* binutils-all/readelf.exp: Don't regard mips*el-*-* as traditional
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25
26 #include "elf/x86-64.h"
27
28 /* We use only the RELA entries. */
29 #define USE_RELA
30
31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
32 #define MINUS_ONE (~ (bfd_vma) 0)
33
34 /* The relocation "howto" table. Order of fields:
35 type, size, bitsize, pc_relative, complain_on_overflow,
36 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
37 static reloc_howto_type x86_64_elf_howto_table[] =
38 {
39 HOWTO(R_X86_64_NONE, 0, 0, 0, false, 0, complain_overflow_dont,
40 bfd_elf_generic_reloc, "R_X86_64_NONE", false, 0x00000000, 0x00000000,
41 false),
42 HOWTO(R_X86_64_64, 0, 4, 64, false, 0, complain_overflow_bitfield,
43 bfd_elf_generic_reloc, "R_X86_64_64", false, MINUS_ONE, MINUS_ONE,
44 false),
45 HOWTO(R_X86_64_PC32, 0, 4, 32, true, 0, complain_overflow_signed,
46 bfd_elf_generic_reloc, "R_X86_64_PC32", false, 0xffffffff, 0xffffffff,
47 true),
48 HOWTO(R_X86_64_GOT32, 0, 4, 32, false, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_GOT32", false, 0xffffffff, 0xffffffff,
50 false),
51 HOWTO(R_X86_64_PLT32, 0, 4, 32, true, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_PLT32", false, 0xffffffff, 0xffffffff,
53 true),
54 HOWTO(R_X86_64_COPY, 0, 4, 32, false, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_COPY", false, 0xffffffff, 0xffffffff,
56 false),
57 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", false, MINUS_ONE,
59 MINUS_ONE, false),
60 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", false, MINUS_ONE,
62 MINUS_ONE, false),
63 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", false, MINUS_ONE,
65 MINUS_ONE, false),
66 HOWTO(R_X86_64_GOTPCREL, 0, 4, 32, true,0 , complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", false, 0xffffffff,
68 0xffffffff, true),
69 HOWTO(R_X86_64_32, 0, 4, 32, false, 0, complain_overflow_unsigned,
70 bfd_elf_generic_reloc, "R_X86_64_32", false, 0xffffffff, 0xffffffff,
71 false),
72 HOWTO(R_X86_64_32S, 0, 4, 32, false, 0, complain_overflow_signed,
73 bfd_elf_generic_reloc, "R_X86_64_32S", false, 0xffffffff, 0xffffffff,
74 false),
75 HOWTO(R_X86_64_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_16", false, 0xffff, 0xffff, false),
77 HOWTO(R_X86_64_PC16,0, 1, 16, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_PC16", false, 0xffff, 0xffff, true),
79 HOWTO(R_X86_64_8, 0, 0, 8, false, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_8", false, 0xff, 0xff, false),
81 HOWTO(R_X86_64_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
82 bfd_elf_generic_reloc, "R_X86_64_PC8", false, 0xff, 0xff, true),
83
84 /* GNU extension to record C++ vtable hierarchy. */
85 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, false, 0, complain_overflow_dont,
86 NULL, "R_X86_64_GNU_VTINHERIT", false, 0, 0, false),
87
88 /* GNU extension to record C++ vtable member usage. */
89 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, false, 0, complain_overflow_dont,
90 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", false, 0, 0,
91 false)
92 };
93
94 /* Map BFD relocs to the x86_64 elf relocs. */
95 struct elf_reloc_map
96 {
97 bfd_reloc_code_real_type bfd_reloc_val;
98 unsigned char elf_reloc_val;
99 };
100
101 static CONST struct elf_reloc_map x86_64_reloc_map[] =
102 {
103 { BFD_RELOC_NONE, R_X86_64_NONE, },
104 { BFD_RELOC_64, R_X86_64_64, },
105 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
106 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
107 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
108 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
109 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
110 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
111 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
112 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
113 { BFD_RELOC_32, R_X86_64_32, },
114 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
115 { BFD_RELOC_16, R_X86_64_16, },
116 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
117 { BFD_RELOC_8, R_X86_64_8, },
118 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
119 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
120 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
121 };
122
123 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
124 PARAMS ((bfd *, bfd_reloc_code_real_type));
125 static void elf64_x86_64_info_to_howto
126 PARAMS ((bfd *, arelent *, Elf64_Internal_Rela *));
127 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
128 PARAMS ((bfd *));
129 static boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
130 static boolean elf64_x86_64_check_relocs
131 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
132 const Elf_Internal_Rela *));
133 static asection *elf64_x86_64_gc_mark_hook
134 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
135 struct elf_link_hash_entry *, Elf_Internal_Sym *));
136
137 static boolean elf64_x86_64_gc_sweep_hook
138 PARAMS ((bfd *, struct bfd_link_info *, asection *,
139 const Elf_Internal_Rela *));
140
141 static struct bfd_hash_entry *elf64_x86_64_link_hash_newfunc
142 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
143 static boolean elf64_x86_64_adjust_dynamic_symbol
144 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
145
146 static boolean elf64_x86_64_size_dynamic_sections
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean elf64_x86_64_relocate_section
149 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
150 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
151 static boolean elf64_x86_64_finish_dynamic_symbol
152 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
153 Elf_Internal_Sym *sym));
154 static boolean elf64_x86_64_finish_dynamic_sections
155 PARAMS ((bfd *, struct bfd_link_info *));
156 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class PARAMS ((int));
157
158 /* Given a BFD reloc type, return a HOWTO structure. */
159 static reloc_howto_type *
160 elf64_x86_64_reloc_type_lookup (abfd, code)
161 bfd *abfd ATTRIBUTE_UNUSED;
162 bfd_reloc_code_real_type code;
163 {
164 unsigned int i;
165 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
166 i++)
167 {
168 if (x86_64_reloc_map[i].bfd_reloc_val == code)
169 return &x86_64_elf_howto_table[(int)
170 x86_64_reloc_map[i].elf_reloc_val];
171 }
172 return 0;
173 }
174
175 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
176
177 static void
178 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 arelent *cache_ptr;
181 Elf64_Internal_Rela *dst;
182 {
183 unsigned r_type, i;
184
185 r_type = ELF64_R_TYPE (dst->r_info);
186 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
187 {
188 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_PC8);
189 i = r_type;
190 }
191 else
192 {
193 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
194 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_PC8 - 1);
195 }
196 cache_ptr->howto = &x86_64_elf_howto_table[i];
197 BFD_ASSERT (r_type == cache_ptr->howto->type);
198 }
199 \f
200 /* Functions for the x86-64 ELF linker. */
201
202 /* The name of the dynamic interpreter. This is put in the .interp
203 section. */
204
205 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
206
207 /* The size in bytes of an entry in the global offset table. */
208
209 #define GOT_ENTRY_SIZE 8
210
211 /* The size in bytes of an entry in the procedure linkage table. */
212
213 #define PLT_ENTRY_SIZE 16
214
215 /* The first entry in a procedure linkage table looks like this. See the
216 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
217
218 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
219 {
220 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
221 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
222 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
223 };
224
225 /* Subsequent entries in a procedure linkage table look like this. */
226
227 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
228 {
229 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
230 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
231 0x68, /* pushq immediate */
232 0, 0, 0, 0, /* replaced with index into relocation table. */
233 0xe9, /* jmp relative */
234 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
235 };
236
237 /* The x86-64 linker needs to keep track of the number of relocs that
238 it decides to copy in check_relocs for each symbol. This is so
239 that it can discard PC relative relocs if it doesn't need them when
240 linking with -Bsymbolic. We store the information in a field
