* elf64-sparc.c (struct sparc64_elf_link_hash_table): New 'sgot' and
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_boolean create_got_section
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static bfd_boolean sparc64_elf_create_dynamic_sections
42 PARAMS ((bfd *, struct bfd_link_info *));
43 static bfd_reloc_status_type init_insn_reloc
44 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
45 bfd *, bfd_vma *, bfd_vma *));
46 static reloc_howto_type *sparc64_elf_reloc_type_lookup
47 PARAMS ((bfd *, bfd_reloc_code_real_type));
48 static void sparc64_elf_info_to_howto
49 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
50
51 static void sparc64_elf_build_plt
52 PARAMS ((bfd *, unsigned char *, int));
53 static bfd_vma sparc64_elf_plt_entry_offset
54 PARAMS ((bfd_vma));
55 static bfd_vma sparc64_elf_plt_ptr_offset
56 PARAMS ((bfd_vma, bfd_vma));
57
58 static bfd_boolean sparc64_elf_check_relocs
59 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
60 const Elf_Internal_Rela *));
61 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
62 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
63 static bfd_boolean sparc64_elf_omit_section_dynsym
64 PARAMS ((bfd *, struct bfd_link_info *, asection *));
65 static bfd_boolean sparc64_elf_size_dynamic_sections
66 PARAMS ((bfd *, struct bfd_link_info *));
67 static int sparc64_elf_get_symbol_type
68 PARAMS (( Elf_Internal_Sym *, int));
69 static bfd_boolean sparc64_elf_add_symbol_hook
70 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
71 const char **, flagword *, asection **, bfd_vma *));
72 static bfd_boolean sparc64_elf_output_arch_syms
73 PARAMS ((bfd *, struct bfd_link_info *, PTR,
74 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
75 asection *, struct elf_link_hash_entry *)));
76 static void sparc64_elf_symbol_processing
77 PARAMS ((bfd *, asymbol *));
78
79 static bfd_boolean sparc64_elf_merge_private_bfd_data
80 PARAMS ((bfd *, bfd *));
81
82 static bfd_boolean sparc64_elf_fake_sections
83 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
84
85 static const char *sparc64_elf_print_symbol_all
86 PARAMS ((bfd *, PTR, asymbol *));
87 static bfd_boolean sparc64_elf_new_section_hook
88 PARAMS ((bfd *, asection *));
89 static bfd_boolean sparc64_elf_relax_section
90 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
91 static bfd_boolean sparc64_elf_relocate_section
92 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
93 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
94 static bfd_boolean sparc64_elf_finish_dynamic_symbol
95 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
96 Elf_Internal_Sym *));
97 static bfd_boolean sparc64_elf_finish_dynamic_sections
98 PARAMS ((bfd *, struct bfd_link_info *));
99 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
100 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
101 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
102 static bfd_boolean sparc64_elf_slurp_one_reloc_table
103 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
104 static bfd_boolean sparc64_elf_slurp_reloc_table
105 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
106 static long sparc64_elf_canonicalize_reloc
107 PARAMS ((bfd *, asection *, arelent **, asymbol **));
108 static long sparc64_elf_canonicalize_dynamic_reloc
109 PARAMS ((bfd *, arelent **, asymbol **));
110 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
111 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
112 PARAMS ((const Elf_Internal_Rela *));
113 \f
114 /* The relocation "howto" table. */
115
116 static bfd_reloc_status_type sparc_elf_notsup_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
119 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
120 static bfd_reloc_status_type sparc_elf_hix22_reloc
121 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
122 static bfd_reloc_status_type sparc_elf_lox10_reloc
123 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
124
125 static reloc_howto_type sparc64_elf_howto_table[] =
126 {
127 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
128 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
129 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
130 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
131 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
132 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
133 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
134 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
135 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
136 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
138 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
139 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
140 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
141 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
142 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
143 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
144 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
145 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
146 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
147 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
148 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
151 #ifndef SPARC64_OLD_RELOCS
152 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
153 /* These aren't implemented yet. */
154 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
155 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
156 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
157 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
158 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
159 #endif
160 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
161 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
162 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
163 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
164 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
165 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
166 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
167 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
168 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
169 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
170 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
171 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
172 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
173 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
174 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
175 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
176 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
177 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
178 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
179 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
180 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
181 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
182 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
183 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
184 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
185 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
186 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
187 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
188 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
189 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
190 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
191 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
192 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
193 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
194 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
195 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
196 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
197 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
198 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
199 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
201 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
202 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
203 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
204 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
205 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
206 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
207 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
208 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
209 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
210 };
211
212 struct elf_reloc_map {
213 bfd_reloc_code_real_type bfd_reloc_val;
214 unsigned char elf_reloc_val;
215 };
216
217 static const struct elf_reloc_map sparc_reloc_map[] =
218 {
219 { BFD_RELOC_NONE, R_SPARC_NONE, },
220 { BFD_RELOC_16, R_SPARC_16, },
221 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
222 { BFD_RELOC_8, R_SPARC_8 },
223 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
224 { BFD_RELOC_CTOR, R_SPARC_64 },
225 { BFD_RELOC_32, R_SPARC_32 },
226 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
227 { BFD_RELOC_HI22, R_SPARC_HI22 },
228 { BFD_RELOC_LO10, R_SPARC_LO10, },
229 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
230 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
231 { BFD_RELOC_SPARC22, R_SPARC_22 },
232 { BFD_RELOC_SPARC13, R_SPARC_13 },
233 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
234 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
235 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
236 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
237 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
238 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
239 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
240 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
241 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
242 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
243 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
244 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
245 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
246 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
247 { BFD_RELOC_SPARC_10, R_SPARC_10 },
248 { BFD_RELOC_SPARC_11, R_SPARC_11 },
249 { BFD_RELOC_SPARC_64, R_SPARC_64 },
250 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
251 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
252 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
253 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
254 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
255 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
256 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
257 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
258 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
259 { BFD_RELOC_SPARC_7, R_SPARC_7 },
260 { BFD_RELOC_SPARC_5, R_SPARC_5 },
261 { BFD_RELOC_SPARC_6, R_SPARC_6 },
262 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
263 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
264 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
265 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
266 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
267 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
268 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
269 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
270 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
271 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
272 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
273 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
274 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
275 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
276 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
277 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
278 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
279 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
280 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
281 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
282 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
283 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
284 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
285 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
286 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
287 #ifndef SPARC64_OLD_RELOCS
288 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
289 #endif
290 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
291 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
292 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
293 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
294 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
295 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
296 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
297 };
298
299 static reloc_howto_type *
300 sparc64_elf_reloc_type_lookup (abfd, code)
301 bfd *abfd ATTRIBUTE_UNUSED;
302 bfd_reloc_code_real_type code;
303 {
304 unsigned int i;
305 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
306 {
307 if (sparc_reloc_map[i].bfd_reloc_val == code)
308 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
309 }
310 return 0;
311 }
312
313 static void
314 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
315 bfd *abfd ATTRIBUTE_UNUSED;
316 arelent *cache_ptr;
317 Elf_Internal_Rela *dst;
318 {
319 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
320 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
321 }
322 \f
323 struct sparc64_elf_section_data
324 {
325 struct bfd_elf_section_data elf;
326 unsigned int do_relax, reloc_count;
327 };
328
329 #define sec_do_relax(sec) \
330 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
331 #define canon_reloc_count(sec) \
332 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
333
334 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
335 section can represent up to two relocs, we must tell the user to allocate
336 more space. */
337
338 static long
339 sparc64_elf_get_reloc_upper_bound (abfd, sec)
340 bfd *abfd ATTRIBUTE_UNUSED;
341 asection *sec;
342 {
343 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
344 }
345
346 static long
347 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
348 bfd *abfd;
349 {
350 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
351 }
352
353 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
354 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
355 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
356 for the same location, R_SPARC_LO10 and R_SPARC_13. */
357
358 static bfd_boolean
359 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
360 bfd *abfd;
361 asection *asect;
362 Elf_Internal_Shdr *rel_hdr;
363 asymbol **symbols;
364 bfd_boolean dynamic;
365 {
366 PTR allocated = NULL;
367 bfd_byte *native_relocs;
368 arelent *relent;
369 unsigned int i;
370 int entsize;
371 bfd_size_type count;
372 arelent *relents;
373
374 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
375 if (allocated == NULL)
376 goto error_return;
377
378 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
379 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
380 goto error_return;
381
382 native_relocs = (bfd_byte *) allocated;
383
384 relents = asect->relocation + canon_reloc_count (asect);
385
386 entsize = rel_hdr->sh_entsize;
387 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
388
389 count = rel_hdr->sh_size / entsize;
390
391 for (i = 0, relent = relents; i < count;
392 i++, relent++, native_relocs += entsize)
393 {
394 Elf_Internal_Rela rela;
395
396 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
397
398 /* The address of an ELF reloc is section relative for an object
399 file, and absolute for an executable file or shared library.
