* elf-bfd.h (struct elf_backend_data): Remove plt_header_size.
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static bfd_boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static bfd_boolean sparc64_elf_fake_sections
76 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
77
78 static const char *sparc64_elf_print_symbol_all
79 PARAMS ((bfd *, PTR, asymbol *));
80 static bfd_boolean sparc64_elf_new_section_hook
81 PARAMS ((bfd *, asection *));
82 static bfd_boolean sparc64_elf_relax_section
83 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
84 static bfd_boolean sparc64_elf_relocate_section
85 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
86 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
87 static bfd_boolean sparc64_elf_finish_dynamic_symbol
88 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
89 Elf_Internal_Sym *));
90 static bfd_boolean sparc64_elf_finish_dynamic_sections
91 PARAMS ((bfd *, struct bfd_link_info *));
92 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
93 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
94 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
95 static bfd_boolean sparc64_elf_slurp_one_reloc_table
96 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
97 static bfd_boolean sparc64_elf_slurp_reloc_table
98 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
99 static long sparc64_elf_canonicalize_reloc
100 PARAMS ((bfd *, asection *, arelent **, asymbol **));
101 static long sparc64_elf_canonicalize_dynamic_reloc
102 PARAMS ((bfd *, arelent **, asymbol **));
103 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
104 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
105 PARAMS ((const Elf_Internal_Rela *));
106 \f
107 /* The relocation "howto" table. */
108
109 static bfd_reloc_status_type sparc_elf_notsup_reloc
110 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
112 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
113 static bfd_reloc_status_type sparc_elf_hix22_reloc
114 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
115 static bfd_reloc_status_type sparc_elf_lox10_reloc
116 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
117
118 static reloc_howto_type sparc64_elf_howto_table[] =
119 {
120 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
121 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
122 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
123 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
124 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
125 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
126 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
127 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
128 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
129 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
130 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
131 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
132 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
133 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
134 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
135 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
136 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
137 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
138 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
139 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
140 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
142 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
144 #ifndef SPARC64_OLD_RELOCS
145 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
146 /* These aren't implemented yet. */
147 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
148 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
152 #endif
153 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
154 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
155 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
156 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
157 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
158 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
159 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
160 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
162 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
163 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
164 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
165 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
166 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
167 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
168 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
169 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
170 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
171 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
172 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
173 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
174 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
175 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
176 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
177 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
178 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
179 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
180 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
181 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
182 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
183 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
185 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
187 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
188 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
189 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
190 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
191 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
192 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
193 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
194 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
195 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
196 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
197 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
198 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
199 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
200 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
201 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
202 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
203 };
204
205 struct elf_reloc_map {
206 bfd_reloc_code_real_type bfd_reloc_val;
207 unsigned char elf_reloc_val;
208 };
209
210 static const struct elf_reloc_map sparc_reloc_map[] =
211 {
212 { BFD_RELOC_NONE, R_SPARC_NONE, },
213 { BFD_RELOC_16, R_SPARC_16, },
214 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
215 { BFD_RELOC_8, R_SPARC_8 },
216 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
217 { BFD_RELOC_CTOR, R_SPARC_64 },
218 { BFD_RELOC_32, R_SPARC_32 },
219 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
220 { BFD_RELOC_HI22, R_SPARC_HI22 },
221 { BFD_RELOC_LO10, R_SPARC_LO10, },
222 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
223 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
224 { BFD_RELOC_SPARC22, R_SPARC_22 },
225 { BFD_RELOC_SPARC13, R_SPARC_13 },
226 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
227 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
228 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
229 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
230 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
231 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
232 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
233 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
234 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
235 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
236 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
237 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
238 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
239 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
240 { BFD_RELOC_SPARC_10, R_SPARC_10 },
241 { BFD_RELOC_SPARC_11, R_SPARC_11 },
242 { BFD_RELOC_SPARC_64, R_SPARC_64 },
243 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
244 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
245 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
246 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
247 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
248 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
249 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
250 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
251 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
252 { BFD_RELOC_SPARC_7, R_SPARC_7 },
253 { BFD_RELOC_SPARC_5, R_SPARC_5 },
254 { BFD_RELOC_SPARC_6, R_SPARC_6 },
255 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
256 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
257 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
258 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
259 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
260 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
261 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
262 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
263 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
264 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
265 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
266 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
267 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
268 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
269 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
270 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
271 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
272 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
273 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
274 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
275 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
276 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
277 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
278 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
279 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
280 #ifndef SPARC64_OLD_RELOCS
281 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
282 #endif
283 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
284 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
285 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
286 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
287 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
288 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
289 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
290 };
291
292 static reloc_howto_type *
293 sparc64_elf_reloc_type_lookup (abfd, code)
294 bfd *abfd ATTRIBUTE_UNUSED;
295 bfd_reloc_code_real_type code;
296 {
297 unsigned int i;
298 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
299 {
300 if (sparc_reloc_map[i].bfd_reloc_val == code)
301 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
302 }
303 return 0;
304 }
305
306 static void
307 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
308 bfd *abfd ATTRIBUTE_UNUSED;
309 arelent *cache_ptr;
310 Elf_Internal_Rela *dst;
311 {
312 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
313 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
314 }
315 \f
316 struct sparc64_elf_section_data
317 {
318 struct bfd_elf_section_data elf;
319 unsigned int do_relax, reloc_count;
320 };
321
322 #define sec_do_relax(sec) \
323 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
324 #define canon_reloc_count(sec) \
325 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
326
327 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
328 section can represent up to two relocs, we must tell the user to allocate
329 more space. */
330
331 static long
332 sparc64_elf_get_reloc_upper_bound (abfd, sec)
333 bfd *abfd ATTRIBUTE_UNUSED;
334 asection *sec;
335 {
336 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
337 }
338
339 static long
340 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
341 bfd *abfd;
342 {
343 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
344 }
345
346 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
347 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
348 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
349 for the same location, R_SPARC_LO10 and R_SPARC_13. */
350
351 static bfd_boolean
352 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
353 bfd *abfd;
354 asection *asect;
355 Elf_Internal_Shdr *rel_hdr;
356 asymbol **symbols;
357 bfd_boolean dynamic;
358 {
359 PTR allocated = NULL;
360 bfd_byte *native_relocs;
361 arelent *relent;
362 unsigned int i;
363 int entsize;
364 bfd_size_type count;
365 arelent *relents;
366
367 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
368 if (allocated == NULL)
369 goto error_return;
370
371 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
372 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
373 goto error_return;
374
375 native_relocs = (bfd_byte *) allocated;
376
377 relents = asect->relocation + canon_reloc_count (asect);
378
379 entsize = rel_hdr->sh_entsize;
380 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
381
382 count = rel_hdr->sh_size / entsize;
383
384 for (i = 0, relent = relents; i < count;
385 i++, relent++, native_relocs += entsize)
386 {
387 Elf_Internal_Rela rela;
388
389 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
390
391 /* The address of an ELF reloc is section relative for an object
392 file, and absolute for an executable file or shared library.
393 The address of a normal BFD reloc is always section relative,
394 and the address of a dynamic reloc is absolute.. */
395 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
396 relent->address = rela.r_offset;
397 else
398 relent->address = rela.r_offset - asect->vma;
399
400 if (ELF64_R_SYM (rela.r_info) == 0)
401 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
402 else
403 {
404 asymbol **ps, *s;
405
406 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
407 s = *ps;
408
409 /* Canonicalize ELF section symbols. FIXME: Why? */
410 if ((s->flags & BSF_SECTION_SYM) == 0)
411 relent->sym_ptr_ptr = ps;
412 else
413 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
414 }
415
416 relent->addend = rela.r_addend;
417
418 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
419 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
420 {
421 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
422 relent[1].address = relent->address;
423 relent++;
424 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
425 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
426 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
427 }
428 else
429 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
430 }
431
432 canon_reloc_count (asect) += relent - relents;
433
434 if (allocated != NULL)
435 free (allocated);
436
437 return TRUE;
438
439 error_return:
440 if (allocated != NULL)
441 free (allocated);
442 return FALSE;
443 }
444
445 /* Read in and swap the external relocs. */
446
447 static bfd_boolean
448 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
449 bfd *abfd;
450 asection *asect;
451 asymbol **symbols;
452 bfd_boolean dynamic;
453 {
454 struct bfd_elf_section_data * const d = elf_section_data (asect);
455 Elf_Internal_Shdr *rel_hdr;
456 Elf_Internal_Shdr *rel_hdr2;
457 bfd_size_type amt;
458
459 if (asect->relocation != NULL)
460 return TRUE;
461
462 if (! dynamic)
463 {
464 if ((asect->flags & SEC_RELOC) == 0
465 || asect->reloc_count == 0)
466 return TRUE;
467
468 rel_hdr = &d->rel_hdr;
469 rel_hdr2 = d->rel_hdr2;
470
471 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
472 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
473 }
474 else
475 {
476 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
477 case because relocations against this section may use the
478 dynamic symbol table, and in that case bfd_section_from_shdr
479 in elf.c does not update the RELOC_COUNT. */
480 if (asect->_raw_size == 0)
481 return TRUE;
482
483 rel_hdr = &d->this_hdr;
484 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
485 rel_hdr2 = NULL;
486 }
487
488 amt = asect->reloc_count;
489 amt *= 2 * sizeof (arelent);
490 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
491 if (asect->relocation == NULL)
492 return FALSE;
493
494 /* The sparc64_elf_slurp_one_reloc_table routine increments
495 canon_reloc_count. */
496 canon_reloc_count (asect) = 0;
497
498 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
499 dynamic))
500 return FALSE;
501
502 if (rel_hdr2
503 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
504 dynamic))
505 return FALSE;
506
507 return TRUE;
508 }
509
510 /* Canonicalize the relocs. */
511
512 static long
513 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
514 bfd *abfd;
515 sec_ptr section;
516 arelent **relptr;
517 asymbol **symbols;
518 {
519 arelent *tblptr;
520 unsigned int i;
521 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
522
523 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
524 return -1;
525
526 tblptr = section->relocation;
527 for (i = 0; i < canon_reloc_count (section); i++)
528 *relptr++ = tblptr++;
529
530 *relptr = NULL;
531
532 return canon_reloc_count (section);
533 }
534
535
536 /* Canonicalize the dynamic relocation entries. Note that we return
537 the dynamic relocations as a single block, although they are
538 actually associated with particular sections; the interface, which
539 was designed for SunOS style shared libraries, expects that there
540 is only one set of dynamic relocs. Any section that was actually
541 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
542 the dynamic symbol table, is considered to be a dynamic reloc
543 section. */
544
545 static long
546 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
547 bfd *abfd;
548 arelent **storage;
549 asymbol **syms;
550 {
551 asection *s;
552 long ret;
553
554 if (elf_dynsymtab (abfd) == 0)
555 {
556 bfd_set_error (bfd_error_invalid_operation);
557 return -1;
558 }
559
560 ret = 0;
561 for (s = abfd->sections; s != NULL; s = s->next)
562 {
563 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
564 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
565 {
566 arelent *p;
567 long count, i;
568
569 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
570 return -1;
571 count = canon_reloc_count (s);
572 p = s->relocation;
573 for (i = 0; i < count; i++)
574 *storage++ = p++;
575 ret += count;
576 }
577 }
578
579 *storage = NULL;
580
581 return ret;
582 }
583
584 /* Write out the relocs. */
585
586 static void
587 sparc64_elf_write_relocs (abfd, sec, data)
588 bfd *abfd;
589 asection *sec;
590 PTR data;
591 {
592 bfd_boolean *failedp = (bfd_boolean *) data;
593 Elf_Internal_Shdr *rela_hdr;
594 Elf64_External_Rela *outbound_relocas, *src_rela;
595 unsigned int idx, count;
596 asymbol *last_sym = 0;
597 int last_sym_idx = 0;
598
599 /* If we have already failed, don't do anything. */
600 if (*failedp)
601 return;
602
603 if ((sec->flags & SEC_RELOC) == 0)
604 return;
605
606 /* The linker backend writes the relocs out itself, and sets the
607 reloc_count field to zero to inhibit writing them here. Also,
608 sometimes the SEC_RELOC flag gets set even when there aren't any
609 relocs. */
610 if (sec->reloc_count == 0)
611 return;
612
613 /* We can combine two relocs that refer to the same address
614 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
615 latter is R_SPARC_13 with no associated symbol. */
616 count = 0;
617 for (idx = 0; idx < sec->reloc_count; idx++)
618 {
619 bfd_vma addr;
620
621 ++count;
622
623 addr = sec->orelocation[idx]->address;
624 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
625 && idx < sec->reloc_count - 1)
626 {
627 arelent *r = sec->orelocation[idx + 1];
628
629 if (r->howto->type == R_SPARC_13
630 && r->address == addr
631 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
632 && (*r->sym_ptr_ptr)->value == 0)
633 ++idx;
634 }
635 }
636
637 rela_hdr = &elf_section_data (sec)->rel_hdr;
638
639 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
640 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
641 if (rela_hdr->contents == NULL)
642 {
643 *failedp = TRUE;
644 return;
645 }
646
647 /* Figure out whether the relocations are RELA or REL relocations. */
648 if (rela_hdr->sh_type != SHT_RELA)
649 abort ();
650
651 /* orelocation has the data, reloc_count has the count... */
652 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
653 src_rela = outbound_relocas;
654
655 for (idx = 0; idx < sec->reloc_count; idx++)
656 {
657 Elf_Internal_Rela dst_rela;
658 arelent *ptr;
659 asymbol *sym;
660 int n;
661
662 ptr = sec->orelocation[idx];
663
664 /* The address of an ELF reloc is section relative for an object
665 file, and absolute for an executable file or shared library.
