2011-06-22 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/sparc.h"
27 #include "opcode/sparc.h"
28 #include "elfxx-sparc.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
34 section can represent up to two relocs, we must tell the user to allocate
35 more space. */
36
37 static long
38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
39 {
40 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
41 }
42
43 static long
44 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
45 {
46 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
47 }
48
49 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
50 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
51 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
52 for the same location, R_SPARC_LO10 and R_SPARC_13. */
53
54 static bfd_boolean
55 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
56 Elf_Internal_Shdr *rel_hdr,
57 asymbol **symbols, bfd_boolean dynamic)
58 {
59 PTR allocated = NULL;
60 bfd_byte *native_relocs;
61 arelent *relent;
62 unsigned int i;
63 int entsize;
64 bfd_size_type count;
65 arelent *relents;
66
67 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
68 if (allocated == NULL)
69 goto error_return;
70
71 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
72 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
73 goto error_return;
74
75 native_relocs = (bfd_byte *) allocated;
76
77 relents = asect->relocation + canon_reloc_count (asect);
78
79 entsize = rel_hdr->sh_entsize;
80 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
81
82 count = rel_hdr->sh_size / entsize;
83
84 for (i = 0, relent = relents; i < count;
85 i++, relent++, native_relocs += entsize)
86 {
87 Elf_Internal_Rela rela;
88 unsigned int r_type;
89
90 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
91
92 /* The address of an ELF reloc is section relative for an object
93 file, and absolute for an executable file or shared library.
94 The address of a normal BFD reloc is always section relative,
95 and the address of a dynamic reloc is absolute.. */
96 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
97 relent->address = rela.r_offset;
98 else
99 relent->address = rela.r_offset - asect->vma;
100
101 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
102 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
103 else
104 {
105 asymbol **ps, *s;
106
107 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
108 s = *ps;
109
110 /* Canonicalize ELF section symbols. FIXME: Why? */
111 if ((s->flags & BSF_SECTION_SYM) == 0)
112 relent->sym_ptr_ptr = ps;
113 else
114 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
115 }
116
117 relent->addend = rela.r_addend;
118
119 r_type = ELF64_R_TYPE_ID (rela.r_info);
120 if (r_type == R_SPARC_OLO10)
121 {
122 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
123 relent[1].address = relent->address;
124 relent++;
125 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
126 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
127 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
128 }
129 else
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
131 }
132
133 canon_reloc_count (asect) += relent - relents;
134
135 if (allocated != NULL)
136 free (allocated);
137
138 return TRUE;
139
140 error_return:
141 if (allocated != NULL)
142 free (allocated);
143 return FALSE;
144 }
145
146 /* Read in and swap the external relocs. */
147
148 static bfd_boolean
149 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
150 asymbol **symbols, bfd_boolean dynamic)
151 {
152 struct bfd_elf_section_data * const d = elf_section_data (asect);
153 Elf_Internal_Shdr *rel_hdr;
154 Elf_Internal_Shdr *rel_hdr2;
155 bfd_size_type amt;
156
157 if (asect->relocation != NULL)
158 return TRUE;
159
160 if (! dynamic)
161 {
162 if ((asect->flags & SEC_RELOC) == 0
163 || asect->reloc_count == 0)
164 return TRUE;
165
166 rel_hdr = d->rel.hdr;
167 rel_hdr2 = d->rela.hdr;
168
169 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
170 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
171 }
172 else
173 {
174 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
175 case because relocations against this section may use the
176 dynamic symbol table, and in that case bfd_section_from_shdr
177 in elf.c does not update the RELOC_COUNT. */
178 if (asect->size == 0)
179 return TRUE;
180
181 rel_hdr = &d->this_hdr;
