ld: Unify STT_GNU_IFUNC handling
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57 {
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101 /* PR 17512: file: 996185f8. */
102 || (!dynamic && ELF64_R_SYM(rela.r_info) > bfd_get_symcount(abfd))
103 || (dynamic
104 && ELF64_R_SYM(rela.r_info) > bfd_get_dynamic_symcount(abfd)))
105 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
106 else
107 {
108 asymbol **ps, *s;
109
110 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
111 s = *ps;
112
113 /* Canonicalize ELF section symbols. FIXME: Why? */
114 if ((s->flags & BSF_SECTION_SYM) == 0)
115 relent->sym_ptr_ptr = ps;
116 else
117 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
118 }
119
120 relent->addend = rela.r_addend;
121
122 r_type = ELF64_R_TYPE_ID (rela.r_info);
123 if (r_type == R_SPARC_OLO10)
124 {
125 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_LO10);
126 relent[1].address = relent->address;
127 relent++;
128 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
129 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_13);
131 }
132 else
133 {
134 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, r_type);
135 if (relent->howto == NULL)
136 goto error_return;
137 }
138 }
139
140 canon_reloc_count (asect) += relent - relents;
141
142 if (allocated != NULL)
143 free (allocated);
144
145 return TRUE;
146
147 error_return:
148 if (allocated != NULL)
149 free (allocated);
150 return FALSE;
151 }
152
153 /* Read in and swap the external relocs. */
154
155 static bfd_boolean
156 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
157 asymbol **symbols, bfd_boolean dynamic)
158 {
159 struct bfd_elf_section_data * const d = elf_section_data (asect);
160 Elf_Internal_Shdr *rel_hdr;
161 Elf_Internal_Shdr *rel_hdr2;
162 bfd_size_type amt;
163
164 if (asect->relocation != NULL)
165 return TRUE;
166
167 if (! dynamic)
168 {
169 if ((asect->flags & SEC_RELOC) == 0
170 || asect->reloc_count == 0)
171 return TRUE;
172
173 rel_hdr = d->rel.hdr;
174 rel_hdr2 = d->rela.hdr;
175
176 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
177 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
178 }
179 else
180 {
181 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
182 case because relocations against this section may use the
183 dynamic symbol table, and in that case bfd_section_from_shdr
184 in elf.c does not update the RELOC_COUNT. */
185 if (asect->size == 0)
186 return TRUE;
187
188 rel_hdr = &d->this_hdr;
189 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
190 rel_hdr2 = NULL;
191 }
192
193 amt = asect->reloc_count;
194 amt *= 2 * sizeof (arelent);
195 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
196 if (asect->relocation == NULL)
197 return FALSE;
198
199 /* The elf64_sparc_slurp_one_reloc_table routine increments
200 canon_reloc_count. */
201 canon_reloc_count (asect) = 0;
202
203 if (rel_hdr
204 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
205 dynamic))
206 return FALSE;
207
208 if (rel_hdr2
209 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
210 dynamic))
211 return FALSE;
212
213 return TRUE;
214 }
215
216 /* Canonicalize the relocs. */
217
218 static long
219 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
220 arelent **relptr, asymbol **symbols)
221 {
222 arelent *tblptr;
223 unsigned int i;
224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
225
226 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
227 return -1;
228
229 tblptr = section->relocation;
230 for (i = 0; i < canon_reloc_count (section); i++)
231 *relptr++ = tblptr++;
232
233 *relptr = NULL;
234
235 return canon_reloc_count (section);
236 }
237
238
239 /* Canonicalize the dynamic relocation entries. Note that we return
240 the dynamic relocations as a single block, although they are
241 actually associated with particular sections; the interface, which
242 was designed for SunOS style shared libraries, expects that there
243 is only one set of dynamic relocs. Any section that was actually
244 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
245 the dynamic symbol table, is considered to be a dynamic reloc
246 section. */
247
248 static long
249 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
250 asymbol **syms)
251 {
252 asection *s;
253 long ret;
254
255 if (elf_dynsymtab (abfd) == 0)
256 {
257 bfd_set_error (bfd_error_invalid_operation);
258 return -1;
259 }
260
261 ret = 0;
262 for (s = abfd->sections; s != NULL; s = s->next)
263 {
264 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
265 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
266 {
267 arelent *p;
268 long count, i;
269
270 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
271 return -1;
272 count = canon_reloc_count (s);
273 p = s->relocation;
274 for (i = 0; i < count; i++)
275 *storage++ = p++;
276 ret += count;
277 }
278 }
279
280 *storage = NULL;
281
282 return ret;
283 }
284
285 /* Install a new set of internal relocs. */
286
287 static void
