7e38d9794f02d1180c8a8f32684863d6dd1c8a30
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static bfd_boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static bfd_boolean sparc64_elf_fake_sections
76 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
77
78 static const char *sparc64_elf_print_symbol_all
79 PARAMS ((bfd *, PTR, asymbol *));
80 static bfd_boolean sparc64_elf_new_section_hook
81 PARAMS ((bfd *, asection *));
82 static bfd_boolean sparc64_elf_relax_section
83 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
84 static bfd_boolean sparc64_elf_relocate_section
85 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
86 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
87 static bfd_boolean sparc64_elf_finish_dynamic_symbol
88 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
89 Elf_Internal_Sym *));
90 static bfd_boolean sparc64_elf_finish_dynamic_sections
91 PARAMS ((bfd *, struct bfd_link_info *));
92 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
93 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
94 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
95 static bfd_boolean sparc64_elf_slurp_one_reloc_table
96 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
97 static bfd_boolean sparc64_elf_slurp_reloc_table
98 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
99 static long sparc64_elf_canonicalize_dynamic_reloc
100 PARAMS ((bfd *, arelent **, asymbol **));
101 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
102 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
103 PARAMS ((const Elf_Internal_Rela *));
104 \f
105 /* The relocation "howto" table. */
106
107 static bfd_reloc_status_type sparc_elf_notsup_reloc
108 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
109 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
110 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111 static bfd_reloc_status_type sparc_elf_hix22_reloc
112 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
113 static bfd_reloc_status_type sparc_elf_lox10_reloc
114 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
115
116 static reloc_howto_type sparc64_elf_howto_table[] =
117 {
118 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
119 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
120 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
121 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
122 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
126 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
127 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
128 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
129 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
130 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
131 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
132 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
134 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
136 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
137 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
138 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
139 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
140 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
142 #ifndef SPARC64_OLD_RELOCS
143 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
144 /* These aren't implemented yet. */
145 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
146 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
147 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
148 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
150 #endif
151 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
152 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
153 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
154 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
155 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
156 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
157 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
158 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
162 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
163 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
164 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
165 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
166 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
167 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
168 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
169 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
170 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
171 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
172 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
173 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
174 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
175 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
176 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE)
177 };
178
179 struct elf_reloc_map {
180 bfd_reloc_code_real_type bfd_reloc_val;
181 unsigned char elf_reloc_val;
182 };
183
184 static const struct elf_reloc_map sparc_reloc_map[] =
185 {
186 { BFD_RELOC_NONE, R_SPARC_NONE, },
187 { BFD_RELOC_16, R_SPARC_16, },
188 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
189 { BFD_RELOC_8, R_SPARC_8 },
190 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
191 { BFD_RELOC_CTOR, R_SPARC_64 },
192 { BFD_RELOC_32, R_SPARC_32 },
193 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
194 { BFD_RELOC_HI22, R_SPARC_HI22 },
195 { BFD_RELOC_LO10, R_SPARC_LO10, },
196 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
197 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
198 { BFD_RELOC_SPARC22, R_SPARC_22 },
199 { BFD_RELOC_SPARC13, R_SPARC_13 },
200 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
201 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
202 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
203 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
204 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
205 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
206 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
207 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
208 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
209 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
210 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
211 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
212 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
213 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
214 { BFD_RELOC_SPARC_10, R_SPARC_10 },
215 { BFD_RELOC_SPARC_11, R_SPARC_11 },
216 { BFD_RELOC_SPARC_64, R_SPARC_64 },
217 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
218 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
219 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
220 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
221 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
222 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
223 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
224 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
225 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
226 { BFD_RELOC_SPARC_7, R_SPARC_7 },
227 { BFD_RELOC_SPARC_5, R_SPARC_5 },
228 { BFD_RELOC_SPARC_6, R_SPARC_6 },
229 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
230 #ifndef SPARC64_OLD_RELOCS
231 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
232 #endif
233 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
234 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
235 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
236 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
237 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
238 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
239 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
240 };
241
242 static reloc_howto_type *
243 sparc64_elf_reloc_type_lookup (abfd, code)
244 bfd *abfd ATTRIBUTE_UNUSED;
245 bfd_reloc_code_real_type code;
246 {
247 unsigned int i;
248 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
249 {
250 if (sparc_reloc_map[i].bfd_reloc_val == code)
251 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
252 }
253 return 0;
254 }
255
256 static void
257 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
258 bfd *abfd ATTRIBUTE_UNUSED;
259 arelent *cache_ptr;
260 Elf_Internal_Rela *dst;
261 {
262 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
263 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
264 }
265 \f
266 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
267 section can represent up to two relocs, we must tell the user to allocate
268 more space. */
269
270 static long
271 sparc64_elf_get_reloc_upper_bound (abfd, sec)
272 bfd *abfd ATTRIBUTE_UNUSED;
273 asection *sec;
274 {
275 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
276 }
277
278 static long
279 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
280 bfd *abfd;
281 {
282 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
283 }
284
285 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
286 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
287 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
288 for the same location, R_SPARC_LO10 and R_SPARC_13. */
289
290 static bfd_boolean
291 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
292 bfd *abfd;
293 asection *asect;
294 Elf_Internal_Shdr *rel_hdr;
295 asymbol **symbols;
296 bfd_boolean dynamic;
297 {
298 PTR allocated = NULL;
299 bfd_byte *native_relocs;
300 arelent *relent;
301 unsigned int i;
302 int entsize;
303 bfd_size_type count;
304 arelent *relents;
305
306 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
307 if (allocated == NULL)
308 goto error_return;
309
310 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
311 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
312 goto error_return;
313
314 native_relocs = (bfd_byte *) allocated;
315
316 relents = asect->relocation + asect->reloc_count;
317
318 entsize = rel_hdr->sh_entsize;
319 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
320
321 count = rel_hdr->sh_size / entsize;
322
323 for (i = 0, relent = relents; i < count;
324 i++, relent++, native_relocs += entsize)
325 {
326 Elf_Internal_Rela rela;
327
328 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
329
330 /* The address of an ELF reloc is section relative for an object
331 file, and absolute for an executable file or shared library.
332 The address of a normal BFD reloc is always section relative,
333 and the address of a dynamic reloc is absolute.. */
334 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
335 relent->address = rela.r_offset;
336 else
337 relent->address = rela.r_offset - asect->vma;
338
339 if (ELF64_R_SYM (rela.r_info) == 0)
340 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
341 else
342 {
343 asymbol **ps, *s;
344
345 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
346 s = *ps;
347
348 /* Canonicalize ELF section symbols. FIXME: Why? */
349 if ((s->flags & BSF_SECTION_SYM) == 0)
350 relent->sym_ptr_ptr = ps;
351 else
352 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
353 }
354
355 relent->addend = rela.r_addend;
356
357 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
358 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
359 {
360 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
361 relent[1].address = relent->address;
362 relent++;
363 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
364 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
365 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
366 }
367 else
368 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
369 }
370
371 asect->reloc_count += relent - relents;
372
373 if (allocated != NULL)
374 free (allocated);
375
376 return TRUE;
377
378 error_return:
379 if (allocated != NULL)
380 free (allocated);
381 return FALSE;
382 }
383
384 /* Read in and swap the external relocs. */
385
386 static bfd_boolean
387 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
388 bfd *abfd;
389 asection *asect;
390 asymbol **symbols;
391 bfd_boolean dynamic;
392 {
393 struct bfd_elf_section_data * const d = elf_section_data (asect);
394 Elf_Internal_Shdr *rel_hdr;
395 Elf_Internal_Shdr *rel_hdr2;
396 bfd_size_type amt;
397
398 if (asect->relocation != NULL)
399 return TRUE;
400
401 if (! dynamic)
402 {
403 if ((asect->flags & SEC_RELOC) == 0
404 || asect->reloc_count == 0)
405 return TRUE;
406
407 rel_hdr = &d->rel_hdr;
408 rel_hdr2 = d->rel_hdr2;
409
410 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
411 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
412 }
413 else
414 {
415 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
416 case because relocations against this section may use the
417 dynamic symbol table, and in that case bfd_section_from_shdr
418 in elf.c does not update the RELOC_COUNT. */
419 if (asect->_raw_size == 0)
420 return TRUE;
421
422 rel_hdr = &d->this_hdr;
423 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
424 rel_hdr2 = NULL;
425 }
426
427 amt = asect->reloc_count;
428 amt *= 2 * sizeof (arelent);
429 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
430 if (asect->relocation == NULL)
431 return FALSE;
432
433 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
434 asect->reloc_count = 0;
435
436 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
437 dynamic))
438 return FALSE;
439
440 if (rel_hdr2
441 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
442 dynamic))
443 return FALSE;
444
445 return TRUE;
446 }
447
448 /* Canonicalize the dynamic relocation entries. Note that we return
449 the dynamic relocations as a single block, although they are
450 actually associated with particular sections; the interface, which
451 was designed for SunOS style shared libraries, expects that there
452 is only one set of dynamic relocs. Any section that was actually
453 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
454 the dynamic symbol table, is considered to be a dynamic reloc
455 section. */
456
457 static long
458 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
459 bfd *abfd;
460 arelent **storage;
461 asymbol **syms;
462 {
463 asection *s;
464 long ret;
465
466 if (elf_dynsymtab (abfd) == 0)
467 {
468 bfd_set_error (bfd_error_invalid_operation);
469 return -1;
470 }
471
472 ret = 0;
473 for (s = abfd->sections; s != NULL; s = s->next)
474 {
475 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
476 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
477 {
478 arelent *p;
479 long count, i;
480
481 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
482 return -1;
483 count = s->reloc_count;
484 p = s->relocation;
485 for (i = 0; i < count; i++)
486 *storage++ = p++;
487 ret += count;
488 }
489 }
490
491 *storage = NULL;
492
493 return ret;
494 }
495
496 /* Write out the relocs. */
497
498 static void
499 sparc64_elf_write_relocs (abfd, sec, data)
500 bfd *abfd;
501 asection *sec;
502 PTR data;
503 {
504 bfd_boolean *failedp = (bfd_boolean *) data;
505 Elf_Internal_Shdr *rela_hdr;
506 Elf64_External_Rela *outbound_relocas, *src_rela;
507 unsigned int idx, count;
508 asymbol *last_sym = 0;
509 int last_sym_idx = 0;
510
511 /* If we have already failed, don't do anything. */
512 if (*failedp)
513 return;
514
515 if ((sec->flags & SEC_RELOC) == 0)
516 return;
517
518 /* The linker backend writes the relocs out itself, and sets the
519 reloc_count field to zero to inhibit writing them here. Also,
520 sometimes the SEC_RELOC flag gets set even when there aren't any
521 relocs. */
522 if (sec->reloc_count == 0)
523 return;
524
525 /* We can combine two relocs that refer to the same address
526 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
527 latter is R_SPARC_13 with no associated symbol. */
528 count = 0;
529 for (idx = 0; idx < sec->reloc_count; idx++)
530 {
531 bfd_vma addr;
532
533 ++count;
534
535 addr = sec->orelocation[idx]->address;
536 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
537 && idx < sec->reloc_count - 1)
538 {
539 arelent *r = sec->orelocation[idx + 1];
540
541 if (r->howto->type == R_SPARC_13
542 && r->address == addr
543 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
544 && (*r->sym_ptr_ptr)->value == 0)
545 ++idx;
546 }
547 }
548
549 rela_hdr = &elf_section_data (sec)->rel_hdr;
550
551 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
552 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
553 if (rela_hdr->contents == NULL)
554 {
555 *failedp = TRUE;
556 return;
557 }
558
559 /* Figure out whether the relocations are RELA or REL relocations. */
560 if (rela_hdr->sh_type != SHT_RELA)
561 abort ();
562
563 /* orelocation has the data, reloc_count has the count... */
564 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
565 src_rela = outbound_relocas;
566
567 for (idx = 0; idx < sec->reloc_count; idx++)
568 {
569 Elf_Internal_Rela dst_rela;
570 arelent *ptr;
571 asymbol *sym;
572 int n;
573
574 ptr = sec->orelocation[idx];
575
576 /* The address of an ELF reloc is section relative for an object
577 file, and absolute for an executable file or shared library.
