PowerPC64 thread-safe stubs not needed for iplt
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x10000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 3, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor,
2958 and some spares since opd entries may be either 16 or 24 bytes. */
2959 #define OPD_NDX(OFF) ((OFF) >> 4)
2960 struct _opd_sec_data
2961 {
2962 /* Points to the function code section for local opd entries. */
2963 asection **func_sec;
2964
2965 /* After editing .opd, adjust references to opd local syms. */
2966 long *adjust;
2967 } opd;
2968
2969 /* An array for toc sections, indexed by offset/8. */
2970 struct _toc_sec_data
2971 {
2972 /* Specifies the relocation symbol index used at a given toc offset. */
2973 unsigned *symndx;
2974
2975 /* And the relocation addend. */
2976 bfd_vma *add;
2977 } toc;
2978 } u;
2979
2980 enum _ppc64_sec_type sec_type:2;
2981
2982 /* Flag set when small branches are detected. Used to
2983 select suitable defaults for the stub group size. */
2984 unsigned int has_14bit_branch:1;
2985 };
2986
2987 #define ppc64_elf_section_data(sec) \
2988 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2989
2990 static bfd_boolean
2991 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2992 {
2993 if (!sec->used_by_bfd)
2994 {
2995 struct _ppc64_elf_section_data *sdata;
2996 bfd_size_type amt = sizeof (*sdata);
2997
2998 sdata = bfd_zalloc (abfd, amt);
2999 if (sdata == NULL)
3000 return FALSE;
3001 sec->used_by_bfd = sdata;
3002 }
3003
3004 return _bfd_elf_new_section_hook (abfd, sec);
3005 }
3006
3007 static struct _opd_sec_data *
3008 get_opd_info (asection * sec)
3009 {
3010 if (sec != NULL
3011 && ppc64_elf_section_data (sec) != NULL
3012 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3013 return &ppc64_elf_section_data (sec)->u.opd;
3014 return NULL;
3015 }
3016 \f
3017 /* Parameters for the qsort hook. */
3018 static bfd_boolean synthetic_relocatable;
3019
3020 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3021
3022 static int
3023 compare_symbols (const void *ap, const void *bp)
3024 {
3025 const asymbol *a = * (const asymbol **) ap;
3026 const asymbol *b = * (const asymbol **) bp;
3027
3028 /* Section symbols first. */
3029 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3030 return -1;
3031 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3032 return 1;
3033
3034 /* then .opd symbols. */
3035 if (strcmp (a->section->name, ".opd") == 0
3036 && strcmp (b->section->name, ".opd") != 0)
3037 return -1;
3038 if (strcmp (a->section->name, ".opd") != 0
3039 && strcmp (b->section->name, ".opd") == 0)
3040 return 1;
3041
3042 /* then other code symbols. */
3043 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 == (SEC_CODE | SEC_ALLOC)
3045 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3046 != (SEC_CODE | SEC_ALLOC))
3047 return -1;
3048
3049 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 != (SEC_CODE | SEC_ALLOC)
3051 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3052 == (SEC_CODE | SEC_ALLOC))
3053 return 1;
3054
3055 if (synthetic_relocatable)
3056 {
3057 if (a->section->id < b->section->id)
3058 return -1;
3059
3060 if (a->section->id > b->section->id)
3061 return 1;
3062 }
3063
3064 if (a->value + a->section->vma < b->value + b->section->vma)
3065 return -1;
3066
3067 if (a->value + a->section->vma > b->value + b->section->vma)
3068 return 1;
3069
3070 /* For syms with the same value, prefer strong dynamic global function
3071 syms over other syms. */
3072 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3073 return -1;
3074
3075 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3076 return 1;
3077
3078 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3079 return -1;
3080
3081 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3082 return 1;
3083
3084 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3085 return -1;
3086
3087 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3088 return 1;
3089
3090 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3091 return -1;
3092
3093 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3094 return 1;
3095
3096 return 0;
3097 }
3098
3099 /* Search SYMS for a symbol of the given VALUE. */
3100
3101 static asymbol *
3102 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3103 {
3104 long mid;
3105
3106 if (id == -1)
3107 {
3108 while (lo < hi)
3109 {
3110 mid = (lo + hi) >> 1;
3111 if (syms[mid]->value + syms[mid]->section->vma < value)
3112 lo = mid + 1;
3113 else if (syms[mid]->value + syms[mid]->section->vma > value)
3114 hi = mid;
3115 else
3116 return syms[mid];
3117 }
3118 }
3119 else
3120 {
3121 while (lo < hi)
3122 {
3123 mid = (lo + hi) >> 1;
3124 if (syms[mid]->section->id < id)
3125 lo = mid + 1;
3126 else if (syms[mid]->section->id > id)
3127 hi = mid;
3128 else if (syms[mid]->value < value)
3129 lo = mid + 1;
3130 else if (syms[mid]->value > value)
3131 hi = mid;
3132 else
3133 return syms[mid];
3134 }
3135 }
3136 return NULL;
3137 }
3138
3139 static bfd_boolean
3140 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3141 {
3142 bfd_vma vma = *(bfd_vma *) ptr;
3143 return ((section->flags & SEC_ALLOC) != 0
3144 && section->vma <= vma
3145 && vma < section->vma + section->size);
3146 }
3147
3148 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3149 entry syms. Also generate @plt symbols for the glink branch table. */
3150
3151 static long
3152 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3153 long static_count, asymbol **static_syms,
3154 long dyn_count, asymbol **dyn_syms,
3155 asymbol **ret)
3156 {
3157 asymbol *s;
3158 long i;
3159 long count;
3160 char *names;
3161 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3162 asection *opd = NULL;
3163 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3164 asymbol **syms;
3165 int abi = abiversion (abfd);
3166
3167 *ret = NULL;
3168
3169 if (abi < 2)
3170 {
3171 opd = bfd_get_section_by_name (abfd, ".opd");
3172 if (opd == NULL && abi == 1)
3173 return 0;
3174 }
3175
3176 symcount = static_count;
3177 if (!relocatable)
3178 symcount += dyn_count;
3179 if (symcount == 0)
3180 return 0;
3181
3182 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3183 if (syms == NULL)
3184 return -1;
3185
3186 if (!relocatable && static_count != 0 && dyn_count != 0)
3187 {
3188 /* Use both symbol tables. */
3189 memcpy (syms, static_syms, static_count * sizeof (*syms));
3190 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3191 }
3192 else if (!relocatable && static_count == 0)
3193 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3194 else
3195 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3196
3197 synthetic_relocatable = relocatable;
3198 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3199
3200 if (!relocatable && symcount > 1)
3201 {
3202 long j;
3203 /* Trim duplicate syms, since we may have merged the normal and
3204 dynamic symbols. Actually, we only care about syms that have
3205 different values, so trim any with the same value. */
3206 for (i = 1, j = 1; i < symcount; ++i)
3207 if (syms[i - 1]->value + syms[i - 1]->section->vma
3208 != syms[i]->value + syms[i]->section->vma)
3209 syms[j++] = syms[i];
3210 symcount = j;
3211 }
3212
3213 i = 0;
3214 if (strcmp (syms[i]->section->name, ".opd") == 0)
3215 ++i;
3216 codesecsym = i;
3217
3218 for (; i < symcount; ++i)
3219 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3220 != (SEC_CODE | SEC_ALLOC))
3221 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3222 break;
3223 codesecsymend = i;
3224
3225 for (; i < symcount; ++i)
3226 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3227 break;
3228 secsymend = i;
3229
3230 for (; i < symcount; ++i)
3231 if (strcmp (syms[i]->section->name, ".opd") != 0)
3232 break;
3233 opdsymend = i;
3234
3235 for (; i < symcount; ++i)
3236 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3237 != (SEC_CODE | SEC_ALLOC))
3238 break;
3239 symcount = i;
3240
3241 count = 0;
3242
3243 if (relocatable)
3244 {
3245 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3246 arelent *r;
3247 size_t size;
3248 long relcount;
3249
3250 if (opdsymend == secsymend)
3251 goto done;
3252
3253 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3254 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3255 if (relcount == 0)
3256 goto done;
3257
3258 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3259 {
3260 count = -1;
3261 goto done;
3262 }
3263
3264 size = 0;
3265 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3266 {
3267 asymbol *sym;
3268
3269 while (r < opd->relocation + relcount
3270 && r->address < syms[i]->value + opd->vma)
3271 ++r;
3272
3273 if (r == opd->relocation + relcount)
3274 break;
3275
3276 if (r->address != syms[i]->value + opd->vma)
3277 continue;
3278
3279 if (r->howto->type != R_PPC64_ADDR64)
3280 continue;
3281
3282 sym = *r->sym_ptr_ptr;
3283 if (!sym_exists_at (syms, opdsymend, symcount,
3284 sym->section->id, sym->value + r->addend))
3285 {
3286 ++count;
3287 size += sizeof (asymbol);
3288 size += strlen (syms[i]->name) + 2;
3289 }
3290 }
3291
3292 s = *ret = bfd_malloc (size);
3293 if (s == NULL)
3294 {
3295 count = -1;
3296 goto done;
3297 }
3298
3299 names = (char *) (s + count);
3300
3301 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3302 {
3303 asymbol *sym;
3304
3305 while (r < opd->relocation + relcount
3306 && r->address < syms[i]->value + opd->vma)
3307 ++r;
3308
3309 if (r == opd->relocation + relcount)
3310 break;
3311
3312 if (r->address != syms[i]->value + opd->vma)
3313 continue;
3314
3315 if (r->howto->type != R_PPC64_ADDR64)
3316 continue;
3317
3318 sym = *r->sym_ptr_ptr;
3319 if (!sym_exists_at (syms, opdsymend, symcount,
3320 sym->section->id, sym->value + r->addend))
3321 {
3322 size_t len;
3323
3324 *s = *syms[i];
3325 s->flags |= BSF_SYNTHETIC;
3326 s->section = sym->section;
3327 s->value = sym->value + r->addend;
3328 s->name = names;
3329 *names++ = '.';
3330 len = strlen (syms[i]->name);
3331 memcpy (names, syms[i]->name, len + 1);
3332 names += len + 1;
3333 /* Have udata.p point back to the original symbol this
3334 synthetic symbol was derived from. */
3335 s->udata.p = syms[i];
3336 s++;
3337 }
3338 }
3339 }
3340 else
3341 {
3342 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3343 bfd_byte *contents = NULL;
3344 size_t size;
3345 long plt_count = 0;
3346 bfd_vma glink_vma = 0, resolv_vma = 0;
3347 asection *dynamic, *glink = NULL, *relplt = NULL;
3348 arelent *p;
3349
3350 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3351 {
3352 free_contents_and_exit:
3353 if (contents)
3354 free (contents);
3355 count = -1;
3356 goto done;
3357 }
3358
3359 size = 0;
3360 for (i = secsymend; i < opdsymend; ++i)
3361 {
3362 bfd_vma ent;
3363
3364 /* Ignore bogus symbols. */
3365 if (syms[i]->value > opd->size - 8)
3366 continue;
3367
3368 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3369 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3370 {
3371 ++count;
3372 size += sizeof (asymbol);
3373 size += strlen (syms[i]->name) + 2;
3374 }
3375 }
3376
3377 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3378 if (dyn_count != 0
3379 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3380 {
3381 bfd_byte *dynbuf, *extdyn, *extdynend;
3382 size_t extdynsize;
3383 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3384
3385 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3386 goto free_contents_and_exit;
3387
3388 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3389 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3390
3391 extdyn = dynbuf;
3392 extdynend = extdyn + dynamic->size;
3393 for (; extdyn < extdynend; extdyn += extdynsize)
3394 {
3395 Elf_Internal_Dyn dyn;
3396 (*swap_dyn_in) (abfd, extdyn, &dyn);
3397
3398 if (dyn.d_tag == DT_NULL)
3399 break;
3400
3401 if (dyn.d_tag == DT_PPC64_GLINK)
3402 {
3403 /* The first glink stub starts at offset 32; see
3404 comment in ppc64_elf_finish_dynamic_sections. */
3405 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3406 /* The .glink section usually does not survive the final
3407 link; search for the section (usually .text) where the
3408 glink stubs now reside. */
3409 glink = bfd_sections_find_if (abfd, section_covers_vma,
3410 &glink_vma);
3411 break;
3412 }
3413 }
3414
3415 free (dynbuf);
3416 }
3417
3418 if (glink != NULL)
3419 {
3420 /* Determine __glink trampoline by reading the relative branch
3421 from the first glink stub. */
3422 bfd_byte buf[4];
3423 unsigned int off = 0;
3424
3425 while (bfd_get_section_contents (abfd, glink, buf,
3426 glink_vma + off - glink->vma, 4))
3427 {
3428 unsigned int insn = bfd_get_32 (abfd, buf);
3429 insn ^= B_DOT;
3430 if ((insn & ~0x3fffffc) == 0)
3431 {
3432 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3433 break;
3434 }
3435 off += 4;
3436 if (off > 4)
3437 break;
3438 }
3439
3440 if (resolv_vma)
3441 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3442
3443 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3444 if (relplt != NULL)
3445 {
3446 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3447 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3448 goto free_contents_and_exit;
3449
3450 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3451 size += plt_count * sizeof (asymbol);
3452
3453 p = relplt->relocation;
3454 for (i = 0; i < plt_count; i++, p++)
3455 {
3456 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3457 if (p->addend != 0)
3458 size += sizeof ("+0x") - 1 + 16;
3459 }
3460 }
3461 }
3462
3463 s = *ret = bfd_malloc (size);
3464 if (s == NULL)
3465 goto free_contents_and_exit;
3466
3467 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3468
3469 for (i = secsymend; i < opdsymend; ++i)
3470 {
3471 bfd_vma ent;
3472
3473 if (syms[i]->value > opd->size - 8)
3474 continue;
3475
3476 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3477 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3478 {
3479 long lo, hi;
3480 size_t len;
3481 asection *sec = abfd->sections;
3482
3483 *s = *syms[i];
3484 lo = codesecsym;
3485 hi = codesecsymend;
3486 while (lo < hi)
3487 {
3488 long mid = (lo + hi) >> 1;
3489 if (syms[mid]->section->vma < ent)
3490 lo = mid + 1;
3491 else if (syms[mid]->section->vma > ent)
3492 hi = mid;
3493 else
3494 {
3495 sec = syms[mid]->section;
3496 break;
3497 }
3498 }
3499
3500 if (lo >= hi && lo > codesecsym)
3501 sec = syms[lo - 1]->section;
3502
3503 for (; sec != NULL; sec = sec->next)
3504 {
3505 if (sec->vma > ent)
3506 break;
3507 /* SEC_LOAD may not be set if SEC is from a separate debug
3508 info file. */
3509 if ((sec->flags & SEC_ALLOC) == 0)
3510 break;
3511 if ((sec->flags & SEC_CODE) != 0)
3512 s->section = sec;
3513 }
3514 s->flags |= BSF_SYNTHETIC;
3515 s->value = ent - s->section->vma;
3516 s->name = names;
3517 *names++ = '.';
3518 len = strlen (syms[i]->name);
3519 memcpy (names, syms[i]->name, len + 1);
3520 names += len + 1;
3521 /* Have udata.p point back to the original symbol this
3522 synthetic symbol was derived from. */
3523 s->udata.p = syms[i];
3524 s++;
3525 }
3526 }
3527 free (contents);
3528
3529 if (glink != NULL && relplt != NULL)
3530 {
3531 if (resolv_vma)
3532 {
3533 /* Add a symbol for the main glink trampoline. */
3534 memset (s, 0, sizeof *s);
3535 s->the_bfd = abfd;
3536 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3537 s->section = glink;
3538 s->value = resolv_vma - glink->vma;
3539 s->name = names;
3540 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3541 names += sizeof ("__glink_PLTresolve");
3542 s++;
3543 count++;
3544 }
3545
3546 /* FIXME: It would be very much nicer to put sym@plt on the
3547 stub rather than on the glink branch table entry. The
3548 objdump disassembler would then use a sensible symbol
3549 name on plt calls. The difficulty in doing so is
3550 a) finding the stubs, and,
3551 b) matching stubs against plt entries, and,
3552 c) there can be multiple stubs for a given plt entry.
3553
3554 Solving (a) could be done by code scanning, but older
3555 ppc64 binaries used different stubs to current code.
3556 (b) is the tricky one since you need to known the toc
3557 pointer for at least one function that uses a pic stub to
3558 be able to calculate the plt address referenced.
3559 (c) means gdb would need to set multiple breakpoints (or
3560 find the glink branch itself) when setting breakpoints
3561 for pending shared library loads. */
3562 p = relplt->relocation;
3563 for (i = 0; i < plt_count; i++, p++)
3564 {
3565 size_t len;
3566
3567 *s = **p->sym_ptr_ptr;
3568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3569 we are defining a symbol, ensure one of them is set. */
3570 if ((s->flags & BSF_LOCAL) == 0)
3571 s->flags |= BSF_GLOBAL;
3572 s->flags |= BSF_SYNTHETIC;
3573 s->section = glink;
3574 s->value = glink_vma - glink->vma;
3575 s->name = names;
3576 s->udata.p = NULL;
3577 len = strlen ((*p->sym_ptr_ptr)->name);
3578 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3579 names += len;
3580 if (p->addend != 0)
3581 {
3582 memcpy (names, "+0x", sizeof ("+0x") - 1);
3583 names += sizeof ("+0x") - 1;
3584 bfd_sprintf_vma (abfd, names, p->addend);
3585 names += strlen (names);
3586 }
3587 memcpy (names, "@plt", sizeof ("@plt"));
3588 names += sizeof ("@plt");
3589 s++;
3590 if (abi < 2)
3591 {
3592 glink_vma += 8;
3593 if (i >= 0x8000)
3594 glink_vma += 4;
3595 }
3596 else
3597 glink_vma += 4;
3598 }
3599 count += plt_count;
3600 }
3601 }
3602
3603 done:
3604 free (syms);
3605 return count;
3606 }
3607 \f
3608 /* The following functions are specific to the ELF linker, while
3609 functions above are used generally. Those named ppc64_elf_* are
3610 called by the main ELF linker code. They appear in this file more
3611 or less in the order in which they are called. eg.
3612 ppc64_elf_check_relocs is called early in the link process,
3613 ppc64_elf_finish_dynamic_sections is one of the last functions
3614 called.
3615
3616 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3617 functions have both a function code symbol and a function descriptor
3618 symbol. A call to foo in a relocatable object file looks like:
3619
3620 . .text
3621 . x:
3622 . bl .foo
3623 . nop
3624
3625 The function definition in another object file might be:
3626
3627 . .section .opd
3628 . foo: .quad .foo
3629 . .quad .TOC.@tocbase
3630 . .quad 0
3631 .
3632 . .text
3633 . .foo: blr
3634
3635 When the linker resolves the call during a static link, the branch
3636 unsurprisingly just goes to .foo and the .opd information is unused.
3637 If the function definition is in a shared library, things are a little
3638 different: The call goes via a plt call stub, the opd information gets
3639 copied to the plt, and the linker patches the nop.
3640
3641 . x:
3642 . bl .foo_stub
3643 . ld 2,40(1)
3644 .
3645 .
3646 . .foo_stub:
3647 . std 2,40(1) # in practice, the call stub
3648 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3649 . addi 11,11,Lfoo@toc@l # this is the general idea
3650 . ld 12,0(11)
3651 . ld 2,8(11)
3652 . mtctr 12
3653 . ld 11,16(11)
3654 . bctr
3655 .
3656 . .section .plt
3657 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3658
3659 The "reloc ()" notation is supposed to indicate that the linker emits
3660 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3661 copying.
3662
3663 What are the difficulties here? Well, firstly, the relocations
3664 examined by the linker in check_relocs are against the function code
3665 sym .foo, while the dynamic relocation in the plt is emitted against
3666 the function descriptor symbol, foo. Somewhere along the line, we need
3667 to carefully copy dynamic link information from one symbol to the other.
3668 Secondly, the generic part of the elf linker will make .foo a dynamic
3669 symbol as is normal for most other backends. We need foo dynamic
3670 instead, at least for an application final link. However, when
3671 creating a shared library containing foo, we need to have both symbols
3672 dynamic so that references to .foo are satisfied during the early
3673 stages of linking. Otherwise the linker might decide to pull in a
3674 definition from some other object, eg. a static library.
3675
3676 Update: As of August 2004, we support a new convention. Function
3677 calls may use the function descriptor symbol, ie. "bl foo". This
3678 behaves exactly as "bl .foo". */
3679
3680 /* Of those relocs that might be copied as dynamic relocs, this function
3681 selects those that must be copied when linking a shared library,
3682 even when the symbol is local. */
3683
3684 static int
3685 must_be_dyn_reloc (struct bfd_link_info *info,
3686 enum elf_ppc64_reloc_type r_type)
3687 {
3688 switch (r_type)
3689 {
3690 default:
3691 return 1;
3692
3693 case R_PPC64_REL32:
3694 case R_PPC64_REL64:
3695 case R_PPC64_REL30:
3696 return 0;
3697
3698 case R_PPC64_TPREL16:
3699 case R_PPC64_TPREL16_LO:
3700 case R_PPC64_TPREL16_HI:
3701 case R_PPC64_TPREL16_HA:
3702 case R_PPC64_TPREL16_DS:
3703 case R_PPC64_TPREL16_LO_DS:
3704 case R_PPC64_TPREL16_HIGH:
3705 case R_PPC64_TPREL16_HIGHA:
3706 case R_PPC64_TPREL16_HIGHER:
3707 case R_PPC64_TPREL16_HIGHERA:
3708 case R_PPC64_TPREL16_HIGHEST:
3709 case R_PPC64_TPREL16_HIGHESTA:
3710 case R_PPC64_TPREL64:
3711 return !info->executable;
3712 }
3713 }
3714
3715 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3716 copying dynamic variables from a shared lib into an app's dynbss
3717 section, and instead use a dynamic relocation to point into the
3718 shared lib. With code that gcc generates, it's vital that this be
3719 enabled; In the PowerPC64 ABI, the address of a function is actually
3720 the address of a function descriptor, which resides in the .opd
3721 section. gcc uses the descriptor directly rather than going via the
3722 GOT as some other ABI's do, which means that initialized function
3723 pointers must reference the descriptor. Thus, a function pointer
3724 initialized to the address of a function in a shared library will
3725 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3726 redefines the function descriptor symbol to point to the copy. This
3727 presents a problem as a plt entry for that function is also
3728 initialized from the function descriptor symbol and the copy reloc
3729 may not be initialized first. */
3730 #define ELIMINATE_COPY_RELOCS 1
3731
3732 /* Section name for stubs is the associated section name plus this
3733 string. */
3734 #define STUB_SUFFIX ".stub"
3735
3736 /* Linker stubs.
3737 ppc_stub_long_branch:
3738 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3739 destination, but a 24 bit branch in a stub section will reach.
3740 . b dest
3741
3742 ppc_stub_plt_branch:
3743 Similar to the above, but a 24 bit branch in the stub section won't
3744 reach its destination.
3745 . addis %r11,%r2,xxx@toc@ha
3746 . ld %r12,xxx@toc@l(%r11)
3747 . mtctr %r12
3748 . bctr
3749
3750 ppc_stub_plt_call:
3751 Used to call a function in a shared library. If it so happens that
3752 the plt entry referenced crosses a 64k boundary, then an extra
3753 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3754 . std %r2,40(%r1)
3755 . addis %r11,%r2,xxx@toc@ha
3756 . ld %r12,xxx+0@toc@l(%r11)
3757 . mtctr %r12
3758 . ld %r2,xxx+8@toc@l(%r11)
3759 . ld %r11,xxx+16@toc@l(%r11)
3760 . bctr
3761
3762 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3763 code to adjust the value and save r2 to support multiple toc sections.
3764 A ppc_stub_long_branch with an r2 offset looks like:
3765 . std %r2,40(%r1)
3766 . addis %r2,%r2,off@ha
3767 . addi %r2,%r2,off@l
3768 . b dest
3769
3770 A ppc_stub_plt_branch with an r2 offset looks like:
3771 . std %r2,40(%r1)
3772 . addis %r11,%r2,xxx@toc@ha
3773 . ld %r12,xxx@toc@l(%r11)
3774 . addis %r2,%r2,off@ha
3775 . addi %r2,%r2,off@l
3776 . mtctr %r12
3777 . bctr
3778
3779 In cases where the "addis" instruction would add zero, the "addis" is
3780 omitted and following instructions modified slightly in some cases.
3781 */
3782
3783 enum ppc_stub_type {
3784 ppc_stub_none,
3785 ppc_stub_long_branch,
3786 ppc_stub_long_branch_r2off,
3787 ppc_stub_plt_branch,
3788 ppc_stub_plt_branch_r2off,
3789 ppc_stub_plt_call,
3790 ppc_stub_plt_call_r2save,
3791 ppc_stub_global_entry
3792 };
3793
3794 struct ppc_stub_hash_entry {
3795
3796 /* Base hash table entry structure. */
3797 struct bfd_hash_entry root;
3798
3799 enum ppc_stub_type stub_type;
3800
3801 /* The stub section. */
3802 asection *stub_sec;
3803
3804 /* Offset within stub_sec of the beginning of this stub. */
3805 bfd_vma stub_offset;
3806
3807 /* Given the symbol's value and its section we can determine its final
3808 value when building the stubs (so the stub knows where to jump. */
3809 bfd_vma target_value;
3810 asection *target_section;
3811
3812 /* The symbol table entry, if any, that this was derived from. */
3813 struct ppc_link_hash_entry *h;
3814 struct plt_entry *plt_ent;
3815
3816 /* Where this stub is being called from, or, in the case of combined
3817 stub sections, the first input section in the group. */
3818 asection *id_sec;
3819
3820 /* Symbol st_other. */
3821 unsigned char other;
3822 };
3823
3824 struct ppc_branch_hash_entry {
3825
3826 /* Base hash table entry structure. */
3827 struct bfd_hash_entry root;
3828
3829 /* Offset within branch lookup table. */
3830 unsigned int offset;
3831
3832 /* Generation marker. */
3833 unsigned int iter;
3834 };
3835
3836 /* Used to track dynamic relocations for local symbols. */
3837 struct ppc_dyn_relocs
3838 {
3839 struct ppc_dyn_relocs *next;
3840
3841 /* The input section of the reloc. */
3842 asection *sec;
3843
3844 /* Total number of relocs copied for the input section. */
3845 unsigned int count : 31;
3846
3847 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3848 unsigned int ifunc : 1;
3849 };
3850
3851 struct ppc_link_hash_entry
3852 {
3853 struct elf_link_hash_entry elf;
3854
3855 union {
3856 /* A pointer to the most recently used stub hash entry against this
3857 symbol. */
3858 struct ppc_stub_hash_entry *stub_cache;
3859
3860 /* A pointer to the next symbol starting with a '.' */
3861 struct ppc_link_hash_entry *next_dot_sym;
3862 } u;
3863
3864 /* Track dynamic relocs copied for this symbol. */
3865 struct elf_dyn_relocs *dyn_relocs;
3866
3867 /* Link between function code and descriptor symbols. */
3868 struct ppc_link_hash_entry *oh;
3869
3870 /* Flag function code and descriptor symbols. */
3871 unsigned int is_func:1;
3872 unsigned int is_func_descriptor:1;
3873 unsigned int fake:1;
3874
3875 /* Whether global opd/toc sym has been adjusted or not.
3876 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3877 should be set for all globals defined in any opd/toc section. */
3878 unsigned int adjust_done:1;
3879
3880 /* Set if we twiddled this symbol to weak at some stage. */
3881 unsigned int was_undefined:1;
3882
3883 /* Contexts in which symbol is used in the GOT (or TOC).
3884 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3885 corresponding relocs are encountered during check_relocs.
3886 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3887 indicate the corresponding GOT entry type is not needed.
3888 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3889 a TPREL one. We use a separate flag rather than setting TPREL
3890 just for convenience in distinguishing the two cases. */
3891 #define TLS_GD 1 /* GD reloc. */
3892 #define TLS_LD 2 /* LD reloc. */
3893 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3894 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3895 #define TLS_TLS 16 /* Any TLS reloc. */
3896 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3897 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3898 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3899 unsigned char tls_mask;
3900 };
3901
3902 /* ppc64 ELF linker hash table. */
3903
3904 struct ppc_link_hash_table
3905 {
3906 struct elf_link_hash_table elf;
3907
3908 /* The stub hash table. */
3909 struct bfd_hash_table stub_hash_table;
3910
3911 /* Another hash table for plt_branch stubs. */
3912 struct bfd_hash_table branch_hash_table;
3913
3914 /* Hash table for function prologue tocsave. */
3915 htab_t tocsave_htab;
3916
3917 /* Various options and other info passed from the linker. */
3918 struct ppc64_elf_params *params;
3919
3920 /* Array to keep track of which stub sections have been created, and
3921 information on stub grouping. */
3922 struct map_stub {
3923 /* This is the section to which stubs in the group will be attached. */
3924 asection *link_sec;
3925 /* The stub section. */
3926 asection *stub_sec;
3927 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3928 bfd_vma toc_off;
3929 } *stub_group;
3930
3931 /* Temp used when calculating TOC pointers. */
3932 bfd_vma toc_curr;
3933 bfd *toc_bfd;
3934 asection *toc_first_sec;
3935
3936 /* Highest input section id. */
3937 int top_id;
3938
3939 /* Highest output section index. */
3940 int top_index;
3941
3942 /* Used when adding symbols. */
3943 struct ppc_link_hash_entry *dot_syms;
3944
3945 /* List of input sections for each output section. */
3946 asection **input_list;
3947
3948 /* Shortcuts to get to dynamic linker sections. */
3949 asection *dynbss;
3950 asection *relbss;
3951 asection *glink;
3952 asection *sfpr;
3953 asection *brlt;
3954 asection *relbrlt;
3955 asection *glink_eh_frame;
3956
3957 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3958 struct ppc_link_hash_entry *tls_get_addr;
3959 struct ppc_link_hash_entry *tls_get_addr_fd;
3960
3961 /* The size of reliplt used by got entry relocs. */
3962 bfd_size_type got_reli_size;
3963
3964 /* Statistics. */
3965 unsigned long stub_count[ppc_stub_global_entry];
3966
3967 /* Number of stubs against global syms. */
3968 unsigned long stub_globals;
3969
3970 /* Set if we're linking code with function descriptors. */
3971 unsigned int opd_abi:1;
3972
3973 /* Support for multiple toc sections. */
3974 unsigned int do_multi_toc:1;
3975 unsigned int multi_toc_needed:1;
3976 unsigned int second_toc_pass:1;
3977 unsigned int do_toc_opt:1;
3978
3979 /* Set on error. */
3980 unsigned int stub_error:1;
3981
3982 /* Temp used by ppc64_elf_before_check_relocs. */
3983 unsigned int twiddled_syms:1;
3984
3985 /* Incremented every time we size stubs. */
3986 unsigned int stub_iteration;
3987
3988 /* Small local sym cache. */
3989 struct sym_cache sym_cache;
3990 };
3991
3992 /* Rename some of the generic section flags to better document how they
3993 are used here. */
3994
3995 /* Nonzero if this section has TLS related relocations. */
3996 #define has_tls_reloc sec_flg0
3997
3998 /* Nonzero if this section has a call to __tls_get_addr. */
3999 #define has_tls_get_addr_call sec_flg1
4000
4001 /* Nonzero if this section has any toc or got relocs. */
4002 #define has_toc_reloc sec_flg2
4003
4004 /* Nonzero if this section has a call to another section that uses
4005 the toc or got. */
4006 #define makes_toc_func_call sec_flg3
4007
4008 /* Recursion protection when determining above flag. */
4009 #define call_check_in_progress sec_flg4
4010 #define call_check_done sec_flg5
4011
4012 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4013
4014 #define ppc_hash_table(p) \
4015 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4016 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4017
4018 #define ppc_stub_hash_lookup(table, string, create, copy) \
4019 ((struct ppc_stub_hash_entry *) \
4020 bfd_hash_lookup ((table), (string), (create), (copy)))
4021
4022 #define ppc_branch_hash_lookup(table, string, create, copy) \
4023 ((struct ppc_branch_hash_entry *) \
4024 bfd_hash_lookup ((table), (string), (create), (copy)))
4025
4026 /* Create an entry in the stub hash table. */
4027
4028 static struct bfd_hash_entry *
4029 stub_hash_newfunc (struct bfd_hash_entry *entry,
4030 struct bfd_hash_table *table,
4031 const char *string)
4032 {
4033 /* Allocate the structure if it has not already been allocated by a
4034 subclass. */
4035 if (entry == NULL)
4036 {
4037 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4038 if (entry == NULL)
4039 return entry;
4040 }
4041
4042 /* Call the allocation method of the superclass. */
4043 entry = bfd_hash_newfunc (entry, table, string);
4044 if (entry != NULL)
4045 {
4046 struct ppc_stub_hash_entry *eh;
4047
4048 /* Initialize the local fields. */
4049 eh = (struct ppc_stub_hash_entry *) entry;
4050 eh->stub_type = ppc_stub_none;
4051 eh->stub_sec = NULL;
4052 eh->stub_offset = 0;
4053 eh->target_value = 0;
4054 eh->target_section = NULL;
4055 eh->h = NULL;
4056 eh->plt_ent = NULL;
4057 eh->id_sec = NULL;
4058 eh->other = 0;
4059 }
4060
4061 return entry;
4062 }
4063
4064 /* Create an entry in the branch hash table. */
4065
4066 static struct bfd_hash_entry *
4067 branch_hash_newfunc (struct bfd_hash_entry *entry,
4068 struct bfd_hash_table *table,
4069 const char *string)
4070 {
4071 /* Allocate the structure if it has not already been allocated by a
4072 subclass. */
4073 if (entry == NULL)
4074 {
4075 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4076 if (entry == NULL)
4077 return entry;
4078 }
4079
4080 /* Call the allocation method of the superclass. */
4081 entry = bfd_hash_newfunc (entry, table, string);
4082 if (entry != NULL)
4083 {
4084 struct ppc_branch_hash_entry *eh;
4085
4086 /* Initialize the local fields. */
4087 eh = (struct ppc_branch_hash_entry *) entry;
4088 eh->offset = 0;
4089 eh->iter = 0;
4090 }
4091
4092 return entry;
4093 }
4094
4095 /* Create an entry in a ppc64 ELF linker hash table. */
4096
4097 static struct bfd_hash_entry *
4098 link_hash_newfunc (struct bfd_hash_entry *entry,
4099 struct bfd_hash_table *table,
4100 const char *string)
4101 {
4102 /* Allocate the structure if it has not already been allocated by a
4103 subclass. */
4104 if (entry == NULL)
4105 {
4106 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4107 if (entry == NULL)
4108 return entry;
4109 }
4110
4111 /* Call the allocation method of the superclass. */
4112 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4113 if (entry != NULL)
4114 {
4115 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4116
4117 memset (&eh->u.stub_cache, 0,
4118 (sizeof (struct ppc_link_hash_entry)
4119 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4120
4121 /* When making function calls, old ABI code references function entry
4122 points (dot symbols), while new ABI code references the function
4123 descriptor symbol. We need to make any combination of reference and
4124 definition work together, without breaking archive linking.
4125
4126 For a defined function "foo" and an undefined call to "bar":
4127 An old object defines "foo" and ".foo", references ".bar" (possibly
4128 "bar" too).
4129 A new object defines "foo" and references "bar".
4130
4131 A new object thus has no problem with its undefined symbols being
4132 satisfied by definitions in an old object. On the other hand, the
4133 old object won't have ".bar" satisfied by a new object.
4134
4135 Keep a list of newly added dot-symbols. */
4136
4137 if (string[0] == '.')
4138 {
4139 struct ppc_link_hash_table *htab;
4140
4141 htab = (struct ppc_link_hash_table *) table;
4142 eh->u.next_dot_sym = htab->dot_syms;
4143 htab->dot_syms = eh;
4144 }
4145 }
4146
4147 return entry;
4148 }
4149
4150 struct tocsave_entry {
4151 asection *sec;
4152 bfd_vma offset;
4153 };
4154
4155 static hashval_t
4156 tocsave_htab_hash (const void *p)
4157 {
4158 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4159 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4160 }
4161
4162 static int
4163 tocsave_htab_eq (const void *p1, const void *p2)
4164 {
4165 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4166 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4167 return e1->sec == e2->sec && e1->offset == e2->offset;
4168 }
4169
4170 /* Destroy a ppc64 ELF linker hash table. */
4171
4172 static void
4173 ppc64_elf_link_hash_table_free (bfd *obfd)
4174 {
4175 struct ppc_link_hash_table *htab;
4176
4177 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4178 if (htab->tocsave_htab)
4179 htab_delete (htab->tocsave_htab);
4180 bfd_hash_table_free (&htab->branch_hash_table);
4181 bfd_hash_table_free (&htab->stub_hash_table);
4182 _bfd_elf_link_hash_table_free (obfd);
4183 }
4184
4185 /* Create a ppc64 ELF linker hash table. */
4186
4187 static struct bfd_link_hash_table *
4188 ppc64_elf_link_hash_table_create (bfd *abfd)
4189 {
4190 struct ppc_link_hash_table *htab;
4191 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4192
4193 htab = bfd_zmalloc (amt);
4194 if (htab == NULL)
4195 return NULL;
4196
4197 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4198 sizeof (struct ppc_link_hash_entry),
4199 PPC64_ELF_DATA))
4200 {
4201 free (htab);
4202 return NULL;
4203 }
4204
4205 /* Init the stub hash table too. */
4206 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4207 sizeof (struct ppc_stub_hash_entry)))
4208 {
4209 _bfd_elf_link_hash_table_free (abfd);
4210 return NULL;
4211 }
4212
4213 /* And the branch hash table. */
4214 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4215 sizeof (struct ppc_branch_hash_entry)))
4216 {
4217 bfd_hash_table_free (&htab->stub_hash_table);
4218 _bfd_elf_link_hash_table_free (abfd);
4219 return NULL;
4220 }
4221
4222 htab->tocsave_htab = htab_try_create (1024,
4223 tocsave_htab_hash,
4224 tocsave_htab_eq,
4225 NULL);
4226 if (htab->tocsave_htab == NULL)
4227 {
4228 ppc64_elf_link_hash_table_free (abfd);
4229 return NULL;
4230 }
4231 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4232
4233 /* Initializing two fields of the union is just cosmetic. We really
4234 only care about glist, but when compiled on a 32-bit host the
4235 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4236 debugger inspection of these fields look nicer. */
4237 htab->elf.init_got_refcount.refcount = 0;
4238 htab->elf.init_got_refcount.glist = NULL;
4239 htab->elf.init_plt_refcount.refcount = 0;
4240 htab->elf.init_plt_refcount.glist = NULL;
4241 htab->elf.init_got_offset.offset = 0;
4242 htab->elf.init_got_offset.glist = NULL;
4243 htab->elf.init_plt_offset.offset = 0;
4244 htab->elf.init_plt_offset.glist = NULL;
4245
4246 return &htab->elf.root;
4247 }
4248
4249 /* Create sections for linker generated code. */
4250
4251 static bfd_boolean
4252 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4253 {
4254 struct ppc_link_hash_table *htab;
4255 flagword flags;
4256
4257 htab = ppc_hash_table (info);
4258
4259 /* Create .sfpr for code to save and restore fp regs. */
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4261 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4263 flags);
4264 if (htab->sfpr == NULL
4265 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4266 return FALSE;
4267
4268 /* Create .glink for lazy dynamic linking support. */
4269 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4270 flags);
4271 if (htab->glink == NULL
4272 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4273 return FALSE;
4274
4275 if (!info->no_ld_generated_unwind_info)
4276 {
4277 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4278 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4279 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4280 ".eh_frame",
4281 flags);
4282 if (htab->glink_eh_frame == NULL
4283 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4284 return FALSE;
4285 }
4286
4287 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4288 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4289 if (htab->elf.iplt == NULL
4290 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4291 return FALSE;
4292
4293 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4294 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4295 htab->elf.irelplt
4296 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4297 if (htab->elf.irelplt == NULL
4298 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4299 return FALSE;
4300
4301 /* Create branch lookup table for plt_branch stubs. */
4302 flags = (SEC_ALLOC | SEC_LOAD
4303 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4304 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4305 flags);
4306 if (htab->brlt == NULL
4307 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4308 return FALSE;
4309
4310 if (!info->shared)
4311 return TRUE;
4312
4313 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4314 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4315 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4316 ".rela.branch_lt",
4317 flags);
4318 if (htab->relbrlt == NULL
4319 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4320 return FALSE;
4321
4322 return TRUE;
4323 }
4324
4325 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4326
4327 bfd_boolean
4328 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4329 struct ppc64_elf_params *params)
4330 {
4331 struct ppc_link_hash_table *htab;
4332
4333 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4334
4335 /* Always hook our dynamic sections into the first bfd, which is the
4336 linker created stub bfd. This ensures that the GOT header is at
4337 the start of the output TOC section. */
4338 htab = ppc_hash_table (info);
4339 if (htab == NULL)
4340 return FALSE;
4341 htab->elf.dynobj = params->stub_bfd;
4342 htab->params = params;
4343
4344 if (info->relocatable)
4345 return TRUE;
4346
4347 return create_linkage_sections (htab->elf.dynobj, info);
4348 }
4349
4350 /* Build a name for an entry in the stub hash table. */
4351
4352 static char *
4353 ppc_stub_name (const asection *input_section,
4354 const asection *sym_sec,
4355 const struct ppc_link_hash_entry *h,
4356 const Elf_Internal_Rela *rel)
4357 {
4358 char *stub_name;
4359 ssize_t len;
4360
4361 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4362 offsets from a sym as a branch target? In fact, we could
4363 probably assume the addend is always zero. */
4364 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4365
4366 if (h)
4367 {
4368 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4369 stub_name = bfd_malloc (len);
4370 if (stub_name == NULL)
4371 return stub_name;
4372
4373 len = sprintf (stub_name, "%08x.%s+%x",
4374 input_section->id & 0xffffffff,
4375 h->elf.root.root.string,
4376 (int) rel->r_addend & 0xffffffff);
4377 }
4378 else
4379 {
4380 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4381 stub_name = bfd_malloc (len);
4382 if (stub_name == NULL)
4383 return stub_name;
4384
4385 len = sprintf (stub_name, "%08x.%x:%x+%x",
4386 input_section->id & 0xffffffff,
4387 sym_sec->id & 0xffffffff,
4388 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4389 (int) rel->r_addend & 0xffffffff);
4390 }
4391 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4392 stub_name[len - 2] = 0;
4393 return stub_name;
4394 }
4395
4396 /* Look up an entry in the stub hash. Stub entries are cached because
4397 creating the stub name takes a bit of time. */
4398
4399 static struct ppc_stub_hash_entry *
4400 ppc_get_stub_entry (const asection *input_section,
4401 const asection *sym_sec,
4402 struct ppc_link_hash_entry *h,
4403 const Elf_Internal_Rela *rel,
4404 struct ppc_link_hash_table *htab)
4405 {
4406 struct ppc_stub_hash_entry *stub_entry;
4407 const asection *id_sec;
4408
4409 /* If this input section is part of a group of sections sharing one
4410 stub section, then use the id of the first section in the group.
4411 Stub names need to include a section id, as there may well be
4412 more than one stub used to reach say, printf, and we need to
4413 distinguish between them. */
4414 id_sec = htab->stub_group[input_section->id].link_sec;
4415
4416 if (h != NULL && h->u.stub_cache != NULL
4417 && h->u.stub_cache->h == h
4418 && h->u.stub_cache->id_sec == id_sec)
4419 {
4420 stub_entry = h->u.stub_cache;
4421 }
4422 else
4423 {
4424 char *stub_name;
4425
4426 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4427 if (stub_name == NULL)
4428 return NULL;
4429
4430 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4431 stub_name, FALSE, FALSE);
4432 if (h != NULL)
4433 h->u.stub_cache = stub_entry;
4434
4435 free (stub_name);
4436 }
4437
4438 return stub_entry;
4439 }
4440
4441 /* Add a new stub entry to the stub hash. Not all fields of the new
4442 stub entry are initialised. */
4443
4444 static struct ppc_stub_hash_entry *
4445 ppc_add_stub (const char *stub_name,
4446 asection *section,
4447 struct bfd_link_info *info)
4448 {
4449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4450 asection *link_sec;
4451 asection *stub_sec;
4452 struct ppc_stub_hash_entry *stub_entry;
4453
4454 link_sec = htab->stub_group[section->id].link_sec;
4455 stub_sec = htab->stub_group[section->id].stub_sec;
4456 if (stub_sec == NULL)
4457 {
4458 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4459 if (stub_sec == NULL)
4460 {
4461 size_t namelen;
4462 bfd_size_type len;
4463 char *s_name;
4464
4465 namelen = strlen (link_sec->name);
4466 len = namelen + sizeof (STUB_SUFFIX);
4467 s_name = bfd_alloc (htab->params->stub_bfd, len);
4468 if (s_name == NULL)
4469 return NULL;
4470
4471 memcpy (s_name, link_sec->name, namelen);
4472 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4473 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4474 if (stub_sec == NULL)
4475 return NULL;
4476 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4477 }
4478 htab->stub_group[section->id].stub_sec = stub_sec;
4479 }
4480
4481 /* Enter this entry into the linker stub hash table. */
4482 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4483 TRUE, FALSE);
4484 if (stub_entry == NULL)
4485 {
4486 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4487 section->owner, stub_name);
4488 return NULL;
4489 }
4490
4491 stub_entry->stub_sec = stub_sec;
4492 stub_entry->stub_offset = 0;
4493 stub_entry->id_sec = link_sec;
4494 return stub_entry;
4495 }
4496
4497 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4498 not already done. */
4499
4500 static bfd_boolean
4501 create_got_section (bfd *abfd, struct bfd_link_info *info)
4502 {
4503 asection *got, *relgot;
4504 flagword flags;
4505 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4506
4507 if (!is_ppc64_elf (abfd))
4508 return FALSE;
4509 if (htab == NULL)
4510 return FALSE;
4511
4512 if (!htab->elf.sgot
4513 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4514 return FALSE;
4515
4516 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4517 | SEC_LINKER_CREATED);
4518
4519 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4520 if (!got
4521 || !bfd_set_section_alignment (abfd, got, 3))
4522 return FALSE;
4523
4524 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4525 flags | SEC_READONLY);
4526 if (!relgot
4527 || ! bfd_set_section_alignment (abfd, relgot, 3))
4528 return FALSE;
4529
4530 ppc64_elf_tdata (abfd)->got = got;
4531 ppc64_elf_tdata (abfd)->relgot = relgot;
4532 return TRUE;
4533 }
4534
4535 /* Create the dynamic sections, and set up shortcuts. */
4536
4537 static bfd_boolean
4538 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4539 {
4540 struct ppc_link_hash_table *htab;
4541
4542 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4543 return FALSE;
4544
4545 htab = ppc_hash_table (info);
4546 if (htab == NULL)
4547 return FALSE;
4548
4549 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4550 if (!info->shared)
4551 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4552
4553 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4554 || (!info->shared && !htab->relbss))
4555 abort ();
4556
4557 return TRUE;
4558 }
4559
4560 /* Follow indirect and warning symbol links. */
4561
4562 static inline struct bfd_link_hash_entry *
4563 follow_link (struct bfd_link_hash_entry *h)
4564 {
4565 while (h->type == bfd_link_hash_indirect
4566 || h->type == bfd_link_hash_warning)
4567 h = h->u.i.link;
4568 return h;
4569 }
4570
4571 static inline struct elf_link_hash_entry *
4572 elf_follow_link (struct elf_link_hash_entry *h)
4573 {
4574 return (struct elf_link_hash_entry *) follow_link (&h->root);
4575 }
4576
4577 static inline struct ppc_link_hash_entry *
4578 ppc_follow_link (struct ppc_link_hash_entry *h)
4579 {
4580 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4581 }
4582
4583 /* Merge PLT info on FROM with that on TO. */
4584
4585 static void
4586 move_plt_plist (struct ppc_link_hash_entry *from,
4587 struct ppc_link_hash_entry *to)
4588 {
4589 if (from->elf.plt.plist != NULL)
4590 {
4591 if (to->elf.plt.plist != NULL)
4592 {
4593 struct plt_entry **entp;
4594 struct plt_entry *ent;
4595
4596 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4597 {
4598 struct plt_entry *dent;
4599
4600 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4601 if (dent->addend == ent->addend)
4602 {
4603 dent->plt.refcount += ent->plt.refcount;
4604 *entp = ent->next;
4605 break;
4606 }
4607 if (dent == NULL)
4608 entp = &ent->next;
4609 }
4610 *entp = to->elf.plt.plist;
4611 }
4612
4613 to->elf.plt.plist = from->elf.plt.plist;
4614 from->elf.plt.plist = NULL;
4615 }
4616 }
4617
4618 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4619
4620 static void
4621 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4622 struct elf_link_hash_entry *dir,
4623 struct elf_link_hash_entry *ind)
4624 {
4625 struct ppc_link_hash_entry *edir, *eind;
4626
4627 edir = (struct ppc_link_hash_entry *) dir;
4628 eind = (struct ppc_link_hash_entry *) ind;
4629
4630 edir->is_func |= eind->is_func;
4631 edir->is_func_descriptor |= eind->is_func_descriptor;
4632 edir->tls_mask |= eind->tls_mask;
4633 if (eind->oh != NULL)
4634 edir->oh = ppc_follow_link (eind->oh);
4635
4636 /* If called to transfer flags for a weakdef during processing
4637 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4638 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4639 if (!(ELIMINATE_COPY_RELOCS
4640 && eind->elf.root.type != bfd_link_hash_indirect
4641 && edir->elf.dynamic_adjusted))
4642 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4643
4644 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4645 edir->elf.ref_regular |= eind->elf.ref_regular;
4646 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4647 edir->elf.needs_plt |= eind->elf.needs_plt;
4648 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4649
4650 /* Copy over any dynamic relocs we may have on the indirect sym. */
4651 if (eind->dyn_relocs != NULL)
4652 {
4653 if (edir->dyn_relocs != NULL)
4654 {
4655 struct elf_dyn_relocs **pp;
4656 struct elf_dyn_relocs *p;
4657
4658 /* Add reloc counts against the indirect sym to the direct sym
4659 list. Merge any entries against the same section. */
4660 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4661 {
4662 struct elf_dyn_relocs *q;
4663
4664 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4665 if (q->sec == p->sec)
4666 {
4667 q->pc_count += p->pc_count;
4668 q->count += p->count;
4669 *pp = p->next;
4670 break;
4671 }
4672 if (q == NULL)
4673 pp = &p->next;
4674 }
4675 *pp = edir->dyn_relocs;
4676 }
4677
4678 edir->dyn_relocs = eind->dyn_relocs;
4679 eind->dyn_relocs = NULL;
4680 }
4681
4682 /* If we were called to copy over info for a weak sym, that's all.
