Have info_to_howto functions return a success/fail status. Check this result. Stop...
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57 {
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101 /* PR 17512: file: 996185f8. */
102 || (!dynamic && ELF64_R_SYM(rela.r_info) > bfd_get_symcount(abfd))
103 || (dynamic
104 && ELF64_R_SYM(rela.r_info) > bfd_get_dynamic_symcount(abfd)))
105 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
106 else
107 {
108 asymbol **ps, *s;
109
110 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
111 s = *ps;
112
113 /* Canonicalize ELF section symbols. FIXME: Why? */
114 if ((s->flags & BSF_SECTION_SYM) == 0)
115 relent->sym_ptr_ptr = ps;
116 else
117 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
118 }
119
120 relent->addend = rela.r_addend;
121
122 r_type = ELF64_R_TYPE_ID (rela.r_info);
123 if (r_type == R_SPARC_OLO10)
124 {
125 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_LO10);
126 relent[1].address = relent->address;
127 relent++;
128 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
129 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_13);
131 }
132 else
133 {
134 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, r_type);
135 if (relent->howto == NULL)
136 goto error_return;
137 }
138 }
139
140 canon_reloc_count (asect) += relent - relents;
141
142 if (allocated != NULL)
143 free (allocated);
144
145 return TRUE;
146
147 error_return:
148 if (allocated != NULL)
149 free (allocated);
150 return FALSE;
151 }
152
153 /* Read in and swap the external relocs. */
154
155 static bfd_boolean
156 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
157 asymbol **symbols, bfd_boolean dynamic)
158 {
159 struct bfd_elf_section_data * const d = elf_section_data (asect);
160 Elf_Internal_Shdr *rel_hdr;
161 Elf_Internal_Shdr *rel_hdr2;
162 bfd_size_type amt;
163
164 if (asect->relocation != NULL)
165 return TRUE;
166
167 if (! dynamic)
168 {
169 if ((asect->flags & SEC_RELOC) == 0
170 || asect->reloc_count == 0)
171 return TRUE;
172
173 rel_hdr = d->rel.hdr;
174 rel_hdr2 = d->rela.hdr;
175
176 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
177 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
178 }
179 else
180 {
181 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
182 case because relocations against this section may use the
183 dynamic symbol table, and in that case bfd_section_from_shdr
184 in elf.c does not update the RELOC_COUNT. */
185 if (asect->size == 0)
186 return TRUE;
187
188 rel_hdr = &d->this_hdr;
189 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
190 rel_hdr2 = NULL;
191 }
192
193 amt = asect->reloc_count;
194 amt *= 2 * sizeof (arelent);
195 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
196 if (asect->relocation == NULL)
197 return FALSE;
198
199 /* The elf64_sparc_slurp_one_reloc_table routine increments
200 canon_reloc_count. */
201 canon_reloc_count (asect) = 0;
202
203 if (rel_hdr
204 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
205 dynamic))
206 return FALSE;
207
208 if (rel_hdr2
209 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
210 dynamic))
211 return FALSE;
212
213 return TRUE;
214 }
215
216 /* Canonicalize the relocs. */
217
218 static long
219 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
220 arelent **relptr, asymbol **symbols)
221 {
222 arelent *tblptr;
223 unsigned int i;
224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
225
226 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
227 return -1;
228
229 tblptr = section->relocation;
230 for (i = 0; i < canon_reloc_count (section); i++)
231 *relptr++ = tblptr++;
232
233 *relptr = NULL;
234
235 return canon_reloc_count (section);
236 }
237
238
239 /* Canonicalize the dynamic relocation entries. Note that we return
240 the dynamic relocations as a single block, although they are
241 actually associated with particular sections; the interface, which
242 was designed for SunOS style shared libraries, expects that there
243 is only one set of dynamic relocs. Any section that was actually
244 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
245 the dynamic symbol table, is considered to be a dynamic reloc
246 section. */
247
248 static long
249 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
250 asymbol **syms)
251 {
252 asection *s;
253 long ret;
254
255 if (elf_dynsymtab (abfd) == 0)
256 {
257 bfd_set_error (bfd_error_invalid_operation);
258 return -1;
259 }
260
261 ret = 0;
262 for (s = abfd->sections; s != NULL; s = s->next)
263 {
264 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
265 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
266 {
267 arelent *p;
268 long count, i;
269
270 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
271 return -1;
272 count = canon_reloc_count (s);
273 p = s->relocation;
274 for (i = 0; i < count; i++)
275 *storage++ = p++;
276 ret += count;
277 }
278 }
279
280 *storage = NULL;
281
282 return ret;
283 }
284
285 /* Install a new set of internal relocs. */
286
287 static void
288 elf64_sparc_set_reloc (bfd *abfd ATTRIBUTE_UNUSED,
289 asection *asect,
