Don't check noargs in remotetimeout.exp
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x1000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 2, /* size (0 = byte, 1 = short, 2 = long) */
262 32, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor. */
2958 struct _opd_sec_data
2959 {
2960 /* Points to the function code section for local opd entries. */
2961 asection **func_sec;
2962
2963 /* After editing .opd, adjust references to opd local syms. */
2964 long *adjust;
2965 } opd;
2966
2967 /* An array for toc sections, indexed by offset/8. */
2968 struct _toc_sec_data
2969 {
2970 /* Specifies the relocation symbol index used at a given toc offset. */
2971 unsigned *symndx;
2972
2973 /* And the relocation addend. */
2974 bfd_vma *add;
2975 } toc;
2976 } u;
2977
2978 enum _ppc64_sec_type sec_type:2;
2979
2980 /* Flag set when small branches are detected. Used to
2981 select suitable defaults for the stub group size. */
2982 unsigned int has_14bit_branch:1;
2983 };
2984
2985 #define ppc64_elf_section_data(sec) \
2986 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2987
2988 static bfd_boolean
2989 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2990 {
2991 if (!sec->used_by_bfd)
2992 {
2993 struct _ppc64_elf_section_data *sdata;
2994 bfd_size_type amt = sizeof (*sdata);
2995
2996 sdata = bfd_zalloc (abfd, amt);
2997 if (sdata == NULL)
2998 return FALSE;
2999 sec->used_by_bfd = sdata;
3000 }
3001
3002 return _bfd_elf_new_section_hook (abfd, sec);
3003 }
3004
3005 static struct _opd_sec_data *
3006 get_opd_info (asection * sec)
3007 {
3008 if (sec != NULL
3009 && ppc64_elf_section_data (sec) != NULL
3010 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3011 return &ppc64_elf_section_data (sec)->u.opd;
3012 return NULL;
3013 }
3014 \f
3015 /* Parameters for the qsort hook. */
3016 static bfd_boolean synthetic_relocatable;
3017
3018 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3019
3020 static int
3021 compare_symbols (const void *ap, const void *bp)
3022 {
3023 const asymbol *a = * (const asymbol **) ap;
3024 const asymbol *b = * (const asymbol **) bp;
3025
3026 /* Section symbols first. */
3027 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3028 return -1;
3029 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3030 return 1;
3031
3032 /* then .opd symbols. */
3033 if (strcmp (a->section->name, ".opd") == 0
3034 && strcmp (b->section->name, ".opd") != 0)
3035 return -1;
3036 if (strcmp (a->section->name, ".opd") != 0
3037 && strcmp (b->section->name, ".opd") == 0)
3038 return 1;
3039
3040 /* then other code symbols. */
3041 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3042 == (SEC_CODE | SEC_ALLOC)
3043 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 != (SEC_CODE | SEC_ALLOC))
3045 return -1;
3046
3047 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3048 != (SEC_CODE | SEC_ALLOC)
3049 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 == (SEC_CODE | SEC_ALLOC))
3051 return 1;
3052
3053 if (synthetic_relocatable)
3054 {
3055 if (a->section->id < b->section->id)
3056 return -1;
3057
3058 if (a->section->id > b->section->id)
3059 return 1;
3060 }
3061
3062 if (a->value + a->section->vma < b->value + b->section->vma)
3063 return -1;
3064
3065 if (a->value + a->section->vma > b->value + b->section->vma)
3066 return 1;
3067
3068 /* For syms with the same value, prefer strong dynamic global function
3069 syms over other syms. */
3070 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3071 return -1;
3072
3073 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3074 return 1;
3075
3076 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3077 return -1;
3078
3079 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3080 return 1;
3081
3082 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3083 return -1;
3084
3085 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3086 return 1;
3087
3088 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3089 return -1;
3090
3091 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3092 return 1;
3093
3094 return 0;
3095 }
3096
3097 /* Search SYMS for a symbol of the given VALUE. */
3098
3099 static asymbol *
3100 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3101 {
3102 long mid;
3103
3104 if (id == -1)
3105 {
3106 while (lo < hi)
3107 {
3108 mid = (lo + hi) >> 1;
3109 if (syms[mid]->value + syms[mid]->section->vma < value)
3110 lo = mid + 1;
3111 else if (syms[mid]->value + syms[mid]->section->vma > value)
3112 hi = mid;
3113 else
3114 return syms[mid];
3115 }
3116 }
3117 else
3118 {
3119 while (lo < hi)
3120 {
3121 mid = (lo + hi) >> 1;
3122 if (syms[mid]->section->id < id)
3123 lo = mid + 1;
3124 else if (syms[mid]->section->id > id)
3125 hi = mid;
3126 else if (syms[mid]->value < value)
3127 lo = mid + 1;
3128 else if (syms[mid]->value > value)
3129 hi = mid;
3130 else
3131 return syms[mid];
3132 }
3133 }
3134 return NULL;
3135 }
3136
3137 static bfd_boolean
3138 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3139 {
3140 bfd_vma vma = *(bfd_vma *) ptr;
3141 return ((section->flags & SEC_ALLOC) != 0
3142 && section->vma <= vma
3143 && vma < section->vma + section->size);
3144 }
3145
3146 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3147 entry syms. Also generate @plt symbols for the glink branch table. */
3148
3149 static long
3150 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3151 long static_count, asymbol **static_syms,
3152 long dyn_count, asymbol **dyn_syms,
3153 asymbol **ret)
3154 {
3155 asymbol *s;
3156 long i;
3157 long count;
3158 char *names;
3159 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3160 asection *opd = NULL;
3161 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3162 asymbol **syms;
3163 int abi = abiversion (abfd);
3164
3165 *ret = NULL;
3166
3167 if (abi < 2)
3168 {
3169 opd = bfd_get_section_by_name (abfd, ".opd");
3170 if (opd == NULL && abi == 1)
3171 return 0;
3172 }
3173
3174 symcount = static_count;
3175 if (!relocatable)
3176 symcount += dyn_count;
3177 if (symcount == 0)
3178 return 0;
3179
3180 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3181 if (syms == NULL)
3182 return -1;
3183
3184 if (!relocatable && static_count != 0 && dyn_count != 0)
3185 {
3186 /* Use both symbol tables. */
3187 memcpy (syms, static_syms, static_count * sizeof (*syms));
3188 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3189 }
3190 else if (!relocatable && static_count == 0)
3191 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3192 else
3193 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3194
3195 synthetic_relocatable = relocatable;
3196 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3197
3198 if (!relocatable && symcount > 1)
3199 {
3200 long j;
3201 /* Trim duplicate syms, since we may have merged the normal and
3202 dynamic symbols. Actually, we only care about syms that have
3203 different values, so trim any with the same value. */
3204 for (i = 1, j = 1; i < symcount; ++i)
3205 if (syms[i - 1]->value + syms[i - 1]->section->vma
3206 != syms[i]->value + syms[i]->section->vma)
3207 syms[j++] = syms[i];
3208 symcount = j;
3209 }
3210
3211 i = 0;
3212 if (strcmp (syms[i]->section->name, ".opd") == 0)
3213 ++i;
3214 codesecsym = i;
3215
3216 for (; i < symcount; ++i)
3217 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3218 != (SEC_CODE | SEC_ALLOC))
3219 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3220 break;
3221 codesecsymend = i;
3222
3223 for (; i < symcount; ++i)
3224 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3225 break;
3226 secsymend = i;
3227
3228 for (; i < symcount; ++i)
3229 if (strcmp (syms[i]->section->name, ".opd") != 0)
3230 break;
3231 opdsymend = i;
3232
3233 for (; i < symcount; ++i)
3234 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3235 != (SEC_CODE | SEC_ALLOC))
3236 break;
3237 symcount = i;
3238
3239 count = 0;
3240
3241 if (relocatable)
3242 {
3243 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3244 arelent *r;
3245 size_t size;
3246 long relcount;
3247
3248 if (opdsymend == secsymend)
3249 goto done;
3250
3251 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3252 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3253 if (relcount == 0)
3254 goto done;
3255
3256 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3257 {
3258 count = -1;
3259 goto done;
3260 }
3261
3262 size = 0;
3263 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3264 {
3265 asymbol *sym;
3266
3267 while (r < opd->relocation + relcount
3268 && r->address < syms[i]->value + opd->vma)
3269 ++r;
3270
3271 if (r == opd->relocation + relcount)
3272 break;
3273
3274 if (r->address != syms[i]->value + opd->vma)
3275 continue;
3276
3277 if (r->howto->type != R_PPC64_ADDR64)
3278 continue;
3279
3280 sym = *r->sym_ptr_ptr;
3281 if (!sym_exists_at (syms, opdsymend, symcount,
3282 sym->section->id, sym->value + r->addend))
3283 {
3284 ++count;
3285 size += sizeof (asymbol);
3286 size += strlen (syms[i]->name) + 2;
3287 }
3288 }
3289
3290 s = *ret = bfd_malloc (size);
3291 if (s == NULL)
3292 {
3293 count = -1;
3294 goto done;
3295 }
3296
3297 names = (char *) (s + count);
3298
3299 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3300 {
3301 asymbol *sym;
3302
3303 while (r < opd->relocation + relcount
3304 && r->address < syms[i]->value + opd->vma)
3305 ++r;
3306
3307 if (r == opd->relocation + relcount)
3308 break;
3309
3310 if (r->address != syms[i]->value + opd->vma)
3311 continue;
3312
3313 if (r->howto->type != R_PPC64_ADDR64)
3314 continue;
3315
3316 sym = *r->sym_ptr_ptr;
3317 if (!sym_exists_at (syms, opdsymend, symcount,
3318 sym->section->id, sym->value + r->addend))
3319 {
3320 size_t len;
3321
3322 *s = *syms[i];
3323 s->flags |= BSF_SYNTHETIC;
3324 s->section = sym->section;
3325 s->value = sym->value + r->addend;
3326 s->name = names;
3327 *names++ = '.';
3328 len = strlen (syms[i]->name);
3329 memcpy (names, syms[i]->name, len + 1);
3330 names += len + 1;
3331 /* Have udata.p point back to the original symbol this
3332 synthetic symbol was derived from. */
3333 s->udata.p = syms[i];
3334 s++;
3335 }
3336 }
3337 }
3338 else
3339 {
3340 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3341 bfd_byte *contents = NULL;
3342 size_t size;
3343 long plt_count = 0;
3344 bfd_vma glink_vma = 0, resolv_vma = 0;
3345 asection *dynamic, *glink = NULL, *relplt = NULL;
3346 arelent *p;
3347
3348 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3349 {
3350 free_contents_and_exit:
3351 if (contents)
3352 free (contents);
3353 count = -1;
3354 goto done;
3355 }
3356
3357 size = 0;
3358 for (i = secsymend; i < opdsymend; ++i)
3359 {
3360 bfd_vma ent;
3361
3362 /* Ignore bogus symbols. */
3363 if (syms[i]->value > opd->size - 8)
3364 continue;
3365
3366 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3367 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3368 {
3369 ++count;
3370 size += sizeof (asymbol);
3371 size += strlen (syms[i]->name) + 2;
3372 }
3373 }
3374
3375 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3376 if (dyn_count != 0
3377 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3378 {
3379 bfd_byte *dynbuf, *extdyn, *extdynend;
3380 size_t extdynsize;
3381 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3382
3383 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3384 goto free_contents_and_exit;
3385
3386 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3387 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3388
3389 extdyn = dynbuf;
3390 extdynend = extdyn + dynamic->size;
3391 for (; extdyn < extdynend; extdyn += extdynsize)
3392 {
3393 Elf_Internal_Dyn dyn;
3394 (*swap_dyn_in) (abfd, extdyn, &dyn);
3395
3396 if (dyn.d_tag == DT_NULL)
3397 break;
3398
3399 if (dyn.d_tag == DT_PPC64_GLINK)
3400 {
3401 /* The first glink stub starts at offset 32; see
3402 comment in ppc64_elf_finish_dynamic_sections. */
3403 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3404 /* The .glink section usually does not survive the final
3405 link; search for the section (usually .text) where the
3406 glink stubs now reside. */
3407 glink = bfd_sections_find_if (abfd, section_covers_vma,
3408 &glink_vma);
3409 break;
3410 }
3411 }
3412
3413 free (dynbuf);
3414 }
3415
3416 if (glink != NULL)
3417 {
3418 /* Determine __glink trampoline by reading the relative branch
3419 from the first glink stub. */
3420 bfd_byte buf[4];
3421 unsigned int off = 0;
3422
3423 while (bfd_get_section_contents (abfd, glink, buf,
3424 glink_vma + off - glink->vma, 4))
3425 {
3426 unsigned int insn = bfd_get_32 (abfd, buf);
3427 insn ^= B_DOT;
3428 if ((insn & ~0x3fffffc) == 0)
3429 {
3430 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3431 break;
3432 }
3433 off += 4;
3434 if (off > 4)
3435 break;
3436 }
3437
3438 if (resolv_vma)
3439 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3440
3441 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3442 if (relplt != NULL)
3443 {
3444 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3445 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3446 goto free_contents_and_exit;
3447
3448 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3449 size += plt_count * sizeof (asymbol);
3450
3451 p = relplt->relocation;
3452 for (i = 0; i < plt_count; i++, p++)
3453 {
3454 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3455 if (p->addend != 0)
3456 size += sizeof ("+0x") - 1 + 16;
3457 }
3458 }
3459 }
3460
3461 s = *ret = bfd_malloc (size);
3462 if (s == NULL)
3463 goto free_contents_and_exit;
3464
3465 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3466
3467 for (i = secsymend; i < opdsymend; ++i)
3468 {
3469 bfd_vma ent;
3470
3471 if (syms[i]->value > opd->size - 8)
3472 continue;
3473
3474 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3475 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3476 {
3477 long lo, hi;
3478 size_t len;
3479 asection *sec = abfd->sections;
3480
3481 *s = *syms[i];
3482 lo = codesecsym;
3483 hi = codesecsymend;
3484 while (lo < hi)
3485 {
3486 long mid = (lo + hi) >> 1;
3487 if (syms[mid]->section->vma < ent)
3488 lo = mid + 1;
3489 else if (syms[mid]->section->vma > ent)
3490 hi = mid;
3491 else
3492 {
3493 sec = syms[mid]->section;
3494 break;
3495 }
3496 }
3497
3498 if (lo >= hi && lo > codesecsym)
3499 sec = syms[lo - 1]->section;
3500
3501 for (; sec != NULL; sec = sec->next)
3502 {
3503 if (sec->vma > ent)
3504 break;
3505 /* SEC_LOAD may not be set if SEC is from a separate debug
3506 info file. */
3507 if ((sec->flags & SEC_ALLOC) == 0)
3508 break;
3509 if ((sec->flags & SEC_CODE) != 0)
3510 s->section = sec;
3511 }
3512 s->flags |= BSF_SYNTHETIC;
3513 s->value = ent - s->section->vma;
3514 s->name = names;
3515 *names++ = '.';
3516 len = strlen (syms[i]->name);
3517 memcpy (names, syms[i]->name, len + 1);
3518 names += len + 1;
3519 /* Have udata.p point back to the original symbol this
3520 synthetic symbol was derived from. */
3521 s->udata.p = syms[i];
3522 s++;
3523 }
3524 }
3525 free (contents);
3526
3527 if (glink != NULL && relplt != NULL)
3528 {
3529 if (resolv_vma)
3530 {
3531 /* Add a symbol for the main glink trampoline. */
3532 memset (s, 0, sizeof *s);
3533 s->the_bfd = abfd;
3534 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3535 s->section = glink;
3536 s->value = resolv_vma - glink->vma;
3537 s->name = names;
3538 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3539 names += sizeof ("__glink_PLTresolve");
3540 s++;
3541 count++;
3542 }
3543
3544 /* FIXME: It would be very much nicer to put sym@plt on the
3545 stub rather than on the glink branch table entry. The
3546 objdump disassembler would then use a sensible symbol
3547 name on plt calls. The difficulty in doing so is
3548 a) finding the stubs, and,
3549 b) matching stubs against plt entries, and,
3550 c) there can be multiple stubs for a given plt entry.
3551
3552 Solving (a) could be done by code scanning, but older
3553 ppc64 binaries used different stubs to current code.
3554 (b) is the tricky one since you need to known the toc
3555 pointer for at least one function that uses a pic stub to
3556 be able to calculate the plt address referenced.
3557 (c) means gdb would need to set multiple breakpoints (or
3558 find the glink branch itself) when setting breakpoints
3559 for pending shared library loads. */
3560 p = relplt->relocation;
3561 for (i = 0; i < plt_count; i++, p++)
3562 {
3563 size_t len;
3564
3565 *s = **p->sym_ptr_ptr;
3566 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3567 we are defining a symbol, ensure one of them is set. */
3568 if ((s->flags & BSF_LOCAL) == 0)
3569 s->flags |= BSF_GLOBAL;
3570 s->flags |= BSF_SYNTHETIC;
3571 s->section = glink;
3572 s->value = glink_vma - glink->vma;
3573 s->name = names;
3574 s->udata.p = NULL;
3575 len = strlen ((*p->sym_ptr_ptr)->name);
3576 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3577 names += len;
3578 if (p->addend != 0)
3579 {
3580 memcpy (names, "+0x", sizeof ("+0x") - 1);
3581 names += sizeof ("+0x") - 1;
3582 bfd_sprintf_vma (abfd, names, p->addend);
3583 names += strlen (names);
3584 }
3585 memcpy (names, "@plt", sizeof ("@plt"));
3586 names += sizeof ("@plt");
3587 s++;
3588 if (abi < 2)
3589 {
3590 glink_vma += 8;
3591 if (i >= 0x8000)
3592 glink_vma += 4;
3593 }
3594 else
3595 glink_vma += 4;
3596 }
3597 count += plt_count;
3598 }
3599 }
3600
3601 done:
3602 free (syms);
3603 return count;
3604 }
3605 \f
3606 /* The following functions are specific to the ELF linker, while
3607 functions above are used generally. Those named ppc64_elf_* are
3608 called by the main ELF linker code. They appear in this file more
3609 or less in the order in which they are called. eg.
3610 ppc64_elf_check_relocs is called early in the link process,
3611 ppc64_elf_finish_dynamic_sections is one of the last functions
3612 called.
3613
3614 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3615 functions have both a function code symbol and a function descriptor
3616 symbol. A call to foo in a relocatable object file looks like:
3617
3618 . .text
3619 . x:
3620 . bl .foo
3621 . nop
3622
3623 The function definition in another object file might be:
3624
3625 . .section .opd
3626 . foo: .quad .foo
3627 . .quad .TOC.@tocbase
3628 . .quad 0
3629 .
3630 . .text
3631 . .foo: blr
3632
3633 When the linker resolves the call during a static link, the branch
3634 unsurprisingly just goes to .foo and the .opd information is unused.
3635 If the function definition is in a shared library, things are a little
3636 different: The call goes via a plt call stub, the opd information gets
3637 copied to the plt, and the linker patches the nop.
3638
3639 . x:
3640 . bl .foo_stub
3641 . ld 2,40(1)
3642 .
3643 .
3644 . .foo_stub:
3645 . std 2,40(1) # in practice, the call stub
3646 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3647 . addi 11,11,Lfoo@toc@l # this is the general idea
3648 . ld 12,0(11)
3649 . ld 2,8(11)
3650 . mtctr 12
3651 . ld 11,16(11)
3652 . bctr
3653 .
3654 . .section .plt
3655 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3656
3657 The "reloc ()" notation is supposed to indicate that the linker emits
3658 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3659 copying.
3660
3661 What are the difficulties here? Well, firstly, the relocations
3662 examined by the linker in check_relocs are against the function code
3663 sym .foo, while the dynamic relocation in the plt is emitted against
3664 the function descriptor symbol, foo. Somewhere along the line, we need
3665 to carefully copy dynamic link information from one symbol to the other.
3666 Secondly, the generic part of the elf linker will make .foo a dynamic
3667 symbol as is normal for most other backends. We need foo dynamic
3668 instead, at least for an application final link. However, when
3669 creating a shared library containing foo, we need to have both symbols
3670 dynamic so that references to .foo are satisfied during the early
3671 stages of linking. Otherwise the linker might decide to pull in a
3672 definition from some other object, eg. a static library.
3673
3674 Update: As of August 2004, we support a new convention. Function
3675 calls may use the function descriptor symbol, ie. "bl foo". This
3676 behaves exactly as "bl .foo". */
3677
3678 /* Of those relocs that might be copied as dynamic relocs, this function
3679 selects those that must be copied when linking a shared library,
3680 even when the symbol is local. */
3681
3682 static int
3683 must_be_dyn_reloc (struct bfd_link_info *info,
3684 enum elf_ppc64_reloc_type r_type)
3685 {
3686 switch (r_type)
3687 {
3688 default:
3689 return 1;
3690
3691 case R_PPC64_REL32:
3692 case R_PPC64_REL64:
3693 case R_PPC64_REL30:
3694 return 0;
3695
3696 case R_PPC64_TPREL16:
3697 case R_PPC64_TPREL16_LO:
3698 case R_PPC64_TPREL16_HI:
3699 case R_PPC64_TPREL16_HA:
3700 case R_PPC64_TPREL16_DS:
3701 case R_PPC64_TPREL16_LO_DS:
3702 case R_PPC64_TPREL16_HIGH:
3703 case R_PPC64_TPREL16_HIGHA:
3704 case R_PPC64_TPREL16_HIGHER:
3705 case R_PPC64_TPREL16_HIGHERA:
3706 case R_PPC64_TPREL16_HIGHEST:
3707 case R_PPC64_TPREL16_HIGHESTA:
3708 case R_PPC64_TPREL64:
3709 return !info->executable;
3710 }
3711 }
3712
3713 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3714 copying dynamic variables from a shared lib into an app's dynbss
3715 section, and instead use a dynamic relocation to point into the
3716 shared lib. With code that gcc generates, it's vital that this be
3717 enabled; In the PowerPC64 ABI, the address of a function is actually
3718 the address of a function descriptor, which resides in the .opd
3719 section. gcc uses the descriptor directly rather than going via the
3720 GOT as some other ABI's do, which means that initialized function
3721 pointers must reference the descriptor. Thus, a function pointer
3722 initialized to the address of a function in a shared library will
3723 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3724 redefines the function descriptor symbol to point to the copy. This
3725 presents a problem as a plt entry for that function is also
3726 initialized from the function descriptor symbol and the copy reloc
3727 may not be initialized first. */
3728 #define ELIMINATE_COPY_RELOCS 1
3729
3730 /* Section name for stubs is the associated section name plus this
3731 string. */
3732 #define STUB_SUFFIX ".stub"
3733
3734 /* Linker stubs.
3735 ppc_stub_long_branch:
3736 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3737 destination, but a 24 bit branch in a stub section will reach.
3738 . b dest
3739
3740 ppc_stub_plt_branch:
3741 Similar to the above, but a 24 bit branch in the stub section won't
3742 reach its destination.
3743 . addis %r11,%r2,xxx@toc@ha
3744 . ld %r12,xxx@toc@l(%r11)
3745 . mtctr %r12
3746 . bctr
3747
3748 ppc_stub_plt_call:
3749 Used to call a function in a shared library. If it so happens that
3750 the plt entry referenced crosses a 64k boundary, then an extra
3751 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3752 . std %r2,40(%r1)
3753 . addis %r11,%r2,xxx@toc@ha
3754 . ld %r12,xxx+0@toc@l(%r11)
3755 . mtctr %r12
3756 . ld %r2,xxx+8@toc@l(%r11)
3757 . ld %r11,xxx+16@toc@l(%r11)
3758 . bctr
3759
3760 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3761 code to adjust the value and save r2 to support multiple toc sections.
3762 A ppc_stub_long_branch with an r2 offset looks like:
3763 . std %r2,40(%r1)
3764 . addis %r2,%r2,off@ha
3765 . addi %r2,%r2,off@l
3766 . b dest
3767
3768 A ppc_stub_plt_branch with an r2 offset looks like:
3769 . std %r2,40(%r1)
3770 . addis %r11,%r2,xxx@toc@ha
3771 . ld %r12,xxx@toc@l(%r11)
3772 . addis %r2,%r2,off@ha
3773 . addi %r2,%r2,off@l
3774 . mtctr %r12
3775 . bctr
3776
3777 In cases where the "addis" instruction would add zero, the "addis" is
3778 omitted and following instructions modified slightly in some cases.
3779 */
3780
3781 enum ppc_stub_type {
3782 ppc_stub_none,
3783 ppc_stub_long_branch,
3784 ppc_stub_long_branch_r2off,
3785 ppc_stub_plt_branch,
3786 ppc_stub_plt_branch_r2off,
3787 ppc_stub_plt_call,
3788 ppc_stub_plt_call_r2save,
3789 ppc_stub_global_entry
3790 };
3791
3792 struct ppc_stub_hash_entry {
3793
3794 /* Base hash table entry structure. */
3795 struct bfd_hash_entry root;
3796
3797 enum ppc_stub_type stub_type;
3798
3799 /* The stub section. */
3800 asection *stub_sec;
3801
3802 /* Offset within stub_sec of the beginning of this stub. */
3803 bfd_vma stub_offset;
3804
3805 /* Given the symbol's value and its section we can determine its final
3806 value when building the stubs (so the stub knows where to jump. */
3807 bfd_vma target_value;
3808 asection *target_section;
3809
3810 /* The symbol table entry, if any, that this was derived from. */
3811 struct ppc_link_hash_entry *h;
3812 struct plt_entry *plt_ent;
3813
3814 /* Where this stub is being called from, or, in the case of combined
3815 stub sections, the first input section in the group. */
3816 asection *id_sec;
3817
3818 /* Symbol st_other. */
3819 unsigned char other;
3820 };
3821
3822 struct ppc_branch_hash_entry {
3823
3824 /* Base hash table entry structure. */
3825 struct bfd_hash_entry root;
3826
3827 /* Offset within branch lookup table. */
3828 unsigned int offset;
3829
3830 /* Generation marker. */
3831 unsigned int iter;
3832 };
3833
3834 /* Used to track dynamic relocations for local symbols. */
3835 struct ppc_dyn_relocs
3836 {
3837 struct ppc_dyn_relocs *next;
3838
3839 /* The input section of the reloc. */
3840 asection *sec;
3841
3842 /* Total number of relocs copied for the input section. */
3843 unsigned int count : 31;
3844
3845 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3846 unsigned int ifunc : 1;
3847 };
3848
3849 struct ppc_link_hash_entry
3850 {
3851 struct elf_link_hash_entry elf;
3852
3853 union {
3854 /* A pointer to the most recently used stub hash entry against this
3855 symbol. */
3856 struct ppc_stub_hash_entry *stub_cache;
3857
3858 /* A pointer to the next symbol starting with a '.' */
3859 struct ppc_link_hash_entry *next_dot_sym;
3860 } u;
3861
3862 /* Track dynamic relocs copied for this symbol. */
3863 struct elf_dyn_relocs *dyn_relocs;
3864
3865 /* Link between function code and descriptor symbols. */
3866 struct ppc_link_hash_entry *oh;
3867
3868 /* Flag function code and descriptor symbols. */
3869 unsigned int is_func:1;
3870 unsigned int is_func_descriptor:1;
3871 unsigned int fake:1;
3872
3873 /* Whether global opd/toc sym has been adjusted or not.
3874 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3875 should be set for all globals defined in any opd/toc section. */
3876 unsigned int adjust_done:1;
3877
3878 /* Set if we twiddled this symbol to weak at some stage. */
3879 unsigned int was_undefined:1;
3880
3881 /* Contexts in which symbol is used in the GOT (or TOC).
3882 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3883 corresponding relocs are encountered during check_relocs.
3884 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3885 indicate the corresponding GOT entry type is not needed.
3886 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3887 a TPREL one. We use a separate flag rather than setting TPREL
3888 just for convenience in distinguishing the two cases. */
3889 #define TLS_GD 1 /* GD reloc. */
3890 #define TLS_LD 2 /* LD reloc. */
3891 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3892 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3893 #define TLS_TLS 16 /* Any TLS reloc. */
3894 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3895 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3896 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3897 unsigned char tls_mask;
3898 };
3899
3900 /* ppc64 ELF linker hash table. */
3901
3902 struct ppc_link_hash_table
3903 {
3904 struct elf_link_hash_table elf;
3905
3906 /* The stub hash table. */
3907 struct bfd_hash_table stub_hash_table;
3908
3909 /* Another hash table for plt_branch stubs. */
3910 struct bfd_hash_table branch_hash_table;
3911
3912 /* Hash table for function prologue tocsave. */
3913 htab_t tocsave_htab;
3914
3915 /* Various options and other info passed from the linker. */
3916 struct ppc64_elf_params *params;
3917
3918 /* Array to keep track of which stub sections have been created, and
3919 information on stub grouping. */
3920 struct map_stub {
3921 /* This is the section to which stubs in the group will be attached. */
3922 asection *link_sec;
3923 /* The stub section. */
3924 asection *stub_sec;
3925 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3926 bfd_vma toc_off;
3927 } *stub_group;
3928
3929 /* Temp used when calculating TOC pointers. */
3930 bfd_vma toc_curr;
3931 bfd *toc_bfd;
3932 asection *toc_first_sec;
3933
3934 /* Highest input section id. */
3935 int top_id;
3936
3937 /* Highest output section index. */
3938 int top_index;
3939
3940 /* Used when adding symbols. */
3941 struct ppc_link_hash_entry *dot_syms;
3942
3943 /* List of input sections for each output section. */
3944 asection **input_list;
3945
3946 /* Shortcuts to get to dynamic linker sections. */
3947 asection *dynbss;
3948 asection *relbss;
3949 asection *glink;
3950 asection *sfpr;
3951 asection *brlt;
3952 asection *relbrlt;
3953 asection *glink_eh_frame;
3954
3955 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3956 struct ppc_link_hash_entry *tls_get_addr;
3957 struct ppc_link_hash_entry *tls_get_addr_fd;
3958
3959 /* The size of reliplt used by got entry relocs. */
3960 bfd_size_type got_reli_size;
3961
3962 /* Statistics. */
3963 unsigned long stub_count[ppc_stub_global_entry];
3964
3965 /* Number of stubs against global syms. */
3966 unsigned long stub_globals;
3967
3968 /* Set if we're linking code with function descriptors. */
3969 unsigned int opd_abi:1;
3970
3971 /* Support for multiple toc sections. */
3972 unsigned int do_multi_toc:1;
3973 unsigned int multi_toc_needed:1;
3974 unsigned int second_toc_pass:1;
3975 unsigned int do_toc_opt:1;
3976
3977 /* Set on error. */
3978 unsigned int stub_error:1;
3979
3980 /* Temp used by ppc64_elf_before_check_relocs. */
3981 unsigned int twiddled_syms:1;
3982
3983 /* Incremented every time we size stubs. */
3984 unsigned int stub_iteration;
3985
3986 /* Small local sym cache. */
3987 struct sym_cache sym_cache;
3988 };
3989
3990 /* Rename some of the generic section flags to better document how they
3991 are used here. */
3992
3993 /* Nonzero if this section has TLS related relocations. */
3994 #define has_tls_reloc sec_flg0
3995
3996 /* Nonzero if this section has a call to __tls_get_addr. */
3997 #define has_tls_get_addr_call sec_flg1
3998
3999 /* Nonzero if this section has any toc or got relocs. */
4000 #define has_toc_reloc sec_flg2
4001
4002 /* Nonzero if this section has a call to another section that uses
4003 the toc or got. */
4004 #define makes_toc_func_call sec_flg3
4005
4006 /* Recursion protection when determining above flag. */
4007 #define call_check_in_progress sec_flg4
4008 #define call_check_done sec_flg5
4009
4010 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4011
4012 #define ppc_hash_table(p) \
4013 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4014 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4015
4016 #define ppc_stub_hash_lookup(table, string, create, copy) \
4017 ((struct ppc_stub_hash_entry *) \
4018 bfd_hash_lookup ((table), (string), (create), (copy)))
4019
4020 #define ppc_branch_hash_lookup(table, string, create, copy) \
4021 ((struct ppc_branch_hash_entry *) \
4022 bfd_hash_lookup ((table), (string), (create), (copy)))
4023
4024 /* Create an entry in the stub hash table. */
4025
4026 static struct bfd_hash_entry *
4027 stub_hash_newfunc (struct bfd_hash_entry *entry,
4028 struct bfd_hash_table *table,
4029 const char *string)
4030 {
4031 /* Allocate the structure if it has not already been allocated by a
4032 subclass. */
4033 if (entry == NULL)
4034 {
4035 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4036 if (entry == NULL)
4037 return entry;
4038 }
4039
4040 /* Call the allocation method of the superclass. */
4041 entry = bfd_hash_newfunc (entry, table, string);
4042 if (entry != NULL)
4043 {
4044 struct ppc_stub_hash_entry *eh;
4045
4046 /* Initialize the local fields. */
4047 eh = (struct ppc_stub_hash_entry *) entry;
4048 eh->stub_type = ppc_stub_none;
4049 eh->stub_sec = NULL;
4050 eh->stub_offset = 0;
4051 eh->target_value = 0;
4052 eh->target_section = NULL;
4053 eh->h = NULL;
4054 eh->plt_ent = NULL;
4055 eh->id_sec = NULL;
4056 eh->other = 0;
4057 }
4058
4059 return entry;
4060 }
4061
4062 /* Create an entry in the branch hash table. */
4063
4064 static struct bfd_hash_entry *
4065 branch_hash_newfunc (struct bfd_hash_entry *entry,
4066 struct bfd_hash_table *table,
4067 const char *string)
4068 {
4069 /* Allocate the structure if it has not already been allocated by a
4070 subclass. */
4071 if (entry == NULL)
4072 {
4073 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4074 if (entry == NULL)
4075 return entry;
4076 }
4077
4078 /* Call the allocation method of the superclass. */
4079 entry = bfd_hash_newfunc (entry, table, string);
4080 if (entry != NULL)
4081 {
4082 struct ppc_branch_hash_entry *eh;
4083
4084 /* Initialize the local fields. */
4085 eh = (struct ppc_branch_hash_entry *) entry;
4086 eh->offset = 0;
4087 eh->iter = 0;
4088 }
4089
4090 return entry;
4091 }
4092
4093 /* Create an entry in a ppc64 ELF linker hash table. */
4094
4095 static struct bfd_hash_entry *
4096 link_hash_newfunc (struct bfd_hash_entry *entry,
4097 struct bfd_hash_table *table,
4098 const char *string)
4099 {
4100 /* Allocate the structure if it has not already been allocated by a
4101 subclass. */
4102 if (entry == NULL)
4103 {
4104 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4105 if (entry == NULL)
4106 return entry;
4107 }
4108
4109 /* Call the allocation method of the superclass. */
4110 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4111 if (entry != NULL)
4112 {
4113 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4114
4115 memset (&eh->u.stub_cache, 0,
4116 (sizeof (struct ppc_link_hash_entry)
4117 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4118
4119 /* When making function calls, old ABI code references function entry
4120 points (dot symbols), while new ABI code references the function
4121 descriptor symbol. We need to make any combination of reference and
4122 definition work together, without breaking archive linking.
4123
4124 For a defined function "foo" and an undefined call to "bar":
4125 An old object defines "foo" and ".foo", references ".bar" (possibly
4126 "bar" too).
4127 A new object defines "foo" and references "bar".
4128
4129 A new object thus has no problem with its undefined symbols being
4130 satisfied by definitions in an old object. On the other hand, the
4131 old object won't have ".bar" satisfied by a new object.
4132
4133 Keep a list of newly added dot-symbols. */
4134
4135 if (string[0] == '.')
4136 {
4137 struct ppc_link_hash_table *htab;
4138
4139 htab = (struct ppc_link_hash_table *) table;
4140 eh->u.next_dot_sym = htab->dot_syms;
4141 htab->dot_syms = eh;
4142 }
4143 }
4144
4145 return entry;
4146 }
4147
4148 struct tocsave_entry {
4149 asection *sec;
4150 bfd_vma offset;
4151 };
4152
4153 static hashval_t
4154 tocsave_htab_hash (const void *p)
4155 {
4156 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4157 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4158 }
4159
4160 static int
4161 tocsave_htab_eq (const void *p1, const void *p2)
4162 {
4163 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4164 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4165 return e1->sec == e2->sec && e1->offset == e2->offset;
4166 }
4167
4168 /* Destroy a ppc64 ELF linker hash table. */
4169
4170 static void
4171 ppc64_elf_link_hash_table_free (bfd *obfd)
4172 {
4173 struct ppc_link_hash_table *htab;
4174
4175 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4176 if (htab->tocsave_htab)
4177 htab_delete (htab->tocsave_htab);
4178 bfd_hash_table_free (&htab->branch_hash_table);
4179 bfd_hash_table_free (&htab->stub_hash_table);
4180 _bfd_elf_link_hash_table_free (obfd);
4181 }
4182
4183 /* Create a ppc64 ELF linker hash table. */
4184
4185 static struct bfd_link_hash_table *
4186 ppc64_elf_link_hash_table_create (bfd *abfd)
4187 {
4188 struct ppc_link_hash_table *htab;
4189 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4190
4191 htab = bfd_zmalloc (amt);
4192 if (htab == NULL)
4193 return NULL;
4194
4195 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4196 sizeof (struct ppc_link_hash_entry),
4197 PPC64_ELF_DATA))
4198 {
4199 free (htab);
4200 return NULL;
4201 }
4202
4203 /* Init the stub hash table too. */
4204 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4205 sizeof (struct ppc_stub_hash_entry)))
4206 {
4207 _bfd_elf_link_hash_table_free (abfd);
4208 return NULL;
4209 }
4210
4211 /* And the branch hash table. */
4212 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4213 sizeof (struct ppc_branch_hash_entry)))
4214 {
4215 bfd_hash_table_free (&htab->stub_hash_table);
4216 _bfd_elf_link_hash_table_free (abfd);
4217 return NULL;
4218 }
4219
4220 htab->tocsave_htab = htab_try_create (1024,
4221 tocsave_htab_hash,
4222 tocsave_htab_eq,
4223 NULL);
4224 if (htab->tocsave_htab == NULL)
4225 {
4226 ppc64_elf_link_hash_table_free (abfd);
4227 return NULL;
4228 }
4229 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4230
4231 /* Initializing two fields of the union is just cosmetic. We really
4232 only care about glist, but when compiled on a 32-bit host the
4233 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4234 debugger inspection of these fields look nicer. */
4235 htab->elf.init_got_refcount.refcount = 0;
4236 htab->elf.init_got_refcount.glist = NULL;
4237 htab->elf.init_plt_refcount.refcount = 0;
4238 htab->elf.init_plt_refcount.glist = NULL;
4239 htab->elf.init_got_offset.offset = 0;
4240 htab->elf.init_got_offset.glist = NULL;
4241 htab->elf.init_plt_offset.offset = 0;
4242 htab->elf.init_plt_offset.glist = NULL;
4243
4244 return &htab->elf.root;
4245 }
4246
4247 /* Create sections for linker generated code. */
4248
4249 static bfd_boolean
4250 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4251 {
4252 struct ppc_link_hash_table *htab;
4253 flagword flags;
4254
4255 htab = ppc_hash_table (info);
4256
4257 /* Create .sfpr for code to save and restore fp regs. */
4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4260 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4261 flags);
4262 if (htab->sfpr == NULL
4263 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4264 return FALSE;
4265
4266 /* Create .glink for lazy dynamic linking support. */
4267 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4268 flags);
4269 if (htab->glink == NULL
4270 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4271 return FALSE;
4272
4273 if (!info->no_ld_generated_unwind_info)
4274 {
4275 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4276 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4277 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4278 ".eh_frame",
4279 flags);
4280 if (htab->glink_eh_frame == NULL
4281 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4282 return FALSE;
4283 }
4284
4285 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4286 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4287 if (htab->elf.iplt == NULL
4288 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4289 return FALSE;
4290
4291 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4292 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4293 htab->elf.irelplt
4294 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4295 if (htab->elf.irelplt == NULL
4296 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4297 return FALSE;
4298
4299 /* Create branch lookup table for plt_branch stubs. */
4300 flags = (SEC_ALLOC | SEC_LOAD
4301 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4302 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4303 flags);
4304 if (htab->brlt == NULL
4305 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4306 return FALSE;
4307
4308 if (!info->shared)
4309 return TRUE;
4310
4311 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4312 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4313 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4314 ".rela.branch_lt",
4315 flags);
4316 if (htab->relbrlt == NULL
4317 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4318 return FALSE;
4319
4320 return TRUE;
4321 }
4322
4323 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4324
4325 bfd_boolean
4326 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4327 struct ppc64_elf_params *params)
4328 {
4329 struct ppc_link_hash_table *htab;
4330
4331 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4332
4333 /* Always hook our dynamic sections into the first bfd, which is the
4334 linker created stub bfd. This ensures that the GOT header is at
4335 the start of the output TOC section. */
4336 htab = ppc_hash_table (info);
4337 if (htab == NULL)
4338 return FALSE;
4339 htab->elf.dynobj = params->stub_bfd;
4340 htab->params = params;
4341
4342 if (info->relocatable)
4343 return TRUE;
4344
4345 return create_linkage_sections (htab->elf.dynobj, info);
4346 }
4347
4348 /* Build a name for an entry in the stub hash table. */
4349
4350 static char *
4351 ppc_stub_name (const asection *input_section,
4352 const asection *sym_sec,
4353 const struct ppc_link_hash_entry *h,
4354 const Elf_Internal_Rela *rel)
4355 {
4356 char *stub_name;
4357 ssize_t len;
4358
4359 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4360 offsets from a sym as a branch target? In fact, we could
4361 probably assume the addend is always zero. */
4362 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4363
4364 if (h)
4365 {
4366 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4367 stub_name = bfd_malloc (len);
4368 if (stub_name == NULL)
4369 return stub_name;
4370
4371 len = sprintf (stub_name, "%08x.%s+%x",
4372 input_section->id & 0xffffffff,
4373 h->elf.root.root.string,
4374 (int) rel->r_addend & 0xffffffff);
4375 }
4376 else
4377 {
4378 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4379 stub_name = bfd_malloc (len);
4380 if (stub_name == NULL)
4381 return stub_name;
4382
4383 len = sprintf (stub_name, "%08x.%x:%x+%x",
4384 input_section->id & 0xffffffff,
4385 sym_sec->id & 0xffffffff,
4386 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4387 (int) rel->r_addend & 0xffffffff);
4388 }
4389 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4390 stub_name[len - 2] = 0;
4391 return stub_name;
4392 }
4393
4394 /* Look up an entry in the stub hash. Stub entries are cached because
4395 creating the stub name takes a bit of time. */
4396
4397 static struct ppc_stub_hash_entry *
4398 ppc_get_stub_entry (const asection *input_section,
4399 const asection *sym_sec,
4400 struct ppc_link_hash_entry *h,
4401 const Elf_Internal_Rela *rel,
4402 struct ppc_link_hash_table *htab)
4403 {
4404 struct ppc_stub_hash_entry *stub_entry;
4405 const asection *id_sec;
4406
4407 /* If this input section is part of a group of sections sharing one
4408 stub section, then use the id of the first section in the group.
4409 Stub names need to include a section id, as there may well be
4410 more than one stub used to reach say, printf, and we need to
4411 distinguish between them. */
4412 id_sec = htab->stub_group[input_section->id].link_sec;
4413
4414 if (h != NULL && h->u.stub_cache != NULL
4415 && h->u.stub_cache->h == h
4416 && h->u.stub_cache->id_sec == id_sec)
4417 {
4418 stub_entry = h->u.stub_cache;
4419 }
4420 else
4421 {
4422 char *stub_name;
4423
4424 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4425 if (stub_name == NULL)
4426 return NULL;
4427
4428 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4429 stub_name, FALSE, FALSE);
4430 if (h != NULL)
4431 h->u.stub_cache = stub_entry;
4432
4433 free (stub_name);
4434 }
4435
4436 return stub_entry;
4437 }
4438
4439 /* Add a new stub entry to the stub hash. Not all fields of the new
4440 stub entry are initialised. */
4441
4442 static struct ppc_stub_hash_entry *
4443 ppc_add_stub (const char *stub_name,
4444 asection *section,
4445 struct bfd_link_info *info)
4446 {
4447 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4448 asection *link_sec;
4449 asection *stub_sec;
4450 struct ppc_stub_hash_entry *stub_entry;
4451
4452 link_sec = htab->stub_group[section->id].link_sec;
4453 stub_sec = htab->stub_group[section->id].stub_sec;
4454 if (stub_sec == NULL)
4455 {
4456 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4457 if (stub_sec == NULL)
4458 {
4459 size_t namelen;
4460 bfd_size_type len;
4461 char *s_name;
4462
4463 namelen = strlen (link_sec->name);
4464 len = namelen + sizeof (STUB_SUFFIX);
4465 s_name = bfd_alloc (htab->params->stub_bfd, len);
4466 if (s_name == NULL)
4467 return NULL;
4468
4469 memcpy (s_name, link_sec->name, namelen);
4470 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4471 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4472 if (stub_sec == NULL)
4473 return NULL;
4474 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4475 }
4476 htab->stub_group[section->id].stub_sec = stub_sec;
4477 }
4478
4479 /* Enter this entry into the linker stub hash table. */
4480 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4481 TRUE, FALSE);
4482 if (stub_entry == NULL)
4483 {
4484 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4485 section->owner, stub_name);
4486 return NULL;
4487 }
4488
4489 stub_entry->stub_sec = stub_sec;
4490 stub_entry->stub_offset = 0;
4491 stub_entry->id_sec = link_sec;
4492 return stub_entry;
4493 }
4494
4495 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4496 not already done. */
4497
4498 static bfd_boolean
4499 create_got_section (bfd *abfd, struct bfd_link_info *info)
4500 {
4501 asection *got, *relgot;
4502 flagword flags;
4503 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4504
4505 if (!is_ppc64_elf (abfd))
4506 return FALSE;
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 if (!htab->elf.sgot
4511 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4512 return FALSE;
4513
4514 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4515 | SEC_LINKER_CREATED);
4516
4517 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4518 if (!got
4519 || !bfd_set_section_alignment (abfd, got, 3))
4520 return FALSE;
4521
4522 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4523 flags | SEC_READONLY);
4524 if (!relgot
4525 || ! bfd_set_section_alignment (abfd, relgot, 3))
4526 return FALSE;
4527
4528 ppc64_elf_tdata (abfd)->got = got;
4529 ppc64_elf_tdata (abfd)->relgot = relgot;
4530 return TRUE;
4531 }
4532
4533 /* Create the dynamic sections, and set up shortcuts. */
4534
4535 static bfd_boolean
4536 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4537 {
4538 struct ppc_link_hash_table *htab;
4539
4540 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4541 return FALSE;
4542
4543 htab = ppc_hash_table (info);
4544 if (htab == NULL)
4545 return FALSE;
4546
4547 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4548 if (!info->shared)
4549 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4550
4551 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4552 || (!info->shared && !htab->relbss))
4553 abort ();
4554
4555 return TRUE;
4556 }
4557
4558 /* Follow indirect and warning symbol links. */
4559
4560 static inline struct bfd_link_hash_entry *
4561 follow_link (struct bfd_link_hash_entry *h)
4562 {
4563 while (h->type == bfd_link_hash_indirect
4564 || h->type == bfd_link_hash_warning)
4565 h = h->u.i.link;
4566 return h;
4567 }
4568
4569 static inline struct elf_link_hash_entry *
4570 elf_follow_link (struct elf_link_hash_entry *h)
4571 {
4572 return (struct elf_link_hash_entry *) follow_link (&h->root);
4573 }
4574
4575 static inline struct ppc_link_hash_entry *
4576 ppc_follow_link (struct ppc_link_hash_entry *h)
4577 {
4578 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4579 }
4580
4581 /* Merge PLT info on FROM with that on TO. */
4582
4583 static void
4584 move_plt_plist (struct ppc_link_hash_entry *from,
4585 struct ppc_link_hash_entry *to)
4586 {
4587 if (from->elf.plt.plist != NULL)
4588 {
4589 if (to->elf.plt.plist != NULL)
4590 {
4591 struct plt_entry **entp;
4592 struct plt_entry *ent;
4593
4594 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4595 {
4596 struct plt_entry *dent;
4597
4598 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4599 if (dent->addend == ent->addend)
4600 {
4601 dent->plt.refcount += ent->plt.refcount;
4602 *entp = ent->next;
4603 break;
4604 }
4605 if (dent == NULL)
4606 entp = &ent->next;
4607 }
4608 *entp = to->elf.plt.plist;
4609 }
4610
4611 to->elf.plt.plist = from->elf.plt.plist;
4612 from->elf.plt.plist = NULL;
4613 }
4614 }
4615
4616 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4617
4618 static void
4619 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4620 struct elf_link_hash_entry *dir,
4621 struct elf_link_hash_entry *ind)
4622 {
4623 struct ppc_link_hash_entry *edir, *eind;
4624
4625 edir = (struct ppc_link_hash_entry *) dir;
4626 eind = (struct ppc_link_hash_entry *) ind;
4627
4628 edir->is_func |= eind->is_func;
4629 edir->is_func_descriptor |= eind->is_func_descriptor;
4630 edir->tls_mask |= eind->tls_mask;
4631 if (eind->oh != NULL)
4632 edir->oh = ppc_follow_link (eind->oh);
4633
4634 /* If called to transfer flags for a weakdef during processing
4635 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4636 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4637 if (!(ELIMINATE_COPY_RELOCS
4638 && eind->elf.root.type != bfd_link_hash_indirect
4639 && edir->elf.dynamic_adjusted))
4640 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4641
4642 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4643 edir->elf.ref_regular |= eind->elf.ref_regular;
4644 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4645 edir->elf.needs_plt |= eind->elf.needs_plt;
4646 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4647
4648 /* Copy over any dynamic relocs we may have on the indirect sym. */
4649 if (eind->dyn_relocs != NULL)
4650 {
4651 if (edir->dyn_relocs != NULL)
4652 {
4653 struct elf_dyn_relocs **pp;
4654 struct elf_dyn_relocs *p;
4655
4656 /* Add reloc counts against the indirect sym to the direct sym
4657 list. Merge any entries against the same section. */
4658 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4659 {
4660 struct elf_dyn_relocs *q;
4661
4662 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4663 if (q->sec == p->sec)
4664 {
4665 q->pc_count += p->pc_count;
4666 q->count += p->count;
4667 *pp = p->next;
4668 break;
4669 }
4670 if (q == NULL)
4671 pp = &p->next;
4672 }
4673 *pp = edir->dyn_relocs;
4674 }
4675
4676 edir->dyn_relocs = eind->dyn_relocs;
4677 eind->dyn_relocs = NULL;
4678 }
4679
4680 /* If we were called to copy over info for a weak sym, that's all.