4683 You might think dyn_relocs need not be copied over; After all,
4684 both syms will be dynamic or both non-dynamic so we're just
4685 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4686 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4687 dyn_relocs in read-only sections, and it does so on what is the
4688 DIR sym here. */
4689 if (eind->elf.root.type != bfd_link_hash_indirect)
4690 return;
4691
4692 /* Copy over got entries that we may have already seen to the
4693 symbol which just became indirect. */
4694 if (eind->elf.got.glist != NULL)
4695 {
4696 if (edir->elf.got.glist != NULL)
4697 {
4698 struct got_entry **entp;
4699 struct got_entry *ent;
4700
4701 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4702 {
4703 struct got_entry *dent;
4704
4705 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4706 if (dent->addend == ent->addend
4707 && dent->owner == ent->owner
4708 && dent->tls_type == ent->tls_type)
4709 {
4710 dent->got.refcount += ent->got.refcount;
4711 *entp = ent->next;
4712 break;
4713 }
4714 if (dent == NULL)
4715 entp = &ent->next;
4716 }
4717 *entp = edir->elf.got.glist;
4718 }
4719
4720 edir->elf.got.glist = eind->elf.got.glist;
4721 eind->elf.got.glist = NULL;
4722 }
4723
4724 /* And plt entries. */
4725 move_plt_plist (eind, edir);
4726
4727 if (eind->elf.dynindx != -1)
4728 {
4729 if (edir->elf.dynindx != -1)
4730 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4731 edir->elf.dynstr_index);
4732 edir->elf.dynindx = eind->elf.dynindx;
4733 edir->elf.dynstr_index = eind->elf.dynstr_index;
4734 eind->elf.dynindx = -1;
4735 eind->elf.dynstr_index = 0;
4736 }
4737 }
4738
4739 /* Find the function descriptor hash entry from the given function code
4740 hash entry FH. Link the entries via their OH fields. */
4741
4742 static struct ppc_link_hash_entry *
4743 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4744 {
4745 struct ppc_link_hash_entry *fdh = fh->oh;
4746
4747 if (fdh == NULL)
4748 {
4749 const char *fd_name = fh->elf.root.root.string + 1;
4750
4751 fdh = (struct ppc_link_hash_entry *)
4752 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4753 if (fdh == NULL)
4754 return fdh;
4755
4756 fdh->is_func_descriptor = 1;
4757 fdh->oh = fh;
4758 fh->is_func = 1;
4759 fh->oh = fdh;
4760 }
4761
4762 return ppc_follow_link (fdh);
4763 }
4764
4765 /* Make a fake function descriptor sym for the code sym FH. */
4766
4767 static struct ppc_link_hash_entry *
4768 make_fdh (struct bfd_link_info *info,
4769 struct ppc_link_hash_entry *fh)
4770 {
4771 bfd *abfd;
4772 asymbol *newsym;
4773 struct bfd_link_hash_entry *bh;
4774 struct ppc_link_hash_entry *fdh;
4775
4776 abfd = fh->elf.root.u.undef.abfd;
4777 newsym = bfd_make_empty_symbol (abfd);
4778 newsym->name = fh->elf.root.root.string + 1;
4779 newsym->section = bfd_und_section_ptr;
4780 newsym->value = 0;
4781 newsym->flags = BSF_WEAK;
4782
4783 bh = NULL;
4784 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4785 newsym->flags, newsym->section,
4786 newsym->value, NULL, FALSE, FALSE,
4787 &bh))
4788 return NULL;
4789
4790 fdh = (struct ppc_link_hash_entry *) bh;
4791 fdh->elf.non_elf = 0;
4792 fdh->fake = 1;
4793 fdh->is_func_descriptor = 1;
4794 fdh->oh = fh;
4795 fh->is_func = 1;
4796 fh->oh = fdh;
4797 return fdh;
4798 }
4799
4800 /* Fix function descriptor symbols defined in .opd sections to be
4801 function type. */
4802
4803 static bfd_boolean
4804 ppc64_elf_add_symbol_hook (bfd *ibfd,
4805 struct bfd_link_info *info,
4806 Elf_Internal_Sym *isym,
4807 const char **name,
4808 flagword *flags ATTRIBUTE_UNUSED,
4809 asection **sec,
4810 bfd_vma *value)
4811 {
4812 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4813 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4814 && (ibfd->flags & DYNAMIC) == 0
4815 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4816 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4817
4818 if (*sec != NULL
4819 && strcmp ((*sec)->name, ".opd") == 0)
4820 {
4821 asection *code_sec;
4822
4823 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4824 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4825 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4826
4827 /* If the symbol is a function defined in .opd, and the function
4828 code is in a discarded group, let it appear to be undefined. */
4829 if (!info->relocatable
4830 && (*sec)->reloc_count != 0
4831 && opd_entry_value (*sec, *value, &code_sec, NULL,
4832 FALSE) != (bfd_vma) -1
4833 && discarded_section (code_sec))
4834 {
4835 *sec = bfd_und_section_ptr;
4836 isym->st_shndx = SHN_UNDEF;
4837 }
4838 }
4839 else if (*sec != NULL
4840 && strcmp ((*sec)->name, ".toc") == 0
4841 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4842 {
4843 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4844 if (htab != NULL)
4845 htab->params->object_in_toc = 1;
4846 }
4847
4848 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4849 {
4850 if (abiversion (ibfd) == 0)
4851 set_abiversion (ibfd, 2);
4852 else if (abiversion (ibfd) == 1)
4853 {
4854 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4855 " for ABI version 1\n"), name);
4856 bfd_set_error (bfd_error_bad_value);
4857 return FALSE;
4858 }
4859 }
4860
4861 return TRUE;
4862 }
4863
4864 /* Merge non-visibility st_other attributes: local entry point. */
4865
4866 static void
4867 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4868 const Elf_Internal_Sym *isym,
4869 bfd_boolean definition,
4870 bfd_boolean dynamic)
4871 {
4872 if (definition && !dynamic)
4873 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4874 | ELF_ST_VISIBILITY (h->other));
4875 }
4876
4877 /* This function makes an old ABI object reference to ".bar" cause the
4878 inclusion of a new ABI object archive that defines "bar".
4879 NAME is a symbol defined in an archive. Return a symbol in the hash
4880 table that might be satisfied by the archive symbols. */
4881
4882 static struct elf_link_hash_entry *
4883 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4884 struct bfd_link_info *info,
4885 const char *name)
4886 {
4887 struct elf_link_hash_entry *h;
4888 char *dot_name;
4889 size_t len;
4890
4891 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4892 if (h != NULL
4893 /* Don't return this sym if it is a fake function descriptor
4894 created by add_symbol_adjust. */
4895 && !(h->root.type == bfd_link_hash_undefweak
4896 && ((struct ppc_link_hash_entry *) h)->fake))
4897 return h;
4898
4899 if (name[0] == '.')
4900 return h;
4901
4902 len = strlen (name);
4903 dot_name = bfd_alloc (abfd, len + 2);
4904 if (dot_name == NULL)
4905 return (struct elf_link_hash_entry *) 0 - 1;
4906 dot_name[0] = '.';
4907 memcpy (dot_name + 1, name, len + 1);
4908 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4909 bfd_release (abfd, dot_name);
4910 return h;
4911 }
4912
4913 /* This function satisfies all old ABI object references to ".bar" if a
4914 new ABI object defines "bar". Well, at least, undefined dot symbols
4915 are made weak. This stops later archive searches from including an
4916 object if we already have a function descriptor definition. It also
4917 prevents the linker complaining about undefined symbols.
4918 We also check and correct mismatched symbol visibility here. The
4919 most restrictive visibility of the function descriptor and the
4920 function entry symbol is used. */
4921
4922 static bfd_boolean
4923 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4924 {
4925 struct ppc_link_hash_table *htab;
4926 struct ppc_link_hash_entry *fdh;
4927
4928 if (eh->elf.root.type == bfd_link_hash_indirect)
4929 return TRUE;
4930
4931 if (eh->elf.root.type == bfd_link_hash_warning)
4932 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4933
4934 if (eh->elf.root.root.string[0] != '.')
4935 abort ();
4936
4937 htab = ppc_hash_table (info);
4938 if (htab == NULL)
4939 return FALSE;
4940
4941 fdh = lookup_fdh (eh, htab);
4942 if (fdh == NULL)
4943 {
4944 if (!info->relocatable
4945 && (eh->elf.root.type == bfd_link_hash_undefined
4946 || eh->elf.root.type == bfd_link_hash_undefweak)
4947 && eh->elf.ref_regular)
4948 {
4949 /* Make an undefweak function descriptor sym, which is enough to
4950 pull in an --as-needed shared lib, but won't cause link
4951 errors. Archives are handled elsewhere. */
4952 fdh = make_fdh (info, eh);
4953 if (fdh == NULL)
4954 return FALSE;
4955 fdh->elf.ref_regular = 1;
4956 }
4957 }
4958 else
4959 {
4960 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4961 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4962 if (entry_vis < descr_vis)
4963 fdh->elf.other += entry_vis - descr_vis;
4964 else if (entry_vis > descr_vis)
4965 eh->elf.other += descr_vis - entry_vis;
4966
4967 if ((fdh->elf.root.type == bfd_link_hash_defined
4968 || fdh->elf.root.type == bfd_link_hash_defweak)
4969 && eh->elf.root.type == bfd_link_hash_undefined)
4970 {
4971 eh->elf.root.type = bfd_link_hash_undefweak;
4972 eh->was_undefined = 1;
4973 htab->twiddled_syms = 1;
4974 }
4975 }
4976
4977 return TRUE;
4978 }
4979
4980 /* Set up opd section info and abiversion for IBFD, and process list
4981 of dot-symbols we made in link_hash_newfunc. */
4982
4983 static bfd_boolean
4984 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4985 {
4986 struct ppc_link_hash_table *htab;
4987 struct ppc_link_hash_entry **p, *eh;
4988 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4989
4990 if (opd != NULL && opd->size != 0)
4991 {
4992 if (abiversion (ibfd) == 0)
4993 set_abiversion (ibfd, 1);
4994 else if (abiversion (ibfd) == 2)
4995 {
4996 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4997 " version %d\n"),
4998 ibfd, abiversion (ibfd));
4999 bfd_set_error (bfd_error_bad_value);
5000 return FALSE;
5001 }
5002
5003 if ((ibfd->flags & DYNAMIC) == 0
5004 && (opd->flags & SEC_RELOC) != 0
5005 && opd->reloc_count != 0
5006 && !bfd_is_abs_section (opd->output_section))
5007 {
5008 /* Garbage collection needs some extra help with .opd sections.
5009 We don't want to necessarily keep everything referenced by
5010 relocs in .opd, as that would keep all functions. Instead,
5011 if we reference an .opd symbol (a function descriptor), we
5012 want to keep the function code symbol's section. This is
5013 easy for global symbols, but for local syms we need to keep
5014 information about the associated function section. */
5015 bfd_size_type amt;
5016 asection **opd_sym_map;
5017
5018 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
5019 opd_sym_map = bfd_zalloc (ibfd, amt);
5020 if (opd_sym_map == NULL)
5021 return FALSE;
5022 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5023 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5024 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5025 }
5026 }
5027
5028 if (!is_ppc64_elf (info->output_bfd))
5029 return TRUE;
5030 htab = ppc_hash_table (info);
5031 if (htab == NULL)
5032 return FALSE;
5033
5034 /* For input files without an explicit abiversion in e_flags
5035 we should have flagged any with symbol st_other bits set
5036 as ELFv1 and above flagged those with .opd as ELFv2.
5037 Set the output abiversion if not yet set, and for any input
5038 still ambiguous, take its abiversion from the output.
5039 Differences in ABI are reported later. */
5040 if (abiversion (info->output_bfd) == 0)
5041 set_abiversion (info->output_bfd, abiversion (ibfd));
5042 else if (abiversion (ibfd) == 0)
5043 set_abiversion (ibfd, abiversion (info->output_bfd));
5044
5045 p = &htab->dot_syms;
5046 while ((eh = *p) != NULL)
5047 {
5048 *p = NULL;
5049 if (&eh->elf == htab->elf.hgot)
5050 ;
5051 else if (htab->elf.hgot == NULL
5052 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5053 htab->elf.hgot = &eh->elf;
5054 else if (!add_symbol_adjust (eh, info))
5055 return FALSE;
5056 p = &eh->u.next_dot_sym;
5057 }
5058
5059 /* Clear the list for non-ppc64 input files. */
5060 p = &htab->dot_syms;
5061 while ((eh = *p) != NULL)
5062 {
5063 *p = NULL;
5064 p = &eh->u.next_dot_sym;
5065 }
5066
5067 /* We need to fix the undefs list for any syms we have twiddled to
5068 undef_weak. */
5069 if (htab->twiddled_syms)
5070 {
5071 bfd_link_repair_undef_list (&htab->elf.root);
5072 htab->twiddled_syms = 0;
5073 }
5074 return TRUE;
5075 }
5076
5077 /* Undo hash table changes when an --as-needed input file is determined
5078 not to be needed. */
5079
5080 static bfd_boolean
5081 ppc64_elf_notice_as_needed (bfd *ibfd,
5082 struct bfd_link_info *info,
5083 enum notice_asneeded_action act)
5084 {
5085 if (act == notice_not_needed)
5086 {
5087 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5088
5089 if (htab == NULL)
5090 return FALSE;
5091
5092 htab->dot_syms = NULL;
5093 }
5094 return _bfd_elf_notice_as_needed (ibfd, info, act);
5095 }
5096
5097 /* If --just-symbols against a final linked binary, then assume we need
5098 toc adjusting stubs when calling functions defined there. */
5099
5100 static void
5101 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5102 {
5103 if ((sec->flags & SEC_CODE) != 0
5104 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5105 && is_ppc64_elf (sec->owner))
5106 {
5107 if (abiversion (sec->owner) >= 2
5108 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5109 sec->has_toc_reloc = 1;
5110 }
5111 _bfd_elf_link_just_syms (sec, info);
5112 }
5113
5114 static struct plt_entry **
5115 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5116 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5117 {
5118 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5119 struct plt_entry **local_plt;
5120 unsigned char *local_got_tls_masks;
5121
5122 if (local_got_ents == NULL)
5123 {
5124 bfd_size_type size = symtab_hdr->sh_info;
5125
5126 size *= (sizeof (*local_got_ents)
5127 + sizeof (*local_plt)
5128 + sizeof (*local_got_tls_masks));
5129 local_got_ents = bfd_zalloc (abfd, size);
5130 if (local_got_ents == NULL)
5131 return NULL;
5132 elf_local_got_ents (abfd) = local_got_ents;
5133 }
5134
5135 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5136 {
5137 struct got_entry *ent;
5138
5139 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5140 if (ent->addend == r_addend
5141 && ent->owner == abfd
5142 && ent->tls_type == tls_type)
5143 break;
5144 if (ent == NULL)
5145 {
5146 bfd_size_type amt = sizeof (*ent);
5147 ent = bfd_alloc (abfd, amt);
5148 if (ent == NULL)
5149 return FALSE;
5150 ent->next = local_got_ents[r_symndx];
5151 ent->addend = r_addend;
5152 ent->owner = abfd;
5153 ent->tls_type = tls_type;
5154 ent->is_indirect = FALSE;
5155 ent->got.refcount = 0;
5156 local_got_ents[r_symndx] = ent;
5157 }
5158 ent->got.refcount += 1;
5159 }
5160
5161 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5162 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5163 local_got_tls_masks[r_symndx] |= tls_type;
5164
5165 return local_plt + r_symndx;
5166 }
5167
5168 static bfd_boolean
5169 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5170 {
5171 struct plt_entry *ent;
5172
5173 for (ent = *plist; ent != NULL; ent = ent->next)
5174 if (ent->addend == addend)
5175 break;
5176 if (ent == NULL)
5177 {
5178 bfd_size_type amt = sizeof (*ent);
5179 ent = bfd_alloc (abfd, amt);
5180 if (ent == NULL)
5181 return FALSE;
5182 ent->next = *plist;
5183 ent->addend = addend;
5184 ent->plt.refcount = 0;
5185 *plist = ent;
5186 }
5187 ent->plt.refcount += 1;
5188 return TRUE;
5189 }
5190
5191 static bfd_boolean
5192 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5193 {
5194 return (r_type == R_PPC64_REL24
5195 || r_type == R_PPC64_REL14
5196 || r_type == R_PPC64_REL14_BRTAKEN
5197 || r_type == R_PPC64_REL14_BRNTAKEN
5198 || r_type == R_PPC64_ADDR24
5199 || r_type == R_PPC64_ADDR14
5200 || r_type == R_PPC64_ADDR14_BRTAKEN
5201 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5202 }
5203
5204 /* Look through the relocs for a section during the first phase, and
5205 calculate needed space in the global offset table, procedure
5206 linkage table, and dynamic reloc sections. */
5207
5208 static bfd_boolean
5209 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5210 asection *sec, const Elf_Internal_Rela *relocs)
5211 {
5212 struct ppc_link_hash_table *htab;
5213 Elf_Internal_Shdr *symtab_hdr;
5214 struct elf_link_hash_entry **sym_hashes;
5215 const Elf_Internal_Rela *rel;
5216 const Elf_Internal_Rela *rel_end;
5217 asection *sreloc;
5218 asection **opd_sym_map;
5219 struct elf_link_hash_entry *tga, *dottga;
5220
5221 if (info->relocatable)
5222 return TRUE;
5223
5224 /* Don't do anything special with non-loaded, non-alloced sections.
5225 In particular, any relocs in such sections should not affect GOT
5226 and PLT reference counting (ie. we don't allow them to create GOT
5227 or PLT entries), there's no possibility or desire to optimize TLS
5228 relocs, and there's not much point in propagating relocs to shared
5229 libs that the dynamic linker won't relocate. */
5230 if ((sec->flags & SEC_ALLOC) == 0)
5231 return TRUE;
5232
5233 BFD_ASSERT (is_ppc64_elf (abfd));
5234
5235 htab = ppc_hash_table (info);
5236 if (htab == NULL)
5237 return FALSE;
5238
5239 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5240 FALSE, FALSE, TRUE);
5241 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5242 FALSE, FALSE, TRUE);
5243 symtab_hdr = &elf_symtab_hdr (abfd);
5244 sym_hashes = elf_sym_hashes (abfd);
5245 sreloc = NULL;
5246 opd_sym_map = NULL;
5247 if (ppc64_elf_section_data (sec) != NULL
5248 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5249 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5250
5251 rel_end = relocs + sec->reloc_count;
5252 for (rel = relocs; rel < rel_end; rel++)
5253 {
5254 unsigned long r_symndx;
5255 struct elf_link_hash_entry *h;
5256 enum elf_ppc64_reloc_type r_type;
5257 int tls_type;
5258 struct _ppc64_elf_section_data *ppc64_sec;
5259 struct plt_entry **ifunc;
5260
5261 r_symndx = ELF64_R_SYM (rel->r_info);
5262 if (r_symndx < symtab_hdr->sh_info)
5263 h = NULL;
5264 else
5265 {
5266 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5267 h = elf_follow_link (h);
5268
5269 /* PR15323, ref flags aren't set for references in the same
5270 object. */
5271 h->root.non_ir_ref = 1;
5272
5273 if (h == htab->elf.hgot)
5274 sec->has_toc_reloc = 1;
5275 }
5276
5277 tls_type = 0;
5278 ifunc = NULL;
5279 if (h != NULL)
5280 {
5281 if (h->type == STT_GNU_IFUNC)
5282 {
5283 h->needs_plt = 1;
5284 ifunc = &h->plt.plist;
5285 }
5286 }
5287 else
5288 {
5289 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5290 abfd, r_symndx);
5291 if (isym == NULL)
5292 return FALSE;
5293
5294 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5295 {
5296 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5297 rel->r_addend, PLT_IFUNC);
5298 if (ifunc == NULL)
5299 return FALSE;
5300 }
5301 }
5302 r_type = ELF64_R_TYPE (rel->r_info);
5303 if (is_branch_reloc (r_type))
5304 {
5305 if (h != NULL && (h == tga || h == dottga))
5306 {
5307 if (rel != relocs
5308 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5309 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5310 /* We have a new-style __tls_get_addr call with a marker
5311 reloc. */
5312 ;
5313 else
5314 /* Mark this section as having an old-style call. */
5315 sec->has_tls_get_addr_call = 1;
5316 }
5317
5318 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5319 if (ifunc != NULL
5320 && !update_plt_info (abfd, ifunc, rel->r_addend))
5321 return FALSE;
5322 }
5323
5324 switch (r_type)
5325 {
5326 case R_PPC64_TLSGD:
5327 case R_PPC64_TLSLD:
5328 /* These special tls relocs tie a call to __tls_get_addr with
5329 its parameter symbol. */
5330 break;
5331
5332 case R_PPC64_GOT_TLSLD16:
5333 case R_PPC64_GOT_TLSLD16_LO:
5334 case R_PPC64_GOT_TLSLD16_HI:
5335 case R_PPC64_GOT_TLSLD16_HA:
5336 tls_type = TLS_TLS | TLS_LD;
5337 goto dogottls;
5338
5339 case R_PPC64_GOT_TLSGD16:
5340 case R_PPC64_GOT_TLSGD16_LO:
5341 case R_PPC64_GOT_TLSGD16_HI:
5342 case R_PPC64_GOT_TLSGD16_HA:
5343 tls_type = TLS_TLS | TLS_GD;
5344 goto dogottls;
5345
5346 case R_PPC64_GOT_TPREL16_DS:
5347 case R_PPC64_GOT_TPREL16_LO_DS:
5348 case R_PPC64_GOT_TPREL16_HI:
5349 case R_PPC64_GOT_TPREL16_HA:
5350 if (info->shared)
5351 info->flags |= DF_STATIC_TLS;
5352 tls_type = TLS_TLS | TLS_TPREL;
5353 goto dogottls;
5354
5355 case R_PPC64_GOT_DTPREL16_DS:
5356 case R_PPC64_GOT_DTPREL16_LO_DS:
5357 case R_PPC64_GOT_DTPREL16_HI:
5358 case R_PPC64_GOT_DTPREL16_HA:
5359 tls_type = TLS_TLS | TLS_DTPREL;
5360 dogottls:
5361 sec->has_tls_reloc = 1;
5362 /* Fall thru */
5363
5364 case R_PPC64_GOT16:
5365 case R_PPC64_GOT16_DS:
5366 case R_PPC64_GOT16_HA:
5367 case R_PPC64_GOT16_HI:
5368 case R_PPC64_GOT16_LO:
5369 case R_PPC64_GOT16_LO_DS:
5370 /* This symbol requires a global offset table entry. */
5371 sec->has_toc_reloc = 1;
5372 if (r_type == R_PPC64_GOT_TLSLD16
5373 || r_type == R_PPC64_GOT_TLSGD16
5374 || r_type == R_PPC64_GOT_TPREL16_DS
5375 || r_type == R_PPC64_GOT_DTPREL16_DS
5376 || r_type == R_PPC64_GOT16
5377 || r_type == R_PPC64_GOT16_DS)
5378 {
5379 htab->do_multi_toc = 1;
5380 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5381 }
5382
5383 if (ppc64_elf_tdata (abfd)->got == NULL
5384 && !create_got_section (abfd, info))
5385 return FALSE;
5386
5387 if (h != NULL)
5388 {
5389 struct ppc_link_hash_entry *eh;
5390 struct got_entry *ent;
5391
5392 eh = (struct ppc_link_hash_entry *) h;
5393 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5394 if (ent->addend == rel->r_addend
5395 && ent->owner == abfd
5396 && ent->tls_type == tls_type)
5397 break;
5398 if (ent == NULL)
5399 {
5400 bfd_size_type amt = sizeof (*ent);
5401 ent = bfd_alloc (abfd, amt);
5402 if (ent == NULL)
5403 return FALSE;
5404 ent->next = eh->elf.got.glist;
5405 ent->addend = rel->r_addend;
5406 ent->owner = abfd;
5407 ent->tls_type = tls_type;
5408 ent->is_indirect = FALSE;
5409 ent->got.refcount = 0;
5410 eh->elf.got.glist = ent;
5411 }
5412 ent->got.refcount += 1;
5413 eh->tls_mask |= tls_type;
5414 }
5415 else
5416 /* This is a global offset table entry for a local symbol. */
5417 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5418 rel->r_addend, tls_type))
5419 return FALSE;
5420
5421 /* We may also need a plt entry if the symbol turns out to be
5422 an ifunc. */
5423 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5424 {
5425 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5426 return FALSE;
5427 }
5428 break;
5429
5430 case R_PPC64_PLT16_HA:
5431 case R_PPC64_PLT16_HI:
5432 case R_PPC64_PLT16_LO:
5433 case R_PPC64_PLT32:
5434 case R_PPC64_PLT64:
5435 /* This symbol requires a procedure linkage table entry. We
5436 actually build the entry in adjust_dynamic_symbol,
5437 because this might be a case of linking PIC code without
5438 linking in any dynamic objects, in which case we don't
5439 need to generate a procedure linkage table after all. */
5440 if (h == NULL)
5441 {
5442 /* It does not make sense to have a procedure linkage
5443 table entry for a local symbol. */
5444 bfd_set_error (bfd_error_bad_value);
5445 return FALSE;
5446 }
5447 else
5448 {
5449 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5450 return FALSE;
5451 h->needs_plt = 1;
5452 if (h->root.root.string[0] == '.'
5453 && h->root.root.string[1] != '\0')
5454 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5455 }
5456 break;
5457
5458 /* The following relocations don't need to propagate the
5459 relocation if linking a shared object since they are
5460 section relative. */
5461 case R_PPC64_SECTOFF:
5462 case R_PPC64_SECTOFF_LO:
5463 case R_PPC64_SECTOFF_HI:
5464 case R_PPC64_SECTOFF_HA:
5465 case R_PPC64_SECTOFF_DS:
5466 case R_PPC64_SECTOFF_LO_DS:
5467 case R_PPC64_DTPREL16:
5468 case R_PPC64_DTPREL16_LO:
5469 case R_PPC64_DTPREL16_HI:
5470 case R_PPC64_DTPREL16_HA:
5471 case R_PPC64_DTPREL16_DS:
5472 case R_PPC64_DTPREL16_LO_DS:
5473 case R_PPC64_DTPREL16_HIGH:
5474 case R_PPC64_DTPREL16_HIGHA:
5475 case R_PPC64_DTPREL16_HIGHER:
5476 case R_PPC64_DTPREL16_HIGHERA:
5477 case R_PPC64_DTPREL16_HIGHEST:
5478 case R_PPC64_DTPREL16_HIGHESTA:
5479 break;
5480
5481 /* Nor do these. */
5482 case R_PPC64_REL16:
5483 case R_PPC64_REL16_LO:
5484 case R_PPC64_REL16_HI:
5485 case R_PPC64_REL16_HA:
5486 break;
5487
5488 /* Not supported as a dynamic relocation. */
5489 case R_PPC64_ADDR64_LOCAL:
5490 if (info->shared)
5491 {
5492 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5493 ppc_howto_init ();
5494 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5495 "in shared libraries and PIEs.\n"),
5496 abfd, sec, rel->r_offset,
5497 ppc64_elf_howto_table[r_type]->name);
5498 bfd_set_error (bfd_error_bad_value);
5499 return FALSE;
5500 }
5501 break;
5502
5503 case R_PPC64_TOC16:
5504 case R_PPC64_TOC16_DS:
5505 htab->do_multi_toc = 1;
5506 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5507 case R_PPC64_TOC16_LO:
5508 case R_PPC64_TOC16_HI:
5509 case R_PPC64_TOC16_HA:
5510 case R_PPC64_TOC16_LO_DS:
5511 sec->has_toc_reloc = 1;
5512 break;
5513
5514 /* This relocation describes the C++ object vtable hierarchy.
5515 Reconstruct it for later use during GC. */
5516 case R_PPC64_GNU_VTINHERIT:
5517 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5518 return FALSE;
5519 break;
5520
5521 /* This relocation describes which C++ vtable entries are actually
5522 used. Record for later use during GC. */
5523 case R_PPC64_GNU_VTENTRY:
5524 BFD_ASSERT (h != NULL);
5525 if (h != NULL
5526 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5527 return FALSE;
5528 break;
5529
5530 case R_PPC64_REL14:
5531 case R_PPC64_REL14_BRTAKEN:
5532 case R_PPC64_REL14_BRNTAKEN:
5533 {
5534 asection *dest = NULL;
5535
5536 /* Heuristic: If jumping outside our section, chances are
5537 we are going to need a stub. */
5538 if (h != NULL)
5539 {
5540 /* If the sym is weak it may be overridden later, so
5541 don't assume we know where a weak sym lives. */
5542 if (h->root.type == bfd_link_hash_defined)
5543 dest = h->root.u.def.section;
5544 }
5545 else
5546 {
5547 Elf_Internal_Sym *isym;
5548
5549 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5550 abfd, r_symndx);
5551 if (isym == NULL)
5552 return FALSE;
5553
5554 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5555 }
5556
5557 if (dest != sec)
5558 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5559 }
5560 /* Fall through. */
5561
5562 case R_PPC64_REL24:
5563 if (h != NULL && ifunc == NULL)
5564 {
5565 /* We may need a .plt entry if the function this reloc
5566 refers to is in a shared lib. */
5567 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5568 return FALSE;
5569 h->needs_plt = 1;
5570 if (h->root.root.string[0] == '.'
5571 && h->root.root.string[1] != '\0')
5572 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5573 if (h == tga || h == dottga)
5574 sec->has_tls_reloc = 1;
5575 }
5576 break;
5577
5578 case R_PPC64_TPREL64:
5579 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5580 if (info->shared)
5581 info->flags |= DF_STATIC_TLS;
5582 goto dotlstoc;
5583
5584 case R_PPC64_DTPMOD64:
5585 if (rel + 1 < rel_end
5586 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5587 && rel[1].r_offset == rel->r_offset + 8)
5588 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5589 else
5590 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5591 goto dotlstoc;
5592
5593 case R_PPC64_DTPREL64:
5594 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5595 if (rel != relocs
5596 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5597 && rel[-1].r_offset == rel->r_offset - 8)
5598 /* This is the second reloc of a dtpmod, dtprel pair.
5599 Don't mark with TLS_DTPREL. */
5600 goto dodyn;
5601
5602 dotlstoc:
5603 sec->has_tls_reloc = 1;
5604 if (h != NULL)
5605 {
5606 struct ppc_link_hash_entry *eh;
5607 eh = (struct ppc_link_hash_entry *) h;
5608 eh->tls_mask |= tls_type;
5609 }
5610 else
5611 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5612 rel->r_addend, tls_type))
5613 return FALSE;
5614
5615 ppc64_sec = ppc64_elf_section_data (sec);
5616 if (ppc64_sec->sec_type != sec_toc)
5617 {
5618 bfd_size_type amt;
5619
5620 /* One extra to simplify get_tls_mask. */
5621 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5622 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5623 if (ppc64_sec->u.toc.symndx == NULL)
5624 return FALSE;
5625 amt = sec->size * sizeof (bfd_vma) / 8;
5626 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5627 if (ppc64_sec->u.toc.add == NULL)
5628 return FALSE;
5629 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5630 ppc64_sec->sec_type = sec_toc;
5631 }
5632 BFD_ASSERT (rel->r_offset % 8 == 0);
5633 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5634 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5635
5636 /* Mark the second slot of a GD or LD entry.
5637 -1 to indicate GD and -2 to indicate LD. */
5638 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5639 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5640 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5641 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5642 goto dodyn;
5643
5644 case R_PPC64_TPREL16:
5645 case R_PPC64_TPREL16_LO:
5646 case R_PPC64_TPREL16_HI:
5647 case R_PPC64_TPREL16_HA:
5648 case R_PPC64_TPREL16_DS:
5649 case R_PPC64_TPREL16_LO_DS:
5650 case R_PPC64_TPREL16_HIGH:
5651 case R_PPC64_TPREL16_HIGHA:
5652 case R_PPC64_TPREL16_HIGHER:
5653 case R_PPC64_TPREL16_HIGHERA:
5654 case R_PPC64_TPREL16_HIGHEST:
5655 case R_PPC64_TPREL16_HIGHESTA:
5656 if (info->shared)
5657 {
5658 info->flags |= DF_STATIC_TLS;
5659 goto dodyn;
5660 }
5661 break;
5662
5663 case R_PPC64_ADDR64:
5664 if (opd_sym_map != NULL
5665 && rel + 1 < rel_end
5666 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5667 {
5668 if (h != NULL)
5669 {
5670 if (h->root.root.string[0] == '.'
5671 && h->root.root.string[1] != 0
5672 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5673 ;
5674 else
5675 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5676 }
5677 else
5678 {
5679 asection *s;
5680 Elf_Internal_Sym *isym;
5681
5682 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5683 abfd, r_symndx);
5684 if (isym == NULL)
5685 return FALSE;
5686
5687 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5688 if (s != NULL && s != sec)
5689 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
5690 }
5691 }
5692 /* Fall through. */
5693
5694 case R_PPC64_ADDR16:
5695 case R_PPC64_ADDR16_DS:
5696 case R_PPC64_ADDR16_HA:
5697 case R_PPC64_ADDR16_HI:
5698 case R_PPC64_ADDR16_HIGH:
5699 case R_PPC64_ADDR16_HIGHA:
5700 case R_PPC64_ADDR16_HIGHER:
5701 case R_PPC64_ADDR16_HIGHERA:
5702 case R_PPC64_ADDR16_HIGHEST:
5703 case R_PPC64_ADDR16_HIGHESTA:
5704 case R_PPC64_ADDR16_LO:
5705 case R_PPC64_ADDR16_LO_DS:
5706 if (h != NULL && !info->shared && abiversion (abfd) != 1
5707 && rel->r_addend == 0)
5708 {
5709 /* We may need a .plt entry if this reloc refers to a
5710 function in a shared lib. */
5711 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5712 return FALSE;
5713 h->pointer_equality_needed = 1;
5714 }
5715 /* Fall through. */
5716
5717 case R_PPC64_REL30:
5718 case R_PPC64_REL32:
5719 case R_PPC64_REL64:
5720 case R_PPC64_ADDR14:
5721 case R_PPC64_ADDR14_BRNTAKEN:
5722 case R_PPC64_ADDR14_BRTAKEN:
5723 case R_PPC64_ADDR24:
5724 case R_PPC64_ADDR32:
5725 case R_PPC64_UADDR16:
5726 case R_PPC64_UADDR32:
5727 case R_PPC64_UADDR64:
5728 case R_PPC64_TOC:
5729 if (h != NULL && !info->shared)
5730 /* We may need a copy reloc. */
5731 h->non_got_ref = 1;
5732
5733 /* Don't propagate .opd relocs. */
5734 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5735 break;
5736
5737 /* If we are creating a shared library, and this is a reloc
5738 against a global symbol, or a non PC relative reloc
5739 against a local symbol, then we need to copy the reloc
5740 into the shared library. However, if we are linking with
5741 -Bsymbolic, we do not need to copy a reloc against a
5742 global symbol which is defined in an object we are
5743 including in the link (i.e., DEF_REGULAR is set). At
5744 this point we have not seen all the input files, so it is
5745 possible that DEF_REGULAR is not set now but will be set
5746 later (it is never cleared). In case of a weak definition,
5747 DEF_REGULAR may be cleared later by a strong definition in
5748 a shared library. We account for that possibility below by
5749 storing information in the dyn_relocs field of the hash
5750 table entry. A similar situation occurs when creating
5751 shared libraries and symbol visibility changes render the
5752 symbol local.
5753
5754 If on the other hand, we are creating an executable, we
5755 may need to keep relocations for symbols satisfied by a
5756 dynamic library if we manage to avoid copy relocs for the
5757 symbol. */
5758 dodyn:
5759 if ((info->shared
5760 && (must_be_dyn_reloc (info, r_type)
5761 || (h != NULL
5762 && (!SYMBOLIC_BIND (info, h)
5763 || h->root.type == bfd_link_hash_defweak
5764 || !h->def_regular))))
5765 || (ELIMINATE_COPY_RELOCS
5766 && !info->shared
5767 && h != NULL
5768 && (h->root.type == bfd_link_hash_defweak
5769 || !h->def_regular))
5770 || (!info->shared
5771 && ifunc != NULL))
5772 {
5773 /* We must copy these reloc types into the output file.
5774 Create a reloc section in dynobj and make room for
5775 this reloc. */
5776 if (sreloc == NULL)
5777 {
5778 sreloc = _bfd_elf_make_dynamic_reloc_section
5779 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5780
5781 if (sreloc == NULL)
5782 return FALSE;
5783 }
5784
5785 /* If this is a global symbol, we count the number of
5786 relocations we need for this symbol. */
5787 if (h != NULL)
5788 {
5789 struct elf_dyn_relocs *p;
5790 struct elf_dyn_relocs **head;
5791
5792 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5793 p = *head;
5794 if (p == NULL || p->sec != sec)
5795 {
5796 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5797 if (p == NULL)
5798 return FALSE;
5799 p->next = *head;
5800 *head = p;
5801 p->sec = sec;
5802 p->count = 0;
5803 p->pc_count = 0;
5804 }
5805 p->count += 1;
5806 if (!must_be_dyn_reloc (info, r_type))
5807 p->pc_count += 1;
5808 }
5809 else
5810 {
5811 /* Track dynamic relocs needed for local syms too.
5812 We really need local syms available to do this
5813 easily. Oh well. */
5814 struct ppc_dyn_relocs *p;
5815 struct ppc_dyn_relocs **head;
5816 bfd_boolean is_ifunc;
5817 asection *s;
5818 void *vpp;
5819 Elf_Internal_Sym *isym;
5820
5821 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5822 abfd, r_symndx);
5823 if (isym == NULL)
5824 return FALSE;
5825
5826 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5827 if (s == NULL)
5828 s = sec;
5829
5830 vpp = &elf_section_data (s)->local_dynrel;
5831 head = (struct ppc_dyn_relocs **) vpp;
5832 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5833 p = *head;
5834 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5835 p = p->next;
5836 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5837 {
5838 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5839 if (p == NULL)
5840 return FALSE;
5841 p->next = *head;
5842 *head = p;
5843 p->sec = sec;
5844 p->ifunc = is_ifunc;
5845 p->count = 0;
5846 }
5847 p->count += 1;
5848 }
5849 }
5850 break;
5851
5852 default:
5853 break;
5854 }
5855 }
5856
5857 return TRUE;
5858 }
5859
5860 /* Merge backend specific data from an object file to the output
5861 object file when linking. */
5862
5863 static bfd_boolean
5864 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5865 {
5866 unsigned long iflags, oflags;
5867
5868 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5869 return TRUE;
5870
5871 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5872 return TRUE;
5873
5874 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5875 return FALSE;
5876
5877 iflags = elf_elfheader (ibfd)->e_flags;
5878 oflags = elf_elfheader (obfd)->e_flags;
5879
5880 if (iflags & ~EF_PPC64_ABI)
5881 {
5882 (*_bfd_error_handler)
5883 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5884 bfd_set_error (bfd_error_bad_value);
5885 return FALSE;
5886 }
5887 else if (iflags != oflags && iflags != 0)
5888 {
5889 (*_bfd_error_handler)
5890 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5891 ibfd, iflags, oflags);
5892 bfd_set_error (bfd_error_bad_value);
5893 return FALSE;
5894 }
5895
5896 /* Merge Tag_compatibility attributes and any common GNU ones. */
5897 _bfd_elf_merge_object_attributes (ibfd, obfd);
5898
5899 return TRUE;
5900 }
5901
5902 static bfd_boolean
5903 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5904 {
5905 /* Print normal ELF private data. */
5906 _bfd_elf_print_private_bfd_data (abfd, ptr);
5907
5908 if (elf_elfheader (abfd)->e_flags != 0)
5909 {
5910 FILE *file = ptr;
5911
5912 /* xgettext:c-format */
5913 fprintf (file, _("private flags = 0x%lx:"),
5914 elf_elfheader (abfd)->e_flags);
5915
5916 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5917 fprintf (file, _(" [abiv%ld]"),
5918 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5919 fputc ('\n', file);
5920 }
5921
5922 return TRUE;
5923 }
5924
5925 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5926 of the code entry point, and its section, which must be in the same
5927 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5928
5929 static bfd_vma
5930 opd_entry_value (asection *opd_sec,
5931 bfd_vma offset,
5932 asection **code_sec,
5933 bfd_vma *code_off,
5934 bfd_boolean in_code_sec)
5935 {
5936 bfd *opd_bfd = opd_sec->owner;
5937 Elf_Internal_Rela *relocs;
5938 Elf_Internal_Rela *lo, *hi, *look;
5939 bfd_vma val;
5940
5941 /* No relocs implies we are linking a --just-symbols object, or looking
5942 at a final linked executable with addr2line or somesuch. */
5943 if (opd_sec->reloc_count == 0)
5944 {
5945 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5946
5947 if (contents == NULL)
5948 {
5949 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5950 return (bfd_vma) -1;
5951 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5952 }
5953
5954 /* PR 17512: file: 64b9dfbb. */
5955 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5956 return (bfd_vma) -1;
5957
5958 val = bfd_get_64 (opd_bfd, contents + offset);
5959 if (code_sec != NULL)
5960 {
5961 asection *sec, *likely = NULL;
5962
5963 if (in_code_sec)
5964 {
5965 sec = *code_sec;
5966 if (sec->vma <= val
5967 && val < sec->vma + sec->size)
5968 likely = sec;
5969 else
5970 val = -1;
5971 }
5972 else
5973 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5974 if (sec->vma <= val
5975 && (sec->flags & SEC_LOAD) != 0
5976 && (sec->flags & SEC_ALLOC) != 0)
5977 likely = sec;
5978 if (likely != NULL)
5979 {
5980 *code_sec = likely;
5981 if (code_off != NULL)
5982 *code_off = val - likely->vma;
5983 }
5984 }
5985 return val;
5986 }
5987
5988 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5989
5990 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5991 if (relocs == NULL)
5992 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5993 /* PR 17512: file: df8e1fd6. */
5994 if (relocs == NULL)
5995 return (bfd_vma) -1;
5996
5997 /* Go find the opd reloc at the sym address. */
5998 lo = relocs;
5999 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
6000 val = (bfd_vma) -1;
6001 while (lo < hi)
6002 {
6003 look = lo + (hi - lo) / 2;
6004 if (look->r_offset < offset)
6005 lo = look + 1;
6006 else if (look->r_offset > offset)
6007 hi = look;
6008 else
6009 {
6010 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
6011
6012 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
6013 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
6014 {
6015 unsigned long symndx = ELF64_R_SYM (look->r_info);
6016 asection *sec = NULL;
6017
6018 if (symndx >= symtab_hdr->sh_info
6019 && elf_sym_hashes (opd_bfd) != NULL)
6020 {
6021 struct elf_link_hash_entry **sym_hashes;
6022 struct elf_link_hash_entry *rh;
6023
6024 sym_hashes = elf_sym_hashes (opd_bfd);
6025 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6026 if (rh != NULL)
6027 {
6028 rh = elf_follow_link (rh);
6029 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6030 || rh->root.type == bfd_link_hash_defweak);
6031 val = rh->root.u.def.value;
6032 sec = rh->root.u.def.section;
6033 if (sec->owner != opd_bfd)
6034 {
6035 sec = NULL;
6036 val = (bfd_vma) -1;
6037 }
6038 }
6039 }
6040
6041 if (sec == NULL)
6042 {
6043 Elf_Internal_Sym *sym;
6044
6045 if (symndx < symtab_hdr->sh_info)
6046 {
6047 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6048 if (sym == NULL)
6049 {
6050 size_t symcnt = symtab_hdr->sh_info;
6051 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6052 symcnt, 0,
6053 NULL, NULL, NULL);
6054 if (sym == NULL)
6055 break;
6056 symtab_hdr->contents = (bfd_byte *) sym;
6057 }
6058 sym += symndx;
6059 }
6060 else
6061 {
6062 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6063 1, symndx,
6064 NULL, NULL, NULL);
6065 if (sym == NULL)
6066 break;
6067 }
6068 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6069 if (sec == NULL)
6070 break;
6071 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6072 val = sym->st_value;
6073 }
6074
6075 val += look->r_addend;
6076 if (code_off != NULL)
6077 *code_off = val;
6078 if (code_sec != NULL)
6079 {
6080 if (in_code_sec && *code_sec != sec)
6081 return -1;
6082 else
6083 *code_sec = sec;
6084 }
6085 if (sec->output_section != NULL)
6086 val += sec->output_section->vma + sec->output_offset;
6087 }
6088 break;
6089 }
6090 }
6091
6092 return val;
6093 }
6094
6095 /* If the ELF symbol SYM might be a function in SEC, return the
6096 function size and set *CODE_OFF to the function's entry point,
6097 otherwise return zero. */
6098
6099 static bfd_size_type
6100 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6101 bfd_vma *code_off)
6102 {
6103 bfd_size_type size;
6104
6105 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6106 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6107 return 0;
6108
6109 size = 0;
6110 if (!(sym->flags & BSF_SYNTHETIC))
6111 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6112
6113 if (strcmp (sym->section->name, ".opd") == 0)
6114 {
6115 if (opd_entry_value (sym->section, sym->value,
6116 &sec, code_off, TRUE) == (bfd_vma) -1)
6117 return 0;
6118 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6119 symbol. This size has nothing to do with the code size of the
6120 function, which is what we're supposed to return, but the
6121 code size isn't available without looking up the dot-sym.
