coordinate info->symbolic and info->allow_shlib_undefined
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25
26 #include "elf/x86-64.h"
27
28 /* We use only the RELA entries. */
29 #define USE_RELA
30
31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
32 #define MINUS_ONE (~ (bfd_vma) 0)
33
34 /* The relocation "howto" table. Order of fields:
35 type, size, bitsize, pc_relative, complain_on_overflow,
36 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
37 static reloc_howto_type x86_64_elf_howto_table[] =
38 {
39 HOWTO(R_X86_64_NONE, 0, 0, 0, false, 0, complain_overflow_dont,
40 bfd_elf_generic_reloc, "R_X86_64_NONE", false, 0x00000000, 0x00000000,
41 false),
42 HOWTO(R_X86_64_64, 0, 4, 64, false, 0, complain_overflow_bitfield,
43 bfd_elf_generic_reloc, "R_X86_64_64", false, MINUS_ONE, MINUS_ONE,
44 false),
45 HOWTO(R_X86_64_PC32, 0, 4, 32, true, 0, complain_overflow_signed,
46 bfd_elf_generic_reloc, "R_X86_64_PC32", false, 0xffffffff, 0xffffffff,
47 true),
48 HOWTO(R_X86_64_GOT32, 0, 4, 32, false, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_GOT32", false, 0xffffffff, 0xffffffff,
50 false),
51 HOWTO(R_X86_64_PLT32, 0, 4, 32, true, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_PLT32", false, 0xffffffff, 0xffffffff,
53 true),
54 HOWTO(R_X86_64_COPY, 0, 4, 32, false, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_COPY", false, 0xffffffff, 0xffffffff,
56 false),
57 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", false, MINUS_ONE,
59 MINUS_ONE, false),
60 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", false, MINUS_ONE,
62 MINUS_ONE, false),
63 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", false, MINUS_ONE,
65 MINUS_ONE, false),
66 HOWTO(R_X86_64_GOTPCREL, 0, 4, 32, true,0 , complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", false, 0xffffffff,
68 0xffffffff, true),
69 HOWTO(R_X86_64_32, 0, 4, 32, false, 0, complain_overflow_unsigned,
70 bfd_elf_generic_reloc, "R_X86_64_32", false, 0xffffffff, 0xffffffff,
71 false),
72 HOWTO(R_X86_64_32S, 0, 4, 32, false, 0, complain_overflow_signed,
73 bfd_elf_generic_reloc, "R_X86_64_32S", false, 0xffffffff, 0xffffffff,
74 false),
75 HOWTO(R_X86_64_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_16", false, 0xffff, 0xffff, false),
77 HOWTO(R_X86_64_PC16,0, 1, 16, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_PC16", false, 0xffff, 0xffff, true),
79 HOWTO(R_X86_64_8, 0, 0, 8, false, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_8", false, 0xff, 0xff, false),
81 HOWTO(R_X86_64_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
82 bfd_elf_generic_reloc, "R_X86_64_PC8", false, 0xff, 0xff, true),
83
84 /* GNU extension to record C++ vtable hierarchy. */
85 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, false, 0, complain_overflow_dont,
86 NULL, "R_X86_64_GNU_VTINHERIT", false, 0, 0, false),
87
88 /* GNU extension to record C++ vtable member usage. */
89 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, false, 0, complain_overflow_dont,
90 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", false, 0, 0,
91 false)
92 };
93
94 /* Map BFD relocs to the x86_64 elf relocs. */
95 struct elf_reloc_map
96 {
97 bfd_reloc_code_real_type bfd_reloc_val;
98 unsigned char elf_reloc_val;
99 };
100
101 static const struct elf_reloc_map x86_64_reloc_map[] =
102 {
103 { BFD_RELOC_NONE, R_X86_64_NONE, },
104 { BFD_RELOC_64, R_X86_64_64, },
105 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
106 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
107 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
108 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
109 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
110 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
111 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
112 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
113 { BFD_RELOC_32, R_X86_64_32, },
114 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
115 { BFD_RELOC_16, R_X86_64_16, },
116 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
117 { BFD_RELOC_8, R_X86_64_8, },
118 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
119 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
120 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
121 };
122
123 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
124 PARAMS ((bfd *, bfd_reloc_code_real_type));
125 static void elf64_x86_64_info_to_howto
126 PARAMS ((bfd *, arelent *, Elf64_Internal_Rela *));
127 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
128 PARAMS ((bfd *));
129 static boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
130 static boolean elf64_x86_64_check_relocs
131 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
132 const Elf_Internal_Rela *));
133 static asection *elf64_x86_64_gc_mark_hook
134 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
135 struct elf_link_hash_entry *, Elf_Internal_Sym *));
136
137 static boolean elf64_x86_64_gc_sweep_hook
138 PARAMS ((bfd *, struct bfd_link_info *, asection *,
139 const Elf_Internal_Rela *));
140
141 static struct bfd_hash_entry *elf64_x86_64_link_hash_newfunc
142 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
143 static boolean elf64_x86_64_adjust_dynamic_symbol
144 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
145
146 static boolean elf64_x86_64_size_dynamic_sections
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean elf64_x86_64_relocate_section
149 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
150 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
151 static boolean elf64_x86_64_finish_dynamic_symbol
152 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
153 Elf_Internal_Sym *sym));
154 static boolean elf64_x86_64_finish_dynamic_sections
155 PARAMS ((bfd *, struct bfd_link_info *));
156 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class PARAMS ((int));
157
158 /* Given a BFD reloc type, return a HOWTO structure. */
159 static reloc_howto_type *
160 elf64_x86_64_reloc_type_lookup (abfd, code)
161 bfd *abfd ATTRIBUTE_UNUSED;
162 bfd_reloc_code_real_type code;
163 {
164 unsigned int i;
165 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
166 i++)
167 {
168 if (x86_64_reloc_map[i].bfd_reloc_val == code)
169 return &x86_64_elf_howto_table[(int)
170 x86_64_reloc_map[i].elf_reloc_val];
171 }
172 return 0;
173 }
174
175 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
176
177 static void
178 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 arelent *cache_ptr;
181 Elf64_Internal_Rela *dst;
182 {
183 unsigned r_type, i;
184
185 r_type = ELF64_R_TYPE (dst->r_info);
186 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
187 {
188 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_PC8);
189 i = r_type;
190 }
191 else
192 {
193 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
194 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_PC8 - 1);
195 }
196 cache_ptr->howto = &x86_64_elf_howto_table[i];
197 BFD_ASSERT (r_type == cache_ptr->howto->type);
198 }
199 \f
200 /* Functions for the x86-64 ELF linker. */
201
202 /* The name of the dynamic interpreter. This is put in the .interp
203 section. */
204
205 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
206
207 /* The size in bytes of an entry in the global offset table. */
208
209 #define GOT_ENTRY_SIZE 8
210
211 /* The size in bytes of an entry in the procedure linkage table. */
212
213 #define PLT_ENTRY_SIZE 16
214
215 /* The first entry in a procedure linkage table looks like this. See the
216 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
217
218 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
219 {
220 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
221 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
222 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
223 };
224
225 /* Subsequent entries in a procedure linkage table look like this. */
226
227 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
228 {
229 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
230 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
231 0x68, /* pushq immediate */
232 0, 0, 0, 0, /* replaced with index into relocation table. */
233 0xe9, /* jmp relative */
234 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
235 };
236
237 /* The x86-64 linker needs to keep track of the number of relocs that
238 it decides to copy in check_relocs for each symbol. This is so
239 that it can discard PC relative relocs if it doesn't need them when
240 linking with -Bsymbolic. We store the information in a field