290 arelent **location,
291 unsigned int count)
292 {
293 asect->orelocation = location;
294 canon_reloc_count (asect) = count;
295 }
296
297 /* Write out the relocs. */
298
299 static void
300 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
301 {
302 bfd_boolean *failedp = (bfd_boolean *) data;
303 Elf_Internal_Shdr *rela_hdr;
304 bfd_vma addr_offset;
305 Elf64_External_Rela *outbound_relocas, *src_rela;
306 unsigned int idx, count;
307 asymbol *last_sym = 0;
308 int last_sym_idx = 0;
309
310 /* If we have already failed, don't do anything. */
311 if (*failedp)
312 return;
313
314 if ((sec->flags & SEC_RELOC) == 0)
315 return;
316
317 /* The linker backend writes the relocs out itself, and sets the
318 reloc_count field to zero to inhibit writing them here. Also,
319 sometimes the SEC_RELOC flag gets set even when there aren't any
320 relocs. */
321 if (canon_reloc_count (sec) == 0)
322 return;
323
324 /* We can combine two relocs that refer to the same address
325 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
326 latter is R_SPARC_13 with no associated symbol. */
327 count = 0;
328 for (idx = 0; idx < canon_reloc_count (sec); idx++)
329 {
330 bfd_vma addr;
331
332 ++count;
333
334 addr = sec->orelocation[idx]->address;
335 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
336 && idx < canon_reloc_count (sec) - 1)
337 {
338 arelent *r = sec->orelocation[idx + 1];
339
340 if (r->howto->type == R_SPARC_13
341 && r->address == addr
342 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
343 && (*r->sym_ptr_ptr)->value == 0)
344 ++idx;
345 }
346 }
347
348 rela_hdr = elf_section_data (sec)->rela.hdr;
349
350 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
351 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
352 if (rela_hdr->contents == NULL)
353 {
354 *failedp = TRUE;
355 return;
356 }
357
358 /* Figure out whether the relocations are RELA or REL relocations. */
359 if (rela_hdr->sh_type != SHT_RELA)
360 abort ();
361
362 /* The address of an ELF reloc is section relative for an object
363 file, and absolute for an executable file or shared library.
364 The address of a BFD reloc is always section relative. */
365 addr_offset = 0;
366 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
367 addr_offset = sec->vma;
368
369 /* orelocation has the data, reloc_count has the count... */
370 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
371 src_rela = outbound_relocas;
372
373 for (idx = 0; idx < canon_reloc_count (sec); idx++)
374 {
375 Elf_Internal_Rela dst_rela;
376 arelent *ptr;
377 asymbol *sym;
378 int n;
379
380 ptr = sec->orelocation[idx];
381 sym = *ptr->sym_ptr_ptr;
382 if (sym == last_sym)
383 n = last_sym_idx;
384 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
385 n = STN_UNDEF;
386 else
387 {
388 last_sym = sym;
389 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
390 if (n < 0)
391 {
392 *failedp = TRUE;
393 return;
394 }
395 last_sym_idx = n;
396 }
397
398 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
399 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
400 && ! _bfd_elf_validate_reloc (abfd, ptr))
401 {
402 *failedp = TRUE;
403 return;
404 }
405
406 if (ptr->howto->type == R_SPARC_LO10
407 && idx < canon_reloc_count (sec) - 1)
408 {
409 arelent *r = sec->orelocation[idx + 1];
410
411 if (r->howto->type == R_SPARC_13
412 && r->address == ptr->address
413 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
414 && (*r->sym_ptr_ptr)->value == 0)
415 {
416 idx++;
417 dst_rela.r_info
418 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
419 R_SPARC_OLO10));
420 }
421 else
422 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
423 }
424 else
425 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
426
427 dst_rela.r_offset = ptr->address + addr_offset;
428 dst_rela.r_addend = ptr->addend;
429
430 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
431 ++src_rela;
432 }
433 }
434 \f
435 /* Hook called by the linker routine which adds symbols from an object
436 file. We use it for STT_REGISTER symbols. */
437
438 static bfd_boolean
439 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
440 Elf_Internal_Sym *sym, const char **namep,
441 flagword *flagsp ATTRIBUTE_UNUSED,
442 asection **secp ATTRIBUTE_UNUSED,
443 bfd_vma *valp ATTRIBUTE_UNUSED)
444 {
445 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
446
447 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
448 && (abfd->flags & DYNAMIC) == 0
449 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
450 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
451
452 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
453 {
454 int reg;
455 struct _bfd_sparc_elf_app_reg *p;
456
457 reg = (int)sym->st_value;
458 switch (reg & ~1)
459 {
460 case 2: reg -= 2; break;
461 case 6: reg -= 4; break;
462 default:
463 _bfd_error_handler
464 (_("%pB: only registers %%g[2367] can be declared using STT_REGISTER"),
465 abfd);
466 return FALSE;
467 }
468
469 if (info->output_bfd->xvec != abfd->xvec
470 || (abfd->flags & DYNAMIC) != 0)
471 {
472 /* STT_REGISTER only works when linking an elf64_sparc object.
