Display the contents of a .debug.macinfo section
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS((bfd *));
39 static reloc_howto_type *sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd *, bfd_reloc_code_real_type));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43
44 static void sparc64_elf_build_plt
45 PARAMS((bfd *, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
47 PARAMS((int));
48 static bfd_vma sparc64_elf_plt_ptr_offset
49 PARAMS((int, int));
50
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
53 const Elf_Internal_Rela *));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd *, struct bfd_link_info *));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym *, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
62 const char **, flagword *, asection **, bfd_vma *));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd *, asymbol *));
65
66 static boolean sparc64_elf_copy_private_bfd_data
67 PARAMS ((bfd *, bfd *));
68 static boolean sparc64_elf_merge_private_bfd_data
69 PARAMS ((bfd *, bfd *));
70
71 static boolean sparc64_elf_relax_section
72 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
73 static boolean sparc64_elf_relocate_section
74 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
75 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
76 static boolean sparc64_elf_object_p PARAMS ((bfd *));
77 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
78 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
79 static boolean sparc64_elf_slurp_one_reloc_table
80 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
81 static boolean sparc64_elf_slurp_reloc_table
82 PARAMS ((bfd *, asection *, asymbol **, boolean));
83 static long sparc64_elf_canonicalize_dynamic_reloc
84 PARAMS ((bfd *, arelent **, asymbol **));
85 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
86 \f
87 /* The relocation "howto" table. */
88
89 static bfd_reloc_status_type sparc_elf_notsup_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
92 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static bfd_reloc_status_type sparc_elf_hix22_reloc
94 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
95 static bfd_reloc_status_type sparc_elf_lox10_reloc
96 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
97
98 static reloc_howto_type sparc64_elf_howto_table[] =
99 {
100 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
101 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
102 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
103 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
104 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
105 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
106 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
107 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
108 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
110 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
111 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
112 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
113 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
114 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
115 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
117 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
118 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
119 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
120 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
121 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
122 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
123 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
124 #ifndef SPARC64_OLD_RELOCS
125 /* These aren't implemented yet. */
126 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
127 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
128 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
130 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
131 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
132 #endif
133 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
134 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
135 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
136 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
137 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
139 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
140 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
142 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
143 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
144 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
145 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
146 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
147 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
148 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
149 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
150 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
152 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
153 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
154 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
155 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
156 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
157 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
158 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
159 };
160
161 struct elf_reloc_map {
162 bfd_reloc_code_real_type bfd_reloc_val;
163 unsigned char elf_reloc_val;
164 };
165
166 static CONST struct elf_reloc_map sparc_reloc_map[] =
167 {
168 { BFD_RELOC_NONE, R_SPARC_NONE, },
169 { BFD_RELOC_16, R_SPARC_16, },
170 { BFD_RELOC_8, R_SPARC_8 },
171 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
172 { BFD_RELOC_CTOR, R_SPARC_64 },
173 { BFD_RELOC_32, R_SPARC_32 },
174 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
175 { BFD_RELOC_HI22, R_SPARC_HI22 },
176 { BFD_RELOC_LO10, R_SPARC_LO10, },
177 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
178 { BFD_RELOC_SPARC22, R_SPARC_22 },
179 { BFD_RELOC_SPARC13, R_SPARC_13 },
180 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
181 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
182 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
183 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
184 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
185 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
186 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
187 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
188 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
189 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
190 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
191 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
192 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
193 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
194 { BFD_RELOC_SPARC_10, R_SPARC_10 },
195 { BFD_RELOC_SPARC_11, R_SPARC_11 },
196 { BFD_RELOC_SPARC_64, R_SPARC_64 },
197 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
198 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
199 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
200 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
201 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
202 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
203 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
204 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
205 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
206 { BFD_RELOC_SPARC_7, R_SPARC_7 },
207 { BFD_RELOC_SPARC_5, R_SPARC_5 },
208 { BFD_RELOC_SPARC_6, R_SPARC_6 },
209 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
210 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
211 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
212 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
213 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
214 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
215 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
216 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
217 };
218
219 static reloc_howto_type *
220 sparc64_elf_reloc_type_lookup (abfd, code)
221 bfd *abfd ATTRIBUTE_UNUSED;
222 bfd_reloc_code_real_type code;
223 {
224 unsigned int i;
225 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
226 {
227 if (sparc_reloc_map[i].bfd_reloc_val == code)
228 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
229 }
230 return 0;
231 }
232
233 static void
234 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
235 bfd *abfd ATTRIBUTE_UNUSED;
236 arelent *cache_ptr;
237 Elf64_Internal_Rela *dst;
238 {
239 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
240 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
241 }
242 \f
243 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
244 section can represent up to two relocs, we must tell the user to allocate
245 more space. */
246
247 static long
248 sparc64_elf_get_reloc_upper_bound (abfd, sec)
249 bfd *abfd ATTRIBUTE_UNUSED;
250 asection *sec;
251 {
252 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
253 }
254
255 static long
256 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
257 bfd *abfd;
258 {
259 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
260 }
261
262 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
263 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
264 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
265 for the same location, R_SPARC_LO10 and R_SPARC_13. */
266
267 static boolean
268 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
269 bfd *abfd;
270 asection *asect;
271 Elf_Internal_Shdr *rel_hdr;
272 asymbol **symbols;
273 boolean dynamic;
274 {
275 PTR allocated = NULL;
276 bfd_byte *native_relocs;
277 arelent *relent;
278 unsigned int i;
279 int entsize;
280 bfd_size_type count;
281 arelent *relents;
282
283 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
284 if (allocated == NULL)
285 goto error_return;
286
287 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
288 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
289 != rel_hdr->sh_size))
290 goto error_return;
291
292 native_relocs = (bfd_byte *) allocated;
293
294 relents = asect->relocation + asect->reloc_count;
295
296 entsize = rel_hdr->sh_entsize;
297 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
298
299 count = rel_hdr->sh_size / entsize;
300
301 for (i = 0, relent = relents; i < count;
302 i++, relent++, native_relocs += entsize)
303 {
304 Elf_Internal_Rela rela;
305
306 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
307
308 /* The address of an ELF reloc is section relative for an object
309 file, and absolute for an executable file or shared library.
310 The address of a normal BFD reloc is always section relative,
311 and the address of a dynamic reloc is absolute.. */
312 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
313 relent->address = rela.r_offset;
314 else
315 relent->address = rela.r_offset - asect->vma;
316
317 if (ELF64_R_SYM (rela.r_info) == 0)
318 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
319 else
320 {
321 asymbol **ps, *s;
322
323 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
324 s = *ps;
325
326 /* Canonicalize ELF section symbols. FIXME: Why? */
327 if ((s->flags & BSF_SECTION_SYM) == 0)
328 relent->sym_ptr_ptr = ps;
329 else
330 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
331 }
332
333 relent->addend = rela.r_addend;
334
335 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
336 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
337 {
338 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
339 relent[1].address = relent->address;
340 relent++;
341 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
342 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
343 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
344 }
345 else
346 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
347 }
348
349 asect->reloc_count += relent - relents;
350
351 if (allocated != NULL)
352 free (allocated);
353
354 return true;
355
356 error_return:
357 if (allocated != NULL)
358 free (allocated);
359 return false;
360 }
361
362 /* Read in and swap the external relocs. */
363
364 static boolean
365 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
366 bfd *abfd;
367 asection *asect;
368 asymbol **symbols;
369 boolean dynamic;
370 {
371 struct bfd_elf_section_data * const d = elf_section_data (asect);
372 Elf_Internal_Shdr *rel_hdr;
373 Elf_Internal_Shdr *rel_hdr2;
374
375 if (asect->relocation != NULL)
376 return true;
377
378 if (! dynamic)
379 {
380 if ((asect->flags & SEC_RELOC) == 0
381 || asect->reloc_count == 0)
382 return true;
383
384 rel_hdr = &d->rel_hdr;
385 rel_hdr2 = d->rel_hdr2;
386
387 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
388 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
389 }
390 else
391 {
392 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
393 case because relocations against this section may use the
394 dynamic symbol table, and in that case bfd_section_from_shdr
395 in elf.c does not update the RELOC_COUNT. */
396 if (asect->_raw_size == 0)
397 return true;
398
399 rel_hdr = &d->this_hdr;
400 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
401 rel_hdr2 = NULL;
402 }
403
404 asect->relocation = ((arelent *)
405 bfd_alloc (abfd,
406 asect->reloc_count * 2 * sizeof (arelent)));
407 if (asect->relocation == NULL)
408 return false;
409
410 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
411 asect->reloc_count = 0;
412
413 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
414 dynamic))
415 return false;
416
417 if (rel_hdr2
418 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
419 dynamic))
420 return false;
421
422 return true;
423 }
424
425 /* Canonicalize the dynamic relocation entries. Note that we return
426 the dynamic relocations as a single block, although they are
427 actually associated with particular sections; the interface, which
428 was designed for SunOS style shared libraries, expects that there
429 is only one set of dynamic relocs. Any section that was actually
430 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
431 the dynamic symbol table, is considered to be a dynamic reloc
432 section. */
433
434 static long
435 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
436 bfd *abfd;
437 arelent **storage;
438 asymbol **syms;
439 {
440 asection *s;
441 long ret;
442
443 if (elf_dynsymtab (abfd) == 0)
444 {
445 bfd_set_error (bfd_error_invalid_operation);
446 return -1;
447 }
448
449 ret = 0;
450 for (s = abfd->sections; s != NULL; s = s->next)
451 {
452 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
453 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
454 {
455 arelent *p;
456 long count, i;
457
458 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
459 return -1;
460 count = s->reloc_count;
461 p = s->relocation;
462 for (i = 0; i < count; i++)
463 *storage++ = p++;
464 ret += count;
465 }
466 }
467
468 *storage = NULL;
469
470 return ret;
471 }
472
473 /* Write out the relocs. */
474
475 static void
476 sparc64_elf_write_relocs (abfd, sec, data)
477 bfd *abfd;
478 asection *sec;
479 PTR data;
480 {
481 boolean *failedp = (boolean *) data;
482 Elf_Internal_Shdr *rela_hdr;
483 Elf64_External_Rela *outbound_relocas, *src_rela;
484 unsigned int idx, count;
485 asymbol *last_sym = 0;
486 int last_sym_idx = 0;
487
488 /* If we have already failed, don't do anything. */
489 if (*failedp)
490 return;
491
492 if ((sec->flags & SEC_RELOC) == 0)
493 return;
494
495 /* The linker backend writes the relocs out itself, and sets the
496 reloc_count field to zero to inhibit writing them here. Also,
497 sometimes the SEC_RELOC flag gets set even when there aren't any
498 relocs. */
499 if (sec->reloc_count == 0)
500 return;
501
502 /* We can combine two relocs that refer to the same address
503 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
504 latter is R_SPARC_13 with no associated symbol. */
505 count = 0;
506 for (idx = 0; idx < sec->reloc_count; idx++)
507 {
508 bfd_vma addr;
509
510 ++count;
511
512 addr = sec->orelocation[idx]->address;
513 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
514 && idx < sec->reloc_count - 1)
515 {
516 arelent *r = sec->orelocation[idx + 1];
517
518 if (r->howto->type == R_SPARC_13
519 && r->address == addr
520 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
521 && (*r->sym_ptr_ptr)->value == 0)
522 ++idx;
523 }
524 }
525
526 rela_hdr = &elf_section_data (sec)->rel_hdr;
527
528 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
529 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
530 if (rela_hdr->contents == NULL)
531 {
532 *failedp = true;
533 return;
534 }
535
536 /* Figure out whether the relocations are RELA or REL relocations. */
537 if (rela_hdr->sh_type != SHT_RELA)
538 abort ();
539
540 /* orelocation has the data, reloc_count has the count... */
541 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
542 src_rela = outbound_relocas;
543
544 for (idx = 0; idx < sec->reloc_count; idx++)
545 {
546 Elf_Internal_Rela dst_rela;
547 arelent *ptr;
548 asymbol *sym;
549 int n;
550
551 ptr = sec->orelocation[idx];
552
553 /* The address of an ELF reloc is section relative for an object
554 file, and absolute for an executable file or shared library.
