Replace IRELATIVE relocations with RELATIVE in .rel.dyn.
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "bfd_stdint.h"
30 #include "objalloc.h"
31 #include "hashtab.h"
32 #include "dwarf2.h"
33 #include "libiberty.h"
34
35 #include "elf/x86-64.h"
36
37 #ifdef CORE_HEADER
38 #include <stdarg.h>
39 #include CORE_HEADER
40 #endif
41
42 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
43 #define MINUS_ONE (~ (bfd_vma) 0)
44
45 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
46 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
47 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
48 since they are the same. */
49
50 #define ABI_64_P(abfd) \
51 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
52
53 /* The relocation "howto" table. Order of fields:
54 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
55 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
56 static reloc_howto_type x86_64_elf_howto_table[] =
57 {
58 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
59 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
60 FALSE),
61 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
63 FALSE),
64 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
66 TRUE),
67 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
72 TRUE),
73 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
75 FALSE),
76 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
78 MINUS_ONE, FALSE),
79 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
81 MINUS_ONE, FALSE),
82 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
86 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
87 0xffffffff, TRUE),
88 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
89 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
90 FALSE),
91 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
93 FALSE),
94 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
96 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
98 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
100 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
102 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
104 MINUS_ONE, FALSE),
105 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
107 MINUS_ONE, FALSE),
108 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
110 MINUS_ONE, FALSE),
111 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
112 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
113 0xffffffff, TRUE),
114 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
116 0xffffffff, TRUE),
117 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
119 0xffffffff, FALSE),
120 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
122 0xffffffff, TRUE),
123 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
125 0xffffffff, FALSE),
126 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
128 TRUE),
129 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
130 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
131 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
132 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
133 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
134 FALSE, 0xffffffff, 0xffffffff, TRUE),
135 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
136 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
137 FALSE),
138 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
139 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
140 MINUS_ONE, TRUE),
141 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
142 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
143 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
144 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
145 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
146 MINUS_ONE, FALSE),
147 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
148 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
149 MINUS_ONE, FALSE),
150 EMPTY_HOWTO (32),
151 EMPTY_HOWTO (33),
152 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
153 complain_overflow_bitfield, bfd_elf_generic_reloc,
154 "R_X86_64_GOTPC32_TLSDESC",
155 FALSE, 0xffffffff, 0xffffffff, TRUE),
156 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
157 complain_overflow_dont, bfd_elf_generic_reloc,
158 "R_X86_64_TLSDESC_CALL",
159 FALSE, 0, 0, FALSE),
160 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
161 complain_overflow_bitfield, bfd_elf_generic_reloc,
162 "R_X86_64_TLSDESC",
163 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
164 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
165 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
166 MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170
171 /* We have a gap in the reloc numbers here.
172 R_X86_64_standard counts the number up to this point, and
173 R_X86_64_vt_offset is the value to subtract from a reloc type of
174 R_X86_64_GNU_VT* to form an index into this table. */
175 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
176 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
177
178 /* GNU extension to record C++ vtable hierarchy. */
179 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
180 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
181
182 /* GNU extension to record C++ vtable member usage. */
183 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
184 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
185 FALSE),
186
187 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
188 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
190 FALSE)
191 };
192
193 #define IS_X86_64_PCREL_TYPE(TYPE) \
194 ( ((TYPE) == R_X86_64_PC8) \
195 || ((TYPE) == R_X86_64_PC16) \
196 || ((TYPE) == R_X86_64_PC32) \
197 || ((TYPE) == R_X86_64_PC64))
198
199 /* Map BFD relocs to the x86_64 elf relocs. */
200 struct elf_reloc_map
201 {
202 bfd_reloc_code_real_type bfd_reloc_val;
203 unsigned char elf_reloc_val;
204 };
205
206 static const struct elf_reloc_map x86_64_reloc_map[] =
207 {
208 { BFD_RELOC_NONE, R_X86_64_NONE, },
209 { BFD_RELOC_64, R_X86_64_64, },
210 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
211 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
212 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
213 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
214 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
215 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
216 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
217 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
218 { BFD_RELOC_32, R_X86_64_32, },
219 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
220 { BFD_RELOC_16, R_X86_64_16, },
221 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
222 { BFD_RELOC_8, R_X86_64_8, },
223 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
224 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
225 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
226 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
227 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
228 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
229 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
230 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
231 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
232 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
233 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
234 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
235 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
236 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
237 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
238 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
239 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
240 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
241 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
242 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
243 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
244 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
245 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
246 };
247
248 static reloc_howto_type *
249 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
250 {
251 unsigned i;
252
253 if (r_type == (unsigned int) R_X86_64_32)
254 {
255 if (ABI_64_P (abfd))
256 i = r_type;
257 else
258 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
259 }
260 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
261 || r_type >= (unsigned int) R_X86_64_max)
262 {
263 if (r_type >= (unsigned int) R_X86_64_standard)
264 {
265 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
266 abfd, (int) r_type);
267 r_type = R_X86_64_NONE;
268 }
269 i = r_type;
270 }
271 else
272 i = r_type - (unsigned int) R_X86_64_vt_offset;
273 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
274 return &x86_64_elf_howto_table[i];
275 }
276
277 /* Given a BFD reloc type, return a HOWTO structure. */
278 static reloc_howto_type *
279 elf_x86_64_reloc_type_lookup (bfd *abfd,
280 bfd_reloc_code_real_type code)
281 {
282 unsigned int i;
283
284 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
285 i++)
286 {
287 if (x86_64_reloc_map[i].bfd_reloc_val == code)
288 return elf_x86_64_rtype_to_howto (abfd,
289 x86_64_reloc_map[i].elf_reloc_val);
290 }
291 return 0;
292 }
293
294 static reloc_howto_type *
295 elf_x86_64_reloc_name_lookup (bfd *abfd,
296 const char *r_name)
297 {
298 unsigned int i;
299
300 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
301 {
302 /* Get x32 R_X86_64_32. */
303 reloc_howto_type *reloc
304 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
305 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
306 return reloc;
307 }
308
309 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
310 if (x86_64_elf_howto_table[i].name != NULL
311 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
312 return &x86_64_elf_howto_table[i];
313
314 return NULL;
315 }
316
317 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
318
319 static void
320 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
321 Elf_Internal_Rela *dst)
322 {
323 unsigned r_type;
324
325 r_type = ELF32_R_TYPE (dst->r_info);
326 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
327 BFD_ASSERT (r_type == cache_ptr->howto->type);
328 }
329 \f
330 /* Support for core dump NOTE sections. */
331 static bfd_boolean
332 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
333 {
334 int offset;
335 size_t size;
336
337 switch (note->descsz)
338 {
339 default:
340 return FALSE;
341
342 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
343 /* pr_cursig */
344 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
345
346 /* pr_pid */
347 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
348
349 /* pr_reg */
350 offset = 72;
351 size = 216;
352
353 break;
354
355 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
356 /* pr_cursig */
357 elf_tdata (abfd)->core_signal
358 = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core_lwpid
362 = bfd_get_32 (abfd, note->descdata + 32);
363
364 /* pr_reg */
365 offset = 112;
366 size = 216;
367
368 break;
369 }
370
371 /* Make a ".reg/999" section. */
372 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
373 size, note->descpos + offset);
374 }
375
376 static bfd_boolean
377 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
378 {
379 switch (note->descsz)
380 {
381 default:
382 return FALSE;
383
384 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
385 elf_tdata (abfd)->core_pid
386 = bfd_get_32 (abfd, note->descdata + 12);
387 elf_tdata (abfd)->core_program
388 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
389 elf_tdata (abfd)->core_command
390 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
391 break;
392
393 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
394 elf_tdata (abfd)->core_pid
395 = bfd_get_32 (abfd, note->descdata + 24);
396 elf_tdata (abfd)->core_program
397 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
398 elf_tdata (abfd)->core_command
399 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
400 }
401
402 /* Note that for some reason, a spurious space is tacked
403 onto the end of the args in some (at least one anyway)
404 implementations, so strip it off if it exists. */
405
406 {
407 char *command = elf_tdata (abfd)->core_command;
408 int n = strlen (command);
409
410 if (0 < n && command[n - 1] == ' ')
411 command[n - 1] = '\0';
412 }
413
414 return TRUE;
415 }
416
417 #ifdef CORE_HEADER
418 static char *
419 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
420 int note_type, ...)
421 {
422 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
423 const void *p;
424 int size;
425 va_list ap;
426 const char *fname, *psargs;
427 long pid;
428 int cursig;
429 const void *gregs;
430
431 switch (note_type)
432 {
433 default:
434 return NULL;
435
436 case NT_PRPSINFO:
437 va_start (ap, note_type);
438 fname = va_arg (ap, const char *);
439 psargs = va_arg (ap, const char *);
440 va_end (ap);
441
442 if (bed->s->elfclass == ELFCLASS32)
443 {
444 prpsinfo32_t data;
445 memset (&data, 0, sizeof (data));
446 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
447 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
448 p = (const void *) &data;
449 size = sizeof (data);
450 }
451 else
452 {
453 prpsinfo_t data;
454 memset (&data, 0, sizeof (data));
455 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
456 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
457 p = (const void *) &data;
458 size = sizeof (data);
459 }
460 break;
461
462 case NT_PRSTATUS:
463 va_start (ap, note_type);
464 pid = va_arg (ap, long);
465 cursig = va_arg (ap, int);
466 gregs = va_arg (ap, const void *);
467 va_end (ap);
468
469 if (bed->s->elfclass == ELFCLASS32)
470 {
471 if (bed->elf_machine_code == EM_X86_64)
472 {
473 prstatusx32_t prstat;
474 memset (&prstat, 0, sizeof (prstat));
475 prstat.pr_pid = pid;
476 prstat.pr_cursig = cursig;
477 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
478 p = (const void *) &prstat;
479 size = sizeof (prstat);
480 }
481 else
482 {
483 prstatus32_t prstat;
484 memset (&prstat, 0, sizeof (prstat));
485 prstat.pr_pid = pid;
486 prstat.pr_cursig = cursig;
487 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
488 p = (const void *) &prstat;
489 size = sizeof (prstat);
490 }
491 }
492 else
493 {
494 prstatus_t prstat;
495 memset (&prstat, 0, sizeof (prstat));
496 prstat.pr_pid = pid;
497 prstat.pr_cursig = cursig;
498 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
499 p = (const void *) &prstat;
500 size = sizeof (prstat);
501 }
502 break;
503 }
504
505 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, p,
506 size);
507 }
508 #endif
509 \f
510 /* Functions for the x86-64 ELF linker. */
511
512 /* The name of the dynamic interpreter. This is put in the .interp
513 section. */
514
515 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
516 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1"
517
518 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
519 copying dynamic variables from a shared lib into an app's dynbss
520 section, and instead use a dynamic relocation to point into the
521 shared lib. */
522 #define ELIMINATE_COPY_RELOCS 1
523
524 /* The size in bytes of an entry in the global offset table. */
525
526 #define GOT_ENTRY_SIZE 8
527
528 /* The size in bytes of an entry in the procedure linkage table. */
529
530 #define PLT_ENTRY_SIZE 16
531
532 /* The first entry in a procedure linkage table looks like this. See the
533 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
534
535 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
536 {
537 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
538 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
539 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
540 };
541
542 /* Subsequent entries in a procedure linkage table look like this. */
543
544 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
547 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
548 0x68, /* pushq immediate */
549 0, 0, 0, 0, /* replaced with index into relocation table. */
550 0xe9, /* jmp relative */
551 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
552 };
553
554 /* .eh_frame covering the .plt section. */
555
556 static const bfd_byte elf_x86_64_eh_frame_plt[] =
557 {
558 #define PLT_CIE_LENGTH 20
559 #define PLT_FDE_LENGTH 36
560 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
561 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
562 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
563 0, 0, 0, 0, /* CIE ID */
564 1, /* CIE version */
565 'z', 'R', 0, /* Augmentation string */
566 1, /* Code alignment factor */
567 0x78, /* Data alignment factor */
568 16, /* Return address column */
569 1, /* Augmentation size */
570 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
571 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
572 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
573 DW_CFA_nop, DW_CFA_nop,
574
575 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
576 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
577 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
578 0, 0, 0, 0, /* .plt size goes here */
579 0, /* Augmentation size */
580 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
581 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
582 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
583 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
584 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
585 11, /* Block length */
586 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
587 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
588 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
589 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
590 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
591 };
592
593 /* x86-64 ELF linker hash entry. */
594
595 struct elf_x86_64_link_hash_entry
596 {
597 struct elf_link_hash_entry elf;
598
599 /* Track dynamic relocs copied for this symbol. */
600 struct elf_dyn_relocs *dyn_relocs;