578 The address of a BFD reloc is always section relative. */
579 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
580 dst_rela.r_offset = ptr->address;
581 else
582 dst_rela.r_offset = ptr->address + sec->vma;
583
584 sym = *ptr->sym_ptr_ptr;
585 if (sym == last_sym)
586 n = last_sym_idx;
587 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
588 n = STN_UNDEF;
589 else
590 {
591 last_sym = sym;
592 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
593 if (n < 0)
594 {
595 *failedp = TRUE;
596 return;
597 }
598 last_sym_idx = n;
599 }
600
601 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
602 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
603 && ! _bfd_elf_validate_reloc (abfd, ptr))
604 {
605 *failedp = TRUE;
606 return;
607 }
608
609 if (ptr->howto->type == R_SPARC_LO10
610 && idx < sec->reloc_count - 1)
611 {
612 arelent *r = sec->orelocation[idx + 1];
613
614 if (r->howto->type == R_SPARC_13
615 && r->address == ptr->address
616 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
617 && (*r->sym_ptr_ptr)->value == 0)
618 {
619 idx++;
620 dst_rela.r_info
621 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
622 R_SPARC_OLO10));
623 }
624 else
625 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
626 }
627 else
628 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
629
630 dst_rela.r_addend = ptr->addend;
631 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
632 ++src_rela;
633 }
634 }
635 \f
636 /* Sparc64 ELF linker hash table. */
637
638 struct sparc64_elf_app_reg
639 {
640 unsigned char bind;
641 unsigned short shndx;
642 bfd *abfd;
643 char *name;
644 };
645
646 struct sparc64_elf_link_hash_table
647 {
648 struct elf_link_hash_table root;
649
650 struct sparc64_elf_app_reg app_regs [4];
651 };
652
653 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
654
655 #define sparc64_elf_hash_table(p) \
656 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
657
658 /* Create a Sparc64 ELF linker hash table. */
659
660 static struct bfd_link_hash_table *
661 sparc64_elf_bfd_link_hash_table_create (abfd)
662 bfd *abfd;
663 {
664 struct sparc64_elf_link_hash_table *ret;
665 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
666
667 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
668 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
669 return NULL;
670
671 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
672 _bfd_elf_link_hash_newfunc))
673 {
674 free (ret);
675 return NULL;
676 }
677
678 return &ret->root.root;
679 }
680 \f
681 /* Utility for performing the standard initial work of an instruction
682 relocation.
683 *PRELOCATION will contain the relocated item.
684 *PINSN will contain the instruction from the input stream.
685 If the result is `bfd_reloc_other' the caller can continue with
686 performing the relocation. Otherwise it must stop and return the
687 value to its caller. */
688
689 static bfd_reloc_status_type
690 init_insn_reloc (abfd,
691 reloc_entry,
692 symbol,
693 data,
694 input_section,
695 output_bfd,
696 prelocation,
697 pinsn)
698 bfd *abfd;
699 arelent *reloc_entry;
700 asymbol *symbol;
701 PTR data;
702 asection *input_section;
703 bfd *output_bfd;
704 bfd_vma *prelocation;
705 bfd_vma *pinsn;
706 {
707 bfd_vma relocation;
708 reloc_howto_type *howto = reloc_entry->howto;
709
710 if (output_bfd != (bfd *) NULL
711 && (symbol->flags & BSF_SECTION_SYM) == 0
712 && (! howto->partial_inplace
713 || reloc_entry->addend == 0))
714 {
715 reloc_entry->address += input_section->output_offset;
716 return bfd_reloc_ok;
717 }
718
719 /* This works because partial_inplace is FALSE. */
720 if (output_bfd != NULL)
721 return bfd_reloc_continue;
722
723 if (reloc_entry->address > input_section->_cooked_size)
724 return bfd_reloc_outofrange;
725
726 relocation = (symbol->value
727 + symbol->section->output_section->vma
728 + symbol->section->output_offset);
729 relocation += reloc_entry->addend;
730 if (howto->pc_relative)
731 {
732 relocation -= (input_section->output_section->vma
733 + input_section->output_offset);
734 relocation -= reloc_entry->address;
735 }
736
737 *prelocation = relocation;
738 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
739 return bfd_reloc_other;
740 }
741
742 /* For unsupported relocs. */
743
744 static bfd_reloc_status_type
745 sparc_elf_notsup_reloc (abfd,
746 reloc_entry,
747 symbol,
748 data,
749 input_section,
750 output_bfd,
751 error_message)
752 bfd *abfd ATTRIBUTE_UNUSED;
753 arelent *reloc_entry ATTRIBUTE_UNUSED;
754 asymbol *symbol ATTRIBUTE_UNUSED;
755 PTR data ATTRIBUTE_UNUSED;
756 asection *input_section ATTRIBUTE_UNUSED;
757 bfd *output_bfd ATTRIBUTE_UNUSED;
758 char **error_message ATTRIBUTE_UNUSED;
759 {
760 return bfd_reloc_notsupported;
761 }
762
763 /* Handle the WDISP16 reloc. */
764
765 static bfd_reloc_status_type
766 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
767 output_bfd, error_message)
768 bfd *abfd;
769 arelent *reloc_entry;
770 asymbol *symbol;
771 PTR data;
772 asection *input_section;
773 bfd *output_bfd;
774 char **error_message ATTRIBUTE_UNUSED;
775 {
776 bfd_vma relocation;
777 bfd_vma insn;
778 bfd_reloc_status_type status;
779
780 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
781 input_section, output_bfd, &relocation, &insn);
782 if (status != bfd_reloc_other)
783 return status;
784
785 insn &= ~ (bfd_vma) 0x303fff;
786 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
787 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
788
789 if ((bfd_signed_vma) relocation < - 0x40000
790 || (bfd_signed_vma) relocation > 0x3ffff)
791 return bfd_reloc_overflow;
792 else
793 return bfd_reloc_ok;
794 }
795
796 /* Handle the HIX22 reloc. */
797
798 static bfd_reloc_status_type
799 sparc_elf_hix22_reloc (abfd,
800 reloc_entry,
801 symbol,
802 data,
803 input_section,
804 output_bfd,
805 error_message)
806 bfd *abfd;
807 arelent *reloc_entry;
808 asymbol *symbol;
809 PTR data;
810 asection *input_section;
811 bfd *output_bfd;
812 char **error_message ATTRIBUTE_UNUSED;
813 {
814 bfd_vma relocation;
815 bfd_vma insn;
816 bfd_reloc_status_type status;
817
818 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
819 input_section, output_bfd, &relocation, &insn);
820 if (status != bfd_reloc_other)
821 return status;
822
823 relocation ^= MINUS_ONE;
824 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
825 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
826
827 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
828 return bfd_reloc_overflow;
829 else
830 return bfd_reloc_ok;
831 }
832
833 /* Handle the LOX10 reloc. */
834
835 static bfd_reloc_status_type
836 sparc_elf_lox10_reloc (abfd,
837 reloc_entry,
838 symbol,
839 data,
840 input_section,
841 output_bfd,
842 error_message)
843 bfd *abfd;
844 arelent *reloc_entry;
845 asymbol *symbol;
846 PTR data;
847 asection *input_section;
848 bfd *output_bfd;
849 char **error_message ATTRIBUTE_UNUSED;
850 {
851 bfd_vma relocation;
852 bfd_vma insn;
853 bfd_reloc_status_type status;
854
855 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
856 input_section, output_bfd, &relocation, &insn);
857 if (status != bfd_reloc_other)
858 return status;
859
860 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
861 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
862
863 return bfd_reloc_ok;
864 }
865 \f
866 /* PLT/GOT stuff */
867
868 /* Both the headers and the entries are icache aligned. */
869 #define PLT_ENTRY_SIZE 32
870 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
871 #define LARGE_PLT_THRESHOLD 32768
872 #define GOT_RESERVED_ENTRIES 1
873
874 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
875
876 /* Fill in the .plt section. */
877
878 static void
879 sparc64_elf_build_plt (output_bfd, contents, nentries)
880 bfd *output_bfd;
881 unsigned char *contents;
882 int nentries;
883 {
884 const unsigned int nop = 0x01000000;
885 int i, j;
886
887 /* The first four entries are reserved, and are initially undefined.