555 The address of a BFD reloc is always section relative. */
556 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
557 dst_rela.r_offset = ptr->address;
558 else
559 dst_rela.r_offset = ptr->address + sec->vma;
560
561 sym = *ptr->sym_ptr_ptr;
562 if (sym == last_sym)
563 n = last_sym_idx;
564 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
565 n = STN_UNDEF;
566 else
567 {
568 last_sym = sym;
569 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
570 if (n < 0)
571 {
572 *failedp = true;
573 return;
574 }
575 last_sym_idx = n;
576 }
577
578 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
579 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
580 && ! _bfd_elf_validate_reloc (abfd, ptr))
581 {
582 *failedp = true;
583 return;
584 }
585
586 if (ptr->howto->type == R_SPARC_LO10
587 && idx < sec->reloc_count - 1)
588 {
589 arelent *r = sec->orelocation[idx + 1];
590
591 if (r->howto->type == R_SPARC_13
592 && r->address == ptr->address
593 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
594 && (*r->sym_ptr_ptr)->value == 0)
595 {
596 idx++;
597 dst_rela.r_info
598 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
599 R_SPARC_OLO10));
600 }
601 else
602 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
603 }
604 else
605 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
606
607 dst_rela.r_addend = ptr->addend;
608 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
609 ++src_rela;
610 }
611 }
612 \f
613 /* Sparc64 ELF linker hash table. */
614
615 struct sparc64_elf_app_reg
616 {
617 unsigned char bind;
618 unsigned short shndx;
619 bfd *abfd;
620 char *name;
621 };
622
623 struct sparc64_elf_link_hash_table
624 {
625 struct elf_link_hash_table root;
626
627 struct sparc64_elf_app_reg app_regs [4];
628 };
629
630 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
631
632 #define sparc64_elf_hash_table(p) \
633 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
634
635 /* Create a Sparc64 ELF linker hash table. */
636
637 static struct bfd_link_hash_table *
638 sparc64_elf_bfd_link_hash_table_create (abfd)
639 bfd *abfd;
640 {
641 struct sparc64_elf_link_hash_table *ret;
642
643 ret = ((struct sparc64_elf_link_hash_table *)
644 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
645 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
646 return NULL;
647
648 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
649 _bfd_elf_link_hash_newfunc))
650 {
651 bfd_release (abfd, ret);
652 return NULL;
653 }
654
655 return &ret->root.root;
656 }
657 \f
658 /* Utility for performing the standard initial work of an instruction
659 relocation.
660 *PRELOCATION will contain the relocated item.
661 *PINSN will contain the instruction from the input stream.
662 If the result is `bfd_reloc_other' the caller can continue with
663 performing the relocation. Otherwise it must stop and return the
664 value to its caller. */
665
666 static bfd_reloc_status_type
667 init_insn_reloc (abfd,
668 reloc_entry,
669 symbol,
670 data,
671 input_section,
672 output_bfd,
673 prelocation,
674 pinsn)
675 bfd *abfd;
676 arelent *reloc_entry;
677 asymbol *symbol;
678 PTR data;
679 asection *input_section;
680 bfd *output_bfd;
681 bfd_vma *prelocation;
682 bfd_vma *pinsn;
683 {
684 bfd_vma relocation;
685 reloc_howto_type *howto = reloc_entry->howto;
686
687 if (output_bfd != (bfd *) NULL
688 && (symbol->flags & BSF_SECTION_SYM) == 0
689 && (! howto->partial_inplace
690 || reloc_entry->addend == 0))
691 {
692 reloc_entry->address += input_section->output_offset;
693 return bfd_reloc_ok;
694 }
695
696 /* This works because partial_inplace == false. */
697 if (output_bfd != NULL)
698 return bfd_reloc_continue;
699
700 if (reloc_entry->address > input_section->_cooked_size)
701 return bfd_reloc_outofrange;
702
703 relocation = (symbol->value
704 + symbol->section->output_section->vma
705 + symbol->section->output_offset);
706 relocation += reloc_entry->addend;
707 if (howto->pc_relative)
708 {
709 relocation -= (input_section->output_section->vma
710 + input_section->output_offset);
711 relocation -= reloc_entry->address;
712 }
713
714 *prelocation = relocation;
715 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
716 return bfd_reloc_other;
717 }
718
719 /* For unsupported relocs. */
720
721 static bfd_reloc_status_type
722 sparc_elf_notsup_reloc (abfd,
723 reloc_entry,
724 symbol,
725 data,
726 input_section,
727 output_bfd,
728 error_message)
729 bfd *abfd ATTRIBUTE_UNUSED;
730 arelent *reloc_entry ATTRIBUTE_UNUSED;
731 asymbol *symbol ATTRIBUTE_UNUSED;
732 PTR data ATTRIBUTE_UNUSED;
733 asection *input_section ATTRIBUTE_UNUSED;
734 bfd *output_bfd ATTRIBUTE_UNUSED;
735 char **error_message ATTRIBUTE_UNUSED;
736 {
737 return bfd_reloc_notsupported;
738 }
739
740 /* Handle the WDISP16 reloc. */
741
742 static bfd_reloc_status_type
743 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
744 output_bfd, error_message)
745 bfd *abfd;
746 arelent *reloc_entry;
747 asymbol *symbol;
748 PTR data;
749 asection *input_section;
750 bfd *output_bfd;
751 char **error_message ATTRIBUTE_UNUSED;
752 {
753 bfd_vma relocation;
754 bfd_vma insn;
755 bfd_reloc_status_type status;
756
757 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
758 input_section, output_bfd, &relocation, &insn);
759 if (status != bfd_reloc_other)
760 return status;
761
762 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
763 | ((relocation >> 2) & 0x3fff));
764 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
765
766 if ((bfd_signed_vma) relocation < - 0x40000
767 || (bfd_signed_vma) relocation > 0x3ffff)
768 return bfd_reloc_overflow;
769 else
770 return bfd_reloc_ok;
771 }
772
773 /* Handle the HIX22 reloc. */
774
775 static bfd_reloc_status_type
776 sparc_elf_hix22_reloc (abfd,
777 reloc_entry,
778 symbol,
779 data,
780 input_section,
781 output_bfd,
782 error_message)
783 bfd *abfd;
784 arelent *reloc_entry;
785 asymbol *symbol;
786 PTR data;
787 asection *input_section;
788 bfd *output_bfd;
789 char **error_message ATTRIBUTE_UNUSED;
790 {
791 bfd_vma relocation;
792 bfd_vma insn;
793 bfd_reloc_status_type status;
794
795 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
796 input_section, output_bfd, &relocation, &insn);
797 if (status != bfd_reloc_other)
798 return status;
799
800 relocation ^= MINUS_ONE;
801 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
802 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
803
804 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
805 return bfd_reloc_overflow;
806 else
807 return bfd_reloc_ok;
808 }
809
810 /* Handle the LOX10 reloc. */
811
812 static bfd_reloc_status_type
813 sparc_elf_lox10_reloc (abfd,
814 reloc_entry,
815 symbol,
816 data,
817 input_section,
818 output_bfd,
819 error_message)
820 bfd *abfd;
821 arelent *reloc_entry;
822 asymbol *symbol;
823 PTR data;
824 asection *input_section;
825 bfd *output_bfd;
826 char **error_message ATTRIBUTE_UNUSED;
827 {
828 bfd_vma relocation;
829 bfd_vma insn;
830 bfd_reloc_status_type status;
831
832 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
833 input_section, output_bfd, &relocation, &insn);
834 if (status != bfd_reloc_other)
835 return status;
836
837 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
838 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
839
840 return bfd_reloc_ok;
841 }
842 \f
843 /* PLT/GOT stuff */
844
845 /* Both the headers and the entries are icache aligned. */
846 #define PLT_ENTRY_SIZE 32
847 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
848 #define LARGE_PLT_THRESHOLD 32768
849 #define GOT_RESERVED_ENTRIES 1
850
851 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
852
853 /* Fill in the .plt section. */
854
855 static void
856 sparc64_elf_build_plt (output_bfd, contents, nentries)
857 bfd *output_bfd;
858 unsigned char *contents;
859 int nentries;
860 {
861 const unsigned int nop = 0x01000000;
862 int i, j;
863
864 /* The first four entries are reserved, and are initially undefined.
