* elf64-sparc.c (sparc64_elf_relocate_section): Adjust addend of
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static boolean sparc64_elf_fake_sections
76 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
77
78 static const char *sparc64_elf_print_symbol_all
79 PARAMS ((bfd *, PTR, asymbol *));
80 static boolean sparc64_elf_relax_section
81 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
82 static boolean sparc64_elf_relocate_section
83 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
84 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
85 static boolean sparc64_elf_finish_dynamic_symbol
86 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
87 Elf_Internal_Sym *));
88 static boolean sparc64_elf_finish_dynamic_sections
89 PARAMS ((bfd *, struct bfd_link_info *));
90 static boolean sparc64_elf_object_p PARAMS ((bfd *));
91 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
92 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
93 static boolean sparc64_elf_slurp_one_reloc_table
94 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
95 static boolean sparc64_elf_slurp_reloc_table
96 PARAMS ((bfd *, asection *, asymbol **, boolean));
97 static long sparc64_elf_canonicalize_dynamic_reloc
98 PARAMS ((bfd *, arelent **, asymbol **));
99 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
100 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
101 PARAMS ((const Elf_Internal_Rela *));
102 \f
103 /* The relocation "howto" table. */
104
105 static bfd_reloc_status_type sparc_elf_notsup_reloc
106 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
107 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
108 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
109 static bfd_reloc_status_type sparc_elf_hix22_reloc
110 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111 static bfd_reloc_status_type sparc_elf_lox10_reloc
112 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
113
114 static reloc_howto_type sparc64_elf_howto_table[] =
115 {
116 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
117 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
119 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
120 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
121 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
122 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
123 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
124 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
125 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
126 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
127 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
129 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
131 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
132 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
133 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
134 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
135 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
136 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
137 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
138 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
139 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
140 #ifndef SPARC64_OLD_RELOCS
141 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
142 /* These aren't implemented yet. */
143 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
145 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
146 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
147 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
148 #endif
149 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
150 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
151 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
152 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
153 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
157 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
158 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
159 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
160 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
161 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
162 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
163 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
164 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
165 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
166 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
167 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
168 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
169 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
170 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
171 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
172 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
173 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
174 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
175 };
176
177 struct elf_reloc_map {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180 };
181
182 static const struct elf_reloc_map sparc_reloc_map[] =
183 {
184 { BFD_RELOC_NONE, R_SPARC_NONE, },
185 { BFD_RELOC_16, R_SPARC_16, },
186 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
187 { BFD_RELOC_8, R_SPARC_8 },
188 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
189 { BFD_RELOC_CTOR, R_SPARC_64 },
190 { BFD_RELOC_32, R_SPARC_32 },
191 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
192 { BFD_RELOC_HI22, R_SPARC_HI22 },
193 { BFD_RELOC_LO10, R_SPARC_LO10, },
194 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
195 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
196 { BFD_RELOC_SPARC22, R_SPARC_22 },
197 { BFD_RELOC_SPARC13, R_SPARC_13 },
198 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
199 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
200 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
201 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
202 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
203 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
204 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
205 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
206 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
207 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
208 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
209 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
210 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
211 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
212 { BFD_RELOC_SPARC_10, R_SPARC_10 },
213 { BFD_RELOC_SPARC_11, R_SPARC_11 },
214 { BFD_RELOC_SPARC_64, R_SPARC_64 },
215 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
216 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
217 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
218 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
219 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
220 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
221 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
222 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
223 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
224 { BFD_RELOC_SPARC_7, R_SPARC_7 },
225 { BFD_RELOC_SPARC_5, R_SPARC_5 },
226 { BFD_RELOC_SPARC_6, R_SPARC_6 },
227 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
228 #ifndef SPARC64_OLD_RELOCS
229 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
230 #endif
231 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
232 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
233 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
234 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
235 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
236 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
237 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
238 };
239
240 static reloc_howto_type *
241 sparc64_elf_reloc_type_lookup (abfd, code)
242 bfd *abfd ATTRIBUTE_UNUSED;
243 bfd_reloc_code_real_type code;
244 {
245 unsigned int i;
246 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
247 {
248 if (sparc_reloc_map[i].bfd_reloc_val == code)
249 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
250 }
251 return 0;
252 }
253
254 static void
255 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
256 bfd *abfd ATTRIBUTE_UNUSED;
257 arelent *cache_ptr;
258 Elf64_Internal_Rela *dst;
259 {
260 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
261 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
262 }
263 \f
264 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
265 section can represent up to two relocs, we must tell the user to allocate
266 more space. */
267
268 static long
269 sparc64_elf_get_reloc_upper_bound (abfd, sec)
270 bfd *abfd ATTRIBUTE_UNUSED;
271 asection *sec;
272 {
273 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
274 }
275
276 static long
277 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
278 bfd *abfd;
279 {
280 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
281 }
282
283 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
284 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
285 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
286 for the same location, R_SPARC_LO10 and R_SPARC_13. */
287
288 static boolean
289 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
290 bfd *abfd;
291 asection *asect;
292 Elf_Internal_Shdr *rel_hdr;
293 asymbol **symbols;
294 boolean dynamic;
295 {
296 PTR allocated = NULL;
297 bfd_byte *native_relocs;
298 arelent *relent;
299 unsigned int i;
300 int entsize;
301 bfd_size_type count;
302 arelent *relents;
303
304 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
305 if (allocated == NULL)
306 goto error_return;
307
308 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
309 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
310 goto error_return;
311
312 native_relocs = (bfd_byte *) allocated;
313
314 relents = asect->relocation + asect->reloc_count;
315
316 entsize = rel_hdr->sh_entsize;
317 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
318
319 count = rel_hdr->sh_size / entsize;
320
321 for (i = 0, relent = relents; i < count;
322 i++, relent++, native_relocs += entsize)
323 {
324 Elf_Internal_Rela rela;
325
326 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
327
328 /* The address of an ELF reloc is section relative for an object
329 file, and absolute for an executable file or shared library.
330 The address of a normal BFD reloc is always section relative,
331 and the address of a dynamic reloc is absolute.. */
332 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
333 relent->address = rela.r_offset;
334 else
335 relent->address = rela.r_offset - asect->vma;
336
337 if (ELF64_R_SYM (rela.r_info) == 0)
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 else
340 {
341 asymbol **ps, *s;
342
343 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
344 s = *ps;
345
346 /* Canonicalize ELF section symbols. FIXME: Why? */
347 if ((s->flags & BSF_SECTION_SYM) == 0)
348 relent->sym_ptr_ptr = ps;
349 else
350 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
351 }
352
353 relent->addend = rela.r_addend;
354
355 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
356 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
357 {
358 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
359 relent[1].address = relent->address;
360 relent++;
361 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
362 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
363 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
364 }
365 else
366 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
367 }
368
369 asect->reloc_count += relent - relents;
370
371 if (allocated != NULL)
372 free (allocated);
373
374 return true;
375
376 error_return:
377 if (allocated != NULL)
378 free (allocated);
379 return false;
380 }
381
382 /* Read in and swap the external relocs. */
383
384 static boolean
385 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
386 bfd *abfd;
387 asection *asect;
388 asymbol **symbols;
389 boolean dynamic;
390 {
391 struct bfd_elf_section_data * const d = elf_section_data (asect);
392 Elf_Internal_Shdr *rel_hdr;
393 Elf_Internal_Shdr *rel_hdr2;
394 bfd_size_type amt;
395
396 if (asect->relocation != NULL)
397 return true;
398
399 if (! dynamic)
400 {
401 if ((asect->flags & SEC_RELOC) == 0
402 || asect->reloc_count == 0)
403 return true;
404
405 rel_hdr = &d->rel_hdr;
406 rel_hdr2 = d->rel_hdr2;
407
408 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
409 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
410 }
411 else
412 {
413 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
414 case because relocations against this section may use the
415 dynamic symbol table, and in that case bfd_section_from_shdr
416 in elf.c does not update the RELOC_COUNT. */
417 if (asect->_raw_size == 0)
418 return true;
419
420 rel_hdr = &d->this_hdr;
421 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
422 rel_hdr2 = NULL;
423 }
424
425 amt = asect->reloc_count;
426 amt *= 2 * sizeof (arelent);
427 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
428 if (asect->relocation == NULL)
429 return false;
430
431 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
432 asect->reloc_count = 0;
433
434 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
435 dynamic))
436 return false;
437
438 if (rel_hdr2
439 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
440 dynamic))
441 return false;
442
443 return true;
444 }
445
446 /* Canonicalize the dynamic relocation entries. Note that we return
447 the dynamic relocations as a single block, although they are
448 actually associated with particular sections; the interface, which
449 was designed for SunOS style shared libraries, expects that there
450 is only one set of dynamic relocs. Any section that was actually
451 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
452 the dynamic symbol table, is considered to be a dynamic reloc
453 section. */
454
455 static long
456 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
457 bfd *abfd;
458 arelent **storage;
459 asymbol **syms;
460 {
461 asection *s;
462 long ret;
463
464 if (elf_dynsymtab (abfd) == 0)
465 {
466 bfd_set_error (bfd_error_invalid_operation);
467 return -1;
468 }
469
470 ret = 0;
471 for (s = abfd->sections; s != NULL; s = s->next)
472 {
473 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
474 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
475 {
476 arelent *p;
477 long count, i;
478
479 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
480 return -1;
481 count = s->reloc_count;
482 p = s->relocation;
483 for (i = 0; i < count; i++)
484 *storage++ = p++;
485 ret += count;
486 }
487 }
488
489 *storage = NULL;
490
491 return ret;
492 }
493
494 /* Write out the relocs. */
495
496 static void
497 sparc64_elf_write_relocs (abfd, sec, data)
498 bfd *abfd;
499 asection *sec;
500 PTR data;
501 {
502 boolean *failedp = (boolean *) data;
503 Elf_Internal_Shdr *rela_hdr;
504 Elf64_External_Rela *outbound_relocas, *src_rela;
505 unsigned int idx, count;
506 asymbol *last_sym = 0;
507 int last_sym_idx = 0;
508
509 /* If we have already failed, don't do anything. */
510 if (*failedp)
511 return;
512
513 if ((sec->flags & SEC_RELOC) == 0)
514 return;
515
516 /* The linker backend writes the relocs out itself, and sets the
517 reloc_count field to zero to inhibit writing them here. Also,
518 sometimes the SEC_RELOC flag gets set even when there aren't any
519 relocs. */
520 if (sec->reloc_count == 0)
521 return;
522
523 /* We can combine two relocs that refer to the same address
524 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
525 latter is R_SPARC_13 with no associated symbol. */
526 count = 0;
527 for (idx = 0; idx < sec->reloc_count; idx++)
528 {
529 bfd_vma addr;
530
531 ++count;
532
533 addr = sec->orelocation[idx]->address;
534 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
535 && idx < sec->reloc_count - 1)
536 {
537 arelent *r = sec->orelocation[idx + 1];
538
539 if (r->howto->type == R_SPARC_13
540 && r->address == addr
541 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
542 && (*r->sym_ptr_ptr)->value == 0)
543 ++idx;
544 }
545 }
546
547 rela_hdr = &elf_section_data (sec)->rel_hdr;
548
549 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
550 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
551 if (rela_hdr->contents == NULL)
552 {
553 *failedp = true;
554 return;
555 }
556
557 /* Figure out whether the relocations are RELA or REL relocations. */
558 if (rela_hdr->sh_type != SHT_RELA)
559 abort ();
560
561 /* orelocation has the data, reloc_count has the count... */
562 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
563 src_rela = outbound_relocas;
564
565 for (idx = 0; idx < sec->reloc_count; idx++)
566 {
567 Elf_Internal_Rela dst_rela;
568 arelent *ptr;
569 asymbol *sym;
570 int n;
571
572 ptr = sec->orelocation[idx];
573
574 /* The address of an ELF reloc is section relative for an object
575 file, and absolute for an executable file or shared library.