601
602 #define GOT_UNKNOWN 0
603 #define GOT_NORMAL 1
604 #define GOT_TLS_GD 2
605 #define GOT_TLS_IE 3
606 #define GOT_TLS_GDESC 4
607 #define GOT_TLS_GD_BOTH_P(type) \
608 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
609 #define GOT_TLS_GD_P(type) \
610 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
611 #define GOT_TLS_GDESC_P(type) \
612 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
613 #define GOT_TLS_GD_ANY_P(type) \
614 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
615 unsigned char tls_type;
616
617 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
618 starting at the end of the jump table. */
619 bfd_vma tlsdesc_got;
620 };
621
622 #define elf_x86_64_hash_entry(ent) \
623 ((struct elf_x86_64_link_hash_entry *)(ent))
624
625 struct elf_x86_64_obj_tdata
626 {
627 struct elf_obj_tdata root;
628
629 /* tls_type for each local got entry. */
630 char *local_got_tls_type;
631
632 /* GOTPLT entries for TLS descriptors. */
633 bfd_vma *local_tlsdesc_gotent;
634 };
635
636 #define elf_x86_64_tdata(abfd) \
637 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
638
639 #define elf_x86_64_local_got_tls_type(abfd) \
640 (elf_x86_64_tdata (abfd)->local_got_tls_type)
641
642 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
643 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
644
645 #define is_x86_64_elf(bfd) \
646 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
647 && elf_tdata (bfd) != NULL \
648 && elf_object_id (bfd) == X86_64_ELF_DATA)
649
650 static bfd_boolean
651 elf_x86_64_mkobject (bfd *abfd)
652 {
653 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
654 X86_64_ELF_DATA);
655 }
656
657 /* x86-64 ELF linker hash table. */
658
659 struct elf_x86_64_link_hash_table
660 {
661 struct elf_link_hash_table elf;
662
663 /* Short-cuts to get to dynamic linker sections. */
664 asection *sdynbss;
665 asection *srelbss;
666 asection *plt_eh_frame;
667
668 union
669 {
670 bfd_signed_vma refcount;
671 bfd_vma offset;
672 } tls_ld_got;
673
674 /* The amount of space used by the jump slots in the GOT. */
675 bfd_vma sgotplt_jump_table_size;
676
677 /* Small local sym cache. */
678 struct sym_cache sym_cache;
679
680 bfd_vma (*r_info) (bfd_vma, bfd_vma);
681 bfd_vma (*r_sym) (bfd_vma);
682 unsigned int pointer_r_type;
683 const char *dynamic_interpreter;
684 int dynamic_interpreter_size;
685
686 /* _TLS_MODULE_BASE_ symbol. */
687 struct bfd_link_hash_entry *tls_module_base;
688
689 /* Used by local STT_GNU_IFUNC symbols. */
690 htab_t loc_hash_table;
691 void * loc_hash_memory;
692
693 /* The offset into splt of the PLT entry for the TLS descriptor
694 resolver. Special values are 0, if not necessary (or not found
695 to be necessary yet), and -1 if needed but not determined
696 yet. */
697 bfd_vma tlsdesc_plt;
698 /* The offset into sgot of the GOT entry used by the PLT entry
699 above. */
700 bfd_vma tlsdesc_got;
701
702 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
703 bfd_vma next_jump_slot_index;
704 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
705 bfd_vma next_irelative_index;
706 };
707
708 /* Get the x86-64 ELF linker hash table from a link_info structure. */
709
710 #define elf_x86_64_hash_table(p) \
711 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
712 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
713
714 #define elf_x86_64_compute_jump_table_size(htab) \
715 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
716
717 /* Create an entry in an x86-64 ELF linker hash table. */
718
719 static struct bfd_hash_entry *
720 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
721 struct bfd_hash_table *table,
722 const char *string)
723 {
724 /* Allocate the structure if it has not already been allocated by a
725 subclass. */
726 if (entry == NULL)
727 {
728 entry = (struct bfd_hash_entry *)
729 bfd_hash_allocate (table,
730 sizeof (struct elf_x86_64_link_hash_entry));
731 if (entry == NULL)
732 return entry;
733 }
734
735 /* Call the allocation method of the superclass. */
736 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
737 if (entry != NULL)
738 {
739 struct elf_x86_64_link_hash_entry *eh;
740
741 eh = (struct elf_x86_64_link_hash_entry *) entry;
742 eh->dyn_relocs = NULL;
743 eh->tls_type = GOT_UNKNOWN;
744 eh->tlsdesc_got = (bfd_vma) -1;
745 }
746
747 return entry;
748 }
749
750 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
751 for local symbol so that we can handle local STT_GNU_IFUNC symbols
752 as global symbol. We reuse indx and dynstr_index for local symbol
753 hash since they aren't used by global symbols in this backend. */
754
755 static hashval_t
756 elf_x86_64_local_htab_hash (const void *ptr)
757 {
758 struct elf_link_hash_entry *h
759 = (struct elf_link_hash_entry *) ptr;
760 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
761 }
762
763 /* Compare local hash entries. */
764
765 static int
766 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
767 {
768 struct elf_link_hash_entry *h1
769 = (struct elf_link_hash_entry *) ptr1;
770 struct elf_link_hash_entry *h2
771 = (struct elf_link_hash_entry *) ptr2;
772
773 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
774 }
775
776 /* Find and/or create a hash entry for local symbol. */
777
778 static struct elf_link_hash_entry *
779 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
780 bfd *abfd, const Elf_Internal_Rela *rel,
781 bfd_boolean create)
782 {
783 struct elf_x86_64_link_hash_entry e, *ret;
784 asection *sec = abfd->sections;
785 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
786 htab->r_sym (rel->r_info));
787 void **slot;
788
789 e.elf.indx = sec->id;
790 e.elf.dynstr_index = htab->r_sym (rel->r_info);
791 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
792 create ? INSERT : NO_INSERT);
793
794 if (!slot)
795 return NULL;
796
797 if (*slot)
798 {
799 ret = (struct elf_x86_64_link_hash_entry *) *slot;
800 return &ret->elf;
801 }
802
803 ret = (struct elf_x86_64_link_hash_entry *)
804 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
805 sizeof (struct elf_x86_64_link_hash_entry));
806 if (ret)
807 {
808 memset (ret, 0, sizeof (*ret));
809 ret->elf.indx = sec->id;
810 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
811 ret->elf.dynindx = -1;
812 *slot = ret;
813 }
814 return &ret->elf;
815 }
816
817 /* Create an X86-64 ELF linker hash table. */
818
819 static struct bfd_link_hash_table *
820 elf_x86_64_link_hash_table_create (bfd *abfd)
821 {
822 struct elf_x86_64_link_hash_table *ret;
823 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
824
825 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
826 if (ret == NULL)
827 return NULL;
828
829 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
830 elf_x86_64_link_hash_newfunc,
831 sizeof (struct elf_x86_64_link_hash_entry),
832 X86_64_ELF_DATA))
833 {
834 free (ret);
835 return NULL;
836 }
837
838 ret->sdynbss = NULL;
839 ret->srelbss = NULL;
840 ret->plt_eh_frame = NULL;
841 ret->sym_cache.abfd = NULL;
842 ret->tlsdesc_plt = 0;
843 ret->tlsdesc_got = 0;
844 ret->tls_ld_got.refcount = 0;
845 ret->sgotplt_jump_table_size = 0;
846 ret->tls_module_base = NULL;
847 ret->next_jump_slot_index = 0;
848 ret->next_irelative_index = 0;
849
850 if (ABI_64_P (abfd))
851 {
852 ret->r_info = elf64_r_info;
853 ret->r_sym = elf64_r_sym;
854 ret->pointer_r_type = R_X86_64_64;
855 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
856 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
857 }
858 else
859 {
860 ret->r_info = elf32_r_info;
861 ret->r_sym = elf32_r_sym;
862 ret->pointer_r_type = R_X86_64_32;
863 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
864 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
865 }
866
867 ret->loc_hash_table = htab_try_create (1024,
868 elf_x86_64_local_htab_hash,
869 elf_x86_64_local_htab_eq,
870 NULL);
871 ret->loc_hash_memory = objalloc_create ();
872 if (!ret->loc_hash_table || !ret->loc_hash_memory)
873 {
874 free (ret);
875 return NULL;
876 }
877
878 return &ret->elf.root;
879 }
880
881 /* Destroy an X86-64 ELF linker hash table. */
882
883 static void
884 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
885 {
886 struct elf_x86_64_link_hash_table *htab
887 = (struct elf_x86_64_link_hash_table *) hash;
888
889 if (htab->loc_hash_table)
890 htab_delete (htab->loc_hash_table);
891 if (htab->loc_hash_memory)
892 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
893 _bfd_generic_link_hash_table_free (hash);
894 }
895
896 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
897 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
898 hash table. */
899
900 static bfd_boolean
901 elf_x86_64_create_dynamic_sections (bfd *dynobj,
902 struct bfd_link_info *info)
903 {
904 struct elf_x86_64_link_hash_table *htab;
905
906 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
907 return FALSE;
908
909 htab = elf_x86_64_hash_table (info);
910 if (htab == NULL)
911 return FALSE;
912
913 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
914 if (!info->shared)
915 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
916
917 if (!htab->sdynbss
918 || (!info->shared && !htab->srelbss))
919 abort ();
920
921 if (!info->no_ld_generated_unwind_info
922 && bfd_get_section_by_name (dynobj, ".eh_frame") == NULL
923 && htab->elf.splt != NULL)
924 {
925 flagword flags = get_elf_backend_data (dynobj)->dynamic_sec_flags;
926 htab->plt_eh_frame
927 = bfd_make_section_with_flags (dynobj, ".eh_frame",
928 flags | SEC_READONLY);
929 if (htab->plt_eh_frame == NULL
930 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
931 return FALSE;
932
933 htab->plt_eh_frame->size = sizeof (elf_x86_64_eh_frame_plt);
934 htab->plt_eh_frame->contents
935 = bfd_alloc (dynobj, htab->plt_eh_frame->size);
936 memcpy (htab->plt_eh_frame->contents, elf_x86_64_eh_frame_plt,
937 sizeof (elf_x86_64_eh_frame_plt));
938 }
939 return TRUE;
940 }
941
942 /* Copy the extra info we tack onto an elf_link_hash_entry. */
943
944 static void
945 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
946 struct elf_link_hash_entry *dir,
947 struct elf_link_hash_entry *ind)
948 {
949 struct elf_x86_64_link_hash_entry *edir, *eind;
950
951 edir = (struct elf_x86_64_link_hash_entry *) dir;
952 eind = (struct elf_x86_64_link_hash_entry *) ind;
953
954 if (eind->dyn_relocs != NULL)
955 {
956 if (edir->dyn_relocs != NULL)
957 {
958 struct elf_dyn_relocs **pp;
959 struct elf_dyn_relocs *p;
960
961 /* Add reloc counts against the indirect sym to the direct sym
962 list. Merge any entries against the same section. */
963 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
964 {
965 struct elf_dyn_relocs *q;
966
967 for (q = edir->dyn_relocs; q != NULL; q = q->next)
968 if (q->sec == p->sec)
969 {
970 q->pc_count += p->pc_count;
971 q->count += p->count;
972 *pp = p->next;
973 break;
974 }
975 if (q == NULL)
976 pp = &p->next;
977 }
978 *pp = edir->dyn_relocs;
979 }
980
981 edir->dyn_relocs = eind->dyn_relocs;
982 eind->dyn_relocs = NULL;
983 }
984
985 if (ind->root.type == bfd_link_hash_indirect
986 && dir->got.refcount <= 0)
987 {
988 edir->tls_type = eind->tls_type;
989 eind->tls_type = GOT_UNKNOWN;
990 }
991
992 if (ELIMINATE_COPY_RELOCS
993 && ind->root.type != bfd_link_hash_indirect
994 && dir->dynamic_adjusted)
995 {
996 /* If called to transfer flags for a weakdef during processing
997 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
998 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
999 dir->ref_dynamic |= ind->ref_dynamic;
1000 dir->ref_regular |= ind->ref_regular;
1001 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1002 dir->needs_plt |= ind->needs_plt;
1003 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1004 }
1005 else
1006 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1007 }
1008
1009 static bfd_boolean
1010 elf64_x86_64_elf_object_p (bfd *abfd)
1011 {
1012 /* Set the right machine number for an x86-64 elf64 file. */
1013 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1014 return TRUE;
1015 }
1016
1017 /* Return TRUE if the TLS access code sequence support transition
1018 from R_TYPE. */
1019
1020 static bfd_boolean
1021 elf_x86_64_check_tls_transition (bfd *abfd,
1022 struct bfd_link_info *info,
1023 asection *sec,
1024 bfd_byte *contents,
1025 Elf_Internal_Shdr *symtab_hdr,
1026 struct elf_link_hash_entry **sym_hashes,
1027 unsigned int r_type,
1028 const Elf_Internal_Rela *rel,
1029 const Elf_Internal_Rela *relend)
1030 {
1031 unsigned int val;
1032 unsigned long r_symndx;
1033 struct elf_link_hash_entry *h;
1034 bfd_vma offset;
1035 struct elf_x86_64_link_hash_table *htab;
1036
1037 /* Get the section contents. */
1038 if (contents == NULL)
1039 {
1040 if (elf_section_data (sec)->this_hdr.contents != NULL)
1041 contents = elf_section_data (sec)->this_hdr.contents;
1042 else
1043 {
1044 /* FIXME: How to better handle error condition? */
1045 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1046 return FALSE;
1047
1048 /* Cache the section contents for elf_link_input_bfd. */
1049 elf_section_data (sec)->this_hdr.contents = contents;
1050 }
1051 }
1052
1053 htab = elf_x86_64_hash_table (info);
1054 offset = rel->r_offset;
1055 switch (r_type)
1056 {
1057 case R_X86_64_TLSGD:
1058 case R_X86_64_TLSLD:
1059 if ((rel + 1) >= relend)
1060 return FALSE;
1061
1062 if (r_type == R_X86_64_TLSGD)
1063 {
1064 /* Check transition from GD access model. For 64bit, only
1065 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1066 .word 0x6666; rex64; call __tls_get_addr
1067 can transit to different access model. For 32bit, only
1068 leaq foo@tlsgd(%rip), %rdi
1069 .word 0x6666; rex64; call __tls_get_addr
1070 can transit to different access model. */
1071
1072 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1073 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1074
1075 if ((offset + 12) > sec->size
1076 || memcmp (contents + offset + 4, call, 4) != 0)
1077 return FALSE;
1078
1079 if (ABI_64_P (abfd))
1080 {
1081 if (offset < 4
1082 || memcmp (contents + offset - 4, leaq, 4) != 0)
1083 return FALSE;
1084 }
1085 else
1086 {
1087 if (offset < 3
1088 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1089 return FALSE;
1090 }
1091 }
1092 else
1093 {
1094 /* Check transition from LD access model. Only
1095 leaq foo@tlsld(%rip), %rdi;
1096 call __tls_get_addr
1097 can transit to different access model. */
1098
1099 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1100
1101 if (offset < 3 || (offset + 9) > sec->size)
1102 return FALSE;
1103
1104 if (memcmp (contents + offset - 3, lea, 3) != 0
1105 || 0xe8 != *(contents + offset + 4))
1106 return FALSE;
1107 }
1108
1109 r_symndx = htab->r_sym (rel[1].r_info);
1110 if (r_symndx < symtab_hdr->sh_info)
1111 return FALSE;
1112
1113 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1114 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1115 may be versioned. */
1116 return (h != NULL
1117 && h->root.root.string != NULL
1118 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1119 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1120 && (strncmp (h->root.root.string,
1121 "__tls_get_addr", 14) == 0));
1122
1123 case R_X86_64_GOTTPOFF:
1124 /* Check transition from IE access model:
1125 mov foo@gottpoff(%rip), %reg
1126 add foo@gottpoff(%rip), %reg
1127 */
1128
1129 /* Check REX prefix first. */
1130 if (offset >= 3 && (offset + 4) <= sec->size)
1131 {
1132 val = bfd_get_8 (abfd, contents + offset - 3);
1133 if (val != 0x48 && val != 0x4c)
1134 {
1135 /* X32 may have 0x44 REX prefix or no REX prefix. */
1136 if (ABI_64_P (abfd))
1137 return FALSE;
1138 }
1139 }
1140 else
1141 {
1142 /* X32 may not have any REX prefix. */
1143 if (ABI_64_P (abfd))
1144 return FALSE;
1145 if (offset < 2 || (offset + 3) > sec->size)
1146 return FALSE;
1147 }
1148
1149 val = bfd_get_8 (abfd, contents + offset - 2);
1150 if (val != 0x8b && val != 0x03)
1151 return FALSE;
1152
1153 val = bfd_get_8 (abfd, contents + offset - 1);
1154 return (val & 0xc7) == 5;
1155
1156 case R_X86_64_GOTPC32_TLSDESC:
1157 /* Check transition from GDesc access model:
1158 leaq x@tlsdesc(%rip), %rax
1159
1160 Make sure it's a leaq adding rip to a 32-bit offset
1161 into any register, although it's probably almost always
1162 going to be rax. */
1163
1164 if (offset < 3 || (offset + 4) > sec->size)
1165 return FALSE;
1166
1167 val = bfd_get_8 (abfd, contents + offset - 3);
1168 if ((val & 0xfb) != 0x48)
1169 return FALSE;
1170
1171 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1172 return FALSE;
1173
1174 val = bfd_get_8 (abfd, contents + offset - 1);
1175 return (val & 0xc7) == 0x05;
1176
1177 case R_X86_64_TLSDESC_CALL:
1178 /* Check transition from GDesc access model:
1179 call *x@tlsdesc(%rax)
1180 */
1181 if (offset + 2 <= sec->size)
1182 {
1183 /* Make sure that it's a call *x@tlsdesc(%rax). */
1184 static const unsigned char call[] = { 0xff, 0x10 };
1185 return memcmp (contents + offset, call, 2) == 0;
1186 }
1187
1188 return FALSE;
1189
1190 default:
1191 abort ();
1192 }
1193 }
1194
1195 /* Return TRUE if the TLS access transition is OK or no transition
1196 will be performed. Update R_TYPE if there is a transition. */
1197
1198 static bfd_boolean
1199 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1200 asection *sec, bfd_byte *contents,
1201 Elf_Internal_Shdr *symtab_hdr,
1202 struct elf_link_hash_entry **sym_hashes,
1203 unsigned int *r_type, int tls_type,
1204 const Elf_Internal_Rela *rel,
1205 const Elf_Internal_Rela *relend,
1206 struct elf_link_hash_entry *h,
1207 unsigned long r_symndx)
1208 {
1209 unsigned int from_type = *r_type;
1210 unsigned int to_type = from_type;
1211 bfd_boolean check = TRUE;
1212
1213 /* Skip TLS transition for functions. */
1214 if (h != NULL
1215 && (h->type == STT_FUNC
1216 || h->type == STT_GNU_IFUNC))
1217 return TRUE;
1218
1219 switch (from_type)
1220 {
1221 case R_X86_64_TLSGD:
1222 case R_X86_64_GOTPC32_TLSDESC:
1223 case R_X86_64_TLSDESC_CALL:
1224 case R_X86_64_GOTTPOFF:
1225 if (info->executable)
1226 {
1227 if (h == NULL)
1228 to_type = R_X86_64_TPOFF32;
1229 else
1230 to_type = R_X86_64_GOTTPOFF;
1231 }
1232
1233 /* When we are called from elf_x86_64_relocate_section,
1234 CONTENTS isn't NULL and there may be additional transitions
1235 based on TLS_TYPE. */
1236 if (contents != NULL)
1237 {
1238 unsigned int new_to_type = to_type;
1239
1240 if (info->executable
1241 && h != NULL
1242 && h->dynindx == -1
1243 && tls_type == GOT_TLS_IE)
1244 new_to_type = R_X86_64_TPOFF32;
1245
1246 if (to_type == R_X86_64_TLSGD
1247 || to_type == R_X86_64_GOTPC32_TLSDESC
1248 || to_type == R_X86_64_TLSDESC_CALL)
1249 {
1250 if (tls_type == GOT_TLS_IE)
1251 new_to_type = R_X86_64_GOTTPOFF;
1252 }
1253
1254 /* We checked the transition before when we were called from
1255 elf_x86_64_check_relocs. We only want to check the new
1256 transition which hasn't been checked before. */
1257 check = new_to_type != to_type && from_type == to_type;
1258 to_type = new_to_type;
1259 }
1260
1261 break;
1262
1263 case R_X86_64_TLSLD:
1264 if (info->executable)
1265 to_type = R_X86_64_TPOFF32;
1266 break;
1267
1268 default:
1269 return TRUE;
1270 }
1271
1272 /* Return TRUE if there is no transition. */
1273 if (from_type == to_type)
1274 return TRUE;
1275
1276 /* Check if the transition can be performed. */
1277 if (check
1278 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1279 symtab_hdr, sym_hashes,
1280 from_type, rel, relend))
1281 {
1282 reloc_howto_type *from, *to;
1283 const char *name;
1284
1285 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1286 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1287
1288 if (h)
1289 name = h->root.root.string;
1290 else
1291 {
1292 struct elf_x86_64_link_hash_table *htab;
1293
1294 htab = elf_x86_64_hash_table (info);
1295 if (htab == NULL)
1296 name = "*unknown*";
1297 else
1298 {
1299 Elf_Internal_Sym *isym;
1300
1301 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1302 abfd, r_symndx);
1303 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1304 }
1305 }
1306
1307 (*_bfd_error_handler)
1308 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1309 "in section `%A' failed"),
1310 abfd, sec, from->name, to->name, name,
1311 (unsigned long) rel->r_offset);
1312 bfd_set_error (bfd_error_bad_value);
1313 return FALSE;
1314 }
1315
1316 *r_type = to_type;
1317 return TRUE;
1318 }
1319
1320 /* Look through the relocs for a section during the first phase, and
1321 calculate needed space in the global offset table, procedure
1322 linkage table, and dynamic reloc sections. */
1323
1324 static bfd_boolean
1325 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1326 asection *sec,
1327 const Elf_Internal_Rela *relocs)
1328 {
1329 struct elf_x86_64_link_hash_table *htab;
1330 Elf_Internal_Shdr *symtab_hdr;
1331 struct elf_link_hash_entry **sym_hashes;
1332 const Elf_Internal_Rela *rel;
1333 const Elf_Internal_Rela *rel_end;
1334 asection *sreloc;
1335
1336 if (info->relocatable)
1337 return TRUE;
1338
1339 BFD_ASSERT (is_x86_64_elf (abfd));
1340
1341 htab = elf_x86_64_hash_table (info);
1342 if (htab == NULL)
1343 return FALSE;
1344
1345 symtab_hdr = &elf_symtab_hdr (abfd);
1346 sym_hashes = elf_sym_hashes (abfd);
1347
1348 sreloc = NULL;
1349
1350 rel_end = relocs + sec->reloc_count;
1351 for (rel = relocs; rel < rel_end; rel++)
1352 {
1353 unsigned int r_type;
1354 unsigned long r_symndx;
1355 struct elf_link_hash_entry *h;
1356 Elf_Internal_Sym *isym;
1357 const char *name;
1358
1359 r_symndx = htab->r_sym (rel->r_info);
1360 r_type = ELF32_R_TYPE (rel->r_info);
1361
1362 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1363 {
1364 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1365 abfd, r_symndx);
1366 return FALSE;
1367 }
1368
1369 if (r_symndx < symtab_hdr->sh_info)
1370 {
1371 /* A local symbol. */
1372 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1373 abfd, r_symndx);
1374 if (isym == NULL)
1375 return FALSE;
1376
1377 /* Check relocation against local STT_GNU_IFUNC symbol. */
1378 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1379 {
1380 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1381 TRUE);
1382 if (h == NULL)
1383 return FALSE;
1384
1385 /* Fake a STT_GNU_IFUNC symbol. */
1386 h->type = STT_GNU_IFUNC;
1387 h->def_regular = 1;
1388 h->ref_regular = 1;
1389 h->forced_local = 1;
1390 h->root.type = bfd_link_hash_defined;
1391 }
1392 else
1393 h = NULL;
1394 }
1395 else
1396 {
1397 isym = NULL;
1398 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1399 while (h->root.type == bfd_link_hash_indirect
1400 || h->root.type == bfd_link_hash_warning)
1401 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1402 }
1403
1404 /* Check invalid x32 relocations. */
1405 if (!ABI_64_P (abfd))
1406 switch (r_type)
1407 {
1408 default:
1409 break;
1410
1411 case R_X86_64_DTPOFF64:
1412 case R_X86_64_TPOFF64:
1413 case R_X86_64_PC64:
1414 case R_X86_64_GOTOFF64:
1415 case R_X86_64_GOT64:
1416 case R_X86_64_GOTPCREL64:
1417 case R_X86_64_GOTPC64:
1418 case R_X86_64_GOTPLT64:
1419 case R_X86_64_PLTOFF64:
1420 {
1421 if (h)
1422 name = h->root.root.string;
1423 else
1424 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1425 NULL);
1426 (*_bfd_error_handler)
1427 (_("%B: relocation %s against symbol `%s' isn't "
1428 "supported in x32 mode"), abfd,
1429 x86_64_elf_howto_table[r_type].name, name);
1430 bfd_set_error (bfd_error_bad_value);
1431 return FALSE;
1432 }
1433 break;
1434 }
1435
1436 if (h != NULL)
1437 {
1438 /* Create the ifunc sections for static executables. If we
1439 never see an indirect function symbol nor we are building
1440 a static executable, those sections will be empty and
1441 won't appear in output. */
1442 switch (r_type)
1443 {
1444 default:
1445 break;
1446
1447 case R_X86_64_32S:
1448 case R_X86_64_32:
1449 case R_X86_64_64:
1450 case R_X86_64_PC32:
1451 case R_X86_64_PC64:
1452 case R_X86_64_PLT32:
1453 case R_X86_64_GOTPCREL:
1454 case R_X86_64_GOTPCREL64:
1455 if (htab->elf.dynobj == NULL)
1456 htab->elf.dynobj = abfd;
1457 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1458 return FALSE;
1459 break;
1460 }
1461
1462 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1463 it here if it is defined in a non-shared object. */
1464 if (h->type == STT_GNU_IFUNC
1465 && h->def_regular)
1466 {
1467 /* It is referenced by a non-shared object. */
1468 h->ref_regular = 1;
1469 h->needs_plt = 1;
1470
1471 /* STT_GNU_IFUNC symbol must go through PLT. */
1472 h->plt.refcount += 1;
1473
1474 /* STT_GNU_IFUNC needs dynamic sections. */
1475 if (htab->elf.dynobj == NULL)
1476 htab->elf.dynobj = abfd;
1477
1478 switch (r_type)
1479 {
1480 default:
1481 if (h->root.root.string)
1482 name = h->root.root.string;
1483 else
1484 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1485 NULL);
1486 (*_bfd_error_handler)
1487 (_("%B: relocation %s against STT_GNU_IFUNC "
1488 "symbol `%s' isn't handled by %s"), abfd,
1489 x86_64_elf_howto_table[r_type].name,
1490 name, __FUNCTION__);
1491 bfd_set_error (bfd_error_bad_value);
1492 return FALSE;
1493
1494 case R_X86_64_32:
1495 if (ABI_64_P (abfd))
1496 goto not_pointer;
1497 case R_X86_64_64:
1498 h->non_got_ref = 1;
1499 h->pointer_equality_needed = 1;
1500 if (info->shared)
1501 {
1502 /* We must copy these reloc types into the output
1503 file. Create a reloc section in dynobj and
1504 make room for this reloc. */
1505 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1506 (abfd, info, sec, sreloc,
1507 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1508 if (sreloc == NULL)
1509 return FALSE;
1510 }
1511 break;
1512
1513 case R_X86_64_32S:
1514 case R_X86_64_PC32:
1515 case R_X86_64_PC64:
1516 not_pointer:
1517 h->non_got_ref = 1;
1518 if (r_type != R_X86_64_PC32
1519 && r_type != R_X86_64_PC64)
1520 h->pointer_equality_needed = 1;
1521 break;
1522
1523 case R_X86_64_PLT32:
1524 break;
1525
1526 case R_X86_64_GOTPCREL:
1527 case R_X86_64_GOTPCREL64:
1528 h->got.refcount += 1;
1529 if (htab->elf.sgot == NULL
1530 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1531 info))
1532 return FALSE;
1533 break;
1534 }
1535
1536 continue;
1537 }
1538 }
1539
1540 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1541 symtab_hdr, sym_hashes,
1542 &r_type, GOT_UNKNOWN,
1543 rel, rel_end, h, r_symndx))
1544 return FALSE;
1545
1546 switch (r_type)
1547 {
1548 case R_X86_64_TLSLD:
1549 htab->tls_ld_got.refcount += 1;
1550 goto create_got;
1551
1552 case R_X86_64_TPOFF32:
1553 if (!info->executable && ABI_64_P (abfd))
1554 {
1555 if (h)
1556 name = h->root.root.string;
1557 else
1558 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1559 NULL);
1560 (*_bfd_error_handler)
1561 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1562 abfd,
1563 x86_64_elf_howto_table[r_type].name, name);
1564 bfd_set_error (bfd_error_bad_value);
1565 return FALSE;
1566 }
1567 break;
1568
1569 case R_X86_64_GOTTPOFF:
1570 if (!info->executable)
1571 info->flags |= DF_STATIC_TLS;
1572 /* Fall through */
1573
1574 case R_X86_64_GOT32:
1575 case R_X86_64_GOTPCREL:
1576 case R_X86_64_TLSGD:
1577 case R_X86_64_GOT64:
1578 case R_X86_64_GOTPCREL64:
1579 case R_X86_64_GOTPLT64:
1580 case R_X86_64_GOTPC32_TLSDESC:
1581 case R_X86_64_TLSDESC_CALL:
1582 /* This symbol requires a global offset table entry. */
1583 {
1584 int tls_type, old_tls_type;
1585
1586 switch (r_type)
1587 {
1588 default: tls_type = GOT_NORMAL; break;
1589 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1590 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1591 case R_X86_64_GOTPC32_TLSDESC:
1592 case R_X86_64_TLSDESC_CALL:
1593 tls_type = GOT_TLS_GDESC; break;
1594 }
1595
1596 if (h != NULL)
1597 {
1598 if (r_type == R_X86_64_GOTPLT64)
1599 {
1600 /* This relocation indicates that we also need
1601 a PLT entry, as this is a function. We don't need
1602 a PLT entry for local symbols. */
1603 h->needs_plt = 1;
1604 h->plt.refcount += 1;
1605 }
1606 h->got.refcount += 1;
1607 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1608 }
1609 else
1610 {
1611 bfd_signed_vma *local_got_refcounts;
1612
1613 /* This is a global offset table entry for a local symbol. */
1614 local_got_refcounts = elf_local_got_refcounts (abfd);
1615 if (local_got_refcounts == NULL)
1616 {
1617 bfd_size_type size;
1618
1619 size = symtab_hdr->sh_info;
1620 size *= sizeof (bfd_signed_vma)
1621 + sizeof (bfd_vma) + sizeof (char);
1622 local_got_refcounts = ((bfd_signed_vma *)
1623 bfd_zalloc (abfd, size));
1624 if (local_got_refcounts == NULL)
1625 return FALSE;
1626 elf_local_got_refcounts (abfd) = local_got_refcounts;
1627 elf_x86_64_local_tlsdesc_gotent (abfd)
1628 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1629 elf_x86_64_local_got_tls_type (abfd)
1630 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1631 }
1632 local_got_refcounts[r_symndx] += 1;
1633 old_tls_type
1634 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1635 }
1636
1637 /* If a TLS symbol is accessed using IE at least once,
1638 there is no point to use dynamic model for it. */
1639 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1640 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1641 || tls_type != GOT_TLS_IE))
1642 {
1643 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1644 tls_type = old_tls_type;
1645 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1646 && GOT_TLS_GD_ANY_P (tls_type))
1647 tls_type |= old_tls_type;
1648 else
1649 {
1650 if (h)
1651 name = h->root.root.string;
1652 else
1653 name = bfd_elf_sym_name (abfd, symtab_hdr,
1654 isym, NULL);
1655 (*_bfd_error_handler)
1656 (_("%B: '%s' accessed both as normal and thread local symbol"),
1657 abfd, name);
1658 return FALSE;
1659 }
1660 }
1661
1662 if (old_tls_type != tls_type)
1663 {
1664 if (h != NULL)
1665 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1666 else
1667 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1668 }
1669 }
1670 /* Fall through */
1671
1672 case R_X86_64_GOTOFF64:
1673 case R_X86_64_GOTPC32:
1674 case R_X86_64_GOTPC64:
1675 create_got:
1676 if (htab->elf.sgot == NULL)
1677 {
1678 if (htab->elf.dynobj == NULL)
1679 htab->elf.dynobj = abfd;
1680 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1681 info))
1682 return FALSE;
1683 }
1684 break;
1685
1686 case R_X86_64_PLT32:
1687 /* This symbol requires a procedure linkage table entry. We
1688 actually build the entry in adjust_dynamic_symbol,
1689 because this might be a case of linking PIC code which is
1690 never referenced by a dynamic object, in which case we
1691 don't need to generate a procedure linkage table entry
1692 after all. */
1693
1694 /* If this is a local symbol, we resolve it directly without
1695 creating a procedure linkage table entry. */
1696 if (h == NULL)
1697 continue;
1698
1699 h->needs_plt = 1;
1700 h->plt.refcount += 1;
1701 break;
1702
1703 case R_X86_64_PLTOFF64:
1704 /* This tries to form the 'address' of a function relative
1705 to GOT. For global symbols we need a PLT entry. */
1706 if (h != NULL)
1707 {
1708 h->needs_plt = 1;
1709 h->plt.refcount += 1;
1710 }
1711 goto create_got;
1712
1713 case R_X86_64_32:
1714 if (!ABI_64_P (abfd))
1715 goto pointer;
1716 case R_X86_64_8:
1717 case R_X86_64_16:
1718 case R_X86_64_32S:
1719 /* Let's help debug shared library creation. These relocs
1720 cannot be used in shared libs. Don't error out for
1721 sections we don't care about, such as debug sections or
1722 non-constant sections. */
1723 if (info->shared
1724 && (sec->flags & SEC_ALLOC) != 0
1725 && (sec->flags & SEC_READONLY) != 0)
1726 {
1727 if (h)
1728 name = h->root.root.string;
1729 else
1730 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1731 (*_bfd_error_handler)
1732 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1733 abfd, x86_64_elf_howto_table[r_type].name, name);
1734 bfd_set_error (bfd_error_bad_value);
1735 return FALSE;
1736 }
1737 /* Fall through. */
1738
1739 case R_X86_64_PC8:
1740 case R_X86_64_PC16:
1741 case R_X86_64_PC32:
1742 case R_X86_64_PC64:
1743 case R_X86_64_64:
1744 pointer:
1745 if (h != NULL && info->executable)
1746 {
1747 /* If this reloc is in a read-only section, we might
1748 need a copy reloc. We can't check reliably at this
1749 stage whether the section is read-only, as input
1750 sections have not yet been mapped to output sections.
1751 Tentatively set the flag for now, and correct in
1752 adjust_dynamic_symbol. */
1753 h->non_got_ref = 1;
1754
1755 /* We may need a .plt entry if the function this reloc
1756 refers to is in a shared lib. */
1757 h->plt.refcount += 1;
1758 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1759 h->pointer_equality_needed = 1;
1760 }
1761
1762 /* If we are creating a shared library, and this is a reloc
1763 against a global symbol, or a non PC relative reloc
1764 against a local symbol, then we need to copy the reloc
1765 into the shared library. However, if we are linking with
1766 -Bsymbolic, we do not need to copy a reloc against a
1767 global symbol which is defined in an object we are
1768 including in the link (i.e., DEF_REGULAR is set). At
1769 this point we have not seen all the input files, so it is
1770 possible that DEF_REGULAR is not set now but will be set
1771 later (it is never cleared). In case of a weak definition,
1772 DEF_REGULAR may be cleared later by a strong definition in
1773 a shared library. We account for that possibility below by
1774 storing information in the relocs_copied field of the hash
1775 table entry. A similar situation occurs when creating
1776 shared libraries and symbol visibility changes render the
1777 symbol local.
1778
1779 If on the other hand, we are creating an executable, we
1780 may need to keep relocations for symbols satisfied by a
1781 dynamic library if we manage to avoid copy relocs for the
1782 symbol. */
1783 if ((info->shared
1784 && (sec->flags & SEC_ALLOC) != 0
1785 && (! IS_X86_64_PCREL_TYPE (r_type)
1786 || (h != NULL
1787 && (! SYMBOLIC_BIND (info, h)
1788 || h->root.type == bfd_link_hash_defweak
1789 || !h->def_regular))))
1790 || (ELIMINATE_COPY_RELOCS
1791 && !info->shared
1792 && (sec->flags & SEC_ALLOC) != 0
1793 && h != NULL
1794 && (h->root.type == bfd_link_hash_defweak
1795 || !h->def_regular)))
1796 {
1797 struct elf_dyn_relocs *p;
1798 struct elf_dyn_relocs **head;
1799
1800 /* We must copy these reloc types into the output file.
1801 Create a reloc section in dynobj and make room for
1802 this reloc. */
1803 if (sreloc == NULL)
1804 {
1805 if (htab->elf.dynobj == NULL)
1806 htab->elf.dynobj = abfd;
1807
1808 sreloc = _bfd_elf_make_dynamic_reloc_section
1809 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1810 abfd, /*rela?*/ TRUE);
1811
1812 if (sreloc == NULL)
1813 return FALSE;
1814 }
1815
1816 /* If this is a global symbol, we count the number of
1817 relocations we need for this symbol. */
1818 if (h != NULL)
1819 {
1820 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1821 }
1822 else
1823 {
1824 /* Track dynamic relocs needed for local syms too.
1825 We really need local syms available to do this
1826 easily. Oh well. */
1827 asection *s;
1828 void **vpp;
1829
1830 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1831 abfd, r_symndx);
1832 if (isym == NULL)
1833 return FALSE;
1834
1835 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1836 if (s == NULL)
1837 s = sec;
1838
1839 /* Beware of type punned pointers vs strict aliasing
1840 rules. */
1841 vpp = &(elf_section_data (s)->local_dynrel);
1842 head = (struct elf_dyn_relocs **)vpp;
1843 }
1844
1845 p = *head;
1846 if (p == NULL || p->sec != sec)
1847 {
1848 bfd_size_type amt = sizeof *p;
1849
1850 p = ((struct elf_dyn_relocs *)
1851 bfd_alloc (htab->elf.dynobj, amt));
1852 if (p == NULL)
1853 return FALSE;
1854 p->next = *head;
1855 *head = p;
1856 p->sec = sec;
1857 p->count = 0;
1858 p->pc_count = 0;
1859 }
1860
1861 p->count += 1;
1862 if (IS_X86_64_PCREL_TYPE (r_type))
1863 p->pc_count += 1;
1864 }
1865 break;
1866
1867 /* This relocation describes the C++ object vtable hierarchy.
