659 htab->brlt = bfd_make_section_anyway (dynobj, ".branch_lt");
3660 if (htab->brlt == NULL
3661 || ! bfd_set_section_flags (dynobj, htab->brlt, flags)
3662 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3663 return FALSE;
3664
3665 if (info->shared)
3666 {
3667 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3668 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3669 htab->relbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
3670 if (!htab->relbrlt
3671 || ! bfd_set_section_flags (dynobj, htab->relbrlt, flags)
3672 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3673 return FALSE;
3674 }
3675 return TRUE;
3676 }
3677
3678 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3679 not already done. */
3680
3681 static bfd_boolean
3682 create_got_section (bfd *abfd, struct bfd_link_info *info)
3683 {
3684 asection *got, *relgot;
3685 flagword flags;
3686 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3687
3688 if (!htab->got)
3689 {
3690 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3691 return FALSE;
3692
3693 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3694 if (!htab->got)
3695 abort ();
3696 }
3697
3698 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3699 | SEC_LINKER_CREATED);
3700
3701 got = bfd_make_section (abfd, ".got");
3702 if (!got
3703 || !bfd_set_section_flags (abfd, got, flags)
3704 || !bfd_set_section_alignment (abfd, got, 3))
3705 return FALSE;
3706
3707 relgot = bfd_make_section (abfd, ".rela.got");
3708 if (!relgot
3709 || ! bfd_set_section_flags (abfd, relgot, flags | SEC_READONLY)
3710 || ! bfd_set_section_alignment (abfd, relgot, 3))
3711 return FALSE;
3712
3713 ppc64_elf_tdata (abfd)->got = got;
3714 ppc64_elf_tdata (abfd)->relgot = relgot;
3715 return TRUE;
3716 }
3717
3718 /* Create the dynamic sections, and set up shortcuts. */
3719
3720 static bfd_boolean
3721 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3722 {
3723 struct ppc_link_hash_table *htab;
3724
3725 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3726 return FALSE;
3727
3728 htab = ppc_hash_table (info);
3729 if (!htab->got)
3730 htab->got = bfd_get_section_by_name (dynobj, ".got");
3731 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3732 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3733 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3734 if (!info->shared)
3735 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3736
3737 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3738 || (!info->shared && !htab->relbss))
3739 abort ();
3740
3741 return TRUE;
3742 }
3743
3744 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3745
3746 static void
3747 ppc64_elf_copy_indirect_symbol
3748 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3749 struct elf_link_hash_entry *dir,
3750 struct elf_link_hash_entry *ind)
3751 {
3752 struct ppc_link_hash_entry *edir, *eind;
3753 flagword mask;
3754
3755 edir = (struct ppc_link_hash_entry *) dir;
3756 eind = (struct ppc_link_hash_entry *) ind;
3757
3758 /* Copy over any dynamic relocs we may have on the indirect sym. */
3759 if (eind->dyn_relocs != NULL)
3760 {
3761 if (edir->dyn_relocs != NULL)
3762 {
3763 struct ppc_dyn_relocs **pp;
3764 struct ppc_dyn_relocs *p;
3765
3766 if (eind->elf.root.type == bfd_link_hash_indirect)
3767 abort ();
3768
3769 /* Add reloc counts against the weak sym to the strong sym
3770 list. Merge any entries against the same section. */
3771 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3772 {
3773 struct ppc_dyn_relocs *q;
3774
3775 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3776 if (q->sec == p->sec)
3777 {
3778 q->pc_count += p->pc_count;
3779 q->count += p->count;
3780 *pp = p->next;
3781 break;
3782 }
3783 if (q == NULL)
3784 pp = &p->next;
3785 }
3786 *pp = edir->dyn_relocs;
3787 }
3788
3789 edir->dyn_relocs = eind->dyn_relocs;
3790 eind->dyn_relocs = NULL;
3791 }
3792
3793 edir->is_func |= eind->is_func;
3794 edir->is_func_descriptor |= eind->is_func_descriptor;
3795 edir->tls_mask |= eind->tls_mask;
3796
3797 mask = (ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR
3798 | ELF_LINK_HASH_REF_REGULAR_NONWEAK | ELF_LINK_NON_GOT_REF
3799 | ELF_LINK_HASH_NEEDS_PLT);
3800 /* If called to transfer flags for a weakdef during processing
3801 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
3802 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3803 if (ELIMINATE_COPY_RELOCS
3804 && eind->elf.root.type != bfd_link_hash_indirect
3805 && (edir->elf.elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3806 mask &= ~ELF_LINK_NON_GOT_REF;
3807
3808 edir->elf.elf_link_hash_flags |= eind->elf.elf_link_hash_flags & mask;
3809
3810 /* If we were called to copy over info for a weak sym, that's all. */
3811 if (eind->elf.root.type != bfd_link_hash_indirect)
3812 return;
3813
3814 /* Copy over got entries that we may have already seen to the
3815 symbol which just became indirect. */
3816 if (eind->elf.got.glist != NULL)
3817 {
3818 if (edir->elf.got.glist != NULL)
3819 {
3820 struct got_entry **entp;
3821 struct got_entry *ent;
3822
3823 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3824 {
3825 struct got_entry *dent;
3826
3827 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3828 if (dent->addend == ent->addend
3829 && dent->owner == ent->owner
3830 && dent->tls_type == ent->tls_type)
3831 {
3832 dent->got.refcount += ent->got.refcount;
3833 *entp = ent->next;
3834 break;
3835 }
3836 if (dent == NULL)
3837 entp = &ent->next;
3838 }
3839 *entp = edir->elf.got.glist;
3840 }
3841
3842 edir->elf.got.glist = eind->elf.got.glist;
3843 eind->elf.got.glist = NULL;
3844 }
3845
3846 /* And plt entries. */
3847 if (eind->elf.plt.plist != NULL)
3848 {
3849 if (edir->elf.plt.plist != NULL)
3850 {
3851 struct plt_entry **entp;
3852 struct plt_entry *ent;
3853
3854 for (entp = &eind->elf.plt.plist; (ent = *entp) != NULL; )
3855 {
3856 struct plt_entry *dent;
3857
3858 for (dent = edir->elf.plt.plist; dent != NULL; dent = dent->next)
3859 if (dent->addend == ent->addend)
3860 {
3861 dent->plt.refcount += ent->plt.refcount;
3862 *entp = ent->next;
3863 break;
3864 }
3865 if (dent == NULL)
3866 entp = &ent->next;
3867 }
3868 *entp = edir->elf.plt.plist;
3869 }
3870
3871 edir->elf.plt.plist = eind->elf.plt.plist;
3872 eind->elf.plt.plist = NULL;
3873 }
3874
3875 if (edir->elf.dynindx == -1)
3876 {
3877 edir->elf.dynindx = eind->elf.dynindx;
3878 edir->elf.dynstr_index = eind->elf.dynstr_index;
3879 eind->elf.dynindx = -1;
3880 eind->elf.dynstr_index = 0;
3881 }
3882 else
3883 BFD_ASSERT (eind->elf.dynindx == -1);
3884 }
3885
3886 /* Find the function descriptor hash entry from the given function code
3887 hash entry FH. Link the entries via their OH fields. */
3888
3889 static struct ppc_link_hash_entry *
3890 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3891 {
3892 struct ppc_link_hash_entry *fdh = fh->oh;
3893
3894 if (fdh == NULL)
3895 {
3896 const char *fd_name = fh->elf.root.root.string + 1;
3897
3898 fdh = (struct ppc_link_hash_entry *)
3899 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3900 if (fdh != NULL)
3901 {
3902 fdh->is_func_descriptor = 1;
3903 fdh->oh = fh;
3904 fh->is_func = 1;
3905 fh->oh = fdh;
3906 }
3907 }
3908
3909 return fdh;
3910 }
3911
3912 /* Hacks to support old ABI code.
3913 When making function calls, old ABI code references function entry
3914 points (dot symbols), while new ABI code references the function
3915 descriptor symbol. We need to make any combination of reference and
3916 definition work together, without breaking archive linking.
3917
3918 For a defined function "foo" and an undefined call to "bar":
3919 An old object defines "foo" and ".foo", references ".bar" (possibly
3920 "bar" too).
3921 A new object defines "foo" and references "bar".
3922
3923 A new object thus has no problem with its undefined symbols being
3924 satisfied by definitions in an old object. On the other hand, the
3925 old object won't have ".bar" satisfied by a new object. */
3926
3927 /* Fix function descriptor symbols defined in .opd sections to be
3928 function type. */
3929
3930 static bfd_boolean
3931 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
3932 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3933 Elf_Internal_Sym *isym,
3934 const char **name ATTRIBUTE_UNUSED,
3935 flagword *flags ATTRIBUTE_UNUSED,
3936 asection **sec,
3937 bfd_vma *value ATTRIBUTE_UNUSED)
3938 {
3939 if (*sec != NULL
3940 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
3941 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
3942 return TRUE;
3943 }
3944
3945 /* This function makes an old ABI object reference to ".bar" cause the
3946 inclusion of a new ABI object archive that defines "bar". */
3947
3948 static struct elf_link_hash_entry *
3949 ppc64_elf_archive_symbol_lookup (bfd *abfd,
3950 struct bfd_link_info *info,
3951 const char *name)
3952 {
3953 struct elf_link_hash_entry *h;
3954 char *dot_name;
3955 size_t len;
3956
3957 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
3958 if (h != NULL)
3959 return h;
3960
3961 if (name[0] == '.')
3962 return h;
3963
3964 len = strlen (name);
3965 dot_name = bfd_alloc (abfd, len + 2);
3966 if (dot_name == NULL)
3967 return (struct elf_link_hash_entry *) 0 - 1;
3968 dot_name[0] = '.';
3969 memcpy (dot_name + 1, name, len + 1);
3970 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
3971 bfd_release (abfd, dot_name);
3972 return h;
3973 }
3974
3975 /* This function satisfies all old ABI object references to ".bar" if a
3976 new ABI object defines "bar". Well, at least, undefined dot symbols
3977 are made weak. This stops later archive searches from including an
3978 object if we already have a function descriptor definition. It also
3979 prevents the linker complaining about undefined symbols.
3980 We also check and correct mismatched symbol visibility here. The
3981 most restrictive visibility of the function descriptor and the
3982 function entry symbol is used. */
3983
3984 static bfd_boolean
3985 add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
3986 {
3987 struct bfd_link_info *info;
3988 struct ppc_link_hash_table *htab;
3989 struct ppc_link_hash_entry *eh;
3990 struct ppc_link_hash_entry *fdh;
3991
3992 if (h->root.type == bfd_link_hash_indirect)
3993 return TRUE;
3994
3995 if (h->root.type == bfd_link_hash_warning)
3996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3997
3998 if (h->root.root.string[0] != '.')
3999 return TRUE;
4000
4001 info = inf;
4002 htab = ppc_hash_table (info);
4003 eh = (struct ppc_link_hash_entry *) h;
4004 fdh = get_fdh (eh, htab);
4005 if (fdh != NULL)
4006 {
4007 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4008 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4009 if (entry_vis < descr_vis)
4010 fdh->elf.other += entry_vis - descr_vis;
4011 else if (entry_vis > descr_vis)
4012 eh->elf.other += descr_vis - entry_vis;
4013
4014 if (eh->elf.root.type == bfd_link_hash_undefined)
4015 {
4016 eh->elf.root.type = bfd_link_hash_undefweak;
4017 eh->was_undefined = 1;
4018 htab->twiddled_syms = 1;
4019 }
4020 }
4021
4022 return TRUE;
4023 }
4024
4025 static bfd_boolean
4026 ppc64_elf_check_directives (bfd *abfd ATTRIBUTE_UNUSED,
4027 struct bfd_link_info *info)
4028 {
4029 struct ppc_link_hash_table *htab;
4030 extern const bfd_target bfd_elf64_powerpc_vec;
4031 extern const bfd_target bfd_elf64_powerpcle_vec;
4032
4033 htab = ppc_hash_table (info);
4034 if (htab->elf.root.creator != &bfd_elf64_powerpc_vec
4035 && htab->elf.root.creator != &bfd_elf64_powerpcle_vec)
4036 return TRUE;
4037
4038 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, info);
4039
4040 /* We need to fix the undefs list for any syms we have twiddled to
4041 undef_weak. */
4042 if (htab->twiddled_syms)
4043 {
4044 struct bfd_link_hash_entry **pun;
4045
4046 pun = &htab->elf.root.undefs;
4047 while (*pun != NULL)
4048 {
4049 struct bfd_link_hash_entry *h = *pun;
4050
4051 if (h->type != bfd_link_hash_undefined
4052 && h->type != bfd_link_hash_common)
4053 {
4054 *pun = h->und_next;
4055 h->und_next = NULL;
4056 if (h == htab->elf.root.undefs_tail)
4057 {
4058 if (pun == &htab->elf.root.undefs)
4059 htab->elf.root.undefs_tail = NULL;
4060 else
4061 /* pun points at an und_next field. Go back to
4062 the start of the link_hash_entry. */
4063 htab->elf.root.undefs_tail = (struct bfd_link_hash_entry *)
4064 ((char *) pun - ((char *) &h->und_next - (char *) h));
4065 break;
4066 }
4067 }
4068 else
4069 pun = &h->und_next;
4070 }
4071
4072 htab->twiddled_syms = 0;
4073 }
4074 return TRUE;
4075 }
4076
4077 static bfd_boolean
4078 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4079 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4080 {
4081 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4082 char *local_got_tls_masks;
4083
4084 if (local_got_ents == NULL)
4085 {
4086 bfd_size_type size = symtab_hdr->sh_info;
4087
4088 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4089 local_got_ents = bfd_zalloc (abfd, size);
4090 if (local_got_ents == NULL)
4091 return FALSE;
4092 elf_local_got_ents (abfd) = local_got_ents;
4093 }
4094
4095 if ((tls_type & TLS_EXPLICIT) == 0)
4096 {
4097 struct got_entry *ent;
4098
4099 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4100 if (ent->addend == r_addend
4101 && ent->owner == abfd
4102 && ent->tls_type == tls_type)
4103 break;
4104 if (ent == NULL)
4105 {
4106 bfd_size_type amt = sizeof (*ent);
4107 ent = bfd_alloc (abfd, amt);
4108 if (ent == NULL)
4109 return FALSE;
4110 ent->next = local_got_ents[r_symndx];
4111 ent->addend = r_addend;
4112 ent->owner = abfd;
4113 ent->tls_type = tls_type;
4114 ent->got.refcount = 0;
4115 local_got_ents[r_symndx] = ent;
4116 }
4117 ent->got.refcount += 1;
4118 }
4119
4120 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4121 local_got_tls_masks[r_symndx] |= tls_type;
4122 return TRUE;
4123 }
4124
4125 static bfd_boolean
4126 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4127 {
4128 struct plt_entry *ent;
4129
4130 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4131 if (ent->addend == addend)
4132 break;
4133 if (ent == NULL)
4134 {
4135 bfd_size_type amt = sizeof (*ent);
4136 ent = bfd_alloc (abfd, amt);
4137 if (ent == NULL)
4138 return FALSE;
4139 ent->next = eh->elf.plt.plist;
4140 ent->addend = addend;
4141 ent->plt.refcount = 0;
4142 eh->elf.plt.plist = ent;
4143 }
4144 ent->plt.refcount += 1;
4145 eh->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
4146 eh->is_func = 1;
4147 return TRUE;
4148 }
4149
4150 /* Look through the relocs for a section during the first phase, and
4151 calculate needed space in the global offset table, procedure
4152 linkage table, and dynamic reloc sections. */
4153
4154 static bfd_boolean
4155 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4156 asection *sec, const Elf_Internal_Rela *relocs)
4157 {
4158 struct ppc_link_hash_table *htab;
4159 Elf_Internal_Shdr *symtab_hdr;
4160 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4161 const Elf_Internal_Rela *rel;
4162 const Elf_Internal_Rela *rel_end;
4163 asection *sreloc;
4164 asection **opd_sym_map;
4165
4166 if (info->relocatable)
4167 return TRUE;
4168
4169 /* Don't do anything special with non-loaded, non-alloced sections.
4170 In particular, any relocs in such sections should not affect GOT
4171 and PLT reference counting (ie. we don't allow them to create GOT
4172 or PLT entries), there's no possibility or desire to optimize TLS
4173 relocs, and there's not much point in propagating relocs to shared
4174 libs that the dynamic linker won't relocate. */
4175 if ((sec->flags & SEC_ALLOC) == 0)
4176 return TRUE;
4177
4178 htab = ppc_hash_table (info);
4179 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4180
4181 sym_hashes = elf_sym_hashes (abfd);
4182 sym_hashes_end = (sym_hashes
4183 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4184 - symtab_hdr->sh_info);
4185
4186 sreloc = NULL;
4187 opd_sym_map = NULL;
4188 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4189 {
4190 /* Garbage collection needs some extra help with .opd sections.
4191 We don't want to necessarily keep everything referenced by
4192 relocs in .opd, as that would keep all functions. Instead,
4193 if we reference an .opd symbol (a function descriptor), we
4194 want to keep the function code symbol's section. This is
4195 easy for global symbols, but for local syms we need to keep
4196 information about the associated function section. Later, if
4197 edit_opd deletes entries, we'll use this array to adjust
4198 local syms in .opd. */
4199 union opd_info {
4200 asection *func_section;
4201 long entry_adjust;
4202 };
4203 bfd_size_type amt;
4204
4205 amt = sec->size * sizeof (union opd_info) / 8;
4206 opd_sym_map = bfd_zalloc (abfd, amt);
4207 if (opd_sym_map == NULL)
4208 return FALSE;
4209 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4210 }
4211
4212 if (htab->sfpr == NULL
4213 && !create_linkage_sections (htab->elf.dynobj, info))
4214 return FALSE;
4215
4216 rel_end = relocs + sec->reloc_count;
4217 for (rel = relocs; rel < rel_end; rel++)
4218 {
4219 unsigned long r_symndx;
4220 struct elf_link_hash_entry *h;
4221 enum elf_ppc64_reloc_type r_type;
4222 int tls_type = 0;
4223
4224 r_symndx = ELF64_R_SYM (rel->r_info);
4225 if (r_symndx < symtab_hdr->sh_info)
4226 h = NULL;
4227 else
4228 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4229
4230 r_type = ELF64_R_TYPE (rel->r_info);
4231 switch (r_type)
4232 {
4233 case R_PPC64_GOT_TLSLD16:
4234 case R_PPC64_GOT_TLSLD16_LO:
4235 case R_PPC64_GOT_TLSLD16_HI:
4236 case R_PPC64_GOT_TLSLD16_HA:
4237 ppc64_tlsld_got (abfd)->refcount += 1;
4238 tls_type = TLS_TLS | TLS_LD;
4239 goto dogottls;
4240
4241 case R_PPC64_GOT_TLSGD16:
4242 case R_PPC64_GOT_TLSGD16_LO:
4243 case R_PPC64_GOT_TLSGD16_HI:
4244 case R_PPC64_GOT_TLSGD16_HA:
4245 tls_type = TLS_TLS | TLS_GD;
4246 goto dogottls;
4247
4248 case R_PPC64_GOT_TPREL16_DS:
4249 case R_PPC64_GOT_TPREL16_LO_DS:
4250 case R_PPC64_GOT_TPREL16_HI:
4251 case R_PPC64_GOT_TPREL16_HA:
4252 if (info->shared)
4253 info->flags |= DF_STATIC_TLS;
4254 tls_type = TLS_TLS | TLS_TPREL;
4255 goto dogottls;
4256
4257 case R_PPC64_GOT_DTPREL16_DS:
4258 case R_PPC64_GOT_DTPREL16_LO_DS:
4259 case R_PPC64_GOT_DTPREL16_HI:
4260 case R_PPC64_GOT_DTPREL16_HA:
4261 tls_type = TLS_TLS | TLS_DTPREL;
4262 dogottls:
4263 sec->has_tls_reloc = 1;
4264 /* Fall thru */
4265
4266 case R_PPC64_GOT16:
4267 case R_PPC64_GOT16_DS:
4268 case R_PPC64_GOT16_HA:
4269 case R_PPC64_GOT16_HI:
4270 case R_PPC64_GOT16_LO:
4271 case R_PPC64_GOT16_LO_DS:
4272 /* This symbol requires a global offset table entry. */
4273 sec->has_gp_reloc = 1;
4274 if (ppc64_elf_tdata (abfd)->got == NULL
4275 && !create_got_section (abfd, info))
4276 return FALSE;
4277
4278 if (h != NULL)
4279 {
4280 struct ppc_link_hash_entry *eh;
4281 struct got_entry *ent;
4282
4283 eh = (struct ppc_link_hash_entry *) h;
4284 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4285 if (ent->addend == rel->r_addend
4286 && ent->owner == abfd
4287 && ent->tls_type == tls_type)
4288 break;
4289 if (ent == NULL)
4290 {
4291 bfd_size_type amt = sizeof (*ent);
4292 ent = bfd_alloc (abfd, amt);
4293 if (ent == NULL)
4294 return FALSE;
4295 ent->next = eh->elf.got.glist;
4296 ent->addend = rel->r_addend;
4297 ent->owner = abfd;
4298 ent->tls_type = tls_type;
4299 ent->got.refcount = 0;
4300 eh->elf.got.glist = ent;
4301 }
4302 ent->got.refcount += 1;
4303 eh->tls_mask |= tls_type;
4304 }
4305 else
4306 /* This is a global offset table entry for a local symbol. */
4307 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4308 rel->r_addend, tls_type))
4309 return FALSE;
4310 break;
4311
4312 case R_PPC64_PLT16_HA:
4313 case R_PPC64_PLT16_HI:
4314 case R_PPC64_PLT16_LO:
4315 case R_PPC64_PLT32:
4316 case R_PPC64_PLT64:
4317 /* This symbol requires a procedure linkage table entry. We
4318 actually build the entry in adjust_dynamic_symbol,
4319 because this might be a case of linking PIC code without
4320 linking in any dynamic objects, in which case we don't
4321 need to generate a procedure linkage table after all. */
4322 if (h == NULL)
4323 {
4324 /* It does not make sense to have a procedure linkage
4325 table entry for a local symbol. */
4326 bfd_set_error (bfd_error_bad_value);
4327 return FALSE;
4328 }
4329 else
4330 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4331 rel->r_addend))
4332 return FALSE;
4333 break;
4334
4335 /* The following relocations don't need to propagate the
4336 relocation if linking a shared object since they are
4337 section relative. */
4338 case R_PPC64_SECTOFF:
4339 case R_PPC64_SECTOFF_LO:
4340 case R_PPC64_SECTOFF_HI:
4341 case R_PPC64_SECTOFF_HA:
4342 case R_PPC64_SECTOFF_DS:
4343 case R_PPC64_SECTOFF_LO_DS:
4344 case R_PPC64_DTPREL16:
4345 case R_PPC64_DTPREL16_LO:
4346 case R_PPC64_DTPREL16_HI:
4347 case R_PPC64_DTPREL16_HA:
4348 case R_PPC64_DTPREL16_DS:
4349 case R_PPC64_DTPREL16_LO_DS:
4350 case R_PPC64_DTPREL16_HIGHER:
4351 case R_PPC64_DTPREL16_HIGHERA:
4352 case R_PPC64_DTPREL16_HIGHEST:
4353 case R_PPC64_DTPREL16_HIGHESTA:
4354 break;
4355
4356 /* Nor do these. */
4357 case R_PPC64_TOC16:
4358 case R_PPC64_TOC16_LO:
4359 case R_PPC64_TOC16_HI:
4360 case R_PPC64_TOC16_HA:
4361 case R_PPC64_TOC16_DS:
4362 case R_PPC64_TOC16_LO_DS:
4363 sec->has_gp_reloc = 1;
4364 break;
4365
4366 /* This relocation describes the C++ object vtable hierarchy.
4367 Reconstruct it for later use during GC. */
4368 case R_PPC64_GNU_VTINHERIT:
4369 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4370 return FALSE;
4371 break;
4372
4373 /* This relocation describes which C++ vtable entries are actually
4374 used. Record for later use during GC. */
4375 case R_PPC64_GNU_VTENTRY:
4376 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4377 return FALSE;
4378 break;
4379
4380 case R_PPC64_REL14:
4381 case R_PPC64_REL14_BRTAKEN:
4382 case R_PPC64_REL14_BRNTAKEN:
4383 htab->has_14bit_branch = 1;
4384 /* Fall through. */
4385
4386 case R_PPC64_REL24:
4387 if (h != NULL)
4388 {
4389 /* We may need a .plt entry if the function this reloc
4390 refers to is in a shared lib. */
4391 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4392 rel->r_addend))
4393 return FALSE;
4394 if (h == &htab->tls_get_addr->elf
4395 || h == &htab->tls_get_addr_fd->elf)
4396 sec->has_tls_reloc = 1;
4397 else if (htab->tls_get_addr == NULL
4398 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4399 && (h->root.root.string[15] == 0
4400 || h->root.root.string[15] == '@'))
4401 {
4402 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4403 sec->has_tls_reloc = 1;
4404 }
4405 else if (htab->tls_get_addr_fd == NULL
4406 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4407 && (h->root.root.string[14] == 0
4408 || h->root.root.string[14] == '@'))
4409 {
4410 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4411 sec->has_tls_reloc = 1;
4412 }
4413 }
4414 break;
4415
4416 case R_PPC64_TPREL64:
4417 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4418 if (info->shared)
4419 info->flags |= DF_STATIC_TLS;
4420 goto dotlstoc;
4421
4422 case R_PPC64_DTPMOD64:
4423 if (rel + 1 < rel_end
4424 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4425 && rel[1].r_offset == rel->r_offset + 8)
4426 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4427 else
4428 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4429 goto dotlstoc;
4430
4431 case R_PPC64_DTPREL64:
4432 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4433 if (rel != relocs
4434 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4435 && rel[-1].r_offset == rel->r_offset - 8)
4436 /* This is the second reloc of a dtpmod, dtprel pair.