288 elf64_sparc_set_reloc (bfd *abfd ATTRIBUTE_UNUSED,
289 asection *asect,
290 arelent **location,
291 unsigned int count)
292 {
293 asect->orelocation = location;
294 canon_reloc_count (asect) = count;
295 }
296
297 /* Write out the relocs. */
298
299 static void
300 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
301 {
302 bfd_boolean *failedp = (bfd_boolean *) data;
303 Elf_Internal_Shdr *rela_hdr;
304 bfd_vma addr_offset;
305 Elf64_External_Rela *outbound_relocas, *src_rela;
306 unsigned int idx, count;
307 asymbol *last_sym = 0;
308 int last_sym_idx = 0;
309
310 /* If we have already failed, don't do anything. */
311 if (*failedp)
312 return;
313
314 if ((sec->flags & SEC_RELOC) == 0)
315 return;
316
317 /* The linker backend writes the relocs out itself, and sets the
318 reloc_count field to zero to inhibit writing them here. Also,
319 sometimes the SEC_RELOC flag gets set even when there aren't any
320 relocs. */
321 if (canon_reloc_count (sec) == 0)
322 return;
323
324 /* We can combine two relocs that refer to the same address
325 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
326 latter is R_SPARC_13 with no associated symbol. */
327 count = 0;
328 for (idx = 0; idx < canon_reloc_count (sec); idx++)
329 {
330 bfd_vma addr;
331
332 ++count;
333
334 addr = sec->orelocation[idx]->address;
335 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
336 && idx < canon_reloc_count (sec) - 1)
337 {
338 arelent *r = sec->orelocation[idx + 1];
339
340 if (r->howto->type == R_SPARC_13
341 && r->address == addr
342 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
343 && (*r->sym_ptr_ptr)->value == 0)
344 ++idx;
345 }
346 }
347
348 rela_hdr = elf_section_data (sec)->rela.hdr;
349
350 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
351 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
352 if (rela_hdr->contents == NULL)
353 {
354 *failedp = TRUE;
355 return;
356 }
357
358 /* Figure out whether the relocations are RELA or REL relocations. */
359 if (rela_hdr->sh_type != SHT_RELA)
360 abort ();
361
362 /* The address of an ELF reloc is section relative for an object
363 file, and absolute for an executable file or shared library.
364 The address of a BFD reloc is always section relative. */
365 addr_offset = 0;
366 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
367 addr_offset = sec->vma;
368
369 /* orelocation has the data, reloc_count has the count... */
370 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
371 src_rela = outbound_relocas;
372
373 for (idx = 0; idx < canon_reloc_count (sec); idx++)
374 {
375 Elf_Internal_Rela dst_rela;
376 arelent *ptr;
377 asymbol *sym;
378 int n;
379
380 ptr = sec->orelocation[idx];
381 sym = *ptr->sym_ptr_ptr;
382 if (sym == last_sym)
383 n = last_sym_idx;
384 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
385 n = STN_UNDEF;
386 else
387 {
388 last_sym = sym;
389 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
390 if (n < 0)
391 {
392 *failedp = TRUE;
393 return;
394 }
395 last_sym_idx = n;
396 }
397
398 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
399 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
400 && ! _bfd_elf_validate_reloc (abfd, ptr))
401 {
402 *failedp = TRUE;
403 return;
404 }
405
406 if (ptr->howto->type == R_SPARC_LO10
407 && idx < canon_reloc_count (sec) - 1)
408 {
409 arelent *r = sec->orelocation[idx + 1];
410
411 if (r->howto->type == R_SPARC_13
412 && r->address == ptr->address
413 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
414 && (*r->sym_ptr_ptr)->value == 0)
415 {
416 idx++;
417 dst_rela.r_info
418 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
419 R_SPARC_OLO10));
420 }
421 else
422 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
423 }
424 else
425 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
426
427 dst_rela.r_offset = ptr->address + addr_offset;
428 dst_rela.r_addend = ptr->addend;
429
430 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
431 ++src_rela;
432 }
433 }
434 \f
435 /* Hook called by the linker routine which adds symbols from an object
436 file. We use it for STT_REGISTER symbols. */
437
438 static bfd_boolean
439 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
440 Elf_Internal_Sym *sym, const char **namep,
441 flagword *flagsp ATTRIBUTE_UNUSED,
442 asection **secp ATTRIBUTE_UNUSED,
443 bfd_vma *valp ATTRIBUTE_UNUSED)
444 {
445 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
446
447 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
448 {
449 int reg;
450 struct _bfd_sparc_elf_app_reg *p;
451
452 reg = (int)sym->st_value;
453 switch (reg & ~1)
454 {
455 case 2: reg -= 2; break;
456 case 6: reg -= 4; break;
457 default:
458 _bfd_error_handler
459 (_("%pB: only registers %%g[2367] can be declared using STT_REGISTER"),
460 abfd);
461 return FALSE;
462 }
463
464 if (info->output_bfd->xvec != abfd->xvec
465 || (abfd->flags & DYNAMIC) != 0)
466 {
467 /* STT_REGISTER only works when linking an elf64_sparc object.