4681 You might think dyn_relocs need not be copied over; After all,
4682 both syms will be dynamic or both non-dynamic so we're just
4683 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4684 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4685 dyn_relocs in read-only sections, and it does so on what is the
4686 DIR sym here. */
4687 if (eind->elf.root.type != bfd_link_hash_indirect)
4688 return;
4689
4690 /* Copy over got entries that we may have already seen to the
4691 symbol which just became indirect. */
4692 if (eind->elf.got.glist != NULL)
4693 {
4694 if (edir->elf.got.glist != NULL)
4695 {
4696 struct got_entry **entp;
4697 struct got_entry *ent;
4698
4699 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4700 {
4701 struct got_entry *dent;
4702
4703 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4704 if (dent->addend == ent->addend
4705 && dent->owner == ent->owner
4706 && dent->tls_type == ent->tls_type)
4707 {
4708 dent->got.refcount += ent->got.refcount;
4709 *entp = ent->next;
4710 break;
4711 }
4712 if (dent == NULL)
4713 entp = &ent->next;
4714 }
4715 *entp = edir->elf.got.glist;
4716 }
4717
4718 edir->elf.got.glist = eind->elf.got.glist;
4719 eind->elf.got.glist = NULL;
4720 }
4721
4722 /* And plt entries. */
4723 move_plt_plist (eind, edir);
4724
4725 if (eind->elf.dynindx != -1)
4726 {
4727 if (edir->elf.dynindx != -1)
4728 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4729 edir->elf.dynstr_index);
4730 edir->elf.dynindx = eind->elf.dynindx;
4731 edir->elf.dynstr_index = eind->elf.dynstr_index;
4732 eind->elf.dynindx = -1;
4733 eind->elf.dynstr_index = 0;
4734 }
4735 }
4736
4737 /* Find the function descriptor hash entry from the given function code
4738 hash entry FH. Link the entries via their OH fields. */
4739
4740 static struct ppc_link_hash_entry *
4741 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4742 {
4743 struct ppc_link_hash_entry *fdh = fh->oh;
4744
4745 if (fdh == NULL)
4746 {
4747 const char *fd_name = fh->elf.root.root.string + 1;
4748
4749 fdh = (struct ppc_link_hash_entry *)
4750 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4751 if (fdh == NULL)
4752 return fdh;
4753
4754 fdh->is_func_descriptor = 1;
4755 fdh->oh = fh;
4756 fh->is_func = 1;
4757 fh->oh = fdh;
4758 }
4759
4760 return ppc_follow_link (fdh);
4761 }
4762
4763 /* Make a fake function descriptor sym for the code sym FH. */
4764
4765 static struct ppc_link_hash_entry *
4766 make_fdh (struct bfd_link_info *info,
4767 struct ppc_link_hash_entry *fh)
4768 {
4769 bfd *abfd;
4770 asymbol *newsym;
4771 struct bfd_link_hash_entry *bh;
4772 struct ppc_link_hash_entry *fdh;
4773
4774 abfd = fh->elf.root.u.undef.abfd;
4775 newsym = bfd_make_empty_symbol (abfd);
4776 newsym->name = fh->elf.root.root.string + 1;
4777 newsym->section = bfd_und_section_ptr;
4778 newsym->value = 0;
4779 newsym->flags = BSF_WEAK;
4780
4781 bh = NULL;
4782 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4783 newsym->flags, newsym->section,
4784 newsym->value, NULL, FALSE, FALSE,
4785 &bh))
4786 return NULL;
4787
4788 fdh = (struct ppc_link_hash_entry *) bh;
4789 fdh->elf.non_elf = 0;
4790 fdh->fake = 1;
4791 fdh->is_func_descriptor = 1;
4792 fdh->oh = fh;
4793 fh->is_func = 1;
4794 fh->oh = fdh;
4795 return fdh;
4796 }
4797
4798 /* Fix function descriptor symbols defined in .opd sections to be
4799 function type. */
4800
4801 static bfd_boolean
4802 ppc64_elf_add_symbol_hook (bfd *ibfd,
4803 struct bfd_link_info *info,
4804 Elf_Internal_Sym *isym,
4805 const char **name,
4806 flagword *flags ATTRIBUTE_UNUSED,
4807 asection **sec,
4808 bfd_vma *value ATTRIBUTE_UNUSED)
4809 {
4810 if ((ibfd->flags & DYNAMIC) == 0
4811 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4812 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4813
4814 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4815 {
4816 if ((ibfd->flags & DYNAMIC) == 0)
4817 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4818 }
4819 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4820 ;
4821 else if (*sec != NULL
4822 && strcmp ((*sec)->name, ".opd") == 0)
4823 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4824
4825 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4826 {
4827 if (abiversion (ibfd) == 0)
4828 set_abiversion (ibfd, 2);
4829 else if (abiversion (ibfd) == 1)
4830 {
4831 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4832 " for ABI version 1\n"), name);
4833 bfd_set_error (bfd_error_bad_value);
4834 return FALSE;
4835 }
4836 }
4837
4838 return TRUE;
4839 }
4840
4841 /* Merge non-visibility st_other attributes: local entry point. */
4842
4843 static void
4844 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4845 const Elf_Internal_Sym *isym,
4846 bfd_boolean definition,
4847 bfd_boolean dynamic)
4848 {
4849 if (definition && !dynamic)
4850 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4851 | ELF_ST_VISIBILITY (h->other));
4852 }
4853
4854 /* This function makes an old ABI object reference to ".bar" cause the
4855 inclusion of a new ABI object archive that defines "bar".
4856 NAME is a symbol defined in an archive. Return a symbol in the hash
4857 table that might be satisfied by the archive symbols. */
4858
4859 static struct elf_link_hash_entry *
4860 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4861 struct bfd_link_info *info,
4862 const char *name)
4863 {
4864 struct elf_link_hash_entry *h;
4865 char *dot_name;
4866 size_t len;
4867
4868 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4869 if (h != NULL
4870 /* Don't return this sym if it is a fake function descriptor
4871 created by add_symbol_adjust. */
4872 && !(h->root.type == bfd_link_hash_undefweak
4873 && ((struct ppc_link_hash_entry *) h)->fake))
4874 return h;
4875
4876 if (name[0] == '.')
4877 return h;
4878
4879 len = strlen (name);
4880 dot_name = bfd_alloc (abfd, len + 2);
4881 if (dot_name == NULL)
4882 return (struct elf_link_hash_entry *) 0 - 1;
4883 dot_name[0] = '.';
4884 memcpy (dot_name + 1, name, len + 1);
4885 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4886 bfd_release (abfd, dot_name);
4887 return h;
4888 }
4889
4890 /* This function satisfies all old ABI object references to ".bar" if a
4891 new ABI object defines "bar". Well, at least, undefined dot symbols
4892 are made weak. This stops later archive searches from including an
4893 object if we already have a function descriptor definition. It also
4894 prevents the linker complaining about undefined symbols.
4895 We also check and correct mismatched symbol visibility here. The
4896 most restrictive visibility of the function descriptor and the
4897 function entry symbol is used. */
4898
4899 static bfd_boolean
4900 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4901 {
4902 struct ppc_link_hash_table *htab;
4903 struct ppc_link_hash_entry *fdh;
4904
4905 if (eh->elf.root.type == bfd_link_hash_indirect)
4906 return TRUE;
4907
4908 if (eh->elf.root.type == bfd_link_hash_warning)
4909 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4910
4911 if (eh->elf.root.root.string[0] != '.')
4912 abort ();
4913
4914 htab = ppc_hash_table (info);
4915 if (htab == NULL)
4916 return FALSE;
4917
4918 fdh = lookup_fdh (eh, htab);
4919 if (fdh == NULL)
4920 {
4921 if (!info->relocatable
4922 && (eh->elf.root.type == bfd_link_hash_undefined
4923 || eh->elf.root.type == bfd_link_hash_undefweak)
4924 && eh->elf.ref_regular)
4925 {
4926 /* Make an undefweak function descriptor sym, which is enough to
4927 pull in an --as-needed shared lib, but won't cause link
4928 errors. Archives are handled elsewhere. */
4929 fdh = make_fdh (info, eh);
4930 if (fdh == NULL)
4931 return FALSE;
4932 fdh->elf.ref_regular = 1;
4933 }
4934 }
4935 else
4936 {
4937 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4938 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4939 if (entry_vis < descr_vis)
4940 fdh->elf.other += entry_vis - descr_vis;
4941 else if (entry_vis > descr_vis)
4942 eh->elf.other += descr_vis - entry_vis;
4943
4944 if ((fdh->elf.root.type == bfd_link_hash_defined
4945 || fdh->elf.root.type == bfd_link_hash_defweak)
4946 && eh->elf.root.type == bfd_link_hash_undefined)
4947 {
4948 eh->elf.root.type = bfd_link_hash_undefweak;
4949 eh->was_undefined = 1;
4950 htab->twiddled_syms = 1;
4951 }
4952 }
4953
4954 return TRUE;
4955 }
4956
4957 /* Set up opd section info and abiversion for IBFD, and process list
4958 of dot-symbols we made in link_hash_newfunc. */
4959
4960 static bfd_boolean
4961 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4962 {
4963 struct ppc_link_hash_table *htab;
4964 struct ppc_link_hash_entry **p, *eh;
4965 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4966
4967 if (opd != NULL && opd->size != 0)
4968 {
4969 if (abiversion (ibfd) == 0)
4970 set_abiversion (ibfd, 1);
4971 else if (abiversion (ibfd) == 2)
4972 {
4973 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4974 " version %d\n"),
4975 ibfd, abiversion (ibfd));
4976 bfd_set_error (bfd_error_bad_value);
4977 return FALSE;
4978 }
4979
4980 if ((ibfd->flags & DYNAMIC) == 0
4981 && (opd->flags & SEC_RELOC) != 0
4982 && opd->reloc_count != 0
4983 && !bfd_is_abs_section (opd->output_section))
4984 {
4985 /* Garbage collection needs some extra help with .opd sections.
4986 We don't want to necessarily keep everything referenced by
4987 relocs in .opd, as that would keep all functions. Instead,
4988 if we reference an .opd symbol (a function descriptor), we
4989 want to keep the function code symbol's section. This is
4990 easy for global symbols, but for local syms we need to keep
4991 information about the associated function section. */
4992 bfd_size_type amt;
4993 asection **opd_sym_map;
4994
4995 amt = opd->size * sizeof (*opd_sym_map) / 8;
4996 opd_sym_map = bfd_zalloc (ibfd, amt);
4997 if (opd_sym_map == NULL)
4998 return FALSE;
4999 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5000 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5001 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5002 }
5003 }
5004
5005 if (!is_ppc64_elf (info->output_bfd))
5006 return TRUE;
5007 htab = ppc_hash_table (info);
5008 if (htab == NULL)
5009 return FALSE;
5010
5011 /* For input files without an explicit abiversion in e_flags
5012 we should have flagged any with symbol st_other bits set
5013 as ELFv1 and above flagged those with .opd as ELFv2.
5014 Set the output abiversion if not yet set, and for any input
5015 still ambiguous, take its abiversion from the output.
5016 Differences in ABI are reported later. */
5017 if (abiversion (info->output_bfd) == 0)
5018 set_abiversion (info->output_bfd, abiversion (ibfd));
5019 else if (abiversion (ibfd) == 0)
5020 set_abiversion (ibfd, abiversion (info->output_bfd));
5021
5022 p = &htab->dot_syms;
5023 while ((eh = *p) != NULL)
5024 {
5025 *p = NULL;
5026 if (&eh->elf == htab->elf.hgot)
5027 ;
5028 else if (htab->elf.hgot == NULL
5029 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5030 htab->elf.hgot = &eh->elf;
5031 else if (!add_symbol_adjust (eh, info))
5032 return FALSE;
5033 p = &eh->u.next_dot_sym;
5034 }
5035
5036 /* Clear the list for non-ppc64 input files. */
5037 p = &htab->dot_syms;
5038 while ((eh = *p) != NULL)
5039 {
5040 *p = NULL;
5041 p = &eh->u.next_dot_sym;
5042 }
5043
5044 /* We need to fix the undefs list for any syms we have twiddled to
5045 undef_weak. */
5046 if (htab->twiddled_syms)
5047 {
5048 bfd_link_repair_undef_list (&htab->elf.root);
5049 htab->twiddled_syms = 0;
5050 }
5051 return TRUE;
5052 }
5053
5054 /* Undo hash table changes when an --as-needed input file is determined
5055 not to be needed. */
5056
5057 static bfd_boolean
5058 ppc64_elf_notice_as_needed (bfd *ibfd,
5059 struct bfd_link_info *info,
5060 enum notice_asneeded_action act)
5061 {
5062 if (act == notice_not_needed)
5063 {
5064 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5065
5066 if (htab == NULL)
5067 return FALSE;
5068
5069 htab->dot_syms = NULL;
5070 }
5071 return _bfd_elf_notice_as_needed (ibfd, info, act);
5072 }
5073
5074 /* If --just-symbols against a final linked binary, then assume we need
5075 toc adjusting stubs when calling functions defined there. */
5076
5077 static void
5078 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5079 {
5080 if ((sec->flags & SEC_CODE) != 0
5081 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5082 && is_ppc64_elf (sec->owner))
5083 {
5084 if (abiversion (sec->owner) >= 2
5085 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5086 sec->has_toc_reloc = 1;
5087 }
5088 _bfd_elf_link_just_syms (sec, info);
5089 }
5090
5091 static struct plt_entry **
5092 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5093 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5094 {
5095 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5096 struct plt_entry **local_plt;
5097 unsigned char *local_got_tls_masks;
5098
5099 if (local_got_ents == NULL)
5100 {
5101 bfd_size_type size = symtab_hdr->sh_info;
5102
5103 size *= (sizeof (*local_got_ents)
5104 + sizeof (*local_plt)
5105 + sizeof (*local_got_tls_masks));
5106 local_got_ents = bfd_zalloc (abfd, size);
5107 if (local_got_ents == NULL)
5108 return NULL;
5109 elf_local_got_ents (abfd) = local_got_ents;
5110 }
5111
5112 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5113 {
5114 struct got_entry *ent;
5115
5116 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5117 if (ent->addend == r_addend
5118 && ent->owner == abfd
5119 && ent->tls_type == tls_type)
5120 break;
5121 if (ent == NULL)
5122 {
5123 bfd_size_type amt = sizeof (*ent);
5124 ent = bfd_alloc (abfd, amt);
5125 if (ent == NULL)
5126 return FALSE;
5127 ent->next = local_got_ents[r_symndx];
5128 ent->addend = r_addend;
5129 ent->owner = abfd;
5130 ent->tls_type = tls_type;
5131 ent->is_indirect = FALSE;
5132 ent->got.refcount = 0;
5133 local_got_ents[r_symndx] = ent;
5134 }
5135 ent->got.refcount += 1;
5136 }
5137
5138 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5139 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5140 local_got_tls_masks[r_symndx] |= tls_type;
5141
5142 return local_plt + r_symndx;
5143 }
5144
5145 static bfd_boolean
5146 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5147 {
5148 struct plt_entry *ent;
5149
5150 for (ent = *plist; ent != NULL; ent = ent->next)
5151 if (ent->addend == addend)
5152 break;
5153 if (ent == NULL)
5154 {
5155 bfd_size_type amt = sizeof (*ent);
5156 ent = bfd_alloc (abfd, amt);
5157 if (ent == NULL)
5158 return FALSE;
5159 ent->next = *plist;
5160 ent->addend = addend;
5161 ent->plt.refcount = 0;
5162 *plist = ent;
5163 }
5164 ent->plt.refcount += 1;
5165 return TRUE;
5166 }
5167
5168 static bfd_boolean
5169 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5170 {
5171 return (r_type == R_PPC64_REL24
5172 || r_type == R_PPC64_REL14
5173 || r_type == R_PPC64_REL14_BRTAKEN
5174 || r_type == R_PPC64_REL14_BRNTAKEN
5175 || r_type == R_PPC64_ADDR24
5176 || r_type == R_PPC64_ADDR14
5177 || r_type == R_PPC64_ADDR14_BRTAKEN
5178 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5179 }
5180
5181 /* Look through the relocs for a section during the first phase, and
5182 calculate needed space in the global offset table, procedure
5183 linkage table, and dynamic reloc sections. */
5184
5185 static bfd_boolean
5186 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5187 asection *sec, const Elf_Internal_Rela *relocs)
5188 {
5189 struct ppc_link_hash_table *htab;
5190 Elf_Internal_Shdr *symtab_hdr;
5191 struct elf_link_hash_entry **sym_hashes;
5192 const Elf_Internal_Rela *rel;
5193 const Elf_Internal_Rela *rel_end;
5194 asection *sreloc;
5195 asection **opd_sym_map;
5196 struct elf_link_hash_entry *tga, *dottga;
5197
5198 if (info->relocatable)
5199 return TRUE;
5200
5201 /* Don't do anything special with non-loaded, non-alloced sections.
5202 In particular, any relocs in such sections should not affect GOT
5203 and PLT reference counting (ie. we don't allow them to create GOT
5204 or PLT entries), there's no possibility or desire to optimize TLS
5205 relocs, and there's not much point in propagating relocs to shared
5206 libs that the dynamic linker won't relocate. */
5207 if ((sec->flags & SEC_ALLOC) == 0)
5208 return TRUE;
5209
5210 BFD_ASSERT (is_ppc64_elf (abfd));
5211
5212 htab = ppc_hash_table (info);
5213 if (htab == NULL)
5214 return FALSE;
5215
5216 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5217 FALSE, FALSE, TRUE);
5218 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5219 FALSE, FALSE, TRUE);
5220 symtab_hdr = &elf_symtab_hdr (abfd);
5221 sym_hashes = elf_sym_hashes (abfd);
5222 sreloc = NULL;
5223 opd_sym_map = NULL;
5224 if (ppc64_elf_section_data (sec) != NULL
5225 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5226 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5227
5228 rel_end = relocs + sec->reloc_count;
5229 for (rel = relocs; rel < rel_end; rel++)
5230 {
5231 unsigned long r_symndx;
5232 struct elf_link_hash_entry *h;
5233 enum elf_ppc64_reloc_type r_type;
5234 int tls_type;
5235 struct _ppc64_elf_section_data *ppc64_sec;
5236 struct plt_entry **ifunc;
5237
5238 r_symndx = ELF64_R_SYM (rel->r_info);
5239 if (r_symndx < symtab_hdr->sh_info)
5240 h = NULL;
5241 else
5242 {
5243 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5244 h = elf_follow_link (h);
5245
5246 /* PR15323, ref flags aren't set for references in the same
5247 object. */
5248 h->root.non_ir_ref = 1;
5249
5250 if (h == htab->elf.hgot)
5251 sec->has_toc_reloc = 1;
5252 }
5253
5254 tls_type = 0;
5255 ifunc = NULL;
5256 if (h != NULL)
5257 {
5258 if (h->type == STT_GNU_IFUNC)
5259 {
5260 h->needs_plt = 1;
5261 ifunc = &h->plt.plist;
5262 }
5263 }
5264 else
5265 {
5266 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5267 abfd, r_symndx);
5268 if (isym == NULL)
5269 return FALSE;
5270
5271 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5272 {
5273 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5274 rel->r_addend, PLT_IFUNC);
5275 if (ifunc == NULL)
5276 return FALSE;
5277 }
5278 }
5279 r_type = ELF64_R_TYPE (rel->r_info);
5280 if (is_branch_reloc (r_type))
5281 {
5282 if (h != NULL && (h == tga || h == dottga))
5283 {
5284 if (rel != relocs
5285 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5286 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5287 /* We have a new-style __tls_get_addr call with a marker
5288 reloc. */
5289 ;
5290 else
5291 /* Mark this section as having an old-style call. */
5292 sec->has_tls_get_addr_call = 1;
5293 }
5294
5295 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5296 if (ifunc != NULL
5297 && !update_plt_info (abfd, ifunc, rel->r_addend))
5298 return FALSE;
5299 }
5300
5301 switch (r_type)
5302 {
5303 case R_PPC64_TLSGD:
5304 case R_PPC64_TLSLD:
5305 /* These special tls relocs tie a call to __tls_get_addr with
5306 its parameter symbol. */
5307 break;
5308
5309 case R_PPC64_GOT_TLSLD16:
5310 case R_PPC64_GOT_TLSLD16_LO:
5311 case R_PPC64_GOT_TLSLD16_HI:
5312 case R_PPC64_GOT_TLSLD16_HA:
5313 tls_type = TLS_TLS | TLS_LD;
5314 goto dogottls;
5315
5316 case R_PPC64_GOT_TLSGD16:
5317 case R_PPC64_GOT_TLSGD16_LO:
5318 case R_PPC64_GOT_TLSGD16_HI:
5319 case R_PPC64_GOT_TLSGD16_HA:
5320 tls_type = TLS_TLS | TLS_GD;
5321 goto dogottls;
5322
5323 case R_PPC64_GOT_TPREL16_DS:
5324 case R_PPC64_GOT_TPREL16_LO_DS:
5325 case R_PPC64_GOT_TPREL16_HI:
5326 case R_PPC64_GOT_TPREL16_HA:
5327 if (info->shared)
5328 info->flags |= DF_STATIC_TLS;
5329 tls_type = TLS_TLS | TLS_TPREL;
5330 goto dogottls;
5331
5332 case R_PPC64_GOT_DTPREL16_DS:
5333 case R_PPC64_GOT_DTPREL16_LO_DS:
5334 case R_PPC64_GOT_DTPREL16_HI:
5335 case R_PPC64_GOT_DTPREL16_HA:
5336 tls_type = TLS_TLS | TLS_DTPREL;
5337 dogottls:
5338 sec->has_tls_reloc = 1;
5339 /* Fall thru */
5340
5341 case R_PPC64_GOT16:
5342 case R_PPC64_GOT16_DS:
5343 case R_PPC64_GOT16_HA:
5344 case R_PPC64_GOT16_HI:
5345 case R_PPC64_GOT16_LO:
5346 case R_PPC64_GOT16_LO_DS:
5347 /* This symbol requires a global offset table entry. */
5348 sec->has_toc_reloc = 1;
5349 if (r_type == R_PPC64_GOT_TLSLD16
5350 || r_type == R_PPC64_GOT_TLSGD16
5351 || r_type == R_PPC64_GOT_TPREL16_DS
5352 || r_type == R_PPC64_GOT_DTPREL16_DS
5353 || r_type == R_PPC64_GOT16
5354 || r_type == R_PPC64_GOT16_DS)
5355 {
5356 htab->do_multi_toc = 1;
5357 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5358 }
5359
5360 if (ppc64_elf_tdata (abfd)->got == NULL
5361 && !create_got_section (abfd, info))
5362 return FALSE;
5363
5364 if (h != NULL)
5365 {
5366 struct ppc_link_hash_entry *eh;
5367 struct got_entry *ent;
5368
5369 eh = (struct ppc_link_hash_entry *) h;
5370 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5371 if (ent->addend == rel->r_addend
5372 && ent->owner == abfd
5373 && ent->tls_type == tls_type)
5374 break;
5375 if (ent == NULL)
5376 {
5377 bfd_size_type amt = sizeof (*ent);
5378 ent = bfd_alloc (abfd, amt);
5379 if (ent == NULL)
5380 return FALSE;
5381 ent->next = eh->elf.got.glist;
5382 ent->addend = rel->r_addend;
5383 ent->owner = abfd;
5384 ent->tls_type = tls_type;
5385 ent->is_indirect = FALSE;
5386 ent->got.refcount = 0;
5387 eh->elf.got.glist = ent;
5388 }
5389 ent->got.refcount += 1;
5390 eh->tls_mask |= tls_type;
5391 }
5392 else
5393 /* This is a global offset table entry for a local symbol. */
5394 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5395 rel->r_addend, tls_type))
5396 return FALSE;
5397
5398 /* We may also need a plt entry if the symbol turns out to be
5399 an ifunc. */
5400 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5401 {
5402 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5403 return FALSE;
5404 }
5405 break;
5406
5407 case R_PPC64_PLT16_HA:
5408 case R_PPC64_PLT16_HI:
5409 case R_PPC64_PLT16_LO:
5410 case R_PPC64_PLT32:
5411 case R_PPC64_PLT64:
5412 /* This symbol requires a procedure linkage table entry. We
5413 actually build the entry in adjust_dynamic_symbol,
5414 because this might be a case of linking PIC code without
5415 linking in any dynamic objects, in which case we don't
5416 need to generate a procedure linkage table after all. */
5417 if (h == NULL)
5418 {
5419 /* It does not make sense to have a procedure linkage
5420 table entry for a local symbol. */
5421 bfd_set_error (bfd_error_bad_value);
5422 return FALSE;
5423 }
5424 else
5425 {
5426 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5427 return FALSE;
5428 h->needs_plt = 1;
5429 if (h->root.root.string[0] == '.'
5430 && h->root.root.string[1] != '\0')
5431 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5432 }
5433 break;
5434
5435 /* The following relocations don't need to propagate the
5436 relocation if linking a shared object since they are
5437 section relative. */
5438 case R_PPC64_SECTOFF:
5439 case R_PPC64_SECTOFF_LO:
5440 case R_PPC64_SECTOFF_HI:
5441 case R_PPC64_SECTOFF_HA:
5442 case R_PPC64_SECTOFF_DS:
5443 case R_PPC64_SECTOFF_LO_DS:
5444 case R_PPC64_DTPREL16:
5445 case R_PPC64_DTPREL16_LO:
5446 case R_PPC64_DTPREL16_HI:
5447 case R_PPC64_DTPREL16_HA:
5448 case R_PPC64_DTPREL16_DS:
5449 case R_PPC64_DTPREL16_LO_DS:
5450 case R_PPC64_DTPREL16_HIGH:
5451 case R_PPC64_DTPREL16_HIGHA:
5452 case R_PPC64_DTPREL16_HIGHER:
5453 case R_PPC64_DTPREL16_HIGHERA:
5454 case R_PPC64_DTPREL16_HIGHEST:
5455 case R_PPC64_DTPREL16_HIGHESTA:
5456 break;
5457
5458 /* Nor do these. */
5459 case R_PPC64_REL16:
5460 case R_PPC64_REL16_LO:
5461 case R_PPC64_REL16_HI:
5462 case R_PPC64_REL16_HA:
5463 break;
5464
5465 /* Not supported as a dynamic relocation. */
5466 case R_PPC64_ADDR64_LOCAL:
5467 if (info->shared)
5468 {
5469 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5470 ppc_howto_init ();
5471 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5472 "in shared libraries and PIEs.\n"),
5473 abfd, sec, rel->r_offset,
5474 ppc64_elf_howto_table[r_type]->name);
5475 bfd_set_error (bfd_error_bad_value);
5476 return FALSE;
5477 }
5478 break;
5479
5480 case R_PPC64_TOC16:
5481 case R_PPC64_TOC16_DS:
5482 htab->do_multi_toc = 1;
5483 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5484 case R_PPC64_TOC16_LO:
5485 case R_PPC64_TOC16_HI:
5486 case R_PPC64_TOC16_HA:
5487 case R_PPC64_TOC16_LO_DS:
5488 sec->has_toc_reloc = 1;
5489 break;
5490
5491 /* This relocation describes the C++ object vtable hierarchy.
5492 Reconstruct it for later use during GC. */
5493 case R_PPC64_GNU_VTINHERIT:
5494 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5495 return FALSE;
5496 break;
5497
5498 /* This relocation describes which C++ vtable entries are actually
5499 used. Record for later use during GC. */
5500 case R_PPC64_GNU_VTENTRY:
5501 BFD_ASSERT (h != NULL);
5502 if (h != NULL
5503 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5504 return FALSE;
5505 break;
5506
5507 case R_PPC64_REL14:
5508 case R_PPC64_REL14_BRTAKEN:
5509 case R_PPC64_REL14_BRNTAKEN:
5510 {
5511 asection *dest = NULL;
5512
5513 /* Heuristic: If jumping outside our section, chances are
5514 we are going to need a stub. */
5515 if (h != NULL)
5516 {
5517 /* If the sym is weak it may be overridden later, so
5518 don't assume we know where a weak sym lives. */
5519 if (h->root.type == bfd_link_hash_defined)
5520 dest = h->root.u.def.section;
5521 }
5522 else
5523 {
5524 Elf_Internal_Sym *isym;
5525
5526 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5527 abfd, r_symndx);
5528 if (isym == NULL)
5529 return FALSE;
5530
5531 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5532 }
5533
5534 if (dest != sec)
5535 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5536 }
5537 /* Fall through. */
5538
5539 case R_PPC64_REL24:
5540 if (h != NULL && ifunc == NULL)
5541 {
5542 /* We may need a .plt entry if the function this reloc
5543 refers to is in a shared lib. */
5544 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5545 return FALSE;
5546 h->needs_plt = 1;
5547 if (h->root.root.string[0] == '.'
5548 && h->root.root.string[1] != '\0')
5549 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5550 if (h == tga || h == dottga)
5551 sec->has_tls_reloc = 1;
5552 }
5553 break;
5554
5555 case R_PPC64_TPREL64:
5556 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5557 if (info->shared)
5558 info->flags |= DF_STATIC_TLS;
5559 goto dotlstoc;
5560
5561 case R_PPC64_DTPMOD64:
5562 if (rel + 1 < rel_end
5563 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5564 && rel[1].r_offset == rel->r_offset + 8)
5565 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5566 else
5567 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5568 goto dotlstoc;
5569
5570 case R_PPC64_DTPREL64:
5571 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5572 if (rel != relocs
5573 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5574 && rel[-1].r_offset == rel->r_offset - 8)
5575 /* This is the second reloc of a dtpmod, dtprel pair.
5576 Don't mark with TLS_DTPREL. */
5577 goto dodyn;
5578
5579 dotlstoc:
5580 sec->has_tls_reloc = 1;
5581 if (h != NULL)
5582 {
5583 struct ppc_link_hash_entry *eh;
5584 eh = (struct ppc_link_hash_entry *) h;
5585 eh->tls_mask |= tls_type;
5586 }
5587 else
5588 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5589 rel->r_addend, tls_type))
5590 return FALSE;
5591
5592 ppc64_sec = ppc64_elf_section_data (sec);
5593 if (ppc64_sec->sec_type != sec_toc)
5594 {
5595 bfd_size_type amt;
5596
5597 /* One extra to simplify get_tls_mask. */
5598 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5599 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5600 if (ppc64_sec->u.toc.symndx == NULL)
5601 return FALSE;
5602 amt = sec->size * sizeof (bfd_vma) / 8;
5603 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5604 if (ppc64_sec->u.toc.add == NULL)
5605 return FALSE;
5606 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5607 ppc64_sec->sec_type = sec_toc;
5608 }
5609 BFD_ASSERT (rel->r_offset % 8 == 0);
5610 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5611 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5612
5613 /* Mark the second slot of a GD or LD entry.
5614 -1 to indicate GD and -2 to indicate LD. */
5615 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5616 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5617 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5618 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5619 goto dodyn;
5620
5621 case R_PPC64_TPREL16:
5622 case R_PPC64_TPREL16_LO:
5623 case R_PPC64_TPREL16_HI:
5624 case R_PPC64_TPREL16_HA:
5625 case R_PPC64_TPREL16_DS:
5626 case R_PPC64_TPREL16_LO_DS:
5627 case R_PPC64_TPREL16_HIGH:
5628 case R_PPC64_TPREL16_HIGHA:
5629 case R_PPC64_TPREL16_HIGHER:
5630 case R_PPC64_TPREL16_HIGHERA:
5631 case R_PPC64_TPREL16_HIGHEST:
5632 case R_PPC64_TPREL16_HIGHESTA:
5633 if (info->shared)
5634 {
5635 info->flags |= DF_STATIC_TLS;
5636 goto dodyn;
5637 }
5638 break;
5639
5640 case R_PPC64_ADDR64:
5641 if (opd_sym_map != NULL
5642 && rel + 1 < rel_end
5643 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5644 {
5645 if (h != NULL)
5646 {
5647 if (h->root.root.string[0] == '.'
5648 && h->root.root.string[1] != 0
5649 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5650 ;
5651 else
5652 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5653 }
5654 else
5655 {
5656 asection *s;
5657 Elf_Internal_Sym *isym;
5658
5659 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5660 abfd, r_symndx);
5661 if (isym == NULL)
5662 return FALSE;
5663
5664 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5665 if (s != NULL && s != sec)
5666 opd_sym_map[rel->r_offset / 8] = s;
5667 }
5668 }
5669 /* Fall through. */
5670
5671 case R_PPC64_ADDR16:
5672 case R_PPC64_ADDR16_DS:
5673 case R_PPC64_ADDR16_HA:
5674 case R_PPC64_ADDR16_HI:
5675 case R_PPC64_ADDR16_HIGH:
5676 case R_PPC64_ADDR16_HIGHA:
5677 case R_PPC64_ADDR16_HIGHER:
5678 case R_PPC64_ADDR16_HIGHERA:
5679 case R_PPC64_ADDR16_HIGHEST:
5680 case R_PPC64_ADDR16_HIGHESTA:
5681 case R_PPC64_ADDR16_LO:
5682 case R_PPC64_ADDR16_LO_DS:
5683 if (h != NULL && !info->shared && abiversion (abfd) != 1
5684 && rel->r_addend == 0)
5685 {
5686 /* We may need a .plt entry if this reloc refers to a
5687 function in a shared lib. */
5688 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5689 return FALSE;
5690 h->pointer_equality_needed = 1;
5691 }
5692 /* Fall through. */
5693
5694 case R_PPC64_REL30:
5695 case R_PPC64_REL32:
5696 case R_PPC64_REL64:
5697 case R_PPC64_ADDR14:
5698 case R_PPC64_ADDR14_BRNTAKEN:
5699 case R_PPC64_ADDR14_BRTAKEN:
5700 case R_PPC64_ADDR24:
5701 case R_PPC64_ADDR32:
5702 case R_PPC64_UADDR16:
5703 case R_PPC64_UADDR32:
5704 case R_PPC64_UADDR64:
5705 case R_PPC64_TOC:
5706 if (h != NULL && !info->shared)
5707 /* We may need a copy reloc. */
5708 h->non_got_ref = 1;
5709
5710 /* Don't propagate .opd relocs. */
5711 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5712 break;
5713
5714 /* If we are creating a shared library, and this is a reloc
5715 against a global symbol, or a non PC relative reloc
5716 against a local symbol, then we need to copy the reloc
5717 into the shared library. However, if we are linking with
5718 -Bsymbolic, we do not need to copy a reloc against a
5719 global symbol which is defined in an object we are
5720 including in the link (i.e., DEF_REGULAR is set). At
5721 this point we have not seen all the input files, so it is
5722 possible that DEF_REGULAR is not set now but will be set
5723 later (it is never cleared). In case of a weak definition,
5724 DEF_REGULAR may be cleared later by a strong definition in
5725 a shared library. We account for that possibility below by
5726 storing information in the dyn_relocs field of the hash
5727 table entry. A similar situation occurs when creating
5728 shared libraries and symbol visibility changes render the
5729 symbol local.
5730
5731 If on the other hand, we are creating an executable, we
5732 may need to keep relocations for symbols satisfied by a
5733 dynamic library if we manage to avoid copy relocs for the
5734 symbol. */
5735 dodyn:
5736 if ((info->shared
5737 && (must_be_dyn_reloc (info, r_type)
5738 || (h != NULL
5739 && (!SYMBOLIC_BIND (info, h)
5740 || h->root.type == bfd_link_hash_defweak
5741 || !h->def_regular))))
5742 || (ELIMINATE_COPY_RELOCS
5743 && !info->shared
5744 && h != NULL
5745 && (h->root.type == bfd_link_hash_defweak
5746 || !h->def_regular))
5747 || (!info->shared
5748 && ifunc != NULL))
5749 {
5750 /* We must copy these reloc types into the output file.
5751 Create a reloc section in dynobj and make room for
5752 this reloc. */
5753 if (sreloc == NULL)
5754 {
5755 sreloc = _bfd_elf_make_dynamic_reloc_section
5756 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5757
5758 if (sreloc == NULL)
5759 return FALSE;
5760 }
5761
5762 /* If this is a global symbol, we count the number of
5763 relocations we need for this symbol. */
5764 if (h != NULL)
5765 {
5766 struct elf_dyn_relocs *p;
5767 struct elf_dyn_relocs **head;
5768
5769 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5770 p = *head;
5771 if (p == NULL || p->sec != sec)
5772 {
5773 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5774 if (p == NULL)
5775 return FALSE;
5776 p->next = *head;
5777 *head = p;
5778 p->sec = sec;
5779 p->count = 0;
5780 p->pc_count = 0;
5781 }
5782 p->count += 1;
5783 if (!must_be_dyn_reloc (info, r_type))
5784 p->pc_count += 1;
5785 }
5786 else
5787 {
5788 /* Track dynamic relocs needed for local syms too.
5789 We really need local syms available to do this
5790 easily. Oh well. */
5791 struct ppc_dyn_relocs *p;
5792 struct ppc_dyn_relocs **head;
5793 bfd_boolean is_ifunc;
5794 asection *s;
5795 void *vpp;
5796 Elf_Internal_Sym *isym;
5797
5798 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5799 abfd, r_symndx);
5800 if (isym == NULL)
5801 return FALSE;
5802
5803 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5804 if (s == NULL)
5805 s = sec;
5806
5807 vpp = &elf_section_data (s)->local_dynrel;
5808 head = (struct ppc_dyn_relocs **) vpp;
5809 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5810 p = *head;
5811 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5812 p = p->next;
5813 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5814 {
5815 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5816 if (p == NULL)
5817 return FALSE;
5818 p->next = *head;
5819 *head = p;
5820 p->sec = sec;
5821 p->ifunc = is_ifunc;
5822 p->count = 0;
5823 }
5824 p->count += 1;
5825 }
5826 }
5827 break;
5828
5829 default:
5830 break;
5831 }
5832 }
5833
5834 return TRUE;
5835 }
5836
5837 /* Merge backend specific data from an object file to the output
5838 object file when linking. */
5839
5840 static bfd_boolean
5841 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5842 {
5843 unsigned long iflags, oflags;
5844
5845 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5846 return TRUE;
5847
5848 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5849 return TRUE;
5850
5851 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5852 return FALSE;
5853
5854 iflags = elf_elfheader (ibfd)->e_flags;
5855 oflags = elf_elfheader (obfd)->e_flags;
5856
5857 if (iflags & ~EF_PPC64_ABI)
5858 {
5859 (*_bfd_error_handler)
5860 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5861 bfd_set_error (bfd_error_bad_value);
5862 return FALSE;
5863 }
5864 else if (iflags != oflags && iflags != 0)
5865 {
5866 (*_bfd_error_handler)
5867 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5868 ibfd, iflags, oflags);
5869 bfd_set_error (bfd_error_bad_value);
5870 return FALSE;
5871 }
5872
5873 /* Merge Tag_compatibility attributes and any common GNU ones. */
5874 _bfd_elf_merge_object_attributes (ibfd, obfd);
5875
5876 return TRUE;
5877 }
5878
5879 static bfd_boolean
5880 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5881 {
5882 /* Print normal ELF private data. */
5883 _bfd_elf_print_private_bfd_data (abfd, ptr);
5884
5885 if (elf_elfheader (abfd)->e_flags != 0)
5886 {
5887 FILE *file = ptr;
5888
5889 /* xgettext:c-format */
5890 fprintf (file, _("private flags = 0x%lx:"),
5891 elf_elfheader (abfd)->e_flags);
5892
5893 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5894 fprintf (file, _(" [abiv%ld]"),
5895 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5896 fputc ('\n', file);
5897 }
5898
5899 return TRUE;
5900 }
5901
5902 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5903 of the code entry point, and its section. */
5904
5905 static bfd_vma
5906 opd_entry_value (asection *opd_sec,
5907 bfd_vma offset,
5908 asection **code_sec,
5909 bfd_vma *code_off,
5910 bfd_boolean in_code_sec)
5911 {
5912 bfd *opd_bfd = opd_sec->owner;
5913 Elf_Internal_Rela *relocs;
5914 Elf_Internal_Rela *lo, *hi, *look;
5915 bfd_vma val;
5916
5917 /* No relocs implies we are linking a --just-symbols object, or looking
5918 at a final linked executable with addr2line or somesuch. */
5919 if (opd_sec->reloc_count == 0)
5920 {
5921 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5922
5923 if (contents == NULL)
5924 {
5925 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5926 return (bfd_vma) -1;
5927 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5928 }
5929
5930 val = bfd_get_64 (opd_bfd, contents + offset);
5931 if (code_sec != NULL)
5932 {
5933 asection *sec, *likely = NULL;
5934
5935 if (in_code_sec)
5936 {
5937 sec = *code_sec;
5938 if (sec->vma <= val
5939 && val < sec->vma + sec->size)
5940 likely = sec;
5941 else
5942 val = -1;
5943 }
5944 else
5945 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5946 if (sec->vma <= val
5947 && (sec->flags & SEC_LOAD) != 0
5948 && (sec->flags & SEC_ALLOC) != 0)
5949 likely = sec;
5950 if (likely != NULL)
5951 {
5952 *code_sec = likely;
5953 if (code_off != NULL)
5954 *code_off = val - likely->vma;
5955 }
5956 }
5957 return val;
5958 }
5959
5960 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5961
5962 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5963 if (relocs == NULL)
5964 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5965
5966 /* Go find the opd reloc at the sym address. */
5967 lo = relocs;
5968 BFD_ASSERT (lo != NULL);
5969 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5970 val = (bfd_vma) -1;
5971 while (lo < hi)
5972 {
5973 look = lo + (hi - lo) / 2;
5974 if (look->r_offset < offset)
5975 lo = look + 1;
5976 else if (look->r_offset > offset)
5977 hi = look;
5978 else
5979 {
5980 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5981
5982 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5983 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5984 {
5985 unsigned long symndx = ELF64_R_SYM (look->r_info);
5986 asection *sec;
5987
5988 if (symndx < symtab_hdr->sh_info
5989 || elf_sym_hashes (opd_bfd) == NULL)
5990 {
5991 Elf_Internal_Sym *sym;
5992
5993 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5994 if (sym == NULL)
5995 {
5996 size_t symcnt = symtab_hdr->sh_info;
5997 if (elf_sym_hashes (opd_bfd) == NULL)
5998 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5999 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
6000 0, NULL, NULL, NULL);
6001 if (sym == NULL)
6002 break;
6003 symtab_hdr->contents = (bfd_byte *) sym;
6004 }
6005
6006 sym += symndx;
6007 val = sym->st_value;
6008 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6009 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6010 }
6011 else
6012 {
6013 struct elf_link_hash_entry **sym_hashes;
6014 struct elf_link_hash_entry *rh;
6015
6016 sym_hashes = elf_sym_hashes (opd_bfd);
6017 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6018 if (rh != NULL)
6019 {
6020 rh = elf_follow_link (rh);
6021 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6022 || rh->root.type == bfd_link_hash_defweak);
6023 val = rh->root.u.def.value;
6024 sec = rh->root.u.def.section;
6025 }
6026 else
6027 {
6028 /* Handle the odd case where we can be called
6029 during bfd_elf_link_add_symbols before the
6030 symbol hashes have been fully populated. */
6031 Elf_Internal_Sym *sym;
6032
6033 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, 1,
6034 symndx, NULL, NULL, NULL);
6035 if (sym == NULL)
6036 break;
6037
6038 val = sym->st_value;
6039 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6040 free (sym);
6041 }
6042 }
6043 val += look->r_addend;
6044 if (code_off != NULL)
6045 *code_off = val;
6046 if (code_sec != NULL)
6047 {
6048 if (in_code_sec && *code_sec != sec)
6049 return -1;
6050 else
6051 *code_sec = sec;
6052 }
6053 if (sec != NULL && sec->output_section != NULL)
6054 val += sec->output_section->vma + sec->output_offset;
6055 }
6056 break;
6057 }
6058 }
6059
6060 return val;
6061 }
6062
6063 /* If the ELF symbol SYM might be a function in SEC, return the
6064 function size and set *CODE_OFF to the function's entry point,
6065 otherwise return zero. */
6066
6067 static bfd_size_type
6068 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6069 bfd_vma *code_off)
6070 {
6071 bfd_size_type size;
6072
6073 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6074 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6075 return 0;
6076
6077 size = 0;
6078 if (!(sym->flags & BSF_SYNTHETIC))
6079 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6080
6081 if (strcmp (sym->section->name, ".opd") == 0)
6082 {
6083 if (opd_entry_value (sym->section, sym->value,
6084 &sec, code_off, TRUE) == (bfd_vma) -1)
6085 return 0;
6086 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6087 symbol. This size has nothing to do with the code size of the
6088 function, which is what we're supposed to return, but the
6089 code size isn't available without looking up the dot-sym.