1868 Reconstruct it for later use during GC. */
1869 case R_X86_64_GNU_VTINHERIT:
1870 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1871 return FALSE;
1872 break;
1873
1874 /* This relocation describes which C++ vtable entries are actually
1875 used. Record for later use during GC. */
1876 case R_X86_64_GNU_VTENTRY:
1877 BFD_ASSERT (h != NULL);
1878 if (h != NULL
1879 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1880 return FALSE;
1881 break;
1882
1883 default:
1884 break;
1885 }
1886 }
1887
1888 return TRUE;
1889 }
1890
1891 /* Return the section that should be marked against GC for a given
1892 relocation. */
1893
1894 static asection *
1895 elf_x86_64_gc_mark_hook (asection *sec,
1896 struct bfd_link_info *info,
1897 Elf_Internal_Rela *rel,
1898 struct elf_link_hash_entry *h,
1899 Elf_Internal_Sym *sym)
1900 {
1901 if (h != NULL)
1902 switch (ELF32_R_TYPE (rel->r_info))
1903 {
1904 case R_X86_64_GNU_VTINHERIT:
1905 case R_X86_64_GNU_VTENTRY:
1906 return NULL;
1907 }
1908
1909 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1910 }
1911
1912 /* Update the got entry reference counts for the section being removed. */
1913
1914 static bfd_boolean
1915 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1916 asection *sec,
1917 const Elf_Internal_Rela *relocs)
1918 {
1919 struct elf_x86_64_link_hash_table *htab;
1920 Elf_Internal_Shdr *symtab_hdr;
1921 struct elf_link_hash_entry **sym_hashes;
1922 bfd_signed_vma *local_got_refcounts;
1923 const Elf_Internal_Rela *rel, *relend;
1924
1925 if (info->relocatable)
1926 return TRUE;
1927
1928 htab = elf_x86_64_hash_table (info);
1929 if (htab == NULL)
1930 return FALSE;
1931
1932 elf_section_data (sec)->local_dynrel = NULL;
1933
1934 symtab_hdr = &elf_symtab_hdr (abfd);
1935 sym_hashes = elf_sym_hashes (abfd);
1936 local_got_refcounts = elf_local_got_refcounts (abfd);
1937
1938 htab = elf_x86_64_hash_table (info);
1939 relend = relocs + sec->reloc_count;
1940 for (rel = relocs; rel < relend; rel++)
1941 {
1942 unsigned long r_symndx;
1943 unsigned int r_type;
1944 struct elf_link_hash_entry *h = NULL;
1945
1946 r_symndx = htab->r_sym (rel->r_info);
1947 if (r_symndx >= symtab_hdr->sh_info)
1948 {
1949 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1950 while (h->root.type == bfd_link_hash_indirect
1951 || h->root.type == bfd_link_hash_warning)
1952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1953 }
1954 else
1955 {
1956 /* A local symbol. */
1957 Elf_Internal_Sym *isym;
1958
1959 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1960 abfd, r_symndx);
1961
1962 /* Check relocation against local STT_GNU_IFUNC symbol. */
1963 if (isym != NULL
1964 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1965 {
1966 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1967 if (h == NULL)
1968 abort ();
1969 }
1970 }
1971
1972 if (h)
1973 {
1974 struct elf_x86_64_link_hash_entry *eh;
1975 struct elf_dyn_relocs **pp;
1976 struct elf_dyn_relocs *p;
1977
1978 eh = (struct elf_x86_64_link_hash_entry *) h;
1979
1980 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1981 if (p->sec == sec)
1982 {
1983 /* Everything must go for SEC. */
1984 *pp = p->next;
1985 break;
1986 }
1987 }
1988
1989 r_type = ELF32_R_TYPE (rel->r_info);
1990 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1991 symtab_hdr, sym_hashes,
1992 &r_type, GOT_UNKNOWN,
1993 rel, relend, h, r_symndx))
1994 return FALSE;
1995
1996 switch (r_type)
1997 {
1998 case R_X86_64_TLSLD:
1999 if (htab->tls_ld_got.refcount > 0)
2000 htab->tls_ld_got.refcount -= 1;
2001 break;
2002
2003 case R_X86_64_TLSGD:
2004 case R_X86_64_GOTPC32_TLSDESC:
2005 case R_X86_64_TLSDESC_CALL:
2006 case R_X86_64_GOTTPOFF:
2007 case R_X86_64_GOT32:
2008 case R_X86_64_GOTPCREL:
2009 case R_X86_64_GOT64:
2010 case R_X86_64_GOTPCREL64:
2011 case R_X86_64_GOTPLT64:
2012 if (h != NULL)
2013 {
2014 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2015 h->plt.refcount -= 1;
2016 if (h->got.refcount > 0)
2017 h->got.refcount -= 1;
2018 if (h->type == STT_GNU_IFUNC)
2019 {
2020 if (h->plt.refcount > 0)
2021 h->plt.refcount -= 1;
2022 }
2023 }
2024 else if (local_got_refcounts != NULL)
2025 {
2026 if (local_got_refcounts[r_symndx] > 0)
2027 local_got_refcounts[r_symndx] -= 1;
2028 }
2029 break;
2030
2031 case R_X86_64_8:
2032 case R_X86_64_16:
2033 case R_X86_64_32:
2034 case R_X86_64_64:
2035 case R_X86_64_32S:
2036 case R_X86_64_PC8:
2037 case R_X86_64_PC16:
2038 case R_X86_64_PC32:
2039 case R_X86_64_PC64:
2040 if (info->shared
2041 && (h == NULL || h->type != STT_GNU_IFUNC))
2042 break;
2043 /* Fall thru */
2044
2045 case R_X86_64_PLT32:
2046 case R_X86_64_PLTOFF64:
2047 if (h != NULL)
2048 {
2049 if (h->plt.refcount > 0)
2050 h->plt.refcount -= 1;
2051 }
2052 break;
2053
2054 default:
2055 break;
2056 }
2057 }
2058
2059 return TRUE;
2060 }
2061
2062 /* Adjust a symbol defined by a dynamic object and referenced by a
2063 regular object. The current definition is in some section of the
2064 dynamic object, but we're not including those sections. We have to
2065 change the definition to something the rest of the link can
2066 understand. */
2067
2068 static bfd_boolean
2069 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2070 struct elf_link_hash_entry *h)
2071 {
2072 struct elf_x86_64_link_hash_table *htab;
2073 asection *s;
2074
2075 /* STT_GNU_IFUNC symbol must go through PLT. */
2076 if (h->type == STT_GNU_IFUNC)
2077 {
2078 if (h->plt.refcount <= 0)
2079 {
2080 h->plt.offset = (bfd_vma) -1;
2081 h->needs_plt = 0;
2082 }
2083 return TRUE;
2084 }
2085
2086 /* If this is a function, put it in the procedure linkage table. We
2087 will fill in the contents of the procedure linkage table later,
2088 when we know the address of the .got section. */
2089 if (h->type == STT_FUNC
2090 || h->needs_plt)
2091 {
2092 if (h->plt.refcount <= 0
2093 || SYMBOL_CALLS_LOCAL (info, h)
2094 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2095 && h->root.type == bfd_link_hash_undefweak))
2096 {
2097 /* This case can occur if we saw a PLT32 reloc in an input
2098 file, but the symbol was never referred to by a dynamic
2099 object, or if all references were garbage collected. In
2100 such a case, we don't actually need to build a procedure
2101 linkage table, and we can just do a PC32 reloc instead. */
2102 h->plt.offset = (bfd_vma) -1;
2103 h->needs_plt = 0;
2104 }
2105
2106 return TRUE;
2107 }
2108 else
2109 /* It's possible that we incorrectly decided a .plt reloc was
2110 needed for an R_X86_64_PC32 reloc to a non-function sym in
2111 check_relocs. We can't decide accurately between function and
2112 non-function syms in check-relocs; Objects loaded later in
2113 the link may change h->type. So fix it now. */
2114 h->plt.offset = (bfd_vma) -1;
2115
2116 /* If this is a weak symbol, and there is a real definition, the
2117 processor independent code will have arranged for us to see the
2118 real definition first, and we can just use the same value. */
2119 if (h->u.weakdef != NULL)
2120 {
2121 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2122 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2123 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2124 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2125 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2126 h->non_got_ref = h->u.weakdef->non_got_ref;
2127 return TRUE;
2128 }
2129
2130 /* This is a reference to a symbol defined by a dynamic object which
2131 is not a function. */
2132
2133 /* If we are creating a shared library, we must presume that the
2134 only references to the symbol are via the global offset table.
2135 For such cases we need not do anything here; the relocations will
2136 be handled correctly by relocate_section. */
2137 if (info->shared)
2138 return TRUE;
2139
2140 /* If there are no references to this symbol that do not use the
2141 GOT, we don't need to generate a copy reloc. */
2142 if (!h->non_got_ref)
2143 return TRUE;
2144
2145 /* If -z nocopyreloc was given, we won't generate them either. */
2146 if (info->nocopyreloc)
2147 {
2148 h->non_got_ref = 0;
2149 return TRUE;
2150 }
2151
2152 if (ELIMINATE_COPY_RELOCS)
2153 {
2154 struct elf_x86_64_link_hash_entry * eh;
2155 struct elf_dyn_relocs *p;
2156
2157 eh = (struct elf_x86_64_link_hash_entry *) h;
2158 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2159 {
2160 s = p->sec->output_section;
2161 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2162 break;
2163 }
2164
2165 /* If we didn't find any dynamic relocs in read-only sections, then
2166 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2167 if (p == NULL)
2168 {
2169 h->non_got_ref = 0;
2170 return TRUE;
2171 }
2172 }
2173
2174 if (h->size == 0)
2175 {
2176 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2177 h->root.root.string);
2178 return TRUE;
2179 }
2180
2181 /* We must allocate the symbol in our .dynbss section, which will
2182 become part of the .bss section of the executable. There will be
2183 an entry for this symbol in the .dynsym section. The dynamic
2184 object will contain position independent code, so all references
2185 from the dynamic object to this symbol will go through the global
2186 offset table. The dynamic linker will use the .dynsym entry to
2187 determine the address it must put in the global offset table, so
2188 both the dynamic object and the regular object will refer to the
2189 same memory location for the variable. */
2190
2191 htab = elf_x86_64_hash_table (info);
2192 if (htab == NULL)
2193 return FALSE;
2194
2195 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2196 to copy the initial value out of the dynamic object and into the
2197 runtime process image. */
2198 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2199 {
2200 const struct elf_backend_data *bed;
2201 bed = get_elf_backend_data (info->output_bfd);
2202 htab->srelbss->size += bed->s->sizeof_rela;
2203 h->needs_copy = 1;
2204 }
2205
2206 s = htab->sdynbss;
2207
2208 return _bfd_elf_adjust_dynamic_copy (h, s);
2209 }
2210
2211 /* Allocate space in .plt, .got and associated reloc sections for
2212 dynamic relocs. */
2213
2214 static bfd_boolean
2215 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2216 {
2217 struct bfd_link_info *info;
2218 struct elf_x86_64_link_hash_table *htab;
2219 struct elf_x86_64_link_hash_entry *eh;
2220 struct elf_dyn_relocs *p;
2221 const struct elf_backend_data *bed;
2222
2223 if (h->root.type == bfd_link_hash_indirect)
2224 return TRUE;
2225
2226 eh = (struct elf_x86_64_link_hash_entry *) h;
2227
2228 info = (struct bfd_link_info *) inf;
2229 htab = elf_x86_64_hash_table (info);
2230 if (htab == NULL)
2231 return FALSE;
2232 bed = get_elf_backend_data (info->output_bfd);
2233
2234 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2235 here if it is defined and referenced in a non-shared object. */
2236 if (h->type == STT_GNU_IFUNC
2237 && h->def_regular)
2238 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2239 &eh->dyn_relocs,
2240 PLT_ENTRY_SIZE,
2241 GOT_ENTRY_SIZE);
2242 else if (htab->elf.dynamic_sections_created
2243 && h->plt.refcount > 0)
2244 {
2245 /* Make sure this symbol is output as a dynamic symbol.
2246 Undefined weak syms won't yet be marked as dynamic. */
2247 if (h->dynindx == -1
2248 && !h->forced_local)
2249 {
2250 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2251 return FALSE;
2252 }
2253
2254 if (info->shared
2255 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2256 {
2257 asection *s = htab->elf.splt;
2258
2259 /* If this is the first .plt entry, make room for the special
2260 first entry. */
2261 if (s->size == 0)
2262 s->size += PLT_ENTRY_SIZE;
2263
2264 h->plt.offset = s->size;
2265
2266 /* If this symbol is not defined in a regular file, and we are
2267 not generating a shared library, then set the symbol to this
2268 location in the .plt. This is required to make function
2269 pointers compare as equal between the normal executable and
2270 the shared library. */
2271 if (! info->shared
2272 && !h->def_regular)
2273 {
2274 h->root.u.def.section = s;
2275 h->root.u.def.value = h->plt.offset;
2276 }
2277
2278 /* Make room for this entry. */
2279 s->size += PLT_ENTRY_SIZE;
2280
2281 /* We also need to make an entry in the .got.plt section, which
2282 will be placed in the .got section by the linker script. */
2283 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2284
2285 /* We also need to make an entry in the .rela.plt section. */
2286 htab->elf.srelplt->size += bed->s->sizeof_rela;
2287 htab->elf.srelplt->reloc_count++;
2288 }
2289 else
2290 {
2291 h->plt.offset = (bfd_vma) -1;
2292 h->needs_plt = 0;
2293 }
2294 }
2295 else
2296 {
2297 h->plt.offset = (bfd_vma) -1;
2298 h->needs_plt = 0;
2299 }
2300
2301 eh->tlsdesc_got = (bfd_vma) -1;
2302
2303 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2304 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2305 if (h->got.refcount > 0
2306 && info->executable
2307 && h->dynindx == -1
2308 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2309 {
2310 h->got.offset = (bfd_vma) -1;
2311 }
2312 else if (h->got.refcount > 0)
2313 {
2314 asection *s;
2315 bfd_boolean dyn;
2316 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2317
2318 /* Make sure this symbol is output as a dynamic symbol.
2319 Undefined weak syms won't yet be marked as dynamic. */
2320 if (h->dynindx == -1
2321 && !h->forced_local)
2322 {
2323 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2324 return FALSE;
2325 }
2326
2327 if (GOT_TLS_GDESC_P (tls_type))
2328 {
2329 eh->tlsdesc_got = htab->elf.sgotplt->size
2330 - elf_x86_64_compute_jump_table_size (htab);
2331 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2332 h->got.offset = (bfd_vma) -2;
2333 }
2334 if (! GOT_TLS_GDESC_P (tls_type)
2335 || GOT_TLS_GD_P (tls_type))
2336 {
2337 s = htab->elf.sgot;
2338 h->got.offset = s->size;
2339 s->size += GOT_ENTRY_SIZE;
2340 if (GOT_TLS_GD_P (tls_type))
2341 s->size += GOT_ENTRY_SIZE;
2342 }
2343 dyn = htab->elf.dynamic_sections_created;
2344 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2345 and two if global.
2346 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2347 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2348 || tls_type == GOT_TLS_IE)
2349 htab->elf.srelgot->size += bed->s->sizeof_rela;
2350 else if (GOT_TLS_GD_P (tls_type))
2351 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2352 else if (! GOT_TLS_GDESC_P (tls_type)
2353 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2354 || h->root.type != bfd_link_hash_undefweak)
2355 && (info->shared
2356 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2357 htab->elf.srelgot->size += bed->s->sizeof_rela;
2358 if (GOT_TLS_GDESC_P (tls_type))
2359 {
2360 htab->elf.srelplt->size += bed->s->sizeof_rela;
2361 htab->tlsdesc_plt = (bfd_vma) -1;
2362 }
2363 }
2364 else
2365 h->got.offset = (bfd_vma) -1;
2366
2367 if (eh->dyn_relocs == NULL)
2368 return TRUE;
2369
2370 /* In the shared -Bsymbolic case, discard space allocated for
2371 dynamic pc-relative relocs against symbols which turn out to be
2372 defined in regular objects. For the normal shared case, discard
2373 space for pc-relative relocs that have become local due to symbol
2374 visibility changes. */
2375
2376 if (info->shared)
2377 {
2378 /* Relocs that use pc_count are those that appear on a call
2379 insn, or certain REL relocs that can generated via assembly.
2380 We want calls to protected symbols to resolve directly to the
2381 function rather than going via the plt. If people want
2382 function pointer comparisons to work as expected then they
2383 should avoid writing weird assembly. */
2384 if (SYMBOL_CALLS_LOCAL (info, h))
2385 {
2386 struct elf_dyn_relocs **pp;
2387
2388 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2389 {
2390 p->count -= p->pc_count;
2391 p->pc_count = 0;
2392 if (p->count == 0)
2393 *pp = p->next;
2394 else
2395 pp = &p->next;
2396 }
2397 }
2398
2399 /* Also discard relocs on undefined weak syms with non-default
2400 visibility. */
2401 if (eh->dyn_relocs != NULL
2402 && h->root.type == bfd_link_hash_undefweak)
2403 {
2404 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2405 eh->dyn_relocs = NULL;
2406
2407 /* Make sure undefined weak symbols are output as a dynamic
2408 symbol in PIEs. */
2409 else if (h->dynindx == -1
2410 && ! h->forced_local
2411 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2412 return FALSE;
2413 }
2414
2415 }
2416 else if (ELIMINATE_COPY_RELOCS)
2417 {
2418 /* For the non-shared case, discard space for relocs against
2419 symbols which turn out to need copy relocs or are not
2420 dynamic. */
2421
2422 if (!h->non_got_ref
2423 && ((h->def_dynamic
2424 && !h->def_regular)
2425 || (htab->elf.dynamic_sections_created
2426 && (h->root.type == bfd_link_hash_undefweak
2427 || h->root.type == bfd_link_hash_undefined))))
2428 {
2429 /* Make sure this symbol is output as a dynamic symbol.
