Improve load command's help text
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57 {
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101 /* PR 17512: file: 996185f8. */
102 || (!dynamic && ELF64_R_SYM(rela.r_info) > bfd_get_symcount(abfd))
103 || (dynamic
104 && ELF64_R_SYM(rela.r_info) > bfd_get_dynamic_symcount(abfd)))
105 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
106 else
107 {
108 asymbol **ps, *s;
109
110 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
111 s = *ps;
112
113 /* Canonicalize ELF section symbols. FIXME: Why? */
114 if ((s->flags & BSF_SECTION_SYM) == 0)
115 relent->sym_ptr_ptr = ps;
116 else
117 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
118 }
119
120 relent->addend = rela.r_addend;
121
122 r_type = ELF64_R_TYPE_ID (rela.r_info);
123 if (r_type == R_SPARC_OLO10)
124 {
125 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
126 relent[1].address = relent->address;
127 relent++;
128 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
129 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
131 }
132 else
133 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
134 }
135
136 canon_reloc_count (asect) += relent - relents;
137
138 if (allocated != NULL)
139 free (allocated);
140
141 return TRUE;
142
143 error_return:
144 if (allocated != NULL)
145 free (allocated);
146 return FALSE;
147 }
148
149 /* Read in and swap the external relocs. */
150
151 static bfd_boolean
152 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
153 asymbol **symbols, bfd_boolean dynamic)
154 {
155 struct bfd_elf_section_data * const d = elf_section_data (asect);
156 Elf_Internal_Shdr *rel_hdr;
157 Elf_Internal_Shdr *rel_hdr2;
158 bfd_size_type amt;
159
160 if (asect->relocation != NULL)
161 return TRUE;
162
163 if (! dynamic)
164 {
165 if ((asect->flags & SEC_RELOC) == 0
166 || asect->reloc_count == 0)
167 return TRUE;
168
169 rel_hdr = d->rel.hdr;
170 rel_hdr2 = d->rela.hdr;
171
172 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
173 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
174 }
175 else
176 {
177 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
178 case because relocations against this section may use the
179 dynamic symbol table, and in that case bfd_section_from_shdr
180 in elf.c does not update the RELOC_COUNT. */
181 if (asect->size == 0)
182 return TRUE;
183
184 rel_hdr = &d->this_hdr;
185 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
186 rel_hdr2 = NULL;
187 }
188
189 amt = asect->reloc_count;
190 amt *= 2 * sizeof (arelent);
191 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
192 if (asect->relocation == NULL)
193 return FALSE;
194
195 /* The elf64_sparc_slurp_one_reloc_table routine increments
196 canon_reloc_count. */
197 canon_reloc_count (asect) = 0;
198
199 if (rel_hdr
200 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
201 dynamic))
202 return FALSE;
203
204 if (rel_hdr2
205 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
206 dynamic))
207 return FALSE;
208
209 return TRUE;
210 }
211
212 /* Canonicalize the relocs. */
213
214 static long
215 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
216 arelent **relptr, asymbol **symbols)
217 {
218 arelent *tblptr;
219 unsigned int i;
220 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
221
222 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
223 return -1;
224
225 tblptr = section->relocation;
226 for (i = 0; i < canon_reloc_count (section); i++)
227 *relptr++ = tblptr++;
228
229 *relptr = NULL;
230
231 return canon_reloc_count (section);
232 }
233
234
235 /* Canonicalize the dynamic relocation entries. Note that we return
236 the dynamic relocations as a single block, although they are
237 actually associated with particular sections; the interface, which
238 was designed for SunOS style shared libraries, expects that there
239 is only one set of dynamic relocs. Any section that was actually
240 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
241 the dynamic symbol table, is considered to be a dynamic reloc
242 section. */
243
244 static long
245 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
246 asymbol **syms)
247 {
248 asection *s;
249 long ret;
250
251 if (elf_dynsymtab (abfd) == 0)
252 {
253 bfd_set_error (bfd_error_invalid_operation);
254 return -1;
255 }
256
257 ret = 0;
258 for (s = abfd->sections; s != NULL; s = s->next)
259 {
260 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
261 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
262 {
263 arelent *p;
264 long count, i;
265
266 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
267 return -1;
268 count = canon_reloc_count (s);
269 p = s->relocation;
270 for (i = 0; i < count; i++)
271 *storage++ = p++;
272 ret += count;
273 }
274 }
275
276 *storage = NULL;
277
278 return ret;
279 }
280
281 /* Write out the relocs. */
282
283 static void
