Fix 17492, ld segfault with --oformat=binary
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57 {
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
101 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
102 else
103 {
104 asymbol **ps, *s;
105
106 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
107 s = *ps;
108
109 /* Canonicalize ELF section symbols. FIXME: Why? */
110 if ((s->flags & BSF_SECTION_SYM) == 0)
111 relent->sym_ptr_ptr = ps;
112 else
113 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
114 }
115
116 relent->addend = rela.r_addend;
117
118 r_type = ELF64_R_TYPE_ID (rela.r_info);
119 if (r_type == R_SPARC_OLO10)
120 {
121 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
122 relent[1].address = relent->address;
123 relent++;
124 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
125 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
126 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
127 }
128 else
129 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
130 }
131
132 canon_reloc_count (asect) += relent - relents;
133
134 if (allocated != NULL)
135 free (allocated);
136
137 return TRUE;
138
139 error_return:
140 if (allocated != NULL)
141 free (allocated);
142 return FALSE;
143 }
144
145 /* Read in and swap the external relocs. */
146
147 static bfd_boolean
148 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
149 asymbol **symbols, bfd_boolean dynamic)
150 {
151 struct bfd_elf_section_data * const d = elf_section_data (asect);
152 Elf_Internal_Shdr *rel_hdr;
153 Elf_Internal_Shdr *rel_hdr2;
154 bfd_size_type amt;
155
156 if (asect->relocation != NULL)
157 return TRUE;
158
159 if (! dynamic)
160 {
161 if ((asect->flags & SEC_RELOC) == 0
162 || asect->reloc_count == 0)
163 return TRUE;
164
165 rel_hdr = d->rel.hdr;
166 rel_hdr2 = d->rela.hdr;
167
168 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
169 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
170 }
171 else
172 {
173 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
174 case because relocations against this section may use the
175 dynamic symbol table, and in that case bfd_section_from_shdr
176 in elf.c does not update the RELOC_COUNT. */
177 if (asect->size == 0)
178 return TRUE;
179
180 rel_hdr = &d->this_hdr;
181 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
182 rel_hdr2 = NULL;
183 }
184
185 amt = asect->reloc_count;
186 amt *= 2 * sizeof (arelent);
187 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
188 if (asect->relocation == NULL)
189 return FALSE;
190
191 /* The elf64_sparc_slurp_one_reloc_table routine increments
192 canon_reloc_count. */
193 canon_reloc_count (asect) = 0;
194
195 if (rel_hdr
196 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
197 dynamic))
198 return FALSE;
199
200 if (rel_hdr2
201 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
202 dynamic))
203 return FALSE;
204
205 return TRUE;
206 }
207
208 /* Canonicalize the relocs. */
209
210 static long
211 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
212 arelent **relptr, asymbol **symbols)
213 {
214 arelent *tblptr;
215 unsigned int i;
216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
217
218 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
219 return -1;
220
221 tblptr = section->relocation;
222 for (i = 0; i < canon_reloc_count (section); i++)
223 *relptr++ = tblptr++;
224
225 *relptr = NULL;
226
227 return canon_reloc_count (section);
228 }
229
230
231 /* Canonicalize the dynamic relocation entries. Note that we return
232 the dynamic relocations as a single block, although they are
233 actually associated with particular sections; the interface, which
234 was designed for SunOS style shared libraries, expects that there
235 is only one set of dynamic relocs. Any section that was actually
236 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
237 the dynamic symbol table, is considered to be a dynamic reloc
238 section. */
239
240 static long
241 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
242 asymbol **syms)
243 {
244 asection *s;
245 long ret;
246
247 if (elf_dynsymtab (abfd) == 0)
248 {
249 bfd_set_error (bfd_error_invalid_operation);
250 return -1;
251 }
252
253 ret = 0;
254 for (s = abfd->sections; s != NULL; s = s->next)
255 {
256 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
257 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
258 {
259 arelent *p;
260 long count, i;
261
262 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
263 return -1;
264 count = canon_reloc_count (s);
265 p = s->relocation;
266 for (i = 0; i < count; i++)
267 *storage++ = p++;
268 ret += count;
269 }
270 }
271
272 *storage = NULL;
273
274 return ret;
275 }
276
277 /* Write out the relocs. */
278
279 static void
280 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
281 {
282 bfd_boolean *failedp = (bfd_boolean *) data;
