1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*,
41 bfd
*, bfd_vma
*, bfd_vma
*));
42 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd
*, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma
, bfd_vma
));
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*sec
,
56 const Elf_Internal_Rela
*));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd
*, struct bfd_link_info
*));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym
*, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
65 const char **, flagword
*, asection
**, bfd_vma
*));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd
*, struct bfd_link_info
*, PTR
,
68 bfd_boolean (*) (PTR
, const char *, Elf_Internal_Sym
*, asection
*)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd
*, asymbol
*));
72 static bfd_boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd
*, bfd
*));
75 static bfd_boolean sparc64_elf_fake_sections
76 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
78 static const char *sparc64_elf_print_symbol_all
79 PARAMS ((bfd
*, PTR
, asymbol
*));
80 static bfd_boolean sparc64_elf_new_section_hook
81 PARAMS ((bfd
*, asection
*));
82 static bfd_boolean sparc64_elf_relax_section
83 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*));
84 static bfd_boolean sparc64_elf_relocate_section
85 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
86 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
87 static bfd_boolean sparc64_elf_finish_dynamic_symbol
88 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
90 static bfd_boolean sparc64_elf_finish_dynamic_sections
91 PARAMS ((bfd
*, struct bfd_link_info
*));
92 static bfd_boolean sparc64_elf_object_p
PARAMS ((bfd
*));
93 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
94 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
95 static bfd_boolean sparc64_elf_slurp_one_reloc_table
96 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, bfd_boolean
));
97 static bfd_boolean sparc64_elf_slurp_reloc_table
98 PARAMS ((bfd
*, asection
*, asymbol
**, bfd_boolean
));
99 static long sparc64_elf_canonicalize_dynamic_reloc
100 PARAMS ((bfd
*, arelent
**, asymbol
**));
101 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
102 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
103 PARAMS ((const Elf_Internal_Rela
*));
105 /* The relocation "howto" table. */
107 static bfd_reloc_status_type sparc_elf_notsup_reloc
108 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
109 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
110 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
111 static bfd_reloc_status_type sparc_elf_hix22_reloc
112 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
113 static bfd_reloc_status_type sparc_elf_lox10_reloc
114 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
116 static reloc_howto_type sparc64_elf_howto_table
[] =
118 HOWTO(R_SPARC_NONE
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", FALSE
,0,0x00000000,TRUE
),
119 HOWTO(R_SPARC_8
, 0,0, 8,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", FALSE
,0,0x000000ff,TRUE
),
120 HOWTO(R_SPARC_16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", FALSE
,0,0x0000ffff,TRUE
),
121 HOWTO(R_SPARC_32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", FALSE
,0,0xffffffff,TRUE
),
122 HOWTO(R_SPARC_DISP8
, 0,0, 8,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", FALSE
,0,0x000000ff,TRUE
),
123 HOWTO(R_SPARC_DISP16
, 0,1,16,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", FALSE
,0,0x0000ffff,TRUE
),
124 HOWTO(R_SPARC_DISP32
, 0,2,32,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", FALSE
,0,0xffffffff,TRUE
),
125 HOWTO(R_SPARC_WDISP30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", FALSE
,0,0x3fffffff,TRUE
),
126 HOWTO(R_SPARC_WDISP22
, 2,2,22,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", FALSE
,0,0x003fffff,TRUE
),
127 HOWTO(R_SPARC_HI22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", FALSE
,0,0x003fffff,TRUE
),
128 HOWTO(R_SPARC_22
, 0,2,22,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", FALSE
,0,0x003fffff,TRUE
),
129 HOWTO(R_SPARC_13
, 0,2,13,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", FALSE
,0,0x00001fff,TRUE
),
130 HOWTO(R_SPARC_LO10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", FALSE
,0,0x000003ff,TRUE
),
131 HOWTO(R_SPARC_GOT10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", FALSE
,0,0x000003ff,TRUE
),
132 HOWTO(R_SPARC_GOT13
, 0,2,13,FALSE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", FALSE
,0,0x00001fff,TRUE
),
133 HOWTO(R_SPARC_GOT22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", FALSE
,0,0x003fffff,TRUE
),
134 HOWTO(R_SPARC_PC10
, 0,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", FALSE
,0,0x000003ff,TRUE
),
135 HOWTO(R_SPARC_PC22
, 10,2,22,TRUE
, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", FALSE
,0,0x003fffff,TRUE
),
136 HOWTO(R_SPARC_WPLT30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", FALSE
,0,0x3fffffff,TRUE
),
137 HOWTO(R_SPARC_COPY
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", FALSE
,0,0x00000000,TRUE
),
138 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",FALSE
,0,0x00000000,TRUE
),
139 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",FALSE
,0,0x00000000,TRUE
),
140 HOWTO(R_SPARC_RELATIVE
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",FALSE
,0,0x00000000,TRUE
),
141 HOWTO(R_SPARC_UA32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA32", FALSE
,0,0xffffffff,TRUE
),
142 #ifndef SPARC64_OLD_RELOCS
143 HOWTO(R_SPARC_PLT32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT32", FALSE
,0,0xffffffff,TRUE
),
144 /* These aren't implemented yet. */
145 HOWTO(R_SPARC_HIPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", FALSE
,0,0x00000000,TRUE
),
146 HOWTO(R_SPARC_LOPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", FALSE
,0,0x00000000,TRUE
),
147 HOWTO(R_SPARC_PCPLT32
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", FALSE
,0,0x00000000,TRUE
),
148 HOWTO(R_SPARC_PCPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", FALSE
,0,0x00000000,TRUE
),
149 HOWTO(R_SPARC_PCPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", FALSE
,0,0x00000000,TRUE
),
151 HOWTO(R_SPARC_10
, 0,2,10,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", FALSE
,0,0x000003ff,TRUE
),
152 HOWTO(R_SPARC_11
, 0,2,11,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", FALSE
,0,0x000007ff,TRUE
),
153 HOWTO(R_SPARC_64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", FALSE
,0,MINUS_ONE
, TRUE
),
154 HOWTO(R_SPARC_OLO10
, 0,2,13,FALSE
,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", FALSE
,0,0x00001fff,TRUE
),
155 HOWTO(R_SPARC_HH22
, 42,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", FALSE
,0,0x003fffff,TRUE
),
156 HOWTO(R_SPARC_HM10
, 32,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", FALSE
,0,0x000003ff,TRUE
),
157 HOWTO(R_SPARC_LM22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", FALSE
,0,0x003fffff,TRUE
),
158 HOWTO(R_SPARC_PC_HH22
, 42,2,22,TRUE
, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", FALSE
,0,0x003fffff,TRUE
),
159 HOWTO(R_SPARC_PC_HM10
, 32,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", FALSE
,0,0x000003ff,TRUE
),
160 HOWTO(R_SPARC_PC_LM22
, 10,2,22,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", FALSE
,0,0x003fffff,TRUE
),
161 HOWTO(R_SPARC_WDISP16
, 2,2,16,TRUE
, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", FALSE
,0,0x00000000,TRUE
),
162 HOWTO(R_SPARC_WDISP19
, 2,2,19,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", FALSE
,0,0x0007ffff,TRUE
),
163 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",FALSE
,0,0x00000000,TRUE
),
164 HOWTO(R_SPARC_7
, 0,2, 7,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", FALSE
,0,0x0000007f,TRUE
),
165 HOWTO(R_SPARC_5
, 0,2, 5,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", FALSE
,0,0x0000001f,TRUE
),
166 HOWTO(R_SPARC_6
, 0,2, 6,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", FALSE
,0,0x0000003f,TRUE
),
167 HOWTO(R_SPARC_DISP64
, 0,4,64,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", FALSE
,0,MINUS_ONE
, TRUE
),
168 HOWTO(R_SPARC_PLT64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT64", FALSE
,0,MINUS_ONE
, TRUE
),
169 HOWTO(R_SPARC_HIX22
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", FALSE
,0,MINUS_ONE
, FALSE
),
170 HOWTO(R_SPARC_LOX10
, 0,4, 0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", FALSE
,0,MINUS_ONE
, FALSE
),
171 HOWTO(R_SPARC_H44
, 22,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", FALSE
,0,0x003fffff,FALSE
),
172 HOWTO(R_SPARC_M44
, 12,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", FALSE
,0,0x000003ff,FALSE
),
173 HOWTO(R_SPARC_L44
, 0,2,13,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", FALSE
,0,0x00000fff,FALSE
),
174 HOWTO(R_SPARC_REGISTER
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",FALSE
,0,MINUS_ONE
, FALSE
),
175 HOWTO(R_SPARC_UA64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", FALSE
,0,MINUS_ONE
, TRUE
),
176 HOWTO(R_SPARC_UA16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", FALSE
,0,0x0000ffff,TRUE
),
177 HOWTO(R_SPARC_TLS_GD_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_HI22",FALSE
,0,0x003fffff,TRUE
),