284 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
285 {
286 bfd_boolean *failedp = (bfd_boolean *) data;
287 Elf_Internal_Shdr *rela_hdr;
288 bfd_vma addr_offset;
289 Elf64_External_Rela *outbound_relocas, *src_rela;
290 unsigned int idx, count;
291 asymbol *last_sym = 0;
292 int last_sym_idx = 0;
293
294 /* If we have already failed, don't do anything. */
295 if (*failedp)
296 return;
297
298 if ((sec->flags & SEC_RELOC) == 0)
299 return;
300
301 /* The linker backend writes the relocs out itself, and sets the
302 reloc_count field to zero to inhibit writing them here. Also,
303 sometimes the SEC_RELOC flag gets set even when there aren't any
304 relocs. */
305 if (sec->reloc_count == 0)
306 return;
307
308 /* We can combine two relocs that refer to the same address
309 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
310 latter is R_SPARC_13 with no associated symbol. */
311 count = 0;
312 for (idx = 0; idx < sec->reloc_count; idx++)
313 {
314 bfd_vma addr;
315
316 ++count;
317
318 addr = sec->orelocation[idx]->address;
319 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
320 && idx < sec->reloc_count - 1)
321 {
322 arelent *r = sec->orelocation[idx + 1];
323
324 if (r->howto->type == R_SPARC_13
325 && r->address == addr
326 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
327 && (*r->sym_ptr_ptr)->value == 0)
328 ++idx;
329 }
330 }
331
332 rela_hdr = elf_section_data (sec)->rela.hdr;
333
334 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
335 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
336 if (rela_hdr->contents == NULL)
337 {
338 *failedp = TRUE;
339 return;
340 }
341
342 /* Figure out whether the relocations are RELA or REL relocations. */
343 if (rela_hdr->sh_type != SHT_RELA)
344 abort ();
345
346 /* The address of an ELF reloc is section relative for an object
347 file, and absolute for an executable file or shared library.
348 The address of a BFD reloc is always section relative. */
349 addr_offset = 0;
350 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
351 addr_offset = sec->vma;
352
353 /* orelocation has the data, reloc_count has the count... */
354 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
355 src_rela = outbound_relocas;
356
357 for (idx = 0; idx < sec->reloc_count; idx++)
358 {
359 Elf_Internal_Rela dst_rela;
360 arelent *ptr;
361 asymbol *sym;
362 int n;
363
364 ptr = sec->orelocation[idx];
365 sym = *ptr->sym_ptr_ptr;
366 if (sym == last_sym)
367 n = last_sym_idx;
368 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
369 n = STN_UNDEF;
370 else
371 {
372 last_sym = sym;
373 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
374 if (n < 0)
375 {
376 *failedp = TRUE;
377 return;
378 }
379 last_sym_idx = n;
380 }
381
382 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
383 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
384 && ! _bfd_elf_validate_reloc (abfd, ptr))
385 {
386 *failedp = TRUE;
387 return;
388 }
389
390 if (ptr->howto->type == R_SPARC_LO10
391 && idx < sec->reloc_count - 1)
392 {
393 arelent *r = sec->orelocation[idx + 1];
394
395 if (r->howto->type == R_SPARC_13
396 && r->address == ptr->address
397 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
398 && (*r->sym_ptr_ptr)->value == 0)
399 {
400 idx++;
401 dst_rela.r_info
402 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
403 R_SPARC_OLO10));
404 }
405 else
406 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
407 }
408 else
409 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
410
411 dst_rela.r_offset = ptr->address + addr_offset;
412 dst_rela.r_addend = ptr->addend;
413
414 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
415 ++src_rela;
416 }
417 }
418 \f
419 /* Hook called by the linker routine which adds symbols from an object
420 file. We use it for STT_REGISTER symbols. */
421
422 static bfd_boolean
423 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
424 Elf_Internal_Sym *sym, const char **namep,
425 flagword *flagsp ATTRIBUTE_UNUSED,
426 asection **secp ATTRIBUTE_UNUSED,
427 bfd_vma *valp ATTRIBUTE_UNUSED)
428 {
429 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
430
431 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
432 && (abfd->flags & DYNAMIC) == 0
433 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
434 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
435
436 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
437 {
438 int reg;
439 struct _bfd_sparc_elf_app_reg *p;
440
441 reg = (int)sym->st_value;
442 switch (reg & ~1)
443 {
444 case 2: reg -= 2; break;
445 case 6: reg -= 4; break;
446 default:
447 _bfd_error_handler
448 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
449 abfd);
450 return FALSE;
451 }
452
453 if (info->output_bfd->xvec != abfd->xvec
454 || (abfd->flags & DYNAMIC) != 0)
455 {
456 /* STT_REGISTER only works when linking an elf64_sparc object.