888 We fill them with `illtrap 0' to force ld.so to do something. */
889
890 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
891 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
892
893 /* The first 32768 entries are close enough to plt1 to get there via
894 a straight branch. */
895
896 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
897 {
898 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
899 unsigned int sethi, ba;
900
901 /* sethi (. - plt0), %g1 */
902 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
903
904 /* ba,a,pt %xcc, plt1 */
905 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
906
907 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
908 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
910 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
911 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
912 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
913 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
914 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
915 }
916
917 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
918 160: 160 entries and 160 pointers. This is to separate code from data,
919 which is much friendlier on the cache. */
920
921 for (; i < nentries; i += 160)
922 {
923 int block = (i + 160 <= nentries ? 160 : nentries - i);
924 for (j = 0; j < block; ++j)
925 {
926 unsigned char *entry, *ptr;
927 unsigned int ldx;
928
929 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
930 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
931
932 /* ldx [%o7 + ptr - (entry+4)], %g1 */
933 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
934
935 /* mov %o7,%g5
936 call .+8
937 nop
938 ldx [%o7+P],%g1
939 jmpl %o7+%g1,%g1
940 mov %g5,%o7 */
941 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
942 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
943 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
944 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
945 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
946 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
947
948 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
949 }
950 }
951 }
952
953 /* Return the offset of a particular plt entry within the .plt section. */
954
955 static bfd_vma
956 sparc64_elf_plt_entry_offset (index)
957 bfd_vma index;
958 {
959 bfd_vma block, ofs;
960
961 if (index < LARGE_PLT_THRESHOLD)
962 return index * PLT_ENTRY_SIZE;
963
964 /* See above for details. */
965
966 block = (index - LARGE_PLT_THRESHOLD) / 160;
967 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
968
969 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
970 }
971
972 static bfd_vma
973 sparc64_elf_plt_ptr_offset (index, max)
974 bfd_vma index;
975 bfd_vma max;
976 {
977 bfd_vma block, ofs, last;
978
979 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
980
981 /* See above for details. */
982
983 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
984 ofs = index - block;
985 if (block + 160 > max)
986 last = (max - LARGE_PLT_THRESHOLD) % 160;
987 else
988 last = 160;
989
990 return (block * PLT_ENTRY_SIZE
991 + last * 6*4
992 + ofs * 8);
993 }
994 \f
995 /* Look through the relocs for a section during the first phase, and
996 allocate space in the global offset table or procedure linkage
997 table. */
998
999 static bfd_boolean
1000 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1001 bfd *abfd;
1002 struct bfd_link_info *info;
1003 asection *sec;
1004 const Elf_Internal_Rela *relocs;
1005 {
1006 bfd *dynobj;
1007 Elf_Internal_Shdr *symtab_hdr;
1008 struct elf_link_hash_entry **sym_hashes;
1009 bfd_vma *local_got_offsets;
1010 const Elf_Internal_Rela *rel;
1011 const Elf_Internal_Rela *rel_end;
1012 asection *sgot;
1013 asection *srelgot;
1014 asection *sreloc;
1015
1016 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1017 return TRUE;
1018
1019 dynobj = elf_hash_table (info)->dynobj;
1020 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1021 sym_hashes = elf_sym_hashes (abfd);
1022 local_got_offsets = elf_local_got_offsets (abfd);
1023
1024 sgot = NULL;
1025 srelgot = NULL;
1026 sreloc = NULL;
1027
1028 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1029 for (rel = relocs; rel < rel_end; rel++)
1030 {
1031 unsigned long r_symndx;
1032 struct elf_link_hash_entry *h;
1033
1034 r_symndx = ELF64_R_SYM (rel->r_info);
1035 if (r_symndx < symtab_hdr->sh_info)
1036 h = NULL;
1037 else
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039
1040 switch (ELF64_R_TYPE_ID (rel->r_info))
1041 {
1042 case R_SPARC_GOT10:
1043 case R_SPARC_GOT13:
1044 case R_SPARC_GOT22:
1045 /* This symbol requires a global offset table entry. */
1046
1047 if (dynobj == NULL)
1048 {
1049 /* Create the .got section. */
1050 elf_hash_table (info)->dynobj = dynobj = abfd;
1051 if (! _bfd_elf_create_got_section (dynobj, info))
1052 return FALSE;
1053 }
1054
1055 if (sgot == NULL)
1056 {
1057 sgot = bfd_get_section_by_name (dynobj, ".got");
1058 BFD_ASSERT (sgot != NULL);
1059 }
1060
1061 if (srelgot == NULL && (h != NULL || info->shared))
1062 {
1063 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1064 if (srelgot == NULL)
1065 {
1066 srelgot = bfd_make_section (dynobj, ".rela.got");
1067 if (srelgot == NULL
1068 || ! bfd_set_section_flags (dynobj, srelgot,
1069 (SEC_ALLOC
1070 | SEC_LOAD
1071 | SEC_HAS_CONTENTS
1072 | SEC_IN_MEMORY
1073 | SEC_LINKER_CREATED
1074 | SEC_READONLY))
1075 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1076 return FALSE;
1077 }
1078 }
1079
1080 if (h != NULL)
1081 {
1082 if (h->got.offset != (bfd_vma) -1)
1083 {
1084 /* We have already allocated space in the .got. */
1085 break;
1086 }
1087 h->got.offset = sgot->_raw_size;
1088
1089 /* Make sure this symbol is output as a dynamic symbol. */
1090 if (h->dynindx == -1)
1091 {
1092 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1093 return FALSE;
1094 }
1095
1096 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1097 }
1098 else
1099 {
1100 /* This is a global offset table entry for a local
1101 symbol. */
1102 if (local_got_offsets == NULL)
1103 {
1104 bfd_size_type size;
1105 register unsigned int i;
1106
1107 size = symtab_hdr->sh_info;
1108 size *= sizeof (bfd_vma);
1109 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1110 if (local_got_offsets == NULL)
1111 return FALSE;
1112 elf_local_got_offsets (abfd) = local_got_offsets;
1113 for (i = 0; i < symtab_hdr->sh_info; i++)
1114 local_got_offsets[i] = (bfd_vma) -1;
1115 }
1116 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1117 {
1118 /* We have already allocated space in the .got. */
1119 break;
1120 }
1121 local_got_offsets[r_symndx] = sgot->_raw_size;
1122
1123 if (info->shared)
1124 {
1125 /* If we are generating a shared object, we need to
1126 output a R_SPARC_RELATIVE reloc so that the
1127 dynamic linker can adjust this GOT entry. */
1128 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1129 }
1130 }
1131
1132 sgot->_raw_size += 8;
1133
1134 #if 0
1135 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1136 unsigned numbers. If we permit ourselves to modify
1137 code so we get sethi/xor, this could work.
1138 Question: do we consider conditionally re-enabling
1139 this for -fpic, once we know about object code models? */
1140 /* If the .got section is more than 0x1000 bytes, we add
1141 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1142 bit relocations have a greater chance of working. */
1143 if (sgot->_raw_size >= 0x1000
1144 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1145 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1146 #endif
1147
1148 break;
1149
1150 case R_SPARC_WPLT30:
1151 case R_SPARC_PLT32:
1152 case R_SPARC_HIPLT22:
1153 case R_SPARC_LOPLT10:
1154 case R_SPARC_PCPLT32:
1155 case R_SPARC_PCPLT22:
1156 case R_SPARC_PCPLT10:
1157 case R_SPARC_PLT64:
1158 /* This symbol requires a procedure linkage table entry. We
1159 actually build the entry in adjust_dynamic_symbol,
1160 because this might be a case of linking PIC code without
1161 linking in any dynamic objects, in which case we don't
1162 need to generate a procedure linkage table after all. */
1163
1164 if (h == NULL)
1165 {
1166 /* It does not make sense to have a procedure linkage
1167 table entry for a local symbol. */
1168 bfd_set_error (bfd_error_bad_value);
1169 return FALSE;
1170 }
1171
1172 /* Make sure this symbol is output as a dynamic symbol. */
1173 if (h->dynindx == -1)
1174 {
1175 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1176 return FALSE;
1177 }
1178
1179 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1180 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1181 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1182 break;
1183 /* Fall through. */
1184 case R_SPARC_PC10:
1185 case R_SPARC_PC22:
1186 case R_SPARC_PC_HH22:
1187 case R_SPARC_PC_HM10:
1188 case R_SPARC_PC_LM22:
1189 if (h != NULL
1190 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1191 break;
1192 /* Fall through. */
1193 case R_SPARC_DISP8:
1194 case R_SPARC_DISP16:
1195 case R_SPARC_DISP32:
1196 case R_SPARC_DISP64:
1197 case R_SPARC_WDISP30:
1198 case R_SPARC_WDISP22:
1199 case R_SPARC_WDISP19:
1200 case R_SPARC_WDISP16:
1201 if (h == NULL)
1202 break;
1203 /* Fall through. */
1204 case R_SPARC_8:
1205 case R_SPARC_16:
1206 case R_SPARC_32:
1207 case R_SPARC_HI22:
1208 case R_SPARC_22:
1209 case R_SPARC_13:
1210 case R_SPARC_LO10:
1211 case R_SPARC_UA32:
1212 case R_SPARC_10:
1213 case R_SPARC_11:
1214 case R_SPARC_64:
1215 case R_SPARC_OLO10:
1216 case R_SPARC_HH22:
1217 case R_SPARC_HM10:
1218 case R_SPARC_LM22:
1219 case R_SPARC_7:
1220 case R_SPARC_5:
1221 case R_SPARC_6:
1222 case R_SPARC_HIX22:
1223 case R_SPARC_LOX10:
1224 case R_SPARC_H44:
1225 case R_SPARC_M44:
1226 case R_SPARC_L44:
1227 case R_SPARC_UA64:
1228 case R_SPARC_UA16:
1229 /* When creating a shared object, we must copy these relocs
1230 into the output file. We create a reloc section in
1231 dynobj and make room for the reloc.
1232
1233 But don't do this for debugging sections -- this shows up
1234 with DWARF2 -- first because they are not loaded, and
1235 second because DWARF sez the debug info is not to be
1236 biased by the load address. */
1237 if (info->shared && (sec->flags & SEC_ALLOC))
1238 {
1239 if (sreloc == NULL)
1240 {
1241 const char *name;
1242
1243 name = (bfd_elf_string_from_elf_section
1244 (abfd,
1245 elf_elfheader (abfd)->e_shstrndx,
1246 elf_section_data (sec)->rel_hdr.sh_name));
1247 if (name == NULL)
1248 return FALSE;
1249
1250 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1251 && strcmp (bfd_get_section_name (abfd, sec),
1252 name + 5) == 0);
1253
1254 sreloc = bfd_get_section_by_name (dynobj, name);
1255 if (sreloc == NULL)
1256 {
1257 flagword flags;
1258
1259 sreloc = bfd_make_section (dynobj, name);
1260 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1261 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1262 if ((sec->flags & SEC_ALLOC) != 0)
1263 flags |= SEC_ALLOC | SEC_LOAD;
1264 if (sreloc == NULL
1265 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1266 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1267 return FALSE;
1268 }
1269 if (sec->flags & SEC_READONLY)
1270 info->flags |= DF_TEXTREL;
1271 }
1272
1273 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1274 }
1275 break;
1276
1277 case R_SPARC_REGISTER:
1278 /* Nothing to do. */
1279 break;
1280
1281 default:
1282 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1283 bfd_archive_filename (abfd),
1284 ELF64_R_TYPE_ID (rel->r_info));
1285 return FALSE;
1286 }
1287 }
1288
1289 return TRUE;
1290 }
1291
1292 /* Hook called by the linker routine which adds symbols from an object
1293 file. We use it for STT_REGISTER symbols. */
1294
1295 static bfd_boolean
1296 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1297 bfd *abfd;
1298 struct bfd_link_info *info;
1299 const Elf_Internal_Sym *sym;
1300 const char **namep;
1301 flagword *flagsp ATTRIBUTE_UNUSED;
1302 asection **secp ATTRIBUTE_UNUSED;
1303 bfd_vma *valp ATTRIBUTE_UNUSED;
1304 {
1305 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1306
1307 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1308 {
1309 int reg;
1310 struct sparc64_elf_app_reg *p;
1311
1312 reg = (int)sym->st_value;
1313 switch (reg & ~1)
1314 {
1315 case 2: reg -= 2; break;
1316 case 6: reg -= 4; break;
1317 default:
1318 (*_bfd_error_handler)
1319 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1320 bfd_archive_filename (abfd));
1321 return FALSE;
1322 }
1323
1324 if (info->hash->creator != abfd->xvec
1325 || (abfd->flags & DYNAMIC) != 0)
1326 {
1327 /* STT_REGISTER only works when linking an elf64_sparc object.