283 Elf_Internal_Shdr *rela_hdr;
284 bfd_vma addr_offset;
285 Elf64_External_Rela *outbound_relocas, *src_rela;
286 unsigned int idx, count;
287 asymbol *last_sym = 0;
288 int last_sym_idx = 0;
289
290 /* If we have already failed, don't do anything. */
291 if (*failedp)
292 return;
293
294 if ((sec->flags & SEC_RELOC) == 0)
295 return;
296
297 /* The linker backend writes the relocs out itself, and sets the
298 reloc_count field to zero to inhibit writing them here. Also,
299 sometimes the SEC_RELOC flag gets set even when there aren't any
300 relocs. */
301 if (sec->reloc_count == 0)
302 return;
303
304 /* We can combine two relocs that refer to the same address
305 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
306 latter is R_SPARC_13 with no associated symbol. */
307 count = 0;
308 for (idx = 0; idx < sec->reloc_count; idx++)
309 {
310 bfd_vma addr;
311
312 ++count;
313
314 addr = sec->orelocation[idx]->address;
315 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
316 && idx < sec->reloc_count - 1)
317 {
318 arelent *r = sec->orelocation[idx + 1];
319
320 if (r->howto->type == R_SPARC_13
321 && r->address == addr
322 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
323 && (*r->sym_ptr_ptr)->value == 0)
324 ++idx;
325 }
326 }
327
328 rela_hdr = elf_section_data (sec)->rela.hdr;
329
330 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
331 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
332 if (rela_hdr->contents == NULL)
333 {
334 *failedp = TRUE;
335 return;
336 }
337
338 /* Figure out whether the relocations are RELA or REL relocations. */
339 if (rela_hdr->sh_type != SHT_RELA)
340 abort ();
341
342 /* The address of an ELF reloc is section relative for an object
343 file, and absolute for an executable file or shared library.
344 The address of a BFD reloc is always section relative. */
345 addr_offset = 0;
346 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
347 addr_offset = sec->vma;
348
349 /* orelocation has the data, reloc_count has the count... */
350 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
351 src_rela = outbound_relocas;
352
353 for (idx = 0; idx < sec->reloc_count; idx++)
354 {
355 Elf_Internal_Rela dst_rela;
356 arelent *ptr;
357 asymbol *sym;
358 int n;
359
360 ptr = sec->orelocation[idx];
361 sym = *ptr->sym_ptr_ptr;
362 if (sym == last_sym)
363 n = last_sym_idx;
364 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
365 n = STN_UNDEF;
366 else
367 {
368 last_sym = sym;
369 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
370 if (n < 0)
371 {
372 *failedp = TRUE;
373 return;
374 }
375 last_sym_idx = n;
376 }
377
378 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
379 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
380 && ! _bfd_elf_validate_reloc (abfd, ptr))
381 {
382 *failedp = TRUE;
383 return;
384 }
385
386 if (ptr->howto->type == R_SPARC_LO10
387 && idx < sec->reloc_count - 1)
388 {
389 arelent *r = sec->orelocation[idx + 1];
390
391 if (r->howto->type == R_SPARC_13
392 && r->address == ptr->address
393 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
394 && (*r->sym_ptr_ptr)->value == 0)
395 {
396 idx++;
397 dst_rela.r_info
398 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
399 R_SPARC_OLO10));
400 }
401 else
402 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
403 }
404 else
405 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
406
407 dst_rela.r_offset = ptr->address + addr_offset;
408 dst_rela.r_addend = ptr->addend;
409
410 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
411 ++src_rela;
412 }
413 }
414 \f
415 /* Hook called by the linker routine which adds symbols from an object
416 file. We use it for STT_REGISTER symbols. */
417
418 static bfd_boolean
419 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
420 Elf_Internal_Sym *sym, const char **namep,
421 flagword *flagsp ATTRIBUTE_UNUSED,
422 asection **secp ATTRIBUTE_UNUSED,
423 bfd_vma *valp ATTRIBUTE_UNUSED)
424 {
425 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
426
427 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
428 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
429 && (abfd->flags & DYNAMIC) == 0
430 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
431 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
432
433 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
434 {
435 int reg;
436 struct _bfd_sparc_elf_app_reg *p;
437
438 reg = (int)sym->st_value;
439 switch (reg & ~1)
440 {
441 case 2: reg -= 2; break;
442 case 6: reg -= 4; break;
443 default:
444 (*_bfd_error_handler)
445 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
446 abfd);
447 return FALSE;
448 }
449
450 if (info->output_bfd->xvec != abfd->xvec
451 || (abfd->flags & DYNAMIC) != 0)
452 {
453 /* STT_REGISTER only works when linking an elf64_sparc object.