178 HOWTO(R_SPARC_TLS_GD_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_LO10",FALSE
,0,0x000003ff,TRUE
),
179 HOWTO(R_SPARC_TLS_GD_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_ADD",FALSE
,0,0x00000000,TRUE
),
180 HOWTO(R_SPARC_TLS_GD_CALL
,2,2,30,TRUE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_CALL",FALSE
,0,0x3fffffff,TRUE
),
181 HOWTO(R_SPARC_TLS_LDM_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_HI22",FALSE
,0,0x003fffff,TRUE
),
182 HOWTO(R_SPARC_TLS_LDM_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_LO10",FALSE
,0,0x000003ff,TRUE
),
183 HOWTO(R_SPARC_TLS_LDM_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_ADD",FALSE
,0,0x00000000,TRUE
),
184 HOWTO(R_SPARC_TLS_LDM_CALL
,2,2,30,TRUE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_CALL",FALSE
,0,0x3fffffff,TRUE
),
185 HOWTO(R_SPARC_TLS_LDO_HIX22
,0,2,0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
,"R_SPARC_TLS_LDO_HIX22",FALSE
,0,0x003fffff, FALSE
),
186 HOWTO(R_SPARC_TLS_LDO_LOX10
,0,2,0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_TLS_LDO_LOX10",FALSE
,0,0x000003ff, FALSE
),
187 HOWTO(R_SPARC_TLS_LDO_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDO_ADD",FALSE
,0,0x00000000,TRUE
),
188 HOWTO(R_SPARC_TLS_IE_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_HI22",FALSE
,0,0x003fffff,TRUE
),
189 HOWTO(R_SPARC_TLS_IE_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LO10",FALSE
,0,0x000003ff,TRUE
),
190 HOWTO(R_SPARC_TLS_IE_LD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LD",FALSE
,0,0x00000000,TRUE
),
191 HOWTO(R_SPARC_TLS_IE_LDX
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LDX",FALSE
,0,0x00000000,TRUE
),
192 HOWTO(R_SPARC_TLS_IE_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_ADD",FALSE
,0,0x00000000,TRUE
),
193 HOWTO(R_SPARC_TLS_LE_HIX22
,0,2,0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_TLS_LE_HIX22",FALSE
,0,0x003fffff, FALSE
),
194 HOWTO(R_SPARC_TLS_LE_LOX10
,0,2,0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_TLS_LE_LOX10",FALSE
,0,0x000003ff, FALSE
),
195 HOWTO(R_SPARC_TLS_DTPMOD32
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_DTPMOD32",FALSE
,0,0x00000000,TRUE
),
196 HOWTO(R_SPARC_TLS_DTPMOD64
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_DTPMOD64",FALSE
,0,0x00000000,TRUE
),
197 HOWTO(R_SPARC_TLS_DTPOFF32
,0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
,"R_SPARC_TLS_DTPOFF32",FALSE
,0,0xffffffff,TRUE
),
198 HOWTO(R_SPARC_TLS_DTPOFF64
,0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
,"R_SPARC_TLS_DTPOFF64",FALSE
,0,MINUS_ONE
,TRUE
),
199 HOWTO(R_SPARC_TLS_TPOFF32
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_TPOFF32",FALSE
,0,0x00000000,TRUE
),
200 HOWTO(R_SPARC_TLS_TPOFF64
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_TPOFF64",FALSE
,0,0x00000000,TRUE
)
203 struct elf_reloc_map
{
204 bfd_reloc_code_real_type bfd_reloc_val
;
205 unsigned char elf_reloc_val
;
208 static const struct elf_reloc_map sparc_reloc_map
[] =
210 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
211 { BFD_RELOC_16
, R_SPARC_16
, },
212 { BFD_RELOC_16_PCREL
, R_SPARC_DISP16
},
213 { BFD_RELOC_8
, R_SPARC_8
},
214 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
215 { BFD_RELOC_CTOR
, R_SPARC_64
},
216 { BFD_RELOC_32
, R_SPARC_32
},
217 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
218 { BFD_RELOC_HI22
, R_SPARC_HI22
},
219 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
220 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
221 { BFD_RELOC_64_PCREL
, R_SPARC_DISP64
},
222 { BFD_RELOC_SPARC22
, R_SPARC_22
},
223 { BFD_RELOC_SPARC13
, R_SPARC_13
},
224 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
225 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
226 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
227 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
228 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
229 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
230 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
231 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
232 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
233 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
234 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
235 { BFD_RELOC_SPARC_UA16
, R_SPARC_UA16
},
236 { BFD_RELOC_SPARC_UA32
, R_SPARC_UA32
},
237 { BFD_RELOC_SPARC_UA64
, R_SPARC_UA64
},
238 { BFD_RELOC_SPARC_10
, R_SPARC_10
},
239 { BFD_RELOC_SPARC_11
, R_SPARC_11
},
240 { BFD_RELOC_SPARC_64
, R_SPARC_64
},
241 { BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
242 { BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
243 { BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
244 { BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
245 { BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
246 { BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
247 { BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
248 { BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
249 { BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
250 { BFD_RELOC_SPARC_7
, R_SPARC_7
},
251 { BFD_RELOC_SPARC_5
, R_SPARC_5
},
252 { BFD_RELOC_SPARC_6
, R_SPARC_6
},
253 { BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
254 { BFD_RELOC_SPARC_TLS_GD_HI22
, R_SPARC_TLS_GD_HI22
},
255 { BFD_RELOC_SPARC_TLS_GD_LO10
, R_SPARC_TLS_GD_LO10
},
256 { BFD_RELOC_SPARC_TLS_GD_ADD
, R_SPARC_TLS_GD_ADD
},
257 { BFD_RELOC_SPARC_TLS_GD_CALL
, R_SPARC_TLS_GD_CALL
},
258 { BFD_RELOC_SPARC_TLS_LDM_HI22
, R_SPARC_TLS_LDM_HI22
},
259 { BFD_RELOC_SPARC_TLS_LDM_LO10
, R_SPARC_TLS_LDM_LO10
},
260 { BFD_RELOC_SPARC_TLS_LDM_ADD
, R_SPARC_TLS_LDM_ADD
},
261 { BFD_RELOC_SPARC_TLS_LDM_CALL
, R_SPARC_TLS_LDM_CALL
},
262 { BFD_RELOC_SPARC_TLS_LDO_HIX22
, R_SPARC_TLS_LDO_HIX22
},
263 { BFD_RELOC_SPARC_TLS_LDO_LOX10
, R_SPARC_TLS_LDO_LOX10
},
264 { BFD_RELOC_SPARC_TLS_LDO_ADD
, R_SPARC_TLS_LDO_ADD
},
265 { BFD_RELOC_SPARC_TLS_IE_HI22
, R_SPARC_TLS_IE_HI22
},
266 { BFD_RELOC_SPARC_TLS_IE_LO10
, R_SPARC_TLS_IE_LO10
},
267 { BFD_RELOC_SPARC_TLS_IE_LD
, R_SPARC_TLS_IE_LD
},
268 { BFD_RELOC_SPARC_TLS_IE_LDX
, R_SPARC_TLS_IE_LDX
},
269 { BFD_RELOC_SPARC_TLS_IE_ADD
, R_SPARC_TLS_IE_ADD
},
270 { BFD_RELOC_SPARC_TLS_LE_HIX22
, R_SPARC_TLS_LE_HIX22
},
271 { BFD_RELOC_SPARC_TLS_LE_LOX10
, R_SPARC_TLS_LE_LOX10
},
272 { BFD_RELOC_SPARC_TLS_DTPMOD32
, R_SPARC_TLS_DTPMOD32
},
273 { BFD_RELOC_SPARC_TLS_DTPMOD64
, R_SPARC_TLS_DTPMOD64
},
274 { BFD_RELOC_SPARC_TLS_DTPOFF32
, R_SPARC_TLS_DTPOFF32
},
275 { BFD_RELOC_SPARC_TLS_DTPOFF64
, R_SPARC_TLS_DTPOFF64
},
276 { BFD_RELOC_SPARC_TLS_TPOFF32
, R_SPARC_TLS_TPOFF32
},
277 { BFD_RELOC_SPARC_TLS_TPOFF64
, R_SPARC_TLS_TPOFF64
},
278 #ifndef SPARC64_OLD_RELOCS
279 { BFD_RELOC_SPARC_PLT32
, R_SPARC_PLT32
},
281 { BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
282 { BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
283 { BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
284 { BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
285 { BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
286 { BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
287 { BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
290 static reloc_howto_type
*
291 sparc64_elf_reloc_type_lookup (abfd
, code
)
292 bfd
*abfd ATTRIBUTE_UNUSED
;
293 bfd_reloc_code_real_type code
;
296 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
298 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
299 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
305 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
306 bfd
*abfd ATTRIBUTE_UNUSED
;
308 Elf_Internal_Rela
*dst
;
310 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
311 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
314 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
315 section can represent up to two relocs, we must tell the user to allocate
319 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
320 bfd
*abfd ATTRIBUTE_UNUSED
;
323 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
327 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
330 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
333 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
334 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
335 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
336 for the same location, R_SPARC_LO10 and R_SPARC_13. */
339 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
342 Elf_Internal_Shdr
*rel_hdr
;
346 PTR allocated
= NULL
;
347 bfd_byte
*native_relocs
;
354 allocated
= (PTR
) bfd_malloc (rel_hdr
->sh_size
);
355 if (allocated
== NULL
)
358 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
359 || bfd_bread (allocated
, rel_hdr
->sh_size
, abfd
) != rel_hdr
->sh_size
)
362 native_relocs
= (bfd_byte
*) allocated
;
364 relents
= asect
->relocation
+ asect
->reloc_count
;
366 entsize
= rel_hdr
->sh_entsize
;
367 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
369 count
= rel_hdr
->sh_size
/ entsize
;
371 for (i
= 0, relent
= relents
; i
< count
;
372 i
++, relent
++, native_relocs
+= entsize
)
374 Elf_Internal_Rela rela
;
376 bfd_elf64_swap_reloca_in (abfd
, native_relocs
, &rela
);
378 /* The address of an ELF reloc is section relative for an object
379 file, and absolute for an executable file or shared library.