865 We fill them with `illtrap 0' to force ld.so to do something. */
866
867 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
868 bfd_put_32 (output_bfd, 0, contents+i*4);
869
870 /* The first 32768 entries are close enough to plt1 to get there via
871 a straight branch. */
872
873 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
874 {
875 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
876 unsigned int sethi, ba;
877
878 /* sethi (. - plt0), %g1 */
879 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
880
881 /* ba,a,pt %xcc, plt1 */
882 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
883
884 bfd_put_32 (output_bfd, sethi, entry);
885 bfd_put_32 (output_bfd, ba, entry+4);
886 bfd_put_32 (output_bfd, nop, entry+8);
887 bfd_put_32 (output_bfd, nop, entry+12);
888 bfd_put_32 (output_bfd, nop, entry+16);
889 bfd_put_32 (output_bfd, nop, entry+20);
890 bfd_put_32 (output_bfd, nop, entry+24);
891 bfd_put_32 (output_bfd, nop, entry+28);
892 }
893
894 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
895 160: 160 entries and 160 pointers. This is to separate code from data,
896 which is much friendlier on the cache. */
897
898 for (; i < nentries; i += 160)
899 {
900 int block = (i + 160 <= nentries ? 160 : nentries - i);
901 for (j = 0; j < block; ++j)
902 {
903 unsigned char *entry, *ptr;
904 unsigned int ldx;
905
906 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
907 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
908
909 /* ldx [%o7 + ptr - entry+4], %g1 */
910 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
911
912 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
913 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
914 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
915 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
916 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
917 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
918
919 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
920 }
921 }
922 }
923
924 /* Return the offset of a particular plt entry within the .plt section. */
925
926 static bfd_vma
927 sparc64_elf_plt_entry_offset (index)
928 int index;
929 {
930 int block, ofs;
931
932 if (index < LARGE_PLT_THRESHOLD)
933 return index * PLT_ENTRY_SIZE;
934
935 /* See above for details. */
936
937 block = (index - LARGE_PLT_THRESHOLD) / 160;
938 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
939
940 return ((bfd_vma) (LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
941 + ofs * 6*4);
942 }
943
944 static bfd_vma
945 sparc64_elf_plt_ptr_offset (index, max)
946 int index, max;
947 {
948 int block, ofs, last;
949
950 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
951
952 /* See above for details. */
953
954 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
955 + LARGE_PLT_THRESHOLD;
956 ofs = index - block;
957 if (block + 160 > max)
958 last = (max - LARGE_PLT_THRESHOLD) % 160;
959 else
960 last = 160;
961
962 return (block * PLT_ENTRY_SIZE
963 + last * 6*4
964 + ofs * 8);
965 }
966 \f
967 /* Look through the relocs for a section during the first phase, and
968 allocate space in the global offset table or procedure linkage
969 table. */
970
971 static boolean
972 sparc64_elf_check_relocs (abfd, info, sec, relocs)
973 bfd *abfd;
974 struct bfd_link_info *info;
975 asection *sec;
976 const Elf_Internal_Rela *relocs;
977 {
978 bfd *dynobj;
979 Elf_Internal_Shdr *symtab_hdr;
980 struct elf_link_hash_entry **sym_hashes;
981 bfd_vma *local_got_offsets;
982 const Elf_Internal_Rela *rel;
983 const Elf_Internal_Rela *rel_end;
984 asection *sgot;
985 asection *srelgot;
986 asection *sreloc;
987
988 if (info->relocateable || !(sec->flags & SEC_ALLOC))
989 return true;
990
991 dynobj = elf_hash_table (info)->dynobj;
992 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
993 sym_hashes = elf_sym_hashes (abfd);
994 local_got_offsets = elf_local_got_offsets (abfd);
995
996 sgot = NULL;
997 srelgot = NULL;
998 sreloc = NULL;
999
1000 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1001 for (rel = relocs; rel < rel_end; rel++)
1002 {
1003 unsigned long r_symndx;
1004 struct elf_link_hash_entry *h;
1005
1006 r_symndx = ELF64_R_SYM (rel->r_info);
1007 if (r_symndx < symtab_hdr->sh_info)
1008 h = NULL;
1009 else
1010 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1011
1012 switch (ELF64_R_TYPE_ID (rel->r_info))
1013 {
1014 case R_SPARC_GOT10:
1015 case R_SPARC_GOT13:
1016 case R_SPARC_GOT22:
1017 /* This symbol requires a global offset table entry. */
1018
1019 if (dynobj == NULL)
1020 {
1021 /* Create the .got section. */
1022 elf_hash_table (info)->dynobj = dynobj = abfd;
1023 if (! _bfd_elf_create_got_section (dynobj, info))
1024 return false;
1025 }
1026
1027 if (sgot == NULL)
1028 {
1029 sgot = bfd_get_section_by_name (dynobj, ".got");
1030 BFD_ASSERT (sgot != NULL);
1031 }
1032
1033 if (srelgot == NULL && (h != NULL || info->shared))
1034 {
1035 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1036 if (srelgot == NULL)
1037 {
1038 srelgot = bfd_make_section (dynobj, ".rela.got");
1039 if (srelgot == NULL
1040 || ! bfd_set_section_flags (dynobj, srelgot,
1041 (SEC_ALLOC
1042 | SEC_LOAD
1043 | SEC_HAS_CONTENTS
1044 | SEC_IN_MEMORY
1045 | SEC_LINKER_CREATED
1046 | SEC_READONLY))
1047 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1048 return false;
1049 }
1050 }
1051
1052 if (h != NULL)
1053 {
1054 if (h->got.offset != (bfd_vma) -1)
1055 {
1056 /* We have already allocated space in the .got. */
1057 break;
1058 }
1059 h->got.offset = sgot->_raw_size;
1060
1061 /* Make sure this symbol is output as a dynamic symbol. */
1062 if (h->dynindx == -1)
1063 {
1064 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1065 return false;
1066 }
1067
1068 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1069 }
1070 else
1071 {
1072 /* This is a global offset table entry for a local
1073 symbol. */
1074 if (local_got_offsets == NULL)
1075 {
1076 size_t size;
1077 register unsigned int i;
1078
1079 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1080 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1081 if (local_got_offsets == NULL)
1082 return false;
1083 elf_local_got_offsets (abfd) = local_got_offsets;
1084 for (i = 0; i < symtab_hdr->sh_info; i++)
1085 local_got_offsets[i] = (bfd_vma) -1;
1086 }
1087 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1088 {
1089 /* We have already allocated space in the .got. */
1090 break;
1091 }
1092 local_got_offsets[r_symndx] = sgot->_raw_size;
1093
1094 if (info->shared)
1095 {
1096 /* If we are generating a shared object, we need to
1097 output a R_SPARC_RELATIVE reloc so that the
1098 dynamic linker can adjust this GOT entry. */
1099 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1100 }
1101 }
1102
1103 sgot->_raw_size += 8;
1104
1105 #if 0
1106 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1107 unsigned numbers. If we permit ourselves to modify
1108 code so we get sethi/xor, this could work.
1109 Question: do we consider conditionally re-enabling
1110 this for -fpic, once we know about object code models? */
1111 /* If the .got section is more than 0x1000 bytes, we add
1112 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1113 bit relocations have a greater chance of working. */
1114 if (sgot->_raw_size >= 0x1000
1115 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1116 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1117 #endif
1118
1119 break;
1120
1121 case R_SPARC_WPLT30:
1122 case R_SPARC_PLT32:
1123 case R_SPARC_HIPLT22:
1124 case R_SPARC_LOPLT10:
1125 case R_SPARC_PCPLT32:
1126 case R_SPARC_PCPLT22:
1127 case R_SPARC_PCPLT10:
1128 case R_SPARC_PLT64:
1129 /* This symbol requires a procedure linkage table entry. We
1130 actually build the entry in adjust_dynamic_symbol,
1131 because this might be a case of linking PIC code without
1132 linking in any dynamic objects, in which case we don't
1133 need to generate a procedure linkage table after all. */
1134
1135 if (h == NULL)
1136 {
1137 /* It does not make sense to have a procedure linkage
1138 table entry for a local symbol. */
1139 bfd_set_error (bfd_error_bad_value);
1140 return false;
1141 }
1142
1143 /* Make sure this symbol is output as a dynamic symbol. */
1144 if (h->dynindx == -1)
1145 {
1146 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1147 return false;
1148 }
1149
1150 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1151 break;
1152
1153 case R_SPARC_PC10:
1154 case R_SPARC_PC22:
1155 case R_SPARC_PC_HH22:
1156 case R_SPARC_PC_HM10:
1157 case R_SPARC_PC_LM22:
1158 if (h != NULL
1159 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1160 break;
1161 /* Fall through. */
1162 case R_SPARC_DISP8:
1163 case R_SPARC_DISP16:
1164 case R_SPARC_DISP32:
1165 case R_SPARC_DISP64:
1166 case R_SPARC_WDISP30:
1167 case R_SPARC_WDISP22:
1168 case R_SPARC_WDISP19:
1169 case R_SPARC_WDISP16:
1170 if (h == NULL)
1171 break;
1172 /* Fall through. */
1173 case R_SPARC_8:
1174 case R_SPARC_16:
1175 case R_SPARC_32:
1176 case R_SPARC_HI22:
1177 case R_SPARC_22:
1178 case R_SPARC_13:
1179 case R_SPARC_LO10:
1180 case R_SPARC_UA32:
1181 case R_SPARC_10:
1182 case R_SPARC_11:
1183 case R_SPARC_64:
1184 case R_SPARC_OLO10:
1185 case R_SPARC_HH22:
1186 case R_SPARC_HM10:
1187 case R_SPARC_LM22:
1188 case R_SPARC_7:
1189 case R_SPARC_5:
1190 case R_SPARC_6:
1191 case R_SPARC_HIX22:
1192 case R_SPARC_LOX10:
1193 case R_SPARC_H44:
1194 case R_SPARC_M44:
1195 case R_SPARC_L44:
1196 case R_SPARC_UA64:
1197 case R_SPARC_UA16:
1198 /* When creating a shared object, we must copy these relocs
1199 into the output file. We create a reloc section in
1200 dynobj and make room for the reloc.
1201
1202 But don't do this for debugging sections -- this shows up
1203 with DWARF2 -- first because they are not loaded, and
1204 second because DWARF sez the debug info is not to be
1205 biased by the load address. */
1206 if (info->shared && (sec->flags & SEC_ALLOC))
1207 {
1208 if (sreloc == NULL)
1209 {
1210 const char *name;
1211
1212 name = (bfd_elf_string_from_elf_section
1213 (abfd,
1214 elf_elfheader (abfd)->e_shstrndx,
1215 elf_section_data (sec)->rel_hdr.sh_name));
1216 if (name == NULL)
1217 return false;
1218
1219 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1220 && strcmp (bfd_get_section_name (abfd, sec),
1221 name + 5) == 0);
1222
1223 sreloc = bfd_get_section_by_name (dynobj, name);
1224 if (sreloc == NULL)
1225 {
1226 flagword flags;
1227
1228 sreloc = bfd_make_section (dynobj, name);
1229 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1230 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1231 if ((sec->flags & SEC_ALLOC) != 0)
1232 flags |= SEC_ALLOC | SEC_LOAD;
1233 if (sreloc == NULL
1234 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1235 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1236 return false;
1237 }
1238 }
1239
1240 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1241 }
1242 break;
1243
1244 case R_SPARC_REGISTER:
1245 /* Nothing to do. */
1246 break;
1247
1248 default:
1249 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1250 bfd_get_filename(abfd),
1251 ELF64_R_TYPE_ID (rel->r_info));
1252 return false;
1253 }
1254 }
1255
1256 return true;
1257 }
1258
1259 /* Hook called by the linker routine which adds symbols from an object
1260 file. We use it for STT_REGISTER symbols. */
1261
1262 static boolean
1263 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1264 bfd *abfd;
1265 struct bfd_link_info *info;
1266 const Elf_Internal_Sym *sym;
1267 const char **namep;
1268 flagword *flagsp ATTRIBUTE_UNUSED;
1269 asection **secp ATTRIBUTE_UNUSED;
1270 bfd_vma *valp ATTRIBUTE_UNUSED;
1271 {
1272 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1273
1274 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1275 {
1276 int reg;
1277 struct sparc64_elf_app_reg *p;
1278
1279 reg = (int)sym->st_value;
1280 switch (reg & ~1)
1281 {
1282 case 2: reg -= 2; break;
1283 case 6: reg -= 4; break;
1284 default:
1285 (*_bfd_error_handler)
1286 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1287 bfd_get_filename (abfd));
1288 return false;
1289 }
1290
1291 if (info->hash->creator != abfd->xvec
1292 || (abfd->flags & DYNAMIC) != 0)
1293 {
1294 /* STT_REGISTER only works when linking an elf64_sparc object.