454 If STT_REGISTER comes from a dynamic object, don't put it into
455 the output bfd. The dynamic linker will recheck it. */
456 *namep = NULL;
457 return TRUE;
458 }
459
460 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
461
462 if (p->name != NULL && strcmp (p->name, *namep))
463 {
464 (*_bfd_error_handler)
465 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
466 abfd, p->abfd, (int) sym->st_value,
467 **namep ? *namep : "#scratch",
468 *p->name ? p->name : "#scratch");
469 return FALSE;
470 }
471
472 if (p->name == NULL)
473 {
474 if (**namep)
475 {
476 struct elf_link_hash_entry *h;
477
478 h = (struct elf_link_hash_entry *)
479 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
480
481 if (h != NULL)
482 {
483 unsigned char type = h->type;
484
485 if (type > STT_FUNC)
486 type = 0;
487 (*_bfd_error_handler)
488 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
489 abfd, p->abfd, *namep, stt_types[type]);
490 return FALSE;
491 }
492
493 p->name = bfd_hash_allocate (&info->hash->table,
494 strlen (*namep) + 1);
495 if (!p->name)
496 return FALSE;
497
498 strcpy (p->name, *namep);
499 }
500 else
501 p->name = "";
502 p->bind = ELF_ST_BIND (sym->st_info);
503 p->abfd = abfd;
504 p->shndx = sym->st_shndx;
505 }
506 else
507 {
508 if (p->bind == STB_WEAK
509 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
510 {
511 p->bind = STB_GLOBAL;
512 p->abfd = abfd;
513 }
514 }
515 *namep = NULL;
516 return TRUE;
517 }
518 else if (*namep && **namep
519 && info->output_bfd->xvec == abfd->xvec)
520 {
521 int i;
522 struct _bfd_sparc_elf_app_reg *p;
523
524 p = _bfd_sparc_elf_hash_table(info)->app_regs;
525 for (i = 0; i < 4; i++, p++)
526 if (p->name != NULL && ! strcmp (p->name, *namep))
527 {
528 unsigned char type = ELF_ST_TYPE (sym->st_info);
529
530 if (type > STT_FUNC)
531 type = 0;
532 (*_bfd_error_handler)
533 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
534 abfd, p->abfd, *namep, stt_types[type]);
535 return FALSE;
536 }
537 }
538 return TRUE;
539 }
540
541 /* This function takes care of emitting STT_REGISTER symbols
542 which we cannot easily keep in the symbol hash table. */
543
544 static bfd_boolean
545 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
546 struct bfd_link_info *info,
547 void * flaginfo,
548 int (*func) (void *, const char *,
549 Elf_Internal_Sym *,
550 asection *,
551 struct elf_link_hash_entry *))
552 {
553 int reg;
554 struct _bfd_sparc_elf_app_reg *app_regs =
555 _bfd_sparc_elf_hash_table(info)->app_regs;
556 Elf_Internal_Sym sym;
557
558 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
559 at the end of the dynlocal list, so they came at the end of the local
560 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
561 to back up symtab->sh_info. */
562 if (elf_hash_table (info)->dynlocal)
563 {
564 bfd * dynobj = elf_hash_table (info)->dynobj;
565 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
566 struct elf_link_local_dynamic_entry *e;
567
568 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
569 if (e->input_indx == -1)
570 break;
571 if (e)
572 {
573 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
574 = e->dynindx;
575 }
576 }
577
578 if (info->strip == strip_all)
579 return TRUE;
580
581 for (reg = 0; reg < 4; reg++)
582 if (app_regs [reg].name != NULL)
583 {
584 if (info->strip == strip_some
585 && bfd_hash_lookup (info->keep_hash,
586 app_regs [reg].name,
587 FALSE, FALSE) == NULL)
588 continue;
589
590 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
591 sym.st_size = 0;
592 sym.st_other = 0;
593 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
594 sym.st_shndx = app_regs [reg].shndx;