241 extending the regular ELF linker hash table. */
242
243 /* This structure keeps track of the number of PC relative relocs we
244 have copied for a given symbol. */
245
246 struct elf64_x86_64_pcrel_relocs_copied
247 {
248 /* Next section. */
249 struct elf64_x86_64_pcrel_relocs_copied *next;
250 /* A section in dynobj. */
251 asection *section;
252 /* Number of relocs copied in this section. */
253 bfd_size_type count;
254 };
255
256 /* x86-64 ELF linker hash entry. */
257
258 struct elf64_x86_64_link_hash_entry
259 {
260 struct elf_link_hash_entry root;
261
262 /* Number of PC relative relocs copied for this symbol. */
263 struct elf64_x86_64_pcrel_relocs_copied *pcrel_relocs_copied;
264 };
265
266 /* x86-64 ELF linker hash table. */
267
268 struct elf64_x86_64_link_hash_table
269 {
270 struct elf_link_hash_table root;
271 };
272
273 /* Declare this now that the above structures are defined. */
274
275 static boolean elf64_x86_64_discard_copies
276 PARAMS ((struct elf64_x86_64_link_hash_entry *, PTR));
277
278 /* Traverse an x86-64 ELF linker hash table. */
279
280 #define elf64_x86_64_link_hash_traverse(table, func, info) \
281 (elf_link_hash_traverse \
282 (&(table)->root, \
283 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
284 (info)))
285
286 /* Get the x86-64 ELF linker hash table from a link_info structure. */
287
288 #define elf64_x86_64_hash_table(p) \
289 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
290
291 /* Create an entry in an x86-64 ELF linker hash table. */
292
293 static struct bfd_hash_entry *
294 elf64_x86_64_link_hash_newfunc (entry, table, string)
295 struct bfd_hash_entry *entry;
296 struct bfd_hash_table *table;
297 const char *string;
298 {
299 struct elf64_x86_64_link_hash_entry *ret =
300 (struct elf64_x86_64_link_hash_entry *) entry;
301
302 /* Allocate the structure if it has not already been allocated by a
303 subclass. */
304 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
305 ret = ((struct elf64_x86_64_link_hash_entry *)
306 bfd_hash_allocate (table,
307 sizeof (struct elf64_x86_64_link_hash_entry)));
308 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
309 return (struct bfd_hash_entry *) ret;
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_x86_64_link_hash_entry *)
313 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
314 table, string));
315 if (ret != (struct elf64_x86_64_link_hash_entry *) NULL)
316 {
317 ret->pcrel_relocs_copied = NULL;
318 }
319
320 return (struct bfd_hash_entry *) ret;
321 }
322
323 /* Create an X86-64 ELF linker hash table. */
324
325 static struct bfd_link_hash_table *
326 elf64_x86_64_link_hash_table_create (abfd)
327 bfd *abfd;
328 {
329 struct elf64_x86_64_link_hash_table *ret;
330
331 ret = ((struct elf64_x86_64_link_hash_table *)
332 bfd_alloc (abfd, sizeof (struct elf64_x86_64_link_hash_table)));
333 if (ret == (struct elf64_x86_64_link_hash_table *) NULL)
334 return NULL;
335
336 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
337 elf64_x86_64_link_hash_newfunc))
338 {
339 bfd_release (abfd, ret);
340 return NULL;
341 }
342
343 return &ret->root.root;
344 }
345
346 static boolean
347 elf64_x86_64_elf_object_p (abfd)
348 bfd *abfd;
349 {
350 /* Set the right machine number for an x86-64 elf64 file. */
351 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
352 return true;
353 }
354
355 /* Look through the relocs for a section during the first phase, and
356 allocate space in the global offset table or procedure linkage
357 table. */
358
359 static boolean
360 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
361 bfd *abfd;
362 struct bfd_link_info *info;
363 asection *sec;
364 const Elf_Internal_Rela *relocs;
365 {
366 bfd *dynobj;
367 Elf_Internal_Shdr *symtab_hdr;
368 struct elf_link_hash_entry **sym_hashes;
369 bfd_signed_vma *local_got_refcounts;
370 const Elf_Internal_Rela *rel;
371 const Elf_Internal_Rela *rel_end;
372 asection *sgot;
373 asection *srelgot;
374 asection *sreloc;
375
376 if (info->relocateable)
377 return true;
378
379 dynobj = elf_hash_table (info)->dynobj;
380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
381 sym_hashes = elf_sym_hashes (abfd);
382 local_got_refcounts = elf_local_got_refcounts (abfd);
383
384 sgot = srelgot = sreloc = NULL;
385 rel_end = relocs + sec->reloc_count;
386 for (rel = relocs; rel < rel_end; rel++)
387 {
388 unsigned long r_symndx;
389 struct elf_link_hash_entry *h;
390
391 r_symndx = ELF64_R_SYM (rel->r_info);
392 if (r_symndx < symtab_hdr->sh_info)
393 h = NULL;
394 else
395 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
396
397 /* Some relocs require a global offset table. */
398 if (dynobj == NULL)
399 {
400 switch (ELF64_R_TYPE (rel->r_info))
401 {
402 case R_X86_64_GOT32:
403 case R_X86_64_GOTPCREL:
404 elf_hash_table (info)->dynobj = dynobj = abfd;
405 if (! _bfd_elf_create_got_section (dynobj, info))
406 return false;
407 break;
408 }
409 }
410
411 switch (ELF64_R_TYPE (rel->r_info))
412 {
413 case R_X86_64_GOTPCREL:
414 case R_X86_64_GOT32:
415 /* This symbol requires a global offset table entry. */
416
417 if (sgot == NULL)
418 {
419 sgot = bfd_get_section_by_name (dynobj, ".got");
420 BFD_ASSERT (sgot != NULL);
421 }
422
423 if (srelgot == NULL && (h != NULL || info->shared))
424 {
425 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
426 if (srelgot == NULL)
427 {
428 srelgot = bfd_make_section (dynobj, ".rela.got");
429 if (srelgot == NULL
430 || ! bfd_set_section_flags (dynobj, srelgot,
431 (SEC_ALLOC
432 | SEC_LOAD
433 | SEC_HAS_CONTENTS
434 | SEC_IN_MEMORY
435 | SEC_LINKER_CREATED
436 | SEC_READONLY))
437 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
438 return false;
439 }
440 }
441
442 if (h != NULL)
443 {
444 if (h->got.refcount == -1)
445 {
446 h->got.refcount = 1;
447
448 /* Make sure this symbol is output as a dynamic symbol. */
449 if (h->dynindx == -1)
450 {
451 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
452 return false;
453 }
454
455 sgot->_raw_size += GOT_ENTRY_SIZE;
456 srelgot->_raw_size += sizeof (Elf64_External_Rela);
457 }
458 else
459 h->got.refcount += 1;
460 }
461 else
462 {
463 /* This is a global offset table entry for a local symbol. */
464 if (local_got_refcounts == NULL)
465 {
466 size_t size;
467
468 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
469 local_got_refcounts = ((bfd_signed_vma *)
470 bfd_alloc (abfd, size));
471 if (local_got_refcounts == NULL)
472 return false;
473 elf_local_got_refcounts (abfd) = local_got_refcounts;
474 memset (local_got_refcounts, -1, size);
475 }
476 if (local_got_refcounts[r_symndx] == -1)
477 {
478 local_got_refcounts[r_symndx] = 1;
479
480 sgot->_raw_size += GOT_ENTRY_SIZE;
481 if (info->shared)
482 {
483 /* If we are generating a shared object, we need to
484 output a R_X86_64_RELATIVE reloc so that the dynamic
485 linker can adjust this GOT entry. */
486 srelgot->_raw_size += sizeof (Elf64_External_Rela);
487 }
488 }
489 else
490 local_got_refcounts[r_symndx] += 1;
491 }
492 break;
493
494 case R_X86_64_PLT32:
495 /* This symbol requires a procedure linkage table entry. We
496 actually build the entry in adjust_dynamic_symbol,
497 because this might be a case of linking PIC code which is
498 never referenced by a dynamic object, in which case we
499 don't need to generate a procedure linkage table entry
500 after all. */
501
502 /* If this is a local symbol, we resolve it directly without
503 creating a procedure linkage table entry. */
504 if (h == NULL)
505 continue;
506
507 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
508 if (h->plt.refcount == -1)
509 h->plt.refcount = 1;
510 else
511 h->plt.refcount += 1;
512 break;
513
514 case R_X86_64_8:
515 case R_X86_64_16:
516 case R_X86_64_32:
517 case R_X86_64_64:
518 case R_X86_64_32S:
519 case R_X86_64_PC32:
520 if (h != NULL)
521 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
522
523 /* If we are creating a shared library, and this is a reloc
524 against a global symbol, or a non PC relative reloc
525 against a local symbol, then we need to copy the reloc
526 into the shared library. However, if we are linking with
527 -Bsymbolic, we do not need to copy a reloc against a
528 global symbol which is defined in an object we are
529 including in the link (i.e., DEF_REGULAR is set). At
530 this point we have not seen all the input files, so it is
531 possible that DEF_REGULAR is not set now but will be set
532 later (it is never cleared). We account for that
533 possibility below by storing information in the
534 pcrel_relocs_copied field of the hash table entry.