1295 If STT_REGISTER comes from a dynamic object, don't put it into
1296 the output bfd. The dynamic linker will recheck it. */
1297 *namep = NULL;
1298 return true;
1299 }
1300
1301 p = sparc64_elf_hash_table(info)->app_regs + reg;
1302
1303 if (p->name != NULL && strcmp (p->name, *namep))
1304 {
1305 (*_bfd_error_handler)
1306 (_("Register %%g%d used incompatibly: "
1307 "previously declared in %s to %s, in %s redefined to %s"),
1308 (int)sym->st_value,
1309 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1310 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1311 return false;
1312 }
1313
1314 if (p->name == NULL)
1315 {
1316 if (**namep)
1317 {
1318 struct elf_link_hash_entry *h;
1319
1320 h = (struct elf_link_hash_entry *)
1321 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1322
1323 if (h != NULL)
1324 {
1325 unsigned char type = h->type;
1326
1327 if (type > STT_FUNC) type = 0;
1328 (*_bfd_error_handler)
1329 (_("Symbol `%s' has differing types: "
1330 "previously %s, REGISTER in %s"),
1331 *namep, stt_types [type], bfd_get_filename (abfd));
1332 return false;
1333 }
1334
1335 p->name = bfd_hash_allocate (&info->hash->table,
1336 strlen (*namep) + 1);
1337 if (!p->name)
1338 return false;
1339
1340 strcpy (p->name, *namep);
1341 }
1342 else
1343 p->name = "";
1344 p->bind = ELF_ST_BIND (sym->st_info);
1345 p->abfd = abfd;
1346 p->shndx = sym->st_shndx;
1347 }
1348 else
1349 {
1350 if (p->bind == STB_WEAK
1351 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1352 {
1353 p->bind = STB_GLOBAL;
1354 p->abfd = abfd;
1355 }
1356 }
1357 *namep = NULL;
1358 return true;
1359 }
1360 else if (! *namep || ! **namep)
1361 return true;
1362 else
1363 {
1364 int i;
1365 struct sparc64_elf_app_reg *p;
1366
1367 p = sparc64_elf_hash_table(info)->app_regs;
1368 for (i = 0; i < 4; i++, p++)
1369 if (p->name != NULL && ! strcmp (p->name, *namep))
1370 {
1371 unsigned char type = ELF_ST_TYPE (sym->st_info);
1372
1373 if (type > STT_FUNC) type = 0;
1374 (*_bfd_error_handler)
1375 (_("Symbol `%s' has differing types: "
1376 "REGISTER in %s, %s in %s"),
1377 *namep, bfd_get_filename (p->abfd), stt_types [type],
1378 bfd_get_filename (abfd));
1379 return false;
1380 }
1381 }
1382 return true;
1383 }
1384
1385 /* This function takes care of emiting STT_REGISTER symbols
1386 which we cannot easily keep in the symbol hash table. */
1387
1388 static boolean
1389 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1390 bfd *output_bfd ATTRIBUTE_UNUSED;
1391 struct bfd_link_info *info;
1392 PTR finfo;
1393 boolean (*func) PARAMS ((PTR, const char *,
1394 Elf_Internal_Sym *, asection *));
1395 {
1396 int reg;
1397 struct sparc64_elf_app_reg *app_regs =
1398 sparc64_elf_hash_table(info)->app_regs;
1399 Elf_Internal_Sym sym;
1400
1401 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1402 at the end of the dynlocal list, so they came at the end of the local
1403 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1404 to back up symtab->sh_info. */
1405 if (elf_hash_table (info)->dynlocal)
1406 {
1407 bfd * dynobj = elf_hash_table (info)->dynobj;
1408 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1409 struct elf_link_local_dynamic_entry *e;
1410
1411 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1412 if (e->input_indx == -1)
1413 break;
1414 if (e)
1415 {
1416 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1417 = e->dynindx;
1418 }
1419 }
1420
1421 if (info->strip == strip_all)
1422 return true;
1423
1424 for (reg = 0; reg < 4; reg++)
1425 if (app_regs [reg].name != NULL)
1426 {
1427 if (info->strip == strip_some
1428 && bfd_hash_lookup (info->keep_hash,
1429 app_regs [reg].name,
1430 false, false) == NULL)
1431 continue;
1432
1433 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1434 sym.st_size = 0;
1435 sym.st_other = 0;
1436 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1437 sym.st_shndx = app_regs [reg].shndx;
1438 if (! (*func) (finfo, app_regs [reg].name, &sym,
1439 sym.st_shndx == SHN_ABS
1440 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1441 return false;
1442 }
1443
1444 return true;
1445 }
1446
1447 static int
1448 sparc64_elf_get_symbol_type (elf_sym, type)
1449 Elf_Internal_Sym * elf_sym;
1450 int type;
1451 {
1452 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1453 return STT_REGISTER;
1454 else
1455 return type;
1456 }
1457
1458 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1459 even in SHN_UNDEF section. */
1460
1461 static void
1462 sparc64_elf_symbol_processing (abfd, asym)
1463 bfd *abfd ATTRIBUTE_UNUSED;
1464 asymbol *asym;
1465 {
1466 elf_symbol_type *elfsym;
1467
1468 elfsym = (elf_symbol_type *) asym;
1469 if (elfsym->internal_elf_sym.st_info
1470 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1471 {
1472 asym->flags |= BSF_GLOBAL;
1473 }
1474 }
1475
1476 /* Adjust a symbol defined by a dynamic object and referenced by a
1477 regular object. The current definition is in some section of the
1478 dynamic object, but we're not including those sections. We have to
1479 change the definition to something the rest of the link can
1480 understand. */
1481
1482 static boolean
1483 sparc64_elf_adjust_dynamic_symbol (info, h)
1484 struct bfd_link_info *info;
1485 struct elf_link_hash_entry *h;
1486 {
1487 bfd *dynobj;
1488 asection *s;
1489 unsigned int power_of_two;
1490
1491 dynobj = elf_hash_table (info)->dynobj;
1492
1493 /* Make sure we know what is going on here. */
1494 BFD_ASSERT (dynobj != NULL
1495 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1496 || h->weakdef != NULL
1497 || ((h->elf_link_hash_flags
1498 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1499 && (h->elf_link_hash_flags
1500 & ELF_LINK_HASH_REF_REGULAR) != 0
1501 && (h->elf_link_hash_flags
1502 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1503
1504 /* If this is a function, put it in the procedure linkage table. We
1505 will fill in the contents of the procedure linkage table later
1506 (although we could actually do it here). The STT_NOTYPE
1507 condition is a hack specifically for the Oracle libraries
1508 delivered for Solaris; for some inexplicable reason, they define
1509 some of their functions as STT_NOTYPE when they really should be
1510 STT_FUNC. */
1511 if (h->type == STT_FUNC
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1513 || (h->type == STT_NOTYPE
1514 && (h->root.type == bfd_link_hash_defined
1515 || h->root.type == bfd_link_hash_defweak)
1516 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1517 {
1518 if (! elf_hash_table (info)->dynamic_sections_created)
1519 {
1520 /* This case can occur if we saw a WPLT30 reloc in an input
1521 file, but none of the input files were dynamic objects.
1522 In such a case, we don't actually need to build a
1523 procedure linkage table, and we can just do a WDISP30
1524 reloc instead. */
1525 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1526 return true;
1527 }
1528
1529 s = bfd_get_section_by_name (dynobj, ".plt");
1530 BFD_ASSERT (s != NULL);
1531
1532 /* The first four bit in .plt is reserved. */
1533 if (s->_raw_size == 0)
1534 s->_raw_size = PLT_HEADER_SIZE;
1535
1536 /* If this symbol is not defined in a regular file, and we are
1537 not generating a shared library, then set the symbol to this
1538 location in the .plt. This is required to make function
1539 pointers compare as equal between the normal executable and
1540 the shared library. */
1541 if (! info->shared
1542 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1543 {
1544 h->root.u.def.section = s;
1545 h->root.u.def.value = s->_raw_size;
1546 }
1547
1548 /* To simplify matters later, just store the plt index here. */
1549 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1550
1551 /* Make room for this entry. */
1552 s->_raw_size += PLT_ENTRY_SIZE;
1553
1554 /* We also need to make an entry in the .rela.plt section. */
1555
1556 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1557 BFD_ASSERT (s != NULL);
1558
1559 s->_raw_size += sizeof (Elf64_External_Rela);
1560
1561 /* The procedure linkage table size is bounded by the magnitude
1562 of the offset we can describe in the entry. */
1563 if (s->_raw_size >= (bfd_vma)1 << 32)
1564 {
1565 bfd_set_error (bfd_error_bad_value);
1566 return false;
1567 }
1568
1569 return true;
1570 }
1571
1572 /* If this is a weak symbol, and there is a real definition, the
1573 processor independent code will have arranged for us to see the
1574 real definition first, and we can just use the same value. */
1575 if (h->weakdef != NULL)
1576 {
1577 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1578 || h->weakdef->root.type == bfd_link_hash_defweak);
1579 h->root.u.def.section = h->weakdef->root.u.def.section;
1580 h->root.u.def.value = h->weakdef->root.u.def.value;
1581 return true;
1582 }
1583
1584 /* This is a reference to a symbol defined by a dynamic object which
1585 is not a function. */
1586
1587 /* If we are creating a shared library, we must presume that the
1588 only references to the symbol are via the global offset table.
1589 For such cases we need not do anything here; the relocations will
1590 be handled correctly by relocate_section. */
1591 if (info->shared)
1592 return true;
1593
1594 /* We must allocate the symbol in our .dynbss section, which will
1595 become part of the .bss section of the executable. There will be
1596 an entry for this symbol in the .dynsym section. The dynamic
1597 object will contain position independent code, so all references
1598 from the dynamic object to this symbol will go through the global
1599 offset table. The dynamic linker will use the .dynsym entry to
1600 determine the address it must put in the global offset table, so
1601 both the dynamic object and the regular object will refer to the
1602 same memory location for the variable. */
1603
1604 s = bfd_get_section_by_name (dynobj, ".dynbss");
1605 BFD_ASSERT (s != NULL);
1606
1607 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1608 to copy the initial value out of the dynamic object and into the
1609 runtime process image. We need to remember the offset into the
1610 .rel.bss section we are going to use. */
1611 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1612 {
1613 asection *srel;
1614
1615 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1616 BFD_ASSERT (srel != NULL);
1617 srel->_raw_size += sizeof (Elf64_External_Rela);
1618 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1619 }
1620
1621 /* We need to figure out the alignment required for this symbol. I
1622 have no idea how ELF linkers handle this. 16-bytes is the size
1623 of the largest type that requires hard alignment -- long double. */
1624 power_of_two = bfd_log2 (h->size);
1625 if (power_of_two > 4)
1626 power_of_two = 4;
1627
1628 /* Apply the required alignment. */
1629 s->_raw_size = BFD_ALIGN (s->_raw_size,
1630 (bfd_size_type) (1 << power_of_two));
1631 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1632 {
1633 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1634 return false;
1635 }
1636
1637 /* Define the symbol as being at this point in the section. */
1638 h->root.u.def.section = s;
1639 h->root.u.def.value = s->_raw_size;
1640
1641 /* Increment the section size to make room for the symbol. */
1642 s->_raw_size += h->size;
1643
1644 return true;
1645 }
1646
1647 /* Set the sizes of the dynamic sections. */
1648
1649 static boolean
1650 sparc64_elf_size_dynamic_sections (output_bfd, info)
1651 bfd *output_bfd;
1652 struct bfd_link_info *info;
1653 {
1654 bfd *dynobj;
1655 asection *s;
1656 boolean reltext;
1657 boolean relplt;
1658
1659 dynobj = elf_hash_table (info)->dynobj;
1660 BFD_ASSERT (dynobj != NULL);
1661
1662 if (elf_hash_table (info)->dynamic_sections_created)
1663 {
1664 /* Set the contents of the .interp section to the interpreter. */
1665 if (! info->shared)
1666 {
1667 s = bfd_get_section_by_name (dynobj, ".interp");
1668 BFD_ASSERT (s != NULL);
1669 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1670 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1671 }
1672 }
1673 else
1674 {
1675 /* We may have created entries in the .rela.got section.