182 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
183 rel_hdr2 = NULL;
184 }
185
186 amt = asect->reloc_count;
187 amt *= 2 * sizeof (arelent);
188 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
189 if (asect->relocation == NULL)
190 return FALSE;
191
192 /* The elf64_sparc_slurp_one_reloc_table routine increments
193 canon_reloc_count. */
194 canon_reloc_count (asect) = 0;
195
196 if (rel_hdr
197 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
198 dynamic))
199 return FALSE;
200
201 if (rel_hdr2
202 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
203 dynamic))
204 return FALSE;
205
206 return TRUE;
207 }
208
209 /* Canonicalize the relocs. */
210
211 static long
212 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
213 arelent **relptr, asymbol **symbols)
214 {
215 arelent *tblptr;
216 unsigned int i;
217 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
218
219 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
220 return -1;
221
222 tblptr = section->relocation;
223 for (i = 0; i < canon_reloc_count (section); i++)
224 *relptr++ = tblptr++;
225
226 *relptr = NULL;
227
228 return canon_reloc_count (section);
229 }
230
231
232 /* Canonicalize the dynamic relocation entries. Note that we return
233 the dynamic relocations as a single block, although they are
234 actually associated with particular sections; the interface, which
235 was designed for SunOS style shared libraries, expects that there
236 is only one set of dynamic relocs. Any section that was actually
237 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
238 the dynamic symbol table, is considered to be a dynamic reloc
239 section. */
240
241 static long
242 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
243 asymbol **syms)
244 {
245 asection *s;
246 long ret;
247
248 if (elf_dynsymtab (abfd) == 0)
249 {
250 bfd_set_error (bfd_error_invalid_operation);
251 return -1;
252 }
253
254 ret = 0;
255 for (s = abfd->sections; s != NULL; s = s->next)
256 {
257 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
258 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
259 {
260 arelent *p;
261 long count, i;
262
263 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
264 return -1;
265 count = canon_reloc_count (s);
266 p = s->relocation;
267 for (i = 0; i < count; i++)
268 *storage++ = p++;
269 ret += count;
270 }
271 }
272
273 *storage = NULL;
274
275 return ret;
276 }
277
278 /* Write out the relocs. */
279
280 static void
281 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
282 {
283 bfd_boolean *failedp = (bfd_boolean *) data;
284 Elf_Internal_Shdr *rela_hdr;
285 bfd_vma addr_offset;
286 Elf64_External_Rela *outbound_relocas, *src_rela;
287 unsigned int idx, count;
288 asymbol *last_sym = 0;
289 int last_sym_idx = 0;
290
291 /* If we have already failed, don't do anything. */
292 if (*failedp)
293 return;
294
295 if ((sec->flags & SEC_RELOC) == 0)
296 return;
297
298 /* The linker backend writes the relocs out itself, and sets the
299 reloc_count field to zero to inhibit writing them here. Also,
300 sometimes the SEC_RELOC flag gets set even when there aren't any
301 relocs. */
302 if (sec->reloc_count == 0)
303 return;
304
305 /* We can combine two relocs that refer to the same address
306 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
307 latter is R_SPARC_13 with no associated symbol. */
308 count = 0;
309 for (idx = 0; idx < sec->reloc_count; idx++)
310 {
311 bfd_vma addr;
312
313 ++count;
314
315 addr = sec->orelocation[idx]->address;
316 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
317 && idx < sec->reloc_count - 1)
318 {
319 arelent *r = sec->orelocation[idx + 1];
320
321 if (r->howto->type == R_SPARC_13
322 && r->address == addr
323 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
324 && (*r->sym_ptr_ptr)->value == 0)
325 ++idx;
326 }
327 }
328
329 rela_hdr = elf_section_data (sec)->rela.hdr;
330
331 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
332 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
333 if (rela_hdr->contents == NULL)
334 {
335 *failedp = TRUE;
336 return;
337 }
338
339 /* Figure out whether the relocations are RELA or REL relocations. */
340 if (rela_hdr->sh_type != SHT_RELA)
341 abort ();
342
343 /* The address of an ELF reloc is section relative for an object
344 file, and absolute for an executable file or shared library.