457 If STT_REGISTER comes from a dynamic object, don't put it into
458 the output bfd. The dynamic linker will recheck it. */
459 *namep = NULL;
460 return TRUE;
461 }
462
463 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
464
465 if (p->name != NULL && strcmp (p->name, *namep))
466 {
467 _bfd_error_handler
468 /* xgettext:c-format */
469 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
470 abfd, p->abfd, (int) sym->st_value,
471 **namep ? *namep : "#scratch",
472 *p->name ? p->name : "#scratch");
473 return FALSE;
474 }
475
476 if (p->name == NULL)
477 {
478 if (**namep)
479 {
480 struct elf_link_hash_entry *h;
481
482 h = (struct elf_link_hash_entry *)
483 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
484
485 if (h != NULL)
486 {
487 unsigned char type = h->type;
488
489 if (type > STT_FUNC)
490 type = 0;
491 _bfd_error_handler
492 /* xgettext:c-format */
493 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
494 abfd, p->abfd, *namep, stt_types[type]);
495 return FALSE;
496 }
497
498 p->name = bfd_hash_allocate (&info->hash->table,
499 strlen (*namep) + 1);
500 if (!p->name)
501 return FALSE;
502
503 strcpy (p->name, *namep);
504 }
505 else
506 p->name = "";
507 p->bind = ELF_ST_BIND (sym->st_info);
508 p->abfd = abfd;
509 p->shndx = sym->st_shndx;
510 }
511 else
512 {
513 if (p->bind == STB_WEAK
514 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
515 {
516 p->bind = STB_GLOBAL;
517 p->abfd = abfd;
518 }
519 }
520 *namep = NULL;
521 return TRUE;
522 }
523 else if (*namep && **namep
524 && info->output_bfd->xvec == abfd->xvec)
525 {
526 int i;
527 struct _bfd_sparc_elf_app_reg *p;
528
529 p = _bfd_sparc_elf_hash_table(info)->app_regs;
530 for (i = 0; i < 4; i++, p++)
531 if (p->name != NULL && ! strcmp (p->name, *namep))
532 {
533 unsigned char type = ELF_ST_TYPE (sym->st_info);
534
535 if (type > STT_FUNC)
536 type = 0;
537 _bfd_error_handler
538 /* xgettext:c-format */
539 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
540 abfd, p->abfd, *namep, stt_types[type]);
541 return FALSE;
542 }
543 }
544 return TRUE;
545 }
546
547 /* This function takes care of emitting STT_REGISTER symbols
548 which we cannot easily keep in the symbol hash table. */
549
550 static bfd_boolean
551 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
552 struct bfd_link_info *info,
553 void * flaginfo,
554 int (*func) (void *, const char *,
555 Elf_Internal_Sym *,
556 asection *,
557 struct elf_link_hash_entry *))
558 {
559 int reg;
560 struct _bfd_sparc_elf_app_reg *app_regs =
561 _bfd_sparc_elf_hash_table(info)->app_regs;
562 Elf_Internal_Sym sym;
563
564 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
565 at the end of the dynlocal list, so they came at the end of the local
566 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
567 to back up symtab->sh_info. */
568 if (elf_hash_table (info)->dynlocal)
569 {
570 bfd * dynobj = elf_hash_table (info)->dynobj;
571 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
572 struct elf_link_local_dynamic_entry *e;
573
574 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
575 if (e->input_indx == -1)
576 break;
577 if (e)
578 {
579 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
580 = e->dynindx;
581 }
582 }
583
584 if (info->strip == strip_all)
585 return TRUE;
586
587 for (reg = 0; reg < 4; reg++)
588 if (app_regs [reg].name != NULL)
589 {
590 if (info->strip == strip_some
591 && bfd_hash_lookup (info->keep_hash,
592 app_regs [reg].name,
593 FALSE, FALSE) == NULL)
594 continue;
595
596 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
597 sym.st_size = 0;
598 sym.st_other = 0;
599 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