1328 If STT_REGISTER comes from a dynamic object, don't put it into
1329 the output bfd. The dynamic linker will recheck it. */
1330 *namep = NULL;
1331 return TRUE;
1332 }
1333
1334 p = sparc64_elf_hash_table(info)->app_regs + reg;
1335
1336 if (p->name != NULL && strcmp (p->name, *namep))
1337 {
1338 (*_bfd_error_handler)
1339 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1340 (int) sym->st_value,
1341 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1342 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1343 return FALSE;
1344 }
1345
1346 if (p->name == NULL)
1347 {
1348 if (**namep)
1349 {
1350 struct elf_link_hash_entry *h;
1351
1352 h = (struct elf_link_hash_entry *)
1353 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1354
1355 if (h != NULL)
1356 {
1357 unsigned char type = h->type;
1358
1359 if (type > STT_FUNC)
1360 type = 0;
1361 (*_bfd_error_handler)
1362 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1363 *namep, bfd_archive_filename (abfd),
1364 stt_types[type], bfd_archive_filename (p->abfd));
1365 return FALSE;
1366 }
1367
1368 p->name = bfd_hash_allocate (&info->hash->table,
1369 strlen (*namep) + 1);
1370 if (!p->name)
1371 return FALSE;
1372
1373 strcpy (p->name, *namep);
1374 }
1375 else
1376 p->name = "";
1377 p->bind = ELF_ST_BIND (sym->st_info);
1378 p->abfd = abfd;
1379 p->shndx = sym->st_shndx;
1380 }
1381 else
1382 {
1383 if (p->bind == STB_WEAK
1384 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1385 {
1386 p->bind = STB_GLOBAL;
1387 p->abfd = abfd;
1388 }
1389 }
1390 *namep = NULL;
1391 return TRUE;
1392 }
1393 else if (*namep && **namep
1394 && info->hash->creator == abfd->xvec)
1395 {
1396 int i;
1397 struct sparc64_elf_app_reg *p;
1398
1399 p = sparc64_elf_hash_table(info)->app_regs;
1400 for (i = 0; i < 4; i++, p++)
1401 if (p->name != NULL && ! strcmp (p->name, *namep))
1402 {
1403 unsigned char type = ELF_ST_TYPE (sym->st_info);
1404
1405 if (type > STT_FUNC)
1406 type = 0;
1407 (*_bfd_error_handler)
1408 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1409 *namep, stt_types[type], bfd_archive_filename (abfd),
1410 bfd_archive_filename (p->abfd));
1411 return FALSE;
1412 }
1413 }
1414 return TRUE;
1415 }
1416
1417 /* This function takes care of emiting STT_REGISTER symbols
1418 which we cannot easily keep in the symbol hash table. */
1419
1420 static bfd_boolean
1421 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1422 bfd *output_bfd ATTRIBUTE_UNUSED;
1423 struct bfd_link_info *info;
1424 PTR finfo;
1425 bfd_boolean (*func)
1426 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *));
1427 {
1428 int reg;
1429 struct sparc64_elf_app_reg *app_regs =
1430 sparc64_elf_hash_table(info)->app_regs;
1431 Elf_Internal_Sym sym;
1432
1433 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1434 at the end of the dynlocal list, so they came at the end of the local
1435 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1436 to back up symtab->sh_info. */
1437 if (elf_hash_table (info)->dynlocal)
1438 {
1439 bfd * dynobj = elf_hash_table (info)->dynobj;
1440 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1441 struct elf_link_local_dynamic_entry *e;
1442
1443 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1444 if (e->input_indx == -1)
1445 break;
1446 if (e)
1447 {
1448 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1449 = e->dynindx;
1450 }
1451 }
1452
1453 if (info->strip == strip_all)
1454 return TRUE;
1455
1456 for (reg = 0; reg < 4; reg++)
1457 if (app_regs [reg].name != NULL)
1458 {
1459 if (info->strip == strip_some
1460 && bfd_hash_lookup (info->keep_hash,
1461 app_regs [reg].name,
1462 FALSE, FALSE) == NULL)
1463 continue;
1464
1465 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1466 sym.st_size = 0;
1467 sym.st_other = 0;
1468 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1469 sym.st_shndx = app_regs [reg].shndx;
1470 if (! (*func) (finfo, app_regs [reg].name, &sym,
1471 sym.st_shndx == SHN_ABS
1472 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1473 return FALSE;
1474 }
1475
1476 return TRUE;
1477 }
1478
1479 static int
1480 sparc64_elf_get_symbol_type (elf_sym, type)
1481 Elf_Internal_Sym * elf_sym;
1482 int type;
1483 {
1484 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1485 return STT_REGISTER;
1486 else
1487 return type;
1488 }
1489
1490 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1491 even in SHN_UNDEF section. */
1492
1493 static void
1494 sparc64_elf_symbol_processing (abfd, asym)
1495 bfd *abfd ATTRIBUTE_UNUSED;
1496 asymbol *asym;
1497 {
1498 elf_symbol_type *elfsym;
1499
1500 elfsym = (elf_symbol_type *) asym;
1501 if (elfsym->internal_elf_sym.st_info
1502 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1503 {
1504 asym->flags |= BSF_GLOBAL;
1505 }
1506 }
1507
1508 /* Adjust a symbol defined by a dynamic object and referenced by a
1509 regular object. The current definition is in some section of the
1510 dynamic object, but we're not including those sections. We have to
1511 change the definition to something the rest of the link can
1512 understand. */
1513
1514 static bfd_boolean
1515 sparc64_elf_adjust_dynamic_symbol (info, h)
1516 struct bfd_link_info *info;
1517 struct elf_link_hash_entry *h;
1518 {
1519 bfd *dynobj;
1520 asection *s;
1521 unsigned int power_of_two;
1522
1523 dynobj = elf_hash_table (info)->dynobj;
1524
1525 /* Make sure we know what is going on here. */
1526 BFD_ASSERT (dynobj != NULL
1527 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1528 || h->weakdef != NULL
1529 || ((h->elf_link_hash_flags
1530 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1531 && (h->elf_link_hash_flags
1532 & ELF_LINK_HASH_REF_REGULAR) != 0
1533 && (h->elf_link_hash_flags
1534 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1535
1536 /* If this is a function, put it in the procedure linkage table. We
1537 will fill in the contents of the procedure linkage table later
1538 (although we could actually do it here). The STT_NOTYPE
1539 condition is a hack specifically for the Oracle libraries
1540 delivered for Solaris; for some inexplicable reason, they define
1541 some of their functions as STT_NOTYPE when they really should be
1542 STT_FUNC. */
1543 if (h->type == STT_FUNC
1544 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1545 || (h->type == STT_NOTYPE
1546 && (h->root.type == bfd_link_hash_defined
1547 || h->root.type == bfd_link_hash_defweak)
1548 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1549 {
1550 if (! elf_hash_table (info)->dynamic_sections_created)
1551 {
1552 /* This case can occur if we saw a WPLT30 reloc in an input
1553 file, but none of the input files were dynamic objects.
1554 In such a case, we don't actually need to build a
1555 procedure linkage table, and we can just do a WDISP30
1556 reloc instead. */
1557 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1558 return TRUE;
1559 }
1560
1561 s = bfd_get_section_by_name (dynobj, ".plt");
1562 BFD_ASSERT (s != NULL);
1563
1564 /* The first four bit in .plt is reserved. */
1565 if (s->_raw_size == 0)
1566 s->_raw_size = PLT_HEADER_SIZE;
1567
1568 /* To simplify matters later, just store the plt index here. */
1569 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1570
1571 /* If this symbol is not defined in a regular file, and we are
1572 not generating a shared library, then set the symbol to this
1573 location in the .plt. This is required to make function
1574 pointers compare as equal between the normal executable and
1575 the shared library. */
1576 if (! info->shared
1577 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1578 {
1579 h->root.u.def.section = s;
1580 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1581 }
1582
1583 /* Make room for this entry. */
1584 s->_raw_size += PLT_ENTRY_SIZE;
1585
1586 /* We also need to make an entry in the .rela.plt section. */
1587
1588 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1589 BFD_ASSERT (s != NULL);
1590
1591 s->_raw_size += sizeof (Elf64_External_Rela);
1592
1593 /* The procedure linkage table size is bounded by the magnitude
1594 of the offset we can describe in the entry. */
1595 if (s->_raw_size >= (bfd_vma)1 << 32)
1596 {
1597 bfd_set_error (bfd_error_bad_value);
1598 return FALSE;
1599 }
1600
1601 return TRUE;
1602 }
1603
1604 /* If this is a weak symbol, and there is a real definition, the
1605 processor independent code will have arranged for us to see the
1606 real definition first, and we can just use the same value. */
1607 if (h->weakdef != NULL)
1608 {
1609 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1610 || h->weakdef->root.type == bfd_link_hash_defweak);
1611 h->root.u.def.section = h->weakdef->root.u.def.section;
1612 h->root.u.def.value = h->weakdef->root.u.def.value;
1613 return TRUE;
1614 }
1615
1616 /* This is a reference to a symbol defined by a dynamic object which
1617 is not a function. */
1618
1619 /* If we are creating a shared library, we must presume that the
1620 only references to the symbol are via the global offset table.
1621 For such cases we need not do anything here; the relocations will
1622 be handled correctly by relocate_section. */
1623 if (info->shared)
1624 return TRUE;
1625
1626 /* We must allocate the symbol in our .dynbss section, which will
1627 become part of the .bss section of the executable. There will be
1628 an entry for this symbol in the .dynsym section. The dynamic
1629 object will contain position independent code, so all references
1630 from the dynamic object to this symbol will go through the global
1631 offset table. The dynamic linker will use the .dynsym entry to
1632 determine the address it must put in the global offset table, so
1633 both the dynamic object and the regular object will refer to the
1634 same memory location for the variable. */
1635
1636 s = bfd_get_section_by_name (dynobj, ".dynbss");
1637 BFD_ASSERT (s != NULL);
1638
1639 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1640 to copy the initial value out of the dynamic object and into the
1641 runtime process image. We need to remember the offset into the
1642 .rel.bss section we are going to use. */
1643 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1644 {
1645 asection *srel;
1646
1647 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1648 BFD_ASSERT (srel != NULL);
1649 srel->_raw_size += sizeof (Elf64_External_Rela);
1650 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1651 }
1652
1653 /* We need to figure out the alignment required for this symbol. I
1654 have no idea how ELF linkers handle this. 16-bytes is the size
1655 of the largest type that requires hard alignment -- long double. */
1656 power_of_two = bfd_log2 (h->size);
1657 if (power_of_two > 4)
1658 power_of_two = 4;
1659
1660 /* Apply the required alignment. */
1661 s->_raw_size = BFD_ALIGN (s->_raw_size,
1662 (bfd_size_type) (1 << power_of_two));
1663 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1664 {
1665 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1666 return FALSE;
1667 }
1668
1669 /* Define the symbol as being at this point in the section. */
1670 h->root.u.def.section = s;
1671 h->root.u.def.value = s->_raw_size;
1672
1673 /* Increment the section size to make room for the symbol. */
1674 s->_raw_size += h->size;
1675
1676 return TRUE;
1677 }
1678
1679 /* Set the sizes of the dynamic sections. */
1680
1681 static bfd_boolean
1682 sparc64_elf_size_dynamic_sections (output_bfd, info)
1683 bfd *output_bfd;
1684 struct bfd_link_info *info;
1685 {
1686 bfd *dynobj;
1687 asection *s;
1688 bfd_boolean relplt;
1689
1690 dynobj = elf_hash_table (info)->dynobj;
1691 BFD_ASSERT (dynobj != NULL);
1692
1693 if (elf_hash_table (info)->dynamic_sections_created)
1694 {
1695 /* Set the contents of the .interp section to the interpreter. */
1696 if (! info->shared)
1697 {
1698 s = bfd_get_section_by_name (dynobj, ".interp");
1699 BFD_ASSERT (s != NULL);
1700 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1701 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1702 }
1703 }
1704 else
1705 {
1706 /* We may have created entries in the .rela.got section.