1676 However, if we are not creating the dynamic sections, we will
1677 not actually use these entries. Reset the size of .rela.got,
1678 which will cause it to get stripped from the output file
1679 below. */
1680 s = bfd_get_section_by_name (dynobj, ".rela.got");
1681 if (s != NULL)
1682 s->_raw_size = 0;
1683 }
1684
1685 /* The check_relocs and adjust_dynamic_symbol entry points have
1686 determined the sizes of the various dynamic sections. Allocate
1687 memory for them. */
1688 reltext = false;
1689 relplt = false;
1690 for (s = dynobj->sections; s != NULL; s = s->next)
1691 {
1692 const char *name;
1693 boolean strip;
1694
1695 if ((s->flags & SEC_LINKER_CREATED) == 0)
1696 continue;
1697
1698 /* It's OK to base decisions on the section name, because none
1699 of the dynobj section names depend upon the input files. */
1700 name = bfd_get_section_name (dynobj, s);
1701
1702 strip = false;
1703
1704 if (strncmp (name, ".rela", 5) == 0)
1705 {
1706 if (s->_raw_size == 0)
1707 {
1708 /* If we don't need this section, strip it from the
1709 output file. This is to handle .rela.bss and
1710 .rel.plt. We must create it in
1711 create_dynamic_sections, because it must be created
1712 before the linker maps input sections to output
1713 sections. The linker does that before
1714 adjust_dynamic_symbol is called, and it is that
1715 function which decides whether anything needs to go
1716 into these sections. */
1717 strip = true;
1718 }
1719 else
1720 {
1721 const char *outname;
1722 asection *target;
1723
1724 /* If this relocation section applies to a read only
1725 section, then we probably need a DT_TEXTREL entry. */
1726 outname = bfd_get_section_name (output_bfd,
1727 s->output_section);
1728 target = bfd_get_section_by_name (output_bfd, outname + 5);
1729 if (target != NULL
1730 && (target->flags & SEC_READONLY) != 0)
1731 reltext = true;
1732
1733 if (strcmp (name, ".rela.plt") == 0)
1734 relplt = true;
1735
1736 /* We use the reloc_count field as a counter if we need
1737 to copy relocs into the output file. */
1738 s->reloc_count = 0;
1739 }
1740 }
1741 else if (strcmp (name, ".plt") != 0
1742 && strncmp (name, ".got", 4) != 0)
1743 {
1744 /* It's not one of our sections, so don't allocate space. */
1745 continue;
1746 }
1747
1748 if (strip)
1749 {
1750 _bfd_strip_section_from_output (info, s);
1751 continue;
1752 }
1753
1754 /* Allocate memory for the section contents. Zero the memory
1755 for the benefit of .rela.plt, which has 4 unused entries
1756 at the beginning, and we don't want garbage. */
1757 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1758 if (s->contents == NULL && s->_raw_size != 0)
1759 return false;
1760 }
1761
1762 if (elf_hash_table (info)->dynamic_sections_created)
1763 {
1764 /* Add some entries to the .dynamic section. We fill in the
1765 values later, in sparc64_elf_finish_dynamic_sections, but we
1766 must add the entries now so that we get the correct size for
1767 the .dynamic section. The DT_DEBUG entry is filled in by the
1768 dynamic linker and used by the debugger. */
1769 int reg;
1770 struct sparc64_elf_app_reg * app_regs;
1771 struct bfd_strtab_hash *dynstr;
1772 struct elf_link_hash_table *eht = elf_hash_table (info);
1773
1774 if (! info->shared)
1775 {
1776 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1777 return false;
1778 }
1779
1780 if (relplt)
1781 {
1782 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1784 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1785 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1786 return false;
1787 }
1788
1789 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1792 sizeof (Elf64_External_Rela)))
1793 return false;
1794
1795 if (reltext)
1796 {
1797 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1798 return false;
1799 info->flags |= DF_TEXTREL;
1800 }
1801
1802 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1803 entries if needed. */
1804 app_regs = sparc64_elf_hash_table (info)->app_regs;
1805 dynstr = eht->dynstr;
1806
1807 for (reg = 0; reg < 4; reg++)
1808 if (app_regs [reg].name != NULL)
1809 {
1810 struct elf_link_local_dynamic_entry *entry, *e;
1811
1812 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1813 return false;
1814
1815 entry = (struct elf_link_local_dynamic_entry *)
1816 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1817 if (entry == NULL)
1818 return false;
1819
1820 /* We cheat here a little bit: the symbol will not be local, so we
1821 put it at the end of the dynlocal linked list. We will fix it
1822 later on, as we have to fix other fields anyway. */
1823 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1824 entry->isym.st_size = 0;
1825 if (*app_regs [reg].name != '\0')
1826 entry->isym.st_name
1827 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1828 else
1829 entry->isym.st_name = 0;
1830 entry->isym.st_other = 0;
1831 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1832 STT_REGISTER);
1833 entry->isym.st_shndx = app_regs [reg].shndx;
1834 entry->next = NULL;
1835 entry->input_bfd = output_bfd;
1836 entry->input_indx = -1;
1837
1838 if (eht->dynlocal == NULL)
1839 eht->dynlocal = entry;
1840 else
1841 {
1842 for (e = eht->dynlocal; e->next; e = e->next)
1843 ;
1844 e->next = entry;
1845 }
1846 eht->dynsymcount++;
1847 }
1848 }
1849
1850 return true;
1851 }
1852 \f
1853 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1854 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1855
1856 static boolean
1857 sparc64_elf_relax_section (abfd, section, link_info, again)
1858 bfd *abfd ATTRIBUTE_UNUSED;
1859 asection *section ATTRIBUTE_UNUSED;
1860 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1861 boolean *again;
1862 {
1863 *again = false;
1864 SET_SEC_DO_RELAX (section);
1865 return true;
1866 }
1867 \f
1868 /* Relocate a SPARC64 ELF section. */
1869
1870 static boolean
1871 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1872 contents, relocs, local_syms, local_sections)
1873 bfd *output_bfd;
1874 struct bfd_link_info *info;
1875 bfd *input_bfd;
1876 asection *input_section;
1877 bfd_byte *contents;
1878 Elf_Internal_Rela *relocs;
1879 Elf_Internal_Sym *local_syms;
1880 asection **local_sections;
1881 {
1882 bfd *dynobj;
1883 Elf_Internal_Shdr *symtab_hdr;
1884 struct elf_link_hash_entry **sym_hashes;
1885 bfd_vma *local_got_offsets;
1886 bfd_vma got_base;
1887 asection *sgot;
1888 asection *splt;
1889 asection *sreloc;
1890 Elf_Internal_Rela *rel;
1891 Elf_Internal_Rela *relend;
1892
1893 dynobj = elf_hash_table (info)->dynobj;
1894 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1895 sym_hashes = elf_sym_hashes (input_bfd);
1896 local_got_offsets = elf_local_got_offsets (input_bfd);
1897
1898 if (elf_hash_table(info)->hgot == NULL)
1899 got_base = 0;
1900 else
1901 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1902
1903 sgot = splt = sreloc = NULL;
1904
1905 rel = relocs;
1906 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1907 for (; rel < relend; rel++)
1908 {
1909 int r_type;
1910 reloc_howto_type *howto;
1911 unsigned long r_symndx;
1912 struct elf_link_hash_entry *h;
1913 Elf_Internal_Sym *sym;
1914 asection *sec;
1915 bfd_vma relocation;
1916 bfd_reloc_status_type r;
1917
1918 r_type = ELF64_R_TYPE_ID (rel->r_info);
1919 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1920 {
1921 bfd_set_error (bfd_error_bad_value);
1922 return false;
1923 }
1924 howto = sparc64_elf_howto_table + r_type;
1925
1926 r_symndx = ELF64_R_SYM (rel->r_info);
1927
1928 if (info->relocateable)
1929 {
1930 /* This is a relocateable link. We don't have to change
1931 anything, unless the reloc is against a section symbol,
1932 in which case we have to adjust according to where the
1933 section symbol winds up in the output section. */
1934 if (r_symndx < symtab_hdr->sh_info)
1935 {
1936 sym = local_syms + r_symndx;
1937 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1938 {
1939 sec = local_sections[r_symndx];
1940 rel->r_addend += sec->output_offset + sym->st_value;
1941 }
1942 }
1943
1944 continue;
1945 }
1946
1947 /* This is a final link. */
1948 h = NULL;
1949 sym = NULL;
1950 sec = NULL;
1951 if (r_symndx < symtab_hdr->sh_info)
1952 {
1953 sym = local_syms + r_symndx;
1954 sec = local_sections[r_symndx];
1955 relocation = (sec->output_section->vma
1956 + sec->output_offset
1957 + sym->st_value);
1958 }
1959 else
1960 {
1961 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1962 while (h->root.type == bfd_link_hash_indirect
1963 || h->root.type == bfd_link_hash_warning)
1964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1965 if (h->root.type == bfd_link_hash_defined
1966 || h->root.type == bfd_link_hash_defweak)
1967 {
1968 boolean skip_it = false;
1969 sec = h->root.u.def.section;
1970
1971 switch (r_type)
1972 {
1973 case R_SPARC_WPLT30:
1974 case R_SPARC_PLT32:
1975 case R_SPARC_HIPLT22:
1976 case R_SPARC_LOPLT10:
1977 case R_SPARC_PCPLT32:
1978 case R_SPARC_PCPLT22:
1979 case R_SPARC_PCPLT10:
1980 case R_SPARC_PLT64:
1981 if (h->plt.offset != (bfd_vma) -1)
1982 skip_it = true;
1983 break;
1984
1985 case R_SPARC_GOT10:
1986 case R_SPARC_GOT13:
1987 case R_SPARC_GOT22:
1988 if (elf_hash_table(info)->dynamic_sections_created
1989 && (!info->shared
1990 || (!info->symbolic && h->dynindx != -1)
1991 || !(h->elf_link_hash_flags
1992 & ELF_LINK_HASH_DEF_REGULAR)))
1993 skip_it = true;
1994 break;
1995
1996 case R_SPARC_PC10:
1997 case R_SPARC_PC22:
1998 case R_SPARC_PC_HH22:
1999 case R_SPARC_PC_HM10:
2000 case R_SPARC_PC_LM22:
2001 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2002 break;