400 The address of a normal BFD reloc is always section relative,
401 and the address of a dynamic reloc is absolute.. */
402 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
403 relent->address = rela.r_offset;
404 else
405 relent->address = rela.r_offset - asect->vma;
406
407 if (ELF64_R_SYM (rela.r_info) == 0)
408 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
409 else
410 {
411 asymbol **ps, *s;
412
413 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
414 s = *ps;
415
416 /* Canonicalize ELF section symbols. FIXME: Why? */
417 if ((s->flags & BSF_SECTION_SYM) == 0)
418 relent->sym_ptr_ptr = ps;
419 else
420 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
421 }
422
423 relent->addend = rela.r_addend;
424
425 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
426 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
427 {
428 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
429 relent[1].address = relent->address;
430 relent++;
431 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
432 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
433 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
434 }
435 else
436 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
437 }
438
439 canon_reloc_count (asect) += relent - relents;
440
441 if (allocated != NULL)
442 free (allocated);
443
444 return TRUE;
445
446 error_return:
447 if (allocated != NULL)
448 free (allocated);
449 return FALSE;
450 }
451
452 /* Read in and swap the external relocs. */
453
454 static bfd_boolean
455 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
456 bfd *abfd;
457 asection *asect;
458 asymbol **symbols;
459 bfd_boolean dynamic;
460 {
461 struct bfd_elf_section_data * const d = elf_section_data (asect);
462 Elf_Internal_Shdr *rel_hdr;
463 Elf_Internal_Shdr *rel_hdr2;
464 bfd_size_type amt;
465
466 if (asect->relocation != NULL)
467 return TRUE;
468
469 if (! dynamic)
470 {
471 if ((asect->flags & SEC_RELOC) == 0
472 || asect->reloc_count == 0)
473 return TRUE;
474
475 rel_hdr = &d->rel_hdr;
476 rel_hdr2 = d->rel_hdr2;
477
478 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
479 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
480 }
481 else
482 {
483 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
484 case because relocations against this section may use the
485 dynamic symbol table, and in that case bfd_section_from_shdr
486 in elf.c does not update the RELOC_COUNT. */
487 if (asect->size == 0)
488 return TRUE;
489
490 rel_hdr = &d->this_hdr;
491 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
492 rel_hdr2 = NULL;
493 }
494
495 amt = asect->reloc_count;
496 amt *= 2 * sizeof (arelent);
497 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
498 if (asect->relocation == NULL)
499 return FALSE;
500
501 /* The sparc64_elf_slurp_one_reloc_table routine increments
502 canon_reloc_count. */
503 canon_reloc_count (asect) = 0;
504
505 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
506 dynamic))
507 return FALSE;
508
509 if (rel_hdr2
510 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
511 dynamic))
512 return FALSE;
513
514 return TRUE;
515 }
516
517 /* Canonicalize the relocs. */
518
519 static long
520 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
521 bfd *abfd;
522 sec_ptr section;
523 arelent **relptr;
524 asymbol **symbols;
525 {
526 arelent *tblptr;
527 unsigned int i;
528 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
529
530 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
531 return -1;
532
533 tblptr = section->relocation;
534 for (i = 0; i < canon_reloc_count (section); i++)
535 *relptr++ = tblptr++;
536
537 *relptr = NULL;
538
539 return canon_reloc_count (section);
540 }
541
542
543 /* Canonicalize the dynamic relocation entries. Note that we return
544 the dynamic relocations as a single block, although they are
545 actually associated with particular sections; the interface, which
546 was designed for SunOS style shared libraries, expects that there
547 is only one set of dynamic relocs. Any section that was actually
548 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
549 the dynamic symbol table, is considered to be a dynamic reloc
550 section. */
551
552 static long
553 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
554 bfd *abfd;
555 arelent **storage;
556 asymbol **syms;
557 {
558 asection *s;
559 long ret;
560
561 if (elf_dynsymtab (abfd) == 0)
562 {
563 bfd_set_error (bfd_error_invalid_operation);
564 return -1;
565 }
566
567 ret = 0;
568 for (s = abfd->sections; s != NULL; s = s->next)
569 {
570 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
571 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
572 {
573 arelent *p;
574 long count, i;
575
576 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
577 return -1;
578 count = canon_reloc_count (s);
579 p = s->relocation;
580 for (i = 0; i < count; i++)
581 *storage++ = p++;
582 ret += count;
583 }
584 }
585
586 *storage = NULL;
587
588 return ret;
589 }
590
591 /* Write out the relocs. */
592
593 static void
594 sparc64_elf_write_relocs (abfd, sec, data)
595 bfd *abfd;
596 asection *sec;
597 PTR data;
598 {
599 bfd_boolean *failedp = (bfd_boolean *) data;
600 Elf_Internal_Shdr *rela_hdr;
601 Elf64_External_Rela *outbound_relocas, *src_rela;
602 unsigned int idx, count;
603 asymbol *last_sym = 0;
604 int last_sym_idx = 0;
605
606 /* If we have already failed, don't do anything. */
607 if (*failedp)
608 return;
609
610 if ((sec->flags & SEC_RELOC) == 0)
611 return;
612
613 /* The linker backend writes the relocs out itself, and sets the
614 reloc_count field to zero to inhibit writing them here. Also,
615 sometimes the SEC_RELOC flag gets set even when there aren't any
616 relocs. */
617 if (sec->reloc_count == 0)
618 return;
619
620 /* We can combine two relocs that refer to the same address
621 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
622 latter is R_SPARC_13 with no associated symbol. */
623 count = 0;
624 for (idx = 0; idx < sec->reloc_count; idx++)
625 {
626 bfd_vma addr;
627
628 ++count;
629
630 addr = sec->orelocation[idx]->address;
631 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
632 && idx < sec->reloc_count - 1)
633 {
634 arelent *r = sec->orelocation[idx + 1];
635
636 if (r->howto->type == R_SPARC_13
637 && r->address == addr
638 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
639 && (*r->sym_ptr_ptr)->value == 0)
640 ++idx;
641 }
642 }
643
644 rela_hdr = &elf_section_data (sec)->rel_hdr;
645
646 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
647 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
648 if (rela_hdr->contents == NULL)
649 {
650 *failedp = TRUE;
651 return;
652 }
653
654 /* Figure out whether the relocations are RELA or REL relocations. */
655 if (rela_hdr->sh_type != SHT_RELA)
656 abort ();
657
658 /* orelocation has the data, reloc_count has the count... */
659 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
660 src_rela = outbound_relocas;
661
662 for (idx = 0; idx < sec->reloc_count; idx++)
663 {
664 Elf_Internal_Rela dst_rela;
665 arelent *ptr;
666 asymbol *sym;
667 int n;
668
669 ptr = sec->orelocation[idx];
670
671 /* The address of an ELF reloc is section relative for an object
672 file, and absolute for an executable file or shared library.
673 The address of a BFD reloc is always section relative. */
674 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
675 dst_rela.r_offset = ptr->address;
676 else
677 dst_rela.r_offset = ptr->address + sec->vma;
678
679 sym = *ptr->sym_ptr_ptr;
680 if (sym == last_sym)
681 n = last_sym_idx;
682 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
683 n = STN_UNDEF;
684 else
685 {
686 last_sym = sym;
687 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
688 if (n < 0)
689 {
690 *failedp = TRUE;
691 return;
692 }
693 last_sym_idx = n;
694 }
695
696 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
697 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
698 && ! _bfd_elf_validate_reloc (abfd, ptr))
699 {
700 *failedp = TRUE;
701 return;
702 }
703
704 if (ptr->howto->type == R_SPARC_LO10
705 && idx < sec->reloc_count - 1)
706 {
707 arelent *r = sec->orelocation[idx + 1];
708
709 if (r->howto->type == R_SPARC_13
710 && r->address == ptr->address
711 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
712 && (*r->sym_ptr_ptr)->value == 0)
713 {
714 idx++;
715 dst_rela.r_info
716 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
717 R_SPARC_OLO10));
718 }
719 else
720 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
721 }
722 else
723 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
724
725 dst_rela.r_addend = ptr->addend;
726 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
727 ++src_rela;
728 }
729 }
730 \f
731 /* Sparc64 ELF linker hash table. */
732
733 struct sparc64_elf_app_reg
734 {
735 unsigned char bind;
736 unsigned short shndx;
737 bfd *abfd;
738 char *name;
739 };
740
741 struct sparc64_elf_link_hash_table
742 {
743 struct elf_link_hash_table root;
744
745 /* Short-cuts to get to dynamic linker sections. */
746 asection *sgot;
747 asection *srelgot;
748
749 struct sparc64_elf_app_reg app_regs [4];
750 };
751
752 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
753
754 #define sparc64_elf_hash_table(p) \
755 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
756
757 /* Create a Sparc64 ELF linker hash table. */
758
759 static struct bfd_link_hash_table *
760 sparc64_elf_bfd_link_hash_table_create (abfd)
761 bfd *abfd;
762 {
763 struct sparc64_elf_link_hash_table *ret;
764 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
765
766 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
767 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
768 return NULL;
769
770 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
771 _bfd_elf_link_hash_newfunc))
772 {
773 free (ret);
774 return NULL;
775 }
776
777 return &ret->root.root;
778 }
779
780 /* Create .got and .rela.got sections in DYNOBJ and set up
781 shortcuts to them in our hash table. */
782
783 static bfd_boolean
784 create_got_section (dynobj, info)
785 bfd *dynobj;
786 struct bfd_link_info *info;
787 {
788 struct sparc64_elf_link_hash_table *htab;
789
790 if (! _bfd_elf_create_got_section (dynobj, info))
791 return FALSE;
792
793 htab = sparc64_elf_hash_table (info);
794 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
795 BFD_ASSERT (htab->sgot != NULL);
796
797 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
798 if (htab->srelgot == NULL
799 || ! bfd_set_section_flags (dynobj, htab->srelgot, SEC_ALLOC
800 | SEC_LOAD
801 | SEC_HAS_CONTENTS
802 | SEC_IN_MEMORY
803 | SEC_LINKER_CREATED
804 | SEC_READONLY)
805 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
806 return FALSE;
807 return TRUE;
808 }
809
810 /* Create .plt, .rela.plt, .got, .rela.got, .dynbss, and
811 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
812 hash table. */
813
814 static bfd_boolean
815 sparc64_elf_create_dynamic_sections (dynobj, info)
816 bfd *dynobj;
817 struct bfd_link_info *info;
818 {
819 struct sparc64_elf_link_hash_table *htab;
820
821 htab = sparc64_elf_hash_table (info);
822 if (!htab->sgot && !create_got_section (dynobj, info))
823 return FALSE;
824
825 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
826 return FALSE;
827
828 return TRUE;
829 }
830 \f
831 /* Utility for performing the standard initial work of an instruction
832 relocation.
833 *PRELOCATION will contain the relocated item.
834 *PINSN will contain the instruction from the input stream.
835 If the result is `bfd_reloc_other' the caller can continue with
836 performing the relocation. Otherwise it must stop and return the
837 value to its caller. */
838
839 static bfd_reloc_status_type
840 init_insn_reloc (abfd,
841 reloc_entry,
842 symbol,
843 data,
844 input_section,
845 output_bfd,
846 prelocation,
847 pinsn)
848 bfd *abfd;
849 arelent *reloc_entry;
850 asymbol *symbol;
851 PTR data;
852 asection *input_section;
853 bfd *output_bfd;
854 bfd_vma *prelocation;
855 bfd_vma *pinsn;
856 {
857 bfd_vma relocation;
858 reloc_howto_type *howto = reloc_entry->howto;
859
860 if (output_bfd != (bfd *) NULL
861 && (symbol->flags & BSF_SECTION_SYM) == 0
862 && (! howto->partial_inplace
863 || reloc_entry->addend == 0))
864 {
865 reloc_entry->address += input_section->output_offset;
866 return bfd_reloc_ok;
867 }
868
869 /* This works because partial_inplace is FALSE. */
870 if (output_bfd != NULL)
871 return bfd_reloc_continue;
872
873 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
874 return bfd_reloc_outofrange;
875
876 relocation = (symbol->value
877 + symbol->section->output_section->vma
878 + symbol->section->output_offset);
879 relocation += reloc_entry->addend;
880 if (howto->pc_relative)
881 {
882 relocation -= (input_section->output_section->vma
883 + input_section->output_offset);
884 relocation -= reloc_entry->address;
885 }
886
887 *prelocation = relocation;
888 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
889 return bfd_reloc_other;
890 }
891
892 /* For unsupported relocs. */
893
894 static bfd_reloc_status_type
895 sparc_elf_notsup_reloc (abfd,
896 reloc_entry,
897 symbol,
898 data,
899 input_section,
900 output_bfd,
901 error_message)
902 bfd *abfd ATTRIBUTE_UNUSED;
903 arelent *reloc_entry ATTRIBUTE_UNUSED;
904 asymbol *symbol ATTRIBUTE_UNUSED;
905 PTR data ATTRIBUTE_UNUSED;
906 asection *input_section ATTRIBUTE_UNUSED;
907 bfd *output_bfd ATTRIBUTE_UNUSED;
908 char **error_message ATTRIBUTE_UNUSED;
909 {
910 return bfd_reloc_notsupported;
911 }
912
913 /* Handle the WDISP16 reloc. */
914
915 static bfd_reloc_status_type
916 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
917 output_bfd, error_message)
918 bfd *abfd;
919 arelent *reloc_entry;
920 asymbol *symbol;
921 PTR data;
922 asection *input_section;
923 bfd *output_bfd;
924 char **error_message ATTRIBUTE_UNUSED;
925 {
926 bfd_vma relocation;
927 bfd_vma insn;
928 bfd_reloc_status_type status;
929
930 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
931 input_section, output_bfd, &relocation, &insn);
932 if (status != bfd_reloc_other)
933 return status;
934
935 insn &= ~ (bfd_vma) 0x303fff;
936 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
937 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
938
939 if ((bfd_signed_vma) relocation < - 0x40000
940 || (bfd_signed_vma) relocation > 0x3ffff)
941 return bfd_reloc_overflow;
942 else
943 return bfd_reloc_ok;
944 }
945
946 /* Handle the HIX22 reloc. */
947
948 static bfd_reloc_status_type
949 sparc_elf_hix22_reloc (abfd,
950 reloc_entry,
951 symbol,
952 data,
953 input_section,
954 output_bfd,
955 error_message)
956 bfd *abfd;
957 arelent *reloc_entry;
958 asymbol *symbol;
959 PTR data;
960 asection *input_section;
961 bfd *output_bfd;
962 char **error_message ATTRIBUTE_UNUSED;
963 {
964 bfd_vma relocation;
965 bfd_vma insn;
966 bfd_reloc_status_type status;
967
968 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
969 input_section, output_bfd, &relocation, &insn);
970 if (status != bfd_reloc_other)
971 return status;
972
973 relocation ^= MINUS_ONE;
974 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
975 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
976
977 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
978 return bfd_reloc_overflow;
979 else
980 return bfd_reloc_ok;
981 }
982
983 /* Handle the LOX10 reloc. */
984
985 static bfd_reloc_status_type
986 sparc_elf_lox10_reloc (abfd,
987 reloc_entry,
988 symbol,
989 data,
990 input_section,
991 output_bfd,
992 error_message)
993 bfd *abfd;
994 arelent *reloc_entry;
995 asymbol *symbol;
996 PTR data;
997 asection *input_section;
998 bfd *output_bfd;
999 char **error_message ATTRIBUTE_UNUSED;
1000 {
1001 bfd_vma relocation;
1002 bfd_vma insn;
1003 bfd_reloc_status_type status;
1004
1005 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
1006 input_section, output_bfd, &relocation, &insn);
1007 if (status != bfd_reloc_other)
1008 return status;
1009
1010 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
1011 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1012
1013 return bfd_reloc_ok;
1014 }
1015 \f
1016 /* PLT/GOT stuff */
1017
1018 /* Both the headers and the entries are icache aligned. */
1019 #define PLT_ENTRY_SIZE 32
1020 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
1021 #define LARGE_PLT_THRESHOLD 32768
1022 #define GOT_RESERVED_ENTRIES 1
1023
1024 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
1025
1026 /* Fill in the .plt section. */
1027
1028 static void
1029 sparc64_elf_build_plt (output_bfd, contents, nentries)
1030 bfd *output_bfd;
1031 unsigned char *contents;
1032 int nentries;
1033 {
1034 const unsigned int nop = 0x01000000;
1035 int i, j;
1036
1037 /* The first four entries are reserved, and are initially undefined.