345 The address of a BFD reloc is always section relative. */
346 addr_offset = 0;
347 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
348 addr_offset = sec->vma;
349
350 /* orelocation has the data, reloc_count has the count... */
351 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
352 src_rela = outbound_relocas;
353
354 for (idx = 0; idx < sec->reloc_count; idx++)
355 {
356 Elf_Internal_Rela dst_rela;
357 arelent *ptr;
358 asymbol *sym;
359 int n;
360
361 ptr = sec->orelocation[idx];
362 sym = *ptr->sym_ptr_ptr;
363 if (sym == last_sym)
364 n = last_sym_idx;
365 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
366 n = STN_UNDEF;
367 else
368 {
369 last_sym = sym;
370 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
371 if (n < 0)
372 {
373 *failedp = TRUE;
374 return;
375 }
376 last_sym_idx = n;
377 }
378
379 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
380 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
381 && ! _bfd_elf_validate_reloc (abfd, ptr))
382 {
383 *failedp = TRUE;
384 return;
385 }
386
387 if (ptr->howto->type == R_SPARC_LO10
388 && idx < sec->reloc_count - 1)
389 {
390 arelent *r = sec->orelocation[idx + 1];
391
392 if (r->howto->type == R_SPARC_13
393 && r->address == ptr->address
394 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
395 && (*r->sym_ptr_ptr)->value == 0)
396 {
397 idx++;
398 dst_rela.r_info
399 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
400 R_SPARC_OLO10));
401 }
402 else
403 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
404 }
405 else
406 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
407
408 dst_rela.r_offset = ptr->address + addr_offset;
409 dst_rela.r_addend = ptr->addend;
410
411 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
412 ++src_rela;
413 }
414 }
415 \f
416 /* Hook called by the linker routine which adds symbols from an object
417 file. We use it for STT_REGISTER symbols. */
418
419 static bfd_boolean
420 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
421 Elf_Internal_Sym *sym, const char **namep,
422 flagword *flagsp ATTRIBUTE_UNUSED,
423 asection **secp ATTRIBUTE_UNUSED,
424 bfd_vma *valp ATTRIBUTE_UNUSED)
425 {
426 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
427
428 if ((abfd->flags & DYNAMIC) == 0
429 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
430 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
431 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
432
433 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
434 {
435 int reg;
436 struct _bfd_sparc_elf_app_reg *p;
437
438 reg = (int)sym->st_value;
439 switch (reg & ~1)
440 {
441 case 2: reg -= 2; break;
442 case 6: reg -= 4; break;
443 default:
444 (*_bfd_error_handler)
445 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
446 abfd);
447 return FALSE;
448 }
449
450 if (info->output_bfd->xvec != abfd->xvec
451 || (abfd->flags & DYNAMIC) != 0)
452 {
453 /* STT_REGISTER only works when linking an elf64_sparc object.