380 The address of a normal BFD reloc is always section relative,
381 and the address of a dynamic reloc is absolute.. */
382 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
383 relent
->address
= rela
.r_offset
;
385 relent
->address
= rela
.r_offset
- asect
->vma
;
387 if (ELF64_R_SYM (rela
.r_info
) == 0)
388 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
393 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
396 /* Canonicalize ELF section symbols. FIXME: Why? */
397 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
398 relent
->sym_ptr_ptr
= ps
;
400 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
403 relent
->addend
= rela
.r_addend
;
405 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
406 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
408 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
409 relent
[1].address
= relent
->address
;
411 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
412 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
413 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
416 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
419 asect
->reloc_count
+= relent
- relents
;
421 if (allocated
!= NULL
)
427 if (allocated
!= NULL
)
432 /* Read in and swap the external relocs. */
435 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
441 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
442 Elf_Internal_Shdr
*rel_hdr
;
443 Elf_Internal_Shdr
*rel_hdr2
;
446 if (asect
->relocation
!= NULL
)
451 if ((asect
->flags
& SEC_RELOC
) == 0
452 || asect
->reloc_count
== 0)
455 rel_hdr
= &d
->rel_hdr
;
456 rel_hdr2
= d
->rel_hdr2
;
458 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
459 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
463 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
464 case because relocations against this section may use the
465 dynamic symbol table, and in that case bfd_section_from_shdr
466 in elf.c does not update the RELOC_COUNT. */
467 if (asect
->_raw_size
== 0)
470 rel_hdr
= &d
->this_hdr
;
471 asect
->reloc_count
= NUM_SHDR_ENTRIES (rel_hdr
);
475 amt
= asect
->reloc_count
;
476 amt
*= 2 * sizeof (arelent
);
477 asect
->relocation
= (arelent
*) bfd_alloc (abfd
, amt
);
478 if (asect
->relocation
== NULL
)
481 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
482 asect
->reloc_count
= 0;
484 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
489 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
496 /* Canonicalize the dynamic relocation entries. Note that we return
497 the dynamic relocations as a single block, although they are
498 actually associated with particular sections; the interface, which
499 was designed for SunOS style shared libraries, expects that there
500 is only one set of dynamic relocs. Any section that was actually
501 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
502 the dynamic symbol table, is considered to be a dynamic reloc
506 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
514 if (elf_dynsymtab (abfd
) == 0)
516 bfd_set_error (bfd_error_invalid_operation
);
521 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
523 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
524 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
529 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, TRUE
))
531 count
= s
->reloc_count
;
533 for (i
= 0; i
< count
; i
++)
544 /* Write out the relocs. */
547 sparc64_elf_write_relocs (abfd
, sec
, data
)
552 bfd_boolean
*failedp
= (bfd_boolean
*) data
;
553 Elf_Internal_Shdr
*rela_hdr
;
554 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
555 unsigned int idx
, count
;
556 asymbol
*last_sym
= 0;
557 int last_sym_idx
= 0;
559 /* If we have already failed, don't do anything. */
563 if ((sec
->flags
& SEC_RELOC
) == 0)
566 /* The linker backend writes the relocs out itself, and sets the
567 reloc_count field to zero to inhibit writing them here. Also,
568 sometimes the SEC_RELOC flag gets set even when there aren't any
570 if (sec
->reloc_count
== 0)
573 /* We can combine two relocs that refer to the same address
574 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
575 latter is R_SPARC_13 with no associated symbol. */
577 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
583 addr
= sec
->orelocation
[idx
]->address
;
584 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
585 && idx
< sec
->reloc_count
- 1)
587 arelent
*r
= sec
->orelocation
[idx
+ 1];
589 if (r
->howto
->type
== R_SPARC_13
590 && r
->address
== addr
591 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
592 && (*r
->sym_ptr_ptr
)->value
== 0)
597 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
599 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
600 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
601 if (rela_hdr
->contents
== NULL
)
607 /* Figure out whether the relocations are RELA or REL relocations. */
608 if (rela_hdr
->sh_type
!= SHT_RELA
)
611 /* orelocation has the data, reloc_count has the count... */
612 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
613 src_rela
= outbound_relocas
;
615 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
617 Elf_Internal_Rela dst_rela
;
622 ptr
= sec
->orelocation
[idx
];
624 /* The address of an ELF reloc is section relative for an object
625 file, and absolute for an executable file or shared library.
626 The address of a BFD reloc is always section relative. */
627 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
628 dst_rela
.r_offset
= ptr
->address
;
630 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
632 sym
= *ptr
->sym_ptr_ptr
;
635 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
640 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
649 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
650 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
651 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
657 if (ptr
->howto
->type
== R_SPARC_LO10
658 && idx
< sec
->reloc_count
- 1)
660 arelent
*r
= sec
->orelocation
[idx
+ 1];
662 if (r
->howto
->type
== R_SPARC_13
663 && r
->address
== ptr
->address
664 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
665 && (*r
->sym_ptr_ptr
)->value
== 0)
669 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
673 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
676 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
678 dst_rela
.r_addend
= ptr
->addend
;
679 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, (bfd_byte
*) src_rela
);
684 /* Sparc64 ELF linker hash table. */
686 struct sparc64_elf_app_reg
689 unsigned short shndx
;
694 struct sparc64_elf_link_hash_table
696 struct elf_link_hash_table root
;
698 struct sparc64_elf_app_reg app_regs
[4];
701 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
703 #define sparc64_elf_hash_table(p) \
704 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
706 /* Create a Sparc64 ELF linker hash table. */
708 static struct bfd_link_hash_table
*
709 sparc64_elf_bfd_link_hash_table_create (abfd
)
712 struct sparc64_elf_link_hash_table
*ret
;
713 bfd_size_type amt
= sizeof (struct sparc64_elf_link_hash_table
);
715 ret
= (struct sparc64_elf_link_hash_table
*) bfd_zmalloc (amt
);
716 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
719 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
720 _bfd_elf_link_hash_newfunc
))
726 return &ret
->root
.root
;
729 /* Utility for performing the standard initial work of an instruction
731 *PRELOCATION will contain the relocated item.
732 *PINSN will contain the instruction from the input stream.
733 If the result is `bfd_reloc_other' the caller can continue with
734 performing the relocation. Otherwise it must stop and return the
735 value to its caller. */
737 static bfd_reloc_status_type
738 init_insn_reloc (abfd
,
747 arelent
*reloc_entry
;
750 asection
*input_section
;
752 bfd_vma
*prelocation
;
756 reloc_howto_type
*howto
= reloc_entry
->howto
;
758 if (output_bfd
!= (bfd
*) NULL
759 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
760 && (! howto
->partial_inplace
761 || reloc_entry
->addend
== 0))
763 reloc_entry
->address
+= input_section
->output_offset
;
767 /* This works because partial_inplace is FALSE. */
768 if (output_bfd
!= NULL
)
769 return bfd_reloc_continue
;
771 if (reloc_entry
->address
> input_section
->_cooked_size
)
772 return bfd_reloc_outofrange
;
774 relocation
= (symbol
->value
775 + symbol
->section
->output_section
->vma
776 + symbol
->section
->output_offset
);
777 relocation
+= reloc_entry
->addend
;
778 if (howto
->pc_relative
)
780 relocation
-= (input_section
->output_section
->vma
781 + input_section
->output_offset
);
782 relocation
-= reloc_entry
->address
;
785 *prelocation
= relocation
;
786 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
787 return bfd_reloc_other
;
790 /* For unsupported relocs. */
792 static bfd_reloc_status_type
793 sparc_elf_notsup_reloc (abfd
,
800 bfd
*abfd ATTRIBUTE_UNUSED
;
801 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
802 asymbol
*symbol ATTRIBUTE_UNUSED
;
803 PTR data ATTRIBUTE_UNUSED
;
804 asection
*input_section ATTRIBUTE_UNUSED
;
805 bfd
*output_bfd ATTRIBUTE_UNUSED
;
806 char **error_message ATTRIBUTE_UNUSED
;
808 return bfd_reloc_notsupported
;
811 /* Handle the WDISP16 reloc. */
813 static bfd_reloc_status_type
814 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
815 output_bfd
, error_message
)
817 arelent
*reloc_entry
;
820 asection
*input_section
;
822 char **error_message ATTRIBUTE_UNUSED
;
826 bfd_reloc_status_type status
;
828 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
829 input_section
, output_bfd
, &relocation
, &insn
);
830 if (status
!= bfd_reloc_other
)
833 insn
&= ~ (bfd_vma
) 0x303fff;
834 insn
|= (((relocation
>> 2) & 0xc000) << 6) | ((relocation
>> 2) & 0x3fff);
835 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
837 if ((bfd_signed_vma
) relocation
< - 0x40000
838 || (bfd_signed_vma
) relocation
> 0x3ffff)
839 return bfd_reloc_overflow
;
844 /* Handle the HIX22 reloc. */
846 static bfd_reloc_status_type
847 sparc_elf_hix22_reloc (abfd
,
855 arelent
*reloc_entry
;
858 asection
*input_section
;
860 char **error_message ATTRIBUTE_UNUSED
;
864 bfd_reloc_status_type status
;
866 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
867 input_section
, output_bfd
, &relocation
, &insn
);
868 if (status
!= bfd_reloc_other
)
871 relocation
^= MINUS_ONE
;
872 insn
= (insn
&~ (bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
873 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
875 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
876 return bfd_reloc_overflow
;
881 /* Handle the LOX10 reloc. */
883 static bfd_reloc_status_type
884 sparc_elf_lox10_reloc (abfd
,
892 arelent
*reloc_entry
;
895 asection
*input_section
;
897 char **error_message ATTRIBUTE_UNUSED
;
901 bfd_reloc_status_type status
;
903 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
904 input_section
, output_bfd
, &relocation
, &insn
);
905 if (status
!= bfd_reloc_other
)
908 insn
= (insn
&~ (bfd_vma
) 0x1fff) | 0x1c00 | (relocation
& 0x3ff);
909 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
916 /* Both the headers and the entries are icache aligned. */
917 #define PLT_ENTRY_SIZE 32
918 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
919 #define LARGE_PLT_THRESHOLD 32768
920 #define GOT_RESERVED_ENTRIES 1
922 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
924 /* Fill in the .plt section. */
927 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
929 unsigned char *contents
;
932 const unsigned int nop
= 0x01000000;
935 /* The first four entries are reserved, and are initially undefined.