241 extending the regular ELF linker hash table. */
242
243 /* This structure keeps track of the number of PC relative relocs we
244 have copied for a given symbol. */
245
246 struct elf64_x86_64_pcrel_relocs_copied
247 {
248 /* Next section. */
249 struct elf64_x86_64_pcrel_relocs_copied *next;
250 /* A section in dynobj. */
251 asection *section;
252 /* Number of relocs copied in this section. */
253 bfd_size_type count;
254 };
255
256 /* x86-64 ELF linker hash entry. */
257
258 struct elf64_x86_64_link_hash_entry
259 {
260 struct elf_link_hash_entry root;
261
262 /* Number of PC relative relocs copied for this symbol. */
263 struct elf64_x86_64_pcrel_relocs_copied *pcrel_relocs_copied;
264 };
265
266 /* x86-64 ELF linker hash table. */
267
268 struct elf64_x86_64_link_hash_table
269 {
270 struct elf_link_hash_table root;
271 };
272
273 /* Declare this now that the above structures are defined. */
274
275 static boolean elf64_x86_64_discard_copies
276 PARAMS ((struct elf64_x86_64_link_hash_entry *, PTR));
277
278 /* Traverse an x86-64 ELF linker hash table. */
279
280 #define elf64_x86_64_link_hash_traverse(table, func, info) \
281 (elf_link_hash_traverse \
282 (&(table)->root, \
283 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
284 (info)))
285
286 /* Get the x86-64 ELF linker hash table from a link_info structure. */
287
288 #define elf64_x86_64_hash_table(p) \
289 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
290
291 /* Create an entry in an x86-64 ELF linker hash table. */
292
293 static struct bfd_hash_entry *
294 elf64_x86_64_link_hash_newfunc (entry, table, string)
295 struct bfd_hash_entry *entry;
296 struct bfd_hash_table *table;
297 const char *string;
298 {
299 struct elf64_x86_64_link_hash_entry *ret =
300 (struct elf64_x86_64_link_hash_entry *) entry;
301
302 /* Allocate the structure if it has not already been allocated by a
303 subclass. */
304 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
305 ret = ((struct elf64_x86_64_link_hash_entry *)
306 bfd_hash_allocate (table,
307 sizeof (struct elf64_x86_64_link_hash_entry)));
308 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
309 return (struct bfd_hash_entry *) ret;
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_x86_64_link_hash_entry *)
313 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
314 table, string));
315 if (ret != (struct elf64_x86_64_link_hash_entry *) NULL)
316 {
317 ret->pcrel_relocs_copied = NULL;
318 }
319
320 return (struct bfd_hash_entry *) ret;
321 }
322
323 /* Create an X86-64 ELF linker hash table. */
324
325 static struct bfd_link_hash_table *
326 elf64_x86_64_link_hash_table_create (abfd)
327 bfd *abfd;
328 {
329 struct elf64_x86_64_link_hash_table *ret;
330 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
331
332 ret = ((struct elf64_x86_64_link_hash_table *) bfd_alloc (abfd, amt));
333 if (ret == (struct elf64_x86_64_link_hash_table *) NULL)
334 return NULL;
335
336 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
337 elf64_x86_64_link_hash_newfunc))
338 {
339 bfd_release (abfd, ret);
340 return NULL;
341 }
342
343 return &ret->root.root;
344 }
345
346 static boolean
347 elf64_x86_64_elf_object_p (abfd)
348 bfd *abfd;
349 {
350 /* Set the right machine number for an x86-64 elf64 file. */
351 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
352 return true;
353 }
354
355 /* Look through the relocs for a section during the first phase, and
356 allocate space in the global offset table or procedure linkage
357 table. */
358
359 static boolean
360 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
361 bfd *abfd;
362 struct bfd_link_info *info;
363 asection *sec;
364 const Elf_Internal_Rela *relocs;
365 {
366 bfd *dynobj;
367 Elf_Internal_Shdr *symtab_hdr;
368 struct elf_link_hash_entry **sym_hashes;
369 bfd_signed_vma *local_got_refcounts;
370 const Elf_Internal_Rela *rel;
371 const Elf_Internal_Rela *rel_end;
372 asection *sgot;
373 asection *srelgot;
374 asection *sreloc;
375
376 if (info->relocateable)
377 return true;
378
379 dynobj = elf_hash_table (info)->dynobj;
380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
381 sym_hashes = elf_sym_hashes (abfd);
382 local_got_refcounts = elf_local_got_refcounts (abfd);
383
384 sgot = srelgot = sreloc = NULL;
385 rel_end = relocs + sec->reloc_count;
386 for (rel = relocs; rel < rel_end; rel++)
387 {
388 unsigned long r_symndx;
389 struct elf_link_hash_entry *h;
390
391 r_symndx = ELF64_R_SYM (rel->r_info);
392 if (r_symndx < symtab_hdr->sh_info)
393 h = NULL;
394 else
395 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
396
397 /* Some relocs require a global offset table. */
398 if (dynobj == NULL)
399 {
400 switch (ELF64_R_TYPE (rel->r_info))
401 {
402 case R_X86_64_GOT32:
403 case R_X86_64_GOTPCREL:
404 elf_hash_table (info)->dynobj = dynobj = abfd;
405 if (! _bfd_elf_create_got_section (dynobj, info))
406 return false;
407 break;
408 }
409 }
410
411 switch (ELF64_R_TYPE (rel->r_info))
412 {
413 case R_X86_64_GOTPCREL:
414 case R_X86_64_GOT32:
415 /* This symbol requires a global offset table entry. */
416
417 if (sgot == NULL)
418 {
419 sgot = bfd_get_section_by_name (dynobj, ".got");
420 BFD_ASSERT (sgot != NULL);
421 }
422
423 if (srelgot == NULL && (h != NULL || info->shared))
424 {
425 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
426 if (srelgot == NULL)
427 {
428 srelgot = bfd_make_section (dynobj, ".rela.got");
429 if (srelgot == NULL
430 || ! bfd_set_section_flags (dynobj, srelgot,
431 (SEC_ALLOC
432 | SEC_LOAD
433 | SEC_HAS_CONTENTS
434 | SEC_IN_MEMORY
435 | SEC_LINKER_CREATED
436 | SEC_READONLY))
437 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
438 return false;
439 }
440 }
441
442 if (h != NULL)
443 {
444 if (h->got.refcount == -1)
445 {
446 h->got.refcount = 1;
447
448 /* Make sure this symbol is output as a dynamic symbol. */
449 if (h->dynindx == -1)
450 {
451 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
452 return false;
453 }
454
455 sgot->_raw_size += GOT_ENTRY_SIZE;
456 srelgot->_raw_size += sizeof (Elf64_External_Rela);
457 }
458 else
459 h->got.refcount += 1;
460 }
461 else
462 {
463 /* This is a global offset table entry for a local symbol. */
464 if (local_got_refcounts == NULL)
465 {
466 bfd_size_type size;
467
468 size = symtab_hdr->sh_info;
469 size *= sizeof (bfd_signed_vma);
470 local_got_refcounts = ((bfd_signed_vma *)
471 bfd_alloc (abfd, size));
472 if (local_got_refcounts == NULL)
473 return false;
474 elf_local_got_refcounts (abfd) = local_got_refcounts;
475 memset (local_got_refcounts, -1, (size_t) size);
476 }
477 if (local_got_refcounts[r_symndx] == -1)
478 {
479 local_got_refcounts[r_symndx] = 1;
480
481 sgot->_raw_size += GOT_ENTRY_SIZE;
482 if (info->shared)
483 {
484 /* If we are generating a shared object, we need to
485 output a R_X86_64_RELATIVE reloc so that the dynamic
486 linker can adjust this GOT entry. */
487 srelgot->_raw_size += sizeof (Elf64_External_Rela);
488 }
489 }
490 else
491 local_got_refcounts[r_symndx] += 1;
492 }
493 break;
494
495 case R_X86_64_PLT32:
496 /* This symbol requires a procedure linkage table entry. We
497 actually build the entry in adjust_dynamic_symbol,
498 because this might be a case of linking PIC code which is
499 never referenced by a dynamic object, in which case we
500 don't need to generate a procedure linkage table entry
501 after all. */
502
503 /* If this is a local symbol, we resolve it directly without
504 creating a procedure linkage table entry. */
505 if (h == NULL)
506 continue;
507
508 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
509 if (h->plt.refcount == -1)
510 h->plt.refcount = 1;
511 else
512 h->plt.refcount += 1;
513 break;
514
515 case R_X86_64_8:
516 case R_X86_64_16:
517 case R_X86_64_32:
518 case R_X86_64_64:
519 case R_X86_64_32S:
520 case R_X86_64_PC32:
521 if (h != NULL)
522 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
523
524 /* If we are creating a shared library, and this is a reloc
525 against a global symbol, or a non PC relative reloc
526 against a local symbol, then we need to copy the reloc
527 into the shared library. However, if we are linking with
528 -Bsymbolic, we do not need to copy a reloc against a
529 global symbol which is defined in an object we are
530 including in the link (i.e., DEF_REGULAR is set). At
531 this point we have not seen all the input files, so it is
532 possible that DEF_REGULAR is not set now but will be set
533 later (it is never cleared). We account for that
534 possibility below by storing information in the
535 pcrel_relocs_copied field of the hash table entry.