535 A similar situation occurs when creating shared libraries
536 and symbol visibility changes render the symbol local. */
537 if (info->shared
538 && (sec->flags & SEC_ALLOC) != 0
539 && (((ELF64_R_TYPE (rel->r_info) != R_X86_64_PC8)
540 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC16)
541 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC32))
542 || (h != NULL
543 && (! info->symbolic
544 || (h->elf_link_hash_flags
545 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
546 {
547 /* When creating a shared object, we must copy these
548 reloc types into the output file. We create a reloc
549 section in dynobj and make room for this reloc. */
550 if (sreloc == NULL)
551 {
552 const char *name;
553
554 name = (bfd_elf_string_from_elf_section
555 (abfd,
556 elf_elfheader (abfd)->e_shstrndx,
557 elf_section_data (sec)->rel_hdr.sh_name));
558 if (name == NULL)
559 return false;
560
561 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
562 && strcmp (bfd_get_section_name (abfd, sec),
563 name + 5) == 0);
564
565 sreloc = bfd_get_section_by_name (dynobj, name);
566 if (sreloc == NULL)
567 {
568 flagword flags;
569
570 sreloc = bfd_make_section (dynobj, name);
571 flags = (SEC_HAS_CONTENTS | SEC_READONLY
572 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
573 if ((sec->flags & SEC_ALLOC) != 0)
574 flags |= SEC_ALLOC | SEC_LOAD;
575 if (sreloc == NULL
576 || ! bfd_set_section_flags (dynobj, sreloc, flags)
577 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
578 return false;
579 }
580 if (sec->flags & SEC_READONLY)
581 info->flags |= DF_TEXTREL;
582 }
583
584 sreloc->_raw_size += sizeof (Elf64_External_Rela);
585
586 /* If this is a global symbol, we count the number of PC
587 relative relocations we have entered for this symbol,
588 so that we can discard them later as necessary. Note
589 that this function is only called if we are using an
590 elf64_x86_64 linker hash table, which means that h is
591 really a pointer to an elf64_x86_64_link_hash_entry. */
592 if (h != NULL
593 && ((ELF64_R_TYPE (rel->r_info) == R_X86_64_PC8)
594 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC16)
595 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC32)))
596 {
597 struct elf64_x86_64_link_hash_entry *eh;
598 struct elf64_x86_64_pcrel_relocs_copied *p;
599
600 eh = (struct elf64_x86_64_link_hash_entry *) h;
601
602 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
603 if (p->section == sreloc)
604 break;
605
606 if (p == NULL)
607 {
608 p = ((struct elf64_x86_64_pcrel_relocs_copied *)
609 bfd_alloc (dynobj, sizeof *p));
610 if (p == NULL)
611 return false;
612 p->next = eh->pcrel_relocs_copied;
613 eh->pcrel_relocs_copied = p;
614 p->section = sreloc;
615 p->count = 0;
616 }
617
618 ++p->count;
619 }
620 }
621 break;
622
623 /* This relocation describes the C++ object vtable hierarchy.
624 Reconstruct it for later use during GC. */
625 case R_X86_64_GNU_VTINHERIT:
626 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
627 return false;
628 break;
629
630 /* This relocation describes which C++ vtable entries are actually
631 used. Record for later use during GC. */
632 case R_X86_64_GNU_VTENTRY:
633 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
634 return false;
635 break;
636 }
637 }
638
639 return true;
640 }
641
642 /* Return the section that should be marked against GC for a given
643 relocation. */
644
645 static asection *
646 elf64_x86_64_gc_mark_hook (abfd, info, rel, h, sym)
647 bfd *abfd;
648 struct bfd_link_info *info ATTRIBUTE_UNUSED;
649 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED;
650 struct elf_link_hash_entry *h;
651 Elf_Internal_Sym *sym;
652 {
653 if (h != NULL)
654 {
655 switch (ELF64_R_TYPE (rel->r_info))
656 {
657 case R_X86_64_GNU_VTINHERIT:
658 case R_X86_64_GNU_VTENTRY:
659 break;
660
661 default:
662 switch (h->root.type)
663 {
664 case bfd_link_hash_defined:
665 case bfd_link_hash_defweak:
666 return h->root.u.def.section;
667
668 case bfd_link_hash_common:
669 return h->root.u.c.p->section;
670
671 default:
672 break;
673 }
674 }
675 }
676 else
677 {
678 if (!(elf_bad_symtab (abfd)
679 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
680 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
681 && sym->st_shndx != SHN_COMMON))
682 {
683 return bfd_section_from_elf_index (abfd, sym->st_shndx);
684 }
685 }
686
687 return NULL;
688 }
689
690 /* Update the got entry reference counts for the section being removed. */
691
692 static boolean
693 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
694 bfd *abfd;
695 struct bfd_link_info *info ATTRIBUTE_UNUSED;
696 asection *sec;
697 const Elf_Internal_Rela *relocs;
698 {
699 Elf_Internal_Shdr *symtab_hdr;
700 struct elf_link_hash_entry **sym_hashes;
701 bfd_signed_vma *local_got_refcounts;
702 const Elf_Internal_Rela *rel, *relend;
703 unsigned long r_symndx;
704 struct elf_link_hash_entry *h;
705 bfd *dynobj;
706 asection *sgot;
707 asection *srelgot;
708
709 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
710 sym_hashes = elf_sym_hashes (abfd);
711 local_got_refcounts = elf_local_got_refcounts (abfd);
712
713 dynobj = elf_hash_table (info)->dynobj;
714 if (dynobj == NULL)
715 return true;
716
717 sgot = bfd_get_section_by_name (dynobj, ".got");
718 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
719
720 relend = relocs + sec->reloc_count;
721 for (rel = relocs; rel < relend; rel++)
722 switch (ELF64_R_TYPE (rel->r_info))
723 {
724 case R_X86_64_GOT32:
725 case R_X86_64_GOTPCREL:
726 r_symndx = ELF64_R_SYM (rel->r_info);
727 if (r_symndx >= symtab_hdr->sh_info)
728 {
729 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
730 if (h->got.refcount > 0)
731 {
732 h->got.refcount -= 1;
733 if (h->got.refcount == 0)
734 {
735 sgot->_raw_size -= GOT_ENTRY_SIZE;
736 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
737 }
738 }
739 }
740 else if (local_got_refcounts != NULL)
741 {
742 if (local_got_refcounts[r_symndx] > 0)
743 {
744 local_got_refcounts[r_symndx] -= 1;
745 if (local_got_refcounts[r_symndx] == 0)
746 {
747 sgot->_raw_size -= GOT_ENTRY_SIZE;
748 if (info->shared)
749 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
750 }
751 }
752 }
753 break;
754
755 case R_X86_64_PLT32:
756 r_symndx = ELF64_R_SYM (rel->r_info);
757 if (r_symndx >= symtab_hdr->sh_info)
758 {
759 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
760 if (h->plt.refcount > 0)
761 h->plt.refcount -= 1;
762 }
763 break;
764
765 default:
766 break;
767 }
768
769 return true;
770 }
771
772 /* Adjust a symbol defined by a dynamic object and referenced by a
773 regular object. The current definition is in some section of the
774 dynamic object, but we're not including those sections. We have to
775 change the definition to something the rest of the link can
776 understand. */
777
778 static boolean
779 elf64_x86_64_adjust_dynamic_symbol (info, h)
780 struct bfd_link_info *info;
781 struct elf_link_hash_entry *h;