473 If STT_REGISTER comes from a dynamic object, don't put it into
474 the output bfd. The dynamic linker will recheck it. */
475 *namep = NULL;
476 return TRUE;
477 }
478
479 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
480
481 if (p->name != NULL && strcmp (p->name, *namep))
482 {
483 _bfd_error_handler
484 /* xgettext:c-format */
485 (_("register %%g%d used incompatibly: %s in %pB,"
486 " previously %s in %pB"),
487 (int) sym->st_value, **namep ? *namep : "#scratch", abfd,
488 *p->name ? p->name : "#scratch", p->abfd);
489 return FALSE;
490 }
491
492 if (p->name == NULL)
493 {
494 if (**namep)
495 {
496 struct elf_link_hash_entry *h;
497
498 h = (struct elf_link_hash_entry *)
499 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
500
501 if (h != NULL)
502 {
503 unsigned char type = h->type;
504
505 if (type > STT_FUNC)
506 type = 0;
507 _bfd_error_handler
508 /* xgettext:c-format */
509 (_("symbol `%s' has differing types: REGISTER in %pB,"
510 " previously %s in %pB"),
511 *namep, abfd, stt_types[type], p->abfd);
512 return FALSE;
513 }
514
515 p->name = bfd_hash_allocate (&info->hash->table,
516 strlen (*namep) + 1);
517 if (!p->name)
518 return FALSE;
519
520 strcpy (p->name, *namep);
521 }
522 else
523 p->name = "";
524 p->bind = ELF_ST_BIND (sym->st_info);
525 p->abfd = abfd;
526 p->shndx = sym->st_shndx;
527 }
528 else
529 {
530 if (p->bind == STB_WEAK
531 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
532 {
533 p->bind = STB_GLOBAL;
534 p->abfd = abfd;
535 }
536 }
537 *namep = NULL;
538 return TRUE;
539 }
540 else if (*namep && **namep
541 && info->output_bfd->xvec == abfd->xvec)
542 {
543 int i;
544 struct _bfd_sparc_elf_app_reg *p;
545
546 p = _bfd_sparc_elf_hash_table(info)->app_regs;
547 for (i = 0; i < 4; i++, p++)
548 if (p->name != NULL && ! strcmp (p->name, *namep))
549 {
550 unsigned char type = ELF_ST_TYPE (sym->st_info);
551
552 if (type > STT_FUNC)
553 type = 0;
554 _bfd_error_handler
555 /* xgettext:c-format */
556 (_("Symbol `%s' has differing types: %s in %pB,"
557 " previously REGISTER in %pB"),
558 *namep, stt_types[type], abfd, p->abfd);
559 return FALSE;
560 }
561 }
562 return TRUE;
563 }
564
565 /* This function takes care of emitting STT_REGISTER symbols
566 which we cannot easily keep in the symbol hash table. */
567
568 static bfd_boolean
569 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
570 struct bfd_link_info *info,
571 void * flaginfo,
572 int (*func) (void *, const char *,
573 Elf_Internal_Sym *,
574 asection *,
575 struct elf_link_hash_entry *))
576 {
577 int reg;
578 struct _bfd_sparc_elf_app_reg *app_regs =
579 _bfd_sparc_elf_hash_table(info)->app_regs;
580 Elf_Internal_Sym sym;
581
582 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
583 at the end of the dynlocal list, so they came at the end of the local
584 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
585 to back up symtab->sh_info. */
586 if (elf_hash_table (info)->dynlocal)
587 {
588 bfd * dynobj = elf_hash_table (info)->dynobj;
589 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
590 struct elf_link_local_dynamic_entry *e;
591
592 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
593 if (e->input_indx == -1)
594 break;
595 if (e)
596 {
597 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
598 = e->dynindx;
599 }
600 }
601
602 if (info->strip == strip_all)
603 return TRUE;
604
605 for (reg = 0; reg < 4; reg++)
606 if (app_regs [reg].name != NULL)
607 {
608 if (info->strip == strip_some
609 && bfd_hash_lookup (info->keep_hash,
610 app_regs [reg].name,
611 FALSE, FALSE) == NULL)
612 continue;
613
614 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
615 sym.st_size = 0;
616 sym.st_other = 0;