576 The address of a BFD reloc is always section relative. */
577 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
578 dst_rela.r_offset = ptr->address;
579 else
580 dst_rela.r_offset = ptr->address + sec->vma;
581
582 sym = *ptr->sym_ptr_ptr;
583 if (sym == last_sym)
584 n = last_sym_idx;
585 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
586 n = STN_UNDEF;
587 else
588 {
589 last_sym = sym;
590 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
591 if (n < 0)
592 {
593 *failedp = true;
594 return;
595 }
596 last_sym_idx = n;
597 }
598
599 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
600 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
601 && ! _bfd_elf_validate_reloc (abfd, ptr))
602 {
603 *failedp = true;
604 return;
605 }
606
607 if (ptr->howto->type == R_SPARC_LO10
608 && idx < sec->reloc_count - 1)
609 {
610 arelent *r = sec->orelocation[idx + 1];
611
612 if (r->howto->type == R_SPARC_13
613 && r->address == ptr->address
614 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
615 && (*r->sym_ptr_ptr)->value == 0)
616 {
617 idx++;
618 dst_rela.r_info
619 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
620 R_SPARC_OLO10));
621 }
622 else
623 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
624 }
625 else
626 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
627
628 dst_rela.r_addend = ptr->addend;
629 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
630 ++src_rela;
631 }
632 }
633 \f
634 /* Sparc64 ELF linker hash table. */
635
636 struct sparc64_elf_app_reg
637 {
638 unsigned char bind;
639 unsigned short shndx;
640 bfd *abfd;
641 char *name;
642 };
643
644 struct sparc64_elf_link_hash_table
645 {
646 struct elf_link_hash_table root;
647
648 struct sparc64_elf_app_reg app_regs [4];
649 };
650
651 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
652
653 #define sparc64_elf_hash_table(p) \
654 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
655
656 /* Create a Sparc64 ELF linker hash table. */
657
658 static struct bfd_link_hash_table *
659 sparc64_elf_bfd_link_hash_table_create (abfd)
660 bfd *abfd;
661 {
662 struct sparc64_elf_link_hash_table *ret;
663 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
664
665 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
666 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
667 return NULL;
668
669 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
670 _bfd_elf_link_hash_newfunc))
671 {
672 free (ret);
673 return NULL;
674 }
675
676 return &ret->root.root;
677 }
678 \f
679 /* Utility for performing the standard initial work of an instruction
680 relocation.
681 *PRELOCATION will contain the relocated item.
682 *PINSN will contain the instruction from the input stream.
683 If the result is `bfd_reloc_other' the caller can continue with
684 performing the relocation. Otherwise it must stop and return the
685 value to its caller. */
686
687 static bfd_reloc_status_type
688 init_insn_reloc (abfd,
689 reloc_entry,
690 symbol,
691 data,
692 input_section,
693 output_bfd,
694 prelocation,
695 pinsn)
696 bfd *abfd;
697 arelent *reloc_entry;
698 asymbol *symbol;
699 PTR data;
700 asection *input_section;
701 bfd *output_bfd;
702 bfd_vma *prelocation;
703 bfd_vma *pinsn;
704 {
705 bfd_vma relocation;
706 reloc_howto_type *howto = reloc_entry->howto;
707
708 if (output_bfd != (bfd *) NULL
709 && (symbol->flags & BSF_SECTION_SYM) == 0
710 && (! howto->partial_inplace
711 || reloc_entry->addend == 0))
712 {
713 reloc_entry->address += input_section->output_offset;
714 return bfd_reloc_ok;
715 }
716
717 /* This works because partial_inplace is false. */
718 if (output_bfd != NULL)
719 return bfd_reloc_continue;
720
721 if (reloc_entry->address > input_section->_cooked_size)
722 return bfd_reloc_outofrange;
723
724 relocation = (symbol->value
725 + symbol->section->output_section->vma
726 + symbol->section->output_offset);
727 relocation += reloc_entry->addend;
728 if (howto->pc_relative)
729 {
730 relocation -= (input_section->output_section->vma
731 + input_section->output_offset);
732 relocation -= reloc_entry->address;
733 }
734
735 *prelocation = relocation;
736 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
737 return bfd_reloc_other;
738 }
739
740 /* For unsupported relocs. */
741
742 static bfd_reloc_status_type
743 sparc_elf_notsup_reloc (abfd,
744 reloc_entry,
745 symbol,
746 data,
747 input_section,
748 output_bfd,
749 error_message)
750 bfd *abfd ATTRIBUTE_UNUSED;
751 arelent *reloc_entry ATTRIBUTE_UNUSED;
752 asymbol *symbol ATTRIBUTE_UNUSED;
753 PTR data ATTRIBUTE_UNUSED;
754 asection *input_section ATTRIBUTE_UNUSED;
755 bfd *output_bfd ATTRIBUTE_UNUSED;
756 char **error_message ATTRIBUTE_UNUSED;
757 {
758 return bfd_reloc_notsupported;
759 }
760
761 /* Handle the WDISP16 reloc. */
762
763 static bfd_reloc_status_type
764 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
765 output_bfd, error_message)
766 bfd *abfd;
767 arelent *reloc_entry;
768 asymbol *symbol;
769 PTR data;
770 asection *input_section;
771 bfd *output_bfd;
772 char **error_message ATTRIBUTE_UNUSED;
773 {
774 bfd_vma relocation;
775 bfd_vma insn;
776 bfd_reloc_status_type status;
777
778 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
779 input_section, output_bfd, &relocation, &insn);
780 if (status != bfd_reloc_other)
781 return status;
782
783 insn &= ~ (bfd_vma) 0x303fff;
784 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
785 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
786
787 if ((bfd_signed_vma) relocation < - 0x40000
788 || (bfd_signed_vma) relocation > 0x3ffff)
789 return bfd_reloc_overflow;
790 else
791 return bfd_reloc_ok;
792 }
793
794 /* Handle the HIX22 reloc. */
795
796 static bfd_reloc_status_type
797 sparc_elf_hix22_reloc (abfd,
798 reloc_entry,
799 symbol,
800 data,
801 input_section,
802 output_bfd,
803 error_message)
804 bfd *abfd;
805 arelent *reloc_entry;
806 asymbol *symbol;
807 PTR data;
808 asection *input_section;
809 bfd *output_bfd;
810 char **error_message ATTRIBUTE_UNUSED;
811 {
812 bfd_vma relocation;
813 bfd_vma insn;
814 bfd_reloc_status_type status;
815
816 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
817 input_section, output_bfd, &relocation, &insn);
818 if (status != bfd_reloc_other)
819 return status;
820
821 relocation ^= MINUS_ONE;
822 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
823 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
824
825 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
826 return bfd_reloc_overflow;
827 else
828 return bfd_reloc_ok;
829 }
830
831 /* Handle the LOX10 reloc. */
832
833 static bfd_reloc_status_type
834 sparc_elf_lox10_reloc (abfd,
835 reloc_entry,
836 symbol,
837 data,
838 input_section,
839 output_bfd,
840 error_message)
841 bfd *abfd;
842 arelent *reloc_entry;
843 asymbol *symbol;
844 PTR data;
845 asection *input_section;
846 bfd *output_bfd;
847 char **error_message ATTRIBUTE_UNUSED;
848 {
849 bfd_vma relocation;
850 bfd_vma insn;
851 bfd_reloc_status_type status;
852
853 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
854 input_section, output_bfd, &relocation, &insn);
855 if (status != bfd_reloc_other)
856 return status;
857
858 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
859 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
860
861 return bfd_reloc_ok;
862 }
863 \f
864 /* PLT/GOT stuff */
865
866 /* Both the headers and the entries are icache aligned. */
867 #define PLT_ENTRY_SIZE 32
868 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
869 #define LARGE_PLT_THRESHOLD 32768
870 #define GOT_RESERVED_ENTRIES 1
871
872 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
873
874 /* Fill in the .plt section. */
875
876 static void
877 sparc64_elf_build_plt (output_bfd, contents, nentries)
878 bfd *output_bfd;
879 unsigned char *contents;
880 int nentries;
881 {
882 const unsigned int nop = 0x01000000;
883 int i, j;
884
885 /* The first four entries are reserved, and are initially undefined.