4437 Don't mark with TLS_DTPREL. */
4438 goto dodyn;
4439
4440 dotlstoc:
4441 sec->has_tls_reloc = 1;
4442 if (h != NULL)
4443 {
4444 struct ppc_link_hash_entry *eh;
4445 eh = (struct ppc_link_hash_entry *) h;
4446 eh->tls_mask |= tls_type;
4447 }
4448 else
4449 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4450 rel->r_addend, tls_type))
4451 return FALSE;
4452
4453 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4454 {
4455 /* One extra to simplify get_tls_mask. */
4456 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4457 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4458 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4459 return FALSE;
4460 }
4461 BFD_ASSERT (rel->r_offset % 8 == 0);
4462 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4463
4464 /* Mark the second slot of a GD or LD entry.
4465 -1 to indicate GD and -2 to indicate LD. */
4466 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4467 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4468 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4469 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4470 goto dodyn;
4471
4472 case R_PPC64_TPREL16:
4473 case R_PPC64_TPREL16_LO:
4474 case R_PPC64_TPREL16_HI:
4475 case R_PPC64_TPREL16_HA:
4476 case R_PPC64_TPREL16_DS:
4477 case R_PPC64_TPREL16_LO_DS:
4478 case R_PPC64_TPREL16_HIGHER:
4479 case R_PPC64_TPREL16_HIGHERA:
4480 case R_PPC64_TPREL16_HIGHEST:
4481 case R_PPC64_TPREL16_HIGHESTA:
4482 if (info->shared)
4483 {
4484 info->flags |= DF_STATIC_TLS;
4485 goto dodyn;
4486 }
4487 break;
4488
4489 case R_PPC64_ADDR64:
4490 if (opd_sym_map != NULL
4491 && rel + 1 < rel_end
4492 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4493 {
4494 if (h != NULL)
4495 {
4496 if (h->root.root.string[0] == '.'
4497 && h->root.root.string[1] != 0
4498 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4499 ;
4500 else
4501 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4502 }
4503 else
4504 {
4505 asection *s;
4506
4507 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4508 r_symndx);
4509 if (s == NULL)
4510 return FALSE;
4511 else if (s != sec)
4512 opd_sym_map[rel->r_offset / 8] = s;
4513 }
4514 }
4515 /* Fall through. */
4516
4517 case R_PPC64_REL30:
4518 case R_PPC64_REL32:
4519 case R_PPC64_REL64:
4520 case R_PPC64_ADDR14:
4521 case R_PPC64_ADDR14_BRNTAKEN:
4522 case R_PPC64_ADDR14_BRTAKEN:
4523 case R_PPC64_ADDR16:
4524 case R_PPC64_ADDR16_DS:
4525 case R_PPC64_ADDR16_HA:
4526 case R_PPC64_ADDR16_HI:
4527 case R_PPC64_ADDR16_HIGHER:
4528 case R_PPC64_ADDR16_HIGHERA:
4529 case R_PPC64_ADDR16_HIGHEST:
4530 case R_PPC64_ADDR16_HIGHESTA:
4531 case R_PPC64_ADDR16_LO:
4532 case R_PPC64_ADDR16_LO_DS:
4533 case R_PPC64_ADDR24:
4534 case R_PPC64_ADDR32:
4535 case R_PPC64_UADDR16:
4536 case R_PPC64_UADDR32:
4537 case R_PPC64_UADDR64:
4538 case R_PPC64_TOC:
4539 if (h != NULL && !info->shared)
4540 /* We may need a copy reloc. */
4541 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
4542
4543 /* Don't propagate .opd relocs. */
4544 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4545 break;
4546
4547 /* If we are creating a shared library, and this is a reloc
4548 against a global symbol, or a non PC relative reloc
4549 against a local symbol, then we need to copy the reloc
4550 into the shared library. However, if we are linking with
4551 -Bsymbolic, we do not need to copy a reloc against a
4552 global symbol which is defined in an object we are
4553 including in the link (i.e., DEF_REGULAR is set). At
4554 this point we have not seen all the input files, so it is
4555 possible that DEF_REGULAR is not set now but will be set
4556 later (it is never cleared). In case of a weak definition,
4557 DEF_REGULAR may be cleared later by a strong definition in
4558 a shared library. We account for that possibility below by
4559 storing information in the dyn_relocs field of the hash
4560 table entry. A similar situation occurs when creating
4561 shared libraries and symbol visibility changes render the
4562 symbol local.
4563
4564 If on the other hand, we are creating an executable, we
4565 may need to keep relocations for symbols satisfied by a
4566 dynamic library if we manage to avoid copy relocs for the
4567 symbol. */
4568 dodyn:
4569 if ((info->shared
4570 && (MUST_BE_DYN_RELOC (r_type)
4571 || (h != NULL
4572 && (! info->symbolic
4573 || h->root.type == bfd_link_hash_defweak
4574 || (h->elf_link_hash_flags
4575 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
4576 || (ELIMINATE_COPY_RELOCS
4577 && !info->shared
4578 && h != NULL
4579 && (h->root.type == bfd_link_hash_defweak
4580 || (h->elf_link_hash_flags
4581 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
4582 {
4583 struct ppc_dyn_relocs *p;
4584 struct ppc_dyn_relocs **head;
4585
4586 /* We must copy these reloc types into the output file.
4587 Create a reloc section in dynobj and make room for
4588 this reloc. */
4589 if (sreloc == NULL)
4590 {
4591 const char *name;
4592 bfd *dynobj;
4593
4594 name = (bfd_elf_string_from_elf_section
4595 (abfd,
4596 elf_elfheader (abfd)->e_shstrndx,
4597 elf_section_data (sec)->rel_hdr.sh_name));
4598 if (name == NULL)
4599 return FALSE;
4600
4601 if (strncmp (name, ".rela", 5) != 0
4602 || strcmp (bfd_get_section_name (abfd, sec),
4603 name + 5) != 0)
4604 {
4605 (*_bfd_error_handler)
4606 (_("%B: bad relocation section name `%s\'"),
4607 abfd, name);
4608 bfd_set_error (bfd_error_bad_value);
4609 }
4610
4611 dynobj = htab->elf.dynobj;
4612 sreloc = bfd_get_section_by_name (dynobj, name);
4613 if (sreloc == NULL)
4614 {
4615 flagword flags;
4616
4617 sreloc = bfd_make_section (dynobj, name);
4618 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4619 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4620 if ((sec->flags & SEC_ALLOC) != 0)
4621 flags |= SEC_ALLOC | SEC_LOAD;
4622 if (sreloc == NULL
4623 || ! bfd_set_section_flags (dynobj, sreloc, flags)
4624 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4625 return FALSE;
4626 }
4627 elf_section_data (sec)->sreloc = sreloc;
4628 }
4629
4630 /* If this is a global symbol, we count the number of
4631 relocations we need for this symbol. */
4632 if (h != NULL)
4633 {
4634 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4635 }
4636 else
4637 {
4638 /* Track dynamic relocs needed for local syms too.
4639 We really need local syms available to do this
4640 easily. Oh well. */
4641
4642 asection *s;
4643 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4644 sec, r_symndx);
4645 if (s == NULL)
4646 return FALSE;
4647
4648 head = ((struct ppc_dyn_relocs **)
4649 &elf_section_data (s)->local_dynrel);
4650 }
4651
4652 p = *head;
4653 if (p == NULL || p->sec != sec)
4654 {
4655 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4656 if (p == NULL)
4657 return FALSE;
4658 p->next = *head;
4659 *head = p;
4660 p->sec = sec;
4661 p->count = 0;
4662 p->pc_count = 0;
4663 }
4664
4665 p->count += 1;
4666 if (!MUST_BE_DYN_RELOC (r_type))
4667 p->pc_count += 1;
4668 }
4669 break;
4670
4671 default:
4672 break;
4673 }
4674 }
4675
4676 return TRUE;
4677 }
4678
4679 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4680 of the code entry point, and its section. */
4681
4682 static bfd_vma
4683 opd_entry_value (asection *opd_sec,
4684 bfd_vma offset,
4685 asection **code_sec,
4686 bfd_vma *code_off)
4687 {
4688 bfd *opd_bfd = opd_sec->owner;
4689 Elf_Internal_Rela *lo, *hi, *look;
4690
4691 /* Go find the opd reloc at the sym address. */
4692 lo = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4693 BFD_ASSERT (lo != NULL);
4694 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4695
4696 while (lo < hi)
4697 {
4698 look = lo + (hi - lo) / 2;
4699 if (look->r_offset < offset)
4700 lo = look + 1;
4701 else if (look->r_offset > offset)
4702 hi = look;
4703 else
4704 {
4705 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4706 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4707 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4708 {
4709 unsigned long symndx = ELF64_R_SYM (look->r_info);
4710 bfd_vma val;
4711 asection *sec;
4712
4713 if (symndx < symtab_hdr->sh_info)
4714 {
4715 Elf_Internal_Sym *sym;
4716
4717 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4718 if (sym == NULL)
4719 {
4720 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4721 symtab_hdr->sh_info,
4722 0, NULL, NULL, NULL);
4723 if (sym == NULL)
4724 return (bfd_vma) -1;
4725 symtab_hdr->contents = (bfd_byte *) sym;
4726 }
4727
4728 sym += symndx;
4729 val = sym->st_value;
4730 sec = NULL;
4731 if ((sym->st_shndx != SHN_UNDEF
4732 && sym->st_shndx < SHN_LORESERVE)
4733 || sym->st_shndx > SHN_HIRESERVE)
4734 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4735 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4736 }
4737 else
4738 {
4739 struct elf_link_hash_entry **sym_hashes;
4740 struct elf_link_hash_entry *rh;
4741
4742 sym_hashes = elf_sym_hashes (opd_bfd);
4743 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4744 while (rh->root.type == bfd_link_hash_indirect
4745 || rh->root.type == bfd_link_hash_warning)
4746 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4747 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4748 || rh->root.type == bfd_link_hash_defweak);
4749 val = rh->root.u.def.value;
4750 sec = rh->root.u.def.section;
4751 }
4752 val += look->r_addend;
4753 if (code_off != NULL)
4754 *code_off = val;
4755 if (code_sec != NULL)
4756 *code_sec = sec;
4757 if (sec != NULL && sec->output_section != NULL)
4758 val += sec->output_section->vma + sec->output_offset;
4759 return val;
4760 }
4761 break;
4762 }
4763 }
4764 return (bfd_vma) -1;
4765 }
4766
4767 /* Return the section that should be marked against GC for a given
4768 relocation. */
4769
4770 static asection *
4771 ppc64_elf_gc_mark_hook (asection *sec,
4772 struct bfd_link_info *info,
4773 Elf_Internal_Rela *rel,
4774 struct elf_link_hash_entry *h,
4775 Elf_Internal_Sym *sym)
4776 {
4777 asection *rsec;
4778
4779 /* First mark all our entry sym sections. */
4780 if (info->gc_sym_list != NULL)
4781 {
4782 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4783 struct bfd_sym_chain *sym = info->gc_sym_list;
4784
4785 info->gc_sym_list = NULL;
4786 do
4787 {
4788 struct ppc_link_hash_entry *eh;
4789
4790 eh = (struct ppc_link_hash_entry *)
4791 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4792 if (eh == NULL)
4793 continue;
4794 if (eh->elf.root.type != bfd_link_hash_defined
4795 && eh->elf.root.type != bfd_link_hash_defweak)
4796 continue;
4797
4798 if (eh->is_func_descriptor)
4799 rsec = eh->oh->elf.root.u.def.section;
4800 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4801 && opd_entry_value (eh->elf.root.u.def.section,
4802 eh->elf.root.u.def.value,
4803 &rsec, NULL) != (bfd_vma) -1)
4804 ;
4805 else
4806 continue;
4807
4808 if (!rsec->gc_mark)
4809 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4810
4811 rsec = eh->elf.root.u.def.section;
4812 if (!rsec->gc_mark)
4813 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4814
4815 sym = sym->next;
4816 }
4817 while (sym != NULL);
4818 }
4819
4820 /* Syms return NULL if we're marking .opd, so we avoid marking all
4821 function sections, as all functions are referenced in .opd. */
4822 rsec = NULL;
4823 if (get_opd_info (sec) != NULL)
4824 return rsec;
4825
4826 if (h != NULL)
4827 {
4828 enum elf_ppc64_reloc_type r_type;
4829 struct ppc_link_hash_entry *eh;
4830
4831 r_type = ELF64_R_TYPE (rel->r_info);
4832 switch (r_type)
4833 {
4834 case R_PPC64_GNU_VTINHERIT:
4835 case R_PPC64_GNU_VTENTRY:
4836 break;
4837
4838 default:
4839 switch (h->root.type)
4840 {
4841 case bfd_link_hash_defined:
4842 case bfd_link_hash_defweak:
4843 eh = (struct ppc_link_hash_entry *) h;
4844 if (eh->oh != NULL && eh->oh->is_func_descriptor)
4845 eh = eh->oh;
4846
4847 /* Function descriptor syms cause the associated
4848 function code sym section to be marked. */
4849 if (eh->is_func_descriptor)
4850 {
4851 /* They also mark their opd section. */
4852 if (!eh->elf.root.u.def.section->gc_mark)
4853 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4854 ppc64_elf_gc_mark_hook);
4855
4856 rsec = eh->oh->elf.root.u.def.section;
4857 }
4858 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4859 && opd_entry_value (eh->elf.root.u.def.section,
4860 eh->elf.root.u.def.value,
4861 &rsec, NULL) != (bfd_vma) -1)
4862 {
4863 if (!eh->elf.root.u.def.section->gc_mark)
4864 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4865 ppc64_elf_gc_mark_hook);
4866 }
4867 else
4868 rsec = h->root.u.def.section;
4869 break;
4870
4871 case bfd_link_hash_common:
4872 rsec = h->root.u.c.p->section;
4873 break;
4874
4875 default:
4876 break;
4877 }
4878 }
4879 }
4880 else
4881 {
4882 asection **opd_sym_section;
4883
4884 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4885 opd_sym_section = get_opd_info (rsec);
4886 if (opd_sym_section != NULL)
4887 {
4888 if (!rsec->gc_mark)
4889 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4890
4891 rsec = opd_sym_section[sym->st_value / 8];
4892 }
4893 }
4894
4895 return rsec;
4896 }
4897
4898 /* Update the .got, .plt. and dynamic reloc reference counts for the
4899 section being removed. */
4900
4901 static bfd_boolean
4902 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
4903 asection *sec, const Elf_Internal_Rela *relocs)
4904 {
4905 struct ppc_link_hash_table *htab;
4906 Elf_Internal_Shdr *symtab_hdr;
4907 struct elf_link_hash_entry **sym_hashes;
4908 struct got_entry **local_got_ents;
4909 const Elf_Internal_Rela *rel, *relend;
4910
4911 if ((sec->flags & SEC_ALLOC) == 0)
4912 return TRUE;
4913
4914 elf_section_data (sec)->local_dynrel = NULL;
4915
4916 htab = ppc_hash_table (info);
4917 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4918 sym_hashes = elf_sym_hashes (abfd);
4919 local_got_ents = elf_local_got_ents (abfd);
4920
4921 relend = relocs + sec->reloc_count;
4922 for (rel = relocs; rel < relend; rel++)
4923 {
4924 unsigned long r_symndx;
4925 enum elf_ppc64_reloc_type r_type;
4926 struct elf_link_hash_entry *h = NULL;
4927 char tls_type = 0;
4928
4929 r_symndx = ELF64_R_SYM (rel->r_info);
4930 r_type = ELF64_R_TYPE (rel->r_info);
4931 if (r_symndx >= symtab_hdr->sh_info)
4932 {
4933 struct ppc_link_hash_entry *eh;
4934 struct ppc_dyn_relocs **pp;
4935 struct ppc_dyn_relocs *p;
4936
4937 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4938 eh = (struct ppc_link_hash_entry *) h;
4939
4940 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4941 if (p->sec == sec)
4942 {
4943 /* Everything must go for SEC. */
4944 *pp = p->next;
4945 break;
4946 }
4947 }
4948
4949 switch (r_type)
4950 {
4951 case R_PPC64_GOT_TLSLD16:
4952 case R_PPC64_GOT_TLSLD16_LO:
4953 case R_PPC64_GOT_TLSLD16_HI:
4954 case R_PPC64_GOT_TLSLD16_HA:
4955 ppc64_tlsld_got (abfd)->refcount -= 1;
4956 tls_type = TLS_TLS | TLS_LD;
4957 goto dogot;
4958
4959 case R_PPC64_GOT_TLSGD16:
4960 case R_PPC64_GOT_TLSGD16_LO:
4961 case R_PPC64_GOT_TLSGD16_HI:
4962 case R_PPC64_GOT_TLSGD16_HA:
4963 tls_type = TLS_TLS | TLS_GD;
4964 goto dogot;
4965
4966 case R_PPC64_GOT_TPREL16_DS:
4967 case R_PPC64_GOT_TPREL16_LO_DS:
4968 case R_PPC64_GOT_TPREL16_HI:
4969 case R_PPC64_GOT_TPREL16_HA:
4970 tls_type = TLS_TLS | TLS_TPREL;
4971 goto dogot;
4972
4973 case R_PPC64_GOT_DTPREL16_DS:
4974 case R_PPC64_GOT_DTPREL16_LO_DS:
4975 case R_PPC64_GOT_DTPREL16_HI:
4976 case R_PPC64_GOT_DTPREL16_HA:
4977 tls_type = TLS_TLS | TLS_DTPREL;
4978 goto dogot;
4979
4980 case R_PPC64_GOT16:
4981 case R_PPC64_GOT16_DS:
4982 case R_PPC64_GOT16_HA:
4983 case R_PPC64_GOT16_HI:
4984 case R_PPC64_GOT16_LO:
4985 case R_PPC64_GOT16_LO_DS:
4986 dogot:
4987 {
4988 struct got_entry *ent;
4989
4990 if (h != NULL)
4991 ent = h->got.glist;
4992 else
4993 ent = local_got_ents[r_symndx];
4994
4995 for (; ent != NULL; ent = ent->next)
4996 if (ent->addend == rel->r_addend
4997 && ent->owner == abfd
4998 && ent->tls_type == tls_type)
4999 break;
5000 if (ent == NULL)
5001 abort ();
5002 if (ent->got.refcount > 0)
5003 ent->got.refcount -= 1;
5004 }
5005 break;
5006
5007 case R_PPC64_PLT16_HA:
5008 case R_PPC64_PLT16_HI:
5009 case R_PPC64_PLT16_LO:
5010 case R_PPC64_PLT32:
5011 case R_PPC64_PLT64:
5012 case R_PPC64_REL14:
5013 case R_PPC64_REL14_BRNTAKEN:
5014 case R_PPC64_REL14_BRTAKEN:
5015 case R_PPC64_REL24:
5016 if (h != NULL)
5017 {
5018 struct plt_entry *ent;
5019
5020 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5021 if (ent->addend == rel->r_addend)
5022 break;
5023 if (ent == NULL)
5024 abort ();
5025 if (ent->plt.refcount > 0)
5026 ent->plt.refcount -= 1;
5027 }
5028 break;
5029
5030 default:
5031 break;
5032 }
5033 }
5034 return TRUE;
5035 }
5036
5037 /* The maximum size of .sfpr. */
5038 #define SFPR_MAX (218*4)
5039
5040 struct sfpr_def_parms
5041 {
5042 const char name[12];
5043 unsigned char lo, hi;
5044 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5045 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5046 };
5047
5048 /* Auto-generate _save*, _rest* functions in .sfpr. */
5049
5050 static unsigned int
5051 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5052 {
5053 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5054 unsigned int i;
5055 size_t len = strlen (parm->name);
5056 bfd_boolean writing = FALSE;
5057 char sym[16];
5058
5059 memcpy (sym, parm->name, len);
5060 sym[len + 2] = 0;
5061
5062 for (i = parm->lo; i <= parm->hi; i++)
5063 {
5064 struct elf_link_hash_entry *h;
5065
5066 sym[len + 0] = i / 10 + '0';
5067 sym[len + 1] = i % 10 + '0';
5068 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5069 if (h != NULL
5070 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5071 {
5072 h->root.type = bfd_link_hash_defined;
5073 h->root.u.def.section = htab->sfpr;
5074 h->root.u.def.value = htab->sfpr->size;
5075 h->type = STT_FUNC;
5076 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5077 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5078 writing = TRUE;
5079 if (htab->sfpr->contents == NULL)
5080 {
5081 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5082 if (htab->sfpr->contents == NULL)
5083 return FALSE;
5084 }
5085 }
5086 if (writing)
5087 {
5088 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5089 if (i != parm->hi)
5090 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5091 else
5092 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5093 htab->sfpr->size = p - htab->sfpr->contents;
5094 }
5095 }
5096
5097 return TRUE;
5098 }
5099
5100 static bfd_byte *
5101 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5102 {
5103 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5104 return p + 4;
5105 }
5106
5107 static bfd_byte *
5108 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5109 {
5110 p = savegpr0 (abfd, p, r);
5111 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5112 p = p + 4;
5113 bfd_put_32 (abfd, BLR, p);
5114 return p + 4;
5115 }
5116
5117 static bfd_byte *
5118 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5119 {
5120 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5121 return p + 4;
5122 }
5123
5124 static bfd_byte *
5125 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5126 {
5127 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5128 p = p + 4;
5129 p = restgpr0 (abfd, p, r);
5130 bfd_put_32 (abfd, MTLR_R0, p);
5131 p = p + 4;
5132 if (r == 29)
5133 {
5134 p = restgpr0 (abfd, p, 30);
5135 p = restgpr0 (abfd, p, 31);
5136 }
5137 bfd_put_32 (abfd, BLR, p);
5138 return p + 4;
5139 }
5140
5141 static bfd_byte *
5142 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5143 {
5144 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5145 return p + 4;
5146 }
5147
5148 static bfd_byte *
5149 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5150 {
5151 p = savegpr1 (abfd, p, r);
5152 bfd_put_32 (abfd, BLR, p);
5153 return p + 4;
5154 }
5155
5156 static bfd_byte *
5157 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5158 {
5159 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5160 return p + 4;
5161 }
5162
5163 static bfd_byte *
5164 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5165 {
5166 p = restgpr1 (abfd, p, r);
5167 bfd_put_32 (abfd, BLR, p);
5168 return p + 4;
5169 }
5170
5171 static bfd_byte *
5172 savefpr (bfd *abfd, bfd_byte *p, int r)
5173 {
5174 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5175 return p + 4;
5176 }
5177
5178 static bfd_byte *
5179 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5180 {
5181 p = savefpr (abfd, p, r);
5182 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5183 p = p + 4;
5184 bfd_put_32 (abfd, BLR, p);
5185 return p + 4;
5186 }
5187
5188 static bfd_byte *
5189 restfpr (bfd *abfd, bfd_byte *p, int r)
5190 {
5191 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5192 return p + 4;
5193 }
5194
5195 static bfd_byte *
5196 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5197 {
5198 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5199 p = p + 4;
5200 p = restfpr (abfd, p, r);
5201 bfd_put_32 (abfd, MTLR_R0, p);
5202 p = p + 4;
5203 if (r == 29)
5204 {
5205 p = restfpr (abfd, p, 30);
5206 p = restfpr (abfd, p, 31);
5207 }
5208 bfd_put_32 (abfd, BLR, p);
5209 return p + 4;
5210 }
5211
5212 static bfd_byte *
5213 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5214 {
5215 p = savefpr (abfd, p, r);
5216 bfd_put_32 (abfd, BLR, p);
5217 return p + 4;
5218 }
5219
5220 static bfd_byte *
5221 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5222 {
5223 p = restfpr (abfd, p, r);
5224 bfd_put_32 (abfd, BLR, p);
5225 return p + 4;
5226 }
5227
5228 static bfd_byte *
5229 savevr (bfd *abfd, bfd_byte *p, int r)
5230 {
5231 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5232 p = p + 4;
5233 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5234 return p + 4;
5235 }
5236
5237 static bfd_byte *
5238 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5239 {
5240 p = savevr (abfd, p, r);
5241 bfd_put_32 (abfd, BLR, p);
5242 return p + 4;
5243 }
5244
5245 static bfd_byte *
5246 restvr (bfd *abfd, bfd_byte *p, int r)
5247 {
5248 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5249 p = p + 4;
5250 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5251 return p + 4;
5252 }
5253
5254 static bfd_byte *
5255 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5256 {
5257 p = restvr (abfd, p, r);
5258 bfd_put_32 (abfd, BLR, p);
5259 return p + 4;
5260 }
5261
5262 /* Called via elf_link_hash_traverse to transfer dynamic linking
5263 information on function code symbol entries to their corresponding
5264 function descriptor symbol entries. */
5265
5266 static bfd_boolean
5267 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5268 {
5269 struct bfd_link_info *info;
5270 struct ppc_link_hash_table *htab;
5271 struct plt_entry *ent;
5272 struct ppc_link_hash_entry *fh;
5273 struct ppc_link_hash_entry *fdh;
5274 bfd_boolean force_local;
5275
5276 fh = (struct ppc_link_hash_entry *) h;
5277 if (fh->elf.root.type == bfd_link_hash_indirect)
5278 return TRUE;
5279
5280 if (fh->elf.root.type == bfd_link_hash_warning)
5281 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5282
5283 info = inf;
5284 htab = ppc_hash_table (info);
5285
5286 /* Resolve undefined references to dot-symbols as the value
5287 in the function descriptor, if we have one in a regular object.