595 sym.st_target_internal = 0;
596 if ((*func) (flaginfo, app_regs [reg].name, &sym,
597 sym.st_shndx == SHN_ABS
598 ? bfd_abs_section_ptr : bfd_und_section_ptr,
599 NULL) != 1)
600 return FALSE;
601 }
602
603 return TRUE;
604 }
605
606 static int
607 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
608 {
609 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
610 return STT_REGISTER;
611 else
612 return type;
613 }
614
615 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
616 even in SHN_UNDEF section. */
617
618 static void
619 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
620 {
621 elf_symbol_type *elfsym;
622
623 elfsym = (elf_symbol_type *) asym;
624 if (elfsym->internal_elf_sym.st_info
625 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
626 {
627 asym->flags |= BSF_GLOBAL;
628 }
629 }
630
631 \f
632 /* Functions for dealing with the e_flags field. */
633
634 /* Merge backend specific data from an object file to the output
635 object file when linking. */
636
637 static bfd_boolean
638 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
639 {
640 bfd_boolean error;
641 flagword new_flags, old_flags;
642 int new_mm, old_mm;
643
644 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
645 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
646 return TRUE;
647
648 new_flags = elf_elfheader (ibfd)->e_flags;
649 old_flags = elf_elfheader (obfd)->e_flags;
650
651 if (!elf_flags_init (obfd)) /* First call, no flags set */
652 {
653 elf_flags_init (obfd) = TRUE;
654 elf_elfheader (obfd)->e_flags = new_flags;
655 }
656
657 else if (new_flags == old_flags) /* Compatible flags are ok */
658 ;
659
660 else /* Incompatible flags */
661 {
662 error = FALSE;
663
664 #define EF_SPARC_ISA_EXTENSIONS \
665 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
666
667 if ((ibfd->flags & DYNAMIC) != 0)
668 {
669 /* We don't want dynamic objects memory ordering and
670 architecture to have any role. That's what dynamic linker
671 should do. */
672 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
673 new_flags |= (old_flags
674 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
675 }
676 else
677 {
678 /* Choose the highest architecture requirements. */
679 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
680 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
681 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
682 && (old_flags & EF_SPARC_HAL_R1))
683 {
684 error = TRUE;
685 (*_bfd_error_handler)
686 (_("%B: linking UltraSPARC specific with HAL specific code"),
687 ibfd);
688 }
689 /* Choose the most restrictive memory ordering. */
690 old_mm = (old_flags & EF_SPARCV9_MM);
691 new_mm = (new_flags & EF_SPARCV9_MM);
692 old_flags &= ~EF_SPARCV9_MM;
693 new_flags &= ~EF_SPARCV9_MM;
694 if (new_mm < old_mm)
695 old_mm = new_mm;
696 old_flags |= old_mm;
697 new_flags |= old_mm;
698 }
699
700 /* Warn about any other mismatches */
701 if (new_flags != old_flags)
702 {
703 error = TRUE;
704 (*_bfd_error_handler)
705 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
706 ibfd, (long) new_flags, (long) old_flags);
707 }
708
709 elf_elfheader (obfd)->e_flags = old_flags;
710
711 if (error)
712 {
713 bfd_set_error (bfd_error_bad_value);
714 return FALSE;
715 }
716 }
717 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, obfd);
718 }
719
720 /* MARCO: Set the correct entry size for the .stab section. */
721
722 static bfd_boolean
723 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
724 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
725 asection *sec)
726 {
727 const char *name;
728
729 name = bfd_get_section_name (abfd, sec);
730
731 if (strcmp (name, ".stab") == 0)