617 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
618 sym.st_shndx = app_regs [reg].shndx;
619 sym.st_target_internal = 0;
620 if ((*func) (flaginfo, app_regs [reg].name, &sym,
621 sym.st_shndx == SHN_ABS
622 ? bfd_abs_section_ptr : bfd_und_section_ptr,
623 NULL) != 1)
624 return FALSE;
625 }
626
627 return TRUE;
628 }
629
630 static int
631 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
632 {
633 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
634 return STT_REGISTER;
635 else
636 return type;
637 }
638
639 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
640 even in SHN_UNDEF section. */
641
642 static void
643 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
644 {
645 elf_symbol_type *elfsym;
646
647 elfsym = (elf_symbol_type *) asym;
648 if (elfsym->internal_elf_sym.st_info
649 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
650 {
651 asym->flags |= BSF_GLOBAL;
652 }
653 }
654
655 \f
656 /* Functions for dealing with the e_flags field. */
657
658 /* Merge backend specific data from an object file to the output
659 object file when linking. */
660
661 static bfd_boolean
662 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
663 {
664 bfd *obfd = info->output_bfd;
665 bfd_boolean error;
666 flagword new_flags, old_flags;
667 int new_mm, old_mm;
668
669 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
670 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
671 return TRUE;
672
673 new_flags = elf_elfheader (ibfd)->e_flags;
674 old_flags = elf_elfheader (obfd)->e_flags;
675
676 if (!elf_flags_init (obfd)) /* First call, no flags set */
677 {
678 elf_flags_init (obfd) = TRUE;
679 elf_elfheader (obfd)->e_flags = new_flags;
680 }
681
682 else if (new_flags == old_flags) /* Compatible flags are ok */
683 ;
684
685 else /* Incompatible flags */
686 {
687 error = FALSE;
688
689 #define EF_SPARC_ISA_EXTENSIONS \
690 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
691
692 if ((ibfd->flags & DYNAMIC) != 0)
693 {
694 /* We don't want dynamic objects memory ordering and
695 architecture to have any role. That's what dynamic linker
696 should do. */
697 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
698 new_flags |= (old_flags
699 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
700 }
701 else
702 {
703 /* Choose the highest architecture requirements. */
704 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
705 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
706 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
707 && (old_flags & EF_SPARC_HAL_R1))
708 {
709 error = TRUE;
710 _bfd_error_handler
711 (_("%pB: linking UltraSPARC specific with HAL specific code"),
712 ibfd);
713 }
714 /* Choose the most restrictive memory ordering. */
715 old_mm = (old_flags & EF_SPARCV9_MM);
716 new_mm = (new_flags & EF_SPARCV9_MM);
717 old_flags &= ~EF_SPARCV9_MM;
718 new_flags &= ~EF_SPARCV9_MM;
719 if (new_mm < old_mm)
720 old_mm = new_mm;
721 old_flags |= old_mm;
722 new_flags |= old_mm;
723 }
724
725 /* Warn about any other mismatches */
726 if (new_flags != old_flags)
727 {
728 error = TRUE;
729 _bfd_error_handler
730 /* xgettext:c-format */
731 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
732 ibfd, new_flags, old_flags);
733 }
734
735 elf_elfheader (obfd)->e_flags = old_flags;
736
737 if (error)
738 {
739 bfd_set_error (bfd_error_bad_value);
740 return FALSE;
741 }
742 }
743 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
744 }
745
746 /* MARCO: Set the correct entry size for the .stab section. */
747
748 static bfd_boolean
749 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
750 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
751 asection *sec)
752 {
753 const char *name;
754