468 If STT_REGISTER comes from a dynamic object, don't put it into
469 the output bfd. The dynamic linker will recheck it. */
470 *namep = NULL;
471 return TRUE;
472 }
473
474 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
475
476 if (p->name != NULL && strcmp (p->name, *namep))
477 {
478 _bfd_error_handler
479 /* xgettext:c-format */
480 (_("register %%g%d used incompatibly: %s in %pB,"
481 " previously %s in %pB"),
482 (int) sym->st_value, **namep ? *namep : "#scratch", abfd,
483 *p->name ? p->name : "#scratch", p->abfd);
484 return FALSE;
485 }
486
487 if (p->name == NULL)
488 {
489 if (**namep)
490 {
491 struct elf_link_hash_entry *h;
492
493 h = (struct elf_link_hash_entry *)
494 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
495
496 if (h != NULL)
497 {
498 unsigned char type = h->type;
499
500 if (type > STT_FUNC)
501 type = 0;
502 _bfd_error_handler
503 /* xgettext:c-format */
504 (_("symbol `%s' has differing types: REGISTER in %pB,"
505 " previously %s in %pB"),
506 *namep, abfd, stt_types[type], p->abfd);
507 return FALSE;
508 }
509
510 p->name = bfd_hash_allocate (&info->hash->table,
511 strlen (*namep) + 1);
512 if (!p->name)
513 return FALSE;
514
515 strcpy (p->name, *namep);
516 }
517 else
518 p->name = "";
519 p->bind = ELF_ST_BIND (sym->st_info);
520 p->abfd = abfd;
521 p->shndx = sym->st_shndx;
522 }
523 else
524 {
525 if (p->bind == STB_WEAK
526 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
527 {
528 p->bind = STB_GLOBAL;
529 p->abfd = abfd;
530 }
531 }
532 *namep = NULL;
533 return TRUE;
534 }
535 else if (*namep && **namep
536 && info->output_bfd->xvec == abfd->xvec)
537 {
538 int i;
539 struct _bfd_sparc_elf_app_reg *p;
540
541 p = _bfd_sparc_elf_hash_table(info)->app_regs;
542 for (i = 0; i < 4; i++, p++)
543 if (p->name != NULL && ! strcmp (p->name, *namep))
544 {
545 unsigned char type = ELF_ST_TYPE (sym->st_info);
546
547 if (type > STT_FUNC)
548 type = 0;
549 _bfd_error_handler
550 /* xgettext:c-format */
551 (_("Symbol `%s' has differing types: %s in %pB,"
552 " previously REGISTER in %pB"),
553 *namep, stt_types[type], abfd, p->abfd);
554 return FALSE;
555 }
556 }
557 return TRUE;
558 }
559
560 /* This function takes care of emitting STT_REGISTER symbols
561 which we cannot easily keep in the symbol hash table. */
562
563 static bfd_boolean
564 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
565 struct bfd_link_info *info,
566 void * flaginfo,
567 int (*func) (void *, const char *,
568 Elf_Internal_Sym *,
569 asection *,
570 struct elf_link_hash_entry *))
571 {
572 int reg;
573 struct _bfd_sparc_elf_app_reg *app_regs =
574 _bfd_sparc_elf_hash_table(info)->app_regs;
575 Elf_Internal_Sym sym;
576
577 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
578 at the end of the dynlocal list, so they came at the end of the local
579 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
580 to back up symtab->sh_info. */
581 if (elf_hash_table (info)->dynlocal)
582 {
583 bfd * dynobj = elf_hash_table (info)->dynobj;
584 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
585 struct elf_link_local_dynamic_entry *e;
586
587 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
588 if (e->input_indx == -1)
589 break;
590 if (e)
591 {
592 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
593 = e->dynindx;
594 }
595 }
596
597 if (info->strip == strip_all)
598 return TRUE;
599
600 for (reg = 0; reg < 4; reg++)
601 if (app_regs [reg].name != NULL)
602 {
603 if (info->strip == strip_some
604 && bfd_hash_lookup (info->keep_hash,
605 app_regs [reg].name,
606 FALSE, FALSE) == NULL)
607 continue;
608
609 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
610 sym.st_size = 0;
611 sym.st_other = 0;