2003 /* FALLTHRU */
2004
2005 case R_SPARC_8:
2006 case R_SPARC_16:
2007 case R_SPARC_32:
2008 case R_SPARC_DISP8:
2009 case R_SPARC_DISP16:
2010 case R_SPARC_DISP32:
2011 case R_SPARC_WDISP30:
2012 case R_SPARC_WDISP22:
2013 case R_SPARC_HI22:
2014 case R_SPARC_22:
2015 case R_SPARC_13:
2016 case R_SPARC_LO10:
2017 case R_SPARC_UA32:
2018 case R_SPARC_10:
2019 case R_SPARC_11:
2020 case R_SPARC_64:
2021 case R_SPARC_OLO10:
2022 case R_SPARC_HH22:
2023 case R_SPARC_HM10:
2024 case R_SPARC_LM22:
2025 case R_SPARC_WDISP19:
2026 case R_SPARC_WDISP16:
2027 case R_SPARC_7:
2028 case R_SPARC_5:
2029 case R_SPARC_6:
2030 case R_SPARC_DISP64:
2031 case R_SPARC_HIX22:
2032 case R_SPARC_LOX10:
2033 case R_SPARC_H44:
2034 case R_SPARC_M44:
2035 case R_SPARC_L44:
2036 case R_SPARC_UA64:
2037 case R_SPARC_UA16:
2038 if (info->shared
2039 && ((!info->symbolic && h->dynindx != -1)
2040 || !(h->elf_link_hash_flags
2041 & ELF_LINK_HASH_DEF_REGULAR)))
2042 skip_it = true;
2043 break;
2044 }
2045
2046 if (skip_it)
2047 {
2048 /* In these cases, we don't need the relocation
2049 value. We check specially because in some
2050 obscure cases sec->output_section will be NULL. */
2051 relocation = 0;
2052 }
2053 else
2054 {
2055 relocation = (h->root.u.def.value
2056 + sec->output_section->vma
2057 + sec->output_offset);
2058 }
2059 }
2060 else if (h->root.type == bfd_link_hash_undefweak)
2061 relocation = 0;
2062 else if (info->shared && !info->symbolic
2063 && !info->no_undefined
2064 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2065 relocation = 0;
2066 else
2067 {
2068 if (! ((*info->callbacks->undefined_symbol)
2069 (info, h->root.root.string, input_bfd,
2070 input_section, rel->r_offset,
2071 (!info->shared || info->no_undefined
2072 || ELF_ST_VISIBILITY (h->other)))))
2073 return false;
2074
2075 /* To avoid generating warning messages about truncated
2076 relocations, set the relocation's address to be the same as
2077 the start of this section. */
2078
2079 if (input_section->output_section != NULL)
2080 relocation = input_section->output_section->vma;
2081 else
2082 relocation = 0;
2083 }
2084 }
2085
2086 /* When generating a shared object, these relocations are copied
2087 into the output file to be resolved at run time. */
2088 if (info->shared && (input_section->flags & SEC_ALLOC))
2089 {
2090 switch (r_type)
2091 {
2092 case R_SPARC_PC10:
2093 case R_SPARC_PC22:
2094 case R_SPARC_PC_HH22:
2095 case R_SPARC_PC_HM10:
2096 case R_SPARC_PC_LM22:
2097 if (h != NULL
2098 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2099 break;
2100 /* Fall through. */
2101 case R_SPARC_DISP8:
2102 case R_SPARC_DISP16:
2103 case R_SPARC_DISP32:
2104 case R_SPARC_WDISP30:
2105 case R_SPARC_WDISP22:
2106 case R_SPARC_WDISP19:
2107 case R_SPARC_WDISP16:
2108 case R_SPARC_DISP64:
2109 if (h == NULL)
2110 break;
2111 /* Fall through. */
2112 case R_SPARC_8:
2113 case R_SPARC_16:
2114 case R_SPARC_32:
2115 case R_SPARC_HI22:
2116 case R_SPARC_22:
2117 case R_SPARC_13:
2118 case R_SPARC_LO10:
2119 case R_SPARC_UA32:
2120 case R_SPARC_10:
2121 case R_SPARC_11:
2122 case R_SPARC_64:
2123 case R_SPARC_OLO10:
2124 case R_SPARC_HH22:
2125 case R_SPARC_HM10:
2126 case R_SPARC_LM22:
2127 case R_SPARC_7:
2128 case R_SPARC_5:
2129 case R_SPARC_6:
2130 case R_SPARC_HIX22:
2131 case R_SPARC_LOX10:
2132 case R_SPARC_H44:
2133 case R_SPARC_M44:
2134 case R_SPARC_L44:
2135 case R_SPARC_UA64:
2136 case R_SPARC_UA16:
2137 {
2138 Elf_Internal_Rela outrel;
2139 boolean skip;
2140
2141 if (sreloc == NULL)
2142 {
2143 const char *name =
2144 (bfd_elf_string_from_elf_section
2145 (input_bfd,
2146 elf_elfheader (input_bfd)->e_shstrndx,
2147 elf_section_data (input_section)->rel_hdr.sh_name));
2148
2149 if (name == NULL)
2150 return false;
2151
2152 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2153 && strcmp (bfd_get_section_name(input_bfd,
2154 input_section),
2155 name + 5) == 0);
2156
2157 sreloc = bfd_get_section_by_name (dynobj, name);
2158 BFD_ASSERT (sreloc != NULL);
2159 }
2160
2161 skip = false;
2162
2163 if (elf_section_data (input_section)->stab_info == NULL)
2164 outrel.r_offset = rel->r_offset;
2165 else
2166 {
2167 bfd_vma off;
2168
2169 off = (_bfd_stab_section_offset
2170 (output_bfd, &elf_hash_table (info)->stab_info,
2171 input_section,
2172 &elf_section_data (input_section)->stab_info,
2173 rel->r_offset));
2174 if (off == MINUS_ONE)
2175 skip = true;
2176 outrel.r_offset = off;
2177 }
2178
2179 outrel.r_offset += (input_section->output_section->vma
2180 + input_section->output_offset);
2181
2182 /* Optimize unaligned reloc usage now that we know where
2183 it finally resides. */
2184 switch (r_type)
2185 {
2186 case R_SPARC_16:
2187 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2188 break;
2189 case R_SPARC_UA16:
2190 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2191 break;
2192 case R_SPARC_32:
2193 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2194 break;
2195 case R_SPARC_UA32:
2196 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2197 break;
2198 case R_SPARC_64:
2199 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2200 break;
2201 case R_SPARC_UA64:
2202 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2203 break;
2204 }
2205
2206 if (skip)
2207 memset (&outrel, 0, sizeof outrel);
2208 /* h->dynindx may be -1 if the symbol was marked to
2209 become local. */
2210 else if (h != NULL
2211 && ((! info->symbolic && h->dynindx != -1)
2212 || (h->elf_link_hash_flags
2213 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2214 {
2215 BFD_ASSERT (h->dynindx != -1);
2216 outrel.r_info
2217 = ELF64_R_INFO (h->dynindx,
2218 ELF64_R_TYPE_INFO (
2219 ELF64_R_TYPE_DATA (rel->r_info),
2220 r_type));
2221 outrel.r_addend = rel->r_addend;
2222 }
2223 else
2224 {
2225 if (r_type == R_SPARC_64)
2226 {
2227 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2228 outrel.r_addend = relocation + rel->r_addend;
2229 }
2230 else
2231 {
2232 long indx;
2233
2234 if (h == NULL)
2235 sec = local_sections[r_symndx];
2236 else
2237 {
2238 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2239 || (h->root.type
2240 == bfd_link_hash_defweak));
2241 sec = h->root.u.def.section;
2242 }
2243 if (sec != NULL && bfd_is_abs_section (sec))
2244 indx = 0;
2245 else if (sec == NULL || sec->owner == NULL)
2246 {
2247 bfd_set_error (bfd_error_bad_value);
2248 return false;
2249 }
2250 else
2251 {
2252 asection *osec;
2253
2254 osec = sec->output_section;
2255 indx = elf_section_data (osec)->dynindx;
2256
2257 /* FIXME: we really should be able to link non-pic
2258 shared libraries. */
2259 if (indx == 0)
2260 {
2261 BFD_FAIL ();
2262 (*_bfd_error_handler)
2263 (_("%s: probably compiled without -fPIC?"),
2264 bfd_get_filename (input_bfd));
2265 bfd_set_error (bfd_error_bad_value);
2266 return false;
2267 }
2268 }
2269
2270 outrel.r_info
2271 = ELF64_R_INFO (indx,
2272 ELF64_R_TYPE_INFO (
2273 ELF64_R_TYPE_DATA (rel->r_info),
2274 r_type));
2275 outrel.r_addend = relocation + rel->r_addend;
2276 }
2277 }
2278
2279 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2280 (((Elf64_External_Rela *)
2281 sreloc->contents)
2282 + sreloc->reloc_count));
2283 ++sreloc->reloc_count;
2284
2285 /* This reloc will be computed at runtime, so there's no
2286 need to do anything now, unless this is a RELATIVE
2287 reloc in an unallocated section. */
2288 if (skip
2289 || (input_section->flags & SEC_ALLOC) != 0
2290 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2291 continue;
2292 }
2293 break;
2294 }
2295 }
2296
2297 switch (r_type)
2298 {
2299 case R_SPARC_GOT10:
2300 case R_SPARC_GOT13:
2301 case R_SPARC_GOT22:
2302 /* Relocation is to the entry for this symbol in the global
2303 offset table. */
2304 if (sgot == NULL)
2305 {
2306 sgot = bfd_get_section_by_name (dynobj, ".got");
2307 BFD_ASSERT (sgot != NULL);
2308 }
2309
2310 if (h != NULL)
2311 {
2312 bfd_vma off = h->got.offset;
2313 BFD_ASSERT (off != (bfd_vma) -1);
2314
2315 if (! elf_hash_table (info)->dynamic_sections_created
2316 || (info->shared
2317 && (info->symbolic || h->dynindx == -1)
2318 && (h->elf_link_hash_flags
2319 & ELF_LINK_HASH_DEF_REGULAR)))
2320 {
2321 /* This is actually a static link, or it is a -Bsymbolic
2322 link and the symbol is defined locally, or the symbol
2323 was forced to be local because of a version file. We
2324 must initialize this entry in the global offset table.
2325 Since the offset must always be a multiple of 8, we
2326 use the least significant bit to record whether we
2327 have initialized it already.
2328
2329 When doing a dynamic link, we create a .rela.got
2330 relocation entry to initialize the value. This is
2331 done in the finish_dynamic_symbol routine. */
2332
2333 if ((off & 1) != 0)
2334 off &= ~1;
2335 else
2336 {
2337 bfd_put_64 (output_bfd, relocation,
2338 sgot->contents + off);
2339 h->got.offset |= 1;
2340 }
2341 }
2342 relocation = sgot->output_offset + off - got_base;
2343 }
2344 else
2345 {
2346 bfd_vma off;
2347
2348 BFD_ASSERT (local_got_offsets != NULL);
2349 off = local_got_offsets[r_symndx];
2350 BFD_ASSERT (off != (bfd_vma) -1);
2351
2352 /* The offset must always be a multiple of 8. We use
2353 the least significant bit to record whether we have
2354 already processed this entry. */
2355 if ((off & 1) != 0)
2356 off &= ~1;
2357 else
2358 {
2359 local_got_offsets[r_symndx] |= 1;
2360
2361 if (info->shared)
2362 {
2363 asection *srelgot;
2364 Elf_Internal_Rela outrel;
2365
2366 /* The Solaris 2.7 64-bit linker adds the contents
2367 of the location to the value of the reloc.