1038 We fill them with `illtrap 0' to force ld.so to do something. */
1039
1040 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
1041 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
1042
1043 /* The first 32768 entries are close enough to plt1 to get there via
1044 a straight branch. */
1045
1046 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
1047 {
1048 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
1049 unsigned int sethi, ba;
1050
1051 /* sethi (. - plt0), %g1 */
1052 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
1053
1054 /* ba,a,pt %xcc, plt1 */
1055 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
1056
1057 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
1058 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
1059 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1060 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1061 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1062 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1063 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1064 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1065 }
1066
1067 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1068 160: 160 entries and 160 pointers. This is to separate code from data,
1069 which is much friendlier on the cache. */
1070
1071 for (; i < nentries; i += 160)
1072 {
1073 int block = (i + 160 <= nentries ? 160 : nentries - i);
1074 for (j = 0; j < block; ++j)
1075 {
1076 unsigned char *entry, *ptr;
1077 unsigned int ldx;
1078
1079 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1080 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1081
1082 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1083 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1084
1085 /* mov %o7,%g5
1086 call .+8
1087 nop
1088 ldx [%o7+P],%g1
1089 jmpl %o7+%g1,%g1
1090 mov %g5,%o7 */
1091 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1092 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1093 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1094 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1095 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1096 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1097
1098 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1099 }
1100 }
1101 }
1102
1103 /* Return the offset of a particular plt entry within the .plt section. */
1104
1105 static bfd_vma
1106 sparc64_elf_plt_entry_offset (index)
1107 bfd_vma index;
1108 {
1109 bfd_vma block, ofs;
1110
1111 if (index < LARGE_PLT_THRESHOLD)
1112 return index * PLT_ENTRY_SIZE;
1113
1114 /* See above for details. */
1115
1116 block = (index - LARGE_PLT_THRESHOLD) / 160;
1117 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1118
1119 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1120 }
1121
1122 static bfd_vma
1123 sparc64_elf_plt_ptr_offset (index, max)
1124 bfd_vma index;
1125 bfd_vma max;
1126 {
1127 bfd_vma block, ofs, last;
1128
1129 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1130
1131 /* See above for details. */
1132
1133 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1134 ofs = index - block;
1135 if (block + 160 > max)
1136 last = (max - LARGE_PLT_THRESHOLD) % 160;
1137 else
1138 last = 160;
1139
1140 return (block * PLT_ENTRY_SIZE
1141 + last * 6*4
1142 + ofs * 8);
1143 }
1144 \f
1145 /* Look through the relocs for a section during the first phase, and
1146 allocate space in the global offset table or procedure linkage
1147 table. */
1148
1149 static bfd_boolean
1150 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1151 bfd *abfd;
1152 struct bfd_link_info *info;
1153 asection *sec;
1154 const Elf_Internal_Rela *relocs;
1155 {
1156 bfd *dynobj;
1157 Elf_Internal_Shdr *symtab_hdr;
1158 struct elf_link_hash_entry **sym_hashes;
1159 bfd_vma *local_got_offsets;
1160 const Elf_Internal_Rela *rel;
1161 const Elf_Internal_Rela *rel_end;
1162 asection *sgot;
1163 asection *srelgot;
1164 asection *sreloc;
1165
1166 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1167 return TRUE;
1168
1169 dynobj = elf_hash_table (info)->dynobj;
1170 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1171 sym_hashes = elf_sym_hashes (abfd);
1172 local_got_offsets = elf_local_got_offsets (abfd);
1173
1174 sgot = NULL;
1175 srelgot = NULL;
1176 sreloc = NULL;
1177
1178 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1179 for (rel = relocs; rel < rel_end; rel++)
1180 {
1181 unsigned long r_symndx;
1182 struct elf_link_hash_entry *h;
1183
1184 r_symndx = ELF64_R_SYM (rel->r_info);
1185 if (r_symndx < symtab_hdr->sh_info)
1186 h = NULL;
1187 else
1188 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1189
1190 switch (ELF64_R_TYPE_ID (rel->r_info))
1191 {
1192 case R_SPARC_GOT10:
1193 case R_SPARC_GOT13:
1194 case R_SPARC_GOT22:
1195 /* This symbol requires a global offset table entry. */
1196
1197 if (dynobj == NULL)
1198 {
1199 /* Create the .got and .rela.got sections. */
1200 elf_hash_table (info)->dynobj = dynobj = abfd;
1201 if (! create_got_section (dynobj, info))
1202 return FALSE;
1203 }
1204
1205 if (sgot == NULL)
1206 {
1207 sgot = sparc64_elf_hash_table (info)->sgot;
1208 BFD_ASSERT (sgot != NULL);
1209 }
1210
1211 if (srelgot == NULL && (h != NULL || info->shared))
1212 {
1213 srelgot = sparc64_elf_hash_table (info)->srelgot;
1214 BFD_ASSERT (srelgot != NULL);
1215 }
1216
1217 if (h != NULL)
1218 {
1219 if (h->got.offset != (bfd_vma) -1)
1220 {
1221 /* We have already allocated space in the .got. */
1222 break;
1223 }
1224 h->got.offset = sgot->size;
1225
1226 /* Make sure this symbol is output as a dynamic symbol. */
1227 if (h->dynindx == -1)
1228 {
1229 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1230 return FALSE;
1231 }
1232
1233 srelgot->size += sizeof (Elf64_External_Rela);
1234 }
1235 else
1236 {
1237 /* This is a global offset table entry for a local
1238 symbol. */
1239 if (local_got_offsets == NULL)
1240 {
1241 bfd_size_type size;
1242 register unsigned int i;
1243
1244 size = symtab_hdr->sh_info;
1245 size *= sizeof (bfd_vma);
1246 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1247 if (local_got_offsets == NULL)
1248 return FALSE;
1249 elf_local_got_offsets (abfd) = local_got_offsets;
1250 for (i = 0; i < symtab_hdr->sh_info; i++)
1251 local_got_offsets[i] = (bfd_vma) -1;
1252 }
1253 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1254 {
1255 /* We have already allocated space in the .got. */
1256 break;
1257 }
1258 local_got_offsets[r_symndx] = sgot->size;
1259
1260 if (info->shared)
1261 {
1262 /* If we are generating a shared object, we need to
1263 output a R_SPARC_RELATIVE reloc so that the
1264 dynamic linker can adjust this GOT entry. */
1265 srelgot->size += sizeof (Elf64_External_Rela);
1266 }
1267 }
1268
1269 sgot->size += 8;
1270
1271 #if 0
1272 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1273 unsigned numbers. If we permit ourselves to modify
1274 code so we get sethi/xor, this could work.
1275 Question: do we consider conditionally re-enabling
1276 this for -fpic, once we know about object code models? */
1277 /* If the .got section is more than 0x1000 bytes, we add
1278 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1279 bit relocations have a greater chance of working. */
1280 if (sgot->size >= 0x1000
1281 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1282 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1283 #endif
1284
1285 break;
1286
1287 case R_SPARC_WPLT30:
1288 case R_SPARC_PLT32:
1289 case R_SPARC_HIPLT22:
1290 case R_SPARC_LOPLT10:
1291 case R_SPARC_PCPLT32:
1292 case R_SPARC_PCPLT22:
1293 case R_SPARC_PCPLT10:
1294 case R_SPARC_PLT64:
1295 /* This symbol requires a procedure linkage table entry. We
1296 actually build the entry in adjust_dynamic_symbol,
1297 because this might be a case of linking PIC code without
1298 linking in any dynamic objects, in which case we don't
1299 need to generate a procedure linkage table after all. */
1300
1301 if (h == NULL)
1302 {
1303 /* It does not make sense to have a procedure linkage
1304 table entry for a local symbol. */
1305 bfd_set_error (bfd_error_bad_value);
1306 return FALSE;
1307 }
1308
1309 /* Make sure this symbol is output as a dynamic symbol. */
1310 if (h->dynindx == -1)
1311 {
1312 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1313 return FALSE;
1314 }
1315
1316 h->needs_plt = 1;
1317 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1318 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1319 break;
1320 /* Fall through. */
1321 case R_SPARC_PC10:
1322 case R_SPARC_PC22:
1323 case R_SPARC_PC_HH22:
1324 case R_SPARC_PC_HM10:
1325 case R_SPARC_PC_LM22:
1326 if (h != NULL
1327 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1328 break;
1329 /* Fall through. */
1330 case R_SPARC_DISP8:
1331 case R_SPARC_DISP16:
1332 case R_SPARC_DISP32:
1333 case R_SPARC_DISP64:
1334 case R_SPARC_WDISP30:
1335 case R_SPARC_WDISP22:
1336 case R_SPARC_WDISP19:
1337 case R_SPARC_WDISP16:
1338 if (h == NULL)
1339 break;
1340 /* Fall through. */
1341 case R_SPARC_8:
1342 case R_SPARC_16:
1343 case R_SPARC_32:
1344 case R_SPARC_HI22:
1345 case R_SPARC_22:
1346 case R_SPARC_13:
1347 case R_SPARC_LO10:
1348 case R_SPARC_UA32:
1349 case R_SPARC_10:
1350 case R_SPARC_11:
1351 case R_SPARC_64:
1352 case R_SPARC_OLO10:
1353 case R_SPARC_HH22:
1354 case R_SPARC_HM10:
1355 case R_SPARC_LM22:
1356 case R_SPARC_7:
1357 case R_SPARC_5:
1358 case R_SPARC_6:
1359 case R_SPARC_HIX22:
1360 case R_SPARC_LOX10:
1361 case R_SPARC_H44:
1362 case R_SPARC_M44:
1363 case R_SPARC_L44:
1364 case R_SPARC_UA64:
1365 case R_SPARC_UA16:
1366 /* When creating a shared object, we must copy these relocs
1367 into the output file. We create a reloc section in
1368 dynobj and make room for the reloc.