1707 However, if we are not creating the dynamic sections, we will
1708 not actually use these entries. Reset the size of .rela.got,
1709 which will cause it to get stripped from the output file
1710 below. */
1711 s = bfd_get_section_by_name (dynobj, ".rela.got");
1712 if (s != NULL)
1713 s->_raw_size = 0;
1714 }
1715
1716 /* The check_relocs and adjust_dynamic_symbol entry points have
1717 determined the sizes of the various dynamic sections. Allocate
1718 memory for them. */
1719 relplt = FALSE;
1720 for (s = dynobj->sections; s != NULL; s = s->next)
1721 {
1722 const char *name;
1723 bfd_boolean strip;
1724
1725 if ((s->flags & SEC_LINKER_CREATED) == 0)
1726 continue;
1727
1728 /* It's OK to base decisions on the section name, because none
1729 of the dynobj section names depend upon the input files. */
1730 name = bfd_get_section_name (dynobj, s);
1731
1732 strip = FALSE;
1733
1734 if (strncmp (name, ".rela", 5) == 0)
1735 {
1736 if (s->_raw_size == 0)
1737 {
1738 /* If we don't need this section, strip it from the
1739 output file. This is to handle .rela.bss and
1740 .rel.plt. We must create it in
1741 create_dynamic_sections, because it must be created
1742 before the linker maps input sections to output
1743 sections. The linker does that before
1744 adjust_dynamic_symbol is called, and it is that
1745 function which decides whether anything needs to go
1746 into these sections. */
1747 strip = TRUE;
1748 }
1749 else
1750 {
1751 if (strcmp (name, ".rela.plt") == 0)
1752 relplt = TRUE;
1753
1754 /* We use the reloc_count field as a counter if we need
1755 to copy relocs into the output file. */
1756 s->reloc_count = 0;
1757 }
1758 }
1759 else if (strcmp (name, ".plt") != 0
1760 && strncmp (name, ".got", 4) != 0)
1761 {
1762 /* It's not one of our sections, so don't allocate space. */
1763 continue;
1764 }
1765
1766 if (strip)
1767 {
1768 _bfd_strip_section_from_output (info, s);
1769 continue;
1770 }
1771
1772 /* Allocate memory for the section contents. Zero the memory
1773 for the benefit of .rela.plt, which has 4 unused entries
1774 at the beginning, and we don't want garbage. */
1775 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1776 if (s->contents == NULL && s->_raw_size != 0)
1777 return FALSE;
1778 }
1779
1780 if (elf_hash_table (info)->dynamic_sections_created)
1781 {
1782 /* Add some entries to the .dynamic section. We fill in the
1783 values later, in sparc64_elf_finish_dynamic_sections, but we
1784 must add the entries now so that we get the correct size for
1785 the .dynamic section. The DT_DEBUG entry is filled in by the
1786 dynamic linker and used by the debugger. */
1787 #define add_dynamic_entry(TAG, VAL) \
1788 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1789
1790 int reg;
1791 struct sparc64_elf_app_reg * app_regs;
1792 struct elf_strtab_hash *dynstr;
1793 struct elf_link_hash_table *eht = elf_hash_table (info);
1794
1795 if (!info->shared)
1796 {
1797 if (!add_dynamic_entry (DT_DEBUG, 0))
1798 return FALSE;
1799 }
1800
1801 if (relplt)
1802 {
1803 if (!add_dynamic_entry (DT_PLTGOT, 0)
1804 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1805 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1806 || !add_dynamic_entry (DT_JMPREL, 0))
1807 return FALSE;
1808 }
1809
1810 if (!add_dynamic_entry (DT_RELA, 0)
1811 || !add_dynamic_entry (DT_RELASZ, 0)
1812 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1813 return FALSE;
1814
1815 if (info->flags & DF_TEXTREL)
1816 {
1817 if (!add_dynamic_entry (DT_TEXTREL, 0))
1818 return FALSE;
1819 }
1820
1821 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1822 entries if needed. */
1823 app_regs = sparc64_elf_hash_table (info)->app_regs;
1824 dynstr = eht->dynstr;
1825
1826 for (reg = 0; reg < 4; reg++)
1827 if (app_regs [reg].name != NULL)
1828 {
1829 struct elf_link_local_dynamic_entry *entry, *e;
1830
1831 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1832 return FALSE;
1833
1834 entry = (struct elf_link_local_dynamic_entry *)
1835 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1836 if (entry == NULL)
1837 return FALSE;
1838
1839 /* We cheat here a little bit: the symbol will not be local, so we
1840 put it at the end of the dynlocal linked list. We will fix it
1841 later on, as we have to fix other fields anyway. */
1842 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1843 entry->isym.st_size = 0;
1844 if (*app_regs [reg].name != '\0')
1845 entry->isym.st_name
1846 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1847 else
1848 entry->isym.st_name = 0;
1849 entry->isym.st_other = 0;
1850 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1851 STT_REGISTER);
1852 entry->isym.st_shndx = app_regs [reg].shndx;
1853 entry->next = NULL;
1854 entry->input_bfd = output_bfd;
1855 entry->input_indx = -1;
1856
1857 if (eht->dynlocal == NULL)
1858 eht->dynlocal = entry;
1859 else
1860 {
1861 for (e = eht->dynlocal; e->next; e = e->next)
1862 ;
1863 e->next = entry;
1864 }
1865 eht->dynsymcount++;
1866 }
1867 }
1868 #undef add_dynamic_entry
1869
1870 return TRUE;
1871 }
1872 \f
1873 struct sparc64_elf_section_data
1874 {
1875 struct bfd_elf_section_data elf;
1876 unsigned int do_relax;
1877 };
1878
1879 #define sec_do_relax(sec) \
1880 ((struct sparc64_elf_section_data *) (sec)->used_by_bfd)->do_relax
1881
1882 static bfd_boolean
1883 sparc64_elf_new_section_hook (abfd, sec)
1884 bfd *abfd;
1885 asection *sec;
1886 {
1887 struct sparc64_elf_section_data *sdata;
1888 bfd_size_type amt = sizeof (*sdata);
1889
1890 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1891 if (sdata == NULL)
1892 return FALSE;
1893 sec->used_by_bfd = (PTR) sdata;
1894
1895 return _bfd_elf_new_section_hook (abfd, sec);
1896 }
1897
1898 static bfd_boolean
1899 sparc64_elf_relax_section (abfd, section, link_info, again)
1900 bfd *abfd ATTRIBUTE_UNUSED;
1901 asection *section ATTRIBUTE_UNUSED;
1902 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1903 bfd_boolean *again;
1904 {
1905 *again = FALSE;
1906 sec_do_relax (section) = 1;
1907 return TRUE;
1908 }
1909 \f
1910 /* This is the condition under which finish_dynamic_symbol will be called
1911 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1912 routine, we'll need to do something about initializing any .plt and
1913 .got entries in relocate_section. */
1914 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1915 ((DYN) \
1916 && ((INFO)->shared \
1917 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1918 && ((H)->dynindx != -1 \
1919 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1920
1921 /* Relocate a SPARC64 ELF section. */
1922
1923 static bfd_boolean
1924 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1925 contents, relocs, local_syms, local_sections)
1926 bfd *output_bfd;
1927 struct bfd_link_info *info;
1928 bfd *input_bfd;
1929 asection *input_section;
1930 bfd_byte *contents;
1931 Elf_Internal_Rela *relocs;
1932 Elf_Internal_Sym *local_syms;
1933 asection **local_sections;
1934 {
1935 bfd *dynobj;
1936 Elf_Internal_Shdr *symtab_hdr;
1937 struct elf_link_hash_entry **sym_hashes;
1938 bfd_vma *local_got_offsets;
1939 bfd_vma got_base;
1940 asection *sgot;
1941 asection *splt;
1942 asection *sreloc;
1943 Elf_Internal_Rela *rel;
1944 Elf_Internal_Rela *relend;
1945
1946 if (info->relocateable)
1947 return TRUE;
1948
1949 dynobj = elf_hash_table (info)->dynobj;
1950 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1951 sym_hashes = elf_sym_hashes (input_bfd);
1952 local_got_offsets = elf_local_got_offsets (input_bfd);
1953
1954 if (elf_hash_table(info)->hgot == NULL)
1955 got_base = 0;
1956 else
1957 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1958
1959 sgot = splt = sreloc = NULL;
1960
1961 rel = relocs;
1962 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1963 for (; rel < relend; rel++)
1964 {
1965 int r_type;
1966 reloc_howto_type *howto;
1967 unsigned long r_symndx;
1968 struct elf_link_hash_entry *h;
1969 Elf_Internal_Sym *sym;
1970 asection *sec;
1971 bfd_vma relocation, off;
1972 bfd_reloc_status_type r;
1973 bfd_boolean is_plt = FALSE;
1974 bfd_boolean unresolved_reloc;
1975
1976 r_type = ELF64_R_TYPE_ID (rel->r_info);
1977 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1978 {
1979 bfd_set_error (bfd_error_bad_value);
1980 return FALSE;
1981 }
1982 howto = sparc64_elf_howto_table + r_type;
1983
1984 /* This is a final link. */
1985 r_symndx = ELF64_R_SYM (rel->r_info);
1986 h = NULL;
1987 sym = NULL;
1988 sec = NULL;
1989 unresolved_reloc = FALSE;
1990 if (r_symndx < symtab_hdr->sh_info)
1991 {
1992 sym = local_syms + r_symndx;
1993 sec = local_sections[r_symndx];
1994 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1995 }
1996 else
1997 {
1998 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1999 while (h->root.type == bfd_link_hash_indirect
2000 || h->root.type == bfd_link_hash_warning)
2001 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2002
2003 relocation = 0;
2004 if (h->root.type == bfd_link_hash_defined
2005 || h->root.type == bfd_link_hash_defweak)
2006 {
2007 sec = h->root.u.def.section;
2008 if (sec->output_section == NULL)
2009 /* Set a flag that will be cleared later if we find a
2010 relocation value for this symbol. output_section
2011 is typically NULL for symbols satisfied by a shared
2012 library. */
2013 unresolved_reloc = TRUE;
2014 else
2015 relocation = (h->root.u.def.value
2016 + sec->output_section->vma
2017 + sec->output_offset);
2018 }
2019 else if (h->root.type == bfd_link_hash_undefweak)
2020 ;
2021 else if (info->shared
2022 && (!info->symbolic || info->allow_shlib_undefined)
2023 && !info->no_undefined
2024 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2025 ;
2026 else
2027 {
2028 if (! ((*info->callbacks->undefined_symbol)
2029 (info, h->root.root.string, input_bfd,
2030 input_section, rel->r_offset,
2031 (!info->shared || info->no_undefined
2032 || ELF_ST_VISIBILITY (h->other)))))
2033 return FALSE;
2034
2035 /* To avoid generating warning messages about truncated
2036 relocations, set the relocation's address to be the same as
2037 the start of this section. */
2038
2039 if (input_section->output_section != NULL)
2040 relocation = input_section->output_section->vma;
2041 else
2042 relocation = 0;
2043 }
2044 }
2045
2046 do_dynreloc:
2047 /* When generating a shared object, these relocations are copied
2048 into the output file to be resolved at run time. */
2049 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2050 {
2051 switch (r_type)
2052 {
2053 case R_SPARC_PC10:
2054 case R_SPARC_PC22:
2055 case R_SPARC_PC_HH22:
2056 case R_SPARC_PC_HM10:
2057 case R_SPARC_PC_LM22:
2058 if (h != NULL
2059 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2060 break;
2061 /* Fall through. */
2062 case R_SPARC_DISP8:
2063 case R_SPARC_DISP16:
2064 case R_SPARC_DISP32:
2065 case R_SPARC_DISP64:
2066 case R_SPARC_WDISP30:
2067 case R_SPARC_WDISP22:
2068 case R_SPARC_WDISP19:
2069 case R_SPARC_WDISP16:
2070 if (h == NULL)
2071 break;
2072 /* Fall through. */
2073 case R_SPARC_8:
2074 case R_SPARC_16:
2075 case R_SPARC_32:
2076 case R_SPARC_HI22:
2077 case R_SPARC_22:
2078 case R_SPARC_13:
2079 case R_SPARC_LO10:
2080 case R_SPARC_UA32:
2081 case R_SPARC_10:
2082 case R_SPARC_11:
2083 case R_SPARC_64:
2084 case R_SPARC_OLO10:
2085 case R_SPARC_HH22:
2086 case R_SPARC_HM10:
2087 case R_SPARC_LM22:
2088 case R_SPARC_7:
2089 case R_SPARC_5:
2090 case R_SPARC_6:
2091 case R_SPARC_HIX22:
2092 case R_SPARC_LOX10:
2093 case R_SPARC_H44:
2094 case R_SPARC_M44:
2095 case R_SPARC_L44:
2096 case R_SPARC_UA64:
2097 case R_SPARC_UA16:
2098 {
2099 Elf_Internal_Rela outrel;
2100 bfd_byte *loc;
2101 bfd_boolean skip, relocate;
2102
2103 if (sreloc == NULL)
2104 {
2105 const char *name =
2106 (bfd_elf_string_from_elf_section
2107 (input_bfd,
2108 elf_elfheader (input_bfd)->e_shstrndx,
2109 elf_section_data (input_section)->rel_hdr.sh_name));
2110
2111 if (name == NULL)
2112 return FALSE;
2113
2114 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2115 && strcmp (bfd_get_section_name(input_bfd,
2116 input_section),
2117 name + 5) == 0);
2118
2119 sreloc = bfd_get_section_by_name (dynobj, name);
2120 BFD_ASSERT (sreloc != NULL);
2121 }
2122
2123 skip = FALSE;
2124 relocate = FALSE;
2125
2126 outrel.r_offset =
2127 _bfd_elf_section_offset (output_bfd, info, input_section,
2128 rel->r_offset);
2129 if (outrel.r_offset == (bfd_vma) -1)
2130 skip = TRUE;
2131 else if (outrel.r_offset == (bfd_vma) -2)
2132 skip = TRUE, relocate = TRUE;
2133
2134 outrel.r_offset += (input_section->output_section->vma
2135 + input_section->output_offset);
2136
2137 /* Optimize unaligned reloc usage now that we know where
2138 it finally resides. */
2139 switch (r_type)
2140 {
2141 case R_SPARC_16:
2142 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2143 break;
2144 case R_SPARC_UA16:
2145 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2146 break;
2147 case R_SPARC_32:
2148 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2149 break;
2150 case R_SPARC_UA32:
2151 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2152 break;
2153 case R_SPARC_64:
2154 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2155 break;
2156 case R_SPARC_UA64:
2157 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2158 break;
2159 case R_SPARC_DISP8:
2160 case R_SPARC_DISP16:
2161 case R_SPARC_DISP32:
2162 case R_SPARC_DISP64:
2163 /* If the symbol is not dynamic, we should not keep
2164 a dynamic relocation. But an .rela.* slot has been
2165 allocated for it, output R_SPARC_NONE.