454 If STT_REGISTER comes from a dynamic object, don't put it into
455 the output bfd. The dynamic linker will recheck it. */
456 *namep = NULL;
457 return TRUE;
458 }
459
460 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
461
462 if (p->name != NULL && strcmp (p->name, *namep))
463 {
464 (*_bfd_error_handler)
465 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
466 abfd, p->abfd, (int) sym->st_value,
467 **namep ? *namep : "#scratch",
468 *p->name ? p->name : "#scratch");
469 return FALSE;
470 }
471
472 if (p->name == NULL)
473 {
474 if (**namep)
475 {
476 struct elf_link_hash_entry *h;
477
478 h = (struct elf_link_hash_entry *)
479 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
480
481 if (h != NULL)
482 {
483 unsigned char type = h->type;
484
485 if (type > STT_FUNC)
486 type = 0;
487 (*_bfd_error_handler)
488 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
489 abfd, p->abfd, *namep, stt_types[type]);
490 return FALSE;
491 }
492
493 p->name = bfd_hash_allocate (&info->hash->table,
494 strlen (*namep) + 1);
495 if (!p->name)
496 return FALSE;
497
498 strcpy (p->name, *namep);
499 }
500 else
501 p->name = "";
502 p->bind = ELF_ST_BIND (sym->st_info);
503 p->abfd = abfd;
504 p->shndx = sym->st_shndx;
505 }
506 else
507 {
508 if (p->bind == STB_WEAK
509 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
510 {
511 p->bind = STB_GLOBAL;
512 p->abfd = abfd;
513 }
514 }
515 *namep = NULL;
516 return TRUE;
517 }
518 else if (*namep && **namep
519 && info->output_bfd->xvec == abfd->xvec)
520 {
521 int i;
522 struct _bfd_sparc_elf_app_reg *p;
523
524 p = _bfd_sparc_elf_hash_table(info)->app_regs;
525 for (i = 0; i < 4; i++, p++)
526 if (p->name != NULL && ! strcmp (p->name, *namep))
527 {
528 unsigned char type = ELF_ST_TYPE (sym->st_info);
529
530 if (type > STT_FUNC)
531 type = 0;
532 (*_bfd_error_handler)
533 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
534 abfd, p->abfd, *namep, stt_types[type]);
535 return FALSE;
536 }
537 }
538 return TRUE;
539 }
540
541 /* This function takes care of emitting STT_REGISTER symbols
542 which we cannot easily keep in the symbol hash table. */
543
544 static bfd_boolean
545 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
546 struct bfd_link_info *info,
547 PTR finfo,
548 int (*func) (PTR, const char *,
549 Elf_Internal_Sym *,
550 asection *,
551 struct elf_link_hash_entry *))
552 {
553 int reg;
554 struct _bfd_sparc_elf_app_reg *app_regs =
555 _bfd_sparc_elf_hash_table(info)->app_regs;
556 Elf_Internal_Sym sym;
557
558 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
559 at the end of the dynlocal list, so they came at the end of the local
560 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
561 to back up symtab->sh_info. */
562 if (elf_hash_table (info)->dynlocal)
563 {
564 bfd * dynobj = elf_hash_table (info)->dynobj;
565 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
566 struct elf_link_local_dynamic_entry *e;
567
568 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
569 if (e->input_indx == -1)
570 break;
571 if (e)
572 {
573 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
574 = e->dynindx;
575 }
576 }
577
578 if (info->strip == strip_all)
579 return TRUE;
580
581 for (reg = 0; reg < 4; reg++)
582 if (app_regs [reg].name != NULL)
583 {
584 if (info->strip == strip_some
585 && bfd_hash_lookup (info->keep_hash,
586 app_regs [reg].name,
587 FALSE, FALSE) == NULL)
588 continue;
589
590 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
591 sym.st_size = 0;
592 sym.st_other = 0;
593 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
594 sym.st_shndx = app_regs [reg].shndx;
595 sym.st_target_internal = 0;
596 if ((*func) (finfo, app_regs [reg].name, &sym,
597 sym.st_shndx == SHN_ABS
598 ? bfd_abs_section_ptr : bfd_und_section_ptr,
599 NULL) != 1)
600 return FALSE;
601 }
602
603 return TRUE;
604 }
605
606 static int
607 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
608 {
609 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
610 return STT_REGISTER;
611 else
612 return type;
613 }
614
615 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
616 even in SHN_UNDEF section. */
617
618 static void
619 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
620 {
621 elf_symbol_type *elfsym;
622
623 elfsym = (elf_symbol_type *) asym;
624 if (elfsym->internal_elf_sym.st_info
625 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
626 {
627 asym->flags |= BSF_GLOBAL;
628 }
629 }
630
631 \f
632 /* Functions for dealing with the e_flags field. */
633
634 /* Merge backend specific data from an object file to the output