6122 However, doing that would be a waste of time particularly
6123 since elf_find_function will look at the dot-sym anyway.
6124 Now, elf_find_function will keep the largest size of any
6125 function sym found at the code address of interest, so return
6126 1 here to avoid it incorrectly caching a larger function size
6127 for a small function. This does mean we return the wrong
6128 size for a new-ABI function of size 24, but all that does is
6129 disable caching for such functions. */
6130 if (size == 24)
6131 size = 1;
6132 }
6133 else
6134 {
6135 if (sym->section != sec)
6136 return 0;
6137 *code_off = sym->value;
6138 }
6139 if (size == 0)
6140 size = 1;
6141 return size;
6142 }
6143
6144 /* Return true if symbol is defined in a regular object file. */
6145
6146 static bfd_boolean
6147 is_static_defined (struct elf_link_hash_entry *h)
6148 {
6149 return ((h->root.type == bfd_link_hash_defined
6150 || h->root.type == bfd_link_hash_defweak)
6151 && h->root.u.def.section != NULL
6152 && h->root.u.def.section->output_section != NULL);
6153 }
6154
6155 /* If FDH is a function descriptor symbol, return the associated code
6156 entry symbol if it is defined. Return NULL otherwise. */
6157
6158 static struct ppc_link_hash_entry *
6159 defined_code_entry (struct ppc_link_hash_entry *fdh)
6160 {
6161 if (fdh->is_func_descriptor)
6162 {
6163 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6164 if (fh->elf.root.type == bfd_link_hash_defined
6165 || fh->elf.root.type == bfd_link_hash_defweak)
6166 return fh;
6167 }
6168 return NULL;
6169 }
6170
6171 /* If FH is a function code entry symbol, return the associated
6172 function descriptor symbol if it is defined. Return NULL otherwise. */
6173
6174 static struct ppc_link_hash_entry *
6175 defined_func_desc (struct ppc_link_hash_entry *fh)
6176 {
6177 if (fh->oh != NULL
6178 && fh->oh->is_func_descriptor)
6179 {
6180 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6181 if (fdh->elf.root.type == bfd_link_hash_defined
6182 || fdh->elf.root.type == bfd_link_hash_defweak)
6183 return fdh;
6184 }
6185 return NULL;
6186 }
6187
6188 /* Mark all our entry sym sections, both opd and code section. */
6189
6190 static void
6191 ppc64_elf_gc_keep (struct bfd_link_info *info)
6192 {
6193 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6194 struct bfd_sym_chain *sym;
6195
6196 if (htab == NULL)
6197 return;
6198
6199 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6200 {
6201 struct ppc_link_hash_entry *eh, *fh;
6202 asection *sec;
6203
6204 eh = (struct ppc_link_hash_entry *)
6205 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6206 if (eh == NULL)
6207 continue;
6208 if (eh->elf.root.type != bfd_link_hash_defined
6209 && eh->elf.root.type != bfd_link_hash_defweak)
6210 continue;
6211
6212 fh = defined_code_entry (eh);
6213 if (fh != NULL)
6214 {
6215 sec = fh->elf.root.u.def.section;
6216 sec->flags |= SEC_KEEP;
6217 }
6218 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6219 && opd_entry_value (eh->elf.root.u.def.section,
6220 eh->elf.root.u.def.value,
6221 &sec, NULL, FALSE) != (bfd_vma) -1)
6222 sec->flags |= SEC_KEEP;
6223
6224 sec = eh->elf.root.u.def.section;
6225 sec->flags |= SEC_KEEP;
6226 }
6227 }
6228
6229 /* Mark sections containing dynamically referenced symbols. When
6230 building shared libraries, we must assume that any visible symbol is
6231 referenced. */
6232
6233 static bfd_boolean
6234 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6235 {
6236 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6237 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6238 struct ppc_link_hash_entry *fdh;
6239 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6240
6241 /* Dynamic linking info is on the func descriptor sym. */
6242 fdh = defined_func_desc (eh);
6243 if (fdh != NULL)
6244 eh = fdh;
6245
6246 if ((eh->elf.root.type == bfd_link_hash_defined
6247 || eh->elf.root.type == bfd_link_hash_defweak)
6248 && (eh->elf.ref_dynamic
6249 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
6250 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6251 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6252 && (!info->executable
6253 || info->export_dynamic
6254 || (eh->elf.dynamic
6255 && d != NULL
6256 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6257 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6258 || !bfd_hide_sym_by_version (info->version_info,
6259 eh->elf.root.root.string)))))
6260 {
6261 asection *code_sec;
6262 struct ppc_link_hash_entry *fh;
6263
6264 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6265
6266 /* Function descriptor syms cause the associated
6267 function code sym section to be marked. */
6268 fh = defined_code_entry (eh);
6269 if (fh != NULL)
6270 {
6271 code_sec = fh->elf.root.u.def.section;
6272 code_sec->flags |= SEC_KEEP;
6273 }
6274 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6275 && opd_entry_value (eh->elf.root.u.def.section,
6276 eh->elf.root.u.def.value,
6277 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6278 code_sec->flags |= SEC_KEEP;
6279 }
6280
6281 return TRUE;
6282 }
6283
6284 /* Return the section that should be marked against GC for a given
6285 relocation. */
6286
6287 static asection *
6288 ppc64_elf_gc_mark_hook (asection *sec,
6289 struct bfd_link_info *info,
6290 Elf_Internal_Rela *rel,
6291 struct elf_link_hash_entry *h,
6292 Elf_Internal_Sym *sym)
6293 {
6294 asection *rsec;
6295
6296 /* Syms return NULL if we're marking .opd, so we avoid marking all
6297 function sections, as all functions are referenced in .opd. */
6298 rsec = NULL;
6299 if (get_opd_info (sec) != NULL)
6300 return rsec;
6301
6302 if (h != NULL)
6303 {
6304 enum elf_ppc64_reloc_type r_type;
6305 struct ppc_link_hash_entry *eh, *fh, *fdh;
6306
6307 r_type = ELF64_R_TYPE (rel->r_info);
6308 switch (r_type)
6309 {
6310 case R_PPC64_GNU_VTINHERIT:
6311 case R_PPC64_GNU_VTENTRY:
6312 break;
6313
6314 default:
6315 switch (h->root.type)
6316 {
6317 case bfd_link_hash_defined:
6318 case bfd_link_hash_defweak:
6319 eh = (struct ppc_link_hash_entry *) h;
6320 fdh = defined_func_desc (eh);
6321 if (fdh != NULL)
6322 eh = fdh;
6323
6324 /* Function descriptor syms cause the associated
6325 function code sym section to be marked. */
6326 fh = defined_code_entry (eh);
6327 if (fh != NULL)
6328 {
6329 /* They also mark their opd section. */
6330 eh->elf.root.u.def.section->gc_mark = 1;
6331
6332 rsec = fh->elf.root.u.def.section;
6333 }
6334 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6335 && opd_entry_value (eh->elf.root.u.def.section,
6336 eh->elf.root.u.def.value,
6337 &rsec, NULL, FALSE) != (bfd_vma) -1)
6338 eh->elf.root.u.def.section->gc_mark = 1;
6339 else
6340 rsec = h->root.u.def.section;
6341 break;
6342
6343 case bfd_link_hash_common:
6344 rsec = h->root.u.c.p->section;
6345 break;
6346
6347 default:
6348 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6349 }
6350 }
6351 }
6352 else
6353 {
6354 struct _opd_sec_data *opd;
6355
6356 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6357 opd = get_opd_info (rsec);
6358 if (opd != NULL && opd->func_sec != NULL)
6359 {
6360 rsec->gc_mark = 1;
6361
6362 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
6363 }
6364 }
6365
6366 return rsec;
6367 }
6368
6369 /* Update the .got, .plt. and dynamic reloc reference counts for the
6370 section being removed. */
6371
6372 static bfd_boolean
6373 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6374 asection *sec, const Elf_Internal_Rela *relocs)
6375 {
6376 struct ppc_link_hash_table *htab;
6377 Elf_Internal_Shdr *symtab_hdr;
6378 struct elf_link_hash_entry **sym_hashes;
6379 struct got_entry **local_got_ents;
6380 const Elf_Internal_Rela *rel, *relend;
6381
6382 if (info->relocatable)
6383 return TRUE;
6384
6385 if ((sec->flags & SEC_ALLOC) == 0)
6386 return TRUE;
6387
6388 elf_section_data (sec)->local_dynrel = NULL;
6389
6390 htab = ppc_hash_table (info);
6391 if (htab == NULL)
6392 return FALSE;
6393
6394 symtab_hdr = &elf_symtab_hdr (abfd);
6395 sym_hashes = elf_sym_hashes (abfd);
6396 local_got_ents = elf_local_got_ents (abfd);
6397
6398 relend = relocs + sec->reloc_count;
6399 for (rel = relocs; rel < relend; rel++)
6400 {
6401 unsigned long r_symndx;
6402 enum elf_ppc64_reloc_type r_type;
6403 struct elf_link_hash_entry *h = NULL;
6404 unsigned char tls_type = 0;
6405
6406 r_symndx = ELF64_R_SYM (rel->r_info);
6407 r_type = ELF64_R_TYPE (rel->r_info);
6408 if (r_symndx >= symtab_hdr->sh_info)
6409 {
6410 struct ppc_link_hash_entry *eh;
6411 struct elf_dyn_relocs **pp;
6412 struct elf_dyn_relocs *p;
6413
6414 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6415 h = elf_follow_link (h);
6416 eh = (struct ppc_link_hash_entry *) h;
6417
6418 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6419 if (p->sec == sec)
6420 {
6421 /* Everything must go for SEC. */
6422 *pp = p->next;
6423 break;
6424 }
6425 }
6426
6427 if (is_branch_reloc (r_type))
6428 {
6429 struct plt_entry **ifunc = NULL;
6430 if (h != NULL)
6431 {
6432 if (h->type == STT_GNU_IFUNC)
6433 ifunc = &h->plt.plist;
6434 }
6435 else if (local_got_ents != NULL)
6436 {
6437 struct plt_entry **local_plt = (struct plt_entry **)
6438 (local_got_ents + symtab_hdr->sh_info);
6439 unsigned char *local_got_tls_masks = (unsigned char *)
6440 (local_plt + symtab_hdr->sh_info);
6441 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6442 ifunc = local_plt + r_symndx;
6443 }
6444 if (ifunc != NULL)
6445 {
6446 struct plt_entry *ent;
6447
6448 for (ent = *ifunc; ent != NULL; ent = ent->next)
6449 if (ent->addend == rel->r_addend)
6450 break;
6451 if (ent == NULL)
6452 abort ();
6453 if (ent->plt.refcount > 0)
6454 ent->plt.refcount -= 1;
6455 continue;
6456 }
6457 }
6458
6459 switch (r_type)
6460 {
6461 case R_PPC64_GOT_TLSLD16:
6462 case R_PPC64_GOT_TLSLD16_LO:
6463 case R_PPC64_GOT_TLSLD16_HI:
6464 case R_PPC64_GOT_TLSLD16_HA:
6465 tls_type = TLS_TLS | TLS_LD;
6466 goto dogot;
6467
6468 case R_PPC64_GOT_TLSGD16:
6469 case R_PPC64_GOT_TLSGD16_LO:
6470 case R_PPC64_GOT_TLSGD16_HI:
6471 case R_PPC64_GOT_TLSGD16_HA:
6472 tls_type = TLS_TLS | TLS_GD;
6473 goto dogot;
6474
6475 case R_PPC64_GOT_TPREL16_DS:
6476 case R_PPC64_GOT_TPREL16_LO_DS:
6477 case R_PPC64_GOT_TPREL16_HI:
6478 case R_PPC64_GOT_TPREL16_HA:
6479 tls_type = TLS_TLS | TLS_TPREL;
6480 goto dogot;
6481
6482 case R_PPC64_GOT_DTPREL16_DS:
6483 case R_PPC64_GOT_DTPREL16_LO_DS:
6484 case R_PPC64_GOT_DTPREL16_HI:
6485 case R_PPC64_GOT_DTPREL16_HA:
6486 tls_type = TLS_TLS | TLS_DTPREL;
6487 goto dogot;
6488
6489 case R_PPC64_GOT16:
6490 case R_PPC64_GOT16_DS:
6491 case R_PPC64_GOT16_HA:
6492 case R_PPC64_GOT16_HI:
6493 case R_PPC64_GOT16_LO:
6494 case R_PPC64_GOT16_LO_DS:
6495 dogot:
6496 {
6497 struct got_entry *ent;
6498
6499 if (h != NULL)
6500 ent = h->got.glist;
6501 else
6502 ent = local_got_ents[r_symndx];
6503
6504 for (; ent != NULL; ent = ent->next)
6505 if (ent->addend == rel->r_addend
6506 && ent->owner == abfd
6507 && ent->tls_type == tls_type)
6508 break;
6509 if (ent == NULL)
6510 abort ();
6511 if (ent->got.refcount > 0)
6512 ent->got.refcount -= 1;
6513 }
6514 break;
6515
6516 case R_PPC64_PLT16_HA:
6517 case R_PPC64_PLT16_HI:
6518 case R_PPC64_PLT16_LO:
6519 case R_PPC64_PLT32:
6520 case R_PPC64_PLT64:
6521 case R_PPC64_REL14:
6522 case R_PPC64_REL14_BRNTAKEN:
6523 case R_PPC64_REL14_BRTAKEN:
6524 case R_PPC64_REL24:
6525 if (h != NULL)
6526 {
6527 struct plt_entry *ent;
6528
6529 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6530 if (ent->addend == rel->r_addend)
6531 break;
6532 if (ent != NULL && ent->plt.refcount > 0)
6533 ent->plt.refcount -= 1;
6534 }
6535 break;
6536
6537 default:
6538 break;
6539 }
6540 }
6541 return TRUE;
6542 }
6543
6544 /* The maximum size of .sfpr. */
6545 #define SFPR_MAX (218*4)
6546
6547 struct sfpr_def_parms
6548 {
6549 const char name[12];
6550 unsigned char lo, hi;
6551 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6552 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6553 };
6554
6555 /* Auto-generate _save*, _rest* functions in .sfpr. */
6556
6557 static bfd_boolean
6558 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6559 {
6560 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6561 unsigned int i;
6562 size_t len = strlen (parm->name);
6563 bfd_boolean writing = FALSE;
6564 char sym[16];
6565
6566 if (htab == NULL)
6567 return FALSE;
6568
6569 memcpy (sym, parm->name, len);
6570 sym[len + 2] = 0;
6571
6572 for (i = parm->lo; i <= parm->hi; i++)
6573 {
6574 struct elf_link_hash_entry *h;
6575
6576 sym[len + 0] = i / 10 + '0';
6577 sym[len + 1] = i % 10 + '0';
6578 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6579 if (h != NULL
6580 && !h->def_regular)
6581 {
6582 h->root.type = bfd_link_hash_defined;
6583 h->root.u.def.section = htab->sfpr;
6584 h->root.u.def.value = htab->sfpr->size;
6585 h->type = STT_FUNC;
6586 h->def_regular = 1;
6587 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6588 writing = TRUE;
6589 if (htab->sfpr->contents == NULL)
6590 {
6591 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6592 if (htab->sfpr->contents == NULL)
6593 return FALSE;
6594 }
6595 }
6596 if (writing)
6597 {
6598 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6599 if (i != parm->hi)
6600 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6601 else
6602 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6603 htab->sfpr->size = p - htab->sfpr->contents;
6604 }
6605 }
6606
6607 return TRUE;
6608 }
6609
6610 static bfd_byte *
6611 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6612 {
6613 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6614 return p + 4;
6615 }
6616
6617 static bfd_byte *
6618 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6619 {
6620 p = savegpr0 (abfd, p, r);
6621 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6622 p = p + 4;
6623 bfd_put_32 (abfd, BLR, p);
6624 return p + 4;
6625 }
6626
6627 static bfd_byte *
6628 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6629 {
6630 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6631 return p + 4;
6632 }
6633
6634 static bfd_byte *
6635 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6636 {
6637 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6638 p = p + 4;
6639 p = restgpr0 (abfd, p, r);
6640 bfd_put_32 (abfd, MTLR_R0, p);
6641 p = p + 4;
6642 if (r == 29)
6643 {
6644 p = restgpr0 (abfd, p, 30);
6645 p = restgpr0 (abfd, p, 31);
6646 }
6647 bfd_put_32 (abfd, BLR, p);
6648 return p + 4;
6649 }
6650
6651 static bfd_byte *
6652 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6653 {
6654 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6655 return p + 4;
6656 }
6657
6658 static bfd_byte *
6659 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6660 {
6661 p = savegpr1 (abfd, p, r);
6662 bfd_put_32 (abfd, BLR, p);
6663 return p + 4;
6664 }
6665
6666 static bfd_byte *
6667 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6668 {
6669 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6670 return p + 4;
6671 }
6672
6673 static bfd_byte *
6674 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6675 {
6676 p = restgpr1 (abfd, p, r);
6677 bfd_put_32 (abfd, BLR, p);
6678 return p + 4;
6679 }
6680
6681 static bfd_byte *
6682 savefpr (bfd *abfd, bfd_byte *p, int r)
6683 {
6684 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6685 return p + 4;
6686 }
6687
6688 static bfd_byte *
6689 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6690 {
6691 p = savefpr (abfd, p, r);
6692 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6693 p = p + 4;
6694 bfd_put_32 (abfd, BLR, p);
6695 return p + 4;
6696 }
6697
6698 static bfd_byte *
6699 restfpr (bfd *abfd, bfd_byte *p, int r)
6700 {
6701 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6702 return p + 4;
6703 }
6704
6705 static bfd_byte *
6706 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6707 {
6708 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6709 p = p + 4;
6710 p = restfpr (abfd, p, r);
6711 bfd_put_32 (abfd, MTLR_R0, p);
6712 p = p + 4;
6713 if (r == 29)
6714 {
6715 p = restfpr (abfd, p, 30);
6716 p = restfpr (abfd, p, 31);
6717 }
6718 bfd_put_32 (abfd, BLR, p);
6719 return p + 4;
6720 }
6721
6722 static bfd_byte *
6723 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6724 {
6725 p = savefpr (abfd, p, r);
6726 bfd_put_32 (abfd, BLR, p);
6727 return p + 4;
6728 }
6729
6730 static bfd_byte *
6731 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6732 {
6733 p = restfpr (abfd, p, r);
6734 bfd_put_32 (abfd, BLR, p);
6735 return p + 4;
6736 }
6737
6738 static bfd_byte *
6739 savevr (bfd *abfd, bfd_byte *p, int r)
6740 {
6741 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6742 p = p + 4;
6743 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6744 return p + 4;
6745 }
6746
6747 static bfd_byte *
6748 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6749 {
6750 p = savevr (abfd, p, r);
6751 bfd_put_32 (abfd, BLR, p);
6752 return p + 4;
6753 }
6754
6755 static bfd_byte *
6756 restvr (bfd *abfd, bfd_byte *p, int r)
6757 {
6758 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6759 p = p + 4;
6760 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6761 return p + 4;
6762 }
6763
6764 static bfd_byte *
6765 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6766 {
6767 p = restvr (abfd, p, r);
6768 bfd_put_32 (abfd, BLR, p);
6769 return p + 4;
6770 }
6771
6772 /* Called via elf_link_hash_traverse to transfer dynamic linking
6773 information on function code symbol entries to their corresponding
6774 function descriptor symbol entries. */
6775
6776 static bfd_boolean
6777 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6778 {
6779 struct bfd_link_info *info;
6780 struct ppc_link_hash_table *htab;
6781 struct plt_entry *ent;
6782 struct ppc_link_hash_entry *fh;
6783 struct ppc_link_hash_entry *fdh;
6784 bfd_boolean force_local;
6785
6786 fh = (struct ppc_link_hash_entry *) h;
6787 if (fh->elf.root.type == bfd_link_hash_indirect)
6788 return TRUE;
6789
6790 info = inf;
6791 htab = ppc_hash_table (info);
6792 if (htab == NULL)
6793 return FALSE;
6794
6795 /* Resolve undefined references to dot-symbols as the value
6796 in the function descriptor, if we have one in a regular object.
6797 This is to satisfy cases like ".quad .foo". Calls to functions
6798 in dynamic objects are handled elsewhere. */
6799 if (fh->elf.root.type == bfd_link_hash_undefweak
6800 && fh->was_undefined
6801 && (fdh = defined_func_desc (fh)) != NULL
6802 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6803 && opd_entry_value (fdh->elf.root.u.def.section,
6804 fdh->elf.root.u.def.value,
6805 &fh->elf.root.u.def.section,
6806 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6807 {
6808 fh->elf.root.type = fdh->elf.root.type;
6809 fh->elf.forced_local = 1;
6810 fh->elf.def_regular = fdh->elf.def_regular;
6811 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6812 }
6813
6814 /* If this is a function code symbol, transfer dynamic linking
6815 information to the function descriptor symbol. */
6816 if (!fh->is_func)
6817 return TRUE;
6818
6819 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6820 if (ent->plt.refcount > 0)
6821 break;
6822 if (ent == NULL
6823 || fh->elf.root.root.string[0] != '.'
6824 || fh->elf.root.root.string[1] == '\0')
6825 return TRUE;
6826
6827 /* Find the corresponding function descriptor symbol. Create it
6828 as undefined if necessary. */
6829
6830 fdh = lookup_fdh (fh, htab);
6831 if (fdh == NULL
6832 && !info->executable
6833 && (fh->elf.root.type == bfd_link_hash_undefined
6834 || fh->elf.root.type == bfd_link_hash_undefweak))
6835 {
6836 fdh = make_fdh (info, fh);
6837 if (fdh == NULL)
6838 return FALSE;
6839 }
6840
6841 /* Fake function descriptors are made undefweak. If the function
6842 code symbol is strong undefined, make the fake sym the same.
6843 If the function code symbol is defined, then force the fake
6844 descriptor local; We can't support overriding of symbols in a
6845 shared library on a fake descriptor. */
6846
6847 if (fdh != NULL
6848 && fdh->fake
6849 && fdh->elf.root.type == bfd_link_hash_undefweak)
6850 {
6851 if (fh->elf.root.type == bfd_link_hash_undefined)
6852 {
6853 fdh->elf.root.type = bfd_link_hash_undefined;
6854 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6855 }
6856 else if (fh->elf.root.type == bfd_link_hash_defined
6857 || fh->elf.root.type == bfd_link_hash_defweak)
6858 {
6859 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6860 }
6861 }
6862
6863 if (fdh != NULL
6864 && !fdh->elf.forced_local
6865 && (!info->executable
6866 || fdh->elf.def_dynamic
6867 || fdh->elf.ref_dynamic
6868 || (fdh->elf.root.type == bfd_link_hash_undefweak
6869 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6870 {
6871 if (fdh->elf.dynindx == -1)
6872 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6873 return FALSE;
6874 fdh->elf.ref_regular |= fh->elf.ref_regular;
6875 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6876 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6877 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6878 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6879 {
6880 move_plt_plist (fh, fdh);
6881 fdh->elf.needs_plt = 1;
6882 }
6883 fdh->is_func_descriptor = 1;
6884 fdh->oh = fh;
6885 fh->oh = fdh;
6886 }
6887
6888 /* Now that the info is on the function descriptor, clear the
6889 function code sym info. Any function code syms for which we
6890 don't have a definition in a regular file, we force local.
6891 This prevents a shared library from exporting syms that have
6892 been imported from another library. Function code syms that
6893 are really in the library we must leave global to prevent the
6894 linker dragging in a definition from a static library. */
6895 force_local = (!fh->elf.def_regular
6896 || fdh == NULL
6897 || !fdh->elf.def_regular
6898 || fdh->elf.forced_local);
6899 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6900
6901 return TRUE;
6902 }
6903
6904 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6905 this hook to a) provide some gcc support functions, and b) transfer
6906 dynamic linking information gathered so far on function code symbol
6907 entries, to their corresponding function descriptor symbol entries. */
6908
6909 static bfd_boolean
6910 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6911 struct bfd_link_info *info)
6912 {
6913 struct ppc_link_hash_table *htab;
6914 unsigned int i;
6915 static const struct sfpr_def_parms funcs[] =
6916 {
6917 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6918 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6919 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6920 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6921 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6922 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6923 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6924 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6925 { "._savef", 14, 31, savefpr, savefpr1_tail },
6926 { "._restf", 14, 31, restfpr, restfpr1_tail },
6927 { "_savevr_", 20, 31, savevr, savevr_tail },
6928 { "_restvr_", 20, 31, restvr, restvr_tail }
6929 };
6930
6931 htab = ppc_hash_table (info);
6932 if (htab == NULL)
6933 return FALSE;
6934
6935 if (!info->relocatable
6936 && htab->elf.hgot != NULL)
6937 {
6938 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6939 /* Make .TOC. defined so as to prevent it being made dynamic.
6940 The wrong value here is fixed later in ppc64_elf_set_toc. */
6941 htab->elf.hgot->type = STT_OBJECT;
6942 htab->elf.hgot->root.type = bfd_link_hash_defined;
6943 htab->elf.hgot->root.u.def.value = 0;
6944 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6945 htab->elf.hgot->def_regular = 1;
6946 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6947 | STV_HIDDEN);
6948 }
6949
6950 if (htab->sfpr == NULL)
6951 /* We don't have any relocs. */
6952 return TRUE;
6953
6954 /* Provide any missing _save* and _rest* functions. */
6955 htab->sfpr->size = 0;
6956 if (htab->params->save_restore_funcs)
6957 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6958 if (!sfpr_define (info, &funcs[i]))
6959 return FALSE;
6960
6961 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6962
6963 if (htab->sfpr->size == 0)
6964 htab->sfpr->flags |= SEC_EXCLUDE;
6965
6966 return TRUE;
6967 }
6968
6969 /* Return true if we have dynamic relocs that apply to read-only sections. */
6970
6971 static bfd_boolean
6972 readonly_dynrelocs (struct elf_link_hash_entry *h)
6973 {
6974 struct ppc_link_hash_entry *eh;
6975 struct elf_dyn_relocs *p;
6976
6977 eh = (struct ppc_link_hash_entry *) h;
6978 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6979 {
6980 asection *s = p->sec->output_section;
6981
6982 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6983 return TRUE;
6984 }
6985 return FALSE;
6986 }
6987
6988 /* Adjust a symbol defined by a dynamic object and referenced by a
6989 regular object. The current definition is in some section of the
6990 dynamic object, but we're not including those sections. We have to
6991 change the definition to something the rest of the link can
6992 understand. */
6993
6994 static bfd_boolean
6995 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6996 struct elf_link_hash_entry *h)
6997 {
6998 struct ppc_link_hash_table *htab;
6999 asection *s;
7000
7001 htab = ppc_hash_table (info);
7002 if (htab == NULL)
7003 return FALSE;
7004
7005 /* Deal with function syms. */
7006 if (h->type == STT_FUNC
7007 || h->type == STT_GNU_IFUNC
7008 || h->needs_plt)
7009 {
7010 /* Clear procedure linkage table information for any symbol that
7011 won't need a .plt entry. */
7012 struct plt_entry *ent;
7013 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
7014 if (ent->plt.refcount > 0)
7015 break;
7016 if (ent == NULL
7017 || (h->type != STT_GNU_IFUNC
7018 && (SYMBOL_CALLS_LOCAL (info, h)
7019 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7020 && h->root.type == bfd_link_hash_undefweak))))
7021 {
7022 h->plt.plist = NULL;
7023 h->needs_plt = 0;
7024 h->pointer_equality_needed = 0;
7025 }
7026 else if (abiversion (info->output_bfd) == 2)
7027 {
7028 /* Taking a function's address in a read/write section
7029 doesn't require us to define the function symbol in the
7030 executable on a global entry stub. A dynamic reloc can
7031 be used instead. */
7032 if (h->pointer_equality_needed
7033 && h->type != STT_GNU_IFUNC
7034 && !readonly_dynrelocs (h))
7035 {
7036 h->pointer_equality_needed = 0;
7037 h->non_got_ref = 0;
7038 }
7039
7040 /* After adjust_dynamic_symbol, non_got_ref set in the
7041 non-shared case means that we have allocated space in
7042 .dynbss for the symbol and thus dyn_relocs for this
7043 symbol should be discarded.
7044 If we get here we know we are making a PLT entry for this
7045 symbol, and in an executable we'd normally resolve
7046 relocations against this symbol to the PLT entry. Allow
7047 dynamic relocs if the reference is weak, and the dynamic
7048 relocs will not cause text relocation. */
7049 else if (!h->ref_regular_nonweak
7050 && h->non_got_ref
7051 && h->type != STT_GNU_IFUNC
7052 && !readonly_dynrelocs (h))
7053 h->non_got_ref = 0;
7054
7055 /* If making a plt entry, then we don't need copy relocs. */
7056 return TRUE;
7057 }
7058 }
7059 else
7060 h->plt.plist = NULL;
7061
7062 /* If this is a weak symbol, and there is a real definition, the
7063 processor independent code will have arranged for us to see the
7064 real definition first, and we can just use the same value. */
7065 if (h->u.weakdef != NULL)
7066 {
7067 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7068 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7069 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7070 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7071 if (ELIMINATE_COPY_RELOCS)
7072 h->non_got_ref = h->u.weakdef->non_got_ref;
7073 return TRUE;
7074 }
7075
7076 /* If we are creating a shared library, we must presume that the
7077 only references to the symbol are via the global offset table.
7078 For such cases we need not do anything here; the relocations will
7079 be handled correctly by relocate_section. */
7080 if (info->shared)
7081 return TRUE;
7082
7083 /* If there are no references to this symbol that do not use the
7084 GOT, we don't need to generate a copy reloc. */
7085 if (!h->non_got_ref)
7086 return TRUE;
7087
7088 /* Don't generate a copy reloc for symbols defined in the executable. */
7089 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7090 return TRUE;
7091
7092 /* If -z nocopyreloc was given, don't generate them either. */
7093 if (info->nocopyreloc)
7094 {
7095 h->non_got_ref = 0;
7096 return TRUE;
7097 }
7098
7099 /* If we didn't find any dynamic relocs in read-only sections, then
7100 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7101 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7102 {
7103 h->non_got_ref = 0;
7104 return TRUE;
7105 }
7106
7107 /* Protected variables do not work with .dynbss. The copy in
7108 .dynbss won't be used by the shared library with the protected
7109 definition for the variable. Text relocations are preferable
7110 to an incorrect program. */
7111 if (h->protected_def)
7112 {
7113 h->non_got_ref = 0;
7114 return TRUE;
7115 }
7116
7117 if (h->plt.plist != NULL)
7118 {
7119 /* We should never get here, but unfortunately there are versions
7120 of gcc out there that improperly (for this ABI) put initialized
7121 function pointers, vtable refs and suchlike in read-only
7122 sections. Allow them to proceed, but warn that this might
7123 break at runtime. */
7124 info->callbacks->einfo
7125 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7126 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7127 h->root.root.string);
7128 }
7129
7130 /* This is a reference to a symbol defined by a dynamic object which
7131 is not a function. */
7132
7133 /* We must allocate the symbol in our .dynbss section, which will
7134 become part of the .bss section of the executable. There will be
7135 an entry for this symbol in the .dynsym section. The dynamic
7136 object will contain position independent code, so all references
7137 from the dynamic object to this symbol will go through the global
7138 offset table. The dynamic linker will use the .dynsym entry to
7139 determine the address it must put in the global offset table, so
7140 both the dynamic object and the regular object will refer to the
7141 same memory location for the variable. */
7142
7143 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7144 to copy the initial value out of the dynamic object and into the
7145 runtime process image. We need to remember the offset into the
7146 .rela.bss section we are going to use. */
7147 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7148 {
7149 htab->relbss->size += sizeof (Elf64_External_Rela);
7150 h->needs_copy = 1;
7151 }
7152
7153 s = htab->dynbss;
7154
7155 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7156 }
7157
7158 /* If given a function descriptor symbol, hide both the function code
7159 sym and the descriptor. */
7160 static void
7161 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7162 struct elf_link_hash_entry *h,
7163 bfd_boolean force_local)
7164 {
7165 struct ppc_link_hash_entry *eh;
7166 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7167
7168 eh = (struct ppc_link_hash_entry *) h;
7169 if (eh->is_func_descriptor)
7170 {
7171 struct ppc_link_hash_entry *fh = eh->oh;
7172
7173 if (fh == NULL)
7174 {
7175 const char *p, *q;
7176 struct ppc_link_hash_table *htab;
7177 char save;
7178
7179 /* We aren't supposed to use alloca in BFD because on
7180 systems which do not have alloca the version in libiberty
7181 calls xmalloc, which might cause the program to crash
7182 when it runs out of memory. This function doesn't have a
7183 return status, so there's no way to gracefully return an
7184 error. So cheat. We know that string[-1] can be safely
7185 accessed; It's either a string in an ELF string table,
7186 or allocated in an objalloc structure. */
7187
7188 p = eh->elf.root.root.string - 1;
7189 save = *p;
7190 *(char *) p = '.';
7191 htab = ppc_hash_table (info);
7192 if (htab == NULL)
7193 return;
7194
7195 fh = (struct ppc_link_hash_entry *)
7196 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7197 *(char *) p = save;
7198
7199 /* Unfortunately, if it so happens that the string we were
7200 looking for was allocated immediately before this string,
7201 then we overwrote the string terminator. That's the only
7202 reason the lookup should fail. */
7203 if (fh == NULL)
7204 {
7205 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7206 while (q >= eh->elf.root.root.string && *q == *p)
7207 --q, --p;
7208 if (q < eh->elf.root.root.string && *p == '.')
7209 fh = (struct ppc_link_hash_entry *)
7210 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7211 }
7212 if (fh != NULL)
7213 {
7214 eh->oh = fh;
7215 fh->oh = eh;
7216 }
7217 }
7218 if (fh != NULL)
7219 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7220 }
7221 }
7222
7223 static bfd_boolean
7224 get_sym_h (struct elf_link_hash_entry **hp,
7225 Elf_Internal_Sym **symp,
7226 asection **symsecp,
7227 unsigned char **tls_maskp,
7228 Elf_Internal_Sym **locsymsp,
7229 unsigned long r_symndx,
7230 bfd *ibfd)
7231 {
7232 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7233
7234 if (r_symndx >= symtab_hdr->sh_info)
7235 {
7236 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7237 struct elf_link_hash_entry *h;
7238
7239 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7240 h = elf_follow_link (h);
7241
7242 if (hp != NULL)
7243 *hp = h;
7244
7245 if (symp != NULL)
7246 *symp = NULL;
7247
7248 if (symsecp != NULL)
7249 {
7250 asection *symsec = NULL;
7251 if (h->root.type == bfd_link_hash_defined
7252 || h->root.type == bfd_link_hash_defweak)
7253 symsec = h->root.u.def.section;
7254 *symsecp = symsec;
7255 }
7256
7257 if (tls_maskp != NULL)
7258 {
7259 struct ppc_link_hash_entry *eh;
7260
7261 eh = (struct ppc_link_hash_entry *) h;
7262 *tls_maskp = &eh->tls_mask;
7263 }
7264 }
7265 else
7266 {
7267 Elf_Internal_Sym *sym;
7268 Elf_Internal_Sym *locsyms = *locsymsp;
7269
7270 if (locsyms == NULL)
7271 {
7272 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7273 if (locsyms == NULL)
7274 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7275 symtab_hdr->sh_info,
7276 0, NULL, NULL, NULL);
7277 if (locsyms == NULL)
7278 return FALSE;
7279 *locsymsp = locsyms;
7280 }
7281 sym = locsyms + r_symndx;
7282
7283 if (hp != NULL)
7284 *hp = NULL;
7285
7286 if (symp != NULL)
7287 *symp = sym;
7288
7289 if (symsecp != NULL)
7290 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7291
7292 if (tls_maskp != NULL)
7293 {
7294 struct got_entry **lgot_ents;
7295 unsigned char *tls_mask;
7296
7297 tls_mask = NULL;
7298 lgot_ents = elf_local_got_ents (ibfd);
7299 if (lgot_ents != NULL)
7300 {
7301 struct plt_entry **local_plt = (struct plt_entry **)
7302 (lgot_ents + symtab_hdr->sh_info);
7303 unsigned char *lgot_masks = (unsigned char *)
7304 (local_plt + symtab_hdr->sh_info);
7305 tls_mask = &lgot_masks[r_symndx];
7306 }
7307 *tls_maskp = tls_mask;
7308 }
7309 }
7310 return TRUE;
7311 }
7312
7313 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7314 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7315 type suitable for optimization, and 1 otherwise. */
7316
7317 static int
7318 get_tls_mask (unsigned char **tls_maskp,
7319 unsigned long *toc_symndx,
7320 bfd_vma *toc_addend,
7321 Elf_Internal_Sym **locsymsp,
7322 const Elf_Internal_Rela *rel,
7323 bfd *ibfd)
7324 {
7325 unsigned long r_symndx;
7326 int next_r;
7327 struct elf_link_hash_entry *h;
7328 Elf_Internal_Sym *sym;
7329 asection *sec;
7330 bfd_vma off;
7331
7332 r_symndx = ELF64_R_SYM (rel->r_info);
7333 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7334 return 0;
7335
7336 if ((*tls_maskp != NULL && **tls_maskp != 0)
7337 || sec == NULL
7338 || ppc64_elf_section_data (sec) == NULL
7339 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7340 return 1;
7341
7342 /* Look inside a TOC section too. */
7343 if (h != NULL)
7344 {
7345 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7346 off = h->root.u.def.value;
7347 }
7348 else
7349 off = sym->st_value;
7350 off += rel->r_addend;
7351 BFD_ASSERT (off % 8 == 0);
7352 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7353 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7354 if (toc_symndx != NULL)
7355 *toc_symndx = r_symndx;
7356 if (toc_addend != NULL)
7357 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7358 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7359 return 0;
7360 if ((h == NULL || is_static_defined (h))
7361 && (next_r == -1 || next_r == -2))
7362 return 1 - next_r;
7363 return 1;
7364 }
7365
7366 /* Find (or create) an entry in the tocsave hash table. */
7367
7368 static struct tocsave_entry *
7369 tocsave_find (struct ppc_link_hash_table *htab,
7370 enum insert_option insert,
7371 Elf_Internal_Sym **local_syms,
7372 const Elf_Internal_Rela *irela,
7373 bfd *ibfd)
7374 {
7375 unsigned long r_indx;
7376 struct elf_link_hash_entry *h;
7377 Elf_Internal_Sym *sym;
7378 struct tocsave_entry ent, *p;
7379 hashval_t hash;
7380 struct tocsave_entry **slot;
7381
7382 r_indx = ELF64_R_SYM (irela->r_info);
7383 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7384 return NULL;
7385 if (ent.sec == NULL || ent.sec->output_section == NULL)
7386 {
7387 (*_bfd_error_handler)
7388 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7389 return NULL;
7390 }
7391
7392 if (h != NULL)
7393 ent.offset = h->root.u.def.value;
7394 else
7395 ent.offset = sym->st_value;
7396 ent.offset += irela->r_addend;
7397
7398 hash = tocsave_htab_hash (&ent);
7399 slot = ((struct tocsave_entry **)
7400 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7401 if (slot == NULL)
7402 return NULL;
7403
7404 if (*slot == NULL)
7405 {
7406 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7407 if (p == NULL)
7408 return NULL;
7409 *p = ent;
7410 *slot = p;
7411 }
7412 return *slot;
7413 }
7414
7415 /* Adjust all global syms defined in opd sections. In gcc generated
7416 code for the old ABI, these will already have been done. */
7417
7418 static bfd_boolean
7419 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7420 {
7421 struct ppc_link_hash_entry *eh;
7422 asection *sym_sec;
7423 struct _opd_sec_data *opd;
7424
7425 if (h->root.type == bfd_link_hash_indirect)
7426 return TRUE;
7427
7428 if (h->root.type != bfd_link_hash_defined
7429 && h->root.type != bfd_link_hash_defweak)
7430 return TRUE;
7431
7432 eh = (struct ppc_link_hash_entry *) h;
7433 if (eh->adjust_done)
7434 return TRUE;
7435
7436 sym_sec = eh->elf.root.u.def.section;
7437 opd = get_opd_info (sym_sec);
7438 if (opd != NULL && opd->adjust != NULL)
7439 {
7440 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
7441 if (adjust == -1)
7442 {
7443 /* This entry has been deleted. */
7444 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7445 if (dsec == NULL)
7446 {
7447 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7448 if (discarded_section (dsec))
7449 {
7450 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7451 break;
7452 }
7453 }
7454 eh->elf.root.u.def.value = 0;
7455 eh->elf.root.u.def.section = dsec;
7456 }
7457 else
7458 eh->elf.root.u.def.value += adjust;
7459 eh->adjust_done = 1;
7460 }
7461 return TRUE;
7462 }
7463
7464 /* Handles decrementing dynamic reloc counts for the reloc specified by
7465 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7466 have already been determined. */
7467
7468 static bfd_boolean
7469 dec_dynrel_count (bfd_vma r_info,
7470 asection *sec,
7471 struct bfd_link_info *info,
7472 Elf_Internal_Sym **local_syms,
7473 struct elf_link_hash_entry *h,
7474 Elf_Internal_Sym *sym)
7475 {
7476 enum elf_ppc64_reloc_type r_type;
7477 asection *sym_sec = NULL;
7478
7479 /* Can this reloc be dynamic? This switch, and later tests here
7480 should be kept in sync with the code in check_relocs. */
7481 r_type = ELF64_R_TYPE (r_info);
7482 switch (r_type)
7483 {
7484 default:
7485 return TRUE;
7486
7487 case R_PPC64_TPREL16:
7488 case R_PPC64_TPREL16_LO:
7489 case R_PPC64_TPREL16_HI:
7490 case R_PPC64_TPREL16_HA:
7491 case R_PPC64_TPREL16_DS:
7492 case R_PPC64_TPREL16_LO_DS:
7493 case R_PPC64_TPREL16_HIGH:
7494 case R_PPC64_TPREL16_HIGHA:
7495 case R_PPC64_TPREL16_HIGHER:
7496 case R_PPC64_TPREL16_HIGHERA:
7497 case R_PPC64_TPREL16_HIGHEST:
7498 case R_PPC64_TPREL16_HIGHESTA:
7499 if (!info->shared)
7500 return TRUE;
7501
7502 case R_PPC64_TPREL64:
7503 case R_PPC64_DTPMOD64:
7504 case R_PPC64_DTPREL64:
7505 case R_PPC64_ADDR64:
7506 case R_PPC64_REL30:
7507 case R_PPC64_REL32:
7508 case R_PPC64_REL64:
7509 case R_PPC64_ADDR14:
7510 case R_PPC64_ADDR14_BRNTAKEN:
7511 case R_PPC64_ADDR14_BRTAKEN:
7512 case R_PPC64_ADDR16:
7513 case R_PPC64_ADDR16_DS:
7514 case R_PPC64_ADDR16_HA:
7515 case R_PPC64_ADDR16_HI:
7516 case R_PPC64_ADDR16_HIGH:
7517 case R_PPC64_ADDR16_HIGHA:
7518 case R_PPC64_ADDR16_HIGHER:
7519 case R_PPC64_ADDR16_HIGHERA:
7520 case R_PPC64_ADDR16_HIGHEST:
7521 case R_PPC64_ADDR16_HIGHESTA:
7522 case R_PPC64_ADDR16_LO:
7523 case R_PPC64_ADDR16_LO_DS:
7524 case R_PPC64_ADDR24:
7525 case R_PPC64_ADDR32:
7526 case R_PPC64_UADDR16:
7527 case R_PPC64_UADDR32:
7528 case R_PPC64_UADDR64:
7529 case R_PPC64_TOC:
7530 break;
7531 }
7532
7533 if (local_syms != NULL)
7534 {
7535 unsigned long r_symndx;
7536 bfd *ibfd = sec->owner;
7537
7538 r_symndx = ELF64_R_SYM (r_info);
7539 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7540 return FALSE;
7541 }
7542
7543 if ((info->shared
7544 && (must_be_dyn_reloc (info, r_type)
7545 || (h != NULL
7546 && (!SYMBOLIC_BIND (info, h)
7547 || h->root.type == bfd_link_hash_defweak
7548 || !h->def_regular))))
7549 || (ELIMINATE_COPY_RELOCS
7550 && !info->shared
7551 && h != NULL
7552 && (h->root.type == bfd_link_hash_defweak
7553 || !h->def_regular)))
7554 ;
7555 else
7556 return TRUE;
7557
7558 if (h != NULL)
7559 {
7560 struct elf_dyn_relocs *p;
7561 struct elf_dyn_relocs **pp;
7562 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7563
7564 /* elf_gc_sweep may have already removed all dyn relocs associated
7565 with local syms for a given section. Also, symbol flags are
7566 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7567 report a dynreloc miscount. */
7568 if (*pp == NULL && info->gc_sections)
7569 return TRUE;
7570
7571 while ((p = *pp) != NULL)
7572 {
7573 if (p->sec == sec)
7574 {
7575 if (!must_be_dyn_reloc (info, r_type))
7576 p->pc_count -= 1;
7577 p->count -= 1;
7578 if (p->count == 0)
7579 *pp = p->next;
7580 return TRUE;
7581 }
7582 pp = &p->next;
7583 }
7584 }
7585 else
7586 {
7587 struct ppc_dyn_relocs *p;
7588 struct ppc_dyn_relocs **pp;
7589 void *vpp;
7590 bfd_boolean is_ifunc;
7591
7592 if (local_syms == NULL)
7593 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7594 if (sym_sec == NULL)
7595 sym_sec = sec;
7596
7597 vpp = &elf_section_data (sym_sec)->local_dynrel;
7598 pp = (struct ppc_dyn_relocs **) vpp;
7599
7600 if (*pp == NULL && info->gc_sections)
7601 return TRUE;
7602
7603 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7604 while ((p = *pp) != NULL)
7605 {
7606 if (p->sec == sec && p->ifunc == is_ifunc)
7607 {
7608 p->count -= 1;
7609 if (p->count == 0)
7610 *pp = p->next;
7611 return TRUE;
7612 }
7613 pp = &p->next;
7614 }
7615 }
7616
7617 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7618 sec->owner, sec);
7619 bfd_set_error (bfd_error_bad_value);
7620 return FALSE;
7621 }
7622
7623 /* Remove unused Official Procedure Descriptor entries. Currently we
7624 only remove those associated with functions in discarded link-once
7625 sections, or weakly defined functions that have been overridden. It
7626 would be possible to remove many more entries for statically linked
7627 applications. */
7628
7629 bfd_boolean
7630 ppc64_elf_edit_opd (struct bfd_link_info *info)
7631 {
7632 bfd *ibfd;
7633 bfd_boolean some_edited = FALSE;
7634 asection *need_pad = NULL;
7635 struct ppc_link_hash_table *htab;
7636
7637 htab = ppc_hash_table (info);
7638 if (htab == NULL)
7639 return FALSE;
7640
7641 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7642 {
7643 asection *sec;
7644 Elf_Internal_Rela *relstart, *rel, *relend;
7645 Elf_Internal_Shdr *symtab_hdr;
7646 Elf_Internal_Sym *local_syms;
7647 struct _opd_sec_data *opd;
7648 bfd_boolean need_edit, add_aux_fields, broken;
7649 bfd_size_type cnt_16b = 0;
7650
7651 if (!is_ppc64_elf (ibfd))
7652 continue;
7653
7654 sec = bfd_get_section_by_name (ibfd, ".opd");
7655 if (sec == NULL || sec->size == 0)
7656 continue;
7657
7658 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7659 continue;
7660
7661 if (sec->output_section == bfd_abs_section_ptr)
7662 continue;
7663
7664 /* Look through the section relocs. */
7665 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7666 continue;
7667
7668 local_syms = NULL;
7669 symtab_hdr = &elf_symtab_hdr (ibfd);
7670
7671 /* Read the relocations. */
7672 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7673 info->keep_memory);
7674 if (relstart == NULL)
7675 return FALSE;
7676
7677 /* First run through the relocs to check they are sane, and to
7678 determine whether we need to edit this opd section. */
7679 need_edit = FALSE;
7680 broken = FALSE;
7681 need_pad = sec;
7682 relend = relstart + sec->reloc_count;
7683 for (rel = relstart; rel < relend; )
7684 {
7685 enum elf_ppc64_reloc_type r_type;
7686 unsigned long r_symndx;
7687 asection *sym_sec;
7688 struct elf_link_hash_entry *h;
7689 Elf_Internal_Sym *sym;
7690 bfd_vma offset;
7691
7692 /* .opd contains an array of 16 or 24 byte entries. We're
7693 only interested in the reloc pointing to a function entry
7694 point. */
7695 offset = rel->r_offset;
7696 if (rel + 1 == relend
7697 || rel[1].r_offset != offset + 8)
7698 {
7699 /* If someone messes with .opd alignment then after a
7700 "ld -r" we might have padding in the middle of .opd.