666 The address of a BFD reloc is always section relative. */
667 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
668 dst_rela.r_offset = ptr->address;
669 else
670 dst_rela.r_offset = ptr->address + sec->vma;
671
672 sym = *ptr->sym_ptr_ptr;
673 if (sym == last_sym)
674 n = last_sym_idx;
675 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
676 n = STN_UNDEF;
677 else
678 {
679 last_sym = sym;
680 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
681 if (n < 0)
682 {
683 *failedp = TRUE;
684 return;
685 }
686 last_sym_idx = n;
687 }
688
689 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
690 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
691 && ! _bfd_elf_validate_reloc (abfd, ptr))
692 {
693 *failedp = TRUE;
694 return;
695 }
696
697 if (ptr->howto->type == R_SPARC_LO10
698 && idx < sec->reloc_count - 1)
699 {
700 arelent *r = sec->orelocation[idx + 1];
701
702 if (r->howto->type == R_SPARC_13
703 && r->address == ptr->address
704 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
705 && (*r->sym_ptr_ptr)->value == 0)
706 {
707 idx++;
708 dst_rela.r_info
709 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
710 R_SPARC_OLO10));
711 }
712 else
713 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
714 }
715 else
716 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
717
718 dst_rela.r_addend = ptr->addend;
719 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
720 ++src_rela;
721 }
722 }
723 \f
724 /* Sparc64 ELF linker hash table. */
725
726 struct sparc64_elf_app_reg
727 {
728 unsigned char bind;
729 unsigned short shndx;
730 bfd *abfd;
731 char *name;
732 };
733
734 struct sparc64_elf_link_hash_table
735 {
736 struct elf_link_hash_table root;
737
738 struct sparc64_elf_app_reg app_regs [4];
739 };
740
741 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
742
743 #define sparc64_elf_hash_table(p) \
744 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
745
746 /* Create a Sparc64 ELF linker hash table. */
747
748 static struct bfd_link_hash_table *
749 sparc64_elf_bfd_link_hash_table_create (abfd)
750 bfd *abfd;
751 {
752 struct sparc64_elf_link_hash_table *ret;
753 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
754
755 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
756 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
757 return NULL;
758
759 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
760 _bfd_elf_link_hash_newfunc))
761 {
762 free (ret);
763 return NULL;
764 }
765
766 return &ret->root.root;
767 }
768 \f
769 /* Utility for performing the standard initial work of an instruction
770 relocation.
771 *PRELOCATION will contain the relocated item.
772 *PINSN will contain the instruction from the input stream.
773 If the result is `bfd_reloc_other' the caller can continue with
774 performing the relocation. Otherwise it must stop and return the
775 value to its caller. */
776
777 static bfd_reloc_status_type
778 init_insn_reloc (abfd,
779 reloc_entry,
780 symbol,
781 data,
782 input_section,
783 output_bfd,
784 prelocation,
785 pinsn)
786 bfd *abfd;
787 arelent *reloc_entry;
788 asymbol *symbol;
789 PTR data;
790 asection *input_section;
791 bfd *output_bfd;
792 bfd_vma *prelocation;
793 bfd_vma *pinsn;
794 {
795 bfd_vma relocation;
796 reloc_howto_type *howto = reloc_entry->howto;
797
798 if (output_bfd != (bfd *) NULL
799 && (symbol->flags & BSF_SECTION_SYM) == 0
800 && (! howto->partial_inplace
801 || reloc_entry->addend == 0))
802 {
803 reloc_entry->address += input_section->output_offset;
804 return bfd_reloc_ok;
805 }
806
807 /* This works because partial_inplace is FALSE. */
808 if (output_bfd != NULL)
809 return bfd_reloc_continue;
810
811 if (reloc_entry->address > input_section->_cooked_size)
812 return bfd_reloc_outofrange;
813
814 relocation = (symbol->value
815 + symbol->section->output_section->vma
816 + symbol->section->output_offset);
817 relocation += reloc_entry->addend;
818 if (howto->pc_relative)
819 {
820 relocation -= (input_section->output_section->vma
821 + input_section->output_offset);
822 relocation -= reloc_entry->address;
823 }
824
825 *prelocation = relocation;
826 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
827 return bfd_reloc_other;
828 }
829
830 /* For unsupported relocs. */
831
832 static bfd_reloc_status_type
833 sparc_elf_notsup_reloc (abfd,
834 reloc_entry,
835 symbol,
836 data,
837 input_section,
838 output_bfd,
839 error_message)
840 bfd *abfd ATTRIBUTE_UNUSED;
841 arelent *reloc_entry ATTRIBUTE_UNUSED;
842 asymbol *symbol ATTRIBUTE_UNUSED;
843 PTR data ATTRIBUTE_UNUSED;
844 asection *input_section ATTRIBUTE_UNUSED;
845 bfd *output_bfd ATTRIBUTE_UNUSED;
846 char **error_message ATTRIBUTE_UNUSED;
847 {
848 return bfd_reloc_notsupported;
849 }
850
851 /* Handle the WDISP16 reloc. */
852
853 static bfd_reloc_status_type
854 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
855 output_bfd, error_message)
856 bfd *abfd;
857 arelent *reloc_entry;
858 asymbol *symbol;
859 PTR data;
860 asection *input_section;
861 bfd *output_bfd;
862 char **error_message ATTRIBUTE_UNUSED;
863 {
864 bfd_vma relocation;
865 bfd_vma insn;
866 bfd_reloc_status_type status;
867
868 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
869 input_section, output_bfd, &relocation, &insn);
870 if (status != bfd_reloc_other)
871 return status;
872
873 insn &= ~ (bfd_vma) 0x303fff;
874 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
875 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
876
877 if ((bfd_signed_vma) relocation < - 0x40000
878 || (bfd_signed_vma) relocation > 0x3ffff)
879 return bfd_reloc_overflow;
880 else
881 return bfd_reloc_ok;
882 }
883
884 /* Handle the HIX22 reloc. */
885
886 static bfd_reloc_status_type
887 sparc_elf_hix22_reloc (abfd,
888 reloc_entry,
889 symbol,
890 data,
891 input_section,
892 output_bfd,
893 error_message)
894 bfd *abfd;
895 arelent *reloc_entry;
896 asymbol *symbol;
897 PTR data;
898 asection *input_section;
899 bfd *output_bfd;
900 char **error_message ATTRIBUTE_UNUSED;
901 {
902 bfd_vma relocation;
903 bfd_vma insn;
904 bfd_reloc_status_type status;
905
906 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
907 input_section, output_bfd, &relocation, &insn);
908 if (status != bfd_reloc_other)
909 return status;
910
911 relocation ^= MINUS_ONE;
912 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
913 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
914
915 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
916 return bfd_reloc_overflow;
917 else
918 return bfd_reloc_ok;
919 }
920
921 /* Handle the LOX10 reloc. */
922
923 static bfd_reloc_status_type
924 sparc_elf_lox10_reloc (abfd,
925 reloc_entry,
926 symbol,
927 data,
928 input_section,
929 output_bfd,
930 error_message)
931 bfd *abfd;
932 arelent *reloc_entry;
933 asymbol *symbol;
934 PTR data;
935 asection *input_section;
936 bfd *output_bfd;
937 char **error_message ATTRIBUTE_UNUSED;
938 {
939 bfd_vma relocation;
940 bfd_vma insn;
941 bfd_reloc_status_type status;
942
943 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
944 input_section, output_bfd, &relocation, &insn);
945 if (status != bfd_reloc_other)
946 return status;
947
948 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
949 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
950
951 return bfd_reloc_ok;
952 }
953 \f
954 /* PLT/GOT stuff */
955
956 /* Both the headers and the entries are icache aligned. */
957 #define PLT_ENTRY_SIZE 32
958 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
959 #define LARGE_PLT_THRESHOLD 32768
960 #define GOT_RESERVED_ENTRIES 1
961
962 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
963
964 /* Fill in the .plt section. */
965
966 static void
967 sparc64_elf_build_plt (output_bfd, contents, nentries)
968 bfd *output_bfd;
969 unsigned char *contents;
970 int nentries;
971 {
972 const unsigned int nop = 0x01000000;
973 int i, j;
974
975 /* The first four entries are reserved, and are initially undefined.