536 A similar situation occurs when creating shared libraries
537 and symbol visibility changes render the symbol local. */
538 if (info->shared
539 && (sec->flags & SEC_ALLOC) != 0
540 && (((ELF64_R_TYPE (rel->r_info) != R_X86_64_PC8)
541 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC16)
542 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC32))
543 || (h != NULL
544 && (! info->symbolic
545 || (h->elf_link_hash_flags
546 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
547 {
548 /* When creating a shared object, we must copy these
549 reloc types into the output file. We create a reloc
550 section in dynobj and make room for this reloc. */
551 if (sreloc == NULL)
552 {
553 const char *name;
554
555 name = (bfd_elf_string_from_elf_section
556 (abfd,
557 elf_elfheader (abfd)->e_shstrndx,
558 elf_section_data (sec)->rel_hdr.sh_name));
559 if (name == NULL)
560 return false;
561
562 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
563 && strcmp (bfd_get_section_name (abfd, sec),
564 name + 5) == 0);
565
566 sreloc = bfd_get_section_by_name (dynobj, name);
567 if (sreloc == NULL)
568 {
569 flagword flags;
570
571 sreloc = bfd_make_section (dynobj, name);
572 flags = (SEC_HAS_CONTENTS | SEC_READONLY
573 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
574 if ((sec->flags & SEC_ALLOC) != 0)
575 flags |= SEC_ALLOC | SEC_LOAD;
576 if (sreloc == NULL
577 || ! bfd_set_section_flags (dynobj, sreloc, flags)
578 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
579 return false;
580 }
581 if (sec->flags & SEC_READONLY)
582 info->flags |= DF_TEXTREL;
583 }
584
585 sreloc->_raw_size += sizeof (Elf64_External_Rela);
586
587 /* If this is a global symbol, we count the number of PC
588 relative relocations we have entered for this symbol,
589 so that we can discard them later as necessary. Note
590 that this function is only called if we are using an
591 elf64_x86_64 linker hash table, which means that h is
592 really a pointer to an elf64_x86_64_link_hash_entry. */
593 if (h != NULL
594 && ((ELF64_R_TYPE (rel->r_info) == R_X86_64_PC8)
595 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC16)
596 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC32)))
597 {
598 struct elf64_x86_64_link_hash_entry *eh;
599 struct elf64_x86_64_pcrel_relocs_copied *p;
600
601 eh = (struct elf64_x86_64_link_hash_entry *) h;
602
603 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
604 if (p->section == sreloc)
605 break;
606
607 if (p == NULL)
608 {
609 p = ((struct elf64_x86_64_pcrel_relocs_copied *)
610 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
611 if (p == NULL)
612 return false;
613 p->next = eh->pcrel_relocs_copied;
614 eh->pcrel_relocs_copied = p;
615 p->section = sreloc;
616 p->count = 0;
617 }
618
619 ++p->count;
620 }
621 }
622 break;
623
624 /* This relocation describes the C++ object vtable hierarchy.
625 Reconstruct it for later use during GC. */
626 case R_X86_64_GNU_VTINHERIT:
627 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
628 return false;
629 break;
630
631 /* This relocation describes which C++ vtable entries are actually
632 used. Record for later use during GC. */
633 case R_X86_64_GNU_VTENTRY:
634 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
635 return false;
636 break;
637 }
638 }
639
640 return true;
641 }
642
643 /* Return the section that should be marked against GC for a given
644 relocation. */
645
646 static asection *
647 elf64_x86_64_gc_mark_hook (abfd, info, rel, h, sym)
648 bfd *abfd;
649 struct bfd_link_info *info ATTRIBUTE_UNUSED;
650 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED;
651 struct elf_link_hash_entry *h;
652 Elf_Internal_Sym *sym;
653 {
654 if (h != NULL)
655 {
656 switch (ELF64_R_TYPE (rel->r_info))
657 {
658 case R_X86_64_GNU_VTINHERIT:
659 case R_X86_64_GNU_VTENTRY:
660 break;
661
662 default:
663 switch (h->root.type)
664 {
665 case bfd_link_hash_defined:
666 case bfd_link_hash_defweak:
667 return h->root.u.def.section;
668
669 case bfd_link_hash_common:
670 return h->root.u.c.p->section;
671
672 default:
673 break;
674 }
675 }
676 }
677 else
678 {
679 if (!(elf_bad_symtab (abfd)
680 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
681 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
682 && sym->st_shndx != SHN_COMMON))
683 {
684 return bfd_section_from_elf_index (abfd, sym->st_shndx);
685 }
686 }
687
688 return NULL;
689 }
690
691 /* Update the got entry reference counts for the section being removed. */
692
693 static boolean
694 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
695 bfd *abfd;
696 struct bfd_link_info *info ATTRIBUTE_UNUSED;
697 asection *sec;
698 const Elf_Internal_Rela *relocs;
699 {
700 Elf_Internal_Shdr *symtab_hdr;
701 struct elf_link_hash_entry **sym_hashes;
702 bfd_signed_vma *local_got_refcounts;
703 const Elf_Internal_Rela *rel, *relend;
704 unsigned long r_symndx;
705 struct elf_link_hash_entry *h;
706 bfd *dynobj;
707 asection *sgot;
708 asection *srelgot;
709
710 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
711 sym_hashes = elf_sym_hashes (abfd);
712 local_got_refcounts = elf_local_got_refcounts (abfd);
713
714 dynobj = elf_hash_table (info)->dynobj;
715 if (dynobj == NULL)
716 return true;
717
718 sgot = bfd_get_section_by_name (dynobj, ".got");
719 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
720
721 relend = relocs + sec->reloc_count;
722 for (rel = relocs; rel < relend; rel++)
723 switch (ELF64_R_TYPE (rel->r_info))
724 {
725 case R_X86_64_GOT32:
726 case R_X86_64_GOTPCREL:
727 r_symndx = ELF64_R_SYM (rel->r_info);
728 if (r_symndx >= symtab_hdr->sh_info)
729 {
730 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
731 if (h->got.refcount > 0)
732 {
733 h->got.refcount -= 1;
734 if (h->got.refcount == 0)
735 {
736 sgot->_raw_size -= GOT_ENTRY_SIZE;
737 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
738 }
739 }
740 }
741 else if (local_got_refcounts != NULL)
742 {
743 if (local_got_refcounts[r_symndx] > 0)
744 {
745 local_got_refcounts[r_symndx] -= 1;
746 if (local_got_refcounts[r_symndx] == 0)
747 {
748 sgot->_raw_size -= GOT_ENTRY_SIZE;
749 if (info->shared)
750 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
751 }
752 }
753 }
754 break;
755
756 case R_X86_64_PLT32:
757 r_symndx = ELF64_R_SYM (rel->r_info);
758 if (r_symndx >= symtab_hdr->sh_info)
759 {
760 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
761 if (h->plt.refcount > 0)
762 h->plt.refcount -= 1;
763 }
764 break;
765
766 default:
767 break;
768 }
769
770 return true;
771 }
772
773 /* Adjust a symbol defined by a dynamic object and referenced by a
774 regular object. The current definition is in some section of the
775 dynamic object, but we're not including those sections. We have to
776 change the definition to something the rest of the link can
777 understand. */
778
779 static boolean
780 elf64_x86_64_adjust_dynamic_symbol (info, h)
781 struct bfd_link_info *info;