2368 Note this is different behaviour to the
2369 32-bit linker, which both adds the contents
2370 and ignores the addend. So clear the location. */
2371 bfd_put_64 (output_bfd, 0, sgot->contents + off);
2372
2373 /* We need to generate a R_SPARC_RELATIVE reloc
2374 for the dynamic linker. */
2375 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2376 BFD_ASSERT (srelgot != NULL);
2377
2378 outrel.r_offset = (sgot->output_section->vma
2379 + sgot->output_offset
2380 + off);
2381 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2382 outrel.r_addend = relocation;
2383 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2384 (((Elf64_External_Rela *)
2385 srelgot->contents)
2386 + srelgot->reloc_count));
2387 ++srelgot->reloc_count;
2388 }
2389 else
2390 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2391 }
2392 relocation = sgot->output_offset + off - got_base;
2393 }
2394 goto do_default;
2395
2396 case R_SPARC_WPLT30:
2397 case R_SPARC_PLT32:
2398 case R_SPARC_HIPLT22:
2399 case R_SPARC_LOPLT10:
2400 case R_SPARC_PCPLT32:
2401 case R_SPARC_PCPLT22:
2402 case R_SPARC_PCPLT10:
2403 case R_SPARC_PLT64:
2404 /* Relocation is to the entry for this symbol in the
2405 procedure linkage table. */
2406 BFD_ASSERT (h != NULL);
2407
2408 if (h->plt.offset == (bfd_vma) -1)
2409 {
2410 /* We didn't make a PLT entry for this symbol. This
2411 happens when statically linking PIC code, or when
2412 using -Bsymbolic. */
2413 goto do_default;
2414 }
2415
2416 if (splt == NULL)
2417 {
2418 splt = bfd_get_section_by_name (dynobj, ".plt");
2419 BFD_ASSERT (splt != NULL);
2420 }
2421
2422 relocation = (splt->output_section->vma
2423 + splt->output_offset
2424 + sparc64_elf_plt_entry_offset (h->plt.offset));
2425 if (r_type == R_SPARC_WPLT30)
2426 goto do_wplt30;
2427 goto do_default;
2428
2429 case R_SPARC_OLO10:
2430 {
2431 bfd_vma x;
2432
2433 relocation += rel->r_addend;
2434 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2435
2436 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2437 x = (x & ~0x1fff) | (relocation & 0x1fff);
2438 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2439
2440 r = bfd_check_overflow (howto->complain_on_overflow,
2441 howto->bitsize, howto->rightshift,
2442 bfd_arch_bits_per_address (input_bfd),
2443 relocation);
2444 }
2445 break;
2446
2447 case R_SPARC_WDISP16:
2448 {
2449 bfd_vma x;
2450
2451 relocation += rel->r_addend;
2452 /* Adjust for pc-relative-ness. */
2453 relocation -= (input_section->output_section->vma
2454 + input_section->output_offset);
2455 relocation -= rel->r_offset;
2456
2457 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2458 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2459 | ((relocation >> 2) & 0x3fff));
2460 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2461
2462 r = bfd_check_overflow (howto->complain_on_overflow,
2463 howto->bitsize, howto->rightshift,
2464 bfd_arch_bits_per_address (input_bfd),
2465 relocation);
2466 }
2467 break;
2468
2469 case R_SPARC_HIX22:
2470 {
2471 bfd_vma x;
2472
2473 relocation += rel->r_addend;
2474 relocation = relocation ^ MINUS_ONE;
2475
2476 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2477 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2478 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2479
2480 r = bfd_check_overflow (howto->complain_on_overflow,
2481 howto->bitsize, howto->rightshift,
2482 bfd_arch_bits_per_address (input_bfd),
2483 relocation);
2484 }
2485 break;
2486
2487 case R_SPARC_LOX10:
2488 {
2489 bfd_vma x;
2490
2491 relocation += rel->r_addend;
2492 relocation = (relocation & 0x3ff) | 0x1c00;
2493
2494 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2495 x = (x & ~0x1fff) | relocation;
2496 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2497
2498 r = bfd_reloc_ok;
2499 }
2500 break;
2501
2502 case R_SPARC_WDISP30:
2503 do_wplt30:
2504 if (SEC_DO_RELAX (input_section)
2505 && rel->r_offset + 4 < input_section->_raw_size)
2506 {
2507 #define G0 0
2508 #define O7 15
2509 #define XCC (2 << 20)
2510 #define COND(x) (((x)&0xf)<<25)
2511 #define CONDA COND(0x8)
2512 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2513 #define INSN_BA (F2(0,2) | CONDA)
2514 #define INSN_OR F3(2, 0x2, 0)
2515 #define INSN_NOP F2(0,4)
2516
2517 bfd_vma x, y;
2518
2519 /* If the instruction is a call with either:
2520 restore
2521 arithmetic instruction with rd == %o7
2522 where rs1 != %o7 and rs2 if it is register != %o7
2523 then we can optimize if the call destination is near
2524 by changing the call into a branch always. */
2525 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2526 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2527 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2528 {
2529 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2530 || ((y & OP3(0x28)) == 0 /* arithmetic */
2531 && (y & RD(~0)) == RD(O7)))
2532 && (y & RS1(~0)) != RS1(O7)
2533 && ((y & F3I(~0))
2534 || (y & RS2(~0)) != RS2(O7)))
2535 {
2536 bfd_vma reloc;
2537
2538 reloc = relocation + rel->r_addend - rel->r_offset;
2539 reloc -= (input_section->output_section->vma
2540 + input_section->output_offset);
2541 if (reloc & 3)
2542 goto do_default;
2543
2544 /* Ensure the branch fits into simm22. */
2545 if ((reloc & ~(bfd_vma)0x7fffff)
2546 && ((reloc | 0x7fffff) != MINUS_ONE))
2547 goto do_default;
2548 reloc >>= 2;
2549
2550 /* Check whether it fits into simm19. */
2551 if ((reloc & 0x3c0000) == 0
2552 || (reloc & 0x3c0000) == 0x3c0000)
2553 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2554 else
2555 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2556 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2557 r = bfd_reloc_ok;
2558 if (rel->r_offset >= 4
2559 && (y & (0xffffffff ^ RS1(~0)))
2560 == (INSN_OR | RD(O7) | RS2(G0)))
2561 {
2562 bfd_vma z;
2563 unsigned int reg;
2564
2565 z = bfd_get_32 (input_bfd,
2566 contents + rel->r_offset - 4);
2567 if ((z & (0xffffffff ^ RD(~0)))
2568 != (INSN_OR | RS1(O7) | RS2(G0)))
2569 break;
2570
2571 /* The sequence was
2572 or %o7, %g0, %rN
2573 call foo
2574 or %rN, %g0, %o7
2575
2576 If call foo was replaced with ba, replace
2577 or %rN, %g0, %o7 with nop. */
2578
2579 reg = (y & RS1(~0)) >> 14;
2580 if (reg != ((z & RD(~0)) >> 25)
2581 || reg == G0 || reg == O7)
2582 break;
2583
2584 bfd_put_32 (input_bfd, INSN_NOP,
2585 contents + rel->r_offset + 4);
2586 }
2587 break;
2588 }
2589 }
2590 }
2591 /* FALLTHROUGH */
2592
2593 default:
2594 do_default:
2595 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2596 contents, rel->r_offset,
2597 relocation, rel->r_addend);
2598 break;
2599 }
2600
2601 switch (r)
2602 {
2603 case bfd_reloc_ok:
2604 break;
2605
2606 default:
2607 case bfd_reloc_outofrange:
2608 abort ();
2609
2610 case bfd_reloc_overflow:
2611 {
2612 const char *name;
2613
2614 if (h != NULL)
2615 {
2616 if (h->root.type == bfd_link_hash_undefweak
2617 && howto->pc_relative)
2618 {
2619 /* Assume this is a call protected by other code that
2620 detect the symbol is undefined. If this is the case,
2621 we can safely ignore the overflow. If not, the
2622 program is hosed anyway, and a little warning isn't
2623 going to help. */
2624 break;
2625 }
2626
2627 name = h->root.root.string;
2628 }
2629 else
2630 {
2631 name = (bfd_elf_string_from_elf_section
2632 (input_bfd,
2633 symtab_hdr->sh_link,
2634 sym->st_name));
2635 if (name == NULL)
2636 return false;
2637 if (*name == '\0')
2638 name = bfd_section_name (input_bfd, sec);
2639 }
2640 if (! ((*info->callbacks->reloc_overflow)
2641 (info, name, howto->name, (bfd_vma) 0,
2642 input_bfd, input_section, rel->r_offset)))
2643 return false;
2644 }
2645 break;
2646 }
2647 }
2648
2649 return true;
2650 }
2651
2652 /* Finish up dynamic symbol handling. We set the contents of various
2653 dynamic sections here. */
2654
2655 static boolean
2656 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2657 bfd *output_bfd;
2658 struct bfd_link_info *info;
2659 struct elf_link_hash_entry *h;
2660 Elf_Internal_Sym *sym;
2661 {
2662 bfd *dynobj;
2663
2664 dynobj = elf_hash_table (info)->dynobj;
2665
2666 if (h->plt.offset != (bfd_vma) -1)
2667 {
2668 asection *splt;
2669 asection *srela;
2670 Elf_Internal_Rela rela;
2671
2672 /* This symbol has an entry in the PLT. Set it up. */
2673
2674 BFD_ASSERT (h->dynindx != -1);
2675
2676 splt = bfd_get_section_by_name (dynobj, ".plt");
2677 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2678 BFD_ASSERT (splt != NULL && srela != NULL);
2679
2680 /* Fill in the entry in the .rela.plt section. */
2681
2682 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2683 {
2684 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2685 rela.r_addend = 0;
2686 }
2687 else
2688 {
2689 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2690 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2691 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2692 -(splt->output_section->vma + splt->output_offset);
2693 }
2694 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2695 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2696
2697 /* Adjust for the first 4 reserved elements in the .plt section
2698 when setting the offset in the .rela.plt section.
2699 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2700 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2701
2702 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2703 ((Elf64_External_Rela *) srela->contents
2704 + (h->plt.offset - 4)));
2705
2706 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2707 {
2708 /* Mark the symbol as undefined, rather than as defined in
2709 the .plt section. Leave the value alone. */
2710 sym->st_shndx = SHN_UNDEF;
2711 /* If the symbol is weak, we do need to clear the value.
2712 Otherwise, the PLT entry would provide a definition for
2713 the symbol even if the symbol wasn't defined anywhere,
2714 and so the symbol would never be NULL. */
2715 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2716 == 0)
2717 sym->st_value = 0;
2718 }
2719 }
2720
2721 if (h->got.offset != (bfd_vma) -1)
2722 {
2723 asection *sgot;
2724 asection *srela;
2725 Elf_Internal_Rela rela;
2726
2727 /* This symbol has an entry in the GOT. Set it up. */
2728
2729 sgot = bfd_get_section_by_name (dynobj, ".got");
2730 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2731 BFD_ASSERT (sgot != NULL && srela != NULL);
2732
2733 rela.r_offset = (sgot->output_section->vma
2734 + sgot->output_offset
2735 + (h->got.offset &~ 1));
2736
2737 /* If this is a -Bsymbolic link, and the symbol is defined
2738 locally, we just want to emit a RELATIVE reloc. Likewise if
2739 the symbol was forced to be local because of a version file.