2166 FIXME: Add code tracking needed dynamic relocs as
2167 e.g. i386 has. */
2168 if (h->dynindx == -1)
2169 skip = TRUE, relocate = TRUE;
2170 break;
2171 }
2172
2173 if (skip)
2174 memset (&outrel, 0, sizeof outrel);
2175 /* h->dynindx may be -1 if the symbol was marked to
2176 become local. */
2177 else if (h != NULL && ! is_plt
2178 && ((! info->symbolic && h->dynindx != -1)
2179 || (h->elf_link_hash_flags
2180 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2181 {
2182 BFD_ASSERT (h->dynindx != -1);
2183 outrel.r_info
2184 = ELF64_R_INFO (h->dynindx,
2185 ELF64_R_TYPE_INFO (
2186 ELF64_R_TYPE_DATA (rel->r_info),
2187 r_type));
2188 outrel.r_addend = rel->r_addend;
2189 }
2190 else
2191 {
2192 outrel.r_addend = relocation + rel->r_addend;
2193 if (r_type == R_SPARC_64)
2194 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2195 else
2196 {
2197 long indx;
2198
2199 if (is_plt)
2200 sec = splt;
2201 else if (h == NULL)
2202 sec = local_sections[r_symndx];
2203 else
2204 {
2205 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2206 || (h->root.type
2207 == bfd_link_hash_defweak));
2208 sec = h->root.u.def.section;
2209 }
2210 if (sec != NULL && bfd_is_abs_section (sec))
2211 indx = 0;
2212 else if (sec == NULL || sec->owner == NULL)
2213 {
2214 bfd_set_error (bfd_error_bad_value);
2215 return FALSE;
2216 }
2217 else
2218 {
2219 asection *osec;
2220
2221 osec = sec->output_section;
2222 indx = elf_section_data (osec)->dynindx;
2223
2224 /* We are turning this relocation into one
2225 against a section symbol, so subtract out
2226 the output section's address but not the
2227 offset of the input section in the output
2228 section. */
2229 outrel.r_addend -= osec->vma;
2230
2231 /* FIXME: we really should be able to link non-pic
2232 shared libraries. */
2233 if (indx == 0)
2234 {
2235 BFD_FAIL ();
2236 (*_bfd_error_handler)
2237 (_("%s: probably compiled without -fPIC?"),
2238 bfd_archive_filename (input_bfd));
2239 bfd_set_error (bfd_error_bad_value);
2240 return FALSE;
2241 }
2242 }
2243
2244 outrel.r_info
2245 = ELF64_R_INFO (indx,
2246 ELF64_R_TYPE_INFO (
2247 ELF64_R_TYPE_DATA (rel->r_info),
2248 r_type));
2249 }
2250 }
2251
2252 loc = sreloc->contents;
2253 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2254 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2255
2256 /* This reloc will be computed at runtime, so there's no
2257 need to do anything now. */
2258 if (! relocate)
2259 continue;
2260 }
2261 break;
2262 }
2263 }
2264
2265 switch (r_type)
2266 {
2267 case R_SPARC_GOT10:
2268 case R_SPARC_GOT13:
2269 case R_SPARC_GOT22:
2270 /* Relocation is to the entry for this symbol in the global
2271 offset table. */
2272 if (sgot == NULL)
2273 {
2274 sgot = bfd_get_section_by_name (dynobj, ".got");
2275 BFD_ASSERT (sgot != NULL);
2276 }
2277
2278 if (h != NULL)
2279 {
2280 bfd_boolean dyn;
2281
2282 off = h->got.offset;
2283 BFD_ASSERT (off != (bfd_vma) -1);
2284 dyn = elf_hash_table (info)->dynamic_sections_created;
2285
2286 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2287 || (info->shared
2288 && (info->symbolic
2289 || h->dynindx == -1
2290 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2291 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2292 {
2293 /* This is actually a static link, or it is a -Bsymbolic
2294 link and the symbol is defined locally, or the symbol
2295 was forced to be local because of a version file. We
2296 must initialize this entry in the global offset table.
2297 Since the offset must always be a multiple of 8, we
2298 use the least significant bit to record whether we
2299 have initialized it already.
2300
2301 When doing a dynamic link, we create a .rela.got
2302 relocation entry to initialize the value. This is
2303 done in the finish_dynamic_symbol routine. */
2304
2305 if ((off & 1) != 0)
2306 off &= ~1;
2307 else
2308 {
2309 bfd_put_64 (output_bfd, relocation,
2310 sgot->contents + off);
2311 h->got.offset |= 1;
2312 }
2313 }
2314 else
2315 unresolved_reloc = FALSE;
2316 }
2317 else
2318 {
2319 BFD_ASSERT (local_got_offsets != NULL);
2320 off = local_got_offsets[r_symndx];
2321 BFD_ASSERT (off != (bfd_vma) -1);
2322
2323 /* The offset must always be a multiple of 8. We use
2324 the least significant bit to record whether we have
2325 already processed this entry. */
2326 if ((off & 1) != 0)
2327 off &= ~1;
2328 else
2329 {
2330 local_got_offsets[r_symndx] |= 1;
2331
2332 if (info->shared)
2333 {
2334 asection *s;
2335 Elf_Internal_Rela outrel;
2336 bfd_byte *loc;
2337
2338 /* The Solaris 2.7 64-bit linker adds the contents
2339 of the location to the value of the reloc.
2340 Note this is different behaviour to the
2341 32-bit linker, which both adds the contents
2342 and ignores the addend. So clear the location. */
2343 bfd_put_64 (output_bfd, (bfd_vma) 0,
2344 sgot->contents + off);
2345
2346 /* We need to generate a R_SPARC_RELATIVE reloc
2347 for the dynamic linker. */
2348 s = bfd_get_section_by_name(dynobj, ".rela.got");
2349 BFD_ASSERT (s != NULL);
2350
2351 outrel.r_offset = (sgot->output_section->vma
2352 + sgot->output_offset
2353 + off);
2354 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2355 outrel.r_addend = relocation;
2356 loc = s->contents;
2357 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2358 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2359 }
2360 else
2361 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2362 }
2363 }
2364 relocation = sgot->output_offset + off - got_base;
2365 goto do_default;
2366
2367 case R_SPARC_WPLT30:
2368 case R_SPARC_PLT32:
2369 case R_SPARC_HIPLT22:
2370 case R_SPARC_LOPLT10:
2371 case R_SPARC_PCPLT32:
2372 case R_SPARC_PCPLT22:
2373 case R_SPARC_PCPLT10:
2374 case R_SPARC_PLT64:
2375 /* Relocation is to the entry for this symbol in the
2376 procedure linkage table. */
2377 BFD_ASSERT (h != NULL);
2378
2379 if (h->plt.offset == (bfd_vma) -1)
2380 {
2381 /* We didn't make a PLT entry for this symbol. This
2382 happens when statically linking PIC code, or when
2383 using -Bsymbolic. */
2384 goto do_default;
2385 }
2386
2387 if (splt == NULL)
2388 {
2389 splt = bfd_get_section_by_name (dynobj, ".plt");
2390 BFD_ASSERT (splt != NULL);
2391 }
2392
2393 relocation = (splt->output_section->vma
2394 + splt->output_offset
2395 + sparc64_elf_plt_entry_offset (h->plt.offset));
2396 unresolved_reloc = FALSE;
2397 if (r_type == R_SPARC_WPLT30)
2398 goto do_wplt30;
2399 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2400 {
2401 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2402 is_plt = TRUE;
2403 goto do_dynreloc;
2404 }
2405 goto do_default;
2406
2407 case R_SPARC_OLO10:
2408 {
2409 bfd_vma x;
2410
2411 relocation += rel->r_addend;
2412 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2413
2414 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2415 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2416 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2417
2418 r = bfd_check_overflow (howto->complain_on_overflow,
2419 howto->bitsize, howto->rightshift,
2420 bfd_arch_bits_per_address (input_bfd),
2421 relocation);
2422 }
2423 break;
2424
2425 case R_SPARC_WDISP16:
2426 {
2427 bfd_vma x;
2428
2429 relocation += rel->r_addend;
2430 /* Adjust for pc-relative-ness. */
2431 relocation -= (input_section->output_section->vma
2432 + input_section->output_offset);
2433 relocation -= rel->r_offset;
2434
2435 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2436 x &= ~(bfd_vma) 0x303fff;
2437 x |= ((((relocation >> 2) & 0xc000) << 6)
2438 | ((relocation >> 2) & 0x3fff));
2439 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2440
2441 r = bfd_check_overflow (howto->complain_on_overflow,
2442 howto->bitsize, howto->rightshift,
2443 bfd_arch_bits_per_address (input_bfd),
2444 relocation);
2445 }
2446 break;
2447
2448 case R_SPARC_HIX22:
2449 {
2450 bfd_vma x;
2451
2452 relocation += rel->r_addend;
2453 relocation = relocation ^ MINUS_ONE;
2454
2455 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2456 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2457 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2458
2459 r = bfd_check_overflow (howto->complain_on_overflow,
2460 howto->bitsize, howto->rightshift,
2461 bfd_arch_bits_per_address (input_bfd),