1369
1370 But don't do this for debugging sections -- this shows up
1371 with DWARF2 -- first because they are not loaded, and
1372 second because DWARF sez the debug info is not to be
1373 biased by the load address. */
1374 if (info->shared && (sec->flags & SEC_ALLOC))
1375 {
1376 if (sreloc == NULL)
1377 {
1378 const char *name;
1379
1380 name = (bfd_elf_string_from_elf_section
1381 (abfd,
1382 elf_elfheader (abfd)->e_shstrndx,
1383 elf_section_data (sec)->rel_hdr.sh_name));
1384 if (name == NULL)
1385 return FALSE;
1386
1387 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1388 && strcmp (bfd_get_section_name (abfd, sec),
1389 name + 5) == 0);
1390
1391 sreloc = bfd_get_section_by_name (dynobj, name);
1392 if (sreloc == NULL)
1393 {
1394 flagword flags;
1395
1396 sreloc = bfd_make_section (dynobj, name);
1397 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1398 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1399 if ((sec->flags & SEC_ALLOC) != 0)
1400 flags |= SEC_ALLOC | SEC_LOAD;
1401 if (sreloc == NULL
1402 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1403 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1404 return FALSE;
1405 }
1406 if (sec->flags & SEC_READONLY)
1407 info->flags |= DF_TEXTREL;
1408 }
1409
1410 sreloc->size += sizeof (Elf64_External_Rela);
1411 }
1412 break;
1413
1414 case R_SPARC_REGISTER:
1415 /* Nothing to do. */
1416 break;
1417
1418 default:
1419 (*_bfd_error_handler) (_("%B: check_relocs: unhandled reloc type %d"),
1420 abfd, ELF64_R_TYPE_ID (rel->r_info));
1421 return FALSE;
1422 }
1423 }
1424
1425 return TRUE;
1426 }
1427
1428 /* Hook called by the linker routine which adds symbols from an object
1429 file. We use it for STT_REGISTER symbols. */
1430
1431 static bfd_boolean
1432 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1433 bfd *abfd;
1434 struct bfd_link_info *info;
1435 Elf_Internal_Sym *sym;
1436 const char **namep;
1437 flagword *flagsp ATTRIBUTE_UNUSED;
1438 asection **secp ATTRIBUTE_UNUSED;
1439 bfd_vma *valp ATTRIBUTE_UNUSED;
1440 {
1441 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1442
1443 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1444 {
1445 int reg;
1446 struct sparc64_elf_app_reg *p;
1447
1448 reg = (int)sym->st_value;
1449 switch (reg & ~1)
1450 {
1451 case 2: reg -= 2; break;
1452 case 6: reg -= 4; break;
1453 default:
1454 (*_bfd_error_handler)
1455 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
1456 abfd);
1457 return FALSE;
1458 }
1459
1460 if (info->hash->creator != abfd->xvec
1461 || (abfd->flags & DYNAMIC) != 0)
1462 {
1463 /* STT_REGISTER only works when linking an elf64_sparc object.
1464 If STT_REGISTER comes from a dynamic object, don't put it into
1465 the output bfd. The dynamic linker will recheck it. */
1466 *namep = NULL;
1467 return TRUE;
1468 }
1469
1470 p = sparc64_elf_hash_table(info)->app_regs + reg;
1471
1472 if (p->name != NULL && strcmp (p->name, *namep))
1473 {
1474 (*_bfd_error_handler)
1475 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
1476 abfd, p->abfd, (int) sym->st_value,
1477 **namep ? *namep : "#scratch",
1478 *p->name ? p->name : "#scratch");
1479 return FALSE;
1480 }
1481
1482 if (p->name == NULL)
1483 {
1484 if (**namep)
1485 {
1486 struct elf_link_hash_entry *h;
1487
1488 h = (struct elf_link_hash_entry *)
1489 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1490
1491 if (h != NULL)
1492 {
1493 unsigned char type = h->type;
1494
1495 if (type > STT_FUNC)
1496 type = 0;
1497 (*_bfd_error_handler)
1498 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
1499 abfd, p->abfd, *namep, stt_types[type]);
1500 return FALSE;
1501 }
1502
1503 p->name = bfd_hash_allocate (&info->hash->table,
1504 strlen (*namep) + 1);
1505 if (!p->name)
1506 return FALSE;
1507
1508 strcpy (p->name, *namep);
1509 }
1510 else
1511 p->name = "";
1512 p->bind = ELF_ST_BIND (sym->st_info);
1513 p->abfd = abfd;
1514 p->shndx = sym->st_shndx;
1515 }
1516 else
1517 {
1518 if (p->bind == STB_WEAK
1519 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1520 {
1521 p->bind = STB_GLOBAL;
1522 p->abfd = abfd;
1523 }
1524 }
1525 *namep = NULL;
1526 return TRUE;
1527 }
1528 else if (*namep && **namep
1529 && info->hash->creator == abfd->xvec)
1530 {
1531 int i;
1532 struct sparc64_elf_app_reg *p;
1533
1534 p = sparc64_elf_hash_table(info)->app_regs;
1535 for (i = 0; i < 4; i++, p++)
1536 if (p->name != NULL && ! strcmp (p->name, *namep))
1537 {
1538 unsigned char type = ELF_ST_TYPE (sym->st_info);
1539
1540 if (type > STT_FUNC)
1541 type = 0;
1542 (*_bfd_error_handler)
1543 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
1544 abfd, p->abfd, *namep, stt_types[type]);
1545 return FALSE;
1546 }
1547 }
1548 return TRUE;
1549 }
1550
1551 /* This function takes care of emitting STT_REGISTER symbols
1552 which we cannot easily keep in the symbol hash table. */
1553
1554 static bfd_boolean
1555 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1556 bfd *output_bfd ATTRIBUTE_UNUSED;
1557 struct bfd_link_info *info;
1558 PTR finfo;
1559 bfd_boolean (*func)
1560 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1561 struct elf_link_hash_entry *));
1562 {
1563 int reg;
1564 struct sparc64_elf_app_reg *app_regs =
1565 sparc64_elf_hash_table(info)->app_regs;
1566 Elf_Internal_Sym sym;
1567
1568 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1569 at the end of the dynlocal list, so they came at the end of the local
1570 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1571 to back up symtab->sh_info. */
1572 if (elf_hash_table (info)->dynlocal)
1573 {
1574 bfd * dynobj = elf_hash_table (info)->dynobj;
1575 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1576 struct elf_link_local_dynamic_entry *e;
1577
1578 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1579 if (e->input_indx == -1)
1580 break;
1581 if (e)
1582 {
1583 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1584 = e->dynindx;
1585 }
1586 }
1587
1588 if (info->strip == strip_all)
1589 return TRUE;
1590
1591 for (reg = 0; reg < 4; reg++)
1592 if (app_regs [reg].name != NULL)
1593 {
1594 if (info->strip == strip_some
1595 && bfd_hash_lookup (info->keep_hash,
1596 app_regs [reg].name,
1597 FALSE, FALSE) == NULL)
1598 continue;
1599
1600 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1601 sym.st_size = 0;
1602 sym.st_other = 0;
1603 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1604 sym.st_shndx = app_regs [reg].shndx;
1605 if (! (*func) (finfo, app_regs [reg].name, &sym,
1606 sym.st_shndx == SHN_ABS
1607 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1608 NULL))
1609 return FALSE;
1610 }
1611
1612 return TRUE;
1613 }
1614
1615 static int
1616 sparc64_elf_get_symbol_type (elf_sym, type)
1617 Elf_Internal_Sym * elf_sym;
1618 int type;
1619 {
1620 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1621 return STT_REGISTER;
1622 else
1623 return type;
1624 }
1625
1626 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1627 even in SHN_UNDEF section. */
1628
1629 static void
1630 sparc64_elf_symbol_processing (abfd, asym)
1631 bfd *abfd ATTRIBUTE_UNUSED;
1632 asymbol *asym;
1633 {
1634 elf_symbol_type *elfsym;
1635
1636 elfsym = (elf_symbol_type *) asym;
1637 if (elfsym->internal_elf_sym.st_info
1638 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1639 {
1640 asym->flags |= BSF_GLOBAL;
1641 }
1642 }
1643
1644 /* Adjust a symbol defined by a dynamic object and referenced by a
1645 regular object. The current definition is in some section of the
1646 dynamic object, but we're not including those sections. We have to
1647 change the definition to something the rest of the link can
1648 understand. */
1649
1650 static bfd_boolean
1651 sparc64_elf_adjust_dynamic_symbol (info, h)
1652 struct bfd_link_info *info;
1653 struct elf_link_hash_entry *h;
1654 {
1655 bfd *dynobj;
1656 asection *s;
1657 unsigned int power_of_two;
1658
1659 dynobj = elf_hash_table (info)->dynobj;
1660
1661 /* Make sure we know what is going on here. */
1662 BFD_ASSERT (dynobj != NULL
1663 && (h->needs_plt
1664 || h->u.weakdef != NULL
1665 || (h->def_dynamic
1666 && h->ref_regular
1667 && !h->def_regular)));
1668
1669 /* If this is a function, put it in the procedure linkage table. We
1670 will fill in the contents of the procedure linkage table later
1671 (although we could actually do it here). The STT_NOTYPE
1672 condition is a hack specifically for the Oracle libraries
1673 delivered for Solaris; for some inexplicable reason, they define
1674 some of their functions as STT_NOTYPE when they really should be
1675 STT_FUNC. */
1676 if (h->type == STT_FUNC
1677 || h->needs_plt
1678 || (h->type == STT_NOTYPE
1679 && (h->root.type == bfd_link_hash_defined
1680 || h->root.type == bfd_link_hash_defweak)
1681 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1682 {
1683 if (! elf_hash_table (info)->dynamic_sections_created)
1684 {
1685 /* This case can occur if we saw a WPLT30 reloc in an input
1686 file, but none of the input files were dynamic objects.
1687 In such a case, we don't actually need to build a
1688 procedure linkage table, and we can just do a WDISP30
1689 reloc instead. */
1690 BFD_ASSERT (h->needs_plt);
1691 return TRUE;
1692 }
1693
1694 s = bfd_get_section_by_name (dynobj, ".plt");
1695 BFD_ASSERT (s != NULL);
1696
1697 /* The first four bit in .plt is reserved. */
1698 if (s->size == 0)
1699 s->size = PLT_HEADER_SIZE;
1700
1701 /* To simplify matters later, just store the plt index here. */
1702 h->plt.offset = s->size / PLT_ENTRY_SIZE;
1703
1704 /* If this symbol is not defined in a regular file, and we are
1705 not generating a shared library, then set the symbol to this
1706 location in the .plt. This is required to make function
1707 pointers compare as equal between the normal executable and
1708 the shared library. */
1709 if (! info->shared
1710 && !h->def_regular)
1711 {
1712 h->root.u.def.section = s;
1713 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1714 }
1715
1716 /* Make room for this entry. */
1717 s->size += PLT_ENTRY_SIZE;
1718
1719 /* We also need to make an entry in the .rela.plt section. */
1720
1721 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1722 BFD_ASSERT (s != NULL);
1723
1724 s->size += sizeof (Elf64_External_Rela);
1725
1726 /* The procedure linkage table size is bounded by the magnitude
1727 of the offset we can describe in the entry. */
1728 if (s->size >= (bfd_vma)1 << 32)
1729 {
1730 bfd_set_error (bfd_error_bad_value);
1731 return FALSE;
1732 }
1733
1734 return TRUE;
1735 }
1736
1737 /* If this is a weak symbol, and there is a real definition, the
1738 processor independent code will have arranged for us to see the
1739 real definition first, and we can just use the same value. */
1740 if (h->u.weakdef != NULL)
1741 {
1742 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1743 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1744 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1745 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1746 return TRUE;
1747 }
1748
1749 /* This is a reference to a symbol defined by a dynamic object which
1750 is not a function. */
1751
1752 /* If we are creating a shared library, we must presume that the
1753 only references to the symbol are via the global offset table.