886 We fill them with `illtrap 0' to force ld.so to do something. */
887
888 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
889 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
890
891 /* The first 32768 entries are close enough to plt1 to get there via
892 a straight branch. */
893
894 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
895 {
896 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
897 unsigned int sethi, ba;
898
899 /* sethi (. - plt0), %g1 */
900 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
901
902 /* ba,a,pt %xcc, plt1 */
903 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
904
905 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
906 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
910 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
911 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
912 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
913 }
914
915 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
916 160: 160 entries and 160 pointers. This is to separate code from data,
917 which is much friendlier on the cache. */
918
919 for (; i < nentries; i += 160)
920 {
921 int block = (i + 160 <= nentries ? 160 : nentries - i);
922 for (j = 0; j < block; ++j)
923 {
924 unsigned char *entry, *ptr;
925 unsigned int ldx;
926
927 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
928 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
929
930 /* ldx [%o7 + ptr - (entry+4)], %g1 */
931 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
932
933 /* mov %o7,%g5
934 call .+8
935 nop
936 ldx [%o7+P],%g1
937 jmpl %o7+%g1,%g1
938 mov %g5,%o7 */
939 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
941 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
942 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
943 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
944 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
945
946 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
947 }
948 }
949 }
950
951 /* Return the offset of a particular plt entry within the .plt section. */
952
953 static bfd_vma
954 sparc64_elf_plt_entry_offset (index)
955 bfd_vma index;
956 {
957 bfd_vma block, ofs;
958
959 if (index < LARGE_PLT_THRESHOLD)
960 return index * PLT_ENTRY_SIZE;
961
962 /* See above for details. */
963
964 block = (index - LARGE_PLT_THRESHOLD) / 160;
965 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
966
967 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
968 }
969
970 static bfd_vma
971 sparc64_elf_plt_ptr_offset (index, max)
972 bfd_vma index;
973 bfd_vma max;
974 {
975 bfd_vma block, ofs, last;
976
977 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
978
979 /* See above for details. */
980
981 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
982 ofs = index - block;
983 if (block + 160 > max)
984 last = (max - LARGE_PLT_THRESHOLD) % 160;
985 else
986 last = 160;
987
988 return (block * PLT_ENTRY_SIZE
989 + last * 6*4
990 + ofs * 8);
991 }
992 \f
993 /* Look through the relocs for a section during the first phase, and
994 allocate space in the global offset table or procedure linkage
995 table. */
996
997 static boolean
998 sparc64_elf_check_relocs (abfd, info, sec, relocs)
999 bfd *abfd;
1000 struct bfd_link_info *info;
1001 asection *sec;
1002 const Elf_Internal_Rela *relocs;
1003 {
1004 bfd *dynobj;
1005 Elf_Internal_Shdr *symtab_hdr;
1006 struct elf_link_hash_entry **sym_hashes;
1007 bfd_vma *local_got_offsets;
1008 const Elf_Internal_Rela *rel;
1009 const Elf_Internal_Rela *rel_end;
1010 asection *sgot;
1011 asection *srelgot;
1012 asection *sreloc;
1013
1014 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1015 return true;
1016
1017 dynobj = elf_hash_table (info)->dynobj;
1018 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1019 sym_hashes = elf_sym_hashes (abfd);
1020 local_got_offsets = elf_local_got_offsets (abfd);
1021
1022 sgot = NULL;
1023 srelgot = NULL;
1024 sreloc = NULL;
1025
1026 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1027 for (rel = relocs; rel < rel_end; rel++)
1028 {
1029 unsigned long r_symndx;
1030 struct elf_link_hash_entry *h;
1031
1032 r_symndx = ELF64_R_SYM (rel->r_info);
1033 if (r_symndx < symtab_hdr->sh_info)
1034 h = NULL;
1035 else
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037
1038 switch (ELF64_R_TYPE_ID (rel->r_info))
1039 {
1040 case R_SPARC_GOT10:
1041 case R_SPARC_GOT13:
1042 case R_SPARC_GOT22:
1043 /* This symbol requires a global offset table entry. */
1044
1045 if (dynobj == NULL)
1046 {
1047 /* Create the .got section. */
1048 elf_hash_table (info)->dynobj = dynobj = abfd;
1049 if (! _bfd_elf_create_got_section (dynobj, info))
1050 return false;
1051 }
1052
1053 if (sgot == NULL)
1054 {
1055 sgot = bfd_get_section_by_name (dynobj, ".got");
1056 BFD_ASSERT (sgot != NULL);
1057 }
1058
1059 if (srelgot == NULL && (h != NULL || info->shared))
1060 {
1061 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1062 if (srelgot == NULL)
1063 {
1064 srelgot = bfd_make_section (dynobj, ".rela.got");
1065 if (srelgot == NULL
1066 || ! bfd_set_section_flags (dynobj, srelgot,
1067 (SEC_ALLOC
1068 | SEC_LOAD
1069 | SEC_HAS_CONTENTS
1070 | SEC_IN_MEMORY
1071 | SEC_LINKER_CREATED
1072 | SEC_READONLY))
1073 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1074 return false;
1075 }
1076 }
1077
1078 if (h != NULL)
1079 {
1080 if (h->got.offset != (bfd_vma) -1)
1081 {
1082 /* We have already allocated space in the .got. */
1083 break;
1084 }
1085 h->got.offset = sgot->_raw_size;
1086
1087 /* Make sure this symbol is output as a dynamic symbol. */
1088 if (h->dynindx == -1)
1089 {
1090 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1091 return false;
1092 }
1093
1094 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1095 }
1096 else
1097 {
1098 /* This is a global offset table entry for a local
1099 symbol. */
1100 if (local_got_offsets == NULL)
1101 {
1102 bfd_size_type size;
1103 register unsigned int i;
1104
1105 size = symtab_hdr->sh_info;
1106 size *= sizeof (bfd_vma);
1107 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1108 if (local_got_offsets == NULL)
1109 return false;
1110 elf_local_got_offsets (abfd) = local_got_offsets;
1111 for (i = 0; i < symtab_hdr->sh_info; i++)
1112 local_got_offsets[i] = (bfd_vma) -1;
1113 }
1114 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1115 {
1116 /* We have already allocated space in the .got. */
1117 break;
1118 }
1119 local_got_offsets[r_symndx] = sgot->_raw_size;
1120
1121 if (info->shared)
1122 {
1123 /* If we are generating a shared object, we need to
1124 output a R_SPARC_RELATIVE reloc so that the
1125 dynamic linker can adjust this GOT entry. */
1126 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1127 }
1128 }
1129
1130 sgot->_raw_size += 8;
1131
1132 #if 0
1133 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1134 unsigned numbers. If we permit ourselves to modify
1135 code so we get sethi/xor, this could work.
1136 Question: do we consider conditionally re-enabling
1137 this for -fpic, once we know about object code models? */
1138 /* If the .got section is more than 0x1000 bytes, we add
1139 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1140 bit relocations have a greater chance of working. */
1141 if (sgot->_raw_size >= 0x1000
1142 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1143 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1144 #endif
1145
1146 break;
1147
1148 case R_SPARC_WPLT30:
1149 case R_SPARC_PLT32:
1150 case R_SPARC_HIPLT22:
1151 case R_SPARC_LOPLT10:
1152 case R_SPARC_PCPLT32:
1153 case R_SPARC_PCPLT22:
1154 case R_SPARC_PCPLT10:
1155 case R_SPARC_PLT64:
1156 /* This symbol requires a procedure linkage table entry. We
1157 actually build the entry in adjust_dynamic_symbol,
1158 because this might be a case of linking PIC code without
1159 linking in any dynamic objects, in which case we don't
1160 need to generate a procedure linkage table after all. */
1161
1162 if (h == NULL)
1163 {
1164 /* It does not make sense to have a procedure linkage
1165 table entry for a local symbol. */
1166 bfd_set_error (bfd_error_bad_value);
1167 return false;
1168 }
1169
1170 /* Make sure this symbol is output as a dynamic symbol. */
1171 if (h->dynindx == -1)
1172 {
1173 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1174 return false;
1175 }
1176
1177 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1178 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1179 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1180 break;
1181 /* Fall through. */
1182 case R_SPARC_PC10:
1183 case R_SPARC_PC22:
1184 case R_SPARC_PC_HH22:
1185 case R_SPARC_PC_HM10:
1186 case R_SPARC_PC_LM22:
1187 if (h != NULL
1188 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1189 break;
1190 /* Fall through. */
1191 case R_SPARC_DISP8:
1192 case R_SPARC_DISP16:
1193 case R_SPARC_DISP32:
1194 case R_SPARC_DISP64:
1195 case R_SPARC_WDISP30:
1196 case R_SPARC_WDISP22:
1197 case R_SPARC_WDISP19:
1198 case R_SPARC_WDISP16:
1199 if (h == NULL)
1200 break;
1201 /* Fall through. */
1202 case R_SPARC_8:
1203 case R_SPARC_16:
1204 case R_SPARC_32:
1205 case R_SPARC_HI22:
1206 case R_SPARC_22:
1207 case R_SPARC_13:
1208 case R_SPARC_LO10:
1209 case R_SPARC_UA32:
1210 case R_SPARC_10:
1211 case R_SPARC_11:
1212 case R_SPARC_64:
1213 case R_SPARC_OLO10:
1214 case R_SPARC_HH22:
1215 case R_SPARC_HM10:
1216 case R_SPARC_LM22:
1217 case R_SPARC_7:
1218 case R_SPARC_5:
1219 case R_SPARC_6:
1220 case R_SPARC_HIX22:
1221 case R_SPARC_LOX10:
1222 case R_SPARC_H44:
1223 case R_SPARC_M44:
1224 case R_SPARC_L44:
1225 case R_SPARC_UA64:
1226 case R_SPARC_UA16:
1227 /* When creating a shared object, we must copy these relocs
1228 into the output file. We create a reloc section in
1229 dynobj and make room for the reloc.
1230
1231 But don't do this for debugging sections -- this shows up
1232 with DWARF2 -- first because they are not loaded, and
1233 second because DWARF sez the debug info is not to be
1234 biased by the load address. */
1235 if (info->shared && (sec->flags & SEC_ALLOC))
1236 {
1237 if (sreloc == NULL)
1238 {
1239 const char *name;
1240
1241 name = (bfd_elf_string_from_elf_section
1242 (abfd,
1243 elf_elfheader (abfd)->e_shstrndx,
1244 elf_section_data (sec)->rel_hdr.sh_name));
1245 if (name == NULL)
1246 return false;
1247
1248 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1249 && strcmp (bfd_get_section_name (abfd, sec),
1250 name + 5) == 0);
1251
1252 sreloc = bfd_get_section_by_name (dynobj, name);
1253 if (sreloc == NULL)
1254 {
1255 flagword flags;
1256
1257 sreloc = bfd_make_section (dynobj, name);
1258 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1259 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1260 if ((sec->flags & SEC_ALLOC) != 0)
1261 flags |= SEC_ALLOC | SEC_LOAD;
1262 if (sreloc == NULL
1263 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1264 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1265 return false;
1266 }
1267 if (sec->flags & SEC_READONLY)
1268 info->flags |= DF_TEXTREL;
1269 }
1270
1271 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1272 }
1273 break;
1274
1275 case R_SPARC_REGISTER:
1276 /* Nothing to do. */
1277 break;
1278
1279 default:
1280 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1281 bfd_archive_filename (abfd),
1282 ELF64_R_TYPE_ID (rel->r_info));
1283 return false;
1284 }
1285 }
1286
1287 return true;
1288 }
1289
1290 /* Hook called by the linker routine which adds symbols from an object
1291 file. We use it for STT_REGISTER symbols. */
1292
1293 static boolean
1294 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1295 bfd *abfd;
1296 struct bfd_link_info *info;
1297 const Elf_Internal_Sym *sym;
1298 const char **namep;
1299 flagword *flagsp ATTRIBUTE_UNUSED;
1300 asection **secp ATTRIBUTE_UNUSED;
1301 bfd_vma *valp ATTRIBUTE_UNUSED;
1302 {
1303 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1304
1305 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1306 {
1307 int reg;
1308 struct sparc64_elf_app_reg *p;
1309
1310 reg = (int)sym->st_value;
1311 switch (reg & ~1)
1312 {
1313 case 2: reg -= 2; break;
1314 case 6: reg -= 4; break;
1315 default:
1316 (*_bfd_error_handler)
1317 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1318 bfd_archive_filename (abfd));
1319 return false;
1320 }
1321
1322 if (info->hash->creator != abfd->xvec
1323 || (abfd->flags & DYNAMIC) != 0)
1324 {
1325 /* STT_REGISTER only works when linking an elf64_sparc object.
