This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "bfd.h"
21 #include "sysdep.h"
22 #include "libbfd.h"
23 #include "elf-bfd.h"
24
25 /* This is defined if one wants to build upward compatible binaries
26 with the original sparc64-elf toolchain. The support is kept in for
27 now but is turned off by default. dje 970930 */
28 /*#define SPARC64_OLD_RELOCS*/
29
30 #include "elf/sparc.h"
31
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
34
35 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
36 PARAMS((bfd *));
37 static reloc_howto_type *sparc64_elf_reloc_type_lookup
38 PARAMS ((bfd *, bfd_reloc_code_real_type));
39 static void sparc64_elf_info_to_howto
40 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
41
42 static void sparc64_elf_build_plt
43 PARAMS((bfd *, unsigned char *, int));
44 static bfd_vma sparc64_elf_plt_entry_offset
45 PARAMS((int));
46 static bfd_vma sparc64_elf_plt_ptr_offset
47 PARAMS((int, int));
48
49 static boolean sparc64_elf_check_relocs
50 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
51 const Elf_Internal_Rela *));
52 static boolean sparc64_elf_adjust_dynamic_symbol
53 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
54 static boolean sparc64_elf_size_dynamic_sections
55 PARAMS((bfd *, struct bfd_link_info *));
56 static int sparc64_elf_get_symbol_type
57 PARAMS (( Elf_Internal_Sym *, int));
58 static boolean sparc64_elf_add_symbol_hook
59 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
60 const char **, flagword *, asection **, bfd_vma *));
61 static void sparc64_elf_symbol_processing
62 PARAMS ((bfd *, asymbol *));
63
64 static boolean sparc64_elf_merge_private_bfd_data
65 PARAMS ((bfd *, bfd *));
66
67 static boolean sparc64_elf_relocate_section
68 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
69 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
70 static boolean sparc64_elf_object_p PARAMS ((bfd *));
71 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
72 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
73 static boolean sparc64_elf_slurp_one_reloc_table
74 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
75 static boolean sparc64_elf_slurp_reloc_table
76 PARAMS ((bfd *, asection *, asymbol **, boolean));
77 static long sparc64_elf_canonicalize_dynamic_reloc
78 PARAMS ((bfd *, arelent **, asymbol **));
79 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
80 \f
81 /* The relocation "howto" table. */
82
83 static bfd_reloc_status_type sparc_elf_notsup_reloc
84 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
85 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
86 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
87 static bfd_reloc_status_type sparc_elf_hix22_reloc
88 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
89 static bfd_reloc_status_type sparc_elf_lox10_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91
92 static reloc_howto_type sparc64_elf_howto_table[] =
93 {
94 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
95 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
96 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
97 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
98 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
99 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
100 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
101 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
102 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
103 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
104 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
105 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
106 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
107 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
108 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
109 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
110 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
112 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
113 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
114 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
115 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
116 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
117 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
118 #ifndef SPARC64_OLD_RELOCS
119 /* These aren't implemented yet. */
120 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
121 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
122 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
123 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
124 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
125 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
126 #endif
127 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
128 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
129 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
130 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
131 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
132 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
133 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
134 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
135 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
136 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
137 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
138 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
139 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
140 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
141 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
142 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
143 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
144 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
145 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
146 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
147 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
148 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
149 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
150 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
152 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
153 };
154
155 struct elf_reloc_map {
156 bfd_reloc_code_real_type bfd_reloc_val;
157 unsigned char elf_reloc_val;
158 };
159
160 static CONST struct elf_reloc_map sparc_reloc_map[] =
161 {
162 { BFD_RELOC_NONE, R_SPARC_NONE, },
163 { BFD_RELOC_16, R_SPARC_16, },
164 { BFD_RELOC_8, R_SPARC_8 },
165 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
166 { BFD_RELOC_CTOR, R_SPARC_64 },
167 { BFD_RELOC_32, R_SPARC_32 },
168 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
169 { BFD_RELOC_HI22, R_SPARC_HI22 },
170 { BFD_RELOC_LO10, R_SPARC_LO10, },
171 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
172 { BFD_RELOC_SPARC22, R_SPARC_22 },
173 { BFD_RELOC_SPARC13, R_SPARC_13 },
174 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
175 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
176 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
177 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
178 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
179 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
180 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
181 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
182 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
183 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
184 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
185 /* ??? Doesn't dwarf use this? */
186 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
187 {BFD_RELOC_SPARC_10, R_SPARC_10},
188 {BFD_RELOC_SPARC_11, R_SPARC_11},
189 {BFD_RELOC_SPARC_64, R_SPARC_64},
190 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
191 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
192 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
193 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
194 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
195 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
196 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
197 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
198 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
199 {BFD_RELOC_SPARC_7, R_SPARC_7},
200 {BFD_RELOC_SPARC_5, R_SPARC_5},
201 {BFD_RELOC_SPARC_6, R_SPARC_6},
202 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
203 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
204 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
205 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
206 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
207 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
208 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
209 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
210 };
211
212 static reloc_howto_type *
213 sparc64_elf_reloc_type_lookup (abfd, code)
214 bfd *abfd;
215 bfd_reloc_code_real_type code;
216 {
217 unsigned int i;
218 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
219 {
220 if (sparc_reloc_map[i].bfd_reloc_val == code)
221 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
222 }
223 return 0;
224 }
225
226 static void
227 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
228 bfd *abfd;
229 arelent *cache_ptr;
230 Elf64_Internal_Rela *dst;
231 {
232 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
233 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
234 }
235 \f
236 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
237 section can represent up to two relocs, we must tell the user to allocate
238 more space. */
239
240 static long
241 sparc64_elf_get_reloc_upper_bound (abfd, sec)
242 bfd *abfd;
243 asection *sec;
244 {
245 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
246 }
247
248 static long
249 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
250 bfd *abfd;
251 {
252 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
253 }
254
255 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
256 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
257 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
258 for the same location, R_SPARC_LO10 and R_SPARC_13. */
259
260 static boolean
261 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
262 bfd *abfd;
263 asection *asect;
264 Elf_Internal_Shdr *rel_hdr;
265 asymbol **symbols;
266 boolean dynamic;
267 {
268 struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
269 PTR allocated = NULL;
270 bfd_byte *native_relocs;
271 arelent *relent;
272 unsigned int i;
273 int entsize;
274 bfd_size_type count;
275 arelent *relents;
276
277 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
278 if (allocated == NULL)
279 goto error_return;
280
281 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
282 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
283 != rel_hdr->sh_size))
284 goto error_return;
285
286 native_relocs = (bfd_byte *) allocated;
287
288 relents = asect->relocation + asect->reloc_count;
289
290 entsize = rel_hdr->sh_entsize;
291 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
292
293 count = rel_hdr->sh_size / entsize;
294
295 for (i = 0, relent = relents; i < count;
296 i++, relent++, native_relocs += entsize)
297 {
298 Elf_Internal_Rela rela;
299
300 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
301
302 /* The address of an ELF reloc is section relative for an object
303 file, and absolute for an executable file or shared library.
304 The address of a normal BFD reloc is always section relative,
305 and the address of a dynamic reloc is absolute.. */
306 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
307 relent->address = rela.r_offset;
308 else
309 relent->address = rela.r_offset - asect->vma;
310
311 if (ELF64_R_SYM (rela.r_info) == 0)
312 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
313 else
314 {
315 asymbol **ps, *s;
316
317 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
318 s = *ps;
319
320 /* Canonicalize ELF section symbols. FIXME: Why? */
321 if ((s->flags & BSF_SECTION_SYM) == 0)
322 relent->sym_ptr_ptr = ps;
323 else
324 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
325 }
326
327 relent->addend = rela.r_addend;
328
329 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
330 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
331 {
332 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
333 relent[1].address = relent->address;
334 relent++;
335 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
336 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
337 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
338 }
339 else
340 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
341 }
342
343 asect->reloc_count += relent - relents;
344
345 if (allocated != NULL)
346 free (allocated);
347
348 return true;
349
350 error_return:
351 if (allocated != NULL)
352 free (allocated);
353 return false;
354 }
355
356 /* Read in and swap the external relocs. */
357
358 static boolean
359 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
360 bfd *abfd;
361 asection *asect;
362 asymbol **symbols;
363 boolean dynamic;
364 {
365 struct bfd_elf_section_data * const d = elf_section_data (asect);
366 Elf_Internal_Shdr *rel_hdr;
367 Elf_Internal_Shdr *rel_hdr2;
368
369 if (asect->relocation != NULL)
370 return true;
371
372 if (! dynamic)
373 {
374 if ((asect->flags & SEC_RELOC) == 0
375 || asect->reloc_count == 0)
376 return true;
377
378 rel_hdr = &d->rel_hdr;
379 rel_hdr2 = d->rel_hdr2;
380
381 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
382 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
383 }
384 else
385 {
386 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
387 case because relocations against this section may use the
388 dynamic symbol table, and in that case bfd_section_from_shdr
389 in elf.c does not update the RELOC_COUNT. */
390 if (asect->_raw_size == 0)
391 return true;
392
393 rel_hdr = &d->this_hdr;
394 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
395 rel_hdr2 = NULL;
396 }
397
398 asect->relocation = ((arelent *)
399 bfd_alloc (abfd,
400 asect->reloc_count * 2 * sizeof (arelent)));
401 if (asect->relocation == NULL)
402 return false;
403
404 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
405 asect->reloc_count = 0;
406
407 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
408 dynamic))
409 return false;
410
411 if (rel_hdr2
412 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
413 dynamic))
414 return false;
415
416 return true;
417 }
418
419 /* Canonicalize the dynamic relocation entries. Note that we return
420 the dynamic relocations as a single block, although they are
421 actually associated with particular sections; the interface, which
422 was designed for SunOS style shared libraries, expects that there
423 is only one set of dynamic relocs. Any section that was actually
424 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
425 the dynamic symbol table, is considered to be a dynamic reloc
426 section. */
427
428 static long
429 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
430 bfd *abfd;
431 arelent **storage;
432 asymbol **syms;
433 {
434 asection *s;
435 long ret;
436
437 if (elf_dynsymtab (abfd) == 0)
438 {
439 bfd_set_error (bfd_error_invalid_operation);
440 return -1;
441 }
442
443 ret = 0;
444 for (s = abfd->sections; s != NULL; s = s->next)
445 {
446 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
447 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
448 {
449 arelent *p;
450 long count, i;
451
452 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
453 return -1;
454 count = s->reloc_count;
455 p = s->relocation;
456 for (i = 0; i < count; i++)
457 *storage++ = p++;
458 ret += count;
459 }
460 }
461
462 *storage = NULL;
463
464 return ret;
465 }
466
467 /* Write out the relocs. */
468
469 static void
470 sparc64_elf_write_relocs (abfd, sec, data)
471 bfd *abfd;
472 asection *sec;
473 PTR data;
474 {
475 boolean *failedp = (boolean *) data;
476 Elf_Internal_Shdr *rela_hdr;
477 Elf64_External_Rela *outbound_relocas;
478 unsigned int idx, count;
479 asymbol *last_sym = 0;
480 int last_sym_idx = 0;
481
482 /* If we have already failed, don't do anything. */
483 if (*failedp)
484 return;
485
486 if ((sec->flags & SEC_RELOC) == 0)
487 return;
488
489 /* The linker backend writes the relocs out itself, and sets the
490 reloc_count field to zero to inhibit writing them here. Also,
491 sometimes the SEC_RELOC flag gets set even when there aren't any
492 relocs. */
493 if (sec->reloc_count == 0)
494 return;
495
496 /* We can combine two relocs that refer to the same address
497 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
498 latter is R_SPARC_13 with no associated symbol. */
499 count = 0;
500 for (idx = 0; idx < sec->reloc_count; idx++)
501 {
502 bfd_vma addr;
503 unsigned int i;
504
505 ++count;
506
507 addr = sec->orelocation[idx]->address;
508 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
509 && idx < sec->reloc_count - 1)
510 {
511 arelent *r = sec->orelocation[idx + 1];
512
513 if (r->howto->type == R_SPARC_13
514 && r->address == addr
515 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
516 && (*r->sym_ptr_ptr)->value == 0)
517 ++idx;
518 }
519 }
520
521 rela_hdr = &elf_section_data (sec)->rel_hdr;
522
523 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
524 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
525 if (rela_hdr->contents == NULL)
526 {
527 *failedp = true;
528 return;
529 }
530
531 /* Figure out whether the relocations are RELA or REL relocations. */
532 if (rela_hdr->sh_type != SHT_RELA)
533 abort ();
534
535 /* orelocation has the data, reloc_count has the count... */
536 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
537
538 for (idx = 0; idx < sec->reloc_count; idx++)
539 {
540 Elf_Internal_Rela dst_rela;
541 Elf64_External_Rela *src_rela;
542 arelent *ptr;
543 asymbol *sym;
544 int n;
545
546 ptr = sec->orelocation[idx];
547 src_rela = outbound_relocas + idx;
548
549 /* The address of an ELF reloc is section relative for an object
550 file, and absolute for an executable file or shared library.