7701 Also, there's nothing to prevent someone putting
7702 something silly in .opd with the assembler. No .opd
7703 optimization for them! */
7704 broken_opd:
7705 (*_bfd_error_handler)
7706 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7707 broken = TRUE;
7708 break;
7709 }
7710
7711 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7712 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7713 {
7714 (*_bfd_error_handler)
7715 (_("%B: unexpected reloc type %u in .opd section"),
7716 ibfd, r_type);
7717 broken = TRUE;
7718 break;
7719 }
7720
7721 r_symndx = ELF64_R_SYM (rel->r_info);
7722 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7723 r_symndx, ibfd))
7724 goto error_ret;
7725
7726 if (sym_sec == NULL || sym_sec->owner == NULL)
7727 {
7728 const char *sym_name;
7729 if (h != NULL)
7730 sym_name = h->root.root.string;
7731 else
7732 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7733 sym_sec);
7734
7735 (*_bfd_error_handler)
7736 (_("%B: undefined sym `%s' in .opd section"),
7737 ibfd, sym_name);
7738 broken = TRUE;
7739 break;
7740 }
7741
7742 /* opd entries are always for functions defined in the
7743 current input bfd. If the symbol isn't defined in the
7744 input bfd, then we won't be using the function in this
7745 bfd; It must be defined in a linkonce section in another
7746 bfd, or is weak. It's also possible that we are
7747 discarding the function due to a linker script /DISCARD/,
7748 which we test for via the output_section. */
7749 if (sym_sec->owner != ibfd
7750 || sym_sec->output_section == bfd_abs_section_ptr)
7751 need_edit = TRUE;
7752
7753 rel += 2;
7754 if (rel + 1 == relend
7755 || (rel + 2 < relend
7756 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7757 ++rel;
7758
7759 if (rel == relend)
7760 {
7761 if (sec->size == offset + 24)
7762 {
7763 need_pad = NULL;
7764 break;
7765 }
7766 if (sec->size == offset + 16)
7767 {
7768 cnt_16b++;
7769 break;
7770 }
7771 goto broken_opd;
7772 }
7773 else if (rel + 1 < relend
7774 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7775 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7776 {
7777 if (rel[0].r_offset == offset + 16)
7778 cnt_16b++;
7779 else if (rel[0].r_offset != offset + 24)
7780 goto broken_opd;
7781 }
7782 else
7783 goto broken_opd;
7784 }
7785
7786 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7787
7788 if (!broken && (need_edit || add_aux_fields))
7789 {
7790 Elf_Internal_Rela *write_rel;
7791 Elf_Internal_Shdr *rel_hdr;
7792 bfd_byte *rptr, *wptr;
7793 bfd_byte *new_contents;
7794 bfd_size_type amt;
7795
7796 new_contents = NULL;
7797 amt = OPD_NDX (sec->size) * sizeof (long);
7798 opd = &ppc64_elf_section_data (sec)->u.opd;
7799 opd->adjust = bfd_zalloc (sec->owner, amt);
7800 if (opd->adjust == NULL)
7801 return FALSE;
7802 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7803
7804 /* This seems a waste of time as input .opd sections are all
7805 zeros as generated by gcc, but I suppose there's no reason
7806 this will always be so. We might start putting something in
7807 the third word of .opd entries. */
7808 if ((sec->flags & SEC_IN_MEMORY) == 0)
7809 {
7810 bfd_byte *loc;
7811 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7812 {
7813 if (loc != NULL)
7814 free (loc);
7815 error_ret:
7816 if (local_syms != NULL
7817 && symtab_hdr->contents != (unsigned char *) local_syms)
7818 free (local_syms);
7819 if (elf_section_data (sec)->relocs != relstart)
7820 free (relstart);
7821 return FALSE;
7822 }
7823 sec->contents = loc;
7824 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7825 }
7826
7827 elf_section_data (sec)->relocs = relstart;
7828
7829 new_contents = sec->contents;
7830 if (add_aux_fields)
7831 {
7832 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7833 if (new_contents == NULL)
7834 return FALSE;
7835 need_pad = NULL;
7836 }
7837 wptr = new_contents;
7838 rptr = sec->contents;
7839 write_rel = relstart;
7840 for (rel = relstart; rel < relend; )
7841 {
7842 unsigned long r_symndx;
7843 asection *sym_sec;
7844 struct elf_link_hash_entry *h;
7845 struct ppc_link_hash_entry *fdh = NULL;
7846 Elf_Internal_Sym *sym;
7847 long opd_ent_size;
7848 Elf_Internal_Rela *next_rel;
7849 bfd_boolean skip;
7850
7851 r_symndx = ELF64_R_SYM (rel->r_info);
7852 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7853 r_symndx, ibfd))
7854 goto error_ret;
7855
7856 next_rel = rel + 2;
7857 if (next_rel + 1 == relend
7858 || (next_rel + 2 < relend
7859 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7860 ++next_rel;
7861
7862 /* See if the .opd entry is full 24 byte or
7863 16 byte (with fd_aux entry overlapped with next
7864 fd_func). */
7865 opd_ent_size = 24;
7866 if (next_rel == relend)
7867 {
7868 if (sec->size == rel->r_offset + 16)
7869 opd_ent_size = 16;
7870 }
7871 else if (next_rel->r_offset == rel->r_offset + 16)
7872 opd_ent_size = 16;
7873
7874 if (h != NULL
7875 && h->root.root.string[0] == '.')
7876 {
7877 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7878 if (fdh != NULL
7879 && fdh->elf.root.type != bfd_link_hash_defined
7880 && fdh->elf.root.type != bfd_link_hash_defweak)
7881 fdh = NULL;
7882 }
7883
7884 skip = (sym_sec->owner != ibfd
7885 || sym_sec->output_section == bfd_abs_section_ptr);
7886 if (skip)
7887 {
7888 if (fdh != NULL && sym_sec->owner == ibfd)
7889 {
7890 /* Arrange for the function descriptor sym
7891 to be dropped. */
7892 fdh->elf.root.u.def.value = 0;
7893 fdh->elf.root.u.def.section = sym_sec;
7894 }
7895 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7896
7897 if (NO_OPD_RELOCS || info->relocatable)
7898 rel = next_rel;
7899 else
7900 while (1)
7901 {
7902 if (!dec_dynrel_count (rel->r_info, sec, info,
7903 NULL, h, sym))
7904 goto error_ret;
7905
7906 if (++rel == next_rel)
7907 break;
7908
7909 r_symndx = ELF64_R_SYM (rel->r_info);
7910 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7911 r_symndx, ibfd))
7912 goto error_ret;
7913 }
7914 }
7915 else
7916 {
7917 /* We'll be keeping this opd entry. */
7918 long adjust;
7919
7920 if (fdh != NULL)
7921 {
7922 /* Redefine the function descriptor symbol to
7923 this location in the opd section. It is
7924 necessary to update the value here rather
7925 than using an array of adjustments as we do
7926 for local symbols, because various places
7927 in the generic ELF code use the value
7928 stored in u.def.value. */
7929 fdh->elf.root.u.def.value = wptr - new_contents;
7930 fdh->adjust_done = 1;
7931 }
7932
7933 /* Local syms are a bit tricky. We could
7934 tweak them as they can be cached, but
7935 we'd need to look through the local syms
7936 for the function descriptor sym which we
7937 don't have at the moment. So keep an
7938 array of adjustments. */
7939 adjust = (wptr - new_contents) - (rptr - sec->contents);
7940 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7941
7942 if (wptr != rptr)
7943 memcpy (wptr, rptr, opd_ent_size);
7944 wptr += opd_ent_size;
7945 if (add_aux_fields && opd_ent_size == 16)
7946 {
7947 memset (wptr, '\0', 8);
7948 wptr += 8;
7949 }
7950
7951 /* We need to adjust any reloc offsets to point to the
7952 new opd entries. */
7953 for ( ; rel != next_rel; ++rel)
7954 {
7955 rel->r_offset += adjust;
7956 if (write_rel != rel)
7957 memcpy (write_rel, rel, sizeof (*rel));
7958 ++write_rel;
7959 }
7960 }
7961
7962 rptr += opd_ent_size;
7963 }
7964
7965 sec->size = wptr - new_contents;
7966 sec->reloc_count = write_rel - relstart;
7967 if (add_aux_fields)
7968 {
7969 free (sec->contents);
7970 sec->contents = new_contents;
7971 }
7972
7973 /* Fudge the header size too, as this is used later in
7974 elf_bfd_final_link if we are emitting relocs. */
7975 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7976 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7977 some_edited = TRUE;
7978 }
7979 else if (elf_section_data (sec)->relocs != relstart)
7980 free (relstart);
7981
7982 if (local_syms != NULL
7983 && symtab_hdr->contents != (unsigned char *) local_syms)
7984 {
7985 if (!info->keep_memory)
7986 free (local_syms);
7987 else
7988 symtab_hdr->contents = (unsigned char *) local_syms;
7989 }
7990 }
7991
7992 if (some_edited)
7993 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7994
7995 /* If we are doing a final link and the last .opd entry is just 16 byte
7996 long, add a 8 byte padding after it. */
7997 if (need_pad != NULL && !info->relocatable)
7998 {
7999 bfd_byte *p;
8000
8001 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
8002 {
8003 BFD_ASSERT (need_pad->size > 0);
8004
8005 p = bfd_malloc (need_pad->size + 8);
8006 if (p == NULL)
8007 return FALSE;
8008
8009 if (! bfd_get_section_contents (need_pad->owner, need_pad,
8010 p, 0, need_pad->size))
8011 return FALSE;
8012
8013 need_pad->contents = p;
8014 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
8015 }
8016 else
8017 {
8018 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
8019 if (p == NULL)
8020 return FALSE;
8021
8022 need_pad->contents = p;
8023 }
8024
8025 memset (need_pad->contents + need_pad->size, 0, 8);
8026 need_pad->size += 8;
8027 }
8028
8029 return TRUE;
8030 }
8031
8032 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
8033
8034 asection *
8035 ppc64_elf_tls_setup (struct bfd_link_info *info)
8036 {
8037 struct ppc_link_hash_table *htab;
8038
8039 htab = ppc_hash_table (info);
8040 if (htab == NULL)
8041 return NULL;
8042
8043 if (abiversion (info->output_bfd) == 1)
8044 htab->opd_abi = 1;
8045
8046 if (htab->params->no_multi_toc)
8047 htab->do_multi_toc = 0;
8048 else if (!htab->do_multi_toc)
8049 htab->params->no_multi_toc = 1;
8050
8051 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8052 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8053 FALSE, FALSE, TRUE));
8054 /* Move dynamic linking info to the function descriptor sym. */
8055 if (htab->tls_get_addr != NULL)
8056 func_desc_adjust (&htab->tls_get_addr->elf, info);
8057 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8058 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8059 FALSE, FALSE, TRUE));
8060 if (!htab->params->no_tls_get_addr_opt)
8061 {
8062 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8063
8064 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8065 FALSE, FALSE, TRUE);
8066 if (opt != NULL)
8067 func_desc_adjust (opt, info);
8068 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8069 FALSE, FALSE, TRUE);
8070 if (opt_fd != NULL
8071 && (opt_fd->root.type == bfd_link_hash_defined
8072 || opt_fd->root.type == bfd_link_hash_defweak))
8073 {
8074 /* If glibc supports an optimized __tls_get_addr call stub,
8075 signalled by the presence of __tls_get_addr_opt, and we'll
8076 be calling __tls_get_addr via a plt call stub, then
8077 make __tls_get_addr point to __tls_get_addr_opt. */
8078 tga_fd = &htab->tls_get_addr_fd->elf;
8079 if (htab->elf.dynamic_sections_created
8080 && tga_fd != NULL
8081 && (tga_fd->type == STT_FUNC
8082 || tga_fd->needs_plt)
8083 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8084 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8085 && tga_fd->root.type == bfd_link_hash_undefweak)))
8086 {
8087 struct plt_entry *ent;
8088
8089 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8090 if (ent->plt.refcount > 0)
8091 break;
8092 if (ent != NULL)
8093 {
8094 tga_fd->root.type = bfd_link_hash_indirect;
8095 tga_fd->root.u.i.link = &opt_fd->root;
8096 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8097 if (opt_fd->dynindx != -1)
8098 {
8099 /* Use __tls_get_addr_opt in dynamic relocations. */
8100 opt_fd->dynindx = -1;
8101 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8102 opt_fd->dynstr_index);
8103 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8104 return NULL;
8105 }
8106 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8107 tga = &htab->tls_get_addr->elf;
8108 if (opt != NULL && tga != NULL)
8109 {
8110 tga->root.type = bfd_link_hash_indirect;
8111 tga->root.u.i.link = &opt->root;
8112 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8113 _bfd_elf_link_hash_hide_symbol (info, opt,
8114 tga->forced_local);
8115 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8116 }
8117 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8118 htab->tls_get_addr_fd->is_func_descriptor = 1;
8119 if (htab->tls_get_addr != NULL)
8120 {
8121 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8122 htab->tls_get_addr->is_func = 1;
8123 }
8124 }
8125 }
8126 }
8127 else
8128 htab->params->no_tls_get_addr_opt = TRUE;
8129 }
8130 return _bfd_elf_tls_setup (info->output_bfd, info);
8131 }
8132
8133 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8134 HASH1 or HASH2. */
8135
8136 static bfd_boolean
8137 branch_reloc_hash_match (const bfd *ibfd,
8138 const Elf_Internal_Rela *rel,
8139 const struct ppc_link_hash_entry *hash1,
8140 const struct ppc_link_hash_entry *hash2)
8141 {
8142 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8143 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8144 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8145
8146 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8147 {
8148 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8149 struct elf_link_hash_entry *h;
8150
8151 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8152 h = elf_follow_link (h);
8153 if (h == &hash1->elf || h == &hash2->elf)
8154 return TRUE;
8155 }
8156 return FALSE;
8157 }
8158
8159 /* Run through all the TLS relocs looking for optimization
8160 opportunities. The linker has been hacked (see ppc64elf.em) to do
8161 a preliminary section layout so that we know the TLS segment
8162 offsets. We can't optimize earlier because some optimizations need
8163 to know the tp offset, and we need to optimize before allocating
8164 dynamic relocations. */
8165
8166 bfd_boolean
8167 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8168 {
8169 bfd *ibfd;
8170 asection *sec;
8171 struct ppc_link_hash_table *htab;
8172 unsigned char *toc_ref;
8173 int pass;
8174
8175 if (info->relocatable || !info->executable)
8176 return TRUE;
8177
8178 htab = ppc_hash_table (info);
8179 if (htab == NULL)
8180 return FALSE;
8181
8182 /* Make two passes over the relocs. On the first pass, mark toc
8183 entries involved with tls relocs, and check that tls relocs
8184 involved in setting up a tls_get_addr call are indeed followed by
8185 such a call. If they are not, we can't do any tls optimization.
8186 On the second pass twiddle tls_mask flags to notify
8187 relocate_section that optimization can be done, and adjust got
8188 and plt refcounts. */
8189 toc_ref = NULL;
8190 for (pass = 0; pass < 2; ++pass)
8191 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8192 {
8193 Elf_Internal_Sym *locsyms = NULL;
8194 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8195
8196 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8197 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8198 {
8199 Elf_Internal_Rela *relstart, *rel, *relend;
8200 bfd_boolean found_tls_get_addr_arg = 0;
8201
8202 /* Read the relocations. */
8203 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8204 info->keep_memory);
8205 if (relstart == NULL)
8206 {
8207 free (toc_ref);
8208 return FALSE;
8209 }
8210
8211 relend = relstart + sec->reloc_count;
8212 for (rel = relstart; rel < relend; rel++)
8213 {
8214 enum elf_ppc64_reloc_type r_type;
8215 unsigned long r_symndx;
8216 struct elf_link_hash_entry *h;
8217 Elf_Internal_Sym *sym;
8218 asection *sym_sec;
8219 unsigned char *tls_mask;
8220 unsigned char tls_set, tls_clear, tls_type = 0;
8221 bfd_vma value;
8222 bfd_boolean ok_tprel, is_local;
8223 long toc_ref_index = 0;
8224 int expecting_tls_get_addr = 0;
8225 bfd_boolean ret = FALSE;
8226
8227 r_symndx = ELF64_R_SYM (rel->r_info);
8228 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8229 r_symndx, ibfd))
8230 {
8231 err_free_rel:
8232 if (elf_section_data (sec)->relocs != relstart)
8233 free (relstart);
8234 if (toc_ref != NULL)
8235 free (toc_ref);
8236 if (locsyms != NULL
8237 && (elf_symtab_hdr (ibfd).contents
8238 != (unsigned char *) locsyms))
8239 free (locsyms);
8240 return ret;
8241 }
8242
8243 if (h != NULL)
8244 {
8245 if (h->root.type == bfd_link_hash_defined
8246 || h->root.type == bfd_link_hash_defweak)
8247 value = h->root.u.def.value;
8248 else if (h->root.type == bfd_link_hash_undefweak)
8249 value = 0;
8250 else
8251 {
8252 found_tls_get_addr_arg = 0;
8253 continue;
8254 }
8255 }
8256 else
8257 /* Symbols referenced by TLS relocs must be of type
8258 STT_TLS. So no need for .opd local sym adjust. */
8259 value = sym->st_value;
8260
8261 ok_tprel = FALSE;
8262 is_local = FALSE;
8263 if (h == NULL
8264 || !h->def_dynamic)
8265 {
8266 is_local = TRUE;
8267 if (h != NULL
8268 && h->root.type == bfd_link_hash_undefweak)
8269 ok_tprel = TRUE;
8270 else
8271 {
8272 value += sym_sec->output_offset;
8273 value += sym_sec->output_section->vma;
8274 value -= htab->elf.tls_sec->vma;
8275 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8276 < (bfd_vma) 1 << 32);
8277 }
8278 }
8279
8280 r_type = ELF64_R_TYPE (rel->r_info);
8281 /* If this section has old-style __tls_get_addr calls
8282 without marker relocs, then check that each
8283 __tls_get_addr call reloc is preceded by a reloc
8284 that conceivably belongs to the __tls_get_addr arg
8285 setup insn. If we don't find matching arg setup
8286 relocs, don't do any tls optimization. */
8287 if (pass == 0
8288 && sec->has_tls_get_addr_call
8289 && h != NULL
8290 && (h == &htab->tls_get_addr->elf
8291 || h == &htab->tls_get_addr_fd->elf)
8292 && !found_tls_get_addr_arg
8293 && is_branch_reloc (r_type))
8294 {
8295 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8296 "TLS optimization disabled\n"),
8297 ibfd, sec, rel->r_offset);
8298 ret = TRUE;
8299 goto err_free_rel;
8300 }
8301
8302 found_tls_get_addr_arg = 0;
8303 switch (r_type)
8304 {
8305 case R_PPC64_GOT_TLSLD16:
8306 case R_PPC64_GOT_TLSLD16_LO:
8307 expecting_tls_get_addr = 1;
8308 found_tls_get_addr_arg = 1;
8309 /* Fall thru */
8310
8311 case R_PPC64_GOT_TLSLD16_HI:
8312 case R_PPC64_GOT_TLSLD16_HA:
8313 /* These relocs should never be against a symbol
8314 defined in a shared lib. Leave them alone if
8315 that turns out to be the case. */
8316 if (!is_local)
8317 continue;
8318
8319 /* LD -> LE */
8320 tls_set = 0;
8321 tls_clear = TLS_LD;
8322 tls_type = TLS_TLS | TLS_LD;
8323 break;
8324
8325 case R_PPC64_GOT_TLSGD16:
8326 case R_PPC64_GOT_TLSGD16_LO:
8327 expecting_tls_get_addr = 1;
8328 found_tls_get_addr_arg = 1;
8329 /* Fall thru */
8330
8331 case R_PPC64_GOT_TLSGD16_HI:
8332 case R_PPC64_GOT_TLSGD16_HA:
8333 if (ok_tprel)
8334 /* GD -> LE */
8335 tls_set = 0;
8336 else
8337 /* GD -> IE */
8338 tls_set = TLS_TLS | TLS_TPRELGD;
8339 tls_clear = TLS_GD;
8340 tls_type = TLS_TLS | TLS_GD;
8341 break;
8342
8343 case R_PPC64_GOT_TPREL16_DS:
8344 case R_PPC64_GOT_TPREL16_LO_DS:
8345 case R_PPC64_GOT_TPREL16_HI:
8346 case R_PPC64_GOT_TPREL16_HA:
8347 if (ok_tprel)
8348 {
8349 /* IE -> LE */
8350 tls_set = 0;
8351 tls_clear = TLS_TPREL;
8352 tls_type = TLS_TLS | TLS_TPREL;
8353 break;
8354 }
8355 continue;
8356
8357 case R_PPC64_TLSGD:
8358 case R_PPC64_TLSLD:
8359 found_tls_get_addr_arg = 1;
8360 /* Fall thru */
8361
8362 case R_PPC64_TLS:
8363 case R_PPC64_TOC16:
8364 case R_PPC64_TOC16_LO:
8365 if (sym_sec == NULL || sym_sec != toc)
8366 continue;
8367
8368 /* Mark this toc entry as referenced by a TLS
8369 code sequence. We can do that now in the
8370 case of R_PPC64_TLS, and after checking for
8371 tls_get_addr for the TOC16 relocs. */
8372 if (toc_ref == NULL)
8373 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8374 if (toc_ref == NULL)
8375 goto err_free_rel;
8376
8377 if (h != NULL)
8378 value = h->root.u.def.value;
8379 else
8380 value = sym->st_value;
8381 value += rel->r_addend;
8382 if (value % 8 != 0)
8383 continue;
8384 BFD_ASSERT (value < toc->size
8385 && toc->output_offset % 8 == 0);
8386 toc_ref_index = (value + toc->output_offset) / 8;
8387 if (r_type == R_PPC64_TLS
8388 || r_type == R_PPC64_TLSGD
8389 || r_type == R_PPC64_TLSLD)
8390 {
8391 toc_ref[toc_ref_index] = 1;
8392 continue;
8393 }
8394
8395 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8396 continue;
8397
8398 tls_set = 0;
8399 tls_clear = 0;
8400 expecting_tls_get_addr = 2;
8401 break;
8402
8403 case R_PPC64_TPREL64:
8404 if (pass == 0
8405 || sec != toc
8406 || toc_ref == NULL
8407 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8408 continue;
8409 if (ok_tprel)
8410 {
8411 /* IE -> LE */
8412 tls_set = TLS_EXPLICIT;
8413 tls_clear = TLS_TPREL;
8414 break;
8415 }
8416 continue;
8417
8418 case R_PPC64_DTPMOD64:
8419 if (pass == 0
8420 || sec != toc
8421 || toc_ref == NULL
8422 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8423 continue;
8424 if (rel + 1 < relend
8425 && (rel[1].r_info
8426 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8427 && rel[1].r_offset == rel->r_offset + 8)
8428 {
8429 if (ok_tprel)
8430 /* GD -> LE */
8431 tls_set = TLS_EXPLICIT | TLS_GD;
8432 else
8433 /* GD -> IE */
8434 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8435 tls_clear = TLS_GD;
8436 }
8437 else
8438 {
8439 if (!is_local)
8440 continue;
8441
8442 /* LD -> LE */
8443 tls_set = TLS_EXPLICIT;
8444 tls_clear = TLS_LD;
8445 }
8446 break;
8447
8448 default:
8449 continue;
8450 }
8451
8452 if (pass == 0)
8453 {
8454 if (!expecting_tls_get_addr
8455 || !sec->has_tls_get_addr_call)
8456 continue;
8457
8458 if (rel + 1 < relend
8459 && branch_reloc_hash_match (ibfd, rel + 1,
8460 htab->tls_get_addr,
8461 htab->tls_get_addr_fd))
8462 {
8463 if (expecting_tls_get_addr == 2)
8464 {
8465 /* Check for toc tls entries. */
8466 unsigned char *toc_tls;
8467 int retval;
8468
8469 retval = get_tls_mask (&toc_tls, NULL, NULL,
8470 &locsyms,
8471 rel, ibfd);
8472 if (retval == 0)
8473 goto err_free_rel;
8474 if (toc_tls != NULL)
8475 {
8476 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8477 found_tls_get_addr_arg = 1;
8478 if (retval > 1)
8479 toc_ref[toc_ref_index] = 1;
8480 }
8481 }
8482 continue;
8483 }
8484
8485 if (expecting_tls_get_addr != 1)
8486 continue;
8487
8488 /* Uh oh, we didn't find the expected call. We
8489 could just mark this symbol to exclude it
8490 from tls optimization but it's safer to skip
8491 the entire optimization. */
8492 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8493 "TLS optimization disabled\n"),
8494 ibfd, sec, rel->r_offset);
8495 ret = TRUE;
8496 goto err_free_rel;
8497 }
8498
8499 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8500 {
8501 struct plt_entry *ent;
8502 for (ent = htab->tls_get_addr->elf.plt.plist;
8503 ent != NULL;
8504 ent = ent->next)
8505 if (ent->addend == 0)
8506 {
8507 if (ent->plt.refcount > 0)
8508 {
8509 ent->plt.refcount -= 1;
8510 expecting_tls_get_addr = 0;
8511 }
8512 break;
8513 }
8514 }
8515
8516 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8517 {
8518 struct plt_entry *ent;
8519 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8520 ent != NULL;
8521 ent = ent->next)
8522 if (ent->addend == 0)
8523 {
8524 if (ent->plt.refcount > 0)
8525 ent->plt.refcount -= 1;
8526 break;
8527 }
8528 }
8529
8530 if (tls_clear == 0)
8531 continue;
8532
8533 if ((tls_set & TLS_EXPLICIT) == 0)
8534 {
8535 struct got_entry *ent;
8536
8537 /* Adjust got entry for this reloc. */
8538 if (h != NULL)
8539 ent = h->got.glist;
8540 else
8541 ent = elf_local_got_ents (ibfd)[r_symndx];
8542
8543 for (; ent != NULL; ent = ent->next)
8544 if (ent->addend == rel->r_addend
8545 && ent->owner == ibfd
8546 && ent->tls_type == tls_type)
8547 break;
8548 if (ent == NULL)
8549 abort ();
8550
8551 if (tls_set == 0)
8552 {
8553 /* We managed to get rid of a got entry. */
8554 if (ent->got.refcount > 0)
8555 ent->got.refcount -= 1;
8556 }
8557 }
8558 else
8559 {
8560 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8561 we'll lose one or two dyn relocs. */
8562 if (!dec_dynrel_count (rel->r_info, sec, info,
8563 NULL, h, sym))
8564 return FALSE;
8565
8566 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8567 {
8568 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8569 NULL, h, sym))
8570 return FALSE;
8571 }
8572 }
8573
8574 *tls_mask |= tls_set;
8575 *tls_mask &= ~tls_clear;
8576 }
8577
8578 if (elf_section_data (sec)->relocs != relstart)
8579 free (relstart);
8580 }
8581
8582 if (locsyms != NULL
8583 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8584 {
8585 if (!info->keep_memory)
8586 free (locsyms);
8587 else
8588 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8589 }
8590 }
8591
8592 if (toc_ref != NULL)
8593 free (toc_ref);
8594 return TRUE;
8595 }
8596
8597 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8598 the values of any global symbols in a toc section that has been
8599 edited. Globals in toc sections should be a rarity, so this function
8600 sets a flag if any are found in toc sections other than the one just
8601 edited, so that futher hash table traversals can be avoided. */
8602
8603 struct adjust_toc_info
8604 {
8605 asection *toc;
8606 unsigned long *skip;
8607 bfd_boolean global_toc_syms;
8608 };
8609
8610 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8611
8612 static bfd_boolean
8613 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8614 {
8615 struct ppc_link_hash_entry *eh;
8616 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8617 unsigned long i;
8618
8619 if (h->root.type != bfd_link_hash_defined
8620 && h->root.type != bfd_link_hash_defweak)
8621 return TRUE;
8622
8623 eh = (struct ppc_link_hash_entry *) h;
8624 if (eh->adjust_done)
8625 return TRUE;
8626
8627 if (eh->elf.root.u.def.section == toc_inf->toc)
8628 {
8629 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8630 i = toc_inf->toc->rawsize >> 3;
8631 else
8632 i = eh->elf.root.u.def.value >> 3;
8633
8634 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8635 {
8636 (*_bfd_error_handler)
8637 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8638 do
8639 ++i;
8640 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8641 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8642 }
8643
8644 eh->elf.root.u.def.value -= toc_inf->skip[i];
8645 eh->adjust_done = 1;
8646 }
8647 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8648 toc_inf->global_toc_syms = TRUE;
8649
8650 return TRUE;
8651 }
8652
8653 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8654
8655 static bfd_boolean
8656 ok_lo_toc_insn (unsigned int insn)
8657 {
8658 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8659 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8660 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8661 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8662 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8663 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8664 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8665 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8666 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8667 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8668 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8669 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8670 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8671 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8672 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8673 && (insn & 3) != 1)
8674 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8675 && ((insn & 3) == 0 || (insn & 3) == 3))
8676 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8677 }
8678
8679 /* Examine all relocs referencing .toc sections in order to remove
8680 unused .toc entries. */
8681
8682 bfd_boolean
8683 ppc64_elf_edit_toc (struct bfd_link_info *info)
8684 {
8685 bfd *ibfd;
8686 struct adjust_toc_info toc_inf;
8687 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8688
8689 htab->do_toc_opt = 1;
8690 toc_inf.global_toc_syms = TRUE;
8691 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8692 {
8693 asection *toc, *sec;
8694 Elf_Internal_Shdr *symtab_hdr;
8695 Elf_Internal_Sym *local_syms;
8696 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8697 unsigned long *skip, *drop;
8698 unsigned char *used;
8699 unsigned char *keep, last, some_unused;
8700
8701 if (!is_ppc64_elf (ibfd))
8702 continue;
8703
8704 toc = bfd_get_section_by_name (ibfd, ".toc");
8705 if (toc == NULL
8706 || toc->size == 0
8707 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8708 || discarded_section (toc))
8709 continue;
8710
8711 toc_relocs = NULL;
8712 local_syms = NULL;
8713 symtab_hdr = &elf_symtab_hdr (ibfd);
8714
8715 /* Look at sections dropped from the final link. */
8716 skip = NULL;
8717 relstart = NULL;
8718 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8719 {
8720 if (sec->reloc_count == 0
8721 || !discarded_section (sec)
8722 || get_opd_info (sec)
8723 || (sec->flags & SEC_ALLOC) == 0
8724 || (sec->flags & SEC_DEBUGGING) != 0)
8725 continue;
8726
8727 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8728 if (relstart == NULL)
8729 goto error_ret;
8730
8731 /* Run through the relocs to see which toc entries might be
8732 unused. */
8733 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8734 {
8735 enum elf_ppc64_reloc_type r_type;
8736 unsigned long r_symndx;
8737 asection *sym_sec;
8738 struct elf_link_hash_entry *h;
8739 Elf_Internal_Sym *sym;
8740 bfd_vma val;
8741
8742 r_type = ELF64_R_TYPE (rel->r_info);
8743 switch (r_type)
8744 {
8745 default:
8746 continue;
8747
8748 case R_PPC64_TOC16:
8749 case R_PPC64_TOC16_LO:
8750 case R_PPC64_TOC16_HI:
8751 case R_PPC64_TOC16_HA:
8752 case R_PPC64_TOC16_DS:
8753 case R_PPC64_TOC16_LO_DS:
8754 break;
8755 }
8756
8757 r_symndx = ELF64_R_SYM (rel->r_info);
8758 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8759 r_symndx, ibfd))
8760 goto error_ret;
8761
8762 if (sym_sec != toc)
8763 continue;
8764
8765 if (h != NULL)
8766 val = h->root.u.def.value;
8767 else
8768 val = sym->st_value;
8769 val += rel->r_addend;
8770
8771 if (val >= toc->size)
8772 continue;
8773
8774 /* Anything in the toc ought to be aligned to 8 bytes.
8775 If not, don't mark as unused. */
8776 if (val & 7)
8777 continue;
8778
8779 if (skip == NULL)
8780 {
8781 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8782 if (skip == NULL)
8783 goto error_ret;
8784 }
8785
8786 skip[val >> 3] = ref_from_discarded;
8787 }
8788
8789 if (elf_section_data (sec)->relocs != relstart)
8790 free (relstart);
8791 }
8792
8793 /* For largetoc loads of address constants, we can convert
8794 . addis rx,2,addr@got@ha
8795 . ld ry,addr@got@l(rx)
8796 to
8797 . addis rx,2,addr@toc@ha
8798 . addi ry,rx,addr@toc@l
8799 when addr is within 2G of the toc pointer. This then means
8800 that the word storing "addr" in the toc is no longer needed. */
8801
8802 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8803 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8804 && toc->reloc_count != 0)
8805 {
8806 /* Read toc relocs. */
8807 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8808 info->keep_memory);
8809 if (toc_relocs == NULL)
8810 goto error_ret;
8811
8812 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8813 {
8814 enum elf_ppc64_reloc_type r_type;
8815 unsigned long r_symndx;
8816 asection *sym_sec;
8817 struct elf_link_hash_entry *h;
8818 Elf_Internal_Sym *sym;
8819 bfd_vma val, addr;
8820
8821 r_type = ELF64_R_TYPE (rel->r_info);
8822 if (r_type != R_PPC64_ADDR64)
8823 continue;
8824
8825 r_symndx = ELF64_R_SYM (rel->r_info);
8826 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8827 r_symndx, ibfd))
8828 goto error_ret;
8829
8830 if (sym_sec == NULL
8831 || discarded_section (sym_sec))
8832 continue;
8833
8834 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8835 continue;
8836
8837 if (h != NULL)
8838 {
8839 if (h->type == STT_GNU_IFUNC)
8840 continue;
8841 val = h->root.u.def.value;
8842 }
8843 else
8844 {
8845 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8846 continue;
8847 val = sym->st_value;
8848 }
8849 val += rel->r_addend;
8850 val += sym_sec->output_section->vma + sym_sec->output_offset;
8851
8852 /* We don't yet know the exact toc pointer value, but we
8853 know it will be somewhere in the toc section. Don't
8854 optimize if the difference from any possible toc
8855 pointer is outside [ff..f80008000, 7fff7fff]. */
8856 addr = toc->output_section->vma + TOC_BASE_OFF;
8857 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8858 continue;
8859
8860 addr = toc->output_section->vma + toc->output_section->rawsize;
8861 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8862 continue;
8863
8864 if (skip == NULL)
8865 {
8866 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8867 if (skip == NULL)
8868 goto error_ret;
8869 }
8870
8871 skip[rel->r_offset >> 3]
8872 |= can_optimize | ((rel - toc_relocs) << 2);
8873 }
8874 }
8875
8876 if (skip == NULL)
8877 continue;
8878
8879 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8880 if (used == NULL)
8881 {
8882 error_ret:
8883 if (local_syms != NULL
8884 && symtab_hdr->contents != (unsigned char *) local_syms)
8885 free (local_syms);
8886 if (sec != NULL
8887 && relstart != NULL
8888 && elf_section_data (sec)->relocs != relstart)
8889 free (relstart);
8890 if (toc_relocs != NULL
8891 && elf_section_data (toc)->relocs != toc_relocs)
8892 free (toc_relocs);
8893 if (skip != NULL)
8894 free (skip);
8895 return FALSE;
8896 }
8897
8898 /* Now check all kept sections that might reference the toc.
8899 Check the toc itself last. */
8900 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8901 : ibfd->sections);
8902 sec != NULL;
8903 sec = (sec == toc ? NULL
8904 : sec->next == NULL ? toc
8905 : sec->next == toc && toc->next ? toc->next
8906 : sec->next))
8907 {
8908 int repeat;
8909
8910 if (sec->reloc_count == 0
8911 || discarded_section (sec)
8912 || get_opd_info (sec)
8913 || (sec->flags & SEC_ALLOC) == 0
8914 || (sec->flags & SEC_DEBUGGING) != 0)
8915 continue;
8916
8917 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8918 info->keep_memory);
8919 if (relstart == NULL)
8920 {
8921 free (used);
8922 goto error_ret;
8923 }
8924
8925 /* Mark toc entries referenced as used. */
8926 do
8927 {
8928 repeat = 0;
8929 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8930 {
8931 enum elf_ppc64_reloc_type r_type;
8932 unsigned long r_symndx;
8933 asection *sym_sec;
8934 struct elf_link_hash_entry *h;
8935 Elf_Internal_Sym *sym;
8936 bfd_vma val;
8937 enum {no_check, check_lo, check_ha} insn_check;
8938
8939 r_type = ELF64_R_TYPE (rel->r_info);
8940 switch (r_type)
8941 {
8942 default:
8943 insn_check = no_check;
8944 break;
8945
8946 case R_PPC64_GOT_TLSLD16_HA:
8947 case R_PPC64_GOT_TLSGD16_HA:
8948 case R_PPC64_GOT_TPREL16_HA:
8949 case R_PPC64_GOT_DTPREL16_HA:
8950 case R_PPC64_GOT16_HA:
8951 case R_PPC64_TOC16_HA:
8952 insn_check = check_ha;
8953 break;
8954
8955 case R_PPC64_GOT_TLSLD16_LO:
8956 case R_PPC64_GOT_TLSGD16_LO:
8957 case R_PPC64_GOT_TPREL16_LO_DS:
8958 case R_PPC64_GOT_DTPREL16_LO_DS:
8959 case R_PPC64_GOT16_LO:
8960 case R_PPC64_GOT16_LO_DS:
8961 case R_PPC64_TOC16_LO:
8962 case R_PPC64_TOC16_LO_DS:
8963 insn_check = check_lo;
8964 break;
8965 }
8966
8967 if (insn_check != no_check)
8968 {
8969 bfd_vma off = rel->r_offset & ~3;
8970 unsigned char buf[4];
8971 unsigned int insn;
8972
8973 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8974 {
8975 free (used);
8976 goto error_ret;
8977 }
8978 insn = bfd_get_32 (ibfd, buf);
8979 if (insn_check == check_lo
8980 ? !ok_lo_toc_insn (insn)
8981 : ((insn & ((0x3f << 26) | 0x1f << 16))
8982 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8983 {
8984 char str[12];
8985
8986 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8987 sprintf (str, "%#08x", insn);
8988 info->callbacks->einfo
8989 (_("%P: %H: toc optimization is not supported for"
8990 " %s instruction.\n"),
8991 ibfd, sec, rel->r_offset & ~3, str);
8992 }
8993 }
8994
8995 switch (r_type)
8996 {
8997 case R_PPC64_TOC16:
8998 case R_PPC64_TOC16_LO:
8999 case R_PPC64_TOC16_HI:
9000 case R_PPC64_TOC16_HA:
9001 case R_PPC64_TOC16_DS:
9002 case R_PPC64_TOC16_LO_DS:
9003 /* In case we're taking addresses of toc entries. */
9004 case R_PPC64_ADDR64:
9005 break;
9006
9007 default:
9008 continue;
9009 }
9010
9011 r_symndx = ELF64_R_SYM (rel->r_info);
9012 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9013 r_symndx, ibfd))
9014 {
9015 free (used);
9016 goto error_ret;
9017 }
9018
9019 if (sym_sec != toc)
9020 continue;
9021
9022 if (h != NULL)
9023 val = h->root.u.def.value;
9024 else
9025 val = sym->st_value;
9026 val += rel->r_addend;
9027
9028 if (val >= toc->size)
9029 continue;
9030
9031 if ((skip[val >> 3] & can_optimize) != 0)
9032 {
9033 bfd_vma off;
9034 unsigned char opc;
9035
9036 switch (r_type)
9037 {
9038 case R_PPC64_TOC16_HA:
9039 break;
9040
9041 case R_PPC64_TOC16_LO_DS:
9042 off = rel->r_offset;
9043 off += (bfd_big_endian (ibfd) ? -2 : 3);
9044 if (!bfd_get_section_contents (ibfd, sec, &opc,
9045 off, 1))
9046 {
9047 free (used);
9048 goto error_ret;
9049 }
9050 if ((opc & (0x3f << 2)) == (58u << 2))
9051 break;
9052 /* Fall thru */
9053
9054 default:
9055 /* Wrong sort of reloc, or not a ld. We may
9056 as well clear ref_from_discarded too. */
9057 skip[val >> 3] = 0;
9058 }
9059 }
9060
9061 if (sec != toc)
9062 used[val >> 3] = 1;
9063 /* For the toc section, we only mark as used if this
9064 entry itself isn't unused. */
9065 else if ((used[rel->r_offset >> 3]
9066 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9067 && !used[val >> 3])
9068 {
9069 /* Do all the relocs again, to catch reference
9070 chains. */
9071 repeat = 1;
9072 used[val >> 3] = 1;
9073 }
9074 }
9075 }
9076 while (repeat);
9077
9078 if (elf_section_data (sec)->relocs != relstart)
9079 free (relstart);
9080 }
9081
9082 /* Merge the used and skip arrays. Assume that TOC
9083 doublewords not appearing as either used or unused belong
9084 to to an entry more than one doubleword in size. */
9085 for (drop = skip, keep = used, last = 0, some_unused = 0;
9086 drop < skip + (toc->size + 7) / 8;
9087 ++drop, ++keep)
9088 {
9089 if (*keep)
9090 {
9091 *drop &= ~ref_from_discarded;
9092 if ((*drop & can_optimize) != 0)
9093 some_unused = 1;
9094 last = 0;
9095 }
9096 else if ((*drop & ref_from_discarded) != 0)
9097 {
9098 some_unused = 1;
9099 last = ref_from_discarded;
9100 }
9101 else
9102 *drop = last;
9103 }
9104
9105 free (used);
9106
9107 if (some_unused)
9108 {
9109 bfd_byte *contents, *src;
9110 unsigned long off;
9111 Elf_Internal_Sym *sym;
9112 bfd_boolean local_toc_syms = FALSE;
9113
9114 /* Shuffle the toc contents, and at the same time convert the
9115 skip array from booleans into offsets. */
9116 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9117 goto error_ret;
9118
9119 elf_section_data (toc)->this_hdr.contents = contents;
9120
9121 for (src = contents, off = 0, drop = skip;
9122 src < contents + toc->size;
9123 src += 8, ++drop)
9124 {
9125 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9126 off += 8;
9127 else if (off != 0)
9128 {
9129 *drop = off;
9130 memcpy (src - off, src, 8);
9131 }
9132 }
9133 *drop = off;
9134 toc->rawsize = toc->size;
9135 toc->size = src - contents - off;
9136
9137 /* Adjust addends for relocs against the toc section sym,
9138 and optimize any accesses we can. */
9139 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9140 {
9141 if (sec->reloc_count == 0
9142 || discarded_section (sec))
9143 continue;
9144
9145 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9146 info->keep_memory);
9147 if (relstart == NULL)
9148 goto error_ret;
9149
9150 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9151 {
9152 enum elf_ppc64_reloc_type r_type;
9153 unsigned long r_symndx;
9154 asection *sym_sec;
9155 struct elf_link_hash_entry *h;
9156 bfd_vma val;
9157
9158 r_type = ELF64_R_TYPE (rel->r_info);
9159 switch (r_type)
9160 {
9161 default:
9162 continue;
9163
9164 case R_PPC64_TOC16:
9165 case R_PPC64_TOC16_LO:
9166 case R_PPC64_TOC16_HI:
9167 case R_PPC64_TOC16_HA:
9168 case R_PPC64_TOC16_DS:
9169 case R_PPC64_TOC16_LO_DS:
9170 case R_PPC64_ADDR64:
9171 break;
9172 }
9173
9174 r_symndx = ELF64_R_SYM (rel->r_info);
9175 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9176 r_symndx, ibfd))
9177 goto error_ret;
9178
9179 if (sym_sec != toc)
9180 continue;
9181
9182 if (h != NULL)
9183 val = h->root.u.def.value;
9184 else
9185 {
9186 val = sym->st_value;
9187 if (val != 0)
9188 local_toc_syms = TRUE;
9189 }
9190
9191 val += rel->r_addend;
9192
9193 if (val > toc->rawsize)
9194 val = toc->rawsize;
9195 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9196 continue;
9197 else if ((skip[val >> 3] & can_optimize) != 0)
9198 {
9199 Elf_Internal_Rela *tocrel
9200 = toc_relocs + (skip[val >> 3] >> 2);
9201 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9202
9203 switch (r_type)
9204 {
9205 case R_PPC64_TOC16_HA:
9206 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9207 break;
9208
9209 case R_PPC64_TOC16_LO_DS:
9210 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9211 break;
9212
9213 default:
9214 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9215 ppc_howto_init ();
9216 info->callbacks->einfo
9217 (_("%P: %H: %s references "
9218 "optimized away TOC entry\n"),
9219 ibfd, sec, rel->r_offset,
9220 ppc64_elf_howto_table[r_type]->name);
9221 bfd_set_error (bfd_error_bad_value);
9222 goto error_ret;
9223 }
9224 rel->r_addend = tocrel->r_addend;
9225 elf_section_data (sec)->relocs = relstart;
9226 continue;
9227 }
9228
9229 if (h != NULL || sym->st_value != 0)
9230 continue;
9231
9232 rel->r_addend -= skip[val >> 3];
9233 elf_section_data (sec)->relocs = relstart;
9234 }
9235
9236 if (elf_section_data (sec)->relocs != relstart)
9237 free (relstart);
9238 }
9239
9240 /* We shouldn't have local or global symbols defined in the TOC,
9241 but handle them anyway. */
9242 if (local_syms != NULL)
9243 for (sym = local_syms;
9244 sym < local_syms + symtab_hdr->sh_info;
9245 ++sym)
9246 if (sym->st_value != 0
9247 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9248 {
9249 unsigned long i;
9250
9251 if (sym->st_value > toc->rawsize)
9252 i = toc->rawsize >> 3;
9253 else
9254 i = sym->st_value >> 3;
9255
9256 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9257 {
9258 if (local_toc_syms)
9259 (*_bfd_error_handler)
9260 (_("%s defined on removed toc entry"),
9261 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9262 do
9263 ++i;
9264 while ((skip[i] & (ref_from_discarded | can_optimize)));
9265 sym->st_value = (bfd_vma) i << 3;
9266 }
9267
9268 sym->st_value -= skip[i];
9269 symtab_hdr->contents = (unsigned char *) local_syms;
9270 }
9271
9272 /* Adjust any global syms defined in this toc input section. */
9273 if (toc_inf.global_toc_syms)
9274 {
9275 toc_inf.toc = toc;
9276 toc_inf.skip = skip;
9277 toc_inf.global_toc_syms = FALSE;
9278 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9279 &toc_inf);
9280 }
9281
9282 if (toc->reloc_count != 0)
9283 {
9284 Elf_Internal_Shdr *rel_hdr;
9285 Elf_Internal_Rela *wrel;
9286 bfd_size_type sz;
9287
9288 /* Remove unused toc relocs, and adjust those we keep. */
9289 if (toc_relocs == NULL)
9290 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9291 info->keep_memory);
9292 if (toc_relocs == NULL)
9293 goto error_ret;
9294
9295 wrel = toc_relocs;
9296 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9297 if ((skip[rel->r_offset >> 3]
9298 & (ref_from_discarded | can_optimize)) == 0)
9299 {
9300 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9301 wrel->r_info = rel->r_info;
9302 wrel->r_addend = rel->r_addend;
9303 ++wrel;
9304 }
9305 else if (!dec_dynrel_count (rel->r_info, toc, info,
9306 &local_syms, NULL, NULL))
9307 goto error_ret;
9308
9309 elf_section_data (toc)->relocs = toc_relocs;
9310 toc->reloc_count = wrel - toc_relocs;
9311 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9312 sz = rel_hdr->sh_entsize;
9313 rel_hdr->sh_size = toc->reloc_count * sz;
9314 }
9315 }
9316 else if (toc_relocs != NULL
9317 && elf_section_data (toc)->relocs != toc_relocs)
9318 free (toc_relocs);
9319
9320 if (local_syms != NULL
9321 && symtab_hdr->contents != (unsigned char *) local_syms)
9322 {
9323 if (!info->keep_memory)
9324 free (local_syms);
9325 else
9326 symtab_hdr->contents = (unsigned char *) local_syms;
9327 }
9328 free (skip);
9329 }
9330
9331 return TRUE;
9332 }
9333
9334 /* Return true iff input section I references the TOC using
9335 instructions limited to +/-32k offsets. */
9336
9337 bfd_boolean
9338 ppc64_elf_has_small_toc_reloc (asection *i)
9339 {
9340 return (is_ppc64_elf (i->owner)
9341 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9342 }
9343
9344 /* Allocate space for one GOT entry. */
9345
9346 static void
9347 allocate_got (struct elf_link_hash_entry *h,
9348 struct bfd_link_info *info,
9349 struct got_entry *gent)
9350 {
9351 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9352 bfd_boolean dyn;
9353 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9354 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9355 ? 16 : 8);
9356 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9357 ? 2 : 1) * sizeof (Elf64_External_Rela);
9358 asection *got = ppc64_elf_tdata (gent->owner)->got;
9359
9360 gent->got.offset = got->size;
9361 got->size += entsize;
9362
9363 dyn = htab->elf.dynamic_sections_created;
9364 if (h->type == STT_GNU_IFUNC)
9365 {
9366 htab->elf.irelplt->size += rentsize;
9367 htab->got_reli_size += rentsize;
9368 }
9369 else if ((info->shared
9370 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9371 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9372 || h->root.type != bfd_link_hash_undefweak))
9373 {
9374 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9375 relgot->size += rentsize;
9376 }
9377 }
9378
9379 /* This function merges got entries in the same toc group. */
9380
9381 static void
9382 merge_got_entries (struct got_entry **pent)
9383 {
9384 struct got_entry *ent, *ent2;
9385
9386 for (ent = *pent; ent != NULL; ent = ent->next)
9387 if (!ent->is_indirect)
9388 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9389 if (!ent2->is_indirect
9390 && ent2->addend == ent->addend
9391 && ent2->tls_type == ent->tls_type
9392 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9393 {
9394 ent2->is_indirect = TRUE;
9395 ent2->got.ent = ent;
9396 }
9397 }
9398
9399 /* Allocate space in .plt, .got and associated reloc sections for
9400 dynamic relocs. */
9401
9402 static bfd_boolean
9403 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9404 {
9405 struct bfd_link_info *info;
9406 struct ppc_link_hash_table *htab;
9407 asection *s;
9408 struct ppc_link_hash_entry *eh;
9409 struct elf_dyn_relocs *p;
9410 struct got_entry **pgent, *gent;
9411
9412 if (h->root.type == bfd_link_hash_indirect)
9413 return TRUE;
9414
9415 info = (struct bfd_link_info *) inf;
9416 htab = ppc_hash_table (info);
9417 if (htab == NULL)
9418 return FALSE;
9419
9420 if ((htab->elf.dynamic_sections_created
9421 && h->dynindx != -1
9422 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9423 || h->type == STT_GNU_IFUNC)
9424 {
9425 struct plt_entry *pent;
9426 bfd_boolean doneone = FALSE;
9427 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9428 if (pent->plt.refcount > 0)
9429 {
9430 if (!htab->elf.dynamic_sections_created
9431 || h->dynindx == -1)
9432 {
9433 s = htab->elf.iplt;
9434 pent->plt.offset = s->size;
9435 s->size += PLT_ENTRY_SIZE (htab);
9436 s = htab->elf.irelplt;
9437 }
9438 else
9439 {
9440 /* If this is the first .plt entry, make room for the special
9441 first entry. */
9442 s = htab->elf.splt;
9443 if (s->size == 0)
9444 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9445
9446 pent->plt.offset = s->size;
9447
9448 /* Make room for this entry. */
9449 s->size += PLT_ENTRY_SIZE (htab);
9450
9451 /* Make room for the .glink code. */
9452 s = htab->glink;
9453 if (s->size == 0)
9454 s->size += GLINK_CALL_STUB_SIZE;
9455 if (htab->opd_abi)
9456 {
9457 /* We need bigger stubs past index 32767. */
9458 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9459 s->size += 4;
9460 s->size += 2*4;
9461 }
9462 else
9463 s->size += 4;
9464
9465 /* We also need to make an entry in the .rela.plt section. */
9466 s = htab->elf.srelplt;
9467 }
9468 s->size += sizeof (Elf64_External_Rela);
9469 doneone = TRUE;
9470 }
9471 else
9472 pent->plt.offset = (bfd_vma) -1;
9473 if (!doneone)
9474 {
9475 h->plt.plist = NULL;
9476 h->needs_plt = 0;
9477 }
9478 }
9479 else
9480 {
9481 h->plt.plist = NULL;
9482 h->needs_plt = 0;
9483 }
9484
9485 eh = (struct ppc_link_hash_entry *) h;
9486 /* Run through the TLS GD got entries first if we're changing them
9487 to TPREL. */
9488 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9489 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9490 if (gent->got.refcount > 0
9491 && (gent->tls_type & TLS_GD) != 0)
9492 {
9493 /* This was a GD entry that has been converted to TPREL. If
9494 there happens to be a TPREL entry we can use that one. */
9495 struct got_entry *ent;
9496 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9497 if (ent->got.refcount > 0
9498 && (ent->tls_type & TLS_TPREL) != 0
9499 && ent->addend == gent->addend
9500 && ent->owner == gent->owner)
9501 {
9502 gent->got.refcount = 0;
9503 break;
9504 }
9505
9506 /* If not, then we'll be using our own TPREL entry. */
9507 if (gent->got.refcount != 0)
9508 gent->tls_type = TLS_TLS | TLS_TPREL;
9509 }
9510
9511 /* Remove any list entry that won't generate a word in the GOT before
9512 we call merge_got_entries. Otherwise we risk merging to empty
9513 entries. */
9514 pgent = &h->got.glist;
9515 while ((gent = *pgent) != NULL)
9516 if (gent->got.refcount > 0)
9517 {
9518 if ((gent->tls_type & TLS_LD) != 0
9519 && !h->def_dynamic)
9520 {
9521 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9522 *pgent = gent->next;
9523 }
9524 else
9525 pgent = &gent->next;
9526 }
9527 else
9528 *pgent = gent->next;
9529
9530 if (!htab->do_multi_toc)
9531 merge_got_entries (&h->got.glist);
9532
9533 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9534 if (!gent->is_indirect)
9535 {
9536 /* Make sure this symbol is output as a dynamic symbol.