600 sym.st_shndx = app_regs [reg].shndx;
601 sym.st_target_internal = 0;
602 if ((*func) (flaginfo, app_regs [reg].name, &sym,
603 sym.st_shndx == SHN_ABS
604 ? bfd_abs_section_ptr : bfd_und_section_ptr,
605 NULL) != 1)
606 return FALSE;
607 }
608
609 return TRUE;
610 }
611
612 static int
613 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
614 {
615 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
616 return STT_REGISTER;
617 else
618 return type;
619 }
620
621 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
622 even in SHN_UNDEF section. */
623
624 static void
625 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
626 {
627 elf_symbol_type *elfsym;
628
629 elfsym = (elf_symbol_type *) asym;
630 if (elfsym->internal_elf_sym.st_info
631 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
632 {
633 asym->flags |= BSF_GLOBAL;
634 }
635 }
636
637 \f
638 /* Functions for dealing with the e_flags field. */
639
640 /* Merge backend specific data from an object file to the output
641 object file when linking. */
642
643 static bfd_boolean
644 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
645 {
646 bfd *obfd = info->output_bfd;
647 bfd_boolean error;
648 flagword new_flags, old_flags;
649 int new_mm, old_mm;
650
651 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
652 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
653 return TRUE;
654
655 new_flags = elf_elfheader (ibfd)->e_flags;
656 old_flags = elf_elfheader (obfd)->e_flags;
657
658 if (!elf_flags_init (obfd)) /* First call, no flags set */
659 {
660 elf_flags_init (obfd) = TRUE;
661 elf_elfheader (obfd)->e_flags = new_flags;
662 }
663
664 else if (new_flags == old_flags) /* Compatible flags are ok */
665 ;
666
667 else /* Incompatible flags */
668 {
669 error = FALSE;
670
671 #define EF_SPARC_ISA_EXTENSIONS \
672 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
673
674 if ((ibfd->flags & DYNAMIC) != 0)
675 {
676 /* We don't want dynamic objects memory ordering and
677 architecture to have any role. That's what dynamic linker
678 should do. */
679 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
680 new_flags |= (old_flags
681 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
682 }
683 else
684 {
685 /* Choose the highest architecture requirements. */
686 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
687 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
688 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
689 && (old_flags & EF_SPARC_HAL_R1))
690 {
691 error = TRUE;
692 _bfd_error_handler
693 (_("%B: linking UltraSPARC specific with HAL specific code"),
694 ibfd);
695 }
696 /* Choose the most restrictive memory ordering. */
697 old_mm = (old_flags & EF_SPARCV9_MM);
698 new_mm = (new_flags & EF_SPARCV9_MM);
699 old_flags &= ~EF_SPARCV9_MM;
700 new_flags &= ~EF_SPARCV9_MM;
701 if (new_mm < old_mm)
702 old_mm = new_mm;
703 old_flags |= old_mm;
704 new_flags |= old_mm;
705 }
706
707 /* Warn about any other mismatches */
708 if (new_flags != old_flags)
709 {
710 error = TRUE;
711 _bfd_error_handler
712 /* xgettext:c-format */
713 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
714 ibfd, (long) new_flags, (long) old_flags);
715 }
716
717 elf_elfheader (obfd)->e_flags = old_flags;
718
719 if (error)
720 {
721 bfd_set_error (bfd_error_bad_value);
722 return FALSE;
723 }
724 }
725 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
726 }
727
728 /* MARCO: Set the correct entry size for the .stab section. */
729
730 static bfd_boolean
731 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
732 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
733 asection *sec)
734 {
735 const char *name;
736
737 name = bfd_get_section_name (abfd, sec);