1754 For such cases we need not do anything here; the relocations will
1755 be handled correctly by relocate_section. */
1756 if (info->shared)
1757 return TRUE;
1758
1759 /* We must allocate the symbol in our .dynbss section, which will
1760 become part of the .bss section of the executable. There will be
1761 an entry for this symbol in the .dynsym section. The dynamic
1762 object will contain position independent code, so all references
1763 from the dynamic object to this symbol will go through the global
1764 offset table. The dynamic linker will use the .dynsym entry to
1765 determine the address it must put in the global offset table, so
1766 both the dynamic object and the regular object will refer to the
1767 same memory location for the variable. */
1768
1769 s = bfd_get_section_by_name (dynobj, ".dynbss");
1770 BFD_ASSERT (s != NULL);
1771
1772 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1773 to copy the initial value out of the dynamic object and into the
1774 runtime process image. We need to remember the offset into the
1775 .rel.bss section we are going to use. */
1776 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1777 {
1778 asection *srel;
1779
1780 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1781 BFD_ASSERT (srel != NULL);
1782 srel->size += sizeof (Elf64_External_Rela);
1783 h->needs_copy = 1;
1784 }
1785
1786 /* We need to figure out the alignment required for this symbol. I
1787 have no idea how ELF linkers handle this. 16-bytes is the size
1788 of the largest type that requires hard alignment -- long double. */
1789 power_of_two = bfd_log2 (h->size);
1790 if (power_of_two > 4)
1791 power_of_two = 4;
1792
1793 /* Apply the required alignment. */
1794 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1795 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1796 {
1797 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1798 return FALSE;
1799 }
1800
1801 /* Define the symbol as being at this point in the section. */
1802 h->root.u.def.section = s;
1803 h->root.u.def.value = s->size;
1804
1805 /* Increment the section size to make room for the symbol. */
1806 s->size += h->size;
1807
1808 return TRUE;
1809 }
1810
1811 /* Return true if the dynamic symbol for a given section should be
1812 omitted when creating a shared library. */
1813
1814 static bfd_boolean
1815 sparc64_elf_omit_section_dynsym (bfd *output_bfd,
1816 struct bfd_link_info *info,
1817 asection *p)
1818 {
1819 /* We keep the .got section symbol so that explicit relocations
1820 against the _GLOBAL_OFFSET_TABLE_ symbol emitted in PIC mode
1821 can be turned into relocations against the .got symbol. */
1822 if (strcmp (p->name, ".got") == 0)
1823 return FALSE;
1824
1825 return _bfd_elf_link_omit_section_dynsym (output_bfd, info, p);
1826 }
1827
1828 /* Set the sizes of the dynamic sections. */
1829
1830 static bfd_boolean
1831 sparc64_elf_size_dynamic_sections (output_bfd, info)
1832 bfd *output_bfd;
1833 struct bfd_link_info *info;
1834 {
1835 bfd *dynobj;
1836 asection *s;
1837 bfd_boolean relplt;
1838
1839 dynobj = elf_hash_table (info)->dynobj;
1840 BFD_ASSERT (dynobj != NULL);
1841
1842 if (elf_hash_table (info)->dynamic_sections_created)
1843 {
1844 /* Set the contents of the .interp section to the interpreter. */
1845 if (info->executable)
1846 {
1847 s = bfd_get_section_by_name (dynobj, ".interp");
1848 BFD_ASSERT (s != NULL);
1849 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1850 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1851 }
1852 }
1853 else
1854 {
1855 /* We may have created entries in the .rela.got section.
1856 However, if we are not creating the dynamic sections, we will
1857 not actually use these entries. Reset the size of .rela.got,
1858 which will cause it to get stripped from the output file
1859 below. */
1860 s = sparc64_elf_hash_table (info)->srelgot;
1861 if (s != NULL)
1862 s->size = 0;
1863 }
1864
1865 /* The check_relocs and adjust_dynamic_symbol entry points have
1866 determined the sizes of the various dynamic sections. Allocate
1867 memory for them. */
1868 relplt = FALSE;
1869 for (s = dynobj->sections; s != NULL; s = s->next)
1870 {
1871 const char *name;
1872 bfd_boolean strip;
1873
1874 if ((s->flags & SEC_LINKER_CREATED) == 0)
1875 continue;
1876
1877 /* It's OK to base decisions on the section name, because none
1878 of the dynobj section names depend upon the input files. */
1879 name = bfd_get_section_name (dynobj, s);
1880
1881 strip = FALSE;
1882
1883 if (strncmp (name, ".rela", 5) == 0)
1884 {
1885 if (s->size == 0)
1886 {
1887 /* If we don't need this section, strip it from the
1888 output file. This is to handle .rela.bss and
1889 .rel.plt. We must create it in
1890 create_dynamic_sections, because it must be created
1891 before the linker maps input sections to output
1892 sections. The linker does that before
1893 adjust_dynamic_symbol is called, and it is that
1894 function which decides whether anything needs to go
1895 into these sections. */
1896 strip = TRUE;
1897 }
1898 else
1899 {
1900 if (strcmp (name, ".rela.plt") == 0)
1901 relplt = TRUE;
1902
1903 /* We use the reloc_count field as a counter if we need
1904 to copy relocs into the output file. */
1905 s->reloc_count = 0;
1906 }
1907 }
1908 else if (strcmp (name, ".plt") != 0
1909 && strncmp (name, ".got", 4) != 0)
1910 {
1911 /* It's not one of our sections, so don't allocate space. */
1912 continue;
1913 }
1914
1915 if (strip)
1916 {
1917 _bfd_strip_section_from_output (info, s);
1918 continue;
1919 }
1920
1921 /* Allocate memory for the section contents. Zero the memory
1922 for the benefit of .rela.plt, which has 4 unused entries
1923 at the beginning, and we don't want garbage. */
1924 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1925 if (s->contents == NULL && s->size != 0)
1926 return FALSE;
1927 }
1928
1929 if (elf_hash_table (info)->dynamic_sections_created)
1930 {
1931 /* Add some entries to the .dynamic section. We fill in the
1932 values later, in sparc64_elf_finish_dynamic_sections, but we
1933 must add the entries now so that we get the correct size for
1934 the .dynamic section. The DT_DEBUG entry is filled in by the
1935 dynamic linker and used by the debugger. */
1936 #define add_dynamic_entry(TAG, VAL) \
1937 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1938
1939 int reg;
1940 struct sparc64_elf_app_reg * app_regs;
1941 struct elf_strtab_hash *dynstr;
1942 struct elf_link_hash_table *eht = elf_hash_table (info);
1943
1944 if (info->executable)
1945 {
1946 if (!add_dynamic_entry (DT_DEBUG, 0))
1947 return FALSE;
1948 }
1949
1950 if (relplt)
1951 {
1952 if (!add_dynamic_entry (DT_PLTGOT, 0)
1953 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1954 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1955 || !add_dynamic_entry (DT_JMPREL, 0))
1956 return FALSE;
1957 }
1958
1959 if (!add_dynamic_entry (DT_RELA, 0)
1960 || !add_dynamic_entry (DT_RELASZ, 0)
1961 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1962 return FALSE;
1963
1964 if (info->flags & DF_TEXTREL)
1965 {
1966 if (!add_dynamic_entry (DT_TEXTREL, 0))
1967 return FALSE;
1968 }
1969
1970 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1971 entries if needed. */
1972 app_regs = sparc64_elf_hash_table (info)->app_regs;
1973 dynstr = eht->dynstr;
1974
1975 for (reg = 0; reg < 4; reg++)
1976 if (app_regs [reg].name != NULL)
1977 {
1978 struct elf_link_local_dynamic_entry *entry, *e;
1979
1980 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1981 return FALSE;
1982
1983 entry = (struct elf_link_local_dynamic_entry *)
1984 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1985 if (entry == NULL)
1986 return FALSE;
1987
1988 /* We cheat here a little bit: the symbol will not be local, so we
1989 put it at the end of the dynlocal linked list. We will fix it
1990 later on, as we have to fix other fields anyway. */
1991 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1992 entry->isym.st_size = 0;
1993 if (*app_regs [reg].name != '\0')
1994 entry->isym.st_name
1995 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1996 else
1997 entry->isym.st_name = 0;
1998 entry->isym.st_other = 0;
1999 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
2000 STT_REGISTER);
2001 entry->isym.st_shndx = app_regs [reg].shndx;
2002 entry->next = NULL;
2003 entry->input_bfd = output_bfd;
2004 entry->input_indx = -1;
2005
2006 if (eht->dynlocal == NULL)
2007 eht->dynlocal = entry;
2008 else
2009 {
2010 for (e = eht->dynlocal; e->next; e = e->next)
2011 ;
2012 e->next = entry;
2013 }
2014 eht->dynsymcount++;
2015 }
2016 }
2017 #undef add_dynamic_entry
2018
2019 return TRUE;
2020 }
2021 \f
2022 static bfd_boolean
2023 sparc64_elf_new_section_hook (abfd, sec)
2024 bfd *abfd;
2025 asection *sec;
2026 {
2027 struct sparc64_elf_section_data *sdata;
2028 bfd_size_type amt = sizeof (*sdata);
2029
2030 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
2031 if (sdata == NULL)
2032 return FALSE;
2033 sec->used_by_bfd = (PTR) sdata;
2034
2035 return _bfd_elf_new_section_hook (abfd, sec);
2036 }
2037
2038 static bfd_boolean
2039 sparc64_elf_relax_section (abfd, section, link_info, again)
2040 bfd *abfd ATTRIBUTE_UNUSED;
2041 asection *section ATTRIBUTE_UNUSED;
2042 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
2043 bfd_boolean *again;
2044 {
2045 *again = FALSE;
2046 sec_do_relax (section) = 1;
2047 return TRUE;
2048 }
2049 \f
2050 /* Relocate a SPARC64 ELF section. */
2051
2052 static bfd_boolean
2053 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
2054 contents, relocs, local_syms, local_sections)
2055 bfd *output_bfd;
2056 struct bfd_link_info *info;
2057 bfd *input_bfd;
2058 asection *input_section;
2059 bfd_byte *contents;
2060 Elf_Internal_Rela *relocs;
2061 Elf_Internal_Sym *local_syms;
2062 asection **local_sections;
2063 {
2064 bfd *dynobj;
2065 Elf_Internal_Shdr *symtab_hdr;
2066 struct elf_link_hash_entry **sym_hashes;
2067 bfd_vma *local_got_offsets;
2068 bfd_vma got_base;
2069 asection *sgot;
2070 asection *splt;
2071 asection *sreloc;
2072 Elf_Internal_Rela *rel;
2073 Elf_Internal_Rela *relend;
2074
2075 if (info->relocatable)
2076 return TRUE;
2077
2078 dynobj = elf_hash_table (info)->dynobj;
2079 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2080 sym_hashes = elf_sym_hashes (input_bfd);
2081 local_got_offsets = elf_local_got_offsets (input_bfd);
2082
2083 if (elf_hash_table(info)->hgot == NULL)
2084 got_base = 0;
2085 else
2086 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2087
2088 sgot = splt = sreloc = NULL;
2089 if (dynobj != NULL)
2090 splt = bfd_get_section_by_name (dynobj, ".plt");
2091
2092 rel = relocs;
2093 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2094 for (; rel < relend; rel++)
2095 {
2096 int r_type;
2097 reloc_howto_type *howto;
2098 unsigned long r_symndx;
2099 struct elf_link_hash_entry *h;
2100 Elf_Internal_Sym *sym;
2101 asection *sec;
2102 bfd_vma relocation, off;
2103 bfd_reloc_status_type r;
2104 bfd_boolean is_plt = FALSE;
2105 bfd_boolean unresolved_reloc;
2106
2107 r_type = ELF64_R_TYPE_ID (rel->r_info);
2108 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2109 {
2110 bfd_set_error (bfd_error_bad_value);
2111 return FALSE;
2112 }
2113 howto = sparc64_elf_howto_table + r_type;
2114
2115 /* This is a final link. */
2116 r_symndx = ELF64_R_SYM (rel->r_info);
2117 h = NULL;
2118 sym = NULL;
2119 sec = NULL;
2120 unresolved_reloc = FALSE;
2121 if (r_symndx < symtab_hdr->sh_info)
2122 {
2123 sym = local_syms + r_symndx;
2124 sec = local_sections[r_symndx];
2125 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2126 }
2127 else
2128 {
2129 bfd_boolean warned;
2130
2131 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2132 r_symndx, symtab_hdr, sym_hashes,
2133 h, sec, relocation,
2134 unresolved_reloc, warned);
2135 if (warned)
2136 {
2137 /* To avoid generating warning messages about truncated
2138 relocations, set the relocation's address to be the same as
2139 the start of this section. */
2140 if (input_section->output_section != NULL)
2141 relocation = input_section->output_section->vma;
2142 else
2143 relocation = 0;
2144 }
2145 }
2146
2147 do_dynreloc:
2148 /* When generating a shared object, these relocations are copied
2149 into the output file to be resolved at run time. */
2150 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2151 {
2152 switch (r_type)
2153 {
2154 case R_SPARC_PC10:
2155 case R_SPARC_PC22:
2156 case R_SPARC_PC_HH22:
2157 case R_SPARC_PC_HM10:
2158 case R_SPARC_PC_LM22:
2159 if (h != NULL
2160 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2161 break;
2162 /* Fall through. */
2163 case R_SPARC_DISP8:
2164 case R_SPARC_DISP16:
2165 case R_SPARC_DISP32:
2166 case R_SPARC_DISP64:
2167 case R_SPARC_WDISP30:
2168 case R_SPARC_WDISP22:
2169 case R_SPARC_WDISP19:
2170 case R_SPARC_WDISP16:
2171 if (h == NULL)
2172 break;
2173 /* Fall through. */
2174 case R_SPARC_8:
2175 case R_SPARC_16:
2176 case R_SPARC_32:
2177 case R_SPARC_HI22:
2178 case R_SPARC_22:
2179 case R_SPARC_13:
2180 case R_SPARC_LO10:
2181 case R_SPARC_UA32:
2182 case R_SPARC_10:
2183 case R_SPARC_11:
2184 case R_SPARC_64:
2185 case R_SPARC_OLO10:
2186 case R_SPARC_HH22:
2187 case R_SPARC_HM10:
2188 case R_SPARC_LM22:
2189 case R_SPARC_7:
2190 case R_SPARC_5:
2191 case R_SPARC_6:
2192 case R_SPARC_HIX22:
2193 case R_SPARC_LOX10:
2194 case R_SPARC_H44:
2195 case R_SPARC_M44:
2196 case R_SPARC_L44:
2197 case R_SPARC_UA64:
2198 case R_SPARC_UA16:
2199 {
2200 Elf_Internal_Rela outrel;
2201 bfd_byte *loc;
2202 bfd_boolean skip, relocate;
2203
2204 if (sreloc == NULL)
2205 {
2206 const char *name =
2207 (bfd_elf_string_from_elf_section
2208 (input_bfd,
2209 elf_elfheader (input_bfd)->e_shstrndx,
2210 elf_section_data (input_section)->rel_hdr.sh_name));
2211
2212 if (name == NULL)
2213 return FALSE;
2214
2215 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2216 && strcmp (bfd_get_section_name(input_bfd,
2217 input_section),
2218 name + 5) == 0);
2219
2220 sreloc = bfd_get_section_by_name (dynobj, name);
2221 BFD_ASSERT (sreloc != NULL);
2222 }
2223
2224 skip = FALSE;
2225 relocate = FALSE;
2226
2227 outrel.r_offset =
2228 _bfd_elf_section_offset (output_bfd, info, input_section,
2229 rel->r_offset);
2230 if (outrel.r_offset == (bfd_vma) -1)
2231 skip = TRUE;
2232 else if (outrel.r_offset == (bfd_vma) -2)
2233 skip = TRUE, relocate = TRUE;
2234
2235 outrel.r_offset += (input_section->output_section->vma
2236 + input_section->output_offset);
2237
2238 /* Optimize unaligned reloc usage now that we know where
2239 it finally resides. */
2240 switch (r_type)
2241 {
2242 case R_SPARC_16:
2243 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2244 break;
2245 case R_SPARC_UA16:
2246 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2247 break;
2248 case R_SPARC_32:
2249 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2250 break;
2251 case R_SPARC_UA32:
2252 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2253 break;
2254 case R_SPARC_64:
2255 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2256 break;
2257 case R_SPARC_UA64:
2258 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2259 break;
2260 case R_SPARC_DISP8:
2261 case R_SPARC_DISP16:
2262 case R_SPARC_DISP32:
2263 case R_SPARC_DISP64:
2264 /* If the symbol is not dynamic, we should not keep
2265 a dynamic relocation. But an .rela.* slot has been
2266 allocated for it, output R_SPARC_NONE.
