* elf32-sparc.c (elf32_sparc_finish_dynamic_symbol): Don't make PLT
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS((bfd *));
39 static reloc_howto_type *sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd *, bfd_reloc_code_real_type));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43
44 static void sparc64_elf_build_plt
45 PARAMS((bfd *, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
47 PARAMS((int));
48 static bfd_vma sparc64_elf_plt_ptr_offset
49 PARAMS((int, int));
50
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
53 const Elf_Internal_Rela *));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd *, struct bfd_link_info *));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym *, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
62 const char **, flagword *, asection **, bfd_vma *));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd *, asymbol *));
65
66 static boolean sparc64_elf_copy_private_bfd_data
67 PARAMS ((bfd *, bfd *));
68 static boolean sparc64_elf_merge_private_bfd_data
69 PARAMS ((bfd *, bfd *));
70
71 static boolean sparc64_elf_relax_section
72 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
73 static boolean sparc64_elf_relocate_section
74 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
75 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
76 static boolean sparc64_elf_object_p PARAMS ((bfd *));
77 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
78 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
79 static boolean sparc64_elf_slurp_one_reloc_table
80 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
81 static boolean sparc64_elf_slurp_reloc_table
82 PARAMS ((bfd *, asection *, asymbol **, boolean));
83 static long sparc64_elf_canonicalize_dynamic_reloc
84 PARAMS ((bfd *, arelent **, asymbol **));
85 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
86 \f
87 /* The relocation "howto" table. */
88
89 static bfd_reloc_status_type sparc_elf_notsup_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
92 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static bfd_reloc_status_type sparc_elf_hix22_reloc
94 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
95 static bfd_reloc_status_type sparc_elf_lox10_reloc
96 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
97
98 static reloc_howto_type sparc64_elf_howto_table[] =
99 {
100 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
101 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
102 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
103 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
104 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
105 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
106 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
107 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
108 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
110 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
111 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
112 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
113 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
114 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
115 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
117 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
118 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
119 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
120 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
121 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
122 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
123 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
124 #ifndef SPARC64_OLD_RELOCS
125 /* These aren't implemented yet. */
126 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
127 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
128 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
130 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
131 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
132 #endif
133 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
134 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
135 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
136 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
137 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
139 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
140 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
142 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
143 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
144 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
145 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
146 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
147 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
148 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
149 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
150 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
152 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
153 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
154 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
155 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
156 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
157 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
158 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
159 };
160
161 struct elf_reloc_map {
162 bfd_reloc_code_real_type bfd_reloc_val;
163 unsigned char elf_reloc_val;
164 };
165
166 static CONST struct elf_reloc_map sparc_reloc_map[] =
167 {
168 { BFD_RELOC_NONE, R_SPARC_NONE, },
169 { BFD_RELOC_16, R_SPARC_16, },
170 { BFD_RELOC_8, R_SPARC_8 },
171 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
172 { BFD_RELOC_CTOR, R_SPARC_64 },
173 { BFD_RELOC_32, R_SPARC_32 },
174 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
175 { BFD_RELOC_HI22, R_SPARC_HI22 },
176 { BFD_RELOC_LO10, R_SPARC_LO10, },
177 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
178 { BFD_RELOC_SPARC22, R_SPARC_22 },
179 { BFD_RELOC_SPARC13, R_SPARC_13 },
180 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
181 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
182 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
183 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
184 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
185 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
186 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
187 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
188 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
189 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
190 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
191 /* ??? Doesn't dwarf use this? */
192 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
193 {BFD_RELOC_SPARC_10, R_SPARC_10},
194 {BFD_RELOC_SPARC_11, R_SPARC_11},
195 {BFD_RELOC_SPARC_64, R_SPARC_64},
196 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
197 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
198 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
199 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
200 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
201 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
202 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
203 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
204 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
205 {BFD_RELOC_SPARC_7, R_SPARC_7},
206 {BFD_RELOC_SPARC_5, R_SPARC_5},
207 {BFD_RELOC_SPARC_6, R_SPARC_6},
208 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
209 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
210 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
211 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
212 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
213 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
214 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
215 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
216 };
217
218 static reloc_howto_type *
219 sparc64_elf_reloc_type_lookup (abfd, code)
220 bfd *abfd ATTRIBUTE_UNUSED;
221 bfd_reloc_code_real_type code;
222 {
223 unsigned int i;
224 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
225 {
226 if (sparc_reloc_map[i].bfd_reloc_val == code)
227 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
228 }
229 return 0;
230 }
231
232 static void
233 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
234 bfd *abfd ATTRIBUTE_UNUSED;
235 arelent *cache_ptr;
236 Elf64_Internal_Rela *dst;
237 {
238 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
239 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
240 }
241 \f
242 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
243 section can represent up to two relocs, we must tell the user to allocate
244 more space. */
245
246 static long
247 sparc64_elf_get_reloc_upper_bound (abfd, sec)
248 bfd *abfd ATTRIBUTE_UNUSED;
249 asection *sec;
250 {
251 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
252 }
253
254 static long
255 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
256 bfd *abfd;
257 {
258 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
259 }
260
261 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
262 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
263 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
264 for the same location, R_SPARC_LO10 and R_SPARC_13. */
265
266 static boolean
267 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
268 bfd *abfd;
269 asection *asect;
270 Elf_Internal_Shdr *rel_hdr;
271 asymbol **symbols;
272 boolean dynamic;
273 {
274 PTR allocated = NULL;
275 bfd_byte *native_relocs;
276 arelent *relent;
277 unsigned int i;
278 int entsize;
279 bfd_size_type count;
280 arelent *relents;
281
282 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
283 if (allocated == NULL)
284 goto error_return;
285
286 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
287 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
288 != rel_hdr->sh_size))
289 goto error_return;
290
291 native_relocs = (bfd_byte *) allocated;
292
293 relents = asect->relocation + asect->reloc_count;
294
295 entsize = rel_hdr->sh_entsize;
296 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
297
298 count = rel_hdr->sh_size / entsize;
299
300 for (i = 0, relent = relents; i < count;
301 i++, relent++, native_relocs += entsize)
302 {
303 Elf_Internal_Rela rela;
304
305 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
306
307 /* The address of an ELF reloc is section relative for an object
308 file, and absolute for an executable file or shared library.
309 The address of a normal BFD reloc is always section relative,
310 and the address of a dynamic reloc is absolute.. */
311 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
312 relent->address = rela.r_offset;
313 else
314 relent->address = rela.r_offset - asect->vma;
315
316 if (ELF64_R_SYM (rela.r_info) == 0)
317 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
318 else
319 {
320 asymbol **ps, *s;
321
322 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
323 s = *ps;
324
325 /* Canonicalize ELF section symbols. FIXME: Why? */
326 if ((s->flags & BSF_SECTION_SYM) == 0)
327 relent->sym_ptr_ptr = ps;
328 else
329 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
330 }
331
332 relent->addend = rela.r_addend;
333
334 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
335 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
336 {
337 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
338 relent[1].address = relent->address;
339 relent++;
340 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
341 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
342 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
343 }
344 else
345 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
346 }
347
348 asect->reloc_count += relent - relents;
349
350 if (allocated != NULL)
351 free (allocated);
352
353 return true;
354
355 error_return:
356 if (allocated != NULL)
357 free (allocated);
358 return false;
359 }
360
361 /* Read in and swap the external relocs. */
362
363 static boolean
364 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
365 bfd *abfd;
366 asection *asect;
367 asymbol **symbols;
368 boolean dynamic;
369 {
370 struct bfd_elf_section_data * const d = elf_section_data (asect);
371 Elf_Internal_Shdr *rel_hdr;
372 Elf_Internal_Shdr *rel_hdr2;
373
374 if (asect->relocation != NULL)
375 return true;
376
377 if (! dynamic)
378 {
379 if ((asect->flags & SEC_RELOC) == 0
380 || asect->reloc_count == 0)
381 return true;
382
383 rel_hdr = &d->rel_hdr;
384 rel_hdr2 = d->rel_hdr2;
385
386 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
387 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
388 }
389 else
390 {
391 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
392 case because relocations against this section may use the
393 dynamic symbol table, and in that case bfd_section_from_shdr
394 in elf.c does not update the RELOC_COUNT. */
395 if (asect->_raw_size == 0)
396 return true;
397
398 rel_hdr = &d->this_hdr;
399 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
400 rel_hdr2 = NULL;
401 }
402
403 asect->relocation = ((arelent *)
404 bfd_alloc (abfd,
405 asect->reloc_count * 2 * sizeof (arelent)));
406 if (asect->relocation == NULL)
407 return false;
408
409 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
410 asect->reloc_count = 0;
411
412 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
413 dynamic))
414 return false;
415
416 if (rel_hdr2
417 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
418 dynamic))
419 return false;
420
421 return true;
422 }
423
424 /* Canonicalize the dynamic relocation entries. Note that we return
425 the dynamic relocations as a single block, although they are
426 actually associated with particular sections; the interface, which
427 was designed for SunOS style shared libraries, expects that there
428 is only one set of dynamic relocs. Any section that was actually
429 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
430 the dynamic symbol table, is considered to be a dynamic reloc
431 section. */
432
433 static long
434 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
435 bfd *abfd;
436 arelent **storage;
437 asymbol **syms;
438 {
439 asection *s;
440 long ret;
441
442 if (elf_dynsymtab (abfd) == 0)
443 {
444 bfd_set_error (bfd_error_invalid_operation);
445 return -1;
446 }
447
448 ret = 0;
449 for (s = abfd->sections; s != NULL; s = s->next)
450 {
451 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
452 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
453 {
454 arelent *p;
455 long count, i;
456
457 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
458 return -1;
459 count = s->reloc_count;
460 p = s->relocation;
461 for (i = 0; i < count; i++)
462 *storage++ = p++;
463 ret += count;
464 }
465 }
466
467 *storage = NULL;
468
469 return ret;
470 }
471
472 /* Write out the relocs. */
473
474 static void
475 sparc64_elf_write_relocs (abfd, sec, data)
476 bfd *abfd;
477 asection *sec;
478 PTR data;
479 {
480 boolean *failedp = (boolean *) data;
481 Elf_Internal_Shdr *rela_hdr;
482 Elf64_External_Rela *outbound_relocas, *src_rela;
483 unsigned int idx, count;
484 asymbol *last_sym = 0;
485 int last_sym_idx = 0;
486
487 /* If we have already failed, don't do anything. */
488 if (*failedp)
489 return;
490
491 if ((sec->flags & SEC_RELOC) == 0)
492 return;
493
494 /* The linker backend writes the relocs out itself, and sets the
495 reloc_count field to zero to inhibit writing them here. Also,
496 sometimes the SEC_RELOC flag gets set even when there aren't any
497 relocs. */
498 if (sec->reloc_count == 0)
499 return;
500
501 /* We can combine two relocs that refer to the same address
502 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
503 latter is R_SPARC_13 with no associated symbol. */
504 count = 0;
505 for (idx = 0; idx < sec->reloc_count; idx++)
506 {
507 bfd_vma addr;
508
509 ++count;
510
511 addr = sec->orelocation[idx]->address;
512 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
513 && idx < sec->reloc_count - 1)
514 {
515 arelent *r = sec->orelocation[idx + 1];
516
517 if (r->howto->type == R_SPARC_13
518 && r->address == addr
519 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
520 && (*r->sym_ptr_ptr)->value == 0)
521 ++idx;
522 }
523 }
524
525 rela_hdr = &elf_section_data (sec)->rel_hdr;
526
527 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
528 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
529 if (rela_hdr->contents == NULL)
530 {
531 *failedp = true;
532 return;
533 }
534
535 /* Figure out whether the relocations are RELA or REL relocations. */
536 if (rela_hdr->sh_type != SHT_RELA)
537 abort ();
538
539 /* orelocation has the data, reloc_count has the count... */
540 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
541 src_rela = outbound_relocas;
542
543 for (idx = 0; idx < sec->reloc_count; idx++)
544 {
545 Elf_Internal_Rela dst_rela;
546 arelent *ptr;
547 asymbol *sym;
548 int n;
549
550 ptr = sec->orelocation[idx];
551
552 /* The address of an ELF reloc is section relative for an object
553 file, and absolute for an executable file or shared library.