1326 If STT_REGISTER comes from a dynamic object, don't put it into
1327 the output bfd. The dynamic linker will recheck it. */
1328 *namep = NULL;
1329 return true;
1330 }
1331
1332 p = sparc64_elf_hash_table(info)->app_regs + reg;
1333
1334 if (p->name != NULL && strcmp (p->name, *namep))
1335 {
1336 (*_bfd_error_handler)
1337 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1338 (int) sym->st_value,
1339 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1340 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1341 return false;
1342 }
1343
1344 if (p->name == NULL)
1345 {
1346 if (**namep)
1347 {
1348 struct elf_link_hash_entry *h;
1349
1350 h = (struct elf_link_hash_entry *)
1351 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1352
1353 if (h != NULL)
1354 {
1355 unsigned char type = h->type;
1356
1357 if (type > STT_FUNC)
1358 type = 0;
1359 (*_bfd_error_handler)
1360 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1361 *namep, bfd_archive_filename (abfd),
1362 stt_types[type], bfd_archive_filename (p->abfd));
1363 return false;
1364 }
1365
1366 p->name = bfd_hash_allocate (&info->hash->table,
1367 strlen (*namep) + 1);
1368 if (!p->name)
1369 return false;
1370
1371 strcpy (p->name, *namep);
1372 }
1373 else
1374 p->name = "";
1375 p->bind = ELF_ST_BIND (sym->st_info);
1376 p->abfd = abfd;
1377 p->shndx = sym->st_shndx;
1378 }
1379 else
1380 {
1381 if (p->bind == STB_WEAK
1382 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1383 {
1384 p->bind = STB_GLOBAL;
1385 p->abfd = abfd;
1386 }
1387 }
1388 *namep = NULL;
1389 return true;
1390 }
1391 else if (*namep && **namep
1392 && info->hash->creator == abfd->xvec)
1393 {
1394 int i;
1395 struct sparc64_elf_app_reg *p;
1396
1397 p = sparc64_elf_hash_table(info)->app_regs;
1398 for (i = 0; i < 4; i++, p++)
1399 if (p->name != NULL && ! strcmp (p->name, *namep))
1400 {
1401 unsigned char type = ELF_ST_TYPE (sym->st_info);
1402
1403 if (type > STT_FUNC)
1404 type = 0;
1405 (*_bfd_error_handler)
1406 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1407 *namep, stt_types[type], bfd_archive_filename (abfd),
1408 bfd_archive_filename (p->abfd));
1409 return false;
1410 }
1411 }
1412 return true;
1413 }
1414
1415 /* This function takes care of emiting STT_REGISTER symbols
1416 which we cannot easily keep in the symbol hash table. */
1417
1418 static boolean
1419 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1420 bfd *output_bfd ATTRIBUTE_UNUSED;
1421 struct bfd_link_info *info;
1422 PTR finfo;
1423 boolean (*func) PARAMS ((PTR, const char *,
1424 Elf_Internal_Sym *, asection *));
1425 {
1426 int reg;
1427 struct sparc64_elf_app_reg *app_regs =
1428 sparc64_elf_hash_table(info)->app_regs;
1429 Elf_Internal_Sym sym;
1430
1431 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1432 at the end of the dynlocal list, so they came at the end of the local
1433 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1434 to back up symtab->sh_info. */
1435 if (elf_hash_table (info)->dynlocal)
1436 {
1437 bfd * dynobj = elf_hash_table (info)->dynobj;
1438 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1439 struct elf_link_local_dynamic_entry *e;
1440
1441 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1442 if (e->input_indx == -1)
1443 break;
1444 if (e)
1445 {
1446 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1447 = e->dynindx;
1448 }
1449 }
1450
1451 if (info->strip == strip_all)
1452 return true;
1453
1454 for (reg = 0; reg < 4; reg++)
1455 if (app_regs [reg].name != NULL)
1456 {
1457 if (info->strip == strip_some
1458 && bfd_hash_lookup (info->keep_hash,
1459 app_regs [reg].name,
1460 false, false) == NULL)
1461 continue;
1462
1463 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1464 sym.st_size = 0;
1465 sym.st_other = 0;
1466 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1467 sym.st_shndx = app_regs [reg].shndx;
1468 if (! (*func) (finfo, app_regs [reg].name, &sym,
1469 sym.st_shndx == SHN_ABS
1470 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1471 return false;
1472 }
1473
1474 return true;
1475 }
1476
1477 static int
1478 sparc64_elf_get_symbol_type (elf_sym, type)
1479 Elf_Internal_Sym * elf_sym;
1480 int type;
1481 {
1482 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1483 return STT_REGISTER;
1484 else
1485 return type;
1486 }
1487
1488 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1489 even in SHN_UNDEF section. */
1490
1491 static void
1492 sparc64_elf_symbol_processing (abfd, asym)
1493 bfd *abfd ATTRIBUTE_UNUSED;
1494 asymbol *asym;
1495 {
1496 elf_symbol_type *elfsym;
1497
1498 elfsym = (elf_symbol_type *) asym;
1499 if (elfsym->internal_elf_sym.st_info
1500 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1501 {
1502 asym->flags |= BSF_GLOBAL;
1503 }
1504 }
1505
1506 /* Adjust a symbol defined by a dynamic object and referenced by a
1507 regular object. The current definition is in some section of the
1508 dynamic object, but we're not including those sections. We have to
1509 change the definition to something the rest of the link can
1510 understand. */
1511
1512 static boolean
1513 sparc64_elf_adjust_dynamic_symbol (info, h)
1514 struct bfd_link_info *info;
1515 struct elf_link_hash_entry *h;
1516 {
1517 bfd *dynobj;
1518 asection *s;
1519 unsigned int power_of_two;
1520
1521 dynobj = elf_hash_table (info)->dynobj;
1522
1523 /* Make sure we know what is going on here. */
1524 BFD_ASSERT (dynobj != NULL
1525 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1526 || h->weakdef != NULL
1527 || ((h->elf_link_hash_flags
1528 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1529 && (h->elf_link_hash_flags
1530 & ELF_LINK_HASH_REF_REGULAR) != 0
1531 && (h->elf_link_hash_flags
1532 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1533
1534 /* If this is a function, put it in the procedure linkage table. We
1535 will fill in the contents of the procedure linkage table later
1536 (although we could actually do it here). The STT_NOTYPE
1537 condition is a hack specifically for the Oracle libraries
1538 delivered for Solaris; for some inexplicable reason, they define
1539 some of their functions as STT_NOTYPE when they really should be
1540 STT_FUNC. */
1541 if (h->type == STT_FUNC
1542 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1543 || (h->type == STT_NOTYPE
1544 && (h->root.type == bfd_link_hash_defined
1545 || h->root.type == bfd_link_hash_defweak)
1546 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1547 {
1548 if (! elf_hash_table (info)->dynamic_sections_created)
1549 {
1550 /* This case can occur if we saw a WPLT30 reloc in an input
1551 file, but none of the input files were dynamic objects.
1552 In such a case, we don't actually need to build a
1553 procedure linkage table, and we can just do a WDISP30
1554 reloc instead. */
1555 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1556 return true;
1557 }
1558
1559 s = bfd_get_section_by_name (dynobj, ".plt");
1560 BFD_ASSERT (s != NULL);
1561
1562 /* The first four bit in .plt is reserved. */
1563 if (s->_raw_size == 0)
1564 s->_raw_size = PLT_HEADER_SIZE;
1565
1566 /* If this symbol is not defined in a regular file, and we are
1567 not generating a shared library, then set the symbol to this
1568 location in the .plt. This is required to make function
1569 pointers compare as equal between the normal executable and
1570 the shared library. */
1571 if (! info->shared
1572 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1573 {
1574 h->root.u.def.section = s;
1575 h->root.u.def.value = s->_raw_size;
1576 }
1577
1578 /* To simplify matters later, just store the plt index here. */
1579 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1580
1581 /* Make room for this entry. */
1582 s->_raw_size += PLT_ENTRY_SIZE;
1583
1584 /* We also need to make an entry in the .rela.plt section. */
1585
1586 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1587 BFD_ASSERT (s != NULL);
1588
1589 s->_raw_size += sizeof (Elf64_External_Rela);
1590
1591 /* The procedure linkage table size is bounded by the magnitude
1592 of the offset we can describe in the entry. */
1593 if (s->_raw_size >= (bfd_vma)1 << 32)
1594 {
1595 bfd_set_error (bfd_error_bad_value);
1596 return false;
1597 }
1598
1599 return true;
1600 }
1601
1602 /* If this is a weak symbol, and there is a real definition, the
1603 processor independent code will have arranged for us to see the
1604 real definition first, and we can just use the same value. */
1605 if (h->weakdef != NULL)
1606 {
1607 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1608 || h->weakdef->root.type == bfd_link_hash_defweak);
1609 h->root.u.def.section = h->weakdef->root.u.def.section;
1610 h->root.u.def.value = h->weakdef->root.u.def.value;
1611 return true;
1612 }
1613
1614 /* This is a reference to a symbol defined by a dynamic object which
1615 is not a function. */
1616
1617 /* If we are creating a shared library, we must presume that the
1618 only references to the symbol are via the global offset table.
1619 For such cases we need not do anything here; the relocations will
1620 be handled correctly by relocate_section. */
1621 if (info->shared)
1622 return true;
1623
1624 /* We must allocate the symbol in our .dynbss section, which will
1625 become part of the .bss section of the executable. There will be
1626 an entry for this symbol in the .dynsym section. The dynamic
1627 object will contain position independent code, so all references
1628 from the dynamic object to this symbol will go through the global
1629 offset table. The dynamic linker will use the .dynsym entry to
1630 determine the address it must put in the global offset table, so
1631 both the dynamic object and the regular object will refer to the
1632 same memory location for the variable. */
1633
1634 s = bfd_get_section_by_name (dynobj, ".dynbss");
1635 BFD_ASSERT (s != NULL);
1636
1637 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1638 to copy the initial value out of the dynamic object and into the
1639 runtime process image. We need to remember the offset into the
1640 .rel.bss section we are going to use. */
1641 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1642 {
1643 asection *srel;
1644
1645 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1646 BFD_ASSERT (srel != NULL);
1647 srel->_raw_size += sizeof (Elf64_External_Rela);
1648 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1649 }
1650
1651 /* We need to figure out the alignment required for this symbol. I
1652 have no idea how ELF linkers handle this. 16-bytes is the size
1653 of the largest type that requires hard alignment -- long double. */
1654 power_of_two = bfd_log2 (h->size);
1655 if (power_of_two > 4)
1656 power_of_two = 4;
1657
1658 /* Apply the required alignment. */
1659 s->_raw_size = BFD_ALIGN (s->_raw_size,
1660 (bfd_size_type) (1 << power_of_two));
1661 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1662 {
1663 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1664 return false;
1665 }
1666
1667 /* Define the symbol as being at this point in the section. */
1668 h->root.u.def.section = s;
1669 h->root.u.def.value = s->_raw_size;
1670
1671 /* Increment the section size to make room for the symbol. */
1672 s->_raw_size += h->size;
1673
1674 return true;
1675 }
1676
1677 /* Set the sizes of the dynamic sections. */
1678
1679 static boolean
1680 sparc64_elf_size_dynamic_sections (output_bfd, info)
1681 bfd *output_bfd;
1682 struct bfd_link_info *info;
1683 {
1684 bfd *dynobj;
1685 asection *s;
1686 boolean relplt;
1687
1688 dynobj = elf_hash_table (info)->dynobj;
1689 BFD_ASSERT (dynobj != NULL);
1690
1691 if (elf_hash_table (info)->dynamic_sections_created)
1692 {
1693 /* Set the contents of the .interp section to the interpreter. */
1694 if (! info->shared)
1695 {
1696 s = bfd_get_section_by_name (dynobj, ".interp");
1697 BFD_ASSERT (s != NULL);
1698 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1699 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1700 }
1701 }
1702 else
1703 {
1704 /* We may have created entries in the .rela.got section.