976 We fill them with `illtrap 0' to force ld.so to do something. */
977
978 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
979 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
980
981 /* The first 32768 entries are close enough to plt1 to get there via
982 a straight branch. */
983
984 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
985 {
986 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
987 unsigned int sethi, ba;
988
989 /* sethi (. - plt0), %g1 */
990 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
991
992 /* ba,a,pt %xcc, plt1 */
993 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
994
995 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
996 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
997 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
998 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
999 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1003 }
1004
1005 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1006 160: 160 entries and 160 pointers. This is to separate code from data,
1007 which is much friendlier on the cache. */
1008
1009 for (; i < nentries; i += 160)
1010 {
1011 int block = (i + 160 <= nentries ? 160 : nentries - i);
1012 for (j = 0; j < block; ++j)
1013 {
1014 unsigned char *entry, *ptr;
1015 unsigned int ldx;
1016
1017 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1018 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1019
1020 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1021 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1022
1023 /* mov %o7,%g5
1024 call .+8
1025 nop
1026 ldx [%o7+P],%g1
1027 jmpl %o7+%g1,%g1
1028 mov %g5,%o7 */
1029 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1030 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1031 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1032 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1033 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1034 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1035
1036 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1037 }
1038 }
1039 }
1040
1041 /* Return the offset of a particular plt entry within the .plt section. */
1042
1043 static bfd_vma
1044 sparc64_elf_plt_entry_offset (index)
1045 bfd_vma index;
1046 {
1047 bfd_vma block, ofs;
1048
1049 if (index < LARGE_PLT_THRESHOLD)
1050 return index * PLT_ENTRY_SIZE;
1051
1052 /* See above for details. */
1053
1054 block = (index - LARGE_PLT_THRESHOLD) / 160;
1055 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1056
1057 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1058 }
1059
1060 static bfd_vma
1061 sparc64_elf_plt_ptr_offset (index, max)
1062 bfd_vma index;
1063 bfd_vma max;
1064 {
1065 bfd_vma block, ofs, last;
1066
1067 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1068
1069 /* See above for details. */
1070
1071 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1072 ofs = index - block;
1073 if (block + 160 > max)
1074 last = (max - LARGE_PLT_THRESHOLD) % 160;
1075 else
1076 last = 160;
1077
1078 return (block * PLT_ENTRY_SIZE
1079 + last * 6*4
1080 + ofs * 8);
1081 }
1082 \f
1083 /* Look through the relocs for a section during the first phase, and
1084 allocate space in the global offset table or procedure linkage
1085 table. */
1086
1087 static bfd_boolean
1088 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1089 bfd *abfd;
1090 struct bfd_link_info *info;
1091 asection *sec;
1092 const Elf_Internal_Rela *relocs;
1093 {
1094 bfd *dynobj;
1095 Elf_Internal_Shdr *symtab_hdr;
1096 struct elf_link_hash_entry **sym_hashes;
1097 bfd_vma *local_got_offsets;
1098 const Elf_Internal_Rela *rel;
1099 const Elf_Internal_Rela *rel_end;
1100 asection *sgot;
1101 asection *srelgot;
1102 asection *sreloc;
1103
1104 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1105 return TRUE;
1106
1107 dynobj = elf_hash_table (info)->dynobj;
1108 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1109 sym_hashes = elf_sym_hashes (abfd);
1110 local_got_offsets = elf_local_got_offsets (abfd);
1111
1112 sgot = NULL;
1113 srelgot = NULL;
1114 sreloc = NULL;
1115
1116 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1117 for (rel = relocs; rel < rel_end; rel++)
1118 {
1119 unsigned long r_symndx;
1120 struct elf_link_hash_entry *h;
1121
1122 r_symndx = ELF64_R_SYM (rel->r_info);
1123 if (r_symndx < symtab_hdr->sh_info)
1124 h = NULL;
1125 else
1126 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1127
1128 switch (ELF64_R_TYPE_ID (rel->r_info))
1129 {
1130 case R_SPARC_GOT10:
1131 case R_SPARC_GOT13:
1132 case R_SPARC_GOT22:
1133 /* This symbol requires a global offset table entry. */
1134
1135 if (dynobj == NULL)
1136 {
1137 /* Create the .got section. */
1138 elf_hash_table (info)->dynobj = dynobj = abfd;
1139 if (! _bfd_elf_create_got_section (dynobj, info))
1140 return FALSE;
1141 }
1142
1143 if (sgot == NULL)
1144 {
1145 sgot = bfd_get_section_by_name (dynobj, ".got");
1146 BFD_ASSERT (sgot != NULL);
1147 }
1148
1149 if (srelgot == NULL && (h != NULL || info->shared))
1150 {
1151 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1152 if (srelgot == NULL)
1153 {
1154 srelgot = bfd_make_section (dynobj, ".rela.got");
1155 if (srelgot == NULL
1156 || ! bfd_set_section_flags (dynobj, srelgot,
1157 (SEC_ALLOC
1158 | SEC_LOAD
1159 | SEC_HAS_CONTENTS
1160 | SEC_IN_MEMORY
1161 | SEC_LINKER_CREATED
1162 | SEC_READONLY))
1163 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1164 return FALSE;
1165 }
1166 }
1167
1168 if (h != NULL)
1169 {
1170 if (h->got.offset != (bfd_vma) -1)
1171 {
1172 /* We have already allocated space in the .got. */
1173 break;
1174 }
1175 h->got.offset = sgot->_raw_size;
1176
1177 /* Make sure this symbol is output as a dynamic symbol. */
1178 if (h->dynindx == -1)
1179 {
1180 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1181 return FALSE;
1182 }
1183
1184 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1185 }
1186 else
1187 {
1188 /* This is a global offset table entry for a local
1189 symbol. */
1190 if (local_got_offsets == NULL)
1191 {
1192 bfd_size_type size;
1193 register unsigned int i;
1194
1195 size = symtab_hdr->sh_info;
1196 size *= sizeof (bfd_vma);
1197 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1198 if (local_got_offsets == NULL)
1199 return FALSE;
1200 elf_local_got_offsets (abfd) = local_got_offsets;
1201 for (i = 0; i < symtab_hdr->sh_info; i++)
1202 local_got_offsets[i] = (bfd_vma) -1;
1203 }
1204 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1205 {
1206 /* We have already allocated space in the .got. */
1207 break;
1208 }
1209 local_got_offsets[r_symndx] = sgot->_raw_size;
1210
1211 if (info->shared)
1212 {
1213 /* If we are generating a shared object, we need to
1214 output a R_SPARC_RELATIVE reloc so that the
1215 dynamic linker can adjust this GOT entry. */
1216 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1217 }
1218 }
1219
1220 sgot->_raw_size += 8;
1221
1222 #if 0
1223 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1224 unsigned numbers. If we permit ourselves to modify
1225 code so we get sethi/xor, this could work.
1226 Question: do we consider conditionally re-enabling
1227 this for -fpic, once we know about object code models? */
1228 /* If the .got section is more than 0x1000 bytes, we add
1229 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1230 bit relocations have a greater chance of working. */
1231 if (sgot->_raw_size >= 0x1000
1232 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1233 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1234 #endif
1235
1236 break;
1237
1238 case R_SPARC_WPLT30:
1239 case R_SPARC_PLT32:
1240 case R_SPARC_HIPLT22:
1241 case R_SPARC_LOPLT10:
1242 case R_SPARC_PCPLT32:
1243 case R_SPARC_PCPLT22:
1244 case R_SPARC_PCPLT10:
1245 case R_SPARC_PLT64:
1246 /* This symbol requires a procedure linkage table entry. We
1247 actually build the entry in adjust_dynamic_symbol,
1248 because this might be a case of linking PIC code without
1249 linking in any dynamic objects, in which case we don't
1250 need to generate a procedure linkage table after all. */
1251
1252 if (h == NULL)
1253 {
1254 /* It does not make sense to have a procedure linkage
1255 table entry for a local symbol. */
1256 bfd_set_error (bfd_error_bad_value);
1257 return FALSE;
1258 }
1259
1260 /* Make sure this symbol is output as a dynamic symbol. */
1261 if (h->dynindx == -1)
1262 {
1263 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1264 return FALSE;
1265 }
1266
1267 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1268 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1269 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1270 break;
1271 /* Fall through. */
1272 case R_SPARC_PC10:
1273 case R_SPARC_PC22:
1274 case R_SPARC_PC_HH22:
1275 case R_SPARC_PC_HM10:
1276 case R_SPARC_PC_LM22:
1277 if (h != NULL
1278 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1279 break;
1280 /* Fall through. */
1281 case R_SPARC_DISP8:
1282 case R_SPARC_DISP16:
1283 case R_SPARC_DISP32:
1284 case R_SPARC_DISP64:
1285 case R_SPARC_WDISP30:
1286 case R_SPARC_WDISP22:
1287 case R_SPARC_WDISP19:
1288 case R_SPARC_WDISP16:
1289 if (h == NULL)
1290 break;
1291 /* Fall through. */
1292 case R_SPARC_8:
1293 case R_SPARC_16:
1294 case R_SPARC_32:
1295 case R_SPARC_HI22:
1296 case R_SPARC_22:
1297 case R_SPARC_13:
1298 case R_SPARC_LO10:
1299 case R_SPARC_UA32:
1300 case R_SPARC_10:
1301 case R_SPARC_11:
1302 case R_SPARC_64:
1303 case R_SPARC_OLO10:
1304 case R_SPARC_HH22:
1305 case R_SPARC_HM10:
1306 case R_SPARC_LM22:
1307 case R_SPARC_7:
1308 case R_SPARC_5:
1309 case R_SPARC_6:
1310 case R_SPARC_HIX22:
1311 case R_SPARC_LOX10:
1312 case R_SPARC_H44:
1313 case R_SPARC_M44:
1314 case R_SPARC_L44:
1315 case R_SPARC_UA64:
1316 case R_SPARC_UA16:
1317 /* When creating a shared object, we must copy these relocs
1318 into the output file. We create a reloc section in
1319 dynobj and make room for the reloc.
1320
1321 But don't do this for debugging sections -- this shows up
1322 with DWARF2 -- first because they are not loaded, and
1323 second because DWARF sez the debug info is not to be
1324 biased by the load address. */
1325 if (info->shared && (sec->flags & SEC_ALLOC))
1326 {
1327 if (sreloc == NULL)
1328 {
1329 const char *name;
1330
1331 name = (bfd_elf_string_from_elf_section
1332 (abfd,
1333 elf_elfheader (abfd)->e_shstrndx,
1334 elf_section_data (sec)->rel_hdr.sh_name));
1335 if (name == NULL)
1336 return FALSE;
1337
1338 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1339 && strcmp (bfd_get_section_name (abfd, sec),
1340 name + 5) == 0);
1341
1342 sreloc = bfd_get_section_by_name (dynobj, name);
1343 if (sreloc == NULL)
1344 {
1345 flagword flags;
1346
1347 sreloc = bfd_make_section (dynobj, name);
1348 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1349 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1350 if ((sec->flags & SEC_ALLOC) != 0)
1351 flags |= SEC_ALLOC | SEC_LOAD;
1352 if (sreloc == NULL
1353 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1354 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1355 return FALSE;
1356 }
1357 if (sec->flags & SEC_READONLY)
1358 info->flags |= DF_TEXTREL;
1359 }
1360
1361 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1362 }
1363 break;
1364
1365 case R_SPARC_REGISTER:
1366 /* Nothing to do. */
1367 break;
1368
1369 default:
1370 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1371 bfd_archive_filename (abfd),
1372 ELF64_R_TYPE_ID (rel->r_info));
1373 return FALSE;
1374 }
1375 }
1376
1377 return TRUE;
1378 }
1379
1380 /* Hook called by the linker routine which adds symbols from an object
1381 file. We use it for STT_REGISTER symbols. */
1382
1383 static bfd_boolean
1384 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1385 bfd *abfd;
1386 struct bfd_link_info *info;
1387 const Elf_Internal_Sym *sym;
1388 const char **namep;
1389 flagword *flagsp ATTRIBUTE_UNUSED;
1390 asection **secp ATTRIBUTE_UNUSED;
1391 bfd_vma *valp ATTRIBUTE_UNUSED;
1392 {
1393 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1394
1395 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1396 {
1397 int reg;
1398 struct sparc64_elf_app_reg *p;
1399
1400 reg = (int)sym->st_value;
1401 switch (reg & ~1)
1402 {
1403 case 2: reg -= 2; break;
1404 case 6: reg -= 4; break;
1405 default:
1406 (*_bfd_error_handler)
1407 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1408 bfd_archive_filename (abfd));
1409 return FALSE;
1410 }
1411
1412 if (info->hash->creator != abfd->xvec
1413 || (abfd->flags & DYNAMIC) != 0)
1414 {
1415 /* STT_REGISTER only works when linking an elf64_sparc object.