551 The address of a BFD reloc is always section relative. */
552 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
553 dst_rela.r_offset = ptr->address;
554 else
555 dst_rela.r_offset = ptr->address + sec->vma;
556
557 sym = *ptr->sym_ptr_ptr;
558 if (sym == last_sym)
559 n = last_sym_idx;
560 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
561 n = STN_UNDEF;
562 else
563 {
564 last_sym = sym;
565 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
566 if (n < 0)
567 {
568 *failedp = true;
569 return;
570 }
571 last_sym_idx = n;
572 }
573
574 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
575 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
576 && ! _bfd_elf_validate_reloc (abfd, ptr))
577 {
578 *failedp = true;
579 return;
580 }
581
582 if (ptr->howto->type == R_SPARC_LO10
583 && idx < sec->reloc_count - 1)
584 {
585 arelent *r = sec->orelocation[idx + 1];
586
587 if (r->howto->type == R_SPARC_13
588 && r->address == ptr->address
589 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
590 && (*r->sym_ptr_ptr)->value == 0)
591 {
592 idx++;
593 dst_rela.r_info
594 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
595 R_SPARC_OLO10));
596 }
597 else
598 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
599 }
600 else
601 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
602
603 dst_rela.r_addend = ptr->addend;
604 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
605 }
606 }
607 \f
608 /* Sparc64 ELF linker hash table. */
609
610 struct sparc64_elf_app_reg
611 {
612 unsigned char bind;
613 unsigned short shndx;
614 bfd *abfd;
615 char *name;
616 };
617
618 struct sparc64_elf_link_hash_table
619 {
620 struct elf_link_hash_table root;
621
622 struct sparc64_elf_app_reg app_regs [4];
623 };
624
625 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
626
627 #define sparc64_elf_hash_table(p) \
628 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
629
630 /* Create a Sparc64 ELF linker hash table. */
631
632 static struct bfd_link_hash_table *
633 sparc64_elf_bfd_link_hash_table_create (abfd)
634 bfd *abfd;
635 {
636 struct sparc64_elf_link_hash_table *ret;
637
638 ret = ((struct sparc64_elf_link_hash_table *)
639 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
640 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
641 return NULL;
642
643 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
644 _bfd_elf_link_hash_newfunc))
645 {
646 bfd_release (abfd, ret);
647 return NULL;
648 }
649
650 return &ret->root.root;
651 }
652
653 \f
654 /* Utility for performing the standard initial work of an instruction
655 relocation.
656 *PRELOCATION will contain the relocated item.
657 *PINSN will contain the instruction from the input stream.
658 If the result is `bfd_reloc_other' the caller can continue with
659 performing the relocation. Otherwise it must stop and return the
660 value to its caller. */
661
662 static bfd_reloc_status_type
663 init_insn_reloc (abfd,
664 reloc_entry,
665 symbol,
666 data,
667 input_section,
668 output_bfd,
669 prelocation,
670 pinsn)
671 bfd *abfd;
672 arelent *reloc_entry;
673 asymbol *symbol;
674 PTR data;
675 asection *input_section;
676 bfd *output_bfd;
677 bfd_vma *prelocation;
678 bfd_vma *pinsn;
679 {
680 bfd_vma relocation;
681 reloc_howto_type *howto = reloc_entry->howto;
682
683 if (output_bfd != (bfd *) NULL
684 && (symbol->flags & BSF_SECTION_SYM) == 0
685 && (! howto->partial_inplace
686 || reloc_entry->addend == 0))
687 {
688 reloc_entry->address += input_section->output_offset;
689 return bfd_reloc_ok;
690 }
691
692 /* This works because partial_inplace == false. */
693 if (output_bfd != NULL)
694 return bfd_reloc_continue;
695
696 if (reloc_entry->address > input_section->_cooked_size)
697 return bfd_reloc_outofrange;
698
699 relocation = (symbol->value
700 + symbol->section->output_section->vma
701 + symbol->section->output_offset);
702 relocation += reloc_entry->addend;
703 if (howto->pc_relative)
704 {
705 relocation -= (input_section->output_section->vma
706 + input_section->output_offset);
707 relocation -= reloc_entry->address;
708 }
709
710 *prelocation = relocation;
711 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
712 return bfd_reloc_other;
713 }
714
715 /* For unsupported relocs. */
716
717 static bfd_reloc_status_type
718 sparc_elf_notsup_reloc (abfd,
719 reloc_entry,
720 symbol,
721 data,
722 input_section,
723 output_bfd,
724 error_message)
725 bfd *abfd;
726 arelent *reloc_entry;
727 asymbol *symbol;
728 PTR data;
729 asection *input_section;
730 bfd *output_bfd;
731 char **error_message;
732 {
733 return bfd_reloc_notsupported;
734 }
735
736 /* Handle the WDISP16 reloc. */
737
738 static bfd_reloc_status_type
739 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
740 output_bfd, error_message)
741 bfd *abfd;
742 arelent *reloc_entry;
743 asymbol *symbol;
744 PTR data;
745 asection *input_section;
746 bfd *output_bfd;
747 char **error_message;
748 {
749 bfd_vma relocation;
750 bfd_vma insn;
751 bfd_reloc_status_type status;
752
753 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
754 input_section, output_bfd, &relocation, &insn);
755 if (status != bfd_reloc_other)
756 return status;
757
758 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
759 | ((relocation >> 2) & 0x3fff));
760 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
761
762 if ((bfd_signed_vma) relocation < - 0x40000
763 || (bfd_signed_vma) relocation > 0x3ffff)
764 return bfd_reloc_overflow;
765 else
766 return bfd_reloc_ok;
767 }
768
769 /* Handle the HIX22 reloc. */
770
771 static bfd_reloc_status_type
772 sparc_elf_hix22_reloc (abfd,
773 reloc_entry,
774 symbol,
775 data,
776 input_section,
777 output_bfd,
778 error_message)
779 bfd *abfd;
780 arelent *reloc_entry;
781 asymbol *symbol;
782 PTR data;
783 asection *input_section;
784 bfd *output_bfd;
785 char **error_message;
786 {
787 bfd_vma relocation;
788 bfd_vma insn;
789 bfd_reloc_status_type status;
790
791 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
792 input_section, output_bfd, &relocation, &insn);
793 if (status != bfd_reloc_other)
794 return status;
795
796 relocation ^= MINUS_ONE;
797 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
798 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
799
800 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
801 return bfd_reloc_overflow;
802 else
803 return bfd_reloc_ok;
804 }
805
806 /* Handle the LOX10 reloc. */
807
808 static bfd_reloc_status_type
809 sparc_elf_lox10_reloc (abfd,
810 reloc_entry,
811 symbol,
812 data,
813 input_section,
814 output_bfd,
815 error_message)
816 bfd *abfd;
817 arelent *reloc_entry;
818 asymbol *symbol;
819 PTR data;
820 asection *input_section;
821 bfd *output_bfd;
822 char **error_message;
823 {
824 bfd_vma relocation;
825 bfd_vma insn;
826 bfd_reloc_status_type status;
827
828 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
829 input_section, output_bfd, &relocation, &insn);
830 if (status != bfd_reloc_other)
831 return status;
832
833 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
834 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
835
836 return bfd_reloc_ok;
837 }
838 \f
839 /* PLT/GOT stuff */
840
841 /* Both the headers and the entries are icache aligned. */
842 #define PLT_ENTRY_SIZE 32
843 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
844 #define LARGE_PLT_THRESHOLD 32768
845 #define GOT_RESERVED_ENTRIES 1
846
847 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
848
849
850 /* Fill in the .plt section. */
851
852 static void
853 sparc64_elf_build_plt (output_bfd, contents, nentries)
854 bfd *output_bfd;
855 unsigned char *contents;
856 int nentries;
857 {
858 const unsigned int nop = 0x01000000;
859 int i, j;
860
861 /* The first four entries are reserved, and are initially undefined.