782 struct elf_link_hash_entry *h;
783 {
784 bfd *dynobj;
785 asection *s;
786 unsigned int power_of_two;
787
788 dynobj = elf_hash_table (info)->dynobj;
789
790 /* Make sure we know what is going on here. */
791 BFD_ASSERT (dynobj != NULL
792 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
793 || h->weakdef != NULL
794 || ((h->elf_link_hash_flags
795 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
796 && (h->elf_link_hash_flags
797 & ELF_LINK_HASH_REF_REGULAR) != 0
798 && (h->elf_link_hash_flags
799 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
800
801 /* If this is a function, put it in the procedure linkage table. We
802 will fill in the contents of the procedure linkage table later,
803 when we know the address of the .got section. */
804 if (h->type == STT_FUNC
805 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
806 {
807 if ((! info->shared
808 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
809 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
810 || (info->shared && h->plt.refcount <= 0))
811 {
812 /* This case can occur if we saw a PLT32 reloc in an input
813 file, but the symbol was never referred to by a dynamic
814 object, or if all references were garbage collected. In
815 such a case, we don't actually need to build a procedure
816 linkage table, and we can just do a PC32 reloc instead. */
817 h->plt.offset = (bfd_vma) -1;
818 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
819 return true;
820 }
821
822 /* Make sure this symbol is output as a dynamic symbol. */
823 if (h->dynindx == -1)
824 {
825 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
826 return false;
827 }
828
829 s = bfd_get_section_by_name (dynobj, ".plt");
830 BFD_ASSERT (s != NULL);
831
832 /* If this is the first .plt entry, make room for the special
833 first entry. */
834 if (s->_raw_size == 0)
835 s->_raw_size = PLT_ENTRY_SIZE;
836
837 /* If this symbol is not defined in a regular file, and we are
838 not generating a shared library, then set the symbol to this
839 location in the .plt. This is required to make function
840 pointers compare as equal between the normal executable and
841 the shared library. */
842 if (! info->shared
843 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
844 {
845 h->root.u.def.section = s;
846 h->root.u.def.value = s->_raw_size;
847 }
848
849 h->plt.offset = s->_raw_size;
850
851 /* Make room for this entry. */
852 s->_raw_size += PLT_ENTRY_SIZE;
853
854 /* We also need to make an entry in the .got.plt section, which
855 will be placed in the .got section by the linker script. */
856 s = bfd_get_section_by_name (dynobj, ".got.plt");
857 BFD_ASSERT (s != NULL);
858 s->_raw_size += GOT_ENTRY_SIZE;
859
860 /* We also need to make an entry in the .rela.plt section. */
861 s = bfd_get_section_by_name (dynobj, ".rela.plt");
862 BFD_ASSERT (s != NULL);
863 s->_raw_size += sizeof (Elf64_External_Rela);
864
865 return true;
866 }
867
868 /* If this is a weak symbol, and there is a real definition, the
869 processor independent code will have arranged for us to see the
870 real definition first, and we can just use the same value. */
871 if (h->weakdef != NULL)
872 {
873 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
874 || h->weakdef->root.type == bfd_link_hash_defweak);
875 h->root.u.def.section = h->weakdef->root.u.def.section;
876 h->root.u.def.value = h->weakdef->root.u.def.value;
877 return true;
878 }
879
880 /* This is a reference to a symbol defined by a dynamic object which
881 is not a function. */
882
883 /* If we are creating a shared library, we must presume that the
884 only references to the symbol are via the global offset table.
885 For such cases we need not do anything here; the relocations will
886 be handled correctly by relocate_section. */
887 if (info->shared)
888 return true;
889
890 /* If there are no references to this symbol that do not use the
891 GOT, we don't need to generate a copy reloc. */
892 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
893 return true;
894
895 /* We must allocate the symbol in our .dynbss section, which will
896 become part of the .bss section of the executable. There will be
897 an entry for this symbol in the .dynsym section. The dynamic
898 object will contain position independent code, so all references
899 from the dynamic object to this symbol will go through the global
900 offset table. The dynamic linker will use the .dynsym entry to
901 determine the address it must put in the global offset table, so
902 both the dynamic object and the regular object will refer to the
903 same memory location for the variable. */
904
905 s = bfd_get_section_by_name (dynobj, ".dynbss");
906 BFD_ASSERT (s != NULL);
907
908 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
909 to copy the initial value out of the dynamic object and into the
910 runtime process image. We need to remember the offset into the
911 .rela.bss section we are going to use. */
912 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
913 {
914 asection *srel;
915
916 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
917 BFD_ASSERT (srel != NULL);
918 srel->_raw_size += sizeof (Elf64_External_Rela);
919 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
920 }
921
922 /* We need to figure out the alignment required for this symbol. I
923 have no idea how ELF linkers handle this. 16-bytes is the size
924 of the largest type that requires hard alignment -- long double. */
925 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
926 this construct. */
927 power_of_two = bfd_log2 (h->size);
928 if (power_of_two > 4)
929 power_of_two = 4;
930
931 /* Apply the required alignment. */
932 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
933 if (power_of_two > bfd_get_section_alignment (dynobj, s))
934 {
935 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
936 return false;
937 }
938
939 /* Define the symbol as being at this point in the section. */
940 h->root.u.def.section = s;
941 h->root.u.def.value = s->_raw_size;
942
943 /* Increment the section size to make room for the symbol. */
944 s->_raw_size += h->size;
945
946 return true;
947 }
948
949 /* Set the sizes of the dynamic sections. */
950
951 static boolean
952 elf64_x86_64_size_dynamic_sections (output_bfd, info)
953 bfd *output_bfd ATTRIBUTE_UNUSED;
954 struct bfd_link_info *info;
955 {
956 bfd *dynobj;
957 asection *s;
958 boolean plt;
959 boolean relocs;
960
961 dynobj = elf_hash_table (info)->dynobj;
962 BFD_ASSERT (dynobj != NULL);
963
964 if (elf_hash_table (info)->dynamic_sections_created)
965 {
966 /* Set the contents of the .interp section to the interpreter. */
967 if (! info->shared)
968 {
969 s = bfd_get_section_by_name (dynobj, ".interp");
970 BFD_ASSERT (s != NULL);
971 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
972 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
973 }
974 }
975 else
976 {
977 /* We may have created entries in the .rela.got section.