2267 FIXME: Add code tracking needed dynamic relocs as
2268 e.g. i386 has. */
2269 if (h->dynindx == -1)
2270 skip = TRUE, relocate = TRUE;
2271 break;
2272 }
2273
2274 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2275 if (!skip
2276 && h != NULL
2277 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2278 && h->root.type == bfd_link_hash_undefweak)
2279 skip = TRUE, relocate = TRUE;
2280
2281 if (skip)
2282 memset (&outrel, 0, sizeof outrel);
2283 /* h->dynindx may be -1 if the symbol was marked to
2284 become local. */
2285 else if (h != NULL && ! is_plt
2286 && ((! info->symbolic && h->dynindx != -1)
2287 || !h->def_regular))
2288 {
2289 BFD_ASSERT (h->dynindx != -1);
2290 outrel.r_info
2291 = ELF64_R_INFO (h->dynindx,
2292 ELF64_R_TYPE_INFO (
2293 ELF64_R_TYPE_DATA (rel->r_info),
2294 r_type));
2295 outrel.r_addend = rel->r_addend;
2296 }
2297 else
2298 {
2299 outrel.r_addend = relocation + rel->r_addend;
2300 if (r_type == R_SPARC_64)
2301 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2302 else
2303 {
2304 long indx;
2305
2306 if (is_plt)
2307 sec = splt;
2308
2309 if (bfd_is_abs_section (sec))
2310 indx = 0;
2311 else if (sec == NULL || sec->owner == NULL)
2312 {
2313 bfd_set_error (bfd_error_bad_value);
2314 return FALSE;
2315 }
2316 else
2317 {
2318 asection *osec;
2319
2320 osec = sec->output_section;
2321 indx = elf_section_data (osec)->dynindx;
2322
2323 /* We are turning this relocation into one
2324 against a section symbol, so subtract out
2325 the output section's address but not the
2326 offset of the input section in the output
2327 section. */
2328 outrel.r_addend -= osec->vma;
2329
2330 /* FIXME: we really should be able to link non-pic
2331 shared libraries. */
2332 if (indx == 0)
2333 {
2334 BFD_FAIL ();
2335 (*_bfd_error_handler)
2336 (_("%B: probably compiled without -fPIC?"),
2337 input_bfd);
2338 bfd_set_error (bfd_error_bad_value);
2339 return FALSE;
2340 }
2341 }
2342
2343 outrel.r_info
2344 = ELF64_R_INFO (indx,
2345 ELF64_R_TYPE_INFO (
2346 ELF64_R_TYPE_DATA (rel->r_info),
2347 r_type));
2348 }
2349 }
2350
2351 loc = sreloc->contents;
2352 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2353 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2354
2355 /* This reloc will be computed at runtime, so there's no
2356 need to do anything now. */
2357 if (! relocate)
2358 continue;
2359 }
2360 break;
2361 }
2362 }
2363
2364 switch (r_type)
2365 {
2366 case R_SPARC_GOT10:
2367 case R_SPARC_GOT13:
2368 case R_SPARC_GOT22:
2369 /* Relocation is to the entry for this symbol in the global
2370 offset table. */
2371 if (sgot == NULL)
2372 {
2373 sgot = sparc64_elf_hash_table (info)->sgot;
2374 BFD_ASSERT (sgot != NULL);
2375 }
2376
2377 if (h != NULL)
2378 {
2379 bfd_boolean dyn;
2380
2381 off = h->got.offset;
2382 BFD_ASSERT (off != (bfd_vma) -1);
2383 dyn = elf_hash_table (info)->dynamic_sections_created;
2384
2385 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2386 || (info->shared
2387 && (info->symbolic
2388 || h->dynindx == -1
2389 || h->forced_local)
2390 && h->def_regular))
2391 {
2392 /* This is actually a static link, or it is a -Bsymbolic
2393 link and the symbol is defined locally, or the symbol
2394 was forced to be local because of a version file. We
2395 must initialize this entry in the global offset table.
2396 Since the offset must always be a multiple of 8, we
2397 use the least significant bit to record whether we
2398 have initialized it already.
2399
2400 When doing a dynamic link, we create a .rela.got
2401 relocation entry to initialize the value. This is
2402 done in the finish_dynamic_symbol routine. */
2403
2404 if ((off & 1) != 0)
2405 off &= ~1;
2406 else
2407 {
2408 bfd_put_64 (output_bfd, relocation,
2409 sgot->contents + off);
2410 h->got.offset |= 1;
2411 }
2412 }
2413 else
2414 unresolved_reloc = FALSE;
2415 }
2416 else
2417 {
2418 BFD_ASSERT (local_got_offsets != NULL);
2419 off = local_got_offsets[r_symndx];
2420 BFD_ASSERT (off != (bfd_vma) -1);
2421
2422 /* The offset must always be a multiple of 8. We use
2423 the least significant bit to record whether we have
2424 already processed this entry. */
2425 if ((off & 1) != 0)
2426 off &= ~1;
2427 else
2428 {
2429 local_got_offsets[r_symndx] |= 1;
2430
2431 if (info->shared)
2432 {
2433 asection *s;
2434 Elf_Internal_Rela outrel;
2435 bfd_byte *loc;
2436
2437 /* The Solaris 2.7 64-bit linker adds the contents
2438 of the location to the value of the reloc.