862 We fill them with `illtrap 0' to force ld.so to do something. */
863
864 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
865 bfd_put_32 (output_bfd, 0, contents+i*4);
866
867 /* The first 32768 entries are close enough to plt1 to get there via
868 a straight branch. */
869
870 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
871 {
872 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
873 unsigned int sethi, ba;
874
875 /* sethi (. - plt0), %g1 */
876 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
877
878 /* ba,a,pt %xcc, plt1 */
879 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
880
881 bfd_put_32 (output_bfd, sethi, entry);
882 bfd_put_32 (output_bfd, ba, entry+4);
883 bfd_put_32 (output_bfd, nop, entry+8);
884 bfd_put_32 (output_bfd, nop, entry+12);
885 bfd_put_32 (output_bfd, nop, entry+16);
886 bfd_put_32 (output_bfd, nop, entry+20);
887 bfd_put_32 (output_bfd, nop, entry+24);
888 bfd_put_32 (output_bfd, nop, entry+28);
889 }
890
891 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
892 160: 160 entries and 160 pointers. This is to separate code from data,
893 which is much friendlier on the cache. */
894
895 for (; i < nentries; i += 160)
896 {
897 int block = (i + 160 <= nentries ? 160 : nentries - i);
898 for (j = 0; j < block; ++j)
899 {
900 unsigned char *entry, *ptr;
901 unsigned int ldx;
902
903 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
904 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
905
906 /* ldx [%o7 + ptr - entry+4], %g1 */
907 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
908
909 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
910 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
911 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
912 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
913 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
914 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
915
916 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
917 }
918 }
919 }
920
921 /* Return the offset of a particular plt entry within the .plt section. */
922
923 static bfd_vma
924 sparc64_elf_plt_entry_offset (index)
925 int index;
926 {
927 int block, ofs;
928
929 if (index < LARGE_PLT_THRESHOLD)
930 return index * PLT_ENTRY_SIZE;
931
932 /* See above for details. */
933
934 block = (index - LARGE_PLT_THRESHOLD) / 160;
935 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
936
937 return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
938 + ofs * 6*4);
939 }
940
941 static bfd_vma
942 sparc64_elf_plt_ptr_offset (index, max)
943 int index, max;
944 {
945 int block, ofs, last;
946
947 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
948
949 /* See above for details. */
950
951 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
952 + LARGE_PLT_THRESHOLD;
953 ofs = index - block;
954 if (block + 160 > max)
955 last = (max - LARGE_PLT_THRESHOLD) % 160;
956 else
957 last = 160;
958
959 return (block * PLT_ENTRY_SIZE
960 + last * 6*4
961 + ofs * 8);
962 }
963
964
965 \f
966 /* Look through the relocs for a section during the first phase, and
967 allocate space in the global offset table or procedure linkage
968 table. */
969
970 static boolean
971 sparc64_elf_check_relocs (abfd, info, sec, relocs)
972 bfd *abfd;
973 struct bfd_link_info *info;
974 asection *sec;
975 const Elf_Internal_Rela *relocs;
976 {
977 bfd *dynobj;
978 Elf_Internal_Shdr *symtab_hdr;
979 struct elf_link_hash_entry **sym_hashes;
980 bfd_vma *local_got_offsets;
981 const Elf_Internal_Rela *rel;
982 const Elf_Internal_Rela *rel_end;
983 asection *sgot;
984 asection *srelgot;
985 asection *sreloc;
986
987 if (info->relocateable || !(sec->flags & SEC_ALLOC))
988 return true;
989
990 dynobj = elf_hash_table (info)->dynobj;
991 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
992 sym_hashes = elf_sym_hashes (abfd);
993 local_got_offsets = elf_local_got_offsets (abfd);
994
995 sgot = NULL;
996 srelgot = NULL;
997 sreloc = NULL;
998
999 rel_end = relocs + sec->reloc_count;
1000 for (rel = relocs; rel < rel_end; rel++)
1001 {
1002 unsigned long r_symndx;
1003 struct elf_link_hash_entry *h;
1004
1005 r_symndx = ELF64_R_SYM (rel->r_info);
1006 if (r_symndx < symtab_hdr->sh_info)
1007 h = NULL;
1008 else
1009 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1010
1011 switch (ELF64_R_TYPE_ID (rel->r_info))
1012 {
1013 case R_SPARC_GOT10:
1014 case R_SPARC_GOT13:
1015 case R_SPARC_GOT22:
1016 /* This symbol requires a global offset table entry. */
1017
1018 if (dynobj == NULL)
1019 {
1020 /* Create the .got section. */
1021 elf_hash_table (info)->dynobj = dynobj = abfd;
1022 if (! _bfd_elf_create_got_section (dynobj, info))
1023 return false;
1024 }
1025
1026 if (sgot == NULL)
1027 {
1028 sgot = bfd_get_section_by_name (dynobj, ".got");
1029 BFD_ASSERT (sgot != NULL);
1030 }
1031
1032 if (srelgot == NULL && (h != NULL || info->shared))
1033 {
1034 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1035 if (srelgot == NULL)
1036 {
1037 srelgot = bfd_make_section (dynobj, ".rela.got");
1038 if (srelgot == NULL
1039 || ! bfd_set_section_flags (dynobj, srelgot,
1040 (SEC_ALLOC
1041 | SEC_LOAD
1042 | SEC_HAS_CONTENTS
1043 | SEC_IN_MEMORY
1044 | SEC_LINKER_CREATED
1045 | SEC_READONLY))
1046 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1047 return false;
1048 }
1049 }
1050
1051 if (h != NULL)
1052 {
1053 if (h->got.offset != (bfd_vma) -1)
1054 {
1055 /* We have already allocated space in the .got. */
1056 break;
1057 }
1058 h->got.offset = sgot->_raw_size;
1059
1060 /* Make sure this symbol is output as a dynamic symbol. */
1061 if (h->dynindx == -1)
1062 {
1063 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1064 return false;
1065 }
1066
1067 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1068 }
1069 else
1070 {
1071 /* This is a global offset table entry for a local
1072 symbol. */
1073 if (local_got_offsets == NULL)
1074 {
1075 size_t size;
1076 register unsigned int i;
1077
1078 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1079 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1080 if (local_got_offsets == NULL)
1081 return false;
1082 elf_local_got_offsets (abfd) = local_got_offsets;
1083 for (i = 0; i < symtab_hdr->sh_info; i++)
1084 local_got_offsets[i] = (bfd_vma) -1;
1085 }
1086 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1087 {
1088 /* We have already allocated space in the .got. */
1089 break;
1090 }
1091 local_got_offsets[r_symndx] = sgot->_raw_size;
1092
1093 if (info->shared)
1094 {
1095 /* If we are generating a shared object, we need to
1096 output a R_SPARC_RELATIVE reloc so that the
1097 dynamic linker can adjust this GOT entry. */
1098 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1099 }
1100 }
1101
1102 sgot->_raw_size += 8;
1103
1104 #if 0
1105 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1106 unsigned numbers. If we permit ourselves to modify
1107 code so we get sethi/xor, this could work.
1108 Question: do we consider conditionally re-enabling
1109 this for -fpic, once we know about object code models? */
1110 /* If the .got section is more than 0x1000 bytes, we add
1111 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1112 bit relocations have a greater chance of working. */
1113 if (sgot->_raw_size >= 0x1000
1114 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1115 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1116 #endif
1117
1118 break;
1119
1120 case R_SPARC_WPLT30:
1121 case R_SPARC_PLT32:
1122 case R_SPARC_HIPLT22:
1123 case R_SPARC_LOPLT10:
1124 case R_SPARC_PCPLT32:
1125 case R_SPARC_PCPLT22:
1126 case R_SPARC_PCPLT10:
1127 case R_SPARC_PLT64:
1128 /* This symbol requires a procedure linkage table entry. We
1129 actually build the entry in adjust_dynamic_symbol,
1130 because this might be a case of linking PIC code without
1131 linking in any dynamic objects, in which case we don't
1132 need to generate a procedure linkage table after all. */
1133
1134 if (h == NULL)
1135 {
1136 /* It does not make sense to have a procedure linkage
1137 table entry for a local symbol. */
1138 bfd_set_error (bfd_error_bad_value);
1139 return false;
1140 }
1141
1142 /* Make sure this symbol is output as a dynamic symbol. */
1143 if (h->dynindx == -1)
1144 {
1145 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1146 return false;
1147 }
1148
1149 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1150 break;
1151
1152 case R_SPARC_PC10:
1153 case R_SPARC_PC22:
1154 case R_SPARC_PC_HH22:
1155 case R_SPARC_PC_HM10:
1156 case R_SPARC_PC_LM22:
1157 if (h != NULL
1158 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1159 break;
1160 /* Fall through. */
1161 case R_SPARC_DISP8:
1162 case R_SPARC_DISP16:
1163 case R_SPARC_DISP32:
1164 case R_SPARC_DISP64:
1165 case R_SPARC_WDISP30:
1166 case R_SPARC_WDISP22:
1167 case R_SPARC_WDISP19:
1168 case R_SPARC_WDISP16:
1169 if (h == NULL)
1170 break;
1171 /* Fall through. */
1172 case R_SPARC_8:
1173 case R_SPARC_16:
1174 case R_SPARC_32:
1175 case R_SPARC_HI22:
1176 case R_SPARC_22:
1177 case R_SPARC_13:
1178 case R_SPARC_LO10:
1179 case R_SPARC_UA32:
1180 case R_SPARC_10:
1181 case R_SPARC_11:
1182 case R_SPARC_64:
1183 case R_SPARC_OLO10:
1184 case R_SPARC_HH22:
1185 case R_SPARC_HM10:
1186 case R_SPARC_LM22:
1187 case R_SPARC_7:
1188 case R_SPARC_5:
1189 case R_SPARC_6:
1190 case R_SPARC_HIX22:
1191 case R_SPARC_LOX10:
1192 case R_SPARC_H44:
1193 case R_SPARC_M44:
1194 case R_SPARC_L44:
1195 case R_SPARC_UA64:
1196 case R_SPARC_UA16:
1197 /* When creating a shared object, we must copy these relocs
1198 into the output file. We create a reloc section in
1199 dynobj and make room for the reloc.
1200
1201 But don't do this for debugging sections -- this shows up
1202 with DWARF2 -- first because they are not loaded, and
1203 second because DWARF sez the debug info is not to be
1204 biased by the load address. */
1205 if (info->shared && (sec->flags & SEC_ALLOC))
1206 {
1207 if (sreloc == NULL)
1208 {
1209 const char *name;
1210
1211 name = (bfd_elf_string_from_elf_section
1212 (abfd,
1213 elf_elfheader (abfd)->e_shstrndx,
1214 elf_section_data (sec)->rel_hdr.sh_name));
1215 if (name == NULL)
1216 return false;
1217
1218 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1219 && strcmp (bfd_get_section_name (abfd, sec),
1220 name + 5) == 0);
1221
1222 sreloc = bfd_get_section_by_name (dynobj, name);
1223 if (sreloc == NULL)
1224 {
1225 flagword flags;
1226
1227 sreloc = bfd_make_section (dynobj, name);
1228 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1229 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1230 if ((sec->flags & SEC_ALLOC) != 0)
1231 flags |= SEC_ALLOC | SEC_LOAD;
1232 if (sreloc == NULL
1233 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1234 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1235 return false;
1236 }
1237 }
1238
1239 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1240 }
1241 break;
1242
1243 case R_SPARC_REGISTER:
1244 /* Nothing to do. */
1245 break;
1246
1247 default:
1248 (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1249 bfd_get_filename(abfd),
1250 ELF64_R_TYPE_ID (rel->r_info));
1251 return false;
1252 }
1253 }
1254
1255 return true;
1256 }
1257
1258 /* Hook called by the linker routine which adds symbols from an object
1259 file. We use it for STT_REGISTER symbols. */
1260
1261 static boolean
1262 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1263 bfd *abfd;
1264 struct bfd_link_info *info;
1265 const Elf_Internal_Sym *sym;
1266 const char **namep;
1267 flagword *flagsp;
1268 asection **secp;
1269 bfd_vma *valp;
1270 {
1271 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1272
1273 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1274 {
1275 int reg;
1276 struct sparc64_elf_app_reg *p;
1277
1278 reg = (int)sym->st_value;
1279 switch (reg & ~1)
1280 {
1281 case 2: reg -= 2; break;
1282 case 6: reg -= 4; break;
1283 default:
1284 (*_bfd_error_handler)
1285 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1286 bfd_get_filename (abfd));
1287 return false;
1288 }
1289
1290 if (info->hash->creator != abfd->xvec
1291 || (abfd->flags & DYNAMIC) != 0)
1292 {
1293 /* STT_REGISTER only works when linking an elf64_sparc object.