782 {
783 bfd *dynobj;
784 asection *s;
785 unsigned int power_of_two;
786
787 dynobj = elf_hash_table (info)->dynobj;
788
789 /* Make sure we know what is going on here. */
790 BFD_ASSERT (dynobj != NULL
791 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
792 || h->weakdef != NULL
793 || ((h->elf_link_hash_flags
794 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
795 && (h->elf_link_hash_flags
796 & ELF_LINK_HASH_REF_REGULAR) != 0
797 && (h->elf_link_hash_flags
798 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
799
800 /* If this is a function, put it in the procedure linkage table. We
801 will fill in the contents of the procedure linkage table later,
802 when we know the address of the .got section. */
803 if (h->type == STT_FUNC
804 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
805 {
806 if ((! info->shared
807 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
808 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
809 || (info->shared && h->plt.refcount <= 0))
810 {
811 /* This case can occur if we saw a PLT32 reloc in an input
812 file, but the symbol was never referred to by a dynamic
813 object, or if all references were garbage collected. In
814 such a case, we don't actually need to build a procedure
815 linkage table, and we can just do a PC32 reloc instead. */
816 h->plt.offset = (bfd_vma) -1;
817 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
818 return true;
819 }
820
821 /* Make sure this symbol is output as a dynamic symbol. */
822 if (h->dynindx == -1)
823 {
824 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
825 return false;
826 }
827
828 s = bfd_get_section_by_name (dynobj, ".plt");
829 BFD_ASSERT (s != NULL);
830
831 /* If this is the first .plt entry, make room for the special
832 first entry. */
833 if (s->_raw_size == 0)
834 s->_raw_size = PLT_ENTRY_SIZE;
835
836 /* If this symbol is not defined in a regular file, and we are
837 not generating a shared library, then set the symbol to this
838 location in the .plt. This is required to make function
839 pointers compare as equal between the normal executable and
840 the shared library. */
841 if (! info->shared
842 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
843 {
844 h->root.u.def.section = s;
845 h->root.u.def.value = s->_raw_size;
846 }
847
848 h->plt.offset = s->_raw_size;
849
850 /* Make room for this entry. */
851 s->_raw_size += PLT_ENTRY_SIZE;
852
853 /* We also need to make an entry in the .got.plt section, which
854 will be placed in the .got section by the linker script. */
855 s = bfd_get_section_by_name (dynobj, ".got.plt");
856 BFD_ASSERT (s != NULL);
857 s->_raw_size += GOT_ENTRY_SIZE;
858
859 /* We also need to make an entry in the .rela.plt section. */
860 s = bfd_get_section_by_name (dynobj, ".rela.plt");
861 BFD_ASSERT (s != NULL);
862 s->_raw_size += sizeof (Elf64_External_Rela);
863
864 return true;
865 }
866
867 /* If this is a weak symbol, and there is a real definition, the
868 processor independent code will have arranged for us to see the
869 real definition first, and we can just use the same value. */
870 if (h->weakdef != NULL)
871 {
872 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
873 || h->weakdef->root.type == bfd_link_hash_defweak);
874 h->root.u.def.section = h->weakdef->root.u.def.section;
875 h->root.u.def.value = h->weakdef->root.u.def.value;
876 return true;
877 }
878
879 /* This is a reference to a symbol defined by a dynamic object which
880 is not a function. */
881
882 /* If we are creating a shared library, we must presume that the
883 only references to the symbol are via the global offset table.
884 For such cases we need not do anything here; the relocations will
885 be handled correctly by relocate_section. */
886 if (info->shared)
887 return true;
888
889 /* If there are no references to this symbol that do not use the
890 GOT, we don't need to generate a copy reloc. */
891 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
892 return true;
893
894 /* We must allocate the symbol in our .dynbss section, which will
895 become part of the .bss section of the executable. There will be
896 an entry for this symbol in the .dynsym section. The dynamic
897 object will contain position independent code, so all references
898 from the dynamic object to this symbol will go through the global
899 offset table. The dynamic linker will use the .dynsym entry to
900 determine the address it must put in the global offset table, so
901 both the dynamic object and the regular object will refer to the
902 same memory location for the variable. */
903
904 s = bfd_get_section_by_name (dynobj, ".dynbss");
905 BFD_ASSERT (s != NULL);
906
907 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
908 to copy the initial value out of the dynamic object and into the
909 runtime process image. We need to remember the offset into the
910 .rela.bss section we are going to use. */
911 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
912 {
913 asection *srel;
914
915 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
916 BFD_ASSERT (srel != NULL);
917 srel->_raw_size += sizeof (Elf64_External_Rela);
918 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
919 }
920
921 /* We need to figure out the alignment required for this symbol. I
922 have no idea how ELF linkers handle this. 16-bytes is the size
923 of the largest type that requires hard alignment -- long double. */
924 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
925 this construct. */
926 power_of_two = bfd_log2 (h->size);
927 if (power_of_two > 4)
928 power_of_two = 4;
929
930 /* Apply the required alignment. */
931 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
932 if (power_of_two > bfd_get_section_alignment (dynobj, s))
933 {
934 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
935 return false;
936 }
937
938 /* Define the symbol as being at this point in the section. */
939 h->root.u.def.section = s;
940 h->root.u.def.value = s->_raw_size;
941
942 /* Increment the section size to make room for the symbol. */
943 s->_raw_size += h->size;
944
945 return true;
946 }
947
948 /* Set the sizes of the dynamic sections. */
949
950 static boolean
951 elf64_x86_64_size_dynamic_sections (output_bfd, info)
952 bfd *output_bfd ATTRIBUTE_UNUSED;
953 struct bfd_link_info *info;
954 {
955 bfd *dynobj;
956 asection *s;
957 boolean plt;
958 boolean relocs;
959
960 dynobj = elf_hash_table (info)->dynobj;
961 BFD_ASSERT (dynobj != NULL);
962
963 if (elf_hash_table (info)->dynamic_sections_created)
964 {
965 /* Set the contents of the .interp section to the interpreter. */
966 if (! info->shared)
967 {
968 s = bfd_get_section_by_name (dynobj, ".interp");
969 BFD_ASSERT (s != NULL);
970 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
971 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
972 }
973 }
974 else
975 {
976 /* We may have created entries in the .rela.got section.