1705 However, if we are not creating the dynamic sections, we will
1706 not actually use these entries. Reset the size of .rela.got,
1707 which will cause it to get stripped from the output file
1708 below. */
1709 s = bfd_get_section_by_name (dynobj, ".rela.got");
1710 if (s != NULL)
1711 s->_raw_size = 0;
1712 }
1713
1714 /* The check_relocs and adjust_dynamic_symbol entry points have
1715 determined the sizes of the various dynamic sections. Allocate
1716 memory for them. */
1717 relplt = false;
1718 for (s = dynobj->sections; s != NULL; s = s->next)
1719 {
1720 const char *name;
1721 boolean strip;
1722
1723 if ((s->flags & SEC_LINKER_CREATED) == 0)
1724 continue;
1725
1726 /* It's OK to base decisions on the section name, because none
1727 of the dynobj section names depend upon the input files. */
1728 name = bfd_get_section_name (dynobj, s);
1729
1730 strip = false;
1731
1732 if (strncmp (name, ".rela", 5) == 0)
1733 {
1734 if (s->_raw_size == 0)
1735 {
1736 /* If we don't need this section, strip it from the
1737 output file. This is to handle .rela.bss and
1738 .rel.plt. We must create it in
1739 create_dynamic_sections, because it must be created
1740 before the linker maps input sections to output
1741 sections. The linker does that before
1742 adjust_dynamic_symbol is called, and it is that
1743 function which decides whether anything needs to go
1744 into these sections. */
1745 strip = true;
1746 }
1747 else
1748 {
1749 if (strcmp (name, ".rela.plt") == 0)
1750 relplt = true;
1751
1752 /* We use the reloc_count field as a counter if we need
1753 to copy relocs into the output file. */
1754 s->reloc_count = 0;
1755 }
1756 }
1757 else if (strcmp (name, ".plt") != 0
1758 && strncmp (name, ".got", 4) != 0)
1759 {
1760 /* It's not one of our sections, so don't allocate space. */
1761 continue;
1762 }
1763
1764 if (strip)
1765 {
1766 _bfd_strip_section_from_output (info, s);
1767 continue;
1768 }
1769
1770 /* Allocate memory for the section contents. Zero the memory
1771 for the benefit of .rela.plt, which has 4 unused entries
1772 at the beginning, and we don't want garbage. */
1773 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1774 if (s->contents == NULL && s->_raw_size != 0)
1775 return false;
1776 }
1777
1778 if (elf_hash_table (info)->dynamic_sections_created)
1779 {
1780 /* Add some entries to the .dynamic section. We fill in the
1781 values later, in sparc64_elf_finish_dynamic_sections, but we
1782 must add the entries now so that we get the correct size for
1783 the .dynamic section. The DT_DEBUG entry is filled in by the
1784 dynamic linker and used by the debugger. */
1785 #define add_dynamic_entry(TAG, VAL) \
1786 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1787
1788 int reg;
1789 struct sparc64_elf_app_reg * app_regs;
1790 struct elf_strtab_hash *dynstr;
1791 struct elf_link_hash_table *eht = elf_hash_table (info);
1792
1793 if (!info->shared)
1794 {
1795 if (!add_dynamic_entry (DT_DEBUG, 0))
1796 return false;
1797 }
1798
1799 if (relplt)
1800 {
1801 if (!add_dynamic_entry (DT_PLTGOT, 0)
1802 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1803 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1804 || !add_dynamic_entry (DT_JMPREL, 0))
1805 return false;
1806 }
1807
1808 if (!add_dynamic_entry (DT_RELA, 0)
1809 || !add_dynamic_entry (DT_RELASZ, 0)
1810 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1811 return false;
1812
1813 if (info->flags & DF_TEXTREL)
1814 {
1815 if (!add_dynamic_entry (DT_TEXTREL, 0))
1816 return false;
1817 }
1818
1819 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1820 entries if needed. */
1821 app_regs = sparc64_elf_hash_table (info)->app_regs;
1822 dynstr = eht->dynstr;
1823
1824 for (reg = 0; reg < 4; reg++)
1825 if (app_regs [reg].name != NULL)
1826 {
1827 struct elf_link_local_dynamic_entry *entry, *e;
1828
1829 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1830 return false;
1831
1832 entry = (struct elf_link_local_dynamic_entry *)
1833 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1834 if (entry == NULL)
1835 return false;
1836
1837 /* We cheat here a little bit: the symbol will not be local, so we
1838 put it at the end of the dynlocal linked list. We will fix it
1839 later on, as we have to fix other fields anyway. */
1840 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1841 entry->isym.st_size = 0;
1842 if (*app_regs [reg].name != '\0')
1843 entry->isym.st_name
1844 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1845 else
1846 entry->isym.st_name = 0;
1847 entry->isym.st_other = 0;
1848 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1849 STT_REGISTER);
1850 entry->isym.st_shndx = app_regs [reg].shndx;
1851 entry->next = NULL;
1852 entry->input_bfd = output_bfd;
1853 entry->input_indx = -1;
1854
1855 if (eht->dynlocal == NULL)
1856 eht->dynlocal = entry;
1857 else
1858 {
1859 for (e = eht->dynlocal; e->next; e = e->next)
1860 ;
1861 e->next = entry;
1862 }
1863 eht->dynsymcount++;
1864 }
1865 }
1866 #undef add_dynamic_entry
1867
1868 return true;
1869 }
1870 \f
1871 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1872 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1873
1874 static boolean
1875 sparc64_elf_relax_section (abfd, section, link_info, again)
1876 bfd *abfd ATTRIBUTE_UNUSED;
1877 asection *section ATTRIBUTE_UNUSED;
1878 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1879 boolean *again;
1880 {
1881 *again = false;
1882 SET_SEC_DO_RELAX (section);
1883 return true;
1884 }
1885 \f
1886 /* This is the condition under which finish_dynamic_symbol will be called
1887 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1888 routine, we'll need to do something about initializing any .plt and
1889 .got entries in relocate_section. */
1890 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1891 ((DYN) \
1892 && ((INFO)->shared \
1893 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1894 && ((H)->dynindx != -1 \
1895 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1896
1897 /* Relocate a SPARC64 ELF section. */
1898
1899 static boolean
1900 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1901 contents, relocs, local_syms, local_sections)
1902 bfd *output_bfd;
1903 struct bfd_link_info *info;
1904 bfd *input_bfd;
1905 asection *input_section;
1906 bfd_byte *contents;
1907 Elf_Internal_Rela *relocs;
1908 Elf_Internal_Sym *local_syms;
1909 asection **local_sections;
1910 {
1911 bfd *dynobj;
1912 Elf_Internal_Shdr *symtab_hdr;
1913 struct elf_link_hash_entry **sym_hashes;
1914 bfd_vma *local_got_offsets;
1915 bfd_vma got_base;
1916 asection *sgot;
1917 asection *splt;
1918 asection *sreloc;
1919 Elf_Internal_Rela *rel;
1920 Elf_Internal_Rela *relend;
1921
1922 if (info->relocateable)
1923 return true;
1924
1925 dynobj = elf_hash_table (info)->dynobj;
1926 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1927 sym_hashes = elf_sym_hashes (input_bfd);
1928 local_got_offsets = elf_local_got_offsets (input_bfd);
1929
1930 if (elf_hash_table(info)->hgot == NULL)
1931 got_base = 0;
1932 else
1933 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1934
1935 sgot = splt = sreloc = NULL;
1936
1937 rel = relocs;
1938 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1939 for (; rel < relend; rel++)
1940 {
1941 int r_type;
1942 reloc_howto_type *howto;
1943 unsigned long r_symndx;
1944 struct elf_link_hash_entry *h;
1945 Elf_Internal_Sym *sym;
1946 asection *sec;
1947 bfd_vma relocation, off;
1948 bfd_reloc_status_type r;
1949 boolean is_plt = false;
1950 boolean unresolved_reloc;
1951
1952 r_type = ELF64_R_TYPE_ID (rel->r_info);
1953 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1954 {
1955 bfd_set_error (bfd_error_bad_value);
1956 return false;
1957 }
1958 howto = sparc64_elf_howto_table + r_type;
1959
1960 /* This is a final link. */
1961 r_symndx = ELF64_R_SYM (rel->r_info);
1962 h = NULL;
1963 sym = NULL;
1964 sec = NULL;
1965 unresolved_reloc = false;
1966 if (r_symndx < symtab_hdr->sh_info)
1967 {
1968 sym = local_syms + r_symndx;
1969 sec = local_sections[r_symndx];
1970 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1971 }
1972 else
1973 {
1974 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1975 while (h->root.type == bfd_link_hash_indirect
1976 || h->root.type == bfd_link_hash_warning)
1977 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1978
1979 relocation = 0;
1980 if (h->root.type == bfd_link_hash_defined
1981 || h->root.type == bfd_link_hash_defweak)
1982 {
1983 sec = h->root.u.def.section;
1984 if (sec->output_section == NULL)
1985 /* Set a flag that will be cleared later if we find a
1986 relocation value for this symbol. output_section
1987 is typically NULL for symbols satisfied by a shared
1988 library. */
1989 unresolved_reloc = true;
1990 else
1991 relocation = (h->root.u.def.value
1992 + sec->output_section->vma
1993 + sec->output_offset);
1994 }
1995 else if (h->root.type == bfd_link_hash_undefweak)
1996 ;
1997 else if (info->shared
1998 && (!info->symbolic || info->allow_shlib_undefined)
1999 && !info->no_undefined
2000 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2001 ;
2002 else
2003 {
2004 if (! ((*info->callbacks->undefined_symbol)
2005 (info, h->root.root.string, input_bfd,
2006 input_section, rel->r_offset,
2007 (!info->shared || info->no_undefined
2008 || ELF_ST_VISIBILITY (h->other)))))
2009 return false;
2010
2011 /* To avoid generating warning messages about truncated
2012 relocations, set the relocation's address to be the same as
2013 the start of this section. */
2014
2015 if (input_section->output_section != NULL)
2016 relocation = input_section->output_section->vma;
2017 else
2018 relocation = 0;
2019 }
2020 }
2021
2022 do_dynreloc:
2023 /* When generating a shared object, these relocations are copied
2024 into the output file to be resolved at run time. */
2025 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2026 {
2027 switch (r_type)
2028 {
2029 case R_SPARC_PC10:
2030 case R_SPARC_PC22:
2031 case R_SPARC_PC_HH22:
2032 case R_SPARC_PC_HM10:
2033 case R_SPARC_PC_LM22:
2034 if (h != NULL
2035 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2036 break;
2037 /* Fall through. */
2038 case R_SPARC_DISP8:
2039 case R_SPARC_DISP16:
2040 case R_SPARC_DISP32:
2041 case R_SPARC_DISP64:
2042 case R_SPARC_WDISP30:
2043 case R_SPARC_WDISP22:
2044 case R_SPARC_WDISP19:
2045 case R_SPARC_WDISP16:
2046 if (h == NULL)
2047 break;
2048 /* Fall through. */
2049 case R_SPARC_8:
2050 case R_SPARC_16:
2051 case R_SPARC_32:
2052 case R_SPARC_HI22:
2053 case R_SPARC_22:
2054 case R_SPARC_13:
2055 case R_SPARC_LO10:
2056 case R_SPARC_UA32:
2057 case R_SPARC_10:
2058 case R_SPARC_11:
2059 case R_SPARC_64:
2060 case R_SPARC_OLO10:
2061 case R_SPARC_HH22:
2062 case R_SPARC_HM10:
2063 case R_SPARC_LM22:
2064 case R_SPARC_7:
2065 case R_SPARC_5:
2066 case R_SPARC_6:
2067 case R_SPARC_HIX22:
2068 case R_SPARC_LOX10:
2069 case R_SPARC_H44:
2070 case R_SPARC_M44:
2071 case R_SPARC_L44:
2072 case R_SPARC_UA64:
2073 case R_SPARC_UA16:
2074 {
2075 Elf_Internal_Rela outrel;
2076 boolean skip, relocate;
2077
2078 if (sreloc == NULL)
2079 {
2080 const char *name =
2081 (bfd_elf_string_from_elf_section
2082 (input_bfd,
2083 elf_elfheader (input_bfd)->e_shstrndx,
2084 elf_section_data (input_section)->rel_hdr.sh_name));
2085
2086 if (name == NULL)
2087 return false;
2088
2089 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2090 && strcmp (bfd_get_section_name(input_bfd,
2091 input_section),
2092 name + 5) == 0);
2093
2094 sreloc = bfd_get_section_by_name (dynobj, name);
2095 BFD_ASSERT (sreloc != NULL);
2096 }
2097
2098 skip = false;
2099 relocate = false;
2100
2101 outrel.r_offset =
2102 _bfd_elf_section_offset (output_bfd, info, input_section,
2103 rel->r_offset);
2104 if (outrel.r_offset == (bfd_vma) -1)
2105 skip = true;
2106 else if (outrel.r_offset == (bfd_vma) -2)
2107 skip = true, relocate = true;
2108
2109 outrel.r_offset += (input_section->output_section->vma
2110 + input_section->output_offset);
2111
2112 /* Optimize unaligned reloc usage now that we know where
2113 it finally resides. */
2114 switch (r_type)
2115 {
2116 case R_SPARC_16:
2117 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2118 break;
2119 case R_SPARC_UA16:
2120 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2121 break;
2122 case R_SPARC_32:
2123 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2124 break;
2125 case R_SPARC_UA32:
2126 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2127 break;
2128 case R_SPARC_64:
2129 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2130 break;
2131 case R_SPARC_UA64:
2132 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2133 break;
2134 case R_SPARC_DISP8:
2135 case R_SPARC_DISP16:
2136 case R_SPARC_DISP32:
2137 case R_SPARC_DISP64:
2138 /* If the symbol is not dynamic, we should not keep
2139 a dynamic relocation. But an .rela.* slot has been
2140 allocated for it, output R_SPARC_NONE.