755 name = bfd_get_section_name (abfd, sec);
756
757 if (strcmp (name, ".stab") == 0)
758 {
759 /* Even in the 64bit case the stab entries are only 12 bytes long. */
760 elf_section_data (sec)->this_hdr.sh_entsize = 12;
761 }
762
763 return TRUE;
764 }
765 \f
766 /* Print a STT_REGISTER symbol to file FILE. */
767
768 static const char *
769 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
770 asymbol *symbol)
771 {
772 FILE *file = (FILE *) filep;
773 int reg, type;
774
775 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
776 != STT_REGISTER)
777 return NULL;
778
779 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
780 type = symbol->flags;
781 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
782 ((type & BSF_LOCAL)
783 ? (type & BSF_GLOBAL) ? '!' : 'l'
784 : (type & BSF_GLOBAL) ? 'g' : ' '),
785 (type & BSF_WEAK) ? 'w' : ' ');
786 if (symbol->name == NULL || symbol->name [0] == '\0')
787 return "#scratch";
788 else
789 return symbol->name;
790 }
791 \f
792 static enum elf_reloc_type_class
793 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
794 const asection *rel_sec ATTRIBUTE_UNUSED,
795 const Elf_Internal_Rela *rela)
796 {
797 switch ((int) ELF64_R_TYPE (rela->r_info))
798 {
799 case R_SPARC_RELATIVE:
800 return reloc_class_relative;
801 case R_SPARC_JMP_SLOT:
802 return reloc_class_plt;
803 case R_SPARC_COPY:
804 return reloc_class_copy;
805 default:
806 return reloc_class_normal;
807 }
808 }
809
810 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
811 standard ELF, because R_SPARC_OLO10 has secondary addend in
812 ELF64_R_TYPE_DATA field. This structure is used to redirect the
813 relocation handling routines. */
814
815 const struct elf_size_info elf64_sparc_size_info =
816 {
817 sizeof (Elf64_External_Ehdr),
818 sizeof (Elf64_External_Phdr),
819 sizeof (Elf64_External_Shdr),
820 sizeof (Elf64_External_Rel),
821 sizeof (Elf64_External_Rela),
822 sizeof (Elf64_External_Sym),
823 sizeof (Elf64_External_Dyn),
824 sizeof (Elf_External_Note),
825 4, /* hash-table entry size. */
826 /* Internal relocations per external relocations.
827 For link purposes we use just 1 internal per
828 1 external, for assembly and slurp symbol table
829 we use 2. */
830 1,
831 64, /* arch_size. */
832 3, /* log_file_align. */
833 ELFCLASS64,
834 EV_CURRENT,
835 bfd_elf64_write_out_phdrs,
836 bfd_elf64_write_shdrs_and_ehdr,
837 bfd_elf64_checksum_contents,
838 elf64_sparc_write_relocs,
839 bfd_elf64_swap_symbol_in,
840 bfd_elf64_swap_symbol_out,
841 elf64_sparc_slurp_reloc_table,
842 bfd_elf64_slurp_symbol_table,
843 bfd_elf64_swap_dyn_in,
844 bfd_elf64_swap_dyn_out,
845 bfd_elf64_swap_reloc_in,
846 bfd_elf64_swap_reloc_out,
847 bfd_elf64_swap_reloca_in,
848 bfd_elf64_swap_reloca_out
849 };
850
851 #define TARGET_BIG_SYM sparc_elf64_vec
852 #define TARGET_BIG_NAME "elf64-sparc"
853 #define ELF_ARCH bfd_arch_sparc
854 #define ELF_MAXPAGESIZE 0x100000
855 #define ELF_COMMONPAGESIZE 0x2000
856
857 /* This is the official ABI value. */
858 #define ELF_MACHINE_CODE EM_SPARCV9
859
860 /* This is the value that we used before the ABI was released. */
861 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
862
863 #define elf_backend_reloc_type_class \
864 elf64_sparc_reloc_type_class
865 #define bfd_elf64_get_reloc_upper_bound \
866 elf64_sparc_get_reloc_upper_bound
867 #define bfd_elf64_get_dynamic_reloc_upper_bound \
868 elf64_sparc_get_dynamic_reloc_upper_bound
869 #define bfd_elf64_canonicalize_reloc \
870 elf64_sparc_canonicalize_reloc
871 #define bfd_elf64_canonicalize_dynamic_reloc \
872 elf64_sparc_canonicalize_dynamic_reloc
873 #define bfd_elf64_set_reloc \
874 elf64_sparc_set_reloc
875 #define elf_backend_add_symbol_hook \
876 elf64_sparc_add_symbol_hook