6090 However, doing that would be a waste of time particularly
6091 since elf_find_function will look at the dot-sym anyway.
6092 Now, elf_find_function will keep the largest size of any
6093 function sym found at the code address of interest, so return
6094 1 here to avoid it incorrectly caching a larger function size
6095 for a small function. This does mean we return the wrong
6096 size for a new-ABI function of size 24, but all that does is
6097 disable caching for such functions. */
6098 if (size == 24)
6099 size = 1;
6100 }
6101 else
6102 {
6103 if (sym->section != sec)
6104 return 0;
6105 *code_off = sym->value;
6106 }
6107 if (size == 0)
6108 size = 1;
6109 return size;
6110 }
6111
6112 /* Return true if symbol is defined in a regular object file. */
6113
6114 static bfd_boolean
6115 is_static_defined (struct elf_link_hash_entry *h)
6116 {
6117 return ((h->root.type == bfd_link_hash_defined
6118 || h->root.type == bfd_link_hash_defweak)
6119 && h->root.u.def.section != NULL
6120 && h->root.u.def.section->output_section != NULL);
6121 }
6122
6123 /* If FDH is a function descriptor symbol, return the associated code
6124 entry symbol if it is defined. Return NULL otherwise. */
6125
6126 static struct ppc_link_hash_entry *
6127 defined_code_entry (struct ppc_link_hash_entry *fdh)
6128 {
6129 if (fdh->is_func_descriptor)
6130 {
6131 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6132 if (fh->elf.root.type == bfd_link_hash_defined
6133 || fh->elf.root.type == bfd_link_hash_defweak)
6134 return fh;
6135 }
6136 return NULL;
6137 }
6138
6139 /* If FH is a function code entry symbol, return the associated
6140 function descriptor symbol if it is defined. Return NULL otherwise. */
6141
6142 static struct ppc_link_hash_entry *
6143 defined_func_desc (struct ppc_link_hash_entry *fh)
6144 {
6145 if (fh->oh != NULL
6146 && fh->oh->is_func_descriptor)
6147 {
6148 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6149 if (fdh->elf.root.type == bfd_link_hash_defined
6150 || fdh->elf.root.type == bfd_link_hash_defweak)
6151 return fdh;
6152 }
6153 return NULL;
6154 }
6155
6156 /* Mark all our entry sym sections, both opd and code section. */
6157
6158 static void
6159 ppc64_elf_gc_keep (struct bfd_link_info *info)
6160 {
6161 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6162 struct bfd_sym_chain *sym;
6163
6164 if (htab == NULL)
6165 return;
6166
6167 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6168 {
6169 struct ppc_link_hash_entry *eh, *fh;
6170 asection *sec;
6171
6172 eh = (struct ppc_link_hash_entry *)
6173 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6174 if (eh == NULL)
6175 continue;
6176 if (eh->elf.root.type != bfd_link_hash_defined
6177 && eh->elf.root.type != bfd_link_hash_defweak)
6178 continue;
6179
6180 fh = defined_code_entry (eh);
6181 if (fh != NULL)
6182 {
6183 sec = fh->elf.root.u.def.section;
6184 sec->flags |= SEC_KEEP;
6185 }
6186 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6187 && opd_entry_value (eh->elf.root.u.def.section,
6188 eh->elf.root.u.def.value,
6189 &sec, NULL, FALSE) != (bfd_vma) -1)
6190 sec->flags |= SEC_KEEP;
6191
6192 sec = eh->elf.root.u.def.section;
6193 sec->flags |= SEC_KEEP;
6194 }
6195 }
6196
6197 /* Mark sections containing dynamically referenced symbols. When
6198 building shared libraries, we must assume that any visible symbol is
6199 referenced. */
6200
6201 static bfd_boolean
6202 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6203 {
6204 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6205 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6206 struct ppc_link_hash_entry *fdh;
6207 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6208
6209 /* Dynamic linking info is on the func descriptor sym. */
6210 fdh = defined_func_desc (eh);
6211 if (fdh != NULL)
6212 eh = fdh;
6213
6214 if ((eh->elf.root.type == bfd_link_hash_defined
6215 || eh->elf.root.type == bfd_link_hash_defweak)
6216 && (eh->elf.ref_dynamic
6217 || (eh->elf.def_regular
6218 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6219 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6220 && (!info->executable
6221 || info->export_dynamic
6222 || (eh->elf.dynamic
6223 && d != NULL
6224 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6225 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6226 || !bfd_hide_sym_by_version (info->version_info,
6227 eh->elf.root.root.string)))))
6228 {
6229 asection *code_sec;
6230 struct ppc_link_hash_entry *fh;
6231
6232 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6233
6234 /* Function descriptor syms cause the associated
6235 function code sym section to be marked. */
6236 fh = defined_code_entry (eh);
6237 if (fh != NULL)
6238 {
6239 code_sec = fh->elf.root.u.def.section;
6240 code_sec->flags |= SEC_KEEP;
6241 }
6242 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6243 && opd_entry_value (eh->elf.root.u.def.section,
6244 eh->elf.root.u.def.value,
6245 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6246 code_sec->flags |= SEC_KEEP;
6247 }
6248
6249 return TRUE;
6250 }
6251
6252 /* Return the section that should be marked against GC for a given
6253 relocation. */
6254
6255 static asection *
6256 ppc64_elf_gc_mark_hook (asection *sec,
6257 struct bfd_link_info *info,
6258 Elf_Internal_Rela *rel,
6259 struct elf_link_hash_entry *h,
6260 Elf_Internal_Sym *sym)
6261 {
6262 asection *rsec;
6263
6264 /* Syms return NULL if we're marking .opd, so we avoid marking all
6265 function sections, as all functions are referenced in .opd. */
6266 rsec = NULL;
6267 if (get_opd_info (sec) != NULL)
6268 return rsec;
6269
6270 if (h != NULL)
6271 {
6272 enum elf_ppc64_reloc_type r_type;
6273 struct ppc_link_hash_entry *eh, *fh, *fdh;
6274
6275 r_type = ELF64_R_TYPE (rel->r_info);
6276 switch (r_type)
6277 {
6278 case R_PPC64_GNU_VTINHERIT:
6279 case R_PPC64_GNU_VTENTRY:
6280 break;
6281
6282 default:
6283 switch (h->root.type)
6284 {
6285 case bfd_link_hash_defined:
6286 case bfd_link_hash_defweak:
6287 eh = (struct ppc_link_hash_entry *) h;
6288 fdh = defined_func_desc (eh);
6289 if (fdh != NULL)
6290 eh = fdh;
6291
6292 /* Function descriptor syms cause the associated
6293 function code sym section to be marked. */
6294 fh = defined_code_entry (eh);
6295 if (fh != NULL)
6296 {
6297 /* They also mark their opd section. */
6298 eh->elf.root.u.def.section->gc_mark = 1;
6299
6300 rsec = fh->elf.root.u.def.section;
6301 }
6302 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6303 && opd_entry_value (eh->elf.root.u.def.section,
6304 eh->elf.root.u.def.value,
6305 &rsec, NULL, FALSE) != (bfd_vma) -1)
6306 eh->elf.root.u.def.section->gc_mark = 1;
6307 else
6308 rsec = h->root.u.def.section;
6309 break;
6310
6311 case bfd_link_hash_common:
6312 rsec = h->root.u.c.p->section;
6313 break;
6314
6315 default:
6316 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6317 }
6318 }
6319 }
6320 else
6321 {
6322 struct _opd_sec_data *opd;
6323
6324 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6325 opd = get_opd_info (rsec);
6326 if (opd != NULL && opd->func_sec != NULL)
6327 {
6328 rsec->gc_mark = 1;
6329
6330 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
6331 }
6332 }
6333
6334 return rsec;
6335 }
6336
6337 /* Update the .got, .plt. and dynamic reloc reference counts for the
6338 section being removed. */
6339
6340 static bfd_boolean
6341 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6342 asection *sec, const Elf_Internal_Rela *relocs)
6343 {
6344 struct ppc_link_hash_table *htab;
6345 Elf_Internal_Shdr *symtab_hdr;
6346 struct elf_link_hash_entry **sym_hashes;
6347 struct got_entry **local_got_ents;
6348 const Elf_Internal_Rela *rel, *relend;
6349
6350 if (info->relocatable)
6351 return TRUE;
6352
6353 if ((sec->flags & SEC_ALLOC) == 0)
6354 return TRUE;
6355
6356 elf_section_data (sec)->local_dynrel = NULL;
6357
6358 htab = ppc_hash_table (info);
6359 if (htab == NULL)
6360 return FALSE;
6361
6362 symtab_hdr = &elf_symtab_hdr (abfd);
6363 sym_hashes = elf_sym_hashes (abfd);
6364 local_got_ents = elf_local_got_ents (abfd);
6365
6366 relend = relocs + sec->reloc_count;
6367 for (rel = relocs; rel < relend; rel++)
6368 {
6369 unsigned long r_symndx;
6370 enum elf_ppc64_reloc_type r_type;
6371 struct elf_link_hash_entry *h = NULL;
6372 unsigned char tls_type = 0;
6373
6374 r_symndx = ELF64_R_SYM (rel->r_info);
6375 r_type = ELF64_R_TYPE (rel->r_info);
6376 if (r_symndx >= symtab_hdr->sh_info)
6377 {
6378 struct ppc_link_hash_entry *eh;
6379 struct elf_dyn_relocs **pp;
6380 struct elf_dyn_relocs *p;
6381
6382 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6383 h = elf_follow_link (h);
6384 eh = (struct ppc_link_hash_entry *) h;
6385
6386 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6387 if (p->sec == sec)
6388 {
6389 /* Everything must go for SEC. */
6390 *pp = p->next;
6391 break;
6392 }
6393 }
6394
6395 if (is_branch_reloc (r_type))
6396 {
6397 struct plt_entry **ifunc = NULL;
6398 if (h != NULL)
6399 {
6400 if (h->type == STT_GNU_IFUNC)
6401 ifunc = &h->plt.plist;
6402 }
6403 else if (local_got_ents != NULL)
6404 {
6405 struct plt_entry **local_plt = (struct plt_entry **)
6406 (local_got_ents + symtab_hdr->sh_info);
6407 unsigned char *local_got_tls_masks = (unsigned char *)
6408 (local_plt + symtab_hdr->sh_info);
6409 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6410 ifunc = local_plt + r_symndx;
6411 }
6412 if (ifunc != NULL)
6413 {
6414 struct plt_entry *ent;
6415
6416 for (ent = *ifunc; ent != NULL; ent = ent->next)
6417 if (ent->addend == rel->r_addend)
6418 break;
6419 if (ent == NULL)
6420 abort ();
6421 if (ent->plt.refcount > 0)
6422 ent->plt.refcount -= 1;
6423 continue;
6424 }
6425 }
6426
6427 switch (r_type)
6428 {
6429 case R_PPC64_GOT_TLSLD16:
6430 case R_PPC64_GOT_TLSLD16_LO:
6431 case R_PPC64_GOT_TLSLD16_HI:
6432 case R_PPC64_GOT_TLSLD16_HA:
6433 tls_type = TLS_TLS | TLS_LD;
6434 goto dogot;
6435
6436 case R_PPC64_GOT_TLSGD16:
6437 case R_PPC64_GOT_TLSGD16_LO:
6438 case R_PPC64_GOT_TLSGD16_HI:
6439 case R_PPC64_GOT_TLSGD16_HA:
6440 tls_type = TLS_TLS | TLS_GD;
6441 goto dogot;
6442
6443 case R_PPC64_GOT_TPREL16_DS:
6444 case R_PPC64_GOT_TPREL16_LO_DS:
6445 case R_PPC64_GOT_TPREL16_HI:
6446 case R_PPC64_GOT_TPREL16_HA:
6447 tls_type = TLS_TLS | TLS_TPREL;
6448 goto dogot;
6449
6450 case R_PPC64_GOT_DTPREL16_DS:
6451 case R_PPC64_GOT_DTPREL16_LO_DS:
6452 case R_PPC64_GOT_DTPREL16_HI:
6453 case R_PPC64_GOT_DTPREL16_HA:
6454 tls_type = TLS_TLS | TLS_DTPREL;
6455 goto dogot;
6456
6457 case R_PPC64_GOT16:
6458 case R_PPC64_GOT16_DS:
6459 case R_PPC64_GOT16_HA:
6460 case R_PPC64_GOT16_HI:
6461 case R_PPC64_GOT16_LO:
6462 case R_PPC64_GOT16_LO_DS:
6463 dogot:
6464 {
6465 struct got_entry *ent;
6466
6467 if (h != NULL)
6468 ent = h->got.glist;
6469 else
6470 ent = local_got_ents[r_symndx];
6471
6472 for (; ent != NULL; ent = ent->next)
6473 if (ent->addend == rel->r_addend
6474 && ent->owner == abfd
6475 && ent->tls_type == tls_type)
6476 break;
6477 if (ent == NULL)
6478 abort ();
6479 if (ent->got.refcount > 0)
6480 ent->got.refcount -= 1;
6481 }
6482 break;
6483
6484 case R_PPC64_PLT16_HA:
6485 case R_PPC64_PLT16_HI:
6486 case R_PPC64_PLT16_LO:
6487 case R_PPC64_PLT32:
6488 case R_PPC64_PLT64:
6489 case R_PPC64_REL14:
6490 case R_PPC64_REL14_BRNTAKEN:
6491 case R_PPC64_REL14_BRTAKEN:
6492 case R_PPC64_REL24:
6493 if (h != NULL)
6494 {
6495 struct plt_entry *ent;
6496
6497 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6498 if (ent->addend == rel->r_addend)
6499 break;
6500 if (ent != NULL && ent->plt.refcount > 0)
6501 ent->plt.refcount -= 1;
6502 }
6503 break;
6504
6505 default:
6506 break;
6507 }
6508 }
6509 return TRUE;
6510 }
6511
6512 /* The maximum size of .sfpr. */
6513 #define SFPR_MAX (218*4)
6514
6515 struct sfpr_def_parms
6516 {
6517 const char name[12];
6518 unsigned char lo, hi;
6519 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6520 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6521 };
6522
6523 /* Auto-generate _save*, _rest* functions in .sfpr. */
6524
6525 static bfd_boolean
6526 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6527 {
6528 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6529 unsigned int i;
6530 size_t len = strlen (parm->name);
6531 bfd_boolean writing = FALSE;
6532 char sym[16];
6533
6534 if (htab == NULL)
6535 return FALSE;
6536
6537 memcpy (sym, parm->name, len);
6538 sym[len + 2] = 0;
6539
6540 for (i = parm->lo; i <= parm->hi; i++)
6541 {
6542 struct elf_link_hash_entry *h;
6543
6544 sym[len + 0] = i / 10 + '0';
6545 sym[len + 1] = i % 10 + '0';
6546 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6547 if (h != NULL
6548 && !h->def_regular)
6549 {
6550 h->root.type = bfd_link_hash_defined;
6551 h->root.u.def.section = htab->sfpr;
6552 h->root.u.def.value = htab->sfpr->size;
6553 h->type = STT_FUNC;
6554 h->def_regular = 1;
6555 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6556 writing = TRUE;
6557 if (htab->sfpr->contents == NULL)
6558 {
6559 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6560 if (htab->sfpr->contents == NULL)
6561 return FALSE;
6562 }
6563 }
6564 if (writing)
6565 {
6566 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6567 if (i != parm->hi)
6568 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6569 else
6570 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6571 htab->sfpr->size = p - htab->sfpr->contents;
6572 }
6573 }
6574
6575 return TRUE;
6576 }
6577
6578 static bfd_byte *
6579 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6580 {
6581 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6582 return p + 4;
6583 }
6584
6585 static bfd_byte *
6586 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6587 {
6588 p = savegpr0 (abfd, p, r);
6589 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6590 p = p + 4;
6591 bfd_put_32 (abfd, BLR, p);
6592 return p + 4;
6593 }
6594
6595 static bfd_byte *
6596 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6597 {
6598 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6599 return p + 4;
6600 }
6601
6602 static bfd_byte *
6603 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6604 {
6605 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6606 p = p + 4;
6607 p = restgpr0 (abfd, p, r);
6608 bfd_put_32 (abfd, MTLR_R0, p);
6609 p = p + 4;
6610 if (r == 29)
6611 {
6612 p = restgpr0 (abfd, p, 30);
6613 p = restgpr0 (abfd, p, 31);
6614 }
6615 bfd_put_32 (abfd, BLR, p);
6616 return p + 4;
6617 }
6618
6619 static bfd_byte *
6620 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6621 {
6622 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6623 return p + 4;
6624 }
6625
6626 static bfd_byte *
6627 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6628 {
6629 p = savegpr1 (abfd, p, r);
6630 bfd_put_32 (abfd, BLR, p);
6631 return p + 4;
6632 }
6633
6634 static bfd_byte *
6635 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6636 {
6637 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6638 return p + 4;
6639 }
6640
6641 static bfd_byte *
6642 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6643 {
6644 p = restgpr1 (abfd, p, r);
6645 bfd_put_32 (abfd, BLR, p);
6646 return p + 4;
6647 }
6648
6649 static bfd_byte *
6650 savefpr (bfd *abfd, bfd_byte *p, int r)
6651 {
6652 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6653 return p + 4;
6654 }
6655
6656 static bfd_byte *
6657 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6658 {
6659 p = savefpr (abfd, p, r);
6660 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6661 p = p + 4;
6662 bfd_put_32 (abfd, BLR, p);
6663 return p + 4;
6664 }
6665
6666 static bfd_byte *
6667 restfpr (bfd *abfd, bfd_byte *p, int r)
6668 {
6669 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6670 return p + 4;
6671 }
6672
6673 static bfd_byte *
6674 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6675 {
6676 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6677 p = p + 4;
6678 p = restfpr (abfd, p, r);
6679 bfd_put_32 (abfd, MTLR_R0, p);
6680 p = p + 4;
6681 if (r == 29)
6682 {
6683 p = restfpr (abfd, p, 30);
6684 p = restfpr (abfd, p, 31);
6685 }
6686 bfd_put_32 (abfd, BLR, p);
6687 return p + 4;
6688 }
6689
6690 static bfd_byte *
6691 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6692 {
6693 p = savefpr (abfd, p, r);
6694 bfd_put_32 (abfd, BLR, p);
6695 return p + 4;
6696 }
6697
6698 static bfd_byte *
6699 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6700 {
6701 p = restfpr (abfd, p, r);
6702 bfd_put_32 (abfd, BLR, p);
6703 return p + 4;
6704 }
6705
6706 static bfd_byte *
6707 savevr (bfd *abfd, bfd_byte *p, int r)
6708 {
6709 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6710 p = p + 4;
6711 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6712 return p + 4;
6713 }
6714
6715 static bfd_byte *
6716 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6717 {
6718 p = savevr (abfd, p, r);
6719 bfd_put_32 (abfd, BLR, p);
6720 return p + 4;
6721 }
6722
6723 static bfd_byte *
6724 restvr (bfd *abfd, bfd_byte *p, int r)
6725 {
6726 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6727 p = p + 4;
6728 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6729 return p + 4;
6730 }
6731
6732 static bfd_byte *
6733 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6734 {
6735 p = restvr (abfd, p, r);
6736 bfd_put_32 (abfd, BLR, p);
6737 return p + 4;
6738 }
6739
6740 /* Called via elf_link_hash_traverse to transfer dynamic linking
6741 information on function code symbol entries to their corresponding
6742 function descriptor symbol entries. */
6743
6744 static bfd_boolean
6745 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6746 {
6747 struct bfd_link_info *info;
6748 struct ppc_link_hash_table *htab;
6749 struct plt_entry *ent;
6750 struct ppc_link_hash_entry *fh;
6751 struct ppc_link_hash_entry *fdh;
6752 bfd_boolean force_local;
6753
6754 fh = (struct ppc_link_hash_entry *) h;
6755 if (fh->elf.root.type == bfd_link_hash_indirect)
6756 return TRUE;
6757
6758 info = inf;
6759 htab = ppc_hash_table (info);
6760 if (htab == NULL)
6761 return FALSE;
6762
6763 /* Resolve undefined references to dot-symbols as the value
6764 in the function descriptor, if we have one in a regular object.
6765 This is to satisfy cases like ".quad .foo". Calls to functions
6766 in dynamic objects are handled elsewhere. */
6767 if (fh->elf.root.type == bfd_link_hash_undefweak
6768 && fh->was_undefined
6769 && (fdh = defined_func_desc (fh)) != NULL
6770 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6771 && opd_entry_value (fdh->elf.root.u.def.section,
6772 fdh->elf.root.u.def.value,
6773 &fh->elf.root.u.def.section,
6774 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6775 {
6776 fh->elf.root.type = fdh->elf.root.type;
6777 fh->elf.forced_local = 1;
6778 fh->elf.def_regular = fdh->elf.def_regular;
6779 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6780 }
6781
6782 /* If this is a function code symbol, transfer dynamic linking
6783 information to the function descriptor symbol. */
6784 if (!fh->is_func)
6785 return TRUE;
6786
6787 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6788 if (ent->plt.refcount > 0)
6789 break;
6790 if (ent == NULL
6791 || fh->elf.root.root.string[0] != '.'
6792 || fh->elf.root.root.string[1] == '\0')
6793 return TRUE;
6794
6795 /* Find the corresponding function descriptor symbol. Create it
6796 as undefined if necessary. */
6797
6798 fdh = lookup_fdh (fh, htab);
6799 if (fdh == NULL
6800 && !info->executable
6801 && (fh->elf.root.type == bfd_link_hash_undefined
6802 || fh->elf.root.type == bfd_link_hash_undefweak))
6803 {
6804 fdh = make_fdh (info, fh);
6805 if (fdh == NULL)
6806 return FALSE;
6807 }
6808
6809 /* Fake function descriptors are made undefweak. If the function
6810 code symbol is strong undefined, make the fake sym the same.
6811 If the function code symbol is defined, then force the fake
6812 descriptor local; We can't support overriding of symbols in a
6813 shared library on a fake descriptor. */
6814
6815 if (fdh != NULL
6816 && fdh->fake
6817 && fdh->elf.root.type == bfd_link_hash_undefweak)
6818 {
6819 if (fh->elf.root.type == bfd_link_hash_undefined)
6820 {
6821 fdh->elf.root.type = bfd_link_hash_undefined;
6822 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6823 }
6824 else if (fh->elf.root.type == bfd_link_hash_defined
6825 || fh->elf.root.type == bfd_link_hash_defweak)
6826 {
6827 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6828 }
6829 }
6830
6831 if (fdh != NULL
6832 && !fdh->elf.forced_local
6833 && (!info->executable
6834 || fdh->elf.def_dynamic
6835 || fdh->elf.ref_dynamic
6836 || (fdh->elf.root.type == bfd_link_hash_undefweak
6837 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6838 {
6839 if (fdh->elf.dynindx == -1)
6840 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6841 return FALSE;
6842 fdh->elf.ref_regular |= fh->elf.ref_regular;
6843 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6844 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6845 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6846 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6847 {
6848 move_plt_plist (fh, fdh);
6849 fdh->elf.needs_plt = 1;
6850 }
6851 fdh->is_func_descriptor = 1;
6852 fdh->oh = fh;
6853 fh->oh = fdh;
6854 }
6855
6856 /* Now that the info is on the function descriptor, clear the
6857 function code sym info. Any function code syms for which we
6858 don't have a definition in a regular file, we force local.
6859 This prevents a shared library from exporting syms that have
6860 been imported from another library. Function code syms that
6861 are really in the library we must leave global to prevent the
6862 linker dragging in a definition from a static library. */
6863 force_local = (!fh->elf.def_regular
6864 || fdh == NULL
6865 || !fdh->elf.def_regular
6866 || fdh->elf.forced_local);
6867 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6868
6869 return TRUE;
6870 }
6871
6872 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6873 this hook to a) provide some gcc support functions, and b) transfer
6874 dynamic linking information gathered so far on function code symbol
6875 entries, to their corresponding function descriptor symbol entries. */
6876
6877 static bfd_boolean
6878 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6879 struct bfd_link_info *info)
6880 {
6881 struct ppc_link_hash_table *htab;
6882 unsigned int i;
6883 static const struct sfpr_def_parms funcs[] =
6884 {
6885 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6886 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6887 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6888 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6889 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6890 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6891 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6892 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6893 { "._savef", 14, 31, savefpr, savefpr1_tail },
6894 { "._restf", 14, 31, restfpr, restfpr1_tail },
6895 { "_savevr_", 20, 31, savevr, savevr_tail },
6896 { "_restvr_", 20, 31, restvr, restvr_tail }
6897 };
6898
6899 htab = ppc_hash_table (info);
6900 if (htab == NULL)
6901 return FALSE;
6902
6903 if (!info->relocatable
6904 && htab->elf.hgot != NULL)
6905 {
6906 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6907 /* Make .TOC. defined so as to prevent it being made dynamic.
6908 The wrong value here is fixed later in ppc64_elf_set_toc. */
6909 htab->elf.hgot->type = STT_OBJECT;
6910 htab->elf.hgot->root.type = bfd_link_hash_defined;
6911 htab->elf.hgot->root.u.def.value = 0;
6912 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6913 htab->elf.hgot->def_regular = 1;
6914 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6915 | STV_HIDDEN);
6916 }
6917
6918 if (htab->sfpr == NULL)
6919 /* We don't have any relocs. */
6920 return TRUE;
6921
6922 /* Provide any missing _save* and _rest* functions. */
6923 htab->sfpr->size = 0;
6924 if (htab->params->save_restore_funcs)
6925 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6926 if (!sfpr_define (info, &funcs[i]))
6927 return FALSE;
6928
6929 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6930
6931 if (htab->sfpr->size == 0)
6932 htab->sfpr->flags |= SEC_EXCLUDE;
6933
6934 return TRUE;
6935 }
6936
6937 /* Return true if we have dynamic relocs that apply to read-only sections. */
6938
6939 static bfd_boolean
6940 readonly_dynrelocs (struct elf_link_hash_entry *h)
6941 {
6942 struct ppc_link_hash_entry *eh;
6943 struct elf_dyn_relocs *p;
6944
6945 eh = (struct ppc_link_hash_entry *) h;
6946 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6947 {
6948 asection *s = p->sec->output_section;
6949
6950 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6951 return TRUE;
6952 }
6953 return FALSE;
6954 }
6955
6956 /* Adjust a symbol defined by a dynamic object and referenced by a
6957 regular object. The current definition is in some section of the
6958 dynamic object, but we're not including those sections. We have to
6959 change the definition to something the rest of the link can
6960 understand. */
6961
6962 static bfd_boolean
6963 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6964 struct elf_link_hash_entry *h)
6965 {
6966 struct ppc_link_hash_table *htab;
6967 asection *s;
6968
6969 htab = ppc_hash_table (info);
6970 if (htab == NULL)
6971 return FALSE;
6972
6973 /* Deal with function syms. */
6974 if (h->type == STT_FUNC
6975 || h->type == STT_GNU_IFUNC
6976 || h->needs_plt)
6977 {
6978 /* Clear procedure linkage table information for any symbol that
6979 won't need a .plt entry. */
6980 struct plt_entry *ent;
6981 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6982 if (ent->plt.refcount > 0)
6983 break;
6984 if (ent == NULL
6985 || (h->type != STT_GNU_IFUNC
6986 && (SYMBOL_CALLS_LOCAL (info, h)
6987 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6988 && h->root.type == bfd_link_hash_undefweak))))
6989 {
6990 h->plt.plist = NULL;
6991 h->needs_plt = 0;
6992 h->pointer_equality_needed = 0;
6993 }
6994 else if (abiversion (info->output_bfd) == 2)
6995 {
6996 /* Taking a function's address in a read/write section
6997 doesn't require us to define the function symbol in the
6998 executable on a global entry stub. A dynamic reloc can
6999 be used instead. */
7000 if (h->pointer_equality_needed
7001 && h->type != STT_GNU_IFUNC
7002 && !readonly_dynrelocs (h))
7003 {
7004 h->pointer_equality_needed = 0;
7005 h->non_got_ref = 0;
7006 }
7007
7008 /* After adjust_dynamic_symbol, non_got_ref set in the
7009 non-shared case means that we have allocated space in
7010 .dynbss for the symbol and thus dyn_relocs for this
7011 symbol should be discarded.
7012 If we get here we know we are making a PLT entry for this
7013 symbol, and in an executable we'd normally resolve
7014 relocations against this symbol to the PLT entry. Allow
7015 dynamic relocs if the reference is weak, and the dynamic
7016 relocs will not cause text relocation. */
7017 else if (!h->ref_regular_nonweak
7018 && h->non_got_ref
7019 && h->type != STT_GNU_IFUNC
7020 && !readonly_dynrelocs (h))
7021 h->non_got_ref = 0;
7022
7023 /* If making a plt entry, then we don't need copy relocs. */
7024 return TRUE;
7025 }
7026 }
7027 else
7028 h->plt.plist = NULL;
7029
7030 /* If this is a weak symbol, and there is a real definition, the
7031 processor independent code will have arranged for us to see the
7032 real definition first, and we can just use the same value. */
7033 if (h->u.weakdef != NULL)
7034 {
7035 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7036 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7037 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7038 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7039 if (ELIMINATE_COPY_RELOCS)
7040 h->non_got_ref = h->u.weakdef->non_got_ref;
7041 return TRUE;
7042 }
7043
7044 /* If we are creating a shared library, we must presume that the
7045 only references to the symbol are via the global offset table.
7046 For such cases we need not do anything here; the relocations will
7047 be handled correctly by relocate_section. */
7048 if (info->shared)
7049 return TRUE;
7050
7051 /* If there are no references to this symbol that do not use the
7052 GOT, we don't need to generate a copy reloc. */
7053 if (!h->non_got_ref)
7054 return TRUE;
7055
7056 /* Don't generate a copy reloc for symbols defined in the executable. */
7057 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7058 return TRUE;
7059
7060 /* If we didn't find any dynamic relocs in read-only sections, then
7061 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7062 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7063 {
7064 h->non_got_ref = 0;
7065 return TRUE;
7066 }
7067
7068 if (h->plt.plist != NULL)
7069 {
7070 /* We should never get here, but unfortunately there are versions
7071 of gcc out there that improperly (for this ABI) put initialized
7072 function pointers, vtable refs and suchlike in read-only
7073 sections. Allow them to proceed, but warn that this might
7074 break at runtime. */
7075 info->callbacks->einfo
7076 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7077 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7078 h->root.root.string);
7079 }
7080
7081 /* This is a reference to a symbol defined by a dynamic object which
7082 is not a function. */
7083
7084 /* We must allocate the symbol in our .dynbss section, which will
7085 become part of the .bss section of the executable. There will be
7086 an entry for this symbol in the .dynsym section. The dynamic
7087 object will contain position independent code, so all references
7088 from the dynamic object to this symbol will go through the global
7089 offset table. The dynamic linker will use the .dynsym entry to
7090 determine the address it must put in the global offset table, so
7091 both the dynamic object and the regular object will refer to the
7092 same memory location for the variable. */
7093
7094 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7095 to copy the initial value out of the dynamic object and into the
7096 runtime process image. We need to remember the offset into the
7097 .rela.bss section we are going to use. */
7098 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7099 {
7100 htab->relbss->size += sizeof (Elf64_External_Rela);
7101 h->needs_copy = 1;
7102 }
7103
7104 s = htab->dynbss;
7105
7106 return _bfd_elf_adjust_dynamic_copy (h, s);
7107 }
7108
7109 /* If given a function descriptor symbol, hide both the function code
7110 sym and the descriptor. */
7111 static void
7112 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7113 struct elf_link_hash_entry *h,
7114 bfd_boolean force_local)
7115 {
7116 struct ppc_link_hash_entry *eh;
7117 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7118
7119 eh = (struct ppc_link_hash_entry *) h;
7120 if (eh->is_func_descriptor)
7121 {
7122 struct ppc_link_hash_entry *fh = eh->oh;
7123
7124 if (fh == NULL)
7125 {
7126 const char *p, *q;
7127 struct ppc_link_hash_table *htab;
7128 char save;
7129
7130 /* We aren't supposed to use alloca in BFD because on
7131 systems which do not have alloca the version in libiberty
7132 calls xmalloc, which might cause the program to crash
7133 when it runs out of memory. This function doesn't have a
7134 return status, so there's no way to gracefully return an
7135 error. So cheat. We know that string[-1] can be safely
7136 accessed; It's either a string in an ELF string table,
7137 or allocated in an objalloc structure. */
7138
7139 p = eh->elf.root.root.string - 1;
7140 save = *p;
7141 *(char *) p = '.';
7142 htab = ppc_hash_table (info);
7143 if (htab == NULL)
7144 return;
7145
7146 fh = (struct ppc_link_hash_entry *)
7147 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7148 *(char *) p = save;
7149
7150 /* Unfortunately, if it so happens that the string we were
7151 looking for was allocated immediately before this string,
7152 then we overwrote the string terminator. That's the only
7153 reason the lookup should fail. */
7154 if (fh == NULL)
7155 {
7156 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7157 while (q >= eh->elf.root.root.string && *q == *p)
7158 --q, --p;
7159 if (q < eh->elf.root.root.string && *p == '.')
7160 fh = (struct ppc_link_hash_entry *)
7161 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7162 }
7163 if (fh != NULL)
7164 {
7165 eh->oh = fh;
7166 fh->oh = eh;
7167 }
7168 }
7169 if (fh != NULL)
7170 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7171 }
7172 }
7173
7174 static bfd_boolean
7175 get_sym_h (struct elf_link_hash_entry **hp,
7176 Elf_Internal_Sym **symp,
7177 asection **symsecp,
7178 unsigned char **tls_maskp,
7179 Elf_Internal_Sym **locsymsp,
7180 unsigned long r_symndx,
7181 bfd *ibfd)
7182 {
7183 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7184
7185 if (r_symndx >= symtab_hdr->sh_info)
7186 {
7187 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7188 struct elf_link_hash_entry *h;
7189
7190 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7191 h = elf_follow_link (h);
7192
7193 if (hp != NULL)
7194 *hp = h;
7195
7196 if (symp != NULL)
7197 *symp = NULL;
7198
7199 if (symsecp != NULL)
7200 {
7201 asection *symsec = NULL;
7202 if (h->root.type == bfd_link_hash_defined
7203 || h->root.type == bfd_link_hash_defweak)
7204 symsec = h->root.u.def.section;
7205 *symsecp = symsec;
7206 }
7207
7208 if (tls_maskp != NULL)
7209 {
7210 struct ppc_link_hash_entry *eh;
7211
7212 eh = (struct ppc_link_hash_entry *) h;
7213 *tls_maskp = &eh->tls_mask;
7214 }
7215 }
7216 else
7217 {
7218 Elf_Internal_Sym *sym;
7219 Elf_Internal_Sym *locsyms = *locsymsp;
7220
7221 if (locsyms == NULL)
7222 {
7223 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7224 if (locsyms == NULL)
7225 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7226 symtab_hdr->sh_info,
7227 0, NULL, NULL, NULL);
7228 if (locsyms == NULL)
7229 return FALSE;
7230 *locsymsp = locsyms;
7231 }
7232 sym = locsyms + r_symndx;
7233
7234 if (hp != NULL)
7235 *hp = NULL;
7236
7237 if (symp != NULL)
7238 *symp = sym;
7239
7240 if (symsecp != NULL)
7241 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7242
7243 if (tls_maskp != NULL)
7244 {
7245 struct got_entry **lgot_ents;
7246 unsigned char *tls_mask;
7247
7248 tls_mask = NULL;
7249 lgot_ents = elf_local_got_ents (ibfd);
7250 if (lgot_ents != NULL)
7251 {
7252 struct plt_entry **local_plt = (struct plt_entry **)
7253 (lgot_ents + symtab_hdr->sh_info);
7254 unsigned char *lgot_masks = (unsigned char *)
7255 (local_plt + symtab_hdr->sh_info);
7256 tls_mask = &lgot_masks[r_symndx];
7257 }
7258 *tls_maskp = tls_mask;
7259 }
7260 }
7261 return TRUE;
7262 }
7263
7264 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7265 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7266 type suitable for optimization, and 1 otherwise. */
7267
7268 static int
7269 get_tls_mask (unsigned char **tls_maskp,
7270 unsigned long *toc_symndx,
7271 bfd_vma *toc_addend,
7272 Elf_Internal_Sym **locsymsp,
7273 const Elf_Internal_Rela *rel,
7274 bfd *ibfd)
7275 {
7276 unsigned long r_symndx;
7277 int next_r;
7278 struct elf_link_hash_entry *h;
7279 Elf_Internal_Sym *sym;
7280 asection *sec;
7281 bfd_vma off;
7282
7283 r_symndx = ELF64_R_SYM (rel->r_info);
7284 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7285 return 0;
7286
7287 if ((*tls_maskp != NULL && **tls_maskp != 0)
7288 || sec == NULL
7289 || ppc64_elf_section_data (sec) == NULL
7290 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7291 return 1;
7292
7293 /* Look inside a TOC section too. */
7294 if (h != NULL)
7295 {
7296 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7297 off = h->root.u.def.value;
7298 }
7299 else
7300 off = sym->st_value;
7301 off += rel->r_addend;
7302 BFD_ASSERT (off % 8 == 0);
7303 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7304 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7305 if (toc_symndx != NULL)
7306 *toc_symndx = r_symndx;
7307 if (toc_addend != NULL)
7308 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7309 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7310 return 0;
7311 if ((h == NULL || is_static_defined (h))
7312 && (next_r == -1 || next_r == -2))
7313 return 1 - next_r;
7314 return 1;
7315 }
7316
7317 /* Find (or create) an entry in the tocsave hash table. */
7318
7319 static struct tocsave_entry *
7320 tocsave_find (struct ppc_link_hash_table *htab,
7321 enum insert_option insert,
7322 Elf_Internal_Sym **local_syms,
7323 const Elf_Internal_Rela *irela,
7324 bfd *ibfd)
7325 {
7326 unsigned long r_indx;
7327 struct elf_link_hash_entry *h;
7328 Elf_Internal_Sym *sym;
7329 struct tocsave_entry ent, *p;
7330 hashval_t hash;
7331 struct tocsave_entry **slot;
7332
7333 r_indx = ELF64_R_SYM (irela->r_info);
7334 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7335 return NULL;
7336 if (ent.sec == NULL || ent.sec->output_section == NULL)
7337 {
7338 (*_bfd_error_handler)
7339 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7340 return NULL;
7341 }
7342
7343 if (h != NULL)
7344 ent.offset = h->root.u.def.value;
7345 else
7346 ent.offset = sym->st_value;
7347 ent.offset += irela->r_addend;
7348
7349 hash = tocsave_htab_hash (&ent);
7350 slot = ((struct tocsave_entry **)
7351 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7352 if (slot == NULL)
7353 return NULL;
7354
7355 if (*slot == NULL)
7356 {
7357 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7358 if (p == NULL)
7359 return NULL;
7360 *p = ent;
7361 *slot = p;
7362 }
7363 return *slot;
7364 }
7365
7366 /* Adjust all global syms defined in opd sections. In gcc generated
7367 code for the old ABI, these will already have been done. */
7368
7369 static bfd_boolean
7370 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7371 {
7372 struct ppc_link_hash_entry *eh;
7373 asection *sym_sec;
7374 struct _opd_sec_data *opd;
7375
7376 if (h->root.type == bfd_link_hash_indirect)
7377 return TRUE;
7378
7379 if (h->root.type != bfd_link_hash_defined
7380 && h->root.type != bfd_link_hash_defweak)
7381 return TRUE;
7382
7383 eh = (struct ppc_link_hash_entry *) h;
7384 if (eh->adjust_done)
7385 return TRUE;
7386
7387 sym_sec = eh->elf.root.u.def.section;
7388 opd = get_opd_info (sym_sec);
7389 if (opd != NULL && opd->adjust != NULL)
7390 {
7391 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
7392 if (adjust == -1)
7393 {
7394 /* This entry has been deleted. */
7395 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7396 if (dsec == NULL)
7397 {
7398 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7399 if (discarded_section (dsec))
7400 {
7401 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7402 break;
7403 }
7404 }
7405 eh->elf.root.u.def.value = 0;
7406 eh->elf.root.u.def.section = dsec;
7407 }
7408 else
7409 eh->elf.root.u.def.value += adjust;
7410 eh->adjust_done = 1;
7411 }
7412 return TRUE;
7413 }
7414
7415 /* Handles decrementing dynamic reloc counts for the reloc specified by
7416 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7417 have already been determined. */
7418
7419 static bfd_boolean
7420 dec_dynrel_count (bfd_vma r_info,
7421 asection *sec,
7422 struct bfd_link_info *info,
7423 Elf_Internal_Sym **local_syms,
7424 struct elf_link_hash_entry *h,
7425 Elf_Internal_Sym *sym)
7426 {
7427 enum elf_ppc64_reloc_type r_type;
7428 asection *sym_sec = NULL;
7429
7430 /* Can this reloc be dynamic? This switch, and later tests here
7431 should be kept in sync with the code in check_relocs. */
7432 r_type = ELF64_R_TYPE (r_info);
7433 switch (r_type)
7434 {
7435 default:
7436 return TRUE;
7437
7438 case R_PPC64_TPREL16:
7439 case R_PPC64_TPREL16_LO:
7440 case R_PPC64_TPREL16_HI:
7441 case R_PPC64_TPREL16_HA:
7442 case R_PPC64_TPREL16_DS:
7443 case R_PPC64_TPREL16_LO_DS:
7444 case R_PPC64_TPREL16_HIGH:
7445 case R_PPC64_TPREL16_HIGHA:
7446 case R_PPC64_TPREL16_HIGHER:
7447 case R_PPC64_TPREL16_HIGHERA:
7448 case R_PPC64_TPREL16_HIGHEST:
7449 case R_PPC64_TPREL16_HIGHESTA:
7450 if (!info->shared)
7451 return TRUE;
7452
7453 case R_PPC64_TPREL64:
7454 case R_PPC64_DTPMOD64:
7455 case R_PPC64_DTPREL64:
7456 case R_PPC64_ADDR64:
7457 case R_PPC64_REL30:
7458 case R_PPC64_REL32:
7459 case R_PPC64_REL64:
7460 case R_PPC64_ADDR14:
7461 case R_PPC64_ADDR14_BRNTAKEN:
7462 case R_PPC64_ADDR14_BRTAKEN:
7463 case R_PPC64_ADDR16:
7464 case R_PPC64_ADDR16_DS:
7465 case R_PPC64_ADDR16_HA:
7466 case R_PPC64_ADDR16_HI:
7467 case R_PPC64_ADDR16_HIGH:
7468 case R_PPC64_ADDR16_HIGHA:
7469 case R_PPC64_ADDR16_HIGHER:
7470 case R_PPC64_ADDR16_HIGHERA:
7471 case R_PPC64_ADDR16_HIGHEST:
7472 case R_PPC64_ADDR16_HIGHESTA:
7473 case R_PPC64_ADDR16_LO:
7474 case R_PPC64_ADDR16_LO_DS:
7475 case R_PPC64_ADDR24:
7476 case R_PPC64_ADDR32:
7477 case R_PPC64_UADDR16:
7478 case R_PPC64_UADDR32:
7479 case R_PPC64_UADDR64:
7480 case R_PPC64_TOC:
7481 break;
7482 }
7483
7484 if (local_syms != NULL)
7485 {
7486 unsigned long r_symndx;
7487 bfd *ibfd = sec->owner;
7488
7489 r_symndx = ELF64_R_SYM (r_info);
7490 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7491 return FALSE;
7492 }
7493
7494 if ((info->shared
7495 && (must_be_dyn_reloc (info, r_type)
7496 || (h != NULL
7497 && (!SYMBOLIC_BIND (info, h)
7498 || h->root.type == bfd_link_hash_defweak
7499 || !h->def_regular))))
7500 || (ELIMINATE_COPY_RELOCS
7501 && !info->shared
7502 && h != NULL
7503 && (h->root.type == bfd_link_hash_defweak
7504 || !h->def_regular)))
7505 ;
7506 else
7507 return TRUE;
7508
7509 if (h != NULL)
7510 {
7511 struct elf_dyn_relocs *p;
7512 struct elf_dyn_relocs **pp;
7513 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7514
7515 /* elf_gc_sweep may have already removed all dyn relocs associated
7516 with local syms for a given section. Also, symbol flags are
7517 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7518 report a dynreloc miscount. */
7519 if (*pp == NULL && info->gc_sections)
7520 return TRUE;
7521
7522 while ((p = *pp) != NULL)
7523 {
7524 if (p->sec == sec)
7525 {
7526 if (!must_be_dyn_reloc (info, r_type))
7527 p->pc_count -= 1;
7528 p->count -= 1;
7529 if (p->count == 0)
7530 *pp = p->next;
7531 return TRUE;
7532 }
7533 pp = &p->next;
7534 }
7535 }
7536 else
7537 {
7538 struct ppc_dyn_relocs *p;
7539 struct ppc_dyn_relocs **pp;
7540 void *vpp;
7541 bfd_boolean is_ifunc;
7542
7543 if (local_syms == NULL)
7544 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7545 if (sym_sec == NULL)
7546 sym_sec = sec;
7547
7548 vpp = &elf_section_data (sym_sec)->local_dynrel;
7549 pp = (struct ppc_dyn_relocs **) vpp;
7550
7551 if (*pp == NULL && info->gc_sections)
7552 return TRUE;
7553
7554 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7555 while ((p = *pp) != NULL)
7556 {
7557 if (p->sec == sec && p->ifunc == is_ifunc)
7558 {
7559 p->count -= 1;
7560 if (p->count == 0)
7561 *pp = p->next;
7562 return TRUE;
7563 }
7564 pp = &p->next;
7565 }
7566 }
7567
7568 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7569 sec->owner, sec);
7570 bfd_set_error (bfd_error_bad_value);
7571 return FALSE;
7572 }
7573
7574 /* Remove unused Official Procedure Descriptor entries. Currently we
7575 only remove those associated with functions in discarded link-once
7576 sections, or weakly defined functions that have been overridden. It
7577 would be possible to remove many more entries for statically linked
7578 applications. */
7579
7580 bfd_boolean
7581 ppc64_elf_edit_opd (struct bfd_link_info *info)
7582 {
7583 bfd *ibfd;
7584 bfd_boolean some_edited = FALSE;
7585 asection *need_pad = NULL;
7586 struct ppc_link_hash_table *htab;
7587
7588 htab = ppc_hash_table (info);
7589 if (htab == NULL)
7590 return FALSE;
7591
7592 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7593 {
7594 asection *sec;
7595 Elf_Internal_Rela *relstart, *rel, *relend;
7596 Elf_Internal_Shdr *symtab_hdr;
7597 Elf_Internal_Sym *local_syms;
7598 bfd_vma offset;
7599 struct _opd_sec_data *opd;
7600 bfd_boolean need_edit, add_aux_fields;
7601 bfd_size_type cnt_16b = 0;
7602
7603 if (!is_ppc64_elf (ibfd))
7604 continue;
7605
7606 sec = bfd_get_section_by_name (ibfd, ".opd");
7607 if (sec == NULL || sec->size == 0)
7608 continue;
7609
7610 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7611 continue;
7612
7613 if (sec->output_section == bfd_abs_section_ptr)
7614 continue;
7615
7616 /* Look through the section relocs. */
7617 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7618 continue;
7619
7620 local_syms = NULL;
7621 symtab_hdr = &elf_symtab_hdr (ibfd);
7622
7623 /* Read the relocations. */
7624 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7625 info->keep_memory);
7626 if (relstart == NULL)
7627 return FALSE;
7628
7629 /* First run through the relocs to check they are sane, and to
7630 determine whether we need to edit this opd section. */
7631 need_edit = FALSE;
7632 need_pad = sec;
7633 offset = 0;
7634 relend = relstart + sec->reloc_count;
7635 for (rel = relstart; rel < relend; )
7636 {
7637 enum elf_ppc64_reloc_type r_type;
7638 unsigned long r_symndx;
7639 asection *sym_sec;
7640 struct elf_link_hash_entry *h;
7641 Elf_Internal_Sym *sym;
7642
7643 /* .opd contains a regular array of 16 or 24 byte entries. We're
7644 only interested in the reloc pointing to a function entry
7645 point. */
7646 if (rel->r_offset != offset
7647 || rel + 1 >= relend
7648 || (rel + 1)->r_offset != offset + 8)
7649 {
7650 /* If someone messes with .opd alignment then after a
7651 "ld -r" we might have padding in the middle of .opd.