1294 If STT_REGISTER comes from a dynamic object, don't put it into
1295 the output bfd. The dynamic linker will recheck it. */
1296 *namep = NULL;
1297 return true;
1298 }
1299
1300 p = sparc64_elf_hash_table(info)->app_regs + reg;
1301
1302 if (p->name != NULL && strcmp (p->name, *namep))
1303 {
1304 (*_bfd_error_handler)
1305 (_("Register %%g%d used incompatibly: "
1306 "previously declared in %s to %s, in %s redefined to %s"),
1307 (int)sym->st_value,
1308 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1309 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1310 return false;
1311 }
1312
1313 if (p->name == NULL)
1314 {
1315 if (**namep)
1316 {
1317 struct elf_link_hash_entry *h;
1318
1319 h = (struct elf_link_hash_entry *)
1320 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1321
1322 if (h != NULL)
1323 {
1324 unsigned char type = h->type;
1325
1326 if (type > STT_FUNC) type = 0;
1327 (*_bfd_error_handler)
1328 (_("Symbol `%s' has differing types: "
1329 "previously %s, REGISTER in %s"),
1330 *namep, stt_types [type], bfd_get_filename (abfd));
1331 return false;
1332 }
1333
1334 p->name = bfd_hash_allocate (&info->hash->table,
1335 strlen (*namep) + 1);
1336 if (!p->name)
1337 return false;
1338
1339 strcpy (p->name, *namep);
1340 }
1341 else
1342 p->name = "";
1343 p->bind = ELF_ST_BIND (sym->st_info);
1344 p->abfd = abfd;
1345 p->shndx = sym->st_shndx;
1346 }
1347 else
1348 {
1349 if (p->bind == STB_WEAK
1350 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1351 {
1352 p->bind = STB_GLOBAL;
1353 p->abfd = abfd;
1354 }
1355 }
1356 *namep = NULL;
1357 return true;
1358 }
1359 else if (! *namep || ! **namep)
1360 return true;
1361 else
1362 {
1363 int i;
1364 struct sparc64_elf_app_reg *p;
1365
1366 p = sparc64_elf_hash_table(info)->app_regs;
1367 for (i = 0; i < 4; i++, p++)
1368 if (p->name != NULL && ! strcmp (p->name, *namep))
1369 {
1370 unsigned char type = ELF_ST_TYPE (sym->st_info);
1371
1372 if (type > STT_FUNC) type = 0;
1373 (*_bfd_error_handler)
1374 (_("Symbol `%s' has differing types: "
1375 "REGISTER in %s, %s in %s"),
1376 *namep, bfd_get_filename (p->abfd), stt_types [type],
1377 bfd_get_filename (abfd));
1378 return false;
1379 }
1380 }
1381 return true;
1382 }
1383
1384 /* This function takes care of emiting STT_REGISTER symbols
1385 which we cannot easily keep in the symbol hash table. */
1386
1387 static boolean
1388 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1389 bfd *output_bfd;
1390 struct bfd_link_info *info;
1391 PTR finfo;
1392 boolean (*func) PARAMS ((PTR, const char *,
1393 Elf_Internal_Sym *, asection *));
1394 {
1395 int reg;
1396 struct sparc64_elf_app_reg *app_regs =
1397 sparc64_elf_hash_table(info)->app_regs;
1398 Elf_Internal_Sym sym;
1399
1400 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1401 at the end of the dynlocal list, so they came at the end of the local
1402 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1403 to back up symtab->sh_info. */
1404 if (elf_hash_table (info)->dynlocal)
1405 {
1406 bfd * dynobj = elf_hash_table (info)->dynobj;
1407 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1408 struct elf_link_local_dynamic_entry *e;
1409
1410 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1411 if (e->input_indx == -1)
1412 break;
1413 if (e)
1414 {
1415 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1416 = e->dynindx;
1417 }
1418 }
1419
1420 if (info->strip == strip_all)
1421 return true;
1422
1423 for (reg = 0; reg < 4; reg++)
1424 if (app_regs [reg].name != NULL)
1425 {
1426 if (info->strip == strip_some
1427 && bfd_hash_lookup (info->keep_hash,
1428 app_regs [reg].name,
1429 false, false) == NULL)
1430 continue;
1431
1432 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1433 sym.st_size = 0;
1434 sym.st_other = 0;
1435 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1436 sym.st_shndx = app_regs [reg].shndx;
1437 if (! (*func) (finfo, app_regs [reg].name, &sym,
1438 sym.st_shndx == SHN_ABS
1439 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1440 return false;
1441 }
1442
1443 return true;
1444 }
1445
1446 static int
1447 sparc64_elf_get_symbol_type (elf_sym, type)
1448 Elf_Internal_Sym * elf_sym;
1449 int type;
1450 {
1451 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1452 return STT_REGISTER;
1453 else
1454 return type;
1455 }
1456
1457 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1458 even in SHN_UNDEF section. */
1459
1460 static void
1461 sparc64_elf_symbol_processing (abfd, asym)
1462 bfd *abfd;
1463 asymbol *asym;
1464 {
1465 elf_symbol_type *elfsym;
1466
1467 elfsym = (elf_symbol_type *) asym;
1468 if (elfsym->internal_elf_sym.st_info
1469 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1470 {
1471 asym->flags |= BSF_GLOBAL;
1472 }
1473 }
1474
1475 /* Adjust a symbol defined by a dynamic object and referenced by a
1476 regular object. The current definition is in some section of the
1477 dynamic object, but we're not including those sections. We have to
1478 change the definition to something the rest of the link can
1479 understand. */
1480
1481 static boolean
1482 sparc64_elf_adjust_dynamic_symbol (info, h)
1483 struct bfd_link_info *info;
1484 struct elf_link_hash_entry *h;
1485 {
1486 bfd *dynobj;
1487 asection *s;
1488 unsigned int power_of_two;
1489
1490 dynobj = elf_hash_table (info)->dynobj;
1491
1492 /* Make sure we know what is going on here. */
1493 BFD_ASSERT (dynobj != NULL
1494 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1495 || h->weakdef != NULL
1496 || ((h->elf_link_hash_flags
1497 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1498 && (h->elf_link_hash_flags
1499 & ELF_LINK_HASH_REF_REGULAR) != 0
1500 && (h->elf_link_hash_flags
1501 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1502
1503 /* If this is a function, put it in the procedure linkage table. We
1504 will fill in the contents of the procedure linkage table later
1505 (although we could actually do it here). The STT_NOTYPE
1506 condition is a hack specifically for the Oracle libraries
1507 delivered for Solaris; for some inexplicable reason, they define
1508 some of their functions as STT_NOTYPE when they really should be
1509 STT_FUNC. */
1510 if (h->type == STT_FUNC
1511 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1512 || (h->type == STT_NOTYPE
1513 && (h->root.type == bfd_link_hash_defined
1514 || h->root.type == bfd_link_hash_defweak)
1515 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1516 {
1517 if (! elf_hash_table (info)->dynamic_sections_created)
1518 {
1519 /* This case can occur if we saw a WPLT30 reloc in an input
1520 file, but none of the input files were dynamic objects.
1521 In such a case, we don't actually need to build a
1522 procedure linkage table, and we can just do a WDISP30
1523 reloc instead. */
1524 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1525 return true;
1526 }
1527
1528 s = bfd_get_section_by_name (dynobj, ".plt");
1529 BFD_ASSERT (s != NULL);
1530
1531 /* The first four bit in .plt is reserved. */
1532 if (s->_raw_size == 0)
1533 s->_raw_size = PLT_HEADER_SIZE;
1534
1535 /* If this symbol is not defined in a regular file, and we are
1536 not generating a shared library, then set the symbol to this
1537 location in the .plt. This is required to make function
1538 pointers compare as equal between the normal executable and
1539 the shared library. */
1540 if (! info->shared
1541 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1542 {
1543 h->root.u.def.section = s;
1544 h->root.u.def.value = s->_raw_size;
1545 }
1546
1547 /* To simplify matters later, just store the plt index here. */
1548 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1549
1550 /* Make room for this entry. */
1551 s->_raw_size += PLT_ENTRY_SIZE;
1552
1553 /* We also need to make an entry in the .rela.plt section. */
1554
1555 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1556 BFD_ASSERT (s != NULL);
1557
1558 /* The first plt entries are reserved, and the relocations must
1559 pair up exactly. */
1560 if (s->_raw_size == 0)
1561 s->_raw_size += (PLT_HEADER_SIZE/PLT_ENTRY_SIZE
1562 * sizeof (Elf64_External_Rela));
1563
1564 s->_raw_size += sizeof (Elf64_External_Rela);
1565
1566 /* The procedure linkage table size is bounded by the magnitude
1567 of the offset we can describe in the entry. */
1568 if (s->_raw_size >= (bfd_vma)1 << 32)
1569 {
1570 bfd_set_error (bfd_error_bad_value);
1571 return false;
1572 }
1573
1574 return true;
1575 }
1576
1577 /* If this is a weak symbol, and there is a real definition, the
1578 processor independent code will have arranged for us to see the
1579 real definition first, and we can just use the same value. */
1580 if (h->weakdef != NULL)
1581 {
1582 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1583 || h->weakdef->root.type == bfd_link_hash_defweak);
1584 h->root.u.def.section = h->weakdef->root.u.def.section;
1585 h->root.u.def.value = h->weakdef->root.u.def.value;
1586 return true;
1587 }
1588
1589 /* This is a reference to a symbol defined by a dynamic object which
1590 is not a function. */
1591
1592 /* If we are creating a shared library, we must presume that the
1593 only references to the symbol are via the global offset table.