9537 Undefined weak syms won't yet be marked as dynamic,
9538 nor will all TLS symbols. */
9539 if (h->dynindx == -1
9540 && !h->forced_local
9541 && h->type != STT_GNU_IFUNC
9542 && htab->elf.dynamic_sections_created)
9543 {
9544 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9545 return FALSE;
9546 }
9547
9548 if (!is_ppc64_elf (gent->owner))
9549 abort ();
9550
9551 allocate_got (h, info, gent);
9552 }
9553
9554 if (eh->dyn_relocs == NULL
9555 || (!htab->elf.dynamic_sections_created
9556 && h->type != STT_GNU_IFUNC))
9557 return TRUE;
9558
9559 /* In the shared -Bsymbolic case, discard space allocated for
9560 dynamic pc-relative relocs against symbols which turn out to be
9561 defined in regular objects. For the normal shared case, discard
9562 space for relocs that have become local due to symbol visibility
9563 changes. */
9564
9565 if (info->shared)
9566 {
9567 /* Relocs that use pc_count are those that appear on a call insn,
9568 or certain REL relocs (see must_be_dyn_reloc) that can be
9569 generated via assembly. We want calls to protected symbols to
9570 resolve directly to the function rather than going via the plt.
9571 If people want function pointer comparisons to work as expected
9572 then they should avoid writing weird assembly. */
9573 if (SYMBOL_CALLS_LOCAL (info, h))
9574 {
9575 struct elf_dyn_relocs **pp;
9576
9577 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9578 {
9579 p->count -= p->pc_count;
9580 p->pc_count = 0;
9581 if (p->count == 0)
9582 *pp = p->next;
9583 else
9584 pp = &p->next;
9585 }
9586 }
9587
9588 /* Also discard relocs on undefined weak syms with non-default
9589 visibility. */
9590 if (eh->dyn_relocs != NULL
9591 && h->root.type == bfd_link_hash_undefweak)
9592 {
9593 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9594 eh->dyn_relocs = NULL;
9595
9596 /* Make sure this symbol is output as a dynamic symbol.
9597 Undefined weak syms won't yet be marked as dynamic. */
9598 else if (h->dynindx == -1
9599 && !h->forced_local)
9600 {
9601 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9602 return FALSE;
9603 }
9604 }
9605 }
9606 else if (h->type == STT_GNU_IFUNC)
9607 {
9608 if (!h->non_got_ref)
9609 eh->dyn_relocs = NULL;
9610 }
9611 else if (ELIMINATE_COPY_RELOCS)
9612 {
9613 /* For the non-shared case, discard space for relocs against
9614 symbols which turn out to need copy relocs or are not
9615 dynamic. */
9616
9617 if (!h->non_got_ref
9618 && !h->def_regular)
9619 {
9620 /* Make sure this symbol is output as a dynamic symbol.
9621 Undefined weak syms won't yet be marked as dynamic. */
9622 if (h->dynindx == -1
9623 && !h->forced_local)
9624 {
9625 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9626 return FALSE;
9627 }
9628
9629 /* If that succeeded, we know we'll be keeping all the
9630 relocs. */
9631 if (h->dynindx != -1)
9632 goto keep;
9633 }
9634
9635 eh->dyn_relocs = NULL;
9636
9637 keep: ;
9638 }
9639
9640 /* Finally, allocate space. */
9641 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9642 {
9643 asection *sreloc = elf_section_data (p->sec)->sreloc;
9644 if (eh->elf.type == STT_GNU_IFUNC)
9645 sreloc = htab->elf.irelplt;
9646 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9647 }
9648
9649 return TRUE;
9650 }
9651
9652 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9653 to set up space for global entry stubs. These are put in glink,
9654 after the branch table. */
9655
9656 static bfd_boolean
9657 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9658 {
9659 struct bfd_link_info *info;
9660 struct ppc_link_hash_table *htab;
9661 struct plt_entry *pent;
9662 asection *s;
9663
9664 if (h->root.type == bfd_link_hash_indirect)
9665 return TRUE;
9666
9667 if (!h->pointer_equality_needed)
9668 return TRUE;
9669
9670 if (h->def_regular)
9671 return TRUE;
9672
9673 info = inf;
9674 htab = ppc_hash_table (info);
9675 if (htab == NULL)
9676 return FALSE;
9677
9678 s = htab->glink;
9679 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9680 if (pent->plt.offset != (bfd_vma) -1
9681 && pent->addend == 0)
9682 {
9683 /* For ELFv2, if this symbol is not defined in a regular file
9684 and we are not generating a shared library or pie, then we
9685 need to define the symbol in the executable on a call stub.
9686 This is to avoid text relocations. */
9687 s->size = (s->size + 15) & -16;
9688 h->root.u.def.section = s;
9689 h->root.u.def.value = s->size;
9690 s->size += 16;
9691 break;
9692 }
9693 return TRUE;
9694 }
9695
9696 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9697 read-only sections. */
9698
9699 static bfd_boolean
9700 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9701 {
9702 if (h->root.type == bfd_link_hash_indirect)
9703 return TRUE;
9704
9705 if (readonly_dynrelocs (h))
9706 {
9707 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9708
9709 /* Not an error, just cut short the traversal. */
9710 return FALSE;
9711 }
9712 return TRUE;
9713 }
9714
9715 /* Set the sizes of the dynamic sections. */
9716
9717 static bfd_boolean
9718 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9719 struct bfd_link_info *info)
9720 {
9721 struct ppc_link_hash_table *htab;
9722 bfd *dynobj;
9723 asection *s;
9724 bfd_boolean relocs;
9725 bfd *ibfd;
9726 struct got_entry *first_tlsld;
9727
9728 htab = ppc_hash_table (info);
9729 if (htab == NULL)
9730 return FALSE;
9731
9732 dynobj = htab->elf.dynobj;
9733 if (dynobj == NULL)
9734 abort ();
9735
9736 if (htab->elf.dynamic_sections_created)
9737 {
9738 /* Set the contents of the .interp section to the interpreter. */
9739 if (info->executable)
9740 {
9741 s = bfd_get_linker_section (dynobj, ".interp");
9742 if (s == NULL)
9743 abort ();
9744 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9745 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9746 }
9747 }
9748
9749 /* Set up .got offsets for local syms, and space for local dynamic
9750 relocs. */
9751 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9752 {
9753 struct got_entry **lgot_ents;
9754 struct got_entry **end_lgot_ents;
9755 struct plt_entry **local_plt;
9756 struct plt_entry **end_local_plt;
9757 unsigned char *lgot_masks;
9758 bfd_size_type locsymcount;
9759 Elf_Internal_Shdr *symtab_hdr;
9760
9761 if (!is_ppc64_elf (ibfd))
9762 continue;
9763
9764 for (s = ibfd->sections; s != NULL; s = s->next)
9765 {
9766 struct ppc_dyn_relocs *p;
9767
9768 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9769 {
9770 if (!bfd_is_abs_section (p->sec)
9771 && bfd_is_abs_section (p->sec->output_section))
9772 {
9773 /* Input section has been discarded, either because
9774 it is a copy of a linkonce section or due to
9775 linker script /DISCARD/, so we'll be discarding
9776 the relocs too. */
9777 }
9778 else if (p->count != 0)
9779 {
9780 asection *srel = elf_section_data (p->sec)->sreloc;
9781 if (p->ifunc)
9782 srel = htab->elf.irelplt;
9783 srel->size += p->count * sizeof (Elf64_External_Rela);
9784 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9785 info->flags |= DF_TEXTREL;
9786 }
9787 }
9788 }
9789
9790 lgot_ents = elf_local_got_ents (ibfd);
9791 if (!lgot_ents)
9792 continue;
9793
9794 symtab_hdr = &elf_symtab_hdr (ibfd);
9795 locsymcount = symtab_hdr->sh_info;
9796 end_lgot_ents = lgot_ents + locsymcount;
9797 local_plt = (struct plt_entry **) end_lgot_ents;
9798 end_local_plt = local_plt + locsymcount;
9799 lgot_masks = (unsigned char *) end_local_plt;
9800 s = ppc64_elf_tdata (ibfd)->got;
9801 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9802 {
9803 struct got_entry **pent, *ent;
9804
9805 pent = lgot_ents;
9806 while ((ent = *pent) != NULL)
9807 if (ent->got.refcount > 0)
9808 {
9809 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9810 {
9811 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9812 *pent = ent->next;
9813 }
9814 else
9815 {
9816 unsigned int ent_size = 8;
9817 unsigned int rel_size = sizeof (Elf64_External_Rela);
9818
9819 ent->got.offset = s->size;
9820 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9821 {
9822 ent_size *= 2;
9823 rel_size *= 2;
9824 }
9825 s->size += ent_size;
9826 if ((*lgot_masks & PLT_IFUNC) != 0)
9827 {
9828 htab->elf.irelplt->size += rel_size;
9829 htab->got_reli_size += rel_size;
9830 }
9831 else if (info->shared)
9832 {
9833 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9834 srel->size += rel_size;
9835 }
9836 pent = &ent->next;
9837 }
9838 }
9839 else
9840 *pent = ent->next;
9841 }
9842
9843 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9844 for (; local_plt < end_local_plt; ++local_plt)
9845 {
9846 struct plt_entry *ent;
9847
9848 for (ent = *local_plt; ent != NULL; ent = ent->next)
9849 if (ent->plt.refcount > 0)
9850 {
9851 s = htab->elf.iplt;
9852 ent->plt.offset = s->size;
9853 s->size += PLT_ENTRY_SIZE (htab);
9854
9855 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9856 }
9857 else
9858 ent->plt.offset = (bfd_vma) -1;
9859 }
9860 }
9861
9862 /* Allocate global sym .plt and .got entries, and space for global
9863 sym dynamic relocs. */
9864 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9865 /* Stash the end of glink branch table. */
9866 if (htab->glink != NULL)
9867 htab->glink->rawsize = htab->glink->size;
9868
9869 if (!htab->opd_abi && !info->shared)
9870 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9871
9872 first_tlsld = NULL;
9873 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9874 {
9875 struct got_entry *ent;
9876
9877 if (!is_ppc64_elf (ibfd))
9878 continue;
9879
9880 ent = ppc64_tlsld_got (ibfd);
9881 if (ent->got.refcount > 0)
9882 {
9883 if (!htab->do_multi_toc && first_tlsld != NULL)
9884 {
9885 ent->is_indirect = TRUE;
9886 ent->got.ent = first_tlsld;
9887 }
9888 else
9889 {
9890 if (first_tlsld == NULL)
9891 first_tlsld = ent;
9892 s = ppc64_elf_tdata (ibfd)->got;
9893 ent->got.offset = s->size;
9894 ent->owner = ibfd;
9895 s->size += 16;
9896 if (info->shared)
9897 {
9898 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9899 srel->size += sizeof (Elf64_External_Rela);
9900 }
9901 }
9902 }
9903 else
9904 ent->got.offset = (bfd_vma) -1;
9905 }
9906
9907 /* We now have determined the sizes of the various dynamic sections.
9908 Allocate memory for them. */
9909 relocs = FALSE;
9910 for (s = dynobj->sections; s != NULL; s = s->next)
9911 {
9912 if ((s->flags & SEC_LINKER_CREATED) == 0)
9913 continue;
9914
9915 if (s == htab->brlt || s == htab->relbrlt)
9916 /* These haven't been allocated yet; don't strip. */
9917 continue;
9918 else if (s == htab->elf.sgot
9919 || s == htab->elf.splt
9920 || s == htab->elf.iplt
9921 || s == htab->glink
9922 || s == htab->dynbss)
9923 {
9924 /* Strip this section if we don't need it; see the
9925 comment below. */
9926 }
9927 else if (s == htab->glink_eh_frame)
9928 {
9929 if (!bfd_is_abs_section (s->output_section))
9930 /* Not sized yet. */
9931 continue;
9932 }
9933 else if (CONST_STRNEQ (s->name, ".rela"))
9934 {
9935 if (s->size != 0)
9936 {
9937 if (s != htab->elf.srelplt)
9938 relocs = TRUE;
9939
9940 /* We use the reloc_count field as a counter if we need
9941 to copy relocs into the output file. */
9942 s->reloc_count = 0;
9943 }
9944 }
9945 else
9946 {
9947 /* It's not one of our sections, so don't allocate space. */
9948 continue;
9949 }
9950
9951 if (s->size == 0)
9952 {
9953 /* If we don't need this section, strip it from the
9954 output file. This is mostly to handle .rela.bss and
9955 .rela.plt. We must create both sections in
9956 create_dynamic_sections, because they must be created
9957 before the linker maps input sections to output
9958 sections. The linker does that before
9959 adjust_dynamic_symbol is called, and it is that
9960 function which decides whether anything needs to go
9961 into these sections. */
9962 s->flags |= SEC_EXCLUDE;
9963 continue;
9964 }
9965
9966 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9967 continue;
9968
9969 /* Allocate memory for the section contents. We use bfd_zalloc
9970 here in case unused entries are not reclaimed before the
9971 section's contents are written out. This should not happen,
9972 but this way if it does we get a R_PPC64_NONE reloc in .rela
9973 sections instead of garbage.
9974 We also rely on the section contents being zero when writing
9975 the GOT. */
9976 s->contents = bfd_zalloc (dynobj, s->size);
9977 if (s->contents == NULL)
9978 return FALSE;
9979 }
9980
9981 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9982 {
9983 if (!is_ppc64_elf (ibfd))
9984 continue;
9985
9986 s = ppc64_elf_tdata (ibfd)->got;
9987 if (s != NULL && s != htab->elf.sgot)
9988 {
9989 if (s->size == 0)
9990 s->flags |= SEC_EXCLUDE;
9991 else
9992 {
9993 s->contents = bfd_zalloc (ibfd, s->size);
9994 if (s->contents == NULL)
9995 return FALSE;
9996 }
9997 }
9998 s = ppc64_elf_tdata (ibfd)->relgot;
9999 if (s != NULL)
10000 {
10001 if (s->size == 0)
10002 s->flags |= SEC_EXCLUDE;
10003 else
10004 {
10005 s->contents = bfd_zalloc (ibfd, s->size);
10006 if (s->contents == NULL)
10007 return FALSE;
10008 relocs = TRUE;
10009 s->reloc_count = 0;
10010 }
10011 }
10012 }
10013
10014 if (htab->elf.dynamic_sections_created)
10015 {
10016 bfd_boolean tls_opt;
10017
10018 /* Add some entries to the .dynamic section. We fill in the
10019 values later, in ppc64_elf_finish_dynamic_sections, but we
10020 must add the entries now so that we get the correct size for
10021 the .dynamic section. The DT_DEBUG entry is filled in by the
10022 dynamic linker and used by the debugger. */
10023 #define add_dynamic_entry(TAG, VAL) \
10024 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10025
10026 if (info->executable)
10027 {
10028 if (!add_dynamic_entry (DT_DEBUG, 0))
10029 return FALSE;
10030 }
10031
10032 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10033 {
10034 if (!add_dynamic_entry (DT_PLTGOT, 0)
10035 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10036 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10037 || !add_dynamic_entry (DT_JMPREL, 0)
10038 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10039 return FALSE;
10040 }
10041
10042 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10043 {
10044 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10045 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10046 return FALSE;
10047 }
10048
10049 tls_opt = (!htab->params->no_tls_get_addr_opt
10050 && htab->tls_get_addr_fd != NULL
10051 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10052 if (tls_opt || !htab->opd_abi)
10053 {
10054 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10055 return FALSE;
10056 }
10057
10058 if (relocs)
10059 {
10060 if (!add_dynamic_entry (DT_RELA, 0)
10061 || !add_dynamic_entry (DT_RELASZ, 0)
10062 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10063 return FALSE;
10064
10065 /* If any dynamic relocs apply to a read-only section,
10066 then we need a DT_TEXTREL entry. */
10067 if ((info->flags & DF_TEXTREL) == 0)
10068 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10069
10070 if ((info->flags & DF_TEXTREL) != 0)
10071 {
10072 if (!add_dynamic_entry (DT_TEXTREL, 0))
10073 return FALSE;
10074 }
10075 }
10076 }
10077 #undef add_dynamic_entry
10078
10079 return TRUE;
10080 }
10081
10082 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10083
10084 static bfd_boolean
10085 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10086 {
10087 if (h->plt.plist != NULL
10088 && !h->def_regular
10089 && !h->pointer_equality_needed)
10090 return FALSE;
10091
10092 return _bfd_elf_hash_symbol (h);
10093 }
10094
10095 /* Determine the type of stub needed, if any, for a call. */
10096
10097 static inline enum ppc_stub_type
10098 ppc_type_of_stub (asection *input_sec,
10099 const Elf_Internal_Rela *rel,
10100 struct ppc_link_hash_entry **hash,
10101 struct plt_entry **plt_ent,
10102 bfd_vma destination,
10103 unsigned long local_off)
10104 {
10105 struct ppc_link_hash_entry *h = *hash;
10106 bfd_vma location;
10107 bfd_vma branch_offset;
10108 bfd_vma max_branch_offset;
10109 enum elf_ppc64_reloc_type r_type;
10110
10111 if (h != NULL)
10112 {
10113 struct plt_entry *ent;
10114 struct ppc_link_hash_entry *fdh = h;
10115 if (h->oh != NULL
10116 && h->oh->is_func_descriptor)
10117 {
10118 fdh = ppc_follow_link (h->oh);
10119 *hash = fdh;
10120 }
10121
10122 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10123 if (ent->addend == rel->r_addend
10124 && ent->plt.offset != (bfd_vma) -1)
10125 {
10126 *plt_ent = ent;
10127 return ppc_stub_plt_call;
10128 }
10129
10130 /* Here, we know we don't have a plt entry. If we don't have a
10131 either a defined function descriptor or a defined entry symbol
10132 in a regular object file, then it is pointless trying to make
10133 any other type of stub. */
10134 if (!is_static_defined (&fdh->elf)
10135 && !is_static_defined (&h->elf))
10136 return ppc_stub_none;
10137 }
10138 else if (elf_local_got_ents (input_sec->owner) != NULL)
10139 {
10140 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10141 struct plt_entry **local_plt = (struct plt_entry **)
10142 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10143 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10144
10145 if (local_plt[r_symndx] != NULL)
10146 {
10147 struct plt_entry *ent;
10148
10149 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10150 if (ent->addend == rel->r_addend
10151 && ent->plt.offset != (bfd_vma) -1)
10152 {
10153 *plt_ent = ent;
10154 return ppc_stub_plt_call;
10155 }
10156 }
10157 }
10158
10159 /* Determine where the call point is. */
10160 location = (input_sec->output_offset
10161 + input_sec->output_section->vma
10162 + rel->r_offset);
10163
10164 branch_offset = destination - location;
10165 r_type = ELF64_R_TYPE (rel->r_info);
10166
10167 /* Determine if a long branch stub is needed. */
10168 max_branch_offset = 1 << 25;
10169 if (r_type != R_PPC64_REL24)
10170 max_branch_offset = 1 << 15;
10171
10172 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10173 /* We need a stub. Figure out whether a long_branch or plt_branch
10174 is needed later. */
10175 return ppc_stub_long_branch;
10176
10177 return ppc_stub_none;
10178 }
10179
10180 /* With power7 weakly ordered memory model, it is possible for ld.so
10181 to update a plt entry in one thread and have another thread see a
10182 stale zero toc entry. To avoid this we need some sort of acquire
10183 barrier in the call stub. One solution is to make the load of the
10184 toc word seem to appear to depend on the load of the function entry
10185 word. Another solution is to test for r2 being zero, and branch to
10186 the appropriate glink entry if so.
10187
10188 . fake dep barrier compare
10189 . ld 12,xxx(2) ld 12,xxx(2)
10190 . mtctr 12 mtctr 12
10191 . xor 11,12,12 ld 2,xxx+8(2)
10192 . add 2,2,11 cmpldi 2,0
10193 . ld 2,xxx+8(2) bnectr+
10194 . bctr b <glink_entry>
10195
10196 The solution involving the compare turns out to be faster, so
10197 that's what we use unless the branch won't reach. */
10198
10199 #define ALWAYS_USE_FAKE_DEP 0
10200 #define ALWAYS_EMIT_R2SAVE 0
10201
10202 #define PPC_LO(v) ((v) & 0xffff)
10203 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10204 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10205
10206 static inline unsigned int
10207 plt_stub_size (struct ppc_link_hash_table *htab,
10208 struct ppc_stub_hash_entry *stub_entry,
10209 bfd_vma off)
10210 {
10211 unsigned size = 12;
10212
10213 if (ALWAYS_EMIT_R2SAVE
10214 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10215 size += 4;
10216 if (PPC_HA (off) != 0)
10217 size += 4;
10218 if (htab->opd_abi)
10219 {
10220 size += 4;
10221 if (htab->params->plt_static_chain)
10222 size += 4;
10223 if (htab->params->plt_thread_safe
10224 && htab->elf.dynamic_sections_created
10225 && stub_entry->h != NULL
10226 && stub_entry->h->elf.dynindx != -1)
10227 size += 8;
10228 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10229 size += 4;
10230 }
10231 if (stub_entry->h != NULL
10232 && (stub_entry->h == htab->tls_get_addr_fd
10233 || stub_entry->h == htab->tls_get_addr)
10234 && !htab->params->no_tls_get_addr_opt)
10235 size += 13 * 4;
10236 return size;
10237 }
10238
10239 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10240 then return the padding needed to do so. */
10241 static inline unsigned int
10242 plt_stub_pad (struct ppc_link_hash_table *htab,
10243 struct ppc_stub_hash_entry *stub_entry,
10244 bfd_vma plt_off)
10245 {
10246 int stub_align = 1 << htab->params->plt_stub_align;
10247 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10248 bfd_vma stub_off = stub_entry->stub_sec->size;
10249
10250 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10251 > ((stub_size - 1) & -stub_align))
10252 return stub_align - (stub_off & (stub_align - 1));
10253 return 0;
10254 }
10255
10256 /* Build a .plt call stub. */
10257
10258 static inline bfd_byte *
10259 build_plt_stub (struct ppc_link_hash_table *htab,
10260 struct ppc_stub_hash_entry *stub_entry,
10261 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10262 {
10263 bfd *obfd = htab->params->stub_bfd;
10264 bfd_boolean plt_load_toc = htab->opd_abi;
10265 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10266 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10267 && htab->elf.dynamic_sections_created
10268 && stub_entry->h != NULL
10269 && stub_entry->h->elf.dynindx != -1);
10270 bfd_boolean use_fake_dep = plt_thread_safe;
10271 bfd_vma cmp_branch_off = 0;
10272
10273 if (!ALWAYS_USE_FAKE_DEP
10274 && plt_load_toc
10275 && plt_thread_safe
10276 && !((stub_entry->h == htab->tls_get_addr_fd
10277 || stub_entry->h == htab->tls_get_addr)
10278 && !htab->params->no_tls_get_addr_opt))
10279 {
10280 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10281 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10282 / PLT_ENTRY_SIZE (htab));
10283 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10284 bfd_vma to, from;
10285
10286 if (pltindex > 32768)
10287 glinkoff += (pltindex - 32768) * 4;
10288 to = (glinkoff
10289 + htab->glink->output_offset
10290 + htab->glink->output_section->vma);
10291 from = (p - stub_entry->stub_sec->contents
10292 + 4 * (ALWAYS_EMIT_R2SAVE
10293 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10294 + 4 * (PPC_HA (offset) != 0)
10295 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10296 != PPC_HA (offset))
10297 + 4 * (plt_static_chain != 0)
10298 + 20
10299 + stub_entry->stub_sec->output_offset
10300 + stub_entry->stub_sec->output_section->vma);
10301 cmp_branch_off = to - from;
10302 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10303 }
10304
10305 if (PPC_HA (offset) != 0)
10306 {
10307 if (r != NULL)
10308 {
10309 if (ALWAYS_EMIT_R2SAVE
10310 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10311 r[0].r_offset += 4;
10312 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10313 r[1].r_offset = r[0].r_offset + 4;
10314 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10315 r[1].r_addend = r[0].r_addend;
10316 if (plt_load_toc)
10317 {
10318 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10319 {
10320 r[2].r_offset = r[1].r_offset + 4;
10321 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10322 r[2].r_addend = r[0].r_addend;
10323 }
10324 else
10325 {
10326 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10327 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10328 r[2].r_addend = r[0].r_addend + 8;
10329 if (plt_static_chain)
10330 {
10331 r[3].r_offset = r[2].r_offset + 4;
10332 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10333 r[3].r_addend = r[0].r_addend + 16;
10334 }
10335 }
10336 }
10337 }
10338 if (ALWAYS_EMIT_R2SAVE
10339 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10340 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10341 if (plt_load_toc)
10342 {
10343 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10344 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10345 }
10346 else
10347 {
10348 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10349 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10350 }
10351 if (plt_load_toc
10352 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10353 {
10354 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10355 offset = 0;
10356 }
10357 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10358 if (plt_load_toc)
10359 {
10360 if (use_fake_dep)
10361 {
10362 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10363 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10364 }
10365 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10366 if (plt_static_chain)
10367 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10368 }
10369 }
10370 else
10371 {
10372 if (r != NULL)
10373 {
10374 if (ALWAYS_EMIT_R2SAVE
10375 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10376 r[0].r_offset += 4;
10377 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10378 if (plt_load_toc)
10379 {
10380 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10381 {
10382 r[1].r_offset = r[0].r_offset + 4;
10383 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10384 r[1].r_addend = r[0].r_addend;
10385 }
10386 else
10387 {
10388 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10389 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10390 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10391 if (plt_static_chain)
10392 {
10393 r[2].r_offset = r[1].r_offset + 4;
10394 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10395 r[2].r_addend = r[0].r_addend + 8;
10396 }
10397 }
10398 }
10399 }
10400 if (ALWAYS_EMIT_R2SAVE
10401 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10402 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10403 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10404 if (plt_load_toc
10405 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10406 {
10407 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10408 offset = 0;
10409 }
10410 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10411 if (plt_load_toc)
10412 {
10413 if (use_fake_dep)
10414 {
10415 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10416 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10417 }
10418 if (plt_static_chain)
10419 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10420 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10421 }
10422 }
10423 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10424 {
10425 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10426 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10427 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10428 }
10429 else
10430 bfd_put_32 (obfd, BCTR, p), p += 4;
10431 return p;
10432 }
10433
10434 /* Build a special .plt call stub for __tls_get_addr. */
10435
10436 #define LD_R11_0R3 0xe9630000
10437 #define LD_R12_0R3 0xe9830000
10438 #define MR_R0_R3 0x7c601b78
10439 #define CMPDI_R11_0 0x2c2b0000
10440 #define ADD_R3_R12_R13 0x7c6c6a14
10441 #define BEQLR 0x4d820020
10442 #define MR_R3_R0 0x7c030378
10443 #define STD_R11_0R1 0xf9610000
10444 #define BCTRL 0x4e800421
10445 #define LD_R11_0R1 0xe9610000
10446 #define MTLR_R11 0x7d6803a6
10447
10448 static inline bfd_byte *
10449 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10450 struct ppc_stub_hash_entry *stub_entry,
10451 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10452 {
10453 bfd *obfd = htab->params->stub_bfd;
10454
10455 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10456 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10457 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10458 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10459 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10460 bfd_put_32 (obfd, BEQLR, p), p += 4;
10461 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10462 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10463 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10464
10465 if (r != NULL)
10466 r[0].r_offset += 9 * 4;
10467 p = build_plt_stub (htab, stub_entry, p, offset, r);
10468 bfd_put_32 (obfd, BCTRL, p - 4);
10469
10470 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10471 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10472 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10473 bfd_put_32 (obfd, BLR, p), p += 4;
10474
10475 return p;
10476 }
10477
10478 static Elf_Internal_Rela *
10479 get_relocs (asection *sec, int count)
10480 {
10481 Elf_Internal_Rela *relocs;
10482 struct bfd_elf_section_data *elfsec_data;
10483
10484 elfsec_data = elf_section_data (sec);
10485 relocs = elfsec_data->relocs;
10486 if (relocs == NULL)
10487 {
10488 bfd_size_type relsize;
10489 relsize = sec->reloc_count * sizeof (*relocs);
10490 relocs = bfd_alloc (sec->owner, relsize);
10491 if (relocs == NULL)
10492 return NULL;
10493 elfsec_data->relocs = relocs;
10494 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10495 sizeof (Elf_Internal_Shdr));
10496 if (elfsec_data->rela.hdr == NULL)
10497 return NULL;
10498 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10499 * sizeof (Elf64_External_Rela));
10500 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10501 sec->reloc_count = 0;
10502 }
10503 relocs += sec->reloc_count;
10504 sec->reloc_count += count;
10505 return relocs;
10506 }
10507
10508 static bfd_vma
10509 get_r2off (struct bfd_link_info *info,
10510 struct ppc_stub_hash_entry *stub_entry)
10511 {
10512 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10513 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10514
10515 if (r2off == 0)
10516 {
10517 /* Support linking -R objects. Get the toc pointer from the
10518 opd entry. */
10519 char buf[8];
10520 if (!htab->opd_abi)
10521 return r2off;
10522 asection *opd = stub_entry->h->elf.root.u.def.section;
10523 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10524
10525 if (strcmp (opd->name, ".opd") != 0
10526 || opd->reloc_count != 0)
10527 {
10528 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10529 stub_entry->h->elf.root.root.string);
10530 bfd_set_error (bfd_error_bad_value);
10531 return 0;
10532 }
10533 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10534 return 0;
10535 r2off = bfd_get_64 (opd->owner, buf);
10536 r2off -= elf_gp (info->output_bfd);
10537 }
10538 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10539 return r2off;
10540 }
10541
10542 static bfd_boolean
10543 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10544 {
10545 struct ppc_stub_hash_entry *stub_entry;
10546 struct ppc_branch_hash_entry *br_entry;
10547 struct bfd_link_info *info;
10548 struct ppc_link_hash_table *htab;
10549 bfd_byte *loc;
10550 bfd_byte *p;
10551 bfd_vma dest, off;
10552 int size;
10553 Elf_Internal_Rela *r;
10554 asection *plt;
10555
10556 /* Massage our args to the form they really have. */
10557 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10558 info = in_arg;
10559
10560 htab = ppc_hash_table (info);
10561 if (htab == NULL)
10562 return FALSE;
10563
10564 /* Make a note of the offset within the stubs for this entry. */
10565 stub_entry->stub_offset = stub_entry->stub_sec->size;
10566 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10567
10568 htab->stub_count[stub_entry->stub_type - 1] += 1;
10569 switch (stub_entry->stub_type)
10570 {
10571 case ppc_stub_long_branch:
10572 case ppc_stub_long_branch_r2off:
10573 /* Branches are relative. This is where we are going to. */
10574 dest = (stub_entry->target_value
10575 + stub_entry->target_section->output_offset
10576 + stub_entry->target_section->output_section->vma);
10577 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10578 off = dest;
10579
10580 /* And this is where we are coming from. */
10581 off -= (stub_entry->stub_offset
10582 + stub_entry->stub_sec->output_offset
10583 + stub_entry->stub_sec->output_section->vma);
10584
10585 size = 4;
10586 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10587 {
10588 bfd_vma r2off = get_r2off (info, stub_entry);
10589
10590 if (r2off == 0)
10591 {
10592 htab->stub_error = TRUE;
10593 return FALSE;
10594 }
10595 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10596 loc += 4;
10597 size = 12;
10598 if (PPC_HA (r2off) != 0)
10599 {
10600 size = 16;
10601 bfd_put_32 (htab->params->stub_bfd,
10602 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10603 loc += 4;
10604 }
10605 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10606 loc += 4;
10607 off -= size - 4;
10608 }
10609 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10610
10611 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10612 {
10613 info->callbacks->einfo
10614 (_("%P: long branch stub `%s' offset overflow\n"),
10615 stub_entry->root.string);
10616 htab->stub_error = TRUE;
10617 return FALSE;
10618 }
10619
10620 if (info->emitrelocations)
10621 {
10622 r = get_relocs (stub_entry->stub_sec, 1);
10623 if (r == NULL)
10624 return FALSE;
10625 r->r_offset = loc - stub_entry->stub_sec->contents;
10626 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10627 r->r_addend = dest;
10628 if (stub_entry->h != NULL)
10629 {
10630 struct elf_link_hash_entry **hashes;
10631 unsigned long symndx;
10632 struct ppc_link_hash_entry *h;
10633
10634 hashes = elf_sym_hashes (htab->params->stub_bfd);
10635 if (hashes == NULL)
10636 {
10637 bfd_size_type hsize;
10638
10639 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10640 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10641 if (hashes == NULL)
10642 return FALSE;
10643 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10644 htab->stub_globals = 1;
10645 }
10646 symndx = htab->stub_globals++;
10647 h = stub_entry->h;
10648 hashes[symndx] = &h->elf;
10649 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10650 if (h->oh != NULL && h->oh->is_func)
10651 h = ppc_follow_link (h->oh);
10652 if (h->elf.root.u.def.section != stub_entry->target_section)
10653 /* H is an opd symbol. The addend must be zero. */
10654 r->r_addend = 0;
10655 else
10656 {
10657 off = (h->elf.root.u.def.value
10658 + h->elf.root.u.def.section->output_offset
10659 + h->elf.root.u.def.section->output_section->vma);
10660 r->r_addend -= off;
10661 }
10662 }
10663 }
10664 break;
10665
10666 case ppc_stub_plt_branch:
10667 case ppc_stub_plt_branch_r2off:
10668 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10669 stub_entry->root.string + 9,
10670 FALSE, FALSE);
10671 if (br_entry == NULL)
10672 {
10673 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10674 stub_entry->root.string);
10675 htab->stub_error = TRUE;
10676 return FALSE;
10677 }
10678
10679 dest = (stub_entry->target_value
10680 + stub_entry->target_section->output_offset
10681 + stub_entry->target_section->output_section->vma);
10682 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10683 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10684
10685 bfd_put_64 (htab->brlt->owner, dest,
10686 htab->brlt->contents + br_entry->offset);
10687
10688 if (br_entry->iter == htab->stub_iteration)
10689 {
10690 br_entry->iter = 0;
10691
10692 if (htab->relbrlt != NULL)
10693 {
10694 /* Create a reloc for the branch lookup table entry. */
10695 Elf_Internal_Rela rela;
10696 bfd_byte *rl;
10697
10698 rela.r_offset = (br_entry->offset
10699 + htab->brlt->output_offset
10700 + htab->brlt->output_section->vma);
10701 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10702 rela.r_addend = dest;
10703
10704 rl = htab->relbrlt->contents;
10705 rl += (htab->relbrlt->reloc_count++
10706 * sizeof (Elf64_External_Rela));
10707 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10708 }
10709 else if (info->emitrelocations)
10710 {
10711 r = get_relocs (htab->brlt, 1);
10712 if (r == NULL)
10713 return FALSE;
10714 /* brlt, being SEC_LINKER_CREATED does not go through the
10715 normal reloc processing. Symbols and offsets are not
10716 translated from input file to output file form, so
10717 set up the offset per the output file. */
10718 r->r_offset = (br_entry->offset
10719 + htab->brlt->output_offset
10720 + htab->brlt->output_section->vma);
10721 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10722 r->r_addend = dest;
10723 }
10724 }
10725
10726 dest = (br_entry->offset
10727 + htab->brlt->output_offset
10728 + htab->brlt->output_section->vma);
10729
10730 off = (dest
10731 - elf_gp (htab->brlt->output_section->owner)
10732 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10733
10734 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10735 {
10736 info->callbacks->einfo
10737 (_("%P: linkage table error against `%T'\n"),
10738 stub_entry->root.string);
10739 bfd_set_error (bfd_error_bad_value);
10740 htab->stub_error = TRUE;
10741 return FALSE;
10742 }
10743
10744 if (info->emitrelocations)
10745 {
10746 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10747 if (r == NULL)
10748 return FALSE;
10749 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10750 if (bfd_big_endian (info->output_bfd))
10751 r[0].r_offset += 2;
10752 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10753 r[0].r_offset += 4;
10754 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10755 r[0].r_addend = dest;
10756 if (PPC_HA (off) != 0)
10757 {
10758 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10759 r[1].r_offset = r[0].r_offset + 4;
10760 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10761 r[1].r_addend = r[0].r_addend;
10762 }
10763 }
10764
10765 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10766 {
10767 if (PPC_HA (off) != 0)
10768 {
10769 size = 16;
10770 bfd_put_32 (htab->params->stub_bfd,
10771 ADDIS_R12_R2 | PPC_HA (off), loc);
10772 loc += 4;
10773 bfd_put_32 (htab->params->stub_bfd,
10774 LD_R12_0R12 | PPC_LO (off), loc);
10775 }
10776 else
10777 {
10778 size = 12;
10779 bfd_put_32 (htab->params->stub_bfd,
10780 LD_R12_0R2 | PPC_LO (off), loc);
10781 }
10782 }
10783 else
10784 {
10785 bfd_vma r2off = get_r2off (info, stub_entry);
10786
10787 if (r2off == 0 && htab->opd_abi)
10788 {
10789 htab->stub_error = TRUE;
10790 return FALSE;
10791 }
10792
10793 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10794 loc += 4;
10795 size = 16;
10796 if (PPC_HA (off) != 0)
10797 {
10798 size += 4;
10799 bfd_put_32 (htab->params->stub_bfd,
10800 ADDIS_R12_R2 | PPC_HA (off), loc);
10801 loc += 4;
10802 bfd_put_32 (htab->params->stub_bfd,
10803 LD_R12_0R12 | PPC_LO (off), loc);
10804 }
10805 else
10806 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10807
10808 if (PPC_HA (r2off) != 0)
10809 {
10810 size += 4;
10811 loc += 4;
10812 bfd_put_32 (htab->params->stub_bfd,
10813 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10814 }
10815 if (PPC_LO (r2off) != 0)
10816 {
10817 size += 4;
10818 loc += 4;
10819 bfd_put_32 (htab->params->stub_bfd,
10820 ADDI_R2_R2 | PPC_LO (r2off), loc);
10821 }
10822 }
10823 loc += 4;
10824 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10825 loc += 4;
10826 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10827 break;
10828
10829 case ppc_stub_plt_call:
10830 case ppc_stub_plt_call_r2save:
10831 if (stub_entry->h != NULL
10832 && stub_entry->h->is_func_descriptor
10833 && stub_entry->h->oh != NULL)
10834 {
10835 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10836
10837 /* If the old-ABI "dot-symbol" is undefined make it weak so
10838 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10839 FIXME: We used to define the symbol on one of the call
10840 stubs instead, which is why we test symbol section id
10841 against htab->top_id in various places. Likely all
10842 these checks could now disappear. */
10843 if (fh->elf.root.type == bfd_link_hash_undefined)
10844 fh->elf.root.type = bfd_link_hash_undefweak;
10845 /* Stop undo_symbol_twiddle changing it back to undefined. */
10846 fh->was_undefined = 0;
10847 }
10848
10849 /* Now build the stub. */
10850 dest = stub_entry->plt_ent->plt.offset & ~1;
10851 if (dest >= (bfd_vma) -2)
10852 abort ();
10853
10854 plt = htab->elf.splt;
10855 if (!htab->elf.dynamic_sections_created
10856 || stub_entry->h == NULL
10857 || stub_entry->h->elf.dynindx == -1)
10858 plt = htab->elf.iplt;
10859
10860 dest += plt->output_offset + plt->output_section->vma;
10861
10862 if (stub_entry->h == NULL
10863 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10864 {
10865 Elf_Internal_Rela rela;
10866 bfd_byte *rl;
10867
10868 rela.r_offset = dest;
10869 if (htab->opd_abi)
10870 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10871 else
10872 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10873 rela.r_addend = (stub_entry->target_value
10874 + stub_entry->target_section->output_offset
10875 + stub_entry->target_section->output_section->vma);
10876
10877 rl = (htab->elf.irelplt->contents
10878 + (htab->elf.irelplt->reloc_count++
10879 * sizeof (Elf64_External_Rela)));
10880 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10881 stub_entry->plt_ent->plt.offset |= 1;
10882 }
10883
10884 off = (dest
10885 - elf_gp (plt->output_section->owner)
10886 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10887
10888 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10889 {
10890 info->callbacks->einfo
10891 (_("%P: linkage table error against `%T'\n"),
10892 stub_entry->h != NULL
10893 ? stub_entry->h->elf.root.root.string
10894 : "<local sym>");
10895 bfd_set_error (bfd_error_bad_value);
10896 htab->stub_error = TRUE;
10897 return FALSE;
10898 }
10899
10900 if (htab->params->plt_stub_align != 0)
10901 {
10902 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10903
10904 stub_entry->stub_sec->size += pad;
10905 stub_entry->stub_offset = stub_entry->stub_sec->size;
10906 loc += pad;
10907 }
10908
10909 r = NULL;
10910 if (info->emitrelocations)
10911 {
10912 r = get_relocs (stub_entry->stub_sec,
10913 ((PPC_HA (off) != 0)
10914 + (htab->opd_abi
10915 ? 2 + (htab->params->plt_static_chain
10916 && PPC_HA (off + 16) == PPC_HA (off))
10917 : 1)));
10918 if (r == NULL)
10919 return FALSE;
10920 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10921 if (bfd_big_endian (info->output_bfd))
10922 r[0].r_offset += 2;
10923 r[0].r_addend = dest;
10924 }
10925 if (stub_entry->h != NULL
10926 && (stub_entry->h == htab->tls_get_addr_fd
10927 || stub_entry->h == htab->tls_get_addr)
10928 && !htab->params->no_tls_get_addr_opt)
10929 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10930 else
10931 p = build_plt_stub (htab, stub_entry, loc, off, r);
10932 size = p - loc;
10933 break;
10934
10935 default:
10936 BFD_FAIL ();
10937 return FALSE;
10938 }
10939
10940 stub_entry->stub_sec->size += size;
10941
10942 if (htab->params->emit_stub_syms)
10943 {
10944 struct elf_link_hash_entry *h;
10945 size_t len1, len2;
10946 char *name;
10947 const char *const stub_str[] = { "long_branch",
10948 "long_branch_r2off",
10949 "plt_branch",
10950 "plt_branch_r2off",
10951 "plt_call",
10952 "plt_call" };
10953
10954 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10955 len2 = strlen (stub_entry->root.string);
10956 name = bfd_malloc (len1 + len2 + 2);
10957 if (name == NULL)
10958 return FALSE;
10959 memcpy (name, stub_entry->root.string, 9);
10960 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10961 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10962 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10963 if (h == NULL)
10964 return FALSE;
10965 if (h->root.type == bfd_link_hash_new)
10966 {
10967 h->root.type = bfd_link_hash_defined;
10968 h->root.u.def.section = stub_entry->stub_sec;
10969 h->root.u.def.value = stub_entry->stub_offset;
10970 h->ref_regular = 1;
10971 h->def_regular = 1;
10972 h->ref_regular_nonweak = 1;
10973 h->forced_local = 1;
10974 h->non_elf = 0;
10975 h->root.linker_def = 1;
10976 }
10977 }
10978
10979 return TRUE;
10980 }
10981
10982 /* As above, but don't actually build the stub. Just bump offset so
10983 we know stub section sizes, and select plt_branch stubs where
10984 long_branch stubs won't do. */
10985
10986 static bfd_boolean
10987 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10988 {
10989 struct ppc_stub_hash_entry *stub_entry;
10990 struct bfd_link_info *info;
10991 struct ppc_link_hash_table *htab;
10992 bfd_vma off;
10993 int size;
10994
10995 /* Massage our args to the form they really have. */
10996 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10997 info = in_arg;
10998
10999 htab = ppc_hash_table (info);
11000 if (htab == NULL)
11001 return FALSE;
11002
11003 if (stub_entry->stub_type == ppc_stub_plt_call
11004 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11005 {
11006 asection *plt;
11007 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
11008 if (off >= (bfd_vma) -2)
11009 abort ();
11010 plt = htab->elf.splt;
11011 if (!htab->elf.dynamic_sections_created
11012 || stub_entry->h == NULL
11013 || stub_entry->h->elf.dynindx == -1)
11014 plt = htab->elf.iplt;
11015 off += (plt->output_offset
11016 + plt->output_section->vma
11017 - elf_gp (plt->output_section->owner)
11018 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11019
11020 size = plt_stub_size (htab, stub_entry, off);
11021 if (htab->params->plt_stub_align)
11022 size += plt_stub_pad (htab, stub_entry, off);
11023 if (info->emitrelocations)
11024 {
11025 stub_entry->stub_sec->reloc_count
11026 += ((PPC_HA (off) != 0)
11027 + (htab->opd_abi
11028 ? 2 + (htab->params->plt_static_chain
11029 && PPC_HA (off + 16) == PPC_HA (off))
11030 : 1));
11031 stub_entry->stub_sec->flags |= SEC_RELOC;
11032 }
11033 }
11034 else
11035 {
11036 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
11037 variants. */
11038 bfd_vma r2off = 0;
11039 bfd_vma local_off = 0;
11040
11041 off = (stub_entry->target_value
11042 + stub_entry->target_section->output_offset
11043 + stub_entry->target_section->output_section->vma);
11044 off -= (stub_entry->stub_sec->size
11045 + stub_entry->stub_sec->output_offset
11046 + stub_entry->stub_sec->output_section->vma);
11047
11048 /* Reset the stub type from the plt variant in case we now
11049 can reach with a shorter stub. */
11050 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11051 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11052
11053 size = 4;
11054 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11055 {
11056 r2off = get_r2off (info, stub_entry);
11057 if (r2off == 0 && htab->opd_abi)
11058 {
11059 htab->stub_error = TRUE;
11060 return FALSE;
11061 }
11062 size = 12;
11063 if (PPC_HA (r2off) != 0)
11064 size = 16;
11065 off -= size - 4;
11066 }
11067
11068 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11069
11070 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11071 Do the same for -R objects without function descriptors. */
11072 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11073 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11074 && r2off == 0))
11075 {
11076 struct ppc_branch_hash_entry *br_entry;
11077
11078 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11079 stub_entry->root.string + 9,
11080 TRUE, FALSE);
11081 if (br_entry == NULL)
11082 {
11083 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11084 stub_entry->root.string);
11085 htab->stub_error = TRUE;
11086 return FALSE;
11087 }
11088
11089 if (br_entry->iter != htab->stub_iteration)
11090 {
11091 br_entry->iter = htab->stub_iteration;
11092 br_entry->offset = htab->brlt->size;
11093 htab->brlt->size += 8;
11094
11095 if (htab->relbrlt != NULL)
11096 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11097 else if (info->emitrelocations)
11098 {
11099 htab->brlt->reloc_count += 1;
11100 htab->brlt->flags |= SEC_RELOC;
11101 }
11102 }
11103
11104 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11105 off = (br_entry->offset
11106 + htab->brlt->output_offset
11107 + htab->brlt->output_section->vma
11108 - elf_gp (htab->brlt->output_section->owner)
11109 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11110
11111 if (info->emitrelocations)
11112 {
11113 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11114 stub_entry->stub_sec->flags |= SEC_RELOC;
11115 }
11116
11117 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11118 {
11119 size = 12;
11120 if (PPC_HA (off) != 0)
11121 size = 16;
11122 }
11123 else
11124 {
11125 size = 16;
11126 if (PPC_HA (off) != 0)
11127 size += 4;
11128
11129 if (PPC_HA (r2off) != 0)
11130 size += 4;
11131 if (PPC_LO (r2off) != 0)
11132 size += 4;
11133 }
11134 }
11135 else if (info->emitrelocations)
11136 {
11137 stub_entry->stub_sec->reloc_count += 1;
11138 stub_entry->stub_sec->flags |= SEC_RELOC;
11139 }
11140 }
11141
11142 stub_entry->stub_sec->size += size;
11143 return TRUE;
11144 }
11145
11146 /* Set up various things so that we can make a list of input sections
11147 for each output section included in the link. Returns -1 on error,
11148 0 when no stubs will be needed, and 1 on success. */
11149
11150 int
11151 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11152 {
11153 bfd *input_bfd;
11154 int top_id, top_index, id;
11155 asection *section;
11156 asection **input_list;
11157 bfd_size_type amt;
11158 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11159
11160 if (htab == NULL)
11161 return -1;
11162
11163 /* Find the top input section id. */
11164 for (input_bfd = info->input_bfds, top_id = 3;
11165 input_bfd != NULL;
11166 input_bfd = input_bfd->link.next)
11167 {
11168 for (section = input_bfd->sections;
11169 section != NULL;
11170 section = section->next)
11171 {
11172 if (top_id < section->id)
11173 top_id = section->id;
11174 }
11175 }
11176
11177 htab->top_id = top_id;
11178 amt = sizeof (struct map_stub) * (top_id + 1);
11179 htab->stub_group = bfd_zmalloc (amt);
11180 if (htab->stub_group == NULL)
11181 return -1;
11182
11183 /* Set toc_off for com, und, abs and ind sections. */
11184 for (id = 0; id < 3; id++)
11185 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11186
11187 /* We can't use output_bfd->section_count here to find the top output
11188 section index as some sections may have been removed, and
11189 strip_excluded_output_sections doesn't renumber the indices. */
11190 for (section = info->output_bfd->sections, top_index = 0;
11191 section != NULL;
11192 section = section->next)
11193 {
11194 if (top_index < section->index)
11195 top_index = section->index;
11196 }
11197
11198 htab->top_index = top_index;
11199 amt = sizeof (asection *) * (top_index + 1);
11200 input_list = bfd_zmalloc (amt);
11201 htab->input_list = input_list;
11202 if (input_list == NULL)
11203 return -1;
11204
11205 return 1;
11206 }
11207
11208 /* Set up for first pass at multitoc partitioning. */
11209
11210 void
11211 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11212 {
11213 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11214
11215 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11216 htab->toc_bfd = NULL;
11217 htab->toc_first_sec = NULL;
11218 }
11219
11220 /* The linker repeatedly calls this function for each TOC input section
11221 and linker generated GOT section. Group input bfds such that the toc
11222 within a group is less than 64k in size. */
11223
11224 bfd_boolean
11225 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11226 {
11227 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11228 bfd_vma addr, off, limit;
11229
11230 if (htab == NULL)
11231 return FALSE;
11232
11233 if (!htab->second_toc_pass)
11234 {
11235 /* Keep track of the first .toc or .got section for this input bfd. */
11236 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11237
11238 if (new_bfd)
11239 {
11240 htab->toc_bfd = isec->owner;
11241 htab->toc_first_sec = isec;
11242 }
11243
11244 addr = isec->output_offset + isec->output_section->vma;
11245 off = addr - htab->toc_curr;
11246 limit = 0x80008000;
11247 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11248 limit = 0x10000;
11249 if (off + isec->size > limit)
11250 {
11251 addr = (htab->toc_first_sec->output_offset
11252 + htab->toc_first_sec->output_section->vma);
11253 htab->toc_curr = addr;
11254 }
11255
11256 /* toc_curr is the base address of this toc group. Set elf_gp
11257 for the input section to be the offset relative to the
11258 output toc base plus 0x8000. Making the input elf_gp an
11259 offset allows us to move the toc as a whole without
11260 recalculating input elf_gp. */
11261 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11262 off += TOC_BASE_OFF;
11263
11264 /* Die if someone uses a linker script that doesn't keep input
11265 file .toc and .got together. */
11266 if (new_bfd
11267 && elf_gp (isec->owner) != 0
11268 && elf_gp (isec->owner) != off)
11269 return FALSE;
11270
11271 elf_gp (isec->owner) = off;
11272 return TRUE;
11273 }
11274
11275 /* During the second pass toc_first_sec points to the start of
11276 a toc group, and toc_curr is used to track the old elf_gp.