7652 Also, there's nothing to prevent someone putting
7653 something silly in .opd with the assembler. No .opd
7654 optimization for them! */
7655 broken_opd:
7656 (*_bfd_error_handler)
7657 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7658 need_edit = FALSE;
7659 break;
7660 }
7661
7662 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7663 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7664 {
7665 (*_bfd_error_handler)
7666 (_("%B: unexpected reloc type %u in .opd section"),
7667 ibfd, r_type);
7668 need_edit = FALSE;
7669 break;
7670 }
7671
7672 r_symndx = ELF64_R_SYM (rel->r_info);
7673 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7674 r_symndx, ibfd))
7675 goto error_ret;
7676
7677 if (sym_sec == NULL || sym_sec->owner == NULL)
7678 {
7679 const char *sym_name;
7680 if (h != NULL)
7681 sym_name = h->root.root.string;
7682 else
7683 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7684 sym_sec);
7685
7686 (*_bfd_error_handler)
7687 (_("%B: undefined sym `%s' in .opd section"),
7688 ibfd, sym_name);
7689 need_edit = FALSE;
7690 break;
7691 }
7692
7693 /* opd entries are always for functions defined in the
7694 current input bfd. If the symbol isn't defined in the
7695 input bfd, then we won't be using the function in this
7696 bfd; It must be defined in a linkonce section in another
7697 bfd, or is weak. It's also possible that we are
7698 discarding the function due to a linker script /DISCARD/,
7699 which we test for via the output_section. */
7700 if (sym_sec->owner != ibfd
7701 || sym_sec->output_section == bfd_abs_section_ptr)
7702 need_edit = TRUE;
7703
7704 rel += 2;
7705 if (rel == relend
7706 || (rel + 1 == relend && rel->r_offset == offset + 16))
7707 {
7708 if (sec->size == offset + 24)
7709 {
7710 need_pad = NULL;
7711 break;
7712 }
7713 if (rel == relend && sec->size == offset + 16)
7714 {
7715 cnt_16b++;
7716 break;
7717 }
7718 goto broken_opd;
7719 }
7720
7721 if (rel->r_offset == offset + 24)
7722 offset += 24;
7723 else if (rel->r_offset != offset + 16)
7724 goto broken_opd;
7725 else if (rel + 1 < relend
7726 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7727 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7728 {
7729 offset += 16;
7730 cnt_16b++;
7731 }
7732 else if (rel + 2 < relend
7733 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7734 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7735 {
7736 offset += 24;
7737 rel += 1;
7738 }
7739 else
7740 goto broken_opd;
7741 }
7742
7743 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7744
7745 if (need_edit || add_aux_fields)
7746 {
7747 Elf_Internal_Rela *write_rel;
7748 Elf_Internal_Shdr *rel_hdr;
7749 bfd_byte *rptr, *wptr;
7750 bfd_byte *new_contents;
7751 bfd_boolean skip;
7752 long opd_ent_size;
7753 bfd_size_type amt;
7754
7755 new_contents = NULL;
7756 amt = sec->size * sizeof (long) / 8;
7757 opd = &ppc64_elf_section_data (sec)->u.opd;
7758 opd->adjust = bfd_zalloc (sec->owner, amt);
7759 if (opd->adjust == NULL)
7760 return FALSE;
7761 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7762
7763 /* This seems a waste of time as input .opd sections are all
7764 zeros as generated by gcc, but I suppose there's no reason
7765 this will always be so. We might start putting something in
7766 the third word of .opd entries. */
7767 if ((sec->flags & SEC_IN_MEMORY) == 0)
7768 {
7769 bfd_byte *loc;
7770 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7771 {
7772 if (loc != NULL)
7773 free (loc);
7774 error_ret:
7775 if (local_syms != NULL
7776 && symtab_hdr->contents != (unsigned char *) local_syms)
7777 free (local_syms);
7778 if (elf_section_data (sec)->relocs != relstart)
7779 free (relstart);
7780 return FALSE;
7781 }
7782 sec->contents = loc;
7783 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7784 }
7785
7786 elf_section_data (sec)->relocs = relstart;
7787
7788 new_contents = sec->contents;
7789 if (add_aux_fields)
7790 {
7791 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7792 if (new_contents == NULL)
7793 return FALSE;
7794 need_pad = FALSE;
7795 }
7796 wptr = new_contents;
7797 rptr = sec->contents;
7798
7799 write_rel = relstart;
7800 skip = FALSE;
7801 offset = 0;
7802 opd_ent_size = 0;
7803 for (rel = relstart; rel < relend; rel++)
7804 {
7805 unsigned long r_symndx;
7806 asection *sym_sec;
7807 struct elf_link_hash_entry *h;
7808 Elf_Internal_Sym *sym;
7809
7810 r_symndx = ELF64_R_SYM (rel->r_info);
7811 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7812 r_symndx, ibfd))
7813 goto error_ret;
7814
7815 if (rel->r_offset == offset)
7816 {
7817 struct ppc_link_hash_entry *fdh = NULL;
7818
7819 /* See if the .opd entry is full 24 byte or
7820 16 byte (with fd_aux entry overlapped with next
7821 fd_func). */
7822 opd_ent_size = 24;
7823 if ((rel + 2 == relend && sec->size == offset + 16)
7824 || (rel + 3 < relend
7825 && rel[2].r_offset == offset + 16
7826 && rel[3].r_offset == offset + 24
7827 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7828 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7829 opd_ent_size = 16;
7830
7831 if (h != NULL
7832 && h->root.root.string[0] == '.')
7833 {
7834 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7835 if (fdh != NULL
7836 && fdh->elf.root.type != bfd_link_hash_defined
7837 && fdh->elf.root.type != bfd_link_hash_defweak)
7838 fdh = NULL;
7839 }
7840
7841 skip = (sym_sec->owner != ibfd
7842 || sym_sec->output_section == bfd_abs_section_ptr);
7843 if (skip)
7844 {
7845 if (fdh != NULL && sym_sec->owner == ibfd)
7846 {
7847 /* Arrange for the function descriptor sym
7848 to be dropped. */
7849 fdh->elf.root.u.def.value = 0;
7850 fdh->elf.root.u.def.section = sym_sec;
7851 }
7852 opd->adjust[rel->r_offset / 8] = -1;
7853 }
7854 else
7855 {
7856 /* We'll be keeping this opd entry. */
7857
7858 if (fdh != NULL)
7859 {
7860 /* Redefine the function descriptor symbol to
7861 this location in the opd section. It is
7862 necessary to update the value here rather
7863 than using an array of adjustments as we do
7864 for local symbols, because various places
7865 in the generic ELF code use the value
7866 stored in u.def.value. */
7867 fdh->elf.root.u.def.value = wptr - new_contents;
7868 fdh->adjust_done = 1;
7869 }
7870
7871 /* Local syms are a bit tricky. We could
7872 tweak them as they can be cached, but
7873 we'd need to look through the local syms
7874 for the function descriptor sym which we
7875 don't have at the moment. So keep an
7876 array of adjustments. */
7877 opd->adjust[rel->r_offset / 8]
7878 = (wptr - new_contents) - (rptr - sec->contents);
7879
7880 if (wptr != rptr)
7881 memcpy (wptr, rptr, opd_ent_size);
7882 wptr += opd_ent_size;
7883 if (add_aux_fields && opd_ent_size == 16)
7884 {
7885 memset (wptr, '\0', 8);
7886 wptr += 8;
7887 }
7888 }
7889 rptr += opd_ent_size;
7890 offset += opd_ent_size;
7891 }
7892
7893 if (skip)
7894 {
7895 if (!NO_OPD_RELOCS
7896 && !info->relocatable
7897 && !dec_dynrel_count (rel->r_info, sec, info,
7898 NULL, h, sym))
7899 goto error_ret;
7900 }
7901 else
7902 {
7903 /* We need to adjust any reloc offsets to point to the
7904 new opd entries. While we're at it, we may as well
7905 remove redundant relocs. */
7906 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7907 if (write_rel != rel)
7908 memcpy (write_rel, rel, sizeof (*rel));
7909 ++write_rel;
7910 }
7911 }
7912
7913 sec->size = wptr - new_contents;
7914 sec->reloc_count = write_rel - relstart;
7915 if (add_aux_fields)
7916 {
7917 free (sec->contents);
7918 sec->contents = new_contents;
7919 }
7920
7921 /* Fudge the header size too, as this is used later in
7922 elf_bfd_final_link if we are emitting relocs. */
7923 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7924 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7925 some_edited = TRUE;
7926 }
7927 else if (elf_section_data (sec)->relocs != relstart)
7928 free (relstart);
7929
7930 if (local_syms != NULL
7931 && symtab_hdr->contents != (unsigned char *) local_syms)
7932 {
7933 if (!info->keep_memory)
7934 free (local_syms);
7935 else
7936 symtab_hdr->contents = (unsigned char *) local_syms;
7937 }
7938 }
7939
7940 if (some_edited)
7941 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7942
7943 /* If we are doing a final link and the last .opd entry is just 16 byte
7944 long, add a 8 byte padding after it. */
7945 if (need_pad != NULL && !info->relocatable)
7946 {
7947 bfd_byte *p;
7948
7949 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7950 {
7951 BFD_ASSERT (need_pad->size > 0);
7952
7953 p = bfd_malloc (need_pad->size + 8);
7954 if (p == NULL)
7955 return FALSE;
7956
7957 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7958 p, 0, need_pad->size))
7959 return FALSE;
7960
7961 need_pad->contents = p;
7962 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7963 }
7964 else
7965 {
7966 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7967 if (p == NULL)
7968 return FALSE;
7969
7970 need_pad->contents = p;
7971 }
7972
7973 memset (need_pad->contents + need_pad->size, 0, 8);
7974 need_pad->size += 8;
7975 }
7976
7977 return TRUE;
7978 }
7979
7980 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7981
7982 asection *
7983 ppc64_elf_tls_setup (struct bfd_link_info *info)
7984 {
7985 struct ppc_link_hash_table *htab;
7986
7987 htab = ppc_hash_table (info);
7988 if (htab == NULL)
7989 return NULL;
7990
7991 if (abiversion (info->output_bfd) == 1)
7992 htab->opd_abi = 1;
7993
7994 if (htab->params->no_multi_toc)
7995 htab->do_multi_toc = 0;
7996 else if (!htab->do_multi_toc)
7997 htab->params->no_multi_toc = 1;
7998
7999 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8000 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8001 FALSE, FALSE, TRUE));
8002 /* Move dynamic linking info to the function descriptor sym. */
8003 if (htab->tls_get_addr != NULL)
8004 func_desc_adjust (&htab->tls_get_addr->elf, info);
8005 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8006 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8007 FALSE, FALSE, TRUE));
8008 if (!htab->params->no_tls_get_addr_opt)
8009 {
8010 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8011
8012 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8013 FALSE, FALSE, TRUE);
8014 if (opt != NULL)
8015 func_desc_adjust (opt, info);
8016 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8017 FALSE, FALSE, TRUE);
8018 if (opt_fd != NULL
8019 && (opt_fd->root.type == bfd_link_hash_defined
8020 || opt_fd->root.type == bfd_link_hash_defweak))
8021 {
8022 /* If glibc supports an optimized __tls_get_addr call stub,
8023 signalled by the presence of __tls_get_addr_opt, and we'll
8024 be calling __tls_get_addr via a plt call stub, then
8025 make __tls_get_addr point to __tls_get_addr_opt. */
8026 tga_fd = &htab->tls_get_addr_fd->elf;
8027 if (htab->elf.dynamic_sections_created
8028 && tga_fd != NULL
8029 && (tga_fd->type == STT_FUNC
8030 || tga_fd->needs_plt)
8031 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8032 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8033 && tga_fd->root.type == bfd_link_hash_undefweak)))
8034 {
8035 struct plt_entry *ent;
8036
8037 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8038 if (ent->plt.refcount > 0)
8039 break;
8040 if (ent != NULL)
8041 {
8042 tga_fd->root.type = bfd_link_hash_indirect;
8043 tga_fd->root.u.i.link = &opt_fd->root;
8044 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8045 if (opt_fd->dynindx != -1)
8046 {
8047 /* Use __tls_get_addr_opt in dynamic relocations. */
8048 opt_fd->dynindx = -1;
8049 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8050 opt_fd->dynstr_index);
8051 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8052 return NULL;
8053 }
8054 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8055 tga = &htab->tls_get_addr->elf;
8056 if (opt != NULL && tga != NULL)
8057 {
8058 tga->root.type = bfd_link_hash_indirect;
8059 tga->root.u.i.link = &opt->root;
8060 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8061 _bfd_elf_link_hash_hide_symbol (info, opt,
8062 tga->forced_local);
8063 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8064 }
8065 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8066 htab->tls_get_addr_fd->is_func_descriptor = 1;
8067 if (htab->tls_get_addr != NULL)
8068 {
8069 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8070 htab->tls_get_addr->is_func = 1;
8071 }
8072 }
8073 }
8074 }
8075 else
8076 htab->params->no_tls_get_addr_opt = TRUE;
8077 }
8078 return _bfd_elf_tls_setup (info->output_bfd, info);
8079 }
8080
8081 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8082 HASH1 or HASH2. */
8083
8084 static bfd_boolean
8085 branch_reloc_hash_match (const bfd *ibfd,
8086 const Elf_Internal_Rela *rel,
8087 const struct ppc_link_hash_entry *hash1,
8088 const struct ppc_link_hash_entry *hash2)
8089 {
8090 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8091 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8092 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8093
8094 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8095 {
8096 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8097 struct elf_link_hash_entry *h;
8098
8099 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8100 h = elf_follow_link (h);
8101 if (h == &hash1->elf || h == &hash2->elf)
8102 return TRUE;
8103 }
8104 return FALSE;
8105 }
8106
8107 /* Run through all the TLS relocs looking for optimization
8108 opportunities. The linker has been hacked (see ppc64elf.em) to do
8109 a preliminary section layout so that we know the TLS segment
8110 offsets. We can't optimize earlier because some optimizations need
8111 to know the tp offset, and we need to optimize before allocating
8112 dynamic relocations. */
8113
8114 bfd_boolean
8115 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8116 {
8117 bfd *ibfd;
8118 asection *sec;
8119 struct ppc_link_hash_table *htab;
8120 unsigned char *toc_ref;
8121 int pass;
8122
8123 if (info->relocatable || !info->executable)
8124 return TRUE;
8125
8126 htab = ppc_hash_table (info);
8127 if (htab == NULL)
8128 return FALSE;
8129
8130 /* Make two passes over the relocs. On the first pass, mark toc
8131 entries involved with tls relocs, and check that tls relocs
8132 involved in setting up a tls_get_addr call are indeed followed by
8133 such a call. If they are not, we can't do any tls optimization.
8134 On the second pass twiddle tls_mask flags to notify
8135 relocate_section that optimization can be done, and adjust got
8136 and plt refcounts. */
8137 toc_ref = NULL;
8138 for (pass = 0; pass < 2; ++pass)
8139 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8140 {
8141 Elf_Internal_Sym *locsyms = NULL;
8142 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8143
8144 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8145 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8146 {
8147 Elf_Internal_Rela *relstart, *rel, *relend;
8148 bfd_boolean found_tls_get_addr_arg = 0;
8149
8150 /* Read the relocations. */
8151 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8152 info->keep_memory);
8153 if (relstart == NULL)
8154 {
8155 free (toc_ref);
8156 return FALSE;
8157 }
8158
8159 relend = relstart + sec->reloc_count;
8160 for (rel = relstart; rel < relend; rel++)
8161 {
8162 enum elf_ppc64_reloc_type r_type;
8163 unsigned long r_symndx;
8164 struct elf_link_hash_entry *h;
8165 Elf_Internal_Sym *sym;
8166 asection *sym_sec;
8167 unsigned char *tls_mask;
8168 unsigned char tls_set, tls_clear, tls_type = 0;
8169 bfd_vma value;
8170 bfd_boolean ok_tprel, is_local;
8171 long toc_ref_index = 0;
8172 int expecting_tls_get_addr = 0;
8173 bfd_boolean ret = FALSE;
8174
8175 r_symndx = ELF64_R_SYM (rel->r_info);
8176 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8177 r_symndx, ibfd))
8178 {
8179 err_free_rel:
8180 if (elf_section_data (sec)->relocs != relstart)
8181 free (relstart);
8182 if (toc_ref != NULL)
8183 free (toc_ref);
8184 if (locsyms != NULL
8185 && (elf_symtab_hdr (ibfd).contents
8186 != (unsigned char *) locsyms))
8187 free (locsyms);
8188 return ret;
8189 }
8190
8191 if (h != NULL)
8192 {
8193 if (h->root.type == bfd_link_hash_defined
8194 || h->root.type == bfd_link_hash_defweak)
8195 value = h->root.u.def.value;
8196 else if (h->root.type == bfd_link_hash_undefweak)
8197 value = 0;
8198 else
8199 {
8200 found_tls_get_addr_arg = 0;
8201 continue;
8202 }
8203 }
8204 else
8205 /* Symbols referenced by TLS relocs must be of type
8206 STT_TLS. So no need for .opd local sym adjust. */
8207 value = sym->st_value;
8208
8209 ok_tprel = FALSE;
8210 is_local = FALSE;
8211 if (h == NULL
8212 || !h->def_dynamic)
8213 {
8214 is_local = TRUE;
8215 if (h != NULL
8216 && h->root.type == bfd_link_hash_undefweak)
8217 ok_tprel = TRUE;
8218 else
8219 {
8220 value += sym_sec->output_offset;
8221 value += sym_sec->output_section->vma;
8222 value -= htab->elf.tls_sec->vma;
8223 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8224 < (bfd_vma) 1 << 32);
8225 }
8226 }
8227
8228 r_type = ELF64_R_TYPE (rel->r_info);
8229 /* If this section has old-style __tls_get_addr calls
8230 without marker relocs, then check that each
8231 __tls_get_addr call reloc is preceded by a reloc
8232 that conceivably belongs to the __tls_get_addr arg
8233 setup insn. If we don't find matching arg setup
8234 relocs, don't do any tls optimization. */
8235 if (pass == 0
8236 && sec->has_tls_get_addr_call
8237 && h != NULL
8238 && (h == &htab->tls_get_addr->elf
8239 || h == &htab->tls_get_addr_fd->elf)
8240 && !found_tls_get_addr_arg
8241 && is_branch_reloc (r_type))
8242 {
8243 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8244 "TLS optimization disabled\n"),
8245 ibfd, sec, rel->r_offset);
8246 ret = TRUE;
8247 goto err_free_rel;
8248 }
8249
8250 found_tls_get_addr_arg = 0;
8251 switch (r_type)
8252 {
8253 case R_PPC64_GOT_TLSLD16:
8254 case R_PPC64_GOT_TLSLD16_LO:
8255 expecting_tls_get_addr = 1;
8256 found_tls_get_addr_arg = 1;
8257 /* Fall thru */
8258
8259 case R_PPC64_GOT_TLSLD16_HI:
8260 case R_PPC64_GOT_TLSLD16_HA:
8261 /* These relocs should never be against a symbol
8262 defined in a shared lib. Leave them alone if
8263 that turns out to be the case. */
8264 if (!is_local)
8265 continue;
8266
8267 /* LD -> LE */
8268 tls_set = 0;
8269 tls_clear = TLS_LD;
8270 tls_type = TLS_TLS | TLS_LD;
8271 break;
8272
8273 case R_PPC64_GOT_TLSGD16:
8274 case R_PPC64_GOT_TLSGD16_LO:
8275 expecting_tls_get_addr = 1;
8276 found_tls_get_addr_arg = 1;
8277 /* Fall thru */
8278
8279 case R_PPC64_GOT_TLSGD16_HI:
8280 case R_PPC64_GOT_TLSGD16_HA:
8281 if (ok_tprel)
8282 /* GD -> LE */
8283 tls_set = 0;
8284 else
8285 /* GD -> IE */
8286 tls_set = TLS_TLS | TLS_TPRELGD;
8287 tls_clear = TLS_GD;
8288 tls_type = TLS_TLS | TLS_GD;
8289 break;
8290
8291 case R_PPC64_GOT_TPREL16_DS:
8292 case R_PPC64_GOT_TPREL16_LO_DS:
8293 case R_PPC64_GOT_TPREL16_HI:
8294 case R_PPC64_GOT_TPREL16_HA:
8295 if (ok_tprel)
8296 {
8297 /* IE -> LE */
8298 tls_set = 0;
8299 tls_clear = TLS_TPREL;
8300 tls_type = TLS_TLS | TLS_TPREL;
8301 break;
8302 }
8303 continue;
8304
8305 case R_PPC64_TLSGD:
8306 case R_PPC64_TLSLD:
8307 found_tls_get_addr_arg = 1;
8308 /* Fall thru */
8309
8310 case R_PPC64_TLS:
8311 case R_PPC64_TOC16:
8312 case R_PPC64_TOC16_LO:
8313 if (sym_sec == NULL || sym_sec != toc)
8314 continue;
8315
8316 /* Mark this toc entry as referenced by a TLS
8317 code sequence. We can do that now in the
8318 case of R_PPC64_TLS, and after checking for
8319 tls_get_addr for the TOC16 relocs. */
8320 if (toc_ref == NULL)
8321 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8322 if (toc_ref == NULL)
8323 goto err_free_rel;
8324
8325 if (h != NULL)
8326 value = h->root.u.def.value;
8327 else
8328 value = sym->st_value;
8329 value += rel->r_addend;
8330 BFD_ASSERT (value < toc->size && value % 8 == 0);
8331 toc_ref_index = (value + toc->output_offset) / 8;
8332 if (r_type == R_PPC64_TLS
8333 || r_type == R_PPC64_TLSGD
8334 || r_type == R_PPC64_TLSLD)
8335 {
8336 toc_ref[toc_ref_index] = 1;
8337 continue;
8338 }
8339
8340 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8341 continue;
8342
8343 tls_set = 0;
8344 tls_clear = 0;
8345 expecting_tls_get_addr = 2;
8346 break;
8347
8348 case R_PPC64_TPREL64:
8349 if (pass == 0
8350 || sec != toc
8351 || toc_ref == NULL
8352 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8353 continue;
8354 if (ok_tprel)
8355 {
8356 /* IE -> LE */
8357 tls_set = TLS_EXPLICIT;
8358 tls_clear = TLS_TPREL;
8359 break;
8360 }
8361 continue;
8362
8363 case R_PPC64_DTPMOD64:
8364 if (pass == 0
8365 || sec != toc
8366 || toc_ref == NULL
8367 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8368 continue;
8369 if (rel + 1 < relend
8370 && (rel[1].r_info
8371 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8372 && rel[1].r_offset == rel->r_offset + 8)
8373 {
8374 if (ok_tprel)
8375 /* GD -> LE */
8376 tls_set = TLS_EXPLICIT | TLS_GD;
8377 else
8378 /* GD -> IE */
8379 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8380 tls_clear = TLS_GD;
8381 }
8382 else
8383 {
8384 if (!is_local)
8385 continue;
8386
8387 /* LD -> LE */
8388 tls_set = TLS_EXPLICIT;
8389 tls_clear = TLS_LD;
8390 }
8391 break;
8392
8393 default:
8394 continue;
8395 }
8396
8397 if (pass == 0)
8398 {
8399 if (!expecting_tls_get_addr
8400 || !sec->has_tls_get_addr_call)
8401 continue;
8402
8403 if (rel + 1 < relend
8404 && branch_reloc_hash_match (ibfd, rel + 1,
8405 htab->tls_get_addr,
8406 htab->tls_get_addr_fd))
8407 {
8408 if (expecting_tls_get_addr == 2)
8409 {
8410 /* Check for toc tls entries. */
8411 unsigned char *toc_tls;
8412 int retval;
8413
8414 retval = get_tls_mask (&toc_tls, NULL, NULL,
8415 &locsyms,
8416 rel, ibfd);
8417 if (retval == 0)
8418 goto err_free_rel;
8419 if (toc_tls != NULL)
8420 {
8421 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8422 found_tls_get_addr_arg = 1;
8423 if (retval > 1)
8424 toc_ref[toc_ref_index] = 1;
8425 }
8426 }
8427 continue;
8428 }
8429
8430 if (expecting_tls_get_addr != 1)
8431 continue;
8432
8433 /* Uh oh, we didn't find the expected call. We
8434 could just mark this symbol to exclude it
8435 from tls optimization but it's safer to skip
8436 the entire optimization. */
8437 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8438 "TLS optimization disabled\n"),
8439 ibfd, sec, rel->r_offset);
8440 ret = TRUE;
8441 goto err_free_rel;
8442 }
8443
8444 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8445 {
8446 struct plt_entry *ent;
8447 for (ent = htab->tls_get_addr->elf.plt.plist;
8448 ent != NULL;
8449 ent = ent->next)
8450 if (ent->addend == 0)
8451 {
8452 if (ent->plt.refcount > 0)
8453 {
8454 ent->plt.refcount -= 1;
8455 expecting_tls_get_addr = 0;
8456 }
8457 break;
8458 }
8459 }
8460
8461 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8462 {
8463 struct plt_entry *ent;
8464 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8465 ent != NULL;
8466 ent = ent->next)
8467 if (ent->addend == 0)
8468 {
8469 if (ent->plt.refcount > 0)
8470 ent->plt.refcount -= 1;
8471 break;
8472 }
8473 }
8474
8475 if (tls_clear == 0)
8476 continue;
8477
8478 if ((tls_set & TLS_EXPLICIT) == 0)
8479 {
8480 struct got_entry *ent;
8481
8482 /* Adjust got entry for this reloc. */
8483 if (h != NULL)
8484 ent = h->got.glist;
8485 else
8486 ent = elf_local_got_ents (ibfd)[r_symndx];
8487
8488 for (; ent != NULL; ent = ent->next)
8489 if (ent->addend == rel->r_addend
8490 && ent->owner == ibfd
8491 && ent->tls_type == tls_type)
8492 break;
8493 if (ent == NULL)
8494 abort ();
8495
8496 if (tls_set == 0)
8497 {
8498 /* We managed to get rid of a got entry. */
8499 if (ent->got.refcount > 0)
8500 ent->got.refcount -= 1;
8501 }
8502 }
8503 else
8504 {
8505 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8506 we'll lose one or two dyn relocs. */
8507 if (!dec_dynrel_count (rel->r_info, sec, info,
8508 NULL, h, sym))
8509 return FALSE;
8510
8511 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8512 {
8513 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8514 NULL, h, sym))
8515 return FALSE;
8516 }
8517 }
8518
8519 *tls_mask |= tls_set;
8520 *tls_mask &= ~tls_clear;
8521 }
8522
8523 if (elf_section_data (sec)->relocs != relstart)
8524 free (relstart);
8525 }
8526
8527 if (locsyms != NULL
8528 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8529 {
8530 if (!info->keep_memory)
8531 free (locsyms);
8532 else
8533 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8534 }
8535 }
8536
8537 if (toc_ref != NULL)
8538 free (toc_ref);
8539 return TRUE;
8540 }
8541
8542 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8543 the values of any global symbols in a toc section that has been
8544 edited. Globals in toc sections should be a rarity, so this function
8545 sets a flag if any are found in toc sections other than the one just
8546 edited, so that futher hash table traversals can be avoided. */
8547
8548 struct adjust_toc_info
8549 {
8550 asection *toc;
8551 unsigned long *skip;
8552 bfd_boolean global_toc_syms;
8553 };
8554
8555 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8556
8557 static bfd_boolean
8558 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8559 {
8560 struct ppc_link_hash_entry *eh;
8561 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8562 unsigned long i;
8563
8564 if (h->root.type != bfd_link_hash_defined
8565 && h->root.type != bfd_link_hash_defweak)
8566 return TRUE;
8567
8568 eh = (struct ppc_link_hash_entry *) h;
8569 if (eh->adjust_done)
8570 return TRUE;
8571
8572 if (eh->elf.root.u.def.section == toc_inf->toc)
8573 {
8574 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8575 i = toc_inf->toc->rawsize >> 3;
8576 else
8577 i = eh->elf.root.u.def.value >> 3;
8578
8579 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8580 {
8581 (*_bfd_error_handler)
8582 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8583 do
8584 ++i;
8585 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8586 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8587 }
8588
8589 eh->elf.root.u.def.value -= toc_inf->skip[i];
8590 eh->adjust_done = 1;
8591 }
8592 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8593 toc_inf->global_toc_syms = TRUE;
8594
8595 return TRUE;
8596 }
8597
8598 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8599
8600 static bfd_boolean
8601 ok_lo_toc_insn (unsigned int insn)
8602 {
8603 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8604 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8605 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8606 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8607 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8608 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8609 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8610 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8611 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8612 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8613 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8614 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8615 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8616 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8617 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8618 && (insn & 3) != 1)
8619 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8620 && ((insn & 3) == 0 || (insn & 3) == 3))
8621 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8622 }
8623
8624 /* Examine all relocs referencing .toc sections in order to remove
8625 unused .toc entries. */
8626
8627 bfd_boolean
8628 ppc64_elf_edit_toc (struct bfd_link_info *info)
8629 {
8630 bfd *ibfd;
8631 struct adjust_toc_info toc_inf;
8632 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8633
8634 htab->do_toc_opt = 1;
8635 toc_inf.global_toc_syms = TRUE;
8636 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8637 {
8638 asection *toc, *sec;
8639 Elf_Internal_Shdr *symtab_hdr;
8640 Elf_Internal_Sym *local_syms;
8641 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8642 unsigned long *skip, *drop;
8643 unsigned char *used;
8644 unsigned char *keep, last, some_unused;
8645
8646 if (!is_ppc64_elf (ibfd))
8647 continue;
8648
8649 toc = bfd_get_section_by_name (ibfd, ".toc");
8650 if (toc == NULL
8651 || toc->size == 0
8652 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8653 || discarded_section (toc))
8654 continue;
8655
8656 toc_relocs = NULL;
8657 local_syms = NULL;
8658 symtab_hdr = &elf_symtab_hdr (ibfd);
8659
8660 /* Look at sections dropped from the final link. */
8661 skip = NULL;
8662 relstart = NULL;
8663 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8664 {
8665 if (sec->reloc_count == 0
8666 || !discarded_section (sec)
8667 || get_opd_info (sec)
8668 || (sec->flags & SEC_ALLOC) == 0
8669 || (sec->flags & SEC_DEBUGGING) != 0)
8670 continue;
8671
8672 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8673 if (relstart == NULL)
8674 goto error_ret;
8675
8676 /* Run through the relocs to see which toc entries might be
8677 unused. */
8678 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8679 {
8680 enum elf_ppc64_reloc_type r_type;
8681 unsigned long r_symndx;
8682 asection *sym_sec;
8683 struct elf_link_hash_entry *h;
8684 Elf_Internal_Sym *sym;
8685 bfd_vma val;
8686
8687 r_type = ELF64_R_TYPE (rel->r_info);
8688 switch (r_type)
8689 {
8690 default:
8691 continue;
8692
8693 case R_PPC64_TOC16:
8694 case R_PPC64_TOC16_LO:
8695 case R_PPC64_TOC16_HI:
8696 case R_PPC64_TOC16_HA:
8697 case R_PPC64_TOC16_DS:
8698 case R_PPC64_TOC16_LO_DS:
8699 break;
8700 }
8701
8702 r_symndx = ELF64_R_SYM (rel->r_info);
8703 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8704 r_symndx, ibfd))
8705 goto error_ret;
8706
8707 if (sym_sec != toc)
8708 continue;
8709
8710 if (h != NULL)
8711 val = h->root.u.def.value;
8712 else
8713 val = sym->st_value;
8714 val += rel->r_addend;
8715
8716 if (val >= toc->size)
8717 continue;
8718
8719 /* Anything in the toc ought to be aligned to 8 bytes.
8720 If not, don't mark as unused. */
8721 if (val & 7)
8722 continue;
8723
8724 if (skip == NULL)
8725 {
8726 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8727 if (skip == NULL)
8728 goto error_ret;
8729 }
8730
8731 skip[val >> 3] = ref_from_discarded;
8732 }
8733
8734 if (elf_section_data (sec)->relocs != relstart)
8735 free (relstart);
8736 }
8737
8738 /* For largetoc loads of address constants, we can convert
8739 . addis rx,2,addr@got@ha
8740 . ld ry,addr@got@l(rx)
8741 to
8742 . addis rx,2,addr@toc@ha
8743 . addi ry,rx,addr@toc@l
8744 when addr is within 2G of the toc pointer. This then means
8745 that the word storing "addr" in the toc is no longer needed. */
8746
8747 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8748 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8749 && toc->reloc_count != 0)
8750 {
8751 /* Read toc relocs. */
8752 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8753 info->keep_memory);
8754 if (toc_relocs == NULL)
8755 goto error_ret;
8756
8757 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8758 {
8759 enum elf_ppc64_reloc_type r_type;
8760 unsigned long r_symndx;
8761 asection *sym_sec;
8762 struct elf_link_hash_entry *h;
8763 Elf_Internal_Sym *sym;
8764 bfd_vma val, addr;
8765
8766 r_type = ELF64_R_TYPE (rel->r_info);
8767 if (r_type != R_PPC64_ADDR64)
8768 continue;
8769
8770 r_symndx = ELF64_R_SYM (rel->r_info);
8771 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8772 r_symndx, ibfd))
8773 goto error_ret;
8774
8775 if (sym_sec == NULL
8776 || discarded_section (sym_sec))
8777 continue;
8778
8779 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8780 continue;
8781
8782 if (h != NULL)
8783 {
8784 if (h->type == STT_GNU_IFUNC)
8785 continue;
8786 val = h->root.u.def.value;
8787 }
8788 else
8789 {
8790 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8791 continue;
8792 val = sym->st_value;
8793 }
8794 val += rel->r_addend;
8795 val += sym_sec->output_section->vma + sym_sec->output_offset;
8796
8797 /* We don't yet know the exact toc pointer value, but we
8798 know it will be somewhere in the toc section. Don't
8799 optimize if the difference from any possible toc
8800 pointer is outside [ff..f80008000, 7fff7fff]. */
8801 addr = toc->output_section->vma + TOC_BASE_OFF;
8802 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8803 continue;
8804
8805 addr = toc->output_section->vma + toc->output_section->rawsize;
8806 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8807 continue;
8808
8809 if (skip == NULL)
8810 {
8811 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8812 if (skip == NULL)
8813 goto error_ret;
8814 }
8815
8816 skip[rel->r_offset >> 3]
8817 |= can_optimize | ((rel - toc_relocs) << 2);
8818 }
8819 }
8820
8821 if (skip == NULL)
8822 continue;
8823
8824 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8825 if (used == NULL)
8826 {
8827 error_ret:
8828 if (local_syms != NULL
8829 && symtab_hdr->contents != (unsigned char *) local_syms)
8830 free (local_syms);
8831 if (sec != NULL
8832 && relstart != NULL
8833 && elf_section_data (sec)->relocs != relstart)
8834 free (relstart);
8835 if (toc_relocs != NULL
8836 && elf_section_data (toc)->relocs != toc_relocs)
8837 free (toc_relocs);
8838 if (skip != NULL)
8839 free (skip);
8840 return FALSE;
8841 }
8842
8843 /* Now check all kept sections that might reference the toc.
8844 Check the toc itself last. */
8845 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8846 : ibfd->sections);
8847 sec != NULL;
8848 sec = (sec == toc ? NULL
8849 : sec->next == NULL ? toc
8850 : sec->next == toc && toc->next ? toc->next
8851 : sec->next))
8852 {
8853 int repeat;
8854
8855 if (sec->reloc_count == 0
8856 || discarded_section (sec)
8857 || get_opd_info (sec)
8858 || (sec->flags & SEC_ALLOC) == 0
8859 || (sec->flags & SEC_DEBUGGING) != 0)
8860 continue;
8861
8862 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8863 info->keep_memory);
8864 if (relstart == NULL)
8865 {
8866 free (used);
8867 goto error_ret;
8868 }
8869
8870 /* Mark toc entries referenced as used. */
8871 do
8872 {
8873 repeat = 0;
8874 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8875 {
8876 enum elf_ppc64_reloc_type r_type;
8877 unsigned long r_symndx;
8878 asection *sym_sec;
8879 struct elf_link_hash_entry *h;
8880 Elf_Internal_Sym *sym;
8881 bfd_vma val;
8882 enum {no_check, check_lo, check_ha} insn_check;
8883
8884 r_type = ELF64_R_TYPE (rel->r_info);
8885 switch (r_type)
8886 {
8887 default:
8888 insn_check = no_check;
8889 break;
8890
8891 case R_PPC64_GOT_TLSLD16_HA:
8892 case R_PPC64_GOT_TLSGD16_HA:
8893 case R_PPC64_GOT_TPREL16_HA:
8894 case R_PPC64_GOT_DTPREL16_HA:
8895 case R_PPC64_GOT16_HA:
8896 case R_PPC64_TOC16_HA:
8897 insn_check = check_ha;
8898 break;
8899
8900 case R_PPC64_GOT_TLSLD16_LO:
8901 case R_PPC64_GOT_TLSGD16_LO:
8902 case R_PPC64_GOT_TPREL16_LO_DS:
8903 case R_PPC64_GOT_DTPREL16_LO_DS:
8904 case R_PPC64_GOT16_LO:
8905 case R_PPC64_GOT16_LO_DS:
8906 case R_PPC64_TOC16_LO:
8907 case R_PPC64_TOC16_LO_DS:
8908 insn_check = check_lo;
8909 break;
8910 }
8911
8912 if (insn_check != no_check)
8913 {
8914 bfd_vma off = rel->r_offset & ~3;
8915 unsigned char buf[4];
8916 unsigned int insn;
8917
8918 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8919 {
8920 free (used);
8921 goto error_ret;
8922 }
8923 insn = bfd_get_32 (ibfd, buf);
8924 if (insn_check == check_lo
8925 ? !ok_lo_toc_insn (insn)
8926 : ((insn & ((0x3f << 26) | 0x1f << 16))
8927 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8928 {
8929 char str[12];
8930
8931 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8932 sprintf (str, "%#08x", insn);
8933 info->callbacks->einfo
8934 (_("%P: %H: toc optimization is not supported for"
8935 " %s instruction.\n"),
8936 ibfd, sec, rel->r_offset & ~3, str);
8937 }
8938 }
8939
8940 switch (r_type)
8941 {
8942 case R_PPC64_TOC16:
8943 case R_PPC64_TOC16_LO:
8944 case R_PPC64_TOC16_HI:
8945 case R_PPC64_TOC16_HA:
8946 case R_PPC64_TOC16_DS:
8947 case R_PPC64_TOC16_LO_DS:
8948 /* In case we're taking addresses of toc entries. */
8949 case R_PPC64_ADDR64:
8950 break;
8951
8952 default:
8953 continue;
8954 }
8955
8956 r_symndx = ELF64_R_SYM (rel->r_info);
8957 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8958 r_symndx, ibfd))
8959 {
8960 free (used);
8961 goto error_ret;
8962 }
8963
8964 if (sym_sec != toc)
8965 continue;
8966
8967 if (h != NULL)
8968 val = h->root.u.def.value;
8969 else
8970 val = sym->st_value;
8971 val += rel->r_addend;
8972
8973 if (val >= toc->size)
8974 continue;
8975
8976 if ((skip[val >> 3] & can_optimize) != 0)
8977 {
8978 bfd_vma off;
8979 unsigned char opc;
8980
8981 switch (r_type)
8982 {
8983 case R_PPC64_TOC16_HA:
8984 break;
8985
8986 case R_PPC64_TOC16_LO_DS:
8987 off = rel->r_offset;
8988 off += (bfd_big_endian (ibfd) ? -2 : 3);
8989 if (!bfd_get_section_contents (ibfd, sec, &opc,
8990 off, 1))
8991 {
8992 free (used);
8993 goto error_ret;
8994 }
8995 if ((opc & (0x3f << 2)) == (58u << 2))
8996 break;
8997 /* Fall thru */
8998
8999 default:
9000 /* Wrong sort of reloc, or not a ld. We may
9001 as well clear ref_from_discarded too. */
9002 skip[val >> 3] = 0;
9003 }
9004 }
9005
9006 if (sec != toc)
9007 used[val >> 3] = 1;
9008 /* For the toc section, we only mark as used if this
9009 entry itself isn't unused. */
9010 else if ((used[rel->r_offset >> 3]
9011 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9012 && !used[val >> 3])
9013 {
9014 /* Do all the relocs again, to catch reference
9015 chains. */
9016 repeat = 1;
9017 used[val >> 3] = 1;
9018 }
9019 }
9020 }
9021 while (repeat);
9022
9023 if (elf_section_data (sec)->relocs != relstart)
9024 free (relstart);
9025 }
9026
9027 /* Merge the used and skip arrays. Assume that TOC
9028 doublewords not appearing as either used or unused belong
9029 to to an entry more than one doubleword in size. */
9030 for (drop = skip, keep = used, last = 0, some_unused = 0;
9031 drop < skip + (toc->size + 7) / 8;
9032 ++drop, ++keep)
9033 {
9034 if (*keep)
9035 {
9036 *drop &= ~ref_from_discarded;
9037 if ((*drop & can_optimize) != 0)
9038 some_unused = 1;
9039 last = 0;
9040 }
9041 else if ((*drop & ref_from_discarded) != 0)
9042 {
9043 some_unused = 1;
9044 last = ref_from_discarded;
9045 }
9046 else
9047 *drop = last;
9048 }
9049
9050 free (used);
9051
9052 if (some_unused)
9053 {
9054 bfd_byte *contents, *src;
9055 unsigned long off;
9056 Elf_Internal_Sym *sym;
9057 bfd_boolean local_toc_syms = FALSE;
9058
9059 /* Shuffle the toc contents, and at the same time convert the
9060 skip array from booleans into offsets. */
9061 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9062 goto error_ret;
9063
9064 elf_section_data (toc)->this_hdr.contents = contents;
9065
9066 for (src = contents, off = 0, drop = skip;
9067 src < contents + toc->size;
9068 src += 8, ++drop)
9069 {
9070 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9071 off += 8;
9072 else if (off != 0)
9073 {
9074 *drop = off;
9075 memcpy (src - off, src, 8);
9076 }
9077 }
9078 *drop = off;
9079 toc->rawsize = toc->size;
9080 toc->size = src - contents - off;
9081
9082 /* Adjust addends for relocs against the toc section sym,
9083 and optimize any accesses we can. */
9084 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9085 {
9086 if (sec->reloc_count == 0
9087 || discarded_section (sec))
9088 continue;
9089
9090 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9091 info->keep_memory);
9092 if (relstart == NULL)
9093 goto error_ret;
9094
9095 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9096 {
9097 enum elf_ppc64_reloc_type r_type;
9098 unsigned long r_symndx;
9099 asection *sym_sec;
9100 struct elf_link_hash_entry *h;
9101 bfd_vma val;
9102
9103 r_type = ELF64_R_TYPE (rel->r_info);
9104 switch (r_type)
9105 {
9106 default:
9107 continue;
9108
9109 case R_PPC64_TOC16:
9110 case R_PPC64_TOC16_LO:
9111 case R_PPC64_TOC16_HI:
9112 case R_PPC64_TOC16_HA:
9113 case R_PPC64_TOC16_DS:
9114 case R_PPC64_TOC16_LO_DS:
9115 case R_PPC64_ADDR64:
9116 break;
9117 }
9118
9119 r_symndx = ELF64_R_SYM (rel->r_info);
9120 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9121 r_symndx, ibfd))
9122 goto error_ret;
9123
9124 if (sym_sec != toc)
9125 continue;
9126
9127 if (h != NULL)
9128 val = h->root.u.def.value;
9129 else
9130 {
9131 val = sym->st_value;
9132 if (val != 0)
9133 local_toc_syms = TRUE;
9134 }
9135
9136 val += rel->r_addend;
9137
9138 if (val > toc->rawsize)
9139 val = toc->rawsize;
9140 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9141 continue;
9142 else if ((skip[val >> 3] & can_optimize) != 0)
9143 {
9144 Elf_Internal_Rela *tocrel
9145 = toc_relocs + (skip[val >> 3] >> 2);
9146 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9147
9148 switch (r_type)
9149 {
9150 case R_PPC64_TOC16_HA:
9151 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9152 break;
9153
9154 case R_PPC64_TOC16_LO_DS:
9155 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9156 break;
9157
9158 default:
9159 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9160 ppc_howto_init ();
9161 info->callbacks->einfo
9162 (_("%P: %H: %s references "
9163 "optimized away TOC entry\n"),
9164 ibfd, sec, rel->r_offset,
9165 ppc64_elf_howto_table[r_type]->name);
9166 bfd_set_error (bfd_error_bad_value);
9167 goto error_ret;
9168 }
9169 rel->r_addend = tocrel->r_addend;
9170 elf_section_data (sec)->relocs = relstart;
9171 continue;
9172 }
9173
9174 if (h != NULL || sym->st_value != 0)
9175 continue;
9176
9177 rel->r_addend -= skip[val >> 3];
9178 elf_section_data (sec)->relocs = relstart;
9179 }
9180
9181 if (elf_section_data (sec)->relocs != relstart)
9182 free (relstart);
9183 }
9184
9185 /* We shouldn't have local or global symbols defined in the TOC,
9186 but handle them anyway. */
9187 if (local_syms != NULL)
9188 for (sym = local_syms;
9189 sym < local_syms + symtab_hdr->sh_info;
9190 ++sym)
9191 if (sym->st_value != 0
9192 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9193 {
9194 unsigned long i;
9195
9196 if (sym->st_value > toc->rawsize)
9197 i = toc->rawsize >> 3;
9198 else
9199 i = sym->st_value >> 3;
9200
9201 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9202 {
9203 if (local_toc_syms)
9204 (*_bfd_error_handler)
9205 (_("%s defined on removed toc entry"),
9206 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9207 do
9208 ++i;
9209 while ((skip[i] & (ref_from_discarded | can_optimize)));
9210 sym->st_value = (bfd_vma) i << 3;
9211 }
9212
9213 sym->st_value -= skip[i];
9214 symtab_hdr->contents = (unsigned char *) local_syms;
9215 }
9216
9217 /* Adjust any global syms defined in this toc input section. */
9218 if (toc_inf.global_toc_syms)
9219 {
9220 toc_inf.toc = toc;
9221 toc_inf.skip = skip;
9222 toc_inf.global_toc_syms = FALSE;
9223 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9224 &toc_inf);
9225 }
9226
9227 if (toc->reloc_count != 0)
9228 {
9229 Elf_Internal_Shdr *rel_hdr;
9230 Elf_Internal_Rela *wrel;
9231 bfd_size_type sz;
9232
9233 /* Remove unused toc relocs, and adjust those we keep. */
9234 if (toc_relocs == NULL)
9235 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9236 info->keep_memory);
9237 if (toc_relocs == NULL)
9238 goto error_ret;
9239
9240 wrel = toc_relocs;
9241 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9242 if ((skip[rel->r_offset >> 3]
9243 & (ref_from_discarded | can_optimize)) == 0)
9244 {
9245 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9246 wrel->r_info = rel->r_info;
9247 wrel->r_addend = rel->r_addend;
9248 ++wrel;
9249 }
9250 else if (!dec_dynrel_count (rel->r_info, toc, info,
9251 &local_syms, NULL, NULL))
9252 goto error_ret;
9253
9254 elf_section_data (toc)->relocs = toc_relocs;
9255 toc->reloc_count = wrel - toc_relocs;
9256 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9257 sz = rel_hdr->sh_entsize;
9258 rel_hdr->sh_size = toc->reloc_count * sz;
9259 }
9260 }
9261 else if (toc_relocs != NULL
9262 && elf_section_data (toc)->relocs != toc_relocs)
9263 free (toc_relocs);
9264
9265 if (local_syms != NULL
9266 && symtab_hdr->contents != (unsigned char *) local_syms)
9267 {
9268 if (!info->keep_memory)
9269 free (local_syms);
9270 else
9271 symtab_hdr->contents = (unsigned char *) local_syms;
9272 }
9273 free (skip);
9274 }
9275
9276 return TRUE;
9277 }
9278
9279 /* Return true iff input section I references the TOC using
9280 instructions limited to +/-32k offsets. */
9281
9282 bfd_boolean
9283 ppc64_elf_has_small_toc_reloc (asection *i)
9284 {
9285 return (is_ppc64_elf (i->owner)
9286 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9287 }
9288
9289 /* Allocate space for one GOT entry. */
9290
9291 static void
9292 allocate_got (struct elf_link_hash_entry *h,
9293 struct bfd_link_info *info,
9294 struct got_entry *gent)
9295 {
9296 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9297 bfd_boolean dyn;
9298 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9299 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9300 ? 16 : 8);
9301 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9302 ? 2 : 1) * sizeof (Elf64_External_Rela);
9303 asection *got = ppc64_elf_tdata (gent->owner)->got;
9304
9305 gent->got.offset = got->size;
9306 got->size += entsize;
9307
9308 dyn = htab->elf.dynamic_sections_created;
9309 if (h->type == STT_GNU_IFUNC)
9310 {
9311 htab->elf.irelplt->size += rentsize;
9312 htab->got_reli_size += rentsize;
9313 }
9314 else if ((info->shared
9315 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9316 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9317 || h->root.type != bfd_link_hash_undefweak))
9318 {
9319 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9320 relgot->size += rentsize;
9321 }
9322 }
9323
9324 /* This function merges got entries in the same toc group. */
9325
9326 static void
9327 merge_got_entries (struct got_entry **pent)
9328 {
9329 struct got_entry *ent, *ent2;
9330
9331 for (ent = *pent; ent != NULL; ent = ent->next)
9332 if (!ent->is_indirect)
9333 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9334 if (!ent2->is_indirect
9335 && ent2->addend == ent->addend
9336 && ent2->tls_type == ent->tls_type
9337 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9338 {
9339 ent2->is_indirect = TRUE;
9340 ent2->got.ent = ent;
9341 }
9342 }
9343
9344 /* Allocate space in .plt, .got and associated reloc sections for
9345 dynamic relocs. */
9346
9347 static bfd_boolean
9348 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9349 {
9350 struct bfd_link_info *info;
9351 struct ppc_link_hash_table *htab;
9352 asection *s;
9353 struct ppc_link_hash_entry *eh;
9354 struct elf_dyn_relocs *p;
9355 struct got_entry **pgent, *gent;
9356
9357 if (h->root.type == bfd_link_hash_indirect)
9358 return TRUE;
9359
9360 info = (struct bfd_link_info *) inf;
9361 htab = ppc_hash_table (info);
9362 if (htab == NULL)
9363 return FALSE;
9364
9365 if ((htab->elf.dynamic_sections_created
9366 && h->dynindx != -1
9367 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9368 || h->type == STT_GNU_IFUNC)
9369 {
9370 struct plt_entry *pent;
9371 bfd_boolean doneone = FALSE;
9372 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9373 if (pent->plt.refcount > 0)
9374 {
9375 if (!htab->elf.dynamic_sections_created
9376 || h->dynindx == -1)
9377 {
9378 s = htab->elf.iplt;
9379 pent->plt.offset = s->size;
9380 s->size += PLT_ENTRY_SIZE (htab);
9381 s = htab->elf.irelplt;
9382 }
9383 else
9384 {
9385 /* If this is the first .plt entry, make room for the special
9386 first entry. */
9387 s = htab->elf.splt;
9388 if (s->size == 0)
9389 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9390
9391 pent->plt.offset = s->size;
9392
9393 /* Make room for this entry. */
9394 s->size += PLT_ENTRY_SIZE (htab);
9395
9396 /* Make room for the .glink code. */
9397 s = htab->glink;
9398 if (s->size == 0)
9399 s->size += GLINK_CALL_STUB_SIZE;
9400 if (htab->opd_abi)
9401 {
9402 /* We need bigger stubs past index 32767. */
9403 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9404 s->size += 4;
9405 s->size += 2*4;
9406 }
9407 else
9408 s->size += 4;
9409
9410 /* We also need to make an entry in the .rela.plt section. */
9411 s = htab->elf.srelplt;
9412 }
9413 s->size += sizeof (Elf64_External_Rela);
9414 doneone = TRUE;
9415 }
9416 else
9417 pent->plt.offset = (bfd_vma) -1;
9418 if (!doneone)
9419 {
9420 h->plt.plist = NULL;
9421 h->needs_plt = 0;
9422 }
9423 }
9424 else
9425 {
9426 h->plt.plist = NULL;
9427 h->needs_plt = 0;
9428 }
9429
9430 eh = (struct ppc_link_hash_entry *) h;
9431 /* Run through the TLS GD got entries first if we're changing them
9432 to TPREL. */
9433 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9434 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9435 if (gent->got.refcount > 0
9436 && (gent->tls_type & TLS_GD) != 0)
9437 {
9438 /* This was a GD entry that has been converted to TPREL. If
9439 there happens to be a TPREL entry we can use that one. */
9440 struct got_entry *ent;
9441 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9442 if (ent->got.refcount > 0
9443 && (ent->tls_type & TLS_TPREL) != 0
9444 && ent->addend == gent->addend
9445 && ent->owner == gent->owner)
9446 {
9447 gent->got.refcount = 0;
9448 break;
9449 }
9450
9451 /* If not, then we'll be using our own TPREL entry. */
9452 if (gent->got.refcount != 0)
9453 gent->tls_type = TLS_TLS | TLS_TPREL;
9454 }
9455
9456 /* Remove any list entry that won't generate a word in the GOT before
9457 we call merge_got_entries. Otherwise we risk merging to empty
9458 entries. */
9459 pgent = &h->got.glist;
9460 while ((gent = *pgent) != NULL)
9461 if (gent->got.refcount > 0)
9462 {
9463 if ((gent->tls_type & TLS_LD) != 0
9464 && !h->def_dynamic)
9465 {
9466 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9467 *pgent = gent->next;
9468 }
9469 else
9470 pgent = &gent->next;
9471 }
9472 else
9473 *pgent = gent->next;
9474
9475 if (!htab->do_multi_toc)
9476 merge_got_entries (&h->got.glist);
9477
9478 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9479 if (!gent->is_indirect)
9480 {
9481 /* Make sure this symbol is output as a dynamic symbol.