2141 FIXME: Add code tracking needed dynamic relocs as
2142 e.g. i386 has. */
2143 if (h->dynindx == -1)
2144 skip = true, relocate = true;
2145 break;
2146 }
2147
2148 if (skip)
2149 memset (&outrel, 0, sizeof outrel);
2150 /* h->dynindx may be -1 if the symbol was marked to
2151 become local. */
2152 else if (h != NULL && ! is_plt
2153 && ((! info->symbolic && h->dynindx != -1)
2154 || (h->elf_link_hash_flags
2155 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2156 {
2157 BFD_ASSERT (h->dynindx != -1);
2158 outrel.r_info
2159 = ELF64_R_INFO (h->dynindx,
2160 ELF64_R_TYPE_INFO (
2161 ELF64_R_TYPE_DATA (rel->r_info),
2162 r_type));
2163 outrel.r_addend = rel->r_addend;
2164 }
2165 else
2166 {
2167 outrel.r_addend = relocation + rel->r_addend;
2168 if (r_type == R_SPARC_64)
2169 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2170 else
2171 {
2172 long indx;
2173
2174 if (is_plt)
2175 sec = splt;
2176 else if (h == NULL)
2177 sec = local_sections[r_symndx];
2178 else
2179 {
2180 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2181 || (h->root.type
2182 == bfd_link_hash_defweak));
2183 sec = h->root.u.def.section;
2184 }
2185 if (sec != NULL && bfd_is_abs_section (sec))
2186 indx = 0;
2187 else if (sec == NULL || sec->owner == NULL)
2188 {
2189 bfd_set_error (bfd_error_bad_value);
2190 return false;
2191 }
2192 else
2193 {
2194 asection *osec;
2195
2196 osec = sec->output_section;
2197 indx = elf_section_data (osec)->dynindx;
2198
2199 /* We are turning this relocation into one
2200 against a section symbol, so subtract out
2201 the output section's address but not the
2202 offset of the input section in the output
2203 section. */
2204 outrel.r_addend -= osec->vma;
2205
2206 /* FIXME: we really should be able to link non-pic
2207 shared libraries. */
2208 if (indx == 0)
2209 {
2210 BFD_FAIL ();
2211 (*_bfd_error_handler)
2212 (_("%s: probably compiled without -fPIC?"),
2213 bfd_archive_filename (input_bfd));
2214 bfd_set_error (bfd_error_bad_value);
2215 return false;
2216 }
2217 }
2218
2219 outrel.r_info
2220 = ELF64_R_INFO (indx,
2221 ELF64_R_TYPE_INFO (
2222 ELF64_R_TYPE_DATA (rel->r_info),
2223 r_type));
2224 }
2225 }
2226
2227 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2228 (((Elf64_External_Rela *)
2229 sreloc->contents)
2230 + sreloc->reloc_count));
2231 ++sreloc->reloc_count;
2232
2233 /* This reloc will be computed at runtime, so there's no
2234 need to do anything now. */
2235 if (! relocate)
2236 continue;
2237 }
2238 break;
2239 }
2240 }
2241
2242 switch (r_type)
2243 {
2244 case R_SPARC_GOT10:
2245 case R_SPARC_GOT13:
2246 case R_SPARC_GOT22:
2247 /* Relocation is to the entry for this symbol in the global
2248 offset table. */
2249 if (sgot == NULL)
2250 {
2251 sgot = bfd_get_section_by_name (dynobj, ".got");
2252 BFD_ASSERT (sgot != NULL);
2253 }
2254
2255 if (h != NULL)
2256 {
2257 boolean dyn;
2258
2259 off = h->got.offset;
2260 BFD_ASSERT (off != (bfd_vma) -1);
2261 dyn = elf_hash_table (info)->dynamic_sections_created;
2262
2263 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2264 || (info->shared
2265 && (info->symbolic
2266 || h->dynindx == -1
2267 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2268 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2269 {
2270 /* This is actually a static link, or it is a -Bsymbolic
2271 link and the symbol is defined locally, or the symbol
2272 was forced to be local because of a version file. We
2273 must initialize this entry in the global offset table.
2274 Since the offset must always be a multiple of 8, we
2275 use the least significant bit to record whether we
2276 have initialized it already.
2277
2278 When doing a dynamic link, we create a .rela.got
2279 relocation entry to initialize the value. This is
2280 done in the finish_dynamic_symbol routine. */
2281
2282 if ((off & 1) != 0)
2283 off &= ~1;
2284 else
2285 {
2286 bfd_put_64 (output_bfd, relocation,
2287 sgot->contents + off);
2288 h->got.offset |= 1;
2289 }
2290 }
2291 else
2292 unresolved_reloc = false;
2293 }
2294 else
2295 {
2296 BFD_ASSERT (local_got_offsets != NULL);
2297 off = local_got_offsets[r_symndx];
2298 BFD_ASSERT (off != (bfd_vma) -1);
2299
2300 /* The offset must always be a multiple of 8. We use
2301 the least significant bit to record whether we have
2302 already processed this entry. */
2303 if ((off & 1) != 0)
2304 off &= ~1;
2305 else
2306 {
2307 local_got_offsets[r_symndx] |= 1;
2308
2309 if (info->shared)
2310 {
2311 asection *srelgot;
2312 Elf_Internal_Rela outrel;
2313
2314 /* The Solaris 2.7 64-bit linker adds the contents
2315 of the location to the value of the reloc.
2316 Note this is different behaviour to the
2317 32-bit linker, which both adds the contents
2318 and ignores the addend. So clear the location. */
2319 bfd_put_64 (output_bfd, (bfd_vma) 0,
2320 sgot->contents + off);
2321
2322 /* We need to generate a R_SPARC_RELATIVE reloc
2323 for the dynamic linker. */
2324 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2325 BFD_ASSERT (srelgot != NULL);
2326
2327 outrel.r_offset = (sgot->output_section->vma
2328 + sgot->output_offset
2329 + off);
2330 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2331 outrel.r_addend = relocation;
2332 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2333 (((Elf64_External_Rela *)
2334 srelgot->contents)
2335 + srelgot->reloc_count));
2336 ++srelgot->reloc_count;
2337 }
2338 else
2339 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2340 }
2341 }
2342 relocation = sgot->output_offset + off - got_base;
2343 goto do_default;
2344
2345 case R_SPARC_WPLT30:
2346 case R_SPARC_PLT32:
2347 case R_SPARC_HIPLT22:
2348 case R_SPARC_LOPLT10:
2349 case R_SPARC_PCPLT32:
2350 case R_SPARC_PCPLT22:
2351 case R_SPARC_PCPLT10:
2352 case R_SPARC_PLT64:
2353 /* Relocation is to the entry for this symbol in the
2354 procedure linkage table. */
2355 BFD_ASSERT (h != NULL);
2356
2357 if (h->plt.offset == (bfd_vma) -1)
2358 {
2359 /* We didn't make a PLT entry for this symbol. This
2360 happens when statically linking PIC code, or when
2361 using -Bsymbolic. */
2362 goto do_default;
2363 }
2364
2365 if (splt == NULL)
2366 {
2367 splt = bfd_get_section_by_name (dynobj, ".plt");
2368 BFD_ASSERT (splt != NULL);
2369 }
2370
2371 relocation = (splt->output_section->vma
2372 + splt->output_offset
2373 + sparc64_elf_plt_entry_offset (h->plt.offset));
2374 unresolved_reloc = false;
2375 if (r_type == R_SPARC_WPLT30)
2376 goto do_wplt30;
2377 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2378 {
2379 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2380 is_plt = true;
2381 goto do_dynreloc;
2382 }
2383 goto do_default;
2384
2385 case R_SPARC_OLO10:
2386 {
2387 bfd_vma x;
2388
2389 relocation += rel->r_addend;
2390 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2391
2392 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2393 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2394 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2395
2396 r = bfd_check_overflow (howto->complain_on_overflow,
2397 howto->bitsize, howto->rightshift,
2398 bfd_arch_bits_per_address (input_bfd),
2399 relocation);
2400 }
2401 break;
2402
2403 case R_SPARC_WDISP16:
2404 {
2405 bfd_vma x;
2406
2407 relocation += rel->r_addend;
2408 /* Adjust for pc-relative-ness. */
2409 relocation -= (input_section->output_section->vma
2410 + input_section->output_offset);
2411 relocation -= rel->r_offset;
2412
2413 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2414 x &= ~(bfd_vma) 0x303fff;
2415 x |= ((((relocation >> 2) & 0xc000) << 6)
2416 | ((relocation >> 2) & 0x3fff));
2417 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2418
2419 r = bfd_check_overflow (howto->complain_on_overflow,
2420 howto->bitsize, howto->rightshift,
2421 bfd_arch_bits_per_address (input_bfd),
2422 relocation);
2423 }
2424 break;
2425
2426 case R_SPARC_HIX22:
2427 {
2428 bfd_vma x;
2429
2430 relocation += rel->r_addend;
2431 relocation = relocation ^ MINUS_ONE;
2432
2433 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2434 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2435 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2436
2437 r = bfd_check_overflow (howto->complain_on_overflow,
2438 howto->bitsize, howto->rightshift,