11277 We use toc_bfd to ensure we only look at each bfd once. */
11278 if (htab->toc_bfd == isec->owner)
11279 return TRUE;
11280 htab->toc_bfd = isec->owner;
11281
11282 if (htab->toc_first_sec == NULL
11283 || htab->toc_curr != elf_gp (isec->owner))
11284 {
11285 htab->toc_curr = elf_gp (isec->owner);
11286 htab->toc_first_sec = isec;
11287 }
11288 addr = (htab->toc_first_sec->output_offset
11289 + htab->toc_first_sec->output_section->vma);
11290 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11291 elf_gp (isec->owner) = off;
11292
11293 return TRUE;
11294 }
11295
11296 /* Called via elf_link_hash_traverse to merge GOT entries for global
11297 symbol H. */
11298
11299 static bfd_boolean
11300 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11301 {
11302 if (h->root.type == bfd_link_hash_indirect)
11303 return TRUE;
11304
11305 merge_got_entries (&h->got.glist);
11306
11307 return TRUE;
11308 }
11309
11310 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11311 symbol H. */
11312
11313 static bfd_boolean
11314 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11315 {
11316 struct got_entry *gent;
11317
11318 if (h->root.type == bfd_link_hash_indirect)
11319 return TRUE;
11320
11321 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11322 if (!gent->is_indirect)
11323 allocate_got (h, (struct bfd_link_info *) inf, gent);
11324 return TRUE;
11325 }
11326
11327 /* Called on the first multitoc pass after the last call to
11328 ppc64_elf_next_toc_section. This function removes duplicate GOT
11329 entries. */
11330
11331 bfd_boolean
11332 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11333 {
11334 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11335 struct bfd *ibfd, *ibfd2;
11336 bfd_boolean done_something;
11337
11338 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11339
11340 if (!htab->do_multi_toc)
11341 return FALSE;
11342
11343 /* Merge global sym got entries within a toc group. */
11344 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11345
11346 /* And tlsld_got. */
11347 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11348 {
11349 struct got_entry *ent, *ent2;
11350
11351 if (!is_ppc64_elf (ibfd))
11352 continue;
11353
11354 ent = ppc64_tlsld_got (ibfd);
11355 if (!ent->is_indirect
11356 && ent->got.offset != (bfd_vma) -1)
11357 {
11358 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11359 {
11360 if (!is_ppc64_elf (ibfd2))
11361 continue;
11362
11363 ent2 = ppc64_tlsld_got (ibfd2);
11364 if (!ent2->is_indirect
11365 && ent2->got.offset != (bfd_vma) -1
11366 && elf_gp (ibfd2) == elf_gp (ibfd))
11367 {
11368 ent2->is_indirect = TRUE;
11369 ent2->got.ent = ent;
11370 }
11371 }
11372 }
11373 }
11374
11375 /* Zap sizes of got sections. */
11376 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11377 htab->elf.irelplt->size -= htab->got_reli_size;
11378 htab->got_reli_size = 0;
11379
11380 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11381 {
11382 asection *got, *relgot;
11383
11384 if (!is_ppc64_elf (ibfd))
11385 continue;
11386
11387 got = ppc64_elf_tdata (ibfd)->got;
11388 if (got != NULL)
11389 {
11390 got->rawsize = got->size;
11391 got->size = 0;
11392 relgot = ppc64_elf_tdata (ibfd)->relgot;
11393 relgot->rawsize = relgot->size;
11394 relgot->size = 0;
11395 }
11396 }
11397
11398 /* Now reallocate the got, local syms first. We don't need to
11399 allocate section contents again since we never increase size. */
11400 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11401 {
11402 struct got_entry **lgot_ents;
11403 struct got_entry **end_lgot_ents;
11404 struct plt_entry **local_plt;
11405 struct plt_entry **end_local_plt;
11406 unsigned char *lgot_masks;
11407 bfd_size_type locsymcount;
11408 Elf_Internal_Shdr *symtab_hdr;
11409 asection *s;
11410
11411 if (!is_ppc64_elf (ibfd))
11412 continue;
11413
11414 lgot_ents = elf_local_got_ents (ibfd);
11415 if (!lgot_ents)
11416 continue;
11417
11418 symtab_hdr = &elf_symtab_hdr (ibfd);
11419 locsymcount = symtab_hdr->sh_info;
11420 end_lgot_ents = lgot_ents + locsymcount;
11421 local_plt = (struct plt_entry **) end_lgot_ents;
11422 end_local_plt = local_plt + locsymcount;
11423 lgot_masks = (unsigned char *) end_local_plt;
11424 s = ppc64_elf_tdata (ibfd)->got;
11425 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11426 {
11427 struct got_entry *ent;
11428
11429 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11430 {
11431 unsigned int ent_size = 8;
11432 unsigned int rel_size = sizeof (Elf64_External_Rela);
11433
11434 ent->got.offset = s->size;
11435 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11436 {
11437 ent_size *= 2;
11438 rel_size *= 2;
11439 }
11440 s->size += ent_size;
11441 if ((*lgot_masks & PLT_IFUNC) != 0)
11442 {
11443 htab->elf.irelplt->size += rel_size;
11444 htab->got_reli_size += rel_size;
11445 }
11446 else if (info->shared)
11447 {
11448 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11449 srel->size += rel_size;
11450 }
11451 }
11452 }
11453 }
11454
11455 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11456
11457 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11458 {
11459 struct got_entry *ent;
11460
11461 if (!is_ppc64_elf (ibfd))
11462 continue;
11463
11464 ent = ppc64_tlsld_got (ibfd);
11465 if (!ent->is_indirect
11466 && ent->got.offset != (bfd_vma) -1)
11467 {
11468 asection *s = ppc64_elf_tdata (ibfd)->got;
11469 ent->got.offset = s->size;
11470 s->size += 16;
11471 if (info->shared)
11472 {
11473 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11474 srel->size += sizeof (Elf64_External_Rela);
11475 }
11476 }
11477 }
11478
11479 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11480 if (!done_something)
11481 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11482 {
11483 asection *got;
11484
11485 if (!is_ppc64_elf (ibfd))
11486 continue;
11487
11488 got = ppc64_elf_tdata (ibfd)->got;
11489 if (got != NULL)
11490 {
11491 done_something = got->rawsize != got->size;
11492 if (done_something)
11493 break;
11494 }
11495 }
11496
11497 if (done_something)
11498 (*htab->params->layout_sections_again) ();
11499
11500 /* Set up for second pass over toc sections to recalculate elf_gp
11501 on input sections. */
11502 htab->toc_bfd = NULL;
11503 htab->toc_first_sec = NULL;
11504 htab->second_toc_pass = TRUE;
11505 return done_something;
11506 }
11507
11508 /* Called after second pass of multitoc partitioning. */
11509
11510 void
11511 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11512 {
11513 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11514
11515 /* After the second pass, toc_curr tracks the TOC offset used
11516 for code sections below in ppc64_elf_next_input_section. */
11517 htab->toc_curr = TOC_BASE_OFF;
11518 }
11519
11520 /* No toc references were found in ISEC. If the code in ISEC makes no
11521 calls, then there's no need to use toc adjusting stubs when branching
11522 into ISEC. Actually, indirect calls from ISEC are OK as they will
11523 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11524 needed, and 2 if a cyclical call-graph was found but no other reason
11525 for a stub was detected. If called from the top level, a return of
11526 2 means the same as a return of 0. */
11527
11528 static int
11529 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11530 {
11531 int ret;
11532
11533 /* Mark this section as checked. */
11534 isec->call_check_done = 1;
11535
11536 /* We know none of our code bearing sections will need toc stubs. */
11537 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11538 return 0;
11539
11540 if (isec->size == 0)
11541 return 0;
11542
11543 if (isec->output_section == NULL)
11544 return 0;
11545
11546 ret = 0;
11547 if (isec->reloc_count != 0)
11548 {
11549 Elf_Internal_Rela *relstart, *rel;
11550 Elf_Internal_Sym *local_syms;
11551 struct ppc_link_hash_table *htab;
11552
11553 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11554 info->keep_memory);
11555 if (relstart == NULL)
11556 return -1;
11557
11558 /* Look for branches to outside of this section. */
11559 local_syms = NULL;
11560 htab = ppc_hash_table (info);
11561 if (htab == NULL)
11562 return -1;
11563
11564 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11565 {
11566 enum elf_ppc64_reloc_type r_type;
11567 unsigned long r_symndx;
11568 struct elf_link_hash_entry *h;
11569 struct ppc_link_hash_entry *eh;
11570 Elf_Internal_Sym *sym;
11571 asection *sym_sec;
11572 struct _opd_sec_data *opd;
11573 bfd_vma sym_value;
11574 bfd_vma dest;
11575
11576 r_type = ELF64_R_TYPE (rel->r_info);
11577 if (r_type != R_PPC64_REL24
11578 && r_type != R_PPC64_REL14
11579 && r_type != R_PPC64_REL14_BRTAKEN
11580 && r_type != R_PPC64_REL14_BRNTAKEN)
11581 continue;
11582
11583 r_symndx = ELF64_R_SYM (rel->r_info);
11584 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11585 isec->owner))
11586 {
11587 ret = -1;
11588 break;
11589 }
11590
11591 /* Calls to dynamic lib functions go through a plt call stub
11592 that uses r2. */
11593 eh = (struct ppc_link_hash_entry *) h;
11594 if (eh != NULL
11595 && (eh->elf.plt.plist != NULL
11596 || (eh->oh != NULL
11597 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11598 {
11599 ret = 1;
11600 break;
11601 }
11602
11603 if (sym_sec == NULL)
11604 /* Ignore other undefined symbols. */
11605 continue;
11606
11607 /* Assume branches to other sections not included in the
11608 link need stubs too, to cover -R and absolute syms. */
11609 if (sym_sec->output_section == NULL)
11610 {
11611 ret = 1;
11612 break;
11613 }
11614
11615 if (h == NULL)
11616 sym_value = sym->st_value;
11617 else
11618 {
11619 if (h->root.type != bfd_link_hash_defined
11620 && h->root.type != bfd_link_hash_defweak)
11621 abort ();
11622 sym_value = h->root.u.def.value;
11623 }
11624 sym_value += rel->r_addend;
11625
11626 /* If this branch reloc uses an opd sym, find the code section. */
11627 opd = get_opd_info (sym_sec);
11628 if (opd != NULL)
11629 {
11630 if (h == NULL && opd->adjust != NULL)
11631 {
11632 long adjust;
11633
11634 adjust = opd->adjust[OPD_NDX (sym->st_value)];
11635 if (adjust == -1)
11636 /* Assume deleted functions won't ever be called. */
11637 continue;
11638 sym_value += adjust;
11639 }
11640
11641 dest = opd_entry_value (sym_sec, sym_value,
11642 &sym_sec, NULL, FALSE);
11643 if (dest == (bfd_vma) -1)
11644 continue;
11645 }
11646 else
11647 dest = (sym_value
11648 + sym_sec->output_offset
11649 + sym_sec->output_section->vma);
11650
11651 /* Ignore branch to self. */
11652 if (sym_sec == isec)
11653 continue;
11654
11655 /* If the called function uses the toc, we need a stub. */
11656 if (sym_sec->has_toc_reloc
11657 || sym_sec->makes_toc_func_call)
11658 {
11659 ret = 1;
11660 break;
11661 }
11662
11663 /* Assume any branch that needs a long branch stub might in fact
11664 need a plt_branch stub. A plt_branch stub uses r2. */
11665 else if (dest - (isec->output_offset
11666 + isec->output_section->vma
11667 + rel->r_offset) + (1 << 25)
11668 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11669 ? h->other
11670 : sym->st_other))
11671 {
11672 ret = 1;
11673 break;
11674 }
11675
11676 /* If calling back to a section in the process of being
11677 tested, we can't say for sure that no toc adjusting stubs
11678 are needed, so don't return zero. */
11679 else if (sym_sec->call_check_in_progress)
11680 ret = 2;
11681
11682 /* Branches to another section that itself doesn't have any TOC
11683 references are OK. Recursively call ourselves to check. */
11684 else if (!sym_sec->call_check_done)
11685 {
11686 int recur;
11687
11688 /* Mark current section as indeterminate, so that other
11689 sections that call back to current won't be marked as
11690 known. */
11691 isec->call_check_in_progress = 1;
11692 recur = toc_adjusting_stub_needed (info, sym_sec);
11693 isec->call_check_in_progress = 0;
11694
11695 if (recur != 0)
11696 {
11697 ret = recur;
11698 if (recur != 2)
11699 break;
11700 }
11701 }
11702 }
11703
11704 if (local_syms != NULL
11705 && (elf_symtab_hdr (isec->owner).contents
11706 != (unsigned char *) local_syms))
11707 free (local_syms);
11708 if (elf_section_data (isec)->relocs != relstart)
11709 free (relstart);
11710 }
11711
11712 if ((ret & 1) == 0
11713 && isec->map_head.s != NULL
11714 && (strcmp (isec->output_section->name, ".init") == 0
11715 || strcmp (isec->output_section->name, ".fini") == 0))
11716 {
11717 if (isec->map_head.s->has_toc_reloc
11718 || isec->map_head.s->makes_toc_func_call)
11719 ret = 1;
11720 else if (!isec->map_head.s->call_check_done)
11721 {
11722 int recur;
11723 isec->call_check_in_progress = 1;
11724 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11725 isec->call_check_in_progress = 0;
11726 if (recur != 0)
11727 ret = recur;
11728 }
11729 }
11730
11731 if (ret == 1)
11732 isec->makes_toc_func_call = 1;
11733
11734 return ret;
11735 }
11736
11737 /* The linker repeatedly calls this function for each input section,
11738 in the order that input sections are linked into output sections.
11739 Build lists of input sections to determine groupings between which
11740 we may insert linker stubs. */
11741
11742 bfd_boolean
11743 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11744 {
11745 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11746
11747 if (htab == NULL)
11748 return FALSE;
11749
11750 if ((isec->output_section->flags & SEC_CODE) != 0
11751 && isec->output_section->index <= htab->top_index)
11752 {
11753 asection **list = htab->input_list + isec->output_section->index;
11754 /* Steal the link_sec pointer for our list. */
11755 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11756 /* This happens to make the list in reverse order,
11757 which is what we want. */
11758 PREV_SEC (isec) = *list;
11759 *list = isec;
11760 }
11761
11762 if (htab->multi_toc_needed)
11763 {
11764 /* Analyse sections that aren't already flagged as needing a
11765 valid toc pointer. Exclude .fixup for the linux kernel.
11766 .fixup contains branches, but only back to the function that
11767 hit an exception. */
11768 if (!(isec->has_toc_reloc
11769 || (isec->flags & SEC_CODE) == 0
11770 || strcmp (isec->name, ".fixup") == 0
11771 || isec->call_check_done))
11772 {
11773 if (toc_adjusting_stub_needed (info, isec) < 0)
11774 return FALSE;
11775 }
11776 /* Make all sections use the TOC assigned for this object file.
11777 This will be wrong for pasted sections; We fix that in
11778 check_pasted_section(). */
11779 if (elf_gp (isec->owner) != 0)
11780 htab->toc_curr = elf_gp (isec->owner);
11781 }
11782
11783 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11784 return TRUE;
11785 }
11786
11787 /* Check that all .init and .fini sections use the same toc, if they
11788 have toc relocs. */
11789
11790 static bfd_boolean
11791 check_pasted_section (struct bfd_link_info *info, const char *name)
11792 {
11793 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11794
11795 if (o != NULL)
11796 {
11797 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11798 bfd_vma toc_off = 0;
11799 asection *i;
11800
11801 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11802 if (i->has_toc_reloc)
11803 {
11804 if (toc_off == 0)
11805 toc_off = htab->stub_group[i->id].toc_off;
11806 else if (toc_off != htab->stub_group[i->id].toc_off)
11807 return FALSE;
11808 }
11809
11810 if (toc_off == 0)
11811 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11812 if (i->makes_toc_func_call)
11813 {
11814 toc_off = htab->stub_group[i->id].toc_off;
11815 break;
11816 }
11817
11818 /* Make sure the whole pasted function uses the same toc offset. */
11819 if (toc_off != 0)
11820 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11821 htab->stub_group[i->id].toc_off = toc_off;
11822 }
11823 return TRUE;
11824 }
11825
11826 bfd_boolean
11827 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11828 {
11829 return (check_pasted_section (info, ".init")
11830 & check_pasted_section (info, ".fini"));
11831 }
11832
11833 /* See whether we can group stub sections together. Grouping stub
11834 sections may result in fewer stubs. More importantly, we need to
11835 put all .init* and .fini* stubs at the beginning of the .init or
11836 .fini output sections respectively, because glibc splits the
11837 _init and _fini functions into multiple parts. Putting a stub in
11838 the middle of a function is not a good idea. */
11839
11840 static void
11841 group_sections (struct ppc_link_hash_table *htab,
11842 bfd_size_type stub_group_size,
11843 bfd_boolean stubs_always_before_branch)
11844 {
11845 asection **list;
11846 bfd_size_type stub14_group_size;
11847 bfd_boolean suppress_size_errors;
11848
11849 suppress_size_errors = FALSE;
11850 stub14_group_size = stub_group_size >> 10;
11851 if (stub_group_size == 1)
11852 {
11853 /* Default values. */
11854 if (stubs_always_before_branch)
11855 {
11856 stub_group_size = 0x1e00000;
11857 stub14_group_size = 0x7800;
11858 }
11859 else
11860 {
11861 stub_group_size = 0x1c00000;
11862 stub14_group_size = 0x7000;
11863 }
11864 suppress_size_errors = TRUE;
11865 }
11866
11867 list = htab->input_list + htab->top_index;
11868 do
11869 {
11870 asection *tail = *list;
11871 while (tail != NULL)
11872 {
11873 asection *curr;
11874 asection *prev;
11875 bfd_size_type total;
11876 bfd_boolean big_sec;
11877 bfd_vma curr_toc;
11878
11879 curr = tail;
11880 total = tail->size;
11881 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11882 && ppc64_elf_section_data (tail)->has_14bit_branch
11883 ? stub14_group_size : stub_group_size);
11884 if (big_sec && !suppress_size_errors)
11885 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11886 tail->owner, tail);
11887 curr_toc = htab->stub_group[tail->id].toc_off;
11888
11889 while ((prev = PREV_SEC (curr)) != NULL
11890 && ((total += curr->output_offset - prev->output_offset)
11891 < (ppc64_elf_section_data (prev) != NULL
11892 && ppc64_elf_section_data (prev)->has_14bit_branch
11893 ? stub14_group_size : stub_group_size))
11894 && htab->stub_group[prev->id].toc_off == curr_toc)
11895 curr = prev;
11896
11897 /* OK, the size from the start of CURR to the end is less
11898 than stub_group_size and thus can be handled by one stub
11899 section. (or the tail section is itself larger than
11900 stub_group_size, in which case we may be toast.) We
11901 should really be keeping track of the total size of stubs
11902 added here, as stubs contribute to the final output
11903 section size. That's a little tricky, and this way will
11904 only break if stubs added make the total size more than
11905 2^25, ie. for the default stub_group_size, if stubs total
11906 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11907 do
11908 {
11909 prev = PREV_SEC (tail);
11910 /* Set up this stub group. */
11911 htab->stub_group[tail->id].link_sec = curr;
11912 }
11913 while (tail != curr && (tail = prev) != NULL);
11914
11915 /* But wait, there's more! Input sections up to stub_group_size
11916 bytes before the stub section can be handled by it too.
11917 Don't do this if we have a really large section after the
11918 stubs, as adding more stubs increases the chance that
11919 branches may not reach into the stub section. */
11920 if (!stubs_always_before_branch && !big_sec)
11921 {
11922 total = 0;
11923 while (prev != NULL
11924 && ((total += tail->output_offset - prev->output_offset)
11925 < (ppc64_elf_section_data (prev) != NULL
11926 && ppc64_elf_section_data (prev)->has_14bit_branch
11927 ? stub14_group_size : stub_group_size))
11928 && htab->stub_group[prev->id].toc_off == curr_toc)
11929 {
11930 tail = prev;
11931 prev = PREV_SEC (tail);
11932 htab->stub_group[tail->id].link_sec = curr;
11933 }
11934 }
11935 tail = prev;
11936 }
11937 }
11938 while (list-- != htab->input_list);
11939 free (htab->input_list);
11940 #undef PREV_SEC
11941 }
11942
11943 static const unsigned char glink_eh_frame_cie[] =
11944 {
11945 0, 0, 0, 16, /* length. */
11946 0, 0, 0, 0, /* id. */
11947 1, /* CIE version. */
11948 'z', 'R', 0, /* Augmentation string. */
11949 4, /* Code alignment. */
11950 0x78, /* Data alignment. */
11951 65, /* RA reg. */
11952 1, /* Augmentation size. */
11953 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11954 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11955 0, 0, 0, 0
11956 };
11957
11958 /* Stripping output sections is normally done before dynamic section
11959 symbols have been allocated. This function is called later, and
11960 handles cases like htab->brlt which is mapped to its own output
11961 section. */
11962
11963 static void
11964 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11965 {
11966 if (isec->size == 0
11967 && isec->output_section->size == 0
11968 && !(isec->output_section->flags & SEC_KEEP)
11969 && !bfd_section_removed_from_list (info->output_bfd,
11970 isec->output_section)
11971 && elf_section_data (isec->output_section)->dynindx == 0)
11972 {
11973 isec->output_section->flags |= SEC_EXCLUDE;
11974 bfd_section_list_remove (info->output_bfd, isec->output_section);
11975 info->output_bfd->section_count--;
11976 }
11977 }
11978
11979 /* Determine and set the size of the stub section for a final link.
11980
11981 The basic idea here is to examine all the relocations looking for
11982 PC-relative calls to a target that is unreachable with a "bl"
11983 instruction. */
11984
11985 bfd_boolean
11986 ppc64_elf_size_stubs (struct bfd_link_info *info)
11987 {
11988 bfd_size_type stub_group_size;
11989 bfd_boolean stubs_always_before_branch;
11990 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11991
11992 if (htab == NULL)
11993 return FALSE;
11994
11995 if (htab->params->plt_thread_safe == -1 && !info->executable)
11996 htab->params->plt_thread_safe = 1;
11997 if (!htab->opd_abi)
11998 htab->params->plt_thread_safe = 0;
11999 else if (htab->params->plt_thread_safe == -1)
12000 {
12001 static const char *const thread_starter[] =
12002 {
12003 "pthread_create",
12004 /* libstdc++ */
12005 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
12006 /* librt */
12007 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
12008 "mq_notify", "create_timer",
12009 /* libanl */
12010 "getaddrinfo_a",
12011 /* libgomp */
12012 "GOMP_parallel",
12013 "GOMP_parallel_start",
12014 "GOMP_parallel_loop_static",
12015 "GOMP_parallel_loop_static_start",
12016 "GOMP_parallel_loop_dynamic",
12017 "GOMP_parallel_loop_dynamic_start",
12018 "GOMP_parallel_loop_guided",
12019 "GOMP_parallel_loop_guided_start",
12020 "GOMP_parallel_loop_runtime",
12021 "GOMP_parallel_loop_runtime_start",
12022 "GOMP_parallel_sections",
12023 "GOMP_parallel_sections_start",
12024 /* libgo */
12025 "__go_go",
12026 };
12027 unsigned i;
12028
12029 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
12030 {
12031 struct elf_link_hash_entry *h;
12032 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12033 FALSE, FALSE, TRUE);
12034 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12035 if (htab->params->plt_thread_safe)
12036 break;
12037 }
12038 }
12039 stubs_always_before_branch = htab->params->group_size < 0;
12040 if (htab->params->group_size < 0)
12041 stub_group_size = -htab->params->group_size;
12042 else
12043 stub_group_size = htab->params->group_size;
12044
12045 group_sections (htab, stub_group_size, stubs_always_before_branch);
12046
12047 while (1)
12048 {
12049 bfd *input_bfd;
12050 unsigned int bfd_indx;
12051 asection *stub_sec;
12052
12053 htab->stub_iteration += 1;
12054
12055 for (input_bfd = info->input_bfds, bfd_indx = 0;
12056 input_bfd != NULL;
12057 input_bfd = input_bfd->link.next, bfd_indx++)
12058 {
12059 Elf_Internal_Shdr *symtab_hdr;
12060 asection *section;
12061 Elf_Internal_Sym *local_syms = NULL;
12062
12063 if (!is_ppc64_elf (input_bfd))
12064 continue;
12065
12066 /* We'll need the symbol table in a second. */
12067 symtab_hdr = &elf_symtab_hdr (input_bfd);
12068 if (symtab_hdr->sh_info == 0)
12069 continue;
12070
12071 /* Walk over each section attached to the input bfd. */
12072 for (section = input_bfd->sections;
12073 section != NULL;
12074 section = section->next)
12075 {
12076 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12077
12078 /* If there aren't any relocs, then there's nothing more
12079 to do. */
12080 if ((section->flags & SEC_RELOC) == 0
12081 || (section->flags & SEC_ALLOC) == 0
12082 || (section->flags & SEC_LOAD) == 0
12083 || (section->flags & SEC_CODE) == 0
12084 || section->reloc_count == 0)
12085 continue;
12086
12087 /* If this section is a link-once section that will be
12088 discarded, then don't create any stubs. */
12089 if (section->output_section == NULL
12090 || section->output_section->owner != info->output_bfd)
12091 continue;
12092
12093 /* Get the relocs. */
12094 internal_relocs
12095 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12096 info->keep_memory);
12097 if (internal_relocs == NULL)
12098 goto error_ret_free_local;
12099
12100 /* Now examine each relocation. */
12101 irela = internal_relocs;
12102 irelaend = irela + section->reloc_count;
12103 for (; irela < irelaend; irela++)
12104 {
12105 enum elf_ppc64_reloc_type r_type;
12106 unsigned int r_indx;
12107 enum ppc_stub_type stub_type;
12108 struct ppc_stub_hash_entry *stub_entry;
12109 asection *sym_sec, *code_sec;
12110 bfd_vma sym_value, code_value;
12111 bfd_vma destination;
12112 unsigned long local_off;
12113 bfd_boolean ok_dest;
12114 struct ppc_link_hash_entry *hash;
12115 struct ppc_link_hash_entry *fdh;
12116 struct elf_link_hash_entry *h;
12117 Elf_Internal_Sym *sym;
12118 char *stub_name;
12119 const asection *id_sec;
12120 struct _opd_sec_data *opd;
12121 struct plt_entry *plt_ent;
12122
12123 r_type = ELF64_R_TYPE (irela->r_info);
12124 r_indx = ELF64_R_SYM (irela->r_info);
12125
12126 if (r_type >= R_PPC64_max)
12127 {
12128 bfd_set_error (bfd_error_bad_value);
12129 goto error_ret_free_internal;
12130 }
12131
12132 /* Only look for stubs on branch instructions. */
12133 if (r_type != R_PPC64_REL24
12134 && r_type != R_PPC64_REL14
12135 && r_type != R_PPC64_REL14_BRTAKEN
12136 && r_type != R_PPC64_REL14_BRNTAKEN)
12137 continue;
12138
12139 /* Now determine the call target, its name, value,
12140 section. */
12141 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12142 r_indx, input_bfd))
12143 goto error_ret_free_internal;
12144 hash = (struct ppc_link_hash_entry *) h;
12145
12146 ok_dest = FALSE;
12147 fdh = NULL;
12148 sym_value = 0;
12149 if (hash == NULL)
12150 {
12151 sym_value = sym->st_value;
12152 ok_dest = TRUE;
12153 }
12154 else if (hash->elf.root.type == bfd_link_hash_defined
12155 || hash->elf.root.type == bfd_link_hash_defweak)
12156 {
12157 sym_value = hash->elf.root.u.def.value;
12158 if (sym_sec->output_section != NULL)
12159 ok_dest = TRUE;
12160 }
12161 else if (hash->elf.root.type == bfd_link_hash_undefweak
12162 || hash->elf.root.type == bfd_link_hash_undefined)
12163 {
12164 /* Recognise an old ABI func code entry sym, and
12165 use the func descriptor sym instead if it is
12166 defined. */
12167 if (hash->elf.root.root.string[0] == '.'
12168 && (fdh = lookup_fdh (hash, htab)) != NULL)
12169 {
12170 if (fdh->elf.root.type == bfd_link_hash_defined
12171 || fdh->elf.root.type == bfd_link_hash_defweak)
12172 {
12173 sym_sec = fdh->elf.root.u.def.section;
12174 sym_value = fdh->elf.root.u.def.value;
12175 if (sym_sec->output_section != NULL)
12176 ok_dest = TRUE;
12177 }
12178 else
12179 fdh = NULL;
12180 }
12181 }
12182 else
12183 {
12184 bfd_set_error (bfd_error_bad_value);
12185 goto error_ret_free_internal;
12186 }
12187
12188 destination = 0;
12189 local_off = 0;
12190 if (ok_dest)
12191 {
12192 sym_value += irela->r_addend;
12193 destination = (sym_value
12194 + sym_sec->output_offset
12195 + sym_sec->output_section->vma);
12196 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12197 ? hash->elf.other
12198 : sym->st_other);
12199 }
12200
12201 code_sec = sym_sec;
12202 code_value = sym_value;
12203 opd = get_opd_info (sym_sec);
12204 if (opd != NULL)
12205 {
12206 bfd_vma dest;
12207
12208 if (hash == NULL && opd->adjust != NULL)
12209 {
12210 long adjust = opd->adjust[OPD_NDX (sym_value)];
12211 if (adjust == -1)
12212 continue;
12213 code_value += adjust;
12214 sym_value += adjust;
12215 }
12216 dest = opd_entry_value (sym_sec, sym_value,
12217 &code_sec, &code_value, FALSE);
12218 if (dest != (bfd_vma) -1)
12219 {
12220 destination = dest;
12221 if (fdh != NULL)
12222 {
12223 /* Fixup old ABI sym to point at code
12224 entry. */
12225 hash->elf.root.type = bfd_link_hash_defweak;
12226 hash->elf.root.u.def.section = code_sec;
12227 hash->elf.root.u.def.value = code_value;
12228 }
12229 }
12230 }
12231
12232 /* Determine what (if any) linker stub is needed. */
12233 plt_ent = NULL;
12234 stub_type = ppc_type_of_stub (section, irela, &hash,
12235 &plt_ent, destination,
12236 local_off);
12237
12238 if (stub_type != ppc_stub_plt_call)
12239 {
12240 /* Check whether we need a TOC adjusting stub.