1594 For such cases we need not do anything here; the relocations will
1595 be handled correctly by relocate_section. */
1596 if (info->shared)
1597 return true;
1598
1599 /* We must allocate the symbol in our .dynbss section, which will
1600 become part of the .bss section of the executable. There will be
1601 an entry for this symbol in the .dynsym section. The dynamic
1602 object will contain position independent code, so all references
1603 from the dynamic object to this symbol will go through the global
1604 offset table. The dynamic linker will use the .dynsym entry to
1605 determine the address it must put in the global offset table, so
1606 both the dynamic object and the regular object will refer to the
1607 same memory location for the variable. */
1608
1609 s = bfd_get_section_by_name (dynobj, ".dynbss");
1610 BFD_ASSERT (s != NULL);
1611
1612 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1613 to copy the initial value out of the dynamic object and into the
1614 runtime process image. We need to remember the offset into the
1615 .rel.bss section we are going to use. */
1616 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1617 {
1618 asection *srel;
1619
1620 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1621 BFD_ASSERT (srel != NULL);
1622 srel->_raw_size += sizeof (Elf64_External_Rela);
1623 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1624 }
1625
1626 /* We need to figure out the alignment required for this symbol. I
1627 have no idea how ELF linkers handle this. 16-bytes is the size
1628 of the largest type that requires hard alignment -- long double. */
1629 power_of_two = bfd_log2 (h->size);
1630 if (power_of_two > 4)
1631 power_of_two = 4;
1632
1633 /* Apply the required alignment. */
1634 s->_raw_size = BFD_ALIGN (s->_raw_size,
1635 (bfd_size_type) (1 << power_of_two));
1636 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1637 {
1638 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1639 return false;
1640 }
1641
1642 /* Define the symbol as being at this point in the section. */
1643 h->root.u.def.section = s;
1644 h->root.u.def.value = s->_raw_size;
1645
1646 /* Increment the section size to make room for the symbol. */
1647 s->_raw_size += h->size;
1648
1649 return true;
1650 }
1651
1652 /* Set the sizes of the dynamic sections. */
1653
1654 static boolean
1655 sparc64_elf_size_dynamic_sections (output_bfd, info)
1656 bfd *output_bfd;
1657 struct bfd_link_info *info;
1658 {
1659 bfd *dynobj;
1660 asection *s;
1661 boolean reltext;
1662 boolean relplt;
1663
1664 dynobj = elf_hash_table (info)->dynobj;
1665 BFD_ASSERT (dynobj != NULL);
1666
1667 if (elf_hash_table (info)->dynamic_sections_created)
1668 {
1669 /* Set the contents of the .interp section to the interpreter. */
1670 if (! info->shared)
1671 {
1672 s = bfd_get_section_by_name (dynobj, ".interp");
1673 BFD_ASSERT (s != NULL);
1674 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1675 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1676 }
1677 }
1678 else
1679 {
1680 /* We may have created entries in the .rela.got section.
1681 However, if we are not creating the dynamic sections, we will
1682 not actually use these entries. Reset the size of .rela.got,
1683 which will cause it to get stripped from the output file
1684 below. */
1685 s = bfd_get_section_by_name (dynobj, ".rela.got");
1686 if (s != NULL)
1687 s->_raw_size = 0;
1688 }
1689
1690 /* The check_relocs and adjust_dynamic_symbol entry points have
1691 determined the sizes of the various dynamic sections. Allocate
1692 memory for them. */
1693 reltext = false;
1694 relplt = false;
1695 for (s = dynobj->sections; s != NULL; s = s->next)
1696 {
1697 const char *name;
1698 boolean strip;
1699
1700 if ((s->flags & SEC_LINKER_CREATED) == 0)
1701 continue;
1702
1703 /* It's OK to base decisions on the section name, because none
1704 of the dynobj section names depend upon the input files. */
1705 name = bfd_get_section_name (dynobj, s);
1706
1707 strip = false;
1708
1709 if (strncmp (name, ".rela", 5) == 0)
1710 {
1711 if (s->_raw_size == 0)
1712 {
1713 /* If we don't need this section, strip it from the
1714 output file. This is to handle .rela.bss and
1715 .rel.plt. We must create it in
1716 create_dynamic_sections, because it must be created
1717 before the linker maps input sections to output
1718 sections. The linker does that before
1719 adjust_dynamic_symbol is called, and it is that
1720 function which decides whether anything needs to go
1721 into these sections. */
1722 strip = true;
1723 }
1724 else
1725 {
1726 const char *outname;
1727 asection *target;
1728
1729 /* If this relocation section applies to a read only
1730 section, then we probably need a DT_TEXTREL entry. */
1731 outname = bfd_get_section_name (output_bfd,
1732 s->output_section);
1733 target = bfd_get_section_by_name (output_bfd, outname + 5);
1734 if (target != NULL
1735 && (target->flags & SEC_READONLY) != 0)
1736 reltext = true;
1737
1738 if (strcmp (name, ".rela.plt") == 0)
1739 relplt = true;
1740
1741 /* We use the reloc_count field as a counter if we need
1742 to copy relocs into the output file. */
1743 s->reloc_count = 0;
1744 }
1745 }
1746 else if (strcmp (name, ".plt") != 0
1747 && strncmp (name, ".got", 4) != 0)
1748 {
1749 /* It's not one of our sections, so don't allocate space. */
1750 continue;
1751 }
1752
1753 if (strip)
1754 {
1755 _bfd_strip_section_from_output (info, s);
1756 continue;
1757 }
1758
1759 /* Allocate memory for the section contents. Zero the memory
1760 for the benefit of .rela.plt, which has 4 unused entries
1761 at the beginning, and we don't want garbage. */
1762 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1763 if (s->contents == NULL && s->_raw_size != 0)
1764 return false;
1765 }
1766
1767 if (elf_hash_table (info)->dynamic_sections_created)
1768 {
1769 /* Add some entries to the .dynamic section. We fill in the
1770 values later, in sparc64_elf_finish_dynamic_sections, but we
1771 must add the entries now so that we get the correct size for
1772 the .dynamic section. The DT_DEBUG entry is filled in by the
1773 dynamic linker and used by the debugger. */
1774 int reg;
1775 struct sparc64_elf_app_reg * app_regs;
1776 struct bfd_strtab_hash *dynstr;
1777 struct elf_link_hash_table *eht = elf_hash_table (info);
1778
1779 if (! info->shared)
1780 {
1781 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1782 return false;
1783 }
1784
1785 if (relplt)
1786 {
1787 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1788 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1791 return false;
1792 }
1793
1794 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1795 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1796 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1797 sizeof (Elf64_External_Rela)))
1798 return false;
1799
1800 if (reltext)
1801 {
1802 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1803 return false;
1804 }
1805
1806 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1807 entries if needed. */
1808 app_regs = sparc64_elf_hash_table (info)->app_regs;
1809 dynstr = eht->dynstr;
1810
1811 for (reg = 0; reg < 4; reg++)
1812 if (app_regs [reg].name != NULL)
1813 {
1814 struct elf_link_local_dynamic_entry *entry, *e;
1815
1816 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1817 return false;
1818
1819 entry = (struct elf_link_local_dynamic_entry *)
1820 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1821 if (entry == NULL)
1822 return false;
1823
1824 /* We cheat here a little bit: the symbol will not be local, so we
1825 put it at the end of the dynlocal linked list. We will fix it
1826 later on, as we have to fix other fields anyway. */
1827 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1828 entry->isym.st_size = 0;
1829 if (*app_regs [reg].name != '\0')
1830 entry->isym.st_name
1831 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1832 else
1833 entry->isym.st_name = 0;
1834 entry->isym.st_other = 0;
1835 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1836 STT_REGISTER);
1837 entry->isym.st_shndx = app_regs [reg].shndx;
1838 entry->next = NULL;
1839 entry->input_bfd = output_bfd;
1840 entry->input_indx = -1;
1841
1842 if (eht->dynlocal == NULL)
1843 eht->dynlocal = entry;
1844 else
1845 {
1846 for (e = eht->dynlocal; e->next; e = e->next)
1847 ;
1848 e->next = entry;
1849 }
1850 eht->dynsymcount++;
1851 }
1852 }
1853
1854 return true;
1855 }
1856 \f
1857 /* Relocate a SPARC64 ELF section. */
1858
1859 static boolean
1860 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1861 contents, relocs, local_syms, local_sections)
1862 bfd *output_bfd;
1863 struct bfd_link_info *info;
1864 bfd *input_bfd;
1865 asection *input_section;
1866 bfd_byte *contents;
1867 Elf_Internal_Rela *relocs;
1868 Elf_Internal_Sym *local_syms;
1869 asection **local_sections;
1870 {
1871 bfd *dynobj;
1872 Elf_Internal_Shdr *symtab_hdr;
1873 struct elf_link_hash_entry **sym_hashes;
1874 bfd_vma *local_got_offsets;
1875 bfd_vma got_base;
1876 asection *sgot;
1877 asection *splt;
1878 asection *sreloc;
1879 Elf_Internal_Rela *rel;
1880 Elf_Internal_Rela *relend;
1881
1882 dynobj = elf_hash_table (info)->dynobj;
1883 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1884 sym_hashes = elf_sym_hashes (input_bfd);
1885 local_got_offsets = elf_local_got_offsets (input_bfd);
1886
1887 if (elf_hash_table(info)->hgot == NULL)
1888 got_base = 0;
1889 else
1890 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1891
1892 sgot = splt = sreloc = NULL;
1893
1894 rel = relocs;
1895 relend = relocs + input_section->reloc_count;
1896 for (; rel < relend; rel++)
1897 {
1898 int r_type;
1899 reloc_howto_type *howto;
1900 long r_symndx;
1901 struct elf_link_hash_entry *h;
1902 Elf_Internal_Sym *sym;
1903 asection *sec;
1904 bfd_vma relocation;
1905 bfd_reloc_status_type r;
1906
1907 r_type = ELF64_R_TYPE_ID (rel->r_info);
1908 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1909 {
1910 bfd_set_error (bfd_error_bad_value);
1911 return false;
1912 }
1913 howto = sparc64_elf_howto_table + r_type;