2439 bfd_arch_bits_per_address (input_bfd),
2440 relocation);
2441 }
2442 break;
2443
2444 case R_SPARC_LOX10:
2445 {
2446 bfd_vma x;
2447
2448 relocation += rel->r_addend;
2449 relocation = (relocation & 0x3ff) | 0x1c00;
2450
2451 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2452 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2453 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2454
2455 r = bfd_reloc_ok;
2456 }
2457 break;
2458
2459 case R_SPARC_WDISP30:
2460 do_wplt30:
2461 if (SEC_DO_RELAX (input_section)
2462 && rel->r_offset + 4 < input_section->_raw_size)
2463 {
2464 #define G0 0
2465 #define O7 15
2466 #define XCC (2 << 20)
2467 #define COND(x) (((x)&0xf)<<25)
2468 #define CONDA COND(0x8)
2469 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2470 #define INSN_BA (F2(0,2) | CONDA)
2471 #define INSN_OR F3(2, 0x2, 0)
2472 #define INSN_NOP F2(0,4)
2473
2474 bfd_vma x, y;
2475
2476 /* If the instruction is a call with either:
2477 restore
2478 arithmetic instruction with rd == %o7
2479 where rs1 != %o7 and rs2 if it is register != %o7
2480 then we can optimize if the call destination is near
2481 by changing the call into a branch always. */
2482 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2483 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2484 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2485 {
2486 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2487 || ((y & OP3(0x28)) == 0 /* arithmetic */
2488 && (y & RD(~0)) == RD(O7)))
2489 && (y & RS1(~0)) != RS1(O7)
2490 && ((y & F3I(~0))
2491 || (y & RS2(~0)) != RS2(O7)))
2492 {
2493 bfd_vma reloc;
2494
2495 reloc = relocation + rel->r_addend - rel->r_offset;
2496 reloc -= (input_section->output_section->vma
2497 + input_section->output_offset);
2498 if (reloc & 3)
2499 goto do_default;
2500
2501 /* Ensure the branch fits into simm22. */
2502 if ((reloc & ~(bfd_vma)0x7fffff)
2503 && ((reloc | 0x7fffff) != MINUS_ONE))
2504 goto do_default;
2505 reloc >>= 2;
2506
2507 /* Check whether it fits into simm19. */
2508 if ((reloc & 0x3c0000) == 0
2509 || (reloc & 0x3c0000) == 0x3c0000)
2510 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2511 else
2512 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2513 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2514 r = bfd_reloc_ok;
2515 if (rel->r_offset >= 4
2516 && (y & (0xffffffff ^ RS1(~0)))
2517 == (INSN_OR | RD(O7) | RS2(G0)))
2518 {
2519 bfd_vma z;
2520 unsigned int reg;
2521
2522 z = bfd_get_32 (input_bfd,
2523 contents + rel->r_offset - 4);
2524 if ((z & (0xffffffff ^ RD(~0)))
2525 != (INSN_OR | RS1(O7) | RS2(G0)))
2526 break;
2527
2528 /* The sequence was
2529 or %o7, %g0, %rN
2530 call foo
2531 or %rN, %g0, %o7
2532
2533 If call foo was replaced with ba, replace
2534 or %rN, %g0, %o7 with nop. */
2535
2536 reg = (y & RS1(~0)) >> 14;
2537 if (reg != ((z & RD(~0)) >> 25)
2538 || reg == G0 || reg == O7)
2539 break;
2540
2541 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2542 contents + rel->r_offset + 4);
2543 }
2544 break;
2545 }
2546 }
2547 }
2548 /* FALLTHROUGH */
2549
2550 default:
2551 do_default:
2552 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2553 contents, rel->r_offset,
2554 relocation, rel->r_addend);
2555 break;
2556 }
2557
2558 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2559 because such sections are not SEC_ALLOC and thus ld.so will
2560 not process them. */
2561 if (unresolved_reloc
2562 && !((input_section->flags & SEC_DEBUGGING) != 0
2563 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2564 (*_bfd_error_handler)
2565 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2566 bfd_archive_filename (input_bfd),
2567 bfd_get_section_name (input_bfd, input_section),
2568 (long) rel->r_offset,
2569 h->root.root.string);
2570
2571 switch (r)
2572 {
2573 case bfd_reloc_ok:
2574 break;
2575
2576 default:
2577 case bfd_reloc_outofrange:
2578 abort ();
2579
2580 case bfd_reloc_overflow:
2581 {
2582 const char *name;
2583
2584 /* The Solaris native linker silently disregards
2585 overflows. We don't, but this breaks stabs debugging
2586 info, whose relocations are only 32-bits wide. Ignore
2587 overflows in this case. */
2588 if (r_type == R_SPARC_32
2589 && (input_section->flags & SEC_DEBUGGING) != 0
2590 && strcmp (bfd_section_name (input_bfd, input_section),
2591 ".stab") == 0)
2592 break;
2593
2594 if (h != NULL)
2595 {
2596 if (h->root.type == bfd_link_hash_undefweak
2597 && howto->pc_relative)
2598 {
2599 /* Assume this is a call protected by other code that
2600 detect the symbol is undefined. If this is the case,
2601 we can safely ignore the overflow. If not, the
2602 program is hosed anyway, and a little warning isn't
2603 going to help. */
2604 break;
2605 }
2606
2607 name = h->root.root.string;
2608 }
2609 else
2610 {
2611 name = (bfd_elf_string_from_elf_section
2612 (input_bfd,
2613 symtab_hdr->sh_link,
2614 sym->st_name));
2615 if (name == NULL)
2616 return false;
2617 if (*name == '\0')
2618 name = bfd_section_name (input_bfd, sec);
2619 }
2620 if (! ((*info->callbacks->reloc_overflow)
2621 (info, name, howto->name, (bfd_vma) 0,
2622 input_bfd, input_section, rel->r_offset)))
2623 return false;
2624 }
2625 break;
2626 }
2627 }
2628
2629 return true;
2630 }
2631
2632 /* Finish up dynamic symbol handling. We set the contents of various
2633 dynamic sections here. */
2634
2635 static boolean
2636 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2637 bfd *output_bfd;
2638 struct bfd_link_info *info;
2639 struct elf_link_hash_entry *h;
2640 Elf_Internal_Sym *sym;
2641 {
2642 bfd *dynobj;
2643
2644 dynobj = elf_hash_table (info)->dynobj;
2645
2646 if (h->plt.offset != (bfd_vma) -1)
2647 {
2648 asection *splt;
2649 asection *srela;
2650 Elf_Internal_Rela rela;
2651
2652 /* This symbol has an entry in the PLT. Set it up. */
2653
2654 BFD_ASSERT (h->dynindx != -1);
2655
2656 splt = bfd_get_section_by_name (dynobj, ".plt");
2657 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2658 BFD_ASSERT (splt != NULL && srela != NULL);
2659
2660 /* Fill in the entry in the .rela.plt section. */
2661
2662 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2663 {
2664 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2665 rela.r_addend = 0;
2666 }
2667 else
2668 {
2669 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2670 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2671 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2672 -(splt->output_section->vma + splt->output_offset);
2673 }
2674 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2675 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2676
2677 /* Adjust for the first 4 reserved elements in the .plt section
2678 when setting the offset in the .rela.plt section.
2679 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2680 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2681
2682 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2683 ((Elf64_External_Rela *) srela->contents
2684 + (h->plt.offset - 4)));
2685
2686 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2687 {
2688 /* Mark the symbol as undefined, rather than as defined in
2689 the .plt section. Leave the value alone. */
2690 sym->st_shndx = SHN_UNDEF;
2691 /* If the symbol is weak, we do need to clear the value.
2692 Otherwise, the PLT entry would provide a definition for
2693 the symbol even if the symbol wasn't defined anywhere,
2694 and so the symbol would never be NULL. */
2695 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2696 == 0)
2697 sym->st_value = 0;
2698 }
2699 }
2700
2701 if (h->got.offset != (bfd_vma) -1)
2702 {
2703 asection *sgot;
2704 asection *srela;
2705 Elf_Internal_Rela rela;
2706
2707 /* This symbol has an entry in the GOT. Set it up. */
2708
2709 sgot = bfd_get_section_by_name (dynobj, ".got");
2710 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2711 BFD_ASSERT (sgot != NULL && srela != NULL);
2712
2713 rela.r_offset = (sgot->output_section->vma
2714 + sgot->output_offset
2715 + (h->got.offset &~ (bfd_vma) 1));
2716
2717 /* If this is a -Bsymbolic link, and the symbol is defined
2718 locally, we just want to emit a RELATIVE reloc. Likewise if
2719 the symbol was forced to be local because of a version file.