9482 Undefined weak syms won't yet be marked as dynamic,
9483 nor will all TLS symbols. */
9484 if (h->dynindx == -1
9485 && !h->forced_local
9486 && h->type != STT_GNU_IFUNC
9487 && htab->elf.dynamic_sections_created)
9488 {
9489 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9490 return FALSE;
9491 }
9492
9493 if (!is_ppc64_elf (gent->owner))
9494 abort ();
9495
9496 allocate_got (h, info, gent);
9497 }
9498
9499 if (eh->dyn_relocs == NULL
9500 || (!htab->elf.dynamic_sections_created
9501 && h->type != STT_GNU_IFUNC))
9502 return TRUE;
9503
9504 /* In the shared -Bsymbolic case, discard space allocated for
9505 dynamic pc-relative relocs against symbols which turn out to be
9506 defined in regular objects. For the normal shared case, discard
9507 space for relocs that have become local due to symbol visibility
9508 changes. */
9509
9510 if (info->shared)
9511 {
9512 /* Relocs that use pc_count are those that appear on a call insn,
9513 or certain REL relocs (see must_be_dyn_reloc) that can be
9514 generated via assembly. We want calls to protected symbols to
9515 resolve directly to the function rather than going via the plt.
9516 If people want function pointer comparisons to work as expected
9517 then they should avoid writing weird assembly. */
9518 if (SYMBOL_CALLS_LOCAL (info, h))
9519 {
9520 struct elf_dyn_relocs **pp;
9521
9522 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9523 {
9524 p->count -= p->pc_count;
9525 p->pc_count = 0;
9526 if (p->count == 0)
9527 *pp = p->next;
9528 else
9529 pp = &p->next;
9530 }
9531 }
9532
9533 /* Also discard relocs on undefined weak syms with non-default
9534 visibility. */
9535 if (eh->dyn_relocs != NULL
9536 && h->root.type == bfd_link_hash_undefweak)
9537 {
9538 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9539 eh->dyn_relocs = NULL;
9540
9541 /* Make sure this symbol is output as a dynamic symbol.
9542 Undefined weak syms won't yet be marked as dynamic. */
9543 else if (h->dynindx == -1
9544 && !h->forced_local)
9545 {
9546 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9547 return FALSE;
9548 }
9549 }
9550 }
9551 else if (h->type == STT_GNU_IFUNC)
9552 {
9553 if (!h->non_got_ref)
9554 eh->dyn_relocs = NULL;
9555 }
9556 else if (ELIMINATE_COPY_RELOCS)
9557 {
9558 /* For the non-shared case, discard space for relocs against
9559 symbols which turn out to need copy relocs or are not
9560 dynamic. */
9561
9562 if (!h->non_got_ref
9563 && !h->def_regular)
9564 {
9565 /* Make sure this symbol is output as a dynamic symbol.
9566 Undefined weak syms won't yet be marked as dynamic. */
9567 if (h->dynindx == -1
9568 && !h->forced_local)
9569 {
9570 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9571 return FALSE;
9572 }
9573
9574 /* If that succeeded, we know we'll be keeping all the
9575 relocs. */
9576 if (h->dynindx != -1)
9577 goto keep;
9578 }
9579
9580 eh->dyn_relocs = NULL;
9581
9582 keep: ;
9583 }
9584
9585 /* Finally, allocate space. */
9586 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9587 {
9588 asection *sreloc = elf_section_data (p->sec)->sreloc;
9589 if (eh->elf.type == STT_GNU_IFUNC)
9590 sreloc = htab->elf.irelplt;
9591 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9592 }
9593
9594 return TRUE;
9595 }
9596
9597 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9598 to set up space for global entry stubs. These are put in glink,
9599 after the branch table. */
9600
9601 static bfd_boolean
9602 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9603 {
9604 struct bfd_link_info *info;
9605 struct ppc_link_hash_table *htab;
9606 struct plt_entry *pent;
9607 asection *s;
9608
9609 if (h->root.type == bfd_link_hash_indirect)
9610 return TRUE;
9611
9612 if (!h->pointer_equality_needed)
9613 return TRUE;
9614
9615 if (h->def_regular)
9616 return TRUE;
9617
9618 info = inf;
9619 htab = ppc_hash_table (info);
9620 if (htab == NULL)
9621 return FALSE;
9622
9623 s = htab->glink;
9624 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9625 if (pent->plt.offset != (bfd_vma) -1
9626 && pent->addend == 0)
9627 {
9628 /* For ELFv2, if this symbol is not defined in a regular file
9629 and we are not generating a shared library or pie, then we
9630 need to define the symbol in the executable on a call stub.
9631 This is to avoid text relocations. */
9632 s->size = (s->size + 15) & -16;
9633 h->root.u.def.section = s;
9634 h->root.u.def.value = s->size;
9635 s->size += 16;
9636 break;
9637 }
9638 return TRUE;
9639 }
9640
9641 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9642 read-only sections. */
9643
9644 static bfd_boolean
9645 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9646 {
9647 if (h->root.type == bfd_link_hash_indirect)
9648 return TRUE;
9649
9650 if (readonly_dynrelocs (h))
9651 {
9652 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9653
9654 /* Not an error, just cut short the traversal. */
9655 return FALSE;
9656 }
9657 return TRUE;
9658 }
9659
9660 /* Set the sizes of the dynamic sections. */
9661
9662 static bfd_boolean
9663 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9664 struct bfd_link_info *info)
9665 {
9666 struct ppc_link_hash_table *htab;
9667 bfd *dynobj;
9668 asection *s;
9669 bfd_boolean relocs;
9670 bfd *ibfd;
9671 struct got_entry *first_tlsld;
9672
9673 htab = ppc_hash_table (info);
9674 if (htab == NULL)
9675 return FALSE;
9676
9677 dynobj = htab->elf.dynobj;
9678 if (dynobj == NULL)
9679 abort ();
9680
9681 if (htab->elf.dynamic_sections_created)
9682 {
9683 /* Set the contents of the .interp section to the interpreter. */
9684 if (info->executable)
9685 {
9686 s = bfd_get_linker_section (dynobj, ".interp");
9687 if (s == NULL)
9688 abort ();
9689 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9690 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9691 }
9692 }
9693
9694 /* Set up .got offsets for local syms, and space for local dynamic
9695 relocs. */
9696 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9697 {
9698 struct got_entry **lgot_ents;
9699 struct got_entry **end_lgot_ents;
9700 struct plt_entry **local_plt;
9701 struct plt_entry **end_local_plt;
9702 unsigned char *lgot_masks;
9703 bfd_size_type locsymcount;
9704 Elf_Internal_Shdr *symtab_hdr;
9705
9706 if (!is_ppc64_elf (ibfd))
9707 continue;
9708
9709 for (s = ibfd->sections; s != NULL; s = s->next)
9710 {
9711 struct ppc_dyn_relocs *p;
9712
9713 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9714 {
9715 if (!bfd_is_abs_section (p->sec)
9716 && bfd_is_abs_section (p->sec->output_section))
9717 {
9718 /* Input section has been discarded, either because
9719 it is a copy of a linkonce section or due to
9720 linker script /DISCARD/, so we'll be discarding
9721 the relocs too. */
9722 }
9723 else if (p->count != 0)
9724 {
9725 asection *srel = elf_section_data (p->sec)->sreloc;
9726 if (p->ifunc)
9727 srel = htab->elf.irelplt;
9728 srel->size += p->count * sizeof (Elf64_External_Rela);
9729 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9730 info->flags |= DF_TEXTREL;
9731 }
9732 }
9733 }
9734
9735 lgot_ents = elf_local_got_ents (ibfd);
9736 if (!lgot_ents)
9737 continue;
9738
9739 symtab_hdr = &elf_symtab_hdr (ibfd);
9740 locsymcount = symtab_hdr->sh_info;
9741 end_lgot_ents = lgot_ents + locsymcount;
9742 local_plt = (struct plt_entry **) end_lgot_ents;
9743 end_local_plt = local_plt + locsymcount;
9744 lgot_masks = (unsigned char *) end_local_plt;
9745 s = ppc64_elf_tdata (ibfd)->got;
9746 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9747 {
9748 struct got_entry **pent, *ent;
9749
9750 pent = lgot_ents;
9751 while ((ent = *pent) != NULL)
9752 if (ent->got.refcount > 0)
9753 {
9754 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9755 {
9756 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9757 *pent = ent->next;
9758 }
9759 else
9760 {
9761 unsigned int ent_size = 8;
9762 unsigned int rel_size = sizeof (Elf64_External_Rela);
9763
9764 ent->got.offset = s->size;
9765 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9766 {
9767 ent_size *= 2;
9768 rel_size *= 2;
9769 }
9770 s->size += ent_size;
9771 if ((*lgot_masks & PLT_IFUNC) != 0)
9772 {
9773 htab->elf.irelplt->size += rel_size;
9774 htab->got_reli_size += rel_size;
9775 }
9776 else if (info->shared)
9777 {
9778 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9779 srel->size += rel_size;
9780 }
9781 pent = &ent->next;
9782 }
9783 }
9784 else
9785 *pent = ent->next;
9786 }
9787
9788 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9789 for (; local_plt < end_local_plt; ++local_plt)
9790 {
9791 struct plt_entry *ent;
9792
9793 for (ent = *local_plt; ent != NULL; ent = ent->next)
9794 if (ent->plt.refcount > 0)
9795 {
9796 s = htab->elf.iplt;
9797 ent->plt.offset = s->size;
9798 s->size += PLT_ENTRY_SIZE (htab);
9799
9800 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9801 }
9802 else
9803 ent->plt.offset = (bfd_vma) -1;
9804 }
9805 }
9806
9807 /* Allocate global sym .plt and .got entries, and space for global
9808 sym dynamic relocs. */
9809 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9810 /* Stash the end of glink branch table. */
9811 if (htab->glink != NULL)
9812 htab->glink->rawsize = htab->glink->size;
9813
9814 if (!htab->opd_abi && !info->shared)
9815 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9816
9817 first_tlsld = NULL;
9818 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9819 {
9820 struct got_entry *ent;
9821
9822 if (!is_ppc64_elf (ibfd))
9823 continue;
9824
9825 ent = ppc64_tlsld_got (ibfd);
9826 if (ent->got.refcount > 0)
9827 {
9828 if (!htab->do_multi_toc && first_tlsld != NULL)
9829 {
9830 ent->is_indirect = TRUE;
9831 ent->got.ent = first_tlsld;
9832 }
9833 else
9834 {
9835 if (first_tlsld == NULL)
9836 first_tlsld = ent;
9837 s = ppc64_elf_tdata (ibfd)->got;
9838 ent->got.offset = s->size;
9839 ent->owner = ibfd;
9840 s->size += 16;
9841 if (info->shared)
9842 {
9843 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9844 srel->size += sizeof (Elf64_External_Rela);
9845 }
9846 }
9847 }
9848 else
9849 ent->got.offset = (bfd_vma) -1;
9850 }
9851
9852 /* We now have determined the sizes of the various dynamic sections.
9853 Allocate memory for them. */
9854 relocs = FALSE;
9855 for (s = dynobj->sections; s != NULL; s = s->next)
9856 {
9857 if ((s->flags & SEC_LINKER_CREATED) == 0)
9858 continue;
9859
9860 if (s == htab->brlt || s == htab->relbrlt)
9861 /* These haven't been allocated yet; don't strip. */
9862 continue;
9863 else if (s == htab->elf.sgot
9864 || s == htab->elf.splt
9865 || s == htab->elf.iplt
9866 || s == htab->glink
9867 || s == htab->dynbss)
9868 {
9869 /* Strip this section if we don't need it; see the
9870 comment below. */
9871 }
9872 else if (s == htab->glink_eh_frame)
9873 {
9874 if (!bfd_is_abs_section (s->output_section))
9875 /* Not sized yet. */
9876 continue;
9877 }
9878 else if (CONST_STRNEQ (s->name, ".rela"))
9879 {
9880 if (s->size != 0)
9881 {
9882 if (s != htab->elf.srelplt)
9883 relocs = TRUE;
9884
9885 /* We use the reloc_count field as a counter if we need
9886 to copy relocs into the output file. */
9887 s->reloc_count = 0;
9888 }
9889 }
9890 else
9891 {
9892 /* It's not one of our sections, so don't allocate space. */
9893 continue;
9894 }
9895
9896 if (s->size == 0)
9897 {
9898 /* If we don't need this section, strip it from the
9899 output file. This is mostly to handle .rela.bss and
9900 .rela.plt. We must create both sections in
9901 create_dynamic_sections, because they must be created
9902 before the linker maps input sections to output
9903 sections. The linker does that before
9904 adjust_dynamic_symbol is called, and it is that
9905 function which decides whether anything needs to go
9906 into these sections. */
9907 s->flags |= SEC_EXCLUDE;
9908 continue;
9909 }
9910
9911 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9912 continue;
9913
9914 /* Allocate memory for the section contents. We use bfd_zalloc
9915 here in case unused entries are not reclaimed before the
9916 section's contents are written out. This should not happen,
9917 but this way if it does we get a R_PPC64_NONE reloc in .rela
9918 sections instead of garbage.
9919 We also rely on the section contents being zero when writing
9920 the GOT. */
9921 s->contents = bfd_zalloc (dynobj, s->size);
9922 if (s->contents == NULL)
9923 return FALSE;
9924 }
9925
9926 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9927 {
9928 if (!is_ppc64_elf (ibfd))
9929 continue;
9930
9931 s = ppc64_elf_tdata (ibfd)->got;
9932 if (s != NULL && s != htab->elf.sgot)
9933 {
9934 if (s->size == 0)
9935 s->flags |= SEC_EXCLUDE;
9936 else
9937 {
9938 s->contents = bfd_zalloc (ibfd, s->size);
9939 if (s->contents == NULL)
9940 return FALSE;
9941 }
9942 }
9943 s = ppc64_elf_tdata (ibfd)->relgot;
9944 if (s != NULL)
9945 {
9946 if (s->size == 0)
9947 s->flags |= SEC_EXCLUDE;
9948 else
9949 {
9950 s->contents = bfd_zalloc (ibfd, s->size);
9951 if (s->contents == NULL)
9952 return FALSE;
9953 relocs = TRUE;
9954 s->reloc_count = 0;
9955 }
9956 }
9957 }
9958
9959 if (htab->elf.dynamic_sections_created)
9960 {
9961 bfd_boolean tls_opt;
9962
9963 /* Add some entries to the .dynamic section. We fill in the
9964 values later, in ppc64_elf_finish_dynamic_sections, but we
9965 must add the entries now so that we get the correct size for
9966 the .dynamic section. The DT_DEBUG entry is filled in by the
9967 dynamic linker and used by the debugger. */
9968 #define add_dynamic_entry(TAG, VAL) \
9969 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9970
9971 if (info->executable)
9972 {
9973 if (!add_dynamic_entry (DT_DEBUG, 0))
9974 return FALSE;
9975 }
9976
9977 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
9978 {
9979 if (!add_dynamic_entry (DT_PLTGOT, 0)
9980 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9981 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9982 || !add_dynamic_entry (DT_JMPREL, 0)
9983 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9984 return FALSE;
9985 }
9986
9987 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
9988 {
9989 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9990 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9991 return FALSE;
9992 }
9993
9994 tls_opt = (!htab->params->no_tls_get_addr_opt
9995 && htab->tls_get_addr_fd != NULL
9996 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
9997 if (tls_opt || !htab->opd_abi)
9998 {
9999 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10000 return FALSE;
10001 }
10002
10003 if (relocs)
10004 {
10005 if (!add_dynamic_entry (DT_RELA, 0)
10006 || !add_dynamic_entry (DT_RELASZ, 0)
10007 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10008 return FALSE;
10009
10010 /* If any dynamic relocs apply to a read-only section,
10011 then we need a DT_TEXTREL entry. */
10012 if ((info->flags & DF_TEXTREL) == 0)
10013 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10014
10015 if ((info->flags & DF_TEXTREL) != 0)
10016 {
10017 if (!add_dynamic_entry (DT_TEXTREL, 0))
10018 return FALSE;
10019 }
10020 }
10021 }
10022 #undef add_dynamic_entry
10023
10024 return TRUE;
10025 }
10026
10027 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10028
10029 static bfd_boolean
10030 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10031 {
10032 if (h->plt.plist != NULL
10033 && !h->def_regular
10034 && !h->pointer_equality_needed)
10035 return FALSE;
10036
10037 return _bfd_elf_hash_symbol (h);
10038 }
10039
10040 /* Determine the type of stub needed, if any, for a call. */
10041
10042 static inline enum ppc_stub_type
10043 ppc_type_of_stub (asection *input_sec,
10044 const Elf_Internal_Rela *rel,
10045 struct ppc_link_hash_entry **hash,
10046 struct plt_entry **plt_ent,
10047 bfd_vma destination,
10048 unsigned long local_off)
10049 {
10050 struct ppc_link_hash_entry *h = *hash;
10051 bfd_vma location;
10052 bfd_vma branch_offset;
10053 bfd_vma max_branch_offset;
10054 enum elf_ppc64_reloc_type r_type;
10055
10056 if (h != NULL)
10057 {
10058 struct plt_entry *ent;
10059 struct ppc_link_hash_entry *fdh = h;
10060 if (h->oh != NULL
10061 && h->oh->is_func_descriptor)
10062 {
10063 fdh = ppc_follow_link (h->oh);
10064 *hash = fdh;
10065 }
10066
10067 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10068 if (ent->addend == rel->r_addend
10069 && ent->plt.offset != (bfd_vma) -1)
10070 {
10071 *plt_ent = ent;
10072 return ppc_stub_plt_call;
10073 }
10074
10075 /* Here, we know we don't have a plt entry. If we don't have a
10076 either a defined function descriptor or a defined entry symbol
10077 in a regular object file, then it is pointless trying to make
10078 any other type of stub. */
10079 if (!is_static_defined (&fdh->elf)
10080 && !is_static_defined (&h->elf))
10081 return ppc_stub_none;
10082 }
10083 else if (elf_local_got_ents (input_sec->owner) != NULL)
10084 {
10085 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10086 struct plt_entry **local_plt = (struct plt_entry **)
10087 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10088 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10089
10090 if (local_plt[r_symndx] != NULL)
10091 {
10092 struct plt_entry *ent;
10093
10094 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10095 if (ent->addend == rel->r_addend
10096 && ent->plt.offset != (bfd_vma) -1)
10097 {
10098 *plt_ent = ent;
10099 return ppc_stub_plt_call;
10100 }
10101 }
10102 }
10103
10104 /* Determine where the call point is. */
10105 location = (input_sec->output_offset
10106 + input_sec->output_section->vma
10107 + rel->r_offset);
10108
10109 branch_offset = destination - location;
10110 r_type = ELF64_R_TYPE (rel->r_info);
10111
10112 /* Determine if a long branch stub is needed. */
10113 max_branch_offset = 1 << 25;
10114 if (r_type != R_PPC64_REL24)
10115 max_branch_offset = 1 << 15;
10116
10117 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10118 /* We need a stub. Figure out whether a long_branch or plt_branch
10119 is needed later. */
10120 return ppc_stub_long_branch;
10121
10122 return ppc_stub_none;
10123 }
10124
10125 /* With power7 weakly ordered memory model, it is possible for ld.so
10126 to update a plt entry in one thread and have another thread see a
10127 stale zero toc entry. To avoid this we need some sort of acquire
10128 barrier in the call stub. One solution is to make the load of the
10129 toc word seem to appear to depend on the load of the function entry
10130 word. Another solution is to test for r2 being zero, and branch to
10131 the appropriate glink entry if so.
10132
10133 . fake dep barrier compare
10134 . ld 12,xxx(2) ld 12,xxx(2)
10135 . mtctr 12 mtctr 12
10136 . xor 11,12,12 ld 2,xxx+8(2)
10137 . add 2,2,11 cmpldi 2,0
10138 . ld 2,xxx+8(2) bnectr+
10139 . bctr b <glink_entry>
10140
10141 The solution involving the compare turns out to be faster, so
10142 that's what we use unless the branch won't reach. */
10143
10144 #define ALWAYS_USE_FAKE_DEP 0
10145 #define ALWAYS_EMIT_R2SAVE 0
10146
10147 #define PPC_LO(v) ((v) & 0xffff)
10148 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10149 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10150
10151 static inline unsigned int
10152 plt_stub_size (struct ppc_link_hash_table *htab,
10153 struct ppc_stub_hash_entry *stub_entry,
10154 bfd_vma off)
10155 {
10156 unsigned size = 12;
10157
10158 if (ALWAYS_EMIT_R2SAVE
10159 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10160 size += 4;
10161 if (PPC_HA (off) != 0)
10162 size += 4;
10163 if (htab->opd_abi)
10164 {
10165 size += 4;
10166 if (htab->params->plt_static_chain)
10167 size += 4;
10168 if (htab->params->plt_thread_safe)
10169 size += 8;
10170 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10171 size += 4;
10172 }
10173 if (stub_entry->h != NULL
10174 && (stub_entry->h == htab->tls_get_addr_fd
10175 || stub_entry->h == htab->tls_get_addr)
10176 && !htab->params->no_tls_get_addr_opt)
10177 size += 13 * 4;
10178 return size;
10179 }
10180
10181 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10182 then return the padding needed to do so. */
10183 static inline unsigned int
10184 plt_stub_pad (struct ppc_link_hash_table *htab,
10185 struct ppc_stub_hash_entry *stub_entry,
10186 bfd_vma plt_off)
10187 {
10188 int stub_align = 1 << htab->params->plt_stub_align;
10189 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10190 bfd_vma stub_off = stub_entry->stub_sec->size;
10191
10192 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10193 > (stub_size & -stub_align))
10194 return stub_align - (stub_off & (stub_align - 1));
10195 return 0;
10196 }
10197
10198 /* Build a .plt call stub. */
10199
10200 static inline bfd_byte *
10201 build_plt_stub (struct ppc_link_hash_table *htab,
10202 struct ppc_stub_hash_entry *stub_entry,
10203 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10204 {
10205 bfd *obfd = htab->params->stub_bfd;
10206 bfd_boolean plt_load_toc = htab->opd_abi;
10207 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10208 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10209 bfd_boolean use_fake_dep = plt_thread_safe;
10210 bfd_vma cmp_branch_off = 0;
10211
10212 if (!ALWAYS_USE_FAKE_DEP
10213 && plt_load_toc
10214 && plt_thread_safe
10215 && !(stub_entry->h != NULL
10216 && (stub_entry->h == htab->tls_get_addr_fd
10217 || stub_entry->h == htab->tls_get_addr)
10218 && !htab->params->no_tls_get_addr_opt))
10219 {
10220 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10221 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10222 / PLT_ENTRY_SIZE (htab));
10223 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10224 bfd_vma to, from;
10225
10226 if (pltindex > 32768)
10227 glinkoff += (pltindex - 32768) * 4;
10228 to = (glinkoff
10229 + htab->glink->output_offset
10230 + htab->glink->output_section->vma);
10231 from = (p - stub_entry->stub_sec->contents
10232 + 4 * (ALWAYS_EMIT_R2SAVE
10233 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10234 + 4 * (PPC_HA (offset) != 0)
10235 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10236 != PPC_HA (offset))
10237 + 4 * (plt_static_chain != 0)
10238 + 20
10239 + stub_entry->stub_sec->output_offset
10240 + stub_entry->stub_sec->output_section->vma);
10241 cmp_branch_off = to - from;
10242 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10243 }
10244
10245 if (PPC_HA (offset) != 0)
10246 {
10247 if (r != NULL)
10248 {
10249 if (ALWAYS_EMIT_R2SAVE
10250 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10251 r[0].r_offset += 4;
10252 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10253 r[1].r_offset = r[0].r_offset + 4;
10254 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10255 r[1].r_addend = r[0].r_addend;
10256 if (plt_load_toc)
10257 {
10258 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10259 {
10260 r[2].r_offset = r[1].r_offset + 4;
10261 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10262 r[2].r_addend = r[0].r_addend;
10263 }
10264 else
10265 {
10266 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10267 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10268 r[2].r_addend = r[0].r_addend + 8;
10269 if (plt_static_chain)
10270 {
10271 r[3].r_offset = r[2].r_offset + 4;
10272 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10273 r[3].r_addend = r[0].r_addend + 16;
10274 }
10275 }
10276 }
10277 }
10278 if (ALWAYS_EMIT_R2SAVE
10279 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10280 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10281 if (plt_load_toc)
10282 {
10283 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10284 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10285 }
10286 else
10287 {
10288 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10289 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10290 }
10291 if (plt_load_toc
10292 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10293 {
10294 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10295 offset = 0;
10296 }
10297 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10298 if (plt_load_toc)
10299 {
10300 if (use_fake_dep)
10301 {
10302 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10303 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10304 }
10305 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10306 if (plt_static_chain)
10307 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10308 }
10309 }
10310 else
10311 {
10312 if (r != NULL)
10313 {
10314 if (ALWAYS_EMIT_R2SAVE
10315 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10316 r[0].r_offset += 4;
10317 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10318 if (plt_load_toc)
10319 {
10320 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10321 {
10322 r[1].r_offset = r[0].r_offset + 4;
10323 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10324 r[1].r_addend = r[0].r_addend;
10325 }
10326 else
10327 {
10328 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10329 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10330 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10331 if (plt_static_chain)
10332 {
10333 r[2].r_offset = r[1].r_offset + 4;
10334 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10335 r[2].r_addend = r[0].r_addend + 8;
10336 }
10337 }
10338 }
10339 }
10340 if (ALWAYS_EMIT_R2SAVE
10341 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10342 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10343 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10344 if (plt_load_toc
10345 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10346 {
10347 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10348 offset = 0;
10349 }
10350 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10351 if (plt_load_toc)
10352 {
10353 if (use_fake_dep)
10354 {
10355 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10356 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10357 }
10358 if (plt_static_chain)
10359 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10360 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10361 }
10362 }
10363 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10364 {
10365 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10366 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10367 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10368 }
10369 else
10370 bfd_put_32 (obfd, BCTR, p), p += 4;
10371 return p;
10372 }
10373
10374 /* Build a special .plt call stub for __tls_get_addr. */
10375
10376 #define LD_R11_0R3 0xe9630000
10377 #define LD_R12_0R3 0xe9830000
10378 #define MR_R0_R3 0x7c601b78
10379 #define CMPDI_R11_0 0x2c2b0000
10380 #define ADD_R3_R12_R13 0x7c6c6a14
10381 #define BEQLR 0x4d820020
10382 #define MR_R3_R0 0x7c030378
10383 #define STD_R11_0R1 0xf9610000
10384 #define BCTRL 0x4e800421
10385 #define LD_R11_0R1 0xe9610000
10386 #define MTLR_R11 0x7d6803a6
10387
10388 static inline bfd_byte *
10389 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10390 struct ppc_stub_hash_entry *stub_entry,
10391 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10392 {
10393 bfd *obfd = htab->params->stub_bfd;
10394
10395 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10396 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10397 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10398 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10399 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10400 bfd_put_32 (obfd, BEQLR, p), p += 4;
10401 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10402 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10403 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10404
10405 if (r != NULL)
10406 r[0].r_offset += 9 * 4;
10407 p = build_plt_stub (htab, stub_entry, p, offset, r);
10408 bfd_put_32 (obfd, BCTRL, p - 4);
10409
10410 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10411 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10412 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10413 bfd_put_32 (obfd, BLR, p), p += 4;
10414
10415 return p;
10416 }
10417
10418 static Elf_Internal_Rela *
10419 get_relocs (asection *sec, int count)
10420 {
10421 Elf_Internal_Rela *relocs;
10422 struct bfd_elf_section_data *elfsec_data;
10423
10424 elfsec_data = elf_section_data (sec);
10425 relocs = elfsec_data->relocs;
10426 if (relocs == NULL)
10427 {
10428 bfd_size_type relsize;
10429 relsize = sec->reloc_count * sizeof (*relocs);
10430 relocs = bfd_alloc (sec->owner, relsize);
10431 if (relocs == NULL)
10432 return NULL;
10433 elfsec_data->relocs = relocs;
10434 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10435 sizeof (Elf_Internal_Shdr));
10436 if (elfsec_data->rela.hdr == NULL)
10437 return NULL;
10438 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10439 * sizeof (Elf64_External_Rela));
10440 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10441 sec->reloc_count = 0;
10442 }
10443 relocs += sec->reloc_count;
10444 sec->reloc_count += count;
10445 return relocs;
10446 }
10447
10448 static bfd_vma
10449 get_r2off (struct bfd_link_info *info,
10450 struct ppc_stub_hash_entry *stub_entry)
10451 {
10452 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10453 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10454
10455 if (r2off == 0)
10456 {
10457 /* Support linking -R objects. Get the toc pointer from the
10458 opd entry. */
10459 char buf[8];
10460 if (!htab->opd_abi)
10461 return r2off;
10462 asection *opd = stub_entry->h->elf.root.u.def.section;
10463 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10464
10465 if (strcmp (opd->name, ".opd") != 0
10466 || opd->reloc_count != 0)
10467 {
10468 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10469 stub_entry->h->elf.root.root.string);
10470 bfd_set_error (bfd_error_bad_value);
10471 return 0;
10472 }
10473 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10474 return 0;
10475 r2off = bfd_get_64 (opd->owner, buf);
10476 r2off -= elf_gp (info->output_bfd);
10477 }
10478 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10479 return r2off;
10480 }
10481
10482 static bfd_boolean
10483 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10484 {
10485 struct ppc_stub_hash_entry *stub_entry;
10486 struct ppc_branch_hash_entry *br_entry;
10487 struct bfd_link_info *info;
10488 struct ppc_link_hash_table *htab;
10489 bfd_byte *loc;
10490 bfd_byte *p;
10491 bfd_vma dest, off;
10492 int size;
10493 Elf_Internal_Rela *r;
10494 asection *plt;
10495
10496 /* Massage our args to the form they really have. */
10497 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10498 info = in_arg;
10499
10500 htab = ppc_hash_table (info);
10501 if (htab == NULL)
10502 return FALSE;
10503
10504 /* Make a note of the offset within the stubs for this entry. */
10505 stub_entry->stub_offset = stub_entry->stub_sec->size;
10506 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10507
10508 htab->stub_count[stub_entry->stub_type - 1] += 1;
10509 switch (stub_entry->stub_type)
10510 {
10511 case ppc_stub_long_branch:
10512 case ppc_stub_long_branch_r2off:
10513 /* Branches are relative. This is where we are going to. */
10514 dest = (stub_entry->target_value
10515 + stub_entry->target_section->output_offset
10516 + stub_entry->target_section->output_section->vma);
10517 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10518 off = dest;
10519
10520 /* And this is where we are coming from. */
10521 off -= (stub_entry->stub_offset
10522 + stub_entry->stub_sec->output_offset
10523 + stub_entry->stub_sec->output_section->vma);
10524
10525 size = 4;
10526 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10527 {
10528 bfd_vma r2off = get_r2off (info, stub_entry);
10529
10530 if (r2off == 0)
10531 {
10532 htab->stub_error = TRUE;
10533 return FALSE;
10534 }
10535 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10536 loc += 4;
10537 size = 12;
10538 if (PPC_HA (r2off) != 0)
10539 {
10540 size = 16;
10541 bfd_put_32 (htab->params->stub_bfd,
10542 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10543 loc += 4;
10544 }
10545 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10546 loc += 4;
10547 off -= size - 4;
10548 }
10549 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10550
10551 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10552 {
10553 info->callbacks->einfo
10554 (_("%P: long branch stub `%s' offset overflow\n"),
10555 stub_entry->root.string);
10556 htab->stub_error = TRUE;
10557 return FALSE;
10558 }
10559
10560 if (info->emitrelocations)
10561 {
10562 r = get_relocs (stub_entry->stub_sec, 1);
10563 if (r == NULL)
10564 return FALSE;
10565 r->r_offset = loc - stub_entry->stub_sec->contents;
10566 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10567 r->r_addend = dest;
10568 if (stub_entry->h != NULL)
10569 {
10570 struct elf_link_hash_entry **hashes;
10571 unsigned long symndx;
10572 struct ppc_link_hash_entry *h;
10573
10574 hashes = elf_sym_hashes (htab->params->stub_bfd);
10575 if (hashes == NULL)
10576 {
10577 bfd_size_type hsize;
10578
10579 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10580 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10581 if (hashes == NULL)
10582 return FALSE;
10583 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10584 htab->stub_globals = 1;
10585 }
10586 symndx = htab->stub_globals++;
10587 h = stub_entry->h;
10588 hashes[symndx] = &h->elf;
10589 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10590 if (h->oh != NULL && h->oh->is_func)
10591 h = ppc_follow_link (h->oh);
10592 if (h->elf.root.u.def.section != stub_entry->target_section)
10593 /* H is an opd symbol. The addend must be zero. */
10594 r->r_addend = 0;
10595 else
10596 {
10597 off = (h->elf.root.u.def.value
10598 + h->elf.root.u.def.section->output_offset
10599 + h->elf.root.u.def.section->output_section->vma);
10600 r->r_addend -= off;
10601 }
10602 }
10603 }
10604 break;
10605
10606 case ppc_stub_plt_branch:
10607 case ppc_stub_plt_branch_r2off:
10608 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10609 stub_entry->root.string + 9,
10610 FALSE, FALSE);
10611 if (br_entry == NULL)
10612 {
10613 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10614 stub_entry->root.string);
10615 htab->stub_error = TRUE;
10616 return FALSE;
10617 }
10618
10619 dest = (stub_entry->target_value
10620 + stub_entry->target_section->output_offset
10621 + stub_entry->target_section->output_section->vma);
10622 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10623 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10624
10625 bfd_put_64 (htab->brlt->owner, dest,
10626 htab->brlt->contents + br_entry->offset);
10627
10628 if (br_entry->iter == htab->stub_iteration)
10629 {
10630 br_entry->iter = 0;
10631
10632 if (htab->relbrlt != NULL)
10633 {
10634 /* Create a reloc for the branch lookup table entry. */
10635 Elf_Internal_Rela rela;
10636 bfd_byte *rl;
10637
10638 rela.r_offset = (br_entry->offset
10639 + htab->brlt->output_offset
10640 + htab->brlt->output_section->vma);
10641 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10642 rela.r_addend = dest;
10643
10644 rl = htab->relbrlt->contents;
10645 rl += (htab->relbrlt->reloc_count++
10646 * sizeof (Elf64_External_Rela));
10647 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10648 }
10649 else if (info->emitrelocations)
10650 {
10651 r = get_relocs (htab->brlt, 1);
10652 if (r == NULL)
10653 return FALSE;
10654 /* brlt, being SEC_LINKER_CREATED does not go through the
10655 normal reloc processing. Symbols and offsets are not
10656 translated from input file to output file form, so
10657 set up the offset per the output file. */
10658 r->r_offset = (br_entry->offset
10659 + htab->brlt->output_offset
10660 + htab->brlt->output_section->vma);
10661 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10662 r->r_addend = dest;
10663 }
10664 }
10665
10666 dest = (br_entry->offset
10667 + htab->brlt->output_offset
10668 + htab->brlt->output_section->vma);
10669
10670 off = (dest
10671 - elf_gp (htab->brlt->output_section->owner)
10672 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10673
10674 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10675 {
10676 info->callbacks->einfo
10677 (_("%P: linkage table error against `%T'\n"),
10678 stub_entry->root.string);
10679 bfd_set_error (bfd_error_bad_value);
10680 htab->stub_error = TRUE;
10681 return FALSE;
10682 }
10683
10684 if (info->emitrelocations)
10685 {
10686 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10687 if (r == NULL)
10688 return FALSE;
10689 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10690 if (bfd_big_endian (info->output_bfd))
10691 r[0].r_offset += 2;
10692 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10693 r[0].r_offset += 4;
10694 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10695 r[0].r_addend = dest;
10696 if (PPC_HA (off) != 0)
10697 {
10698 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10699 r[1].r_offset = r[0].r_offset + 4;
10700 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10701 r[1].r_addend = r[0].r_addend;
10702 }
10703 }
10704
10705 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10706 {
10707 if (PPC_HA (off) != 0)
10708 {
10709 size = 16;
10710 bfd_put_32 (htab->params->stub_bfd,
10711 ADDIS_R12_R2 | PPC_HA (off), loc);
10712 loc += 4;
10713 bfd_put_32 (htab->params->stub_bfd,
10714 LD_R12_0R12 | PPC_LO (off), loc);
10715 }
10716 else
10717 {
10718 size = 12;
10719 bfd_put_32 (htab->params->stub_bfd,
10720 LD_R12_0R2 | PPC_LO (off), loc);
10721 }
10722 }
10723 else
10724 {
10725 bfd_vma r2off = get_r2off (info, stub_entry);
10726
10727 if (r2off == 0 && htab->opd_abi)
10728 {
10729 htab->stub_error = TRUE;
10730 return FALSE;
10731 }
10732
10733 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10734 loc += 4;
10735 size = 16;
10736 if (PPC_HA (off) != 0)
10737 {
10738 size += 4;
10739 bfd_put_32 (htab->params->stub_bfd,
10740 ADDIS_R12_R2 | PPC_HA (off), loc);
10741 loc += 4;
10742 bfd_put_32 (htab->params->stub_bfd,
10743 LD_R12_0R12 | PPC_LO (off), loc);
10744 }
10745 else
10746 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10747
10748 if (PPC_HA (r2off) != 0)
10749 {
10750 size += 4;
10751 loc += 4;
10752 bfd_put_32 (htab->params->stub_bfd,
10753 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10754 }
10755 if (PPC_LO (r2off) != 0)
10756 {
10757 size += 4;
10758 loc += 4;
10759 bfd_put_32 (htab->params->stub_bfd,
10760 ADDI_R2_R2 | PPC_LO (r2off), loc);
10761 }
10762 }
10763 loc += 4;
10764 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10765 loc += 4;
10766 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10767 break;
10768
10769 case ppc_stub_plt_call:
10770 case ppc_stub_plt_call_r2save:
10771 if (stub_entry->h != NULL
10772 && stub_entry->h->is_func_descriptor
10773 && stub_entry->h->oh != NULL)
10774 {
10775 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10776
10777 /* If the old-ABI "dot-symbol" is undefined make it weak so
10778 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10779 FIXME: We used to define the symbol on one of the call
10780 stubs instead, which is why we test symbol section id
10781 against htab->top_id in various places. Likely all
10782 these checks could now disappear. */
10783 if (fh->elf.root.type == bfd_link_hash_undefined)
10784 fh->elf.root.type = bfd_link_hash_undefweak;
10785 /* Stop undo_symbol_twiddle changing it back to undefined. */
10786 fh->was_undefined = 0;
10787 }
10788
10789 /* Now build the stub. */
10790 dest = stub_entry->plt_ent->plt.offset & ~1;
10791 if (dest >= (bfd_vma) -2)
10792 abort ();
10793
10794 plt = htab->elf.splt;
10795 if (!htab->elf.dynamic_sections_created
10796 || stub_entry->h == NULL
10797 || stub_entry->h->elf.dynindx == -1)
10798 plt = htab->elf.iplt;
10799
10800 dest += plt->output_offset + plt->output_section->vma;
10801
10802 if (stub_entry->h == NULL
10803 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10804 {
10805 Elf_Internal_Rela rela;
10806 bfd_byte *rl;
10807
10808 rela.r_offset = dest;
10809 if (htab->opd_abi)
10810 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10811 else
10812 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10813 rela.r_addend = (stub_entry->target_value
10814 + stub_entry->target_section->output_offset
10815 + stub_entry->target_section->output_section->vma);
10816
10817 rl = (htab->elf.irelplt->contents
10818 + (htab->elf.irelplt->reloc_count++
10819 * sizeof (Elf64_External_Rela)));
10820 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10821 stub_entry->plt_ent->plt.offset |= 1;
10822 }
10823
10824 off = (dest
10825 - elf_gp (plt->output_section->owner)
10826 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10827
10828 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10829 {
10830 info->callbacks->einfo
10831 (_("%P: linkage table error against `%T'\n"),
10832 stub_entry->h != NULL
10833 ? stub_entry->h->elf.root.root.string
10834 : "<local sym>");
10835 bfd_set_error (bfd_error_bad_value);
10836 htab->stub_error = TRUE;
10837 return FALSE;
10838 }
10839
10840 if (htab->params->plt_stub_align != 0)
10841 {
10842 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10843
10844 stub_entry->stub_sec->size += pad;
10845 stub_entry->stub_offset = stub_entry->stub_sec->size;
10846 loc += pad;
10847 }
10848
10849 r = NULL;
10850 if (info->emitrelocations)
10851 {
10852 r = get_relocs (stub_entry->stub_sec,
10853 ((PPC_HA (off) != 0)
10854 + (htab->opd_abi
10855 ? 2 + (htab->params->plt_static_chain
10856 && PPC_HA (off + 16) == PPC_HA (off))
10857 : 1)));
10858 if (r == NULL)
10859 return FALSE;
10860 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10861 if (bfd_big_endian (info->output_bfd))
10862 r[0].r_offset += 2;
10863 r[0].r_addend = dest;
10864 }
10865 if (stub_entry->h != NULL
10866 && (stub_entry->h == htab->tls_get_addr_fd
10867 || stub_entry->h == htab->tls_get_addr)
10868 && !htab->params->no_tls_get_addr_opt)
10869 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10870 else
10871 p = build_plt_stub (htab, stub_entry, loc, off, r);
10872 size = p - loc;
10873 break;
10874
10875 default:
10876 BFD_FAIL ();
10877 return FALSE;
10878 }
10879
10880 stub_entry->stub_sec->size += size;
10881
10882 if (htab->params->emit_stub_syms)
10883 {
10884 struct elf_link_hash_entry *h;
10885 size_t len1, len2;
10886 char *name;
10887 const char *const stub_str[] = { "long_branch",
10888 "long_branch_r2off",
10889 "plt_branch",
10890 "plt_branch_r2off",
10891 "plt_call",
10892 "plt_call" };
10893
10894 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10895 len2 = strlen (stub_entry->root.string);
10896 name = bfd_malloc (len1 + len2 + 2);
10897 if (name == NULL)
10898 return FALSE;
10899 memcpy (name, stub_entry->root.string, 9);
10900 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10901 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10902 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10903 if (h == NULL)
10904 return FALSE;
10905 if (h->root.type == bfd_link_hash_new)
10906 {
10907 h->root.type = bfd_link_hash_defined;
10908 h->root.u.def.section = stub_entry->stub_sec;
10909 h->root.u.def.value = stub_entry->stub_offset;
10910 h->ref_regular = 1;
10911 h->def_regular = 1;
10912 h->ref_regular_nonweak = 1;
10913 h->forced_local = 1;
10914 h->non_elf = 0;
10915 }
10916 }
10917
10918 return TRUE;
10919 }
10920
10921 /* As above, but don't actually build the stub. Just bump offset so
10922 we know stub section sizes, and select plt_branch stubs where
10923 long_branch stubs won't do. */
10924
10925 static bfd_boolean
10926 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10927 {
10928 struct ppc_stub_hash_entry *stub_entry;
10929 struct bfd_link_info *info;
10930 struct ppc_link_hash_table *htab;
10931 bfd_vma off;
10932 int size;
10933
10934 /* Massage our args to the form they really have. */
10935 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10936 info = in_arg;
10937
10938 htab = ppc_hash_table (info);
10939 if (htab == NULL)
10940 return FALSE;
10941
10942 if (stub_entry->stub_type == ppc_stub_plt_call
10943 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10944 {
10945 asection *plt;
10946 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10947 if (off >= (bfd_vma) -2)
10948 abort ();
10949 plt = htab->elf.splt;
10950 if (!htab->elf.dynamic_sections_created
10951 || stub_entry->h == NULL
10952 || stub_entry->h->elf.dynindx == -1)
10953 plt = htab->elf.iplt;
10954 off += (plt->output_offset
10955 + plt->output_section->vma
10956 - elf_gp (plt->output_section->owner)
10957 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10958
10959 size = plt_stub_size (htab, stub_entry, off);
10960 if (htab->params->plt_stub_align)
10961 size += plt_stub_pad (htab, stub_entry, off);
10962 if (info->emitrelocations)
10963 {
10964 stub_entry->stub_sec->reloc_count
10965 += ((PPC_HA (off) != 0)
10966 + (htab->opd_abi
10967 ? 2 + (htab->params->plt_static_chain
10968 && PPC_HA (off + 16) == PPC_HA (off))
10969 : 1));
10970 stub_entry->stub_sec->flags |= SEC_RELOC;
10971 }
10972 }
10973 else
10974 {
10975 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10976 variants. */
10977 bfd_vma r2off = 0;
10978 bfd_vma local_off = 0;
10979
10980 off = (stub_entry->target_value
10981 + stub_entry->target_section->output_offset
10982 + stub_entry->target_section->output_section->vma);
10983 off -= (stub_entry->stub_sec->size
10984 + stub_entry->stub_sec->output_offset
10985 + stub_entry->stub_sec->output_section->vma);
10986
10987 /* Reset the stub type from the plt variant in case we now
10988 can reach with a shorter stub. */
10989 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10990 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10991
10992 size = 4;
10993 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10994 {
10995 r2off = get_r2off (info, stub_entry);
10996 if (r2off == 0 && htab->opd_abi)
10997 {
10998 htab->stub_error = TRUE;
10999 return FALSE;
11000 }
11001 size = 12;
11002 if (PPC_HA (r2off) != 0)
11003 size = 16;
11004 off -= size - 4;
11005 }
11006
11007 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11008
11009 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11010 Do the same for -R objects without function descriptors. */
11011 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11012 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11013 && r2off == 0))
11014 {
11015 struct ppc_branch_hash_entry *br_entry;
11016
11017 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11018 stub_entry->root.string + 9,
11019 TRUE, FALSE);
11020 if (br_entry == NULL)
11021 {
11022 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11023 stub_entry->root.string);
11024 htab->stub_error = TRUE;
11025 return FALSE;
11026 }
11027
11028 if (br_entry->iter != htab->stub_iteration)
11029 {
11030 br_entry->iter = htab->stub_iteration;
11031 br_entry->offset = htab->brlt->size;
11032 htab->brlt->size += 8;
11033
11034 if (htab->relbrlt != NULL)
11035 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11036 else if (info->emitrelocations)
11037 {
11038 htab->brlt->reloc_count += 1;
11039 htab->brlt->flags |= SEC_RELOC;
11040 }
11041 }
11042
11043 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11044 off = (br_entry->offset
11045 + htab->brlt->output_offset
11046 + htab->brlt->output_section->vma
11047 - elf_gp (htab->brlt->output_section->owner)
11048 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11049
11050 if (info->emitrelocations)
11051 {
11052 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11053 stub_entry->stub_sec->flags |= SEC_RELOC;
11054 }
11055
11056 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11057 {
11058 size = 12;
11059 if (PPC_HA (off) != 0)
11060 size = 16;
11061 }
11062 else
11063 {
11064 size = 16;
11065 if (PPC_HA (off) != 0)
11066 size += 4;
11067
11068 if (PPC_HA (r2off) != 0)
11069 size += 4;
11070 if (PPC_LO (r2off) != 0)
11071 size += 4;
11072 }
11073 }
11074 else if (info->emitrelocations)
11075 {
11076 stub_entry->stub_sec->reloc_count += 1;
11077 stub_entry->stub_sec->flags |= SEC_RELOC;
11078 }
11079 }
11080
11081 stub_entry->stub_sec->size += size;
11082 return TRUE;
11083 }
11084
11085 /* Set up various things so that we can make a list of input sections
11086 for each output section included in the link. Returns -1 on error,
11087 0 when no stubs will be needed, and 1 on success. */
11088
11089 int
11090 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11091 {
11092 bfd *input_bfd;
11093 int top_id, top_index, id;
11094 asection *section;
11095 asection **input_list;
11096 bfd_size_type amt;
11097 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11098
11099 if (htab == NULL)
11100 return -1;
11101
11102 /* Find the top input section id. */
11103 for (input_bfd = info->input_bfds, top_id = 3;
11104 input_bfd != NULL;
11105 input_bfd = input_bfd->link.next)
11106 {
11107 for (section = input_bfd->sections;
11108 section != NULL;
11109 section = section->next)
11110 {
11111 if (top_id < section->id)
11112 top_id = section->id;
11113 }
11114 }
11115
11116 htab->top_id = top_id;
11117 amt = sizeof (struct map_stub) * (top_id + 1);
11118 htab->stub_group = bfd_zmalloc (amt);
11119 if (htab->stub_group == NULL)
11120 return -1;
11121
11122 /* Set toc_off for com, und, abs and ind sections. */
11123 for (id = 0; id < 3; id++)
11124 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11125
11126 /* We can't use output_bfd->section_count here to find the top output
11127 section index as some sections may have been removed, and
11128 strip_excluded_output_sections doesn't renumber the indices. */
11129 for (section = info->output_bfd->sections, top_index = 0;
11130 section != NULL;
11131 section = section->next)
11132 {
11133 if (top_index < section->index)
11134 top_index = section->index;
11135 }
11136
11137 htab->top_index = top_index;
11138 amt = sizeof (asection *) * (top_index + 1);
11139 input_list = bfd_zmalloc (amt);
11140 htab->input_list = input_list;
11141 if (input_list == NULL)
11142 return -1;
11143
11144 return 1;
11145 }
11146
11147 /* Set up for first pass at multitoc partitioning. */
11148
11149 void
11150 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11151 {
11152 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11153
11154 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11155 htab->toc_bfd = NULL;
11156 htab->toc_first_sec = NULL;
11157 }
11158
11159 /* The linker repeatedly calls this function for each TOC input section
11160 and linker generated GOT section. Group input bfds such that the toc
11161 within a group is less than 64k in size. */
11162
11163 bfd_boolean
11164 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11165 {
11166 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11167 bfd_vma addr, off, limit;
11168
11169 if (htab == NULL)
11170 return FALSE;
11171
11172 if (!htab->second_toc_pass)
11173 {
11174 /* Keep track of the first .toc or .got section for this input bfd. */
11175 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11176
11177 if (new_bfd)
11178 {
11179 htab->toc_bfd = isec->owner;
11180 htab->toc_first_sec = isec;
11181 }
11182
11183 addr = isec->output_offset + isec->output_section->vma;
11184 off = addr - htab->toc_curr;
11185 limit = 0x80008000;
11186 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11187 limit = 0x10000;
11188 if (off + isec->size > limit)
11189 {
11190 addr = (htab->toc_first_sec->output_offset
11191 + htab->toc_first_sec->output_section->vma);
11192 htab->toc_curr = addr;
11193 }
11194
11195 /* toc_curr is the base address of this toc group. Set elf_gp
11196 for the input section to be the offset relative to the
11197 output toc base plus 0x8000. Making the input elf_gp an
11198 offset allows us to move the toc as a whole without
11199 recalculating input elf_gp. */
11200 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11201 off += TOC_BASE_OFF;
11202
11203 /* Die if someone uses a linker script that doesn't keep input
11204 file .toc and .got together. */
11205 if (new_bfd
11206 && elf_gp (isec->owner) != 0
11207 && elf_gp (isec->owner) != off)
11208 return FALSE;
11209
11210 elf_gp (isec->owner) = off;
11211 return TRUE;
11212 }
11213
11214 /* During the second pass toc_first_sec points to the start of
11215 a toc group, and toc_curr is used to track the old elf_gp.