12241 Since the linker pastes together pieces from
12242 different object files when creating the
12243 _init and _fini functions, it may be that a
12244 call to what looks like a local sym is in
12245 fact a call needing a TOC adjustment. */
12246 if (code_sec != NULL
12247 && code_sec->output_section != NULL
12248 && (htab->stub_group[code_sec->id].toc_off
12249 != htab->stub_group[section->id].toc_off)
12250 && (code_sec->has_toc_reloc
12251 || code_sec->makes_toc_func_call))
12252 stub_type = ppc_stub_long_branch_r2off;
12253 }
12254
12255 if (stub_type == ppc_stub_none)
12256 continue;
12257
12258 /* __tls_get_addr calls might be eliminated. */
12259 if (stub_type != ppc_stub_plt_call
12260 && hash != NULL
12261 && (hash == htab->tls_get_addr
12262 || hash == htab->tls_get_addr_fd)
12263 && section->has_tls_reloc
12264 && irela != internal_relocs)
12265 {
12266 /* Get tls info. */
12267 unsigned char *tls_mask;
12268
12269 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12270 irela - 1, input_bfd))
12271 goto error_ret_free_internal;
12272 if (*tls_mask != 0)
12273 continue;
12274 }
12275
12276 if (stub_type == ppc_stub_plt_call
12277 && irela + 1 < irelaend
12278 && irela[1].r_offset == irela->r_offset + 4
12279 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12280 {
12281 if (!tocsave_find (htab, INSERT,
12282 &local_syms, irela + 1, input_bfd))
12283 goto error_ret_free_internal;
12284 }
12285 else if (stub_type == ppc_stub_plt_call)
12286 stub_type = ppc_stub_plt_call_r2save;
12287
12288 /* Support for grouping stub sections. */
12289 id_sec = htab->stub_group[section->id].link_sec;
12290
12291 /* Get the name of this stub. */
12292 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12293 if (!stub_name)
12294 goto error_ret_free_internal;
12295
12296 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12297 stub_name, FALSE, FALSE);
12298 if (stub_entry != NULL)
12299 {
12300 /* The proper stub has already been created. */
12301 free (stub_name);
12302 if (stub_type == ppc_stub_plt_call_r2save)
12303 stub_entry->stub_type = stub_type;
12304 continue;
12305 }
12306
12307 stub_entry = ppc_add_stub (stub_name, section, info);
12308 if (stub_entry == NULL)
12309 {
12310 free (stub_name);
12311 error_ret_free_internal:
12312 if (elf_section_data (section)->relocs == NULL)
12313 free (internal_relocs);
12314 error_ret_free_local:
12315 if (local_syms != NULL
12316 && (symtab_hdr->contents
12317 != (unsigned char *) local_syms))
12318 free (local_syms);
12319 return FALSE;
12320 }
12321
12322 stub_entry->stub_type = stub_type;
12323 if (stub_type != ppc_stub_plt_call
12324 && stub_type != ppc_stub_plt_call_r2save)
12325 {
12326 stub_entry->target_value = code_value;
12327 stub_entry->target_section = code_sec;
12328 }
12329 else
12330 {
12331 stub_entry->target_value = sym_value;
12332 stub_entry->target_section = sym_sec;
12333 }
12334 stub_entry->h = hash;
12335 stub_entry->plt_ent = plt_ent;
12336 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12337
12338 if (stub_entry->h != NULL)
12339 htab->stub_globals += 1;
12340 }
12341
12342 /* We're done with the internal relocs, free them. */
12343 if (elf_section_data (section)->relocs != internal_relocs)
12344 free (internal_relocs);
12345 }
12346
12347 if (local_syms != NULL
12348 && symtab_hdr->contents != (unsigned char *) local_syms)
12349 {
12350 if (!info->keep_memory)
12351 free (local_syms);
12352 else
12353 symtab_hdr->contents = (unsigned char *) local_syms;
12354 }
12355 }
12356
12357 /* We may have added some stubs. Find out the new size of the
12358 stub sections. */
12359 for (stub_sec = htab->params->stub_bfd->sections;
12360 stub_sec != NULL;
12361 stub_sec = stub_sec->next)
12362 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12363 {
12364 stub_sec->rawsize = stub_sec->size;
12365 stub_sec->size = 0;
12366 stub_sec->reloc_count = 0;
12367 stub_sec->flags &= ~SEC_RELOC;
12368 }
12369
12370 htab->brlt->size = 0;
12371 htab->brlt->reloc_count = 0;
12372 htab->brlt->flags &= ~SEC_RELOC;
12373 if (htab->relbrlt != NULL)
12374 htab->relbrlt->size = 0;
12375
12376 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12377
12378 if (info->emitrelocations
12379 && htab->glink != NULL && htab->glink->size != 0)
12380 {
12381 htab->glink->reloc_count = 1;
12382 htab->glink->flags |= SEC_RELOC;
12383 }
12384
12385 if (htab->glink_eh_frame != NULL
12386 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12387 && htab->glink_eh_frame->output_section->size != 0)
12388 {
12389 size_t size = 0, align;
12390
12391 for (stub_sec = htab->params->stub_bfd->sections;
12392 stub_sec != NULL;
12393 stub_sec = stub_sec->next)
12394 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12395 size += 24;
12396 if (htab->glink != NULL && htab->glink->size != 0)
12397 size += 24;
12398 if (size != 0)
12399 size += sizeof (glink_eh_frame_cie);
12400 align = 1;
12401 align <<= htab->glink_eh_frame->output_section->alignment_power;
12402 align -= 1;
12403 size = (size + align) & ~align;
12404 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12405 htab->glink_eh_frame->size = size;
12406 }
12407
12408 if (htab->params->plt_stub_align != 0)
12409 for (stub_sec = htab->params->stub_bfd->sections;
12410 stub_sec != NULL;
12411 stub_sec = stub_sec->next)
12412 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12413 stub_sec->size = ((stub_sec->size
12414 + (1 << htab->params->plt_stub_align) - 1)
12415 & (-1 << htab->params->plt_stub_align));
12416
12417 for (stub_sec = htab->params->stub_bfd->sections;
12418 stub_sec != NULL;
12419 stub_sec = stub_sec->next)
12420 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12421 && stub_sec->rawsize != stub_sec->size)
12422 break;
12423
12424 /* Exit from this loop when no stubs have been added, and no stubs
12425 have changed size. */
12426 if (stub_sec == NULL
12427 && (htab->glink_eh_frame == NULL
12428 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12429 break;
12430
12431 /* Ask the linker to do its stuff. */
12432 (*htab->params->layout_sections_again) ();
12433 }
12434
12435 if (htab->glink_eh_frame != NULL
12436 && htab->glink_eh_frame->size != 0)
12437 {
12438 bfd_vma val;
12439 bfd_byte *p, *last_fde;
12440 size_t last_fde_len, size, align, pad;
12441 asection *stub_sec;
12442
12443 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12444 if (p == NULL)
12445 return FALSE;
12446 htab->glink_eh_frame->contents = p;
12447 last_fde = p;
12448
12449 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12450 /* CIE length (rewrite in case little-endian). */
12451 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12452 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12453 p += sizeof (glink_eh_frame_cie);
12454
12455 for (stub_sec = htab->params->stub_bfd->sections;
12456 stub_sec != NULL;
12457 stub_sec = stub_sec->next)
12458 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12459 {
12460 last_fde = p;
12461 last_fde_len = 20;
12462 /* FDE length. */
12463 bfd_put_32 (htab->elf.dynobj, 20, p);
12464 p += 4;
12465 /* CIE pointer. */
12466 val = p - htab->glink_eh_frame->contents;
12467 bfd_put_32 (htab->elf.dynobj, val, p);
12468 p += 4;
12469 /* Offset to stub section, written later. */
12470 p += 4;
12471 /* stub section size. */
12472 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12473 p += 4;
12474 /* Augmentation. */
12475 p += 1;
12476 /* Pad. */
12477 p += 7;
12478 }
12479 if (htab->glink != NULL && htab->glink->size != 0)
12480 {
12481 last_fde = p;
12482 last_fde_len = 20;
12483 /* FDE length. */
12484 bfd_put_32 (htab->elf.dynobj, 20, p);
12485 p += 4;
12486 /* CIE pointer. */
12487 val = p - htab->glink_eh_frame->contents;
12488 bfd_put_32 (htab->elf.dynobj, val, p);
12489 p += 4;
12490 /* Offset to .glink, written later. */
12491 p += 4;
12492 /* .glink size. */
12493 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12494 p += 4;
12495 /* Augmentation. */
12496 p += 1;
12497
12498 *p++ = DW_CFA_advance_loc + 1;
12499 *p++ = DW_CFA_register;
12500 *p++ = 65;
12501 *p++ = 12;
12502 *p++ = DW_CFA_advance_loc + 4;
12503 *p++ = DW_CFA_restore_extended;
12504 *p++ = 65;
12505 }
12506 /* Subsume any padding into the last FDE if user .eh_frame
12507 sections are aligned more than glink_eh_frame. Otherwise any
12508 zero padding will be seen as a terminator. */
12509 size = p - htab->glink_eh_frame->contents;
12510 align = 1;
12511 align <<= htab->glink_eh_frame->output_section->alignment_power;
12512 align -= 1;
12513 pad = ((size + align) & ~align) - size;
12514 htab->glink_eh_frame->size = size + pad;
12515 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12516 }
12517
12518 maybe_strip_output (info, htab->brlt);
12519 if (htab->glink_eh_frame != NULL)
12520 maybe_strip_output (info, htab->glink_eh_frame);
12521
12522 return TRUE;
12523 }
12524
12525 /* Called after we have determined section placement. If sections
12526 move, we'll be called again. Provide a value for TOCstart. */
12527
12528 bfd_vma
12529 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12530 {
12531 asection *s;
12532 bfd_vma TOCstart;
12533
12534 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12535 order. The TOC starts where the first of these sections starts. */
12536 s = bfd_get_section_by_name (obfd, ".got");
12537 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12538 s = bfd_get_section_by_name (obfd, ".toc");
12539 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12540 s = bfd_get_section_by_name (obfd, ".tocbss");
12541 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12542 s = bfd_get_section_by_name (obfd, ".plt");
12543 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12544 {
12545 /* This may happen for
12546 o references to TOC base (SYM@toc / TOC[tc0]) without a
12547 .toc directive
12548 o bad linker script
12549 o --gc-sections and empty TOC sections
12550
12551 FIXME: Warn user? */
12552
12553 /* Look for a likely section. We probably won't even be
12554 using TOCstart. */
12555 for (s = obfd->sections; s != NULL; s = s->next)
12556 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12557 | SEC_EXCLUDE))
12558 == (SEC_ALLOC | SEC_SMALL_DATA))
12559 break;
12560 if (s == NULL)
12561 for (s = obfd->sections; s != NULL; s = s->next)
12562 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12563 == (SEC_ALLOC | SEC_SMALL_DATA))
12564 break;
12565 if (s == NULL)
12566 for (s = obfd->sections; s != NULL; s = s->next)
12567 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12568 == SEC_ALLOC)
12569 break;
12570 if (s == NULL)
12571 for (s = obfd->sections; s != NULL; s = s->next)
12572 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12573 break;
12574 }
12575
12576 TOCstart = 0;
12577 if (s != NULL)
12578 TOCstart = s->output_section->vma + s->output_offset;
12579
12580 _bfd_set_gp_value (obfd, TOCstart);
12581
12582 if (info != NULL && s != NULL)
12583 {
12584 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12585
12586 if (htab != NULL)
12587 {
12588 if (htab->elf.hgot != NULL)
12589 {
12590 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12591 htab->elf.hgot->root.u.def.section = s;
12592 }
12593 }
12594 else
12595 {
12596 struct bfd_link_hash_entry *bh = NULL;
12597 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12598 s, TOC_BASE_OFF, NULL, FALSE,
12599 FALSE, &bh);
12600 }
12601 }
12602 return TOCstart;
12603 }
12604
12605 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12606 write out any global entry stubs. */
12607
12608 static bfd_boolean
12609 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12610 {
12611 struct bfd_link_info *info;
12612 struct ppc_link_hash_table *htab;
12613 struct plt_entry *pent;
12614 asection *s;
12615
12616 if (h->root.type == bfd_link_hash_indirect)
12617 return TRUE;
12618
12619 if (!h->pointer_equality_needed)
12620 return TRUE;
12621
12622 if (h->def_regular)
12623 return TRUE;
12624
12625 info = inf;
12626 htab = ppc_hash_table (info);
12627 if (htab == NULL)
12628 return FALSE;
12629
12630 s = htab->glink;
12631 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12632 if (pent->plt.offset != (bfd_vma) -1
12633 && pent->addend == 0)
12634 {
12635 bfd_byte *p;
12636 asection *plt;
12637 bfd_vma off;
12638
12639 p = s->contents + h->root.u.def.value;
12640 plt = htab->elf.splt;
12641 if (!htab->elf.dynamic_sections_created
12642 || h->dynindx == -1)
12643 plt = htab->elf.iplt;
12644 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12645 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12646
12647 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12648 {
12649 info->callbacks->einfo
12650 (_("%P: linkage table error against `%T'\n"),
12651 h->root.root.string);
12652 bfd_set_error (bfd_error_bad_value);
12653 htab->stub_error = TRUE;
12654 }
12655
12656 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12657 if (htab->params->emit_stub_syms)
12658 {
12659 size_t len = strlen (h->root.root.string);
12660 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12661
12662 if (name == NULL)
12663 return FALSE;
12664
12665 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12666 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12667 if (h == NULL)
12668 return FALSE;
12669 if (h->root.type == bfd_link_hash_new)
12670 {
12671 h->root.type = bfd_link_hash_defined;
12672 h->root.u.def.section = s;
12673 h->root.u.def.value = p - s->contents;
12674 h->ref_regular = 1;
12675 h->def_regular = 1;
12676 h->ref_regular_nonweak = 1;
12677 h->forced_local = 1;
12678 h->non_elf = 0;
12679 h->root.linker_def = 1;
12680 }
12681 }
12682
12683 if (PPC_HA (off) != 0)
12684 {
12685 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12686 p += 4;
12687 }
12688 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12689 p += 4;
12690 bfd_put_32 (s->owner, MTCTR_R12, p);
12691 p += 4;
12692 bfd_put_32 (s->owner, BCTR, p);
12693 break;
12694 }
12695 return TRUE;
12696 }
12697
12698 /* Build all the stubs associated with the current output file.
12699 The stubs are kept in a hash table attached to the main linker
12700 hash table. This function is called via gldelf64ppc_finish. */
12701
12702 bfd_boolean
12703 ppc64_elf_build_stubs (struct bfd_link_info *info,
12704 char **stats)
12705 {
12706 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12707 asection *stub_sec;
12708 bfd_byte *p;
12709 int stub_sec_count = 0;
12710
12711 if (htab == NULL)
12712 return FALSE;
12713
12714 /* Allocate memory to hold the linker stubs. */
12715 for (stub_sec = htab->params->stub_bfd->sections;
12716 stub_sec != NULL;
12717 stub_sec = stub_sec->next)
12718 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12719 && stub_sec->size != 0)
12720 {
12721 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12722 if (stub_sec->contents == NULL)
12723 return FALSE;
12724 /* We want to check that built size is the same as calculated
12725 size. rawsize is a convenient location to use. */
12726 stub_sec->rawsize = stub_sec->size;
12727 stub_sec->size = 0;
12728 }
12729
12730 if (htab->glink != NULL && htab->glink->size != 0)
12731 {
12732 unsigned int indx;
12733 bfd_vma plt0;
12734
12735 /* Build the .glink plt call stub. */
12736 if (htab->params->emit_stub_syms)
12737 {
12738 struct elf_link_hash_entry *h;
12739 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12740 TRUE, FALSE, FALSE);
12741 if (h == NULL)
12742 return FALSE;
12743 if (h->root.type == bfd_link_hash_new)
12744 {
12745 h->root.type = bfd_link_hash_defined;
12746 h->root.u.def.section = htab->glink;
12747 h->root.u.def.value = 8;
12748 h->ref_regular = 1;
12749 h->def_regular = 1;
12750 h->ref_regular_nonweak = 1;
12751 h->forced_local = 1;
12752 h->non_elf = 0;
12753 h->root.linker_def = 1;
12754 }
12755 }
12756 plt0 = (htab->elf.splt->output_section->vma
12757 + htab->elf.splt->output_offset
12758 - 16);
12759 if (info->emitrelocations)
12760 {
12761 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12762 if (r == NULL)
12763 return FALSE;
12764 r->r_offset = (htab->glink->output_offset
12765 + htab->glink->output_section->vma);
12766 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12767 r->r_addend = plt0;
12768 }
12769 p = htab->glink->contents;
12770 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12771 bfd_put_64 (htab->glink->owner, plt0, p);
12772 p += 8;
12773 if (htab->opd_abi)
12774 {
12775 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12776 p += 4;
12777 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12778 p += 4;
12779 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12780 p += 4;
12781 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12782 p += 4;
12783 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12784 p += 4;
12785 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12786 p += 4;
12787 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12788 p += 4;
12789 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12790 p += 4;
12791 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12792 p += 4;
12793 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12794 p += 4;
12795 }
12796 else
12797 {
12798 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12799 p += 4;
12800 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12801 p += 4;
12802 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12803 p += 4;
12804 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12805 p += 4;
12806 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12807 p += 4;
12808 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12809 p += 4;
12810 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12811 p += 4;
12812 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12813 p += 4;
12814 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12815 p += 4;
12816 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12817 p += 4;
12818 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12819 p += 4;
12820 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12821 p += 4;
12822 }
12823 bfd_put_32 (htab->glink->owner, BCTR, p);
12824 p += 4;
12825 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12826 {
12827 bfd_put_32 (htab->glink->owner, NOP, p);
12828 p += 4;
12829 }
12830
12831 /* Build the .glink lazy link call stubs. */
12832 indx = 0;
12833 while (p < htab->glink->contents + htab->glink->rawsize)
12834 {
12835 if (htab->opd_abi)
12836 {
12837 if (indx < 0x8000)
12838 {
12839 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12840 p += 4;
12841 }
12842 else
12843 {
12844 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12845 p += 4;
12846 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12847 p);
12848 p += 4;
12849 }
12850 }
12851 bfd_put_32 (htab->glink->owner,
12852 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12853 indx++;
12854 p += 4;
12855 }
12856
12857 /* Build .glink global entry stubs. */
12858 if (htab->glink->size > htab->glink->rawsize)
12859 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12860 }
12861
12862 if (htab->brlt != NULL && htab->brlt->size != 0)
12863 {
12864 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12865 htab->brlt->size);
12866 if (htab->brlt->contents == NULL)
12867 return FALSE;
12868 }
12869 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12870 {
12871 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12872 htab->relbrlt->size);
12873 if (htab->relbrlt->contents == NULL)
12874 return FALSE;
12875 }
12876
12877 /* Build the stubs as directed by the stub hash table. */
12878 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12879
12880 if (htab->relbrlt != NULL)
12881 htab->relbrlt->reloc_count = 0;
12882
12883 if (htab->params->plt_stub_align != 0)
12884 for (stub_sec = htab->params->stub_bfd->sections;
12885 stub_sec != NULL;
12886 stub_sec = stub_sec->next)
12887 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12888 stub_sec->size = ((stub_sec->size
12889 + (1 << htab->params->plt_stub_align) - 1)
12890 & (-1 << htab->params->plt_stub_align));
12891
12892 for (stub_sec = htab->params->stub_bfd->sections;
12893 stub_sec != NULL;
12894 stub_sec = stub_sec->next)
12895 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12896 {
12897 stub_sec_count += 1;
12898 if (stub_sec->rawsize != stub_sec->size)
12899 break;
12900 }
12901
12902 /* Note that the glink_eh_frame check here is not only testing that
12903 the generated size matched the calculated size but also that
12904 bfd_elf_discard_info didn't make any changes to the section. */
12905 if (stub_sec != NULL
12906 || (htab->glink_eh_frame != NULL
12907 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12908 {
12909 htab->stub_error = TRUE;
12910 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12911 }
12912
12913 if (htab->stub_error)
12914 return FALSE;
12915
12916 if (stats != NULL)
12917 {
12918 *stats = bfd_malloc (500);
12919 if (*stats == NULL)
12920 return FALSE;
12921
12922 sprintf (*stats, _("linker stubs in %u group%s\n"
12923 " branch %lu\n"
12924 " toc adjust %lu\n"
12925 " long branch %lu\n"
12926 " long toc adj %lu\n"
12927 " plt call %lu\n"
12928 " plt call toc %lu\n"
12929 " global entry %lu"),
12930 stub_sec_count,
12931 stub_sec_count == 1 ? "" : "s",
12932 htab->stub_count[ppc_stub_long_branch - 1],
12933 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12934 htab->stub_count[ppc_stub_plt_branch - 1],
12935 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12936 htab->stub_count[ppc_stub_plt_call - 1],
12937 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12938 htab->stub_count[ppc_stub_global_entry - 1]);
12939 }
12940 return TRUE;
12941 }
12942
12943 /* This function undoes the changes made by add_symbol_adjust. */
12944
12945 static bfd_boolean
12946 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12947 {
12948 struct ppc_link_hash_entry *eh;
12949
12950 if (h->root.type == bfd_link_hash_indirect)
12951 return TRUE;
12952
12953 eh = (struct ppc_link_hash_entry *) h;
12954 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12955 return TRUE;
12956
12957 eh->elf.root.type = bfd_link_hash_undefined;
12958 return TRUE;
12959 }
12960
12961 void
12962 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12963 {
12964 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12965
12966 if (htab != NULL)
12967 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12968 }
12969
12970 /* What to do when ld finds relocations against symbols defined in
12971 discarded sections. */
12972
12973 static unsigned int
12974 ppc64_elf_action_discarded (asection *sec)
12975 {
12976 if (strcmp (".opd", sec->name) == 0)
12977 return 0;
12978
12979 if (strcmp (".toc", sec->name) == 0)
12980 return 0;
12981
12982 if (strcmp (".toc1", sec->name) == 0)
12983 return 0;
12984
12985 return _bfd_elf_default_action_discarded (sec);
12986 }
12987
12988 /* The RELOCATE_SECTION function is called by the ELF backend linker
12989 to handle the relocations for a section.
12990
12991 The relocs are always passed as Rela structures; if the section
12992 actually uses Rel structures, the r_addend field will always be
12993 zero.
12994
12995 This function is responsible for adjust the section contents as
12996 necessary, and (if using Rela relocs and generating a
12997 relocatable output file) adjusting the reloc addend as
12998 necessary.
12999
13000 This function does not have to worry about setting the reloc
13001 address or the reloc symbol index.
13002
13003 LOCAL_SYMS is a pointer to the swapped in local symbols.
13004
13005 LOCAL_SECTIONS is an array giving the section in the input file
13006 corresponding to the st_shndx field of each local symbol.
13007
13008 The global hash table entry for the global symbols can be found
13009 via elf_sym_hashes (input_bfd).
13010
13011 When generating relocatable output, this function must handle
13012 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
13013 going to be the section symbol corresponding to the output
13014 section, which means that the addend must be adjusted
13015 accordingly. */
13016
13017 static bfd_boolean
13018 ppc64_elf_relocate_section (bfd *output_bfd,
13019 struct bfd_link_info *info,
13020 bfd *input_bfd,
13021 asection *input_section,
13022 bfd_byte *contents,
13023 Elf_Internal_Rela *relocs,
13024 Elf_Internal_Sym *local_syms,
13025 asection **local_sections)
13026 {
13027 struct ppc_link_hash_table *htab;
13028 Elf_Internal_Shdr *symtab_hdr;
13029 struct elf_link_hash_entry **sym_hashes;
13030 Elf_Internal_Rela *rel;
13031 Elf_Internal_Rela *relend;
13032 Elf_Internal_Rela outrel;
13033 bfd_byte *loc;
13034 struct got_entry **local_got_ents;
13035 bfd_vma TOCstart;
13036 bfd_boolean ret = TRUE;
13037 bfd_boolean is_opd;
13038 /* Assume 'at' branch hints. */
13039 bfd_boolean is_isa_v2 = TRUE;
13040 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
13041
13042 /* Initialize howto table if needed. */
13043 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13044 ppc_howto_init ();
13045
13046 htab = ppc_hash_table (info);
13047 if (htab == NULL)
13048 return FALSE;
13049
13050 /* Don't relocate stub sections. */
13051 if (input_section->owner == htab->params->stub_bfd)
13052 return TRUE;
13053
13054 BFD_ASSERT (is_ppc64_elf (input_bfd));
13055
13056 local_got_ents = elf_local_got_ents (input_bfd);
13057 TOCstart = elf_gp (output_bfd);
13058 symtab_hdr = &elf_symtab_hdr (input_bfd);
13059 sym_hashes = elf_sym_hashes (input_bfd);
13060 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13061
13062 rel = relocs;
13063 relend = relocs + input_section->reloc_count;
13064 for (; rel < relend; rel++)
13065 {
13066 enum elf_ppc64_reloc_type r_type;
13067 bfd_vma addend;
13068 bfd_reloc_status_type r;
13069 Elf_Internal_Sym *sym;
13070 asection *sec;
13071 struct elf_link_hash_entry *h_elf;
13072 struct ppc_link_hash_entry *h;
13073 struct ppc_link_hash_entry *fdh;
13074 const char *sym_name;
13075 unsigned long r_symndx, toc_symndx;
13076 bfd_vma toc_addend;
13077 unsigned char tls_mask, tls_gd, tls_type;
13078 unsigned char sym_type;
13079 bfd_vma relocation;
13080 bfd_boolean unresolved_reloc;
13081 bfd_boolean warned;
13082 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13083 unsigned int insn;
13084 unsigned int mask;
13085 struct ppc_stub_hash_entry *stub_entry;
13086 bfd_vma max_br_offset;
13087 bfd_vma from;
13088 const Elf_Internal_Rela orig_rel = *rel;
13089 reloc_howto_type *howto;
13090 struct reloc_howto_struct alt_howto;
13091
13092 r_type = ELF64_R_TYPE (rel->r_info);
13093 r_symndx = ELF64_R_SYM (rel->r_info);
13094
13095 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13096 symbol of the previous ADDR64 reloc. The symbol gives us the
13097 proper TOC base to use. */
13098 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13099 && rel != relocs
13100 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13101 && is_opd)
13102 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13103
13104 sym = NULL;
13105 sec = NULL;
13106 h_elf = NULL;
13107 sym_name = NULL;
13108 unresolved_reloc = FALSE;
13109 warned = FALSE;
13110
13111 if (r_symndx < symtab_hdr->sh_info)
13112 {
13113 /* It's a local symbol. */
13114 struct _opd_sec_data *opd;
13115
13116 sym = local_syms + r_symndx;
13117 sec = local_sections[r_symndx];
13118 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13119 sym_type = ELF64_ST_TYPE (sym->st_info);
13120 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13121 opd = get_opd_info (sec);
13122 if (opd != NULL && opd->adjust != NULL)
13123 {
13124 long adjust = opd->adjust[OPD_NDX (sym->st_value
13125 + rel->r_addend)];
13126 if (adjust == -1)
13127 relocation = 0;
13128 else
13129 {
13130 /* If this is a relocation against the opd section sym
13131 and we have edited .opd, adjust the reloc addend so
13132 that ld -r and ld --emit-relocs output is correct.
13133 If it is a reloc against some other .opd symbol,
13134 then the symbol value will be adjusted later. */
13135 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13136 rel->r_addend += adjust;
13137 else
13138 relocation += adjust;
13139 }
13140 }
13141 }
13142 else
13143 {
13144 bfd_boolean ignored;
13145
13146 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13147 r_symndx, symtab_hdr, sym_hashes,
13148 h_elf, sec, relocation,
13149 unresolved_reloc, warned, ignored);
13150 sym_name = h_elf->root.root.string;
13151 sym_type = h_elf->type;
13152 if (sec != NULL
13153 && sec->owner == output_bfd
13154 && strcmp (sec->name, ".opd") == 0)
13155 {
13156 /* This is a symbol defined in a linker script. All
13157 such are defined in output sections, even those
13158 defined by simple assignment from a symbol defined in
13159 an input section. Transfer the symbol to an
13160 appropriate input .opd section, so that a branch to
13161 this symbol will be mapped to the location specified
13162 by the opd entry. */
13163 struct bfd_link_order *lo;
13164 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13165 if (lo->type == bfd_indirect_link_order)
13166 {
13167 asection *isec = lo->u.indirect.section;
13168 if (h_elf->root.u.def.value >= isec->output_offset
13169 && h_elf->root.u.def.value < (isec->output_offset
13170 + isec->size))
13171 {
13172 h_elf->root.u.def.value -= isec->output_offset;
13173 h_elf->root.u.def.section = isec;
13174 sec = isec;
13175 break;
13176 }
13177 }
13178 }
13179 }
13180 h = (struct ppc_link_hash_entry *) h_elf;
13181
13182 if (sec != NULL && discarded_section (sec))
13183 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13184 rel, 1, relend,
13185 ppc64_elf_howto_table[r_type], 0,
13186 contents);
13187
13188 if (info->relocatable)
13189 continue;
13190
13191 if (h != NULL && &h->elf == htab->elf.hgot)
13192 {
13193 relocation = (TOCstart
13194 + htab->stub_group[input_section->id].toc_off);
13195 sec = bfd_abs_section_ptr;
13196 unresolved_reloc = FALSE;
13197 }
13198
13199 /* TLS optimizations. Replace instruction sequences and relocs
13200 based on information we collected in tls_optimize. We edit
13201 RELOCS so that --emit-relocs will output something sensible
13202 for the final instruction stream. */
13203 tls_mask = 0;
13204 tls_gd = 0;
13205 toc_symndx = 0;
13206 if (h != NULL)
13207 tls_mask = h->tls_mask;
13208 else if (local_got_ents != NULL)
13209 {
13210 struct plt_entry **local_plt = (struct plt_entry **)
13211 (local_got_ents + symtab_hdr->sh_info);
13212 unsigned char *lgot_masks = (unsigned char *)
13213 (local_plt + symtab_hdr->sh_info);
13214 tls_mask = lgot_masks[r_symndx];
13215 }
13216 if (tls_mask == 0
13217 && (r_type == R_PPC64_TLS
13218 || r_type == R_PPC64_TLSGD
13219 || r_type == R_PPC64_TLSLD))
13220 {
13221 /* Check for toc tls entries. */
13222 unsigned char *toc_tls;
13223
13224 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13225 &local_syms, rel, input_bfd))
13226 return FALSE;
13227
13228 if (toc_tls)
13229 tls_mask = *toc_tls;
13230 }
13231
13232 /* Check that tls relocs are used with tls syms, and non-tls
13233 relocs are used with non-tls syms. */
13234 if (r_symndx != STN_UNDEF
13235 && r_type != R_PPC64_NONE
13236 && (h == NULL
13237 || h->elf.root.type == bfd_link_hash_defined
13238 || h->elf.root.type == bfd_link_hash_defweak)
13239 && (IS_PPC64_TLS_RELOC (r_type)
13240 != (sym_type == STT_TLS
13241 || (sym_type == STT_SECTION
13242 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13243 {
13244 if (tls_mask != 0
13245 && (r_type == R_PPC64_TLS
13246 || r_type == R_PPC64_TLSGD
13247 || r_type == R_PPC64_TLSLD))
13248 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13249 ;
13250 else
13251 info->callbacks->einfo
13252 (!IS_PPC64_TLS_RELOC (r_type)
13253 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13254 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13255 input_bfd, input_section, rel->r_offset,
13256 ppc64_elf_howto_table[r_type]->name,
13257 sym_name);
13258 }
13259
13260 /* Ensure reloc mapping code below stays sane. */
13261 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13262 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13263 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13264 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13265 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13266 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13267 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13268 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13269 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13270 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13271 abort ();
13272
13273 switch (r_type)
13274 {
13275 default:
13276 break;
13277
13278 case R_PPC64_LO_DS_OPT:
13279 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13280 if ((insn & (0x3f << 26)) != 58u << 26)
13281 abort ();
13282 insn += (14u << 26) - (58u << 26);
13283 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13284 r_type = R_PPC64_TOC16_LO;
13285 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13286 break;
13287
13288 case R_PPC64_TOC16:
13289 case R_PPC64_TOC16_LO:
13290 case R_PPC64_TOC16_DS:
13291 case R_PPC64_TOC16_LO_DS:
13292 {
13293 /* Check for toc tls entries. */
13294 unsigned char *toc_tls;
13295 int retval;
13296
13297 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13298 &local_syms, rel, input_bfd);
13299 if (retval == 0)
13300 return FALSE;
13301
13302 if (toc_tls)
13303 {
13304 tls_mask = *toc_tls;
13305 if (r_type == R_PPC64_TOC16_DS
13306 || r_type == R_PPC64_TOC16_LO_DS)
13307 {
13308 if (tls_mask != 0
13309 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13310 goto toctprel;
13311 }
13312 else
13313 {
13314 /* If we found a GD reloc pair, then we might be
13315 doing a GD->IE transition. */
13316 if (retval == 2)
13317 {
13318 tls_gd = TLS_TPRELGD;
13319 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13320 goto tls_ldgd_opt;
13321 }
13322 else if (retval == 3)
13323 {
13324 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13325 goto tls_ldgd_opt;
13326 }
13327 }
13328 }
13329 }
13330 break;
13331
13332 case R_PPC64_GOT_TPREL16_HI:
13333 case R_PPC64_GOT_TPREL16_HA:
13334 if (tls_mask != 0
13335 && (tls_mask & TLS_TPREL) == 0)
13336 {
13337 rel->r_offset -= d_offset;
13338 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13339 r_type = R_PPC64_NONE;
13340 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13341 }
13342 break;
13343
13344 case R_PPC64_GOT_TPREL16_DS:
13345 case R_PPC64_GOT_TPREL16_LO_DS:
13346 if (tls_mask != 0
13347 && (tls_mask & TLS_TPREL) == 0)
13348 {
13349 toctprel:
13350 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13351 insn &= 31 << 21;
13352 insn |= 0x3c0d0000; /* addis 0,13,0 */
13353 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13354 r_type = R_PPC64_TPREL16_HA;
13355 if (toc_symndx != 0)
13356 {
13357 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13358 rel->r_addend = toc_addend;
13359 /* We changed the symbol. Start over in order to
13360 get h, sym, sec etc. right. */
13361 rel--;
13362 continue;
13363 }
13364 else
13365 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13366 }
13367 break;
13368
13369 case R_PPC64_TLS:
13370 if (tls_mask != 0
13371 && (tls_mask & TLS_TPREL) == 0)
13372 {
13373 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13374 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13375 if (insn == 0)
13376 abort ();
13377 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13378 /* Was PPC64_TLS which sits on insn boundary, now
13379 PPC64_TPREL16_LO which is at low-order half-word. */
13380 rel->r_offset += d_offset;
13381 r_type = R_PPC64_TPREL16_LO;
13382 if (toc_symndx != 0)
13383 {
13384 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13385 rel->r_addend = toc_addend;
13386 /* We changed the symbol. Start over in order to
13387 get h, sym, sec etc. right. */
13388 rel--;
13389 continue;
13390 }
13391 else
13392 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13393 }
13394 break;
13395
13396 case R_PPC64_GOT_TLSGD16_HI:
13397 case R_PPC64_GOT_TLSGD16_HA:
13398 tls_gd = TLS_TPRELGD;
13399 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13400 goto tls_gdld_hi;
13401 break;
13402
13403 case R_PPC64_GOT_TLSLD16_HI:
13404 case R_PPC64_GOT_TLSLD16_HA:
13405 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13406 {
13407 tls_gdld_hi:
13408 if ((tls_mask & tls_gd) != 0)
13409 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13410 + R_PPC64_GOT_TPREL16_DS);
13411 else
13412 {
13413 rel->r_offset -= d_offset;
13414 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13415 r_type = R_PPC64_NONE;
13416 }
13417 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13418 }
13419 break;
13420
13421 case R_PPC64_GOT_TLSGD16:
13422 case R_PPC64_GOT_TLSGD16_LO:
13423 tls_gd = TLS_TPRELGD;
13424 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13425 goto tls_ldgd_opt;
13426 break;
13427
13428 case R_PPC64_GOT_TLSLD16:
13429 case R_PPC64_GOT_TLSLD16_LO:
13430 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13431 {
13432 unsigned int insn1, insn2, insn3;
13433 bfd_vma offset;
13434
13435 tls_ldgd_opt:
13436 offset = (bfd_vma) -1;
13437 /* If not using the newer R_PPC64_TLSGD/LD to mark
13438 __tls_get_addr calls, we must trust that the call
13439 stays with its arg setup insns, ie. that the next
13440 reloc is the __tls_get_addr call associated with
13441 the current reloc. Edit both insns. */
13442 if (input_section->has_tls_get_addr_call
13443 && rel + 1 < relend
13444 && branch_reloc_hash_match (input_bfd, rel + 1,
13445 htab->tls_get_addr,
13446 htab->tls_get_addr_fd))
13447 offset = rel[1].r_offset;
13448 /* We read the low GOT_TLS (or TOC16) insn because we
13449 need to keep the destination reg. It may be
13450 something other than the usual r3, and moved to r3
13451 before the call by intervening code. */
13452 insn1 = bfd_get_32 (output_bfd,
13453 contents + rel->r_offset - d_offset);
13454 if ((tls_mask & tls_gd) != 0)
13455 {
13456 /* IE */
13457 insn1 &= (0x1f << 21) | (0x1f << 16);
13458 insn1 |= 58 << 26; /* ld */
13459 insn2 = 0x7c636a14; /* add 3,3,13 */
13460 if (offset != (bfd_vma) -1)
13461 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13462 if ((tls_mask & TLS_EXPLICIT) == 0)
13463 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13464 + R_PPC64_GOT_TPREL16_DS);
13465 else
13466 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13467 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13468 }
13469 else
13470 {
13471 /* LE */
13472 insn1 &= 0x1f << 21;
13473 insn1 |= 0x3c0d0000; /* addis r,13,0 */
13474 insn2 = 0x38630000; /* addi 3,3,0 */
13475 if (tls_gd == 0)
13476 {
13477 /* Was an LD reloc. */
13478 if (toc_symndx)
13479 sec = local_sections[toc_symndx];
13480 for (r_symndx = 0;
13481 r_symndx < symtab_hdr->sh_info;
13482 r_symndx++)
13483 if (local_sections[r_symndx] == sec)
13484 break;
13485 if (r_symndx >= symtab_hdr->sh_info)
13486 r_symndx = STN_UNDEF;
13487 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13488 if (r_symndx != STN_UNDEF)
13489 rel->r_addend -= (local_syms[r_symndx].st_value
13490 + sec->output_offset
13491 + sec->output_section->vma);
13492 }
13493 else if (toc_symndx != 0)
13494 {
13495 r_symndx = toc_symndx;
13496 rel->r_addend = toc_addend;
13497 }
13498 r_type = R_PPC64_TPREL16_HA;
13499 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13500 if (offset != (bfd_vma) -1)
13501 {
13502 rel[1].r_info = ELF64_R_INFO (r_symndx,
13503 R_PPC64_TPREL16_LO);
13504 rel[1].r_offset = offset + d_offset;
13505 rel[1].r_addend = rel->r_addend;
13506 }
13507 }
13508 bfd_put_32 (output_bfd, insn1,
13509 contents + rel->r_offset - d_offset);
13510 if (offset != (bfd_vma) -1)
13511 {
13512 insn3 = bfd_get_32 (output_bfd,
13513 contents + offset + 4);
13514 if (insn3 == NOP
13515 || insn3 == CROR_151515 || insn3 == CROR_313131)
13516 {
13517 rel[1].r_offset += 4;
13518 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13519 insn2 = NOP;
13520 }
13521 bfd_put_32 (output_bfd, insn2, contents + offset);
13522 }
13523 if ((tls_mask & tls_gd) == 0
13524 && (tls_gd == 0 || toc_symndx != 0))
13525 {
13526 /* We changed the symbol. Start over in order
13527 to get h, sym, sec etc. right. */
13528 rel--;
13529 continue;
13530 }
13531 }
13532 break;
13533
13534 case R_PPC64_TLSGD:
13535 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13536 {
13537 unsigned int insn2, insn3;
13538 bfd_vma offset = rel->r_offset;
13539
13540 if ((tls_mask & TLS_TPRELGD) != 0)
13541 {
13542 /* IE */
13543 r_type = R_PPC64_NONE;
13544 insn2 = 0x7c636a14; /* add 3,3,13 */
13545 }
13546 else
13547 {
13548 /* LE */
13549 if (toc_symndx != 0)
13550 {
13551 r_symndx = toc_symndx;
13552 rel->r_addend = toc_addend;
13553 }
13554 r_type = R_PPC64_TPREL16_LO;
13555 rel->r_offset = offset + d_offset;
13556 insn2 = 0x38630000; /* addi 3,3,0 */
13557 }
13558 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13559 /* Zap the reloc on the _tls_get_addr call too. */
13560 BFD_ASSERT (offset == rel[1].r_offset);
13561 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13562 insn3 = bfd_get_32 (output_bfd,
13563 contents + offset + 4);
13564 if (insn3 == NOP
13565 || insn3 == CROR_151515 || insn3 == CROR_313131)
13566 {
13567 rel->r_offset += 4;
13568 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13569 insn2 = NOP;
13570 }
13571 bfd_put_32 (output_bfd, insn2, contents + offset);
13572 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13573 {
13574 rel--;
13575 continue;
13576 }
13577 }
13578 break;
13579
13580 case R_PPC64_TLSLD:
13581 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13582 {
13583 unsigned int insn2, insn3;
13584 bfd_vma offset = rel->r_offset;
13585
13586 if (toc_symndx)
13587 sec = local_sections[toc_symndx];
13588 for (r_symndx = 0;
13589 r_symndx < symtab_hdr->sh_info;
13590 r_symndx++)
13591 if (local_sections[r_symndx] == sec)
13592 break;
13593 if (r_symndx >= symtab_hdr->sh_info)
13594 r_symndx = STN_UNDEF;
13595 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13596 if (r_symndx != STN_UNDEF)
13597 rel->r_addend -= (local_syms[r_symndx].st_value
13598 + sec->output_offset
13599 + sec->output_section->vma);
13600
13601 r_type = R_PPC64_TPREL16_LO;
13602 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13603 rel->r_offset = offset + d_offset;
13604 /* Zap the reloc on the _tls_get_addr call too. */
13605 BFD_ASSERT (offset == rel[1].r_offset);
13606 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13607 insn2 = 0x38630000; /* addi 3,3,0 */
13608 insn3 = bfd_get_32 (output_bfd,
13609 contents + offset + 4);
13610 if (insn3 == NOP
13611 || insn3 == CROR_151515 || insn3 == CROR_313131)
13612 {
13613 rel->r_offset += 4;
13614 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13615 insn2 = NOP;
13616 }
13617 bfd_put_32 (output_bfd, insn2, contents + offset);
13618 rel--;
13619 continue;
13620 }
13621 break;
13622
13623 case R_PPC64_DTPMOD64:
13624 if (rel + 1 < relend
13625 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13626 && rel[1].r_offset == rel->r_offset + 8)
13627 {
13628 if ((tls_mask & TLS_GD) == 0)
13629 {
13630 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13631 if ((tls_mask & TLS_TPRELGD) != 0)
13632 r_type = R_PPC64_TPREL64;
13633 else
13634 {
13635 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13636 r_type = R_PPC64_NONE;
13637 }
13638 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13639 }
13640 }
13641 else
13642 {
13643 if ((tls_mask & TLS_LD) == 0)
13644 {
13645 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13646 r_type = R_PPC64_NONE;
13647 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13648 }
13649 }
13650 break;
13651
13652 case R_PPC64_TPREL64:
13653 if ((tls_mask & TLS_TPREL) == 0)
13654 {
13655 r_type = R_PPC64_NONE;
13656 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13657 }
13658 break;
13659
13660 case R_PPC64_REL16_HA:
13661 /* If we are generating a non-PIC executable, edit
13662 . 0: addis 2,12,.TOC.-0b@ha
13663 . addi 2,2,.TOC.-0b@l
13664 used by ELFv2 global entry points to set up r2, to
13665 . lis 2,.TOC.@ha
13666 . addi 2,2,.TOC.@l
13667 if .TOC. is in range. */
13668 if (!info->shared
13669 && !info->traditional_format
13670 && h != NULL && &h->elf == htab->elf.hgot
13671 && rel + 1 < relend
13672 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13673 && rel[1].r_offset == rel->r_offset + 4
13674 && rel[1].r_addend == rel->r_addend + 4
13675 && relocation + 0x80008000 <= 0xffffffff)
13676 {
13677 unsigned int insn1, insn2;
13678 bfd_vma offset = rel->r_offset - d_offset;
13679 insn1 = bfd_get_32 (output_bfd, contents + offset);
13680 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13681 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13682 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13683 {
13684 r_type = R_PPC64_ADDR16_HA;
13685 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13686 rel->r_addend -= d_offset;
13687 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13688 rel[1].r_addend -= d_offset + 4;
13689 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13690 }
13691 }
13692 break;
13693 }
13694
13695 /* Handle other relocations that tweak non-addend part of insn. */
13696 insn = 0;
13697 max_br_offset = 1 << 25;
13698 addend = rel->r_addend;
13699 reloc_dest = DEST_NORMAL;
13700 switch (r_type)
13701 {
13702 default:
13703 break;
13704
13705 case R_PPC64_TOCSAVE:
13706 if (relocation + addend == (rel->r_offset
13707 + input_section->output_offset
13708 + input_section->output_section->vma)
13709 && tocsave_find (htab, NO_INSERT,
13710 &local_syms, rel, input_bfd))
13711 {
13712 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13713 if (insn == NOP
13714 || insn == CROR_151515 || insn == CROR_313131)
13715 bfd_put_32 (input_bfd,
13716 STD_R2_0R1 + STK_TOC (htab),
13717 contents + rel->r_offset);
13718 }
13719 break;
13720
13721 /* Branch taken prediction relocations. */
13722 case R_PPC64_ADDR14_BRTAKEN:
13723 case R_PPC64_REL14_BRTAKEN:
13724 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13725 /* Fall thru. */
13726
13727 /* Branch not taken prediction relocations. */
13728 case R_PPC64_ADDR14_BRNTAKEN:
13729 case R_PPC64_REL14_BRNTAKEN:
13730 insn |= bfd_get_32 (output_bfd,
13731 contents + rel->r_offset) & ~(0x01 << 21);
13732 /* Fall thru. */
13733
13734 case R_PPC64_REL14:
13735 max_br_offset = 1 << 15;
13736 /* Fall thru. */
13737
13738 case R_PPC64_REL24:
13739 /* Calls to functions with a different TOC, such as calls to
13740 shared objects, need to alter the TOC pointer. This is
13741 done using a linkage stub. A REL24 branching to these
13742 linkage stubs needs to be followed by a nop, as the nop
13743 will be replaced with an instruction to restore the TOC
13744 base pointer. */
13745 fdh = h;
13746 if (h != NULL
13747 && h->oh != NULL
13748 && h->oh->is_func_descriptor)
13749 fdh = ppc_follow_link (h->oh);
13750 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13751 htab);
13752 if (stub_entry != NULL
13753 && (stub_entry->stub_type == ppc_stub_plt_call
13754 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13755 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13756 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13757 {
13758 bfd_boolean can_plt_call = FALSE;
13759
13760 /* All of these stubs will modify r2, so there must be a
13761 branch and link followed by a nop. The nop is
13762 replaced by an insn to restore r2. */
13763 if (rel->r_offset + 8 <= input_section->size)
13764 {
13765 unsigned long br;
13766
13767 br = bfd_get_32 (input_bfd,
13768 contents + rel->r_offset);
13769 if ((br & 1) != 0)
13770 {
13771 unsigned long nop;
13772
13773 nop = bfd_get_32 (input_bfd,
13774 contents + rel->r_offset + 4);
13775 if (nop == NOP
13776 || nop == CROR_151515 || nop == CROR_313131)
13777 {
13778 if (h != NULL
13779 && (h == htab->tls_get_addr_fd
13780 || h == htab->tls_get_addr)
13781 && !htab->params->no_tls_get_addr_opt)
13782 {
13783 /* Special stub used, leave nop alone. */
13784 }
13785 else
13786 bfd_put_32 (input_bfd,
13787 LD_R2_0R1 + STK_TOC (htab),
13788 contents + rel->r_offset + 4);
13789 can_plt_call = TRUE;
13790 }
13791 }
13792 }
13793
13794 if (!can_plt_call && h != NULL)
13795 {
13796 const char *name = h->elf.root.root.string;
13797
13798 if (*name == '.')
13799 ++name;
13800
13801 if (strncmp (name, "__libc_start_main", 17) == 0
13802 && (name[17] == 0 || name[17] == '@'))
13803 {
13804 /* Allow crt1 branch to go via a toc adjusting
13805 stub. Other calls that never return could do
13806 the same, if we could detect such. */
13807 can_plt_call = TRUE;
13808 }
13809 }
13810
13811 if (!can_plt_call)
13812 {
13813 /* g++ as of 20130507 emits self-calls without a
13814 following nop. This is arguably wrong since we
13815 have conflicting information. On the one hand a
13816 global symbol and on the other a local call
13817 sequence, but don't error for this special case.
13818 It isn't possible to cheaply verify we have
13819 exactly such a call. Allow all calls to the same
13820 section. */
13821 asection *code_sec = sec;
13822
13823 if (get_opd_info (sec) != NULL)
13824 {
13825 bfd_vma off = (relocation + addend
13826 - sec->output_section->vma
13827 - sec->output_offset);
13828
13829 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13830 }
13831 if (code_sec == input_section)
13832 can_plt_call = TRUE;
13833 }
13834
13835 if (!can_plt_call)
13836 {
13837 if (stub_entry->stub_type == ppc_stub_plt_call
13838 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13839 info->callbacks->einfo
13840 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13841 "recompile with -fPIC\n"),
13842 input_bfd, input_section, rel->r_offset, sym_name);
13843 else
13844 info->callbacks->einfo
13845 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13846 "(-mcmodel=small toc adjust stub)\n"),
13847 input_bfd, input_section, rel->r_offset, sym_name);
13848
13849 bfd_set_error (bfd_error_bad_value);
13850 ret = FALSE;
13851 }
13852
13853 if (can_plt_call
13854 && (stub_entry->stub_type == ppc_stub_plt_call
13855 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13856 unresolved_reloc = FALSE;
13857 }
13858
13859 if ((stub_entry == NULL
13860 || stub_entry->stub_type == ppc_stub_long_branch
13861 || stub_entry->stub_type == ppc_stub_plt_branch)
13862 && get_opd_info (sec) != NULL)
13863 {
13864 /* The branch destination is the value of the opd entry. */
13865 bfd_vma off = (relocation + addend
13866 - sec->output_section->vma
13867 - sec->output_offset);
13868 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13869 if (dest != (bfd_vma) -1)
13870 {
13871 relocation = dest;
13872 addend = 0;
13873 reloc_dest = DEST_OPD;
13874 }
13875 }
13876
13877 /* If the branch is out of reach we ought to have a long
13878 branch stub. */
13879 from = (rel->r_offset
13880 + input_section->output_offset
13881 + input_section->output_section->vma);
13882
13883 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13884 ? fdh->elf.other
13885 : sym->st_other);
13886
13887 if (stub_entry != NULL
13888 && (stub_entry->stub_type == ppc_stub_long_branch
13889 || stub_entry->stub_type == ppc_stub_plt_branch)
13890 && (r_type == R_PPC64_ADDR14_BRTAKEN
13891 || r_type == R_PPC64_ADDR14_BRNTAKEN
13892 || (relocation + addend - from + max_br_offset
13893 < 2 * max_br_offset)))
13894 /* Don't use the stub if this branch is in range. */
13895 stub_entry = NULL;
13896
13897 if (stub_entry != NULL)
13898 {
13899 /* Munge up the value and addend so that we call the stub
13900 rather than the procedure directly. */
13901 relocation = (stub_entry->stub_offset
13902 + stub_entry->stub_sec->output_offset
13903 + stub_entry->stub_sec->output_section->vma);
13904 addend = 0;
13905 reloc_dest = DEST_STUB;
13906
13907 if ((stub_entry->stub_type == ppc_stub_plt_call
13908 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13909 && (ALWAYS_EMIT_R2SAVE
13910 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13911 && rel + 1 < relend
13912 && rel[1].r_offset == rel->r_offset + 4
13913 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13914 relocation += 4;
13915 }
13916
13917 if (insn != 0)
13918 {
13919 if (is_isa_v2)
13920 {
13921 /* Set 'a' bit. This is 0b00010 in BO field for branch
13922 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13923 for branch on CTR insns (BO == 1a00t or 1a01t). */
13924 if ((insn & (0x14 << 21)) == (0x04 << 21))
13925 insn |= 0x02 << 21;
13926 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13927 insn |= 0x08 << 21;
13928 else
13929 break;
13930 }
13931 else
13932 {
13933 /* Invert 'y' bit if not the default. */
13934 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13935 insn ^= 0x01 << 21;
13936 }
13937
13938 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13939 }
13940
13941 /* NOP out calls to undefined weak functions.