612 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
613 sym.st_shndx = app_regs [reg].shndx;
614 sym.st_target_internal = 0;
615 if ((*func) (flaginfo, app_regs [reg].name, &sym,
616 sym.st_shndx == SHN_ABS
617 ? bfd_abs_section_ptr : bfd_und_section_ptr,
618 NULL) != 1)
619 return FALSE;
620 }
621
622 return TRUE;
623 }
624
625 static int
626 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
627 {
628 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
629 return STT_REGISTER;
630 else
631 return type;
632 }
633
634 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
635 even in SHN_UNDEF section. */
636
637 static void
638 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
639 {
640 elf_symbol_type *elfsym;
641
642 elfsym = (elf_symbol_type *) asym;
643 if (elfsym->internal_elf_sym.st_info
644 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
645 {
646 asym->flags |= BSF_GLOBAL;
647 }
648 }
649
650 \f
651 /* Functions for dealing with the e_flags field. */
652
653 /* Merge backend specific data from an object file to the output
654 object file when linking. */
655
656 static bfd_boolean
657 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
658 {
659 bfd *obfd = info->output_bfd;
660 bfd_boolean error;
661 flagword new_flags, old_flags;
662 int new_mm, old_mm;
663
664 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
665 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
666 return TRUE;
667
668 new_flags = elf_elfheader (ibfd)->e_flags;
669 old_flags = elf_elfheader (obfd)->e_flags;
670
671 if (!elf_flags_init (obfd)) /* First call, no flags set */
672 {
673 elf_flags_init (obfd) = TRUE;
674 elf_elfheader (obfd)->e_flags = new_flags;
675 }
676
677 else if (new_flags == old_flags) /* Compatible flags are ok */
678 ;
679
680 else /* Incompatible flags */
681 {
682 error = FALSE;
683
684 #define EF_SPARC_ISA_EXTENSIONS \
685 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
686
687 if ((ibfd->flags & DYNAMIC) != 0)
688 {
689 /* We don't want dynamic objects memory ordering and
690 architecture to have any role. That's what dynamic linker
691 should do. */
692 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
693 new_flags |= (old_flags
694 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
695 }
696 else
697 {
698 /* Choose the highest architecture requirements. */
699 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
700 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
701 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
702 && (old_flags & EF_SPARC_HAL_R1))
703 {
704 error = TRUE;
705 _bfd_error_handler
706 (_("%pB: linking UltraSPARC specific with HAL specific code"),
707 ibfd);
708 }
709 /* Choose the most restrictive memory ordering. */
710 old_mm = (old_flags & EF_SPARCV9_MM);
711 new_mm = (new_flags & EF_SPARCV9_MM);
712 old_flags &= ~EF_SPARCV9_MM;
713 new_flags &= ~EF_SPARCV9_MM;
714 if (new_mm < old_mm)
715 old_mm = new_mm;
716 old_flags |= old_mm;
717 new_flags |= old_mm;
718 }
719
720 /* Warn about any other mismatches */
721 if (new_flags != old_flags)
722 {
723 error = TRUE;
724 _bfd_error_handler
725 /* xgettext:c-format */
726 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
727 ibfd, new_flags, old_flags);
728 }
729
730 elf_elfheader (obfd)->e_flags = old_flags;
731
732 if (error)
733 {
734 bfd_set_error (bfd_error_bad_value);
735 return FALSE;
736 }
737 }
738 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
739 }
740
741 /* MARCO: Set the correct entry size for the .stab section. */
742
743 static bfd_boolean
744 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
745 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
746 asection *sec)
747 {
748 const char *name;
749