2430 Undefined weak syms won't yet be marked as dynamic. */
2431 if (h->dynindx == -1
2432 && ! h->forced_local
2433 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2434 return FALSE;
2435
2436 /* If that succeeded, we know we'll be keeping all the
2437 relocs. */
2438 if (h->dynindx != -1)
2439 goto keep;
2440 }
2441
2442 eh->dyn_relocs = NULL;
2443
2444 keep: ;
2445 }
2446
2447 /* Finally, allocate space. */
2448 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2449 {
2450 asection * sreloc;
2451
2452 sreloc = elf_section_data (p->sec)->sreloc;
2453
2454 BFD_ASSERT (sreloc != NULL);
2455
2456 sreloc->size += p->count * bed->s->sizeof_rela;
2457 }
2458
2459 return TRUE;
2460 }
2461
2462 /* Allocate space in .plt, .got and associated reloc sections for
2463 local dynamic relocs. */
2464
2465 static bfd_boolean
2466 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2467 {
2468 struct elf_link_hash_entry *h
2469 = (struct elf_link_hash_entry *) *slot;
2470
2471 if (h->type != STT_GNU_IFUNC
2472 || !h->def_regular
2473 || !h->ref_regular
2474 || !h->forced_local
2475 || h->root.type != bfd_link_hash_defined)
2476 abort ();
2477
2478 return elf_x86_64_allocate_dynrelocs (h, inf);
2479 }
2480
2481 /* Find any dynamic relocs that apply to read-only sections. */
2482
2483 static bfd_boolean
2484 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2485 void * inf)
2486 {
2487 struct elf_x86_64_link_hash_entry *eh;
2488 struct elf_dyn_relocs *p;
2489
2490 /* Skip local IFUNC symbols. */
2491 if (h->forced_local && h->type == STT_GNU_IFUNC)
2492 return TRUE;
2493
2494 eh = (struct elf_x86_64_link_hash_entry *) h;
2495 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2496 {
2497 asection *s = p->sec->output_section;
2498
2499 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2500 {
2501 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2502
2503 info->flags |= DF_TEXTREL;
2504
2505 if (info->warn_shared_textrel && info->shared)
2506 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2507 p->sec->owner, h->root.root.string,
2508 p->sec);
2509
2510 /* Not an error, just cut short the traversal. */
2511 return FALSE;
2512 }
2513 }
2514 return TRUE;
2515 }
2516
2517 /* Set the sizes of the dynamic sections. */
2518
2519 static bfd_boolean
2520 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2521 struct bfd_link_info *info)
2522 {
2523 struct elf_x86_64_link_hash_table *htab;
2524 bfd *dynobj;
2525 asection *s;
2526 bfd_boolean relocs;
2527 bfd *ibfd;
2528 const struct elf_backend_data *bed;
2529
2530 htab = elf_x86_64_hash_table (info);
2531 if (htab == NULL)
2532 return FALSE;
2533 bed = get_elf_backend_data (output_bfd);
2534
2535 dynobj = htab->elf.dynobj;
2536 if (dynobj == NULL)
2537 abort ();
2538
2539 if (htab->elf.dynamic_sections_created)
2540 {
2541 /* Set the contents of the .interp section to the interpreter. */
2542 if (info->executable)
2543 {
2544 s = bfd_get_section_by_name (dynobj, ".interp");
2545 if (s == NULL)
2546 abort ();
2547 s->size = htab->dynamic_interpreter_size;
2548 s->contents = (unsigned char *) htab->dynamic_interpreter;
2549 }
2550 }
2551
2552 /* Set up .got offsets for local syms, and space for local dynamic
2553 relocs. */
2554 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2555 {
2556 bfd_signed_vma *local_got;
2557 bfd_signed_vma *end_local_got;
2558 char *local_tls_type;
2559 bfd_vma *local_tlsdesc_gotent;
2560 bfd_size_type locsymcount;
2561 Elf_Internal_Shdr *symtab_hdr;
2562 asection *srel;
2563
2564 if (! is_x86_64_elf (ibfd))
2565 continue;
2566
2567 for (s = ibfd->sections; s != NULL; s = s->next)
2568 {
2569 struct elf_dyn_relocs *p;
2570
2571 for (p = (struct elf_dyn_relocs *)
2572 (elf_section_data (s)->local_dynrel);
2573 p != NULL;
2574 p = p->next)
2575 {
2576 if (!bfd_is_abs_section (p->sec)
2577 && bfd_is_abs_section (p->sec->output_section))
2578 {
2579 /* Input section has been discarded, either because
2580 it is a copy of a linkonce section or due to
2581 linker script /DISCARD/, so we'll be discarding
2582 the relocs too. */
2583 }
2584 else if (p->count != 0)
2585 {
2586 srel = elf_section_data (p->sec)->sreloc;
2587 srel->size += p->count * bed->s->sizeof_rela;
2588 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2589 && (info->flags & DF_TEXTREL) == 0)
2590 {
2591 info->flags |= DF_TEXTREL;
2592 if (info->warn_shared_textrel && info->shared)
2593 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2594 p->sec->owner, p->sec);
2595 }
2596 }
2597 }
2598 }
2599
2600 local_got = elf_local_got_refcounts (ibfd);
2601 if (!local_got)
2602 continue;
2603
2604 symtab_hdr = &elf_symtab_hdr (ibfd);
2605 locsymcount = symtab_hdr->sh_info;
2606 end_local_got = local_got + locsymcount;
2607 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2608 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2609 s = htab->elf.sgot;
2610 srel = htab->elf.srelgot;
2611 for (; local_got < end_local_got;
2612 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2613 {
2614 *local_tlsdesc_gotent = (bfd_vma) -1;
2615 if (*local_got > 0)
2616 {
2617 if (GOT_TLS_GDESC_P (*local_tls_type))
2618 {
2619 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2620 - elf_x86_64_compute_jump_table_size (htab);
2621 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2622 *local_got = (bfd_vma) -2;
2623 }
2624 if (! GOT_TLS_GDESC_P (*local_tls_type)
2625 || GOT_TLS_GD_P (*local_tls_type))
2626 {
2627 *local_got = s->size;
2628 s->size += GOT_ENTRY_SIZE;
2629 if (GOT_TLS_GD_P (*local_tls_type))
2630 s->size += GOT_ENTRY_SIZE;
2631 }
2632 if (info->shared
2633 || GOT_TLS_GD_ANY_P (*local_tls_type)
2634 || *local_tls_type == GOT_TLS_IE)
2635 {
2636 if (GOT_TLS_GDESC_P (*local_tls_type))
2637 {
2638 htab->elf.srelplt->size
2639 += bed->s->sizeof_rela;
2640 htab->tlsdesc_plt = (bfd_vma) -1;
2641 }
2642 if (! GOT_TLS_GDESC_P (*local_tls_type)
2643 || GOT_TLS_GD_P (*local_tls_type))
2644 srel->size += bed->s->sizeof_rela;
2645 }
2646 }
2647 else
2648 *local_got = (bfd_vma) -1;
2649 }
2650 }
2651
2652 if (htab->tls_ld_got.refcount > 0)
2653 {
2654 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2655 relocs. */
2656 htab->tls_ld_got.offset = htab->elf.sgot->size;
2657 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2658 htab->elf.srelgot->size += bed->s->sizeof_rela;
2659 }
2660 else
2661 htab->tls_ld_got.offset = -1;
2662
2663 /* Allocate global sym .plt and .got entries, and space for global
2664 sym dynamic relocs. */
2665 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2666 info);
2667
2668 /* Allocate .plt and .got entries, and space for local symbols. */
2669 htab_traverse (htab->loc_hash_table,
2670 elf_x86_64_allocate_local_dynrelocs,
2671 info);
2672
2673 /* For every jump slot reserved in the sgotplt, reloc_count is
2674 incremented. However, when we reserve space for TLS descriptors,
2675 it's not incremented, so in order to compute the space reserved
2676 for them, it suffices to multiply the reloc count by the jump
2677 slot size.
2678
2679 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2680 so that R_X86_64_IRELATIVE entries come last. */
2681 if (htab->elf.srelplt)
2682 {
2683 htab->sgotplt_jump_table_size
2684 = elf_x86_64_compute_jump_table_size (htab);
2685 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2686 }
2687 else if (htab->elf.irelplt)
2688 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2689
2690 if (htab->tlsdesc_plt)
2691 {
2692 /* If we're not using lazy TLS relocations, don't generate the
2693 PLT and GOT entries they require. */
2694 if ((info->flags & DF_BIND_NOW))
2695 htab->tlsdesc_plt = 0;
2696 else
2697 {
2698 htab->tlsdesc_got = htab->elf.sgot->size;
2699 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2700 /* Reserve room for the initial entry.
2701 FIXME: we could probably do away with it in this case. */
2702 if (htab->elf.splt->size == 0)
2703 htab->elf.splt->size += PLT_ENTRY_SIZE;
2704 htab->tlsdesc_plt = htab->elf.splt->size;
2705 htab->elf.splt->size += PLT_ENTRY_SIZE;
2706 }
2707 }
2708
2709 if (htab->elf.sgotplt)
2710 {
2711 struct elf_link_hash_entry *got;
2712 got = elf_link_hash_lookup (elf_hash_table (info),
2713 "_GLOBAL_OFFSET_TABLE_",
2714 FALSE, FALSE, FALSE);
2715
2716 /* Don't allocate .got.plt section if there are no GOT nor PLT
2717 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2718 if ((got == NULL
2719 || !got->ref_regular_nonweak)
2720 && (htab->elf.sgotplt->size
2721 == get_elf_backend_data (output_bfd)->got_header_size)
2722 && (htab->elf.splt == NULL
2723 || htab->elf.splt->size == 0)
2724 && (htab->elf.sgot == NULL
2725 || htab->elf.sgot->size == 0)
2726 && (htab->elf.iplt == NULL
2727 || htab->elf.iplt->size == 0)
2728 && (htab->elf.igotplt == NULL
2729 || htab->elf.igotplt->size == 0))
2730 htab->elf.sgotplt->size = 0;
2731 }
2732
2733 /* We now have determined the sizes of the various dynamic sections.
2734 Allocate memory for them. */
2735 relocs = FALSE;
2736 for (s = dynobj->sections; s != NULL; s = s->next)
2737 {
2738 if ((s->flags & SEC_LINKER_CREATED) == 0)
2739 continue;
2740
2741 if (s == htab->elf.splt
2742 || s == htab->elf.sgot
2743 || s == htab->elf.sgotplt
2744 || s == htab->elf.iplt
2745 || s == htab->elf.igotplt
2746 || s == htab->sdynbss)
2747 {
2748 /* Strip this section if we don't need it; see the
2749 comment below. */
2750 }
2751 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2752 {
2753 if (s->size != 0 && s != htab->elf.srelplt)
2754 relocs = TRUE;
2755
2756 /* We use the reloc_count field as a counter if we need
2757 to copy relocs into the output file. */
2758 if (s != htab->elf.srelplt)
2759 s->reloc_count = 0;
2760 }
2761 else
2762 {
2763 /* It's not one of our sections, so don't allocate space. */
2764 continue;
2765 }
2766
2767 if (s->size == 0)
2768 {
2769 /* If we don't need this section, strip it from the
2770 output file. This is mostly to handle .rela.bss and
2771 .rela.plt. We must create both sections in
2772 create_dynamic_sections, because they must be created
2773 before the linker maps input sections to output
2774 sections. The linker does that before
2775 adjust_dynamic_symbol is called, and it is that
2776 function which decides whether anything needs to go
2777 into these sections. */
2778
2779 s->flags |= SEC_EXCLUDE;
2780 continue;
2781 }
2782
2783 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2784 continue;
2785
2786 /* Allocate memory for the section contents. We use bfd_zalloc
2787 here in case unused entries are not reclaimed before the
2788 section's contents are written out. This should not happen,
2789 but this way if it does, we get a R_X86_64_NONE reloc instead
2790 of garbage. */
2791 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2792 if (s->contents == NULL)
2793 return FALSE;
2794 }
2795
2796 if (htab->plt_eh_frame != NULL
2797 && htab->elf.splt != NULL
2798 && htab->elf.splt->size != 0
2799 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0)
2800 bfd_put_32 (dynobj, htab->elf.splt->size,
2801 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2802
2803 if (htab->elf.dynamic_sections_created)
2804 {
2805 /* Add some entries to the .dynamic section. We fill in the
2806 values later, in elf_x86_64_finish_dynamic_sections, but we
2807 must add the entries now so that we get the correct size for
2808 the .dynamic section. The DT_DEBUG entry is filled in by the
2809 dynamic linker and used by the debugger. */
2810 #define add_dynamic_entry(TAG, VAL) \
2811 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2812
2813 if (info->executable)
2814 {
2815 if (!add_dynamic_entry (DT_DEBUG, 0))
2816 return FALSE;
2817 }
2818
2819 if (htab->elf.splt->size != 0)
2820 {
2821 if (!add_dynamic_entry (DT_PLTGOT, 0)
2822 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2823 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2824 || !add_dynamic_entry (DT_JMPREL, 0))
2825 return FALSE;
2826
2827 if (htab->tlsdesc_plt
2828 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2829 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2830 return FALSE;
2831 }
2832
2833 if (relocs)
2834 {
2835 if (!add_dynamic_entry (DT_RELA, 0)
2836 || !add_dynamic_entry (DT_RELASZ, 0)
2837 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2838 return FALSE;
2839
2840 /* If any dynamic relocs apply to a read-only section,
2841 then we need a DT_TEXTREL entry. */
2842 if ((info->flags & DF_TEXTREL) == 0)
2843 elf_link_hash_traverse (&htab->elf,
2844 elf_x86_64_readonly_dynrelocs,
2845 info);
2846
2847 if ((info->flags & DF_TEXTREL) != 0)
2848 {
2849 if (!add_dynamic_entry (DT_TEXTREL, 0))
2850 return FALSE;
2851 }
2852 }
2853 }
2854 #undef add_dynamic_entry
2855
2856 return TRUE;
2857 }
2858
2859 static bfd_boolean
2860 elf_x86_64_always_size_sections (bfd *output_bfd,
2861 struct bfd_link_info *info)
2862 {
2863 asection *tls_sec = elf_hash_table (info)->tls_sec;
2864
2865 if (tls_sec)
2866 {
2867 struct elf_link_hash_entry *tlsbase;
2868
2869 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2870 "_TLS_MODULE_BASE_",
2871 FALSE, FALSE, FALSE);
2872
2873 if (tlsbase && tlsbase->type == STT_TLS)
2874 {
2875 struct elf_x86_64_link_hash_table *htab;
2876 struct bfd_link_hash_entry *bh = NULL;
2877 const struct elf_backend_data *bed
2878 = get_elf_backend_data (output_bfd);
2879
2880 htab = elf_x86_64_hash_table (info);
2881 if (htab == NULL)
2882 return FALSE;
2883
2884 if (!(_bfd_generic_link_add_one_symbol
2885 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2886 tls_sec, 0, NULL, FALSE,
2887 bed->collect, &bh)))
2888 return FALSE;
2889
2890 htab->tls_module_base = bh;
2891
2892 tlsbase = (struct elf_link_hash_entry *)bh;
2893 tlsbase->def_regular = 1;
2894 tlsbase->other = STV_HIDDEN;
2895 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2896 }
2897 }
2898
2899 return TRUE;
2900 }
2901
2902 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2903 executables. Rather than setting it to the beginning of the TLS
2904 section, we have to set it to the end. This function may be called
2905 multiple times, it is idempotent. */
2906
2907 static void
2908 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2909 {
2910 struct elf_x86_64_link_hash_table *htab;
2911 struct bfd_link_hash_entry *base;
2912
2913 if (!info->executable)
2914 return;
2915
2916 htab = elf_x86_64_hash_table (info);
2917 if (htab == NULL)
2918 return;
2919
2920 base = htab->tls_module_base;
2921 if (base == NULL)
2922 return;
2923
2924 base->u.def.value = htab->elf.tls_size;
2925 }
2926
2927 /* Return the base VMA address which should be subtracted from real addresses
2928 when resolving @dtpoff relocation.