1914
1915 r_symndx = ELF64_R_SYM (rel->r_info);
1916
1917 if (info->relocateable)
1918 {
1919 /* This is a relocateable link. We don't have to change
1920 anything, unless the reloc is against a section symbol,
1921 in which case we have to adjust according to where the
1922 section symbol winds up in the output section. */
1923 if (r_symndx < symtab_hdr->sh_info)
1924 {
1925 sym = local_syms + r_symndx;
1926 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1927 {
1928 sec = local_sections[r_symndx];
1929 rel->r_addend += sec->output_offset + sym->st_value;
1930 }
1931 }
1932
1933 continue;
1934 }
1935
1936 /* This is a final link. */
1937 h = NULL;
1938 sym = NULL;
1939 sec = NULL;
1940 if (r_symndx < symtab_hdr->sh_info)
1941 {
1942 sym = local_syms + r_symndx;
1943 sec = local_sections[r_symndx];
1944 relocation = (sec->output_section->vma
1945 + sec->output_offset
1946 + sym->st_value);
1947 }
1948 else
1949 {
1950 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1951 while (h->root.type == bfd_link_hash_indirect
1952 || h->root.type == bfd_link_hash_warning)
1953 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1954 if (h->root.type == bfd_link_hash_defined
1955 || h->root.type == bfd_link_hash_defweak)
1956 {
1957 boolean skip_it = false;
1958 sec = h->root.u.def.section;
1959
1960 switch (r_type)
1961 {
1962 case R_SPARC_WPLT30:
1963 case R_SPARC_PLT32:
1964 case R_SPARC_HIPLT22:
1965 case R_SPARC_LOPLT10:
1966 case R_SPARC_PCPLT32:
1967 case R_SPARC_PCPLT22:
1968 case R_SPARC_PCPLT10:
1969 case R_SPARC_PLT64:
1970 if (h->plt.offset != (bfd_vma) -1)
1971 skip_it = true;
1972 break;
1973
1974 case R_SPARC_GOT10:
1975 case R_SPARC_GOT13:
1976 case R_SPARC_GOT22:
1977 if (elf_hash_table(info)->dynamic_sections_created
1978 && (!info->shared
1979 || (!info->symbolic && h->dynindx != -1)
1980 || !(h->elf_link_hash_flags
1981 & ELF_LINK_HASH_DEF_REGULAR)))
1982 skip_it = true;
1983 break;
1984
1985 case R_SPARC_PC10:
1986 case R_SPARC_PC22:
1987 case R_SPARC_PC_HH22:
1988 case R_SPARC_PC_HM10:
1989 case R_SPARC_PC_LM22:
1990 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
1991 break;
1992 /* FALLTHRU */
1993
1994 case R_SPARC_8:
1995 case R_SPARC_16:
1996 case R_SPARC_32:
1997 case R_SPARC_DISP8:
1998 case R_SPARC_DISP16:
1999 case R_SPARC_DISP32:
2000 case R_SPARC_WDISP30:
2001 case R_SPARC_WDISP22:
2002 case R_SPARC_HI22:
2003 case R_SPARC_22:
2004 case R_SPARC_13:
2005 case R_SPARC_LO10:
2006 case R_SPARC_UA32:
2007 case R_SPARC_10:
2008 case R_SPARC_11:
2009 case R_SPARC_64:
2010 case R_SPARC_OLO10:
2011 case R_SPARC_HH22:
2012 case R_SPARC_HM10:
2013 case R_SPARC_LM22:
2014 case R_SPARC_WDISP19:
2015 case R_SPARC_WDISP16:
2016 case R_SPARC_7:
2017 case R_SPARC_5:
2018 case R_SPARC_6:
2019 case R_SPARC_DISP64:
2020 case R_SPARC_HIX22:
2021 case R_SPARC_LOX10:
2022 case R_SPARC_H44:
2023 case R_SPARC_M44:
2024 case R_SPARC_L44:
2025 case R_SPARC_UA64:
2026 case R_SPARC_UA16:
2027 if (info->shared
2028 && ((!info->symbolic && h->dynindx != -1)
2029 || !(h->elf_link_hash_flags
2030 & ELF_LINK_HASH_DEF_REGULAR)))
2031 skip_it = true;
2032 break;
2033 }
2034
2035 if (skip_it)
2036 {
2037 /* In these cases, we don't need the relocation
2038 value. We check specially because in some
2039 obscure cases sec->output_section will be NULL. */
2040 relocation = 0;
2041 }
2042 else
2043 {
2044 relocation = (h->root.u.def.value
2045 + sec->output_section->vma
2046 + sec->output_offset);
2047 }
2048 }
2049 else if (h->root.type == bfd_link_hash_undefweak)
2050 relocation = 0;
2051 else if (info->shared && !info->symbolic && !info->no_undefined)
2052 relocation = 0;
2053 else
2054 {
2055 if (! ((*info->callbacks->undefined_symbol)
2056 (info, h->root.root.string, input_bfd,
2057 input_section, rel->r_offset)))
2058 return false;
2059 relocation = 0;
2060 }
2061 }
2062
2063 /* When generating a shared object, these relocations are copied
2064 into the output file to be resolved at run time. */
2065 if (info->shared && (input_section->flags & SEC_ALLOC))
2066 {
2067 switch (r_type)
2068 {
2069 case R_SPARC_PC10:
2070 case R_SPARC_PC22:
2071 case R_SPARC_PC_HH22:
2072 case R_SPARC_PC_HM10:
2073 case R_SPARC_PC_LM22:
2074 if (h != NULL
2075 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2076 break;
2077 /* Fall through. */
2078 case R_SPARC_DISP8:
2079 case R_SPARC_DISP16:
2080 case R_SPARC_DISP32:
2081 case R_SPARC_WDISP30:
2082 case R_SPARC_WDISP22:
2083 case R_SPARC_WDISP19:
2084 case R_SPARC_WDISP16:
2085 case R_SPARC_DISP64:
2086 if (h == NULL)
2087 break;
2088 /* Fall through. */
2089 case R_SPARC_8:
2090 case R_SPARC_16:
2091 case R_SPARC_32:
2092 case R_SPARC_HI22:
2093 case R_SPARC_22:
2094 case R_SPARC_13:
2095 case R_SPARC_LO10:
2096 case R_SPARC_UA32:
2097 case R_SPARC_10:
2098 case R_SPARC_11:
2099 case R_SPARC_64:
2100 case R_SPARC_OLO10:
2101 case R_SPARC_HH22:
2102 case R_SPARC_HM10:
2103 case R_SPARC_LM22:
2104 case R_SPARC_7:
2105 case R_SPARC_5:
2106 case R_SPARC_6:
2107 case R_SPARC_HIX22:
2108 case R_SPARC_LOX10:
2109 case R_SPARC_H44:
2110 case R_SPARC_M44:
2111 case R_SPARC_L44:
2112 case R_SPARC_UA64:
2113 case R_SPARC_UA16:
2114 {
2115 Elf_Internal_Rela outrel;
2116 boolean skip;
2117
2118 if (sreloc == NULL)
2119 {
2120 const char *name =
2121 (bfd_elf_string_from_elf_section
2122 (input_bfd,
2123 elf_elfheader (input_bfd)->e_shstrndx,
2124 elf_section_data (input_section)->rel_hdr.sh_name));
2125
2126 if (name == NULL)
2127 return false;
2128
2129 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2130 && strcmp (bfd_get_section_name(input_bfd,
2131 input_section),
2132 name + 5) == 0);
2133
2134 sreloc = bfd_get_section_by_name (dynobj, name);
2135 BFD_ASSERT (sreloc != NULL);
2136 }
2137
2138 skip = false;
2139
2140 if (elf_section_data (input_section)->stab_info == NULL)
2141 outrel.r_offset = rel->r_offset;
2142 else
2143 {
2144 bfd_vma off;
2145
2146 off = (_bfd_stab_section_offset
2147 (output_bfd, &elf_hash_table (info)->stab_info,
2148 input_section,
2149 &elf_section_data (input_section)->stab_info,
2150 rel->r_offset));
2151 if (off == MINUS_ONE)
2152 skip = true;
2153 outrel.r_offset = off;
2154 }
2155
2156 outrel.r_offset += (input_section->output_section->vma
2157 + input_section->output_offset);
2158
2159 /* Optimize unaligned reloc usage now that we know where
2160 it finally resides. */
2161 switch (r_type)
2162 {
2163 case R_SPARC_16:
2164 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2165 break;
2166 case R_SPARC_UA16:
2167 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2168 break;
2169 case R_SPARC_32:
2170 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2171 break;
2172 case R_SPARC_UA32:
2173 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2174 break;
2175 case R_SPARC_64:
2176 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2177 break;
2178 case R_SPARC_UA64:
2179 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2180 break;
2181 }
2182
2183 if (skip)
2184 memset (&outrel, 0, sizeof outrel);
2185 /* h->dynindx may be -1 if the symbol was marked to
2186 become local. */
2187 else if (h != NULL
2188 && ((! info->symbolic && h->dynindx != -1)
2189 || (h->elf_link_hash_flags
2190 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2191 {
2192 BFD_ASSERT (h->dynindx != -1);
2193 outrel.r_info
2194 = ELF64_R_INFO (h->dynindx,
2195 ELF64_R_TYPE_INFO (
2196 ELF64_R_TYPE_DATA (rel->r_info),
2197 r_type));
2198 outrel.r_addend = rel->r_addend;
2199 }
2200 else
2201 {
2202 if (r_type == R_SPARC_64)
2203 {
2204 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2205 outrel.r_addend = relocation + rel->r_addend;
2206 }
2207 else
2208 {
2209 long indx;
2210
2211 if (h == NULL)
2212 sec = local_sections[r_symndx];
2213 else
2214 {
2215 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2216 || (h->root.type
2217 == bfd_link_hash_defweak));
2218 sec = h->root.u.def.section;
2219 }
2220 if (sec != NULL && bfd_is_abs_section (sec))
2221 indx = 0;
2222 else if (sec == NULL || sec->owner == NULL)
2223 {
2224 bfd_set_error (bfd_error_bad_value);
2225 return false;
2226 }
2227 else
2228 {
2229 asection *osec;
2230
2231 osec = sec->output_section;
2232 indx = elf_section_data (osec)->dynindx;
2233
2234 /* FIXME: we really should be able to link non-pic
2235 shared libraries. */
2236 if (indx == 0)
2237 {
2238 BFD_FAIL ();
2239 (*_bfd_error_handler)
2240 (_("%s: probably compiled without -fPIC?"),
2241 bfd_get_filename (input_bfd));
2242 bfd_set_error (bfd_error_bad_value);
2243 return false;
2244 }
2245 }
2246
2247 outrel.r_info
2248 = ELF64_R_INFO (indx,
2249 ELF64_R_TYPE_INFO (
2250 ELF64_R_TYPE_DATA (rel->r_info),
2251 r_type));
2252 outrel.r_addend = relocation + rel->r_addend;
2253 }
2254 }
2255
2256 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2257 (((Elf64_External_Rela *)
2258 sreloc->contents)
2259 + sreloc->reloc_count));
2260 ++sreloc->reloc_count;
2261
2262 /* This reloc will be computed at runtime, so there's no
2263 need to do anything now, unless this is a RELATIVE
2264 reloc in an unallocated section. */
2265 if (skip
2266 || (input_section->flags & SEC_ALLOC) != 0
2267 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2268 continue;
2269 }
2270 break;
2271 }
2272 }
2273
2274 switch (r_type)
2275 {
2276 case R_SPARC_GOT10:
2277 case R_SPARC_GOT13:
2278 case R_SPARC_GOT22:
2279 /* Relocation is to the entry for this symbol in the global
2280 offset table. */
2281 if (sgot == NULL)
2282 {
2283 sgot = bfd_get_section_by_name (dynobj, ".got");
2284 BFD_ASSERT (sgot != NULL);
2285 }
2286
2287 if (h != NULL)
2288 {
2289 bfd_vma off = h->got.offset;
2290 BFD_ASSERT (off != (bfd_vma) -1);
2291
2292 if (! elf_hash_table (info)->dynamic_sections_created
2293 || (info->shared
2294 && (info->symbolic || h->dynindx == -1)
2295 && (h->elf_link_hash_flags
2296 & ELF_LINK_HASH_DEF_REGULAR)))
2297 {
2298 /* This is actually a static link, or it is a -Bsymbolic
2299 link and the symbol is defined locally, or the symbol
2300 was forced to be local because of a version file. We
2301 must initialize this entry in the global offset table.