2439 Note this is different behaviour to the
2440 32-bit linker, which both adds the contents
2441 and ignores the addend. So clear the location. */
2442 bfd_put_64 (output_bfd, (bfd_vma) 0,
2443 sgot->contents + off);
2444
2445 /* We need to generate a R_SPARC_RELATIVE reloc
2446 for the dynamic linker. */
2447 s = sparc64_elf_hash_table (info)->srelgot;
2448 BFD_ASSERT (s != NULL);
2449
2450 outrel.r_offset = (sgot->output_section->vma
2451 + sgot->output_offset
2452 + off);
2453 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2454 outrel.r_addend = relocation;
2455 loc = s->contents;
2456 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2457 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2458 }
2459 else
2460 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2461 }
2462 }
2463 relocation = sgot->output_offset + off - got_base;
2464 goto do_default;
2465
2466 case R_SPARC_WPLT30:
2467 case R_SPARC_PLT32:
2468 case R_SPARC_HIPLT22:
2469 case R_SPARC_LOPLT10:
2470 case R_SPARC_PCPLT32:
2471 case R_SPARC_PCPLT22:
2472 case R_SPARC_PCPLT10:
2473 case R_SPARC_PLT64:
2474 /* Relocation is to the entry for this symbol in the
2475 procedure linkage table. */
2476 BFD_ASSERT (h != NULL);
2477
2478 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2479 {
2480 /* We didn't make a PLT entry for this symbol. This
2481 happens when statically linking PIC code, or when
2482 using -Bsymbolic. */
2483 goto do_default;
2484 }
2485
2486 relocation = (splt->output_section->vma
2487 + splt->output_offset
2488 + sparc64_elf_plt_entry_offset (h->plt.offset));
2489 unresolved_reloc = FALSE;
2490 if (r_type == R_SPARC_WPLT30)
2491 goto do_wplt30;
2492 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2493 {
2494 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2495 is_plt = TRUE;
2496 goto do_dynreloc;
2497 }
2498 goto do_default;
2499
2500 case R_SPARC_OLO10:
2501 {
2502 bfd_vma x;
2503
2504 relocation += rel->r_addend;
2505 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2506
2507 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2508 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2509 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2510
2511 r = bfd_check_overflow (howto->complain_on_overflow,
2512 howto->bitsize, howto->rightshift,
2513 bfd_arch_bits_per_address (input_bfd),
2514 relocation);
2515 }
2516 break;
2517
2518 case R_SPARC_WDISP16:
2519 {
2520 bfd_vma x;
2521
2522 relocation += rel->r_addend;
2523 /* Adjust for pc-relative-ness. */
2524 relocation -= (input_section->output_section->vma
2525 + input_section->output_offset);
2526 relocation -= rel->r_offset;
2527
2528 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2529 x &= ~(bfd_vma) 0x303fff;
2530 x |= ((((relocation >> 2) & 0xc000) << 6)
2531 | ((relocation >> 2) & 0x3fff));
2532 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2533
2534 r = bfd_check_overflow (howto->complain_on_overflow,
2535 howto->bitsize, howto->rightshift,
2536 bfd_arch_bits_per_address (input_bfd),
2537 relocation);
2538 }
2539 break;
2540
2541 case R_SPARC_HIX22:
2542 {
2543 bfd_vma x;
2544
2545 relocation += rel->r_addend;
2546 relocation = relocation ^ MINUS_ONE;
2547
2548 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2549 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2550 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2551
2552 r = bfd_check_overflow (howto->complain_on_overflow,
2553 howto->bitsize, howto->rightshift,
2554 bfd_arch_bits_per_address (input_bfd),
2555 relocation);
2556 }
2557 break;
2558
2559 case R_SPARC_LOX10:
2560 {
2561 bfd_vma x;
2562
2563 relocation += rel->r_addend;
2564 relocation = (relocation & 0x3ff) | 0x1c00;
2565
2566 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2567 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2568 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2569
2570 r = bfd_reloc_ok;
2571 }
2572 break;
2573
2574 case R_SPARC_WDISP30:
2575 do_wplt30:
2576 if (sec_do_relax (input_section)
2577 && rel->r_offset + 4 < input_section->size)
2578 {
2579 #define G0 0
2580 #define O7 15
2581 #define XCC (2 << 20)
2582 #define COND(x) (((x)&0xf)<<25)
2583 #define CONDA COND(0x8)
2584 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2585 #define INSN_BA (F2(0,2) | CONDA)
2586 #define INSN_OR F3(2, 0x2, 0)
2587 #define INSN_NOP F2(0,4)
2588
2589 bfd_vma x, y;
2590
2591 /* If the instruction is a call with either:
2592 restore
2593 arithmetic instruction with rd == %o7
2594 where rs1 != %o7 and rs2 if it is register != %o7
2595 then we can optimize if the call destination is near
2596 by changing the call into a branch always. */
2597 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2598 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2599 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2600 {
2601 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2602 || ((y & OP3(0x28)) == 0 /* arithmetic */
2603 && (y & RD(~0)) == RD(O7)))
2604 && (y & RS1(~0)) != RS1(O7)
2605 && ((y & F3I(~0))
2606 || (y & RS2(~0)) != RS2(O7)))
2607 {
2608 bfd_vma reloc;
2609
2610 reloc = relocation + rel->r_addend - rel->r_offset;
2611 reloc -= (input_section->output_section->vma
2612 + input_section->output_offset);
2613 if (reloc & 3)
2614 goto do_default;
2615
2616 /* Ensure the branch fits into simm22. */
2617 if ((reloc & ~(bfd_vma)0x7fffff)
2618 && ((reloc | 0x7fffff) != MINUS_ONE))
2619 goto do_default;
2620 reloc >>= 2;
2621
2622 /* Check whether it fits into simm19. */
2623 if ((reloc & 0x3c0000) == 0
2624 || (reloc & 0x3c0000) == 0x3c0000)
2625 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2626 else
2627 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2628 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2629 r = bfd_reloc_ok;
2630 if (rel->r_offset >= 4
2631 && (y & (0xffffffff ^ RS1(~0)))
2632 == (INSN_OR | RD(O7) | RS2(G0)))
2633 {
2634 bfd_vma z;
2635 unsigned int reg;
2636
2637 z = bfd_get_32 (input_bfd,
2638 contents + rel->r_offset - 4);
2639 if ((z & (0xffffffff ^ RD(~0)))
2640 != (INSN_OR | RS1(O7) | RS2(G0)))
2641 break;
2642
2643 /* The sequence was
2644 or %o7, %g0, %rN
2645 call foo
2646 or %rN, %g0, %o7
2647
2648 If call foo was replaced with ba, replace
2649 or %rN, %g0, %o7 with nop. */
2650
2651 reg = (y & RS1(~0)) >> 14;
2652 if (reg != ((z & RD(~0)) >> 25)
2653 || reg == G0 || reg == O7)
2654 break;
2655
2656 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2657 contents + rel->r_offset + 4);
2658 }
2659 break;
2660 }
2661 }
2662 }
2663 /* Fall through. */
2664
2665 default:
2666 do_default:
2667 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2668 contents, rel->r_offset,
2669 relocation, rel->r_addend);
2670 break;
2671 }
2672
2673 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2674 because such sections are not SEC_ALLOC and thus ld.so will
2675 not process them. */
2676 if (unresolved_reloc
2677 && !((input_section->flags & SEC_DEBUGGING) != 0
2678 && h->def_dynamic))
2679 (*_bfd_error_handler)
2680 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2681 input_bfd, input_section,
2682 (long) rel->r_offset,
2683 h->root.root.string);
2684
2685 switch (r)
2686 {
2687 case bfd_reloc_ok:
2688 break;
2689
2690 default:
2691 case bfd_reloc_outofrange:
2692 abort ();
2693
2694 case bfd_reloc_overflow:
2695 {
2696 const char *name;
2697
2698 /* The Solaris native linker silently disregards
2699 overflows. We don't, but this breaks stabs debugging
2700 info, whose relocations are only 32-bits wide. Ignore
2701 overflows in this case and also for discarded entries. */
2702 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2703 && (((input_section->flags & SEC_DEBUGGING) != 0
2704 && strcmp (bfd_section_name (input_bfd, input_section),
2705 ".stab") == 0)
2706 || _bfd_elf_section_offset (output_bfd, info,
2707 input_section,
2708 rel->r_offset) == (bfd_vma)-1))
2709 break;
2710
2711 if (h != NULL)
2712 {
2713 if (h->root.type == bfd_link_hash_undefweak
2714 && howto->pc_relative)
2715 {
2716 /* Assume this is a call protected by other code that
2717 detect the symbol is undefined. If this is the case,
2718 we can safely ignore the overflow. If not, the
2719 program is hosed anyway, and a little warning isn't
2720 going to help. */
2721 break;
2722 }
2723
2724 name = NULL;
2725 }
2726 else
2727 {
2728 name = (bfd_elf_string_from_elf_section
2729 (input_bfd,
2730 symtab_hdr->sh_link,
2731 sym->st_name));
2732 if (name == NULL)
2733 return FALSE;
2734 if (*name == '\0')
2735 name = bfd_section_name (input_bfd, sec);
2736 }
2737 if (! ((*info->callbacks->reloc_overflow)
2738 (info, (h ? &h->root : NULL), name, howto->name,
2739 (bfd_vma) 0, input_bfd, input_section,
2740 rel->r_offset)))
2741 return FALSE;
2742 }
2743 break;
2744 }
2745 }
2746
2747 return TRUE;
2748 }
2749
2750 /* Finish up dynamic symbol handling. We set the contents of various
2751 dynamic sections here. */
2752
2753 static bfd_boolean
2754 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2755 bfd *output_bfd;
2756 struct bfd_link_info *info;
2757 struct elf_link_hash_entry *h;
2758 Elf_Internal_Sym *sym;
2759 {
2760 bfd *dynobj;
2761
2762 dynobj = elf_hash_table (info)->dynobj;
2763
2764 if (h->plt.offset != (bfd_vma) -1)
2765 {
2766 asection *splt;
2767 asection *srela;
2768 Elf_Internal_Rela rela;
2769 bfd_byte *loc;
2770
2771 /* This symbol has an entry in the PLT. Set it up. */
2772
2773 BFD_ASSERT (h->dynindx != -1);
2774
2775 splt = bfd_get_section_by_name (dynobj, ".plt");
2776 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2777 BFD_ASSERT (splt != NULL && srela != NULL);
2778
2779 /* Fill in the entry in the .rela.plt section. */
2780
2781 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2782 {
2783 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2784 rela.r_addend = 0;
2785 }
2786 else
2787 {
2788 bfd_vma max = splt->size / PLT_ENTRY_SIZE;
2789 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2790 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2791 -(splt->output_section->vma + splt->output_offset);
2792 }
2793 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2794 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2795
2796 /* Adjust for the first 4 reserved elements in the .plt section
2797 when setting the offset in the .rela.plt section.
2798 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2799 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2800
2801 loc = srela->contents;
2802 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2803 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2804
2805 if (!h->def_regular)
2806 {
2807 /* Mark the symbol as undefined, rather than as defined in
2808 the .plt section. Leave the value alone. */
2809 sym->st_shndx = SHN_UNDEF;
2810 /* If the symbol is weak, we do need to clear the value.
2811 Otherwise, the PLT entry would provide a definition for
2812 the symbol even if the symbol wasn't defined anywhere,
2813 and so the symbol would never be NULL. */
2814 if (!h->ref_regular_nonweak)
2815 sym->st_value = 0;
2816 }
2817 }
2818
2819 if (h->got.offset != (bfd_vma) -1)
2820 {
2821 asection *sgot;
2822 asection *srela;
2823 Elf_Internal_Rela rela;
2824 bfd_byte *loc;
2825
2826 /* This symbol has an entry in the GOT. Set it up. */
2827
2828 sgot = sparc64_elf_hash_table (info)->sgot;
2829 srela = sparc64_elf_hash_table (info)->srelgot;
2830 BFD_ASSERT (sgot != NULL && srela != NULL);
2831
2832 rela.r_offset = (sgot->output_section->vma
2833 + sgot->output_offset
2834 + (h->got.offset &~ (bfd_vma) 1));
2835
2836 /* If this is a -Bsymbolic link, and the symbol is defined
2837 locally, we just want to emit a RELATIVE reloc. Likewise if
2838 the symbol was forced to be local because of a version file.