13942 We can thus call a weak function without first
13943 checking whether the function is defined. */
13944 else if (h != NULL
13945 && h->elf.root.type == bfd_link_hash_undefweak
13946 && h->elf.dynindx == -1
13947 && r_type == R_PPC64_REL24
13948 && relocation == 0
13949 && addend == 0)
13950 {
13951 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13952 continue;
13953 }
13954 break;
13955 }
13956
13957 /* Set `addend'. */
13958 tls_type = 0;
13959 switch (r_type)
13960 {
13961 default:
13962 info->callbacks->einfo
13963 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13964 input_bfd, (int) r_type, sym_name);
13965
13966 bfd_set_error (bfd_error_bad_value);
13967 ret = FALSE;
13968 continue;
13969
13970 case R_PPC64_NONE:
13971 case R_PPC64_TLS:
13972 case R_PPC64_TLSGD:
13973 case R_PPC64_TLSLD:
13974 case R_PPC64_TOCSAVE:
13975 case R_PPC64_GNU_VTINHERIT:
13976 case R_PPC64_GNU_VTENTRY:
13977 continue;
13978
13979 /* GOT16 relocations. Like an ADDR16 using the symbol's
13980 address in the GOT as relocation value instead of the
13981 symbol's value itself. Also, create a GOT entry for the
13982 symbol and put the symbol value there. */
13983 case R_PPC64_GOT_TLSGD16:
13984 case R_PPC64_GOT_TLSGD16_LO:
13985 case R_PPC64_GOT_TLSGD16_HI:
13986 case R_PPC64_GOT_TLSGD16_HA:
13987 tls_type = TLS_TLS | TLS_GD;
13988 goto dogot;
13989
13990 case R_PPC64_GOT_TLSLD16:
13991 case R_PPC64_GOT_TLSLD16_LO:
13992 case R_PPC64_GOT_TLSLD16_HI:
13993 case R_PPC64_GOT_TLSLD16_HA:
13994 tls_type = TLS_TLS | TLS_LD;
13995 goto dogot;
13996
13997 case R_PPC64_GOT_TPREL16_DS:
13998 case R_PPC64_GOT_TPREL16_LO_DS:
13999 case R_PPC64_GOT_TPREL16_HI:
14000 case R_PPC64_GOT_TPREL16_HA:
14001 tls_type = TLS_TLS | TLS_TPREL;
14002 goto dogot;
14003
14004 case R_PPC64_GOT_DTPREL16_DS:
14005 case R_PPC64_GOT_DTPREL16_LO_DS:
14006 case R_PPC64_GOT_DTPREL16_HI:
14007 case R_PPC64_GOT_DTPREL16_HA:
14008 tls_type = TLS_TLS | TLS_DTPREL;
14009 goto dogot;
14010
14011 case R_PPC64_GOT16:
14012 case R_PPC64_GOT16_LO:
14013 case R_PPC64_GOT16_HI:
14014 case R_PPC64_GOT16_HA:
14015 case R_PPC64_GOT16_DS:
14016 case R_PPC64_GOT16_LO_DS:
14017 dogot:
14018 {
14019 /* Relocation is to the entry for this symbol in the global
14020 offset table. */
14021 asection *got;
14022 bfd_vma *offp;
14023 bfd_vma off;
14024 unsigned long indx = 0;
14025 struct got_entry *ent;
14026
14027 if (tls_type == (TLS_TLS | TLS_LD)
14028 && (h == NULL
14029 || !h->elf.def_dynamic))
14030 ent = ppc64_tlsld_got (input_bfd);
14031 else
14032 {
14033
14034 if (h != NULL)
14035 {
14036 bfd_boolean dyn = htab->elf.dynamic_sections_created;
14037 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
14038 &h->elf)
14039 || (info->shared
14040 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
14041 /* This is actually a static link, or it is a
14042 -Bsymbolic link and the symbol is defined
14043 locally, or the symbol was forced to be local
14044 because of a version file. */
14045 ;
14046 else
14047 {
14048 BFD_ASSERT (h->elf.dynindx != -1);
14049 indx = h->elf.dynindx;
14050 unresolved_reloc = FALSE;
14051 }
14052 ent = h->elf.got.glist;
14053 }
14054 else
14055 {
14056 if (local_got_ents == NULL)
14057 abort ();
14058 ent = local_got_ents[r_symndx];
14059 }
14060
14061 for (; ent != NULL; ent = ent->next)
14062 if (ent->addend == orig_rel.r_addend
14063 && ent->owner == input_bfd
14064 && ent->tls_type == tls_type)
14065 break;
14066 }
14067
14068 if (ent == NULL)
14069 abort ();
14070 if (ent->is_indirect)
14071 ent = ent->got.ent;
14072 offp = &ent->got.offset;
14073 got = ppc64_elf_tdata (ent->owner)->got;
14074 if (got == NULL)
14075 abort ();
14076
14077 /* The offset must always be a multiple of 8. We use the
14078 least significant bit to record whether we have already
14079 processed this entry. */
14080 off = *offp;
14081 if ((off & 1) != 0)
14082 off &= ~1;
14083 else
14084 {
14085 /* Generate relocs for the dynamic linker, except in
14086 the case of TLSLD where we'll use one entry per
14087 module. */
14088 asection *relgot;
14089 bfd_boolean ifunc;
14090
14091 *offp = off | 1;
14092 relgot = NULL;
14093 ifunc = (h != NULL
14094 ? h->elf.type == STT_GNU_IFUNC
14095 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14096 if (ifunc)
14097 relgot = htab->elf.irelplt;
14098 else if ((info->shared || indx != 0)
14099 && (h == NULL
14100 || (tls_type == (TLS_TLS | TLS_LD)
14101 && !h->elf.def_dynamic)
14102 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14103 || h->elf.root.type != bfd_link_hash_undefweak))
14104 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14105 if (relgot != NULL)
14106 {
14107 outrel.r_offset = (got->output_section->vma
14108 + got->output_offset
14109 + off);
14110 outrel.r_addend = addend;
14111 if (tls_type & (TLS_LD | TLS_GD))
14112 {
14113 outrel.r_addend = 0;
14114 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14115 if (tls_type == (TLS_TLS | TLS_GD))
14116 {
14117 loc = relgot->contents;
14118 loc += (relgot->reloc_count++
14119 * sizeof (Elf64_External_Rela));
14120 bfd_elf64_swap_reloca_out (output_bfd,
14121 &outrel, loc);
14122 outrel.r_offset += 8;
14123 outrel.r_addend = addend;
14124 outrel.r_info
14125 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14126 }
14127 }
14128 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14129 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14130 else if (tls_type == (TLS_TLS | TLS_TPREL))
14131 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14132 else if (indx != 0)
14133 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14134 else
14135 {
14136 if (ifunc)
14137 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14138 else
14139 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14140
14141 /* Write the .got section contents for the sake
14142 of prelink. */
14143 loc = got->contents + off;
14144 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14145 loc);
14146 }
14147
14148 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14149 {
14150 outrel.r_addend += relocation;
14151 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14152 {
14153 if (htab->elf.tls_sec == NULL)
14154 outrel.r_addend = 0;
14155 else
14156 outrel.r_addend -= htab->elf.tls_sec->vma;
14157 }
14158 }
14159 loc = relgot->contents;
14160 loc += (relgot->reloc_count++
14161 * sizeof (Elf64_External_Rela));
14162 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14163 }
14164
14165 /* Init the .got section contents here if we're not
14166 emitting a reloc. */
14167 else
14168 {
14169 relocation += addend;
14170 if (tls_type == (TLS_TLS | TLS_LD))
14171 relocation = 1;
14172 else if (tls_type != 0)
14173 {
14174 if (htab->elf.tls_sec == NULL)
14175 relocation = 0;
14176 else
14177 {
14178 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14179 if (tls_type == (TLS_TLS | TLS_TPREL))
14180 relocation += DTP_OFFSET - TP_OFFSET;
14181 }
14182
14183 if (tls_type == (TLS_TLS | TLS_GD))
14184 {
14185 bfd_put_64 (output_bfd, relocation,
14186 got->contents + off + 8);
14187 relocation = 1;
14188 }
14189 }
14190
14191 bfd_put_64 (output_bfd, relocation,
14192 got->contents + off);
14193 }
14194 }
14195
14196 if (off >= (bfd_vma) -2)
14197 abort ();
14198
14199 relocation = got->output_section->vma + got->output_offset + off;
14200 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14201 }
14202 break;
14203
14204 case R_PPC64_PLT16_HA:
14205 case R_PPC64_PLT16_HI:
14206 case R_PPC64_PLT16_LO:
14207 case R_PPC64_PLT32:
14208 case R_PPC64_PLT64:
14209 /* Relocation is to the entry for this symbol in the
14210 procedure linkage table. */
14211
14212 /* Resolve a PLT reloc against a local symbol directly,
14213 without using the procedure linkage table. */
14214 if (h == NULL)
14215 break;
14216
14217 /* It's possible that we didn't make a PLT entry for this
14218 symbol. This happens when statically linking PIC code,
14219 or when using -Bsymbolic. Go find a match if there is a
14220 PLT entry. */
14221 if (htab->elf.splt != NULL)
14222 {
14223 struct plt_entry *ent;
14224 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14225 if (ent->plt.offset != (bfd_vma) -1
14226 && ent->addend == orig_rel.r_addend)
14227 {
14228 relocation = (htab->elf.splt->output_section->vma
14229 + htab->elf.splt->output_offset
14230 + ent->plt.offset);
14231 unresolved_reloc = FALSE;
14232 break;
14233 }
14234 }
14235 break;
14236
14237 case R_PPC64_TOC:
14238 /* Relocation value is TOC base. */
14239 relocation = TOCstart;
14240 if (r_symndx == STN_UNDEF)
14241 relocation += htab->stub_group[input_section->id].toc_off;
14242 else if (unresolved_reloc)
14243 ;
14244 else if (sec != NULL && sec->id <= htab->top_id)
14245 relocation += htab->stub_group[sec->id].toc_off;
14246 else
14247 unresolved_reloc = TRUE;
14248 goto dodyn;
14249
14250 /* TOC16 relocs. We want the offset relative to the TOC base,
14251 which is the address of the start of the TOC plus 0x8000.
14252 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14253 in this order. */
14254 case R_PPC64_TOC16:
14255 case R_PPC64_TOC16_LO:
14256 case R_PPC64_TOC16_HI:
14257 case R_PPC64_TOC16_DS:
14258 case R_PPC64_TOC16_LO_DS:
14259 case R_PPC64_TOC16_HA:
14260 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14261 break;
14262
14263 /* Relocate against the beginning of the section. */
14264 case R_PPC64_SECTOFF:
14265 case R_PPC64_SECTOFF_LO:
14266 case R_PPC64_SECTOFF_HI:
14267 case R_PPC64_SECTOFF_DS:
14268 case R_PPC64_SECTOFF_LO_DS:
14269 case R_PPC64_SECTOFF_HA:
14270 if (sec != NULL)
14271 addend -= sec->output_section->vma;
14272 break;
14273
14274 case R_PPC64_REL16:
14275 case R_PPC64_REL16_LO:
14276 case R_PPC64_REL16_HI:
14277 case R_PPC64_REL16_HA:
14278 break;
14279
14280 case R_PPC64_REL14:
14281 case R_PPC64_REL14_BRNTAKEN:
14282 case R_PPC64_REL14_BRTAKEN:
14283 case R_PPC64_REL24:
14284 break;
14285
14286 case R_PPC64_TPREL16:
14287 case R_PPC64_TPREL16_LO:
14288 case R_PPC64_TPREL16_HI:
14289 case R_PPC64_TPREL16_HA:
14290 case R_PPC64_TPREL16_DS:
14291 case R_PPC64_TPREL16_LO_DS:
14292 case R_PPC64_TPREL16_HIGH:
14293 case R_PPC64_TPREL16_HIGHA:
14294 case R_PPC64_TPREL16_HIGHER:
14295 case R_PPC64_TPREL16_HIGHERA:
14296 case R_PPC64_TPREL16_HIGHEST:
14297 case R_PPC64_TPREL16_HIGHESTA:
14298 if (h != NULL
14299 && h->elf.root.type == bfd_link_hash_undefweak
14300 && h->elf.dynindx == -1)
14301 {
14302 /* Make this relocation against an undefined weak symbol
14303 resolve to zero. This is really just a tweak, since
14304 code using weak externs ought to check that they are
14305 defined before using them. */
14306 bfd_byte *p = contents + rel->r_offset - d_offset;
14307
14308 insn = bfd_get_32 (output_bfd, p);
14309 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14310 if (insn != 0)
14311 bfd_put_32 (output_bfd, insn, p);
14312 break;
14313 }
14314 if (htab->elf.tls_sec != NULL)
14315 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14316 if (info->shared)
14317 /* The TPREL16 relocs shouldn't really be used in shared
14318 libs as they will result in DT_TEXTREL being set, but
14319 support them anyway. */
14320 goto dodyn;
14321 break;
14322
14323 case R_PPC64_DTPREL16:
14324 case R_PPC64_DTPREL16_LO:
14325 case R_PPC64_DTPREL16_HI:
14326 case R_PPC64_DTPREL16_HA:
14327 case R_PPC64_DTPREL16_DS:
14328 case R_PPC64_DTPREL16_LO_DS:
14329 case R_PPC64_DTPREL16_HIGH:
14330 case R_PPC64_DTPREL16_HIGHA:
14331 case R_PPC64_DTPREL16_HIGHER:
14332 case R_PPC64_DTPREL16_HIGHERA:
14333 case R_PPC64_DTPREL16_HIGHEST:
14334 case R_PPC64_DTPREL16_HIGHESTA:
14335 if (htab->elf.tls_sec != NULL)
14336 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14337 break;
14338
14339 case R_PPC64_ADDR64_LOCAL:
14340 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14341 ? h->elf.other
14342 : sym->st_other);
14343 break;
14344
14345 case R_PPC64_DTPMOD64:
14346 relocation = 1;
14347 addend = 0;
14348 goto dodyn;
14349
14350 case R_PPC64_TPREL64:
14351 if (htab->elf.tls_sec != NULL)
14352 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14353 goto dodyn;
14354
14355 case R_PPC64_DTPREL64:
14356 if (htab->elf.tls_sec != NULL)
14357 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14358 /* Fall thru */
14359
14360 /* Relocations that may need to be propagated if this is a
14361 dynamic object. */
14362 case R_PPC64_REL30:
14363 case R_PPC64_REL32:
14364 case R_PPC64_REL64:
14365 case R_PPC64_ADDR14:
14366 case R_PPC64_ADDR14_BRNTAKEN:
14367 case R_PPC64_ADDR14_BRTAKEN:
14368 case R_PPC64_ADDR16:
14369 case R_PPC64_ADDR16_DS:
14370 case R_PPC64_ADDR16_HA:
14371 case R_PPC64_ADDR16_HI:
14372 case R_PPC64_ADDR16_HIGH:
14373 case R_PPC64_ADDR16_HIGHA:
14374 case R_PPC64_ADDR16_HIGHER:
14375 case R_PPC64_ADDR16_HIGHERA:
14376 case R_PPC64_ADDR16_HIGHEST:
14377 case R_PPC64_ADDR16_HIGHESTA:
14378 case R_PPC64_ADDR16_LO:
14379 case R_PPC64_ADDR16_LO_DS:
14380 case R_PPC64_ADDR24:
14381 case R_PPC64_ADDR32:
14382 case R_PPC64_ADDR64:
14383 case R_PPC64_UADDR16:
14384 case R_PPC64_UADDR32:
14385 case R_PPC64_UADDR64:
14386 dodyn:
14387 if ((input_section->flags & SEC_ALLOC) == 0)
14388 break;
14389
14390 if (NO_OPD_RELOCS && is_opd)
14391 break;
14392
14393 if ((info->shared
14394 && (h == NULL
14395 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14396 || h->elf.root.type != bfd_link_hash_undefweak)
14397 && (must_be_dyn_reloc (info, r_type)
14398 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14399 || (ELIMINATE_COPY_RELOCS
14400 && !info->shared
14401 && h != NULL
14402 && h->elf.dynindx != -1
14403 && !h->elf.non_got_ref
14404 && !h->elf.def_regular)
14405 || (!info->shared
14406 && (h != NULL
14407 ? h->elf.type == STT_GNU_IFUNC
14408 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14409 {
14410 bfd_boolean skip, relocate;
14411 asection *sreloc;
14412 bfd_vma out_off;
14413
14414 /* When generating a dynamic object, these relocations
14415 are copied into the output file to be resolved at run
14416 time. */
14417
14418 skip = FALSE;
14419 relocate = FALSE;
14420
14421 out_off = _bfd_elf_section_offset (output_bfd, info,
14422 input_section, rel->r_offset);
14423 if (out_off == (bfd_vma) -1)
14424 skip = TRUE;
14425 else if (out_off == (bfd_vma) -2)
14426 skip = TRUE, relocate = TRUE;
14427 out_off += (input_section->output_section->vma
14428 + input_section->output_offset);
14429 outrel.r_offset = out_off;
14430 outrel.r_addend = rel->r_addend;
14431
14432 /* Optimize unaligned reloc use. */
14433 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14434 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14435 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14436 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14437 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14438 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14439 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14440 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14441 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14442
14443 if (skip)
14444 memset (&outrel, 0, sizeof outrel);
14445 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14446 && !is_opd
14447 && r_type != R_PPC64_TOC)
14448 {
14449 BFD_ASSERT (h->elf.dynindx != -1);
14450 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14451 }
14452 else
14453 {
14454 /* This symbol is local, or marked to become local,
14455 or this is an opd section reloc which must point
14456 at a local function. */
14457 outrel.r_addend += relocation;
14458 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14459 {
14460 if (is_opd && h != NULL)
14461 {
14462 /* Lie about opd entries. This case occurs
14463 when building shared libraries and we
14464 reference a function in another shared
14465 lib. The same thing happens for a weak
14466 definition in an application that's
14467 overridden by a strong definition in a
14468 shared lib. (I believe this is a generic
14469 bug in binutils handling of weak syms.)
14470 In these cases we won't use the opd
14471 entry in this lib. */
14472 unresolved_reloc = FALSE;
14473 }
14474 if (!is_opd
14475 && r_type == R_PPC64_ADDR64
14476 && (h != NULL
14477 ? h->elf.type == STT_GNU_IFUNC
14478 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14479 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14480 else
14481 {
14482 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14483
14484 /* We need to relocate .opd contents for ld.so.
14485 Prelink also wants simple and consistent rules
14486 for relocs. This make all RELATIVE relocs have
14487 *r_offset equal to r_addend. */
14488 relocate = TRUE;
14489 }
14490 }
14491 else
14492 {
14493 long indx = 0;
14494
14495 if (h != NULL
14496 ? h->elf.type == STT_GNU_IFUNC
14497 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14498 {
14499 info->callbacks->einfo
14500 (_("%P: %H: %s for indirect "
14501 "function `%T' unsupported\n"),
14502 input_bfd, input_section, rel->r_offset,
14503 ppc64_elf_howto_table[r_type]->name,
14504 sym_name);
14505 ret = FALSE;
14506 }
14507 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14508 ;
14509 else if (sec == NULL || sec->owner == NULL)
14510 {
14511 bfd_set_error (bfd_error_bad_value);
14512 return FALSE;
14513 }
14514 else
14515 {
14516 asection *osec;
14517
14518 osec = sec->output_section;
14519 indx = elf_section_data (osec)->dynindx;
14520
14521 if (indx == 0)
14522 {
14523 if ((osec->flags & SEC_READONLY) == 0
14524 && htab->elf.data_index_section != NULL)
14525 osec = htab->elf.data_index_section;
14526 else
14527 osec = htab->elf.text_index_section;
14528 indx = elf_section_data (osec)->dynindx;
14529 }
14530 BFD_ASSERT (indx != 0);
14531
14532 /* We are turning this relocation into one
14533 against a section symbol, so subtract out
14534 the output section's address but not the
14535 offset of the input section in the output
14536 section. */
14537 outrel.r_addend -= osec->vma;
14538 }
14539
14540 outrel.r_info = ELF64_R_INFO (indx, r_type);
14541 }
14542 }
14543
14544 sreloc = elf_section_data (input_section)->sreloc;
14545 if (h != NULL
14546 ? h->elf.type == STT_GNU_IFUNC
14547 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14548 sreloc = htab->elf.irelplt;
14549 if (sreloc == NULL)
14550 abort ();
14551
14552 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14553 >= sreloc->size)
14554 abort ();
14555 loc = sreloc->contents;
14556 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14557 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14558
14559 /* If this reloc is against an external symbol, it will
14560 be computed at runtime, so there's no need to do
14561 anything now. However, for the sake of prelink ensure
14562 that the section contents are a known value. */
14563 if (! relocate)
14564 {
14565 unresolved_reloc = FALSE;
14566 /* The value chosen here is quite arbitrary as ld.so
14567 ignores section contents except for the special
14568 case of .opd where the contents might be accessed
14569 before relocation. Choose zero, as that won't
14570 cause reloc overflow. */
14571 relocation = 0;
14572 addend = 0;
14573 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14574 to improve backward compatibility with older
14575 versions of ld. */
14576 if (r_type == R_PPC64_ADDR64)
14577 addend = outrel.r_addend;
14578 /* Adjust pc_relative relocs to have zero in *r_offset. */
14579 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14580 addend = (input_section->output_section->vma
14581 + input_section->output_offset
14582 + rel->r_offset);
14583 }
14584 }
14585 break;
14586
14587 case R_PPC64_COPY:
14588 case R_PPC64_GLOB_DAT:
14589 case R_PPC64_JMP_SLOT:
14590 case R_PPC64_JMP_IREL:
14591 case R_PPC64_RELATIVE:
14592 /* We shouldn't ever see these dynamic relocs in relocatable
14593 files. */
14594 /* Fall through. */
14595
14596 case R_PPC64_PLTGOT16:
14597 case R_PPC64_PLTGOT16_DS:
14598 case R_PPC64_PLTGOT16_HA:
14599 case R_PPC64_PLTGOT16_HI:
14600 case R_PPC64_PLTGOT16_LO:
14601 case R_PPC64_PLTGOT16_LO_DS:
14602 case R_PPC64_PLTREL32:
14603 case R_PPC64_PLTREL64:
14604 /* These ones haven't been implemented yet. */
14605
14606 info->callbacks->einfo
14607 (_("%P: %B: %s is not supported for `%T'\n"),
14608 input_bfd,
14609 ppc64_elf_howto_table[r_type]->name, sym_name);
14610
14611 bfd_set_error (bfd_error_invalid_operation);
14612 ret = FALSE;
14613 continue;
14614 }
14615
14616 /* Multi-instruction sequences that access the TOC can be
14617 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14618 to nop; addi rb,r2,x; */
14619 switch (r_type)
14620 {
14621 default:
14622 break;
14623
14624 case R_PPC64_GOT_TLSLD16_HI:
14625 case R_PPC64_GOT_TLSGD16_HI:
14626 case R_PPC64_GOT_TPREL16_HI:
14627 case R_PPC64_GOT_DTPREL16_HI:
14628 case R_PPC64_GOT16_HI:
14629 case R_PPC64_TOC16_HI:
14630 /* These relocs would only be useful if building up an
14631 offset to later add to r2, perhaps in an indexed
14632 addressing mode instruction. Don't try to optimize.
14633 Unfortunately, the possibility of someone building up an
14634 offset like this or even with the HA relocs, means that
14635 we need to check the high insn when optimizing the low
14636 insn. */
14637 break;
14638
14639 case R_PPC64_GOT_TLSLD16_HA:
14640 case R_PPC64_GOT_TLSGD16_HA:
14641 case R_PPC64_GOT_TPREL16_HA:
14642 case R_PPC64_GOT_DTPREL16_HA:
14643 case R_PPC64_GOT16_HA:
14644 case R_PPC64_TOC16_HA:
14645 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14646 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14647 {
14648 bfd_byte *p = contents + (rel->r_offset & ~3);
14649 bfd_put_32 (input_bfd, NOP, p);
14650 }
14651 break;
14652
14653 case R_PPC64_GOT_TLSLD16_LO:
14654 case R_PPC64_GOT_TLSGD16_LO:
14655 case R_PPC64_GOT_TPREL16_LO_DS:
14656 case R_PPC64_GOT_DTPREL16_LO_DS:
14657 case R_PPC64_GOT16_LO:
14658 case R_PPC64_GOT16_LO_DS:
14659 case R_PPC64_TOC16_LO:
14660 case R_PPC64_TOC16_LO_DS:
14661 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14662 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14663 {
14664 bfd_byte *p = contents + (rel->r_offset & ~3);
14665 insn = bfd_get_32 (input_bfd, p);
14666 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14667 {
14668 /* Transform addic to addi when we change reg. */
14669 insn &= ~((0x3f << 26) | (0x1f << 16));
14670 insn |= (14u << 26) | (2 << 16);
14671 }
14672 else
14673 {
14674 insn &= ~(0x1f << 16);
14675 insn |= 2 << 16;
14676 }
14677 bfd_put_32 (input_bfd, insn, p);
14678 }
14679 break;
14680 }
14681
14682 /* Do any further special processing. */
14683 howto = ppc64_elf_howto_table[(int) r_type];
14684 switch (r_type)
14685 {
14686 default:
14687 break;
14688
14689 case R_PPC64_REL16_HA:
14690 case R_PPC64_ADDR16_HA:
14691 case R_PPC64_ADDR16_HIGHA:
14692 case R_PPC64_ADDR16_HIGHERA:
14693 case R_PPC64_ADDR16_HIGHESTA:
14694 case R_PPC64_TOC16_HA:
14695 case R_PPC64_SECTOFF_HA:
14696 case R_PPC64_TPREL16_HA:
14697 case R_PPC64_TPREL16_HIGHA:
14698 case R_PPC64_TPREL16_HIGHERA:
14699 case R_PPC64_TPREL16_HIGHESTA:
14700 case R_PPC64_DTPREL16_HA:
14701 case R_PPC64_DTPREL16_HIGHA:
14702 case R_PPC64_DTPREL16_HIGHERA:
14703 case R_PPC64_DTPREL16_HIGHESTA:
14704 /* It's just possible that this symbol is a weak symbol
14705 that's not actually defined anywhere. In that case,
14706 'sec' would be NULL, and we should leave the symbol
14707 alone (it will be set to zero elsewhere in the link). */
14708 if (sec == NULL)
14709 break;
14710 /* Fall thru */
14711
14712 case R_PPC64_GOT16_HA:
14713 case R_PPC64_PLTGOT16_HA:
14714 case R_PPC64_PLT16_HA:
14715 case R_PPC64_GOT_TLSGD16_HA:
14716 case R_PPC64_GOT_TLSLD16_HA:
14717 case R_PPC64_GOT_TPREL16_HA:
14718 case R_PPC64_GOT_DTPREL16_HA:
14719 /* Add 0x10000 if sign bit in 0:15 is set.
14720 Bits 0:15 are not used. */
14721 addend += 0x8000;
14722 break;
14723
14724 case R_PPC64_ADDR16_DS:
14725 case R_PPC64_ADDR16_LO_DS:
14726 case R_PPC64_GOT16_DS:
14727 case R_PPC64_GOT16_LO_DS:
14728 case R_PPC64_PLT16_LO_DS:
14729 case R_PPC64_SECTOFF_DS:
14730 case R_PPC64_SECTOFF_LO_DS:
14731 case R_PPC64_TOC16_DS:
14732 case R_PPC64_TOC16_LO_DS:
14733 case R_PPC64_PLTGOT16_DS:
14734 case R_PPC64_PLTGOT16_LO_DS:
14735 case R_PPC64_GOT_TPREL16_DS:
14736 case R_PPC64_GOT_TPREL16_LO_DS:
14737 case R_PPC64_GOT_DTPREL16_DS:
14738 case R_PPC64_GOT_DTPREL16_LO_DS:
14739 case R_PPC64_TPREL16_DS:
14740 case R_PPC64_TPREL16_LO_DS:
14741 case R_PPC64_DTPREL16_DS:
14742 case R_PPC64_DTPREL16_LO_DS:
14743 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14744 mask = 3;
14745 /* If this reloc is against an lq insn, then the value must be
14746 a multiple of 16. This is somewhat of a hack, but the
14747 "correct" way to do this by defining _DQ forms of all the
14748 _DS relocs bloats all reloc switches in this file. It
14749 doesn't seem to make much sense to use any of these relocs
14750 in data, so testing the insn should be safe. */
14751 if ((insn & (0x3f << 26)) == (56u << 26))
14752 mask = 15;
14753 if (((relocation + addend) & mask) != 0)
14754 {
14755 info->callbacks->einfo
14756 (_("%P: %H: error: %s not a multiple of %u\n"),
14757 input_bfd, input_section, rel->r_offset,
14758 howto->name,
14759 mask + 1);
14760 bfd_set_error (bfd_error_bad_value);
14761 ret = FALSE;
14762 continue;
14763 }
14764 break;
14765 }
14766
14767 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14768 because such sections are not SEC_ALLOC and thus ld.so will
14769 not process them. */
14770 if (unresolved_reloc
14771 && !((input_section->flags & SEC_DEBUGGING) != 0
14772 && h->elf.def_dynamic)
14773 && _bfd_elf_section_offset (output_bfd, info, input_section,
14774 rel->r_offset) != (bfd_vma) -1)
14775 {
14776 info->callbacks->einfo
14777 (_("%P: %H: unresolvable %s against `%T'\n"),
14778 input_bfd, input_section, rel->r_offset,
14779 howto->name,
14780 h->elf.root.root.string);
14781 ret = FALSE;
14782 }
14783
14784 /* 16-bit fields in insns mostly have signed values, but a
14785 few insns have 16-bit unsigned values. Really, we should
14786 have different reloc types. */
14787 if (howto->complain_on_overflow != complain_overflow_dont
14788 && howto->dst_mask == 0xffff
14789 && (input_section->flags & SEC_CODE) != 0)
14790 {
14791 enum complain_overflow complain = complain_overflow_signed;
14792
14793 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14794 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14795 complain = complain_overflow_bitfield;
14796 else if (howto->rightshift == 0
14797 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14798 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14799 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14800 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14801 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14802 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14803 complain = complain_overflow_unsigned;
14804 if (howto->complain_on_overflow != complain)
14805 {
14806 alt_howto = *howto;
14807 alt_howto.complain_on_overflow = complain;
14808 howto = &alt_howto;
14809 }
14810 }
14811
14812 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14813 rel->r_offset, relocation, addend);
14814
14815 if (r != bfd_reloc_ok)
14816 {
14817 char *more_info = NULL;
14818 const char *reloc_name = howto->name;
14819
14820 if (reloc_dest != DEST_NORMAL)
14821 {
14822 more_info = bfd_malloc (strlen (reloc_name) + 8);
14823 if (more_info != NULL)
14824 {
14825 strcpy (more_info, reloc_name);
14826 strcat (more_info, (reloc_dest == DEST_OPD
14827 ? " (OPD)" : " (stub)"));
14828 reloc_name = more_info;
14829 }
14830 }
14831
14832 if (r == bfd_reloc_overflow)
14833 {
14834 if (warned)
14835 continue;
14836 if (h != NULL
14837 && h->elf.root.type == bfd_link_hash_undefweak
14838 && howto->pc_relative)
14839 {
14840 /* Assume this is a call protected by other code that
14841 detects the symbol is undefined. If this is the case,
14842 we can safely ignore the overflow. If not, the
14843 program is hosed anyway, and a little warning isn't
14844 going to help. */
14845
14846 continue;
14847 }
14848
14849 if (!((*info->callbacks->reloc_overflow)
14850 (info, &h->elf.root, sym_name,
14851 reloc_name, orig_rel.r_addend,
14852 input_bfd, input_section, rel->r_offset)))
14853 return FALSE;
14854 }
14855 else
14856 {
14857 info->callbacks->einfo
14858 (_("%P: %H: %s against `%T': error %d\n"),
14859 input_bfd, input_section, rel->r_offset,
14860 reloc_name, sym_name, (int) r);
14861 ret = FALSE;
14862 }
14863 if (more_info != NULL)
14864 free (more_info);
14865 }
14866 }
14867
14868 /* If we're emitting relocations, then shortly after this function
14869 returns, reloc offsets and addends for this section will be
14870 adjusted. Worse, reloc symbol indices will be for the output
14871 file rather than the input. Save a copy of the relocs for
14872 opd_entry_value. */
14873 if (is_opd && (info->emitrelocations || info->relocatable))
14874 {
14875 bfd_size_type amt;
14876 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14877 rel = bfd_alloc (input_bfd, amt);
14878 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14879 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14880 if (rel == NULL)
14881 return FALSE;
14882 memcpy (rel, relocs, amt);
14883 }
14884 return ret;
14885 }
14886
14887 /* Adjust the value of any local symbols in opd sections. */
14888
14889 static int
14890 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14891 const char *name ATTRIBUTE_UNUSED,
14892 Elf_Internal_Sym *elfsym,
14893 asection *input_sec,
14894 struct elf_link_hash_entry *h)
14895 {
14896 struct _opd_sec_data *opd;
14897 long adjust;
14898 bfd_vma value;
14899
14900 if (h != NULL)
14901 return 1;
14902
14903 opd = get_opd_info (input_sec);
14904 if (opd == NULL || opd->adjust == NULL)
14905 return 1;
14906
14907 value = elfsym->st_value - input_sec->output_offset;
14908 if (!info->relocatable)
14909 value -= input_sec->output_section->vma;
14910
14911 adjust = opd->adjust[OPD_NDX (value)];
14912 if (adjust == -1)
14913 return 2;
14914
14915 elfsym->st_value += adjust;
14916 return 1;
14917 }
14918
14919 /* Finish up dynamic symbol handling. We set the contents of various
14920 dynamic sections here. */
14921
14922 static bfd_boolean
14923 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14924 struct bfd_link_info *info,
14925 struct elf_link_hash_entry *h,
14926 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14927 {
14928 struct ppc_link_hash_table *htab;
14929 struct plt_entry *ent;
14930 Elf_Internal_Rela rela;
14931 bfd_byte *loc;
14932
14933 htab = ppc_hash_table (info);
14934 if (htab == NULL)
14935 return FALSE;
14936
14937 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14938 if (ent->plt.offset != (bfd_vma) -1)
14939 {
14940 /* This symbol has an entry in the procedure linkage
14941 table. Set it up. */
14942 if (!htab->elf.dynamic_sections_created
14943 || h->dynindx == -1)
14944 {
14945 BFD_ASSERT (h->type == STT_GNU_IFUNC
14946 && h->def_regular
14947 && (h->root.type == bfd_link_hash_defined
14948 || h->root.type == bfd_link_hash_defweak));
14949 rela.r_offset = (htab->elf.iplt->output_section->vma
14950 + htab->elf.iplt->output_offset
14951 + ent->plt.offset);
14952 if (htab->opd_abi)
14953 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14954 else
14955 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14956 rela.r_addend = (h->root.u.def.value
14957 + h->root.u.def.section->output_offset
14958 + h->root.u.def.section->output_section->vma
14959 + ent->addend);
14960 loc = (htab->elf.irelplt->contents
14961 + (htab->elf.irelplt->reloc_count++
14962 * sizeof (Elf64_External_Rela)));
14963 }
14964 else
14965 {
14966 rela.r_offset = (htab->elf.splt->output_section->vma
14967 + htab->elf.splt->output_offset
14968 + ent->plt.offset);
14969 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14970 rela.r_addend = ent->addend;
14971 loc = (htab->elf.srelplt->contents
14972 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14973 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14974 }
14975 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14976
14977 if (!htab->opd_abi)
14978 {
14979 if (!h->def_regular)
14980 {
14981 /* Mark the symbol as undefined, rather than as
14982 defined in glink. Leave the value if there were
14983 any relocations where pointer equality matters
14984 (this is a clue for the dynamic linker, to make
14985 function pointer comparisons work between an
14986 application and shared library), otherwise set it
14987 to zero. */
14988 sym->st_shndx = SHN_UNDEF;
14989 if (!h->pointer_equality_needed)
14990 sym->st_value = 0;
14991 else if (!h->ref_regular_nonweak)
14992 {
14993 /* This breaks function pointer comparisons, but
14994 that is better than breaking tests for a NULL
14995 function pointer. */
14996 sym->st_value = 0;
14997 }
14998 }
14999 }
15000 }
15001
15002 if (h->needs_copy)
15003 {
15004 /* This symbol needs a copy reloc. Set it up. */
15005
15006 if (h->dynindx == -1
15007 || (h->root.type != bfd_link_hash_defined
15008 && h->root.type != bfd_link_hash_defweak)
15009 || htab->relbss == NULL)
15010 abort ();
15011
15012 rela.r_offset = (h->root.u.def.value
15013 + h->root.u.def.section->output_section->vma
15014 + h->root.u.def.section->output_offset);
15015 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
15016 rela.r_addend = 0;
15017 loc = htab->relbss->contents;
15018 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
15019 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
15020 }
15021
15022 return TRUE;
15023 }
15024
15025 /* Used to decide how to sort relocs in an optimal manner for the
15026 dynamic linker, before writing them out. */
15027
15028 static enum elf_reloc_type_class
15029 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
15030 const asection *rel_sec,
15031 const Elf_Internal_Rela *rela)
15032 {
15033 enum elf_ppc64_reloc_type r_type;
15034 struct ppc_link_hash_table *htab = ppc_hash_table (info);
15035
15036 if (rel_sec == htab->elf.irelplt)
15037 return reloc_class_ifunc;
15038
15039 r_type = ELF64_R_TYPE (rela->r_info);
15040 switch (r_type)
15041 {
15042 case R_PPC64_RELATIVE:
15043 return reloc_class_relative;
15044 case R_PPC64_JMP_SLOT:
15045 return reloc_class_plt;
15046 case R_PPC64_COPY:
15047 return reloc_class_copy;
15048 default:
15049 return reloc_class_normal;
15050 }
15051 }
15052
15053 /* Finish up the dynamic sections. */
15054
15055 static bfd_boolean
15056 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
15057 struct bfd_link_info *info)
15058 {
15059 struct ppc_link_hash_table *htab;
15060 bfd *dynobj;
15061 asection *sdyn;
15062
15063 htab = ppc_hash_table (info);
15064 if (htab == NULL)
15065 return FALSE;
15066
15067 dynobj = htab->elf.dynobj;
15068 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15069
15070 if (htab->elf.dynamic_sections_created)
15071 {
15072 Elf64_External_Dyn *dyncon, *dynconend;
15073
15074 if (sdyn == NULL || htab->elf.sgot == NULL)
15075 abort ();
15076
15077 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15078 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15079 for (; dyncon < dynconend; dyncon++)
15080 {
15081 Elf_Internal_Dyn dyn;
15082 asection *s;
15083
15084 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15085
15086 switch (dyn.d_tag)
15087 {
15088 default:
15089 continue;
15090
15091 case DT_PPC64_GLINK:
15092 s = htab->glink;
15093 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15094 /* We stupidly defined DT_PPC64_GLINK to be the start
15095 of glink rather than the first entry point, which is
15096 what ld.so needs, and now have a bigger stub to
15097 support automatic multiple TOCs. */
15098 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15099 break;
15100
15101 case DT_PPC64_OPD:
15102 s = bfd_get_section_by_name (output_bfd, ".opd");
15103 if (s == NULL)
15104 continue;
15105 dyn.d_un.d_ptr = s->vma;
15106 break;
15107
15108 case DT_PPC64_OPT:
15109 if (htab->do_multi_toc && htab->multi_toc_needed)
15110 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15111 break;
15112
15113 case DT_PPC64_OPDSZ:
15114 s = bfd_get_section_by_name (output_bfd, ".opd");
15115 if (s == NULL)
15116 continue;
15117 dyn.d_un.d_val = s->size;
15118 break;
15119
15120 case DT_PLTGOT:
15121 s = htab->elf.splt;
15122 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15123 break;
15124
15125 case DT_JMPREL:
15126 s = htab->elf.srelplt;
15127 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15128 break;
15129
15130 case DT_PLTRELSZ:
15131 dyn.d_un.d_val = htab->elf.srelplt->size;
15132 break;
15133
15134 case DT_RELASZ:
15135 /* Don't count procedure linkage table relocs in the
15136 overall reloc count. */
15137 s = htab->elf.srelplt;
15138 if (s == NULL)
15139 continue;
15140 dyn.d_un.d_val -= s->size;
15141 break;
15142
15143 case DT_RELA:
15144 /* We may not be using the standard ELF linker script.
15145 If .rela.plt is the first .rela section, we adjust
15146 DT_RELA to not include it. */
15147 s = htab->elf.srelplt;
15148 if (s == NULL)
15149 continue;
15150 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15151 continue;
15152 dyn.d_un.d_ptr += s->size;
15153 break;
15154 }
15155
15156 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15157 }
15158 }
15159
15160 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15161 {
15162 /* Fill in the first entry in the global offset table.
15163 We use it to hold the link-time TOCbase. */
15164 bfd_put_64 (output_bfd,
15165 elf_gp (output_bfd) + TOC_BASE_OFF,
15166 htab->elf.sgot->contents);
15167
15168 /* Set .got entry size. */
15169 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15170 }
15171
15172 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15173 {
15174 /* Set .plt entry size. */
15175 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15176 = PLT_ENTRY_SIZE (htab);
15177 }
15178
15179 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15180 brlt ourselves if emitrelocations. */
15181 if (htab->brlt != NULL
15182 && htab->brlt->reloc_count != 0
15183 && !_bfd_elf_link_output_relocs (output_bfd,
15184 htab->brlt,
15185 elf_section_data (htab->brlt)->rela.hdr,
15186 elf_section_data (htab->brlt)->relocs,
15187 NULL))
15188 return FALSE;
15189
15190 if (htab->glink != NULL
15191 && htab->glink->reloc_count != 0
15192 && !_bfd_elf_link_output_relocs (output_bfd,
15193 htab->glink,
15194 elf_section_data (htab->glink)->rela.hdr,
15195 elf_section_data (htab->glink)->relocs,
15196 NULL))
15197 return FALSE;
15198
15199 if (htab->glink_eh_frame != NULL
15200 && htab->glink_eh_frame->size != 0)
15201 {
15202 bfd_vma val;
15203 bfd_byte *p;
15204 asection *stub_sec;
15205
15206 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15207 for (stub_sec = htab->params->stub_bfd->sections;
15208 stub_sec != NULL;
15209 stub_sec = stub_sec->next)
15210 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15211 {
15212 /* FDE length. */
15213 p += 4;
15214 /* CIE pointer. */
15215 p += 4;
15216 /* Offset to stub section. */
15217 val = (stub_sec->output_section->vma
15218 + stub_sec->output_offset);
15219 val -= (htab->glink_eh_frame->output_section->vma
15220 + htab->glink_eh_frame->output_offset
15221 + (p - htab->glink_eh_frame->contents));
15222 if (val + 0x80000000 > 0xffffffff)
15223 {
15224 info->callbacks->einfo
15225 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15226 stub_sec->name);
15227 return FALSE;
15228 }
15229 bfd_put_32 (dynobj, val, p);
15230 p += 4;
15231 /* stub section size. */
15232 p += 4;
15233 /* Augmentation. */
15234 p += 1;
15235 /* Pad. */
15236 p += 7;
15237 }
15238 if (htab->glink != NULL && htab->glink->size != 0)
15239 {
15240 /* FDE length. */
15241 p += 4;
15242 /* CIE pointer. */
15243 p += 4;
15244 /* Offset to .glink. */
15245 val = (htab->glink->output_section->vma
15246 + htab->glink->output_offset
15247 + 8);
15248 val -= (htab->glink_eh_frame->output_section->vma
15249 + htab->glink_eh_frame->output_offset
15250 + (p - htab->glink_eh_frame->contents));
15251 if (val + 0x80000000 > 0xffffffff)
15252 {
15253 info->callbacks->einfo
15254 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15255 htab->glink->name);
15256 return FALSE;
15257 }
15258 bfd_put_32 (dynobj, val, p);
15259 p += 4;
15260 /* .glink size. */
15261 p += 4;
15262 /* Augmentation. */
15263 p += 1;
15264 /* Ops. */
15265 p += 7;
15266 }
15267
15268 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15269 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15270 htab->glink_eh_frame,
15271 htab->glink_eh_frame->contents))
15272 return FALSE;
15273 }
15274
15275 /* We need to handle writing out multiple GOT sections ourselves,
15276 since we didn't add them to DYNOBJ. We know dynobj is the first
15277 bfd. */
15278 while ((dynobj = dynobj->link.next) != NULL)
15279 {
15280 asection *s;
15281
15282 if (!is_ppc64_elf (dynobj))
15283 continue;
15284
15285 s = ppc64_elf_tdata (dynobj)->got;
15286 if (s != NULL
15287 && s->size != 0
15288 && s->output_section != bfd_abs_section_ptr
15289 && !bfd_set_section_contents (output_bfd, s->output_section,
15290 s->contents, s->output_offset,
15291 s->size))
15292 return FALSE;
15293 s = ppc64_elf_tdata (dynobj)->relgot;
15294 if (s != NULL
15295 && s->size != 0
15296 && s->output_section != bfd_abs_section_ptr
15297 && !bfd_set_section_contents (output_bfd, s->output_section,
15298 s->contents, s->output_offset,
15299 s->size))
15300 return FALSE;
15301 }
15302
15303 return TRUE;
15304 }
15305
15306 #include "elf64-target.h"
15307
15308 /* FreeBSD support */
15309
15310 #undef TARGET_LITTLE_SYM
15311 #undef TARGET_LITTLE_NAME
15312
15313 #undef TARGET_BIG_SYM
15314 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15315 #undef TARGET_BIG_NAME
15316 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15317
15318 #undef ELF_OSABI
15319 #define ELF_OSABI ELFOSABI_FREEBSD
15320
15321 #undef elf64_bed
15322 #define elf64_bed elf64_powerpc_fbsd_bed
15323
15324 #include "elf64-target.h"
15325
This page took 0.353966 seconds and 5 git commands to generate.