2740 The entry in the global offset table will already have been
2741 initialized in the relocate_section function. */
2742 if (info->shared
2743 && (info->symbolic || h->dynindx == -1)
2744 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2745 {
2746 asection *sec = h->root.u.def.section;
2747 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2748 rela.r_addend = (h->root.u.def.value
2749 + sec->output_section->vma
2750 + sec->output_offset);
2751 }
2752 else
2753 {
2754 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2755 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2756 rela.r_addend = 0;
2757 }
2758
2759 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2760 ((Elf64_External_Rela *) srela->contents
2761 + srela->reloc_count));
2762 ++srela->reloc_count;
2763 }
2764
2765 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2766 {
2767 asection *s;
2768 Elf_Internal_Rela rela;
2769
2770 /* This symbols needs a copy reloc. Set it up. */
2771
2772 BFD_ASSERT (h->dynindx != -1);
2773
2774 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2775 ".rela.bss");
2776 BFD_ASSERT (s != NULL);
2777
2778 rela.r_offset = (h->root.u.def.value
2779 + h->root.u.def.section->output_section->vma
2780 + h->root.u.def.section->output_offset);
2781 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2782 rela.r_addend = 0;
2783 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2784 ((Elf64_External_Rela *) s->contents
2785 + s->reloc_count));
2786 ++s->reloc_count;
2787 }
2788
2789 /* Mark some specially defined symbols as absolute. */
2790 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2791 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2792 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2793 sym->st_shndx = SHN_ABS;
2794
2795 return true;
2796 }
2797
2798 /* Finish up the dynamic sections. */
2799
2800 static boolean
2801 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2802 bfd *output_bfd;
2803 struct bfd_link_info *info;
2804 {
2805 bfd *dynobj;
2806 int stt_regidx = -1;
2807 asection *sdyn;
2808 asection *sgot;
2809
2810 dynobj = elf_hash_table (info)->dynobj;
2811
2812 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2813
2814 if (elf_hash_table (info)->dynamic_sections_created)
2815 {
2816 asection *splt;
2817 Elf64_External_Dyn *dyncon, *dynconend;
2818
2819 splt = bfd_get_section_by_name (dynobj, ".plt");
2820 BFD_ASSERT (splt != NULL && sdyn != NULL);
2821
2822 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2823 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2824 for (; dyncon < dynconend; dyncon++)
2825 {
2826 Elf_Internal_Dyn dyn;
2827 const char *name;
2828 boolean size;
2829
2830 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2831
2832 switch (dyn.d_tag)
2833 {
2834 case DT_PLTGOT: name = ".plt"; size = false; break;
2835 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2836 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2837 case DT_SPARC_REGISTER:
2838 if (stt_regidx == -1)
2839 {
2840 stt_regidx =
2841 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2842 if (stt_regidx == -1)
2843 return false;
2844 }
2845 dyn.d_un.d_val = stt_regidx++;
2846 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2847 /* fallthrough */
2848 default: name = NULL; size = false; break;
2849 }
2850
2851 if (name != NULL)
2852 {
2853 asection *s;
2854
2855 s = bfd_get_section_by_name (output_bfd, name);
2856 if (s == NULL)
2857 dyn.d_un.d_val = 0;
2858 else
2859 {
2860 if (! size)
2861 dyn.d_un.d_ptr = s->vma;
2862 else
2863 {
2864 if (s->_cooked_size != 0)
2865 dyn.d_un.d_val = s->_cooked_size;
2866 else
2867 dyn.d_un.d_val = s->_raw_size;
2868 }
2869 }
2870 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2871 }
2872 }
2873
2874 /* Initialize the contents of the .plt section. */
2875 if (splt->_raw_size > 0)
2876 {
2877 sparc64_elf_build_plt(output_bfd, splt->contents,
2878 splt->_raw_size / PLT_ENTRY_SIZE);
2879 }
2880
2881 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2882 PLT_ENTRY_SIZE;
2883 }
2884
2885 /* Set the first entry in the global offset table to the address of
2886 the dynamic section. */
2887 sgot = bfd_get_section_by_name (dynobj, ".got");
2888 BFD_ASSERT (sgot != NULL);
2889 if (sgot->_raw_size > 0)
2890 {
2891 if (sdyn == NULL)
2892 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2893 else
2894 bfd_put_64 (output_bfd,
2895 sdyn->output_section->vma + sdyn->output_offset,
2896 sgot->contents);
2897 }
2898
2899 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2900
2901 return true;
2902 }
2903 \f
2904 /* Functions for dealing with the e_flags field. */
2905
2906 /* Copy backend specific data from one object module to another */
2907 static boolean
2908 sparc64_elf_copy_private_bfd_data (ibfd, obfd)
2909 bfd *ibfd, *obfd;
2910 {
2911 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2912 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2913 return true;
2914
2915 BFD_ASSERT (!elf_flags_init (obfd)
2916 || (elf_elfheader (obfd)->e_flags
2917 == elf_elfheader (ibfd)->e_flags));
2918
2919 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2920 elf_flags_init (obfd) = true;
2921 return true;
2922 }
2923
2924 /* Merge backend specific data from an object file to the output
2925 object file when linking. */
2926
2927 static boolean
2928 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2929 bfd *ibfd;
2930 bfd *obfd;
2931 {
2932 boolean error;
2933 flagword new_flags, old_flags;
2934 int new_mm, old_mm;
2935
2936 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2937 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2938 return true;
2939
2940 new_flags = elf_elfheader (ibfd)->e_flags;
2941 old_flags = elf_elfheader (obfd)->e_flags;
2942
2943 if (!elf_flags_init (obfd)) /* First call, no flags set */
2944 {
2945 elf_flags_init (obfd) = true;
2946 elf_elfheader (obfd)->e_flags = new_flags;
2947 }
2948
2949 else if (new_flags == old_flags) /* Compatible flags are ok */
2950 ;
2951
2952 else /* Incompatible flags */
2953 {
2954 error = false;
2955
2956 #define EF_SPARC_ISA_EXTENSIONS \
2957 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2958
2959 if ((ibfd->flags & DYNAMIC) != 0)
2960 {
2961 /* We don't want dynamic objects memory ordering and
2962 architecture to have any role. That's what dynamic linker
2963 should do. */
2964 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2965 new_flags |= (old_flags
2966 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2967 }
2968 else
2969 {
2970 /* Choose the highest architecture requirements. */
2971 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2972 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2973 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2974 && (old_flags & EF_SPARC_HAL_R1))
2975 {
2976 error = true;
2977 (*_bfd_error_handler)
2978 (_("%s: linking UltraSPARC specific with HAL specific code"),
2979 bfd_get_filename (ibfd));
2980 }
2981 /* Choose the most restrictive memory ordering. */
2982 old_mm = (old_flags & EF_SPARCV9_MM);
2983 new_mm = (new_flags & EF_SPARCV9_MM);
2984 old_flags &= ~EF_SPARCV9_MM;
2985 new_flags &= ~EF_SPARCV9_MM;
2986 if (new_mm < old_mm)
2987 old_mm = new_mm;
2988 old_flags |= old_mm;
2989 new_flags |= old_mm;
2990 }
2991
2992 /* Warn about any other mismatches */
2993 if (new_flags != old_flags)
2994 {
2995 error = true;
2996 (*_bfd_error_handler)
2997 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2998 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2999 }
3000
3001 elf_elfheader (obfd)->e_flags = old_flags;
3002
3003 if (error)
3004 {
3005 bfd_set_error (bfd_error_bad_value);
3006 return false;
3007 }
3008 }
3009 return true;
3010 }
3011 \f
3012 /* Print a STT_REGISTER symbol to file FILE. */
3013
3014 static const char *
3015 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3016 bfd *abfd ATTRIBUTE_UNUSED;
3017 PTR filep;
3018 asymbol *symbol;
3019 {
3020 FILE *file = (FILE *) filep;
3021 int reg, type;
3022
3023 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3024 != STT_REGISTER)
3025 return NULL;
3026
3027 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3028 type = symbol->flags;
3029 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3030 ((type & BSF_LOCAL)
3031 ? (type & BSF_GLOBAL) ? '!' : 'l'
3032 : (type & BSF_GLOBAL) ? 'g' : ' '),
3033 (type & BSF_WEAK) ? 'w' : ' ');
3034 if (symbol->name == NULL || symbol->name [0] == '\0')
3035 return "#scratch";
3036 else
3037 return symbol->name;
3038 }
3039 \f
3040 /* Set the right machine number for a SPARC64 ELF file. */
3041
3042 static boolean
3043 sparc64_elf_object_p (abfd)
3044 bfd *abfd;
3045 {
3046 unsigned long mach = bfd_mach_sparc_v9;
3047
3048 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3049 mach = bfd_mach_sparc_v9b;
3050 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3051 mach = bfd_mach_sparc_v9a;
3052 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3053 }
3054
3055 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3056 standard ELF, because R_SPARC_OLO10 has secondary addend in
3057 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3058 relocation handling routines. */
3059
3060 const struct elf_size_info sparc64_elf_size_info =
3061 {
3062 sizeof (Elf64_External_Ehdr),
3063 sizeof (Elf64_External_Phdr),
3064 sizeof (Elf64_External_Shdr),
3065 sizeof (Elf64_External_Rel),
3066 sizeof (Elf64_External_Rela),
3067 sizeof (Elf64_External_Sym),
3068 sizeof (Elf64_External_Dyn),
3069 sizeof (Elf_External_Note),
3070 4, /* hash-table entry size */
3071 /* internal relocations per external relocations.
3072 For link purposes we use just 1 internal per
3073 1 external, for assembly and slurp symbol table
3074 we use 2. */
3075 1,
3076 64, /* arch_size */
3077 8, /* file_align */
3078 ELFCLASS64,
3079 EV_CURRENT,
3080 bfd_elf64_write_out_phdrs,
3081 bfd_elf64_write_shdrs_and_ehdr,
3082 sparc64_elf_write_relocs,
3083 bfd_elf64_swap_symbol_out,
3084 sparc64_elf_slurp_reloc_table,
3085 bfd_elf64_slurp_symbol_table,
3086 bfd_elf64_swap_dyn_in,
3087 bfd_elf64_swap_dyn_out,
3088 NULL,
3089 NULL,
3090 NULL,
3091 NULL
3092 };
3093
3094 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3095 #define TARGET_BIG_NAME "elf64-sparc"
3096 #define ELF_ARCH bfd_arch_sparc
3097 #define ELF_MAXPAGESIZE 0x100000
3098
3099 /* This is the official ABI value. */
3100 #define ELF_MACHINE_CODE EM_SPARCV9
3101
3102 /* This is the value that we used before the ABI was released. */
3103 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3104
3105 #define bfd_elf64_bfd_link_hash_table_create \
3106 sparc64_elf_bfd_link_hash_table_create
3107
3108 #define elf_info_to_howto \
3109 sparc64_elf_info_to_howto
3110 #define bfd_elf64_get_reloc_upper_bound \
3111 sparc64_elf_get_reloc_upper_bound
3112 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3113 sparc64_elf_get_dynamic_reloc_upper_bound
3114 #define bfd_elf64_canonicalize_dynamic_reloc \
3115 sparc64_elf_canonicalize_dynamic_reloc
3116 #define bfd_elf64_bfd_reloc_type_lookup \
3117 sparc64_elf_reloc_type_lookup
3118 #define bfd_elf64_bfd_relax_section \
3119 sparc64_elf_relax_section
3120
3121 #define elf_backend_create_dynamic_sections \
3122 _bfd_elf_create_dynamic_sections
3123 #define elf_backend_add_symbol_hook \
3124 sparc64_elf_add_symbol_hook
3125 #define elf_backend_get_symbol_type \
3126 sparc64_elf_get_symbol_type
3127 #define elf_backend_symbol_processing \
3128 sparc64_elf_symbol_processing
3129 #define elf_backend_check_relocs \
3130 sparc64_elf_check_relocs
3131 #define elf_backend_adjust_dynamic_symbol \
3132 sparc64_elf_adjust_dynamic_symbol
3133 #define elf_backend_size_dynamic_sections \
3134 sparc64_elf_size_dynamic_sections
3135 #define elf_backend_relocate_section \
3136 sparc64_elf_relocate_section
3137 #define elf_backend_finish_dynamic_symbol \
3138 sparc64_elf_finish_dynamic_symbol
3139 #define elf_backend_finish_dynamic_sections \
3140 sparc64_elf_finish_dynamic_sections
3141 #define elf_backend_print_symbol_all \
3142 sparc64_elf_print_symbol_all
3143 #define elf_backend_output_arch_syms \
3144 sparc64_elf_output_arch_syms
3145 #define bfd_elf64_bfd_copy_private_bfd_data \
3146 sparc64_elf_copy_private_bfd_data
3147 #define bfd_elf64_bfd_merge_private_bfd_data \
3148 sparc64_elf_merge_private_bfd_data
3149
3150 #define elf_backend_size_info \
3151 sparc64_elf_size_info
3152 #define elf_backend_object_p \
3153 sparc64_elf_object_p
3154
3155 #define elf_backend_want_got_plt 0
3156 #define elf_backend_plt_readonly 0
3157 #define elf_backend_want_plt_sym 1
3158
3159 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3160 #define elf_backend_plt_alignment 8
3161
3162 #define elf_backend_got_header_size 8
3163 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3164
3165 #include "elf64-target.h"
This page took 0.157615 seconds and 4 git commands to generate.