2929 This is PT_TLS segment p_vaddr. */
2930
2931 static bfd_vma
2932 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2933 {
2934 /* If tls_sec is NULL, we should have signalled an error already. */
2935 if (elf_hash_table (info)->tls_sec == NULL)
2936 return 0;
2937 return elf_hash_table (info)->tls_sec->vma;
2938 }
2939
2940 /* Return the relocation value for @tpoff relocation
2941 if STT_TLS virtual address is ADDRESS. */
2942
2943 static bfd_vma
2944 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2945 {
2946 struct elf_link_hash_table *htab = elf_hash_table (info);
2947 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2948 bfd_vma static_tls_size;
2949
2950 /* If tls_segment is NULL, we should have signalled an error already. */
2951 if (htab->tls_sec == NULL)
2952 return 0;
2953
2954 /* Consider special static TLS alignment requirements. */
2955 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2956 return address - static_tls_size - htab->tls_sec->vma;
2957 }
2958
2959 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2960 branch? */
2961
2962 static bfd_boolean
2963 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2964 {
2965 /* Opcode Instruction
2966 0xe8 call
2967 0xe9 jump
2968 0x0f 0x8x conditional jump */
2969 return ((offset > 0
2970 && (contents [offset - 1] == 0xe8
2971 || contents [offset - 1] == 0xe9))
2972 || (offset > 1
2973 && contents [offset - 2] == 0x0f
2974 && (contents [offset - 1] & 0xf0) == 0x80));
2975 }
2976
2977 /* Relocate an x86_64 ELF section. */
2978
2979 static bfd_boolean
2980 elf_x86_64_relocate_section (bfd *output_bfd,
2981 struct bfd_link_info *info,
2982 bfd *input_bfd,
2983 asection *input_section,
2984 bfd_byte *contents,
2985 Elf_Internal_Rela *relocs,
2986 Elf_Internal_Sym *local_syms,
2987 asection **local_sections)
2988 {
2989 struct elf_x86_64_link_hash_table *htab;
2990 Elf_Internal_Shdr *symtab_hdr;
2991 struct elf_link_hash_entry **sym_hashes;
2992 bfd_vma *local_got_offsets;
2993 bfd_vma *local_tlsdesc_gotents;
2994 Elf_Internal_Rela *rel;
2995 Elf_Internal_Rela *relend;
2996
2997 BFD_ASSERT (is_x86_64_elf (input_bfd));
2998
2999 htab = elf_x86_64_hash_table (info);
3000 if (htab == NULL)
3001 return FALSE;
3002 symtab_hdr = &elf_symtab_hdr (input_bfd);
3003 sym_hashes = elf_sym_hashes (input_bfd);
3004 local_got_offsets = elf_local_got_offsets (input_bfd);
3005 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3006
3007 elf_x86_64_set_tls_module_base (info);
3008
3009 rel = relocs;
3010 relend = relocs + input_section->reloc_count;
3011 for (; rel < relend; rel++)
3012 {
3013 unsigned int r_type;
3014 reloc_howto_type *howto;
3015 unsigned long r_symndx;
3016 struct elf_link_hash_entry *h;
3017 Elf_Internal_Sym *sym;
3018 asection *sec;
3019 bfd_vma off, offplt;
3020 bfd_vma relocation;
3021 bfd_boolean unresolved_reloc;
3022 bfd_reloc_status_type r;
3023 int tls_type;
3024 asection *base_got;
3025
3026 r_type = ELF32_R_TYPE (rel->r_info);
3027 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3028 || r_type == (int) R_X86_64_GNU_VTENTRY)
3029 continue;
3030
3031 if (r_type >= R_X86_64_max)
3032 {
3033 bfd_set_error (bfd_error_bad_value);
3034 return FALSE;
3035 }
3036
3037 if (r_type != (int) R_X86_64_32
3038 || ABI_64_P (output_bfd))
3039 howto = x86_64_elf_howto_table + r_type;
3040 else
3041 howto = (x86_64_elf_howto_table
3042 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3043 r_symndx = htab->r_sym (rel->r_info);
3044 h = NULL;
3045 sym = NULL;
3046 sec = NULL;
3047 unresolved_reloc = FALSE;
3048 if (r_symndx < symtab_hdr->sh_info)
3049 {
3050 sym = local_syms + r_symndx;
3051 sec = local_sections[r_symndx];
3052
3053 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3054 &sec, rel);
3055
3056 /* Relocate against local STT_GNU_IFUNC symbol. */
3057 if (!info->relocatable
3058 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3059 {
3060 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3061 rel, FALSE);
3062 if (h == NULL)
3063 abort ();
3064
3065 /* Set STT_GNU_IFUNC symbol value. */
3066 h->root.u.def.value = sym->st_value;
3067 h->root.u.def.section = sec;
3068 }
3069 }
3070 else
3071 {
3072 bfd_boolean warned ATTRIBUTE_UNUSED;
3073
3074 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3075 r_symndx, symtab_hdr, sym_hashes,
3076 h, sec, relocation,
3077 unresolved_reloc, warned);
3078 }
3079
3080 if (sec != NULL && elf_discarded_section (sec))
3081 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3082 rel, relend, howto, contents);
3083
3084 if (info->relocatable)
3085 continue;
3086
3087 if (rel->r_addend == 0
3088 && r_type == R_X86_64_64
3089 && !ABI_64_P (output_bfd))
3090 {
3091 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3092 it to 64bit if addend is zero. */
3093 r_type = R_X86_64_32;
3094 memset (contents + rel->r_offset + 4, 0, 4);
3095 }
3096
3097 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3098 it here if it is defined in a non-shared object. */
3099 if (h != NULL
3100 && h->type == STT_GNU_IFUNC
3101 && h->def_regular)
3102 {
3103 asection *plt;
3104 bfd_vma plt_index;
3105 const char *name;
3106
3107 if ((input_section->flags & SEC_ALLOC) == 0
3108 || h->plt.offset == (bfd_vma) -1)
3109 abort ();
3110
3111 /* STT_GNU_IFUNC symbol must go through PLT. */
3112 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3113 relocation = (plt->output_section->vma
3114 + plt->output_offset + h->plt.offset);
3115
3116 switch (r_type)
3117 {
3118 default:
3119 if (h->root.root.string)
3120 name = h->root.root.string;
3121 else
3122 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3123 NULL);
3124 (*_bfd_error_handler)
3125 (_("%B: relocation %s against STT_GNU_IFUNC "
3126 "symbol `%s' isn't handled by %s"), input_bfd,
3127 x86_64_elf_howto_table[r_type].name,
3128 name, __FUNCTION__);
3129 bfd_set_error (bfd_error_bad_value);
3130 return FALSE;
3131
3132 case R_X86_64_32S:
3133 if (info->shared)
3134 abort ();
3135 goto do_relocation;
3136
3137 case R_X86_64_32:
3138 if (ABI_64_P (output_bfd))
3139 goto do_relocation;
3140 /* FALLTHROUGH */
3141 case R_X86_64_64:
3142 if (rel->r_addend != 0)
3143 {
3144 if (h->root.root.string)
3145 name = h->root.root.string;
3146 else
3147 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3148 sym, NULL);
3149 (*_bfd_error_handler)
3150 (_("%B: relocation %s against STT_GNU_IFUNC "
3151 "symbol `%s' has non-zero addend: %d"),
3152 input_bfd, x86_64_elf_howto_table[r_type].name,
3153 name, rel->r_addend);
3154 bfd_set_error (bfd_error_bad_value);
3155 return FALSE;
3156 }
3157
3158 /* Generate dynamic relcoation only when there is a
3159 non-GOT reference in a shared object. */
3160 if (info->shared && h->non_got_ref)
3161 {
3162 Elf_Internal_Rela outrel;
3163 asection *sreloc;
3164 bfd_boolean relocate;
3165
3166 /* Need a dynamic relocation to get the real function
3167 address. */
3168 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3169 info,
3170 input_section,
3171 rel->r_offset);
3172 if (outrel.r_offset == (bfd_vma) -1
3173 || outrel.r_offset == (bfd_vma) -2)
3174 abort ();
3175
3176 outrel.r_offset += (input_section->output_section->vma
3177 + input_section->output_offset);
3178
3179 if (h->dynindx == -1
3180 || h->forced_local
3181 || info->executable)
3182 {
3183 /* This symbol is resolved locally. */
3184 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3185 outrel.r_addend = relocation;
3186 relocate = FALSE;
3187 }
3188 else
3189 {
3190 outrel.r_info = htab->r_info (h->dynindx, r_type);
3191 outrel.r_addend = 0;
3192 relocate = FALSE;
3193 }
3194
3195 sreloc = htab->elf.irelifunc;
3196 elf_append_rela (output_bfd, sreloc, &outrel);
3197
3198 /* If this reloc is against an external symbol, we
3199 do not want to fiddle with the addend. Otherwise,
3200 we need to include the symbol value so that it
3201 becomes an addend for the dynamic reloc. For an
3202 internal symbol, we have updated addend. */
3203 if (! relocate)
3204 continue;
3205 }
3206 /* FALLTHROUGH */
3207 case R_X86_64_PC32:
3208 case R_X86_64_PC64:
3209 case R_X86_64_PLT32:
3210 goto do_relocation;
3211
3212 case R_X86_64_GOTPCREL:
3213 case R_X86_64_GOTPCREL64:
3214 base_got = htab->elf.sgot;
3215 off = h->got.offset;
3216
3217 if (base_got == NULL)
3218 abort ();
3219
3220 if (off == (bfd_vma) -1)
3221 {
3222 /* We can't use h->got.offset here to save state, or
3223 even just remember the offset, as finish_dynamic_symbol
3224 would use that as offset into .got. */
3225
3226 if (htab->elf.splt != NULL)
3227 {
3228 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3229 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3230 base_got = htab->elf.sgotplt;
3231 }
3232 else
3233 {
3234 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3235 off = plt_index * GOT_ENTRY_SIZE;
3236 base_got = htab->elf.igotplt;
3237 }
3238
3239 if (h->dynindx == -1
3240 || h->forced_local
3241 || info->symbolic)
3242 {
3243 /* This references the local defitionion. We must
3244 initialize this entry in the global offset table.
3245 Since the offset must always be a multiple of 8,
3246 we use the least significant bit to record
3247 whether we have initialized it already.
3248
3249 When doing a dynamic link, we create a .rela.got
3250 relocation entry to initialize the value. This
3251 is done in the finish_dynamic_symbol routine. */
3252 if ((off & 1) != 0)
3253 off &= ~1;
3254 else
3255 {
3256 bfd_put_64 (output_bfd, relocation,
3257 base_got->contents + off);
3258 /* Note that this is harmless for the GOTPLT64
3259 case, as -1 | 1 still is -1. */
3260 h->got.offset |= 1;
3261 }
3262 }
3263 }
3264
3265 relocation = (base_got->output_section->vma
3266 + base_got->output_offset + off);
3267
3268 goto do_relocation;
3269 }
3270 }
3271
3272 /* When generating a shared object, the relocations handled here are
3273 copied into the output file to be resolved at run time. */
3274 switch (r_type)
3275 {
3276 case R_X86_64_GOT32:
3277 case R_X86_64_GOT64:
3278 /* Relocation is to the entry for this symbol in the global
3279 offset table. */
3280 case R_X86_64_GOTPCREL:
3281 case R_X86_64_GOTPCREL64:
3282 /* Use global offset table entry as symbol value. */
3283 case R_X86_64_GOTPLT64:
3284 /* This is the same as GOT64 for relocation purposes, but
3285 indicates the existence of a PLT entry. The difficulty is,
3286 that we must calculate the GOT slot offset from the PLT
3287 offset, if this symbol got a PLT entry (it was global).
3288 Additionally if it's computed from the PLT entry, then that
3289 GOT offset is relative to .got.plt, not to .got. */
3290 base_got = htab->elf.sgot;
3291
3292 if (htab->elf.sgot == NULL)
3293 abort ();
3294
3295 if (h != NULL)
3296 {
3297 bfd_boolean dyn;
3298
3299 off = h->got.offset;
3300 if (h->needs_plt
3301 && h->plt.offset != (bfd_vma)-1
3302 && off == (bfd_vma)-1)
3303 {
3304 /* We can't use h->got.offset here to save
3305 state, or even just remember the offset, as
3306 finish_dynamic_symbol would use that as offset into
3307 .got. */
3308 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3309 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3310 base_got = htab->elf.sgotplt;
3311 }
3312
3313 dyn = htab->elf.dynamic_sections_created;
3314
3315 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3316 || (info->shared
3317 && SYMBOL_REFERENCES_LOCAL (info, h))
3318 || (ELF_ST_VISIBILITY (h->other)
3319 && h->root.type == bfd_link_hash_undefweak))
3320 {
3321 /* This is actually a static link, or it is a -Bsymbolic
3322 link and the symbol is defined locally, or the symbol
3323 was forced to be local because of a version file. We
3324 must initialize this entry in the global offset table.
3325 Since the offset must always be a multiple of 8, we
3326 use the least significant bit to record whether we
3327 have initialized it already.
3328
3329 When doing a dynamic link, we create a .rela.got
3330 relocation entry to initialize the value. This is
3331 done in the finish_dynamic_symbol routine. */
3332 if ((off & 1) != 0)
3333 off &= ~1;
3334 else
3335 {
3336 bfd_put_64 (output_bfd, relocation,
3337 base_got->contents + off);
3338 /* Note that this is harmless for the GOTPLT64 case,
3339 as -1 | 1 still is -1. */
3340 h->got.offset |= 1;
3341 }
3342 }
3343 else
3344 unresolved_reloc = FALSE;
3345 }
3346 else
3347 {
3348 if (local_got_offsets == NULL)
3349 abort ();
3350
3351 off = local_got_offsets[r_symndx];
3352
3353 /* The offset must always be a multiple of 8. We use
3354 the least significant bit to record whether we have
3355 already generated the necessary reloc. */
3356 if ((off & 1) != 0)
3357 off &= ~1;
3358 else
3359 {
3360 bfd_put_64 (output_bfd, relocation,
3361 base_got->contents + off);
3362
3363 if (info->shared)
3364 {
3365 asection *s;
3366 Elf_Internal_Rela outrel;
3367
3368 /* We need to generate a R_X86_64_RELATIVE reloc
3369 for the dynamic linker. */
3370 s = htab->elf.srelgot;
3371 if (s == NULL)
3372 abort ();
3373
3374 outrel.r_offset = (base_got->output_section->vma
3375 + base_got->output_offset
3376 + off);
3377 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3378 outrel.r_addend = relocation;
3379 elf_append_rela (output_bfd, s, &outrel);
3380 }
3381
3382 local_got_offsets[r_symndx] |= 1;
3383 }
3384 }
3385
3386 if (off >= (bfd_vma) -2)
3387 abort ();
3388
3389 relocation = base_got->output_section->vma
3390 + base_got->output_offset + off;
3391 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3392 relocation -= htab->elf.sgotplt->output_section->vma
3393 - htab->elf.sgotplt->output_offset;
3394
3395 break;
3396
3397 case R_X86_64_GOTOFF64:
3398 /* Relocation is relative to the start of the global offset
3399 table. */
3400
3401 /* Check to make sure it isn't a protected function symbol
3402 for shared library since it may not be local when used
3403 as function address. */
3404 if (info->shared
3405 && h
3406 && h->def_regular
3407 && h->type == STT_FUNC
3408 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3409 {
3410 (*_bfd_error_handler)
3411 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3412 input_bfd, h->root.root.string);
3413 bfd_set_error (bfd_error_bad_value);
3414 return FALSE;
3415 }
3416
3417 /* Note that sgot is not involved in this
3418 calculation. We always want the start of .got.plt. If we
3419 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3420 permitted by the ABI, we might have to change this
3421 calculation. */
3422 relocation -= htab->elf.sgotplt->output_section->vma
3423 + htab->elf.sgotplt->output_offset;
3424 break;
3425
3426 case R_X86_64_GOTPC32:
3427 case R_X86_64_GOTPC64:
3428 /* Use global offset table as symbol value. */
3429 relocation = htab->elf.sgotplt->output_section->vma
3430 + htab->elf.sgotplt->output_offset;
3431 unresolved_reloc = FALSE;
3432 break;
3433
3434 case R_X86_64_PLTOFF64:
3435 /* Relocation is PLT entry relative to GOT. For local
3436 symbols it's the symbol itself relative to GOT. */
3437 if (h != NULL
3438 /* See PLT32 handling. */
3439 && h->plt.offset != (bfd_vma) -1
3440 && htab->elf.splt != NULL)
3441 {
3442 relocation = (htab->elf.splt->output_section->vma
3443 + htab->elf.splt->output_offset
3444 + h->plt.offset);
3445 unresolved_reloc = FALSE;
3446 }
3447
3448 relocation -= htab->elf.sgotplt->output_section->vma
3449 + htab->elf.sgotplt->output_offset;
3450 break;
3451
3452 case R_X86_64_PLT32:
3453 /* Relocation is to the entry for this symbol in the