936 We fill them with `illtrap 0' to force ld.so to do something. */
938 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
939 bfd_put_32 (output_bfd
, (bfd_vma
) 0, contents
+i
*4);
941 /* The first 32768 entries are close enough to plt1 to get there via
942 a straight branch. */
944 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
946 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
947 unsigned int sethi
, ba
;
949 /* sethi (. - plt0), %g1 */
950 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
952 /* ba,a,pt %xcc, plt1 */
953 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
955 bfd_put_32 (output_bfd
, (bfd_vma
) sethi
, entry
);
956 bfd_put_32 (output_bfd
, (bfd_vma
) ba
, entry
+ 4);
957 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
958 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 12);
959 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 16);
960 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 20);
961 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 24);
962 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 28);
965 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
966 160: 160 entries and 160 pointers. This is to separate code from data,
967 which is much friendlier on the cache. */
969 for (; i
< nentries
; i
+= 160)
971 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
972 for (j
= 0; j
< block
; ++j
)
974 unsigned char *entry
, *ptr
;
977 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
978 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
980 /* ldx [%o7 + ptr - (entry+4)], %g1 */
981 ldx
= 0xc25be000 | ((ptr
- (entry
+4)) & 0x1fff);
989 bfd_put_32 (output_bfd
, (bfd_vma
) 0x8a10000f, entry
);
990 bfd_put_32 (output_bfd
, (bfd_vma
) 0x40000002, entry
+ 4);
991 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
992 bfd_put_32 (output_bfd
, (bfd_vma
) ldx
, entry
+ 12);
993 bfd_put_32 (output_bfd
, (bfd_vma
) 0x83c3c001, entry
+ 16);
994 bfd_put_32 (output_bfd
, (bfd_vma
) 0x9e100005, entry
+ 20);
996 bfd_put_64 (output_bfd
, (bfd_vma
) (contents
- (entry
+ 4)), ptr
);
1001 /* Return the offset of a particular plt entry within the .plt section. */
1004 sparc64_elf_plt_entry_offset (index
)
1009 if (index
< LARGE_PLT_THRESHOLD
)
1010 return index
* PLT_ENTRY_SIZE
;
1012 /* See above for details. */
1014 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
1015 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
1017 return (LARGE_PLT_THRESHOLD
+ block
* 160) * PLT_ENTRY_SIZE
+ ofs
* 6 * 4;
1021 sparc64_elf_plt_ptr_offset (index
, max
)
1025 bfd_vma block
, ofs
, last
;
1027 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
1029 /* See above for details. */
1031 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160) + LARGE_PLT_THRESHOLD
;
1032 ofs
= index
- block
;
1033 if (block
+ 160 > max
)
1034 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
1038 return (block
* PLT_ENTRY_SIZE
1043 /* Look through the relocs for a section during the first phase, and
1044 allocate space in the global offset table or procedure linkage
1048 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
1050 struct bfd_link_info
*info
;
1052 const Elf_Internal_Rela
*relocs
;
1055 Elf_Internal_Shdr
*symtab_hdr
;
1056 struct elf_link_hash_entry
**sym_hashes
;
1057 bfd_vma
*local_got_offsets
;
1058 const Elf_Internal_Rela
*rel
;
1059 const Elf_Internal_Rela
*rel_end
;
1064 if (info
->relocateable
|| !(sec
->flags
& SEC_ALLOC
))
1067 dynobj
= elf_hash_table (info
)->dynobj
;
1068 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1069 sym_hashes
= elf_sym_hashes (abfd
);
1070 local_got_offsets
= elf_local_got_offsets (abfd
);
1076 rel_end
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (sec
)->rel_hdr
);
1077 for (rel
= relocs
; rel
< rel_end
; rel
++)
1079 unsigned long r_symndx
;
1080 struct elf_link_hash_entry
*h
;
1082 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1083 if (r_symndx
< symtab_hdr
->sh_info
)
1086 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1088 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1093 /* This symbol requires a global offset table entry. */
1097 /* Create the .got section. */
1098 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1099 if (! _bfd_elf_create_got_section (dynobj
, info
))
1105 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1106 BFD_ASSERT (sgot
!= NULL
);
1109 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1111 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1112 if (srelgot
== NULL
)
1114 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1116 || ! bfd_set_section_flags (dynobj
, srelgot
,
1121 | SEC_LINKER_CREATED
1123 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1130 if (h
->got
.offset
!= (bfd_vma
) -1)
1132 /* We have already allocated space in the .got. */
1135 h
->got
.offset
= sgot
->_raw_size
;
1137 /* Make sure this symbol is output as a dynamic symbol. */
1138 if (h
->dynindx
== -1)
1140 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1144 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1148 /* This is a global offset table entry for a local
1150 if (local_got_offsets
== NULL
)
1153 register unsigned int i
;
1155 size
= symtab_hdr
->sh_info
;
1156 size
*= sizeof (bfd_vma
);
1157 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1158 if (local_got_offsets
== NULL
)
1160 elf_local_got_offsets (abfd
) = local_got_offsets
;
1161 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1162 local_got_offsets
[i
] = (bfd_vma
) -1;
1164 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1166 /* We have already allocated space in the .got. */
1169 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
1173 /* If we are generating a shared object, we need to
1174 output a R_SPARC_RELATIVE reloc so that the
1175 dynamic linker can adjust this GOT entry. */
1176 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1180 sgot
->_raw_size
+= 8;
1183 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1184 unsigned numbers. If we permit ourselves to modify
1185 code so we get sethi/xor, this could work.
1186 Question: do we consider conditionally re-enabling
1187 this for -fpic, once we know about object code models? */
1188 /* If the .got section is more than 0x1000 bytes, we add
1189 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1190 bit relocations have a greater chance of working. */
1191 if (sgot
->_raw_size
>= 0x1000
1192 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1193 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1198 case R_SPARC_WPLT30
:
1200 case R_SPARC_HIPLT22
:
1201 case R_SPARC_LOPLT10
:
1202 case R_SPARC_PCPLT32
:
1203 case R_SPARC_PCPLT22
:
1204 case R_SPARC_PCPLT10
:
1206 /* This symbol requires a procedure linkage table entry. We
1207 actually build the entry in adjust_dynamic_symbol,
1208 because this might be a case of linking PIC code without
1209 linking in any dynamic objects, in which case we don't
1210 need to generate a procedure linkage table after all. */
1214 /* It does not make sense to have a procedure linkage
1215 table entry for a local symbol. */
1216 bfd_set_error (bfd_error_bad_value
);
1220 /* Make sure this symbol is output as a dynamic symbol. */
1221 if (h
->dynindx
== -1)
1223 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1227 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1228 if (ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT32
1229 && ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT64
)
1234 case R_SPARC_PC_HH22
:
1235 case R_SPARC_PC_HM10
:
1236 case R_SPARC_PC_LM22
:
1238 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1242 case R_SPARC_DISP16
:
1243 case R_SPARC_DISP32
:
1244 case R_SPARC_DISP64
:
1245 case R_SPARC_WDISP30
:
1246 case R_SPARC_WDISP22
:
1247 case R_SPARC_WDISP19
:
1248 case R_SPARC_WDISP16
:
1277 /* When creating a shared object, we must copy these relocs
1278 into the output file. We create a reloc section in
1279 dynobj and make room for the reloc.
1281 But don't do this for debugging sections -- this shows up
1282 with DWARF2 -- first because they are not loaded, and
1283 second because DWARF sez the debug info is not to be
1284 biased by the load address. */
1285 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1291 name
= (bfd_elf_string_from_elf_section
1293 elf_elfheader (abfd
)->e_shstrndx
,
1294 elf_section_data (sec
)->rel_hdr
.sh_name
));
1298 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1299 && strcmp (bfd_get_section_name (abfd
, sec
),
1302 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1307 sreloc
= bfd_make_section (dynobj
, name
);
1308 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1309 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1310 if ((sec
->flags
& SEC_ALLOC
) != 0)
1311 flags
|= SEC_ALLOC
| SEC_LOAD
;
1313 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1314 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1317 if (sec
->flags
& SEC_READONLY
)
1318 info
->flags
|= DF_TEXTREL
;
1321 sreloc
->_raw_size
+= sizeof (Elf64_External_Rela
);
1325 case R_SPARC_REGISTER
:
1326 /* Nothing to do. */
1330 (*_bfd_error_handler
) (_("%s: check_relocs: unhandled reloc type %d"),
1331 bfd_archive_filename (abfd
),
1332 ELF64_R_TYPE_ID (rel
->r_info
));
1340 /* Hook called by the linker routine which adds symbols from an object
1341 file. We use it for STT_REGISTER symbols. */
1344 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1346 struct bfd_link_info
*info
;
1347 const Elf_Internal_Sym
*sym
;
1349 flagword
*flagsp ATTRIBUTE_UNUSED
;
1350 asection
**secp ATTRIBUTE_UNUSED
;
1351 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1353 static const char *const stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1355 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1358 struct sparc64_elf_app_reg
*p
;
1360 reg
= (int)sym
->st_value
;
1363 case 2: reg
-= 2; break;
1364 case 6: reg
-= 4; break;
1366 (*_bfd_error_handler
)
1367 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1368 bfd_archive_filename (abfd
));
1372 if (info
->hash
->creator
!= abfd
->xvec
1373 || (abfd
->flags
& DYNAMIC
) != 0)
1375 /* STT_REGISTER only works when linking an elf64_sparc object.