5288 This is to satisfy cases like ".quad .foo". Calls to functions
5289 in dynamic objects are handled elsewhere. */
5290 if (fh->elf.root.type == bfd_link_hash_undefweak
5291 && fh->was_undefined
5292 && (fh->oh->elf.root.type == bfd_link_hash_defined
5293 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5294 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5295 && opd_entry_value (fh->oh->elf.root.u.def.section,
5296 fh->oh->elf.root.u.def.value,
5297 &fh->elf.root.u.def.section,
5298 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5299 {
5300 fh->elf.root.type = fh->oh->elf.root.type;
5301 fh->elf.elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
5302 }
5303
5304 /* If this is a function code symbol, transfer dynamic linking
5305 information to the function descriptor symbol. */
5306 if (!fh->is_func)
5307 return TRUE;
5308
5309 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5310 if (ent->plt.refcount > 0)
5311 break;
5312 if (ent == NULL
5313 || fh->elf.root.root.string[0] != '.'
5314 || fh->elf.root.root.string[1] == '\0')
5315 return TRUE;
5316
5317 /* Find the corresponding function descriptor symbol. Create it
5318 as undefined if necessary. */
5319
5320 fdh = get_fdh (fh, htab);
5321 if (fdh != NULL)
5322 while (fdh->elf.root.type == bfd_link_hash_indirect
5323 || fdh->elf.root.type == bfd_link_hash_warning)
5324 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5325
5326 if (fdh == NULL
5327 && info->shared
5328 && (fh->elf.root.type == bfd_link_hash_undefined
5329 || fh->elf.root.type == bfd_link_hash_undefweak))
5330 {
5331 bfd *abfd;
5332 asymbol *newsym;
5333 struct bfd_link_hash_entry *bh;
5334
5335 abfd = fh->elf.root.u.undef.abfd;
5336 newsym = bfd_make_empty_symbol (abfd);
5337 newsym->name = fh->elf.root.root.string + 1;
5338 newsym->section = bfd_und_section_ptr;
5339 newsym->value = 0;
5340 newsym->flags = BSF_OBJECT;
5341 if (fh->elf.root.type == bfd_link_hash_undefweak)
5342 newsym->flags |= BSF_WEAK;
5343
5344 bh = &fdh->elf.root;
5345 if ( !(_bfd_generic_link_add_one_symbol
5346 (info, abfd, newsym->name, newsym->flags,
5347 newsym->section, newsym->value, NULL, FALSE, FALSE, &bh)))
5348 {
5349 return FALSE;
5350 }
5351 fdh = (struct ppc_link_hash_entry *) bh;
5352 fdh->elf.elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5353 fdh->elf.size = 24;
5354 fdh->elf.type = STT_OBJECT;
5355 }
5356
5357 if (fdh != NULL
5358 && (fdh->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
5359 && (info->shared
5360 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5361 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5362 || (fdh->elf.root.type == bfd_link_hash_undefweak
5363 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5364 {
5365 if (fdh->elf.dynindx == -1)
5366 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5367 return FALSE;
5368 fdh->elf.elf_link_hash_flags
5369 |= (fh->elf.elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
5370 | ELF_LINK_HASH_REF_DYNAMIC
5371 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
5372 | ELF_LINK_NON_GOT_REF));
5373 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5374 {
5375 struct plt_entry **ep = &fdh->elf.plt.plist;
5376 while (*ep != NULL)
5377 ep = &(*ep)->next;
5378 *ep = fh->elf.plt.plist;
5379 fh->elf.plt.plist = NULL;
5380 fdh->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5381 }
5382 fdh->is_func_descriptor = 1;
5383 fdh->oh = fh;
5384 fh->oh = fdh;
5385 }
5386
5387 /* Now that the info is on the function descriptor, clear the
5388 function code sym info. Any function code syms for which we
5389 don't have a definition in a regular file, we force local.
5390 This prevents a shared library from exporting syms that have
5391 been imported from another library. Function code syms that
5392 are really in the library we must leave global to prevent the
5393 linker dragging in a definition from a static library. */
5394 force_local
5395 = (info->shared
5396 && ((fh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5397 || fdh == NULL
5398 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5399 || (fdh->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0));
5400 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5401
5402 return TRUE;
5403 }
5404
5405 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5406 this hook to a) provide some gcc support functions, and b) transfer
5407 dynamic linking information gathered so far on function code symbol
5408 entries, to their corresponding function descriptor symbol entries. */
5409
5410 static bfd_boolean
5411 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5412 struct bfd_link_info *info)
5413 {
5414 struct ppc_link_hash_table *htab;
5415 unsigned int i;
5416 const struct sfpr_def_parms funcs[] =
5417 {
5418 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5419 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5420 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5421 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5422 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5423 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5424 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5425 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5426 { "._savef", 14, 31, savefpr, savefpr1_tail },
5427 { "._restf", 14, 31, restfpr, restfpr1_tail },
5428 { "_savevr_", 20, 31, savevr, savevr_tail },
5429 { "_restvr_", 20, 31, restvr, restvr_tail }
5430 };
5431
5432 htab = ppc_hash_table (info);
5433 if (htab->sfpr == NULL)
5434 /* We don't have any relocs. */
5435 return TRUE;
5436
5437 /* Provide any missing _save* and _rest* functions. */
5438 htab->sfpr->size = 0;
5439 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5440 if (!sfpr_define (info, &funcs[i]))
5441 return FALSE;
5442
5443 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5444
5445 if (htab->sfpr->size == 0)
5446 _bfd_strip_section_from_output (info, htab->sfpr);
5447
5448 return TRUE;
5449 }
5450
5451 /* Adjust a symbol defined by a dynamic object and referenced by a
5452 regular object. The current definition is in some section of the
5453 dynamic object, but we're not including those sections. We have to
5454 change the definition to something the rest of the link can
5455 understand. */
5456
5457 static bfd_boolean
5458 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5459 struct elf_link_hash_entry *h)
5460 {
5461 struct ppc_link_hash_table *htab;
5462 asection *s;
5463 unsigned int power_of_two;
5464
5465 htab = ppc_hash_table (info);
5466
5467 /* Deal with function syms. */
5468 if (h->type == STT_FUNC
5469 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5470 {
5471 /* Clear procedure linkage table information for any symbol that
5472 won't need a .plt entry. */
5473 struct plt_entry *ent;
5474 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5475 if (ent->plt.refcount > 0)
5476 break;
5477 if (ent == NULL
5478 || SYMBOL_CALLS_LOCAL (info, h)
5479 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5480 && h->root.type == bfd_link_hash_undefweak))
5481 {
5482 h->plt.plist = NULL;
5483 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
5484 }
5485 }
5486 else
5487 h->plt.plist = NULL;
5488
5489 /* If this is a weak symbol, and there is a real definition, the
5490 processor independent code will have arranged for us to see the
5491 real definition first, and we can just use the same value. */
5492 if (h->weakdef != NULL)
5493 {
5494 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5495 || h->weakdef->root.type == bfd_link_hash_defweak);
5496 h->root.u.def.section = h->weakdef->root.u.def.section;
5497 h->root.u.def.value = h->weakdef->root.u.def.value;
5498 if (ELIMINATE_COPY_RELOCS)
5499 h->elf_link_hash_flags
5500 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
5501 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
5502 return TRUE;
5503 }
5504
5505 /* If we are creating a shared library, we must presume that the
5506 only references to the symbol are via the global offset table.
5507 For such cases we need not do anything here; the relocations will
5508 be handled correctly by relocate_section. */
5509 if (info->shared)
5510 return TRUE;
5511
5512 /* If there are no references to this symbol that do not use the
5513 GOT, we don't need to generate a copy reloc. */
5514 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
5515 return TRUE;
5516
5517 if (ELIMINATE_COPY_RELOCS)
5518 {
5519 struct ppc_link_hash_entry * eh;
5520 struct ppc_dyn_relocs *p;
5521
5522 eh = (struct ppc_link_hash_entry *) h;
5523 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5524 {
5525 s = p->sec->output_section;
5526 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5527 break;
5528 }
5529
5530 /* If we didn't find any dynamic relocs in read-only sections, then
5531 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5532 if (p == NULL)
5533 {
5534 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
5535 return TRUE;
5536 }
5537 }
5538
5539 if (h->plt.plist != NULL)
5540 {
5541 /* We should never get here, but unfortunately there are versions
5542 of gcc out there that improperly (for this ABI) put initialized
5543 function pointers, vtable refs and suchlike in read-only
5544 sections. Allow them to proceed, but warn that this might
5545 break at runtime. */
5546 (*_bfd_error_handler)
5547 (_("copy reloc against `%s' requires lazy plt linking; "
5548 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5549 h->root.root.string);
5550 }
5551
5552 /* This is a reference to a symbol defined by a dynamic object which
5553 is not a function. */
5554
5555 /* We must allocate the symbol in our .dynbss section, which will
5556 become part of the .bss section of the executable. There will be
5557 an entry for this symbol in the .dynsym section. The dynamic
5558 object will contain position independent code, so all references
5559 from the dynamic object to this symbol will go through the global
5560 offset table. The dynamic linker will use the .dynsym entry to
5561 determine the address it must put in the global offset table, so
5562 both the dynamic object and the regular object will refer to the
5563 same memory location for the variable. */
5564
5565 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5566 to copy the initial value out of the dynamic object and into the
5567 runtime process image. We need to remember the offset into the
5568 .rela.bss section we are going to use. */
5569 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5570 {
5571 htab->relbss->size += sizeof (Elf64_External_Rela);
5572 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
5573 }
5574
5575 /* We need to figure out the alignment required for this symbol. I
5576 have no idea how ELF linkers handle this. */
5577 power_of_two = bfd_log2 (h->size);
5578 if (power_of_two > 4)
5579 power_of_two = 4;
5580
5581 /* Apply the required alignment. */
5582 s = htab->dynbss;
5583 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5584 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5585 {
5586 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5587 return FALSE;
5588 }
5589
5590 /* Define the symbol as being at this point in the section. */
5591 h->root.u.def.section = s;
5592 h->root.u.def.value = s->size;
5593
5594 /* Increment the section size to make room for the symbol. */
5595 s->size += h->size;
5596
5597 return TRUE;
5598 }
5599
5600 /* If given a function descriptor symbol, hide both the function code
5601 sym and the descriptor. */
5602 static void
5603 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5604 struct elf_link_hash_entry *h,
5605 bfd_boolean force_local)
5606 {
5607 struct ppc_link_hash_entry *eh;
5608 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5609
5610 eh = (struct ppc_link_hash_entry *) h;
5611 if (eh->is_func_descriptor)
5612 {
5613 struct ppc_link_hash_entry *fh = eh->oh;
5614
5615 if (fh == NULL)
5616 {
5617 const char *p, *q;
5618 struct ppc_link_hash_table *htab;
5619 char save;
5620
5621 /* We aren't supposed to use alloca in BFD because on
5622 systems which do not have alloca the version in libiberty
5623 calls xmalloc, which might cause the program to crash
5624 when it runs out of memory. This function doesn't have a
5625 return status, so there's no way to gracefully return an
5626 error. So cheat. We know that string[-1] can be safely
5627 accessed; It's either a string in an ELF string table,
5628 or allocated in an objalloc structure. */
5629
5630 p = eh->elf.root.root.string - 1;
5631 save = *p;
5632 *(char *) p = '.';
5633 htab = ppc_hash_table (info);
5634 fh = (struct ppc_link_hash_entry *)
5635 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5636 *(char *) p = save;
5637
5638 /* Unfortunately, if it so happens that the string we were
5639 looking for was allocated immediately before this string,
5640 then we overwrote the string terminator. That's the only
5641 reason the lookup should fail. */
5642 if (fh == NULL)
5643 {
5644 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5645 while (q >= eh->elf.root.root.string && *q == *p)
5646 --q, --p;
5647 if (q < eh->elf.root.root.string && *p == '.')
5648 fh = (struct ppc_link_hash_entry *)
5649 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5650 }
5651 if (fh != NULL)
5652 {
5653 eh->oh = fh;
5654 fh->oh = eh;
5655 }
5656 }
5657 if (fh != NULL)
5658 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5659 }
5660 }
5661
5662 static bfd_boolean
5663 get_sym_h (struct elf_link_hash_entry **hp,
5664 Elf_Internal_Sym **symp,
5665 asection **symsecp,
5666 char **tls_maskp,
5667 Elf_Internal_Sym **locsymsp,
5668 unsigned long r_symndx,
5669 bfd *ibfd)
5670 {
5671 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5672
5673 if (r_symndx >= symtab_hdr->sh_info)
5674 {
5675 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5676 struct elf_link_hash_entry *h;
5677
5678 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5679 while (h->root.type == bfd_link_hash_indirect
5680 || h->root.type == bfd_link_hash_warning)
5681 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5682
5683 if (hp != NULL)
5684 *hp = h;
5685
5686 if (symp != NULL)
5687 *symp = NULL;
5688
5689 if (symsecp != NULL)
5690 {
5691 asection *symsec = NULL;
5692 if (h->root.type == bfd_link_hash_defined
5693 || h->root.type == bfd_link_hash_defweak)
5694 symsec = h->root.u.def.section;
5695 *symsecp = symsec;
5696 }
5697
5698 if (tls_maskp != NULL)
5699 {
5700 struct ppc_link_hash_entry *eh;
5701
5702 eh = (struct ppc_link_hash_entry *) h;
5703 *tls_maskp = &eh->tls_mask;
5704 }
5705 }
5706 else
5707 {
5708 Elf_Internal_Sym *sym;
5709 Elf_Internal_Sym *locsyms = *locsymsp;
5710
5711 if (locsyms == NULL)
5712 {
5713 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5714 if (locsyms == NULL)
5715 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5716 symtab_hdr->sh_info,
5717 0, NULL, NULL, NULL);
5718 if (locsyms == NULL)
5719 return FALSE;
5720 *locsymsp = locsyms;
5721 }
5722 sym = locsyms + r_symndx;
5723
5724 if (hp != NULL)
5725 *hp = NULL;
5726
5727 if (symp != NULL)
5728 *symp = sym;
5729
5730 if (symsecp != NULL)
5731 {
5732 asection *symsec = NULL;
5733 if ((sym->st_shndx != SHN_UNDEF
5734 && sym->st_shndx < SHN_LORESERVE)
5735 || sym->st_shndx > SHN_HIRESERVE)
5736 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5737 *symsecp = symsec;
5738 }
5739
5740 if (tls_maskp != NULL)
5741 {
5742 struct got_entry **lgot_ents;
5743 char *tls_mask;
5744
5745 tls_mask = NULL;
5746 lgot_ents = elf_local_got_ents (ibfd);
5747 if (lgot_ents != NULL)
5748 {
5749 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5750 tls_mask = &lgot_masks[r_symndx];
5751 }
5752 *tls_maskp = tls_mask;
5753 }
5754 }
5755 return TRUE;
5756 }
5757
5758 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5759 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5760 type suitable for optimization, and 1 otherwise. */
5761
5762 static int
5763 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5764 Elf_Internal_Sym **locsymsp,
5765 const Elf_Internal_Rela *rel, bfd *ibfd)
5766 {
5767 unsigned long r_symndx;
5768 int next_r;
5769 struct elf_link_hash_entry *h;
5770 Elf_Internal_Sym *sym;
5771 asection *sec;
5772 bfd_vma off;
5773
5774 r_symndx = ELF64_R_SYM (rel->r_info);
5775 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5776 return 0;
5777
5778 if ((*tls_maskp != NULL && **tls_maskp != 0)
5779 || sec == NULL
5780 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5781 return 1;
5782
5783 /* Look inside a TOC section too. */
5784 if (h != NULL)
5785 {
5786 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5787 off = h->root.u.def.value;
5788 }
5789 else
5790 off = sym->st_value;
5791 off += rel->r_addend;
5792 BFD_ASSERT (off % 8 == 0);
5793 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5794 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5795 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5796 return 0;
5797 if (toc_symndx != NULL)
5798 *toc_symndx = r_symndx;
5799 if ((h == NULL
5800 || ((h->root.type == bfd_link_hash_defined
5801 || h->root.type == bfd_link_hash_defweak)
5802 && !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)))
5803 && (next_r == -1 || next_r == -2))
5804 return 1 - next_r;
5805 return 1;
5806 }
5807
5808 /* Adjust all global syms defined in opd sections. In gcc generated
5809 code for the old ABI, these will already have been done. */
5810
5811 static bfd_boolean
5812 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5813 {
5814 struct ppc_link_hash_entry *eh;
5815 asection *sym_sec;
5816 long *opd_adjust;
5817
5818 if (h->root.type == bfd_link_hash_indirect)
5819 return TRUE;
5820
5821 if (h->root.type == bfd_link_hash_warning)
5822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5823
5824 if (h->root.type != bfd_link_hash_defined
5825 && h->root.type != bfd_link_hash_defweak)
5826 return TRUE;
5827
5828 eh = (struct ppc_link_hash_entry *) h;
5829 if (eh->adjust_done)
5830 return TRUE;
5831
5832 sym_sec = eh->elf.root.u.def.section;
5833 opd_adjust = get_opd_info (sym_sec);
5834 if (opd_adjust != NULL)
5835 {
5836 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5837 if (adjust == -1)
5838 {
5839 /* This entry has been deleted. */
5840 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
5841 if (dsec == NULL)
5842 {
5843 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5844 if (elf_discarded_section (dsec))
5845 {
5846 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
5847 break;
5848 }
5849 }
5850 eh->elf.root.u.def.value = 0;
5851 eh->elf.root.u.def.section = dsec;
5852 }
5853 else
5854 eh->elf.root.u.def.value += adjust;
5855 eh->adjust_done = 1;
5856 }
5857 return TRUE;
5858 }
5859
5860 /* Remove unused Official Procedure Descriptor entries. Currently we
5861 only remove those associated with functions in discarded link-once
5862 sections, or weakly defined functions that have been overridden. It
5863 would be possible to remove many more entries for statically linked
5864 applications. */
5865
5866 bfd_boolean
5867 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
5868 bfd_boolean non_overlapping)
5869 {
5870 bfd *ibfd;
5871 bfd_boolean some_edited = FALSE;
5872 asection *need_pad = NULL;
5873
5874 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5875 {
5876 asection *sec;
5877 Elf_Internal_Rela *relstart, *rel, *relend;
5878 Elf_Internal_Shdr *symtab_hdr;
5879 Elf_Internal_Sym *local_syms;
5880 struct elf_link_hash_entry **sym_hashes;
5881 bfd_vma offset;
5882 bfd_size_type amt;
5883 long *opd_adjust;
5884 bfd_boolean need_edit, add_aux_fields;
5885 bfd_size_type cnt_16b = 0;
5886
5887 sec = bfd_get_section_by_name (ibfd, ".opd");
5888 if (sec == NULL)
5889 continue;
5890
5891 amt = sec->size * sizeof (long) / 8;
5892 opd_adjust = get_opd_info (sec);
5893 if (opd_adjust == NULL)
5894 {
5895 /* Must be a ld -r link. ie. check_relocs hasn't been
5896 called. */
5897 opd_adjust = bfd_zalloc (obfd, amt);
5898 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
5899 }
5900 memset (opd_adjust, 0, amt);
5901
5902 if (sec->output_section == bfd_abs_section_ptr)
5903 continue;
5904
5905 /* Look through the section relocs. */
5906 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
5907 continue;
5908
5909 local_syms = NULL;
5910 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5911 sym_hashes = elf_sym_hashes (ibfd);
5912
5913 /* Read the relocations. */
5914 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
5915 info->keep_memory);
5916 if (relstart == NULL)
5917 return FALSE;
5918
5919 /* First run through the relocs to check they are sane, and to
5920 determine whether we need to edit this opd section. */
5921 need_edit = FALSE;
5922 need_pad = sec;
5923 offset = 0;
5924 relend = relstart + sec->reloc_count;
5925 for (rel = relstart; rel < relend; )
5926 {
5927 enum elf_ppc64_reloc_type r_type;
5928 unsigned long r_symndx;
5929 asection *sym_sec;
5930 struct elf_link_hash_entry *h;
5931 Elf_Internal_Sym *sym;
5932
5933 /* .opd contains a regular array of 16 or 24 byte entries. We're
5934 only interested in the reloc pointing to a function entry
5935 point. */
5936 if (rel->r_offset != offset
5937 || rel + 1 >= relend
5938 || (rel + 1)->r_offset != offset + 8)
5939 {
5940 /* If someone messes with .opd alignment then after a
5941 "ld -r" we might have padding in the middle of .opd.
5942 Also, there's nothing to prevent someone putting
5943 something silly in .opd with the assembler. No .opd
5944 optimization for them! */
5945 broken_opd:
5946 (*_bfd_error_handler)
5947 (_("%B: .opd is not a regular array of opd entries"), ibfd);
5948 need_edit = FALSE;
5949 break;
5950 }
5951
5952 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
5953 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
5954 {
5955 (*_bfd_error_handler)
5956 (_("%B: unexpected reloc type %u in .opd section"),
5957 ibfd, r_type);
5958 need_edit = FALSE;
5959 break;
5960 }
5961
5962 r_symndx = ELF64_R_SYM (rel->r_info);
5963 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
5964 r_symndx, ibfd))
5965 goto error_ret;
5966
5967 if (sym_sec == NULL || sym_sec->owner == NULL)
5968 {
5969 const char *sym_name;
5970 if (h != NULL)
5971 sym_name = h->root.root.string;
5972 else
5973 sym_name = bfd_elf_local_sym_name (ibfd, sym);
5974
5975 (*_bfd_error_handler)
5976 (_("%B: undefined sym `%s' in .opd section"),
5977 ibfd, sym_name);
5978 need_edit = FALSE;
5979 break;
5980 }
5981
5982 /* opd entries are always for functions defined in the
5983 current input bfd. If the symbol isn't defined in the
5984 input bfd, then we won't be using the function in this
5985 bfd; It must be defined in a linkonce section in another
5986 bfd, or is weak. It's also possible that we are
5987 discarding the function due to a linker script /DISCARD/,
5988 which we test for via the output_section. */
5989 if (sym_sec->owner != ibfd
5990 || sym_sec->output_section == bfd_abs_section_ptr)
5991 need_edit = TRUE;
5992
5993 rel += 2;
5994 if (rel == relend
5995 || (rel + 1 == relend && rel->r_offset == offset + 16))
5996 {
5997 if (sec->size == offset + 24)
5998 {
5999 need_pad = NULL;
6000 break;
6001 }
6002 if (rel == relend && sec->size == offset + 16)
6003 {
6004 cnt_16b++;
6005 break;
6006 }
6007 goto broken_opd;
6008 }
6009
6010 if (rel->r_offset == offset + 24)
6011 offset += 24;
6012 else if (rel->r_offset != offset + 16)
6013 goto broken_opd;
6014 else if (rel + 1 < relend
6015 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6016 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6017 {
6018 offset += 16;
6019 cnt_16b++;
6020 }
6021 else if (rel + 2 < relend
6022 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6023 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6024 {
6025 offset += 24;
6026 rel += 1;
6027 }
6028 else
6029 goto broken_opd;
6030 }
6031
6032 add_aux_fields = non_overlapping && cnt_16b > 0;
6033
6034 if (need_edit || add_aux_fields)
6035 {
6036 Elf_Internal_Rela *write_rel;
6037 bfd_byte *rptr, *wptr;
6038 bfd_byte *new_contents = NULL;
6039 bfd_boolean skip;
6040 long opd_ent_size;
6041
6042 /* This seems a waste of time as input .opd sections are all
6043 zeros as generated by gcc, but I suppose there's no reason
6044 this will always be so. We might start putting something in
6045 the third word of .opd entries. */
6046 if ((sec->flags & SEC_IN_MEMORY) == 0)
6047 {
6048 bfd_byte *loc;
6049 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6050 {
6051 if (loc != NULL)
6052 free (loc);
6053 error_ret:
6054 if (local_syms != NULL
6055 && symtab_hdr->contents != (unsigned char *) local_syms)
6056 free (local_syms);
6057 if (elf_section_data (sec)->relocs != relstart)
6058 free (relstart);
6059 return FALSE;
6060 }
6061 sec->contents = loc;
6062 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6063 }
6064
6065 elf_section_data (sec)->relocs = relstart;
6066
6067 wptr = sec->contents;
6068 rptr = sec->contents;
6069 new_contents = sec->contents;
6070
6071 if (add_aux_fields)
6072 {
6073 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6074 if (new_contents == NULL)
6075 return FALSE;
6076 need_pad = FALSE;
6077 wptr = new_contents;
6078 }
6079
6080 write_rel = relstart;
6081 skip = FALSE;
6082 offset = 0;
6083 opd_ent_size = 0;
6084 for (rel = relstart; rel < relend; rel++)
6085 {
6086 unsigned long r_symndx;
6087 asection *sym_sec;
6088 struct elf_link_hash_entry *h;
6089 Elf_Internal_Sym *sym;
6090
6091 r_symndx = ELF64_R_SYM (rel->r_info);
6092 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6093 r_symndx, ibfd))
6094 goto error_ret;
6095
6096 if (rel->r_offset == offset)
6097 {
6098 struct ppc_link_hash_entry *fdh = NULL;
6099
6100 /* See if the .opd entry is full 24 byte or
6101 16 byte (with fd_aux entry overlapped with next
6102 fd_func). */
6103 opd_ent_size = 24;
6104 if ((rel + 2 == relend && sec->size == offset + 16)
6105 || (rel + 3 < relend
6106 && rel[2].r_offset == offset + 16
6107 && rel[3].r_offset == offset + 24
6108 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6109 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6110 opd_ent_size = 16;
6111
6112 if (h != NULL
6113 && h->root.root.string[0] == '.')