3454 procedure linkage table. */
3455
3456 /* Resolve a PLT32 reloc against a local symbol directly,
3457 without using the procedure linkage table. */
3458 if (h == NULL)
3459 break;
3460
3461 if (h->plt.offset == (bfd_vma) -1
3462 || htab->elf.splt == NULL)
3463 {
3464 /* We didn't make a PLT entry for this symbol. This
3465 happens when statically linking PIC code, or when
3466 using -Bsymbolic. */
3467 break;
3468 }
3469
3470 relocation = (htab->elf.splt->output_section->vma
3471 + htab->elf.splt->output_offset
3472 + h->plt.offset);
3473 unresolved_reloc = FALSE;
3474 break;
3475
3476 case R_X86_64_PC8:
3477 case R_X86_64_PC16:
3478 case R_X86_64_PC32:
3479 if (info->shared
3480 && ABI_64_P (output_bfd)
3481 && (input_section->flags & SEC_ALLOC) != 0
3482 && (input_section->flags & SEC_READONLY) != 0
3483 && h != NULL)
3484 {
3485 bfd_boolean fail = FALSE;
3486 bfd_boolean branch
3487 = (r_type == R_X86_64_PC32
3488 && is_32bit_relative_branch (contents, rel->r_offset));
3489
3490 if (SYMBOL_REFERENCES_LOCAL (info, h))
3491 {
3492 /* Symbol is referenced locally. Make sure it is
3493 defined locally or for a branch. */
3494 fail = !h->def_regular && !branch;
3495 }
3496 else
3497 {
3498 /* Symbol isn't referenced locally. We only allow
3499 branch to symbol with non-default visibility. */
3500 fail = (!branch
3501 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3502 }
3503
3504 if (fail)
3505 {
3506 const char *fmt;
3507 const char *v;
3508 const char *pic = "";
3509
3510 switch (ELF_ST_VISIBILITY (h->other))
3511 {
3512 case STV_HIDDEN:
3513 v = _("hidden symbol");
3514 break;
3515 case STV_INTERNAL:
3516 v = _("internal symbol");
3517 break;
3518 case STV_PROTECTED:
3519 v = _("protected symbol");
3520 break;
3521 default:
3522 v = _("symbol");
3523 pic = _("; recompile with -fPIC");
3524 break;
3525 }
3526
3527 if (h->def_regular)
3528 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3529 else
3530 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3531
3532 (*_bfd_error_handler) (fmt, input_bfd,
3533 x86_64_elf_howto_table[r_type].name,
3534 v, h->root.root.string, pic);
3535 bfd_set_error (bfd_error_bad_value);
3536 return FALSE;
3537 }
3538 }
3539 /* Fall through. */
3540
3541 case R_X86_64_8:
3542 case R_X86_64_16:
3543 case R_X86_64_32:
3544 case R_X86_64_PC64:
3545 case R_X86_64_64:
3546 /* FIXME: The ABI says the linker should make sure the value is
3547 the same when it's zeroextended to 64 bit. */
3548
3549 if ((input_section->flags & SEC_ALLOC) == 0)
3550 break;
3551
3552 if ((info->shared
3553 && (h == NULL
3554 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3555 || h->root.type != bfd_link_hash_undefweak)
3556 && (! IS_X86_64_PCREL_TYPE (r_type)
3557 || ! SYMBOL_CALLS_LOCAL (info, h)))
3558 || (ELIMINATE_COPY_RELOCS
3559 && !info->shared
3560 && h != NULL
3561 && h->dynindx != -1
3562 && !h->non_got_ref
3563 && ((h->def_dynamic
3564 && !h->def_regular)
3565 || h->root.type == bfd_link_hash_undefweak
3566 || h->root.type == bfd_link_hash_undefined)))
3567 {
3568 Elf_Internal_Rela outrel;
3569 bfd_boolean skip, relocate;
3570 asection *sreloc;
3571
3572 /* When generating a shared object, these relocations
3573 are copied into the output file to be resolved at run
3574 time. */
3575 skip = FALSE;
3576 relocate = FALSE;
3577
3578 outrel.r_offset =
3579 _bfd_elf_section_offset (output_bfd, info, input_section,
3580 rel->r_offset);
3581 if (outrel.r_offset == (bfd_vma) -1)
3582 skip = TRUE;
3583 else if (outrel.r_offset == (bfd_vma) -2)
3584 skip = TRUE, relocate = TRUE;
3585
3586 outrel.r_offset += (input_section->output_section->vma
3587 + input_section->output_offset);
3588
3589 if (skip)
3590 memset (&outrel, 0, sizeof outrel);
3591
3592 /* h->dynindx may be -1 if this symbol was marked to
3593 become local. */
3594 else if (h != NULL
3595 && h->dynindx != -1
3596 && (IS_X86_64_PCREL_TYPE (r_type)
3597 || ! info->shared
3598 || ! SYMBOLIC_BIND (info, h)
3599 || ! h->def_regular))
3600 {
3601 outrel.r_info = htab->r_info (h->dynindx, r_type);
3602 outrel.r_addend = rel->r_addend;
3603 }
3604 else
3605 {
3606 /* This symbol is local, or marked to become local. */
3607 if (r_type == htab->pointer_r_type)
3608 {
3609 relocate = TRUE;
3610 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3611 outrel.r_addend = relocation + rel->r_addend;
3612 }
3613 else if (r_type == R_X86_64_64
3614 && !ABI_64_P (output_bfd))
3615 {
3616 relocate = TRUE;
3617 outrel.r_info = htab->r_info (0,
3618 R_X86_64_RELATIVE64);
3619 outrel.r_addend = relocation + rel->r_addend;
3620 }
3621 else
3622 {
3623 long sindx;
3624
3625 if (bfd_is_abs_section (sec))
3626 sindx = 0;
3627 else if (sec == NULL || sec->owner == NULL)
3628 {
3629 bfd_set_error (bfd_error_bad_value);
3630 return FALSE;
3631 }
3632 else
3633 {
3634 asection *osec;
3635
3636 /* We are turning this relocation into one
3637 against a section symbol. It would be
3638 proper to subtract the symbol's value,
3639 osec->vma, from the emitted reloc addend,
3640 but ld.so expects buggy relocs. */
3641 osec = sec->output_section;
3642 sindx = elf_section_data (osec)->dynindx;
3643 if (sindx == 0)
3644 {
3645 asection *oi = htab->elf.text_index_section;
3646 sindx = elf_section_data (oi)->dynindx;
3647 }
3648 BFD_ASSERT (sindx != 0);
3649 }
3650
3651 outrel.r_info = htab->r_info (sindx, r_type);
3652 outrel.r_addend = relocation + rel->r_addend;
3653 }
3654 }
3655
3656 sreloc = elf_section_data (input_section)->sreloc;
3657
3658 if (sreloc == NULL || sreloc->contents == NULL)
3659 {
3660 r = bfd_reloc_notsupported;
3661 goto check_relocation_error;
3662 }
3663
3664 elf_append_rela (output_bfd, sreloc, &outrel);
3665
3666 /* If this reloc is against an external symbol, we do
3667 not want to fiddle with the addend. Otherwise, we
3668 need to include the symbol value so that it becomes
3669 an addend for the dynamic reloc. */
3670 if (! relocate)
3671 continue;
3672 }
3673
3674 break;
3675
3676 case R_X86_64_TLSGD:
3677 case R_X86_64_GOTPC32_TLSDESC:
3678 case R_X86_64_TLSDESC_CALL:
3679 case R_X86_64_GOTTPOFF:
3680 tls_type = GOT_UNKNOWN;
3681 if (h == NULL && local_got_offsets)
3682 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3683 else if (h != NULL)
3684 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3685
3686 if (! elf_x86_64_tls_transition (info, input_bfd,
3687 input_section, contents,
3688 symtab_hdr, sym_hashes,
3689 &r_type, tls_type, rel,
3690 relend, h, r_symndx))
3691 return FALSE;
3692
3693 if (r_type == R_X86_64_TPOFF32)
3694 {
3695 bfd_vma roff = rel->r_offset;
3696
3697 BFD_ASSERT (! unresolved_reloc);
3698
3699 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3700 {
3701 /* GD->LE transition. For 64bit, change
3702 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3703 .word 0x6666; rex64; call __tls_get_addr
3704 into:
3705 movq %fs:0, %rax
3706 leaq foo@tpoff(%rax), %rax
3707 For 32bit, change
3708 leaq foo@tlsgd(%rip), %rdi
3709 .word 0x6666; rex64; call __tls_get_addr
3710 into:
3711 movl %fs:0, %eax
3712 leaq foo@tpoff(%rax), %rax */
3713 if (ABI_64_P (output_bfd))
3714 memcpy (contents + roff - 4,
3715 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3716 16);
3717 else
3718 memcpy (contents + roff - 3,
3719 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3720 15);
3721 bfd_put_32 (output_bfd,
3722 elf_x86_64_tpoff (info, relocation),
3723 contents + roff + 8);
3724 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3725 rel++;
3726 continue;
3727 }
3728 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3729 {
3730 /* GDesc -> LE transition.
3731 It's originally something like:
3732 leaq x@tlsdesc(%rip), %rax
3733
3734 Change it to:
3735 movl $x@tpoff, %rax. */
3736
3737 unsigned int val, type;
3738
3739 type = bfd_get_8 (input_bfd, contents + roff - 3);
3740 val = bfd_get_8 (input_bfd, contents + roff - 1);
3741 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3742 contents + roff - 3);
3743 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3744 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3745 contents + roff - 1);
3746 bfd_put_32 (output_bfd,
3747 elf_x86_64_tpoff (info, relocation),
3748 contents + roff);
3749 continue;
3750 }
3751 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3752 {
3753 /* GDesc -> LE transition.
3754 It's originally:
3755 call *(%rax)
3756 Turn it into:
3757 xchg %ax,%ax. */
3758 bfd_put_8 (output_bfd, 0x66, contents + roff);
3759 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3760 continue;
3761 }
3762 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3763 {
3764 /* IE->LE transition:
3765 Originally it can be one of:
3766 movq foo@gottpoff(%rip), %reg
3767 addq foo@gottpoff(%rip), %reg
3768 We change it into:
3769 movq $foo, %reg
3770 leaq foo(%reg), %reg
3771 addq $foo, %reg. */
3772
3773 unsigned int val, type, reg;
3774
3775 val = bfd_get_8 (input_bfd, contents + roff - 3);
3776 type = bfd_get_8 (input_bfd, contents + roff - 2);
3777 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3778 reg >>= 3;
3779 if (type == 0x8b)
3780 {
3781 /* movq */
3782 if (val == 0x4c)
3783 bfd_put_8 (output_bfd, 0x49,
3784 contents + roff - 3);
3785 else if (!ABI_64_P (output_bfd) && val == 0x44)
3786 bfd_put_8 (output_bfd, 0x41,
3787 contents + roff - 3);
3788 bfd_put_8 (output_bfd, 0xc7,
3789 contents + roff - 2);
3790 bfd_put_8 (output_bfd, 0xc0 | reg,
3791 contents + roff - 1);
3792 }
3793 else if (reg == 4)
3794 {
3795 /* addq -> addq - addressing with %rsp/%r12 is
3796 special */
3797 if (val == 0x4c)
3798 bfd_put_8 (output_bfd, 0x49,
3799 contents + roff - 3);
3800 else if (!ABI_64_P (output_bfd) && val == 0x44)
3801 bfd_put_8 (output_bfd, 0x41,
3802 contents + roff - 3);
3803 bfd_put_8 (output_bfd, 0x81,
3804 contents + roff - 2);
3805 bfd_put_8 (output_bfd, 0xc0 | reg,
3806 contents + roff - 1);
3807 }
3808 else
3809 {
3810 /* addq -> leaq */
3811 if (val == 0x4c)
3812 bfd_put_8 (output_bfd, 0x4d,
3813 contents + roff - 3);
3814 else if (!ABI_64_P (output_bfd) && val == 0x44)
3815 bfd_put_8 (output_bfd, 0x45,
3816 contents + roff - 3);
3817 bfd_put_8 (output_bfd, 0x8d,
3818 contents + roff - 2);
3819 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3820 contents + roff - 1);
3821 }
3822 bfd_put_32 (output_bfd,
3823 elf_x86_64_tpoff (info, relocation),
3824 contents + roff);
3825 continue;
3826 }
3827 else
3828 BFD_ASSERT (FALSE);
3829 }
3830
3831 if (htab->elf.sgot == NULL)
3832 abort ();
3833
3834 if (h != NULL)
3835 {
3836 off = h->got.offset;
3837 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3838 }
3839 else
3840 {
3841 if (local_got_offsets == NULL)
3842 abort ();
3843
3844 off = local_got_offsets[r_symndx];
3845 offplt = local_tlsdesc_gotents[r_symndx];
3846 }
3847
3848 if ((off & 1) != 0)
3849 off &= ~1;
3850 else
3851 {
3852 Elf_Internal_Rela outrel;
3853 int dr_type, indx;
3854 asection *sreloc;
3855
3856 if (htab->elf.srelgot == NULL)
3857 abort ();
3858
3859 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3860
3861 if (GOT_TLS_GDESC_P (tls_type))
3862 {
3863 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3864 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3865 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3866 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3867 + htab->elf.sgotplt->output_offset
3868 + offplt
3869 + htab->sgotplt_jump_table_size);
3870 sreloc = htab->elf.srelplt;
3871 if (indx == 0)
3872 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3873 else
3874 outrel.r_addend = 0;
3875 elf_append_rela (output_bfd, sreloc, &outrel);
3876 }
3877
3878 sreloc = htab->elf.srelgot;
3879
3880 outrel.r_offset = (htab->elf.sgot->output_section->vma
3881 + htab->elf.sgot->output_offset + off);
3882
3883 if (GOT_TLS_GD_P (tls_type))
3884 dr_type = R_X86_64_DTPMOD64;
3885 else if (GOT_TLS_GDESC_P (tls_type))
3886 goto dr_done;
3887 else
3888 dr_type = R_X86_64_TPOFF64;
3889
3890 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3891 outrel.r_addend = 0;
3892 if ((dr_type == R_X86_64_TPOFF64
3893 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3894 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3895 outrel.r_info = htab->r_info (indx, dr_type);
3896
3897 elf_append_rela (output_bfd, sreloc, &outrel);
3898
3899 if (GOT_TLS_GD_P (tls_type))
3900 {
3901 if (indx == 0)
3902 {
3903 BFD_ASSERT (! unresolved_reloc);
3904 bfd_put_64 (output_bfd,
3905 relocation - elf_x86_64_dtpoff_base (info),
3906 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3907 }
3908 else
3909 {
3910 bfd_put_64 (output_bfd, 0,
3911 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3912 outrel.r_info = htab->r_info (indx,
3913 R_X86_64_DTPOFF64);
3914 outrel.r_offset += GOT_ENTRY_SIZE;
3915 elf_append_rela (output_bfd, sreloc,
3916 &outrel);
3917 }
3918 }
3919
3920 dr_done:
3921 if (h != NULL)
3922 h->got.offset |= 1;
3923 else
3924 local_got_offsets[r_symndx] |= 1;
3925 }
3926
3927 if (off >= (bfd_vma) -2
3928 && ! GOT_TLS_GDESC_P (tls_type))
3929 abort ();
3930 if (r_type == ELF32_R_TYPE (rel->r_info))
3931 {
3932 if (r_type == R_X86_64_GOTPC32_TLSDESC
3933 || r_type == R_X86_64_TLSDESC_CALL)
3934 relocation = htab->elf.sgotplt->output_section->vma
3935 + htab->elf.sgotplt->output_offset
3936 + offplt + htab->sgotplt_jump_table_size;
3937 else
3938 relocation = htab->elf.sgot->output_section->vma
3939 + htab->elf.sgot->output_offset + off;
3940 unresolved_reloc = FALSE;
3941 }
3942 else
3943 {
3944 bfd_vma roff = rel->r_offset;
3945
3946 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3947 {
3948 /* GD->IE transition. For 64bit, change
3949 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3950 .word 0x6666; rex64; call __tls_get_addr@plt
3951 into:
3952 movq %fs:0, %rax
3953 addq foo@gottpoff(%rip), %rax
3954 For 32bit, change
3955 leaq foo@tlsgd(%rip), %rdi
3956 .word 0x6666; rex64; call __tls_get_addr@plt
3957 into:
3958 movl %fs:0, %eax
3959 addq foo@gottpoff(%rip), %rax */
3960 if (ABI_64_P (output_bfd))
3961 memcpy (contents + roff - 4,
3962 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3963 16);
3964 else
3965 memcpy (contents + roff - 3,
3966 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3967 15);
3968
3969 relocation = (htab->elf.sgot->output_section->vma
3970 + htab->elf.sgot->output_offset + off
3971 - roff
3972 - input_section->output_section->vma
3973 - input_section->output_offset
3974 - 12);
3975 bfd_put_32 (output_bfd, relocation,
3976 contents + roff + 8);
3977 /* Skip R_X86_64_PLT32. */
3978 rel++;
3979 continue;
3980 }
3981 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3982 {
3983 /* GDesc -> IE transition.
3984 It's originally something like:
3985 leaq x@tlsdesc(%rip), %rax
3986
3987 Change it to:
3988 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3989
3990 /* Now modify the instruction as appropriate. To
3991 turn a leaq into a movq in the form we use it, it
3992 suffices to change the second byte from 0x8d to
3993 0x8b. */
3994 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3995
3996 bfd_put_32 (output_bfd,
3997 htab->elf.sgot->output_section->vma
3998 + htab->elf.sgot->output_offset + off
3999 - rel->r_offset
4000 - input_section->output_section->vma
4001 - input_section->output_offset
4002 - 4,
4003 contents + roff);
4004 continue;
4005 }
4006 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4007 {
4008 /* GDesc -> IE transition.