11216 We use toc_bfd to ensure we only look at each bfd once. */
11217 if (htab->toc_bfd == isec->owner)
11218 return TRUE;
11219 htab->toc_bfd = isec->owner;
11220
11221 if (htab->toc_first_sec == NULL
11222 || htab->toc_curr != elf_gp (isec->owner))
11223 {
11224 htab->toc_curr = elf_gp (isec->owner);
11225 htab->toc_first_sec = isec;
11226 }
11227 addr = (htab->toc_first_sec->output_offset
11228 + htab->toc_first_sec->output_section->vma);
11229 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11230 elf_gp (isec->owner) = off;
11231
11232 return TRUE;
11233 }
11234
11235 /* Called via elf_link_hash_traverse to merge GOT entries for global
11236 symbol H. */
11237
11238 static bfd_boolean
11239 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11240 {
11241 if (h->root.type == bfd_link_hash_indirect)
11242 return TRUE;
11243
11244 merge_got_entries (&h->got.glist);
11245
11246 return TRUE;
11247 }
11248
11249 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11250 symbol H. */
11251
11252 static bfd_boolean
11253 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11254 {
11255 struct got_entry *gent;
11256
11257 if (h->root.type == bfd_link_hash_indirect)
11258 return TRUE;
11259
11260 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11261 if (!gent->is_indirect)
11262 allocate_got (h, (struct bfd_link_info *) inf, gent);
11263 return TRUE;
11264 }
11265
11266 /* Called on the first multitoc pass after the last call to
11267 ppc64_elf_next_toc_section. This function removes duplicate GOT
11268 entries. */
11269
11270 bfd_boolean
11271 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11272 {
11273 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11274 struct bfd *ibfd, *ibfd2;
11275 bfd_boolean done_something;
11276
11277 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11278
11279 if (!htab->do_multi_toc)
11280 return FALSE;
11281
11282 /* Merge global sym got entries within a toc group. */
11283 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11284
11285 /* And tlsld_got. */
11286 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11287 {
11288 struct got_entry *ent, *ent2;
11289
11290 if (!is_ppc64_elf (ibfd))
11291 continue;
11292
11293 ent = ppc64_tlsld_got (ibfd);
11294 if (!ent->is_indirect
11295 && ent->got.offset != (bfd_vma) -1)
11296 {
11297 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11298 {
11299 if (!is_ppc64_elf (ibfd2))
11300 continue;
11301
11302 ent2 = ppc64_tlsld_got (ibfd2);
11303 if (!ent2->is_indirect
11304 && ent2->got.offset != (bfd_vma) -1
11305 && elf_gp (ibfd2) == elf_gp (ibfd))
11306 {
11307 ent2->is_indirect = TRUE;
11308 ent2->got.ent = ent;
11309 }
11310 }
11311 }
11312 }
11313
11314 /* Zap sizes of got sections. */
11315 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11316 htab->elf.irelplt->size -= htab->got_reli_size;
11317 htab->got_reli_size = 0;
11318
11319 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11320 {
11321 asection *got, *relgot;
11322
11323 if (!is_ppc64_elf (ibfd))
11324 continue;
11325
11326 got = ppc64_elf_tdata (ibfd)->got;
11327 if (got != NULL)
11328 {
11329 got->rawsize = got->size;
11330 got->size = 0;
11331 relgot = ppc64_elf_tdata (ibfd)->relgot;
11332 relgot->rawsize = relgot->size;
11333 relgot->size = 0;
11334 }
11335 }
11336
11337 /* Now reallocate the got, local syms first. We don't need to
11338 allocate section contents again since we never increase size. */
11339 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11340 {
11341 struct got_entry **lgot_ents;
11342 struct got_entry **end_lgot_ents;
11343 struct plt_entry **local_plt;
11344 struct plt_entry **end_local_plt;
11345 unsigned char *lgot_masks;
11346 bfd_size_type locsymcount;
11347 Elf_Internal_Shdr *symtab_hdr;
11348 asection *s;
11349
11350 if (!is_ppc64_elf (ibfd))
11351 continue;
11352
11353 lgot_ents = elf_local_got_ents (ibfd);
11354 if (!lgot_ents)
11355 continue;
11356
11357 symtab_hdr = &elf_symtab_hdr (ibfd);
11358 locsymcount = symtab_hdr->sh_info;
11359 end_lgot_ents = lgot_ents + locsymcount;
11360 local_plt = (struct plt_entry **) end_lgot_ents;
11361 end_local_plt = local_plt + locsymcount;
11362 lgot_masks = (unsigned char *) end_local_plt;
11363 s = ppc64_elf_tdata (ibfd)->got;
11364 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11365 {
11366 struct got_entry *ent;
11367
11368 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11369 {
11370 unsigned int ent_size = 8;
11371 unsigned int rel_size = sizeof (Elf64_External_Rela);
11372
11373 ent->got.offset = s->size;
11374 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11375 {
11376 ent_size *= 2;
11377 rel_size *= 2;
11378 }
11379 s->size += ent_size;
11380 if ((*lgot_masks & PLT_IFUNC) != 0)
11381 {
11382 htab->elf.irelplt->size += rel_size;
11383 htab->got_reli_size += rel_size;
11384 }
11385 else if (info->shared)
11386 {
11387 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11388 srel->size += rel_size;
11389 }
11390 }
11391 }
11392 }
11393
11394 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11395
11396 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11397 {
11398 struct got_entry *ent;
11399
11400 if (!is_ppc64_elf (ibfd))
11401 continue;
11402
11403 ent = ppc64_tlsld_got (ibfd);
11404 if (!ent->is_indirect
11405 && ent->got.offset != (bfd_vma) -1)
11406 {
11407 asection *s = ppc64_elf_tdata (ibfd)->got;
11408 ent->got.offset = s->size;
11409 s->size += 16;
11410 if (info->shared)
11411 {
11412 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11413 srel->size += sizeof (Elf64_External_Rela);
11414 }
11415 }
11416 }
11417
11418 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11419 if (!done_something)
11420 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11421 {
11422 asection *got;
11423
11424 if (!is_ppc64_elf (ibfd))
11425 continue;
11426
11427 got = ppc64_elf_tdata (ibfd)->got;
11428 if (got != NULL)
11429 {
11430 done_something = got->rawsize != got->size;
11431 if (done_something)
11432 break;
11433 }
11434 }
11435
11436 if (done_something)
11437 (*htab->params->layout_sections_again) ();
11438
11439 /* Set up for second pass over toc sections to recalculate elf_gp
11440 on input sections. */
11441 htab->toc_bfd = NULL;
11442 htab->toc_first_sec = NULL;
11443 htab->second_toc_pass = TRUE;
11444 return done_something;
11445 }
11446
11447 /* Called after second pass of multitoc partitioning. */
11448
11449 void
11450 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11451 {
11452 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11453
11454 /* After the second pass, toc_curr tracks the TOC offset used
11455 for code sections below in ppc64_elf_next_input_section. */
11456 htab->toc_curr = TOC_BASE_OFF;
11457 }
11458
11459 /* No toc references were found in ISEC. If the code in ISEC makes no
11460 calls, then there's no need to use toc adjusting stubs when branching
11461 into ISEC. Actually, indirect calls from ISEC are OK as they will
11462 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11463 needed, and 2 if a cyclical call-graph was found but no other reason
11464 for a stub was detected. If called from the top level, a return of
11465 2 means the same as a return of 0. */
11466
11467 static int
11468 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11469 {
11470 int ret;
11471
11472 /* Mark this section as checked. */
11473 isec->call_check_done = 1;
11474
11475 /* We know none of our code bearing sections will need toc stubs. */
11476 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11477 return 0;
11478
11479 if (isec->size == 0)
11480 return 0;
11481
11482 if (isec->output_section == NULL)
11483 return 0;
11484
11485 ret = 0;
11486 if (isec->reloc_count != 0)
11487 {
11488 Elf_Internal_Rela *relstart, *rel;
11489 Elf_Internal_Sym *local_syms;
11490 struct ppc_link_hash_table *htab;
11491
11492 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11493 info->keep_memory);
11494 if (relstart == NULL)
11495 return -1;
11496
11497 /* Look for branches to outside of this section. */
11498 local_syms = NULL;
11499 htab = ppc_hash_table (info);
11500 if (htab == NULL)
11501 return -1;
11502
11503 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11504 {
11505 enum elf_ppc64_reloc_type r_type;
11506 unsigned long r_symndx;
11507 struct elf_link_hash_entry *h;
11508 struct ppc_link_hash_entry *eh;
11509 Elf_Internal_Sym *sym;
11510 asection *sym_sec;
11511 struct _opd_sec_data *opd;
11512 bfd_vma sym_value;
11513 bfd_vma dest;
11514
11515 r_type = ELF64_R_TYPE (rel->r_info);
11516 if (r_type != R_PPC64_REL24
11517 && r_type != R_PPC64_REL14
11518 && r_type != R_PPC64_REL14_BRTAKEN
11519 && r_type != R_PPC64_REL14_BRNTAKEN)
11520 continue;
11521
11522 r_symndx = ELF64_R_SYM (rel->r_info);
11523 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11524 isec->owner))
11525 {
11526 ret = -1;
11527 break;
11528 }
11529
11530 /* Calls to dynamic lib functions go through a plt call stub
11531 that uses r2. */
11532 eh = (struct ppc_link_hash_entry *) h;
11533 if (eh != NULL
11534 && (eh->elf.plt.plist != NULL
11535 || (eh->oh != NULL
11536 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11537 {
11538 ret = 1;
11539 break;
11540 }
11541
11542 if (sym_sec == NULL)
11543 /* Ignore other undefined symbols. */
11544 continue;
11545
11546 /* Assume branches to other sections not included in the
11547 link need stubs too, to cover -R and absolute syms. */
11548 if (sym_sec->output_section == NULL)
11549 {
11550 ret = 1;
11551 break;
11552 }
11553
11554 if (h == NULL)
11555 sym_value = sym->st_value;
11556 else
11557 {
11558 if (h->root.type != bfd_link_hash_defined
11559 && h->root.type != bfd_link_hash_defweak)
11560 abort ();
11561 sym_value = h->root.u.def.value;
11562 }
11563 sym_value += rel->r_addend;
11564
11565 /* If this branch reloc uses an opd sym, find the code section. */
11566 opd = get_opd_info (sym_sec);
11567 if (opd != NULL)
11568 {
11569 if (h == NULL && opd->adjust != NULL)
11570 {
11571 long adjust;
11572
11573 adjust = opd->adjust[sym->st_value / 8];
11574 if (adjust == -1)
11575 /* Assume deleted functions won't ever be called. */
11576 continue;
11577 sym_value += adjust;
11578 }
11579
11580 dest = opd_entry_value (sym_sec, sym_value,
11581 &sym_sec, NULL, FALSE);
11582 if (dest == (bfd_vma) -1)
11583 continue;
11584 }
11585 else
11586 dest = (sym_value
11587 + sym_sec->output_offset
11588 + sym_sec->output_section->vma);
11589
11590 /* Ignore branch to self. */
11591 if (sym_sec == isec)
11592 continue;
11593
11594 /* If the called function uses the toc, we need a stub. */
11595 if (sym_sec->has_toc_reloc
11596 || sym_sec->makes_toc_func_call)
11597 {
11598 ret = 1;
11599 break;
11600 }
11601
11602 /* Assume any branch that needs a long branch stub might in fact
11603 need a plt_branch stub. A plt_branch stub uses r2. */
11604 else if (dest - (isec->output_offset
11605 + isec->output_section->vma
11606 + rel->r_offset) + (1 << 25)
11607 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11608 ? h->other
11609 : sym->st_other))
11610 {
11611 ret = 1;
11612 break;
11613 }
11614
11615 /* If calling back to a section in the process of being
11616 tested, we can't say for sure that no toc adjusting stubs
11617 are needed, so don't return zero. */
11618 else if (sym_sec->call_check_in_progress)
11619 ret = 2;
11620
11621 /* Branches to another section that itself doesn't have any TOC
11622 references are OK. Recursively call ourselves to check. */
11623 else if (!sym_sec->call_check_done)
11624 {
11625 int recur;
11626
11627 /* Mark current section as indeterminate, so that other
11628 sections that call back to current won't be marked as
11629 known. */
11630 isec->call_check_in_progress = 1;
11631 recur = toc_adjusting_stub_needed (info, sym_sec);
11632 isec->call_check_in_progress = 0;
11633
11634 if (recur != 0)
11635 {
11636 ret = recur;
11637 if (recur != 2)
11638 break;
11639 }
11640 }
11641 }
11642
11643 if (local_syms != NULL
11644 && (elf_symtab_hdr (isec->owner).contents
11645 != (unsigned char *) local_syms))
11646 free (local_syms);
11647 if (elf_section_data (isec)->relocs != relstart)
11648 free (relstart);
11649 }
11650
11651 if ((ret & 1) == 0
11652 && isec->map_head.s != NULL
11653 && (strcmp (isec->output_section->name, ".init") == 0
11654 || strcmp (isec->output_section->name, ".fini") == 0))
11655 {
11656 if (isec->map_head.s->has_toc_reloc
11657 || isec->map_head.s->makes_toc_func_call)
11658 ret = 1;
11659 else if (!isec->map_head.s->call_check_done)
11660 {
11661 int recur;
11662 isec->call_check_in_progress = 1;
11663 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11664 isec->call_check_in_progress = 0;
11665 if (recur != 0)
11666 ret = recur;
11667 }
11668 }
11669
11670 if (ret == 1)
11671 isec->makes_toc_func_call = 1;
11672
11673 return ret;
11674 }
11675
11676 /* The linker repeatedly calls this function for each input section,
11677 in the order that input sections are linked into output sections.
11678 Build lists of input sections to determine groupings between which
11679 we may insert linker stubs. */
11680
11681 bfd_boolean
11682 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11683 {
11684 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11685
11686 if (htab == NULL)
11687 return FALSE;
11688
11689 if ((isec->output_section->flags & SEC_CODE) != 0
11690 && isec->output_section->index <= htab->top_index)
11691 {
11692 asection **list = htab->input_list + isec->output_section->index;
11693 /* Steal the link_sec pointer for our list. */
11694 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11695 /* This happens to make the list in reverse order,
11696 which is what we want. */
11697 PREV_SEC (isec) = *list;
11698 *list = isec;
11699 }
11700
11701 if (htab->multi_toc_needed)
11702 {
11703 /* Analyse sections that aren't already flagged as needing a
11704 valid toc pointer. Exclude .fixup for the linux kernel.
11705 .fixup contains branches, but only back to the function that
11706 hit an exception. */
11707 if (!(isec->has_toc_reloc
11708 || (isec->flags & SEC_CODE) == 0
11709 || strcmp (isec->name, ".fixup") == 0
11710 || isec->call_check_done))
11711 {
11712 if (toc_adjusting_stub_needed (info, isec) < 0)
11713 return FALSE;
11714 }
11715 /* Make all sections use the TOC assigned for this object file.
11716 This will be wrong for pasted sections; We fix that in
11717 check_pasted_section(). */
11718 if (elf_gp (isec->owner) != 0)
11719 htab->toc_curr = elf_gp (isec->owner);
11720 }
11721
11722 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11723 return TRUE;
11724 }
11725
11726 /* Check that all .init and .fini sections use the same toc, if they
11727 have toc relocs. */
11728
11729 static bfd_boolean
11730 check_pasted_section (struct bfd_link_info *info, const char *name)
11731 {
11732 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11733
11734 if (o != NULL)
11735 {
11736 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11737 bfd_vma toc_off = 0;
11738 asection *i;
11739
11740 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11741 if (i->has_toc_reloc)
11742 {
11743 if (toc_off == 0)
11744 toc_off = htab->stub_group[i->id].toc_off;
11745 else if (toc_off != htab->stub_group[i->id].toc_off)
11746 return FALSE;
11747 }
11748
11749 if (toc_off == 0)
11750 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11751 if (i->makes_toc_func_call)
11752 {
11753 toc_off = htab->stub_group[i->id].toc_off;
11754 break;
11755 }
11756
11757 /* Make sure the whole pasted function uses the same toc offset. */
11758 if (toc_off != 0)
11759 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11760 htab->stub_group[i->id].toc_off = toc_off;
11761 }
11762 return TRUE;
11763 }
11764
11765 bfd_boolean
11766 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11767 {
11768 return (check_pasted_section (info, ".init")
11769 & check_pasted_section (info, ".fini"));
11770 }
11771
11772 /* See whether we can group stub sections together. Grouping stub
11773 sections may result in fewer stubs. More importantly, we need to
11774 put all .init* and .fini* stubs at the beginning of the .init or
11775 .fini output sections respectively, because glibc splits the
11776 _init and _fini functions into multiple parts. Putting a stub in
11777 the middle of a function is not a good idea. */
11778
11779 static void
11780 group_sections (struct ppc_link_hash_table *htab,
11781 bfd_size_type stub_group_size,
11782 bfd_boolean stubs_always_before_branch)
11783 {
11784 asection **list;
11785 bfd_size_type stub14_group_size;
11786 bfd_boolean suppress_size_errors;
11787
11788 suppress_size_errors = FALSE;
11789 stub14_group_size = stub_group_size;
11790 if (stub_group_size == 1)
11791 {
11792 /* Default values. */
11793 if (stubs_always_before_branch)
11794 {
11795 stub_group_size = 0x1e00000;
11796 stub14_group_size = 0x7800;
11797 }
11798 else
11799 {
11800 stub_group_size = 0x1c00000;
11801 stub14_group_size = 0x7000;
11802 }
11803 suppress_size_errors = TRUE;
11804 }
11805
11806 list = htab->input_list + htab->top_index;
11807 do
11808 {
11809 asection *tail = *list;
11810 while (tail != NULL)
11811 {
11812 asection *curr;
11813 asection *prev;
11814 bfd_size_type total;
11815 bfd_boolean big_sec;
11816 bfd_vma curr_toc;
11817
11818 curr = tail;
11819 total = tail->size;
11820 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11821 && ppc64_elf_section_data (tail)->has_14bit_branch
11822 ? stub14_group_size : stub_group_size);
11823 if (big_sec && !suppress_size_errors)
11824 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11825 tail->owner, tail);
11826 curr_toc = htab->stub_group[tail->id].toc_off;
11827
11828 while ((prev = PREV_SEC (curr)) != NULL
11829 && ((total += curr->output_offset - prev->output_offset)
11830 < (ppc64_elf_section_data (prev) != NULL
11831 && ppc64_elf_section_data (prev)->has_14bit_branch
11832 ? stub14_group_size : stub_group_size))
11833 && htab->stub_group[prev->id].toc_off == curr_toc)
11834 curr = prev;
11835
11836 /* OK, the size from the start of CURR to the end is less
11837 than stub_group_size and thus can be handled by one stub
11838 section. (or the tail section is itself larger than
11839 stub_group_size, in which case we may be toast.) We
11840 should really be keeping track of the total size of stubs
11841 added here, as stubs contribute to the final output
11842 section size. That's a little tricky, and this way will
11843 only break if stubs added make the total size more than
11844 2^25, ie. for the default stub_group_size, if stubs total
11845 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11846 do
11847 {
11848 prev = PREV_SEC (tail);
11849 /* Set up this stub group. */
11850 htab->stub_group[tail->id].link_sec = curr;
11851 }
11852 while (tail != curr && (tail = prev) != NULL);
11853
11854 /* But wait, there's more! Input sections up to stub_group_size
11855 bytes before the stub section can be handled by it too.
11856 Don't do this if we have a really large section after the
11857 stubs, as adding more stubs increases the chance that
11858 branches may not reach into the stub section. */
11859 if (!stubs_always_before_branch && !big_sec)
11860 {
11861 total = 0;
11862 while (prev != NULL
11863 && ((total += tail->output_offset - prev->output_offset)
11864 < (ppc64_elf_section_data (prev) != NULL
11865 && ppc64_elf_section_data (prev)->has_14bit_branch
11866 ? stub14_group_size : stub_group_size))
11867 && htab->stub_group[prev->id].toc_off == curr_toc)
11868 {
11869 tail = prev;
11870 prev = PREV_SEC (tail);
11871 htab->stub_group[tail->id].link_sec = curr;
11872 }
11873 }
11874 tail = prev;
11875 }
11876 }
11877 while (list-- != htab->input_list);
11878 free (htab->input_list);
11879 #undef PREV_SEC
11880 }
11881
11882 static const unsigned char glink_eh_frame_cie[] =
11883 {
11884 0, 0, 0, 16, /* length. */
11885 0, 0, 0, 0, /* id. */
11886 1, /* CIE version. */
11887 'z', 'R', 0, /* Augmentation string. */
11888 4, /* Code alignment. */
11889 0x78, /* Data alignment. */
11890 65, /* RA reg. */
11891 1, /* Augmentation size. */
11892 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11893 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11894 0, 0, 0, 0
11895 };
11896
11897 /* Stripping output sections is normally done before dynamic section
11898 symbols have been allocated. This function is called later, and
11899 handles cases like htab->brlt which is mapped to its own output
11900 section. */
11901
11902 static void
11903 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11904 {
11905 if (isec->size == 0
11906 && isec->output_section->size == 0
11907 && !(isec->output_section->flags & SEC_KEEP)
11908 && !bfd_section_removed_from_list (info->output_bfd,
11909 isec->output_section)
11910 && elf_section_data (isec->output_section)->dynindx == 0)
11911 {
11912 isec->output_section->flags |= SEC_EXCLUDE;
11913 bfd_section_list_remove (info->output_bfd, isec->output_section);
11914 info->output_bfd->section_count--;
11915 }
11916 }
11917
11918 /* Determine and set the size of the stub section for a final link.
11919
11920 The basic idea here is to examine all the relocations looking for
11921 PC-relative calls to a target that is unreachable with a "bl"
11922 instruction. */
11923
11924 bfd_boolean
11925 ppc64_elf_size_stubs (struct bfd_link_info *info)
11926 {
11927 bfd_size_type stub_group_size;
11928 bfd_boolean stubs_always_before_branch;
11929 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11930
11931 if (htab == NULL)
11932 return FALSE;
11933
11934 if (htab->params->plt_thread_safe == -1 && !info->executable)
11935 htab->params->plt_thread_safe = 1;
11936 if (!htab->opd_abi)
11937 htab->params->plt_thread_safe = 0;
11938 else if (htab->params->plt_thread_safe == -1)
11939 {
11940 static const char *const thread_starter[] =
11941 {
11942 "pthread_create",
11943 /* libstdc++ */
11944 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11945 /* librt */
11946 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11947 "mq_notify", "create_timer",
11948 /* libanl */
11949 "getaddrinfo_a",
11950 /* libgomp */
11951 "GOMP_parallel_start",
11952 "GOMP_parallel_loop_static_start",
11953 "GOMP_parallel_loop_dynamic_start",
11954 "GOMP_parallel_loop_guided_start",
11955 "GOMP_parallel_loop_runtime_start",
11956 "GOMP_parallel_sections_start",
11957 };
11958 unsigned i;
11959
11960 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11961 {
11962 struct elf_link_hash_entry *h;
11963 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11964 FALSE, FALSE, TRUE);
11965 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
11966 if (htab->params->plt_thread_safe)
11967 break;
11968 }
11969 }
11970 stubs_always_before_branch = htab->params->group_size < 0;
11971 if (htab->params->group_size < 0)
11972 stub_group_size = -htab->params->group_size;
11973 else
11974 stub_group_size = htab->params->group_size;
11975
11976 group_sections (htab, stub_group_size, stubs_always_before_branch);
11977
11978 while (1)
11979 {
11980 bfd *input_bfd;
11981 unsigned int bfd_indx;
11982 asection *stub_sec;
11983
11984 htab->stub_iteration += 1;
11985
11986 for (input_bfd = info->input_bfds, bfd_indx = 0;
11987 input_bfd != NULL;
11988 input_bfd = input_bfd->link.next, bfd_indx++)
11989 {
11990 Elf_Internal_Shdr *symtab_hdr;
11991 asection *section;
11992 Elf_Internal_Sym *local_syms = NULL;
11993
11994 if (!is_ppc64_elf (input_bfd))
11995 continue;
11996
11997 /* We'll need the symbol table in a second. */
11998 symtab_hdr = &elf_symtab_hdr (input_bfd);
11999 if (symtab_hdr->sh_info == 0)
12000 continue;
12001
12002 /* Walk over each section attached to the input bfd. */
12003 for (section = input_bfd->sections;
12004 section != NULL;
12005 section = section->next)
12006 {
12007 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12008
12009 /* If there aren't any relocs, then there's nothing more
12010 to do. */
12011 if ((section->flags & SEC_RELOC) == 0
12012 || (section->flags & SEC_ALLOC) == 0
12013 || (section->flags & SEC_LOAD) == 0
12014 || (section->flags & SEC_CODE) == 0
12015 || section->reloc_count == 0)
12016 continue;
12017
12018 /* If this section is a link-once section that will be
12019 discarded, then don't create any stubs. */
12020 if (section->output_section == NULL
12021 || section->output_section->owner != info->output_bfd)
12022 continue;
12023
12024 /* Get the relocs. */
12025 internal_relocs
12026 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12027 info->keep_memory);
12028 if (internal_relocs == NULL)
12029 goto error_ret_free_local;
12030
12031 /* Now examine each relocation. */
12032 irela = internal_relocs;
12033 irelaend = irela + section->reloc_count;
12034 for (; irela < irelaend; irela++)
12035 {
12036 enum elf_ppc64_reloc_type r_type;
12037 unsigned int r_indx;
12038 enum ppc_stub_type stub_type;
12039 struct ppc_stub_hash_entry *stub_entry;
12040 asection *sym_sec, *code_sec;
12041 bfd_vma sym_value, code_value;
12042 bfd_vma destination;
12043 unsigned long local_off;
12044 bfd_boolean ok_dest;
12045 struct ppc_link_hash_entry *hash;
12046 struct ppc_link_hash_entry *fdh;
12047 struct elf_link_hash_entry *h;
12048 Elf_Internal_Sym *sym;
12049 char *stub_name;
12050 const asection *id_sec;
12051 struct _opd_sec_data *opd;
12052 struct plt_entry *plt_ent;
12053
12054 r_type = ELF64_R_TYPE (irela->r_info);
12055 r_indx = ELF64_R_SYM (irela->r_info);
12056
12057 if (r_type >= R_PPC64_max)
12058 {
12059 bfd_set_error (bfd_error_bad_value);
12060 goto error_ret_free_internal;
12061 }
12062
12063 /* Only look for stubs on branch instructions. */
12064 if (r_type != R_PPC64_REL24
12065 && r_type != R_PPC64_REL14
12066 && r_type != R_PPC64_REL14_BRTAKEN
12067 && r_type != R_PPC64_REL14_BRNTAKEN)
12068 continue;
12069
12070 /* Now determine the call target, its name, value,
12071 section. */
12072 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12073 r_indx, input_bfd))
12074 goto error_ret_free_internal;
12075 hash = (struct ppc_link_hash_entry *) h;
12076
12077 ok_dest = FALSE;
12078 fdh = NULL;
12079 sym_value = 0;
12080 if (hash == NULL)
12081 {
12082 sym_value = sym->st_value;
12083 ok_dest = TRUE;
12084 }
12085 else if (hash->elf.root.type == bfd_link_hash_defined
12086 || hash->elf.root.type == bfd_link_hash_defweak)
12087 {
12088 sym_value = hash->elf.root.u.def.value;
12089 if (sym_sec->output_section != NULL)
12090 ok_dest = TRUE;
12091 }
12092 else if (hash->elf.root.type == bfd_link_hash_undefweak
12093 || hash->elf.root.type == bfd_link_hash_undefined)
12094 {
12095 /* Recognise an old ABI func code entry sym, and
12096 use the func descriptor sym instead if it is
12097 defined. */
12098 if (hash->elf.root.root.string[0] == '.'
12099 && (fdh = lookup_fdh (hash, htab)) != NULL)
12100 {
12101 if (fdh->elf.root.type == bfd_link_hash_defined
12102 || fdh->elf.root.type == bfd_link_hash_defweak)
12103 {
12104 sym_sec = fdh->elf.root.u.def.section;
12105 sym_value = fdh->elf.root.u.def.value;
12106 if (sym_sec->output_section != NULL)
12107 ok_dest = TRUE;
12108 }
12109 else
12110 fdh = NULL;
12111 }
12112 }
12113 else
12114 {
12115 bfd_set_error (bfd_error_bad_value);
12116 goto error_ret_free_internal;
12117 }
12118
12119 destination = 0;
12120 local_off = 0;
12121 if (ok_dest)
12122 {
12123 sym_value += irela->r_addend;
12124 destination = (sym_value
12125 + sym_sec->output_offset
12126 + sym_sec->output_section->vma);
12127 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12128 ? hash->elf.other
12129 : sym->st_other);
12130 }
12131
12132 code_sec = sym_sec;
12133 code_value = sym_value;
12134 opd = get_opd_info (sym_sec);
12135 if (opd != NULL)
12136 {
12137 bfd_vma dest;
12138
12139 if (hash == NULL && opd->adjust != NULL)
12140 {
12141 long adjust = opd->adjust[sym_value / 8];
12142 if (adjust == -1)
12143 continue;
12144 code_value += adjust;
12145 sym_value += adjust;
12146 }
12147 dest = opd_entry_value (sym_sec, sym_value,
12148 &code_sec, &code_value, FALSE);
12149 if (dest != (bfd_vma) -1)
12150 {
12151 destination = dest;
12152 if (fdh != NULL)
12153 {
12154 /* Fixup old ABI sym to point at code
12155 entry. */
12156 hash->elf.root.type = bfd_link_hash_defweak;
12157 hash->elf.root.u.def.section = code_sec;
12158 hash->elf.root.u.def.value = code_value;
12159 }
12160 }
12161 }
12162
12163 /* Determine what (if any) linker stub is needed. */
12164 plt_ent = NULL;
12165 stub_type = ppc_type_of_stub (section, irela, &hash,
12166 &plt_ent, destination,
12167 local_off);
12168
12169 if (stub_type != ppc_stub_plt_call)
12170 {
12171 /* Check whether we need a TOC adjusting stub.