635 object file when linking. */
636
637 static bfd_boolean
638 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
639 {
640 bfd_boolean error;
641 flagword new_flags, old_flags;
642 int new_mm, old_mm;
643
644 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
645 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
646 return TRUE;
647
648 new_flags = elf_elfheader (ibfd)->e_flags;
649 old_flags = elf_elfheader (obfd)->e_flags;
650
651 if (!elf_flags_init (obfd)) /* First call, no flags set */
652 {
653 elf_flags_init (obfd) = TRUE;
654 elf_elfheader (obfd)->e_flags = new_flags;
655 }
656
657 else if (new_flags == old_flags) /* Compatible flags are ok */
658 ;
659
660 else /* Incompatible flags */
661 {
662 error = FALSE;
663
664 #define EF_SPARC_ISA_EXTENSIONS \
665 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
666
667 if ((ibfd->flags & DYNAMIC) != 0)
668 {
669 /* We don't want dynamic objects memory ordering and
670 architecture to have any role. That's what dynamic linker
671 should do. */
672 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
673 new_flags |= (old_flags
674 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
675 }
676 else
677 {
678 /* Choose the highest architecture requirements. */
679 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
680 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
681 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
682 && (old_flags & EF_SPARC_HAL_R1))
683 {
684 error = TRUE;
685 (*_bfd_error_handler)
686 (_("%B: linking UltraSPARC specific with HAL specific code"),
687 ibfd);
688 }
689 /* Choose the most restrictive memory ordering. */
690 old_mm = (old_flags & EF_SPARCV9_MM);
691 new_mm = (new_flags & EF_SPARCV9_MM);
692 old_flags &= ~EF_SPARCV9_MM;
693 new_flags &= ~EF_SPARCV9_MM;
694 if (new_mm < old_mm)
695 old_mm = new_mm;
696 old_flags |= old_mm;
697 new_flags |= old_mm;
698 }
699
700 /* Warn about any other mismatches */
701 if (new_flags != old_flags)
702 {
703 error = TRUE;
704 (*_bfd_error_handler)
705 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
706 ibfd, (long) new_flags, (long) old_flags);
707 }
708
709 elf_elfheader (obfd)->e_flags = old_flags;
710
711 if (error)
712 {
713 bfd_set_error (bfd_error_bad_value);
714 return FALSE;
715 }
716 }
717 return TRUE;
718 }
719
720 /* MARCO: Set the correct entry size for the .stab section. */
721
722 static bfd_boolean
723 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
724 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
725 asection *sec)
726 {
727 const char *name;
728
729 name = bfd_get_section_name (abfd, sec);
730
731 if (strcmp (name, ".stab") == 0)
732 {
733 /* Even in the 64bit case the stab entries are only 12 bytes long. */
734 elf_section_data (sec)->this_hdr.sh_entsize = 12;
735 }
736
737 return TRUE;
738 }
739 \f
740 /* Print a STT_REGISTER symbol to file FILE. */
741
742 static const char *
743 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
744 asymbol *symbol)
745 {
746 FILE *file = (FILE *) filep;
747 int reg, type;
748
749 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
750 != STT_REGISTER)
751 return NULL;
752
753 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
754 type = symbol->flags;
755 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
756 ((type & BSF_LOCAL)
757 ? (type & BSF_GLOBAL) ? '!' : 'l'
758 : (type & BSF_GLOBAL) ? 'g' : ' '),
759 (type & BSF_WEAK) ? 'w' : ' ');
760 if (symbol->name == NULL || symbol->name [0] == '\0')
761 return "#scratch";
762 else
763 return symbol->name;
764 }
765 \f
766 static enum elf_reloc_type_class
767 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
768 {
769 switch ((int) ELF64_R_TYPE (rela->r_info))
770 {
771 case R_SPARC_RELATIVE:
772 return reloc_class_relative;
773 case R_SPARC_JMP_SLOT:
774 return reloc_class_plt;
775 case R_SPARC_COPY:
776 return reloc_class_copy;
777 default:
778 return reloc_class_normal;
779 }
780 }
781
782 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
783 standard ELF, because R_SPARC_OLO10 has secondary addend in
784 ELF64_R_TYPE_DATA field. This structure is used to redirect the
785 relocation handling routines. */
786
787 const struct elf_size_info elf64_sparc_size_info =
788 {
789 sizeof (Elf64_External_Ehdr),
790 sizeof (Elf64_External_Phdr),
791 sizeof (Elf64_External_Shdr),
792 sizeof (Elf64_External_Rel),
793 sizeof (Elf64_External_Rela),
794 sizeof (Elf64_External_Sym),
795 sizeof (Elf64_External_Dyn),
796 sizeof (Elf_External_Note),
797 4, /* hash-table entry size. */
798 /* Internal relocations per external relocations.