978 However, if we are not creating the dynamic sections, we will
979 not actually use these entries. Reset the size of .rela.got,
980 which will cause it to get stripped from the output file
981 below. */
982 s = bfd_get_section_by_name (dynobj, ".rela.got");
983 if (s != NULL)
984 s->_raw_size = 0;
985 }
986
987 /* If this is a -Bsymbolic shared link, then we need to discard all
988 PC relative relocs against symbols defined in a regular object.
989 We allocated space for them in the check_relocs routine, but we
990 will not fill them in in the relocate_section routine. */
991 if (info->shared)
992 elf64_x86_64_link_hash_traverse (elf64_x86_64_hash_table (info),
993 elf64_x86_64_discard_copies,
994 (PTR) info);
995
996 /* The check_relocs and adjust_dynamic_symbol entry points have
997 determined the sizes of the various dynamic sections. Allocate
998 memory for them. */
999 plt = relocs = false;
1000 for (s = dynobj->sections; s != NULL; s = s->next)
1001 {
1002 const char *name;
1003 boolean strip;
1004
1005 if ((s->flags & SEC_LINKER_CREATED) == 0)
1006 continue;
1007
1008 /* It's OK to base decisions on the section name, because none
1009 of the dynobj section names depend upon the input files. */
1010 name = bfd_get_section_name (dynobj, s);
1011
1012 strip = false;
1013 if (strcmp (name, ".plt") == 0)
1014 {
1015 if (s->_raw_size == 0)
1016 {
1017 /* Strip this section if we don't need it; see the
1018 comment below. */
1019 strip = true;
1020 }
1021 else
1022 {
1023 /* Remember whether there is a PLT. */
1024 plt = true;
1025 }
1026 }
1027 else if (strncmp (name, ".rela", 5) == 0)
1028 {
1029 if (s->_raw_size == 0)
1030 {
1031 /* If we don't need this section, strip it from the
1032 output file. This is mostly to handle .rela.bss and
1033 .rela.plt. We must create both sections in
1034 create_dynamic_sections, because they must be created
1035 before the linker maps input sections to output
1036 sections. The linker does that before
1037 adjust_dynamic_symbol is called, and it is that
1038 function which decides whether anything needs to go
1039 into these sections. */
1040 strip = true;
1041 }
1042 else
1043 {
1044 if (strcmp (name, ".rela.plt") != 0)
1045 relocs = true;
1046
1047 /* We use the reloc_count field as a counter if we need
1048 to copy relocs into the output file. */
1049 s->reloc_count = 0;
1050 }
1051 }
1052 else if (strncmp (name, ".got", 4) != 0)
1053 {
1054 /* It's not one of our sections, so don't allocate space. */
1055 continue;
1056 }
1057
1058 if (strip)
1059 {
1060 _bfd_strip_section_from_output (info, s);
1061 continue;
1062 }
1063
1064 /* Allocate memory for the section contents. We use bfd_zalloc
1065 here in case unused entries are not reclaimed before the
1066 section's contents are written out. This should not happen,
1067 but this way if it does, we get a R_X86_64_NONE reloc instead
1068 of garbage. */
1069 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1070 if (s->contents == NULL && s->_raw_size != 0)
1071 return false;
1072 }
1073
1074 if (elf_hash_table (info)->dynamic_sections_created)
1075 {
1076 /* Add some entries to the .dynamic section. We fill in the
1077 values later, in elf64_x86_64_finish_dynamic_sections, but we
1078 must add the entries now so that we get the correct size for
1079 the .dynamic section. The DT_DEBUG entry is filled in by the
1080 dynamic linker and used by the debugger. */
1081 #define add_dynamic_entry(TAG, VAL) \
1082 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1083
1084 if (! info->shared)
1085 {
1086 if (!add_dynamic_entry (DT_DEBUG, 0))
1087 return false;
1088 }
1089
1090 if (plt)
1091 {
1092 if (!add_dynamic_entry (DT_PLTGOT, 0)
1093 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1094 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1095 || !add_dynamic_entry (DT_JMPREL, 0))
1096 return false;
1097 }
1098
1099 if (relocs)
1100 {
1101 if (!add_dynamic_entry (DT_RELA, 0)
1102 || !add_dynamic_entry (DT_RELASZ, 0)
1103 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1104 return false;
1105 }
1106
1107 if ((info->flags & DF_TEXTREL) != 0)
1108 {
1109 if (!add_dynamic_entry (DT_TEXTREL, 0))
1110 return false;
1111 }
1112 }
1113 #undef add_dynamic_entry
1114
1115 return true;
1116 }
1117
1118 /* This function is called via elf64_x86_64_link_hash_traverse if we are
1119 creating a shared object. In the -Bsymbolic case, it discards the
1120 space allocated to copy PC relative relocs against symbols which
1121 are defined in regular objects. For the normal non-symbolic case,
1122 we also discard space for relocs that have become local due to
1123 symbol visibility changes. We allocated space for them in the
1124 check_relocs routine, but we won't fill them in in the
1125 relocate_section routine. */
1126
1127 static boolean
1128 elf64_x86_64_discard_copies (h, inf)
1129 struct elf64_x86_64_link_hash_entry *h;
1130 PTR inf;
1131 {
1132 struct elf64_x86_64_pcrel_relocs_copied *s;
1133 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1134
1135 /* If a symbol has been forced local or we have found a regular
1136 definition for the symbolic link case, then we won't be needing
1137 any relocs. */
1138 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1139 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1140 || info->symbolic))
1141 {
1142 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1143 s->section->_raw_size -= s->count * sizeof (Elf64_External_Rela);
1144 }
1145
1146 return true;
1147 }
1148
1149 /* Relocate an x86_64 ELF section. */
1150
1151 static boolean
1152 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1153 contents, relocs, local_syms, local_sections)
1154 bfd *output_bfd;
1155 struct bfd_link_info *info;
1156 bfd *input_bfd;
1157 asection *input_section;
1158 bfd_byte *contents;
1159 Elf_Internal_Rela *relocs;
1160 Elf_Internal_Sym *local_syms;
1161 asection **local_sections;
1162 {
1163 bfd *dynobj;
1164 Elf_Internal_Shdr *symtab_hdr;
1165 struct elf_link_hash_entry **sym_hashes;
1166 bfd_vma *local_got_offsets;
1167 asection *sgot;
1168 asection *splt;
1169 asection *sreloc;
1170 Elf_Internal_Rela *rela;
1171 Elf_Internal_Rela *relend;
1172
1173 dynobj = elf_hash_table (info)->dynobj;
1174 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1175 sym_hashes = elf_sym_hashes (input_bfd);
1176 local_got_offsets = elf_local_got_offsets (input_bfd);
1177
1178 sreloc = splt = sgot = NULL;
1179 if (dynobj != NULL)
1180 {
1181 splt = bfd_get_section_by_name (dynobj, ".plt");
1182 sgot = bfd_get_section_by_name (dynobj, ".got");
1183 }
1184
1185 rela = relocs;
1186 relend = relocs + input_section->reloc_count;
1187 for (; rela < relend; rela++)
1188 {
1189 int r_type;
1190 reloc_howto_type *howto;
1191 unsigned long r_symndx;
1192 struct elf_link_hash_entry *h;
1193 Elf_Internal_Sym *sym;
1194 asection *sec;
1195 bfd_vma relocation;
1196 bfd_reloc_status_type r;
1197 unsigned int indx;
1198
1199 r_type = ELF64_R_TYPE (rela->r_info);
1200 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1201 || r_type == (int) R_X86_64_GNU_VTENTRY)
1202 continue;
1203
1204 if ((indx = (unsigned) r_type) >= R_X86_64_max)
1205 {
1206 bfd_set_error (bfd_error_bad_value);
1207 return false;
1208 }
1209 howto = x86_64_elf_howto_table + indx;
1210
1211 r_symndx = ELF64_R_SYM (rela->r_info);
1212
1213 if (info->relocateable)
1214 {
1215 /* This is a relocateable link. We don't have to change
1216 anything, unless the reloc is against a section symbol,
1217 in which case we have to adjust according to where the
1218 section symbol winds up in the output section. */
1219 if (r_symndx < symtab_hdr->sh_info)
1220 {
1221 sym = local_syms + r_symndx;
1222 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1223 {
1224 sec = local_sections[r_symndx];