2302 Since the offset must always be a multiple of 8, we
2303 use the least significant bit to record whether we
2304 have initialized it already.
2305
2306 When doing a dynamic link, we create a .rela.got
2307 relocation entry to initialize the value. This is
2308 done in the finish_dynamic_symbol routine. */
2309
2310 if ((off & 1) != 0)
2311 off &= ~1;
2312 else
2313 {
2314 bfd_put_64 (output_bfd, relocation,
2315 sgot->contents + off);
2316 h->got.offset |= 1;
2317 }
2318 }
2319 relocation = sgot->output_offset + off - got_base;
2320 }
2321 else
2322 {
2323 bfd_vma off;
2324
2325 BFD_ASSERT (local_got_offsets != NULL);
2326 off = local_got_offsets[r_symndx];
2327 BFD_ASSERT (off != (bfd_vma) -1);
2328
2329 /* The offset must always be a multiple of 8. We use
2330 the least significant bit to record whether we have
2331 already processed this entry. */
2332 if ((off & 1) != 0)
2333 off &= ~1;
2334 else
2335 {
2336 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2337 local_got_offsets[r_symndx] |= 1;
2338
2339 if (info->shared)
2340 {
2341 asection *srelgot;
2342 Elf_Internal_Rela outrel;
2343
2344 /* We need to generate a R_SPARC_RELATIVE reloc
2345 for the dynamic linker. */
2346 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2347 BFD_ASSERT (srelgot != NULL);
2348
2349 outrel.r_offset = (sgot->output_section->vma
2350 + sgot->output_offset
2351 + off);
2352 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2353 outrel.r_addend = relocation;
2354 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2355 (((Elf64_External_Rela *)
2356 srelgot->contents)
2357 + srelgot->reloc_count));
2358 ++srelgot->reloc_count;
2359 }
2360 }
2361 relocation = sgot->output_offset + off - got_base;
2362 }
2363 goto do_default;
2364
2365 case R_SPARC_WPLT30:
2366 case R_SPARC_PLT32:
2367 case R_SPARC_HIPLT22:
2368 case R_SPARC_LOPLT10:
2369 case R_SPARC_PCPLT32:
2370 case R_SPARC_PCPLT22:
2371 case R_SPARC_PCPLT10:
2372 case R_SPARC_PLT64:
2373 /* Relocation is to the entry for this symbol in the
2374 procedure linkage table. */
2375 BFD_ASSERT (h != NULL);
2376
2377 if (h->plt.offset == (bfd_vma) -1)
2378 {
2379 /* We didn't make a PLT entry for this symbol. This
2380 happens when statically linking PIC code, or when
2381 using -Bsymbolic. */
2382 goto do_default;
2383 }
2384
2385 if (splt == NULL)
2386 {
2387 splt = bfd_get_section_by_name (dynobj, ".plt");
2388 BFD_ASSERT (splt != NULL);
2389 }
2390
2391 relocation = (splt->output_section->vma
2392 + splt->output_offset
2393 + sparc64_elf_plt_entry_offset (h->plt.offset));
2394 goto do_default;
2395
2396 case R_SPARC_OLO10:
2397 {
2398 bfd_vma x;
2399
2400 relocation += rel->r_addend;
2401 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2402
2403 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2404 x = (x & ~0x1fff) | (relocation & 0x1fff);
2405 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2406
2407 r = bfd_check_overflow (howto->complain_on_overflow,
2408 howto->bitsize, howto->rightshift,
2409 bfd_arch_bits_per_address (input_bfd),
2410 relocation);
2411 }
2412 break;
2413
2414 case R_SPARC_WDISP16:
2415 {
2416 bfd_vma x;
2417
2418 relocation += rel->r_addend;
2419 /* Adjust for pc-relative-ness. */
2420 relocation -= (input_section->output_section->vma
2421 + input_section->output_offset);
2422 relocation -= rel->r_offset;
2423
2424 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2425 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2426 | ((relocation >> 2) & 0x3fff));
2427 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2428
2429 r = bfd_check_overflow (howto->complain_on_overflow,
2430 howto->bitsize, howto->rightshift,
2431 bfd_arch_bits_per_address (input_bfd),
2432 relocation);
2433 }
2434 break;
2435
2436 case R_SPARC_HIX22:
2437 {
2438 bfd_vma x;
2439
2440 relocation += rel->r_addend;
2441 relocation = relocation ^ MINUS_ONE;
2442
2443 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2444 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2445 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2446
2447 r = bfd_check_overflow (howto->complain_on_overflow,
2448 howto->bitsize, howto->rightshift,
2449 bfd_arch_bits_per_address (input_bfd),
2450 relocation);
2451 }
2452 break;
2453
2454 case R_SPARC_LOX10:
2455 {
2456 bfd_vma x;
2457
2458 relocation += rel->r_addend;
2459 relocation = (relocation & 0x3ff) | 0x1c00;
2460
2461 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2462 x = (x & ~0x1fff) | relocation;
2463 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2464
2465 r = bfd_reloc_ok;
2466 }
2467 break;
2468
2469 default:
2470 do_default:
2471 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2472 contents, rel->r_offset,
2473 relocation, rel->r_addend);
2474 break;
2475 }
2476
2477 switch (r)
2478 {
2479 case bfd_reloc_ok:
2480 break;
2481
2482 default:
2483 case bfd_reloc_outofrange:
2484 abort ();
2485
2486 case bfd_reloc_overflow:
2487 {
2488 const char *name;
2489
2490 if (h != NULL)
2491 {
2492 if (h->root.type == bfd_link_hash_undefweak
2493 && howto->pc_relative)
2494 {
2495 /* Assume this is a call protected by other code that
2496 detect the symbol is undefined. If this is the case,
2497 we can safely ignore the overflow. If not, the
2498 program is hosed anyway, and a little warning isn't
2499 going to help. */
2500 break;
2501 }
2502
2503 name = h->root.root.string;
2504 }
2505 else
2506 {
2507 name = (bfd_elf_string_from_elf_section
2508 (input_bfd,
2509 symtab_hdr->sh_link,
2510 sym->st_name));
2511 if (name == NULL)
2512 return false;
2513 if (*name == '\0')
2514 name = bfd_section_name (input_bfd, sec);
2515 }
2516 if (! ((*info->callbacks->reloc_overflow)
2517 (info, name, howto->name, (bfd_vma) 0,
2518 input_bfd, input_section, rel->r_offset)))
2519 return false;
2520 }
2521 break;
2522 }
2523 }
2524
2525 return true;
2526 }
2527
2528 /* Finish up dynamic symbol handling. We set the contents of various
2529 dynamic sections here. */
2530
2531 static boolean
2532 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2533 bfd *output_bfd;
2534 struct bfd_link_info *info;
2535 struct elf_link_hash_entry *h;
2536 Elf_Internal_Sym *sym;
2537 {
2538 bfd *dynobj;
2539
2540 dynobj = elf_hash_table (info)->dynobj;
2541
2542 if (h->plt.offset != (bfd_vma) -1)
2543 {
2544 asection *splt;
2545 asection *srela;
2546 Elf_Internal_Rela rela;
2547
2548 /* This symbol has an entry in the PLT. Set it up. */
2549
2550 BFD_ASSERT (h->dynindx != -1);
2551
2552 splt = bfd_get_section_by_name (dynobj, ".plt");
2553 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2554 BFD_ASSERT (splt != NULL && srela != NULL);
2555
2556 /* Fill in the entry in the .rela.plt section. */
2557
2558 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2559 {
2560 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2561 rela.r_addend = 0;
2562 }
2563 else
2564 {
2565 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2566 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2567 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2568 -(splt->output_section->vma + splt->output_offset);
2569 }
2570 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2571 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2572
2573 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2574 ((Elf64_External_Rela *) srela->contents
2575 + h->plt.offset));
2576
2577 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2578 {
2579 /* Mark the symbol as undefined, rather than as defined in
2580 the .plt section. Leave the value alone. */
2581 sym->st_shndx = SHN_UNDEF;
2582 }
2583 }
2584
2585 if (h->got.offset != (bfd_vma) -1)
2586 {
2587 asection *sgot;
2588 asection *srela;
2589 Elf_Internal_Rela rela;
2590
2591 /* This symbol has an entry in the GOT. Set it up. */
2592
2593 sgot = bfd_get_section_by_name (dynobj, ".got");
2594 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2595 BFD_ASSERT (sgot != NULL && srela != NULL);
2596
2597 rela.r_offset = (sgot->output_section->vma
2598 + sgot->output_offset
2599 + (h->got.offset &~ 1));
2600
2601 /* If this is a -Bsymbolic link, and the symbol is defined
2602 locally, we just want to emit a RELATIVE reloc. Likewise if
2603 the symbol was forced to be local because of a version file.