1416 If STT_REGISTER comes from a dynamic object, don't put it into
1417 the output bfd. The dynamic linker will recheck it. */
1418 *namep = NULL;
1419 return TRUE;
1420 }
1421
1422 p = sparc64_elf_hash_table(info)->app_regs + reg;
1423
1424 if (p->name != NULL && strcmp (p->name, *namep))
1425 {
1426 (*_bfd_error_handler)
1427 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1428 (int) sym->st_value,
1429 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1430 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1431 return FALSE;
1432 }
1433
1434 if (p->name == NULL)
1435 {
1436 if (**namep)
1437 {
1438 struct elf_link_hash_entry *h;
1439
1440 h = (struct elf_link_hash_entry *)
1441 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1442
1443 if (h != NULL)
1444 {
1445 unsigned char type = h->type;
1446
1447 if (type > STT_FUNC)
1448 type = 0;
1449 (*_bfd_error_handler)
1450 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1451 *namep, bfd_archive_filename (abfd),
1452 stt_types[type], bfd_archive_filename (p->abfd));
1453 return FALSE;
1454 }
1455
1456 p->name = bfd_hash_allocate (&info->hash->table,
1457 strlen (*namep) + 1);
1458 if (!p->name)
1459 return FALSE;
1460
1461 strcpy (p->name, *namep);
1462 }
1463 else
1464 p->name = "";
1465 p->bind = ELF_ST_BIND (sym->st_info);
1466 p->abfd = abfd;
1467 p->shndx = sym->st_shndx;
1468 }
1469 else
1470 {
1471 if (p->bind == STB_WEAK
1472 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1473 {
1474 p->bind = STB_GLOBAL;
1475 p->abfd = abfd;
1476 }
1477 }
1478 *namep = NULL;
1479 return TRUE;
1480 }
1481 else if (*namep && **namep
1482 && info->hash->creator == abfd->xvec)
1483 {
1484 int i;
1485 struct sparc64_elf_app_reg *p;
1486
1487 p = sparc64_elf_hash_table(info)->app_regs;
1488 for (i = 0; i < 4; i++, p++)
1489 if (p->name != NULL && ! strcmp (p->name, *namep))
1490 {
1491 unsigned char type = ELF_ST_TYPE (sym->st_info);
1492
1493 if (type > STT_FUNC)
1494 type = 0;
1495 (*_bfd_error_handler)
1496 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1497 *namep, stt_types[type], bfd_archive_filename (abfd),
1498 bfd_archive_filename (p->abfd));
1499 return FALSE;
1500 }
1501 }
1502 return TRUE;
1503 }
1504
1505 /* This function takes care of emiting STT_REGISTER symbols
1506 which we cannot easily keep in the symbol hash table. */
1507
1508 static bfd_boolean
1509 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1510 bfd *output_bfd ATTRIBUTE_UNUSED;
1511 struct bfd_link_info *info;
1512 PTR finfo;
1513 bfd_boolean (*func)
1514 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *));
1515 {
1516 int reg;
1517 struct sparc64_elf_app_reg *app_regs =
1518 sparc64_elf_hash_table(info)->app_regs;
1519 Elf_Internal_Sym sym;
1520
1521 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1522 at the end of the dynlocal list, so they came at the end of the local
1523 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1524 to back up symtab->sh_info. */
1525 if (elf_hash_table (info)->dynlocal)
1526 {
1527 bfd * dynobj = elf_hash_table (info)->dynobj;
1528 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1529 struct elf_link_local_dynamic_entry *e;
1530
1531 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1532 if (e->input_indx == -1)
1533 break;
1534 if (e)
1535 {
1536 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1537 = e->dynindx;
1538 }
1539 }
1540
1541 if (info->strip == strip_all)
1542 return TRUE;
1543
1544 for (reg = 0; reg < 4; reg++)
1545 if (app_regs [reg].name != NULL)
1546 {
1547 if (info->strip == strip_some
1548 && bfd_hash_lookup (info->keep_hash,
1549 app_regs [reg].name,
1550 FALSE, FALSE) == NULL)
1551 continue;
1552
1553 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1554 sym.st_size = 0;
1555 sym.st_other = 0;
1556 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1557 sym.st_shndx = app_regs [reg].shndx;
1558 if (! (*func) (finfo, app_regs [reg].name, &sym,
1559 sym.st_shndx == SHN_ABS
1560 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1561 return FALSE;
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 static int
1568 sparc64_elf_get_symbol_type (elf_sym, type)
1569 Elf_Internal_Sym * elf_sym;
1570 int type;
1571 {
1572 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1573 return STT_REGISTER;
1574 else
1575 return type;
1576 }
1577
1578 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1579 even in SHN_UNDEF section. */
1580
1581 static void
1582 sparc64_elf_symbol_processing (abfd, asym)
1583 bfd *abfd ATTRIBUTE_UNUSED;
1584 asymbol *asym;
1585 {
1586 elf_symbol_type *elfsym;
1587
1588 elfsym = (elf_symbol_type *) asym;
1589 if (elfsym->internal_elf_sym.st_info
1590 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1591 {
1592 asym->flags |= BSF_GLOBAL;
1593 }
1594 }
1595
1596 /* Adjust a symbol defined by a dynamic object and referenced by a
1597 regular object. The current definition is in some section of the
1598 dynamic object, but we're not including those sections. We have to
1599 change the definition to something the rest of the link can
1600 understand. */
1601
1602 static bfd_boolean
1603 sparc64_elf_adjust_dynamic_symbol (info, h)
1604 struct bfd_link_info *info;
1605 struct elf_link_hash_entry *h;
1606 {
1607 bfd *dynobj;
1608 asection *s;
1609 unsigned int power_of_two;
1610
1611 dynobj = elf_hash_table (info)->dynobj;
1612
1613 /* Make sure we know what is going on here. */
1614 BFD_ASSERT (dynobj != NULL
1615 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1616 || h->weakdef != NULL
1617 || ((h->elf_link_hash_flags
1618 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1619 && (h->elf_link_hash_flags
1620 & ELF_LINK_HASH_REF_REGULAR) != 0
1621 && (h->elf_link_hash_flags
1622 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1623
1624 /* If this is a function, put it in the procedure linkage table. We
1625 will fill in the contents of the procedure linkage table later
1626 (although we could actually do it here). The STT_NOTYPE
1627 condition is a hack specifically for the Oracle libraries
1628 delivered for Solaris; for some inexplicable reason, they define
1629 some of their functions as STT_NOTYPE when they really should be
1630 STT_FUNC. */
1631 if (h->type == STT_FUNC
1632 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1633 || (h->type == STT_NOTYPE
1634 && (h->root.type == bfd_link_hash_defined
1635 || h->root.type == bfd_link_hash_defweak)
1636 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1637 {
1638 if (! elf_hash_table (info)->dynamic_sections_created)
1639 {
1640 /* This case can occur if we saw a WPLT30 reloc in an input
1641 file, but none of the input files were dynamic objects.
1642 In such a case, we don't actually need to build a
1643 procedure linkage table, and we can just do a WDISP30
1644 reloc instead. */
1645 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1646 return TRUE;
1647 }
1648
1649 s = bfd_get_section_by_name (dynobj, ".plt");
1650 BFD_ASSERT (s != NULL);
1651
1652 /* The first four bit in .plt is reserved. */
1653 if (s->_raw_size == 0)
1654 s->_raw_size = PLT_HEADER_SIZE;
1655
1656 /* To simplify matters later, just store the plt index here. */
1657 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1658
1659 /* If this symbol is not defined in a regular file, and we are
1660 not generating a shared library, then set the symbol to this
1661 location in the .plt. This is required to make function
1662 pointers compare as equal between the normal executable and
1663 the shared library. */
1664 if (! info->shared
1665 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1666 {
1667 h->root.u.def.section = s;
1668 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1669 }
1670
1671 /* Make room for this entry. */
1672 s->_raw_size += PLT_ENTRY_SIZE;
1673
1674 /* We also need to make an entry in the .rela.plt section. */
1675
1676 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1677 BFD_ASSERT (s != NULL);
1678
1679 s->_raw_size += sizeof (Elf64_External_Rela);
1680
1681 /* The procedure linkage table size is bounded by the magnitude
1682 of the offset we can describe in the entry. */
1683 if (s->_raw_size >= (bfd_vma)1 << 32)
1684 {
1685 bfd_set_error (bfd_error_bad_value);
1686 return FALSE;
1687 }
1688
1689 return TRUE;
1690 }
1691
1692 /* If this is a weak symbol, and there is a real definition, the
1693 processor independent code will have arranged for us to see the
1694 real definition first, and we can just use the same value. */
1695 if (h->weakdef != NULL)
1696 {
1697 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1698 || h->weakdef->root.type == bfd_link_hash_defweak);
1699 h->root.u.def.section = h->weakdef->root.u.def.section;
1700 h->root.u.def.value = h->weakdef->root.u.def.value;
1701 return TRUE;
1702 }
1703
1704 /* This is a reference to a symbol defined by a dynamic object which
1705 is not a function. */
1706
1707 /* If we are creating a shared library, we must presume that the
1708 only references to the symbol are via the global offset table.
1709 For such cases we need not do anything here; the relocations will
1710 be handled correctly by relocate_section. */
1711 if (info->shared)
1712 return TRUE;
1713
1714 /* We must allocate the symbol in our .dynbss section, which will
1715 become part of the .bss section of the executable. There will be
1716 an entry for this symbol in the .dynsym section. The dynamic
1717 object will contain position independent code, so all references
1718 from the dynamic object to this symbol will go through the global
1719 offset table. The dynamic linker will use the .dynsym entry to
1720 determine the address it must put in the global offset table, so
1721 both the dynamic object and the regular object will refer to the
1722 same memory location for the variable. */
1723
1724 s = bfd_get_section_by_name (dynobj, ".dynbss");
1725 BFD_ASSERT (s != NULL);
1726
1727 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1728 to copy the initial value out of the dynamic object and into the
1729 runtime process image. We need to remember the offset into the
1730 .rel.bss section we are going to use. */
1731 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1732 {
1733 asection *srel;
1734
1735 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1736 BFD_ASSERT (srel != NULL);
1737 srel->_raw_size += sizeof (Elf64_External_Rela);
1738 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1739 }
1740
1741 /* We need to figure out the alignment required for this symbol. I
1742 have no idea how ELF linkers handle this. 16-bytes is the size
1743 of the largest type that requires hard alignment -- long double. */
1744 power_of_two = bfd_log2 (h->size);
1745 if (power_of_two > 4)
1746 power_of_two = 4;
1747
1748 /* Apply the required alignment. */
1749 s->_raw_size = BFD_ALIGN (s->_raw_size,
1750 (bfd_size_type) (1 << power_of_two));
1751 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1752 {
1753 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1754 return FALSE;
1755 }
1756
1757 /* Define the symbol as being at this point in the section. */
1758 h->root.u.def.section = s;
1759 h->root.u.def.value = s->_raw_size;
1760
1761 /* Increment the section size to make room for the symbol. */
1762 s->_raw_size += h->size;
1763
1764 return TRUE;
1765 }
1766
1767 /* Set the sizes of the dynamic sections. */
1768
1769 static bfd_boolean
1770 sparc64_elf_size_dynamic_sections (output_bfd, info)
1771 bfd *output_bfd;
1772 struct bfd_link_info *info;
1773 {
1774 bfd *dynobj;
1775 asection *s;
1776 bfd_boolean relplt;
1777
1778 dynobj = elf_hash_table (info)->dynobj;
1779 BFD_ASSERT (dynobj != NULL);
1780
1781 if (elf_hash_table (info)->dynamic_sections_created)
1782 {
1783 /* Set the contents of the .interp section to the interpreter. */
1784 if (info->executable)
1785 {
1786 s = bfd_get_section_by_name (dynobj, ".interp");
1787 BFD_ASSERT (s != NULL);
1788 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1789 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1790 }
1791 }
1792 else
1793 {
1794 /* We may have created entries in the .rela.got section.