12172 Since the linker pastes together pieces from
12173 different object files when creating the
12174 _init and _fini functions, it may be that a
12175 call to what looks like a local sym is in
12176 fact a call needing a TOC adjustment. */
12177 if (code_sec != NULL
12178 && code_sec->output_section != NULL
12179 && (htab->stub_group[code_sec->id].toc_off
12180 != htab->stub_group[section->id].toc_off)
12181 && (code_sec->has_toc_reloc
12182 || code_sec->makes_toc_func_call))
12183 stub_type = ppc_stub_long_branch_r2off;
12184 }
12185
12186 if (stub_type == ppc_stub_none)
12187 continue;
12188
12189 /* __tls_get_addr calls might be eliminated. */
12190 if (stub_type != ppc_stub_plt_call
12191 && hash != NULL
12192 && (hash == htab->tls_get_addr
12193 || hash == htab->tls_get_addr_fd)
12194 && section->has_tls_reloc
12195 && irela != internal_relocs)
12196 {
12197 /* Get tls info. */
12198 unsigned char *tls_mask;
12199
12200 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12201 irela - 1, input_bfd))
12202 goto error_ret_free_internal;
12203 if (*tls_mask != 0)
12204 continue;
12205 }
12206
12207 if (stub_type == ppc_stub_plt_call
12208 && irela + 1 < irelaend
12209 && irela[1].r_offset == irela->r_offset + 4
12210 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12211 {
12212 if (!tocsave_find (htab, INSERT,
12213 &local_syms, irela + 1, input_bfd))
12214 goto error_ret_free_internal;
12215 }
12216 else if (stub_type == ppc_stub_plt_call)
12217 stub_type = ppc_stub_plt_call_r2save;
12218
12219 /* Support for grouping stub sections. */
12220 id_sec = htab->stub_group[section->id].link_sec;
12221
12222 /* Get the name of this stub. */
12223 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12224 if (!stub_name)
12225 goto error_ret_free_internal;
12226
12227 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12228 stub_name, FALSE, FALSE);
12229 if (stub_entry != NULL)
12230 {
12231 /* The proper stub has already been created. */
12232 free (stub_name);
12233 if (stub_type == ppc_stub_plt_call_r2save)
12234 stub_entry->stub_type = stub_type;
12235 continue;
12236 }
12237
12238 stub_entry = ppc_add_stub (stub_name, section, info);
12239 if (stub_entry == NULL)
12240 {
12241 free (stub_name);
12242 error_ret_free_internal:
12243 if (elf_section_data (section)->relocs == NULL)
12244 free (internal_relocs);
12245 error_ret_free_local:
12246 if (local_syms != NULL
12247 && (symtab_hdr->contents
12248 != (unsigned char *) local_syms))
12249 free (local_syms);
12250 return FALSE;
12251 }
12252
12253 stub_entry->stub_type = stub_type;
12254 if (stub_type != ppc_stub_plt_call
12255 && stub_type != ppc_stub_plt_call_r2save)
12256 {
12257 stub_entry->target_value = code_value;
12258 stub_entry->target_section = code_sec;
12259 }
12260 else
12261 {
12262 stub_entry->target_value = sym_value;
12263 stub_entry->target_section = sym_sec;
12264 }
12265 stub_entry->h = hash;
12266 stub_entry->plt_ent = plt_ent;
12267 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12268
12269 if (stub_entry->h != NULL)
12270 htab->stub_globals += 1;
12271 }
12272
12273 /* We're done with the internal relocs, free them. */
12274 if (elf_section_data (section)->relocs != internal_relocs)
12275 free (internal_relocs);
12276 }
12277
12278 if (local_syms != NULL
12279 && symtab_hdr->contents != (unsigned char *) local_syms)
12280 {
12281 if (!info->keep_memory)
12282 free (local_syms);
12283 else
12284 symtab_hdr->contents = (unsigned char *) local_syms;
12285 }
12286 }
12287
12288 /* We may have added some stubs. Find out the new size of the
12289 stub sections. */
12290 for (stub_sec = htab->params->stub_bfd->sections;
12291 stub_sec != NULL;
12292 stub_sec = stub_sec->next)
12293 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12294 {
12295 stub_sec->rawsize = stub_sec->size;
12296 stub_sec->size = 0;
12297 stub_sec->reloc_count = 0;
12298 stub_sec->flags &= ~SEC_RELOC;
12299 }
12300
12301 htab->brlt->size = 0;
12302 htab->brlt->reloc_count = 0;
12303 htab->brlt->flags &= ~SEC_RELOC;
12304 if (htab->relbrlt != NULL)
12305 htab->relbrlt->size = 0;
12306
12307 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12308
12309 if (info->emitrelocations
12310 && htab->glink != NULL && htab->glink->size != 0)
12311 {
12312 htab->glink->reloc_count = 1;
12313 htab->glink->flags |= SEC_RELOC;
12314 }
12315
12316 if (htab->glink_eh_frame != NULL
12317 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12318 && htab->glink_eh_frame->output_section->size != 0)
12319 {
12320 size_t size = 0, align;
12321
12322 for (stub_sec = htab->params->stub_bfd->sections;
12323 stub_sec != NULL;
12324 stub_sec = stub_sec->next)
12325 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12326 size += 24;
12327 if (htab->glink != NULL && htab->glink->size != 0)
12328 size += 24;
12329 if (size != 0)
12330 size += sizeof (glink_eh_frame_cie);
12331 align = 1;
12332 align <<= htab->glink_eh_frame->output_section->alignment_power;
12333 align -= 1;
12334 size = (size + align) & ~align;
12335 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12336 htab->glink_eh_frame->size = size;
12337 }
12338
12339 if (htab->params->plt_stub_align != 0)
12340 for (stub_sec = htab->params->stub_bfd->sections;
12341 stub_sec != NULL;
12342 stub_sec = stub_sec->next)
12343 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12344 stub_sec->size = ((stub_sec->size
12345 + (1 << htab->params->plt_stub_align) - 1)
12346 & (-1 << htab->params->plt_stub_align));
12347
12348 for (stub_sec = htab->params->stub_bfd->sections;
12349 stub_sec != NULL;
12350 stub_sec = stub_sec->next)
12351 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12352 && stub_sec->rawsize != stub_sec->size)
12353 break;
12354
12355 /* Exit from this loop when no stubs have been added, and no stubs
12356 have changed size. */
12357 if (stub_sec == NULL
12358 && (htab->glink_eh_frame == NULL
12359 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12360 break;
12361
12362 /* Ask the linker to do its stuff. */
12363 (*htab->params->layout_sections_again) ();
12364 }
12365
12366 if (htab->glink_eh_frame != NULL
12367 && htab->glink_eh_frame->size != 0)
12368 {
12369 bfd_vma val;
12370 bfd_byte *p, *last_fde;
12371 size_t last_fde_len, size, align, pad;
12372 asection *stub_sec;
12373
12374 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12375 if (p == NULL)
12376 return FALSE;
12377 htab->glink_eh_frame->contents = p;
12378 last_fde = p;
12379
12380 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12381 /* CIE length (rewrite in case little-endian). */
12382 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12383 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12384 p += sizeof (glink_eh_frame_cie);
12385
12386 for (stub_sec = htab->params->stub_bfd->sections;
12387 stub_sec != NULL;
12388 stub_sec = stub_sec->next)
12389 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12390 {
12391 last_fde = p;
12392 last_fde_len = 20;
12393 /* FDE length. */
12394 bfd_put_32 (htab->elf.dynobj, 20, p);
12395 p += 4;
12396 /* CIE pointer. */
12397 val = p - htab->glink_eh_frame->contents;
12398 bfd_put_32 (htab->elf.dynobj, val, p);
12399 p += 4;
12400 /* Offset to stub section, written later. */
12401 p += 4;
12402 /* stub section size. */
12403 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12404 p += 4;
12405 /* Augmentation. */
12406 p += 1;
12407 /* Pad. */
12408 p += 7;
12409 }
12410 if (htab->glink != NULL && htab->glink->size != 0)
12411 {
12412 last_fde = p;
12413 last_fde_len = 20;
12414 /* FDE length. */
12415 bfd_put_32 (htab->elf.dynobj, 20, p);
12416 p += 4;
12417 /* CIE pointer. */
12418 val = p - htab->glink_eh_frame->contents;
12419 bfd_put_32 (htab->elf.dynobj, val, p);
12420 p += 4;
12421 /* Offset to .glink, written later. */
12422 p += 4;
12423 /* .glink size. */
12424 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12425 p += 4;
12426 /* Augmentation. */
12427 p += 1;
12428
12429 *p++ = DW_CFA_advance_loc + 1;
12430 *p++ = DW_CFA_register;
12431 *p++ = 65;
12432 *p++ = 12;
12433 *p++ = DW_CFA_advance_loc + 4;
12434 *p++ = DW_CFA_restore_extended;
12435 *p++ = 65;
12436 }
12437 /* Subsume any padding into the last FDE if user .eh_frame
12438 sections are aligned more than glink_eh_frame. Otherwise any
12439 zero padding will be seen as a terminator. */
12440 size = p - htab->glink_eh_frame->contents;
12441 align = 1;
12442 align <<= htab->glink_eh_frame->output_section->alignment_power;
12443 align -= 1;
12444 pad = ((size + align) & ~align) - size;
12445 htab->glink_eh_frame->size = size + pad;
12446 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12447 }
12448
12449 maybe_strip_output (info, htab->brlt);
12450 if (htab->glink_eh_frame != NULL)
12451 maybe_strip_output (info, htab->glink_eh_frame);
12452
12453 return TRUE;
12454 }
12455
12456 /* Called after we have determined section placement. If sections
12457 move, we'll be called again. Provide a value for TOCstart. */
12458
12459 bfd_vma
12460 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12461 {
12462 asection *s;
12463 bfd_vma TOCstart;
12464
12465 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12466 order. The TOC starts where the first of these sections starts. */
12467 s = bfd_get_section_by_name (obfd, ".got");
12468 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12469 s = bfd_get_section_by_name (obfd, ".toc");
12470 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12471 s = bfd_get_section_by_name (obfd, ".tocbss");
12472 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12473 s = bfd_get_section_by_name (obfd, ".plt");
12474 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12475 {
12476 /* This may happen for
12477 o references to TOC base (SYM@toc / TOC[tc0]) without a
12478 .toc directive
12479 o bad linker script
12480 o --gc-sections and empty TOC sections
12481
12482 FIXME: Warn user? */
12483
12484 /* Look for a likely section. We probably won't even be
12485 using TOCstart. */
12486 for (s = obfd->sections; s != NULL; s = s->next)
12487 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12488 | SEC_EXCLUDE))
12489 == (SEC_ALLOC | SEC_SMALL_DATA))
12490 break;
12491 if (s == NULL)
12492 for (s = obfd->sections; s != NULL; s = s->next)
12493 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12494 == (SEC_ALLOC | SEC_SMALL_DATA))
12495 break;
12496 if (s == NULL)
12497 for (s = obfd->sections; s != NULL; s = s->next)
12498 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12499 == SEC_ALLOC)
12500 break;
12501 if (s == NULL)
12502 for (s = obfd->sections; s != NULL; s = s->next)
12503 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12504 break;
12505 }
12506
12507 TOCstart = 0;
12508 if (s != NULL)
12509 TOCstart = s->output_section->vma + s->output_offset;
12510
12511 _bfd_set_gp_value (obfd, TOCstart);
12512
12513 if (info != NULL && s != NULL)
12514 {
12515 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12516
12517 if (htab != NULL)
12518 {
12519 if (htab->elf.hgot != NULL)
12520 {
12521 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12522 htab->elf.hgot->root.u.def.section = s;
12523 }
12524 }
12525 else
12526 {
12527 struct bfd_link_hash_entry *bh = NULL;
12528 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12529 s, TOC_BASE_OFF, NULL, FALSE,
12530 FALSE, &bh);
12531 }
12532 }
12533 return TOCstart;
12534 }
12535
12536 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12537 write out any global entry stubs. */
12538
12539 static bfd_boolean
12540 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12541 {
12542 struct bfd_link_info *info;
12543 struct ppc_link_hash_table *htab;
12544 struct plt_entry *pent;
12545 asection *s;
12546
12547 if (h->root.type == bfd_link_hash_indirect)
12548 return TRUE;
12549
12550 if (!h->pointer_equality_needed)
12551 return TRUE;
12552
12553 if (h->def_regular)
12554 return TRUE;
12555
12556 info = inf;
12557 htab = ppc_hash_table (info);
12558 if (htab == NULL)
12559 return FALSE;
12560
12561 s = htab->glink;
12562 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12563 if (pent->plt.offset != (bfd_vma) -1
12564 && pent->addend == 0)
12565 {
12566 bfd_byte *p;
12567 asection *plt;
12568 bfd_vma off;
12569
12570 p = s->contents + h->root.u.def.value;
12571 plt = htab->elf.splt;
12572 if (!htab->elf.dynamic_sections_created
12573 || h->dynindx == -1)
12574 plt = htab->elf.iplt;
12575 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12576 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12577
12578 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12579 {
12580 info->callbacks->einfo
12581 (_("%P: linkage table error against `%T'\n"),
12582 h->root.root.string);
12583 bfd_set_error (bfd_error_bad_value);
12584 htab->stub_error = TRUE;
12585 }
12586
12587 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12588 if (htab->params->emit_stub_syms)
12589 {
12590 size_t len = strlen (h->root.root.string);
12591 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12592
12593 if (name == NULL)
12594 return FALSE;
12595
12596 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12597 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12598 if (h == NULL)
12599 return FALSE;
12600 if (h->root.type == bfd_link_hash_new)
12601 {
12602 h->root.type = bfd_link_hash_defined;
12603 h->root.u.def.section = s;
12604 h->root.u.def.value = p - s->contents;
12605 h->ref_regular = 1;
12606 h->def_regular = 1;
12607 h->ref_regular_nonweak = 1;
12608 h->forced_local = 1;
12609 h->non_elf = 0;
12610 }
12611 }
12612
12613 if (PPC_HA (off) != 0)
12614 {
12615 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12616 p += 4;
12617 }
12618 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12619 p += 4;
12620 bfd_put_32 (s->owner, MTCTR_R12, p);
12621 p += 4;
12622 bfd_put_32 (s->owner, BCTR, p);
12623 break;
12624 }
12625 return TRUE;
12626 }
12627
12628 /* Build all the stubs associated with the current output file.
12629 The stubs are kept in a hash table attached to the main linker
12630 hash table. This function is called via gldelf64ppc_finish. */
12631
12632 bfd_boolean
12633 ppc64_elf_build_stubs (struct bfd_link_info *info,
12634 char **stats)
12635 {
12636 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12637 asection *stub_sec;
12638 bfd_byte *p;
12639 int stub_sec_count = 0;
12640
12641 if (htab == NULL)
12642 return FALSE;
12643
12644 /* Allocate memory to hold the linker stubs. */
12645 for (stub_sec = htab->params->stub_bfd->sections;
12646 stub_sec != NULL;
12647 stub_sec = stub_sec->next)
12648 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12649 && stub_sec->size != 0)
12650 {
12651 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12652 if (stub_sec->contents == NULL)
12653 return FALSE;
12654 /* We want to check that built size is the same as calculated
12655 size. rawsize is a convenient location to use. */
12656 stub_sec->rawsize = stub_sec->size;
12657 stub_sec->size = 0;
12658 }
12659
12660 if (htab->glink != NULL && htab->glink->size != 0)
12661 {
12662 unsigned int indx;
12663 bfd_vma plt0;
12664
12665 /* Build the .glink plt call stub. */
12666 if (htab->params->emit_stub_syms)
12667 {
12668 struct elf_link_hash_entry *h;
12669 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12670 TRUE, FALSE, FALSE);
12671 if (h == NULL)
12672 return FALSE;
12673 if (h->root.type == bfd_link_hash_new)
12674 {
12675 h->root.type = bfd_link_hash_defined;
12676 h->root.u.def.section = htab->glink;
12677 h->root.u.def.value = 8;
12678 h->ref_regular = 1;
12679 h->def_regular = 1;
12680 h->ref_regular_nonweak = 1;
12681 h->forced_local = 1;
12682 h->non_elf = 0;
12683 }
12684 }
12685 plt0 = (htab->elf.splt->output_section->vma
12686 + htab->elf.splt->output_offset
12687 - 16);
12688 if (info->emitrelocations)
12689 {
12690 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12691 if (r == NULL)
12692 return FALSE;
12693 r->r_offset = (htab->glink->output_offset
12694 + htab->glink->output_section->vma);
12695 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12696 r->r_addend = plt0;
12697 }
12698 p = htab->glink->contents;
12699 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12700 bfd_put_64 (htab->glink->owner, plt0, p);
12701 p += 8;
12702 if (htab->opd_abi)
12703 {
12704 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12705 p += 4;
12706 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12707 p += 4;
12708 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12709 p += 4;
12710 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12711 p += 4;
12712 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12713 p += 4;
12714 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12715 p += 4;
12716 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12717 p += 4;
12718 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12719 p += 4;
12720 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12721 p += 4;
12722 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12723 p += 4;
12724 }
12725 else
12726 {
12727 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12728 p += 4;
12729 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12730 p += 4;
12731 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12732 p += 4;
12733 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12734 p += 4;
12735 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12736 p += 4;
12737 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12738 p += 4;
12739 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12740 p += 4;
12741 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12742 p += 4;
12743 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12744 p += 4;
12745 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12746 p += 4;
12747 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12748 p += 4;
12749 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12750 p += 4;
12751 }
12752 bfd_put_32 (htab->glink->owner, BCTR, p);
12753 p += 4;
12754 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12755 {
12756 bfd_put_32 (htab->glink->owner, NOP, p);
12757 p += 4;
12758 }
12759
12760 /* Build the .glink lazy link call stubs. */
12761 indx = 0;
12762 while (p < htab->glink->contents + htab->glink->rawsize)
12763 {
12764 if (htab->opd_abi)
12765 {
12766 if (indx < 0x8000)
12767 {
12768 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12769 p += 4;
12770 }
12771 else
12772 {
12773 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12774 p += 4;
12775 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12776 p);
12777 p += 4;
12778 }
12779 }
12780 bfd_put_32 (htab->glink->owner,
12781 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12782 indx++;
12783 p += 4;
12784 }
12785
12786 /* Build .glink global entry stubs. */
12787 if (htab->glink->size > htab->glink->rawsize)
12788 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12789 }
12790
12791 if (htab->brlt != NULL && htab->brlt->size != 0)
12792 {
12793 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12794 htab->brlt->size);
12795 if (htab->brlt->contents == NULL)
12796 return FALSE;
12797 }
12798 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12799 {
12800 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12801 htab->relbrlt->size);
12802 if (htab->relbrlt->contents == NULL)
12803 return FALSE;
12804 }
12805
12806 /* Build the stubs as directed by the stub hash table. */
12807 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12808
12809 if (htab->relbrlt != NULL)
12810 htab->relbrlt->reloc_count = 0;
12811
12812 if (htab->params->plt_stub_align != 0)
12813 for (stub_sec = htab->params->stub_bfd->sections;
12814 stub_sec != NULL;
12815 stub_sec = stub_sec->next)
12816 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12817 stub_sec->size = ((stub_sec->size
12818 + (1 << htab->params->plt_stub_align) - 1)
12819 & (-1 << htab->params->plt_stub_align));
12820
12821 for (stub_sec = htab->params->stub_bfd->sections;
12822 stub_sec != NULL;
12823 stub_sec = stub_sec->next)
12824 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12825 {
12826 stub_sec_count += 1;
12827 if (stub_sec->rawsize != stub_sec->size)
12828 break;
12829 }
12830
12831 /* Note that the glink_eh_frame check here is not only testing that
12832 the generated size matched the calculated size but also that
12833 bfd_elf_discard_info didn't make any changes to the section. */
12834 if (stub_sec != NULL
12835 || (htab->glink_eh_frame != NULL
12836 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12837 {
12838 htab->stub_error = TRUE;
12839 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12840 }
12841
12842 if (htab->stub_error)
12843 return FALSE;
12844
12845 if (stats != NULL)
12846 {
12847 *stats = bfd_malloc (500);
12848 if (*stats == NULL)
12849 return FALSE;
12850
12851 sprintf (*stats, _("linker stubs in %u group%s\n"
12852 " branch %lu\n"
12853 " toc adjust %lu\n"
12854 " long branch %lu\n"
12855 " long toc adj %lu\n"
12856 " plt call %lu\n"
12857 " plt call toc %lu\n"
12858 " global entry %lu"),
12859 stub_sec_count,
12860 stub_sec_count == 1 ? "" : "s",
12861 htab->stub_count[ppc_stub_long_branch - 1],
12862 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12863 htab->stub_count[ppc_stub_plt_branch - 1],
12864 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12865 htab->stub_count[ppc_stub_plt_call - 1],
12866 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12867 htab->stub_count[ppc_stub_global_entry - 1]);
12868 }
12869 return TRUE;
12870 }
12871
12872 /* This function undoes the changes made by add_symbol_adjust. */
12873
12874 static bfd_boolean
12875 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12876 {
12877 struct ppc_link_hash_entry *eh;
12878
12879 if (h->root.type == bfd_link_hash_indirect)
12880 return TRUE;
12881
12882 eh = (struct ppc_link_hash_entry *) h;
12883 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12884 return TRUE;
12885
12886 eh->elf.root.type = bfd_link_hash_undefined;
12887 return TRUE;
12888 }
12889
12890 void
12891 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12892 {
12893 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12894
12895 if (htab != NULL)
12896 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12897 }
12898
12899 /* What to do when ld finds relocations against symbols defined in
12900 discarded sections. */
12901
12902 static unsigned int
12903 ppc64_elf_action_discarded (asection *sec)
12904 {
12905 if (strcmp (".opd", sec->name) == 0)
12906 return 0;
12907
12908 if (strcmp (".toc", sec->name) == 0)
12909 return 0;
12910
12911 if (strcmp (".toc1", sec->name) == 0)
12912 return 0;
12913
12914 return _bfd_elf_default_action_discarded (sec);
12915 }
12916
12917 /* The RELOCATE_SECTION function is called by the ELF backend linker
12918 to handle the relocations for a section.
12919
12920 The relocs are always passed as Rela structures; if the section
12921 actually uses Rel structures, the r_addend field will always be
12922 zero.
12923
12924 This function is responsible for adjust the section contents as
12925 necessary, and (if using Rela relocs and generating a
12926 relocatable output file) adjusting the reloc addend as
12927 necessary.
12928
12929 This function does not have to worry about setting the reloc
12930 address or the reloc symbol index.
12931
12932 LOCAL_SYMS is a pointer to the swapped in local symbols.
12933
12934 LOCAL_SECTIONS is an array giving the section in the input file
12935 corresponding to the st_shndx field of each local symbol.
12936
12937 The global hash table entry for the global symbols can be found
12938 via elf_sym_hashes (input_bfd).
12939
12940 When generating relocatable output, this function must handle
12941 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12942 going to be the section symbol corresponding to the output
12943 section, which means that the addend must be adjusted
12944 accordingly. */
12945
12946 static bfd_boolean
12947 ppc64_elf_relocate_section (bfd *output_bfd,
12948 struct bfd_link_info *info,
12949 bfd *input_bfd,
12950 asection *input_section,
12951 bfd_byte *contents,
12952 Elf_Internal_Rela *relocs,
12953 Elf_Internal_Sym *local_syms,
12954 asection **local_sections)
12955 {
12956 struct ppc_link_hash_table *htab;
12957 Elf_Internal_Shdr *symtab_hdr;
12958 struct elf_link_hash_entry **sym_hashes;
12959 Elf_Internal_Rela *rel;
12960 Elf_Internal_Rela *relend;
12961 Elf_Internal_Rela outrel;
12962 bfd_byte *loc;
12963 struct got_entry **local_got_ents;
12964 bfd_vma TOCstart;
12965 bfd_boolean ret = TRUE;
12966 bfd_boolean is_opd;
12967 /* Assume 'at' branch hints. */
12968 bfd_boolean is_isa_v2 = TRUE;
12969 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12970
12971 /* Initialize howto table if needed. */
12972 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12973 ppc_howto_init ();
12974
12975 htab = ppc_hash_table (info);
12976 if (htab == NULL)
12977 return FALSE;
12978
12979 /* Don't relocate stub sections. */
12980 if (input_section->owner == htab->params->stub_bfd)
12981 return TRUE;
12982
12983 BFD_ASSERT (is_ppc64_elf (input_bfd));
12984
12985 local_got_ents = elf_local_got_ents (input_bfd);
12986 TOCstart = elf_gp (output_bfd);
12987 symtab_hdr = &elf_symtab_hdr (input_bfd);
12988 sym_hashes = elf_sym_hashes (input_bfd);
12989 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12990
12991 rel = relocs;
12992 relend = relocs + input_section->reloc_count;
12993 for (; rel < relend; rel++)
12994 {
12995 enum elf_ppc64_reloc_type r_type;
12996 bfd_vma addend;
12997 bfd_reloc_status_type r;
12998 Elf_Internal_Sym *sym;
12999 asection *sec;
13000 struct elf_link_hash_entry *h_elf;
13001 struct ppc_link_hash_entry *h;
13002 struct ppc_link_hash_entry *fdh;
13003 const char *sym_name;
13004 unsigned long r_symndx, toc_symndx;
13005 bfd_vma toc_addend;
13006 unsigned char tls_mask, tls_gd, tls_type;
13007 unsigned char sym_type;
13008 bfd_vma relocation;
13009 bfd_boolean unresolved_reloc;
13010 bfd_boolean warned;
13011 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13012 unsigned int insn;
13013 unsigned int mask;
13014 struct ppc_stub_hash_entry *stub_entry;
13015 bfd_vma max_br_offset;
13016 bfd_vma from;
13017 const Elf_Internal_Rela orig_rel = *rel;
13018 reloc_howto_type *howto;
13019 struct reloc_howto_struct alt_howto;
13020
13021 r_type = ELF64_R_TYPE (rel->r_info);
13022 r_symndx = ELF64_R_SYM (rel->r_info);
13023
13024 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13025 symbol of the previous ADDR64 reloc. The symbol gives us the
13026 proper TOC base to use. */
13027 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13028 && rel != relocs
13029 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13030 && is_opd)
13031 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13032
13033 sym = NULL;
13034 sec = NULL;
13035 h_elf = NULL;
13036 sym_name = NULL;
13037 unresolved_reloc = FALSE;
13038 warned = FALSE;
13039
13040 if (r_symndx < symtab_hdr->sh_info)
13041 {
13042 /* It's a local symbol. */
13043 struct _opd_sec_data *opd;
13044
13045 sym = local_syms + r_symndx;
13046 sec = local_sections[r_symndx];
13047 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13048 sym_type = ELF64_ST_TYPE (sym->st_info);
13049 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13050 opd = get_opd_info (sec);
13051 if (opd != NULL && opd->adjust != NULL)
13052 {
13053 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
13054 if (adjust == -1)
13055 relocation = 0;
13056 else
13057 {
13058 /* If this is a relocation against the opd section sym
13059 and we have edited .opd, adjust the reloc addend so
13060 that ld -r and ld --emit-relocs output is correct.
13061 If it is a reloc against some other .opd symbol,
13062 then the symbol value will be adjusted later. */
13063 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13064 rel->r_addend += adjust;
13065 else
13066 relocation += adjust;
13067 }
13068 }
13069 }
13070 else
13071 {
13072 bfd_boolean ignored;
13073
13074 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13075 r_symndx, symtab_hdr, sym_hashes,
13076 h_elf, sec, relocation,
13077 unresolved_reloc, warned, ignored);
13078 sym_name = h_elf->root.root.string;
13079 sym_type = h_elf->type;
13080 if (sec != NULL
13081 && sec->owner == output_bfd
13082 && strcmp (sec->name, ".opd") == 0)
13083 {
13084 /* This is a symbol defined in a linker script. All
13085 such are defined in output sections, even those
13086 defined by simple assignment from a symbol defined in
13087 an input section. Transfer the symbol to an
13088 appropriate input .opd section, so that a branch to
13089 this symbol will be mapped to the location specified
13090 by the opd entry. */
13091 struct bfd_link_order *lo;
13092 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13093 if (lo->type == bfd_indirect_link_order)
13094 {
13095 asection *isec = lo->u.indirect.section;
13096 if (h_elf->root.u.def.value >= isec->output_offset
13097 && h_elf->root.u.def.value < (isec->output_offset
13098 + isec->size))
13099 {
13100 h_elf->root.u.def.value -= isec->output_offset;
13101 h_elf->root.u.def.section = isec;
13102 sec = isec;
13103 break;
13104 }
13105 }
13106 }
13107 }
13108 h = (struct ppc_link_hash_entry *) h_elf;
13109
13110 if (sec != NULL && discarded_section (sec))
13111 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13112 rel, 1, relend,
13113 ppc64_elf_howto_table[r_type], 0,
13114 contents);
13115
13116 if (info->relocatable)
13117 continue;
13118
13119 if (h != NULL && &h->elf == htab->elf.hgot)
13120 {
13121 relocation = (TOCstart
13122 + htab->stub_group[input_section->id].toc_off);
13123 sec = bfd_abs_section_ptr;
13124 unresolved_reloc = FALSE;
13125 }
13126
13127 /* TLS optimizations. Replace instruction sequences and relocs
13128 based on information we collected in tls_optimize. We edit
13129 RELOCS so that --emit-relocs will output something sensible
13130 for the final instruction stream. */
13131 tls_mask = 0;
13132 tls_gd = 0;
13133 toc_symndx = 0;
13134 if (h != NULL)
13135 tls_mask = h->tls_mask;
13136 else if (local_got_ents != NULL)
13137 {
13138 struct plt_entry **local_plt = (struct plt_entry **)
13139 (local_got_ents + symtab_hdr->sh_info);
13140 unsigned char *lgot_masks = (unsigned char *)
13141 (local_plt + symtab_hdr->sh_info);
13142 tls_mask = lgot_masks[r_symndx];
13143 }
13144 if (tls_mask == 0
13145 && (r_type == R_PPC64_TLS
13146 || r_type == R_PPC64_TLSGD
13147 || r_type == R_PPC64_TLSLD))
13148 {
13149 /* Check for toc tls entries. */
13150 unsigned char *toc_tls;
13151
13152 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13153 &local_syms, rel, input_bfd))
13154 return FALSE;
13155
13156 if (toc_tls)
13157 tls_mask = *toc_tls;
13158 }
13159
13160 /* Check that tls relocs are used with tls syms, and non-tls
13161 relocs are used with non-tls syms. */
13162 if (r_symndx != STN_UNDEF
13163 && r_type != R_PPC64_NONE
13164 && (h == NULL
13165 || h->elf.root.type == bfd_link_hash_defined
13166 || h->elf.root.type == bfd_link_hash_defweak)
13167 && (IS_PPC64_TLS_RELOC (r_type)
13168 != (sym_type == STT_TLS
13169 || (sym_type == STT_SECTION
13170 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13171 {
13172 if (tls_mask != 0
13173 && (r_type == R_PPC64_TLS
13174 || r_type == R_PPC64_TLSGD
13175 || r_type == R_PPC64_TLSLD))
13176 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13177 ;
13178 else
13179 info->callbacks->einfo
13180 (!IS_PPC64_TLS_RELOC (r_type)
13181 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13182 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13183 input_bfd, input_section, rel->r_offset,
13184 ppc64_elf_howto_table[r_type]->name,
13185 sym_name);
13186 }
13187
13188 /* Ensure reloc mapping code below stays sane. */
13189 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13190 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13191 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13192 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13193 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13194 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13195 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13196 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13197 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13198 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13199 abort ();
13200
13201 switch (r_type)
13202 {
13203 default:
13204 break;
13205
13206 case R_PPC64_LO_DS_OPT:
13207 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13208 if ((insn & (0x3f << 26)) != 58u << 26)
13209 abort ();
13210 insn += (14u << 26) - (58u << 26);
13211 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13212 r_type = R_PPC64_TOC16_LO;
13213 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13214 break;
13215
13216 case R_PPC64_TOC16:
13217 case R_PPC64_TOC16_LO:
13218 case R_PPC64_TOC16_DS:
13219 case R_PPC64_TOC16_LO_DS:
13220 {
13221 /* Check for toc tls entries. */
13222 unsigned char *toc_tls;
13223 int retval;
13224
13225 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13226 &local_syms, rel, input_bfd);
13227 if (retval == 0)
13228 return FALSE;
13229
13230 if (toc_tls)
13231 {
13232 tls_mask = *toc_tls;
13233 if (r_type == R_PPC64_TOC16_DS
13234 || r_type == R_PPC64_TOC16_LO_DS)
13235 {
13236 if (tls_mask != 0
13237 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13238 goto toctprel;
13239 }
13240 else
13241 {
13242 /* If we found a GD reloc pair, then we might be
13243 doing a GD->IE transition. */
13244 if (retval == 2)
13245 {
13246 tls_gd = TLS_TPRELGD;
13247 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13248 goto tls_ldgd_opt;
13249 }
13250 else if (retval == 3)
13251 {
13252 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13253 goto tls_ldgd_opt;
13254 }
13255 }
13256 }
13257 }
13258 break;
13259
13260 case R_PPC64_GOT_TPREL16_HI:
13261 case R_PPC64_GOT_TPREL16_HA:
13262 if (tls_mask != 0
13263 && (tls_mask & TLS_TPREL) == 0)
13264 {
13265 rel->r_offset -= d_offset;
13266 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13267 r_type = R_PPC64_NONE;
13268 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13269 }
13270 break;
13271
13272 case R_PPC64_GOT_TPREL16_DS:
13273 case R_PPC64_GOT_TPREL16_LO_DS:
13274 if (tls_mask != 0
13275 && (tls_mask & TLS_TPREL) == 0)
13276 {
13277 toctprel:
13278 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13279 insn &= 31 << 21;
13280 insn |= 0x3c0d0000; /* addis 0,13,0 */
13281 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13282 r_type = R_PPC64_TPREL16_HA;
13283 if (toc_symndx != 0)
13284 {
13285 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13286 rel->r_addend = toc_addend;
13287 /* We changed the symbol. Start over in order to
13288 get h, sym, sec etc. right. */
13289 rel--;
13290 continue;
13291 }
13292 else
13293 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13294 }
13295 break;
13296
13297 case R_PPC64_TLS:
13298 if (tls_mask != 0
13299 && (tls_mask & TLS_TPREL) == 0)
13300 {
13301 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13302 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13303 if (insn == 0)
13304 abort ();
13305 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13306 /* Was PPC64_TLS which sits on insn boundary, now
13307 PPC64_TPREL16_LO which is at low-order half-word. */
13308 rel->r_offset += d_offset;
13309 r_type = R_PPC64_TPREL16_LO;
13310 if (toc_symndx != 0)
13311 {
13312 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13313 rel->r_addend = toc_addend;
13314 /* We changed the symbol. Start over in order to
13315 get h, sym, sec etc. right. */
13316 rel--;
13317 continue;
13318 }
13319 else
13320 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13321 }
13322 break;
13323
13324 case R_PPC64_GOT_TLSGD16_HI:
13325 case R_PPC64_GOT_TLSGD16_HA:
13326 tls_gd = TLS_TPRELGD;
13327 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13328 goto tls_gdld_hi;
13329 break;
13330
13331 case R_PPC64_GOT_TLSLD16_HI:
13332 case R_PPC64_GOT_TLSLD16_HA:
13333 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13334 {
13335 tls_gdld_hi:
13336 if ((tls_mask & tls_gd) != 0)
13337 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13338 + R_PPC64_GOT_TPREL16_DS);
13339 else
13340 {
13341 rel->r_offset -= d_offset;
13342 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13343 r_type = R_PPC64_NONE;
13344 }
13345 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13346 }
13347 break;
13348
13349 case R_PPC64_GOT_TLSGD16:
13350 case R_PPC64_GOT_TLSGD16_LO:
13351 tls_gd = TLS_TPRELGD;
13352 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13353 goto tls_ldgd_opt;
13354 break;
13355
13356 case R_PPC64_GOT_TLSLD16:
13357 case R_PPC64_GOT_TLSLD16_LO:
13358 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13359 {
13360 unsigned int insn1, insn2, insn3;
13361 bfd_vma offset;
13362
13363 tls_ldgd_opt:
13364 offset = (bfd_vma) -1;
13365 /* If not using the newer R_PPC64_TLSGD/LD to mark
13366 __tls_get_addr calls, we must trust that the call
13367 stays with its arg setup insns, ie. that the next
13368 reloc is the __tls_get_addr call associated with
13369 the current reloc. Edit both insns. */
13370 if (input_section->has_tls_get_addr_call
13371 && rel + 1 < relend
13372 && branch_reloc_hash_match (input_bfd, rel + 1,
13373 htab->tls_get_addr,
13374 htab->tls_get_addr_fd))
13375 offset = rel[1].r_offset;
13376 if ((tls_mask & tls_gd) != 0)
13377 {
13378 /* IE */
13379 insn1 = bfd_get_32 (output_bfd,
13380 contents + rel->r_offset - d_offset);
13381 insn1 &= (1 << 26) - (1 << 2);
13382 insn1 |= 58 << 26; /* ld */
13383 insn2 = 0x7c636a14; /* add 3,3,13 */
13384 if (offset != (bfd_vma) -1)
13385 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13386 if ((tls_mask & TLS_EXPLICIT) == 0)
13387 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13388 + R_PPC64_GOT_TPREL16_DS);
13389 else
13390 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13391 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13392 }
13393 else
13394 {
13395 /* LE */
13396 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13397 insn2 = 0x38630000; /* addi 3,3,0 */
13398 if (tls_gd == 0)
13399 {
13400 /* Was an LD reloc. */
13401 if (toc_symndx)
13402 sec = local_sections[toc_symndx];
13403 for (r_symndx = 0;
13404 r_symndx < symtab_hdr->sh_info;
13405 r_symndx++)
13406 if (local_sections[r_symndx] == sec)
13407 break;
13408 if (r_symndx >= symtab_hdr->sh_info)
13409 r_symndx = STN_UNDEF;
13410 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13411 if (r_symndx != STN_UNDEF)
13412 rel->r_addend -= (local_syms[r_symndx].st_value
13413 + sec->output_offset
13414 + sec->output_section->vma);
13415 }
13416 else if (toc_symndx != 0)
13417 {
13418 r_symndx = toc_symndx;
13419 rel->r_addend = toc_addend;
13420 }
13421 r_type = R_PPC64_TPREL16_HA;
13422 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13423 if (offset != (bfd_vma) -1)
13424 {
13425 rel[1].r_info = ELF64_R_INFO (r_symndx,
13426 R_PPC64_TPREL16_LO);
13427 rel[1].r_offset = offset + d_offset;
13428 rel[1].r_addend = rel->r_addend;
13429 }
13430 }
13431 bfd_put_32 (output_bfd, insn1,
13432 contents + rel->r_offset - d_offset);
13433 if (offset != (bfd_vma) -1)
13434 {
13435 insn3 = bfd_get_32 (output_bfd,
13436 contents + offset + 4);
13437 if (insn3 == NOP
13438 || insn3 == CROR_151515 || insn3 == CROR_313131)
13439 {
13440 rel[1].r_offset += 4;
13441 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13442 insn2 = NOP;
13443 }
13444 bfd_put_32 (output_bfd, insn2, contents + offset);
13445 }
13446 if ((tls_mask & tls_gd) == 0
13447 && (tls_gd == 0 || toc_symndx != 0))
13448 {
13449 /* We changed the symbol. Start over in order
13450 to get h, sym, sec etc. right. */
13451 rel--;
13452 continue;
13453 }
13454 }
13455 break;
13456
13457 case R_PPC64_TLSGD:
13458 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13459 {
13460 unsigned int insn2, insn3;
13461 bfd_vma offset = rel->r_offset;
13462
13463 if ((tls_mask & TLS_TPRELGD) != 0)
13464 {
13465 /* IE */
13466 r_type = R_PPC64_NONE;
13467 insn2 = 0x7c636a14; /* add 3,3,13 */
13468 }
13469 else
13470 {
13471 /* LE */
13472 if (toc_symndx != 0)
13473 {
13474 r_symndx = toc_symndx;
13475 rel->r_addend = toc_addend;
13476 }
13477 r_type = R_PPC64_TPREL16_LO;
13478 rel->r_offset = offset + d_offset;
13479 insn2 = 0x38630000; /* addi 3,3,0 */
13480 }
13481 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13482 /* Zap the reloc on the _tls_get_addr call too. */
13483 BFD_ASSERT (offset == rel[1].r_offset);
13484 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13485 insn3 = bfd_get_32 (output_bfd,
13486 contents + offset + 4);
13487 if (insn3 == NOP
13488 || insn3 == CROR_151515 || insn3 == CROR_313131)
13489 {
13490 rel->r_offset += 4;
13491 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13492 insn2 = NOP;
13493 }
13494 bfd_put_32 (output_bfd, insn2, contents + offset);
13495 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13496 {
13497 rel--;
13498 continue;
13499 }
13500 }
13501 break;
13502
13503 case R_PPC64_TLSLD:
13504 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13505 {
13506 unsigned int insn2, insn3;
13507 bfd_vma offset = rel->r_offset;
13508
13509 if (toc_symndx)
13510 sec = local_sections[toc_symndx];
13511 for (r_symndx = 0;
13512 r_symndx < symtab_hdr->sh_info;
13513 r_symndx++)
13514 if (local_sections[r_symndx] == sec)
13515 break;
13516 if (r_symndx >= symtab_hdr->sh_info)
13517 r_symndx = STN_UNDEF;
13518 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13519 if (r_symndx != STN_UNDEF)
13520 rel->r_addend -= (local_syms[r_symndx].st_value
13521 + sec->output_offset
13522 + sec->output_section->vma);
13523
13524 r_type = R_PPC64_TPREL16_LO;
13525 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13526 rel->r_offset = offset + d_offset;
13527 /* Zap the reloc on the _tls_get_addr call too. */
13528 BFD_ASSERT (offset == rel[1].r_offset);
13529 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13530 insn2 = 0x38630000; /* addi 3,3,0 */
13531 insn3 = bfd_get_32 (output_bfd,
13532 contents + offset + 4);
13533 if (insn3 == NOP
13534 || insn3 == CROR_151515 || insn3 == CROR_313131)
13535 {
13536 rel->r_offset += 4;
13537 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13538 insn2 = NOP;
13539 }
13540 bfd_put_32 (output_bfd, insn2, contents + offset);
13541 rel--;
13542 continue;
13543 }
13544 break;
13545
13546 case R_PPC64_DTPMOD64:
13547 if (rel + 1 < relend
13548 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13549 && rel[1].r_offset == rel->r_offset + 8)
13550 {
13551 if ((tls_mask & TLS_GD) == 0)
13552 {
13553 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13554 if ((tls_mask & TLS_TPRELGD) != 0)
13555 r_type = R_PPC64_TPREL64;
13556 else
13557 {
13558 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13559 r_type = R_PPC64_NONE;
13560 }
13561 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13562 }
13563 }
13564 else
13565 {
13566 if ((tls_mask & TLS_LD) == 0)
13567 {
13568 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13569 r_type = R_PPC64_NONE;
13570 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13571 }
13572 }
13573 break;
13574
13575 case R_PPC64_TPREL64:
13576 if ((tls_mask & TLS_TPREL) == 0)
13577 {
13578 r_type = R_PPC64_NONE;
13579 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13580 }
13581 break;
13582
13583 case R_PPC64_REL16_HA:
13584 /* If we are generating a non-PIC executable, edit
13585 . 0: addis 2,12,.TOC.-0b@ha
13586 . addi 2,2,.TOC.-0b@l
13587 used by ELFv2 global entry points to set up r2, to
13588 . lis 2,.TOC.@ha
13589 . addi 2,2,.TOC.@l
13590 if .TOC. is in range. */
13591 if (!info->shared
13592 && !info->traditional_format
13593 && h != NULL && &h->elf == htab->elf.hgot
13594 && rel + 1 < relend
13595 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13596 && rel[1].r_offset == rel->r_offset + 4
13597 && rel[1].r_addend == rel->r_addend + 4
13598 && relocation + 0x80008000 <= 0xffffffff)
13599 {
13600 unsigned int insn1, insn2;
13601 bfd_vma offset = rel->r_offset - d_offset;
13602 insn1 = bfd_get_32 (output_bfd, contents + offset);
13603 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13604 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13605 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13606 {
13607 r_type = R_PPC64_ADDR16_HA;
13608 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13609 rel->r_addend -= d_offset;
13610 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13611 rel[1].r_addend -= d_offset + 4;
13612 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13613 }
13614 }
13615 break;
13616 }
13617
13618 /* Handle other relocations that tweak non-addend part of insn. */
13619 insn = 0;
13620 max_br_offset = 1 << 25;
13621 addend = rel->r_addend;
13622 reloc_dest = DEST_NORMAL;
13623 switch (r_type)
13624 {
13625 default:
13626 break;
13627
13628 case R_PPC64_TOCSAVE:
13629 if (relocation + addend == (rel->r_offset
13630 + input_section->output_offset
13631 + input_section->output_section->vma)
13632 && tocsave_find (htab, NO_INSERT,
13633 &local_syms, rel, input_bfd))
13634 {
13635 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13636 if (insn == NOP
13637 || insn == CROR_151515 || insn == CROR_313131)
13638 bfd_put_32 (input_bfd,
13639 STD_R2_0R1 + STK_TOC (htab),
13640 contents + rel->r_offset);
13641 }
13642 break;
13643
13644 /* Branch taken prediction relocations. */
13645 case R_PPC64_ADDR14_BRTAKEN:
13646 case R_PPC64_REL14_BRTAKEN:
13647 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13648 /* Fall thru. */
13649
13650 /* Branch not taken prediction relocations. */
13651 case R_PPC64_ADDR14_BRNTAKEN:
13652 case R_PPC64_REL14_BRNTAKEN:
13653 insn |= bfd_get_32 (output_bfd,
13654 contents + rel->r_offset) & ~(0x01 << 21);
13655 /* Fall thru. */
13656
13657 case R_PPC64_REL14:
13658 max_br_offset = 1 << 15;
13659 /* Fall thru. */
13660
13661 case R_PPC64_REL24:
13662 /* Calls to functions with a different TOC, such as calls to
13663 shared objects, need to alter the TOC pointer. This is
13664 done using a linkage stub. A REL24 branching to these
13665 linkage stubs needs to be followed by a nop, as the nop
13666 will be replaced with an instruction to restore the TOC
13667 base pointer. */
13668 fdh = h;
13669 if (h != NULL
13670 && h->oh != NULL
13671 && h->oh->is_func_descriptor)
13672 fdh = ppc_follow_link (h->oh);
13673 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13674 htab);
13675 if (stub_entry != NULL
13676 && (stub_entry->stub_type == ppc_stub_plt_call
13677 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13678 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13679 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13680 {
13681 bfd_boolean can_plt_call = FALSE;
13682
13683 /* All of these stubs will modify r2, so there must be a
13684 branch and link followed by a nop. The nop is
13685 replaced by an insn to restore r2. */
13686 if (rel->r_offset + 8 <= input_section->size)
13687 {
13688 unsigned long br;
13689
13690 br = bfd_get_32 (input_bfd,
13691 contents + rel->r_offset);
13692 if ((br & 1) != 0)
13693 {
13694 unsigned long nop;
13695
13696 nop = bfd_get_32 (input_bfd,
13697 contents + rel->r_offset + 4);
13698 if (nop == NOP
13699 || nop == CROR_151515 || nop == CROR_313131)
13700 {
13701 if (h != NULL
13702 && (h == htab->tls_get_addr_fd
13703 || h == htab->tls_get_addr)
13704 && !htab->params->no_tls_get_addr_opt)
13705 {
13706 /* Special stub used, leave nop alone. */
13707 }
13708 else
13709 bfd_put_32 (input_bfd,
13710 LD_R2_0R1 + STK_TOC (htab),
13711 contents + rel->r_offset + 4);
13712 can_plt_call = TRUE;
13713 }
13714 }
13715 }
13716
13717 if (!can_plt_call && h != NULL)
13718 {
13719 const char *name = h->elf.root.root.string;
13720
13721 if (*name == '.')
13722 ++name;
13723
13724 if (strncmp (name, "__libc_start_main", 17) == 0
13725 && (name[17] == 0 || name[17] == '@'))
13726 {
13727 /* Allow crt1 branch to go via a toc adjusting
13728 stub. Other calls that never return could do
13729 the same, if we could detect such. */
13730 can_plt_call = TRUE;
13731 }
13732 }
13733
13734 if (!can_plt_call)
13735 {
13736 /* g++ as of 20130507 emits self-calls without a
13737 following nop. This is arguably wrong since we
13738 have conflicting information. On the one hand a
13739 global symbol and on the other a local call
13740 sequence, but don't error for this special case.
13741 It isn't possible to cheaply verify we have
13742 exactly such a call. Allow all calls to the same
13743 section. */
13744 asection *code_sec = sec;
13745
13746 if (get_opd_info (sec) != NULL)
13747 {
13748 bfd_vma off = (relocation + addend
13749 - sec->output_section->vma
13750 - sec->output_offset);
13751
13752 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13753 }
13754 if (code_sec == input_section)
13755 can_plt_call = TRUE;
13756 }
13757
13758 if (!can_plt_call)
13759 {
13760 if (stub_entry->stub_type == ppc_stub_plt_call
13761 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13762 info->callbacks->einfo
13763 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13764 "recompile with -fPIC\n"),
13765 input_bfd, input_section, rel->r_offset, sym_name);
13766 else
13767 info->callbacks->einfo
13768 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13769 "(-mcmodel=small toc adjust stub)\n"),
13770 input_bfd, input_section, rel->r_offset, sym_name);
13771
13772 bfd_set_error (bfd_error_bad_value);
13773 ret = FALSE;
13774 }
13775
13776 if (can_plt_call
13777 && (stub_entry->stub_type == ppc_stub_plt_call
13778 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13779 unresolved_reloc = FALSE;
13780 }
13781
13782 if ((stub_entry == NULL
13783 || stub_entry->stub_type == ppc_stub_long_branch
13784 || stub_entry->stub_type == ppc_stub_plt_branch)
13785 && get_opd_info (sec) != NULL)
13786 {
13787 /* The branch destination is the value of the opd entry. */
13788 bfd_vma off = (relocation + addend
13789 - sec->output_section->vma
13790 - sec->output_offset);
13791 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13792 if (dest != (bfd_vma) -1)
13793 {
13794 relocation = dest;
13795 addend = 0;
13796 reloc_dest = DEST_OPD;
13797 }
13798 }
13799
13800 /* If the branch is out of reach we ought to have a long
13801 branch stub. */
13802 from = (rel->r_offset
13803 + input_section->output_offset
13804 + input_section->output_section->vma);
13805
13806 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13807 ? fdh->elf.other
13808 : sym->st_other);
13809
13810 if (stub_entry != NULL
13811 && (stub_entry->stub_type == ppc_stub_long_branch
13812 || stub_entry->stub_type == ppc_stub_plt_branch)
13813 && (r_type == R_PPC64_ADDR14_BRTAKEN
13814 || r_type == R_PPC64_ADDR14_BRNTAKEN
13815 || (relocation + addend - from + max_br_offset
13816 < 2 * max_br_offset)))
13817 /* Don't use the stub if this branch is in range. */
13818 stub_entry = NULL;
13819
13820 if (stub_entry != NULL)
13821 {
13822 /* Munge up the value and addend so that we call the stub
13823 rather than the procedure directly. */
13824 relocation = (stub_entry->stub_offset
13825 + stub_entry->stub_sec->output_offset
13826 + stub_entry->stub_sec->output_section->vma);
13827 addend = 0;
13828 reloc_dest = DEST_STUB;
13829
13830 if ((stub_entry->stub_type == ppc_stub_plt_call
13831 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13832 && (ALWAYS_EMIT_R2SAVE
13833 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13834 && rel + 1 < relend
13835 && rel[1].r_offset == rel->r_offset + 4
13836 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13837 relocation += 4;
13838 }
13839
13840 if (insn != 0)
13841 {
13842 if (is_isa_v2)
13843 {
13844 /* Set 'a' bit. This is 0b00010 in BO field for branch
13845 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13846 for branch on CTR insns (BO == 1a00t or 1a01t). */
13847 if ((insn & (0x14 << 21)) == (0x04 << 21))
13848 insn |= 0x02 << 21;
13849 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13850 insn |= 0x08 << 21;
13851 else
13852 break;
13853 }
13854 else
13855 {
13856 /* Invert 'y' bit if not the default. */
13857 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13858 insn ^= 0x01 << 21;
13859 }
13860
13861 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13862 }
13863
13864 /* NOP out calls to undefined weak functions.