6114 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6115 ppc_hash_table (info));
6116
6117 skip = (sym_sec->owner != ibfd
6118 || sym_sec->output_section == bfd_abs_section_ptr);
6119 if (skip)
6120 {
6121 if (fdh != NULL && sym_sec->owner == ibfd)
6122 {
6123 /* Arrange for the function descriptor sym
6124 to be dropped. */
6125 fdh->elf.root.u.def.value = 0;
6126 fdh->elf.root.u.def.section = sym_sec;
6127 }
6128 opd_adjust[rel->r_offset / 8] = -1;
6129 }
6130 else
6131 {
6132 /* We'll be keeping this opd entry. */
6133
6134 if (fdh != NULL)
6135 {
6136 /* Redefine the function descriptor symbol to
6137 this location in the opd section. It is
6138 necessary to update the value here rather
6139 than using an array of adjustments as we do
6140 for local symbols, because various places
6141 in the generic ELF code use the value
6142 stored in u.def.value. */
6143 fdh->elf.root.u.def.value = wptr - new_contents;
6144 fdh->adjust_done = 1;
6145 }
6146
6147 /* Local syms are a bit tricky. We could
6148 tweak them as they can be cached, but
6149 we'd need to look through the local syms
6150 for the function descriptor sym which we
6151 don't have at the moment. So keep an
6152 array of adjustments. */
6153 opd_adjust[rel->r_offset / 8]
6154 = (wptr - new_contents) - (rptr - sec->contents);
6155
6156 if (wptr != rptr)
6157 memcpy (wptr, rptr, opd_ent_size);
6158 wptr += opd_ent_size;
6159 if (add_aux_fields && opd_ent_size == 16)
6160 {
6161 memset (wptr, '\0', 8);
6162 wptr += 8;
6163 }
6164 }
6165 rptr += opd_ent_size;
6166 offset += opd_ent_size;
6167 }
6168
6169 if (skip)
6170 {
6171 BFD_ASSERT (MUST_BE_DYN_RELOC (ELF64_R_TYPE (rel->r_info)));
6172 if (info->shared)
6173 {
6174 /* We won't be needing dynamic relocs here. */
6175 struct ppc_dyn_relocs **pp;
6176 struct ppc_dyn_relocs *p;
6177
6178 if (h != NULL)
6179 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6180 else if (sym_sec != NULL)
6181 pp = ((struct ppc_dyn_relocs **)
6182 &elf_section_data (sym_sec)->local_dynrel);
6183 else
6184 pp = ((struct ppc_dyn_relocs **)
6185 &elf_section_data (sec)->local_dynrel);
6186 while ((p = *pp) != NULL)
6187 {
6188 if (p->sec == sec)
6189 {
6190 p->count -= 1;
6191 if (p->count == 0)
6192 *pp = p->next;
6193 break;
6194 }
6195 pp = &p->next;
6196 }
6197 }
6198 }
6199 else
6200 {
6201 /* We need to adjust any reloc offsets to point to the
6202 new opd entries. While we're at it, we may as well
6203 remove redundant relocs. */
6204 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6205 if (write_rel != rel)
6206 memcpy (write_rel, rel, sizeof (*rel));
6207 ++write_rel;
6208 }
6209 }
6210
6211 sec->size = wptr - new_contents;
6212 sec->reloc_count = write_rel - relstart;
6213 if (add_aux_fields)
6214 {
6215 free (sec->contents);
6216 sec->contents = new_contents;
6217 }
6218
6219 /* Fudge the size too, as this is used later in
6220 elf_bfd_final_link if we are emitting relocs. */
6221 elf_section_data (sec)->rel_hdr.sh_size
6222 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6223 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6224 some_edited = TRUE;
6225 }
6226 else if (elf_section_data (sec)->relocs != relstart)
6227 free (relstart);
6228
6229 if (local_syms != NULL
6230 && symtab_hdr->contents != (unsigned char *) local_syms)
6231 {
6232 if (!info->keep_memory)
6233 free (local_syms);
6234 else
6235 symtab_hdr->contents = (unsigned char *) local_syms;
6236 }
6237 }
6238
6239 if (some_edited)
6240 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6241
6242 /* If we are doing a final link and the last .opd entry is just 16 byte
6243 long, add a 8 byte padding after it. */
6244 if (need_pad != NULL && !info->relocatable)
6245 {
6246 bfd_byte *p;
6247
6248 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6249 {
6250 BFD_ASSERT (need_pad->size > 0);
6251
6252 p = bfd_malloc (need_pad->size + 8);
6253 if (p == NULL)
6254 return FALSE;
6255
6256 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6257 p, 0, need_pad->size))
6258 return FALSE;
6259
6260 need_pad->contents = p;
6261 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6262 }
6263 else
6264 {
6265 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6266 if (p == NULL)
6267 return FALSE;
6268
6269 need_pad->contents = p;
6270 }
6271
6272 memset (need_pad->contents + need_pad->size, 0, 8);
6273 need_pad->size += 8;
6274 }
6275
6276 return TRUE;
6277 }
6278
6279 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6280
6281 asection *
6282 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6283 {
6284 struct ppc_link_hash_table *htab;
6285
6286 htab = ppc_hash_table (info);
6287 if (htab->tls_get_addr != NULL)
6288 {
6289 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6290
6291 while (h->elf.root.type == bfd_link_hash_indirect
6292 || h->elf.root.type == bfd_link_hash_warning)
6293 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6294
6295 htab->tls_get_addr = h;
6296
6297 if (htab->tls_get_addr_fd == NULL
6298 && h->oh != NULL
6299 && h->oh->is_func_descriptor)
6300 htab->tls_get_addr_fd = h->oh;
6301 }
6302
6303 if (htab->tls_get_addr_fd != NULL)
6304 {
6305 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6306
6307 while (h->elf.root.type == bfd_link_hash_indirect
6308 || h->elf.root.type == bfd_link_hash_warning)
6309 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6310
6311 htab->tls_get_addr_fd = h;
6312 }
6313
6314 return _bfd_elf_tls_setup (obfd, info);
6315 }
6316
6317 /* Run through all the TLS relocs looking for optimization
6318 opportunities. The linker has been hacked (see ppc64elf.em) to do
6319 a preliminary section layout so that we know the TLS segment
6320 offsets. We can't optimize earlier because some optimizations need
6321 to know the tp offset, and we need to optimize before allocating
6322 dynamic relocations. */
6323
6324 bfd_boolean
6325 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6326 {
6327 bfd *ibfd;
6328 asection *sec;
6329 struct ppc_link_hash_table *htab;
6330
6331 if (info->relocatable || info->shared)
6332 return TRUE;
6333
6334 htab = ppc_hash_table (info);
6335 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6336 {
6337 Elf_Internal_Sym *locsyms = NULL;
6338
6339 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6340 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6341 {
6342 Elf_Internal_Rela *relstart, *rel, *relend;
6343 int expecting_tls_get_addr;
6344
6345 /* Read the relocations. */
6346 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6347 info->keep_memory);
6348 if (relstart == NULL)
6349 return FALSE;
6350
6351 expecting_tls_get_addr = 0;
6352 relend = relstart + sec->reloc_count;
6353 for (rel = relstart; rel < relend; rel++)
6354 {
6355 enum elf_ppc64_reloc_type r_type;
6356 unsigned long r_symndx;
6357 struct elf_link_hash_entry *h;
6358 Elf_Internal_Sym *sym;
6359 asection *sym_sec;
6360 char *tls_mask;
6361 char tls_set, tls_clear, tls_type = 0;
6362 bfd_vma value;
6363 bfd_boolean ok_tprel, is_local;
6364
6365 r_symndx = ELF64_R_SYM (rel->r_info);
6366 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6367 r_symndx, ibfd))
6368 {
6369 err_free_rel:
6370 if (elf_section_data (sec)->relocs != relstart)
6371 free (relstart);
6372 if (locsyms != NULL
6373 && (elf_tdata (ibfd)->symtab_hdr.contents
6374 != (unsigned char *) locsyms))
6375 free (locsyms);
6376 return FALSE;
6377 }
6378
6379 if (h != NULL)
6380 {
6381 if (h->root.type != bfd_link_hash_defined
6382 && h->root.type != bfd_link_hash_defweak)
6383 continue;
6384 value = h->root.u.def.value;
6385 }
6386 else
6387 /* Symbols referenced by TLS relocs must be of type
6388 STT_TLS. So no need for .opd local sym adjust. */
6389 value = sym->st_value;
6390
6391 ok_tprel = FALSE;
6392 is_local = FALSE;
6393 if (h == NULL
6394 || !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC))
6395 {
6396 is_local = TRUE;
6397 value += sym_sec->output_offset;
6398 value += sym_sec->output_section->vma;
6399 value -= htab->elf.tls_sec->vma;
6400 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6401 < (bfd_vma) 1 << 32);
6402 }
6403
6404 r_type = ELF64_R_TYPE (rel->r_info);
6405 switch (r_type)
6406 {
6407 case R_PPC64_GOT_TLSLD16:
6408 case R_PPC64_GOT_TLSLD16_LO:
6409 case R_PPC64_GOT_TLSLD16_HI:
6410 case R_PPC64_GOT_TLSLD16_HA:
6411 /* These relocs should never be against a symbol
6412 defined in a shared lib. Leave them alone if
6413 that turns out to be the case. */
6414 ppc64_tlsld_got (ibfd)->refcount -= 1;
6415 if (!is_local)
6416 continue;
6417
6418 /* LD -> LE */
6419 tls_set = 0;
6420 tls_clear = TLS_LD;
6421 tls_type = TLS_TLS | TLS_LD;
6422 expecting_tls_get_addr = 1;
6423 break;
6424
6425 case R_PPC64_GOT_TLSGD16:
6426 case R_PPC64_GOT_TLSGD16_LO:
6427 case R_PPC64_GOT_TLSGD16_HI:
6428 case R_PPC64_GOT_TLSGD16_HA:
6429 if (ok_tprel)
6430 /* GD -> LE */
6431 tls_set = 0;
6432 else
6433 /* GD -> IE */
6434 tls_set = TLS_TLS | TLS_TPRELGD;
6435 tls_clear = TLS_GD;
6436 tls_type = TLS_TLS | TLS_GD;
6437 expecting_tls_get_addr = 1;
6438 break;
6439
6440 case R_PPC64_GOT_TPREL16_DS:
6441 case R_PPC64_GOT_TPREL16_LO_DS:
6442 case R_PPC64_GOT_TPREL16_HI:
6443 case R_PPC64_GOT_TPREL16_HA:
6444 expecting_tls_get_addr = 0;
6445 if (ok_tprel)
6446 {
6447 /* IE -> LE */
6448 tls_set = 0;
6449 tls_clear = TLS_TPREL;
6450 tls_type = TLS_TLS | TLS_TPREL;
6451 break;
6452 }
6453 else
6454 continue;
6455
6456 case R_PPC64_REL14:
6457 case R_PPC64_REL14_BRTAKEN:
6458 case R_PPC64_REL14_BRNTAKEN:
6459 case R_PPC64_REL24:
6460 if (h != NULL
6461 && (h == &htab->tls_get_addr->elf
6462 || h == &htab->tls_get_addr_fd->elf))
6463 {
6464 if (!expecting_tls_get_addr
6465 && rel != relstart
6466 && ((ELF64_R_TYPE (rel[-1].r_info)
6467 == R_PPC64_TOC16)
6468 || (ELF64_R_TYPE (rel[-1].r_info)
6469 == R_PPC64_TOC16_LO)))
6470 {
6471 /* Check for toc tls entries. */
6472 char *toc_tls;
6473 int retval;
6474
6475 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6476 rel - 1, ibfd);
6477 if (retval == 0)
6478 goto err_free_rel;
6479 if (toc_tls != NULL)
6480 expecting_tls_get_addr = retval > 1;
6481 }
6482
6483 if (expecting_tls_get_addr)
6484 {
6485 struct plt_entry *ent;
6486 for (ent = h->plt.plist; ent; ent = ent->next)
6487 if (ent->addend == 0)
6488 {
6489 if (ent->plt.refcount > 0)
6490 ent->plt.refcount -= 1;
6491 break;
6492 }
6493 }
6494 }
6495 expecting_tls_get_addr = 0;
6496 continue;
6497
6498 case R_PPC64_TPREL64:
6499 expecting_tls_get_addr = 0;
6500 if (ok_tprel)
6501 {
6502 /* IE -> LE */
6503 tls_set = TLS_EXPLICIT;
6504 tls_clear = TLS_TPREL;
6505 break;
6506 }
6507 else
6508 continue;
6509
6510 case R_PPC64_DTPMOD64:
6511 expecting_tls_get_addr = 0;
6512 if (rel + 1 < relend
6513 && (rel[1].r_info
6514 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6515 && rel[1].r_offset == rel->r_offset + 8)
6516 {
6517 if (ok_tprel)
6518 /* GD -> LE */
6519 tls_set = TLS_EXPLICIT | TLS_GD;
6520 else
6521 /* GD -> IE */
6522 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6523 tls_clear = TLS_GD;
6524 }
6525 else
6526 {
6527 if (!is_local)
6528 continue;
6529
6530 /* LD -> LE */
6531 tls_set = TLS_EXPLICIT;
6532 tls_clear = TLS_LD;
6533 }
6534 break;
6535
6536 default:
6537 expecting_tls_get_addr = 0;
6538 continue;
6539 }
6540
6541 if ((tls_set & TLS_EXPLICIT) == 0)
6542 {
6543 struct got_entry *ent;
6544
6545 /* Adjust got entry for this reloc. */
6546 if (h != NULL)
6547 ent = h->got.glist;
6548 else
6549 ent = elf_local_got_ents (ibfd)[r_symndx];
6550
6551 for (; ent != NULL; ent = ent->next)
6552 if (ent->addend == rel->r_addend
6553 && ent->owner == ibfd
6554 && ent->tls_type == tls_type)
6555 break;
6556 if (ent == NULL)
6557 abort ();
6558
6559 if (tls_set == 0)
6560 {
6561 /* We managed to get rid of a got entry. */
6562 if (ent->got.refcount > 0)
6563 ent->got.refcount -= 1;
6564 }
6565 }
6566 else if (h != NULL)
6567 {
6568 struct ppc_link_hash_entry * eh;
6569 struct ppc_dyn_relocs **pp;
6570 struct ppc_dyn_relocs *p;
6571
6572 /* Adjust dynamic relocs. */
6573 eh = (struct ppc_link_hash_entry *) h;
6574 for (pp = &eh->dyn_relocs;
6575 (p = *pp) != NULL;
6576 pp = &p->next)
6577 if (p->sec == sec)
6578 {
6579 /* If we got rid of a DTPMOD/DTPREL reloc
6580 pair then we'll lose one or two dyn
6581 relocs. */
6582 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6583 p->count -= 1;
6584 p->count -= 1;
6585 if (p->count == 0)
6586 *pp = p->next;
6587 break;
6588 }
6589 }
6590
6591 *tls_mask |= tls_set;
6592 *tls_mask &= ~tls_clear;
6593 }
6594
6595 if (elf_section_data (sec)->relocs != relstart)
6596 free (relstart);
6597 }
6598
6599 if (locsyms != NULL
6600 && (elf_tdata (ibfd)->symtab_hdr.contents
6601 != (unsigned char *) locsyms))
6602 {
6603 if (!info->keep_memory)
6604 free (locsyms);
6605 else
6606 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6607 }
6608 }
6609 return TRUE;
6610 }
6611
6612 /* Allocate space in .plt, .got and associated reloc sections for
6613 dynamic relocs. */
6614
6615 static bfd_boolean
6616 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
6617 {
6618 struct bfd_link_info *info;
6619 struct ppc_link_hash_table *htab;
6620 asection *s;
6621 struct ppc_link_hash_entry *eh;
6622 struct ppc_dyn_relocs *p;
6623 struct got_entry *gent;
6624
6625 if (h->root.type == bfd_link_hash_indirect)
6626 return TRUE;
6627
6628 if (h->root.type == bfd_link_hash_warning)
6629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6630
6631 info = (struct bfd_link_info *) inf;
6632 htab = ppc_hash_table (info);
6633
6634 if (htab->elf.dynamic_sections_created
6635 && h->dynindx != -1
6636 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
6637 {
6638 struct plt_entry *pent;
6639 bfd_boolean doneone = FALSE;
6640 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6641 if (pent->plt.refcount > 0)
6642 {
6643 /* If this is the first .plt entry, make room for the special
6644 first entry. */
6645 s = htab->plt;
6646 if (s->size == 0)
6647 s->size += PLT_INITIAL_ENTRY_SIZE;
6648
6649 pent->plt.offset = s->size;
6650
6651 /* Make room for this entry. */
6652 s->size += PLT_ENTRY_SIZE;
6653
6654 /* Make room for the .glink code. */
6655 s = htab->glink;
6656 if (s->size == 0)
6657 s->size += GLINK_CALL_STUB_SIZE;
6658 /* We need bigger stubs past index 32767. */
6659 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
6660 s->size += 4;
6661 s->size += 2*4;
6662
6663 /* We also need to make an entry in the .rela.plt section. */
6664 s = htab->relplt;
6665 s->size += sizeof (Elf64_External_Rela);
6666 doneone = TRUE;
6667 }
6668 else
6669 pent->plt.offset = (bfd_vma) -1;
6670 if (!doneone)
6671 {
6672 h->plt.plist = NULL;
6673 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
6674 }
6675 }
6676 else
6677 {
6678 h->plt.plist = NULL;
6679 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
6680 }
6681
6682 eh = (struct ppc_link_hash_entry *) h;
6683 /* Run through the TLS GD got entries first if we're changing them
6684 to TPREL. */
6685 if ((eh->tls_mask & TLS_TPRELGD) != 0)
6686 for (gent = h->got.glist; gent != NULL; gent = gent->next)
6687 if (gent->got.refcount > 0
6688 && (gent->tls_type & TLS_GD) != 0)
6689 {
6690 /* This was a GD entry that has been converted to TPREL. If
6691 there happens to be a TPREL entry we can use that one. */
6692 struct got_entry *ent;
6693 for (ent = h->got.glist; ent != NULL; ent = ent->next)
6694 if (ent->got.refcount > 0
6695 && (ent->tls_type & TLS_TPREL) != 0
6696 && ent->addend == gent->addend
6697 && ent->owner == gent->owner)
6698 {
6699 gent->got.refcount = 0;
6700 break;
6701 }
6702
6703 /* If not, then we'll be using our own TPREL entry. */
6704 if (gent->got.refcount != 0)
6705 gent->tls_type = TLS_TLS | TLS_TPREL;
6706 }
6707
6708 for (gent = h->got.glist; gent != NULL; gent = gent->next)
6709 if (gent->got.refcount > 0)
6710 {
6711 bfd_boolean dyn;
6712
6713 /* Make sure this symbol is output as a dynamic symbol.
6714 Undefined weak syms won't yet be marked as dynamic,
6715 nor will all TLS symbols. */
6716 if (h->dynindx == -1
6717 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6718 {
6719 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6720 return FALSE;
6721 }
6722
6723 if ((gent->tls_type & TLS_LD) != 0
6724 && !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC))
6725 {
6726 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
6727 continue;
6728 }
6729
6730 s = ppc64_elf_tdata (gent->owner)->got;
6731 gent->got.offset = s->size;
6732 s->size
6733 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
6734 dyn = htab->elf.dynamic_sections_created;
6735 if ((info->shared
6736 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
6737 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6738 || h->root.type != bfd_link_hash_undefweak))
6739 ppc64_elf_tdata (gent->owner)->relgot->size
6740 += (gent->tls_type & eh->tls_mask & TLS_GD
6741 ? 2 * sizeof (Elf64_External_Rela)
6742 : sizeof (Elf64_External_Rela));
6743 }
6744 else
6745 gent->got.offset = (bfd_vma) -1;
6746
6747 if (eh->dyn_relocs == NULL)
6748 return TRUE;
6749
6750 /* In the shared -Bsymbolic case, discard space allocated for
6751 dynamic pc-relative relocs against symbols which turn out to be
6752 defined in regular objects. For the normal shared case, discard
6753 space for relocs that have become local due to symbol visibility
6754 changes. */
6755
6756 if (info->shared)
6757 {
6758 /* Relocs that use pc_count are those that appear on a call insn,
6759 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
6760 generated via assembly. We want calls to protected symbols to
6761 resolve directly to the function rather than going via the plt.
6762 If people want function pointer comparisons to work as expected
6763 then they should avoid writing weird assembly. */
6764 if (SYMBOL_CALLS_LOCAL (info, h))
6765 {
6766 struct ppc_dyn_relocs **pp;
6767
6768 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
6769 {
6770 p->count -= p->pc_count;
6771 p->pc_count = 0;
6772 if (p->count == 0)
6773 *pp = p->next;
6774 else
6775 pp = &p->next;
6776 }
6777 }
6778
6779 /* Also discard relocs on undefined weak syms with non-default
6780 visibility. */
6781 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6782 && h->root.type == bfd_link_hash_undefweak)
6783 eh->dyn_relocs = NULL;
6784 }
6785 else if (ELIMINATE_COPY_RELOCS)
6786 {
6787 /* For the non-shared case, discard space for relocs against
6788 symbols which turn out to need copy relocs or are not
6789 dynamic. */
6790
6791 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
6792 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6793 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6794 {
6795 /* Make sure this symbol is output as a dynamic symbol.
6796 Undefined weak syms won't yet be marked as dynamic. */
6797 if (h->dynindx == -1
6798 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6799 {
6800 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6801 return FALSE;
6802 }
6803
6804 /* If that succeeded, we know we'll be keeping all the
6805 relocs. */
6806 if (h->dynindx != -1)
6807 goto keep;
6808 }
6809
6810 eh->dyn_relocs = NULL;
6811
6812 keep: ;
6813 }
6814
6815 /* Finally, allocate space. */
6816 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6817 {
6818 asection *sreloc = elf_section_data (p->sec)->sreloc;
6819 sreloc->size += p->count * sizeof (Elf64_External_Rela);
6820 }
6821
6822 return TRUE;
6823 }
6824
6825 /* Find any dynamic relocs that apply to read-only sections. */
6826
6827 static bfd_boolean
6828 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
6829 {
6830 struct ppc_link_hash_entry *eh;
6831 struct ppc_dyn_relocs *p;
6832
6833 if (h->root.type == bfd_link_hash_warning)
6834 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6835
6836 eh = (struct ppc_link_hash_entry *) h;
6837 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6838 {
6839 asection *s = p->sec->output_section;
6840
6841 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6842 {
6843 struct bfd_link_info *info = inf;
6844
6845 info->flags |= DF_TEXTREL;
6846
6847 /* Not an error, just cut short the traversal. */
6848 return FALSE;
6849 }
6850 }
6851 return TRUE;
6852 }
6853
6854 /* Set the sizes of the dynamic sections. */
6855
6856 static bfd_boolean
6857 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
6858 struct bfd_link_info *info)
6859 {
6860 struct ppc_link_hash_table *htab;
6861 bfd *dynobj;
6862 asection *s;
6863 bfd_boolean relocs;
6864 bfd *ibfd;
6865
6866 htab = ppc_hash_table (info);
6867 dynobj = htab->elf.dynobj;
6868 if (dynobj == NULL)
6869 abort ();
6870
6871 if (htab->elf.dynamic_sections_created)
6872 {
6873 /* Set the contents of the .interp section to the interpreter. */
6874 if (info->executable)
6875 {
6876 s = bfd_get_section_by_name (dynobj, ".interp");
6877 if (s == NULL)
6878 abort ();
6879 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6880 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6881 }
6882 }
6883
6884 /* Set up .got offsets for local syms, and space for local dynamic
6885 relocs. */
6886 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6887 {
6888 struct got_entry **lgot_ents;
6889 struct got_entry **end_lgot_ents;
6890 char *lgot_masks;
6891 bfd_size_type locsymcount;
6892 Elf_Internal_Shdr *symtab_hdr;
6893 asection *srel;
6894
6895 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
6896 continue;
6897
6898 if (ppc64_tlsld_got (ibfd)->refcount > 0)
6899 {
6900 s = ppc64_elf_tdata (ibfd)->got;
6901 ppc64_tlsld_got (ibfd)->offset = s->size;
6902 s->size += 16;
6903 if (info->shared)
6904 {
6905 srel = ppc64_elf_tdata (ibfd)->relgot;
6906 srel->size += sizeof (Elf64_External_Rela);
6907 }
6908 }
6909 else
6910 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
6911
6912 for (s = ibfd->sections; s != NULL; s = s->next)
6913 {
6914 struct ppc_dyn_relocs *p;
6915
6916 for (p = *((struct ppc_dyn_relocs **)
6917 &elf_section_data (s)->local_dynrel);
6918 p != NULL;
6919 p = p->next)
6920 {
6921 if (!bfd_is_abs_section (p->sec)
6922 && bfd_is_abs_section (p->sec->output_section))
6923 {
6924 /* Input section has been discarded, either because
6925 it is a copy of a linkonce section or due to
6926 linker script /DISCARD/, so we'll be discarding
6927 the relocs too. */
6928 }
6929 else if (p->count != 0)
6930 {
6931 srel = elf_section_data (p->sec)->sreloc;
6932 srel->size += p->count * sizeof (Elf64_External_Rela);
6933 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6934 info->flags |= DF_TEXTREL;
6935 }
6936 }
6937 }
6938
6939 lgot_ents = elf_local_got_ents (ibfd);
6940 if (!lgot_ents)
6941 continue;
6942
6943 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6944 locsymcount = symtab_hdr->sh_info;
6945 end_lgot_ents = lgot_ents + locsymcount;
6946 lgot_masks = (char *) end_lgot_ents;
6947 s = ppc64_elf_tdata (ibfd)->got;
6948 srel = ppc64_elf_tdata (ibfd)->relgot;
6949 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
6950 {
6951 struct got_entry *ent;
6952
6953 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
6954 if (ent->got.refcount > 0)
6955 {
6956 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
6957 {
6958 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
6959 {
6960 ppc64_tlsld_got (ibfd)->offset = s->size;
6961 s->size += 16;
6962 if (info->shared)
6963 srel->size += sizeof (Elf64_External_Rela);
6964 }
6965 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
6966 }
6967 else
6968 {
6969 ent->got.offset = s->size;
6970 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
6971 {
6972 s->size += 16;
6973 if (info->shared)
6974 srel->size += 2 * sizeof (Elf64_External_Rela);
6975 }
6976 else
6977 {
6978 s->size += 8;
6979 if (info->shared)
6980 srel->size += sizeof (Elf64_External_Rela);
6981 }
6982 }
6983 }
6984 else
6985 ent->got.offset = (bfd_vma) -1;
6986 }
6987 }
6988
6989 /* Allocate global sym .plt and .got entries, and space for global
6990 sym dynamic relocs. */
6991 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
6992
6993 /* We now have determined the sizes of the various dynamic sections.