1376 If STT_REGISTER comes from a dynamic object, don't put it into
1377 the output bfd. The dynamic linker will recheck it. */
1382 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1384 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1386 (*_bfd_error_handler
)
1387 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1388 (int) sym
->st_value
,
1389 **namep
? *namep
: "#scratch", bfd_archive_filename (abfd
),
1390 *p
->name
? p
->name
: "#scratch", bfd_archive_filename (p
->abfd
));
1394 if (p
->name
== NULL
)
1398 struct elf_link_hash_entry
*h
;
1400 h
= (struct elf_link_hash_entry
*)
1401 bfd_link_hash_lookup (info
->hash
, *namep
, FALSE
, FALSE
, FALSE
);
1405 unsigned char type
= h
->type
;
1407 if (type
> STT_FUNC
)
1409 (*_bfd_error_handler
)
1410 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1411 *namep
, bfd_archive_filename (abfd
),
1412 stt_types
[type
], bfd_archive_filename (p
->abfd
));
1416 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1417 strlen (*namep
) + 1);
1421 strcpy (p
->name
, *namep
);
1425 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1427 p
->shndx
= sym
->st_shndx
;
1431 if (p
->bind
== STB_WEAK
1432 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1434 p
->bind
= STB_GLOBAL
;
1441 else if (*namep
&& **namep
1442 && info
->hash
->creator
== abfd
->xvec
)
1445 struct sparc64_elf_app_reg
*p
;
1447 p
= sparc64_elf_hash_table(info
)->app_regs
;
1448 for (i
= 0; i
< 4; i
++, p
++)
1449 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1451 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1453 if (type
> STT_FUNC
)
1455 (*_bfd_error_handler
)
1456 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1457 *namep
, stt_types
[type
], bfd_archive_filename (abfd
),
1458 bfd_archive_filename (p
->abfd
));
1465 /* This function takes care of emiting STT_REGISTER symbols
1466 which we cannot easily keep in the symbol hash table. */
1469 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1470 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1471 struct bfd_link_info
*info
;
1474 PARAMS ((PTR
, const char *, Elf_Internal_Sym
*, asection
*));
1477 struct sparc64_elf_app_reg
*app_regs
=
1478 sparc64_elf_hash_table(info
)->app_regs
;
1479 Elf_Internal_Sym sym
;
1481 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1482 at the end of the dynlocal list, so they came at the end of the local
1483 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1484 to back up symtab->sh_info. */
1485 if (elf_hash_table (info
)->dynlocal
)
1487 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1488 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1489 struct elf_link_local_dynamic_entry
*e
;
1491 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1492 if (e
->input_indx
== -1)
1496 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1501 if (info
->strip
== strip_all
)
1504 for (reg
= 0; reg
< 4; reg
++)
1505 if (app_regs
[reg
].name
!= NULL
)
1507 if (info
->strip
== strip_some
1508 && bfd_hash_lookup (info
->keep_hash
,
1509 app_regs
[reg
].name
,
1510 FALSE
, FALSE
) == NULL
)
1513 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1516 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1517 sym
.st_shndx
= app_regs
[reg
].shndx
;
1518 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1519 sym
.st_shndx
== SHN_ABS
1520 ? bfd_abs_section_ptr
: bfd_und_section_ptr
))
1528 sparc64_elf_get_symbol_type (elf_sym
, type
)
1529 Elf_Internal_Sym
* elf_sym
;
1532 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1533 return STT_REGISTER
;
1538 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1539 even in SHN_UNDEF section. */
1542 sparc64_elf_symbol_processing (abfd
, asym
)
1543 bfd
*abfd ATTRIBUTE_UNUSED
;
1546 elf_symbol_type
*elfsym
;
1548 elfsym
= (elf_symbol_type
*) asym
;
1549 if (elfsym
->internal_elf_sym
.st_info
1550 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1552 asym
->flags
|= BSF_GLOBAL
;
1556 /* Adjust a symbol defined by a dynamic object and referenced by a
1557 regular object. The current definition is in some section of the
1558 dynamic object, but we're not including those sections. We have to
1559 change the definition to something the rest of the link can
1563 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1564 struct bfd_link_info
*info
;
1565 struct elf_link_hash_entry
*h
;
1569 unsigned int power_of_two
;
1571 dynobj
= elf_hash_table (info
)->dynobj
;
1573 /* Make sure we know what is going on here. */
1574 BFD_ASSERT (dynobj
!= NULL
1575 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
1576 || h
->weakdef
!= NULL
1577 || ((h
->elf_link_hash_flags
1578 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1579 && (h
->elf_link_hash_flags
1580 & ELF_LINK_HASH_REF_REGULAR
) != 0
1581 && (h
->elf_link_hash_flags
1582 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
1584 /* If this is a function, put it in the procedure linkage table. We
1585 will fill in the contents of the procedure linkage table later
1586 (although we could actually do it here). The STT_NOTYPE
1587 condition is a hack specifically for the Oracle libraries
1588 delivered for Solaris; for some inexplicable reason, they define
1589 some of their functions as STT_NOTYPE when they really should be
1591 if (h
->type
== STT_FUNC
1592 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
1593 || (h
->type
== STT_NOTYPE
1594 && (h
->root
.type
== bfd_link_hash_defined
1595 || h
->root
.type
== bfd_link_hash_defweak
)
1596 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1598 if (! elf_hash_table (info
)->dynamic_sections_created
)
1600 /* This case can occur if we saw a WPLT30 reloc in an input
1601 file, but none of the input files were dynamic objects.
1602 In such a case, we don't actually need to build a
1603 procedure linkage table, and we can just do a WDISP30
1605 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
1609 s
= bfd_get_section_by_name (dynobj
, ".plt");
1610 BFD_ASSERT (s
!= NULL
);
1612 /* The first four bit in .plt is reserved. */
1613 if (s
->_raw_size
== 0)
1614 s
->_raw_size
= PLT_HEADER_SIZE
;
1616 /* To simplify matters later, just store the plt index here. */
1617 h
->plt
.offset
= s
->_raw_size
/ PLT_ENTRY_SIZE
;
1619 /* If this symbol is not defined in a regular file, and we are
1620 not generating a shared library, then set the symbol to this
1621 location in the .plt. This is required to make function
1622 pointers compare as equal between the normal executable and
1623 the shared library. */
1625 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1627 h
->root
.u
.def
.section
= s
;
1628 h
->root
.u
.def
.value
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
1631 /* Make room for this entry. */
1632 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1634 /* We also need to make an entry in the .rela.plt section. */
1636 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1637 BFD_ASSERT (s
!= NULL
);
1639 s
->_raw_size
+= sizeof (Elf64_External_Rela
);
1641 /* The procedure linkage table size is bounded by the magnitude
1642 of the offset we can describe in the entry. */
1643 if (s
->_raw_size
>= (bfd_vma
)1 << 32)
1645 bfd_set_error (bfd_error_bad_value
);
1652 /* If this is a weak symbol, and there is a real definition, the
1653 processor independent code will have arranged for us to see the
1654 real definition first, and we can just use the same value. */
1655 if (h
->weakdef
!= NULL
)
1657 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1658 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1659 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1660 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1664 /* This is a reference to a symbol defined by a dynamic object which
1665 is not a function. */
1667 /* If we are creating a shared library, we must presume that the
1668 only references to the symbol are via the global offset table.
1669 For such cases we need not do anything here; the relocations will
1670 be handled correctly by relocate_section. */
1674 /* We must allocate the symbol in our .dynbss section, which will
1675 become part of the .bss section of the executable. There will be
1676 an entry for this symbol in the .dynsym section. The dynamic
1677 object will contain position independent code, so all references
1678 from the dynamic object to this symbol will go through the global
1679 offset table. The dynamic linker will use the .dynsym entry to
1680 determine the address it must put in the global offset table, so
1681 both the dynamic object and the regular object will refer to the
1682 same memory location for the variable. */
1684 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1685 BFD_ASSERT (s
!= NULL
);
1687 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1688 to copy the initial value out of the dynamic object and into the
1689 runtime process image. We need to remember the offset into the
1690 .rel.bss section we are going to use. */
1691 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1695 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1696 BFD_ASSERT (srel
!= NULL
);
1697 srel
->_raw_size
+= sizeof (Elf64_External_Rela
);
1698 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1701 /* We need to figure out the alignment required for this symbol. I
1702 have no idea how ELF linkers handle this. 16-bytes is the size
1703 of the largest type that requires hard alignment -- long double. */
1704 power_of_two
= bfd_log2 (h
->size
);
1705 if (power_of_two
> 4)
1708 /* Apply the required alignment. */
1709 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1710 (bfd_size_type
) (1 << power_of_two
));
1711 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1713 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1717 /* Define the symbol as being at this point in the section. */
1718 h
->root
.u
.def
.section
= s
;
1719 h
->root
.u
.def
.value
= s
->_raw_size
;
1721 /* Increment the section size to make room for the symbol. */
1722 s
->_raw_size
+= h
->size
;
1727 /* Set the sizes of the dynamic sections. */
1730 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1732 struct bfd_link_info
*info
;
1738 dynobj
= elf_hash_table (info
)->dynobj
;
1739 BFD_ASSERT (dynobj
!= NULL
);
1741 if (elf_hash_table (info
)->dynamic_sections_created
)
1743 /* Set the contents of the .interp section to the interpreter. */
1746 s
= bfd_get_section_by_name (dynobj
, ".interp");
1747 BFD_ASSERT (s
!= NULL
);
1748 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1749 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1754 /* We may have created entries in the .rela.got section.
1755 However, if we are not creating the dynamic sections, we will
1756 not actually use these entries. Reset the size of .rela.got,
1757 which will cause it to get stripped from the output file
1759 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1764 /* The check_relocs and adjust_dynamic_symbol entry points have
1765 determined the sizes of the various dynamic sections. Allocate
1768 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1773 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1776 /* It's OK to base decisions on the section name, because none
1777 of the dynobj section names depend upon the input files. */
1778 name
= bfd_get_section_name (dynobj
, s
);
1782 if (strncmp (name
, ".rela", 5) == 0)
1784 if (s
->_raw_size
== 0)
1786 /* If we don't need this section, strip it from the
1787 output file. This is to handle .rela.bss and
1788 .rel.plt. We must create it in
1789 create_dynamic_sections, because it must be created
1790 before the linker maps input sections to output
1791 sections. The linker does that before
1792 adjust_dynamic_symbol is called, and it is that
1793 function which decides whether anything needs to go
1794 into these sections. */
1799 if (strcmp (name
, ".rela.plt") == 0)
1802 /* We use the reloc_count field as a counter if we need
1803 to copy relocs into the output file. */
1807 else if (strcmp (name
, ".plt") != 0
1808 && strncmp (name
, ".got", 4) != 0)
1810 /* It's not one of our sections, so don't allocate space. */
1816 _bfd_strip_section_from_output (info
, s
);
1820 /* Allocate memory for the section contents. Zero the memory
1821 for the benefit of .rela.plt, which has 4 unused entries
1822 at the beginning, and we don't want garbage. */