13865 We can thus call a weak function without first
13866 checking whether the function is defined. */
13867 else if (h != NULL
13868 && h->elf.root.type == bfd_link_hash_undefweak
13869 && h->elf.dynindx == -1
13870 && r_type == R_PPC64_REL24
13871 && relocation == 0
13872 && addend == 0)
13873 {
13874 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13875 continue;
13876 }
13877 break;
13878 }
13879
13880 /* Set `addend'. */
13881 tls_type = 0;
13882 switch (r_type)
13883 {
13884 default:
13885 info->callbacks->einfo
13886 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13887 input_bfd, (int) r_type, sym_name);
13888
13889 bfd_set_error (bfd_error_bad_value);
13890 ret = FALSE;
13891 continue;
13892
13893 case R_PPC64_NONE:
13894 case R_PPC64_TLS:
13895 case R_PPC64_TLSGD:
13896 case R_PPC64_TLSLD:
13897 case R_PPC64_TOCSAVE:
13898 case R_PPC64_GNU_VTINHERIT:
13899 case R_PPC64_GNU_VTENTRY:
13900 continue;
13901
13902 /* GOT16 relocations. Like an ADDR16 using the symbol's
13903 address in the GOT as relocation value instead of the
13904 symbol's value itself. Also, create a GOT entry for the
13905 symbol and put the symbol value there. */
13906 case R_PPC64_GOT_TLSGD16:
13907 case R_PPC64_GOT_TLSGD16_LO:
13908 case R_PPC64_GOT_TLSGD16_HI:
13909 case R_PPC64_GOT_TLSGD16_HA:
13910 tls_type = TLS_TLS | TLS_GD;
13911 goto dogot;
13912
13913 case R_PPC64_GOT_TLSLD16:
13914 case R_PPC64_GOT_TLSLD16_LO:
13915 case R_PPC64_GOT_TLSLD16_HI:
13916 case R_PPC64_GOT_TLSLD16_HA:
13917 tls_type = TLS_TLS | TLS_LD;
13918 goto dogot;
13919
13920 case R_PPC64_GOT_TPREL16_DS:
13921 case R_PPC64_GOT_TPREL16_LO_DS:
13922 case R_PPC64_GOT_TPREL16_HI:
13923 case R_PPC64_GOT_TPREL16_HA:
13924 tls_type = TLS_TLS | TLS_TPREL;
13925 goto dogot;
13926
13927 case R_PPC64_GOT_DTPREL16_DS:
13928 case R_PPC64_GOT_DTPREL16_LO_DS:
13929 case R_PPC64_GOT_DTPREL16_HI:
13930 case R_PPC64_GOT_DTPREL16_HA:
13931 tls_type = TLS_TLS | TLS_DTPREL;
13932 goto dogot;
13933
13934 case R_PPC64_GOT16:
13935 case R_PPC64_GOT16_LO:
13936 case R_PPC64_GOT16_HI:
13937 case R_PPC64_GOT16_HA:
13938 case R_PPC64_GOT16_DS:
13939 case R_PPC64_GOT16_LO_DS:
13940 dogot:
13941 {
13942 /* Relocation is to the entry for this symbol in the global
13943 offset table. */
13944 asection *got;
13945 bfd_vma *offp;
13946 bfd_vma off;
13947 unsigned long indx = 0;
13948 struct got_entry *ent;
13949
13950 if (tls_type == (TLS_TLS | TLS_LD)
13951 && (h == NULL
13952 || !h->elf.def_dynamic))
13953 ent = ppc64_tlsld_got (input_bfd);
13954 else
13955 {
13956
13957 if (h != NULL)
13958 {
13959 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13960 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13961 &h->elf)
13962 || (info->shared
13963 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
13964 /* This is actually a static link, or it is a
13965 -Bsymbolic link and the symbol is defined
13966 locally, or the symbol was forced to be local
13967 because of a version file. */
13968 ;
13969 else
13970 {
13971 BFD_ASSERT (h->elf.dynindx != -1);
13972 indx = h->elf.dynindx;
13973 unresolved_reloc = FALSE;
13974 }
13975 ent = h->elf.got.glist;
13976 }
13977 else
13978 {
13979 if (local_got_ents == NULL)
13980 abort ();
13981 ent = local_got_ents[r_symndx];
13982 }
13983
13984 for (; ent != NULL; ent = ent->next)
13985 if (ent->addend == orig_rel.r_addend
13986 && ent->owner == input_bfd
13987 && ent->tls_type == tls_type)
13988 break;
13989 }
13990
13991 if (ent == NULL)
13992 abort ();
13993 if (ent->is_indirect)
13994 ent = ent->got.ent;
13995 offp = &ent->got.offset;
13996 got = ppc64_elf_tdata (ent->owner)->got;
13997 if (got == NULL)
13998 abort ();
13999
14000 /* The offset must always be a multiple of 8. We use the
14001 least significant bit to record whether we have already
14002 processed this entry. */
14003 off = *offp;
14004 if ((off & 1) != 0)
14005 off &= ~1;
14006 else
14007 {
14008 /* Generate relocs for the dynamic linker, except in
14009 the case of TLSLD where we'll use one entry per
14010 module. */
14011 asection *relgot;
14012 bfd_boolean ifunc;
14013
14014 *offp = off | 1;
14015 relgot = NULL;
14016 ifunc = (h != NULL
14017 ? h->elf.type == STT_GNU_IFUNC
14018 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14019 if (ifunc)
14020 relgot = htab->elf.irelplt;
14021 else if ((info->shared || indx != 0)
14022 && (h == NULL
14023 || (tls_type == (TLS_TLS | TLS_LD)
14024 && !h->elf.def_dynamic)
14025 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14026 || h->elf.root.type != bfd_link_hash_undefweak))
14027 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14028 if (relgot != NULL)
14029 {
14030 outrel.r_offset = (got->output_section->vma
14031 + got->output_offset
14032 + off);
14033 outrel.r_addend = addend;
14034 if (tls_type & (TLS_LD | TLS_GD))
14035 {
14036 outrel.r_addend = 0;
14037 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14038 if (tls_type == (TLS_TLS | TLS_GD))
14039 {
14040 loc = relgot->contents;
14041 loc += (relgot->reloc_count++
14042 * sizeof (Elf64_External_Rela));
14043 bfd_elf64_swap_reloca_out (output_bfd,
14044 &outrel, loc);
14045 outrel.r_offset += 8;
14046 outrel.r_addend = addend;
14047 outrel.r_info
14048 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14049 }
14050 }
14051 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14052 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14053 else if (tls_type == (TLS_TLS | TLS_TPREL))
14054 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14055 else if (indx != 0)
14056 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14057 else
14058 {
14059 if (ifunc)
14060 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14061 else
14062 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14063
14064 /* Write the .got section contents for the sake
14065 of prelink. */
14066 loc = got->contents + off;
14067 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14068 loc);
14069 }
14070
14071 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14072 {
14073 outrel.r_addend += relocation;
14074 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14075 outrel.r_addend -= htab->elf.tls_sec->vma;
14076 }
14077 loc = relgot->contents;
14078 loc += (relgot->reloc_count++
14079 * sizeof (Elf64_External_Rela));
14080 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14081 }
14082
14083 /* Init the .got section contents here if we're not
14084 emitting a reloc. */
14085 else
14086 {
14087 relocation += addend;
14088 if (tls_type == (TLS_TLS | TLS_LD))
14089 relocation = 1;
14090 else if (tls_type != 0)
14091 {
14092 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14093 if (tls_type == (TLS_TLS | TLS_TPREL))
14094 relocation += DTP_OFFSET - TP_OFFSET;
14095
14096 if (tls_type == (TLS_TLS | TLS_GD))
14097 {
14098 bfd_put_64 (output_bfd, relocation,
14099 got->contents + off + 8);
14100 relocation = 1;
14101 }
14102 }
14103
14104 bfd_put_64 (output_bfd, relocation,
14105 got->contents + off);
14106 }
14107 }
14108
14109 if (off >= (bfd_vma) -2)
14110 abort ();
14111
14112 relocation = got->output_section->vma + got->output_offset + off;
14113 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14114 }
14115 break;
14116
14117 case R_PPC64_PLT16_HA:
14118 case R_PPC64_PLT16_HI:
14119 case R_PPC64_PLT16_LO:
14120 case R_PPC64_PLT32:
14121 case R_PPC64_PLT64:
14122 /* Relocation is to the entry for this symbol in the
14123 procedure linkage table. */
14124
14125 /* Resolve a PLT reloc against a local symbol directly,
14126 without using the procedure linkage table. */
14127 if (h == NULL)
14128 break;
14129
14130 /* It's possible that we didn't make a PLT entry for this
14131 symbol. This happens when statically linking PIC code,
14132 or when using -Bsymbolic. Go find a match if there is a
14133 PLT entry. */
14134 if (htab->elf.splt != NULL)
14135 {
14136 struct plt_entry *ent;
14137 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14138 if (ent->plt.offset != (bfd_vma) -1
14139 && ent->addend == orig_rel.r_addend)
14140 {
14141 relocation = (htab->elf.splt->output_section->vma
14142 + htab->elf.splt->output_offset
14143 + ent->plt.offset);
14144 unresolved_reloc = FALSE;
14145 break;
14146 }
14147 }
14148 break;
14149
14150 case R_PPC64_TOC:
14151 /* Relocation value is TOC base. */
14152 relocation = TOCstart;
14153 if (r_symndx == STN_UNDEF)
14154 relocation += htab->stub_group[input_section->id].toc_off;
14155 else if (unresolved_reloc)
14156 ;
14157 else if (sec != NULL && sec->id <= htab->top_id)
14158 relocation += htab->stub_group[sec->id].toc_off;
14159 else
14160 unresolved_reloc = TRUE;
14161 goto dodyn;
14162
14163 /* TOC16 relocs. We want the offset relative to the TOC base,
14164 which is the address of the start of the TOC plus 0x8000.
14165 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14166 in this order. */
14167 case R_PPC64_TOC16:
14168 case R_PPC64_TOC16_LO:
14169 case R_PPC64_TOC16_HI:
14170 case R_PPC64_TOC16_DS:
14171 case R_PPC64_TOC16_LO_DS:
14172 case R_PPC64_TOC16_HA:
14173 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14174 break;
14175
14176 /* Relocate against the beginning of the section. */
14177 case R_PPC64_SECTOFF:
14178 case R_PPC64_SECTOFF_LO:
14179 case R_PPC64_SECTOFF_HI:
14180 case R_PPC64_SECTOFF_DS:
14181 case R_PPC64_SECTOFF_LO_DS:
14182 case R_PPC64_SECTOFF_HA:
14183 if (sec != NULL)
14184 addend -= sec->output_section->vma;
14185 break;
14186
14187 case R_PPC64_REL16:
14188 case R_PPC64_REL16_LO:
14189 case R_PPC64_REL16_HI:
14190 case R_PPC64_REL16_HA:
14191 break;
14192
14193 case R_PPC64_REL14:
14194 case R_PPC64_REL14_BRNTAKEN:
14195 case R_PPC64_REL14_BRTAKEN:
14196 case R_PPC64_REL24:
14197 break;
14198
14199 case R_PPC64_TPREL16:
14200 case R_PPC64_TPREL16_LO:
14201 case R_PPC64_TPREL16_HI:
14202 case R_PPC64_TPREL16_HA:
14203 case R_PPC64_TPREL16_DS:
14204 case R_PPC64_TPREL16_LO_DS:
14205 case R_PPC64_TPREL16_HIGH:
14206 case R_PPC64_TPREL16_HIGHA:
14207 case R_PPC64_TPREL16_HIGHER:
14208 case R_PPC64_TPREL16_HIGHERA:
14209 case R_PPC64_TPREL16_HIGHEST:
14210 case R_PPC64_TPREL16_HIGHESTA:
14211 if (h != NULL
14212 && h->elf.root.type == bfd_link_hash_undefweak
14213 && h->elf.dynindx == -1)
14214 {
14215 /* Make this relocation against an undefined weak symbol
14216 resolve to zero. This is really just a tweak, since
14217 code using weak externs ought to check that they are
14218 defined before using them. */
14219 bfd_byte *p = contents + rel->r_offset - d_offset;
14220
14221 insn = bfd_get_32 (output_bfd, p);
14222 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14223 if (insn != 0)
14224 bfd_put_32 (output_bfd, insn, p);
14225 break;
14226 }
14227 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14228 if (info->shared)
14229 /* The TPREL16 relocs shouldn't really be used in shared
14230 libs as they will result in DT_TEXTREL being set, but
14231 support them anyway. */
14232 goto dodyn;
14233 break;
14234
14235 case R_PPC64_DTPREL16:
14236 case R_PPC64_DTPREL16_LO:
14237 case R_PPC64_DTPREL16_HI:
14238 case R_PPC64_DTPREL16_HA:
14239 case R_PPC64_DTPREL16_DS:
14240 case R_PPC64_DTPREL16_LO_DS:
14241 case R_PPC64_DTPREL16_HIGH:
14242 case R_PPC64_DTPREL16_HIGHA:
14243 case R_PPC64_DTPREL16_HIGHER:
14244 case R_PPC64_DTPREL16_HIGHERA:
14245 case R_PPC64_DTPREL16_HIGHEST:
14246 case R_PPC64_DTPREL16_HIGHESTA:
14247 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14248 break;
14249
14250 case R_PPC64_ADDR64_LOCAL:
14251 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14252 ? h->elf.other
14253 : sym->st_other);
14254 break;
14255
14256 case R_PPC64_DTPMOD64:
14257 relocation = 1;
14258 addend = 0;
14259 goto dodyn;
14260
14261 case R_PPC64_TPREL64:
14262 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14263 goto dodyn;
14264
14265 case R_PPC64_DTPREL64:
14266 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14267 /* Fall thru */
14268
14269 /* Relocations that may need to be propagated if this is a
14270 dynamic object. */
14271 case R_PPC64_REL30:
14272 case R_PPC64_REL32:
14273 case R_PPC64_REL64:
14274 case R_PPC64_ADDR14:
14275 case R_PPC64_ADDR14_BRNTAKEN:
14276 case R_PPC64_ADDR14_BRTAKEN:
14277 case R_PPC64_ADDR16:
14278 case R_PPC64_ADDR16_DS:
14279 case R_PPC64_ADDR16_HA:
14280 case R_PPC64_ADDR16_HI:
14281 case R_PPC64_ADDR16_HIGH:
14282 case R_PPC64_ADDR16_HIGHA:
14283 case R_PPC64_ADDR16_HIGHER:
14284 case R_PPC64_ADDR16_HIGHERA:
14285 case R_PPC64_ADDR16_HIGHEST:
14286 case R_PPC64_ADDR16_HIGHESTA:
14287 case R_PPC64_ADDR16_LO:
14288 case R_PPC64_ADDR16_LO_DS:
14289 case R_PPC64_ADDR24:
14290 case R_PPC64_ADDR32:
14291 case R_PPC64_ADDR64:
14292 case R_PPC64_UADDR16:
14293 case R_PPC64_UADDR32:
14294 case R_PPC64_UADDR64:
14295 dodyn:
14296 if ((input_section->flags & SEC_ALLOC) == 0)
14297 break;
14298
14299 if (NO_OPD_RELOCS && is_opd)
14300 break;
14301
14302 if ((info->shared
14303 && (h == NULL
14304 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14305 || h->elf.root.type != bfd_link_hash_undefweak)
14306 && (must_be_dyn_reloc (info, r_type)
14307 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14308 || (ELIMINATE_COPY_RELOCS
14309 && !info->shared
14310 && h != NULL
14311 && h->elf.dynindx != -1
14312 && !h->elf.non_got_ref
14313 && !h->elf.def_regular)
14314 || (!info->shared
14315 && (h != NULL
14316 ? h->elf.type == STT_GNU_IFUNC
14317 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14318 {
14319 bfd_boolean skip, relocate;
14320 asection *sreloc;
14321 bfd_vma out_off;
14322
14323 /* When generating a dynamic object, these relocations
14324 are copied into the output file to be resolved at run
14325 time. */
14326
14327 skip = FALSE;
14328 relocate = FALSE;
14329
14330 out_off = _bfd_elf_section_offset (output_bfd, info,
14331 input_section, rel->r_offset);
14332 if (out_off == (bfd_vma) -1)
14333 skip = TRUE;
14334 else if (out_off == (bfd_vma) -2)
14335 skip = TRUE, relocate = TRUE;
14336 out_off += (input_section->output_section->vma
14337 + input_section->output_offset);
14338 outrel.r_offset = out_off;
14339 outrel.r_addend = rel->r_addend;
14340
14341 /* Optimize unaligned reloc use. */
14342 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14343 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14344 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14345 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14346 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14347 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14348 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14349 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14350 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14351
14352 if (skip)
14353 memset (&outrel, 0, sizeof outrel);
14354 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14355 && !is_opd
14356 && r_type != R_PPC64_TOC)
14357 {
14358 BFD_ASSERT (h->elf.dynindx != -1);
14359 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14360 }
14361 else
14362 {
14363 /* This symbol is local, or marked to become local,
14364 or this is an opd section reloc which must point
14365 at a local function. */
14366 outrel.r_addend += relocation;
14367 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14368 {
14369 if (is_opd && h != NULL)
14370 {
14371 /* Lie about opd entries. This case occurs
14372 when building shared libraries and we
14373 reference a function in another shared
14374 lib. The same thing happens for a weak
14375 definition in an application that's
14376 overridden by a strong definition in a
14377 shared lib. (I believe this is a generic
14378 bug in binutils handling of weak syms.)
14379 In these cases we won't use the opd
14380 entry in this lib. */
14381 unresolved_reloc = FALSE;
14382 }
14383 if (!is_opd
14384 && r_type == R_PPC64_ADDR64
14385 && (h != NULL
14386 ? h->elf.type == STT_GNU_IFUNC
14387 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14388 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14389 else
14390 {
14391 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14392
14393 /* We need to relocate .opd contents for ld.so.
14394 Prelink also wants simple and consistent rules
14395 for relocs. This make all RELATIVE relocs have
14396 *r_offset equal to r_addend. */
14397 relocate = TRUE;
14398 }
14399 }
14400 else
14401 {
14402 long indx = 0;
14403
14404 if (h != NULL
14405 ? h->elf.type == STT_GNU_IFUNC
14406 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14407 {
14408 info->callbacks->einfo
14409 (_("%P: %H: %s for indirect "
14410 "function `%T' unsupported\n"),
14411 input_bfd, input_section, rel->r_offset,
14412 ppc64_elf_howto_table[r_type]->name,
14413 sym_name);
14414 ret = FALSE;
14415 }
14416 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14417 ;
14418 else if (sec == NULL || sec->owner == NULL)
14419 {
14420 bfd_set_error (bfd_error_bad_value);
14421 return FALSE;
14422 }
14423 else
14424 {
14425 asection *osec;
14426
14427 osec = sec->output_section;
14428 indx = elf_section_data (osec)->dynindx;
14429
14430 if (indx == 0)
14431 {
14432 if ((osec->flags & SEC_READONLY) == 0
14433 && htab->elf.data_index_section != NULL)
14434 osec = htab->elf.data_index_section;
14435 else
14436 osec = htab->elf.text_index_section;
14437 indx = elf_section_data (osec)->dynindx;
14438 }
14439 BFD_ASSERT (indx != 0);
14440
14441 /* We are turning this relocation into one
14442 against a section symbol, so subtract out
14443 the output section's address but not the
14444 offset of the input section in the output
14445 section. */
14446 outrel.r_addend -= osec->vma;
14447 }
14448
14449 outrel.r_info = ELF64_R_INFO (indx, r_type);
14450 }
14451 }
14452
14453 sreloc = elf_section_data (input_section)->sreloc;
14454 if (h != NULL
14455 ? h->elf.type == STT_GNU_IFUNC
14456 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14457 sreloc = htab->elf.irelplt;
14458 if (sreloc == NULL)
14459 abort ();
14460
14461 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14462 >= sreloc->size)
14463 abort ();
14464 loc = sreloc->contents;
14465 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14466 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14467
14468 /* If this reloc is against an external symbol, it will
14469 be computed at runtime, so there's no need to do
14470 anything now. However, for the sake of prelink ensure
14471 that the section contents are a known value. */
14472 if (! relocate)
14473 {
14474 unresolved_reloc = FALSE;
14475 /* The value chosen here is quite arbitrary as ld.so
14476 ignores section contents except for the special
14477 case of .opd where the contents might be accessed
14478 before relocation. Choose zero, as that won't
14479 cause reloc overflow. */
14480 relocation = 0;
14481 addend = 0;
14482 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14483 to improve backward compatibility with older
14484 versions of ld. */
14485 if (r_type == R_PPC64_ADDR64)
14486 addend = outrel.r_addend;
14487 /* Adjust pc_relative relocs to have zero in *r_offset. */
14488 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14489 addend = (input_section->output_section->vma
14490 + input_section->output_offset
14491 + rel->r_offset);
14492 }
14493 }
14494 break;
14495
14496 case R_PPC64_COPY:
14497 case R_PPC64_GLOB_DAT:
14498 case R_PPC64_JMP_SLOT:
14499 case R_PPC64_JMP_IREL:
14500 case R_PPC64_RELATIVE:
14501 /* We shouldn't ever see these dynamic relocs in relocatable
14502 files. */
14503 /* Fall through. */
14504
14505 case R_PPC64_PLTGOT16:
14506 case R_PPC64_PLTGOT16_DS:
14507 case R_PPC64_PLTGOT16_HA:
14508 case R_PPC64_PLTGOT16_HI:
14509 case R_PPC64_PLTGOT16_LO:
14510 case R_PPC64_PLTGOT16_LO_DS:
14511 case R_PPC64_PLTREL32:
14512 case R_PPC64_PLTREL64:
14513 /* These ones haven't been implemented yet. */
14514
14515 info->callbacks->einfo
14516 (_("%P: %B: %s is not supported for `%T'\n"),
14517 input_bfd,
14518 ppc64_elf_howto_table[r_type]->name, sym_name);
14519
14520 bfd_set_error (bfd_error_invalid_operation);
14521 ret = FALSE;
14522 continue;
14523 }
14524
14525 /* Multi-instruction sequences that access the TOC can be
14526 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14527 to nop; addi rb,r2,x; */
14528 switch (r_type)
14529 {
14530 default:
14531 break;
14532
14533 case R_PPC64_GOT_TLSLD16_HI:
14534 case R_PPC64_GOT_TLSGD16_HI:
14535 case R_PPC64_GOT_TPREL16_HI:
14536 case R_PPC64_GOT_DTPREL16_HI:
14537 case R_PPC64_GOT16_HI:
14538 case R_PPC64_TOC16_HI:
14539 /* These relocs would only be useful if building up an
14540 offset to later add to r2, perhaps in an indexed
14541 addressing mode instruction. Don't try to optimize.
14542 Unfortunately, the possibility of someone building up an
14543 offset like this or even with the HA relocs, means that
14544 we need to check the high insn when optimizing the low
14545 insn. */
14546 break;
14547
14548 case R_PPC64_GOT_TLSLD16_HA:
14549 case R_PPC64_GOT_TLSGD16_HA:
14550 case R_PPC64_GOT_TPREL16_HA:
14551 case R_PPC64_GOT_DTPREL16_HA:
14552 case R_PPC64_GOT16_HA:
14553 case R_PPC64_TOC16_HA:
14554 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14555 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14556 {
14557 bfd_byte *p = contents + (rel->r_offset & ~3);
14558 bfd_put_32 (input_bfd, NOP, p);
14559 }
14560 break;
14561
14562 case R_PPC64_GOT_TLSLD16_LO:
14563 case R_PPC64_GOT_TLSGD16_LO:
14564 case R_PPC64_GOT_TPREL16_LO_DS:
14565 case R_PPC64_GOT_DTPREL16_LO_DS:
14566 case R_PPC64_GOT16_LO:
14567 case R_PPC64_GOT16_LO_DS:
14568 case R_PPC64_TOC16_LO:
14569 case R_PPC64_TOC16_LO_DS:
14570 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14571 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14572 {
14573 bfd_byte *p = contents + (rel->r_offset & ~3);
14574 insn = bfd_get_32 (input_bfd, p);
14575 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14576 {
14577 /* Transform addic to addi when we change reg. */
14578 insn &= ~((0x3f << 26) | (0x1f << 16));
14579 insn |= (14u << 26) | (2 << 16);
14580 }
14581 else
14582 {
14583 insn &= ~(0x1f << 16);
14584 insn |= 2 << 16;
14585 }
14586 bfd_put_32 (input_bfd, insn, p);
14587 }
14588 break;
14589 }
14590
14591 /* Do any further special processing. */
14592 howto = ppc64_elf_howto_table[(int) r_type];
14593 switch (r_type)
14594 {
14595 default:
14596 break;
14597
14598 case R_PPC64_REL16_HA:
14599 case R_PPC64_ADDR16_HA:
14600 case R_PPC64_ADDR16_HIGHA:
14601 case R_PPC64_ADDR16_HIGHERA:
14602 case R_PPC64_ADDR16_HIGHESTA:
14603 case R_PPC64_TOC16_HA:
14604 case R_PPC64_SECTOFF_HA:
14605 case R_PPC64_TPREL16_HA:
14606 case R_PPC64_TPREL16_HIGHA:
14607 case R_PPC64_TPREL16_HIGHERA:
14608 case R_PPC64_TPREL16_HIGHESTA:
14609 case R_PPC64_DTPREL16_HA:
14610 case R_PPC64_DTPREL16_HIGHA:
14611 case R_PPC64_DTPREL16_HIGHERA:
14612 case R_PPC64_DTPREL16_HIGHESTA:
14613 /* It's just possible that this symbol is a weak symbol
14614 that's not actually defined anywhere. In that case,
14615 'sec' would be NULL, and we should leave the symbol
14616 alone (it will be set to zero elsewhere in the link). */
14617 if (sec == NULL)
14618 break;
14619 /* Fall thru */
14620
14621 case R_PPC64_GOT16_HA:
14622 case R_PPC64_PLTGOT16_HA:
14623 case R_PPC64_PLT16_HA:
14624 case R_PPC64_GOT_TLSGD16_HA:
14625 case R_PPC64_GOT_TLSLD16_HA:
14626 case R_PPC64_GOT_TPREL16_HA:
14627 case R_PPC64_GOT_DTPREL16_HA:
14628 /* Add 0x10000 if sign bit in 0:15 is set.
14629 Bits 0:15 are not used. */
14630 addend += 0x8000;
14631 break;
14632
14633 case R_PPC64_ADDR16_DS:
14634 case R_PPC64_ADDR16_LO_DS:
14635 case R_PPC64_GOT16_DS:
14636 case R_PPC64_GOT16_LO_DS:
14637 case R_PPC64_PLT16_LO_DS:
14638 case R_PPC64_SECTOFF_DS:
14639 case R_PPC64_SECTOFF_LO_DS:
14640 case R_PPC64_TOC16_DS:
14641 case R_PPC64_TOC16_LO_DS:
14642 case R_PPC64_PLTGOT16_DS:
14643 case R_PPC64_PLTGOT16_LO_DS:
14644 case R_PPC64_GOT_TPREL16_DS:
14645 case R_PPC64_GOT_TPREL16_LO_DS:
14646 case R_PPC64_GOT_DTPREL16_DS:
14647 case R_PPC64_GOT_DTPREL16_LO_DS:
14648 case R_PPC64_TPREL16_DS:
14649 case R_PPC64_TPREL16_LO_DS:
14650 case R_PPC64_DTPREL16_DS:
14651 case R_PPC64_DTPREL16_LO_DS:
14652 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14653 mask = 3;
14654 /* If this reloc is against an lq insn, then the value must be
14655 a multiple of 16. This is somewhat of a hack, but the
14656 "correct" way to do this by defining _DQ forms of all the
14657 _DS relocs bloats all reloc switches in this file. It
14658 doesn't seem to make much sense to use any of these relocs
14659 in data, so testing the insn should be safe. */
14660 if ((insn & (0x3f << 26)) == (56u << 26))
14661 mask = 15;
14662 if (((relocation + addend) & mask) != 0)
14663 {
14664 info->callbacks->einfo
14665 (_("%P: %H: error: %s not a multiple of %u\n"),
14666 input_bfd, input_section, rel->r_offset,
14667 howto->name,
14668 mask + 1);
14669 bfd_set_error (bfd_error_bad_value);
14670 ret = FALSE;
14671 continue;
14672 }
14673 break;
14674 }
14675
14676 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14677 because such sections are not SEC_ALLOC and thus ld.so will
14678 not process them. */
14679 if (unresolved_reloc
14680 && !((input_section->flags & SEC_DEBUGGING) != 0
14681 && h->elf.def_dynamic)
14682 && _bfd_elf_section_offset (output_bfd, info, input_section,
14683 rel->r_offset) != (bfd_vma) -1)
14684 {
14685 info->callbacks->einfo
14686 (_("%P: %H: unresolvable %s against `%T'\n"),
14687 input_bfd, input_section, rel->r_offset,
14688 howto->name,
14689 h->elf.root.root.string);
14690 ret = FALSE;
14691 }
14692
14693 /* 16-bit fields in insns mostly have signed values, but a
14694 few insns have 16-bit unsigned values. Really, we should
14695 have different reloc types. */
14696 if (howto->complain_on_overflow != complain_overflow_dont
14697 && howto->dst_mask == 0xffff
14698 && (input_section->flags & SEC_CODE) != 0)
14699 {
14700 enum complain_overflow complain = complain_overflow_signed;
14701
14702 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14703 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14704 complain = complain_overflow_bitfield;
14705 else if (howto->rightshift == 0
14706 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14707 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14708 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14709 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14710 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14711 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14712 complain = complain_overflow_unsigned;
14713 if (howto->complain_on_overflow != complain)
14714 {
14715 alt_howto = *howto;
14716 alt_howto.complain_on_overflow = complain;
14717 howto = &alt_howto;
14718 }
14719 }
14720
14721 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14722 rel->r_offset, relocation, addend);
14723
14724 if (r != bfd_reloc_ok)
14725 {
14726 char *more_info = NULL;
14727 const char *reloc_name = howto->name;
14728
14729 if (reloc_dest != DEST_NORMAL)
14730 {
14731 more_info = bfd_malloc (strlen (reloc_name) + 8);
14732 if (more_info != NULL)
14733 {
14734 strcpy (more_info, reloc_name);
14735 strcat (more_info, (reloc_dest == DEST_OPD
14736 ? " (OPD)" : " (stub)"));
14737 reloc_name = more_info;
14738 }
14739 }
14740
14741 if (r == bfd_reloc_overflow)
14742 {
14743 if (warned)
14744 continue;
14745 if (h != NULL
14746 && h->elf.root.type == bfd_link_hash_undefweak
14747 && howto->pc_relative)
14748 {
14749 /* Assume this is a call protected by other code that
14750 detects the symbol is undefined. If this is the case,
14751 we can safely ignore the overflow. If not, the
14752 program is hosed anyway, and a little warning isn't
14753 going to help. */
14754
14755 continue;
14756 }
14757
14758 if (!((*info->callbacks->reloc_overflow)
14759 (info, &h->elf.root, sym_name,
14760 reloc_name, orig_rel.r_addend,
14761 input_bfd, input_section, rel->r_offset)))
14762 return FALSE;
14763 }
14764 else
14765 {
14766 info->callbacks->einfo
14767 (_("%P: %H: %s against `%T': error %d\n"),
14768 input_bfd, input_section, rel->r_offset,
14769 reloc_name, sym_name, (int) r);
14770 ret = FALSE;
14771 }
14772 if (more_info != NULL)
14773 free (more_info);
14774 }
14775 }
14776
14777 /* If we're emitting relocations, then shortly after this function
14778 returns, reloc offsets and addends for this section will be
14779 adjusted. Worse, reloc symbol indices will be for the output
14780 file rather than the input. Save a copy of the relocs for
14781 opd_entry_value. */
14782 if (is_opd && (info->emitrelocations || info->relocatable))
14783 {
14784 bfd_size_type amt;
14785 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14786 rel = bfd_alloc (input_bfd, amt);
14787 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14788 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14789 if (rel == NULL)
14790 return FALSE;
14791 memcpy (rel, relocs, amt);
14792 }
14793 return ret;
14794 }
14795
14796 /* Adjust the value of any local symbols in opd sections. */
14797
14798 static int
14799 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14800 const char *name ATTRIBUTE_UNUSED,
14801 Elf_Internal_Sym *elfsym,
14802 asection *input_sec,
14803 struct elf_link_hash_entry *h)
14804 {
14805 struct _opd_sec_data *opd;
14806 long adjust;
14807 bfd_vma value;
14808
14809 if (h != NULL)
14810 return 1;
14811
14812 opd = get_opd_info (input_sec);
14813 if (opd == NULL || opd->adjust == NULL)
14814 return 1;
14815
14816 value = elfsym->st_value - input_sec->output_offset;
14817 if (!info->relocatable)
14818 value -= input_sec->output_section->vma;
14819
14820 adjust = opd->adjust[value / 8];
14821 if (adjust == -1)
14822 return 2;
14823
14824 elfsym->st_value += adjust;
14825 return 1;
14826 }
14827
14828 /* Finish up dynamic symbol handling. We set the contents of various
14829 dynamic sections here. */
14830
14831 static bfd_boolean
14832 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14833 struct bfd_link_info *info,
14834 struct elf_link_hash_entry *h,
14835 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14836 {
14837 struct ppc_link_hash_table *htab;
14838 struct plt_entry *ent;
14839 Elf_Internal_Rela rela;
14840 bfd_byte *loc;
14841
14842 htab = ppc_hash_table (info);
14843 if (htab == NULL)
14844 return FALSE;
14845
14846 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14847 if (ent->plt.offset != (bfd_vma) -1)
14848 {
14849 /* This symbol has an entry in the procedure linkage
14850 table. Set it up. */
14851 if (!htab->elf.dynamic_sections_created
14852 || h->dynindx == -1)
14853 {
14854 BFD_ASSERT (h->type == STT_GNU_IFUNC
14855 && h->def_regular
14856 && (h->root.type == bfd_link_hash_defined
14857 || h->root.type == bfd_link_hash_defweak));
14858 rela.r_offset = (htab->elf.iplt->output_section->vma
14859 + htab->elf.iplt->output_offset
14860 + ent->plt.offset);
14861 if (htab->opd_abi)
14862 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14863 else
14864 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14865 rela.r_addend = (h->root.u.def.value
14866 + h->root.u.def.section->output_offset
14867 + h->root.u.def.section->output_section->vma
14868 + ent->addend);
14869 loc = (htab->elf.irelplt->contents
14870 + (htab->elf.irelplt->reloc_count++
14871 * sizeof (Elf64_External_Rela)));
14872 }
14873 else
14874 {
14875 rela.r_offset = (htab->elf.splt->output_section->vma
14876 + htab->elf.splt->output_offset
14877 + ent->plt.offset);
14878 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14879 rela.r_addend = ent->addend;
14880 loc = (htab->elf.srelplt->contents
14881 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14882 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14883 }
14884 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14885
14886 if (!htab->opd_abi)
14887 {
14888 if (!h->def_regular)
14889 {
14890 /* Mark the symbol as undefined, rather than as
14891 defined in glink. Leave the value if there were
14892 any relocations where pointer equality matters
14893 (this is a clue for the dynamic linker, to make
14894 function pointer comparisons work between an
14895 application and shared library), otherwise set it
14896 to zero. */
14897 sym->st_shndx = SHN_UNDEF;
14898 if (!h->pointer_equality_needed)
14899 sym->st_value = 0;
14900 else if (!h->ref_regular_nonweak)
14901 {
14902 /* This breaks function pointer comparisons, but
14903 that is better than breaking tests for a NULL
14904 function pointer. */
14905 sym->st_value = 0;
14906 }
14907 }
14908 }
14909 }
14910
14911 if (h->needs_copy)
14912 {
14913 /* This symbol needs a copy reloc. Set it up. */
14914
14915 if (h->dynindx == -1
14916 || (h->root.type != bfd_link_hash_defined
14917 && h->root.type != bfd_link_hash_defweak)
14918 || htab->relbss == NULL)
14919 abort ();
14920
14921 rela.r_offset = (h->root.u.def.value
14922 + h->root.u.def.section->output_section->vma
14923 + h->root.u.def.section->output_offset);
14924 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14925 rela.r_addend = 0;
14926 loc = htab->relbss->contents;
14927 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14928 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14929 }
14930
14931 return TRUE;
14932 }
14933
14934 /* Used to decide how to sort relocs in an optimal manner for the
14935 dynamic linker, before writing them out. */
14936
14937 static enum elf_reloc_type_class
14938 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14939 const asection *rel_sec,
14940 const Elf_Internal_Rela *rela)
14941 {
14942 enum elf_ppc64_reloc_type r_type;
14943 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14944
14945 if (rel_sec == htab->elf.irelplt)
14946 return reloc_class_ifunc;
14947
14948 r_type = ELF64_R_TYPE (rela->r_info);
14949 switch (r_type)
14950 {
14951 case R_PPC64_RELATIVE:
14952 return reloc_class_relative;
14953 case R_PPC64_JMP_SLOT:
14954 return reloc_class_plt;
14955 case R_PPC64_COPY:
14956 return reloc_class_copy;
14957 default:
14958 return reloc_class_normal;
14959 }
14960 }
14961
14962 /* Finish up the dynamic sections. */
14963
14964 static bfd_boolean
14965 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14966 struct bfd_link_info *info)
14967 {
14968 struct ppc_link_hash_table *htab;
14969 bfd *dynobj;
14970 asection *sdyn;
14971
14972 htab = ppc_hash_table (info);
14973 if (htab == NULL)
14974 return FALSE;
14975
14976 dynobj = htab->elf.dynobj;
14977 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14978
14979 if (htab->elf.dynamic_sections_created)
14980 {
14981 Elf64_External_Dyn *dyncon, *dynconend;
14982
14983 if (sdyn == NULL || htab->elf.sgot == NULL)
14984 abort ();
14985
14986 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14987 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14988 for (; dyncon < dynconend; dyncon++)
14989 {
14990 Elf_Internal_Dyn dyn;
14991 asection *s;
14992
14993 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14994
14995 switch (dyn.d_tag)
14996 {
14997 default:
14998 continue;
14999
15000 case DT_PPC64_GLINK:
15001 s = htab->glink;
15002 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15003 /* We stupidly defined DT_PPC64_GLINK to be the start
15004 of glink rather than the first entry point, which is
15005 what ld.so needs, and now have a bigger stub to
15006 support automatic multiple TOCs. */
15007 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15008 break;
15009
15010 case DT_PPC64_OPD:
15011 s = bfd_get_section_by_name (output_bfd, ".opd");
15012 if (s == NULL)
15013 continue;
15014 dyn.d_un.d_ptr = s->vma;
15015 break;
15016
15017 case DT_PPC64_OPT:
15018 if (htab->do_multi_toc && htab->multi_toc_needed)
15019 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15020 break;
15021
15022 case DT_PPC64_OPDSZ:
15023 s = bfd_get_section_by_name (output_bfd, ".opd");
15024 if (s == NULL)
15025 continue;
15026 dyn.d_un.d_val = s->size;
15027 break;
15028
15029 case DT_PLTGOT:
15030 s = htab->elf.splt;
15031 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15032 break;
15033
15034 case DT_JMPREL:
15035 s = htab->elf.srelplt;
15036 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15037 break;
15038
15039 case DT_PLTRELSZ:
15040 dyn.d_un.d_val = htab->elf.srelplt->size;
15041 break;
15042
15043 case DT_RELASZ:
15044 /* Don't count procedure linkage table relocs in the
15045 overall reloc count. */
15046 s = htab->elf.srelplt;
15047 if (s == NULL)
15048 continue;
15049 dyn.d_un.d_val -= s->size;
15050 break;
15051
15052 case DT_RELA:
15053 /* We may not be using the standard ELF linker script.
15054 If .rela.plt is the first .rela section, we adjust
15055 DT_RELA to not include it. */
15056 s = htab->elf.srelplt;
15057 if (s == NULL)
15058 continue;
15059 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15060 continue;
15061 dyn.d_un.d_ptr += s->size;
15062 break;
15063 }
15064
15065 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15066 }
15067 }
15068
15069 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15070 {
15071 /* Fill in the first entry in the global offset table.
15072 We use it to hold the link-time TOCbase. */
15073 bfd_put_64 (output_bfd,
15074 elf_gp (output_bfd) + TOC_BASE_OFF,
15075 htab->elf.sgot->contents);
15076
15077 /* Set .got entry size. */
15078 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15079 }
15080
15081 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15082 {
15083 /* Set .plt entry size. */
15084 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15085 = PLT_ENTRY_SIZE (htab);
15086 }
15087
15088 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15089 brlt ourselves if emitrelocations. */
15090 if (htab->brlt != NULL
15091 && htab->brlt->reloc_count != 0
15092 && !_bfd_elf_link_output_relocs (output_bfd,
15093 htab->brlt,
15094 elf_section_data (htab->brlt)->rela.hdr,
15095 elf_section_data (htab->brlt)->relocs,
15096 NULL))
15097 return FALSE;
15098
15099 if (htab->glink != NULL
15100 && htab->glink->reloc_count != 0
15101 && !_bfd_elf_link_output_relocs (output_bfd,
15102 htab->glink,
15103 elf_section_data (htab->glink)->rela.hdr,
15104 elf_section_data (htab->glink)->relocs,
15105 NULL))
15106 return FALSE;
15107
15108 if (htab->glink_eh_frame != NULL
15109 && htab->glink_eh_frame->size != 0)
15110 {
15111 bfd_vma val;
15112 bfd_byte *p;
15113 asection *stub_sec;
15114
15115 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15116 for (stub_sec = htab->params->stub_bfd->sections;
15117 stub_sec != NULL;
15118 stub_sec = stub_sec->next)
15119 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15120 {
15121 /* FDE length. */
15122 p += 4;
15123 /* CIE pointer. */
15124 p += 4;
15125 /* Offset to stub section. */
15126 val = (stub_sec->output_section->vma
15127 + stub_sec->output_offset);
15128 val -= (htab->glink_eh_frame->output_section->vma
15129 + htab->glink_eh_frame->output_offset
15130 + (p - htab->glink_eh_frame->contents));
15131 if (val + 0x80000000 > 0xffffffff)
15132 {
15133 info->callbacks->einfo
15134 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15135 stub_sec->name);
15136 return FALSE;
15137 }
15138 bfd_put_32 (dynobj, val, p);
15139 p += 4;
15140 /* stub section size. */
15141 p += 4;
15142 /* Augmentation. */
15143 p += 1;
15144 /* Pad. */
15145 p += 7;
15146 }
15147 if (htab->glink != NULL && htab->glink->size != 0)
15148 {
15149 /* FDE length. */
15150 p += 4;
15151 /* CIE pointer. */
15152 p += 4;
15153 /* Offset to .glink. */
15154 val = (htab->glink->output_section->vma
15155 + htab->glink->output_offset
15156 + 8);
15157 val -= (htab->glink_eh_frame->output_section->vma
15158 + htab->glink_eh_frame->output_offset
15159 + (p - htab->glink_eh_frame->contents));
15160 if (val + 0x80000000 > 0xffffffff)
15161 {
15162 info->callbacks->einfo
15163 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15164 htab->glink->name);
15165 return FALSE;
15166 }
15167 bfd_put_32 (dynobj, val, p);
15168 p += 4;
15169 /* .glink size. */
15170 p += 4;
15171 /* Augmentation. */
15172 p += 1;
15173 /* Ops. */
15174 p += 7;
15175 }
15176
15177 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15178 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15179 htab->glink_eh_frame,
15180 htab->glink_eh_frame->contents))
15181 return FALSE;
15182 }
15183
15184 /* We need to handle writing out multiple GOT sections ourselves,
15185 since we didn't add them to DYNOBJ. We know dynobj is the first
15186 bfd. */
15187 while ((dynobj = dynobj->link.next) != NULL)
15188 {
15189 asection *s;
15190
15191 if (!is_ppc64_elf (dynobj))
15192 continue;
15193
15194 s = ppc64_elf_tdata (dynobj)->got;
15195 if (s != NULL
15196 && s->size != 0
15197 && s->output_section != bfd_abs_section_ptr
15198 && !bfd_set_section_contents (output_bfd, s->output_section,
15199 s->contents, s->output_offset,
15200 s->size))
15201 return FALSE;
15202 s = ppc64_elf_tdata (dynobj)->relgot;
15203 if (s != NULL
15204 && s->size != 0
15205 && s->output_section != bfd_abs_section_ptr
15206 && !bfd_set_section_contents (output_bfd, s->output_section,
15207 s->contents, s->output_offset,
15208 s->size))
15209 return FALSE;
15210 }
15211
15212 return TRUE;
15213 }
15214
15215 #include "elf64-target.h"
15216
15217 /* FreeBSD support */
15218
15219 #undef TARGET_LITTLE_SYM
15220 #undef TARGET_LITTLE_NAME
15221
15222 #undef TARGET_BIG_SYM
15223 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15224 #undef TARGET_BIG_NAME
15225 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15226
15227 #undef ELF_OSABI
15228 #define ELF_OSABI ELFOSABI_FREEBSD
15229
15230 #undef elf64_bed
15231 #define elf64_bed elf64_powerpc_fbsd_bed
15232
15233 #include "elf64-target.h"
15234
This page took 0.324245 seconds and 5 git commands to generate.