6994 Allocate memory for them. */
6995 relocs = FALSE;
6996 for (s = dynobj->sections; s != NULL; s = s->next)
6997 {
6998 if ((s->flags & SEC_LINKER_CREATED) == 0)
6999 continue;
7000
7001 if (s == htab->brlt || s == htab->relbrlt)
7002 /* These haven't been allocated yet; don't strip. */
7003 continue;
7004 else if (s == htab->got
7005 || s == htab->plt
7006 || s == htab->glink)
7007 {
7008 /* Strip this section if we don't need it; see the
7009 comment below. */
7010 }
7011 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7012 {
7013 if (s->size == 0)
7014 {
7015 /* If we don't need this section, strip it from the
7016 output file. This is mostly to handle .rela.bss and
7017 .rela.plt. We must create both sections in
7018 create_dynamic_sections, because they must be created
7019 before the linker maps input sections to output
7020 sections. The linker does that before
7021 adjust_dynamic_symbol is called, and it is that
7022 function which decides whether anything needs to go
7023 into these sections. */
7024 }
7025 else
7026 {
7027 if (s != htab->relplt)
7028 relocs = TRUE;
7029
7030 /* We use the reloc_count field as a counter if we need
7031 to copy relocs into the output file. */
7032 s->reloc_count = 0;
7033 }
7034 }
7035 else
7036 {
7037 /* It's not one of our sections, so don't allocate space. */
7038 continue;
7039 }
7040
7041 if (s->size == 0)
7042 {
7043 _bfd_strip_section_from_output (info, s);
7044 continue;
7045 }
7046
7047 /* .plt is in the bss section. We don't initialise it. */
7048 if (s == htab->plt)
7049 continue;
7050
7051 /* Allocate memory for the section contents. We use bfd_zalloc
7052 here in case unused entries are not reclaimed before the
7053 section's contents are written out. This should not happen,
7054 but this way if it does we get a R_PPC64_NONE reloc in .rela
7055 sections instead of garbage.
7056 We also rely on the section contents being zero when writing
7057 the GOT. */
7058 s->contents = bfd_zalloc (dynobj, s->size);
7059 if (s->contents == NULL)
7060 return FALSE;
7061 }
7062
7063 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7064 {
7065 s = ppc64_elf_tdata (ibfd)->got;
7066 if (s != NULL && s != htab->got)
7067 {
7068 if (s->size == 0)
7069 _bfd_strip_section_from_output (info, s);
7070 else
7071 {
7072 s->contents = bfd_zalloc (ibfd, s->size);
7073 if (s->contents == NULL)
7074 return FALSE;
7075 }
7076 }
7077 s = ppc64_elf_tdata (ibfd)->relgot;
7078 if (s != NULL)
7079 {
7080 if (s->size == 0)
7081 _bfd_strip_section_from_output (info, s);
7082 else
7083 {
7084 s->contents = bfd_zalloc (ibfd, s->size);
7085 if (s->contents == NULL)
7086 return FALSE;
7087 relocs = TRUE;
7088 s->reloc_count = 0;
7089 }
7090 }
7091 }
7092
7093 if (htab->elf.dynamic_sections_created)
7094 {
7095 /* Add some entries to the .dynamic section. We fill in the
7096 values later, in ppc64_elf_finish_dynamic_sections, but we
7097 must add the entries now so that we get the correct size for
7098 the .dynamic section. The DT_DEBUG entry is filled in by the
7099 dynamic linker and used by the debugger. */
7100 #define add_dynamic_entry(TAG, VAL) \
7101 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7102
7103 if (info->executable)
7104 {
7105 if (!add_dynamic_entry (DT_DEBUG, 0))
7106 return FALSE;
7107 }
7108
7109 if (htab->plt != NULL && htab->plt->size != 0)
7110 {
7111 if (!add_dynamic_entry (DT_PLTGOT, 0)
7112 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7113 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7114 || !add_dynamic_entry (DT_JMPREL, 0)
7115 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7116 return FALSE;
7117 }
7118
7119 if (NO_OPD_RELOCS)
7120 {
7121 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7122 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7123 return FALSE;
7124 }
7125
7126 if (relocs)
7127 {
7128 if (!add_dynamic_entry (DT_RELA, 0)
7129 || !add_dynamic_entry (DT_RELASZ, 0)
7130 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7131 return FALSE;
7132
7133 /* If any dynamic relocs apply to a read-only section,
7134 then we need a DT_TEXTREL entry. */
7135 if ((info->flags & DF_TEXTREL) == 0)
7136 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7137
7138 if ((info->flags & DF_TEXTREL) != 0)
7139 {
7140 if (!add_dynamic_entry (DT_TEXTREL, 0))
7141 return FALSE;
7142 }
7143 }
7144 }
7145 #undef add_dynamic_entry
7146
7147 return TRUE;
7148 }
7149
7150 /* Determine the type of stub needed, if any, for a call. */
7151
7152 static inline enum ppc_stub_type
7153 ppc_type_of_stub (asection *input_sec,
7154 const Elf_Internal_Rela *rel,
7155 struct ppc_link_hash_entry **hash,
7156 bfd_vma destination)
7157 {
7158 struct ppc_link_hash_entry *h = *hash;
7159 bfd_vma location;
7160 bfd_vma branch_offset;
7161 bfd_vma max_branch_offset;
7162 enum elf_ppc64_reloc_type r_type;
7163
7164 if (h != NULL)
7165 {
7166 if (h->oh != NULL
7167 && h->oh->is_func_descriptor)
7168 h = h->oh;
7169
7170 if (h->elf.dynindx != -1)
7171 {
7172 struct plt_entry *ent;
7173
7174 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7175 if (ent->addend == rel->r_addend
7176 && ent->plt.offset != (bfd_vma) -1)
7177 {
7178 *hash = h;
7179 return ppc_stub_plt_call;
7180 }
7181 }
7182
7183 if (!(h->elf.root.type == bfd_link_hash_defined
7184 || h->elf.root.type == bfd_link_hash_defweak)
7185 || h->elf.root.u.def.section->output_section == NULL)
7186 return ppc_stub_none;
7187 }
7188
7189 /* Determine where the call point is. */
7190 location = (input_sec->output_offset
7191 + input_sec->output_section->vma
7192 + rel->r_offset);
7193
7194 branch_offset = destination - location;
7195 r_type = ELF64_R_TYPE (rel->r_info);
7196
7197 /* Determine if a long branch stub is needed. */
7198 max_branch_offset = 1 << 25;
7199 if (r_type != R_PPC64_REL24)
7200 max_branch_offset = 1 << 15;
7201
7202 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7203 /* We need a stub. Figure out whether a long_branch or plt_branch
7204 is needed later. */
7205 return ppc_stub_long_branch;
7206
7207 return ppc_stub_none;
7208 }
7209
7210 /* Build a .plt call stub. */
7211
7212 static inline bfd_byte *
7213 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7214 {
7215 #define PPC_LO(v) ((v) & 0xffff)
7216 #define PPC_HI(v) (((v) >> 16) & 0xffff)
7217 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
7218
7219 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7220 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7221 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7222 if (PPC_HA (offset + 8) != PPC_HA (offset))
7223 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7224 offset += 8;
7225 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7226 if (PPC_HA (offset + 8) != PPC_HA (offset))
7227 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7228 offset += 8;
7229 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7230 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7231 bfd_put_32 (obfd, BCTR, p), p += 4;
7232 return p;
7233 }
7234
7235 static bfd_boolean
7236 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7237 {
7238 struct ppc_stub_hash_entry *stub_entry;
7239 struct ppc_branch_hash_entry *br_entry;
7240 struct bfd_link_info *info;
7241 struct ppc_link_hash_table *htab;
7242 bfd_byte *loc;
7243 bfd_byte *p;
7244 unsigned int indx;
7245 struct plt_entry *ent;
7246 bfd_vma off;
7247 int size;
7248
7249 /* Massage our args to the form they really have. */
7250 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7251 info = in_arg;
7252
7253 htab = ppc_hash_table (info);
7254
7255 /* Make a note of the offset within the stubs for this entry. */
7256 stub_entry->stub_offset = stub_entry->stub_sec->size;
7257 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7258
7259 htab->stub_count[stub_entry->stub_type - 1] += 1;
7260 switch (stub_entry->stub_type)
7261 {
7262 case ppc_stub_long_branch:
7263 case ppc_stub_long_branch_r2off:
7264 /* Branches are relative. This is where we are going to. */
7265 off = (stub_entry->target_value
7266 + stub_entry->target_section->output_offset
7267 + stub_entry->target_section->output_section->vma);
7268
7269 /* And this is where we are coming from. */
7270 off -= (stub_entry->stub_offset
7271 + stub_entry->stub_sec->output_offset
7272 + stub_entry->stub_sec->output_section->vma);
7273
7274 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7275 size = 4;
7276 else
7277 {
7278 bfd_vma r2off;
7279
7280 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7281 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7282 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7283 loc += 4;
7284 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7285 loc += 4;
7286 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7287 loc += 4;
7288 off -= 12;
7289 size = 16;
7290 }
7291 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
7292
7293 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
7294 break;
7295
7296 case ppc_stub_plt_branch:
7297 case ppc_stub_plt_branch_r2off:
7298 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7299 stub_entry->root.string + 9,
7300 FALSE, FALSE);
7301 if (br_entry == NULL)
7302 {
7303 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
7304 stub_entry->root.string + 9);
7305 htab->stub_error = TRUE;
7306 return FALSE;
7307 }
7308
7309 off = (stub_entry->target_value
7310 + stub_entry->target_section->output_offset
7311 + stub_entry->target_section->output_section->vma);
7312
7313 bfd_put_64 (htab->brlt->owner, off,
7314 htab->brlt->contents + br_entry->offset);
7315
7316 if (info->shared)
7317 {
7318 /* Create a reloc for the branch lookup table entry. */
7319 Elf_Internal_Rela rela;
7320 bfd_byte *rl;
7321
7322 rela.r_offset = (br_entry->offset
7323 + htab->brlt->output_offset
7324 + htab->brlt->output_section->vma);
7325 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
7326 rela.r_addend = off;
7327
7328 rl = htab->relbrlt->contents;
7329 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
7330 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
7331 }
7332
7333 off = (br_entry->offset
7334 + htab->brlt->output_offset
7335 + htab->brlt->output_section->vma
7336 - elf_gp (htab->brlt->output_section->owner)
7337 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7338
7339 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7340 {
7341 (*_bfd_error_handler)
7342 (_("linkage table error against `%s'"),
7343 stub_entry->root.string);
7344 bfd_set_error (bfd_error_bad_value);
7345 htab->stub_error = TRUE;
7346 return FALSE;
7347 }
7348
7349 indx = off;
7350 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
7351 {
7352 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7353 loc += 4;
7354 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7355 size = 16;
7356 }
7357 else
7358 {
7359 bfd_vma r2off;
7360
7361 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7362 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7363 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7364 loc += 4;
7365 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7366 loc += 4;
7367 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7368 loc += 4;
7369 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7370 loc += 4;
7371 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7372 size = 28;
7373 }
7374 loc += 4;
7375 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
7376 loc += 4;
7377 bfd_put_32 (htab->stub_bfd, BCTR, loc);
7378 break;
7379
7380 case ppc_stub_plt_call:
7381 /* Do the best we can for shared libraries built without
7382 exporting ".foo" for each "foo". This can happen when symbol
7383 versioning scripts strip all bar a subset of symbols. */
7384 if (stub_entry->h->oh != NULL
7385 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
7386 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
7387 {
7388 /* Point the symbol at the stub. There may be multiple stubs,
7389 we don't really care; The main thing is to make this sym
7390 defined somewhere. Maybe defining the symbol in the stub
7391 section is a silly idea. If we didn't do this, htab->top_id
7392 could disappear. */
7393 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
7394 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
7395 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
7396 }
7397
7398 /* Now build the stub. */
7399 off = (bfd_vma) -1;
7400 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7401 if (ent->addend == stub_entry->addend)
7402 {
7403 off = ent->plt.offset;
7404 break;
7405 }
7406 if (off >= (bfd_vma) -2)
7407 abort ();
7408
7409 off &= ~ (bfd_vma) 1;
7410 off += (htab->plt->output_offset
7411 + htab->plt->output_section->vma
7412 - elf_gp (htab->plt->output_section->owner)
7413 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7414
7415 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7416 {
7417 (*_bfd_error_handler)
7418 (_("linkage table error against `%s'"),
7419 stub_entry->h->elf.root.root.string);
7420 bfd_set_error (bfd_error_bad_value);
7421 htab->stub_error = TRUE;
7422 return FALSE;
7423 }
7424
7425 p = build_plt_stub (htab->stub_bfd, loc, off);
7426 size = p - loc;
7427 break;
7428
7429 default:
7430 BFD_FAIL ();
7431 return FALSE;
7432 }
7433
7434 stub_entry->stub_sec->size += size;
7435
7436 if (htab->emit_stub_syms
7437 && !(stub_entry->stub_type == ppc_stub_plt_call
7438 && stub_entry->h->oh != NULL
7439 && stub_entry->h->oh->elf.root.type == bfd_link_hash_defined
7440 && stub_entry->h->oh->elf.root.u.def.section == stub_entry->stub_sec
7441 && stub_entry->h->oh->elf.root.u.def.value == stub_entry->stub_offset))
7442 {
7443 struct elf_link_hash_entry *h;
7444 h = elf_link_hash_lookup (&htab->elf, stub_entry->root.string,
7445 TRUE, FALSE, FALSE);
7446 if (h == NULL)
7447 return FALSE;
7448 if (h->root.type == bfd_link_hash_new)
7449 {
7450 h->root.type = bfd_link_hash_defined;
7451 h->root.u.def.section = stub_entry->stub_sec;
7452 h->root.u.def.value = stub_entry->stub_offset;
7453 h->elf_link_hash_flags = (ELF_LINK_HASH_REF_REGULAR
7454 | ELF_LINK_HASH_DEF_REGULAR
7455 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
7456 | ELF_LINK_FORCED_LOCAL);
7457 }
7458 }
7459
7460 return TRUE;
7461 }
7462
7463 /* As above, but don't actually build the stub. Just bump offset so
7464 we know stub section sizes, and select plt_branch stubs where
7465 long_branch stubs won't do. */
7466
7467 static bfd_boolean
7468 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7469 {
7470 struct ppc_stub_hash_entry *stub_entry;
7471 struct bfd_link_info *info;
7472 struct ppc_link_hash_table *htab;
7473 bfd_vma off;
7474 int size;
7475
7476 /* Massage our args to the form they really have. */
7477 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7478 info = in_arg;
7479
7480 htab = ppc_hash_table (info);
7481
7482 if (stub_entry->stub_type == ppc_stub_plt_call)
7483 {
7484 struct plt_entry *ent;
7485 off = (bfd_vma) -1;
7486 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7487 if (ent->addend == stub_entry->addend)
7488 {
7489 off = ent->plt.offset & ~(bfd_vma) 1;
7490 break;
7491 }
7492 if (off >= (bfd_vma) -2)
7493 abort ();
7494 off += (htab->plt->output_offset
7495 + htab->plt->output_section->vma
7496 - elf_gp (htab->plt->output_section->owner)
7497 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7498
7499 size = PLT_CALL_STUB_SIZE;
7500 if (PPC_HA (off + 16) != PPC_HA (off))
7501 size += 4;
7502 }
7503 else
7504 {
7505 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
7506 variants. */
7507 off = (stub_entry->target_value
7508 + stub_entry->target_section->output_offset
7509 + stub_entry->target_section->output_section->vma);
7510 off -= (stub_entry->stub_sec->size
7511 + stub_entry->stub_sec->output_offset
7512 + stub_entry->stub_sec->output_section->vma);
7513
7514 /* Reset the stub type from the plt variant in case we now
7515 can reach with a shorter stub. */
7516 if (stub_entry->stub_type >= ppc_stub_plt_branch)
7517 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
7518
7519 size = 4;
7520 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
7521 {
7522 off -= 12;
7523 size = 16;
7524 }
7525
7526 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
7527 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
7528 {
7529 struct ppc_branch_hash_entry *br_entry;
7530
7531 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7532 stub_entry->root.string + 9,
7533 TRUE, FALSE);
7534 if (br_entry == NULL)
7535 {
7536 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
7537 stub_entry->root.string + 9);
7538 htab->stub_error = TRUE;
7539 return FALSE;
7540 }
7541
7542 if (br_entry->iter != htab->stub_iteration)
7543 {
7544 br_entry->iter = htab->stub_iteration;
7545 br_entry->offset = htab->brlt->size;
7546 htab->brlt->size += 8;
7547
7548 if (info->shared)
7549 htab->relbrlt->size += sizeof (Elf64_External_Rela);
7550 }
7551
7552 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
7553 size = 16;
7554 if (stub_entry->stub_type != ppc_stub_plt_branch)
7555 size = 28;
7556 }
7557 }
7558
7559 stub_entry->stub_sec->size += size;
7560 return TRUE;
7561 }
7562
7563 /* Set up various things so that we can make a list of input sections
7564 for each output section included in the link. Returns -1 on error,
7565 0 when no stubs will be needed, and 1 on success. */
7566
7567 int
7568 ppc64_elf_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
7569 {
7570 bfd *input_bfd;
7571 int top_id, top_index, id;
7572 asection *section;
7573 asection **input_list;
7574 bfd_size_type amt;
7575 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7576
7577 if (htab->brlt == NULL)
7578 return 0;
7579
7580 /* Find the top input section id. */
7581 for (input_bfd = info->input_bfds, top_id = 3;
7582 input_bfd != NULL;
7583 input_bfd = input_bfd->link_next)
7584 {
7585 for (section = input_bfd->sections;
7586 section != NULL;
7587 section = section->next)
7588 {
7589 if (top_id < section->id)
7590 top_id = section->id;
7591 }
7592 }
7593
7594 htab->top_id = top_id;
7595 amt = sizeof (struct map_stub) * (top_id + 1);
7596 htab->stub_group = bfd_zmalloc (amt);
7597 if (htab->stub_group == NULL)
7598 return -1;
7599
7600 /* Set toc_off for com, und, abs and ind sections. */
7601 for (id = 0; id < 3; id++)
7602 htab->stub_group[id].toc_off = TOC_BASE_OFF;
7603
7604 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
7605
7606 /* We can't use output_bfd->section_count here to find the top output
7607 section index as some sections may have been removed, and
7608 _bfd_strip_section_from_output doesn't renumber the indices. */
7609 for (section = output_bfd->sections, top_index = 0;
7610 section != NULL;
7611 section = section->next)
7612 {
7613 if (top_index < section->index)
7614 top_index = section->index;
7615 }
7616
7617 htab->top_index = top_index;
7618 amt = sizeof (asection *) * (top_index + 1);
7619 input_list = bfd_zmalloc (amt);
7620 htab->input_list = input_list;
7621 if (input_list == NULL)
7622 return -1;
7623
7624 return 1;
7625 }
7626
7627 /* The linker repeatedly calls this function for each TOC input section
7628 and linker generated GOT section. Group input bfds such that the toc
7629 within a group is less than 64k in size. Will break with cute linker
7630 scripts that play games with dot in the output toc section. */
7631
7632 void
7633 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
7634 {
7635 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7636 bfd_vma addr = isec->output_offset + isec->output_section->vma;
7637 bfd_vma off = addr - htab->toc_curr;
7638
7639 if (off + isec->size > 0x10000)
7640 htab->toc_curr = addr;
7641
7642 elf_gp (isec->owner) = (htab->toc_curr
7643 - elf_gp (isec->output_section->owner)
7644 + TOC_BASE_OFF);
7645 }
7646
7647 /* Called after the last call to the above function. */
7648
7649 void
7650 ppc64_elf_reinit_toc (bfd *output_bfd ATTRIBUTE_UNUSED,
7651 struct bfd_link_info *info)
7652 {
7653 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7654
7655 /* toc_curr tracks the TOC offset used for code sections below in
7656 ppc64_elf_next_input_section. Start off at 0x8000. */
7657 htab->toc_curr = TOC_BASE_OFF;
7658 }
7659
7660 /* No toc references were found in ISEC. If the code in ISEC makes no
7661 calls, then there's no need to use toc adjusting stubs when branching
7662 into ISEC. Actually, indirect calls from ISEC are OK as they will
7663 load r2. */
7664
7665 static int
7666 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
7667 {
7668 bfd_byte *contents;
7669 bfd_size_type i;
7670 int ret;
7671 int branch_ok;
7672
7673 /* We know none of our code bearing sections will need toc stubs. */
7674 if ((isec->flags & SEC_LINKER_CREATED) != 0)
7675 return 0;
7676
7677 if (isec->size == 0)
7678 return 0;
7679
7680 /* Hack for linux kernel. .fixup contains branches, but only back to
7681 the function that hit an exception. */
7682 branch_ok = strcmp (isec->name, ".fixup") == 0;
7683
7684 contents = elf_section_data (isec)->this_hdr.contents;
7685 if (contents == NULL)
7686 {
7687 if (!bfd_malloc_and_get_section (isec->owner, isec, &contents))
7688 {
7689 if (contents != NULL)
7690 free (contents);
7691 return -1;
7692 }
7693 if (info->keep_memory)
7694 elf_section_data (isec)->this_hdr.contents = contents;
7695 }
7696
7697 /* Code scan, because we don't necessarily have relocs on calls to
7698 static functions. */
7699 ret = 0;
7700 for (i = 0; i < isec->size; i += 4)
7701 {
7702 unsigned long insn = bfd_get_32 (isec->owner, contents + i);
7703 /* Is this a branch? */
7704 if ((insn & (0x3f << 26)) == (18 << 26)
7705 /* If branch and link, it's a function call. */
7706 && ((insn & 1) != 0
7707 /* Sibling calls use a plain branch. I don't know a way
7708 of deciding whether a branch is really a sibling call. */
7709 || !branch_ok))
7710 {
7711 ret = 1;
7712 break;
7713 }
7714 }
7715
7716 if (elf_section_data (isec)->this_hdr.contents != contents)
7717 free (contents);
7718 return ret;
7719 }
7720
7721 /* The linker repeatedly calls this function for each input section,
7722 in the order that input sections are linked into output sections.
7723 Build lists of input sections to determine groupings between which
7724 we may insert linker stubs. */
7725
7726 bfd_boolean
7727 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
7728 {
7729 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7730 int ret;
7731
7732 if ((isec->output_section->flags & SEC_CODE) != 0
7733 && isec->output_section->index <= htab->top_index)
7734 {
7735 asection **list = htab->input_list + isec->output_section->index;
7736 /* Steal the link_sec pointer for our list. */
7737 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
7738 /* This happens to make the list in reverse order,
7739 which is what we want. */
7740 PREV_SEC (isec) = *list;
7741 *list = isec;
7742 }
7743
7744 /* If a code section has a function that uses the TOC then we need
7745 to use the right TOC (obviously). Also, make sure that .opd gets
7746 the correct TOC value for R_PPC64_TOC relocs that don't have or
7747 can't find their function symbol (shouldn't ever happen now). */
7748 if (isec->has_gp_reloc || (isec->flags & SEC_CODE) == 0)
7749 {
7750 if (elf_gp (isec->owner) != 0)
7751 htab->toc_curr = elf_gp (isec->owner);
7752 }
7753 else if ((ret = toc_adjusting_stub_needed (info, isec)) < 0)
7754 return FALSE;
7755 else
7756 isec->has_gp_reloc = ret;
7757
7758 /* Functions that don't use the TOC can belong in any TOC group.