1795 However, if we are not creating the dynamic sections, we will
1796 not actually use these entries. Reset the size of .rela.got,
1797 which will cause it to get stripped from the output file
1798 below. */
1799 s = bfd_get_section_by_name (dynobj, ".rela.got");
1800 if (s != NULL)
1801 s->_raw_size = 0;
1802 }
1803
1804 /* The check_relocs and adjust_dynamic_symbol entry points have
1805 determined the sizes of the various dynamic sections. Allocate
1806 memory for them. */
1807 relplt = FALSE;
1808 for (s = dynobj->sections; s != NULL; s = s->next)
1809 {
1810 const char *name;
1811 bfd_boolean strip;
1812
1813 if ((s->flags & SEC_LINKER_CREATED) == 0)
1814 continue;
1815
1816 /* It's OK to base decisions on the section name, because none
1817 of the dynobj section names depend upon the input files. */
1818 name = bfd_get_section_name (dynobj, s);
1819
1820 strip = FALSE;
1821
1822 if (strncmp (name, ".rela", 5) == 0)
1823 {
1824 if (s->_raw_size == 0)
1825 {
1826 /* If we don't need this section, strip it from the
1827 output file. This is to handle .rela.bss and
1828 .rel.plt. We must create it in
1829 create_dynamic_sections, because it must be created
1830 before the linker maps input sections to output
1831 sections. The linker does that before
1832 adjust_dynamic_symbol is called, and it is that
1833 function which decides whether anything needs to go
1834 into these sections. */
1835 strip = TRUE;
1836 }
1837 else
1838 {
1839 if (strcmp (name, ".rela.plt") == 0)
1840 relplt = TRUE;
1841
1842 /* We use the reloc_count field as a counter if we need
1843 to copy relocs into the output file. */
1844 s->reloc_count = 0;
1845 }
1846 }
1847 else if (strcmp (name, ".plt") != 0
1848 && strncmp (name, ".got", 4) != 0)
1849 {
1850 /* It's not one of our sections, so don't allocate space. */
1851 continue;
1852 }
1853
1854 if (strip)
1855 {
1856 _bfd_strip_section_from_output (info, s);
1857 continue;
1858 }
1859
1860 /* Allocate memory for the section contents. Zero the memory
1861 for the benefit of .rela.plt, which has 4 unused entries
1862 at the beginning, and we don't want garbage. */
1863 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1864 if (s->contents == NULL && s->_raw_size != 0)
1865 return FALSE;
1866 }
1867
1868 if (elf_hash_table (info)->dynamic_sections_created)
1869 {
1870 /* Add some entries to the .dynamic section. We fill in the
1871 values later, in sparc64_elf_finish_dynamic_sections, but we
1872 must add the entries now so that we get the correct size for
1873 the .dynamic section. The DT_DEBUG entry is filled in by the
1874 dynamic linker and used by the debugger. */
1875 #define add_dynamic_entry(TAG, VAL) \
1876 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1877
1878 int reg;
1879 struct sparc64_elf_app_reg * app_regs;
1880 struct elf_strtab_hash *dynstr;
1881 struct elf_link_hash_table *eht = elf_hash_table (info);
1882
1883 if (info->executable)
1884 {
1885 if (!add_dynamic_entry (DT_DEBUG, 0))
1886 return FALSE;
1887 }
1888
1889 if (relplt)
1890 {
1891 if (!add_dynamic_entry (DT_PLTGOT, 0)
1892 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1893 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1894 || !add_dynamic_entry (DT_JMPREL, 0))
1895 return FALSE;
1896 }
1897
1898 if (!add_dynamic_entry (DT_RELA, 0)
1899 || !add_dynamic_entry (DT_RELASZ, 0)
1900 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1901 return FALSE;
1902
1903 if (info->flags & DF_TEXTREL)
1904 {
1905 if (!add_dynamic_entry (DT_TEXTREL, 0))
1906 return FALSE;
1907 }
1908
1909 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1910 entries if needed. */
1911 app_regs = sparc64_elf_hash_table (info)->app_regs;
1912 dynstr = eht->dynstr;
1913
1914 for (reg = 0; reg < 4; reg++)
1915 if (app_regs [reg].name != NULL)
1916 {
1917 struct elf_link_local_dynamic_entry *entry, *e;
1918
1919 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1920 return FALSE;
1921
1922 entry = (struct elf_link_local_dynamic_entry *)
1923 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1924 if (entry == NULL)
1925 return FALSE;
1926
1927 /* We cheat here a little bit: the symbol will not be local, so we
1928 put it at the end of the dynlocal linked list. We will fix it
1929 later on, as we have to fix other fields anyway. */
1930 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1931 entry->isym.st_size = 0;
1932 if (*app_regs [reg].name != '\0')
1933 entry->isym.st_name
1934 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1935 else
1936 entry->isym.st_name = 0;
1937 entry->isym.st_other = 0;
1938 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1939 STT_REGISTER);
1940 entry->isym.st_shndx = app_regs [reg].shndx;
1941 entry->next = NULL;
1942 entry->input_bfd = output_bfd;
1943 entry->input_indx = -1;
1944
1945 if (eht->dynlocal == NULL)
1946 eht->dynlocal = entry;
1947 else
1948 {
1949 for (e = eht->dynlocal; e->next; e = e->next)
1950 ;
1951 e->next = entry;
1952 }
1953 eht->dynsymcount++;
1954 }
1955 }
1956 #undef add_dynamic_entry
1957
1958 return TRUE;
1959 }
1960 \f
1961 static bfd_boolean
1962 sparc64_elf_new_section_hook (abfd, sec)
1963 bfd *abfd;
1964 asection *sec;
1965 {
1966 struct sparc64_elf_section_data *sdata;
1967 bfd_size_type amt = sizeof (*sdata);
1968
1969 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1970 if (sdata == NULL)
1971 return FALSE;
1972 sec->used_by_bfd = (PTR) sdata;
1973
1974 return _bfd_elf_new_section_hook (abfd, sec);
1975 }
1976
1977 static bfd_boolean
1978 sparc64_elf_relax_section (abfd, section, link_info, again)
1979 bfd *abfd ATTRIBUTE_UNUSED;
1980 asection *section ATTRIBUTE_UNUSED;
1981 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1982 bfd_boolean *again;
1983 {
1984 *again = FALSE;
1985 sec_do_relax (section) = 1;
1986 return TRUE;
1987 }
1988 \f
1989 /* This is the condition under which finish_dynamic_symbol will be called
1990 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1991 routine, we'll need to do something about initializing any .plt and
1992 .got entries in relocate_section. */
1993 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1994 ((DYN) \
1995 && ((INFO)->shared \
1996 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1997 && ((H)->dynindx != -1 \
1998 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1999
2000 /* Relocate a SPARC64 ELF section. */
2001
2002 static bfd_boolean
2003 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
2004 contents, relocs, local_syms, local_sections)
2005 bfd *output_bfd;
2006 struct bfd_link_info *info;
2007 bfd *input_bfd;
2008 asection *input_section;
2009 bfd_byte *contents;
2010 Elf_Internal_Rela *relocs;
2011 Elf_Internal_Sym *local_syms;
2012 asection **local_sections;
2013 {
2014 bfd *dynobj;
2015 Elf_Internal_Shdr *symtab_hdr;
2016 struct elf_link_hash_entry **sym_hashes;
2017 bfd_vma *local_got_offsets;
2018 bfd_vma got_base;
2019 asection *sgot;
2020 asection *splt;
2021 asection *sreloc;
2022 Elf_Internal_Rela *rel;
2023 Elf_Internal_Rela *relend;
2024
2025 if (info->relocatable)
2026 return TRUE;
2027
2028 dynobj = elf_hash_table (info)->dynobj;
2029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2030 sym_hashes = elf_sym_hashes (input_bfd);
2031 local_got_offsets = elf_local_got_offsets (input_bfd);
2032
2033 if (elf_hash_table(info)->hgot == NULL)
2034 got_base = 0;
2035 else
2036 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2037
2038 sgot = splt = sreloc = NULL;
2039
2040 rel = relocs;
2041 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2042 for (; rel < relend; rel++)
2043 {
2044 int r_type;
2045 reloc_howto_type *howto;
2046 unsigned long r_symndx;
2047 struct elf_link_hash_entry *h;
2048 Elf_Internal_Sym *sym;
2049 asection *sec;
2050 bfd_vma relocation, off;
2051 bfd_reloc_status_type r;
2052 bfd_boolean is_plt = FALSE;
2053 bfd_boolean unresolved_reloc;
2054
2055 r_type = ELF64_R_TYPE_ID (rel->r_info);
2056 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2057 {
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2060 }
2061 howto = sparc64_elf_howto_table + r_type;
2062
2063 /* This is a final link. */
2064 r_symndx = ELF64_R_SYM (rel->r_info);
2065 h = NULL;
2066 sym = NULL;
2067 sec = NULL;
2068 unresolved_reloc = FALSE;
2069 if (r_symndx < symtab_hdr->sh_info)
2070 {
2071 sym = local_syms + r_symndx;
2072 sec = local_sections[r_symndx];
2073 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
2074 }
2075 else
2076 {
2077 bfd_boolean warned;
2078
2079 RELOC_FOR_GLOBAL_SYMBOL (h, sym_hashes, r_symndx,
2080 symtab_hdr, relocation, sec,
2081 unresolved_reloc, info,
2082 warned);
2083 if (warned)
2084 {
2085 /* To avoid generating warning messages about truncated
2086 relocations, set the relocation's address to be the same as
2087 the start of this section. */
2088 if (input_section->output_section != NULL)
2089 relocation = input_section->output_section->vma;
2090 else
2091 relocation = 0;
2092 }
2093 }
2094
2095 do_dynreloc:
2096 /* When generating a shared object, these relocations are copied
2097 into the output file to be resolved at run time. */
2098 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2099 {
2100 switch (r_type)
2101 {
2102 case R_SPARC_PC10:
2103 case R_SPARC_PC22:
2104 case R_SPARC_PC_HH22:
2105 case R_SPARC_PC_HM10:
2106 case R_SPARC_PC_LM22:
2107 if (h != NULL
2108 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2109 break;
2110 /* Fall through. */
2111 case R_SPARC_DISP8:
2112 case R_SPARC_DISP16:
2113 case R_SPARC_DISP32:
2114 case R_SPARC_DISP64:
2115 case R_SPARC_WDISP30:
2116 case R_SPARC_WDISP22:
2117 case R_SPARC_WDISP19:
2118 case R_SPARC_WDISP16:
2119 if (h == NULL)
2120 break;
2121 /* Fall through. */
2122 case R_SPARC_8:
2123 case R_SPARC_16:
2124 case R_SPARC_32:
2125 case R_SPARC_HI22:
2126 case R_SPARC_22:
2127 case R_SPARC_13:
2128 case R_SPARC_LO10:
2129 case R_SPARC_UA32:
2130 case R_SPARC_10:
2131 case R_SPARC_11:
2132 case R_SPARC_64:
2133 case R_SPARC_OLO10:
2134 case R_SPARC_HH22:
2135 case R_SPARC_HM10:
2136 case R_SPARC_LM22:
2137 case R_SPARC_7:
2138 case R_SPARC_5:
2139 case R_SPARC_6:
2140 case R_SPARC_HIX22:
2141 case R_SPARC_LOX10:
2142 case R_SPARC_H44:
2143 case R_SPARC_M44:
2144 case R_SPARC_L44:
2145 case R_SPARC_UA64:
2146 case R_SPARC_UA16:
2147 {
2148 Elf_Internal_Rela outrel;
2149 bfd_byte *loc;
2150 bfd_boolean skip, relocate;
2151
2152 if (sreloc == NULL)
2153 {
2154 const char *name =
2155 (bfd_elf_string_from_elf_section
2156 (input_bfd,
2157 elf_elfheader (input_bfd)->e_shstrndx,
2158 elf_section_data (input_section)->rel_hdr.sh_name));
2159
2160 if (name == NULL)
2161 return FALSE;
2162
2163 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2164 && strcmp (bfd_get_section_name(input_bfd,
2165 input_section),
2166 name + 5) == 0);
2167
2168 sreloc = bfd_get_section_by_name (dynobj, name);
2169 BFD_ASSERT (sreloc != NULL);
2170 }
2171
2172 skip = FALSE;
2173 relocate = FALSE;
2174
2175 outrel.r_offset =
2176 _bfd_elf_section_offset (output_bfd, info, input_section,
2177 rel->r_offset);
2178 if (outrel.r_offset == (bfd_vma) -1)
2179 skip = TRUE;
2180 else if (outrel.r_offset == (bfd_vma) -2)
2181 skip = TRUE, relocate = TRUE;
2182
2183 outrel.r_offset += (input_section->output_section->vma
2184 + input_section->output_offset);
2185
2186 /* Optimize unaligned reloc usage now that we know where
2187 it finally resides. */
2188 switch (r_type)
2189 {
2190 case R_SPARC_16:
2191 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2192 break;
2193 case R_SPARC_UA16:
2194 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2195 break;
2196 case R_SPARC_32:
2197 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2198 break;
2199 case R_SPARC_UA32:
2200 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2201 break;
2202 case R_SPARC_64:
2203 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2204 break;
2205 case R_SPARC_UA64:
2206 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2207 break;
2208 case R_SPARC_DISP8:
2209 case R_SPARC_DISP16:
2210 case R_SPARC_DISP32:
2211 case R_SPARC_DISP64:
2212 /* If the symbol is not dynamic, we should not keep
2213 a dynamic relocation. But an .rela.* slot has been
2214 allocated for it, output R_SPARC_NONE.