1823 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1824 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1828 if (elf_hash_table (info
)->dynamic_sections_created
)
1830 /* Add some entries to the .dynamic section. We fill in the
1831 values later, in sparc64_elf_finish_dynamic_sections, but we
1832 must add the entries now so that we get the correct size for
1833 the .dynamic section. The DT_DEBUG entry is filled in by the
1834 dynamic linker and used by the debugger. */
1835 #define add_dynamic_entry(TAG, VAL) \
1836 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1839 struct sparc64_elf_app_reg
* app_regs
;
1840 struct elf_strtab_hash
*dynstr
;
1841 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1845 if (!add_dynamic_entry (DT_DEBUG
, 0))
1851 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1852 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1853 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1854 || !add_dynamic_entry (DT_JMPREL
, 0))
1858 if (!add_dynamic_entry (DT_RELA
, 0)
1859 || !add_dynamic_entry (DT_RELASZ
, 0)
1860 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1863 if (info
->flags
& DF_TEXTREL
)
1865 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1869 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1870 entries if needed. */
1871 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1872 dynstr
= eht
->dynstr
;
1874 for (reg
= 0; reg
< 4; reg
++)
1875 if (app_regs
[reg
].name
!= NULL
)
1877 struct elf_link_local_dynamic_entry
*entry
, *e
;
1879 if (!add_dynamic_entry (DT_SPARC_REGISTER
, 0))
1882 entry
= (struct elf_link_local_dynamic_entry
*)
1883 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1887 /* We cheat here a little bit: the symbol will not be local, so we
1888 put it at the end of the dynlocal linked list. We will fix it
1889 later on, as we have to fix other fields anyway. */
1890 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1891 entry
->isym
.st_size
= 0;
1892 if (*app_regs
[reg
].name
!= '\0')
1894 = _bfd_elf_strtab_add (dynstr
, app_regs
[reg
].name
, FALSE
);
1896 entry
->isym
.st_name
= 0;
1897 entry
->isym
.st_other
= 0;
1898 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1900 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1902 entry
->input_bfd
= output_bfd
;
1903 entry
->input_indx
= -1;
1905 if (eht
->dynlocal
== NULL
)
1906 eht
->dynlocal
= entry
;
1909 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1916 #undef add_dynamic_entry
1921 struct sparc64_elf_section_data
1923 struct bfd_elf_section_data elf
;
1924 unsigned int do_relax
;
1927 #define sec_do_relax(sec) \
1928 ((struct sparc64_elf_section_data *) (sec)->used_by_bfd)->do_relax
1931 sparc64_elf_new_section_hook (abfd
, sec
)
1935 struct sparc64_elf_section_data
*sdata
;
1936 bfd_size_type amt
= sizeof (*sdata
);
1938 sdata
= (struct sparc64_elf_section_data
*) bfd_zalloc (abfd
, amt
);
1941 sec
->used_by_bfd
= (PTR
) sdata
;
1943 return _bfd_elf_new_section_hook (abfd
, sec
);
1947 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1948 bfd
*abfd ATTRIBUTE_UNUSED
;
1949 asection
*section ATTRIBUTE_UNUSED
;
1950 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1954 sec_do_relax (section
) = 1;
1958 /* This is the condition under which finish_dynamic_symbol will be called
1959 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1960 routine, we'll need to do something about initializing any .plt and
1961 .got entries in relocate_section. */
1962 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1964 && ((INFO)->shared \
1965 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1966 && ((H)->dynindx != -1 \
1967 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1969 /* Relocate a SPARC64 ELF section. */
1972 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1973 contents
, relocs
, local_syms
, local_sections
)
1975 struct bfd_link_info
*info
;
1977 asection
*input_section
;
1979 Elf_Internal_Rela
*relocs
;
1980 Elf_Internal_Sym
*local_syms
;
1981 asection
**local_sections
;
1984 Elf_Internal_Shdr
*symtab_hdr
;
1985 struct elf_link_hash_entry
**sym_hashes
;
1986 bfd_vma
*local_got_offsets
;
1991 Elf_Internal_Rela
*rel
;
1992 Elf_Internal_Rela
*relend
;
1994 if (info
->relocateable
)
1997 dynobj
= elf_hash_table (info
)->dynobj
;
1998 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1999 sym_hashes
= elf_sym_hashes (input_bfd
);
2000 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2002 if (elf_hash_table(info
)->hgot
== NULL
)
2005 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
2007 sgot
= splt
= sreloc
= NULL
;
2010 relend
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (input_section
)->rel_hdr
);
2011 for (; rel
< relend
; rel
++)
2014 reloc_howto_type
*howto
;
2015 unsigned long r_symndx
;
2016 struct elf_link_hash_entry
*h
;
2017 Elf_Internal_Sym
*sym
;
2019 bfd_vma relocation
, off
;
2020 bfd_reloc_status_type r
;
2021 bfd_boolean is_plt
= FALSE
;
2022 bfd_boolean unresolved_reloc
;
2024 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
2025 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
2027 bfd_set_error (bfd_error_bad_value
);
2030 howto
= sparc64_elf_howto_table
+ r_type
;
2032 /* This is a final link. */
2033 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2037 unresolved_reloc
= FALSE
;
2038 if (r_symndx
< symtab_hdr
->sh_info
)
2040 sym
= local_syms
+ r_symndx
;
2041 sec
= local_sections
[r_symndx
];
2042 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, sec
, rel
);
2046 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2047 while (h
->root
.type
== bfd_link_hash_indirect
2048 || h
->root
.type
== bfd_link_hash_warning
)
2049 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2052 if (h
->root
.type
== bfd_link_hash_defined
2053 || h
->root
.type
== bfd_link_hash_defweak
)
2055 sec
= h
->root
.u
.def
.section
;
2056 if (sec
->output_section
== NULL
)
2057 /* Set a flag that will be cleared later if we find a
2058 relocation value for this symbol. output_section
2059 is typically NULL for symbols satisfied by a shared
2061 unresolved_reloc
= TRUE
;
2063 relocation
= (h
->root
.u
.def
.value
2064 + sec
->output_section
->vma
2065 + sec
->output_offset
);
2067 else if (h
->root
.type
== bfd_link_hash_undefweak
)
2069 else if (info
->shared
2070 && (!info
->symbolic
|| info
->allow_shlib_undefined
)
2071 && !info
->no_undefined
2072 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2076 if (! ((*info
->callbacks
->undefined_symbol
)
2077 (info
, h
->root
.root
.string
, input_bfd
,
2078 input_section
, rel
->r_offset
,
2079 (!info
->shared
|| info
->no_undefined
2080 || ELF_ST_VISIBILITY (h
->other
)))))
2083 /* To avoid generating warning messages about truncated
2084 relocations, set the relocation's address to be the same as
2085 the start of this section. */
2087 if (input_section
->output_section
!= NULL
)
2088 relocation
= input_section
->output_section
->vma
;
2095 /* When generating a shared object, these relocations are copied
2096 into the output file to be resolved at run time. */
2097 if (info
->shared
&& r_symndx
!= 0 && (input_section
->flags
& SEC_ALLOC
))
2103 case R_SPARC_PC_HH22
:
2104 case R_SPARC_PC_HM10
:
2105 case R_SPARC_PC_LM22
:
2107 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2111 case R_SPARC_DISP16
:
2112 case R_SPARC_DISP32
:
2113 case R_SPARC_DISP64
:
2114 case R_SPARC_WDISP30
:
2115 case R_SPARC_WDISP22
:
2116 case R_SPARC_WDISP19
:
2117 case R_SPARC_WDISP16
:
2147 Elf_Internal_Rela outrel
;
2149 bfd_boolean skip
, relocate
;
2154 (bfd_elf_string_from_elf_section
2156 elf_elfheader (input_bfd
)->e_shstrndx
,
2157 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2162 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2163 && strcmp (bfd_get_section_name(input_bfd
,
2167 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2168 BFD_ASSERT (sreloc
!= NULL
);
2175 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2177 if (outrel
.r_offset
== (bfd_vma
) -1)
2179 else if (outrel
.r_offset
== (bfd_vma
) -2)
2180 skip
= TRUE
, relocate
= TRUE
;
2182 outrel
.r_offset
+= (input_section
->output_section
->vma
2183 + input_section
->output_offset
);
2185 /* Optimize unaligned reloc usage now that we know where
2186 it finally resides. */
2190 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2193 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2196 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2199 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2202 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2205 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2208 case R_SPARC_DISP16
:
2209 case R_SPARC_DISP32
:
2210 case R_SPARC_DISP64
:
2211 /* If the symbol is not dynamic, we should not keep
2212 a dynamic relocation. But an .rela.* slot has been
2213 allocated for it, output R_SPARC_NONE.
2214 FIXME: Add code tracking needed dynamic relocs as
2216 if (h
->dynindx
== -1)
2217 skip
= TRUE
, relocate
= TRUE
;
2222 memset (&outrel
, 0, sizeof outrel
);
2223 /* h->dynindx may be -1 if the symbol was marked to
2225 else if (h
!= NULL
&& ! is_plt
2226 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2227 || (h
->elf_link_hash_flags
2228 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2230 BFD_ASSERT (h
->dynindx
!= -1);
2232 = ELF64_R_INFO (h
->dynindx
,
2234 ELF64_R_TYPE_DATA (rel
->r_info
),
2236 outrel
.r_addend
= rel
->r_addend
;
2240 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2241 if (r_type
== R_SPARC_64
)
2242 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2250 sec
= local_sections
[r_symndx
];
2253 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2255 == bfd_link_hash_defweak
));
2256 sec
= h
->root
.u
.def
.section
;
2258 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
2260 else if (sec
== NULL
|| sec
->owner
== NULL
)
2262 bfd_set_error (bfd_error_bad_value
);
2269 osec
= sec
->output_section
;
2270 indx
= elf_section_data (osec
)->dynindx
;
2272 /* We are turning this relocation into one
2273 against a section symbol, so subtract out
2274 the output section's address but not the
2275 offset of the input section in the output
2277 outrel
.r_addend
-= osec
->vma
;
2279 /* FIXME: we really should be able to link non-pic
2280 shared libraries. */
2284 (*_bfd_error_handler
)
2285 (_("%s: probably compiled without -fPIC?"),
2286 bfd_archive_filename (input_bfd
));
2287 bfd_set_error (bfd_error_bad_value
);
2293 = ELF64_R_INFO (indx
,
2295 ELF64_R_TYPE_DATA (rel
->r_info
),
2300 loc
= sreloc
->contents
;
2301 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2302 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2304 /* This reloc will be computed at runtime, so there's no
2305 need to do anything now. */
2318 /* Relocation is to the entry for this symbol in the global
2322 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2323 BFD_ASSERT (sgot
!= NULL
);
2330 off
= h
->got
.offset
;
2331 BFD_ASSERT (off
!= (bfd_vma
) -1);
2332 dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2334 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
, h
)
2338 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
))
2339 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
2341 /* This is actually a static link, or it is a -Bsymbolic
2342 link and the symbol is defined locally, or the symbol
2343 was forced to be local because of a version file. We
2344 must initialize this entry in the global offset table.
2345 Since the offset must always be a multiple of 8, we
2346 use the least significant bit to record whether we
2347 have initialized it already.
2349 When doing a dynamic link, we create a .rela.got
2350 relocation entry to initialize the value. This is
2351 done in the finish_dynamic_symbol routine. */
2357 bfd_put_64 (output_bfd
, relocation
,
2358 sgot
->contents
+ off
);
2363 unresolved_reloc
= FALSE
;
2367 BFD_ASSERT (local_got_offsets
!= NULL
);
2368 off
= local_got_offsets
[r_symndx
];
2369 BFD_ASSERT (off
!= (bfd_vma
) -1);
2371 /* The offset must always be a multiple of 8. We use
2372 the least significant bit to record whether we have
2373 already processed this entry. */
2378 local_got_offsets
[r_symndx
] |= 1;
2383 Elf_Internal_Rela outrel
;
2386 /* The Solaris 2.7 64-bit linker adds the contents
2387 of the location to the value of the reloc.