977 However, if we are not creating the dynamic sections, we will
978 not actually use these entries. Reset the size of .rela.got,
979 which will cause it to get stripped from the output file
980 below. */
981 s = bfd_get_section_by_name (dynobj, ".rela.got");
982 if (s != NULL)
983 s->_raw_size = 0;
984 }
985
986 /* If this is a -Bsymbolic shared link, then we need to discard all
987 PC relative relocs against symbols defined in a regular object.
988 We allocated space for them in the check_relocs routine, but we
989 will not fill them in in the relocate_section routine. */
990 if (info->shared)
991 elf64_x86_64_link_hash_traverse (elf64_x86_64_hash_table (info),
992 elf64_x86_64_discard_copies,
993 (PTR) info);
994
995 /* The check_relocs and adjust_dynamic_symbol entry points have
996 determined the sizes of the various dynamic sections. Allocate
997 memory for them. */
998 plt = relocs = false;
999 for (s = dynobj->sections; s != NULL; s = s->next)
1000 {
1001 const char *name;
1002 boolean strip;
1003
1004 if ((s->flags & SEC_LINKER_CREATED) == 0)
1005 continue;
1006
1007 /* It's OK to base decisions on the section name, because none
1008 of the dynobj section names depend upon the input files. */
1009 name = bfd_get_section_name (dynobj, s);
1010
1011 strip = false;
1012 if (strcmp (name, ".plt") == 0)
1013 {
1014 if (s->_raw_size == 0)
1015 {
1016 /* Strip this section if we don't need it; see the
1017 comment below. */
1018 strip = true;
1019 }
1020 else
1021 {
1022 /* Remember whether there is a PLT. */
1023 plt = true;
1024 }
1025 }
1026 else if (strncmp (name, ".rela", 5) == 0)
1027 {
1028 if (s->_raw_size == 0)
1029 {
1030 /* If we don't need this section, strip it from the
1031 output file. This is mostly to handle .rela.bss and
1032 .rela.plt. We must create both sections in
1033 create_dynamic_sections, because they must be created
1034 before the linker maps input sections to output
1035 sections. The linker does that before
1036 adjust_dynamic_symbol is called, and it is that
1037 function which decides whether anything needs to go
1038 into these sections. */
1039 strip = true;
1040 }
1041 else
1042 {
1043 if (strcmp (name, ".rela.plt") != 0)
1044 relocs = true;
1045
1046 /* We use the reloc_count field as a counter if we need
1047 to copy relocs into the output file. */
1048 s->reloc_count = 0;
1049 }
1050 }
1051 else if (strncmp (name, ".got", 4) != 0)
1052 {
1053 /* It's not one of our sections, so don't allocate space. */
1054 continue;
1055 }
1056
1057 if (strip)
1058 {
1059 _bfd_strip_section_from_output (info, s);
1060 continue;
1061 }
1062
1063 /* Allocate memory for the section contents. We use bfd_zalloc
1064 here in case unused entries are not reclaimed before the
1065 section's contents are written out. This should not happen,
1066 but this way if it does, we get a R_X86_64_NONE reloc instead
1067 of garbage. */
1068 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1069 if (s->contents == NULL && s->_raw_size != 0)
1070 return false;
1071 }
1072
1073 if (elf_hash_table (info)->dynamic_sections_created)
1074 {
1075 /* Add some entries to the .dynamic section. We fill in the
1076 values later, in elf64_x86_64_finish_dynamic_sections, but we
1077 must add the entries now so that we get the correct size for
1078 the .dynamic section. The DT_DEBUG entry is filled in by the
1079 dynamic linker and used by the debugger. */
1080 if (! info->shared)
1081 {
1082 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1083 return false;
1084 }
1085
1086 if (plt)
1087 {
1088 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1089 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1090 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1091 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1092 return false;
1093 }
1094
1095 if (relocs)
1096 {
1097 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1098 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1099 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1100 sizeof (Elf64_External_Rela)))
1101 return false;
1102 }
1103
1104 if ((info->flags & DF_TEXTREL) != 0)
1105 {
1106 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1107 return false;
1108 }
1109 }
1110
1111 return true;
1112 }
1113
1114 /* This function is called via elf64_x86_64_link_hash_traverse if we are
1115 creating a shared object. In the -Bsymbolic case, it discards the
1116 space allocated to copy PC relative relocs against symbols which
1117 are defined in regular objects. For the normal non-symbolic case,
1118 we also discard space for relocs that have become local due to
1119 symbol visibility changes. We allocated space for them in the
1120 check_relocs routine, but we won't fill them in in the
1121 relocate_section routine. */
1122
1123 static boolean
1124 elf64_x86_64_discard_copies (h, inf)
1125 struct elf64_x86_64_link_hash_entry *h;
1126 PTR inf;
1127 {
1128 struct elf64_x86_64_pcrel_relocs_copied *s;
1129 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1130
1131 /* If a symbol has been forced local or we have found a regular
1132 definition for the symbolic link case, then we won't be needing
1133 any relocs. */
1134 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1135 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1136 || info->symbolic))
1137 {
1138 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1139 s->section->_raw_size -= s->count * sizeof (Elf64_External_Rela);
1140 }
1141
1142 return true;
1143 }
1144
1145 /* Relocate an x86_64 ELF section. */
1146
1147 static boolean
1148 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1149 contents, relocs, local_syms, local_sections)
1150 bfd *output_bfd;
1151 struct bfd_link_info *info;
1152 bfd *input_bfd;
1153 asection *input_section;
1154 bfd_byte *contents;
1155 Elf_Internal_Rela *relocs;
1156 Elf_Internal_Sym *local_syms;
1157 asection **local_sections;
1158 {
1159 bfd *dynobj;
1160 Elf_Internal_Shdr *symtab_hdr;
1161 struct elf_link_hash_entry **sym_hashes;
1162 bfd_vma *local_got_offsets;
1163 asection *sgot;
1164 asection *splt;
1165 asection *sreloc;
1166 Elf_Internal_Rela *rela;
1167 Elf_Internal_Rela *relend;
1168
1169 dynobj = elf_hash_table (info)->dynobj;
1170 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1171 sym_hashes = elf_sym_hashes (input_bfd);
1172 local_got_offsets = elf_local_got_offsets (input_bfd);
1173
1174 sreloc = splt = sgot = NULL;
1175 if (dynobj != NULL)
1176 {
1177 splt = bfd_get_section_by_name (dynobj, ".plt");
1178 sgot = bfd_get_section_by_name (dynobj, ".got");
1179 }
1180
1181 rela = relocs;
1182 relend = relocs + input_section->reloc_count;
1183 for (; rela < relend; rela++)
1184 {
1185 int r_type;
1186 reloc_howto_type *howto;
1187 unsigned long r_symndx;
1188 struct elf_link_hash_entry *h;
1189 Elf_Internal_Sym *sym;
1190 asection *sec;
1191 bfd_vma relocation;
1192 bfd_reloc_status_type r;
1193 unsigned int indx;
1194
1195 r_type = ELF64_R_TYPE (rela->r_info);
1196 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1197 || r_type == (int) R_X86_64_GNU_VTENTRY)
1198 continue;
1199
1200 if ((indx = (unsigned) r_type) >= R_X86_64_max)
1201 {
1202 bfd_set_error (bfd_error_bad_value);
1203 return false;
1204 }
1205 howto = x86_64_elf_howto_table + indx;
1206
1207 r_symndx = ELF64_R_SYM (rela->r_info);
1208
1209 if (info->relocateable)
1210 {
1211 /* This is a relocateable link. We don't have to change
1212 anything, unless the reloc is against a section symbol,
1213 in which case we have to adjust according to where the
1214 section symbol winds up in the output section. */
1215 if (r_symndx < symtab_hdr->sh_info)
1216 {
1217 sym = local_syms + r_symndx;
1218 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1219 {