2839 The entry in the global offset table will already have been
2840 initialized in the relocate_section function. */
2841 if (info->shared
2842 && (info->symbolic || h->dynindx == -1)
2843 && h->def_regular)
2844 {
2845 asection *sec = h->root.u.def.section;
2846 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2847 rela.r_addend = (h->root.u.def.value
2848 + sec->output_section->vma
2849 + sec->output_offset);
2850 }
2851 else
2852 {
2853 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2854 rela.r_addend = 0;
2855 }
2856
2857 bfd_put_64 (output_bfd, (bfd_vma) 0,
2858 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2859 loc = srela->contents;
2860 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2861 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2862 }
2863
2864 if (h->needs_copy)
2865 {
2866 asection *s;
2867 Elf_Internal_Rela rela;
2868 bfd_byte *loc;
2869
2870 /* This symbols needs a copy reloc. Set it up. */
2871 BFD_ASSERT (h->dynindx != -1);
2872
2873 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2874 ".rela.bss");
2875 BFD_ASSERT (s != NULL);
2876
2877 rela.r_offset = (h->root.u.def.value
2878 + h->root.u.def.section->output_section->vma
2879 + h->root.u.def.section->output_offset);
2880 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2881 rela.r_addend = 0;
2882 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2883 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2884 }
2885
2886 /* Mark some specially defined symbols as absolute. */
2887 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2888 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2889 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2890 sym->st_shndx = SHN_ABS;
2891
2892 return TRUE;
2893 }
2894
2895 /* Finish up the dynamic sections. */
2896
2897 static bfd_boolean
2898 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2899 bfd *output_bfd;
2900 struct bfd_link_info *info;
2901 {
2902 bfd *dynobj;
2903 int stt_regidx = -1;
2904 asection *sdyn;
2905 asection *sgot;
2906
2907 dynobj = elf_hash_table (info)->dynobj;
2908
2909 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2910
2911 if (elf_hash_table (info)->dynamic_sections_created)
2912 {
2913 asection *splt;
2914 Elf64_External_Dyn *dyncon, *dynconend;
2915
2916 splt = bfd_get_section_by_name (dynobj, ".plt");
2917 BFD_ASSERT (splt != NULL && sdyn != NULL);
2918
2919 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2920 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2921 for (; dyncon < dynconend; dyncon++)
2922 {
2923 Elf_Internal_Dyn dyn;
2924 const char *name;
2925 bfd_boolean size;
2926
2927 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2928
2929 switch (dyn.d_tag)
2930 {
2931 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2932 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2933 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2934 case DT_SPARC_REGISTER:
2935 if (stt_regidx == -1)
2936 {
2937 stt_regidx =
2938 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2939 if (stt_regidx == -1)
2940 return FALSE;
2941 }
2942 dyn.d_un.d_val = stt_regidx++;
2943 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2944 /* fallthrough */
2945 default: name = NULL; size = FALSE; break;
2946 }
2947
2948 if (name != NULL)
2949 {
2950 asection *s;
2951
2952 s = bfd_get_section_by_name (output_bfd, name);
2953 if (s == NULL)
2954 dyn.d_un.d_val = 0;
2955 else
2956 {
2957 if (! size)
2958 dyn.d_un.d_ptr = s->vma;
2959 else
2960 dyn.d_un.d_val = s->size;
2961 }
2962 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2963 }
2964 }
2965
2966 /* Initialize the contents of the .plt section. */
2967 if (splt->size > 0)
2968 sparc64_elf_build_plt (output_bfd, splt->contents,
2969 (int) (splt->size / PLT_ENTRY_SIZE));
2970
2971 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2972 PLT_ENTRY_SIZE;
2973 }
2974
2975 /* Set the first entry in the global offset table to the address of
2976 the dynamic section. */
2977 sgot = sparc64_elf_hash_table (info)->sgot;
2978 BFD_ASSERT (sgot != NULL);
2979 if (sgot->size > 0)
2980 {
2981 if (sdyn == NULL)
2982 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2983 else
2984 bfd_put_64 (output_bfd,
2985 sdyn->output_section->vma + sdyn->output_offset,
2986 sgot->contents);
2987 }
2988
2989 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2990
2991 return TRUE;
2992 }
2993
2994 static enum elf_reloc_type_class
2995 sparc64_elf_reloc_type_class (rela)
2996 const Elf_Internal_Rela *rela;
2997 {
2998 switch ((int) ELF64_R_TYPE (rela->r_info))
2999 {
3000 case R_SPARC_RELATIVE:
3001 return reloc_class_relative;
3002 case R_SPARC_JMP_SLOT:
3003 return reloc_class_plt;
3004 case R_SPARC_COPY:
3005 return reloc_class_copy;
3006 default:
3007 return reloc_class_normal;
3008 }
3009 }
3010 \f
3011 /* Functions for dealing with the e_flags field. */
3012
3013 /* Merge backend specific data from an object file to the output
3014 object file when linking. */
3015
3016 static bfd_boolean
3017 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
3018 bfd *ibfd;
3019 bfd *obfd;
3020 {
3021 bfd_boolean error;
3022 flagword new_flags, old_flags;
3023 int new_mm, old_mm;
3024
3025 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3026 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3027 return TRUE;
3028
3029 new_flags = elf_elfheader (ibfd)->e_flags;
3030 old_flags = elf_elfheader (obfd)->e_flags;
3031
3032 if (!elf_flags_init (obfd)) /* First call, no flags set */
3033 {
3034 elf_flags_init (obfd) = TRUE;
3035 elf_elfheader (obfd)->e_flags = new_flags;
3036 }
3037
3038 else if (new_flags == old_flags) /* Compatible flags are ok */
3039 ;
3040
3041 else /* Incompatible flags */
3042 {
3043 error = FALSE;
3044
3045 #define EF_SPARC_ISA_EXTENSIONS \
3046 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
3047
3048 if ((ibfd->flags & DYNAMIC) != 0)
3049 {
3050 /* We don't want dynamic objects memory ordering and
3051 architecture to have any role. That's what dynamic linker
3052 should do. */
3053 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
3054 new_flags |= (old_flags
3055 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3056 }
3057 else
3058 {
3059 /* Choose the highest architecture requirements. */
3060 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3061 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3062 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3063 && (old_flags & EF_SPARC_HAL_R1))
3064 {
3065 error = TRUE;
3066 (*_bfd_error_handler)
3067 (_("%B: linking UltraSPARC specific with HAL specific code"),
3068 ibfd);
3069 }
3070 /* Choose the most restrictive memory ordering. */
3071 old_mm = (old_flags & EF_SPARCV9_MM);
3072 new_mm = (new_flags & EF_SPARCV9_MM);
3073 old_flags &= ~EF_SPARCV9_MM;
3074 new_flags &= ~EF_SPARCV9_MM;
3075 if (new_mm < old_mm)
3076 old_mm = new_mm;
3077 old_flags |= old_mm;
3078 new_flags |= old_mm;
3079 }
3080
3081 /* Warn about any other mismatches */
3082 if (new_flags != old_flags)
3083 {
3084 error = TRUE;
3085 (*_bfd_error_handler)
3086 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3087 ibfd, (long) new_flags, (long) old_flags);
3088 }
3089
3090 elf_elfheader (obfd)->e_flags = old_flags;
3091
3092 if (error)
3093 {
3094 bfd_set_error (bfd_error_bad_value);
3095 return FALSE;
3096 }
3097 }
3098 return TRUE;
3099 }
3100
3101 /* MARCO: Set the correct entry size for the .stab section. */
3102
3103 static bfd_boolean
3104 sparc64_elf_fake_sections (abfd, hdr, sec)
3105 bfd *abfd ATTRIBUTE_UNUSED;
3106 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3107 asection *sec;
3108 {
3109 const char *name;
3110
3111 name = bfd_get_section_name (abfd, sec);
3112
3113 if (strcmp (name, ".stab") == 0)
3114 {
3115 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3116 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3117 }
3118
3119 return TRUE;
3120 }
3121 \f
3122 /* Print a STT_REGISTER symbol to file FILE. */
3123
3124 static const char *
3125 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3126 bfd *abfd ATTRIBUTE_UNUSED;
3127 PTR filep;
3128 asymbol *symbol;
3129 {
3130 FILE *file = (FILE *) filep;
3131 int reg, type;
3132
3133 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3134 != STT_REGISTER)
3135 return NULL;
3136
3137 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3138 type = symbol->flags;
3139 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3140 ((type & BSF_LOCAL)
3141 ? (type & BSF_GLOBAL) ? '!' : 'l'
3142 : (type & BSF_GLOBAL) ? 'g' : ' '),
3143 (type & BSF_WEAK) ? 'w' : ' ');
3144 if (symbol->name == NULL || symbol->name [0] == '\0')
3145 return "#scratch";
3146 else
3147 return symbol->name;
3148 }
3149 \f
3150 /* Set the right machine number for a SPARC64 ELF file. */
3151
3152 static bfd_boolean
3153 sparc64_elf_object_p (abfd)
3154 bfd *abfd;
3155 {
3156 unsigned long mach = bfd_mach_sparc_v9;
3157
3158 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3159 mach = bfd_mach_sparc_v9b;
3160 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3161 mach = bfd_mach_sparc_v9a;
3162 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3163 }
3164
3165 /* Return address for Ith PLT stub in section PLT, for relocation REL
3166 or (bfd_vma) -1 if it should not be included. */
3167
3168 static bfd_vma
3169 sparc64_elf_plt_sym_val (bfd_vma i, const asection *plt,
3170 const arelent *rel ATTRIBUTE_UNUSED)
3171 {
3172 bfd_vma j;
3173
3174 i += PLT_HEADER_SIZE / PLT_ENTRY_SIZE;
3175 if (i < LARGE_PLT_THRESHOLD)
3176 return plt->vma + i * PLT_ENTRY_SIZE;
3177
3178 j = (i - LARGE_PLT_THRESHOLD) % 160;
3179 i -= j;
3180 return plt->vma + i * PLT_ENTRY_SIZE + j * 4 * 6;
3181 }
3182
3183 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3184 standard ELF, because R_SPARC_OLO10 has secondary addend in
3185 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3186 relocation handling routines. */
3187
3188 const struct elf_size_info sparc64_elf_size_info =
3189 {
3190 sizeof (Elf64_External_Ehdr),
3191 sizeof (Elf64_External_Phdr),
3192 sizeof (Elf64_External_Shdr),
3193 sizeof (Elf64_External_Rel),
3194 sizeof (Elf64_External_Rela),
3195 sizeof (Elf64_External_Sym),
3196 sizeof (Elf64_External_Dyn),
3197 sizeof (Elf_External_Note),
3198 4, /* hash-table entry size. */
3199 /* Internal relocations per external relocations.
3200 For link purposes we use just 1 internal per
3201 1 external, for assembly and slurp symbol table
3202 we use 2. */
3203 1,
3204 64, /* arch_size. */
3205 3, /* log_file_align. */
3206 ELFCLASS64,
3207 EV_CURRENT,
3208 bfd_elf64_write_out_phdrs,
3209 bfd_elf64_write_shdrs_and_ehdr,
3210 sparc64_elf_write_relocs,
3211 bfd_elf64_swap_symbol_in,
3212 bfd_elf64_swap_symbol_out,
3213 sparc64_elf_slurp_reloc_table,
3214 bfd_elf64_slurp_symbol_table,
3215 bfd_elf64_swap_dyn_in,
3216 bfd_elf64_swap_dyn_out,
3217 bfd_elf64_swap_reloc_in,
3218 bfd_elf64_swap_reloc_out,
3219 bfd_elf64_swap_reloca_in,
3220 bfd_elf64_swap_reloca_out
3221 };
3222
3223 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3224 #define TARGET_BIG_NAME "elf64-sparc"
3225 #define ELF_ARCH bfd_arch_sparc
3226 #define ELF_MAXPAGESIZE 0x100000
3227
3228 /* This is the official ABI value. */
3229 #define ELF_MACHINE_CODE EM_SPARCV9
3230
3231 /* This is the value that we used before the ABI was released. */
3232 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3233
3234 #define bfd_elf64_bfd_link_hash_table_create \
3235 sparc64_elf_bfd_link_hash_table_create
3236
3237 #define elf_info_to_howto \
3238 sparc64_elf_info_to_howto
3239 #define bfd_elf64_get_reloc_upper_bound \
3240 sparc64_elf_get_reloc_upper_bound
3241 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3242 sparc64_elf_get_dynamic_reloc_upper_bound
3243 #define bfd_elf64_canonicalize_reloc \
3244 sparc64_elf_canonicalize_reloc
3245 #define bfd_elf64_canonicalize_dynamic_reloc \
3246 sparc64_elf_canonicalize_dynamic_reloc
3247 #define bfd_elf64_bfd_reloc_type_lookup \
3248 sparc64_elf_reloc_type_lookup
3249 #define bfd_elf64_bfd_relax_section \
3250 sparc64_elf_relax_section
3251 #define bfd_elf64_new_section_hook \
3252 sparc64_elf_new_section_hook
3253
3254 #define elf_backend_create_dynamic_sections \
3255 sparc64_elf_create_dynamic_sections
3256 #define elf_backend_add_symbol_hook \
3257 sparc64_elf_add_symbol_hook
3258 #define elf_backend_get_symbol_type \
3259 sparc64_elf_get_symbol_type
3260 #define elf_backend_symbol_processing \
3261 sparc64_elf_symbol_processing
3262 #define elf_backend_check_relocs \
3263 sparc64_elf_check_relocs
3264 #define elf_backend_adjust_dynamic_symbol \
3265 sparc64_elf_adjust_dynamic_symbol
3266 #define elf_backend_omit_section_dynsym \
3267 sparc64_elf_omit_section_dynsym
3268 #define elf_backend_size_dynamic_sections \
3269 sparc64_elf_size_dynamic_sections
3270 #define elf_backend_relocate_section \
3271 sparc64_elf_relocate_section
3272 #define elf_backend_finish_dynamic_symbol \
3273 sparc64_elf_finish_dynamic_symbol
3274 #define elf_backend_finish_dynamic_sections \
3275 sparc64_elf_finish_dynamic_sections
3276 #define elf_backend_print_symbol_all \
3277 sparc64_elf_print_symbol_all
3278 #define elf_backend_output_arch_syms \
3279 sparc64_elf_output_arch_syms
3280 #define bfd_elf64_bfd_merge_private_bfd_data \
3281 sparc64_elf_merge_private_bfd_data
3282 #define elf_backend_fake_sections \
3283 sparc64_elf_fake_sections
3284 #define elf_backend_plt_sym_val \
3285 sparc64_elf_plt_sym_val
3286
3287 #define elf_backend_size_info \
3288 sparc64_elf_size_info
3289 #define elf_backend_object_p \
3290 sparc64_elf_object_p
3291 #define elf_backend_reloc_type_class \
3292 sparc64_elf_reloc_type_class
3293
3294 #define elf_backend_want_got_plt 0
3295 #define elf_backend_plt_readonly 0
3296 #define elf_backend_want_plt_sym 1
3297 #define elf_backend_rela_normal 1
3298
3299 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3300 #define elf_backend_plt_alignment 8
3301
3302 #define elf_backend_got_header_size 8
3303
3304 #include "elf64-target.h"
This page took 0.158105 seconds and 5 git commands to generate.