554 The address of a BFD reloc is always section relative. */
555 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
556 dst_rela.r_offset = ptr->address;
557 else
558 dst_rela.r_offset = ptr->address + sec->vma;
559
560 sym = *ptr->sym_ptr_ptr;
561 if (sym == last_sym)
562 n = last_sym_idx;
563 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
564 n = STN_UNDEF;
565 else
566 {
567 last_sym = sym;
568 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
569 if (n < 0)
570 {
571 *failedp = true;
572 return;
573 }
574 last_sym_idx = n;
575 }
576
577 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
578 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
579 && ! _bfd_elf_validate_reloc (abfd, ptr))
580 {
581 *failedp = true;
582 return;
583 }
584
585 if (ptr->howto->type == R_SPARC_LO10
586 && idx < sec->reloc_count - 1)
587 {
588 arelent *r = sec->orelocation[idx + 1];
589
590 if (r->howto->type == R_SPARC_13
591 && r->address == ptr->address
592 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
593 && (*r->sym_ptr_ptr)->value == 0)
594 {
595 idx++;
596 dst_rela.r_info
597 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
598 R_SPARC_OLO10));
599 }
600 else
601 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
602 }
603 else
604 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
605
606 dst_rela.r_addend = ptr->addend;
607 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
608 ++src_rela;
609 }
610 }
611 \f
612 /* Sparc64 ELF linker hash table. */
613
614 struct sparc64_elf_app_reg
615 {
616 unsigned char bind;
617 unsigned short shndx;
618 bfd *abfd;
619 char *name;
620 };
621
622 struct sparc64_elf_link_hash_table
623 {
624 struct elf_link_hash_table root;
625
626 struct sparc64_elf_app_reg app_regs [4];
627 };
628
629 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
630
631 #define sparc64_elf_hash_table(p) \
632 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
633
634 /* Create a Sparc64 ELF linker hash table. */
635
636 static struct bfd_link_hash_table *
637 sparc64_elf_bfd_link_hash_table_create (abfd)
638 bfd *abfd;
639 {
640 struct sparc64_elf_link_hash_table *ret;
641
642 ret = ((struct sparc64_elf_link_hash_table *)
643 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
644 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
645 return NULL;
646
647 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
648 _bfd_elf_link_hash_newfunc))
649 {
650 bfd_release (abfd, ret);
651 return NULL;
652 }
653
654 return &ret->root.root;
655 }
656 \f
657 /* Utility for performing the standard initial work of an instruction
658 relocation.
659 *PRELOCATION will contain the relocated item.
660 *PINSN will contain the instruction from the input stream.
661 If the result is `bfd_reloc_other' the caller can continue with
662 performing the relocation. Otherwise it must stop and return the
663 value to its caller. */
664
665 static bfd_reloc_status_type
666 init_insn_reloc (abfd,
667 reloc_entry,
668 symbol,
669 data,
670 input_section,
671 output_bfd,
672 prelocation,
673 pinsn)
674 bfd *abfd;
675 arelent *reloc_entry;
676 asymbol *symbol;
677 PTR data;
678 asection *input_section;
679 bfd *output_bfd;
680 bfd_vma *prelocation;
681 bfd_vma *pinsn;
682 {
683 bfd_vma relocation;
684 reloc_howto_type *howto = reloc_entry->howto;
685
686 if (output_bfd != (bfd *) NULL
687 && (symbol->flags & BSF_SECTION_SYM) == 0
688 && (! howto->partial_inplace
689 || reloc_entry->addend == 0))
690 {
691 reloc_entry->address += input_section->output_offset;
692 return bfd_reloc_ok;
693 }
694
695 /* This works because partial_inplace == false. */
696 if (output_bfd != NULL)
697 return bfd_reloc_continue;
698
699 if (reloc_entry->address > input_section->_cooked_size)
700 return bfd_reloc_outofrange;
701
702 relocation = (symbol->value
703 + symbol->section->output_section->vma
704 + symbol->section->output_offset);
705 relocation += reloc_entry->addend;
706 if (howto->pc_relative)
707 {
708 relocation -= (input_section->output_section->vma
709 + input_section->output_offset);
710 relocation -= reloc_entry->address;
711 }
712
713 *prelocation = relocation;
714 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
715 return bfd_reloc_other;
716 }
717
718 /* For unsupported relocs. */
719
720 static bfd_reloc_status_type
721 sparc_elf_notsup_reloc (abfd,
722 reloc_entry,
723 symbol,
724 data,
725 input_section,
726 output_bfd,
727 error_message)
728 bfd *abfd ATTRIBUTE_UNUSED;
729 arelent *reloc_entry ATTRIBUTE_UNUSED;
730 asymbol *symbol ATTRIBUTE_UNUSED;
731 PTR data ATTRIBUTE_UNUSED;
732 asection *input_section ATTRIBUTE_UNUSED;
733 bfd *output_bfd ATTRIBUTE_UNUSED;
734 char **error_message ATTRIBUTE_UNUSED;
735 {
736 return bfd_reloc_notsupported;
737 }
738
739 /* Handle the WDISP16 reloc. */
740
741 static bfd_reloc_status_type
742 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
743 output_bfd, error_message)
744 bfd *abfd;
745 arelent *reloc_entry;
746 asymbol *symbol;
747 PTR data;
748 asection *input_section;
749 bfd *output_bfd;
750 char **error_message ATTRIBUTE_UNUSED;
751 {
752 bfd_vma relocation;
753 bfd_vma insn;
754 bfd_reloc_status_type status;
755
756 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
757 input_section, output_bfd, &relocation, &insn);
758 if (status != bfd_reloc_other)
759 return status;
760
761 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
762 | ((relocation >> 2) & 0x3fff));
763 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
764
765 if ((bfd_signed_vma) relocation < - 0x40000
766 || (bfd_signed_vma) relocation > 0x3ffff)
767 return bfd_reloc_overflow;
768 else
769 return bfd_reloc_ok;
770 }
771
772 /* Handle the HIX22 reloc. */
773
774 static bfd_reloc_status_type
775 sparc_elf_hix22_reloc (abfd,
776 reloc_entry,
777 symbol,
778 data,
779 input_section,
780 output_bfd,
781 error_message)
782 bfd *abfd;
783 arelent *reloc_entry;
784 asymbol *symbol;
785 PTR data;
786 asection *input_section;
787 bfd *output_bfd;
788 char **error_message ATTRIBUTE_UNUSED;
789 {
790 bfd_vma relocation;
791 bfd_vma insn;
792 bfd_reloc_status_type status;
793
794 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
795 input_section, output_bfd, &relocation, &insn);
796 if (status != bfd_reloc_other)
797 return status;
798
799 relocation ^= MINUS_ONE;
800 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
801 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
802
803 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
804 return bfd_reloc_overflow;
805 else
806 return bfd_reloc_ok;
807 }
808
809 /* Handle the LOX10 reloc. */
810
811 static bfd_reloc_status_type
812 sparc_elf_lox10_reloc (abfd,
813 reloc_entry,
814 symbol,
815 data,
816 input_section,
817 output_bfd,
818 error_message)
819 bfd *abfd;
820 arelent *reloc_entry;
821 asymbol *symbol;
822 PTR data;
823 asection *input_section;
824 bfd *output_bfd;
825 char **error_message ATTRIBUTE_UNUSED;
826 {
827 bfd_vma relocation;
828 bfd_vma insn;
829 bfd_reloc_status_type status;
830
831 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
832 input_section, output_bfd, &relocation, &insn);
833 if (status != bfd_reloc_other)
834 return status;
835
836 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
837 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
838
839 return bfd_reloc_ok;
840 }
841 \f
842 /* PLT/GOT stuff */
843
844 /* Both the headers and the entries are icache aligned. */
845 #define PLT_ENTRY_SIZE 32
846 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
847 #define LARGE_PLT_THRESHOLD 32768
848 #define GOT_RESERVED_ENTRIES 1
849
850 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
851
852 /* Fill in the .plt section. */
853
854 static void
855 sparc64_elf_build_plt (output_bfd, contents, nentries)
856 bfd *output_bfd;
857 unsigned char *contents;
858 int nentries;
859 {
860 const unsigned int nop = 0x01000000;
861 int i, j;
862
863 /* The first four entries are reserved, and are initially undefined.