1220 sec = local_sections[r_symndx];
1221 rela->r_addend += sec->output_offset + sym->st_value;
1222 }
1223 }
1224
1225 continue;
1226 }
1227
1228 /* This is a final link. */
1229 h = NULL;
1230 sym = NULL;
1231 sec = NULL;
1232 if (r_symndx < symtab_hdr->sh_info)
1233 {
1234 sym = local_syms + r_symndx;
1235 sec = local_sections[r_symndx];
1236 relocation = (sec->output_section->vma
1237 + sec->output_offset
1238 + sym->st_value);
1239 }
1240 else
1241 {
1242 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1243 while (h->root.type == bfd_link_hash_indirect
1244 || h->root.type == bfd_link_hash_warning)
1245 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1246 if (h->root.type == bfd_link_hash_defined
1247 || h->root.type == bfd_link_hash_defweak)
1248 {
1249 sec = h->root.u.def.section;
1250 if ((r_type == R_X86_64_PLT32
1251 && splt != NULL
1252 && h->plt.offset != (bfd_vma) -1)
1253 || ((r_type == R_X86_64_GOT32 || r_type == R_X86_64_GOTPCREL)
1254 && elf_hash_table (info)->dynamic_sections_created
1255 && (!info->shared
1256 || (! info->symbolic && h->dynindx != -1)
1257 || (h->elf_link_hash_flags
1258 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1259 || (info->shared
1260 && ((! info->symbolic && h->dynindx != -1)
1261 || (h->elf_link_hash_flags
1262 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1263 && (r_type == R_X86_64_8
1264 || r_type == R_X86_64_16
1265 || r_type == R_X86_64_32
1266 || r_type == R_X86_64_64
1267 || r_type == R_X86_64_PC8
1268 || r_type == R_X86_64_PC16
1269 || r_type == R_X86_64_PC32)
1270 && ((input_section->flags & SEC_ALLOC) != 0
1271 /* DWARF will emit R_X86_64_32 relocations in its
1272 sections against symbols defined externally
1273 in shared libraries. We can't do anything
1274 with them here. */
1275 || ((input_section->flags & SEC_DEBUGGING) != 0
1276 && (h->elf_link_hash_flags
1277 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1278 {
1279 /* In these cases, we don't need the relocation
1280 value. We check specially because in some
1281 obscure cases sec->output_section will be NULL. */
1282 relocation = 0;
1283 }
1284 else if (sec->output_section == NULL)
1285 {
1286 (*_bfd_error_handler)
1287 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1288 bfd_get_filename (input_bfd), h->root.root.string,
1289 bfd_get_section_name (input_bfd, input_section));
1290 relocation = 0;
1291 }
1292 else
1293 relocation = (h->root.u.def.value
1294 + sec->output_section->vma
1295 + sec->output_offset);
1296 }
1297 else if (h->root.type == bfd_link_hash_undefweak)
1298 relocation = 0;
1299 else if (info->shared && !info->symbolic && !info->no_undefined
1300 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1301 relocation = 0;
1302 else
1303 {
1304 if (! ((*info->callbacks->undefined_symbol)
1305 (info, h->root.root.string, input_bfd,
1306 input_section, rela->r_offset,
1307 (!info->shared || info->no_undefined
1308 || ELF_ST_VISIBILITY (h->other)))))
1309 return false;
1310 relocation = 0;
1311 }
1312 }
1313
1314 /* When generating a shared object, the relocations handled here are
1315 copied into the output file to be resolved at run time. */
1316 switch (r_type)
1317 {
1318 case R_X86_64_GOT32:
1319 /* Relocation is to the entry for this symbol in the global
1320 offset table. */
1321 case R_X86_64_GOTPCREL:
1322 /* Use global offset table as symbol value. */
1323 BFD_ASSERT (sgot != NULL);
1324
1325 if (h != NULL)
1326 {
1327 bfd_vma off = h->got.offset;
1328 BFD_ASSERT (off != (bfd_vma) -1);
1329
1330 if (! elf_hash_table (info)->dynamic_sections_created
1331 || (info->shared
1332 && (info->symbolic || h->dynindx == -1)
1333 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1334 {
1335 /* This is actually a static link, or it is a -Bsymbolic
1336 link and the symbol is defined locally, or the symbol
1337 was forced to be local because of a version file. We
1338 must initialize this entry in the global offset table.
1339 Since the offset must always be a multiple of 8, we
1340 use the least significant bit to record whether we
1341 have initialized it already.
1342
1343 When doing a dynamic link, we create a .rela.got
1344 relocation entry to initialize the value. This is
1345 done in the finish_dynamic_symbol routine. */
1346 if ((off & 1) != 0)
1347 off &= ~1;
1348 else
1349 {
1350 bfd_put_64 (output_bfd, relocation,
1351 sgot->contents + off);
1352 h->got.offset |= 1;
1353 }
1354 }
1355 if (r_type == R_X86_64_GOTPCREL)
1356 relocation = sgot->output_section->vma + sgot->output_offset + off;
1357 else
1358 relocation = sgot->output_offset + off;
1359 }
1360 else
1361 {
1362 bfd_vma off;
1363
1364 BFD_ASSERT (local_got_offsets != NULL
1365 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1366
1367 off = local_got_offsets[r_symndx];
1368
1369 /* The offset must always be a multiple of 8. We use
1370 the least significant bit to record whether we have
1371 already generated the necessary reloc. */
1372 if ((off & 1) != 0)
1373 off &= ~1;
1374 else
1375 {
1376 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
1377
1378 if (info->shared)
1379 {
1380 asection *srelgot;
1381 Elf_Internal_Rela outrel;
1382
1383 /* We need to generate a R_X86_64_RELATIVE reloc
1384 for the dynamic linker. */
1385 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1386 BFD_ASSERT (srelgot != NULL);
1387
1388 outrel.r_offset = (sgot->output_section->vma
1389 + sgot->output_offset
1390 + off);
1391 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1392 outrel.r_addend = relocation;
1393 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1394 (((Elf64_External_Rela *)
1395 srelgot->contents)
1396 + srelgot->reloc_count));
1397 ++srelgot->reloc_count;
1398 }
1399
1400 local_got_offsets[r_symndx] |= 1;
1401 }
1402
1403 if (r_type == R_X86_64_GOTPCREL)
1404 relocation = sgot->output_section->vma + sgot->output_offset + off;
1405 else
1406 relocation = sgot->output_offset + off;
1407 }
1408
1409 break;
1410
1411 case R_X86_64_PLT32:
1412 /* Relocation is to the entry for this symbol in the
1413 procedure linkage table. */
1414
1415 /* Resolve a PLT32 reloc against a local symbol directly,
1416 without using the procedure linkage table. */
1417 if (h == NULL)
1418 break;
1419
1420 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1421 {
1422 /* We didn't make a PLT entry for this symbol. This
1423 happens when statically linking PIC code, or when
1424 using -Bsymbolic. */
1425 break;
1426 }
1427
1428 relocation = (splt->output_section->vma
1429 + splt->output_offset
1430 + h->plt.offset);
1431 break;
1432
1433 case R_X86_64_PC8:
1434 case R_X86_64_PC16:
1435 case R_X86_64_PC32:
1436 if (h == NULL || h->dynindx == -1
1437 || (info->symbolic
1438 && h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1439 break;
1440 /* Fall through. */
1441 case R_X86_64_8:
1442 case R_X86_64_16:
1443 case R_X86_64_32:
1444 case R_X86_64_64:
1445 /* FIXME: The ABI says the linker should make sure the value is
1446 the same when it's zeroextended to 64 bit. */
1447 if (info->shared && (input_section->flags & SEC_ALLOC) != 0)
1448 {
1449 Elf_Internal_Rela outrel;
1450 boolean skip, relocate;
1451
1452 /* When generating a shared object, these relocations
1453 are copied into the output file to be resolved at run
1454 time. */
1455
1456 if (sreloc == NULL)
1457 {
1458 const char *name;
1459
1460 name = (bfd_elf_string_from_elf_section
1461 (input_bfd,
1462 elf_elfheader (input_bfd)->e_shstrndx,
1463 elf_section_data (input_section)->rel_hdr.sh_name));
1464 if (name == NULL)
1465 return false;
1466
1467 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1468 && strcmp (bfd_get_section_name (input_bfd,
1469 input_section),
1470 name + 5) == 0);
1471
1472 sreloc = bfd_get_section_by_name (dynobj, name);