2215 FIXME: Add code tracking needed dynamic relocs as
2216 e.g. i386 has. */
2217 if (h->dynindx == -1)
2218 skip = TRUE, relocate = TRUE;
2219 break;
2220 }
2221
2222 if (skip)
2223 memset (&outrel, 0, sizeof outrel);
2224 /* h->dynindx may be -1 if the symbol was marked to
2225 become local. */
2226 else if (h != NULL && ! is_plt
2227 && ((! info->symbolic && h->dynindx != -1)
2228 || (h->elf_link_hash_flags
2229 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2230 {
2231 BFD_ASSERT (h->dynindx != -1);
2232 outrel.r_info
2233 = ELF64_R_INFO (h->dynindx,
2234 ELF64_R_TYPE_INFO (
2235 ELF64_R_TYPE_DATA (rel->r_info),
2236 r_type));
2237 outrel.r_addend = rel->r_addend;
2238 }
2239 else
2240 {
2241 outrel.r_addend = relocation + rel->r_addend;
2242 if (r_type == R_SPARC_64)
2243 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2244 else
2245 {
2246 long indx;
2247
2248 if (is_plt)
2249 sec = splt;
2250 else if (h == NULL)
2251 sec = local_sections[r_symndx];
2252 else
2253 {
2254 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2255 || (h->root.type
2256 == bfd_link_hash_defweak));
2257 sec = h->root.u.def.section;
2258 }
2259 if (sec != NULL && bfd_is_abs_section (sec))
2260 indx = 0;
2261 else if (sec == NULL || sec->owner == NULL)
2262 {
2263 bfd_set_error (bfd_error_bad_value);
2264 return FALSE;
2265 }
2266 else
2267 {
2268 asection *osec;
2269
2270 osec = sec->output_section;
2271 indx = elf_section_data (osec)->dynindx;
2272
2273 /* We are turning this relocation into one
2274 against a section symbol, so subtract out
2275 the output section's address but not the
2276 offset of the input section in the output
2277 section. */
2278 outrel.r_addend -= osec->vma;
2279
2280 /* FIXME: we really should be able to link non-pic
2281 shared libraries. */
2282 if (indx == 0)
2283 {
2284 BFD_FAIL ();
2285 (*_bfd_error_handler)
2286 (_("%s: probably compiled without -fPIC?"),
2287 bfd_archive_filename (input_bfd));
2288 bfd_set_error (bfd_error_bad_value);
2289 return FALSE;
2290 }
2291 }
2292
2293 outrel.r_info
2294 = ELF64_R_INFO (indx,
2295 ELF64_R_TYPE_INFO (
2296 ELF64_R_TYPE_DATA (rel->r_info),
2297 r_type));
2298 }
2299 }
2300
2301 loc = sreloc->contents;
2302 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2303 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2304
2305 /* This reloc will be computed at runtime, so there's no
2306 need to do anything now. */
2307 if (! relocate)
2308 continue;
2309 }
2310 break;
2311 }
2312 }
2313
2314 switch (r_type)
2315 {
2316 case R_SPARC_GOT10:
2317 case R_SPARC_GOT13:
2318 case R_SPARC_GOT22:
2319 /* Relocation is to the entry for this symbol in the global
2320 offset table. */
2321 if (sgot == NULL)
2322 {
2323 sgot = bfd_get_section_by_name (dynobj, ".got");
2324 BFD_ASSERT (sgot != NULL);
2325 }
2326
2327 if (h != NULL)
2328 {
2329 bfd_boolean dyn;
2330
2331 off = h->got.offset;
2332 BFD_ASSERT (off != (bfd_vma) -1);
2333 dyn = elf_hash_table (info)->dynamic_sections_created;
2334
2335 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2336 || (info->shared
2337 && (info->symbolic
2338 || h->dynindx == -1
2339 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2340 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2341 {
2342 /* This is actually a static link, or it is a -Bsymbolic
2343 link and the symbol is defined locally, or the symbol
2344 was forced to be local because of a version file. We
2345 must initialize this entry in the global offset table.
2346 Since the offset must always be a multiple of 8, we
2347 use the least significant bit to record whether we
2348 have initialized it already.
2349
2350 When doing a dynamic link, we create a .rela.got
2351 relocation entry to initialize the value. This is
2352 done in the finish_dynamic_symbol routine. */
2353
2354 if ((off & 1) != 0)
2355 off &= ~1;
2356 else
2357 {
2358 bfd_put_64 (output_bfd, relocation,
2359 sgot->contents + off);
2360 h->got.offset |= 1;
2361 }
2362 }
2363 else
2364 unresolved_reloc = FALSE;
2365 }
2366 else
2367 {
2368 BFD_ASSERT (local_got_offsets != NULL);
2369 off = local_got_offsets[r_symndx];
2370 BFD_ASSERT (off != (bfd_vma) -1);
2371
2372 /* The offset must always be a multiple of 8. We use
2373 the least significant bit to record whether we have
2374 already processed this entry. */
2375 if ((off & 1) != 0)
2376 off &= ~1;
2377 else
2378 {
2379 local_got_offsets[r_symndx] |= 1;
2380
2381 if (info->shared)
2382 {
2383 asection *s;
2384 Elf_Internal_Rela outrel;
2385 bfd_byte *loc;
2386
2387 /* The Solaris 2.7 64-bit linker adds the contents
2388 of the location to the value of the reloc.
2389 Note this is different behaviour to the
2390 32-bit linker, which both adds the contents
2391 and ignores the addend. So clear the location. */
2392 bfd_put_64 (output_bfd, (bfd_vma) 0,
2393 sgot->contents + off);
2394
2395 /* We need to generate a R_SPARC_RELATIVE reloc
2396 for the dynamic linker. */
2397 s = bfd_get_section_by_name(dynobj, ".rela.got");
2398 BFD_ASSERT (s != NULL);
2399
2400 outrel.r_offset = (sgot->output_section->vma
2401 + sgot->output_offset
2402 + off);
2403 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2404 outrel.r_addend = relocation;
2405 loc = s->contents;
2406 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2407 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2408 }
2409 else
2410 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2411 }
2412 }
2413 relocation = sgot->output_offset + off - got_base;
2414 goto do_default;
2415
2416 case R_SPARC_WPLT30:
2417 case R_SPARC_PLT32:
2418 case R_SPARC_HIPLT22:
2419 case R_SPARC_LOPLT10:
2420 case R_SPARC_PCPLT32:
2421 case R_SPARC_PCPLT22:
2422 case R_SPARC_PCPLT10:
2423 case R_SPARC_PLT64:
2424 /* Relocation is to the entry for this symbol in the
2425 procedure linkage table. */
2426 BFD_ASSERT (h != NULL);
2427
2428 if (h->plt.offset == (bfd_vma) -1)
2429 {
2430 /* We didn't make a PLT entry for this symbol. This
2431 happens when statically linking PIC code, or when
2432 using -Bsymbolic. */
2433 goto do_default;
2434 }
2435
2436 if (splt == NULL)
2437 {
2438 splt = bfd_get_section_by_name (dynobj, ".plt");
2439 BFD_ASSERT (splt != NULL);
2440 }
2441
2442 relocation = (splt->output_section->vma
2443 + splt->output_offset
2444 + sparc64_elf_plt_entry_offset (h->plt.offset));
2445 unresolved_reloc = FALSE;
2446 if (r_type == R_SPARC_WPLT30)
2447 goto do_wplt30;
2448 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2449 {
2450 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2451 is_plt = TRUE;
2452 goto do_dynreloc;
2453 }
2454 goto do_default;
2455
2456 case R_SPARC_OLO10:
2457 {
2458 bfd_vma x;
2459
2460 relocation += rel->r_addend;
2461 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2462
2463 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2464 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2465 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2466
2467 r = bfd_check_overflow (howto->complain_on_overflow,
2468 howto->bitsize, howto->rightshift,
2469 bfd_arch_bits_per_address (input_bfd),
2470 relocation);
2471 }
2472 break;
2473
2474 case R_SPARC_WDISP16:
2475 {
2476 bfd_vma x;
2477
2478 relocation += rel->r_addend;
2479 /* Adjust for pc-relative-ness. */
2480 relocation -= (input_section->output_section->vma
2481 + input_section->output_offset);
2482 relocation -= rel->r_offset;
2483
2484 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2485 x &= ~(bfd_vma) 0x303fff;
2486 x |= ((((relocation >> 2) & 0xc000) << 6)
2487 | ((relocation >> 2) & 0x3fff));
2488 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2489
2490 r = bfd_check_overflow (howto->complain_on_overflow,
2491 howto->bitsize, howto->rightshift,
2492 bfd_arch_bits_per_address (input_bfd),
2493 relocation);
2494 }
2495 break;
2496
2497 case R_SPARC_HIX22:
2498 {
2499 bfd_vma x;
2500
2501 relocation += rel->r_addend;
2502 relocation = relocation ^ MINUS_ONE;
2503
2504 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2505 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2506 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2507
2508 r = bfd_check_overflow (howto->complain_on_overflow,
2509 howto->bitsize, howto->rightshift,
2510 bfd_arch_bits_per_address (input_bfd),