864 We fill them with `illtrap 0' to force ld.so to do something. */
865
866 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
867 bfd_put_32 (output_bfd, 0, contents+i*4);
868
869 /* The first 32768 entries are close enough to plt1 to get there via
870 a straight branch. */
871
872 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
873 {
874 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
875 unsigned int sethi, ba;
876
877 /* sethi (. - plt0), %g1 */
878 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
879
880 /* ba,a,pt %xcc, plt1 */
881 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
882
883 bfd_put_32 (output_bfd, sethi, entry);
884 bfd_put_32 (output_bfd, ba, entry+4);
885 bfd_put_32 (output_bfd, nop, entry+8);
886 bfd_put_32 (output_bfd, nop, entry+12);
887 bfd_put_32 (output_bfd, nop, entry+16);
888 bfd_put_32 (output_bfd, nop, entry+20);
889 bfd_put_32 (output_bfd, nop, entry+24);
890 bfd_put_32 (output_bfd, nop, entry+28);
891 }
892
893 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
894 160: 160 entries and 160 pointers. This is to separate code from data,
895 which is much friendlier on the cache. */
896
897 for (; i < nentries; i += 160)
898 {
899 int block = (i + 160 <= nentries ? 160 : nentries - i);
900 for (j = 0; j < block; ++j)
901 {
902 unsigned char *entry, *ptr;
903 unsigned int ldx;
904
905 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
906 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
907
908 /* ldx [%o7 + ptr - entry+4], %g1 */
909 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
910
911 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
912 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
913 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
914 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
915 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
916 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
917
918 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
919 }
920 }
921 }
922
923 /* Return the offset of a particular plt entry within the .plt section. */
924
925 static bfd_vma
926 sparc64_elf_plt_entry_offset (index)
927 int index;
928 {
929 int block, ofs;
930
931 if (index < LARGE_PLT_THRESHOLD)
932 return index * PLT_ENTRY_SIZE;
933
934 /* See above for details. */
935
936 block = (index - LARGE_PLT_THRESHOLD) / 160;
937 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
938
939 return ((bfd_vma) (LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
940 + ofs * 6*4);
941 }
942
943 static bfd_vma
944 sparc64_elf_plt_ptr_offset (index, max)
945 int index, max;
946 {
947 int block, ofs, last;
948
949 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
950
951 /* See above for details. */
952
953 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
954 + LARGE_PLT_THRESHOLD;
955 ofs = index - block;
956 if (block + 160 > max)
957 last = (max - LARGE_PLT_THRESHOLD) % 160;
958 else
959 last = 160;
960
961 return (block * PLT_ENTRY_SIZE
962 + last * 6*4
963 + ofs * 8);
964 }
965 \f
966 /* Look through the relocs for a section during the first phase, and
967 allocate space in the global offset table or procedure linkage
968 table. */
969
970 static boolean
971 sparc64_elf_check_relocs (abfd, info, sec, relocs)
972 bfd *abfd;
973 struct bfd_link_info *info;
974 asection *sec;
975 const Elf_Internal_Rela *relocs;
976 {
977 bfd *dynobj;
978 Elf_Internal_Shdr *symtab_hdr;
979 struct elf_link_hash_entry **sym_hashes;
980 bfd_vma *local_got_offsets;
981 const Elf_Internal_Rela *rel;
982 const Elf_Internal_Rela *rel_end;
983 asection *sgot;
984 asection *srelgot;
985 asection *sreloc;
986
987 if (info->relocateable || !(sec->flags & SEC_ALLOC))
988 return true;
989
990 dynobj = elf_hash_table (info)->dynobj;
991 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
992 sym_hashes = elf_sym_hashes (abfd);
993 local_got_offsets = elf_local_got_offsets (abfd);
994
995 sgot = NULL;
996 srelgot = NULL;
997 sreloc = NULL;
998
999 rel_end = relocs + elf_section_data (sec)->rel_hdr.sh_size
1000 / elf_section_data (sec)->rel_hdr.sh_entsize;
1001 for (rel = relocs; rel < rel_end; rel++)
1002 {
1003 unsigned long r_symndx;
1004 struct elf_link_hash_entry *h;
1005
1006 r_symndx = ELF64_R_SYM (rel->r_info);
1007 if (r_symndx < symtab_hdr->sh_info)
1008 h = NULL;
1009 else
1010 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1011
1012 switch (ELF64_R_TYPE_ID (rel->r_info))
1013 {
1014 case R_SPARC_GOT10:
1015 case R_SPARC_GOT13:
1016 case R_SPARC_GOT22:
1017 /* This symbol requires a global offset table entry. */
1018
1019 if (dynobj == NULL)
1020 {
1021 /* Create the .got section. */
1022 elf_hash_table (info)->dynobj = dynobj = abfd;
1023 if (! _bfd_elf_create_got_section (dynobj, info))
1024 return false;
1025 }
1026
1027 if (sgot == NULL)
1028 {
1029 sgot = bfd_get_section_by_name (dynobj, ".got");
1030 BFD_ASSERT (sgot != NULL);
1031 }
1032
1033 if (srelgot == NULL && (h != NULL || info->shared))
1034 {
1035 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1036 if (srelgot == NULL)
1037 {
1038 srelgot = bfd_make_section (dynobj, ".rela.got");
1039 if (srelgot == NULL
1040 || ! bfd_set_section_flags (dynobj, srelgot,
1041 (SEC_ALLOC
1042 | SEC_LOAD
1043 | SEC_HAS_CONTENTS
1044 | SEC_IN_MEMORY
1045 | SEC_LINKER_CREATED
1046 | SEC_READONLY))
1047 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1048 return false;
1049 }
1050 }
1051
1052 if (h != NULL)
1053 {
1054 if (h->got.offset != (bfd_vma) -1)
1055 {
1056 /* We have already allocated space in the .got. */
1057 break;
1058 }
1059 h->got.offset = sgot->_raw_size;
1060
1061 /* Make sure this symbol is output as a dynamic symbol. */
1062 if (h->dynindx == -1)
1063 {
1064 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1065 return false;
1066 }
1067
1068 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1069 }
1070 else
1071 {
1072 /* This is a global offset table entry for a local
1073 symbol. */
1074 if (local_got_offsets == NULL)
1075 {
1076 size_t size;
1077 register unsigned int i;
1078
1079 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1080 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1081 if (local_got_offsets == NULL)
1082 return false;
1083 elf_local_got_offsets (abfd) = local_got_offsets;
1084 for (i = 0; i < symtab_hdr->sh_info; i++)
1085 local_got_offsets[i] = (bfd_vma) -1;
1086 }
1087 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1088 {
1089 /* We have already allocated space in the .got. */
1090 break;
1091 }
1092 local_got_offsets[r_symndx] = sgot->_raw_size;
1093
1094 if (info->shared)
1095 {
1096 /* If we are generating a shared object, we need to
1097 output a R_SPARC_RELATIVE reloc so that the
1098 dynamic linker can adjust this GOT entry. */
1099 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1100 }
1101 }
1102
1103 sgot->_raw_size += 8;
1104
1105 #if 0
1106 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1107 unsigned numbers. If we permit ourselves to modify
1108 code so we get sethi/xor, this could work.
1109 Question: do we consider conditionally re-enabling
1110 this for -fpic, once we know about object code models? */
1111 /* If the .got section is more than 0x1000 bytes, we add
1112 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1113 bit relocations have a greater chance of working. */
1114 if (sgot->_raw_size >= 0x1000
1115 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1116 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1117 #endif
1118
1119 break;
1120
1121 case R_SPARC_WPLT30:
1122 case R_SPARC_PLT32:
1123 case R_SPARC_HIPLT22:
1124 case R_SPARC_LOPLT10:
1125 case R_SPARC_PCPLT32:
1126 case R_SPARC_PCPLT22:
1127 case R_SPARC_PCPLT10:
1128 case R_SPARC_PLT64:
1129 /* This symbol requires a procedure linkage table entry. We
1130 actually build the entry in adjust_dynamic_symbol,
1131 because this might be a case of linking PIC code without
1132 linking in any dynamic objects, in which case we don't
1133 need to generate a procedure linkage table after all. */
1134
1135 if (h == NULL)
1136 {
1137 /* It does not make sense to have a procedure linkage
1138 table entry for a local symbol. */
1139 bfd_set_error (bfd_error_bad_value);
1140 return false;
1141 }
1142
1143 /* Make sure this symbol is output as a dynamic symbol. */
1144 if (h->dynindx == -1)
1145 {
1146 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1147 return false;
1148 }
1149
1150 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1151 break;
1152
1153 case R_SPARC_PC10:
1154 case R_SPARC_PC22:
1155 case R_SPARC_PC_HH22:
1156 case R_SPARC_PC_HM10:
1157 case R_SPARC_PC_LM22:
1158 if (h != NULL
1159 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1160 break;
1161 /* Fall through. */
1162 case R_SPARC_DISP8:
1163 case R_SPARC_DISP16:
1164 case R_SPARC_DISP32:
1165 case R_SPARC_DISP64:
1166 case R_SPARC_WDISP30:
1167 case R_SPARC_WDISP22:
1168 case R_SPARC_WDISP19:
1169 case R_SPARC_WDISP16:
1170 if (h == NULL)
1171 break;
1172 /* Fall through. */
1173 case R_SPARC_8:
1174 case R_SPARC_16:
1175 case R_SPARC_32:
1176 case R_SPARC_HI22:
1177 case R_SPARC_22:
1178 case R_SPARC_13:
1179 case R_SPARC_LO10:
1180 case R_SPARC_UA32:
1181 case R_SPARC_10:
1182 case R_SPARC_11:
1183 case R_SPARC_64:
1184 case R_SPARC_OLO10:
1185 case R_SPARC_HH22:
1186 case R_SPARC_HM10:
1187 case R_SPARC_LM22:
1188 case R_SPARC_7:
1189 case R_SPARC_5:
1190 case R_SPARC_6:
1191 case R_SPARC_HIX22:
1192 case R_SPARC_LOX10:
1193 case R_SPARC_H44:
1194 case R_SPARC_M44:
1195 case R_SPARC_L44:
1196 case R_SPARC_UA64:
1197 case R_SPARC_UA16:
1198 /* When creating a shared object, we must copy these relocs
1199 into the output file. We create a reloc section in
1200 dynobj and make room for the reloc.
1201
1202 But don't do this for debugging sections -- this shows up
1203 with DWARF2 -- first because they are not loaded, and
1204 second because DWARF sez the debug info is not to be
1205 biased by the load address. */
1206 if (info->shared && (sec->flags & SEC_ALLOC))
1207 {
1208 if (sreloc == NULL)
1209 {
1210 const char *name;
1211
1212 name = (bfd_elf_string_from_elf_section
1213 (abfd,
1214 elf_elfheader (abfd)->e_shstrndx,
1215 elf_section_data (sec)->rel_hdr.sh_name));
1216 if (name == NULL)
1217 return false;
1218
1219 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1220 && strcmp (bfd_get_section_name (abfd, sec),
1221 name + 5) == 0);
1222
1223 sreloc = bfd_get_section_by_name (dynobj, name);
1224 if (sreloc == NULL)
1225 {
1226 flagword flags;
1227
1228 sreloc = bfd_make_section (dynobj, name);
1229 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1230 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1231 if ((sec->flags & SEC_ALLOC) != 0)
1232 flags |= SEC_ALLOC | SEC_LOAD;
1233 if (sreloc == NULL
1234 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1235 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1236 return false;
1237 }
1238 }
1239
1240 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1241 }
1242 break;
1243
1244 case R_SPARC_REGISTER:
1245 /* Nothing to do. */
1246 break;
1247
1248 default:
1249 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1250 bfd_get_filename(abfd),
1251 ELF64_R_TYPE_ID (rel->r_info));
1252 return false;
1253 }
1254 }
1255
1256 return true;
1257 }
1258
1259 /* Hook called by the linker routine which adds symbols from an object
1260 file. We use it for STT_REGISTER symbols. */
1261
1262 static boolean
1263 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1264 bfd *abfd;
1265 struct bfd_link_info *info;
1266 const Elf_Internal_Sym *sym;
1267 const char **namep;
1268 flagword *flagsp ATTRIBUTE_UNUSED;
1269 asection **secp ATTRIBUTE_UNUSED;
1270 bfd_vma *valp ATTRIBUTE_UNUSED;
1271 {
1272 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1273
1274 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1275 {
1276 int reg;
1277 struct sparc64_elf_app_reg *p;
1278
1279 reg = (int)sym->st_value;
1280 switch (reg & ~1)
1281 {
1282 case 2: reg -= 2; break;
1283 case 6: reg -= 4; break;
1284 default:
1285 (*_bfd_error_handler)
1286 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1287 bfd_get_filename (abfd));
1288 return false;
1289 }
1290
1291 if (info->hash->creator != abfd->xvec
1292 || (abfd->flags & DYNAMIC) != 0)
1293 {
1294 /* STT_REGISTER only works when linking an elf64_sparc object.