1225 rela->r_addend += sec->output_offset + sym->st_value;
1226 }
1227 }
1228
1229 continue;
1230 }
1231
1232 /* This is a final link. */
1233 h = NULL;
1234 sym = NULL;
1235 sec = NULL;
1236 if (r_symndx < symtab_hdr->sh_info)
1237 {
1238 sym = local_syms + r_symndx;
1239 sec = local_sections[r_symndx];
1240 relocation = (sec->output_section->vma
1241 + sec->output_offset
1242 + sym->st_value);
1243 }
1244 else
1245 {
1246 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1247 while (h->root.type == bfd_link_hash_indirect
1248 || h->root.type == bfd_link_hash_warning)
1249 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1250 if (h->root.type == bfd_link_hash_defined
1251 || h->root.type == bfd_link_hash_defweak)
1252 {
1253 sec = h->root.u.def.section;
1254 if ((r_type == R_X86_64_PLT32
1255 && splt != NULL
1256 && h->plt.offset != (bfd_vma) -1)
1257 || ((r_type == R_X86_64_GOT32 || r_type == R_X86_64_GOTPCREL)
1258 && elf_hash_table (info)->dynamic_sections_created
1259 && (!info->shared
1260 || (! info->symbolic && h->dynindx != -1)
1261 || (h->elf_link_hash_flags
1262 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1263 || (info->shared
1264 && ((! info->symbolic && h->dynindx != -1)
1265 || (h->elf_link_hash_flags
1266 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1267 && (r_type == R_X86_64_8
1268 || r_type == R_X86_64_16
1269 || r_type == R_X86_64_32
1270 || r_type == R_X86_64_64
1271 || r_type == R_X86_64_PC8
1272 || r_type == R_X86_64_PC16
1273 || r_type == R_X86_64_PC32)
1274 && ((input_section->flags & SEC_ALLOC) != 0
1275 /* DWARF will emit R_X86_64_32 relocations in its
1276 sections against symbols defined externally
1277 in shared libraries. We can't do anything
1278 with them here. */
1279 || ((input_section->flags & SEC_DEBUGGING) != 0
1280 && (h->elf_link_hash_flags
1281 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1282 {
1283 /* In these cases, we don't need the relocation
1284 value. We check specially because in some
1285 obscure cases sec->output_section will be NULL. */
1286 relocation = 0;
1287 }
1288 else if (sec->output_section == NULL)
1289 {
1290 (*_bfd_error_handler)
1291 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1292 bfd_get_filename (input_bfd), h->root.root.string,
1293 bfd_get_section_name (input_bfd, input_section));
1294 relocation = 0;
1295 }
1296 else
1297 relocation = (h->root.u.def.value
1298 + sec->output_section->vma
1299 + sec->output_offset);
1300 }
1301 else if (h->root.type == bfd_link_hash_undefweak)
1302 relocation = 0;
1303 else if (info->shared
1304 && (!info->symbolic || info->allow_shlib_undefined)
1305 && !info->no_undefined
1306 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1307 relocation = 0;
1308 else
1309 {
1310 if (! ((*info->callbacks->undefined_symbol)
1311 (info, h->root.root.string, input_bfd,
1312 input_section, rela->r_offset,
1313 (!info->shared || info->no_undefined
1314 || ELF_ST_VISIBILITY (h->other)))))
1315 return false;
1316 relocation = 0;
1317 }
1318 }
1319
1320 /* When generating a shared object, the relocations handled here are
1321 copied into the output file to be resolved at run time. */
1322 switch (r_type)
1323 {
1324 case R_X86_64_GOT32:
1325 /* Relocation is to the entry for this symbol in the global
1326 offset table. */
1327 case R_X86_64_GOTPCREL:
1328 /* Use global offset table as symbol value. */
1329 BFD_ASSERT (sgot != NULL);
1330
1331 if (h != NULL)
1332 {
1333 bfd_vma off = h->got.offset;
1334 BFD_ASSERT (off != (bfd_vma) -1);
1335
1336 if (! elf_hash_table (info)->dynamic_sections_created
1337 || (info->shared
1338 && (info->symbolic || h->dynindx == -1)
1339 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1340 {
1341 /* This is actually a static link, or it is a -Bsymbolic
1342 link and the symbol is defined locally, or the symbol
1343 was forced to be local because of a version file. We
1344 must initialize this entry in the global offset table.
1345 Since the offset must always be a multiple of 8, we
1346 use the least significant bit to record whether we
1347 have initialized it already.
1348
1349 When doing a dynamic link, we create a .rela.got
1350 relocation entry to initialize the value. This is
1351 done in the finish_dynamic_symbol routine. */
1352 if ((off & 1) != 0)
1353 off &= ~1;
1354 else
1355 {
1356 bfd_put_64 (output_bfd, relocation,
1357 sgot->contents + off);
1358 h->got.offset |= 1;
1359 }
1360 }
1361 if (r_type == R_X86_64_GOTPCREL)
1362 relocation = sgot->output_section->vma + sgot->output_offset + off;
1363 else
1364 relocation = sgot->output_offset + off;
1365 }
1366 else
1367 {
1368 bfd_vma off;
1369
1370 BFD_ASSERT (local_got_offsets != NULL
1371 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1372
1373 off = local_got_offsets[r_symndx];
1374
1375 /* The offset must always be a multiple of 8. We use
1376 the least significant bit to record whether we have
1377 already generated the necessary reloc. */
1378 if ((off & 1) != 0)
1379 off &= ~1;
1380 else
1381 {
1382 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
1383
1384 if (info->shared)
1385 {
1386 asection *srelgot;
1387 Elf_Internal_Rela outrel;
1388
1389 /* We need to generate a R_X86_64_RELATIVE reloc
1390 for the dynamic linker. */
1391 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1392 BFD_ASSERT (srelgot != NULL);
1393
1394 outrel.r_offset = (sgot->output_section->vma
1395 + sgot->output_offset
1396 + off);
1397 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1398 outrel.r_addend = relocation;
1399 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1400 (((Elf64_External_Rela *)
1401 srelgot->contents)
1402 + srelgot->reloc_count));
1403 ++srelgot->reloc_count;
1404 }
1405
1406 local_got_offsets[r_symndx] |= 1;
1407 }
1408
1409 if (r_type == R_X86_64_GOTPCREL)
1410 relocation = sgot->output_section->vma + sgot->output_offset + off;
1411 else
1412 relocation = sgot->output_offset + off;
1413 }
1414
1415 break;
1416
1417 case R_X86_64_PLT32:
1418 /* Relocation is to the entry for this symbol in the
1419 procedure linkage table. */
1420
1421 /* Resolve a PLT32 reloc against a local symbol directly,
1422 without using the procedure linkage table. */
1423 if (h == NULL)
1424 break;
1425
1426 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1427 {
1428 /* We didn't make a PLT entry for this symbol. This
1429 happens when statically linking PIC code, or when
1430 using -Bsymbolic. */
1431 break;
1432 }
1433
1434 relocation = (splt->output_section->vma
1435 + splt->output_offset
1436 + h->plt.offset);
1437 break;
1438
1439 case R_X86_64_PC8:
1440 case R_X86_64_PC16:
1441 case R_X86_64_PC32:
1442 if (h == NULL || h->dynindx == -1
1443 || (info->symbolic
1444 && h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1445 break;
1446 /* Fall through. */
1447 case R_X86_64_8:
1448 case R_X86_64_16:
1449 case R_X86_64_32:
1450 case R_X86_64_64:
1451 /* FIXME: The ABI says the linker should make sure the value is
1452 the same when it's zeroextended to 64 bit. */
1453 if (info->shared && (input_section->flags & SEC_ALLOC) != 0)
1454 {
1455 Elf_Internal_Rela outrel;
1456 boolean skip, relocate;
1457
1458 /* When generating a shared object, these relocations
1459 are copied into the output file to be resolved at run
1460 time. */
1461
1462 if (sreloc == NULL)
1463 {
1464 const char *name;
1465
1466 name = (bfd_elf_string_from_elf_section
1467 (input_bfd,
1468 elf_elfheader (input_bfd)->e_shstrndx,
1469 elf_section_data (input_section)->rel_hdr.sh_name));
1470 if (name == NULL)
1471 return false;
1472
1473 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1474 && strcmp (bfd_get_section_name (input_bfd,
1475 input_section),
1476 name + 5) == 0);
1477
1478 sreloc = bfd_get_section_by_name (dynobj, name);