799 For link purposes we use just 1 internal per
800 1 external, for assembly and slurp symbol table
801 we use 2. */
802 1,
803 64, /* arch_size. */
804 3, /* log_file_align. */
805 ELFCLASS64,
806 EV_CURRENT,
807 bfd_elf64_write_out_phdrs,
808 bfd_elf64_write_shdrs_and_ehdr,
809 bfd_elf64_checksum_contents,
810 elf64_sparc_write_relocs,
811 bfd_elf64_swap_symbol_in,
812 bfd_elf64_swap_symbol_out,
813 elf64_sparc_slurp_reloc_table,
814 bfd_elf64_slurp_symbol_table,
815 bfd_elf64_swap_dyn_in,
816 bfd_elf64_swap_dyn_out,
817 bfd_elf64_swap_reloc_in,
818 bfd_elf64_swap_reloc_out,
819 bfd_elf64_swap_reloca_in,
820 bfd_elf64_swap_reloca_out
821 };
822
823 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
824 #define TARGET_BIG_NAME "elf64-sparc"
825 #define ELF_ARCH bfd_arch_sparc
826 #define ELF_MAXPAGESIZE 0x100000
827 #define ELF_COMMONPAGESIZE 0x2000
828
829 /* This is the official ABI value. */
830 #define ELF_MACHINE_CODE EM_SPARCV9
831
832 /* This is the value that we used before the ABI was released. */
833 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
834
835 #define elf_backend_reloc_type_class \
836 elf64_sparc_reloc_type_class
837 #define bfd_elf64_get_reloc_upper_bound \
838 elf64_sparc_get_reloc_upper_bound
839 #define bfd_elf64_get_dynamic_reloc_upper_bound \
840 elf64_sparc_get_dynamic_reloc_upper_bound
841 #define bfd_elf64_canonicalize_reloc \
842 elf64_sparc_canonicalize_reloc
843 #define bfd_elf64_canonicalize_dynamic_reloc \
844 elf64_sparc_canonicalize_dynamic_reloc
845 #define elf_backend_add_symbol_hook \
846 elf64_sparc_add_symbol_hook
847 #define elf_backend_get_symbol_type \
848 elf64_sparc_get_symbol_type
849 #define elf_backend_symbol_processing \
850 elf64_sparc_symbol_processing
851 #define elf_backend_print_symbol_all \
852 elf64_sparc_print_symbol_all
853 #define elf_backend_output_arch_syms \
854 elf64_sparc_output_arch_syms
855 #define bfd_elf64_bfd_merge_private_bfd_data \
856 elf64_sparc_merge_private_bfd_data
857 #define elf_backend_fake_sections \
858 elf64_sparc_fake_sections
859 #define elf_backend_size_info \
860 elf64_sparc_size_info
861
862 #define elf_backend_plt_sym_val \
863 _bfd_sparc_elf_plt_sym_val
864 #define bfd_elf64_bfd_link_hash_table_create \
865 _bfd_sparc_elf_link_hash_table_create
866 #define bfd_elf64_bfd_link_hash_table_free \
867 _bfd_sparc_elf_link_hash_table_free
868 #define elf_info_to_howto \
869 _bfd_sparc_elf_info_to_howto
870 #define elf_backend_copy_indirect_symbol \
871 _bfd_sparc_elf_copy_indirect_symbol
872 #define bfd_elf64_bfd_reloc_type_lookup \
873 _bfd_sparc_elf_reloc_type_lookup
874 #define bfd_elf64_bfd_reloc_name_lookup \
875 _bfd_sparc_elf_reloc_name_lookup
876 #define bfd_elf64_bfd_relax_section \