732 {
733 /* Even in the 64bit case the stab entries are only 12 bytes long. */
734 elf_section_data (sec)->this_hdr.sh_entsize = 12;
735 }
736
737 return TRUE;
738 }
739 \f
740 /* Print a STT_REGISTER symbol to file FILE. */
741
742 static const char *
743 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
744 asymbol *symbol)
745 {
746 FILE *file = (FILE *) filep;
747 int reg, type;
748
749 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
750 != STT_REGISTER)
751 return NULL;
752
753 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
754 type = symbol->flags;
755 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
756 ((type & BSF_LOCAL)
757 ? (type & BSF_GLOBAL) ? '!' : 'l'
758 : (type & BSF_GLOBAL) ? 'g' : ' '),
759 (type & BSF_WEAK) ? 'w' : ' ');
760 if (symbol->name == NULL || symbol->name [0] == '\0')
761 return "#scratch";
762 else
763 return symbol->name;
764 }
765 \f
766 static enum elf_reloc_type_class
767 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
768 const asection *rel_sec ATTRIBUTE_UNUSED,
769 const Elf_Internal_Rela *rela)
770 {
771 switch ((int) ELF64_R_TYPE (rela->r_info))
772 {
773 case R_SPARC_RELATIVE:
774 return reloc_class_relative;
775 case R_SPARC_JMP_SLOT:
776 return reloc_class_plt;
777 case R_SPARC_COPY:
778 return reloc_class_copy;
779 default:
780 return reloc_class_normal;
781 }
782 }
783
784 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
785 standard ELF, because R_SPARC_OLO10 has secondary addend in
786 ELF64_R_TYPE_DATA field. This structure is used to redirect the
787 relocation handling routines. */
788
789 const struct elf_size_info elf64_sparc_size_info =
790 {
791 sizeof (Elf64_External_Ehdr),
792 sizeof (Elf64_External_Phdr),
793 sizeof (Elf64_External_Shdr),
794 sizeof (Elf64_External_Rel),
795 sizeof (Elf64_External_Rela),
796 sizeof (Elf64_External_Sym),
797 sizeof (Elf64_External_Dyn),
798 sizeof (Elf_External_Note),
799 4, /* hash-table entry size. */
800 /* Internal relocations per external relocations.
801 For link purposes we use just 1 internal per
802 1 external, for assembly and slurp symbol table
803 we use 2. */
804 1,
805 64, /* arch_size. */
806 3, /* log_file_align. */
807 ELFCLASS64,
808 EV_CURRENT,
809 bfd_elf64_write_out_phdrs,
810 bfd_elf64_write_shdrs_and_ehdr,
811 bfd_elf64_checksum_contents,
812 elf64_sparc_write_relocs,
813 bfd_elf64_swap_symbol_in,
814 bfd_elf64_swap_symbol_out,
815 elf64_sparc_slurp_reloc_table,
816 bfd_elf64_slurp_symbol_table,
817 bfd_elf64_swap_dyn_in,
818 bfd_elf64_swap_dyn_out,
819 bfd_elf64_swap_reloc_in,
820 bfd_elf64_swap_reloc_out,
821 bfd_elf64_swap_reloca_in,
822 bfd_elf64_swap_reloca_out
823 };
824
825 #define TARGET_BIG_SYM sparc_elf64_vec
826 #define TARGET_BIG_NAME "elf64-sparc"
827 #define ELF_ARCH bfd_arch_sparc
828 #define ELF_MAXPAGESIZE 0x100000
829 #define ELF_COMMONPAGESIZE 0x2000
830
831 /* This is the official ABI value. */
832 #define ELF_MACHINE_CODE EM_SPARCV9
833
834 /* This is the value that we used before the ABI was released. */
835 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
836
837 #define elf_backend_reloc_type_class \
838 elf64_sparc_reloc_type_class
839 #define bfd_elf64_get_reloc_upper_bound \
840 elf64_sparc_get_reloc_upper_bound
841 #define bfd_elf64_get_dynamic_reloc_upper_bound \
842 elf64_sparc_get_dynamic_reloc_upper_bound
843 #define bfd_elf64_canonicalize_reloc \
844 elf64_sparc_canonicalize_reloc
845 #define bfd_elf64_canonicalize_dynamic_reloc \
846 elf64_sparc_canonicalize_dynamic_reloc
847 #define elf_backend_add_symbol_hook \
848 elf64_sparc_add_symbol_hook
849 #define elf_backend_get_symbol_type \