2511 relocation);
2512 }
2513 break;
2514
2515 case R_SPARC_LOX10:
2516 {
2517 bfd_vma x;
2518
2519 relocation += rel->r_addend;
2520 relocation = (relocation & 0x3ff) | 0x1c00;
2521
2522 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2523 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2524 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2525
2526 r = bfd_reloc_ok;
2527 }
2528 break;
2529
2530 case R_SPARC_WDISP30:
2531 do_wplt30:
2532 if (sec_do_relax (input_section)
2533 && rel->r_offset + 4 < input_section->_raw_size)
2534 {
2535 #define G0 0
2536 #define O7 15
2537 #define XCC (2 << 20)
2538 #define COND(x) (((x)&0xf)<<25)
2539 #define CONDA COND(0x8)
2540 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2541 #define INSN_BA (F2(0,2) | CONDA)
2542 #define INSN_OR F3(2, 0x2, 0)
2543 #define INSN_NOP F2(0,4)
2544
2545 bfd_vma x, y;
2546
2547 /* If the instruction is a call with either:
2548 restore
2549 arithmetic instruction with rd == %o7
2550 where rs1 != %o7 and rs2 if it is register != %o7
2551 then we can optimize if the call destination is near
2552 by changing the call into a branch always. */
2553 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2554 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2555 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2556 {
2557 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2558 || ((y & OP3(0x28)) == 0 /* arithmetic */
2559 && (y & RD(~0)) == RD(O7)))
2560 && (y & RS1(~0)) != RS1(O7)
2561 && ((y & F3I(~0))
2562 || (y & RS2(~0)) != RS2(O7)))
2563 {
2564 bfd_vma reloc;
2565
2566 reloc = relocation + rel->r_addend - rel->r_offset;
2567 reloc -= (input_section->output_section->vma
2568 + input_section->output_offset);
2569 if (reloc & 3)
2570 goto do_default;
2571
2572 /* Ensure the branch fits into simm22. */
2573 if ((reloc & ~(bfd_vma)0x7fffff)
2574 && ((reloc | 0x7fffff) != MINUS_ONE))
2575 goto do_default;
2576 reloc >>= 2;
2577
2578 /* Check whether it fits into simm19. */
2579 if ((reloc & 0x3c0000) == 0
2580 || (reloc & 0x3c0000) == 0x3c0000)
2581 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2582 else
2583 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2584 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2585 r = bfd_reloc_ok;
2586 if (rel->r_offset >= 4
2587 && (y & (0xffffffff ^ RS1(~0)))
2588 == (INSN_OR | RD(O7) | RS2(G0)))
2589 {
2590 bfd_vma z;
2591 unsigned int reg;
2592
2593 z = bfd_get_32 (input_bfd,
2594 contents + rel->r_offset - 4);
2595 if ((z & (0xffffffff ^ RD(~0)))
2596 != (INSN_OR | RS1(O7) | RS2(G0)))
2597 break;
2598
2599 /* The sequence was
2600 or %o7, %g0, %rN
2601 call foo
2602 or %rN, %g0, %o7
2603
2604 If call foo was replaced with ba, replace
2605 or %rN, %g0, %o7 with nop. */
2606
2607 reg = (y & RS1(~0)) >> 14;
2608 if (reg != ((z & RD(~0)) >> 25)
2609 || reg == G0 || reg == O7)
2610 break;
2611
2612 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2613 contents + rel->r_offset + 4);
2614 }
2615 break;
2616 }
2617 }
2618 }
2619 /* Fall through. */
2620
2621 default:
2622 do_default:
2623 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2624 contents, rel->r_offset,
2625 relocation, rel->r_addend);
2626 break;
2627 }
2628
2629 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2630 because such sections are not SEC_ALLOC and thus ld.so will
2631 not process them. */
2632 if (unresolved_reloc
2633 && !((input_section->flags & SEC_DEBUGGING) != 0
2634 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2635 (*_bfd_error_handler)
2636 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2637 bfd_archive_filename (input_bfd),
2638 bfd_get_section_name (input_bfd, input_section),
2639 (long) rel->r_offset,
2640 h->root.root.string);
2641
2642 switch (r)
2643 {
2644 case bfd_reloc_ok:
2645 break;
2646
2647 default:
2648 case bfd_reloc_outofrange:
2649 abort ();
2650
2651 case bfd_reloc_overflow:
2652 {
2653 const char *name;
2654
2655 /* The Solaris native linker silently disregards
2656 overflows. We don't, but this breaks stabs debugging
2657 info, whose relocations are only 32-bits wide. Ignore
2658 overflows for discarded entries. */
2659 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2660 && _bfd_elf_section_offset (output_bfd, info, input_section,
2661 rel->r_offset) == (bfd_vma) -1)
2662 break;
2663
2664 if (h != NULL)
2665 {
2666 if (h->root.type == bfd_link_hash_undefweak
2667 && howto->pc_relative)
2668 {
2669 /* Assume this is a call protected by other code that
2670 detect the symbol is undefined. If this is the case,
2671 we can safely ignore the overflow. If not, the
2672 program is hosed anyway, and a little warning isn't
2673 going to help. */
2674 break;
2675 }
2676
2677 name = h->root.root.string;
2678 }
2679 else
2680 {
2681 name = (bfd_elf_string_from_elf_section
2682 (input_bfd,
2683 symtab_hdr->sh_link,
2684 sym->st_name));
2685 if (name == NULL)
2686 return FALSE;
2687 if (*name == '\0')
2688 name = bfd_section_name (input_bfd, sec);
2689 }
2690 if (! ((*info->callbacks->reloc_overflow)
2691 (info, name, howto->name, (bfd_vma) 0,
2692 input_bfd, input_section, rel->r_offset)))
2693 return FALSE;
2694 }
2695 break;
2696 }
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Finish up dynamic symbol handling. We set the contents of various
2703 dynamic sections here. */
2704
2705 static bfd_boolean
2706 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2707 bfd *output_bfd;
2708 struct bfd_link_info *info;
2709 struct elf_link_hash_entry *h;
2710 Elf_Internal_Sym *sym;
2711 {
2712 bfd *dynobj;
2713
2714 dynobj = elf_hash_table (info)->dynobj;
2715
2716 if (h->plt.offset != (bfd_vma) -1)
2717 {
2718 asection *splt;
2719 asection *srela;
2720 Elf_Internal_Rela rela;
2721 bfd_byte *loc;
2722
2723 /* This symbol has an entry in the PLT. Set it up. */
2724
2725 BFD_ASSERT (h->dynindx != -1);
2726
2727 splt = bfd_get_section_by_name (dynobj, ".plt");
2728 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2729 BFD_ASSERT (splt != NULL && srela != NULL);
2730
2731 /* Fill in the entry in the .rela.plt section. */
2732
2733 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2734 {
2735 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2736 rela.r_addend = 0;
2737 }
2738 else
2739 {
2740 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2741 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2742 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2743 -(splt->output_section->vma + splt->output_offset);
2744 }
2745 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2746 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2747
2748 /* Adjust for the first 4 reserved elements in the .plt section
2749 when setting the offset in the .rela.plt section.
2750 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2751 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2752
2753 loc = srela->contents;
2754 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2755 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2756
2757 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2758 {
2759 /* Mark the symbol as undefined, rather than as defined in
2760 the .plt section. Leave the value alone. */
2761 sym->st_shndx = SHN_UNDEF;
2762 /* If the symbol is weak, we do need to clear the value.
2763 Otherwise, the PLT entry would provide a definition for
2764 the symbol even if the symbol wasn't defined anywhere,
2765 and so the symbol would never be NULL. */
2766 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2767 == 0)
2768 sym->st_value = 0;
2769 }
2770 }
2771
2772 if (h->got.offset != (bfd_vma) -1)
2773 {
2774 asection *sgot;
2775 asection *srela;
2776 Elf_Internal_Rela rela;
2777 bfd_byte *loc;
2778
2779 /* This symbol has an entry in the GOT. Set it up. */
2780
2781 sgot = bfd_get_section_by_name (dynobj, ".got");
2782 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2783 BFD_ASSERT (sgot != NULL && srela != NULL);
2784
2785 rela.r_offset = (sgot->output_section->vma
2786 + sgot->output_offset
2787 + (h->got.offset &~ (bfd_vma) 1));
2788
2789 /* If this is a -Bsymbolic link, and the symbol is defined
2790 locally, we just want to emit a RELATIVE reloc. Likewise if
2791 the symbol was forced to be local because of a version file.