1295 If STT_REGISTER comes from a dynamic object, don't put it into
1296 the output bfd. The dynamic linker will recheck it. */
1297 *namep = NULL;
1298 return true;
1299 }
1300
1301 p = sparc64_elf_hash_table(info)->app_regs + reg;
1302
1303 if (p->name != NULL && strcmp (p->name, *namep))
1304 {
1305 (*_bfd_error_handler)
1306 (_("Register %%g%d used incompatibly: "
1307 "previously declared in %s to %s, in %s redefined to %s"),
1308 (int)sym->st_value,
1309 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1310 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1311 return false;
1312 }
1313
1314 if (p->name == NULL)
1315 {
1316 if (**namep)
1317 {
1318 struct elf_link_hash_entry *h;
1319
1320 h = (struct elf_link_hash_entry *)
1321 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1322
1323 if (h != NULL)
1324 {
1325 unsigned char type = h->type;
1326
1327 if (type > STT_FUNC) type = 0;
1328 (*_bfd_error_handler)
1329 (_("Symbol `%s' has differing types: "
1330 "previously %s, REGISTER in %s"),
1331 *namep, stt_types [type], bfd_get_filename (abfd));
1332 return false;
1333 }
1334
1335 p->name = bfd_hash_allocate (&info->hash->table,
1336 strlen (*namep) + 1);
1337 if (!p->name)
1338 return false;
1339
1340 strcpy (p->name, *namep);
1341 }
1342 else
1343 p->name = "";
1344 p->bind = ELF_ST_BIND (sym->st_info);
1345 p->abfd = abfd;
1346 p->shndx = sym->st_shndx;
1347 }
1348 else
1349 {
1350 if (p->bind == STB_WEAK
1351 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1352 {
1353 p->bind = STB_GLOBAL;
1354 p->abfd = abfd;
1355 }
1356 }
1357 *namep = NULL;
1358 return true;
1359 }
1360 else if (! *namep || ! **namep)
1361 return true;
1362 else
1363 {
1364 int i;
1365 struct sparc64_elf_app_reg *p;
1366
1367 p = sparc64_elf_hash_table(info)->app_regs;
1368 for (i = 0; i < 4; i++, p++)
1369 if (p->name != NULL && ! strcmp (p->name, *namep))
1370 {
1371 unsigned char type = ELF_ST_TYPE (sym->st_info);
1372
1373 if (type > STT_FUNC) type = 0;
1374 (*_bfd_error_handler)
1375 (_("Symbol `%s' has differing types: "
1376 "REGISTER in %s, %s in %s"),
1377 *namep, bfd_get_filename (p->abfd), stt_types [type],
1378 bfd_get_filename (abfd));
1379 return false;
1380 }
1381 }
1382 return true;
1383 }
1384
1385 /* This function takes care of emiting STT_REGISTER symbols
1386 which we cannot easily keep in the symbol hash table. */
1387
1388 static boolean
1389 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1390 bfd *output_bfd ATTRIBUTE_UNUSED;
1391 struct bfd_link_info *info;
1392 PTR finfo;
1393 boolean (*func) PARAMS ((PTR, const char *,
1394 Elf_Internal_Sym *, asection *));
1395 {
1396 int reg;
1397 struct sparc64_elf_app_reg *app_regs =
1398 sparc64_elf_hash_table(info)->app_regs;
1399 Elf_Internal_Sym sym;
1400
1401 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1402 at the end of the dynlocal list, so they came at the end of the local
1403 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1404 to back up symtab->sh_info. */
1405 if (elf_hash_table (info)->dynlocal)
1406 {
1407 bfd * dynobj = elf_hash_table (info)->dynobj;
1408 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1409 struct elf_link_local_dynamic_entry *e;
1410
1411 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1412 if (e->input_indx == -1)
1413 break;
1414 if (e)
1415 {
1416 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1417 = e->dynindx;
1418 }
1419 }
1420
1421 if (info->strip == strip_all)
1422 return true;
1423
1424 for (reg = 0; reg < 4; reg++)
1425 if (app_regs [reg].name != NULL)
1426 {
1427 if (info->strip == strip_some
1428 && bfd_hash_lookup (info->keep_hash,
1429 app_regs [reg].name,
1430 false, false) == NULL)
1431 continue;
1432
1433 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1434 sym.st_size = 0;
1435 sym.st_other = 0;
1436 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1437 sym.st_shndx = app_regs [reg].shndx;
1438 if (! (*func) (finfo, app_regs [reg].name, &sym,
1439 sym.st_shndx == SHN_ABS
1440 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1441 return false;
1442 }
1443
1444 return true;
1445 }
1446
1447 static int
1448 sparc64_elf_get_symbol_type (elf_sym, type)
1449 Elf_Internal_Sym * elf_sym;
1450 int type;
1451 {
1452 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1453 return STT_REGISTER;
1454 else
1455 return type;
1456 }
1457
1458 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1459 even in SHN_UNDEF section. */
1460
1461 static void
1462 sparc64_elf_symbol_processing (abfd, asym)
1463 bfd *abfd ATTRIBUTE_UNUSED;
1464 asymbol *asym;
1465 {
1466 elf_symbol_type *elfsym;
1467
1468 elfsym = (elf_symbol_type *) asym;
1469 if (elfsym->internal_elf_sym.st_info
1470 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1471 {
1472 asym->flags |= BSF_GLOBAL;
1473 }
1474 }
1475
1476 /* Adjust a symbol defined by a dynamic object and referenced by a
1477 regular object. The current definition is in some section of the
1478 dynamic object, but we're not including those sections. We have to
1479 change the definition to something the rest of the link can
1480 understand. */
1481
1482 static boolean
1483 sparc64_elf_adjust_dynamic_symbol (info, h)
1484 struct bfd_link_info *info;
1485 struct elf_link_hash_entry *h;
1486 {
1487 bfd *dynobj;
1488 asection *s;
1489 unsigned int power_of_two;
1490
1491 dynobj = elf_hash_table (info)->dynobj;
1492
1493 /* Make sure we know what is going on here. */
1494 BFD_ASSERT (dynobj != NULL
1495 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1496 || h->weakdef != NULL
1497 || ((h->elf_link_hash_flags
1498 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1499 && (h->elf_link_hash_flags
1500 & ELF_LINK_HASH_REF_REGULAR) != 0
1501 && (h->elf_link_hash_flags
1502 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1503
1504 /* If this is a function, put it in the procedure linkage table. We
1505 will fill in the contents of the procedure linkage table later
1506 (although we could actually do it here). The STT_NOTYPE
1507 condition is a hack specifically for the Oracle libraries
1508 delivered for Solaris; for some inexplicable reason, they define
1509 some of their functions as STT_NOTYPE when they really should be
1510 STT_FUNC. */
1511 if (h->type == STT_FUNC
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1513 || (h->type == STT_NOTYPE
1514 && (h->root.type == bfd_link_hash_defined
1515 || h->root.type == bfd_link_hash_defweak)
1516 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1517 {
1518 if (! elf_hash_table (info)->dynamic_sections_created)
1519 {
1520 /* This case can occur if we saw a WPLT30 reloc in an input
1521 file, but none of the input files were dynamic objects.
1522 In such a case, we don't actually need to build a
1523 procedure linkage table, and we can just do a WDISP30
1524 reloc instead. */
1525 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1526 return true;
1527 }
1528
1529 s = bfd_get_section_by_name (dynobj, ".plt");
1530 BFD_ASSERT (s != NULL);
1531
1532 /* The first four bit in .plt is reserved. */
1533 if (s->_raw_size == 0)
1534 s->_raw_size = PLT_HEADER_SIZE;
1535
1536 /* If this symbol is not defined in a regular file, and we are
1537 not generating a shared library, then set the symbol to this
1538 location in the .plt. This is required to make function
1539 pointers compare as equal between the normal executable and
1540 the shared library. */
1541 if (! info->shared
1542 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1543 {
1544 h->root.u.def.section = s;
1545 h->root.u.def.value = s->_raw_size;
1546 }
1547
1548 /* To simplify matters later, just store the plt index here. */
1549 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1550
1551 /* Make room for this entry. */
1552 s->_raw_size += PLT_ENTRY_SIZE;
1553
1554 /* We also need to make an entry in the .rela.plt section. */
1555
1556 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1557 BFD_ASSERT (s != NULL);
1558
1559 s->_raw_size += sizeof (Elf64_External_Rela);
1560
1561 /* The procedure linkage table size is bounded by the magnitude
1562 of the offset we can describe in the entry. */
1563 if (s->_raw_size >= (bfd_vma)1 << 32)
1564 {
1565 bfd_set_error (bfd_error_bad_value);
1566 return false;
1567 }
1568
1569 return true;
1570 }
1571
1572 /* If this is a weak symbol, and there is a real definition, the
1573 processor independent code will have arranged for us to see the
1574 real definition first, and we can just use the same value. */
1575 if (h->weakdef != NULL)
1576 {
1577 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1578 || h->weakdef->root.type == bfd_link_hash_defweak);
1579 h->root.u.def.section = h->weakdef->root.u.def.section;
1580 h->root.u.def.value = h->weakdef->root.u.def.value;
1581 return true;
1582 }
1583
1584 /* This is a reference to a symbol defined by a dynamic object which
1585 is not a function. */
1586
1587 /* If we are creating a shared library, we must presume that the
1588 only references to the symbol are via the global offset table.
1589 For such cases we need not do anything here; the relocations will
1590 be handled correctly by relocate_section. */
1591 if (info->shared)
1592 return true;
1593
1594 /* We must allocate the symbol in our .dynbss section, which will
1595 become part of the .bss section of the executable. There will be
1596 an entry for this symbol in the .dynsym section. The dynamic
1597 object will contain position independent code, so all references
1598 from the dynamic object to this symbol will go through the global
1599 offset table. The dynamic linker will use the .dynsym entry to
1600 determine the address it must put in the global offset table, so
1601 both the dynamic object and the regular object will refer to the
1602 same memory location for the variable. */
1603
1604 s = bfd_get_section_by_name (dynobj, ".dynbss");
1605 BFD_ASSERT (s != NULL);
1606
1607 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1608 to copy the initial value out of the dynamic object and into the
1609 runtime process image. We need to remember the offset into the
1610 .rel.bss section we are going to use. */
1611 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1612 {
1613 asection *srel;
1614
1615 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1616 BFD_ASSERT (srel != NULL);
1617 srel->_raw_size += sizeof (Elf64_External_Rela);
1618 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1619 }
1620
1621 /* We need to figure out the alignment required for this symbol. I
1622 have no idea how ELF linkers handle this. 16-bytes is the size
1623 of the largest type that requires hard alignment -- long double. */
1624 power_of_two = bfd_log2 (h->size);
1625 if (power_of_two > 4)
1626 power_of_two = 4;
1627
1628 /* Apply the required alignment. */
1629 s->_raw_size = BFD_ALIGN (s->_raw_size,
1630 (bfd_size_type) (1 << power_of_two));
1631 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1632 {
1633 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1634 return false;
1635 }
1636
1637 /* Define the symbol as being at this point in the section. */
1638 h->root.u.def.section = s;
1639 h->root.u.def.value = s->_raw_size;
1640
1641 /* Increment the section size to make room for the symbol. */
1642 s->_raw_size += h->size;
1643
1644 return true;
1645 }
1646
1647 /* Set the sizes of the dynamic sections. */
1648
1649 static boolean
1650 sparc64_elf_size_dynamic_sections (output_bfd, info)
1651 bfd *output_bfd;
1652 struct bfd_link_info *info;
1653 {
1654 bfd *dynobj;
1655 asection *s;
1656 boolean reltext;
1657 boolean relplt;
1658
1659 dynobj = elf_hash_table (info)->dynobj;
1660 BFD_ASSERT (dynobj != NULL);
1661
1662 if (elf_hash_table (info)->dynamic_sections_created)
1663 {
1664 /* Set the contents of the .interp section to the interpreter. */
1665 if (! info->shared)
1666 {
1667 s = bfd_get_section_by_name (dynobj, ".interp");
1668 BFD_ASSERT (s != NULL);
1669 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1670 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1671 }
1672 }
1673 else
1674 {
1675 /* We may have created entries in the .rela.got section.