1479 BFD_ASSERT (sreloc != NULL);
1480 }
1481
1482 skip = false;
1483
1484 if (elf_section_data (input_section)->stab_info == NULL)
1485 outrel.r_offset = rela->r_offset;
1486 else
1487 {
1488 bfd_vma off;
1489
1490 off = (_bfd_stab_section_offset
1491 (output_bfd, &elf_hash_table (info)->stab_info,
1492 input_section,
1493 &elf_section_data (input_section)->stab_info,
1494 rela->r_offset));
1495 if (off == (bfd_vma) -1)
1496 skip = true;
1497 outrel.r_offset = off;
1498 }
1499
1500 outrel.r_offset += (input_section->output_section->vma
1501 + input_section->output_offset);
1502
1503 if (skip)
1504 {
1505 memset (&outrel, 0, sizeof outrel);
1506 relocate = false;
1507 }
1508 /* h->dynindx may be -1 if this symbol was marked to
1509 become local. */
1510 else if (h != NULL
1511 && ((! info->symbolic && h->dynindx != -1)
1512 || (h->elf_link_hash_flags
1513 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1514 {
1515 BFD_ASSERT (h->dynindx != -1);
1516 relocate = false;
1517 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1518 outrel.r_addend = relocation + rela->r_addend;
1519 }
1520 else
1521 {
1522 if (r_type == R_X86_64_64)
1523 {
1524 relocate = true;
1525 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1526 outrel.r_addend = relocation + rela->r_addend;
1527 }
1528 else
1529 {
1530 long sindx;
1531
1532 if (h == NULL)
1533 sec = local_sections[r_symndx];
1534 else
1535 {
1536 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1537 || (h->root.type
1538 == bfd_link_hash_defweak));
1539 sec = h->root.u.def.section;
1540 }
1541 if (sec != NULL && bfd_is_abs_section (sec))
1542 sindx = 0;
1543 else if (sec == NULL || sec->owner == NULL)
1544 {
1545 bfd_set_error (bfd_error_bad_value);
1546 return false;
1547 }
1548 else
1549 {
1550 asection *osec;
1551
1552 osec = sec->output_section;
1553 sindx = elf_section_data (osec)->dynindx;
1554 BFD_ASSERT (sindx > 0);
1555 }
1556
1557 relocate = false;
1558 outrel.r_info = ELF64_R_INFO (sindx, r_type);
1559 outrel.r_addend = relocation + rela->r_addend;
1560 }
1561
1562 }
1563
1564 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1565 (((Elf64_External_Rela *)
1566 sreloc->contents)
1567 + sreloc->reloc_count));
1568 ++sreloc->reloc_count;
1569
1570 /* If this reloc is against an external symbol, we do
1571 not want to fiddle with the addend. Otherwise, we
1572 need to include the symbol value so that it becomes
1573 an addend for the dynamic reloc. */
1574 if (! relocate)
1575 continue;
1576 }
1577
1578 break;
1579
1580 default:
1581 break;
1582 }
1583
1584 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1585 contents, rela->r_offset,
1586 relocation, rela->r_addend);
1587
1588 if (r != bfd_reloc_ok)
1589 {
1590 switch (r)
1591 {
1592 default:
1593 case bfd_reloc_outofrange:
1594 abort ();
1595 case bfd_reloc_overflow:
1596 {
1597 const char *name;
1598
1599 if (h != NULL)
1600 name = h->root.root.string;
1601 else
1602 {
1603 name = bfd_elf_string_from_elf_section (input_bfd,
1604 symtab_hdr->sh_link,
1605 sym->st_name);
1606 if (name == NULL)
1607 return false;
1608 if (*name == '\0')
1609 name = bfd_section_name (input_bfd, sec);
1610 }
1611 if (! ((*info->callbacks->reloc_overflow)
1612 (info, name, howto->name, (bfd_vma) 0,
1613 input_bfd, input_section, rela->r_offset)))
1614 return false;
1615 }
1616 break;
1617 }
1618 }
1619 }
1620
1621 return true;
1622 }
1623
1624 /* Finish up dynamic symbol handling. We set the contents of various
1625 dynamic sections here. */
1626
1627 static boolean
1628 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
1629 bfd *output_bfd;
1630 struct bfd_link_info *info;
1631 struct elf_link_hash_entry *h;
1632 Elf_Internal_Sym *sym;
1633 {
1634 bfd *dynobj;
1635
1636 dynobj = elf_hash_table (info)->dynobj;
1637
1638 if (h->plt.offset != (bfd_vma) -1)
1639 {
1640 asection *splt;
1641 asection *sgot;
1642 asection *srela;
1643 bfd_vma plt_index;
1644 bfd_vma got_offset;
1645 Elf_Internal_Rela rela;
1646
1647 /* This symbol has an entry in the procedure linkage table. Set
1648 it up. */
1649
1650 BFD_ASSERT (h->dynindx != -1);
1651
1652 splt = bfd_get_section_by_name (dynobj, ".plt");
1653 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1654 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1655 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1656
1657 /* Get the index in the procedure linkage table which
1658 corresponds to this symbol. This is the index of this symbol
1659 in all the symbols for which we are making plt entries. The
1660 first entry in the procedure linkage table is reserved. */
1661 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1662
1663 /* Get the offset into the .got table of the entry that
1664 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
1665 bytes. The first three are reserved for the dynamic linker. */
1666 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1667
1668 /* Fill in the entry in the procedure linkage table. */
1669 memcpy (splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
1670 PLT_ENTRY_SIZE);
1671
1672 /* Insert the relocation positions of the plt section. The magic
1673 numbers at the end of the statements are the positions of the
1674 relocations in the plt section. */
1675 /* Put offset for jmp *name@GOTPCREL(%rip), since the
1676 instruction uses 6 bytes, subtract this value. */
1677 bfd_put_32 (output_bfd,
1678 (sgot->output_section->vma
1679 + sgot->output_offset
1680 + got_offset
1681 - splt->output_section->vma
1682 - splt->output_offset
1683 - h->plt.offset
1684 - 6),
1685 splt->contents + h->plt.offset + 2);
1686 /* Put relocation index. */
1687 bfd_put_32 (output_bfd, plt_index,
1688 splt->contents + h->plt.offset + 7);
1689 /* Put offset for jmp .PLT0. */
1690 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1691 splt->contents + h->plt.offset + 12);
1692
1693 /* Fill in the entry in the global offset table, initially this
1694 points to the pushq instruction in the PLT which is at offset 6. */
1695 bfd_put_64 (output_bfd, (splt->output_section->vma + splt->output_offset
1696 + h->plt.offset + 6),
1697 sgot->contents + got_offset);
1698
1699 /* Fill in the entry in the .rela.plt section. */
1700 rela.r_offset = (sgot->output_section->vma
1701 + sgot->output_offset
1702 + got_offset);
1703 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
1704 rela.r_addend = 0;
1705 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1706 ((Elf64_External_Rela *) srela->contents
1707 + plt_index));
1708
1709 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1710 {
1711 /* Mark the symbol as undefined, rather than as defined in
1712 the .plt section. Leave the value alone. */
1713 sym->st_shndx = SHN_UNDEF;
1714 /* If the symbol is weak, we do need to clear the value.
1715 Otherwise, the PLT entry would provide a definition for
1716 the symbol even if the symbol wasn't defined anywhere,
1717 and so the symbol would never be NULL. */
1718 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
1719 == 0)
1720 sym->st_value = 0;
1721 }
1722 }
1723
1724 if (h->got.offset != (bfd_vma) -1)
1725 {
1726 asection *sgot;
1727 asection *srela;
1728 Elf_Internal_Rela rela;
1729
1730 /* This symbol has an entry in the global offset table. Set it
1731 up. */
1732
1733 sgot = bfd_get_section_by_name (dynobj, ".got");
1734 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1735 BFD_ASSERT (sgot != NULL && srela != NULL);
1736
1737 rela.r_offset = (sgot->output_section->vma
1738 + sgot->output_offset
1739 + (h->got.offset &~ (bfd_vma) 1));
1740
1741 /* If this is a static link, or it is a -Bsymbolic link and the
1742 symbol is defined locally or was forced to be local because
1743 of a version file, we just want to emit a RELATIVE reloc.