2604 The entry in the global offset table will already have been
2605 initialized in the relocate_section function. */
2606 if (info->shared
2607 && (info->symbolic || h->dynindx == -1)
2608 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2609 {
2610 asection *sec = h->root.u.def.section;
2611 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2612 rela.r_addend = (h->root.u.def.value
2613 + sec->output_section->vma
2614 + sec->output_offset);
2615 }
2616 else
2617 {
2618 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2619 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2620 rela.r_addend = 0;
2621 }
2622
2623 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2624 ((Elf64_External_Rela *) srela->contents
2625 + srela->reloc_count));
2626 ++srela->reloc_count;
2627 }
2628
2629 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2630 {
2631 asection *s;
2632 Elf_Internal_Rela rela;
2633
2634 /* This symbols needs a copy reloc. Set it up. */
2635
2636 BFD_ASSERT (h->dynindx != -1);
2637
2638 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2639 ".rela.bss");
2640 BFD_ASSERT (s != NULL);
2641
2642 rela.r_offset = (h->root.u.def.value
2643 + h->root.u.def.section->output_section->vma
2644 + h->root.u.def.section->output_offset);
2645 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2646 rela.r_addend = 0;
2647 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2648 ((Elf64_External_Rela *) s->contents
2649 + s->reloc_count));
2650 ++s->reloc_count;
2651 }
2652
2653 /* Mark some specially defined symbols as absolute. */
2654 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2655 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2656 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2657 sym->st_shndx = SHN_ABS;
2658
2659 return true;
2660 }
2661
2662 /* Finish up the dynamic sections. */
2663
2664 static boolean
2665 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2666 bfd *output_bfd;
2667 struct bfd_link_info *info;
2668 {
2669 bfd *dynobj;
2670 int stt_regidx = -1;
2671 asection *sdyn;
2672 asection *sgot;
2673
2674 dynobj = elf_hash_table (info)->dynobj;
2675
2676 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2677
2678 if (elf_hash_table (info)->dynamic_sections_created)
2679 {
2680 asection *splt;
2681 Elf64_External_Dyn *dyncon, *dynconend;
2682
2683 splt = bfd_get_section_by_name (dynobj, ".plt");
2684 BFD_ASSERT (splt != NULL && sdyn != NULL);
2685
2686 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2687 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2688 for (; dyncon < dynconend; dyncon++)
2689 {
2690 Elf_Internal_Dyn dyn;
2691 const char *name;
2692 boolean size;
2693
2694 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2695
2696 switch (dyn.d_tag)
2697 {
2698 case DT_PLTGOT: name = ".plt"; size = false; break;
2699 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2700 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2701 case DT_SPARC_REGISTER:
2702 if (stt_regidx == -1)
2703 {
2704 stt_regidx =
2705 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2706 if (stt_regidx == -1)
2707 return false;
2708 }
2709 dyn.d_un.d_val = stt_regidx++;
2710 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2711 /* fallthrough */
2712 default: name = NULL; size = false; break;
2713 }
2714
2715 if (name != NULL)
2716 {
2717 asection *s;
2718
2719 s = bfd_get_section_by_name (output_bfd, name);
2720 if (s == NULL)
2721 dyn.d_un.d_val = 0;
2722 else
2723 {
2724 if (! size)
2725 dyn.d_un.d_ptr = s->vma;
2726 else
2727 {
2728 if (s->_cooked_size != 0)
2729 dyn.d_un.d_val = s->_cooked_size;
2730 else
2731 dyn.d_un.d_val = s->_raw_size;
2732 }
2733 }
2734 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2735 }
2736 }
2737
2738 /* Initialize the contents of the .plt section. */
2739 if (splt->_raw_size > 0)
2740 {
2741 sparc64_elf_build_plt(output_bfd, splt->contents,
2742 splt->_raw_size / PLT_ENTRY_SIZE);
2743 }
2744
2745 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2746 PLT_ENTRY_SIZE;
2747 }
2748
2749 /* Set the first entry in the global offset table to the address of
2750 the dynamic section. */
2751 sgot = bfd_get_section_by_name (dynobj, ".got");
2752 BFD_ASSERT (sgot != NULL);
2753 if (sgot->_raw_size > 0)
2754 {
2755 if (sdyn == NULL)
2756 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2757 else
2758 bfd_put_64 (output_bfd,
2759 sdyn->output_section->vma + sdyn->output_offset,
2760 sgot->contents);
2761 }
2762
2763 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2764
2765 return true;
2766 }
2767 \f
2768 /* Functions for dealing with the e_flags field. */
2769
2770 /* Merge backend specific data from an object file to the output
2771 object file when linking. */
2772
2773 static boolean
2774 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2775 bfd *ibfd;
2776 bfd *obfd;
2777 {
2778 boolean error;
2779 flagword new_flags, old_flags;
2780 int new_mm, old_mm;
2781
2782 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2783 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2784 return true;
2785
2786 new_flags = elf_elfheader (ibfd)->e_flags;
2787 old_flags = elf_elfheader (obfd)->e_flags;
2788
2789 if (!elf_flags_init (obfd)) /* First call, no flags set */
2790 {
2791 elf_flags_init (obfd) = true;
2792 elf_elfheader (obfd)->e_flags = new_flags;
2793 }
2794
2795 else if (new_flags == old_flags) /* Compatible flags are ok */
2796 ;
2797
2798 else /* Incompatible flags */
2799 {
2800 error = false;
2801
2802 old_flags |= (new_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1));
2803 new_flags |= (old_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1));
2804 if ((old_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1)) ==
2805 (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1))
2806 {
2807 error = true;
2808 (*_bfd_error_handler)
2809 (_("%s: linking UltraSPARC specific with HAL specific code"),
2810 bfd_get_filename (ibfd));
2811 }
2812
2813 /* Choose the most restrictive memory ordering */
2814 old_mm = (old_flags & EF_SPARCV9_MM);
2815 new_mm = (new_flags & EF_SPARCV9_MM);
2816 old_flags &= ~EF_SPARCV9_MM;
2817 new_flags &= ~EF_SPARCV9_MM;
2818 if (new_mm < old_mm) old_mm = new_mm;
2819 old_flags |= old_mm;
2820 new_flags |= old_mm;
2821
2822 /* Warn about any other mismatches */
2823 if (new_flags != old_flags)
2824 {
2825 error = true;
2826 (*_bfd_error_handler)
2827 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2828 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2829 }
2830
2831 elf_elfheader (obfd)->e_flags = old_flags;
2832
2833 if (error)
2834 {
2835 bfd_set_error (bfd_error_bad_value);
2836 return false;
2837 }
2838 }
2839 return true;
2840 }
2841 \f
2842 /* Print a STT_REGISTER symbol to file FILE. */
2843
2844 static const char *
2845 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2846 bfd *abfd;
2847 PTR filep;
2848 asymbol *symbol;
2849 {
2850 FILE *file = (FILE *) filep;
2851 int reg, type;
2852
2853 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2854 != STT_REGISTER)
2855 return NULL;
2856
2857 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2858 type = symbol->flags;
2859 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2860 ((type & BSF_LOCAL)
2861 ? (type & BSF_GLOBAL) ? '!' : 'l'
2862 : (type & BSF_GLOBAL) ? 'g' : ' '),
2863 (type & BSF_WEAK) ? 'w' : ' ');
2864 if (symbol->name == NULL || symbol->name [0] == '\0')
2865 return "#scratch";
2866 else
2867 return symbol->name;
2868 }
2869 \f
2870 /* Set the right machine number for a SPARC64 ELF file. */
2871
2872 static boolean
2873 sparc64_elf_object_p (abfd)
2874 bfd *abfd;
2875 {
2876 unsigned long mach = bfd_mach_sparc_v9;
2877
2878 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
2879 mach = bfd_mach_sparc_v9a;
2880 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
2881 }
2882
2883 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
2884 standard ELF, because R_SPARC_OLO10 has secondary addend in
2885 ELF64_R_TYPE_DATA field. This structure is used to redirect the
2886 relocation handling routines. */
2887
2888 const struct elf_size_info sparc64_elf_size_info =
2889 {
2890 sizeof (Elf64_External_Ehdr),
2891 sizeof (Elf64_External_Phdr),
2892 sizeof (Elf64_External_Shdr),
2893 sizeof (Elf64_External_Rel),
2894 sizeof (Elf64_External_Rela),
2895 sizeof (Elf64_External_Sym),
2896 sizeof (Elf64_External_Dyn),
2897 sizeof (Elf_External_Note),
2898 4, /* hash-table entry size */
2899 /* internal relocations per external relocations.
2900 For link purposes we use just 1 internal per
2901 1 external, for assembly and slurp symbol table
2902 we use 2. */
2903 1,
2904 64, /* arch_size */
2905 8, /* file_align */
2906 ELFCLASS64,
2907 EV_CURRENT,
2908 bfd_elf64_write_out_phdrs,
2909 bfd_elf64_write_shdrs_and_ehdr,
2910 sparc64_elf_write_relocs,
2911 bfd_elf64_swap_symbol_out,
2912 sparc64_elf_slurp_reloc_table,
2913 bfd_elf64_slurp_symbol_table,
2914 bfd_elf64_swap_dyn_in,
2915 bfd_elf64_swap_dyn_out,
2916 NULL,
2917 NULL,
2918 NULL,
2919 NULL
2920 };
2921
2922 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
2923 #define TARGET_BIG_NAME "elf64-sparc"
2924 #define ELF_ARCH bfd_arch_sparc
2925 #define ELF_MAXPAGESIZE 0x100000
2926
2927 /* This is the official ABI value. */
2928 #define ELF_MACHINE_CODE EM_SPARCV9
2929
2930 /* This is the value that we used before the ABI was released. */
2931 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
2932
2933 #define bfd_elf64_bfd_link_hash_table_create \
2934 sparc64_elf_bfd_link_hash_table_create
2935
2936 #define elf_info_to_howto \
2937 sparc64_elf_info_to_howto
2938 #define bfd_elf64_get_reloc_upper_bound \
2939 sparc64_elf_get_reloc_upper_bound
2940 #define bfd_elf64_get_dynamic_reloc_upper_bound \
2941 sparc64_elf_get_dynamic_reloc_upper_bound
2942 #define bfd_elf64_canonicalize_dynamic_reloc \
2943 sparc64_elf_canonicalize_dynamic_reloc
2944 #define bfd_elf64_bfd_reloc_type_lookup \
2945 sparc64_elf_reloc_type_lookup
2946
2947 #define elf_backend_create_dynamic_sections \
2948 _bfd_elf_create_dynamic_sections
2949 #define elf_backend_add_symbol_hook \
2950 sparc64_elf_add_symbol_hook
2951 #define elf_backend_get_symbol_type \
2952 sparc64_elf_get_symbol_type
2953 #define elf_backend_symbol_processing \
2954 sparc64_elf_symbol_processing
2955 #define elf_backend_check_relocs \
2956 sparc64_elf_check_relocs
2957 #define elf_backend_adjust_dynamic_symbol \
2958 sparc64_elf_adjust_dynamic_symbol
2959 #define elf_backend_size_dynamic_sections \
2960 sparc64_elf_size_dynamic_sections
2961 #define elf_backend_relocate_section \
2962 sparc64_elf_relocate_section
2963 #define elf_backend_finish_dynamic_symbol \
2964 sparc64_elf_finish_dynamic_symbol
2965 #define elf_backend_finish_dynamic_sections \
2966 sparc64_elf_finish_dynamic_sections
2967 #define elf_backend_print_symbol_all \
2968 sparc64_elf_print_symbol_all
2969 #define elf_backend_output_arch_syms \
2970 sparc64_elf_output_arch_syms
2971
2972 #define bfd_elf64_bfd_merge_private_bfd_data \
2973 sparc64_elf_merge_private_bfd_data
2974
2975 #define elf_backend_size_info \
2976 sparc64_elf_size_info
2977 #define elf_backend_object_p \
2978 sparc64_elf_object_p
2979
2980 #define elf_backend_want_got_plt 0
2981 #define elf_backend_plt_readonly 0
2982 #define elf_backend_want_plt_sym 1
2983
2984 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
2985 #define elf_backend_plt_alignment 8
2986
2987 #define elf_backend_got_header_size 8
2988 #define elf_backend_plt_header_size PLT_HEADER_SIZE
2989
2990 #include "elf64-target.h"
This page took 0.092297 seconds and 5 git commands to generate.