877 _bfd_sparc_elf_relax_section
878 #define bfd_elf64_new_section_hook \
879 _bfd_sparc_elf_new_section_hook
880
881 #define elf_backend_create_dynamic_sections \
882 _bfd_sparc_elf_create_dynamic_sections
883 #define elf_backend_relocs_compatible \
884 _bfd_elf_relocs_compatible
885 #define elf_backend_check_relocs \
886 _bfd_sparc_elf_check_relocs
887 #define elf_backend_adjust_dynamic_symbol \
888 _bfd_sparc_elf_adjust_dynamic_symbol
889 #define elf_backend_omit_section_dynsym \
890 _bfd_sparc_elf_omit_section_dynsym
891 #define elf_backend_size_dynamic_sections \
892 _bfd_sparc_elf_size_dynamic_sections
893 #define elf_backend_relocate_section \
894 _bfd_sparc_elf_relocate_section
895 #define elf_backend_finish_dynamic_symbol \
896 _bfd_sparc_elf_finish_dynamic_symbol
897 #define elf_backend_finish_dynamic_sections \
898 _bfd_sparc_elf_finish_dynamic_sections
899
900 #define bfd_elf64_mkobject \
901 _bfd_sparc_elf_mkobject
902 #define elf_backend_object_p \
903 _bfd_sparc_elf_object_p
904 #define elf_backend_gc_mark_hook \
905 _bfd_sparc_elf_gc_mark_hook
906 #define elf_backend_gc_sweep_hook \
907 _bfd_sparc_elf_gc_sweep_hook
908 #define elf_backend_init_index_section \
909 _bfd_elf_init_1_index_section
910
911 #define elf_backend_can_gc_sections 1
912 #define elf_backend_can_refcount 1
913 #define elf_backend_want_got_plt 0
914 #define elf_backend_plt_readonly 0
915 #define elf_backend_want_plt_sym 1
916 #define elf_backend_got_header_size 8
917 #define elf_backend_rela_normal 1
918
919 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
920 #define elf_backend_plt_alignment 8
921
922 #define elf_backend_post_process_headers _bfd_elf_set_osabi
923
924 #include "elf64-target.h"
925
926 /* FreeBSD support */
927 #undef TARGET_BIG_SYM
928 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
929 #undef TARGET_BIG_NAME
930 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
931 #undef ELF_OSABI
932 #define ELF_OSABI ELFOSABI_FREEBSD
933
934 #undef elf64_bed
935 #define elf64_bed elf64_sparc_fbsd_bed
936
937 #include "elf64-target.h"
938
939 /* Solaris 2. */
940
941 #undef TARGET_BIG_SYM
942 #define TARGET_BIG_SYM bfd_elf64_sparc_sol2_vec
943 #undef TARGET_BIG_NAME
944 #define TARGET_BIG_NAME "elf64-sparc-sol2"
945
946 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
947 objects won't be recognized. */
948 #undef ELF_OSABI
949
950 #undef elf64_bed
951 #define elf64_bed elf64_sparc_sol2_bed
952
953 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
954 boundary. */
955 #undef elf_backend_static_tls_alignment
956 #define elf_backend_static_tls_alignment 16
957
958 #include "elf64-target.h"
This page took 0.050713 seconds and 4 git commands to generate.