850 elf64_sparc_get_symbol_type
851 #define elf_backend_symbol_processing \
852 elf64_sparc_symbol_processing
853 #define elf_backend_print_symbol_all \
854 elf64_sparc_print_symbol_all
855 #define elf_backend_output_arch_syms \
856 elf64_sparc_output_arch_syms
857 #define bfd_elf64_bfd_merge_private_bfd_data \
858 elf64_sparc_merge_private_bfd_data
859 #define elf_backend_fake_sections \
860 elf64_sparc_fake_sections
861 #define elf_backend_size_info \
862 elf64_sparc_size_info
863
864 #define elf_backend_plt_sym_val \
865 _bfd_sparc_elf_plt_sym_val
866 #define bfd_elf64_bfd_link_hash_table_create \
867 _bfd_sparc_elf_link_hash_table_create
868 #define elf_info_to_howto \
869 _bfd_sparc_elf_info_to_howto
870 #define elf_backend_copy_indirect_symbol \
871 _bfd_sparc_elf_copy_indirect_symbol
872 #define bfd_elf64_bfd_reloc_type_lookup \
873 _bfd_sparc_elf_reloc_type_lookup
874 #define bfd_elf64_bfd_reloc_name_lookup \
875 _bfd_sparc_elf_reloc_name_lookup
876 #define bfd_elf64_bfd_relax_section \
877 _bfd_sparc_elf_relax_section
878 #define bfd_elf64_new_section_hook \
879 _bfd_sparc_elf_new_section_hook
880
881 #define elf_backend_create_dynamic_sections \
882 _bfd_sparc_elf_create_dynamic_sections
883 #define elf_backend_relocs_compatible \
884 _bfd_elf_relocs_compatible
885 #define elf_backend_check_relocs \
886 _bfd_sparc_elf_check_relocs
887 #define elf_backend_adjust_dynamic_symbol \
888 _bfd_sparc_elf_adjust_dynamic_symbol
889 #define elf_backend_omit_section_dynsym \
890 _bfd_sparc_elf_omit_section_dynsym
891 #define elf_backend_size_dynamic_sections \
892 _bfd_sparc_elf_size_dynamic_sections
893 #define elf_backend_relocate_section \
894 _bfd_sparc_elf_relocate_section
895 #define elf_backend_finish_dynamic_symbol \
896 _bfd_sparc_elf_finish_dynamic_symbol
897 #define elf_backend_finish_dynamic_sections \
898 _bfd_sparc_elf_finish_dynamic_sections
899
900 #define bfd_elf64_mkobject \
901 _bfd_sparc_elf_mkobject
902 #define elf_backend_object_p \
903 _bfd_sparc_elf_object_p
904 #define elf_backend_gc_mark_hook \
905 _bfd_sparc_elf_gc_mark_hook
906 #define elf_backend_gc_sweep_hook \
907 _bfd_sparc_elf_gc_sweep_hook
908 #define elf_backend_init_index_section \
909 _bfd_elf_init_1_index_section
910
911 #define elf_backend_can_gc_sections 1
912 #define elf_backend_can_refcount 1
913 #define elf_backend_want_got_plt 0
914 #define elf_backend_plt_readonly 0
915 #define elf_backend_want_plt_sym 1
916 #define elf_backend_got_header_size 8
917 #define elf_backend_rela_normal 1
918
919 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
920 #define elf_backend_plt_alignment 8
921
922 #include "elf64-target.h"
923
924 /* FreeBSD support */
925 #undef TARGET_BIG_SYM
926 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
927 #undef TARGET_BIG_NAME
928 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
929 #undef ELF_OSABI
930 #define ELF_OSABI ELFOSABI_FREEBSD
931
932 #undef elf64_bed
933 #define elf64_bed elf64_sparc_fbsd_bed
934
935 #include "elf64-target.h"
936
937 /* Solaris 2. */
938
939 #undef TARGET_BIG_SYM
940 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
941 #undef TARGET_BIG_NAME
942 #define TARGET_BIG_NAME "elf64-sparc-sol2"
943
944 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
945 objects won't be recognized. */
946 #undef ELF_OSABI
947
948 #undef elf64_bed
949 #define elf64_bed elf64_sparc_sol2_bed
950
951 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
952 boundary. */
953 #undef elf_backend_static_tls_alignment
954 #define elf_backend_static_tls_alignment 16
955
956 #include "elf64-target.h"
This page took 0.05016 seconds and 4 git commands to generate.