750 name = bfd_get_section_name (abfd, sec);
751
752 if (strcmp (name, ".stab") == 0)
753 {
754 /* Even in the 64bit case the stab entries are only 12 bytes long. */
755 elf_section_data (sec)->this_hdr.sh_entsize = 12;
756 }
757
758 return TRUE;
759 }
760 \f
761 /* Print a STT_REGISTER symbol to file FILE. */
762
763 static const char *
764 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
765 asymbol *symbol)
766 {
767 FILE *file = (FILE *) filep;
768 int reg, type;
769
770 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
771 != STT_REGISTER)
772 return NULL;
773
774 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
775 type = symbol->flags;
776 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
777 ((type & BSF_LOCAL)
778 ? (type & BSF_GLOBAL) ? '!' : 'l'
779 : (type & BSF_GLOBAL) ? 'g' : ' '),
780 (type & BSF_WEAK) ? 'w' : ' ');
781 if (symbol->name == NULL || symbol->name [0] == '\0')
782 return "#scratch";
783 else
784 return symbol->name;
785 }
786 \f
787 static enum elf_reloc_type_class
788 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
789 const asection *rel_sec ATTRIBUTE_UNUSED,
790 const Elf_Internal_Rela *rela)
791 {
792 switch ((int) ELF64_R_TYPE (rela->r_info))
793 {
794 case R_SPARC_RELATIVE:
795 return reloc_class_relative;
796 case R_SPARC_JMP_SLOT:
797 return reloc_class_plt;
798 case R_SPARC_COPY:
799 return reloc_class_copy;
800 default:
801 return reloc_class_normal;
802 }
803 }
804
805 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
806 standard ELF, because R_SPARC_OLO10 has secondary addend in
807 ELF64_R_TYPE_DATA field. This structure is used to redirect the
808 relocation handling routines. */
809
810 const struct elf_size_info elf64_sparc_size_info =
811 {
812 sizeof (Elf64_External_Ehdr),
813 sizeof (Elf64_External_Phdr),
814 sizeof (Elf64_External_Shdr),
815 sizeof (Elf64_External_Rel),
816 sizeof (Elf64_External_Rela),
817 sizeof (Elf64_External_Sym),
818 sizeof (Elf64_External_Dyn),
819 sizeof (Elf_External_Note),
820 4, /* hash-table entry size. */
821 /* Internal relocations per external relocations.
822 For link purposes we use just 1 internal per
823 1 external, for assembly and slurp symbol table
824 we use 2. */
825 1,
826 64, /* arch_size. */
827 3, /* log_file_align. */
828 ELFCLASS64,
829 EV_CURRENT,
830 bfd_elf64_write_out_phdrs,
831 bfd_elf64_write_shdrs_and_ehdr,
832 bfd_elf64_checksum_contents,
833 elf64_sparc_write_relocs,
834 bfd_elf64_swap_symbol_in,
835 bfd_elf64_swap_symbol_out,
836 elf64_sparc_slurp_reloc_table,
837 bfd_elf64_slurp_symbol_table,
838 bfd_elf64_swap_dyn_in,
839 bfd_elf64_swap_dyn_out,
840 bfd_elf64_swap_reloc_in,
841 bfd_elf64_swap_reloc_out,
842 bfd_elf64_swap_reloca_in,
843 bfd_elf64_swap_reloca_out
844 };
845
846 #define TARGET_BIG_SYM sparc_elf64_vec
847 #define TARGET_BIG_NAME "elf64-sparc"
848 #define ELF_ARCH bfd_arch_sparc
849 #define ELF_MAXPAGESIZE 0x100000
850 #define ELF_COMMONPAGESIZE 0x2000
851
852 /* This is the official ABI value. */
853 #define ELF_MACHINE_CODE EM_SPARCV9
854
855 /* This is the value that we used before the ABI was released. */
856 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
857
858 #define elf_backend_reloc_type_class \
859 elf64_sparc_reloc_type_class
860 #define bfd_elf64_get_reloc_upper_bound \
861 elf64_sparc_get_reloc_upper_bound
862 #define bfd_elf64_get_dynamic_reloc_upper_bound \
863 elf64_sparc_get_dynamic_reloc_upper_bound
864 #define bfd_elf64_canonicalize_reloc \
865 elf64_sparc_canonicalize_reloc
866 #define bfd_elf64_canonicalize_dynamic_reloc \
867 elf64_sparc_canonicalize_dynamic_reloc
868 #define bfd_elf64_set_reloc \
869 elf64_sparc_set_reloc
870 #define elf_backend_add_symbol_hook \
871 elf64_sparc_add_symbol_hook