7759 Use the last TOC base. This happens to make _init and _fini
7760 pasting work. */
7761 htab->stub_group[isec->id].toc_off = htab->toc_curr;
7762 return TRUE;
7763 }
7764
7765 /* See whether we can group stub sections together. Grouping stub
7766 sections may result in fewer stubs. More importantly, we need to
7767 put all .init* and .fini* stubs at the beginning of the .init or
7768 .fini output sections respectively, because glibc splits the
7769 _init and _fini functions into multiple parts. Putting a stub in
7770 the middle of a function is not a good idea. */
7771
7772 static void
7773 group_sections (struct ppc_link_hash_table *htab,
7774 bfd_size_type stub_group_size,
7775 bfd_boolean stubs_always_before_branch)
7776 {
7777 asection **list = htab->input_list + htab->top_index;
7778 do
7779 {
7780 asection *tail = *list;
7781 while (tail != NULL)
7782 {
7783 asection *curr;
7784 asection *prev;
7785 bfd_size_type total;
7786 bfd_boolean big_sec;
7787 bfd_vma curr_toc;
7788
7789 curr = tail;
7790 total = tail->size;
7791 big_sec = total >= stub_group_size;
7792 curr_toc = htab->stub_group[tail->id].toc_off;
7793
7794 while ((prev = PREV_SEC (curr)) != NULL
7795 && ((total += curr->output_offset - prev->output_offset)
7796 < stub_group_size)
7797 && htab->stub_group[prev->id].toc_off == curr_toc)
7798 curr = prev;
7799
7800 /* OK, the size from the start of CURR to the end is less
7801 than stub_group_size and thus can be handled by one stub
7802 section. (or the tail section is itself larger than
7803 stub_group_size, in which case we may be toast.) We
7804 should really be keeping track of the total size of stubs
7805 added here, as stubs contribute to the final output
7806 section size. That's a little tricky, and this way will
7807 only break if stubs added make the total size more than
7808 2^25, ie. for the default stub_group_size, if stubs total
7809 more than 2097152 bytes, or nearly 75000 plt call stubs. */
7810 do
7811 {
7812 prev = PREV_SEC (tail);
7813 /* Set up this stub group. */
7814 htab->stub_group[tail->id].link_sec = curr;
7815 }
7816 while (tail != curr && (tail = prev) != NULL);
7817
7818 /* But wait, there's more! Input sections up to stub_group_size
7819 bytes before the stub section can be handled by it too.
7820 Don't do this if we have a really large section after the
7821 stubs, as adding more stubs increases the chance that
7822 branches may not reach into the stub section. */
7823 if (!stubs_always_before_branch && !big_sec)
7824 {
7825 total = 0;
7826 while (prev != NULL
7827 && ((total += tail->output_offset - prev->output_offset)
7828 < stub_group_size)
7829 && htab->stub_group[prev->id].toc_off == curr_toc)
7830 {
7831 tail = prev;
7832 prev = PREV_SEC (tail);
7833 htab->stub_group[tail->id].link_sec = curr;
7834 }
7835 }
7836 tail = prev;
7837 }
7838 }
7839 while (list-- != htab->input_list);
7840 free (htab->input_list);
7841 #undef PREV_SEC
7842 }
7843
7844 /* Determine and set the size of the stub section for a final link.
7845
7846 The basic idea here is to examine all the relocations looking for
7847 PC-relative calls to a target that is unreachable with a "bl"
7848 instruction. */
7849
7850 bfd_boolean
7851 ppc64_elf_size_stubs (bfd *output_bfd,
7852 struct bfd_link_info *info,
7853 bfd_signed_vma group_size,
7854 asection *(*add_stub_section) (const char *, asection *),
7855 void (*layout_sections_again) (void))
7856 {
7857 bfd_size_type stub_group_size;
7858 bfd_boolean stubs_always_before_branch;
7859 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7860
7861 /* Stash our params away. */
7862 htab->add_stub_section = add_stub_section;
7863 htab->layout_sections_again = layout_sections_again;
7864 stubs_always_before_branch = group_size < 0;
7865 if (group_size < 0)
7866 stub_group_size = -group_size;
7867 else
7868 stub_group_size = group_size;
7869 if (stub_group_size == 1)
7870 {
7871 /* Default values. */
7872 if (stubs_always_before_branch)
7873 {
7874 stub_group_size = 0x1e00000;
7875 if (htab->has_14bit_branch)
7876 stub_group_size = 0x7800;
7877 }
7878 else
7879 {
7880 stub_group_size = 0x1c00000;
7881 if (htab->has_14bit_branch)
7882 stub_group_size = 0x7000;
7883 }
7884 }
7885
7886 group_sections (htab, stub_group_size, stubs_always_before_branch);
7887
7888 while (1)
7889 {
7890 bfd *input_bfd;
7891 unsigned int bfd_indx;
7892 asection *stub_sec;
7893 bfd_boolean stub_changed;
7894
7895 htab->stub_iteration += 1;
7896 stub_changed = FALSE;
7897
7898 for (input_bfd = info->input_bfds, bfd_indx = 0;
7899 input_bfd != NULL;
7900 input_bfd = input_bfd->link_next, bfd_indx++)
7901 {
7902 Elf_Internal_Shdr *symtab_hdr;
7903 asection *section;
7904 Elf_Internal_Sym *local_syms = NULL;
7905
7906 /* We'll need the symbol table in a second. */
7907 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7908 if (symtab_hdr->sh_info == 0)
7909 continue;
7910
7911 /* Walk over each section attached to the input bfd. */
7912 for (section = input_bfd->sections;
7913 section != NULL;
7914 section = section->next)
7915 {
7916 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
7917
7918 /* If there aren't any relocs, then there's nothing more
7919 to do. */
7920 if ((section->flags & SEC_RELOC) == 0
7921 || section->reloc_count == 0)
7922 continue;
7923
7924 /* If this section is a link-once section that will be
7925 discarded, then don't create any stubs. */
7926 if (section->output_section == NULL
7927 || section->output_section->owner != output_bfd)
7928 continue;
7929
7930 /* Get the relocs. */
7931 internal_relocs
7932 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
7933 info->keep_memory);
7934 if (internal_relocs == NULL)
7935 goto error_ret_free_local;
7936
7937 /* Now examine each relocation. */
7938 irela = internal_relocs;
7939 irelaend = irela + section->reloc_count;
7940 for (; irela < irelaend; irela++)
7941 {
7942 enum elf_ppc64_reloc_type r_type;
7943 unsigned int r_indx;
7944 enum ppc_stub_type stub_type;
7945 struct ppc_stub_hash_entry *stub_entry;
7946 asection *sym_sec, *code_sec;
7947 bfd_vma sym_value;
7948 bfd_vma destination;
7949 bfd_boolean ok_dest;
7950 struct ppc_link_hash_entry *hash;
7951 struct ppc_link_hash_entry *fdh;
7952 struct elf_link_hash_entry *h;
7953 Elf_Internal_Sym *sym;
7954 char *stub_name;
7955 const asection *id_sec;
7956 long *opd_adjust;
7957
7958 r_type = ELF64_R_TYPE (irela->r_info);
7959 r_indx = ELF64_R_SYM (irela->r_info);
7960
7961 if (r_type >= R_PPC64_max)
7962 {
7963 bfd_set_error (bfd_error_bad_value);
7964 goto error_ret_free_internal;
7965 }
7966
7967 /* Only look for stubs on branch instructions. */
7968 if (r_type != R_PPC64_REL24
7969 && r_type != R_PPC64_REL14
7970 && r_type != R_PPC64_REL14_BRTAKEN
7971 && r_type != R_PPC64_REL14_BRNTAKEN)
7972 continue;
7973
7974 /* Now determine the call target, its name, value,
7975 section. */
7976 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7977 r_indx, input_bfd))
7978 goto error_ret_free_internal;
7979 hash = (struct ppc_link_hash_entry *) h;
7980
7981 ok_dest = FALSE;
7982 fdh = NULL;
7983 if (hash == NULL)
7984 {
7985 sym_value = sym->st_value;
7986 ok_dest = TRUE;
7987 }
7988 else
7989 {
7990 sym_value = 0;
7991 /* Recognise an old ABI func code entry sym, and
7992 use the func descriptor sym instead. */
7993 if (hash->elf.root.type == bfd_link_hash_undefweak
7994 && hash->elf.root.root.string[0] == '.'
7995 && (fdh = get_fdh (hash, htab)) != NULL)
7996 {
7997 if (fdh->elf.root.type == bfd_link_hash_defined
7998 || fdh->elf.root.type == bfd_link_hash_defweak)
7999 {
8000 sym_sec = fdh->elf.root.u.def.section;
8001 sym_value = fdh->elf.root.u.def.value;
8002 if (sym_sec->output_section != NULL)
8003 ok_dest = TRUE;
8004 }
8005 else
8006 fdh = NULL;
8007 }
8008 else if (hash->elf.root.type == bfd_link_hash_defined
8009 || hash->elf.root.type == bfd_link_hash_defweak)
8010 {
8011 sym_value = hash->elf.root.u.def.value;
8012 if (sym_sec->output_section != NULL)
8013 ok_dest = TRUE;
8014 }
8015 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8016 ;
8017 else if (hash->elf.root.type == bfd_link_hash_undefined)
8018 ;
8019 else
8020 {
8021 bfd_set_error (bfd_error_bad_value);
8022 goto error_ret_free_internal;
8023 }
8024 }
8025
8026 destination = 0;
8027 if (ok_dest)
8028 {
8029 sym_value += irela->r_addend;
8030 destination = (sym_value
8031 + sym_sec->output_offset
8032 + sym_sec->output_section->vma);
8033 }
8034
8035 code_sec = sym_sec;
8036 opd_adjust = get_opd_info (sym_sec);
8037 if (opd_adjust != NULL)
8038 {
8039 bfd_vma dest;
8040
8041 if (hash == NULL)
8042 {
8043 long adjust = opd_adjust[sym_value / 8];
8044 if (adjust == -1)
8045 continue;
8046 sym_value += adjust;
8047 }
8048 dest = opd_entry_value (sym_sec, sym_value,
8049 &code_sec, &sym_value);
8050 if (dest != (bfd_vma) -1)
8051 {
8052 destination = dest;
8053 if (fdh != NULL)
8054 {
8055 /* Fixup old ABI sym to point at code
8056 entry. */
8057 hash->elf.root.type = bfd_link_hash_defweak;
8058 hash->elf.root.u.def.section = code_sec;
8059 hash->elf.root.u.def.value = sym_value;
8060 }
8061 }
8062 }
8063
8064 /* Determine what (if any) linker stub is needed. */
8065 stub_type = ppc_type_of_stub (section, irela, &hash,
8066 destination);
8067
8068 if (stub_type != ppc_stub_plt_call)
8069 {
8070 /* Check whether we need a TOC adjusting stub.
8071 Since the linker pastes together pieces from
8072 different object files when creating the
8073 _init and _fini functions, it may be that a
8074 call to what looks like a local sym is in
8075 fact a call needing a TOC adjustment. */
8076 if (code_sec != NULL
8077 && code_sec->output_section != NULL
8078 && (htab->stub_group[code_sec->id].toc_off
8079 != htab->stub_group[section->id].toc_off)
8080 && code_sec->has_gp_reloc
8081 && section->has_gp_reloc)
8082 stub_type = ppc_stub_long_branch_r2off;
8083 }
8084
8085 if (stub_type == ppc_stub_none)
8086 continue;
8087
8088 /* __tls_get_addr calls might be eliminated. */
8089 if (stub_type != ppc_stub_plt_call
8090 && hash != NULL
8091 && (hash == htab->tls_get_addr
8092 || hash == htab->tls_get_addr_fd)
8093 && section->has_tls_reloc
8094 && irela != internal_relocs)
8095 {
8096 /* Get tls info. */
8097 char *tls_mask;
8098
8099 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
8100 irela - 1, input_bfd))
8101 goto error_ret_free_internal;
8102 if (*tls_mask != 0)
8103 continue;
8104 }
8105
8106 /* Support for grouping stub sections. */
8107 id_sec = htab->stub_group[section->id].link_sec;
8108
8109 /* Get the name of this stub. */
8110 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
8111 if (!stub_name)
8112 goto error_ret_free_internal;
8113
8114 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
8115 stub_name, FALSE, FALSE);
8116 if (stub_entry != NULL)
8117 {
8118 /* The proper stub has already been created. */
8119 free (stub_name);
8120 continue;
8121 }
8122
8123 stub_entry = ppc_add_stub (stub_name, section, htab);
8124 if (stub_entry == NULL)
8125 {
8126 free (stub_name);
8127 error_ret_free_internal:
8128 if (elf_section_data (section)->relocs == NULL)
8129 free (internal_relocs);
8130 error_ret_free_local:
8131 if (local_syms != NULL
8132 && (symtab_hdr->contents
8133 != (unsigned char *) local_syms))
8134 free (local_syms);
8135 return FALSE;
8136 }
8137
8138 stub_entry->stub_type = stub_type;
8139 stub_entry->target_value = sym_value;
8140 stub_entry->target_section = code_sec;
8141 stub_entry->h = hash;
8142 stub_entry->addend = irela->r_addend;
8143 stub_changed = TRUE;
8144 }
8145
8146 /* We're done with the internal relocs, free them. */
8147 if (elf_section_data (section)->relocs != internal_relocs)
8148 free (internal_relocs);
8149 }
8150
8151 if (local_syms != NULL
8152 && symtab_hdr->contents != (unsigned char *) local_syms)
8153 {
8154 if (!info->keep_memory)
8155 free (local_syms);
8156 else
8157 symtab_hdr->contents = (unsigned char *) local_syms;
8158 }
8159 }
8160
8161 if (!stub_changed)
8162 break;
8163
8164 /* OK, we've added some stubs. Find out the new size of the
8165 stub sections. */
8166 for (stub_sec = htab->stub_bfd->sections;
8167 stub_sec != NULL;
8168 stub_sec = stub_sec->next)
8169 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8170 stub_sec->size = 0;
8171
8172 htab->brlt->size = 0;
8173 if (info->shared)
8174 htab->relbrlt->size = 0;
8175
8176 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
8177
8178 /* Ask the linker to do its stuff. */
8179 (*htab->layout_sections_again) ();
8180 }
8181
8182 /* It would be nice to strip .branch_lt from the output if the
8183 section is empty, but it's too late. If we strip sections here,
8184 the dynamic symbol table is corrupted since the section symbol
8185 for the stripped section isn't written. */
8186
8187 return TRUE;
8188 }
8189
8190 /* Called after we have determined section placement. If sections
8191 move, we'll be called again. Provide a value for TOCstart. */
8192
8193 bfd_vma
8194 ppc64_elf_toc (bfd *obfd)
8195 {
8196 asection *s;
8197 bfd_vma TOCstart;
8198
8199 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
8200 order. The TOC starts where the first of these sections starts. */
8201 s = bfd_get_section_by_name (obfd, ".got");
8202 if (s == NULL)
8203 s = bfd_get_section_by_name (obfd, ".toc");
8204 if (s == NULL)
8205 s = bfd_get_section_by_name (obfd, ".tocbss");
8206 if (s == NULL)
8207 s = bfd_get_section_by_name (obfd, ".plt");
8208 if (s == NULL)
8209 {
8210 /* This may happen for
8211 o references to TOC base (SYM@toc / TOC[tc0]) without a
8212 .toc directive
8213 o bad linker script
8214 o --gc-sections and empty TOC sections
8215
8216 FIXME: Warn user? */
8217
8218 /* Look for a likely section. We probably won't even be
8219 using TOCstart. */
8220 for (s = obfd->sections; s != NULL; s = s->next)
8221 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
8222 == (SEC_ALLOC | SEC_SMALL_DATA))
8223 break;
8224 if (s == NULL)
8225 for (s = obfd->sections; s != NULL; s = s->next)
8226 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
8227 == (SEC_ALLOC | SEC_SMALL_DATA))
8228 break;
8229 if (s == NULL)
8230 for (s = obfd->sections; s != NULL; s = s->next)
8231 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
8232 break;
8233 if (s == NULL)
8234 for (s = obfd->sections; s != NULL; s = s->next)
8235 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
8236 break;
8237 }
8238
8239 TOCstart = 0;
8240 if (s != NULL)
8241 TOCstart = s->output_section->vma + s->output_offset;
8242
8243 return TOCstart;
8244 }
8245
8246 /* Build all the stubs associated with the current output file.
8247 The stubs are kept in a hash table attached to the main linker
8248 hash table. This function is called via gldelf64ppc_finish. */
8249
8250 bfd_boolean
8251 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
8252 struct bfd_link_info *info,
8253 char **stats)
8254 {
8255 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8256 asection *stub_sec;
8257 bfd_byte *p;
8258 int stub_sec_count = 0;
8259
8260 htab->emit_stub_syms = emit_stub_syms;
8261
8262 /* Allocate memory to hold the linker stubs. */
8263 for (stub_sec = htab->stub_bfd->sections;
8264 stub_sec != NULL;
8265 stub_sec = stub_sec->next)
8266 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
8267 && stub_sec->size != 0)
8268 {
8269 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
8270 if (stub_sec->contents == NULL)
8271 return FALSE;
8272 /* We want to check that built size is the same as calculated
8273 size. rawsize is a convenient location to use. */
8274 stub_sec->rawsize = stub_sec->size;
8275 stub_sec->size = 0;
8276 }
8277
8278 if (htab->plt != NULL)
8279 {
8280 unsigned int indx;
8281 bfd_vma plt0;
8282
8283 /* Build the .glink plt call stub. */
8284 plt0 = (htab->plt->output_section->vma
8285 + htab->plt->output_offset
8286 - (htab->glink->output_section->vma
8287 + htab->glink->output_offset
8288 + GLINK_CALL_STUB_SIZE));
8289 if (plt0 + 0x80008000 > 0xffffffff)
8290 {
8291 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
8292 bfd_set_error (bfd_error_bad_value);
8293 return FALSE;
8294 }
8295
8296 if (htab->emit_stub_syms)
8297 {
8298 struct elf_link_hash_entry *h;
8299 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
8300 if (h == NULL)
8301 return FALSE;
8302 if (h->root.type == bfd_link_hash_new)
8303 {
8304 h->root.type = bfd_link_hash_defined;
8305 h->root.u.def.section = htab->glink;
8306 h->root.u.def.value = 0;
8307 h->elf_link_hash_flags = (ELF_LINK_HASH_REF_REGULAR
8308 | ELF_LINK_HASH_DEF_REGULAR
8309 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
8310 | ELF_LINK_FORCED_LOCAL);
8311 }
8312 }
8313 p = htab->glink->contents;
8314 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
8315 p += 4;
8316 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
8317 p += 4;
8318 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
8319 p += 4;
8320 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8321 p += 4;
8322 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
8323 p += 4;
8324 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
8325 p += 4;
8326 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
8327 p += 4;
8328 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8329 p += 4;
8330 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
8331 p += 4;
8332 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
8333 p += 4;
8334 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
8335 p += 4;
8336 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
8337 p += 4;
8338 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
8339 p += 4;
8340 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
8341 p += 4;
8342 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
8343 p += 4;
8344 bfd_put_32 (htab->glink->owner, BCTR, p);
8345 p += 4;
8346
8347 /* Build the .glink lazy link call stubs. */
8348 indx = 0;
8349 while (p < htab->glink->contents + htab->glink->size)
8350 {
8351 if (indx < 0x8000)
8352 {
8353 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
8354 p += 4;
8355 }
8356 else
8357 {
8358 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
8359 p += 4;
8360 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
8361 p += 4;
8362 }
8363 bfd_put_32 (htab->glink->owner,
8364 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
8365 indx++;
8366 p += 4;
8367 }
8368 htab->glink->rawsize = p - htab->glink->contents;
8369 }
8370
8371 if (htab->brlt->size != 0)
8372 {
8373 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
8374 htab->brlt->size);
8375 if (htab->brlt->contents == NULL)
8376 return FALSE;
8377 }
8378 if (info->shared && htab->relbrlt->size != 0)
8379 {
8380 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
8381 htab->relbrlt->size);
8382 if (htab->relbrlt->contents == NULL)
8383 return FALSE;
8384 }
8385
8386 /* Build the stubs as directed by the stub hash table. */
8387 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
8388
8389 for (stub_sec = htab->stub_bfd->sections;
8390 stub_sec != NULL;
8391 stub_sec = stub_sec->next)
8392 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8393 {
8394 stub_sec_count += 1;
8395 if (stub_sec->rawsize != stub_sec->size)
8396 break;
8397 }
8398
8399 if (stub_sec != NULL
8400 || htab->glink->rawsize != htab->glink->size)
8401 {
8402 htab->stub_error = TRUE;
8403 (*_bfd_error_handler) (_("stubs don't match calculated size"));
8404 }
8405
8406 if (htab->stub_error)
8407 return FALSE;
8408
8409 if (stats != NULL)
8410 {
8411 *stats = bfd_malloc (500);
8412 if (*stats == NULL)
8413 return FALSE;
8414
8415 sprintf (*stats, _("linker stubs in %u groups\n"
8416 " branch %lu\n"
8417 " toc adjust %lu\n"
8418 " long branch %lu\n"
8419 " long toc adj %lu\n"
8420 " plt call %lu"),
8421 stub_sec_count,
8422 htab->stub_count[ppc_stub_long_branch - 1],
8423 htab->stub_count[ppc_stub_long_branch_r2off - 1],
8424 htab->stub_count[ppc_stub_plt_branch - 1],
8425 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
8426 htab->stub_count[ppc_stub_plt_call - 1]);
8427 }
8428 return TRUE;
8429 }
8430
8431 /* This function undoes the changes made by add_symbol_adjust. */
8432
8433 static bfd_boolean
8434 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
8435 {
8436 struct ppc_link_hash_entry *eh;
8437
8438 if (h->root.type == bfd_link_hash_indirect)
8439 return TRUE;
8440
8441 if (h->root.type == bfd_link_hash_warning)
8442 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8443
8444 eh = (struct ppc_link_hash_entry *) h;
8445 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
8446 return TRUE;
8447
8448 eh->elf.root.type = bfd_link_hash_undefined;
8449 return TRUE;
8450 }
8451
8452 void
8453 ppc64_elf_restore_symbols (struct bfd_link_info *info)
8454 {
8455 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8456 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
8457 }
8458
8459 /* The RELOCATE_SECTION function is called by the ELF backend linker
8460 to handle the relocations for a section.
8461
8462 The relocs are always passed as Rela structures; if the section
8463 actually uses Rel structures, the r_addend field will always be
8464 zero.
8465
8466 This function is responsible for adjust the section contents as
8467 necessary, and (if using Rela relocs and generating a
8468 relocatable output file) adjusting the reloc addend as
8469 necessary.
8470
8471 This function does not have to worry about setting the reloc
8472 address or the reloc symbol index.
8473
8474 LOCAL_SYMS is a pointer to the swapped in local symbols.
8475
8476 LOCAL_SECTIONS is an array giving the section in the input file
8477 corresponding to the st_shndx field of each local symbol.
8478
8479 The global hash table entry for the global symbols can be found
8480 via elf_sym_hashes (input_bfd).