1676 However, if we are not creating the dynamic sections, we will
1677 not actually use these entries. Reset the size of .rela.got,
1678 which will cause it to get stripped from the output file
1679 below. */
1680 s = bfd_get_section_by_name (dynobj, ".rela.got");
1681 if (s != NULL)
1682 s->_raw_size = 0;
1683 }
1684
1685 /* The check_relocs and adjust_dynamic_symbol entry points have
1686 determined the sizes of the various dynamic sections. Allocate
1687 memory for them. */
1688 reltext = false;
1689 relplt = false;
1690 for (s = dynobj->sections; s != NULL; s = s->next)
1691 {
1692 const char *name;
1693 boolean strip;
1694
1695 if ((s->flags & SEC_LINKER_CREATED) == 0)
1696 continue;
1697
1698 /* It's OK to base decisions on the section name, because none
1699 of the dynobj section names depend upon the input files. */
1700 name = bfd_get_section_name (dynobj, s);
1701
1702 strip = false;
1703
1704 if (strncmp (name, ".rela", 5) == 0)
1705 {
1706 if (s->_raw_size == 0)
1707 {
1708 /* If we don't need this section, strip it from the
1709 output file. This is to handle .rela.bss and
1710 .rel.plt. We must create it in
1711 create_dynamic_sections, because it must be created
1712 before the linker maps input sections to output
1713 sections. The linker does that before
1714 adjust_dynamic_symbol is called, and it is that
1715 function which decides whether anything needs to go
1716 into these sections. */
1717 strip = true;
1718 }
1719 else
1720 {
1721 const char *outname;
1722 asection *target;
1723
1724 /* If this relocation section applies to a read only
1725 section, then we probably need a DT_TEXTREL entry. */
1726 outname = bfd_get_section_name (output_bfd,
1727 s->output_section);
1728 target = bfd_get_section_by_name (output_bfd, outname + 5);
1729 if (target != NULL
1730 && (target->flags & SEC_READONLY) != 0)
1731 reltext = true;
1732
1733 if (strcmp (name, ".rela.plt") == 0)
1734 relplt = true;
1735
1736 /* We use the reloc_count field as a counter if we need
1737 to copy relocs into the output file. */
1738 s->reloc_count = 0;
1739 }
1740 }
1741 else if (strcmp (name, ".plt") != 0
1742 && strncmp (name, ".got", 4) != 0)
1743 {
1744 /* It's not one of our sections, so don't allocate space. */
1745 continue;
1746 }
1747
1748 if (strip)
1749 {
1750 _bfd_strip_section_from_output (info, s);
1751 continue;
1752 }
1753
1754 /* Allocate memory for the section contents. Zero the memory
1755 for the benefit of .rela.plt, which has 4 unused entries
1756 at the beginning, and we don't want garbage. */
1757 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1758 if (s->contents == NULL && s->_raw_size != 0)
1759 return false;
1760 }
1761
1762 if (elf_hash_table (info)->dynamic_sections_created)
1763 {
1764 /* Add some entries to the .dynamic section. We fill in the
1765 values later, in sparc64_elf_finish_dynamic_sections, but we
1766 must add the entries now so that we get the correct size for
1767 the .dynamic section. The DT_DEBUG entry is filled in by the
1768 dynamic linker and used by the debugger. */
1769 int reg;
1770 struct sparc64_elf_app_reg * app_regs;
1771 struct bfd_strtab_hash *dynstr;
1772 struct elf_link_hash_table *eht = elf_hash_table (info);
1773
1774 if (! info->shared)
1775 {
1776 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1777 return false;
1778 }
1779
1780 if (relplt)
1781 {
1782 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1784 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1785 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1786 return false;
1787 }
1788
1789 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1792 sizeof (Elf64_External_Rela)))
1793 return false;
1794
1795 if (reltext)
1796 {
1797 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1798 return false;
1799 info->flags |= DF_TEXTREL;
1800 }
1801
1802 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1803 entries if needed. */
1804 app_regs = sparc64_elf_hash_table (info)->app_regs;
1805 dynstr = eht->dynstr;
1806
1807 for (reg = 0; reg < 4; reg++)
1808 if (app_regs [reg].name != NULL)
1809 {
1810 struct elf_link_local_dynamic_entry *entry, *e;
1811
1812 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1813 return false;
1814
1815 entry = (struct elf_link_local_dynamic_entry *)
1816 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1817 if (entry == NULL)
1818 return false;
1819
1820 /* We cheat here a little bit: the symbol will not be local, so we
1821 put it at the end of the dynlocal linked list. We will fix it
1822 later on, as we have to fix other fields anyway. */
1823 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1824 entry->isym.st_size = 0;
1825 if (*app_regs [reg].name != '\0')
1826 entry->isym.st_name
1827 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1828 else
1829 entry->isym.st_name = 0;
1830 entry->isym.st_other = 0;
1831 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1832 STT_REGISTER);
1833 entry->isym.st_shndx = app_regs [reg].shndx;
1834 entry->next = NULL;
1835 entry->input_bfd = output_bfd;
1836 entry->input_indx = -1;
1837
1838 if (eht->dynlocal == NULL)
1839 eht->dynlocal = entry;
1840 else
1841 {
1842 for (e = eht->dynlocal; e->next; e = e->next)
1843 ;
1844 e->next = entry;
1845 }
1846 eht->dynsymcount++;
1847 }
1848 }
1849
1850 return true;
1851 }
1852 \f
1853 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1854 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1855
1856 static boolean
1857 sparc64_elf_relax_section (abfd, section, link_info, again)
1858 bfd *abfd ATTRIBUTE_UNUSED;
1859 asection *section ATTRIBUTE_UNUSED;
1860 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1861 boolean *again;
1862 {
1863 *again = false;
1864 SET_SEC_DO_RELAX (section);
1865 return true;
1866 }
1867 \f
1868 /* Relocate a SPARC64 ELF section. */
1869
1870 static boolean
1871 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1872 contents, relocs, local_syms, local_sections)
1873 bfd *output_bfd;
1874 struct bfd_link_info *info;
1875 bfd *input_bfd;
1876 asection *input_section;
1877 bfd_byte *contents;
1878 Elf_Internal_Rela *relocs;
1879 Elf_Internal_Sym *local_syms;
1880 asection **local_sections;
1881 {
1882 bfd *dynobj;
1883 Elf_Internal_Shdr *symtab_hdr;
1884 struct elf_link_hash_entry **sym_hashes;
1885 bfd_vma *local_got_offsets;
1886 bfd_vma got_base;
1887 asection *sgot;
1888 asection *splt;
1889 asection *sreloc;
1890 Elf_Internal_Rela *rel;
1891 Elf_Internal_Rela *relend;
1892
1893 dynobj = elf_hash_table (info)->dynobj;
1894 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1895 sym_hashes = elf_sym_hashes (input_bfd);
1896 local_got_offsets = elf_local_got_offsets (input_bfd);
1897
1898 if (elf_hash_table(info)->hgot == NULL)
1899 got_base = 0;
1900 else
1901 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1902
1903 sgot = splt = sreloc = NULL;
1904
1905 rel = relocs;
1906 relend = relocs + elf_section_data (input_section)->rel_hdr.sh_size
1907 / elf_section_data (input_section)->rel_hdr.sh_entsize;
1908 for (; rel < relend; rel++)
1909 {
1910 int r_type;
1911 reloc_howto_type *howto;
1912 unsigned long r_symndx;
1913 struct elf_link_hash_entry *h;
1914 Elf_Internal_Sym *sym;
1915 asection *sec;
1916 bfd_vma relocation;
1917 bfd_reloc_status_type r;
1918
1919 r_type = ELF64_R_TYPE_ID (rel->r_info);
1920 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1921 {
1922 bfd_set_error (bfd_error_bad_value);
1923 return false;
1924 }
1925 howto = sparc64_elf_howto_table + r_type;
1926
1927 r_symndx = ELF64_R_SYM (rel->r_info);
1928
1929 if (info->relocateable)
1930 {
1931 /* This is a relocateable link. We don't have to change
1932 anything, unless the reloc is against a section symbol,
1933 in which case we have to adjust according to where the
1934 section symbol winds up in the output section. */
1935 if (r_symndx < symtab_hdr->sh_info)
1936 {
1937 sym = local_syms + r_symndx;
1938 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1939 {
1940 sec = local_sections[r_symndx];
1941 rel->r_addend += sec->output_offset + sym->st_value;
1942 }
1943 }
1944
1945 continue;
1946 }
1947
1948 /* This is a final link. */
1949 h = NULL;
1950 sym = NULL;
1951 sec = NULL;
1952 if (r_symndx < symtab_hdr->sh_info)
1953 {
1954 sym = local_syms + r_symndx;
1955 sec = local_sections[r_symndx];
1956 relocation = (sec->output_section->vma
1957 + sec->output_offset
1958 + sym->st_value);
1959 }
1960 else
1961 {
1962 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1963 while (h->root.type == bfd_link_hash_indirect
1964 || h->root.type == bfd_link_hash_warning)
1965 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1966 if (h->root.type == bfd_link_hash_defined
1967 || h->root.type == bfd_link_hash_defweak)
1968 {
1969 boolean skip_it = false;
1970 sec = h->root.u.def.section;
1971
1972 switch (r_type)
1973 {
1974 case R_SPARC_WPLT30:
1975 case R_SPARC_PLT32:
1976 case R_SPARC_HIPLT22:
1977 case R_SPARC_LOPLT10:
1978 case R_SPARC_PCPLT32:
1979 case R_SPARC_PCPLT22:
1980 case R_SPARC_PCPLT10:
1981 case R_SPARC_PLT64:
1982 if (h->plt.offset != (bfd_vma) -1)
1983 skip_it = true;
1984 break;
1985
1986 case R_SPARC_GOT10:
1987 case R_SPARC_GOT13:
1988 case R_SPARC_GOT22:
1989 if (elf_hash_table(info)->dynamic_sections_created
1990 && (!info->shared
1991 || (!info->symbolic && h->dynindx != -1)
1992 || !(h->elf_link_hash_flags
1993 & ELF_LINK_HASH_DEF_REGULAR)))
1994 skip_it = true;
1995 break;
1996
1997 case R_SPARC_PC10:
1998 case R_SPARC_PC22:
1999 case R_SPARC_PC_HH22:
2000 case R_SPARC_PC_HM10:
2001 case R_SPARC_PC_LM22:
2002 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2003 break;
2004 /* FALLTHRU */
2005
2006 case R_SPARC_8:
2007 case R_SPARC_16:
2008 case R_SPARC_32:
2009 case R_SPARC_DISP8:
2010 case R_SPARC_DISP16:
2011 case R_SPARC_DISP32:
2012 case R_SPARC_WDISP30:
2013 case R_SPARC_WDISP22:
2014 case R_SPARC_HI22:
2015 case R_SPARC_22:
2016 case R_SPARC_13:
2017 case R_SPARC_LO10:
2018 case R_SPARC_UA32:
2019 case R_SPARC_10:
2020 case R_SPARC_11:
2021 case R_SPARC_64:
2022 case R_SPARC_OLO10:
2023 case R_SPARC_HH22:
2024 case R_SPARC_HM10:
2025 case R_SPARC_LM22:
2026 case R_SPARC_WDISP19:
2027 case R_SPARC_WDISP16:
2028 case R_SPARC_7:
2029 case R_SPARC_5:
2030 case R_SPARC_6:
2031 case R_SPARC_DISP64:
2032 case R_SPARC_HIX22:
2033 case R_SPARC_LOX10:
2034 case R_SPARC_H44:
2035 case R_SPARC_M44:
2036 case R_SPARC_L44:
2037 case R_SPARC_UA64:
2038 case R_SPARC_UA16:
2039 if (info->shared
2040 && ((!info->symbolic && h->dynindx != -1)
2041 || !(h->elf_link_hash_flags
2042 & ELF_LINK_HASH_DEF_REGULAR)))
2043 skip_it = true;
2044 break;
2045 }
2046
2047 if (skip_it)
2048 {
2049 /* In these cases, we don't need the relocation
2050 value. We check specially because in some
2051 obscure cases sec->output_section will be NULL. */
2052 relocation = 0;
2053 }
2054 else
2055 {
2056 relocation = (h->root.u.def.value
2057 + sec->output_section->vma
2058 + sec->output_offset);
2059 }
2060 }
2061 else if (h->root.type == bfd_link_hash_undefweak)
2062 relocation = 0;
2063 else if (info->shared && !info->symbolic
2064 && !info->no_undefined
2065 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2066 relocation = 0;
2067 else
2068 {
2069 if (! ((*info->callbacks->undefined_symbol)
2070 (info, h->root.root.string, input_bfd,
2071 input_section, rel->r_offset,
2072 (!info->shared || info->no_undefined
2073 || ELF_ST_VISIBILITY (h->other)))))
2074 return false;
2075
2076 /* To avoid generating warning messages about truncated
2077 relocations, set the relocation's address to be the same as
2078 the start of this section. */
2079
2080 if (input_section->output_section != NULL)
2081 relocation = input_section->output_section->vma;
2082 else
2083 relocation = 0;
2084 }
2085 }
2086
2087 /* When generating a shared object, these relocations are copied
2088 into the output file to be resolved at run time. */
2089 if (info->shared && (input_section->flags & SEC_ALLOC))
2090 {
2091 switch (r_type)
2092 {
2093 case R_SPARC_PC10:
2094 case R_SPARC_PC22:
2095 case R_SPARC_PC_HH22:
2096 case R_SPARC_PC_HM10:
2097 case R_SPARC_PC_LM22:
2098 if (h != NULL
2099 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2100 break;
2101 /* Fall through. */
2102 case R_SPARC_DISP8:
2103 case R_SPARC_DISP16:
2104 case R_SPARC_DISP32:
2105 case R_SPARC_WDISP30:
2106 case R_SPARC_WDISP22:
2107 case R_SPARC_WDISP19:
2108 case R_SPARC_WDISP16:
2109 case R_SPARC_DISP64:
2110 if (h == NULL)
2111 break;
2112 /* Fall through. */
2113 case R_SPARC_8:
2114 case R_SPARC_16:
2115 case R_SPARC_32:
2116 case R_SPARC_HI22:
2117 case R_SPARC_22:
2118 case R_SPARC_13:
2119 case R_SPARC_LO10:
2120 case R_SPARC_UA32:
2121 case R_SPARC_10:
2122 case R_SPARC_11:
2123 case R_SPARC_64:
2124 case R_SPARC_OLO10:
2125 case R_SPARC_HH22:
2126 case R_SPARC_HM10:
2127 case R_SPARC_LM22:
2128 case R_SPARC_7:
2129 case R_SPARC_5:
2130 case R_SPARC_6:
2131 case R_SPARC_HIX22:
2132 case R_SPARC_LOX10:
2133 case R_SPARC_H44:
2134 case R_SPARC_M44:
2135 case R_SPARC_L44:
2136 case R_SPARC_UA64:
2137 case R_SPARC_UA16:
2138 {
2139 Elf_Internal_Rela outrel;
2140 boolean skip;
2141
2142 if (sreloc == NULL)
2143 {
2144 const char *name =
2145 (bfd_elf_string_from_elf_section
2146 (input_bfd,
2147 elf_elfheader (input_bfd)->e_shstrndx,
2148 elf_section_data (input_section)->rel_hdr.sh_name));
2149
2150 if (name == NULL)
2151 return false;
2152
2153 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2154 && strcmp (bfd_get_section_name(input_bfd,
2155 input_section),
2156 name + 5) == 0);
2157
2158 sreloc = bfd_get_section_by_name (dynobj, name);
2159 BFD_ASSERT (sreloc != NULL);
2160 }
2161
2162 skip = false;
2163
2164 if (elf_section_data (input_section)->stab_info == NULL)
2165 outrel.r_offset = rel->r_offset;
2166 else
2167 {
2168 bfd_vma off;
2169
2170 off = (_bfd_stab_section_offset
2171 (output_bfd, &elf_hash_table (info)->stab_info,
2172 input_section,
2173 &elf_section_data (input_section)->stab_info,
2174 rel->r_offset));
2175 if (off == MINUS_ONE)
2176 skip = true;
2177 outrel.r_offset = off;
2178 }
2179
2180 outrel.r_offset += (input_section->output_section->vma
2181 + input_section->output_offset);
2182
2183 /* Optimize unaligned reloc usage now that we know where
2184 it finally resides. */
2185 switch (r_type)
2186 {
2187 case R_SPARC_16:
2188 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2189 break;
2190 case R_SPARC_UA16:
2191 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2192 break;
2193 case R_SPARC_32:
2194 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2195 break;
2196 case R_SPARC_UA32:
2197 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2198 break;
2199 case R_SPARC_64:
2200 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2201 break;
2202 case R_SPARC_UA64:
2203 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2204 break;
2205 }
2206
2207 if (skip)
2208 memset (&outrel, 0, sizeof outrel);
2209 /* h->dynindx may be -1 if the symbol was marked to
2210 become local. */
2211 else if (h != NULL
2212 && ((! info->symbolic && h->dynindx != -1)
2213 || (h->elf_link_hash_flags
2214 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2215 {
2216 BFD_ASSERT (h->dynindx != -1);
2217 outrel.r_info
2218 = ELF64_R_INFO (h->dynindx,
2219 ELF64_R_TYPE_INFO (
2220 ELF64_R_TYPE_DATA (rel->r_info),
2221 r_type));
2222 outrel.r_addend = rel->r_addend;
2223 }
2224 else
2225 {
2226 if (r_type == R_SPARC_64)
2227 {
2228 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2229 outrel.r_addend = relocation + rel->r_addend;
2230 }
2231 else
2232 {
2233 long indx;
2234
2235 if (h == NULL)
2236 sec = local_sections[r_symndx];
2237 else
2238 {
2239 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2240 || (h->root.type
2241 == bfd_link_hash_defweak));
2242 sec = h->root.u.def.section;
2243 }
2244 if (sec != NULL && bfd_is_abs_section (sec))
2245 indx = 0;
2246 else if (sec == NULL || sec->owner == NULL)
2247 {
2248 bfd_set_error (bfd_error_bad_value);
2249 return false;
2250 }
2251 else
2252 {
2253 asection *osec;
2254
2255 osec = sec->output_section;
2256 indx = elf_section_data (osec)->dynindx;
2257
2258 /* FIXME: we really should be able to link non-pic
2259 shared libraries. */
2260 if (indx == 0)
2261 {
2262 BFD_FAIL ();
2263 (*_bfd_error_handler)
2264 (_("%s: probably compiled without -fPIC?"),
2265 bfd_get_filename (input_bfd));
2266 bfd_set_error (bfd_error_bad_value);
2267 return false;
2268 }
2269 }
2270
2271 outrel.r_info
2272 = ELF64_R_INFO (indx,
2273 ELF64_R_TYPE_INFO (
2274 ELF64_R_TYPE_DATA (rel->r_info),
2275 r_type));
2276 outrel.r_addend = relocation + rel->r_addend;
2277 }
2278 }
2279
2280 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2281 (((Elf64_External_Rela *)
2282 sreloc->contents)
2283 + sreloc->reloc_count));
2284 ++sreloc->reloc_count;
2285
2286 /* This reloc will be computed at runtime, so there's no
2287 need to do anything now, unless this is a RELATIVE
2288 reloc in an unallocated section. */
2289 if (skip
2290 || (input_section->flags & SEC_ALLOC) != 0
2291 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2292 continue;
2293 }
2294 break;
2295 }
2296 }
2297
2298 switch (r_type)
2299 {
2300 case R_SPARC_GOT10:
2301 case R_SPARC_GOT13:
2302 case R_SPARC_GOT22:
2303 /* Relocation is to the entry for this symbol in the global
2304 offset table. */
2305 if (sgot == NULL)
2306 {
2307 sgot = bfd_get_section_by_name (dynobj, ".got");
2308 BFD_ASSERT (sgot != NULL);
2309 }
2310
2311 if (h != NULL)
2312 {
2313 bfd_vma off = h->got.offset;
2314 BFD_ASSERT (off != (bfd_vma) -1);
2315
2316 if (! elf_hash_table (info)->dynamic_sections_created
2317 || (info->shared
2318 && (info->symbolic || h->dynindx == -1)
2319 && (h->elf_link_hash_flags
2320 & ELF_LINK_HASH_DEF_REGULAR)))
2321 {
2322 /* This is actually a static link, or it is a -Bsymbolic
2323 link and the symbol is defined locally, or the symbol
2324 was forced to be local because of a version file. We
2325 must initialize this entry in the global offset table.
2326 Since the offset must always be a multiple of 8, we
2327 use the least significant bit to record whether we
2328 have initialized it already.
2329
2330 When doing a dynamic link, we create a .rela.got
2331 relocation entry to initialize the value. This is
2332 done in the finish_dynamic_symbol routine. */
2333
2334 if ((off & 1) != 0)
2335 off &= ~1;
2336 else
2337 {
2338 bfd_put_64 (output_bfd, relocation,
2339 sgot->contents + off);
2340 h->got.offset |= 1;
2341 }
2342 }
2343 relocation = sgot->output_offset + off - got_base;
2344 }
2345 else
2346 {
2347 bfd_vma off;
2348
2349 BFD_ASSERT (local_got_offsets != NULL);
2350 off = local_got_offsets[r_symndx];
2351 BFD_ASSERT (off != (bfd_vma) -1);
2352
2353 /* The offset must always be a multiple of 8. We use
2354 the least significant bit to record whether we have
2355 already processed this entry. */
2356 if ((off & 1) != 0)
2357 off &= ~1;
2358 else
2359 {
2360 local_got_offsets[r_symndx] |= 1;
2361
2362 if (info->shared)
2363 {
2364 asection *srelgot;
2365 Elf_Internal_Rela outrel;
2366
2367 /* The Solaris 2.7 64-bit linker adds the contents
2368 of the location to the value of the reloc.