738
739 if (strcmp (name, ".stab") == 0)
740 {
741 /* Even in the 64bit case the stab entries are only 12 bytes long. */
742 elf_section_data (sec)->this_hdr.sh_entsize = 12;
743 }
744
745 return TRUE;
746 }
747 \f
748 /* Print a STT_REGISTER symbol to file FILE. */
749
750 static const char *
751 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
752 asymbol *symbol)
753 {
754 FILE *file = (FILE *) filep;
755 int reg, type;
756
757 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
758 != STT_REGISTER)
759 return NULL;
760
761 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
762 type = symbol->flags;
763 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
764 ((type & BSF_LOCAL)
765 ? (type & BSF_GLOBAL) ? '!' : 'l'
766 : (type & BSF_GLOBAL) ? 'g' : ' '),
767 (type & BSF_WEAK) ? 'w' : ' ');
768 if (symbol->name == NULL || symbol->name [0] == '\0')
769 return "#scratch";
770 else
771 return symbol->name;
772 }
773 \f
774 static enum elf_reloc_type_class
775 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
776 const asection *rel_sec ATTRIBUTE_UNUSED,
777 const Elf_Internal_Rela *rela)
778 {
779 switch ((int) ELF64_R_TYPE (rela->r_info))
780 {
781 case R_SPARC_RELATIVE:
782 return reloc_class_relative;
783 case R_SPARC_JMP_SLOT:
784 return reloc_class_plt;
785 case R_SPARC_COPY:
786 return reloc_class_copy;
787 default:
788 return reloc_class_normal;
789 }
790 }
791
792 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
793 standard ELF, because R_SPARC_OLO10 has secondary addend in
794 ELF64_R_TYPE_DATA field. This structure is used to redirect the
795 relocation handling routines. */
796
797 const struct elf_size_info elf64_sparc_size_info =
798 {
799 sizeof (Elf64_External_Ehdr),
800 sizeof (Elf64_External_Phdr),
801 sizeof (Elf64_External_Shdr),
802 sizeof (Elf64_External_Rel),
803 sizeof (Elf64_External_Rela),
804 sizeof (Elf64_External_Sym),
805 sizeof (Elf64_External_Dyn),
806 sizeof (Elf_External_Note),
807 4, /* hash-table entry size. */
808 /* Internal relocations per external relocations.
809 For link purposes we use just 1 internal per
810 1 external, for assembly and slurp symbol table
811 we use 2. */
812 1,
813 64, /* arch_size. */
814 3, /* log_file_align. */
815 ELFCLASS64,
816 EV_CURRENT,
817 bfd_elf64_write_out_phdrs,
818 bfd_elf64_write_shdrs_and_ehdr,
819 bfd_elf64_checksum_contents,
820 elf64_sparc_write_relocs,
821 bfd_elf64_swap_symbol_in,
822 bfd_elf64_swap_symbol_out,
823 elf64_sparc_slurp_reloc_table,
824 bfd_elf64_slurp_symbol_table,
825 bfd_elf64_swap_dyn_in,
826 bfd_elf64_swap_dyn_out,
827 bfd_elf64_swap_reloc_in,
828 bfd_elf64_swap_reloc_out,
829 bfd_elf64_swap_reloca_in,
830 bfd_elf64_swap_reloca_out
831 };
832
833 #define TARGET_BIG_SYM sparc_elf64_vec
834 #define TARGET_BIG_NAME "elf64-sparc"
835 #define ELF_ARCH bfd_arch_sparc
836 #define ELF_MAXPAGESIZE 0x100000
837 #define ELF_COMMONPAGESIZE 0x2000
838
839 /* This is the official ABI value. */
840 #define ELF_MACHINE_CODE EM_SPARCV9
841
842 /* This is the value that we used before the ABI was released. */
843 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
844
845 #define elf_backend_reloc_type_class \
846 elf64_sparc_reloc_type_class
847 #define bfd_elf64_get_reloc_upper_bound \
848 elf64_sparc_get_reloc_upper_bound
849 #define bfd_elf64_get_dynamic_reloc_upper_bound \
850 elf64_sparc_get_dynamic_reloc_upper_bound
851 #define bfd_elf64_canonicalize_reloc \
852 elf64_sparc_canonicalize_reloc
853 #define bfd_elf64_canonicalize_dynamic_reloc \
854 elf64_sparc_canonicalize_dynamic_reloc
855 #define elf_backend_add_symbol_hook \
856 elf64_sparc_add_symbol_hook
857 #define elf_backend_get_symbol_type \