8481
8482 When generating relocatable output, this function must handle
8483 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
8484 going to be the section symbol corresponding to the output
8485 section, which means that the addend must be adjusted
8486 accordingly. */
8487
8488 static bfd_boolean
8489 ppc64_elf_relocate_section (bfd *output_bfd,
8490 struct bfd_link_info *info,
8491 bfd *input_bfd,
8492 asection *input_section,
8493 bfd_byte *contents,
8494 Elf_Internal_Rela *relocs,
8495 Elf_Internal_Sym *local_syms,
8496 asection **local_sections)
8497 {
8498 struct ppc_link_hash_table *htab;
8499 Elf_Internal_Shdr *symtab_hdr;
8500 struct elf_link_hash_entry **sym_hashes;
8501 Elf_Internal_Rela *rel;
8502 Elf_Internal_Rela *relend;
8503 Elf_Internal_Rela outrel;
8504 bfd_byte *loc;
8505 struct got_entry **local_got_ents;
8506 bfd_vma TOCstart;
8507 bfd_boolean ret = TRUE;
8508 bfd_boolean is_opd;
8509 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
8510 bfd_boolean is_power4 = FALSE;
8511
8512 if (info->relocatable)
8513 return TRUE;
8514
8515 /* Initialize howto table if needed. */
8516 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8517 ppc_howto_init ();
8518
8519 htab = ppc_hash_table (info);
8520 local_got_ents = elf_local_got_ents (input_bfd);
8521 TOCstart = elf_gp (output_bfd);
8522 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8523 sym_hashes = elf_sym_hashes (input_bfd);
8524 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
8525
8526 rel = relocs;
8527 relend = relocs + input_section->reloc_count;
8528 for (; rel < relend; rel++)
8529 {
8530 enum elf_ppc64_reloc_type r_type;
8531 bfd_vma addend;
8532 bfd_reloc_status_type r;
8533 Elf_Internal_Sym *sym;
8534 asection *sec;
8535 struct elf_link_hash_entry *h_elf;
8536 struct ppc_link_hash_entry *h;
8537 struct ppc_link_hash_entry *fdh;
8538 const char *sym_name;
8539 unsigned long r_symndx, toc_symndx;
8540 char tls_mask, tls_gd, tls_type;
8541 char sym_type;
8542 bfd_vma relocation;
8543 bfd_boolean unresolved_reloc;
8544 bfd_boolean warned;
8545 unsigned long insn, mask;
8546 struct ppc_stub_hash_entry *stub_entry;
8547 bfd_vma max_br_offset;
8548 bfd_vma from;
8549
8550 r_type = ELF64_R_TYPE (rel->r_info);
8551 r_symndx = ELF64_R_SYM (rel->r_info);
8552
8553 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
8554 symbol of the previous ADDR64 reloc. The symbol gives us the
8555 proper TOC base to use. */
8556 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
8557 && rel != relocs
8558 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
8559 && is_opd)
8560 r_symndx = ELF64_R_SYM (rel[-1].r_info);
8561
8562 sym = NULL;
8563 sec = NULL;
8564 h_elf = NULL;
8565 sym_name = NULL;
8566 unresolved_reloc = FALSE;
8567 warned = FALSE;
8568
8569 if (r_symndx < symtab_hdr->sh_info)
8570 {
8571 /* It's a local symbol. */
8572 long *opd_adjust;
8573
8574 sym = local_syms + r_symndx;
8575 sec = local_sections[r_symndx];
8576 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
8577 sym_type = ELF64_ST_TYPE (sym->st_info);
8578 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8579 opd_adjust = get_opd_info (sec);
8580 if (opd_adjust != NULL)
8581 {
8582 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
8583 if (adjust == -1)
8584 relocation = 0;
8585 else
8586 relocation += adjust;
8587 }
8588 }
8589 else
8590 {
8591 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8592 r_symndx, symtab_hdr, sym_hashes,
8593 h_elf, sec, relocation,
8594 unresolved_reloc, warned);
8595 sym_name = h_elf->root.root.string;
8596 sym_type = h_elf->type;
8597 }
8598 h = (struct ppc_link_hash_entry *) h_elf;
8599
8600 /* TLS optimizations. Replace instruction sequences and relocs
8601 based on information we collected in tls_optimize. We edit
8602 RELOCS so that --emit-relocs will output something sensible
8603 for the final instruction stream. */
8604 tls_mask = 0;
8605 tls_gd = 0;
8606 toc_symndx = 0;
8607 if (IS_PPC64_TLS_RELOC (r_type))
8608 {
8609 if (h != NULL)
8610 tls_mask = h->tls_mask;
8611 else if (local_got_ents != NULL)
8612 {
8613 char *lgot_masks;
8614 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
8615 tls_mask = lgot_masks[r_symndx];
8616 }
8617 if (tls_mask == 0 && r_type == R_PPC64_TLS)
8618 {
8619 /* Check for toc tls entries. */
8620 char *toc_tls;
8621
8622 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
8623 rel, input_bfd))
8624 return FALSE;
8625
8626 if (toc_tls)
8627 tls_mask = *toc_tls;
8628 }
8629 }
8630
8631 /* Check that tls relocs are used with tls syms, and non-tls
8632 relocs are used with non-tls syms. */
8633 if (r_symndx != 0
8634 && r_type != R_PPC64_NONE
8635 && (h == NULL
8636 || h->elf.root.type == bfd_link_hash_defined
8637 || h->elf.root.type == bfd_link_hash_defweak)
8638 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8639 {
8640 if (r_type == R_PPC64_TLS && tls_mask != 0)
8641 /* R_PPC64_TLS is OK against a symbol in the TOC. */
8642 ;
8643 else
8644 (*_bfd_error_handler)
8645 (sym_type == STT_TLS
8646 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8647 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
8648 input_bfd,
8649 input_section,
8650 (long) rel->r_offset,
8651 ppc64_elf_howto_table[r_type]->name,
8652 sym_name);
8653 }
8654
8655 /* Ensure reloc mapping code below stays sane. */
8656 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
8657 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
8658 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
8659 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
8660 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
8661 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
8662 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
8663 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
8664 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
8665 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
8666 abort ();
8667
8668 switch (r_type)
8669 {
8670 default:
8671 break;
8672
8673 case R_PPC64_TOC16:
8674 case R_PPC64_TOC16_LO:
8675 case R_PPC64_TOC16_DS:
8676 case R_PPC64_TOC16_LO_DS:
8677 {
8678 /* Check for toc tls entries. */
8679 char *toc_tls;
8680 int retval;
8681
8682 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
8683 rel, input_bfd);
8684 if (retval == 0)
8685 return FALSE;
8686
8687 if (toc_tls)
8688 {
8689 tls_mask = *toc_tls;
8690 if (r_type == R_PPC64_TOC16_DS
8691 || r_type == R_PPC64_TOC16_LO_DS)
8692 {
8693 if (tls_mask != 0
8694 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
8695 goto toctprel;
8696 }
8697 else
8698 {
8699 /* If we found a GD reloc pair, then we might be
8700 doing a GD->IE transition. */
8701 if (retval == 2)
8702 {
8703 tls_gd = TLS_TPRELGD;
8704 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8705 goto tls_get_addr_check;
8706 }
8707 else if (retval == 3)
8708 {
8709 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8710 goto tls_get_addr_check;
8711 }
8712 }
8713 }
8714 }
8715 break;
8716
8717 case R_PPC64_GOT_TPREL16_DS:
8718 case R_PPC64_GOT_TPREL16_LO_DS:
8719 if (tls_mask != 0
8720 && (tls_mask & TLS_TPREL) == 0)
8721 {
8722 toctprel:
8723 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
8724 insn &= 31 << 21;
8725 insn |= 0x3c0d0000; /* addis 0,13,0 */
8726 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
8727 r_type = R_PPC64_TPREL16_HA;
8728 if (toc_symndx != 0)
8729 {
8730 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
8731 /* We changed the symbol. Start over in order to
8732 get h, sym, sec etc. right. */
8733 rel--;
8734 continue;
8735 }
8736 else
8737 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8738 }
8739 break;
8740
8741 case R_PPC64_TLS:
8742 if (tls_mask != 0
8743 && (tls_mask & TLS_TPREL) == 0)
8744 {
8745 bfd_vma rtra;
8746 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
8747 if ((insn & ((0x3f << 26) | (31 << 11)))
8748 == ((31 << 26) | (13 << 11)))
8749 rtra = insn & ((1 << 26) - (1 << 16));
8750 else if ((insn & ((0x3f << 26) | (31 << 16)))
8751 == ((31 << 26) | (13 << 16)))
8752 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
8753 else
8754 abort ();
8755 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
8756 /* add -> addi. */
8757 insn = 14 << 26;
8758 else if ((insn & (31 << 1)) == 23 << 1
8759 && ((insn & (31 << 6)) < 14 << 6
8760 || ((insn & (31 << 6)) >= 16 << 6
8761 && (insn & (31 << 6)) < 24 << 6)))
8762 /* load and store indexed -> dform. */
8763 insn = (32 | ((insn >> 6) & 31)) << 26;
8764 else if ((insn & (31 << 1)) == 21 << 1
8765 && (insn & (0x1a << 6)) == 0)
8766 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
8767 insn = (((58 | ((insn >> 6) & 4)) << 26)
8768 | ((insn >> 6) & 1));
8769 else if ((insn & (31 << 1)) == 21 << 1
8770 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
8771 /* lwax -> lwa. */
8772 insn = (58 << 26) | 2;
8773 else
8774 abort ();
8775 insn |= rtra;
8776 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
8777 /* Was PPC64_TLS which sits on insn boundary, now
8778 PPC64_TPREL16_LO which is at insn+2. */
8779 rel->r_offset += 2;
8780 r_type = R_PPC64_TPREL16_LO;
8781 if (toc_symndx != 0)
8782 {
8783 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
8784 /* We changed the symbol. Start over in order to
8785 get h, sym, sec etc. right. */
8786 rel--;
8787 continue;
8788 }
8789 else
8790 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8791 }
8792 break;
8793
8794 case R_PPC64_GOT_TLSGD16_HI:
8795 case R_PPC64_GOT_TLSGD16_HA:
8796 tls_gd = TLS_TPRELGD;
8797 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8798 goto tls_gdld_hi;
8799 break;
8800
8801 case R_PPC64_GOT_TLSLD16_HI:
8802 case R_PPC64_GOT_TLSLD16_HA:
8803 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8804 {
8805 tls_gdld_hi:
8806 if ((tls_mask & tls_gd) != 0)
8807 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
8808 + R_PPC64_GOT_TPREL16_DS);
8809 else
8810 {
8811 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
8812 rel->r_offset -= 2;
8813 r_type = R_PPC64_NONE;
8814 }
8815 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8816 }
8817 break;
8818
8819 case R_PPC64_GOT_TLSGD16:
8820 case R_PPC64_GOT_TLSGD16_LO:
8821 tls_gd = TLS_TPRELGD;
8822 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8823 goto tls_get_addr_check;
8824 break;
8825
8826 case R_PPC64_GOT_TLSLD16:
8827 case R_PPC64_GOT_TLSLD16_LO:
8828 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8829 {
8830 tls_get_addr_check:
8831 if (rel + 1 < relend)
8832 {
8833 enum elf_ppc64_reloc_type r_type2;
8834 unsigned long r_symndx2;
8835 struct elf_link_hash_entry *h2;
8836 bfd_vma insn1, insn2, insn3;
8837 bfd_vma offset;
8838
8839 /* The next instruction should be a call to
8840 __tls_get_addr. Peek at the reloc to be sure. */
8841 r_type2 = ELF64_R_TYPE (rel[1].r_info);
8842 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
8843 if (r_symndx2 < symtab_hdr->sh_info
8844 || (r_type2 != R_PPC64_REL14
8845 && r_type2 != R_PPC64_REL14_BRTAKEN
8846 && r_type2 != R_PPC64_REL14_BRNTAKEN
8847 && r_type2 != R_PPC64_REL24))
8848 break;
8849
8850 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
8851 while (h2->root.type == bfd_link_hash_indirect
8852 || h2->root.type == bfd_link_hash_warning)
8853 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
8854 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
8855 && h2 != &htab->tls_get_addr_fd->elf))
8856 break;
8857
8858 /* OK, it checks out. Replace the call. */
8859 offset = rel[1].r_offset;
8860 insn1 = bfd_get_32 (output_bfd,
8861 contents + rel->r_offset - 2);
8862 insn3 = bfd_get_32 (output_bfd,
8863 contents + offset + 4);
8864 if ((tls_mask & tls_gd) != 0)
8865 {
8866 /* IE */
8867 insn1 &= (1 << 26) - (1 << 2);
8868 insn1 |= 58 << 26; /* ld */
8869 insn2 = 0x7c636a14; /* add 3,3,13 */
8870 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
8871 if ((tls_mask & TLS_EXPLICIT) == 0)
8872 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
8873 + R_PPC64_GOT_TPREL16_DS);
8874 else
8875 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
8876 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8877 }
8878 else
8879 {
8880 /* LE */
8881 insn1 = 0x3c6d0000; /* addis 3,13,0 */
8882 insn2 = 0x38630000; /* addi 3,3,0 */
8883 if (tls_gd == 0)
8884 {
8885 /* Was an LD reloc. */
8886 r_symndx = 0;
8887 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
8888 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
8889 }
8890 else if (toc_symndx != 0)
8891 r_symndx = toc_symndx;
8892 r_type = R_PPC64_TPREL16_HA;
8893 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8894 rel[1].r_info = ELF64_R_INFO (r_symndx,
8895 R_PPC64_TPREL16_LO);
8896 rel[1].r_offset += 2;
8897 }
8898 if (insn3 == NOP
8899 || insn3 == CROR_151515 || insn3 == CROR_313131)
8900 {
8901 insn3 = insn2;
8902 insn2 = NOP;
8903 rel[1].r_offset += 4;
8904 }
8905 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
8906 bfd_put_32 (output_bfd, insn2, contents + offset);
8907 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
8908 if (tls_gd == 0 || toc_symndx != 0)
8909 {
8910 /* We changed the symbol. Start over in order
8911 to get h, sym, sec etc. right. */
8912 rel--;
8913 continue;
8914 }
8915 }
8916 }
8917 break;
8918
8919 case R_PPC64_DTPMOD64:
8920 if (rel + 1 < relend
8921 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
8922 && rel[1].r_offset == rel->r_offset + 8)
8923 {
8924 if ((tls_mask & TLS_GD) == 0)
8925 {
8926 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
8927 if ((tls_mask & TLS_TPRELGD) != 0)
8928 r_type = R_PPC64_TPREL64;
8929 else
8930 {
8931 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
8932 r_type = R_PPC64_NONE;
8933 }
8934 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8935 }
8936 }
8937 else
8938 {
8939 if ((tls_mask & TLS_LD) == 0)
8940 {
8941 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
8942 r_type = R_PPC64_NONE;
8943 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8944 }
8945 }
8946 break;
8947
8948 case R_PPC64_TPREL64:
8949 if ((tls_mask & TLS_TPREL) == 0)
8950 {
8951 r_type = R_PPC64_NONE;
8952 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8953 }
8954 break;
8955 }
8956
8957 /* Handle other relocations that tweak non-addend part of insn. */
8958 insn = 0;
8959 max_br_offset = 1 << 25;
8960 addend = rel->r_addend;
8961 switch (r_type)
8962 {
8963 default:
8964 break;
8965
8966 /* Branch taken prediction relocations. */
8967 case R_PPC64_ADDR14_BRTAKEN:
8968 case R_PPC64_REL14_BRTAKEN:
8969 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
8970 /* Fall thru. */
8971
8972 /* Branch not taken prediction relocations. */
8973 case R_PPC64_ADDR14_BRNTAKEN:
8974 case R_PPC64_REL14_BRNTAKEN:
8975 insn |= bfd_get_32 (output_bfd,
8976 contents + rel->r_offset) & ~(0x01 << 21);
8977 /* Fall thru. */
8978
8979 case R_PPC64_REL14:
8980 max_br_offset = 1 << 15;
8981 /* Fall thru. */
8982
8983 case R_PPC64_REL24:
8984 /* Calls to functions with a different TOC, such as calls to
8985 shared objects, need to alter the TOC pointer. This is
8986 done using a linkage stub. A REL24 branching to these
8987 linkage stubs needs to be followed by a nop, as the nop
8988 will be replaced with an instruction to restore the TOC
8989 base pointer. */
8990 stub_entry = NULL;
8991 fdh = h;
8992 if (((h != NULL
8993 && (((fdh = h->oh) != NULL
8994 && fdh->elf.plt.plist != NULL)
8995 || (fdh = h)->elf.plt.plist != NULL))
8996 || (sec != NULL
8997 && sec->output_section != NULL
8998 && sec->id <= htab->top_id
8999 && (htab->stub_group[sec->id].toc_off
9000 != htab->stub_group[input_section->id].toc_off)))
9001 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9002 rel, htab)) != NULL
9003 && (stub_entry->stub_type == ppc_stub_plt_call
9004 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9005 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9006 {
9007 bfd_boolean can_plt_call = FALSE;
9008
9009 if (rel->r_offset + 8 <= input_section->size)
9010 {
9011 unsigned long nop;
9012 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9013 if (nop == NOP
9014 || nop == CROR_151515 || nop == CROR_313131)
9015 {
9016 bfd_put_32 (input_bfd, LD_R2_40R1,
9017 contents + rel->r_offset + 4);
9018 can_plt_call = TRUE;
9019 }
9020 }
9021
9022 if (!can_plt_call)
9023 {
9024 if (stub_entry->stub_type == ppc_stub_plt_call)
9025 {
9026 /* If this is a plain branch rather than a branch
9027 and link, don't require a nop. */
9028 unsigned long br;
9029 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9030 if ((br & 1) == 0)
9031 can_plt_call = TRUE;
9032 }
9033 else if (h != NULL
9034 && strcmp (h->elf.root.root.string,
9035 ".__libc_start_main") == 0)
9036 {
9037 /* Allow crt1 branch to go via a toc adjusting stub. */
9038 can_plt_call = TRUE;
9039 }
9040 else
9041 {
9042 if (strcmp (input_section->output_section->name,
9043 ".init") == 0
9044 || strcmp (input_section->output_section->name,
9045 ".fini") == 0)
9046 (*_bfd_error_handler)
9047 (_("%B(%A+0x%lx): automatic multiple TOCs "
9048 "not supported using your crt files; "
9049 "recompile with -mminimal-toc or upgrade gcc"),
9050 input_bfd,
9051 input_section,
9052 (long) rel->r_offset);
9053 else
9054 (*_bfd_error_handler)
9055 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
9056 "does not allow automatic multiple TOCs; "
9057 "recompile with -mminimal-toc or "
9058 "-fno-optimize-sibling-calls, "
9059 "or make `%s' extern"),
9060 input_bfd,
9061 input_section,
9062 (long) rel->r_offset,
9063 sym_name,
9064 sym_name);
9065 bfd_set_error (bfd_error_bad_value);
9066 ret = FALSE;
9067 }
9068 }
9069
9070 if (can_plt_call
9071 && stub_entry->stub_type == ppc_stub_plt_call)
9072 unresolved_reloc = FALSE;
9073 }
9074
9075 if (stub_entry == NULL
9076 && get_opd_info (sec) != NULL)
9077 {
9078 /* The branch destination is the value of the opd entry. */
9079 bfd_vma off = (relocation - sec->output_section->vma
9080 - sec->output_offset + rel->r_addend);
9081 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
9082 if (dest != (bfd_vma) -1)
9083 {
9084 relocation = dest;
9085 addend = 0;
9086 }
9087 }
9088
9089 /* If the branch is out of reach we ought to have a long
9090 branch stub. */
9091 from = (rel->r_offset
9092 + input_section->output_offset
9093 + input_section->output_section->vma);
9094
9095 if (stub_entry == NULL
9096 && (relocation + rel->r_addend - from + max_br_offset
9097 >= 2 * max_br_offset)
9098 && r_type != R_PPC64_ADDR14_BRTAKEN
9099 && r_type != R_PPC64_ADDR14_BRNTAKEN)
9100 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
9101 htab);
9102
9103 if (stub_entry != NULL)
9104 {
9105 /* Munge up the value and addend so that we call the stub
9106 rather than the procedure directly. */
9107 relocation = (stub_entry->stub_offset
9108 + stub_entry->stub_sec->output_offset
9109 + stub_entry->stub_sec->output_section->vma);
9110 addend = 0;
9111 }
9112
9113 if (insn != 0)
9114 {
9115 if (is_power4)
9116 {
9117 /* Set 'a' bit. This is 0b00010 in BO field for branch
9118 on CR(BI) insns (BO == 001at or 011at), and 0b01000
9119 for branch on CTR insns (BO == 1a00t or 1a01t). */
9120 if ((insn & (0x14 << 21)) == (0x04 << 21))
9121 insn |= 0x02 << 21;
9122 else if ((insn & (0x14 << 21)) == (0x10 << 21))
9123 insn |= 0x08 << 21;
9124 else
9125 break;
9126 }
9127 else
9128 {
9129 /* Invert 'y' bit if not the default. */
9130 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
9131 insn ^= 0x01 << 21;
9132 }
9133
9134 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9135 }
9136
9137 /* NOP out calls to undefined weak functions.
9138 We can thus call a weak function without first
9139 checking whether the function is defined. */
9140 else if (h != NULL
9141 && h->elf.root.type == bfd_link_hash_undefweak
9142 && r_type == R_PPC64_REL24
9143 && relocation == 0
9144 && rel->r_addend == 0)
9145 {
9146 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9147 continue;
9148 }
9149 break;
9150 }
9151
9152 /* Set `addend'. */
9153 tls_type = 0;
9154 switch (r_type)
9155 {
9156 default:
9157 (*_bfd_error_handler)
9158 (_("%B: unknown relocation type %d for symbol %s"),
9159 input_bfd, (int) r_type, sym_name);
9160
9161 bfd_set_error (bfd_error_bad_value);
9162 ret = FALSE;
9163 continue;
9164
9165 case R_PPC64_NONE:
9166 case R_PPC64_TLS:
9167 case R_PPC64_GNU_VTINHERIT:
9168 case R_PPC64_GNU_VTENTRY:
9169 continue;
9170
9171 /* GOT16 relocations. Like an ADDR16 using the symbol's
9172 address in the GOT as relocation value instead of the
9173 symbol's value itself. Also, create a GOT entry for the
9174 symbol and put the symbol value there. */
9175 case R_PPC64_GOT_TLSGD16:
9176 case R_PPC64_GOT_TLSGD16_LO:
9177 case R_PPC64_GOT_TLSGD16_HI:
9178 case R_PPC64_GOT_TLSGD16_HA:
9179 tls_type = TLS_TLS | TLS_GD;
9180 goto dogot;
9181
9182 case R_PPC64_GOT_TLSLD16:
9183 case R_PPC64_GOT_TLSLD16_LO:
9184 case R_PPC64_GOT_TLSLD16_HI:
9185 case R_PPC64_GOT_TLSLD16_HA:
9186 tls_type = TLS_TLS | TLS_LD;
9187 goto dogot;
9188
9189 case R_PPC64_GOT_TPREL16_DS:
9190 case R_PPC64_GOT_TPREL16_LO_DS:
9191 case R_PPC64_GOT_TPREL16_HI:
9192 case R_PPC64_GOT_TPREL16_HA:
9193 tls_type = TLS_TLS | TLS_TPREL;
9194 goto dogot;
9195
9196 case R_PPC64_GOT_DTPREL16_DS:
9197 case R_PPC64_GOT_DTPREL16_LO_DS:
9198 case R_PPC64_GOT_DTPREL16_HI:
9199 case R_PPC64_GOT_DTPREL16_HA:
9200 tls_type = TLS_TLS | TLS_DTPREL;
9201 goto dogot;
9202
9203 case R_PPC64_GOT16:
9204 case R_PPC64_GOT16_LO:
9205 case R_PPC64_GOT16_HI:
9206 case R_PPC64_GOT16_HA:
9207 case R_PPC64_GOT16_DS:
9208 case R_PPC64_GOT16_LO_DS:
9209 dogot:
9210 {
9211 /* Relocation is to the entry for this symbol in the global
9212 offset table. */
9213 asection *got;
9214 bfd_vma *offp;
9215 bfd_vma off;
9216 unsigned long indx = 0;
9217
9218 if (tls_type == (TLS_TLS | TLS_LD)
9219 && (h == NULL
9220 || (h->elf.elf_link_hash_flags
9221 & ELF_LINK_HASH_DEF_DYNAMIC) == 0))
9222 offp = &ppc64_tlsld_got (input_bfd)->offset;
9223 else
9224 {
9225 struct got_entry *ent;
9226
9227 if (h != NULL)
9228 {
9229 bfd_boolean dyn = htab->elf.dynamic_sections_created;
9230 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
9231 &h->elf)
9232 || (info->shared
9233 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
9234 /* This is actually a static link, or it is a
9235 -Bsymbolic link and the symbol is defined
9236 locally, or the symbol was forced to be local
9237 because of a version file. */
9238 ;
9239 else
9240 {
9241 indx = h->elf.dynindx;
9242 unresolved_reloc = FALSE;
9243 }
9244 ent = h->elf.got.glist;
9245 }
9246 else
9247 {
9248 if (local_got_ents == NULL)
9249 abort ();
9250 ent = local_got_ents[r_symndx];
9251 }
9252
9253 for (; ent != NULL; ent = ent->next)
9254 if (ent->addend == rel->r_addend
9255 && ent->owner == input_bfd
9256 && ent->tls_type == tls_type)
9257 break;
9258 if (ent == NULL)
9259 abort ();
9260 offp = &ent->got.offset;
9261 }
9262
9263 got = ppc64_elf_tdata (input_bfd)->got;
9264 if (got == NULL)
9265 abort ();
9266
9267 /* The offset must always be a multiple of 8. We use the
9268 least significant bit to record whether we have already
9269 processed this entry. */
9270 off = *offp;
9271 if ((off & 1) != 0)
9272 off &= ~1;
9273 else
9274 {
9275 /* Generate relocs for the dynamic linker, except in
9276 the case of TLSLD where we'll use one entry per
9277 module. */
9278 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
9279
9280 *offp = off | 1;
9281 if ((info->shared || indx != 0)
9282 && (h == NULL
9283 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9284 || h->elf.root.type != bfd_link_hash_undefweak))
9285 {
9286 outrel.r_offset = (got->output_section->vma
9287 + got->output_offset
9288 + off);
9289 outrel.r_addend = rel->r_addend;
9290 if (tls_type & (TLS_LD | TLS_GD))
9291 {
9292 outrel.r_addend = 0;
9293 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
9294 if (tls_type == (TLS_TLS | TLS_GD))
9295 {
9296 loc = relgot->contents;
9297 loc += (relgot->reloc_count++
9298 * sizeof (Elf64_External_Rela));
9299 bfd_elf64_swap_reloca_out (output_bfd,
9300 &outrel, loc);
9301 outrel.r_offset += 8;
9302 outrel.r_addend = rel->r_addend;
9303 outrel.r_info
9304 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9305 }
9306 }
9307 else if (tls_type == (TLS_TLS | TLS_DTPREL))
9308 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9309 else if (tls_type == (TLS_TLS | TLS_TPREL))
9310 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
9311 else if (indx == 0)
9312 {
9313 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
9314
9315 /* Write the .got section contents for the sake
9316 of prelink. */
9317 loc = got->contents + off;
9318 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
9319 loc);
9320 }
9321 else
9322 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
9323
9324 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
9325 {
9326 outrel.r_addend += relocation;
9327 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
9328 outrel.r_addend -= htab->elf.tls_sec->vma;
9329 }
9330 loc = relgot->contents;
9331 loc += (relgot->reloc_count++
9332 * sizeof (Elf64_External_Rela));
9333 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9334 }
9335
9336 /* Init the .got section contents here if we're not
9337 emitting a reloc. */
9338 else
9339 {
9340 relocation += rel->r_addend;
9341 if (tls_type == (TLS_TLS | TLS_LD))
9342 relocation = 1;
9343 else if (tls_type != 0)
9344 {
9345 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
9346 if (tls_type == (TLS_TLS | TLS_TPREL))
9347 relocation += DTP_OFFSET - TP_OFFSET;
9348
9349 if (tls_type == (TLS_TLS | TLS_GD))
9350 {
9351 bfd_put_64 (output_bfd, relocation,
9352 got->contents + off + 8);
9353 relocation = 1;
9354 }
9355 }
9356
9357 bfd_put_64 (output_bfd, relocation,
9358 got->contents + off);
9359 }
9360 }
9361
9362 if (off >= (bfd_vma) -2)
9363 abort ();
9364
9365 relocation = got->output_offset + off;
9366
9367 /* TOC base (r2) is TOC start plus 0x8000. */
9368 addend = -TOC_BASE_OFF;
9369 }
9370 break;
9371
9372 case R_PPC64_PLT16_HA:
9373 case R_PPC64_PLT16_HI:
9374 case R_PPC64_PLT16_LO:
9375 case R_PPC64_PLT32:
9376 case R_PPC64_PLT64:
9377 /* Relocation is to the entry for this symbol in the
9378 procedure linkage table. */
9379
9380 /* Resolve a PLT reloc against a local symbol directly,
9381 without using the procedure linkage table. */
9382 if (h == NULL)
9383 break;
9384
9385 /* It's possible that we didn't make a PLT entry for this
9386 symbol. This happens when statically linking PIC code,
9387 or when using -Bsymbolic. Go find a match if there is a
9388 PLT entry. */
9389 if (htab->plt != NULL)
9390 {
9391 struct plt_entry *ent;
9392 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
9393 if (ent->addend == rel->r_addend
9394 && ent->plt.offset != (bfd_vma) -1)
9395 {
9396 relocation = (htab->plt->output_section->vma
9397 + htab->plt->output_offset
9398 + ent->plt.offset);
9399 unresolved_reloc = FALSE;
9400 }
9401 }
9402 break;
9403
9404 case R_PPC64_TOC:
9405 /* Relocation value is TOC base. */
9406 relocation = TOCstart;
9407 if (r_symndx == 0)
9408 relocation += htab->stub_group[input_section->id].toc_off;
9409 else if (unresolved_reloc)
9410 ;
9411 else if (sec != NULL && sec->id <= htab->top_id)
9412 relocation += htab->stub_group[sec->id].toc_off;
9413 else
9414 unresolved_reloc = TRUE;
9415 goto dodyn2;
9416
9417 /* TOC16 relocs. We want the offset relative to the TOC base,
9418 which is the address of the start of the TOC plus 0x8000.