2388 Note this is different behaviour to the
2389 32-bit linker, which both adds the contents
2390 and ignores the addend. So clear the location. */
2391 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2392 sgot
->contents
+ off
);
2394 /* We need to generate a R_SPARC_RELATIVE reloc
2395 for the dynamic linker. */
2396 s
= bfd_get_section_by_name(dynobj
, ".rela.got");
2397 BFD_ASSERT (s
!= NULL
);
2399 outrel
.r_offset
= (sgot
->output_section
->vma
2400 + sgot
->output_offset
2402 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2403 outrel
.r_addend
= relocation
;
2405 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2406 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2409 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2412 relocation
= sgot
->output_offset
+ off
- got_base
;
2415 case R_SPARC_WPLT30
:
2417 case R_SPARC_HIPLT22
:
2418 case R_SPARC_LOPLT10
:
2419 case R_SPARC_PCPLT32
:
2420 case R_SPARC_PCPLT22
:
2421 case R_SPARC_PCPLT10
:
2423 /* Relocation is to the entry for this symbol in the
2424 procedure linkage table. */
2425 BFD_ASSERT (h
!= NULL
);
2427 if (h
->plt
.offset
== (bfd_vma
) -1)
2429 /* We didn't make a PLT entry for this symbol. This
2430 happens when statically linking PIC code, or when
2431 using -Bsymbolic. */
2437 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2438 BFD_ASSERT (splt
!= NULL
);
2441 relocation
= (splt
->output_section
->vma
2442 + splt
->output_offset
2443 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2444 unresolved_reloc
= FALSE
;
2445 if (r_type
== R_SPARC_WPLT30
)
2447 if (r_type
== R_SPARC_PLT32
|| r_type
== R_SPARC_PLT64
)
2449 r_type
= r_type
== R_SPARC_PLT32
? R_SPARC_32
: R_SPARC_64
;
2459 relocation
+= rel
->r_addend
;
2460 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2462 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2463 x
= (x
& ~(bfd_vma
) 0x1fff) | (relocation
& 0x1fff);
2464 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2466 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2467 howto
->bitsize
, howto
->rightshift
,
2468 bfd_arch_bits_per_address (input_bfd
),
2473 case R_SPARC_WDISP16
:
2477 relocation
+= rel
->r_addend
;
2478 /* Adjust for pc-relative-ness. */
2479 relocation
-= (input_section
->output_section
->vma
2480 + input_section
->output_offset
);
2481 relocation
-= rel
->r_offset
;
2483 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2484 x
&= ~(bfd_vma
) 0x303fff;
2485 x
|= ((((relocation
>> 2) & 0xc000) << 6)
2486 | ((relocation
>> 2) & 0x3fff));
2487 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2489 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2490 howto
->bitsize
, howto
->rightshift
,
2491 bfd_arch_bits_per_address (input_bfd
),
2500 relocation
+= rel
->r_addend
;
2501 relocation
= relocation
^ MINUS_ONE
;
2503 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2504 x
= (x
& ~(bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2505 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2507 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2508 howto
->bitsize
, howto
->rightshift
,
2509 bfd_arch_bits_per_address (input_bfd
),
2518 relocation
+= rel
->r_addend
;
2519 relocation
= (relocation
& 0x3ff) | 0x1c00;
2521 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2522 x
= (x
& ~(bfd_vma
) 0x1fff) | relocation
;
2523 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2529 case R_SPARC_WDISP30
:
2531 if (sec_do_relax (input_section
)
2532 && rel
->r_offset
+ 4 < input_section
->_raw_size
)
2536 #define XCC (2 << 20)
2537 #define COND(x) (((x)&0xf)<<25)
2538 #define CONDA COND(0x8)
2539 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2540 #define INSN_BA (F2(0,2) | CONDA)
2541 #define INSN_OR F3(2, 0x2, 0)
2542 #define INSN_NOP F2(0,4)
2546 /* If the instruction is a call with either:
2548 arithmetic instruction with rd == %o7
2549 where rs1 != %o7 and rs2 if it is register != %o7
2550 then we can optimize if the call destination is near
2551 by changing the call into a branch always. */
2552 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2553 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2554 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2556 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2557 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2558 && (y
& RD(~0)) == RD(O7
)))
2559 && (y
& RS1(~0)) != RS1(O7
)
2561 || (y
& RS2(~0)) != RS2(O7
)))
2565 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2566 reloc
-= (input_section
->output_section
->vma
2567 + input_section
->output_offset
);
2571 /* Ensure the branch fits into simm22. */
2572 if ((reloc
& ~(bfd_vma
)0x7fffff)
2573 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2577 /* Check whether it fits into simm19. */
2578 if ((reloc
& 0x3c0000) == 0
2579 || (reloc
& 0x3c0000) == 0x3c0000)
2580 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2582 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2583 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2585 if (rel
->r_offset
>= 4
2586 && (y
& (0xffffffff ^ RS1(~0)))
2587 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2592 z
= bfd_get_32 (input_bfd
,
2593 contents
+ rel
->r_offset
- 4);
2594 if ((z
& (0xffffffff ^ RD(~0)))
2595 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2603 If call foo was replaced with ba, replace
2604 or %rN, %g0, %o7 with nop. */
2606 reg
= (y
& RS1(~0)) >> 14;
2607 if (reg
!= ((z
& RD(~0)) >> 25)
2608 || reg
== G0
|| reg
== O7
)
2611 bfd_put_32 (input_bfd
, (bfd_vma
) INSN_NOP
,
2612 contents
+ rel
->r_offset
+ 4);
2622 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2623 contents
, rel
->r_offset
,
2624 relocation
, rel
->r_addend
);
2628 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2629 because such sections are not SEC_ALLOC and thus ld.so will
2630 not process them. */
2631 if (unresolved_reloc
2632 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2633 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0))
2634 (*_bfd_error_handler
)
2635 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2636 bfd_archive_filename (input_bfd
),
2637 bfd_get_section_name (input_bfd
, input_section
),
2638 (long) rel
->r_offset
,
2639 h
->root
.root
.string
);
2647 case bfd_reloc_outofrange
:
2650 case bfd_reloc_overflow
:
2654 /* The Solaris native linker silently disregards
2655 overflows. We don't, but this breaks stabs debugging
2656 info, whose relocations are only 32-bits wide. Ignore
2657 overflows for discarded entries. */
2658 if (r_type
== R_SPARC_32
2659 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2660 rel
->r_offset
) == (bfd_vma
) -1)
2665 if (h
->root
.type
== bfd_link_hash_undefweak
2666 && howto
->pc_relative
)
2668 /* Assume this is a call protected by other code that
2669 detect the symbol is undefined. If this is the case,
2670 we can safely ignore the overflow. If not, the
2671 program is hosed anyway, and a little warning isn't
2676 name
= h
->root
.root
.string
;
2680 name
= (bfd_elf_string_from_elf_section
2682 symtab_hdr
->sh_link
,
2687 name
= bfd_section_name (input_bfd
, sec
);
2689 if (! ((*info
->callbacks
->reloc_overflow
)
2690 (info
, name
, howto
->name
, (bfd_vma
) 0,
2691 input_bfd
, input_section
, rel
->r_offset
)))
2701 /* Finish up dynamic symbol handling. We set the contents of various
2702 dynamic sections here. */
2705 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2707 struct bfd_link_info
*info
;
2708 struct elf_link_hash_entry
*h
;
2709 Elf_Internal_Sym
*sym
;
2713 dynobj
= elf_hash_table (info
)->dynobj
;
2715 if (h
->plt
.offset
!= (bfd_vma
) -1)
2719 Elf_Internal_Rela rela
;
2722 /* This symbol has an entry in the PLT. Set it up. */
2724 BFD_ASSERT (h
->dynindx
!= -1);
2726 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2727 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2728 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2730 /* Fill in the entry in the .rela.plt section. */
2732 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2734 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2739 bfd_vma max
= splt
->_raw_size
/ PLT_ENTRY_SIZE
;
2740 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2741 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2742 -(splt
->output_section
->vma
+ splt
->output_offset
);
2744 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2745 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2747 /* Adjust for the first 4 reserved elements in the .plt section
2748 when setting the offset in the .rela.plt section.
2749 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2750 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2752 loc
= srela
->contents
;
2753 loc
+= (h
->plt
.offset
- 4) * sizeof (Elf64_External_Rela
);
2754 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2756 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2758 /* Mark the symbol as undefined, rather than as defined in
2759 the .plt section. Leave the value alone. */
2760 sym
->st_shndx
= SHN_UNDEF
;
2761 /* If the symbol is weak, we do need to clear the value.
2762 Otherwise, the PLT entry would provide a definition for
2763 the symbol even if the symbol wasn't defined anywhere,
2764 and so the symbol would never be NULL. */
2765 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
)
2771 if (h
->got
.offset
!= (bfd_vma
) -1)
2775 Elf_Internal_Rela rela
;
2778 /* This symbol has an entry in the GOT. Set it up. */
2780 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2781 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2782 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2784 rela
.r_offset
= (sgot
->output_section
->vma
2785 + sgot
->output_offset
2786 + (h
->got
.offset
&~ (bfd_vma
) 1));
2788 /* If this is a -Bsymbolic link, and the symbol is defined
2789 locally, we just want to emit a RELATIVE reloc. Likewise if
2790 the symbol was forced to be local because of a version file.