2462 relocation);
2463 }
2464 break;
2465
2466 case R_SPARC_LOX10:
2467 {
2468 bfd_vma x;
2469
2470 relocation += rel->r_addend;
2471 relocation = (relocation & 0x3ff) | 0x1c00;
2472
2473 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2474 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2475 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2476
2477 r = bfd_reloc_ok;
2478 }
2479 break;
2480
2481 case R_SPARC_WDISP30:
2482 do_wplt30:
2483 if (sec_do_relax (input_section)
2484 && rel->r_offset + 4 < input_section->_raw_size)
2485 {
2486 #define G0 0
2487 #define O7 15
2488 #define XCC (2 << 20)
2489 #define COND(x) (((x)&0xf)<<25)
2490 #define CONDA COND(0x8)
2491 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2492 #define INSN_BA (F2(0,2) | CONDA)
2493 #define INSN_OR F3(2, 0x2, 0)
2494 #define INSN_NOP F2(0,4)
2495
2496 bfd_vma x, y;
2497
2498 /* If the instruction is a call with either:
2499 restore
2500 arithmetic instruction with rd == %o7
2501 where rs1 != %o7 and rs2 if it is register != %o7
2502 then we can optimize if the call destination is near
2503 by changing the call into a branch always. */
2504 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2505 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2506 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2507 {
2508 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2509 || ((y & OP3(0x28)) == 0 /* arithmetic */
2510 && (y & RD(~0)) == RD(O7)))
2511 && (y & RS1(~0)) != RS1(O7)
2512 && ((y & F3I(~0))
2513 || (y & RS2(~0)) != RS2(O7)))
2514 {
2515 bfd_vma reloc;
2516
2517 reloc = relocation + rel->r_addend - rel->r_offset;
2518 reloc -= (input_section->output_section->vma
2519 + input_section->output_offset);
2520 if (reloc & 3)
2521 goto do_default;
2522
2523 /* Ensure the branch fits into simm22. */
2524 if ((reloc & ~(bfd_vma)0x7fffff)
2525 && ((reloc | 0x7fffff) != MINUS_ONE))
2526 goto do_default;
2527 reloc >>= 2;
2528
2529 /* Check whether it fits into simm19. */
2530 if ((reloc & 0x3c0000) == 0
2531 || (reloc & 0x3c0000) == 0x3c0000)
2532 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2533 else
2534 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2535 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2536 r = bfd_reloc_ok;
2537 if (rel->r_offset >= 4
2538 && (y & (0xffffffff ^ RS1(~0)))
2539 == (INSN_OR | RD(O7) | RS2(G0)))
2540 {
2541 bfd_vma z;
2542 unsigned int reg;
2543
2544 z = bfd_get_32 (input_bfd,
2545 contents + rel->r_offset - 4);
2546 if ((z & (0xffffffff ^ RD(~0)))
2547 != (INSN_OR | RS1(O7) | RS2(G0)))
2548 break;
2549
2550 /* The sequence was
2551 or %o7, %g0, %rN
2552 call foo
2553 or %rN, %g0, %o7
2554
2555 If call foo was replaced with ba, replace
2556 or %rN, %g0, %o7 with nop. */
2557
2558 reg = (y & RS1(~0)) >> 14;
2559 if (reg != ((z & RD(~0)) >> 25)
2560 || reg == G0 || reg == O7)
2561 break;
2562
2563 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2564 contents + rel->r_offset + 4);
2565 }
2566 break;
2567 }
2568 }
2569 }
2570 /* FALLTHROUGH */
2571
2572 default:
2573 do_default:
2574 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2575 contents, rel->r_offset,
2576 relocation, rel->r_addend);
2577 break;
2578 }
2579
2580 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2581 because such sections are not SEC_ALLOC and thus ld.so will
2582 not process them. */
2583 if (unresolved_reloc
2584 && !((input_section->flags & SEC_DEBUGGING) != 0
2585 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2586 (*_bfd_error_handler)
2587 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2588 bfd_archive_filename (input_bfd),
2589 bfd_get_section_name (input_bfd, input_section),
2590 (long) rel->r_offset,
2591 h->root.root.string);
2592
2593 switch (r)
2594 {
2595 case bfd_reloc_ok:
2596 break;
2597
2598 default:
2599 case bfd_reloc_outofrange:
2600 abort ();
2601
2602 case bfd_reloc_overflow:
2603 {
2604 const char *name;
2605
2606 /* The Solaris native linker silently disregards
2607 overflows. We don't, but this breaks stabs debugging
2608 info, whose relocations are only 32-bits wide. Ignore
2609 overflows for discarded entries. */
2610 if (r_type == R_SPARC_32
2611 && _bfd_elf_section_offset (output_bfd, info, input_section,
2612 rel->r_offset) == (bfd_vma) -1)
2613 break;
2614
2615 if (h != NULL)
2616 {
2617 if (h->root.type == bfd_link_hash_undefweak
2618 && howto->pc_relative)
2619 {
2620 /* Assume this is a call protected by other code that
2621 detect the symbol is undefined. If this is the case,
2622 we can safely ignore the overflow. If not, the
2623 program is hosed anyway, and a little warning isn't
2624 going to help. */
2625 break;
2626 }
2627
2628 name = h->root.root.string;
2629 }
2630 else
2631 {
2632 name = (bfd_elf_string_from_elf_section
2633 (input_bfd,
2634 symtab_hdr->sh_link,
2635 sym->st_name));
2636 if (name == NULL)
2637 return FALSE;
2638 if (*name == '\0')
2639 name = bfd_section_name (input_bfd, sec);
2640 }
2641 if (! ((*info->callbacks->reloc_overflow)
2642 (info, name, howto->name, (bfd_vma) 0,
2643 input_bfd, input_section, rel->r_offset)))
2644 return FALSE;
2645 }
2646 break;
2647 }
2648 }
2649
2650 return TRUE;
2651 }
2652
2653 /* Finish up dynamic symbol handling. We set the contents of various
2654 dynamic sections here. */
2655
2656 static bfd_boolean
2657 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2658 bfd *output_bfd;
2659 struct bfd_link_info *info;
2660 struct elf_link_hash_entry *h;
2661 Elf_Internal_Sym *sym;
2662 {
2663 bfd *dynobj;
2664
2665 dynobj = elf_hash_table (info)->dynobj;
2666
2667 if (h->plt.offset != (bfd_vma) -1)
2668 {
2669 asection *splt;
2670 asection *srela;
2671 Elf_Internal_Rela rela;
2672 bfd_byte *loc;
2673
2674 /* This symbol has an entry in the PLT. Set it up. */
2675
2676 BFD_ASSERT (h->dynindx != -1);
2677
2678 splt = bfd_get_section_by_name (dynobj, ".plt");
2679 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2680 BFD_ASSERT (splt != NULL && srela != NULL);
2681
2682 /* Fill in the entry in the .rela.plt section. */
2683
2684 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2685 {
2686 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2687 rela.r_addend = 0;
2688 }
2689 else
2690 {
2691 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2692 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2693 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2694 -(splt->output_section->vma + splt->output_offset);
2695 }
2696 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2697 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2698
2699 /* Adjust for the first 4 reserved elements in the .plt section
2700 when setting the offset in the .rela.plt section.
2701 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2702 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2703
2704 loc = srela->contents;
2705 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2706 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2707
2708 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2709 {
2710 /* Mark the symbol as undefined, rather than as defined in
2711 the .plt section. Leave the value alone. */
2712 sym->st_shndx = SHN_UNDEF;
2713 /* If the symbol is weak, we do need to clear the value.
2714 Otherwise, the PLT entry would provide a definition for
2715 the symbol even if the symbol wasn't defined anywhere,
2716 and so the symbol would never be NULL. */
2717 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2718 == 0)
2719 sym->st_value = 0;
2720 }
2721 }
2722
2723 if (h->got.offset != (bfd_vma) -1)
2724 {
2725 asection *sgot;
2726 asection *srela;
2727 Elf_Internal_Rela rela;
2728 bfd_byte *loc;
2729
2730 /* This symbol has an entry in the GOT. Set it up. */
2731
2732 sgot = bfd_get_section_by_name (dynobj, ".got");
2733 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2734 BFD_ASSERT (sgot != NULL && srela != NULL);
2735
2736 rela.r_offset = (sgot->output_section->vma
2737 + sgot->output_offset
2738 + (h->got.offset &~ (bfd_vma) 1));
2739
2740 /* If this is a -Bsymbolic link, and the symbol is defined
2741 locally, we just want to emit a RELATIVE reloc. Likewise if
2742 the symbol was forced to be local because of a version file.