872 #define elf_backend_get_symbol_type \
873 elf64_sparc_get_symbol_type
874 #define elf_backend_symbol_processing \
875 elf64_sparc_symbol_processing
876 #define elf_backend_print_symbol_all \
877 elf64_sparc_print_symbol_all
878 #define elf_backend_output_arch_syms \
879 elf64_sparc_output_arch_syms
880 #define bfd_elf64_bfd_merge_private_bfd_data \
881 elf64_sparc_merge_private_bfd_data
882 #define elf_backend_fake_sections \
883 elf64_sparc_fake_sections
884 #define elf_backend_size_info \
885 elf64_sparc_size_info
886
887 #define elf_backend_plt_sym_val \
888 _bfd_sparc_elf_plt_sym_val
889 #define bfd_elf64_bfd_link_hash_table_create \
890 _bfd_sparc_elf_link_hash_table_create
891 #define elf_info_to_howto \
892 _bfd_sparc_elf_info_to_howto
893 #define elf_backend_copy_indirect_symbol \
894 _bfd_sparc_elf_copy_indirect_symbol
895 #define bfd_elf64_bfd_reloc_type_lookup \
896 _bfd_sparc_elf_reloc_type_lookup
897 #define bfd_elf64_bfd_reloc_name_lookup \
898 _bfd_sparc_elf_reloc_name_lookup
899 #define bfd_elf64_bfd_relax_section \
900 _bfd_sparc_elf_relax_section
901 #define bfd_elf64_new_section_hook \
902 _bfd_sparc_elf_new_section_hook
903
904 #define elf_backend_create_dynamic_sections \
905 _bfd_sparc_elf_create_dynamic_sections
906 #define elf_backend_relocs_compatible \
907 _bfd_elf_relocs_compatible
908 #define elf_backend_check_relocs \
909 _bfd_sparc_elf_check_relocs
910 #define elf_backend_adjust_dynamic_symbol \
911 _bfd_sparc_elf_adjust_dynamic_symbol
912 #define elf_backend_omit_section_dynsym \
913 _bfd_sparc_elf_omit_section_dynsym
914 #define elf_backend_size_dynamic_sections \
915 _bfd_sparc_elf_size_dynamic_sections
916 #define elf_backend_relocate_section \
917 _bfd_sparc_elf_relocate_section
918 #define elf_backend_finish_dynamic_symbol \
919 _bfd_sparc_elf_finish_dynamic_symbol
920 #define elf_backend_finish_dynamic_sections \
921 _bfd_sparc_elf_finish_dynamic_sections
922 #define elf_backend_fixup_symbol \
923 _bfd_sparc_elf_fixup_symbol
924
925 #define bfd_elf64_mkobject \
926 _bfd_sparc_elf_mkobject
927 #define elf_backend_object_p \
928 _bfd_sparc_elf_object_p
929 #define elf_backend_gc_mark_hook \
930 _bfd_sparc_elf_gc_mark_hook
931 #define elf_backend_init_index_section \
932 _bfd_elf_init_1_index_section
933
934 #define elf_backend_can_gc_sections 1
935 #define elf_backend_can_refcount 1
936 #define elf_backend_want_got_plt 0
937 #define elf_backend_plt_readonly 0
938 #define elf_backend_want_plt_sym 1
939 #define elf_backend_got_header_size 8
940 #define elf_backend_want_dynrelro 1
941 #define elf_backend_rela_normal 1
942
943 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
944 #define elf_backend_plt_alignment 8
945
946 #include "elf64-target.h"
947
948 /* FreeBSD support */
949 #undef TARGET_BIG_SYM
950 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
951 #undef TARGET_BIG_NAME
952 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
953 #undef ELF_OSABI
954 #define ELF_OSABI ELFOSABI_FREEBSD
955
956 #undef elf64_bed
957 #define elf64_bed elf64_sparc_fbsd_bed
958
959 #include "elf64-target.h"
960
961 /* Solaris 2. */
962
963 #undef TARGET_BIG_SYM
964 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
965 #undef TARGET_BIG_NAME
966 #define TARGET_BIG_NAME "elf64-sparc-sol2"
967
968 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
969 objects won't be recognized. */
970 #undef ELF_OSABI
971
972 #undef elf64_bed
973 #define elf64_bed elf64_sparc_sol2_bed
974
975 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
976 boundary. */
977 #undef elf_backend_static_tls_alignment
978 #define elf_backend_static_tls_alignment 16
979
980 #include "elf64-target.h"
This page took 0.049511 seconds and 5 git commands to generate.