2792 The entry in the global offset table will already have been
2793 initialized in the relocate_section function. */
2794 if (info->shared
2795 && (info->symbolic || h->dynindx == -1)
2796 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2797 {
2798 asection *sec = h->root.u.def.section;
2799 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2800 rela.r_addend = (h->root.u.def.value
2801 + sec->output_section->vma
2802 + sec->output_offset);
2803 }
2804 else
2805 {
2806 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2807 rela.r_addend = 0;
2808 }
2809
2810 bfd_put_64 (output_bfd, (bfd_vma) 0,
2811 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2812 loc = srela->contents;
2813 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2814 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2815 }
2816
2817 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2818 {
2819 asection *s;
2820 Elf_Internal_Rela rela;
2821 bfd_byte *loc;
2822
2823 /* This symbols needs a copy reloc. Set it up. */
2824 BFD_ASSERT (h->dynindx != -1);
2825
2826 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2827 ".rela.bss");
2828 BFD_ASSERT (s != NULL);
2829
2830 rela.r_offset = (h->root.u.def.value
2831 + h->root.u.def.section->output_section->vma
2832 + h->root.u.def.section->output_offset);
2833 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2834 rela.r_addend = 0;
2835 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2836 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2837 }
2838
2839 /* Mark some specially defined symbols as absolute. */
2840 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2841 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2842 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2843 sym->st_shndx = SHN_ABS;
2844
2845 return TRUE;
2846 }
2847
2848 /* Finish up the dynamic sections. */
2849
2850 static bfd_boolean
2851 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2852 bfd *output_bfd;
2853 struct bfd_link_info *info;
2854 {
2855 bfd *dynobj;
2856 int stt_regidx = -1;
2857 asection *sdyn;
2858 asection *sgot;
2859
2860 dynobj = elf_hash_table (info)->dynobj;
2861
2862 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2863
2864 if (elf_hash_table (info)->dynamic_sections_created)
2865 {
2866 asection *splt;
2867 Elf64_External_Dyn *dyncon, *dynconend;
2868
2869 splt = bfd_get_section_by_name (dynobj, ".plt");
2870 BFD_ASSERT (splt != NULL && sdyn != NULL);
2871
2872 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2873 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2874 for (; dyncon < dynconend; dyncon++)
2875 {
2876 Elf_Internal_Dyn dyn;
2877 const char *name;
2878 bfd_boolean size;
2879
2880 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2881
2882 switch (dyn.d_tag)
2883 {
2884 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2885 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2886 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2887 case DT_SPARC_REGISTER:
2888 if (stt_regidx == -1)
2889 {
2890 stt_regidx =
2891 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2892 if (stt_regidx == -1)
2893 return FALSE;
2894 }
2895 dyn.d_un.d_val = stt_regidx++;
2896 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2897 /* fallthrough */
2898 default: name = NULL; size = FALSE; break;
2899 }
2900
2901 if (name != NULL)
2902 {
2903 asection *s;
2904
2905 s = bfd_get_section_by_name (output_bfd, name);
2906 if (s == NULL)
2907 dyn.d_un.d_val = 0;
2908 else
2909 {
2910 if (! size)
2911 dyn.d_un.d_ptr = s->vma;
2912 else
2913 {
2914 if (s->_cooked_size != 0)
2915 dyn.d_un.d_val = s->_cooked_size;
2916 else
2917 dyn.d_un.d_val = s->_raw_size;
2918 }
2919 }
2920 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2921 }
2922 }
2923
2924 /* Initialize the contents of the .plt section. */
2925 if (splt->_raw_size > 0)
2926 sparc64_elf_build_plt (output_bfd, splt->contents,
2927 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2928
2929 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2930 PLT_ENTRY_SIZE;
2931 }
2932
2933 /* Set the first entry in the global offset table to the address of
2934 the dynamic section. */
2935 sgot = bfd_get_section_by_name (dynobj, ".got");
2936 BFD_ASSERT (sgot != NULL);
2937 if (sgot->_raw_size > 0)
2938 {
2939 if (sdyn == NULL)
2940 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2941 else
2942 bfd_put_64 (output_bfd,
2943 sdyn->output_section->vma + sdyn->output_offset,
2944 sgot->contents);
2945 }
2946
2947 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2948
2949 return TRUE;
2950 }
2951
2952 static enum elf_reloc_type_class
2953 sparc64_elf_reloc_type_class (rela)
2954 const Elf_Internal_Rela *rela;
2955 {
2956 switch ((int) ELF64_R_TYPE (rela->r_info))
2957 {
2958 case R_SPARC_RELATIVE:
2959 return reloc_class_relative;
2960 case R_SPARC_JMP_SLOT:
2961 return reloc_class_plt;
2962 case R_SPARC_COPY:
2963 return reloc_class_copy;
2964 default:
2965 return reloc_class_normal;
2966 }
2967 }
2968 \f
2969 /* Functions for dealing with the e_flags field. */
2970
2971 /* Merge backend specific data from an object file to the output
2972 object file when linking. */
2973
2974 static bfd_boolean
2975 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2976 bfd *ibfd;
2977 bfd *obfd;
2978 {
2979 bfd_boolean error;
2980 flagword new_flags, old_flags;
2981 int new_mm, old_mm;
2982
2983 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2984 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2985 return TRUE;
2986
2987 new_flags = elf_elfheader (ibfd)->e_flags;
2988 old_flags = elf_elfheader (obfd)->e_flags;
2989
2990 if (!elf_flags_init (obfd)) /* First call, no flags set */
2991 {
2992 elf_flags_init (obfd) = TRUE;
2993 elf_elfheader (obfd)->e_flags = new_flags;
2994 }
2995
2996 else if (new_flags == old_flags) /* Compatible flags are ok */
2997 ;
2998
2999 else /* Incompatible flags */
3000 {
3001 error = FALSE;
3002
3003 #define EF_SPARC_ISA_EXTENSIONS \
3004 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
3005
3006 if ((ibfd->flags & DYNAMIC) != 0)
3007 {
3008 /* We don't want dynamic objects memory ordering and
3009 architecture to have any role. That's what dynamic linker
3010 should do. */
3011 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
3012 new_flags |= (old_flags
3013 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3014 }
3015 else
3016 {
3017 /* Choose the highest architecture requirements. */
3018 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3019 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3020 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3021 && (old_flags & EF_SPARC_HAL_R1))
3022 {
3023 error = TRUE;
3024 (*_bfd_error_handler)
3025 (_("%s: linking UltraSPARC specific with HAL specific code"),
3026 bfd_archive_filename (ibfd));
3027 }
3028 /* Choose the most restrictive memory ordering. */
3029 old_mm = (old_flags & EF_SPARCV9_MM);
3030 new_mm = (new_flags & EF_SPARCV9_MM);
3031 old_flags &= ~EF_SPARCV9_MM;
3032 new_flags &= ~EF_SPARCV9_MM;
3033 if (new_mm < old_mm)
3034 old_mm = new_mm;
3035 old_flags |= old_mm;
3036 new_flags |= old_mm;
3037 }
3038
3039 /* Warn about any other mismatches */
3040 if (new_flags != old_flags)
3041 {
3042 error = TRUE;
3043 (*_bfd_error_handler)
3044 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3045 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3046 }
3047
3048 elf_elfheader (obfd)->e_flags = old_flags;
3049
3050 if (error)
3051 {
3052 bfd_set_error (bfd_error_bad_value);
3053 return FALSE;
3054 }
3055 }
3056 return TRUE;
3057 }
3058
3059 /* MARCO: Set the correct entry size for the .stab section. */
3060
3061 static bfd_boolean
3062 sparc64_elf_fake_sections (abfd, hdr, sec)
3063 bfd *abfd ATTRIBUTE_UNUSED;
3064 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3065 asection *sec;
3066 {
3067 const char *name;
3068
3069 name = bfd_get_section_name (abfd, sec);
3070
3071 if (strcmp (name, ".stab") == 0)
3072 {
3073 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3074 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3075 }
3076
3077 return TRUE;
3078 }
3079 \f
3080 /* Print a STT_REGISTER symbol to file FILE. */
3081
3082 static const char *
3083 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3084 bfd *abfd ATTRIBUTE_UNUSED;
3085 PTR filep;
3086 asymbol *symbol;
3087 {
3088 FILE *file = (FILE *) filep;
3089 int reg, type;
3090
3091 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3092 != STT_REGISTER)
3093 return NULL;
3094
3095 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3096 type = symbol->flags;
3097 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3098 ((type & BSF_LOCAL)
3099 ? (type & BSF_GLOBAL) ? '!' : 'l'
3100 : (type & BSF_GLOBAL) ? 'g' : ' '),
3101 (type & BSF_WEAK) ? 'w' : ' ');
3102 if (symbol->name == NULL || symbol->name [0] == '\0')
3103 return "#scratch";
3104 else
3105 return symbol->name;
3106 }
3107 \f
3108 /* Set the right machine number for a SPARC64 ELF file. */
3109
3110 static bfd_boolean
3111 sparc64_elf_object_p (abfd)
3112 bfd *abfd;
3113 {
3114 unsigned long mach = bfd_mach_sparc_v9;
3115
3116 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3117 mach = bfd_mach_sparc_v9b;
3118 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3119 mach = bfd_mach_sparc_v9a;
3120 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3121 }
3122
3123 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3124 standard ELF, because R_SPARC_OLO10 has secondary addend in
3125 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3126 relocation handling routines. */
3127
3128 const struct elf_size_info sparc64_elf_size_info =
3129 {
3130 sizeof (Elf64_External_Ehdr),
3131 sizeof (Elf64_External_Phdr),
3132 sizeof (Elf64_External_Shdr),
3133 sizeof (Elf64_External_Rel),
3134 sizeof (Elf64_External_Rela),
3135 sizeof (Elf64_External_Sym),
3136 sizeof (Elf64_External_Dyn),
3137 sizeof (Elf_External_Note),
3138 4, /* hash-table entry size. */
3139 /* Internal relocations per external relocations.
3140 For link purposes we use just 1 internal per
3141 1 external, for assembly and slurp symbol table
3142 we use 2. */
3143 1,
3144 64, /* arch_size. */
3145 3, /* log_file_align. */
3146 ELFCLASS64,
3147 EV_CURRENT,
3148 bfd_elf64_write_out_phdrs,
3149 bfd_elf64_write_shdrs_and_ehdr,
3150 sparc64_elf_write_relocs,
3151 bfd_elf64_swap_symbol_in,
3152 bfd_elf64_swap_symbol_out,
3153 sparc64_elf_slurp_reloc_table,
3154 bfd_elf64_slurp_symbol_table,
3155 bfd_elf64_swap_dyn_in,
3156 bfd_elf64_swap_dyn_out,
3157 bfd_elf64_swap_reloc_in,
3158 bfd_elf64_swap_reloc_out,
3159 bfd_elf64_swap_reloca_in,
3160 bfd_elf64_swap_reloca_out
3161 };
3162
3163 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3164 #define TARGET_BIG_NAME "elf64-sparc"
3165 #define ELF_ARCH bfd_arch_sparc
3166 #define ELF_MAXPAGESIZE 0x100000
3167
3168 /* This is the official ABI value. */
3169 #define ELF_MACHINE_CODE EM_SPARCV9
3170
3171 /* This is the value that we used before the ABI was released. */
3172 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3173
3174 #define bfd_elf64_bfd_link_hash_table_create \
3175 sparc64_elf_bfd_link_hash_table_create
3176
3177 #define elf_info_to_howto \
3178 sparc64_elf_info_to_howto
3179 #define bfd_elf64_get_reloc_upper_bound \
3180 sparc64_elf_get_reloc_upper_bound
3181 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3182 sparc64_elf_get_dynamic_reloc_upper_bound
3183 #define bfd_elf64_canonicalize_reloc \
3184 sparc64_elf_canonicalize_reloc
3185 #define bfd_elf64_canonicalize_dynamic_reloc \
3186 sparc64_elf_canonicalize_dynamic_reloc
3187 #define bfd_elf64_bfd_reloc_type_lookup \
3188 sparc64_elf_reloc_type_lookup
3189 #define bfd_elf64_bfd_relax_section \
3190 sparc64_elf_relax_section
3191 #define bfd_elf64_new_section_hook \
3192 sparc64_elf_new_section_hook
3193
3194 #define elf_backend_create_dynamic_sections \
3195 _bfd_elf_create_dynamic_sections
3196 #define elf_backend_add_symbol_hook \
3197 sparc64_elf_add_symbol_hook
3198 #define elf_backend_get_symbol_type \
3199 sparc64_elf_get_symbol_type
3200 #define elf_backend_symbol_processing \
3201 sparc64_elf_symbol_processing
3202 #define elf_backend_check_relocs \
3203 sparc64_elf_check_relocs
3204 #define elf_backend_adjust_dynamic_symbol \
3205 sparc64_elf_adjust_dynamic_symbol
3206 #define elf_backend_size_dynamic_sections \
3207 sparc64_elf_size_dynamic_sections
3208 #define elf_backend_relocate_section \
3209 sparc64_elf_relocate_section
3210 #define elf_backend_finish_dynamic_symbol \
3211 sparc64_elf_finish_dynamic_symbol
3212 #define elf_backend_finish_dynamic_sections \
3213 sparc64_elf_finish_dynamic_sections
3214 #define elf_backend_print_symbol_all \
3215 sparc64_elf_print_symbol_all
3216 #define elf_backend_output_arch_syms \
3217 sparc64_elf_output_arch_syms
3218 #define bfd_elf64_bfd_merge_private_bfd_data \
3219 sparc64_elf_merge_private_bfd_data
3220 #define elf_backend_fake_sections \
3221 sparc64_elf_fake_sections
3222
3223 #define elf_backend_size_info \
3224 sparc64_elf_size_info
3225 #define elf_backend_object_p \
3226 sparc64_elf_object_p
3227 #define elf_backend_reloc_type_class \
3228 sparc64_elf_reloc_type_class
3229
3230 #define elf_backend_want_got_plt 0
3231 #define elf_backend_plt_readonly 0
3232 #define elf_backend_want_plt_sym 1
3233 #define elf_backend_rela_normal 1
3234
3235 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3236 #define elf_backend_plt_alignment 8
3237
3238 #define elf_backend_got_header_size 8
3239
3240 #include "elf64-target.h"
This page took 0.21521 seconds and 5 git commands to generate.