2743 The entry in the global offset table will already have been
2744 initialized in the relocate_section function. */
2745 if (info->shared
2746 && (info->symbolic || h->dynindx == -1)
2747 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2748 {
2749 asection *sec = h->root.u.def.section;
2750 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2751 rela.r_addend = (h->root.u.def.value
2752 + sec->output_section->vma
2753 + sec->output_offset);
2754 }
2755 else
2756 {
2757 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2758 rela.r_addend = 0;
2759 }
2760
2761 bfd_put_64 (output_bfd, (bfd_vma) 0,
2762 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2763 loc = srela->contents;
2764 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2765 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2766 }
2767
2768 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2769 {
2770 asection *s;
2771 Elf_Internal_Rela rela;
2772 bfd_byte *loc;
2773
2774 /* This symbols needs a copy reloc. Set it up. */
2775
2776 BFD_ASSERT (h->dynindx != -1);
2777
2778 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2779 ".rela.bss");
2780 BFD_ASSERT (s != NULL);
2781
2782 rela.r_offset = (h->root.u.def.value
2783 + h->root.u.def.section->output_section->vma
2784 + h->root.u.def.section->output_offset);
2785 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2786 rela.r_addend = 0;
2787 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2788 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2789 }
2790
2791 /* Mark some specially defined symbols as absolute. */
2792 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2793 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2794 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2795 sym->st_shndx = SHN_ABS;
2796
2797 return TRUE;
2798 }
2799
2800 /* Finish up the dynamic sections. */
2801
2802 static bfd_boolean
2803 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2804 bfd *output_bfd;
2805 struct bfd_link_info *info;
2806 {
2807 bfd *dynobj;
2808 int stt_regidx = -1;
2809 asection *sdyn;
2810 asection *sgot;
2811
2812 dynobj = elf_hash_table (info)->dynobj;
2813
2814 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2815
2816 if (elf_hash_table (info)->dynamic_sections_created)
2817 {
2818 asection *splt;
2819 Elf64_External_Dyn *dyncon, *dynconend;
2820
2821 splt = bfd_get_section_by_name (dynobj, ".plt");
2822 BFD_ASSERT (splt != NULL && sdyn != NULL);
2823
2824 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2825 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2826 for (; dyncon < dynconend; dyncon++)
2827 {
2828 Elf_Internal_Dyn dyn;
2829 const char *name;
2830 bfd_boolean size;
2831
2832 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2833
2834 switch (dyn.d_tag)
2835 {
2836 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2837 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2838 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2839 case DT_SPARC_REGISTER:
2840 if (stt_regidx == -1)
2841 {
2842 stt_regidx =
2843 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2844 if (stt_regidx == -1)
2845 return FALSE;
2846 }
2847 dyn.d_un.d_val = stt_regidx++;
2848 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2849 /* fallthrough */
2850 default: name = NULL; size = FALSE; break;
2851 }
2852
2853 if (name != NULL)
2854 {
2855 asection *s;
2856
2857 s = bfd_get_section_by_name (output_bfd, name);
2858 if (s == NULL)
2859 dyn.d_un.d_val = 0;
2860 else
2861 {
2862 if (! size)
2863 dyn.d_un.d_ptr = s->vma;
2864 else
2865 {
2866 if (s->_cooked_size != 0)
2867 dyn.d_un.d_val = s->_cooked_size;
2868 else
2869 dyn.d_un.d_val = s->_raw_size;
2870 }
2871 }
2872 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2873 }
2874 }
2875
2876 /* Initialize the contents of the .plt section. */
2877 if (splt->_raw_size > 0)
2878 {
2879 sparc64_elf_build_plt (output_bfd, splt->contents,
2880 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2881 }
2882
2883 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2884 PLT_ENTRY_SIZE;
2885 }
2886
2887 /* Set the first entry in the global offset table to the address of
2888 the dynamic section. */
2889 sgot = bfd_get_section_by_name (dynobj, ".got");
2890 BFD_ASSERT (sgot != NULL);
2891 if (sgot->_raw_size > 0)
2892 {
2893 if (sdyn == NULL)
2894 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2895 else
2896 bfd_put_64 (output_bfd,
2897 sdyn->output_section->vma + sdyn->output_offset,
2898 sgot->contents);
2899 }
2900
2901 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2902
2903 return TRUE;
2904 }
2905
2906 static enum elf_reloc_type_class
2907 sparc64_elf_reloc_type_class (rela)
2908 const Elf_Internal_Rela *rela;
2909 {
2910 switch ((int) ELF64_R_TYPE (rela->r_info))
2911 {
2912 case R_SPARC_RELATIVE:
2913 return reloc_class_relative;
2914 case R_SPARC_JMP_SLOT:
2915 return reloc_class_plt;
2916 case R_SPARC_COPY:
2917 return reloc_class_copy;
2918 default:
2919 return reloc_class_normal;
2920 }
2921 }
2922 \f
2923 /* Functions for dealing with the e_flags field. */
2924
2925 /* Merge backend specific data from an object file to the output
2926 object file when linking. */
2927
2928 static bfd_boolean
2929 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2930 bfd *ibfd;
2931 bfd *obfd;
2932 {
2933 bfd_boolean error;
2934 flagword new_flags, old_flags;
2935 int new_mm, old_mm;
2936
2937 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2938 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2939 return TRUE;
2940
2941 new_flags = elf_elfheader (ibfd)->e_flags;
2942 old_flags = elf_elfheader (obfd)->e_flags;
2943
2944 if (!elf_flags_init (obfd)) /* First call, no flags set */
2945 {
2946 elf_flags_init (obfd) = TRUE;
2947 elf_elfheader (obfd)->e_flags = new_flags;
2948 }
2949
2950 else if (new_flags == old_flags) /* Compatible flags are ok */
2951 ;
2952
2953 else /* Incompatible flags */
2954 {
2955 error = FALSE;
2956
2957 #define EF_SPARC_ISA_EXTENSIONS \
2958 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2959
2960 if ((ibfd->flags & DYNAMIC) != 0)
2961 {
2962 /* We don't want dynamic objects memory ordering and
2963 architecture to have any role. That's what dynamic linker
2964 should do. */
2965 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2966 new_flags |= (old_flags
2967 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2968 }
2969 else
2970 {
2971 /* Choose the highest architecture requirements. */
2972 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2973 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2974 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2975 && (old_flags & EF_SPARC_HAL_R1))
2976 {
2977 error = TRUE;
2978 (*_bfd_error_handler)
2979 (_("%s: linking UltraSPARC specific with HAL specific code"),
2980 bfd_archive_filename (ibfd));
2981 }
2982 /* Choose the most restrictive memory ordering. */
2983 old_mm = (old_flags & EF_SPARCV9_MM);
2984 new_mm = (new_flags & EF_SPARCV9_MM);
2985 old_flags &= ~EF_SPARCV9_MM;
2986 new_flags &= ~EF_SPARCV9_MM;
2987 if (new_mm < old_mm)
2988 old_mm = new_mm;
2989 old_flags |= old_mm;
2990 new_flags |= old_mm;
2991 }
2992
2993 /* Warn about any other mismatches */
2994 if (new_flags != old_flags)
2995 {
2996 error = TRUE;
2997 (*_bfd_error_handler)
2998 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2999 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3000 }
3001
3002 elf_elfheader (obfd)->e_flags = old_flags;
3003
3004 if (error)
3005 {
3006 bfd_set_error (bfd_error_bad_value);
3007 return FALSE;
3008 }
3009 }
3010 return TRUE;
3011 }
3012
3013 /* MARCO: Set the correct entry size for the .stab section. */
3014
3015 static bfd_boolean
3016 sparc64_elf_fake_sections (abfd, hdr, sec)
3017 bfd *abfd ATTRIBUTE_UNUSED;
3018 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3019 asection *sec;
3020 {
3021 const char *name;
3022
3023 name = bfd_get_section_name (abfd, sec);
3024
3025 if (strcmp (name, ".stab") == 0)
3026 {
3027 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3028 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3029 }
3030
3031 return TRUE;
3032 }
3033 \f
3034 /* Print a STT_REGISTER symbol to file FILE. */
3035
3036 static const char *
3037 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3038 bfd *abfd ATTRIBUTE_UNUSED;
3039 PTR filep;
3040 asymbol *symbol;
3041 {
3042 FILE *file = (FILE *) filep;
3043 int reg, type;
3044
3045 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3046 != STT_REGISTER)
3047 return NULL;
3048
3049 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3050 type = symbol->flags;
3051 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3052 ((type & BSF_LOCAL)
3053 ? (type & BSF_GLOBAL) ? '!' : 'l'
3054 : (type & BSF_GLOBAL) ? 'g' : ' '),
3055 (type & BSF_WEAK) ? 'w' : ' ');
3056 if (symbol->name == NULL || symbol->name [0] == '\0')
3057 return "#scratch";
3058 else
3059 return symbol->name;
3060 }
3061 \f
3062 /* Set the right machine number for a SPARC64 ELF file. */
3063
3064 static bfd_boolean
3065 sparc64_elf_object_p (abfd)
3066 bfd *abfd;
3067 {
3068 unsigned long mach = bfd_mach_sparc_v9;
3069
3070 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3071 mach = bfd_mach_sparc_v9b;
3072 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3073 mach = bfd_mach_sparc_v9a;
3074 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3075 }
3076
3077 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3078 standard ELF, because R_SPARC_OLO10 has secondary addend in
3079 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3080 relocation handling routines. */
3081
3082 const struct elf_size_info sparc64_elf_size_info =
3083 {
3084 sizeof (Elf64_External_Ehdr),
3085 sizeof (Elf64_External_Phdr),
3086 sizeof (Elf64_External_Shdr),
3087 sizeof (Elf64_External_Rel),
3088 sizeof (Elf64_External_Rela),
3089 sizeof (Elf64_External_Sym),
3090 sizeof (Elf64_External_Dyn),
3091 sizeof (Elf_External_Note),
3092 4, /* hash-table entry size */
3093 /* internal relocations per external relocations.
3094 For link purposes we use just 1 internal per
3095 1 external, for assembly and slurp symbol table
3096 we use 2. */
3097 1,
3098 64, /* arch_size */
3099 8, /* file_align */
3100 ELFCLASS64,
3101 EV_CURRENT,
3102 bfd_elf64_write_out_phdrs,
3103 bfd_elf64_write_shdrs_and_ehdr,
3104 sparc64_elf_write_relocs,
3105 bfd_elf64_swap_symbol_in,
3106 bfd_elf64_swap_symbol_out,
3107 sparc64_elf_slurp_reloc_table,
3108 bfd_elf64_slurp_symbol_table,
3109 bfd_elf64_swap_dyn_in,
3110 bfd_elf64_swap_dyn_out,
3111 bfd_elf64_swap_reloc_in,
3112 bfd_elf64_swap_reloc_out,
3113 bfd_elf64_swap_reloca_in,
3114 bfd_elf64_swap_reloca_out
3115 };
3116
3117 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3118 #define TARGET_BIG_NAME "elf64-sparc"
3119 #define ELF_ARCH bfd_arch_sparc
3120 #define ELF_MAXPAGESIZE 0x100000
3121
3122 /* This is the official ABI value. */
3123 #define ELF_MACHINE_CODE EM_SPARCV9
3124
3125 /* This is the value that we used before the ABI was released. */
3126 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3127
3128 #define bfd_elf64_bfd_link_hash_table_create \
3129 sparc64_elf_bfd_link_hash_table_create
3130
3131 #define elf_info_to_howto \
3132 sparc64_elf_info_to_howto
3133 #define bfd_elf64_get_reloc_upper_bound \
3134 sparc64_elf_get_reloc_upper_bound
3135 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3136 sparc64_elf_get_dynamic_reloc_upper_bound
3137 #define bfd_elf64_canonicalize_dynamic_reloc \
3138 sparc64_elf_canonicalize_dynamic_reloc
3139 #define bfd_elf64_bfd_reloc_type_lookup \
3140 sparc64_elf_reloc_type_lookup
3141 #define bfd_elf64_bfd_relax_section \
3142 sparc64_elf_relax_section
3143 #define bfd_elf64_new_section_hook \
3144 sparc64_elf_new_section_hook
3145
3146 #define elf_backend_create_dynamic_sections \
3147 _bfd_elf_create_dynamic_sections
3148 #define elf_backend_add_symbol_hook \
3149 sparc64_elf_add_symbol_hook
3150 #define elf_backend_get_symbol_type \
3151 sparc64_elf_get_symbol_type
3152 #define elf_backend_symbol_processing \
3153 sparc64_elf_symbol_processing
3154 #define elf_backend_check_relocs \
3155 sparc64_elf_check_relocs
3156 #define elf_backend_adjust_dynamic_symbol \
3157 sparc64_elf_adjust_dynamic_symbol
3158 #define elf_backend_size_dynamic_sections \
3159 sparc64_elf_size_dynamic_sections
3160 #define elf_backend_relocate_section \
3161 sparc64_elf_relocate_section
3162 #define elf_backend_finish_dynamic_symbol \
3163 sparc64_elf_finish_dynamic_symbol
3164 #define elf_backend_finish_dynamic_sections \
3165 sparc64_elf_finish_dynamic_sections
3166 #define elf_backend_print_symbol_all \
3167 sparc64_elf_print_symbol_all
3168 #define elf_backend_output_arch_syms \
3169 sparc64_elf_output_arch_syms
3170 #define bfd_elf64_bfd_merge_private_bfd_data \
3171 sparc64_elf_merge_private_bfd_data
3172 #define elf_backend_fake_sections \
3173 sparc64_elf_fake_sections
3174
3175 #define elf_backend_size_info \
3176 sparc64_elf_size_info
3177 #define elf_backend_object_p \
3178 sparc64_elf_object_p
3179 #define elf_backend_reloc_type_class \
3180 sparc64_elf_reloc_type_class
3181
3182 #define elf_backend_want_got_plt 0
3183 #define elf_backend_plt_readonly 0
3184 #define elf_backend_want_plt_sym 1
3185 #define elf_backend_rela_normal 1
3186
3187 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3188 #define elf_backend_plt_alignment 8
3189
3190 #define elf_backend_got_header_size 8
3191 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3192
3193 #include "elf64-target.h"
This page took 0.100443 seconds and 4 git commands to generate.