2720 The entry in the global offset table will already have been
2721 initialized in the relocate_section function. */
2722 if (info->shared
2723 && (info->symbolic || h->dynindx == -1)
2724 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2725 {
2726 asection *sec = h->root.u.def.section;
2727 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2728 rela.r_addend = (h->root.u.def.value
2729 + sec->output_section->vma
2730 + sec->output_offset);
2731 }
2732 else
2733 {
2734 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2735 rela.r_addend = 0;
2736 }
2737
2738 bfd_put_64 (output_bfd, (bfd_vma) 0,
2739 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2740 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2741 ((Elf64_External_Rela *) srela->contents
2742 + srela->reloc_count));
2743 ++srela->reloc_count;
2744 }
2745
2746 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2747 {
2748 asection *s;
2749 Elf_Internal_Rela rela;
2750
2751 /* This symbols needs a copy reloc. Set it up. */
2752
2753 BFD_ASSERT (h->dynindx != -1);
2754
2755 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2756 ".rela.bss");
2757 BFD_ASSERT (s != NULL);
2758
2759 rela.r_offset = (h->root.u.def.value
2760 + h->root.u.def.section->output_section->vma
2761 + h->root.u.def.section->output_offset);
2762 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2763 rela.r_addend = 0;
2764 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2765 ((Elf64_External_Rela *) s->contents
2766 + s->reloc_count));
2767 ++s->reloc_count;
2768 }
2769
2770 /* Mark some specially defined symbols as absolute. */
2771 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2772 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2773 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2774 sym->st_shndx = SHN_ABS;
2775
2776 return true;
2777 }
2778
2779 /* Finish up the dynamic sections. */
2780
2781 static boolean
2782 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2783 bfd *output_bfd;
2784 struct bfd_link_info *info;
2785 {
2786 bfd *dynobj;
2787 int stt_regidx = -1;
2788 asection *sdyn;
2789 asection *sgot;
2790
2791 dynobj = elf_hash_table (info)->dynobj;
2792
2793 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2794
2795 if (elf_hash_table (info)->dynamic_sections_created)
2796 {
2797 asection *splt;
2798 Elf64_External_Dyn *dyncon, *dynconend;
2799
2800 splt = bfd_get_section_by_name (dynobj, ".plt");
2801 BFD_ASSERT (splt != NULL && sdyn != NULL);
2802
2803 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2804 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2805 for (; dyncon < dynconend; dyncon++)
2806 {
2807 Elf_Internal_Dyn dyn;
2808 const char *name;
2809 boolean size;
2810
2811 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2812
2813 switch (dyn.d_tag)
2814 {
2815 case DT_PLTGOT: name = ".plt"; size = false; break;
2816 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2817 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2818 case DT_SPARC_REGISTER:
2819 if (stt_regidx == -1)
2820 {
2821 stt_regidx =
2822 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2823 if (stt_regidx == -1)
2824 return false;
2825 }
2826 dyn.d_un.d_val = stt_regidx++;
2827 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2828 /* fallthrough */
2829 default: name = NULL; size = false; break;
2830 }
2831
2832 if (name != NULL)
2833 {
2834 asection *s;
2835
2836 s = bfd_get_section_by_name (output_bfd, name);
2837 if (s == NULL)
2838 dyn.d_un.d_val = 0;
2839 else
2840 {
2841 if (! size)
2842 dyn.d_un.d_ptr = s->vma;
2843 else
2844 {
2845 if (s->_cooked_size != 0)
2846 dyn.d_un.d_val = s->_cooked_size;
2847 else
2848 dyn.d_un.d_val = s->_raw_size;
2849 }
2850 }
2851 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2852 }
2853 }
2854
2855 /* Initialize the contents of the .plt section. */
2856 if (splt->_raw_size > 0)
2857 {
2858 sparc64_elf_build_plt (output_bfd, splt->contents,
2859 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2860 }
2861
2862 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2863 PLT_ENTRY_SIZE;
2864 }
2865
2866 /* Set the first entry in the global offset table to the address of
2867 the dynamic section. */
2868 sgot = bfd_get_section_by_name (dynobj, ".got");
2869 BFD_ASSERT (sgot != NULL);
2870 if (sgot->_raw_size > 0)
2871 {
2872 if (sdyn == NULL)
2873 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2874 else
2875 bfd_put_64 (output_bfd,
2876 sdyn->output_section->vma + sdyn->output_offset,
2877 sgot->contents);
2878 }
2879
2880 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2881
2882 return true;
2883 }
2884
2885 static enum elf_reloc_type_class
2886 sparc64_elf_reloc_type_class (rela)
2887 const Elf_Internal_Rela *rela;
2888 {
2889 switch ((int) ELF64_R_TYPE (rela->r_info))
2890 {
2891 case R_SPARC_RELATIVE:
2892 return reloc_class_relative;
2893 case R_SPARC_JMP_SLOT:
2894 return reloc_class_plt;
2895 case R_SPARC_COPY:
2896 return reloc_class_copy;
2897 default:
2898 return reloc_class_normal;
2899 }
2900 }
2901 \f
2902 /* Functions for dealing with the e_flags field. */
2903
2904 /* Merge backend specific data from an object file to the output
2905 object file when linking. */
2906
2907 static boolean
2908 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2909 bfd *ibfd;
2910 bfd *obfd;
2911 {
2912 boolean error;
2913 flagword new_flags, old_flags;
2914 int new_mm, old_mm;
2915
2916 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2917 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2918 return true;
2919
2920 new_flags = elf_elfheader (ibfd)->e_flags;
2921 old_flags = elf_elfheader (obfd)->e_flags;
2922
2923 if (!elf_flags_init (obfd)) /* First call, no flags set */
2924 {
2925 elf_flags_init (obfd) = true;
2926 elf_elfheader (obfd)->e_flags = new_flags;
2927 }
2928
2929 else if (new_flags == old_flags) /* Compatible flags are ok */
2930 ;
2931
2932 else /* Incompatible flags */
2933 {
2934 error = false;
2935
2936 #define EF_SPARC_ISA_EXTENSIONS \
2937 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2938
2939 if ((ibfd->flags & DYNAMIC) != 0)
2940 {
2941 /* We don't want dynamic objects memory ordering and
2942 architecture to have any role. That's what dynamic linker
2943 should do. */
2944 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2945 new_flags |= (old_flags
2946 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2947 }
2948 else
2949 {
2950 /* Choose the highest architecture requirements. */
2951 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2952 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2953 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2954 && (old_flags & EF_SPARC_HAL_R1))
2955 {
2956 error = true;
2957 (*_bfd_error_handler)
2958 (_("%s: linking UltraSPARC specific with HAL specific code"),
2959 bfd_archive_filename (ibfd));
2960 }
2961 /* Choose the most restrictive memory ordering. */
2962 old_mm = (old_flags & EF_SPARCV9_MM);
2963 new_mm = (new_flags & EF_SPARCV9_MM);
2964 old_flags &= ~EF_SPARCV9_MM;
2965 new_flags &= ~EF_SPARCV9_MM;
2966 if (new_mm < old_mm)
2967 old_mm = new_mm;
2968 old_flags |= old_mm;
2969 new_flags |= old_mm;
2970 }
2971
2972 /* Warn about any other mismatches */
2973 if (new_flags != old_flags)
2974 {
2975 error = true;
2976 (*_bfd_error_handler)
2977 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2978 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
2979 }
2980
2981 elf_elfheader (obfd)->e_flags = old_flags;
2982
2983 if (error)
2984 {
2985 bfd_set_error (bfd_error_bad_value);
2986 return false;
2987 }
2988 }
2989 return true;
2990 }
2991
2992 /* MARCO: Set the correct entry size for the .stab section. */
2993
2994 static boolean
2995 sparc64_elf_fake_sections (abfd, hdr, sec)
2996 bfd *abfd ATTRIBUTE_UNUSED;
2997 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
2998 asection *sec;
2999 {
3000 const char *name;
3001
3002 name = bfd_get_section_name (abfd, sec);
3003
3004 if (strcmp (name, ".stab") == 0)
3005 {
3006 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3007 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3008 }
3009
3010 return true;
3011 }
3012 \f
3013 /* Print a STT_REGISTER symbol to file FILE. */
3014
3015 static const char *
3016 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3017 bfd *abfd ATTRIBUTE_UNUSED;
3018 PTR filep;
3019 asymbol *symbol;
3020 {
3021 FILE *file = (FILE *) filep;
3022 int reg, type;
3023
3024 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3025 != STT_REGISTER)
3026 return NULL;
3027
3028 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3029 type = symbol->flags;
3030 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3031 ((type & BSF_LOCAL)
3032 ? (type & BSF_GLOBAL) ? '!' : 'l'
3033 : (type & BSF_GLOBAL) ? 'g' : ' '),
3034 (type & BSF_WEAK) ? 'w' : ' ');
3035 if (symbol->name == NULL || symbol->name [0] == '\0')
3036 return "#scratch";
3037 else
3038 return symbol->name;
3039 }
3040 \f
3041 /* Set the right machine number for a SPARC64 ELF file. */
3042
3043 static boolean
3044 sparc64_elf_object_p (abfd)
3045 bfd *abfd;
3046 {
3047 unsigned long mach = bfd_mach_sparc_v9;
3048
3049 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3050 mach = bfd_mach_sparc_v9b;
3051 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3052 mach = bfd_mach_sparc_v9a;
3053 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3054 }
3055
3056 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3057 standard ELF, because R_SPARC_OLO10 has secondary addend in
3058 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3059 relocation handling routines. */
3060
3061 const struct elf_size_info sparc64_elf_size_info =
3062 {
3063 sizeof (Elf64_External_Ehdr),
3064 sizeof (Elf64_External_Phdr),
3065 sizeof (Elf64_External_Shdr),
3066 sizeof (Elf64_External_Rel),
3067 sizeof (Elf64_External_Rela),
3068 sizeof (Elf64_External_Sym),
3069 sizeof (Elf64_External_Dyn),
3070 sizeof (Elf_External_Note),
3071 4, /* hash-table entry size */
3072 /* internal relocations per external relocations.
3073 For link purposes we use just 1 internal per
3074 1 external, for assembly and slurp symbol table
3075 we use 2. */
3076 1,
3077 64, /* arch_size */
3078 8, /* file_align */
3079 ELFCLASS64,
3080 EV_CURRENT,
3081 bfd_elf64_write_out_phdrs,
3082 bfd_elf64_write_shdrs_and_ehdr,
3083 sparc64_elf_write_relocs,
3084 bfd_elf64_swap_symbol_in,
3085 bfd_elf64_swap_symbol_out,
3086 sparc64_elf_slurp_reloc_table,
3087 bfd_elf64_slurp_symbol_table,
3088 bfd_elf64_swap_dyn_in,
3089 bfd_elf64_swap_dyn_out,
3090 NULL,
3091 NULL,
3092 NULL,
3093 NULL
3094 };
3095
3096 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3097 #define TARGET_BIG_NAME "elf64-sparc"
3098 #define ELF_ARCH bfd_arch_sparc
3099 #define ELF_MAXPAGESIZE 0x100000
3100
3101 /* This is the official ABI value. */
3102 #define ELF_MACHINE_CODE EM_SPARCV9
3103
3104 /* This is the value that we used before the ABI was released. */
3105 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3106
3107 #define bfd_elf64_bfd_link_hash_table_create \
3108 sparc64_elf_bfd_link_hash_table_create
3109
3110 #define elf_info_to_howto \
3111 sparc64_elf_info_to_howto
3112 #define bfd_elf64_get_reloc_upper_bound \
3113 sparc64_elf_get_reloc_upper_bound
3114 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3115 sparc64_elf_get_dynamic_reloc_upper_bound
3116 #define bfd_elf64_canonicalize_dynamic_reloc \
3117 sparc64_elf_canonicalize_dynamic_reloc
3118 #define bfd_elf64_bfd_reloc_type_lookup \
3119 sparc64_elf_reloc_type_lookup
3120 #define bfd_elf64_bfd_relax_section \
3121 sparc64_elf_relax_section
3122
3123 #define elf_backend_create_dynamic_sections \
3124 _bfd_elf_create_dynamic_sections
3125 #define elf_backend_add_symbol_hook \
3126 sparc64_elf_add_symbol_hook
3127 #define elf_backend_get_symbol_type \
3128 sparc64_elf_get_symbol_type
3129 #define elf_backend_symbol_processing \
3130 sparc64_elf_symbol_processing
3131 #define elf_backend_check_relocs \
3132 sparc64_elf_check_relocs
3133 #define elf_backend_adjust_dynamic_symbol \
3134 sparc64_elf_adjust_dynamic_symbol
3135 #define elf_backend_size_dynamic_sections \
3136 sparc64_elf_size_dynamic_sections
3137 #define elf_backend_relocate_section \
3138 sparc64_elf_relocate_section
3139 #define elf_backend_finish_dynamic_symbol \
3140 sparc64_elf_finish_dynamic_symbol
3141 #define elf_backend_finish_dynamic_sections \
3142 sparc64_elf_finish_dynamic_sections
3143 #define elf_backend_print_symbol_all \
3144 sparc64_elf_print_symbol_all
3145 #define elf_backend_output_arch_syms \
3146 sparc64_elf_output_arch_syms
3147 #define bfd_elf64_bfd_merge_private_bfd_data \
3148 sparc64_elf_merge_private_bfd_data
3149 #define elf_backend_fake_sections \
3150 sparc64_elf_fake_sections
3151
3152 #define elf_backend_size_info \
3153 sparc64_elf_size_info
3154 #define elf_backend_object_p \
3155 sparc64_elf_object_p
3156 #define elf_backend_reloc_type_class \
3157 sparc64_elf_reloc_type_class
3158
3159 #define elf_backend_want_got_plt 0
3160 #define elf_backend_plt_readonly 0
3161 #define elf_backend_want_plt_sym 1
3162 #define elf_backend_rela_normal 1
3163
3164 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3165 #define elf_backend_plt_alignment 8
3166
3167 #define elf_backend_got_header_size 8
3168 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3169
3170 #include "elf64-target.h"
This page took 0.095606 seconds and 5 git commands to generate.