9419 The TOC consists of sections .got, .toc, .tocbss, and .plt,
9420 in this order. */
9421 case R_PPC64_TOC16:
9422 case R_PPC64_TOC16_LO:
9423 case R_PPC64_TOC16_HI:
9424 case R_PPC64_TOC16_DS:
9425 case R_PPC64_TOC16_LO_DS:
9426 case R_PPC64_TOC16_HA:
9427 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
9428 break;
9429
9430 /* Relocate against the beginning of the section. */
9431 case R_PPC64_SECTOFF:
9432 case R_PPC64_SECTOFF_LO:
9433 case R_PPC64_SECTOFF_HI:
9434 case R_PPC64_SECTOFF_DS:
9435 case R_PPC64_SECTOFF_LO_DS:
9436 case R_PPC64_SECTOFF_HA:
9437 if (sec != NULL)
9438 addend -= sec->output_section->vma;
9439 break;
9440
9441 case R_PPC64_REL14:
9442 case R_PPC64_REL14_BRNTAKEN:
9443 case R_PPC64_REL14_BRTAKEN:
9444 case R_PPC64_REL24:
9445 break;
9446
9447 case R_PPC64_TPREL16:
9448 case R_PPC64_TPREL16_LO:
9449 case R_PPC64_TPREL16_HI:
9450 case R_PPC64_TPREL16_HA:
9451 case R_PPC64_TPREL16_DS:
9452 case R_PPC64_TPREL16_LO_DS:
9453 case R_PPC64_TPREL16_HIGHER:
9454 case R_PPC64_TPREL16_HIGHERA:
9455 case R_PPC64_TPREL16_HIGHEST:
9456 case R_PPC64_TPREL16_HIGHESTA:
9457 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
9458 if (info->shared)
9459 /* The TPREL16 relocs shouldn't really be used in shared
9460 libs as they will result in DT_TEXTREL being set, but
9461 support them anyway. */
9462 goto dodyn;
9463 break;
9464
9465 case R_PPC64_DTPREL16:
9466 case R_PPC64_DTPREL16_LO:
9467 case R_PPC64_DTPREL16_HI:
9468 case R_PPC64_DTPREL16_HA:
9469 case R_PPC64_DTPREL16_DS:
9470 case R_PPC64_DTPREL16_LO_DS:
9471 case R_PPC64_DTPREL16_HIGHER:
9472 case R_PPC64_DTPREL16_HIGHERA:
9473 case R_PPC64_DTPREL16_HIGHEST:
9474 case R_PPC64_DTPREL16_HIGHESTA:
9475 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
9476 break;
9477
9478 case R_PPC64_DTPMOD64:
9479 relocation = 1;
9480 addend = 0;
9481 goto dodyn;
9482
9483 case R_PPC64_TPREL64:
9484 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
9485 goto dodyn;
9486
9487 case R_PPC64_DTPREL64:
9488 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
9489 /* Fall thru */
9490
9491 /* Relocations that may need to be propagated if this is a
9492 dynamic object. */
9493 case R_PPC64_REL30:
9494 case R_PPC64_REL32:
9495 case R_PPC64_REL64:
9496 case R_PPC64_ADDR14:
9497 case R_PPC64_ADDR14_BRNTAKEN:
9498 case R_PPC64_ADDR14_BRTAKEN:
9499 case R_PPC64_ADDR16:
9500 case R_PPC64_ADDR16_DS:
9501 case R_PPC64_ADDR16_HA:
9502 case R_PPC64_ADDR16_HI:
9503 case R_PPC64_ADDR16_HIGHER:
9504 case R_PPC64_ADDR16_HIGHERA:
9505 case R_PPC64_ADDR16_HIGHEST:
9506 case R_PPC64_ADDR16_HIGHESTA:
9507 case R_PPC64_ADDR16_LO:
9508 case R_PPC64_ADDR16_LO_DS:
9509 case R_PPC64_ADDR24:
9510 case R_PPC64_ADDR32:
9511 case R_PPC64_ADDR64:
9512 case R_PPC64_UADDR16:
9513 case R_PPC64_UADDR32:
9514 case R_PPC64_UADDR64:
9515 /* r_symndx will be zero only for relocs against symbols
9516 from removed linkonce sections, or sections discarded by
9517 a linker script. */
9518 dodyn:
9519 if (r_symndx == 0)
9520 break;
9521 /* Fall thru. */
9522
9523 dodyn2:
9524 if ((input_section->flags & SEC_ALLOC) == 0)
9525 break;
9526
9527 if (NO_OPD_RELOCS && is_opd)
9528 break;
9529
9530 if ((info->shared
9531 && (h == NULL
9532 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9533 || h->elf.root.type != bfd_link_hash_undefweak)
9534 && (MUST_BE_DYN_RELOC (r_type)
9535 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
9536 || (ELIMINATE_COPY_RELOCS
9537 && !info->shared
9538 && h != NULL
9539 && h->elf.dynindx != -1
9540 && !(h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF)
9541 && (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
9542 && !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
9543 {
9544 Elf_Internal_Rela outrel;
9545 bfd_boolean skip, relocate;
9546 asection *sreloc;
9547 bfd_byte *loc;
9548 bfd_vma out_off;
9549
9550 /* When generating a dynamic object, these relocations
9551 are copied into the output file to be resolved at run
9552 time. */
9553
9554 skip = FALSE;
9555 relocate = FALSE;
9556
9557 out_off = _bfd_elf_section_offset (output_bfd, info,
9558 input_section, rel->r_offset);
9559 if (out_off == (bfd_vma) -1)
9560 skip = TRUE;
9561 else if (out_off == (bfd_vma) -2)
9562 skip = TRUE, relocate = TRUE;
9563 out_off += (input_section->output_section->vma
9564 + input_section->output_offset);
9565 outrel.r_offset = out_off;
9566 outrel.r_addend = rel->r_addend;
9567
9568 /* Optimize unaligned reloc use. */
9569 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
9570 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
9571 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
9572 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
9573 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
9574 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
9575 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
9576 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
9577 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
9578
9579 if (skip)
9580 memset (&outrel, 0, sizeof outrel);
9581 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
9582 && !is_opd
9583 && r_type != R_PPC64_TOC)
9584 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
9585 else
9586 {
9587 /* This symbol is local, or marked to become local,
9588 or this is an opd section reloc which must point
9589 at a local function. */
9590 outrel.r_addend += relocation;
9591 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
9592 {
9593 if (is_opd && h != NULL)
9594 {
9595 /* Lie about opd entries. This case occurs
9596 when building shared libraries and we
9597 reference a function in another shared
9598 lib. The same thing happens for a weak
9599 definition in an application that's
9600 overridden by a strong definition in a
9601 shared lib. (I believe this is a generic
9602 bug in binutils handling of weak syms.)
9603 In these cases we won't use the opd
9604 entry in this lib. */
9605 unresolved_reloc = FALSE;
9606 }
9607 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
9608
9609 /* We need to relocate .opd contents for ld.so.
9610 Prelink also wants simple and consistent rules
9611 for relocs. This make all RELATIVE relocs have
9612 *r_offset equal to r_addend. */
9613 relocate = TRUE;
9614 }
9615 else
9616 {
9617 long indx = 0;
9618
9619 if (bfd_is_abs_section (sec))
9620 ;
9621 else if (sec == NULL || sec->owner == NULL)
9622 {
9623 bfd_set_error (bfd_error_bad_value);
9624 return FALSE;
9625 }
9626 else
9627 {
9628 asection *osec;
9629
9630 osec = sec->output_section;
9631 indx = elf_section_data (osec)->dynindx;
9632
9633 /* We are turning this relocation into one
9634 against a section symbol, so subtract out
9635 the output section's address but not the
9636 offset of the input section in the output
9637 section. */
9638 outrel.r_addend -= osec->vma;
9639 }
9640
9641 outrel.r_info = ELF64_R_INFO (indx, r_type);
9642 }
9643 }
9644
9645 sreloc = elf_section_data (input_section)->sreloc;
9646 if (sreloc == NULL)
9647 abort ();
9648
9649 loc = sreloc->contents;
9650 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
9651 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9652
9653 /* If this reloc is against an external symbol, it will
9654 be computed at runtime, so there's no need to do
9655 anything now. However, for the sake of prelink ensure
9656 that the section contents are a known value. */
9657 if (! relocate)
9658 {
9659 unresolved_reloc = FALSE;
9660 /* The value chosen here is quite arbitrary as ld.so
9661 ignores section contents except for the special
9662 case of .opd where the contents might be accessed
9663 before relocation. Choose zero, as that won't
9664 cause reloc overflow. */
9665 relocation = 0;
9666 addend = 0;
9667 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
9668 to improve backward compatibility with older
9669 versions of ld. */
9670 if (r_type == R_PPC64_ADDR64)
9671 addend = outrel.r_addend;
9672 /* Adjust pc_relative relocs to have zero in *r_offset. */
9673 else if (ppc64_elf_howto_table[r_type]->pc_relative)
9674 addend = (input_section->output_section->vma
9675 + input_section->output_offset
9676 + rel->r_offset);
9677 }
9678 }
9679 break;
9680
9681 case R_PPC64_COPY:
9682 case R_PPC64_GLOB_DAT:
9683 case R_PPC64_JMP_SLOT:
9684 case R_PPC64_RELATIVE:
9685 /* We shouldn't ever see these dynamic relocs in relocatable
9686 files. */
9687 /* Fall through. */
9688
9689 case R_PPC64_PLTGOT16:
9690 case R_PPC64_PLTGOT16_DS:
9691 case R_PPC64_PLTGOT16_HA:
9692 case R_PPC64_PLTGOT16_HI:
9693 case R_PPC64_PLTGOT16_LO:
9694 case R_PPC64_PLTGOT16_LO_DS:
9695 case R_PPC64_PLTREL32:
9696 case R_PPC64_PLTREL64:
9697 /* These ones haven't been implemented yet. */
9698
9699 (*_bfd_error_handler)
9700 (_("%B: relocation %s is not supported for symbol %s."),
9701 input_bfd,
9702 ppc64_elf_howto_table[r_type]->name, sym_name);
9703
9704 bfd_set_error (bfd_error_invalid_operation);
9705 ret = FALSE;
9706 continue;
9707 }
9708
9709 /* Do any further special processing. */
9710 switch (r_type)
9711 {
9712 default:
9713 break;
9714
9715 case R_PPC64_ADDR16_HA:
9716 case R_PPC64_ADDR16_HIGHERA:
9717 case R_PPC64_ADDR16_HIGHESTA:
9718 case R_PPC64_GOT16_HA:
9719 case R_PPC64_PLTGOT16_HA:
9720 case R_PPC64_PLT16_HA:
9721 case R_PPC64_TOC16_HA:
9722 case R_PPC64_SECTOFF_HA:
9723 case R_PPC64_TPREL16_HA:
9724 case R_PPC64_DTPREL16_HA:
9725 case R_PPC64_GOT_TLSGD16_HA:
9726 case R_PPC64_GOT_TLSLD16_HA:
9727 case R_PPC64_GOT_TPREL16_HA:
9728 case R_PPC64_GOT_DTPREL16_HA:
9729 case R_PPC64_TPREL16_HIGHER:
9730 case R_PPC64_TPREL16_HIGHERA:
9731 case R_PPC64_TPREL16_HIGHEST:
9732 case R_PPC64_TPREL16_HIGHESTA:
9733 case R_PPC64_DTPREL16_HIGHER:
9734 case R_PPC64_DTPREL16_HIGHERA:
9735 case R_PPC64_DTPREL16_HIGHEST:
9736 case R_PPC64_DTPREL16_HIGHESTA:
9737 /* It's just possible that this symbol is a weak symbol
9738 that's not actually defined anywhere. In that case,
9739 'sec' would be NULL, and we should leave the symbol
9740 alone (it will be set to zero elsewhere in the link). */
9741 if (sec != NULL)
9742 /* Add 0x10000 if sign bit in 0:15 is set.
9743 Bits 0:15 are not used. */
9744 addend += 0x8000;
9745 break;
9746
9747 case R_PPC64_ADDR16_DS:
9748 case R_PPC64_ADDR16_LO_DS:
9749 case R_PPC64_GOT16_DS:
9750 case R_PPC64_GOT16_LO_DS:
9751 case R_PPC64_PLT16_LO_DS:
9752 case R_PPC64_SECTOFF_DS:
9753 case R_PPC64_SECTOFF_LO_DS:
9754 case R_PPC64_TOC16_DS:
9755 case R_PPC64_TOC16_LO_DS:
9756 case R_PPC64_PLTGOT16_DS:
9757 case R_PPC64_PLTGOT16_LO_DS:
9758 case R_PPC64_GOT_TPREL16_DS:
9759 case R_PPC64_GOT_TPREL16_LO_DS:
9760 case R_PPC64_GOT_DTPREL16_DS:
9761 case R_PPC64_GOT_DTPREL16_LO_DS:
9762 case R_PPC64_TPREL16_DS:
9763 case R_PPC64_TPREL16_LO_DS:
9764 case R_PPC64_DTPREL16_DS:
9765 case R_PPC64_DTPREL16_LO_DS:
9766 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
9767 mask = 3;
9768 /* If this reloc is against an lq insn, then the value must be
9769 a multiple of 16. This is somewhat of a hack, but the
9770 "correct" way to do this by defining _DQ forms of all the
9771 _DS relocs bloats all reloc switches in this file. It
9772 doesn't seem to make much sense to use any of these relocs
9773 in data, so testing the insn should be safe. */
9774 if ((insn & (0x3f << 26)) == (56u << 26))
9775 mask = 15;
9776 if (((relocation + addend) & mask) != 0)
9777 {
9778 (*_bfd_error_handler)
9779 (_("%B: error: relocation %s not a multiple of %d"),
9780 input_bfd,
9781 ppc64_elf_howto_table[r_type]->name,
9782 mask + 1);
9783 bfd_set_error (bfd_error_bad_value);
9784 ret = FALSE;
9785 continue;
9786 }
9787 break;
9788 }
9789
9790 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9791 because such sections are not SEC_ALLOC and thus ld.so will
9792 not process them. */
9793 if (unresolved_reloc
9794 && !((input_section->flags & SEC_DEBUGGING) != 0
9795 && (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)))
9796 {
9797 (*_bfd_error_handler)
9798 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9799 input_bfd,
9800 input_section,
9801 (long) rel->r_offset,
9802 ppc64_elf_howto_table[(int) r_type]->name,
9803 h->elf.root.root.string);
9804 ret = FALSE;
9805 }
9806
9807 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
9808 input_bfd,
9809 input_section,
9810 contents,
9811 rel->r_offset,
9812 relocation,
9813 addend);
9814
9815 if (r != bfd_reloc_ok)
9816 {
9817 if (sym_name == NULL)
9818 sym_name = "(null)";
9819 if (r == bfd_reloc_overflow)
9820 {
9821 if (warned)
9822 continue;
9823 if (h != NULL
9824 && h->elf.root.type == bfd_link_hash_undefweak
9825 && ppc64_elf_howto_table[r_type]->pc_relative)
9826 {
9827 /* Assume this is a call protected by other code that
9828 detects the symbol is undefined. If this is the case,
9829 we can safely ignore the overflow. If not, the
9830 program is hosed anyway, and a little warning isn't
9831 going to help. */
9832
9833 continue;
9834 }
9835
9836 if (!((*info->callbacks->reloc_overflow)
9837 (info, sym_name, ppc64_elf_howto_table[r_type]->name,
9838 rel->r_addend, input_bfd, input_section, rel->r_offset)))
9839 return FALSE;
9840 }
9841 else
9842 {
9843 (*_bfd_error_handler)
9844 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
9845 input_bfd,
9846 input_section,
9847 (long) rel->r_offset,
9848 ppc64_elf_howto_table[r_type]->name,
9849 sym_name,
9850 (int) r);
9851 ret = FALSE;
9852 }
9853 }
9854 }
9855
9856 return ret;
9857 }
9858
9859 /* Adjust the value of any local symbols in opd sections. */
9860
9861 static bfd_boolean
9862 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
9863 const char *name ATTRIBUTE_UNUSED,
9864 Elf_Internal_Sym *elfsym,
9865 asection *input_sec,
9866 struct elf_link_hash_entry *h)
9867 {
9868 long *opd_adjust, adjust;
9869 bfd_vma value;
9870
9871 if (h != NULL)
9872 return TRUE;
9873
9874 opd_adjust = get_opd_info (input_sec);
9875 if (opd_adjust == NULL)
9876 return TRUE;
9877
9878 value = elfsym->st_value - input_sec->output_offset;
9879 if (!info->relocatable)
9880 value -= input_sec->output_section->vma;
9881
9882 adjust = opd_adjust[value / 8];
9883 if (adjust == -1)
9884 elfsym->st_value = 0;
9885 else
9886 elfsym->st_value += adjust;
9887 return TRUE;
9888 }
9889
9890 /* Finish up dynamic symbol handling. We set the contents of various
9891 dynamic sections here. */
9892
9893 static bfd_boolean
9894 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
9895 struct bfd_link_info *info,
9896 struct elf_link_hash_entry *h,
9897 Elf_Internal_Sym *sym)
9898 {
9899 struct ppc_link_hash_table *htab;
9900 bfd *dynobj;
9901 struct plt_entry *ent;
9902 Elf_Internal_Rela rela;
9903 bfd_byte *loc;
9904
9905 htab = ppc_hash_table (info);
9906 dynobj = htab->elf.dynobj;
9907
9908 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
9909 if (ent->plt.offset != (bfd_vma) -1)
9910 {
9911 /* This symbol has an entry in the procedure linkage
9912 table. Set it up. */
9913
9914 if (htab->plt == NULL
9915 || htab->relplt == NULL
9916 || htab->glink == NULL)
9917 abort ();
9918
9919 /* Create a JMP_SLOT reloc to inform the dynamic linker to
9920 fill in the PLT entry. */
9921 rela.r_offset = (htab->plt->output_section->vma
9922 + htab->plt->output_offset
9923 + ent->plt.offset);
9924 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
9925 rela.r_addend = ent->addend;
9926
9927 loc = htab->relplt->contents;
9928 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
9929 * sizeof (Elf64_External_Rela));
9930 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
9931 }
9932
9933 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
9934 {
9935 Elf_Internal_Rela rela;
9936 bfd_byte *loc;
9937
9938 /* This symbol needs a copy reloc. Set it up. */
9939
9940 if (h->dynindx == -1
9941 || (h->root.type != bfd_link_hash_defined
9942 && h->root.type != bfd_link_hash_defweak)
9943 || htab->relbss == NULL)
9944 abort ();
9945
9946 rela.r_offset = (h->root.u.def.value
9947 + h->root.u.def.section->output_section->vma
9948 + h->root.u.def.section->output_offset);
9949 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
9950 rela.r_addend = 0;
9951 loc = htab->relbss->contents;
9952 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
9953 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
9954 }
9955
9956 /* Mark some specially defined symbols as absolute. */
9957 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
9958 sym->st_shndx = SHN_ABS;
9959
9960 return TRUE;
9961 }
9962
9963 /* Used to decide how to sort relocs in an optimal manner for the
9964 dynamic linker, before writing them out. */
9965
9966 static enum elf_reloc_type_class
9967 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
9968 {
9969 enum elf_ppc64_reloc_type r_type;
9970
9971 r_type = ELF64_R_TYPE (rela->r_info);
9972 switch (r_type)
9973 {
9974 case R_PPC64_RELATIVE:
9975 return reloc_class_relative;
9976 case R_PPC64_JMP_SLOT:
9977 return reloc_class_plt;
9978 case R_PPC64_COPY:
9979 return reloc_class_copy;
9980 default:
9981 return reloc_class_normal;
9982 }
9983 }
9984
9985 /* Finish up the dynamic sections. */
9986
9987 static bfd_boolean
9988 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
9989 struct bfd_link_info *info)
9990 {
9991 struct ppc_link_hash_table *htab;
9992 bfd *dynobj;
9993 asection *sdyn;
9994
9995 htab = ppc_hash_table (info);
9996 dynobj = htab->elf.dynobj;
9997 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9998
9999 if (htab->elf.dynamic_sections_created)
10000 {
10001 Elf64_External_Dyn *dyncon, *dynconend;
10002
10003 if (sdyn == NULL || htab->got == NULL)
10004 abort ();
10005
10006 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10007 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10008 for (; dyncon < dynconend; dyncon++)
10009 {
10010 Elf_Internal_Dyn dyn;
10011 asection *s;
10012
10013 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10014
10015 switch (dyn.d_tag)
10016 {
10017 default:
10018 continue;
10019
10020 case DT_PPC64_GLINK:
10021 s = htab->glink;
10022 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10023 /* We stupidly defined DT_PPC64_GLINK to be the start
10024 of glink rather than the first entry point, which is
10025 what ld.so needs, and now have a bigger stub to
10026 support automatic multiple TOCs. */
10027 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
10028 break;
10029
10030 case DT_PPC64_OPD:
10031 s = bfd_get_section_by_name (output_bfd, ".opd");
10032 if (s == NULL)
10033 continue;
10034 dyn.d_un.d_ptr = s->vma;
10035 break;
10036
10037 case DT_PPC64_OPDSZ:
10038 s = bfd_get_section_by_name (output_bfd, ".opd");
10039 if (s == NULL)
10040 continue;
10041 dyn.d_un.d_val = s->size;
10042 break;
10043
10044 case DT_PLTGOT:
10045 s = htab->plt;
10046 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10047 break;
10048
10049 case DT_JMPREL:
10050 s = htab->relplt;
10051 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10052 break;
10053
10054 case DT_PLTRELSZ:
10055 dyn.d_un.d_val = htab->relplt->size;
10056 break;
10057
10058 case DT_RELASZ:
10059 /* Don't count procedure linkage table relocs in the
10060 overall reloc count. */
10061 s = htab->relplt;
10062 if (s == NULL)
10063 continue;
10064 dyn.d_un.d_val -= s->size;
10065 break;
10066
10067 case DT_RELA:
10068 /* We may not be using the standard ELF linker script.
10069 If .rela.plt is the first .rela section, we adjust
10070 DT_RELA to not include it. */
10071 s = htab->relplt;
10072 if (s == NULL)
10073 continue;
10074 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
10075 continue;
10076 dyn.d_un.d_ptr += s->size;
10077 break;
10078 }
10079
10080 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
10081 }
10082 }
10083
10084 if (htab->got != NULL && htab->got->size != 0)
10085 {
10086 /* Fill in the first entry in the global offset table.
10087 We use it to hold the link-time TOCbase. */
10088 bfd_put_64 (output_bfd,
10089 elf_gp (output_bfd) + TOC_BASE_OFF,
10090 htab->got->contents);
10091
10092 /* Set .got entry size. */
10093 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
10094 }
10095
10096 if (htab->plt != NULL && htab->plt->size != 0)
10097 {
10098 /* Set .plt entry size. */
10099 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
10100 = PLT_ENTRY_SIZE;
10101 }
10102
10103 /* We need to handle writing out multiple GOT sections ourselves,
10104 since we didn't add them to DYNOBJ. */
10105 while ((dynobj = dynobj->link_next) != NULL)
10106 {
10107 asection *s;
10108 s = ppc64_elf_tdata (dynobj)->got;
10109 if (s != NULL
10110 && s->size != 0
10111 && s->output_section != bfd_abs_section_ptr
10112 && !bfd_set_section_contents (output_bfd, s->output_section,
10113 s->contents, s->output_offset,
10114 s->size))
10115 return FALSE;
10116 s = ppc64_elf_tdata (dynobj)->relgot;
10117 if (s != NULL
10118 && s->size != 0
10119 && s->output_section != bfd_abs_section_ptr
10120 && !bfd_set_section_contents (output_bfd, s->output_section,
10121 s->contents, s->output_offset,
10122 s->size))
10123 return FALSE;
10124 }
10125
10126 return TRUE;
10127 }
10128
10129 #include "elf64-target.h"
This page took 0.320194 seconds and 5 git commands to generate.