2369 Note this is different behaviour to the
2370 32-bit linker, which both adds the contents
2371 and ignores the addend. So clear the location. */
2372 bfd_put_64 (output_bfd, 0, sgot->contents + off);
2373
2374 /* We need to generate a R_SPARC_RELATIVE reloc
2375 for the dynamic linker. */
2376 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2377 BFD_ASSERT (srelgot != NULL);
2378
2379 outrel.r_offset = (sgot->output_section->vma
2380 + sgot->output_offset
2381 + off);
2382 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2383 outrel.r_addend = relocation;
2384 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2385 (((Elf64_External_Rela *)
2386 srelgot->contents)
2387 + srelgot->reloc_count));
2388 ++srelgot->reloc_count;
2389 }
2390 else
2391 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2392 }
2393 relocation = sgot->output_offset + off - got_base;
2394 }
2395 goto do_default;
2396
2397 case R_SPARC_WPLT30:
2398 case R_SPARC_PLT32:
2399 case R_SPARC_HIPLT22:
2400 case R_SPARC_LOPLT10:
2401 case R_SPARC_PCPLT32:
2402 case R_SPARC_PCPLT22:
2403 case R_SPARC_PCPLT10:
2404 case R_SPARC_PLT64:
2405 /* Relocation is to the entry for this symbol in the
2406 procedure linkage table. */
2407 BFD_ASSERT (h != NULL);
2408
2409 if (h->plt.offset == (bfd_vma) -1)
2410 {
2411 /* We didn't make a PLT entry for this symbol. This
2412 happens when statically linking PIC code, or when
2413 using -Bsymbolic. */
2414 goto do_default;
2415 }
2416
2417 if (splt == NULL)
2418 {
2419 splt = bfd_get_section_by_name (dynobj, ".plt");
2420 BFD_ASSERT (splt != NULL);
2421 }
2422
2423 relocation = (splt->output_section->vma
2424 + splt->output_offset
2425 + sparc64_elf_plt_entry_offset (h->plt.offset));
2426 if (r_type == R_SPARC_WPLT30)
2427 goto do_wplt30;
2428 goto do_default;
2429
2430 case R_SPARC_OLO10:
2431 {
2432 bfd_vma x;
2433
2434 relocation += rel->r_addend;
2435 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2436
2437 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2438 x = (x & ~0x1fff) | (relocation & 0x1fff);
2439 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2440
2441 r = bfd_check_overflow (howto->complain_on_overflow,
2442 howto->bitsize, howto->rightshift,
2443 bfd_arch_bits_per_address (input_bfd),
2444 relocation);
2445 }
2446 break;
2447
2448 case R_SPARC_WDISP16:
2449 {
2450 bfd_vma x;
2451
2452 relocation += rel->r_addend;
2453 /* Adjust for pc-relative-ness. */
2454 relocation -= (input_section->output_section->vma
2455 + input_section->output_offset);
2456 relocation -= rel->r_offset;
2457
2458 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2459 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2460 | ((relocation >> 2) & 0x3fff));
2461 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2462
2463 r = bfd_check_overflow (howto->complain_on_overflow,
2464 howto->bitsize, howto->rightshift,
2465 bfd_arch_bits_per_address (input_bfd),
2466 relocation);
2467 }
2468 break;
2469
2470 case R_SPARC_HIX22:
2471 {
2472 bfd_vma x;
2473
2474 relocation += rel->r_addend;
2475 relocation = relocation ^ MINUS_ONE;
2476
2477 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2478 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2479 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2480
2481 r = bfd_check_overflow (howto->complain_on_overflow,
2482 howto->bitsize, howto->rightshift,
2483 bfd_arch_bits_per_address (input_bfd),
2484 relocation);
2485 }
2486 break;
2487
2488 case R_SPARC_LOX10:
2489 {
2490 bfd_vma x;
2491
2492 relocation += rel->r_addend;
2493 relocation = (relocation & 0x3ff) | 0x1c00;
2494
2495 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2496 x = (x & ~0x1fff) | relocation;
2497 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2498
2499 r = bfd_reloc_ok;
2500 }
2501 break;
2502
2503 case R_SPARC_WDISP30:
2504 do_wplt30:
2505 if (SEC_DO_RELAX (input_section)
2506 && rel->r_offset + 4 < input_section->_raw_size)
2507 {
2508 #define G0 0
2509 #define O7 15
2510 #define XCC (2 << 20)
2511 #define COND(x) (((x)&0xf)<<25)
2512 #define CONDA COND(0x8)
2513 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2514 #define INSN_BA (F2(0,2) | CONDA)
2515 #define INSN_OR F3(2, 0x2, 0)
2516 #define INSN_NOP F2(0,4)
2517
2518 bfd_vma x, y;
2519
2520 /* If the instruction is a call with either:
2521 restore
2522 arithmetic instruction with rd == %o7
2523 where rs1 != %o7 and rs2 if it is register != %o7
2524 then we can optimize if the call destination is near
2525 by changing the call into a branch always. */
2526 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2527 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2528 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2529 {
2530 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2531 || ((y & OP3(0x28)) == 0 /* arithmetic */
2532 && (y & RD(~0)) == RD(O7)))
2533 && (y & RS1(~0)) != RS1(O7)
2534 && ((y & F3I(~0))
2535 || (y & RS2(~0)) != RS2(O7)))
2536 {
2537 bfd_vma reloc;
2538
2539 reloc = relocation + rel->r_addend - rel->r_offset;
2540 reloc -= (input_section->output_section->vma
2541 + input_section->output_offset);
2542 if (reloc & 3)
2543 goto do_default;
2544
2545 /* Ensure the branch fits into simm22. */
2546 if ((reloc & ~(bfd_vma)0x7fffff)
2547 && ((reloc | 0x7fffff) != MINUS_ONE))
2548 goto do_default;
2549 reloc >>= 2;
2550
2551 /* Check whether it fits into simm19. */
2552 if ((reloc & 0x3c0000) == 0
2553 || (reloc & 0x3c0000) == 0x3c0000)
2554 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2555 else
2556 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2557 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2558 r = bfd_reloc_ok;
2559 if (rel->r_offset >= 4
2560 && (y & (0xffffffff ^ RS1(~0)))
2561 == (INSN_OR | RD(O7) | RS2(G0)))
2562 {
2563 bfd_vma z;
2564 unsigned int reg;
2565
2566 z = bfd_get_32 (input_bfd,
2567 contents + rel->r_offset - 4);
2568 if ((z & (0xffffffff ^ RD(~0)))
2569 != (INSN_OR | RS1(O7) | RS2(G0)))
2570 break;
2571
2572 /* The sequence was
2573 or %o7, %g0, %rN
2574 call foo
2575 or %rN, %g0, %o7
2576
2577 If call foo was replaced with ba, replace
2578 or %rN, %g0, %o7 with nop. */
2579
2580 reg = (y & RS1(~0)) >> 14;
2581 if (reg != ((z & RD(~0)) >> 25)
2582 || reg == G0 || reg == O7)
2583 break;
2584
2585 bfd_put_32 (input_bfd, INSN_NOP,
2586 contents + rel->r_offset + 4);
2587 }
2588 break;
2589 }
2590 }
2591 }
2592 /* FALLTHROUGH */
2593
2594 default:
2595 do_default:
2596 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2597 contents, rel->r_offset,
2598 relocation, rel->r_addend);
2599 break;
2600 }
2601
2602 switch (r)
2603 {
2604 case bfd_reloc_ok:
2605 break;
2606
2607 default:
2608 case bfd_reloc_outofrange:
2609 abort ();
2610
2611 case bfd_reloc_overflow:
2612 {
2613 const char *name;
2614
2615 if (h != NULL)
2616 {
2617 if (h->root.type == bfd_link_hash_undefweak
2618 && howto->pc_relative)
2619 {
2620 /* Assume this is a call protected by other code that
2621 detect the symbol is undefined. If this is the case,
2622 we can safely ignore the overflow. If not, the
2623 program is hosed anyway, and a little warning isn't
2624 going to help. */
2625 break;
2626 }
2627
2628 name = h->root.root.string;
2629 }
2630 else
2631 {
2632 name = (bfd_elf_string_from_elf_section
2633 (input_bfd,
2634 symtab_hdr->sh_link,
2635 sym->st_name));
2636 if (name == NULL)
2637 return false;
2638 if (*name == '\0')
2639 name = bfd_section_name (input_bfd, sec);
2640 }
2641 if (! ((*info->callbacks->reloc_overflow)
2642 (info, name, howto->name, (bfd_vma) 0,
2643 input_bfd, input_section, rel->r_offset)))
2644 return false;
2645 }
2646 break;
2647 }
2648 }
2649
2650 return true;
2651 }
2652
2653 /* Finish up dynamic symbol handling. We set the contents of various
2654 dynamic sections here. */
2655
2656 static boolean
2657 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2658 bfd *output_bfd;
2659 struct bfd_link_info *info;
2660 struct elf_link_hash_entry *h;
2661 Elf_Internal_Sym *sym;
2662 {
2663 bfd *dynobj;
2664
2665 dynobj = elf_hash_table (info)->dynobj;
2666
2667 if (h->plt.offset != (bfd_vma) -1)
2668 {
2669 asection *splt;
2670 asection *srela;
2671 Elf_Internal_Rela rela;
2672
2673 /* This symbol has an entry in the PLT. Set it up. */
2674
2675 BFD_ASSERT (h->dynindx != -1);
2676
2677 splt = bfd_get_section_by_name (dynobj, ".plt");
2678 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2679 BFD_ASSERT (splt != NULL && srela != NULL);
2680
2681 /* Fill in the entry in the .rela.plt section. */
2682
2683 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2684 {
2685 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2686 rela.r_addend = 0;
2687 }
2688 else
2689 {
2690 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2691 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2692 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2693 -(splt->output_section->vma + splt->output_offset);
2694 }
2695 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2696 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2697
2698 /* Adjust for the first 4 reserved elements in the .plt section
2699 when setting the offset in the .rela.plt section.
2700 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2701 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2702
2703 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2704 ((Elf64_External_Rela *) srela->contents
2705 + (h->plt.offset - 4)));
2706
2707 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2708 {
2709 /* Mark the symbol as undefined, rather than as defined in
2710 the .plt section. Leave the value alone. */
2711 sym->st_shndx = SHN_UNDEF;
2712 /* If the symbol is weak, we do need to clear the value.
2713 Otherwise, the PLT entry would provide a definition for
2714 the symbol even if the symbol wasn't defined anywhere,
2715 and so the symbol would never be NULL. */
2716 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2717 == 0)
2718 sym->st_value = 0;
2719 }
2720 }
2721
2722 if (h->got.offset != (bfd_vma) -1)
2723 {
2724 asection *sgot;
2725 asection *srela;
2726 Elf_Internal_Rela rela;
2727
2728 /* This symbol has an entry in the GOT. Set it up. */
2729
2730 sgot = bfd_get_section_by_name (dynobj, ".got");
2731 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2732 BFD_ASSERT (sgot != NULL && srela != NULL);
2733
2734 rela.r_offset = (sgot->output_section->vma
2735 + sgot->output_offset
2736 + (h->got.offset &~ 1));
2737
2738 /* If this is a -Bsymbolic link, and the symbol is defined
2739 locally, we just want to emit a RELATIVE reloc. Likewise if
2740 the symbol was forced to be local because of a version file.