1744 The entry in the global offset table will already have been
1745 initialized in the relocate_section function. */
1746 if (! elf_hash_table (info)->dynamic_sections_created
1747 || (info->shared
1748 && (info->symbolic || h->dynindx == -1)
1749 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1750 {
1751 BFD_ASSERT((h->got.offset & 1) != 0);
1752 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1753 rela.r_addend = (h->root.u.def.value
1754 + h->root.u.def.section->output_section->vma
1755 + h->root.u.def.section->output_offset);
1756 }
1757 else
1758 {
1759 BFD_ASSERT((h->got.offset & 1) == 0);
1760 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1761 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
1762 rela.r_addend = 0;
1763 }
1764
1765 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1766 ((Elf64_External_Rela *) srela->contents
1767 + srela->reloc_count));
1768 ++srela->reloc_count;
1769 }
1770
1771 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1772 {
1773 asection *s;
1774 Elf_Internal_Rela rela;
1775
1776 /* This symbol needs a copy reloc. Set it up. */
1777
1778 BFD_ASSERT (h->dynindx != -1
1779 && (h->root.type == bfd_link_hash_defined
1780 || h->root.type == bfd_link_hash_defweak));
1781
1782 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1783 ".rela.bss");
1784 BFD_ASSERT (s != NULL);
1785
1786 rela.r_offset = (h->root.u.def.value
1787 + h->root.u.def.section->output_section->vma
1788 + h->root.u.def.section->output_offset);
1789 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
1790 rela.r_addend = 0;
1791 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1792 ((Elf64_External_Rela *) s->contents
1793 + s->reloc_count));
1794 ++s->reloc_count;
1795 }
1796
1797 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1798 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1799 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1800 sym->st_shndx = SHN_ABS;
1801
1802 return true;
1803 }
1804
1805 /* Finish up the dynamic sections. */
1806
1807 static boolean
1808 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
1809 bfd *output_bfd;
1810 struct bfd_link_info *info;
1811 {
1812 bfd *dynobj;
1813 asection *sdyn;
1814 asection *sgot;
1815
1816 dynobj = elf_hash_table (info)->dynobj;
1817
1818 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1819 BFD_ASSERT (sgot != NULL);
1820 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1821
1822 if (elf_hash_table (info)->dynamic_sections_created)
1823 {
1824 asection *splt;
1825 Elf64_External_Dyn *dyncon, *dynconend;
1826
1827 BFD_ASSERT (sdyn != NULL);
1828
1829 dyncon = (Elf64_External_Dyn *) sdyn->contents;
1830 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1831 for (; dyncon < dynconend; dyncon++)
1832 {
1833 Elf_Internal_Dyn dyn;
1834 const char *name;
1835 asection *s;
1836
1837 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
1838
1839 switch (dyn.d_tag)
1840 {
1841 default:
1842 continue;
1843
1844 case DT_PLTGOT:
1845 name = ".got";
1846 goto get_vma;
1847
1848 case DT_JMPREL:
1849 name = ".rela.plt";
1850
1851 get_vma:
1852 s = bfd_get_section_by_name (output_bfd, name);
1853 BFD_ASSERT (s != NULL);
1854 dyn.d_un.d_ptr = s->vma;
1855 break;
1856
1857 case DT_RELASZ:
1858 /* FIXME: This comment and code is from elf64-alpha.c: */
1859 /* My interpretation of the TIS v1.1 ELF document indicates
1860 that RELASZ should not include JMPREL. This is not what
1861 the rest of the BFD does. It is, however, what the
1862 glibc ld.so wants. Do this fixup here until we found
1863 out who is right. */
1864 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1865 if (s)
1866 {
1867 /* Subtract JMPREL size from RELASZ. */
1868 dyn.d_un.d_val -=
1869 (s->_cooked_size ? s->_cooked_size : s->_raw_size);
1870 }
1871 break;
1872
1873 case DT_PLTRELSZ:
1874 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1875 BFD_ASSERT (s != NULL);
1876 dyn.d_un.d_val =
1877 (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size);
1878 break;
1879 }
1880 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
1881 }
1882
1883 /* Initialize the contents of the .plt section. */
1884 splt = bfd_get_section_by_name (dynobj, ".plt");
1885 BFD_ASSERT (splt != NULL);
1886 if (splt->_raw_size > 0)
1887 {
1888 /* Fill in the first entry in the procedure linkage table. */
1889 memcpy (splt->contents, elf64_x86_64_plt0_entry, PLT_ENTRY_SIZE);
1890 /* Add offset for pushq GOT+8(%rip), since the instruction
1891 uses 6 bytes subtract this value. */
1892 bfd_put_32 (output_bfd,
1893 (sgot->output_section->vma
1894 + sgot->output_offset
1895 + 8
1896 - splt->output_section->vma
1897 - splt->output_offset
1898 - 6),
1899 splt->contents + 2);
1900 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
1901 the end of the instruction. */
1902 bfd_put_32 (output_bfd,
1903 (sgot->output_section->vma
1904 + sgot->output_offset
1905 + 16
1906 - splt->output_section->vma
1907 - splt->output_offset
1908 - 12),
1909 splt->contents + 8);
1910
1911 }
1912
1913 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
1914 PLT_ENTRY_SIZE;
1915 }
1916
1917 /* Set the first entry in the global offset table to the address of
1918 the dynamic section. */
1919 if (sgot->_raw_size > 0)
1920 {
1921 if (sdyn == NULL)
1922 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
1923 else
1924 bfd_put_64 (output_bfd,
1925 sdyn->output_section->vma + sdyn->output_offset,
1926 sgot->contents);
1927 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
1928 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE);
1929 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE*2);
1930 }
1931
1932 elf_section_data (sgot->output_section)->this_hdr.sh_entsize =
1933 GOT_ENTRY_SIZE;
1934
1935 return true;
1936 }
1937
1938 static enum elf_reloc_type_class
1939 elf64_x86_64_reloc_type_class (type)
1940 int type;
1941 {
1942 switch (type)
1943 {
1944 case R_X86_64_RELATIVE:
1945 return reloc_class_relative;
1946 case R_X86_64_JUMP_SLOT:
1947 return reloc_class_plt;
1948 case R_X86_64_COPY:
1949 return reloc_class_copy;
1950 default:
1951 return reloc_class_normal;
1952 }
1953 }
1954
1955 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
1956 #define TARGET_LITTLE_NAME "elf64-x86-64"
1957 #define ELF_ARCH bfd_arch_i386
1958 #define ELF_MACHINE_CODE EM_X86_64
1959 #define ELF_MAXPAGESIZE 0x100000
1960
1961 #define elf_backend_can_gc_sections 1
1962 #define elf_backend_want_got_plt 1
1963 #define elf_backend_plt_readonly 1
1964 #define elf_backend_want_plt_sym 0
1965 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
1966 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
1967
1968 #define elf_info_to_howto elf64_x86_64_info_to_howto
1969
1970 #define bfd_elf64_bfd_final_link _bfd_elf64_gc_common_final_link
1971 #define bfd_elf64_bfd_link_hash_table_create \
1972 elf64_x86_64_link_hash_table_create
1973 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
1974
1975 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
1976 #define elf_backend_check_relocs elf64_x86_64_check_relocs
1977 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
1978 #define elf_backend_finish_dynamic_sections \
1979 elf64_x86_64_finish_dynamic_sections
1980 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
1981 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
1982 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
1983 #define elf_backend_relocate_section elf64_x86_64_relocate_section
1984 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
1985 #define elf_backend_object_p elf64_x86_64_elf_object_p
1986 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
1987
1988 #include "elf64-target.h"
This page took 0.081817 seconds and 4 git commands to generate.