1473 BFD_ASSERT (sreloc != NULL);
1474 }
1475
1476 skip = false;
1477
1478 if (elf_section_data (input_section)->stab_info == NULL)
1479 outrel.r_offset = rela->r_offset;
1480 else
1481 {
1482 bfd_vma off;
1483
1484 off = (_bfd_stab_section_offset
1485 (output_bfd, &elf_hash_table (info)->stab_info,
1486 input_section,
1487 &elf_section_data (input_section)->stab_info,
1488 rela->r_offset));
1489 if (off == (bfd_vma) -1)
1490 skip = true;
1491 outrel.r_offset = off;
1492 }
1493
1494 outrel.r_offset += (input_section->output_section->vma
1495 + input_section->output_offset);
1496
1497 if (skip)
1498 {
1499 memset (&outrel, 0, sizeof outrel);
1500 relocate = false;
1501 }
1502 /* h->dynindx may be -1 if this symbol was marked to
1503 become local. */
1504 else if (h != NULL
1505 && ((! info->symbolic && h->dynindx != -1)
1506 || (h->elf_link_hash_flags
1507 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1508 {
1509 BFD_ASSERT (h->dynindx != -1);
1510 relocate = false;
1511 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1512 outrel.r_addend = relocation + rela->r_addend;
1513 }
1514 else
1515 {
1516 if (r_type == R_X86_64_64)
1517 {
1518 relocate = true;
1519 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1520 outrel.r_addend = relocation + rela->r_addend;
1521 }
1522 else
1523 {
1524 long indx;
1525
1526 if (h == NULL)
1527 sec = local_sections[r_symndx];
1528 else
1529 {
1530 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1531 || (h->root.type
1532 == bfd_link_hash_defweak));
1533 sec = h->root.u.def.section;
1534 }
1535 if (sec != NULL && bfd_is_abs_section (sec))
1536 indx = 0;
1537 else if (sec == NULL || sec->owner == NULL)
1538 {
1539 bfd_set_error (bfd_error_bad_value);
1540 return false;
1541 }
1542 else
1543 {
1544 asection *osec;
1545
1546 osec = sec->output_section;
1547 indx = elf_section_data (osec)->dynindx;
1548 BFD_ASSERT (indx > 0);
1549 }
1550
1551 relocate = false;
1552 outrel.r_info = ELF64_R_INFO (indx, r_type);
1553 outrel.r_addend = relocation + rela->r_addend;
1554 }
1555
1556 }
1557
1558 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1559 (((Elf64_External_Rela *)
1560 sreloc->contents)
1561 + sreloc->reloc_count));
1562 ++sreloc->reloc_count;
1563
1564 /* If this reloc is against an external symbol, we do
1565 not want to fiddle with the addend. Otherwise, we
1566 need to include the symbol value so that it becomes
1567 an addend for the dynamic reloc. */
1568 if (! relocate)
1569 continue;
1570 }
1571
1572 break;
1573
1574 default:
1575 break;
1576 }
1577
1578 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1579 contents, rela->r_offset,
1580 relocation, rela->r_addend);
1581
1582 if (r != bfd_reloc_ok)
1583 {
1584 switch (r)
1585 {
1586 default:
1587 case bfd_reloc_outofrange:
1588 abort ();
1589 case bfd_reloc_overflow:
1590 {
1591 const char *name;
1592
1593 if (h != NULL)
1594 name = h->root.root.string;
1595 else
1596 {
1597 name = bfd_elf_string_from_elf_section (input_bfd,
1598 symtab_hdr->sh_link,
1599 sym->st_name);
1600 if (name == NULL)
1601 return false;
1602 if (*name == '\0')
1603 name = bfd_section_name (input_bfd, sec);
1604 }
1605 if (! ((*info->callbacks->reloc_overflow)
1606 (info, name, howto->name, (bfd_vma) 0,
1607 input_bfd, input_section, rela->r_offset)))
1608 return false;
1609 }
1610 break;
1611 }
1612 }
1613 }
1614
1615 return true;
1616 }
1617
1618 /* Finish up dynamic symbol handling. We set the contents of various
1619 dynamic sections here. */
1620
1621 static boolean
1622 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
1623 bfd *output_bfd;
1624 struct bfd_link_info *info;
1625 struct elf_link_hash_entry *h;
1626 Elf_Internal_Sym *sym;
1627 {
1628 bfd *dynobj;
1629
1630 dynobj = elf_hash_table (info)->dynobj;
1631
1632 if (h->plt.offset != (bfd_vma) -1)
1633 {
1634 asection *splt;
1635 asection *sgot;
1636 asection *srela;
1637 bfd_vma plt_index;
1638 bfd_vma got_offset;
1639 Elf_Internal_Rela rela;
1640
1641 /* This symbol has an entry in the procedure linkage table. Set
1642 it up. */
1643
1644 BFD_ASSERT (h->dynindx != -1);
1645
1646 splt = bfd_get_section_by_name (dynobj, ".plt");
1647 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1648 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1649 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1650
1651 /* Get the index in the procedure linkage table which
1652 corresponds to this symbol. This is the index of this symbol
1653 in all the symbols for which we are making plt entries. The
1654 first entry in the procedure linkage table is reserved. */
1655 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1656
1657 /* Get the offset into the .got table of the entry that
1658 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
1659 bytes. The first three are reserved for the dynamic linker. */
1660 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1661
1662 /* Fill in the entry in the procedure linkage table. */
1663 memcpy (splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
1664 PLT_ENTRY_SIZE);
1665
1666 /* Insert the relocation positions of the plt section. The magic
1667 numbers at the end of the statements are the positions of the
1668 relocations in the plt section. */
1669 /* Put offset for jmp *name@GOTPCREL(%rip), since the
1670 instruction uses 6 bytes, subtract this value. */
1671 bfd_put_32 (output_bfd,
1672 (sgot->output_section->vma
1673 + sgot->output_offset
1674 + got_offset
1675 - splt->output_section->vma
1676 - splt->output_offset
1677 - h->plt.offset
1678 - 6),
1679 splt->contents + h->plt.offset + 2);
1680 /* Put relocation index. */
1681 bfd_put_32 (output_bfd, plt_index,
1682 splt->contents + h->plt.offset + 7);
1683 /* Put offset for jmp .PLT0. */
1684 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1685 splt->contents + h->plt.offset + 12);
1686
1687 /* Fill in the entry in the global offset table, initially this
1688 points to the pushq instruction in the PLT which is at offset 6. */
1689 bfd_put_64 (output_bfd, (splt->output_section->vma + splt->output_offset
1690 + h->plt.offset + 6),
1691 sgot->contents + got_offset);
1692
1693 /* Fill in the entry in the .rela.plt section. */
1694 rela.r_offset = (sgot->output_section->vma
1695 + sgot->output_offset
1696 + got_offset);
1697 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
1698 rela.r_addend = 0;
1699 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1700 ((Elf64_External_Rela *) srela->contents
1701 + plt_index));
1702
1703 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1704 {
1705 /* Mark the symbol as undefined, rather than as defined in
1706 the .plt section. Leave the value alone. */
1707 sym->st_shndx = SHN_UNDEF;
1708 /* If the symbol is weak, we do need to clear the value.
1709 Otherwise, the PLT entry would provide a definition for
1710 the symbol even if the symbol wasn't defined anywhere,
1711 and so the symbol would never be NULL. */
1712 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
1713 == 0)
1714 sym->st_value = 0;
1715 }
1716 }
1717
1718 if (h->got.offset != (bfd_vma) -1)
1719 {
1720 asection *sgot;
1721 asection *srela;
1722 Elf_Internal_Rela rela;
1723
1724 /* This symbol has an entry in the global offset table. Set it
1725 up. */
1726
1727 sgot = bfd_get_section_by_name (dynobj, ".got");
1728 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1729 BFD_ASSERT (sgot != NULL && srela != NULL);
1730
1731 rela.r_offset = (sgot->output_section->vma
1732 + sgot->output_offset
1733 + (h->got.offset &~ 1));
1734
1735 /* If this is a static link, or it is a -Bsymbolic link and the
1736 symbol is defined locally or was forced to be local because
1737 of a version file, we just want to emit a RELATIVE reloc.