858 elf64_sparc_get_symbol_type
859 #define elf_backend_symbol_processing \
860 elf64_sparc_symbol_processing
861 #define elf_backend_print_symbol_all \
862 elf64_sparc_print_symbol_all
863 #define elf_backend_output_arch_syms \
864 elf64_sparc_output_arch_syms
865 #define bfd_elf64_bfd_merge_private_bfd_data \
866 elf64_sparc_merge_private_bfd_data
867 #define elf_backend_fake_sections \
868 elf64_sparc_fake_sections
869 #define elf_backend_size_info \
870 elf64_sparc_size_info
871
872 #define elf_backend_plt_sym_val \
873 _bfd_sparc_elf_plt_sym_val
874 #define bfd_elf64_bfd_link_hash_table_create \
875 _bfd_sparc_elf_link_hash_table_create
876 #define elf_info_to_howto \
877 _bfd_sparc_elf_info_to_howto
878 #define elf_backend_copy_indirect_symbol \
879 _bfd_sparc_elf_copy_indirect_symbol
880 #define bfd_elf64_bfd_reloc_type_lookup \
881 _bfd_sparc_elf_reloc_type_lookup
882 #define bfd_elf64_bfd_reloc_name_lookup \
883 _bfd_sparc_elf_reloc_name_lookup
884 #define bfd_elf64_bfd_relax_section \
885 _bfd_sparc_elf_relax_section
886 #define bfd_elf64_new_section_hook \
887 _bfd_sparc_elf_new_section_hook
888
889 #define elf_backend_create_dynamic_sections \
890 _bfd_sparc_elf_create_dynamic_sections
891 #define elf_backend_relocs_compatible \
892 _bfd_elf_relocs_compatible
893 #define elf_backend_check_relocs \
894 _bfd_sparc_elf_check_relocs
895 #define elf_backend_adjust_dynamic_symbol \
896 _bfd_sparc_elf_adjust_dynamic_symbol
897 #define elf_backend_omit_section_dynsym \
898 _bfd_sparc_elf_omit_section_dynsym
899 #define elf_backend_size_dynamic_sections \
900 _bfd_sparc_elf_size_dynamic_sections
901 #define elf_backend_relocate_section \
902 _bfd_sparc_elf_relocate_section
903 #define elf_backend_finish_dynamic_symbol \
904 _bfd_sparc_elf_finish_dynamic_symbol
905 #define elf_backend_finish_dynamic_sections \
906 _bfd_sparc_elf_finish_dynamic_sections
907
908 #define bfd_elf64_mkobject \
909 _bfd_sparc_elf_mkobject
910 #define elf_backend_object_p \
911 _bfd_sparc_elf_object_p
912 #define elf_backend_gc_mark_hook \
913 _bfd_sparc_elf_gc_mark_hook
914 #define elf_backend_gc_sweep_hook \
915 _bfd_sparc_elf_gc_sweep_hook
916 #define elf_backend_init_index_section \
917 _bfd_elf_init_1_index_section
918
919 #define elf_backend_can_gc_sections 1
920 #define elf_backend_can_refcount 1
921 #define elf_backend_want_got_plt 0
922 #define elf_backend_plt_readonly 0
923 #define elf_backend_want_plt_sym 1
924 #define elf_backend_got_header_size 8
925 #define elf_backend_want_dynrelro 1
926 #define elf_backend_rela_normal 1
927
928 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
929 #define elf_backend_plt_alignment 8
930
931 #include "elf64-target.h"
932
933 /* FreeBSD support */
934 #undef TARGET_BIG_SYM
935 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
936 #undef TARGET_BIG_NAME
937 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
938 #undef ELF_OSABI
939 #define ELF_OSABI ELFOSABI_FREEBSD
940
941 #undef elf64_bed
942 #define elf64_bed elf64_sparc_fbsd_bed
943
944 #include "elf64-target.h"
945
946 /* Solaris 2. */
947
948 #undef TARGET_BIG_SYM
949 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
950 #undef TARGET_BIG_NAME
951 #define TARGET_BIG_NAME "elf64-sparc-sol2"
952
953 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
954 objects won't be recognized. */
955 #undef ELF_OSABI
956
957 #undef elf64_bed
958 #define elf64_bed elf64_sparc_sol2_bed
959
960 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
961 boundary. */
962 #undef elf_backend_static_tls_alignment
963 #define elf_backend_static_tls_alignment 16
964
965 #include "elf64-target.h"
This page took 0.075392 seconds and 4 git commands to generate.