2791 The entry in the global offset table will already have been
2792 initialized in the relocate_section function. */
2794 && (info
->symbolic
|| h
->dynindx
== -1)
2795 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2797 asection
*sec
= h
->root
.u
.def
.section
;
2798 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2799 rela
.r_addend
= (h
->root
.u
.def
.value
2800 + sec
->output_section
->vma
2801 + sec
->output_offset
);
2805 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2809 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2810 sgot
->contents
+ (h
->got
.offset
&~ (bfd_vma
) 1));
2811 loc
= srela
->contents
;
2812 loc
+= srela
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2813 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2816 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2819 Elf_Internal_Rela rela
;
2822 /* This symbols needs a copy reloc. Set it up. */
2824 BFD_ASSERT (h
->dynindx
!= -1);
2826 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2828 BFD_ASSERT (s
!= NULL
);
2830 rela
.r_offset
= (h
->root
.u
.def
.value
2831 + h
->root
.u
.def
.section
->output_section
->vma
2832 + h
->root
.u
.def
.section
->output_offset
);
2833 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2835 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2836 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2839 /* Mark some specially defined symbols as absolute. */
2840 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2841 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2842 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2843 sym
->st_shndx
= SHN_ABS
;
2848 /* Finish up the dynamic sections. */
2851 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2853 struct bfd_link_info
*info
;
2856 int stt_regidx
= -1;
2860 dynobj
= elf_hash_table (info
)->dynobj
;
2862 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2864 if (elf_hash_table (info
)->dynamic_sections_created
)
2867 Elf64_External_Dyn
*dyncon
, *dynconend
;
2869 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2870 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2872 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2873 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2874 for (; dyncon
< dynconend
; dyncon
++)
2876 Elf_Internal_Dyn dyn
;
2880 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2884 case DT_PLTGOT
: name
= ".plt"; size
= FALSE
; break;
2885 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= TRUE
; break;
2886 case DT_JMPREL
: name
= ".rela.plt"; size
= FALSE
; break;
2887 case DT_SPARC_REGISTER
:
2888 if (stt_regidx
== -1)
2891 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2892 if (stt_regidx
== -1)
2895 dyn
.d_un
.d_val
= stt_regidx
++;
2896 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2898 default: name
= NULL
; size
= FALSE
; break;
2905 s
= bfd_get_section_by_name (output_bfd
, name
);
2911 dyn
.d_un
.d_ptr
= s
->vma
;
2914 if (s
->_cooked_size
!= 0)
2915 dyn
.d_un
.d_val
= s
->_cooked_size
;
2917 dyn
.d_un
.d_val
= s
->_raw_size
;
2920 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2924 /* Initialize the contents of the .plt section. */
2925 if (splt
->_raw_size
> 0)
2927 sparc64_elf_build_plt (output_bfd
, splt
->contents
,
2928 (int) (splt
->_raw_size
/ PLT_ENTRY_SIZE
));
2931 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2935 /* Set the first entry in the global offset table to the address of
2936 the dynamic section. */
2937 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2938 BFD_ASSERT (sgot
!= NULL
);
2939 if (sgot
->_raw_size
> 0)
2942 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2944 bfd_put_64 (output_bfd
,
2945 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2949 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2954 static enum elf_reloc_type_class
2955 sparc64_elf_reloc_type_class (rela
)
2956 const Elf_Internal_Rela
*rela
;
2958 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2960 case R_SPARC_RELATIVE
:
2961 return reloc_class_relative
;
2962 case R_SPARC_JMP_SLOT
:
2963 return reloc_class_plt
;
2965 return reloc_class_copy
;
2967 return reloc_class_normal
;
2971 /* Functions for dealing with the e_flags field. */
2973 /* Merge backend specific data from an object file to the output
2974 object file when linking. */
2977 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2982 flagword new_flags
, old_flags
;
2985 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2986 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2989 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2990 old_flags
= elf_elfheader (obfd
)->e_flags
;
2992 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2994 elf_flags_init (obfd
) = TRUE
;
2995 elf_elfheader (obfd
)->e_flags
= new_flags
;
2998 else if (new_flags
== old_flags
) /* Compatible flags are ok */
3001 else /* Incompatible flags */
3005 #define EF_SPARC_ISA_EXTENSIONS \
3006 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
3008 if ((ibfd
->flags
& DYNAMIC
) != 0)
3010 /* We don't want dynamic objects memory ordering and
3011 architecture to have any role. That's what dynamic linker
3013 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
3014 new_flags
|= (old_flags
3015 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
3019 /* Choose the highest architecture requirements. */
3020 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
3021 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
3022 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
3023 && (old_flags
& EF_SPARC_HAL_R1
))
3026 (*_bfd_error_handler
)
3027 (_("%s: linking UltraSPARC specific with HAL specific code"),
3028 bfd_archive_filename (ibfd
));
3030 /* Choose the most restrictive memory ordering. */
3031 old_mm
= (old_flags
& EF_SPARCV9_MM
);
3032 new_mm
= (new_flags
& EF_SPARCV9_MM
);
3033 old_flags
&= ~EF_SPARCV9_MM
;
3034 new_flags
&= ~EF_SPARCV9_MM
;
3035 if (new_mm
< old_mm
)
3037 old_flags
|= old_mm
;
3038 new_flags
|= old_mm
;
3041 /* Warn about any other mismatches */
3042 if (new_flags
!= old_flags
)
3045 (*_bfd_error_handler
)
3046 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3047 bfd_archive_filename (ibfd
), (long) new_flags
, (long) old_flags
);
3050 elf_elfheader (obfd
)->e_flags
= old_flags
;
3054 bfd_set_error (bfd_error_bad_value
);
3061 /* MARCO: Set the correct entry size for the .stab section. */
3064 sparc64_elf_fake_sections (abfd
, hdr
, sec
)
3065 bfd
*abfd ATTRIBUTE_UNUSED
;
3066 Elf_Internal_Shdr
*hdr ATTRIBUTE_UNUSED
;
3071 name
= bfd_get_section_name (abfd
, sec
);
3073 if (strcmp (name
, ".stab") == 0)
3075 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3076 elf_section_data (sec
)->this_hdr
.sh_entsize
= 12;
3082 /* Print a STT_REGISTER symbol to file FILE. */
3085 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
3086 bfd
*abfd ATTRIBUTE_UNUSED
;
3090 FILE *file
= (FILE *) filep
;
3093 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
3097 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3098 type
= symbol
->flags
;
3099 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3101 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3102 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3103 (type
& BSF_WEAK
) ? 'w' : ' ');
3104 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3107 return symbol
->name
;
3110 /* Set the right machine number for a SPARC64 ELF file. */
3113 sparc64_elf_object_p (abfd
)
3116 unsigned long mach
= bfd_mach_sparc_v9
;
3118 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3119 mach
= bfd_mach_sparc_v9b
;
3120 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3121 mach
= bfd_mach_sparc_v9a
;
3122 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3125 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3126 standard ELF, because R_SPARC_OLO10 has secondary addend in
3127 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3128 relocation handling routines. */
3130 const struct elf_size_info sparc64_elf_size_info
=
3132 sizeof (Elf64_External_Ehdr
),
3133 sizeof (Elf64_External_Phdr
),
3134 sizeof (Elf64_External_Shdr
),
3135 sizeof (Elf64_External_Rel
),
3136 sizeof (Elf64_External_Rela
),
3137 sizeof (Elf64_External_Sym
),
3138 sizeof (Elf64_External_Dyn
),
3139 sizeof (Elf_External_Note
),
3140 4, /* hash-table entry size */
3141 /* internal relocations per external relocations.
3142 For link purposes we use just 1 internal per
3143 1 external, for assembly and slurp symbol table
3150 bfd_elf64_write_out_phdrs
,
3151 bfd_elf64_write_shdrs_and_ehdr
,
3152 sparc64_elf_write_relocs
,
3153 bfd_elf64_swap_symbol_in
,
3154 bfd_elf64_swap_symbol_out
,
3155 sparc64_elf_slurp_reloc_table
,
3156 bfd_elf64_slurp_symbol_table
,
3157 bfd_elf64_swap_dyn_in
,
3158 bfd_elf64_swap_dyn_out
,
3159 bfd_elf64_swap_reloc_in
,
3160 bfd_elf64_swap_reloc_out
,
3161 bfd_elf64_swap_reloca_in
,
3162 bfd_elf64_swap_reloca_out
3165 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3166 #define TARGET_BIG_NAME "elf64-sparc"
3167 #define ELF_ARCH bfd_arch_sparc
3168 #define ELF_MAXPAGESIZE 0x100000
3170 /* This is the official ABI value. */
3171 #define ELF_MACHINE_CODE EM_SPARCV9
3173 /* This is the value that we used before the ABI was released. */
3174 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3176 #define bfd_elf64_bfd_link_hash_table_create \
3177 sparc64_elf_bfd_link_hash_table_create
3179 #define elf_info_to_howto \
3180 sparc64_elf_info_to_howto
3181 #define bfd_elf64_get_reloc_upper_bound \
3182 sparc64_elf_get_reloc_upper_bound
3183 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3184 sparc64_elf_get_dynamic_reloc_upper_bound
3185 #define bfd_elf64_canonicalize_dynamic_reloc \
3186 sparc64_elf_canonicalize_dynamic_reloc
3187 #define bfd_elf64_bfd_reloc_type_lookup \
3188 sparc64_elf_reloc_type_lookup
3189 #define bfd_elf64_bfd_relax_section \
3190 sparc64_elf_relax_section
3191 #define bfd_elf64_new_section_hook \
3192 sparc64_elf_new_section_hook
3194 #define elf_backend_create_dynamic_sections \
3195 _bfd_elf_create_dynamic_sections
3196 #define elf_backend_add_symbol_hook \
3197 sparc64_elf_add_symbol_hook
3198 #define elf_backend_get_symbol_type \
3199 sparc64_elf_get_symbol_type
3200 #define elf_backend_symbol_processing \
3201 sparc64_elf_symbol_processing
3202 #define elf_backend_check_relocs \
3203 sparc64_elf_check_relocs
3204 #define elf_backend_adjust_dynamic_symbol \
3205 sparc64_elf_adjust_dynamic_symbol
3206 #define elf_backend_size_dynamic_sections \
3207 sparc64_elf_size_dynamic_sections
3208 #define elf_backend_relocate_section \
3209 sparc64_elf_relocate_section
3210 #define elf_backend_finish_dynamic_symbol \
3211 sparc64_elf_finish_dynamic_symbol
3212 #define elf_backend_finish_dynamic_sections \
3213 sparc64_elf_finish_dynamic_sections
3214 #define elf_backend_print_symbol_all \
3215 sparc64_elf_print_symbol_all
3216 #define elf_backend_output_arch_syms \
3217 sparc64_elf_output_arch_syms
3218 #define bfd_elf64_bfd_merge_private_bfd_data \
3219 sparc64_elf_merge_private_bfd_data
3220 #define elf_backend_fake_sections \
3221 sparc64_elf_fake_sections
3223 #define elf_backend_size_info \
3224 sparc64_elf_size_info
3225 #define elf_backend_object_p \
3226 sparc64_elf_object_p
3227 #define elf_backend_reloc_type_class \
3228 sparc64_elf_reloc_type_class
3230 #define elf_backend_want_got_plt 0
3231 #define elf_backend_plt_readonly 0
3232 #define elf_backend_want_plt_sym 1
3233 #define elf_backend_rela_normal 1
3235 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3236 #define elf_backend_plt_alignment 8
3238 #define elf_backend_got_header_size 8
3239 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3241 #include "elf64-target.h"