2741 The entry in the global offset table will already have been
2742 initialized in the relocate_section function. */
2743 if (info->shared
2744 && (info->symbolic || h->dynindx == -1)
2745 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2746 {
2747 asection *sec = h->root.u.def.section;
2748 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2749 rela.r_addend = (h->root.u.def.value
2750 + sec->output_section->vma
2751 + sec->output_offset);
2752 }
2753 else
2754 {
2755 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2756 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2757 rela.r_addend = 0;
2758 }
2759
2760 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2761 ((Elf64_External_Rela *) srela->contents
2762 + srela->reloc_count));
2763 ++srela->reloc_count;
2764 }
2765
2766 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2767 {
2768 asection *s;
2769 Elf_Internal_Rela rela;
2770
2771 /* This symbols needs a copy reloc. Set it up. */
2772
2773 BFD_ASSERT (h->dynindx != -1);
2774
2775 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2776 ".rela.bss");
2777 BFD_ASSERT (s != NULL);
2778
2779 rela.r_offset = (h->root.u.def.value
2780 + h->root.u.def.section->output_section->vma
2781 + h->root.u.def.section->output_offset);
2782 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2783 rela.r_addend = 0;
2784 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2785 ((Elf64_External_Rela *) s->contents
2786 + s->reloc_count));
2787 ++s->reloc_count;
2788 }
2789
2790 /* Mark some specially defined symbols as absolute. */
2791 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2792 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2793 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2794 sym->st_shndx = SHN_ABS;
2795
2796 return true;
2797 }
2798
2799 /* Finish up the dynamic sections. */
2800
2801 static boolean
2802 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2803 bfd *output_bfd;
2804 struct bfd_link_info *info;
2805 {
2806 bfd *dynobj;
2807 int stt_regidx = -1;
2808 asection *sdyn;
2809 asection *sgot;
2810
2811 dynobj = elf_hash_table (info)->dynobj;
2812
2813 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2814
2815 if (elf_hash_table (info)->dynamic_sections_created)
2816 {
2817 asection *splt;
2818 Elf64_External_Dyn *dyncon, *dynconend;
2819
2820 splt = bfd_get_section_by_name (dynobj, ".plt");
2821 BFD_ASSERT (splt != NULL && sdyn != NULL);
2822
2823 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2824 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2825 for (; dyncon < dynconend; dyncon++)
2826 {
2827 Elf_Internal_Dyn dyn;
2828 const char *name;
2829 boolean size;
2830
2831 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2832
2833 switch (dyn.d_tag)
2834 {
2835 case DT_PLTGOT: name = ".plt"; size = false; break;
2836 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2837 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2838 case DT_SPARC_REGISTER:
2839 if (stt_regidx == -1)
2840 {
2841 stt_regidx =
2842 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2843 if (stt_regidx == -1)
2844 return false;
2845 }
2846 dyn.d_un.d_val = stt_regidx++;
2847 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2848 /* fallthrough */
2849 default: name = NULL; size = false; break;
2850 }
2851
2852 if (name != NULL)
2853 {
2854 asection *s;
2855
2856 s = bfd_get_section_by_name (output_bfd, name);
2857 if (s == NULL)
2858 dyn.d_un.d_val = 0;
2859 else
2860 {
2861 if (! size)
2862 dyn.d_un.d_ptr = s->vma;
2863 else
2864 {
2865 if (s->_cooked_size != 0)
2866 dyn.d_un.d_val = s->_cooked_size;
2867 else
2868 dyn.d_un.d_val = s->_raw_size;
2869 }
2870 }
2871 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2872 }
2873 }
2874
2875 /* Initialize the contents of the .plt section. */
2876 if (splt->_raw_size > 0)
2877 {
2878 sparc64_elf_build_plt(output_bfd, splt->contents,
2879 splt->_raw_size / PLT_ENTRY_SIZE);
2880 }
2881
2882 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2883 PLT_ENTRY_SIZE;
2884 }
2885
2886 /* Set the first entry in the global offset table to the address of
2887 the dynamic section. */
2888 sgot = bfd_get_section_by_name (dynobj, ".got");
2889 BFD_ASSERT (sgot != NULL);
2890 if (sgot->_raw_size > 0)
2891 {
2892 if (sdyn == NULL)
2893 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2894 else
2895 bfd_put_64 (output_bfd,
2896 sdyn->output_section->vma + sdyn->output_offset,
2897 sgot->contents);
2898 }
2899
2900 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2901
2902 return true;
2903 }
2904 \f
2905 /* Functions for dealing with the e_flags field. */
2906
2907 /* Copy backend specific data from one object module to another */
2908 static boolean
2909 sparc64_elf_copy_private_bfd_data (ibfd, obfd)
2910 bfd *ibfd, *obfd;
2911 {
2912 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2913 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2914 return true;
2915
2916 BFD_ASSERT (!elf_flags_init (obfd)
2917 || (elf_elfheader (obfd)->e_flags
2918 == elf_elfheader (ibfd)->e_flags));
2919
2920 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2921 elf_flags_init (obfd) = true;
2922 return true;
2923 }
2924
2925 /* Merge backend specific data from an object file to the output
2926 object file when linking. */
2927
2928 static boolean
2929 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2930 bfd *ibfd;
2931 bfd *obfd;
2932 {
2933 boolean error;
2934 flagword new_flags, old_flags;
2935 int new_mm, old_mm;
2936
2937 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2938 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2939 return true;
2940
2941 new_flags = elf_elfheader (ibfd)->e_flags;
2942 old_flags = elf_elfheader (obfd)->e_flags;
2943
2944 if (!elf_flags_init (obfd)) /* First call, no flags set */
2945 {
2946 elf_flags_init (obfd) = true;
2947 elf_elfheader (obfd)->e_flags = new_flags;
2948 }
2949
2950 else if (new_flags == old_flags) /* Compatible flags are ok */
2951 ;
2952
2953 else /* Incompatible flags */
2954 {
2955 error = false;
2956
2957 #define EF_SPARC_ISA_EXTENSIONS \
2958 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2959
2960 if ((ibfd->flags & DYNAMIC) != 0)
2961 {
2962 /* We don't want dynamic objects memory ordering and
2963 architecture to have any role. That's what dynamic linker
2964 should do. */
2965 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2966 new_flags |= (old_flags
2967 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2968 }
2969 else
2970 {
2971 /* Choose the highest architecture requirements. */
2972 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2973 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2974 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2975 && (old_flags & EF_SPARC_HAL_R1))
2976 {
2977 error = true;
2978 (*_bfd_error_handler)
2979 (_("%s: linking UltraSPARC specific with HAL specific code"),
2980 bfd_get_filename (ibfd));
2981 }
2982 /* Choose the most restrictive memory ordering. */
2983 old_mm = (old_flags & EF_SPARCV9_MM);
2984 new_mm = (new_flags & EF_SPARCV9_MM);
2985 old_flags &= ~EF_SPARCV9_MM;
2986 new_flags &= ~EF_SPARCV9_MM;
2987 if (new_mm < old_mm)
2988 old_mm = new_mm;
2989 old_flags |= old_mm;
2990 new_flags |= old_mm;
2991 }
2992
2993 /* Warn about any other mismatches */
2994 if (new_flags != old_flags)
2995 {
2996 error = true;
2997 (*_bfd_error_handler)
2998 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2999 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
3000 }
3001
3002 elf_elfheader (obfd)->e_flags = old_flags;
3003
3004 if (error)
3005 {
3006 bfd_set_error (bfd_error_bad_value);
3007 return false;
3008 }
3009 }
3010 return true;
3011 }
3012 \f
3013 /* Print a STT_REGISTER symbol to file FILE. */
3014
3015 static const char *
3016 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3017 bfd *abfd ATTRIBUTE_UNUSED;
3018 PTR filep;
3019 asymbol *symbol;
3020 {
3021 FILE *file = (FILE *) filep;
3022 int reg, type;
3023
3024 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3025 != STT_REGISTER)
3026 return NULL;
3027
3028 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3029 type = symbol->flags;
3030 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3031 ((type & BSF_LOCAL)
3032 ? (type & BSF_GLOBAL) ? '!' : 'l'
3033 : (type & BSF_GLOBAL) ? 'g' : ' '),
3034 (type & BSF_WEAK) ? 'w' : ' ');
3035 if (symbol->name == NULL || symbol->name [0] == '\0')
3036 return "#scratch";
3037 else
3038 return symbol->name;
3039 }
3040 \f
3041 /* Set the right machine number for a SPARC64 ELF file. */
3042
3043 static boolean
3044 sparc64_elf_object_p (abfd)
3045 bfd *abfd;
3046 {
3047 unsigned long mach = bfd_mach_sparc_v9;
3048
3049 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3050 mach = bfd_mach_sparc_v9b;
3051 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3052 mach = bfd_mach_sparc_v9a;
3053 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3054 }
3055
3056 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3057 standard ELF, because R_SPARC_OLO10 has secondary addend in
3058 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3059 relocation handling routines. */
3060
3061 const struct elf_size_info sparc64_elf_size_info =
3062 {
3063 sizeof (Elf64_External_Ehdr),
3064 sizeof (Elf64_External_Phdr),
3065 sizeof (Elf64_External_Shdr),
3066 sizeof (Elf64_External_Rel),
3067 sizeof (Elf64_External_Rela),
3068 sizeof (Elf64_External_Sym),
3069 sizeof (Elf64_External_Dyn),
3070 sizeof (Elf_External_Note),
3071 4, /* hash-table entry size */
3072 /* internal relocations per external relocations.
3073 For link purposes we use just 1 internal per
3074 1 external, for assembly and slurp symbol table
3075 we use 2. */
3076 1,
3077 64, /* arch_size */
3078 8, /* file_align */
3079 ELFCLASS64,
3080 EV_CURRENT,
3081 bfd_elf64_write_out_phdrs,
3082 bfd_elf64_write_shdrs_and_ehdr,
3083 sparc64_elf_write_relocs,
3084 bfd_elf64_swap_symbol_out,
3085 sparc64_elf_slurp_reloc_table,
3086 bfd_elf64_slurp_symbol_table,
3087 bfd_elf64_swap_dyn_in,
3088 bfd_elf64_swap_dyn_out,
3089 NULL,
3090 NULL,
3091 NULL,
3092 NULL
3093 };
3094
3095 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3096 #define TARGET_BIG_NAME "elf64-sparc"
3097 #define ELF_ARCH bfd_arch_sparc
3098 #define ELF_MAXPAGESIZE 0x100000
3099
3100 /* This is the official ABI value. */
3101 #define ELF_MACHINE_CODE EM_SPARCV9
3102
3103 /* This is the value that we used before the ABI was released. */
3104 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3105
3106 #define bfd_elf64_bfd_link_hash_table_create \
3107 sparc64_elf_bfd_link_hash_table_create
3108
3109 #define elf_info_to_howto \
3110 sparc64_elf_info_to_howto
3111 #define bfd_elf64_get_reloc_upper_bound \
3112 sparc64_elf_get_reloc_upper_bound
3113 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3114 sparc64_elf_get_dynamic_reloc_upper_bound
3115 #define bfd_elf64_canonicalize_dynamic_reloc \
3116 sparc64_elf_canonicalize_dynamic_reloc
3117 #define bfd_elf64_bfd_reloc_type_lookup \
3118 sparc64_elf_reloc_type_lookup
3119 #define bfd_elf64_bfd_relax_section \
3120 sparc64_elf_relax_section
3121
3122 #define elf_backend_create_dynamic_sections \
3123 _bfd_elf_create_dynamic_sections
3124 #define elf_backend_add_symbol_hook \
3125 sparc64_elf_add_symbol_hook
3126 #define elf_backend_get_symbol_type \
3127 sparc64_elf_get_symbol_type
3128 #define elf_backend_symbol_processing \
3129 sparc64_elf_symbol_processing
3130 #define elf_backend_check_relocs \
3131 sparc64_elf_check_relocs
3132 #define elf_backend_adjust_dynamic_symbol \
3133 sparc64_elf_adjust_dynamic_symbol
3134 #define elf_backend_size_dynamic_sections \
3135 sparc64_elf_size_dynamic_sections
3136 #define elf_backend_relocate_section \
3137 sparc64_elf_relocate_section
3138 #define elf_backend_finish_dynamic_symbol \
3139 sparc64_elf_finish_dynamic_symbol
3140 #define elf_backend_finish_dynamic_sections \
3141 sparc64_elf_finish_dynamic_sections
3142 #define elf_backend_print_symbol_all \
3143 sparc64_elf_print_symbol_all
3144 #define elf_backend_output_arch_syms \
3145 sparc64_elf_output_arch_syms
3146 #define bfd_elf64_bfd_copy_private_bfd_data \
3147 sparc64_elf_copy_private_bfd_data
3148 #define bfd_elf64_bfd_merge_private_bfd_data \
3149 sparc64_elf_merge_private_bfd_data
3150
3151 #define elf_backend_size_info \
3152 sparc64_elf_size_info
3153 #define elf_backend_object_p \
3154 sparc64_elf_object_p
3155
3156 #define elf_backend_want_got_plt 0
3157 #define elf_backend_plt_readonly 0
3158 #define elf_backend_want_plt_sym 1
3159
3160 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3161 #define elf_backend_plt_alignment 8
3162
3163 #define elf_backend_got_header_size 8
3164 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3165
3166 #include "elf64-target.h"
This page took 0.168828 seconds and 5 git commands to generate.