1738 The entry in the global offset table will already have been
1739 initialized in the relocate_section function. */
1740 if (! elf_hash_table (info)->dynamic_sections_created
1741 || (info->shared
1742 && (info->symbolic || h->dynindx == -1)
1743 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1744 {
1745 BFD_ASSERT((h->got.offset & 1) != 0);
1746 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1747 rela.r_addend = (h->root.u.def.value
1748 + h->root.u.def.section->output_section->vma
1749 + h->root.u.def.section->output_offset);
1750 }
1751 else
1752 {
1753 BFD_ASSERT((h->got.offset & 1) == 0);
1754 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1755 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
1756 rela.r_addend = 0;
1757 }
1758
1759 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1760 ((Elf64_External_Rela *) srela->contents
1761 + srela->reloc_count));
1762 ++srela->reloc_count;
1763 }
1764
1765 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1766 {
1767 asection *s;
1768 Elf_Internal_Rela rela;
1769
1770 /* This symbol needs a copy reloc. Set it up. */
1771
1772 BFD_ASSERT (h->dynindx != -1
1773 && (h->root.type == bfd_link_hash_defined
1774 || h->root.type == bfd_link_hash_defweak));
1775
1776 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1777 ".rela.bss");
1778 BFD_ASSERT (s != NULL);
1779
1780 rela.r_offset = (h->root.u.def.value
1781 + h->root.u.def.section->output_section->vma
1782 + h->root.u.def.section->output_offset);
1783 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
1784 rela.r_addend = 0;
1785 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1786 ((Elf64_External_Rela *) s->contents
1787 + s->reloc_count));
1788 ++s->reloc_count;
1789 }
1790
1791 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1792 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1793 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1794 sym->st_shndx = SHN_ABS;
1795
1796 return true;
1797 }
1798
1799 /* Finish up the dynamic sections. */
1800
1801 static boolean
1802 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
1803 bfd *output_bfd;
1804 struct bfd_link_info *info;
1805 {
1806 bfd *dynobj;
1807 asection *sdyn;
1808 asection *sgot;
1809
1810 dynobj = elf_hash_table (info)->dynobj;
1811
1812 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1813 BFD_ASSERT (sgot != NULL);
1814 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1815
1816 if (elf_hash_table (info)->dynamic_sections_created)
1817 {
1818 asection *splt;
1819 Elf64_External_Dyn *dyncon, *dynconend;
1820
1821 BFD_ASSERT (sdyn != NULL);
1822
1823 dyncon = (Elf64_External_Dyn *) sdyn->contents;
1824 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1825 for (; dyncon < dynconend; dyncon++)
1826 {
1827 Elf_Internal_Dyn dyn;
1828 const char *name;
1829 asection *s;
1830
1831 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
1832
1833 switch (dyn.d_tag)
1834 {
1835 default:
1836 continue;
1837
1838 case DT_PLTGOT:
1839 name = ".got";
1840 goto get_vma;
1841
1842 case DT_JMPREL:
1843 name = ".rela.plt";
1844
1845 get_vma:
1846 s = bfd_get_section_by_name (output_bfd, name);
1847 BFD_ASSERT (s != NULL);
1848 dyn.d_un.d_ptr = s->vma;
1849 break;
1850
1851 case DT_RELASZ:
1852 /* FIXME: This comment and code is from elf64-alpha.c: */
1853 /* My interpretation of the TIS v1.1 ELF document indicates
1854 that RELASZ should not include JMPREL. This is not what
1855 the rest of the BFD does. It is, however, what the
1856 glibc ld.so wants. Do this fixup here until we found
1857 out who is right. */
1858 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1859 if (s)
1860 {
1861 /* Subtract JMPREL size from RELASZ. */
1862 dyn.d_un.d_val -=
1863 (s->_cooked_size ? s->_cooked_size : s->_raw_size);
1864 }
1865 break;
1866
1867 case DT_PLTRELSZ:
1868 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1869 BFD_ASSERT (s != NULL);
1870 dyn.d_un.d_val =
1871 (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size);
1872 break;
1873 }
1874 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
1875 }
1876
1877 /* Initialize the contents of the .plt section. */
1878 splt = bfd_get_section_by_name (dynobj, ".plt");
1879 BFD_ASSERT (splt != NULL);
1880 if (splt->_raw_size > 0)
1881 {
1882 /* Fill in the first entry in the procedure linkage table. */
1883 memcpy (splt->contents, elf64_x86_64_plt0_entry, PLT_ENTRY_SIZE);
1884 /* Add offset for pushq GOT+8(%rip), since the instruction
1885 uses 6 bytes subtract this value. */
1886 bfd_put_32 (output_bfd,
1887 (sgot->output_section->vma
1888 + sgot->output_offset
1889 + 8
1890 - splt->output_section->vma
1891 - splt->output_offset
1892 - 6),
1893 splt->contents + 2);
1894 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
1895 the end of the instruction. */
1896 bfd_put_32 (output_bfd,
1897 (sgot->output_section->vma
1898 + sgot->output_offset
1899 + 16
1900 - splt->output_section->vma
1901 - splt->output_offset
1902 - 12),
1903 splt->contents + 8);
1904
1905 }
1906
1907 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
1908 PLT_ENTRY_SIZE;
1909 }
1910
1911 /* Set the first entry in the global offset table to the address of
1912 the dynamic section. */
1913 if (sgot->_raw_size > 0)
1914 {
1915 if (sdyn == NULL)
1916 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
1917 else
1918 bfd_put_64 (output_bfd,
1919 sdyn->output_section->vma + sdyn->output_offset,
1920 sgot->contents);
1921 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
1922 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE);
1923 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE*2);
1924 }
1925
1926 elf_section_data (sgot->output_section)->this_hdr.sh_entsize =
1927 GOT_ENTRY_SIZE;
1928
1929 return true;
1930 }
1931
1932 static enum elf_reloc_type_class
1933 elf64_x86_64_reloc_type_class (type)
1934 int type;
1935 {
1936 switch (type)
1937 {
1938 case R_X86_64_RELATIVE:
1939 return reloc_class_relative;
1940 case R_X86_64_JUMP_SLOT:
1941 return reloc_class_plt;
1942 case R_X86_64_COPY:
1943 return reloc_class_copy;
1944 default:
1945 return reloc_class_normal;
1946 }
1947 }
1948
1949 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
1950 #define TARGET_LITTLE_NAME "elf64-x86-64"
1951 #define ELF_ARCH bfd_arch_i386
1952 #define ELF_MACHINE_CODE EM_X86_64
1953 #define ELF_MAXPAGESIZE 0x100000
1954
1955 #define elf_backend_can_gc_sections 1
1956 #define elf_backend_want_got_plt 1
1957 #define elf_backend_plt_readonly 1
1958 #define elf_backend_want_plt_sym 0
1959 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
1960 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
1961
1962 #define elf_info_to_howto elf64_x86_64_info_to_howto
1963
1964 #define bfd_elf64_bfd_final_link _bfd_elf64_gc_common_final_link
1965 #define bfd_elf64_bfd_link_hash_table_create \
1966 elf64_x86_64_link_hash_table_create
1967 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
1968
1969 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
1970 #define elf_backend_check_relocs elf64_x86_64_check_relocs
1971 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
1972 #define elf_backend_finish_dynamic_sections \
1973 elf64_x86_64_finish_dynamic_sections
1974 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
1975 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
1976 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
1977 #define elf_backend_relocate_section elf64_x86_64_relocate_section
1978 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
1979 #define elf_backend_object_p elf64_x86_64_elf_object_p
1980 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
1981
1982 #include "elf64-target.h"
This page took 0.074594 seconds and 4 git commands to generate.