877 #define elf_backend_get_symbol_type \
878 elf64_sparc_get_symbol_type
879 #define elf_backend_symbol_processing \
880 elf64_sparc_symbol_processing
881 #define elf_backend_print_symbol_all \
882 elf64_sparc_print_symbol_all
883 #define elf_backend_output_arch_syms \
884 elf64_sparc_output_arch_syms
885 #define bfd_elf64_bfd_merge_private_bfd_data \
886 elf64_sparc_merge_private_bfd_data
887 #define elf_backend_fake_sections \
888 elf64_sparc_fake_sections
889 #define elf_backend_size_info \
890 elf64_sparc_size_info
891
892 #define elf_backend_plt_sym_val \
893 _bfd_sparc_elf_plt_sym_val
894 #define bfd_elf64_bfd_link_hash_table_create \
895 _bfd_sparc_elf_link_hash_table_create
896 #define elf_info_to_howto \
897 _bfd_sparc_elf_info_to_howto
898 #define elf_backend_copy_indirect_symbol \
899 _bfd_sparc_elf_copy_indirect_symbol
900 #define bfd_elf64_bfd_reloc_type_lookup \
901 _bfd_sparc_elf_reloc_type_lookup
902 #define bfd_elf64_bfd_reloc_name_lookup \
903 _bfd_sparc_elf_reloc_name_lookup
904 #define bfd_elf64_bfd_relax_section \
905 _bfd_sparc_elf_relax_section
906 #define bfd_elf64_new_section_hook \
907 _bfd_sparc_elf_new_section_hook
908
909 #define elf_backend_create_dynamic_sections \
910 _bfd_sparc_elf_create_dynamic_sections
911 #define elf_backend_relocs_compatible \
912 _bfd_elf_relocs_compatible
913 #define elf_backend_check_relocs \
914 _bfd_sparc_elf_check_relocs
915 #define elf_backend_adjust_dynamic_symbol \
916 _bfd_sparc_elf_adjust_dynamic_symbol
917 #define elf_backend_omit_section_dynsym \
918 _bfd_sparc_elf_omit_section_dynsym
919 #define elf_backend_size_dynamic_sections \
920 _bfd_sparc_elf_size_dynamic_sections
921 #define elf_backend_relocate_section \
922 _bfd_sparc_elf_relocate_section
923 #define elf_backend_finish_dynamic_symbol \
924 _bfd_sparc_elf_finish_dynamic_symbol
925 #define elf_backend_finish_dynamic_sections \
926 _bfd_sparc_elf_finish_dynamic_sections
927 #define elf_backend_fixup_symbol \
928 _bfd_sparc_elf_fixup_symbol
929
930 #define bfd_elf64_mkobject \
931 _bfd_sparc_elf_mkobject
932 #define elf_backend_object_p \
933 _bfd_sparc_elf_object_p
934 #define elf_backend_gc_mark_hook \
935 _bfd_sparc_elf_gc_mark_hook
936 #define elf_backend_init_index_section \
937 _bfd_elf_init_1_index_section
938
939 #define elf_backend_can_gc_sections 1
940 #define elf_backend_can_refcount 1
941 #define elf_backend_want_got_plt 0
942 #define elf_backend_plt_readonly 0
943 #define elf_backend_want_plt_sym 1
944 #define elf_backend_got_header_size 8
945 #define elf_backend_want_dynrelro 1
946 #define elf_backend_rela_normal 1
947
948 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
949 #define elf_backend_plt_alignment 8
950
951 #include "elf64-target.h"
952
953 /* FreeBSD support */
954 #undef TARGET_BIG_SYM
955 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
956 #undef TARGET_BIG_NAME
957 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
958 #undef ELF_OSABI
959 #define ELF_OSABI ELFOSABI_FREEBSD
960
961 #undef elf64_bed
962 #define elf64_bed elf64_sparc_fbsd_bed
963
964 #include "elf64-target.h"
965
966 /* Solaris 2. */
967
968 #undef TARGET_BIG_SYM
969 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
970 #undef TARGET_BIG_NAME
971 #define TARGET_BIG_NAME "elf64-sparc-sol2"
972
973 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
974 objects won't be recognized. */
975 #undef ELF_OSABI
976
977 #undef elf64_bed
978 #define elf64_bed elf64_sparc_sol2_bed
979
980 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
981 boundary. */
982 #undef elf_backend_static_tls_alignment
983 #define elf_backend_static_tls_alignment 16
984
985 #include "elf64-target.h"
This page took 0.051484 seconds and 4 git commands to generate.