4009 It's originally:
4010 call *(%rax)
4011
4012 Change it to:
4013 xchg %ax, %ax. */
4014
4015 bfd_put_8 (output_bfd, 0x66, contents + roff);
4016 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4017 continue;
4018 }
4019 else
4020 BFD_ASSERT (FALSE);
4021 }
4022 break;
4023
4024 case R_X86_64_TLSLD:
4025 if (! elf_x86_64_tls_transition (info, input_bfd,
4026 input_section, contents,
4027 symtab_hdr, sym_hashes,
4028 &r_type, GOT_UNKNOWN,
4029 rel, relend, h, r_symndx))
4030 return FALSE;
4031
4032 if (r_type != R_X86_64_TLSLD)
4033 {
4034 /* LD->LE transition:
4035 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4036 For 64bit, we change it into:
4037 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4038 For 32bit, we change it into:
4039 nopl 0x0(%rax); movl %fs:0, %eax. */
4040
4041 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4042 if (ABI_64_P (output_bfd))
4043 memcpy (contents + rel->r_offset - 3,
4044 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4045 else
4046 memcpy (contents + rel->r_offset - 3,
4047 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4048 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4049 rel++;
4050 continue;
4051 }
4052
4053 if (htab->elf.sgot == NULL)
4054 abort ();
4055
4056 off = htab->tls_ld_got.offset;
4057 if (off & 1)
4058 off &= ~1;
4059 else
4060 {
4061 Elf_Internal_Rela outrel;
4062
4063 if (htab->elf.srelgot == NULL)
4064 abort ();
4065
4066 outrel.r_offset = (htab->elf.sgot->output_section->vma
4067 + htab->elf.sgot->output_offset + off);
4068
4069 bfd_put_64 (output_bfd, 0,
4070 htab->elf.sgot->contents + off);
4071 bfd_put_64 (output_bfd, 0,
4072 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4073 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4074 outrel.r_addend = 0;
4075 elf_append_rela (output_bfd, htab->elf.srelgot,
4076 &outrel);
4077 htab->tls_ld_got.offset |= 1;
4078 }
4079 relocation = htab->elf.sgot->output_section->vma
4080 + htab->elf.sgot->output_offset + off;
4081 unresolved_reloc = FALSE;
4082 break;
4083
4084 case R_X86_64_DTPOFF32:
4085 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4086 relocation -= elf_x86_64_dtpoff_base (info);
4087 else
4088 relocation = elf_x86_64_tpoff (info, relocation);
4089 break;
4090
4091 case R_X86_64_TPOFF32:
4092 case R_X86_64_TPOFF64:
4093 BFD_ASSERT (info->executable);
4094 relocation = elf_x86_64_tpoff (info, relocation);
4095 break;
4096
4097 default:
4098 break;
4099 }
4100
4101 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4102 because such sections are not SEC_ALLOC and thus ld.so will
4103 not process them. */
4104 if (unresolved_reloc
4105 && !((input_section->flags & SEC_DEBUGGING) != 0
4106 && h->def_dynamic)
4107 && _bfd_elf_section_offset (output_bfd, info, input_section,
4108 rel->r_offset) != (bfd_vma) -1)
4109 (*_bfd_error_handler)
4110 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4111 input_bfd,
4112 input_section,
4113 (long) rel->r_offset,
4114 howto->name,
4115 h->root.root.string);
4116
4117 do_relocation:
4118 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4119 contents, rel->r_offset,
4120 relocation, rel->r_addend);
4121
4122 check_relocation_error:
4123 if (r != bfd_reloc_ok)
4124 {
4125 const char *name;
4126
4127 if (h != NULL)
4128 name = h->root.root.string;
4129 else
4130 {
4131 name = bfd_elf_string_from_elf_section (input_bfd,
4132 symtab_hdr->sh_link,
4133 sym->st_name);
4134 if (name == NULL)
4135 return FALSE;
4136 if (*name == '\0')
4137 name = bfd_section_name (input_bfd, sec);
4138 }
4139
4140 if (r == bfd_reloc_overflow)
4141 {
4142 if (! ((*info->callbacks->reloc_overflow)
4143 (info, (h ? &h->root : NULL), name, howto->name,
4144 (bfd_vma) 0, input_bfd, input_section,
4145 rel->r_offset)))
4146 return FALSE;
4147 }
4148 else
4149 {
4150 (*_bfd_error_handler)
4151 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4152 input_bfd, input_section,
4153 (long) rel->r_offset, name, (int) r);
4154 return FALSE;
4155 }
4156 }
4157 }
4158
4159 return TRUE;
4160 }
4161
4162 /* Finish up dynamic symbol handling. We set the contents of various
4163 dynamic sections here. */
4164
4165 static bfd_boolean
4166 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4167 struct bfd_link_info *info,
4168 struct elf_link_hash_entry *h,
4169 Elf_Internal_Sym *sym)
4170 {
4171 struct elf_x86_64_link_hash_table *htab;
4172
4173 htab = elf_x86_64_hash_table (info);
4174 if (htab == NULL)
4175 return FALSE;
4176
4177 if (h->plt.offset != (bfd_vma) -1)
4178 {
4179 bfd_vma plt_index;
4180 bfd_vma got_offset;
4181 Elf_Internal_Rela rela;
4182 bfd_byte *loc;
4183 asection *plt, *gotplt, *relplt;
4184 const struct elf_backend_data *bed;
4185
4186 /* When building a static executable, use .iplt, .igot.plt and
4187 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4188 if (htab->elf.splt != NULL)
4189 {
4190 plt = htab->elf.splt;
4191 gotplt = htab->elf.sgotplt;
4192 relplt = htab->elf.srelplt;
4193 }
4194 else
4195 {
4196 plt = htab->elf.iplt;
4197 gotplt = htab->elf.igotplt;
4198 relplt = htab->elf.irelplt;
4199 }
4200
4201 /* This symbol has an entry in the procedure linkage table. Set
4202 it up. */
4203 if ((h->dynindx == -1
4204 && !((h->forced_local || info->executable)
4205 && h->def_regular
4206 && h->type == STT_GNU_IFUNC))
4207 || plt == NULL
4208 || gotplt == NULL
4209 || relplt == NULL)
4210 return FALSE;
4211
4212 /* Get the index in the procedure linkage table which
4213 corresponds to this symbol. This is the index of this symbol
4214 in all the symbols for which we are making plt entries. The
4215 first entry in the procedure linkage table is reserved.
4216
4217 Get the offset into the .got table of the entry that
4218 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4219 bytes. The first three are reserved for the dynamic linker.
4220
4221 For static executables, we don't reserve anything. */
4222
4223 if (plt == htab->elf.splt)
4224 {
4225 got_offset = h->plt.offset / PLT_ENTRY_SIZE - 1;
4226 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4227 }
4228 else
4229 {
4230 got_offset = h->plt.offset / PLT_ENTRY_SIZE;
4231 got_offset = got_offset * GOT_ENTRY_SIZE;
4232 }
4233
4234 /* Fill in the entry in the procedure linkage table. */
4235 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
4236 PLT_ENTRY_SIZE);
4237
4238 /* Insert the relocation positions of the plt section. The magic
4239 numbers at the end of the statements are the positions of the
4240 relocations in the plt section. */
4241 /* Put offset for jmp *name@GOTPCREL(%rip), since the
4242 instruction uses 6 bytes, subtract this value. */
4243 bfd_put_32 (output_bfd,
4244 (gotplt->output_section->vma
4245 + gotplt->output_offset
4246 + got_offset
4247 - plt->output_section->vma
4248 - plt->output_offset
4249 - h->plt.offset
4250 - 6),
4251 plt->contents + h->plt.offset + 2);
4252
4253 /* Fill in the entry in the global offset table, initially this
4254 points to the pushq instruction in the PLT which is at offset 6. */
4255 bfd_put_64 (output_bfd, (plt->output_section->vma
4256 + plt->output_offset
4257 + h->plt.offset + 6),
4258 gotplt->contents + got_offset);
4259
4260 /* Fill in the entry in the .rela.plt section. */
4261 rela.r_offset = (gotplt->output_section->vma
4262 + gotplt->output_offset
4263 + got_offset);
4264 if (h->dynindx == -1
4265 || ((info->executable
4266 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4267 && h->def_regular
4268 && h->type == STT_GNU_IFUNC))
4269 {
4270 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4271 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4272 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4273 rela.r_addend = (h->root.u.def.value
4274 + h->root.u.def.section->output_section->vma
4275 + h->root.u.def.section->output_offset);
4276 /* R_X86_64_IRELATIVE comes last. */
4277 plt_index = htab->next_irelative_index--;
4278 }
4279 else
4280 {
4281 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4282 rela.r_addend = 0;
4283 plt_index = htab->next_jump_slot_index++;
4284 }
4285
4286 /* Don't fill PLT entry for static executables. */
4287 if (plt == htab->elf.splt)
4288 {
4289 /* Put relocation index. */
4290 bfd_put_32 (output_bfd, plt_index,
4291 plt->contents + h->plt.offset + 7);
4292 /* Put offset for jmp .PLT0. */
4293 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4294 plt->contents + h->plt.offset + 12);
4295 }
4296
4297 bed = get_elf_backend_data (output_bfd);
4298 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4299 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4300
4301 if (!h->def_regular)
4302 {
4303 /* Mark the symbol as undefined, rather than as defined in
4304 the .plt section. Leave the value if there were any
4305 relocations where pointer equality matters (this is a clue
4306 for the dynamic linker, to make function pointer
4307 comparisons work between an application and shared
4308 library), otherwise set it to zero. If a function is only
4309 called from a binary, there is no need to slow down
4310 shared libraries because of that. */
4311 sym->st_shndx = SHN_UNDEF;
4312 if (!h->pointer_equality_needed)
4313 sym->st_value = 0;
4314 }
4315 }
4316
4317 if (h->got.offset != (bfd_vma) -1
4318 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4319 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4320 {
4321 Elf_Internal_Rela rela;
4322
4323 /* This symbol has an entry in the global offset table. Set it
4324 up. */
4325 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4326 abort ();
4327
4328 rela.r_offset = (htab->elf.sgot->output_section->vma
4329 + htab->elf.sgot->output_offset
4330 + (h->got.offset &~ (bfd_vma) 1));
4331
4332 /* If this is a static link, or it is a -Bsymbolic link and the
4333 symbol is defined locally or was forced to be local because
4334 of a version file, we just want to emit a RELATIVE reloc.
4335 The entry in the global offset table will already have been
4336 initialized in the relocate_section function. */
4337 if (h->def_regular
4338 && h->type == STT_GNU_IFUNC)
4339 {
4340 if (info->shared)
4341 {
4342 /* Generate R_X86_64_GLOB_DAT. */
4343 goto do_glob_dat;
4344 }
4345 else
4346 {
4347 asection *plt;
4348
4349 if (!h->pointer_equality_needed)
4350 abort ();
4351
4352 /* For non-shared object, we can't use .got.plt, which
4353 contains the real function addres if we need pointer
4354 equality. We load the GOT entry with the PLT entry. */
4355 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4356 bfd_put_64 (output_bfd, (plt->output_section->vma
4357 + plt->output_offset
4358 + h->plt.offset),
4359 htab->elf.sgot->contents + h->got.offset);
4360 return TRUE;
4361 }
4362 }
4363 else if (info->shared
4364 && SYMBOL_REFERENCES_LOCAL (info, h))
4365 {
4366 if (!h->def_regular)
4367 return FALSE;
4368 BFD_ASSERT((h->got.offset & 1) != 0);
4369 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4370 rela.r_addend = (h->root.u.def.value
4371 + h->root.u.def.section->output_section->vma
4372 + h->root.u.def.section->output_offset);
4373 }
4374 else
4375 {
4376 BFD_ASSERT((h->got.offset & 1) == 0);
4377 do_glob_dat:
4378 bfd_put_64 (output_bfd, (bfd_vma) 0,
4379 htab->elf.sgot->contents + h->got.offset);
4380 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4381 rela.r_addend = 0;
4382 }
4383
4384 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4385 }
4386
4387 if (h->needs_copy)
4388 {
4389 Elf_Internal_Rela rela;
4390
4391 /* This symbol needs a copy reloc. Set it up. */
4392
4393 if (h->dynindx == -1
4394 || (h->root.type != bfd_link_hash_defined
4395 && h->root.type != bfd_link_hash_defweak)
4396 || htab->srelbss == NULL)
4397 abort ();
4398
4399 rela.r_offset = (h->root.u.def.value
4400 + h->root.u.def.section->output_section->vma
4401 + h->root.u.def.section->output_offset);
4402 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4403 rela.r_addend = 0;
4404 elf_append_rela (output_bfd, htab->srelbss, &rela);
4405 }
4406
4407 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4408 be NULL for local symbols. */
4409 if (sym != NULL
4410 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4411 || h == htab->elf.hgot))
4412 sym->st_shndx = SHN_ABS;
4413
4414 return TRUE;
4415 }
4416
4417 /* Finish up local dynamic symbol handling. We set the contents of
4418 various dynamic sections here. */
4419
4420 static bfd_boolean
4421 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4422 {
4423 struct elf_link_hash_entry *h
4424 = (struct elf_link_hash_entry *) *slot;
4425 struct bfd_link_info *info
4426 = (struct bfd_link_info *) inf;
4427
4428 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4429 info, h, NULL);
4430 }
4431
4432 /* Used to decide how to sort relocs in an optimal manner for the
4433 dynamic linker, before writing them out. */
4434
4435 static enum elf_reloc_type_class
4436 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4437 {
4438 switch ((int) ELF32_R_TYPE (rela->r_info))
4439 {
4440 case R_X86_64_RELATIVE:
4441 return reloc_class_relative;
4442 case R_X86_64_JUMP_SLOT:
4443 return reloc_class_plt;
4444 case R_X86_64_COPY:
4445 return reloc_class_copy;
4446 default:
4447 return reloc_class_normal;
4448 }
4449 }
4450
4451 /* Finish up the dynamic sections. */
4452
4453 static bfd_boolean
4454 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4455 struct bfd_link_info *info)
4456 {
4457 struct elf_x86_64_link_hash_table *htab;
4458 bfd *dynobj;
4459 asection *sdyn;
4460
4461 htab = elf_x86_64_hash_table (info);
4462 if (htab == NULL)
4463 return FALSE;
4464
4465 dynobj = htab->elf.dynobj;
4466 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4467
4468 if (htab->elf.dynamic_sections_created)
4469 {
4470 bfd_byte *dyncon, *dynconend;
4471 const struct elf_backend_data *bed;
4472 bfd_size_type sizeof_dyn;
4473
4474 if (sdyn == NULL || htab->elf.sgot == NULL)
4475 abort ();
4476
4477 bed = get_elf_backend_data (dynobj);
4478 sizeof_dyn = bed->s->sizeof_dyn;
4479 dyncon = sdyn->contents;
4480 dynconend = sdyn->contents + sdyn->size;
4481 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4482 {
4483 Elf_Internal_Dyn dyn;
4484 asection *s;
4485
4486 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4487
4488 switch (dyn.d_tag)
4489 {
4490 default:
4491 continue;
4492
4493 case DT_PLTGOT:
4494 s = htab->elf.sgotplt;
4495 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4496 break;
4497
4498 case DT_JMPREL:
4499 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4500 break;
4501
4502 case DT_PLTRELSZ:
4503 s = htab->elf.srelplt->output_section;
4504 dyn.d_un.d_val = s->size;
4505 break;
4506
4507 case DT_RELASZ:
4508 /* The procedure linkage table relocs (DT_JMPREL) should
4509 not be included in the overall relocs (DT_RELA).
4510 Therefore, we override the DT_RELASZ entry here to
4511 make it not include the JMPREL relocs. Since the
4512 linker script arranges for .rela.plt to follow all
4513 other relocation sections, we don't have to worry
4514 about changing the DT_RELA entry. */
4515 if (htab->elf.srelplt != NULL)
4516 {
4517 s = htab->elf.srelplt->output_section;
4518 dyn.d_un.d_val -= s->size;
4519 }
4520 break;
4521
4522 case DT_TLSDESC_PLT:
4523 s = htab->elf.splt;
4524 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4525 + htab->tlsdesc_plt;
4526 break;
4527
4528 case DT_TLSDESC_GOT:
4529 s = htab->elf.sgot;
4530 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4531 + htab->tlsdesc_got;
4532 break;
4533 }
4534
4535 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4536 }
4537
4538 /* Fill in the special first entry in the procedure linkage table. */
4539 if (htab->elf.splt && htab->elf.splt->size > 0)
4540 {
4541 /* Fill in the first entry in the procedure linkage table. */
4542 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4543 PLT_ENTRY_SIZE);
4544 /* Add offset for pushq GOT+8(%rip), since the instruction
4545 uses 6 bytes subtract this value. */
4546 bfd_put_32 (output_bfd,
4547 (htab->elf.sgotplt->output_section->vma
4548 + htab->elf.sgotplt->output_offset
4549 + 8
4550 - htab->elf.splt->output_section->vma
4551 - htab->elf.splt->output_offset
4552 - 6),
4553 htab->elf.splt->contents + 2);
4554 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4555 the end of the instruction. */
4556 bfd_put_32 (output_bfd,
4557 (htab->elf.sgotplt->output_section->vma
4558 + htab->elf.sgotplt->output_offset
4559 + 16
4560 - htab->elf.splt->output_section->vma
4561 - htab->elf.splt->output_offset
4562 - 12),
4563 htab->elf.splt->contents + 8);
4564
4565 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4566 PLT_ENTRY_SIZE;
4567
4568 if (htab->tlsdesc_plt)
4569 {
4570 bfd_put_64 (output_bfd, (bfd_vma) 0,
4571 htab->elf.sgot->contents + htab->tlsdesc_got);
4572
4573 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4574 elf_x86_64_plt0_entry,
4575 PLT_ENTRY_SIZE);
4576
4577 /* Add offset for pushq GOT+8(%rip), since the
4578 instruction uses 6 bytes subtract this value. */
4579 bfd_put_32 (output_bfd,
4580 (htab->elf.sgotplt->output_section->vma
4581 + htab->elf.sgotplt->output_offset
4582 + 8
4583 - htab->elf.splt->output_section->vma
4584 - htab->elf.splt->output_offset
4585 - htab->tlsdesc_plt
4586 - 6),
4587 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4588 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4589 htab->tlsdesc_got. The 12 is the offset to the end of
4590 the instruction. */
4591 bfd_put_32 (output_bfd,
4592 (htab->elf.sgot->output_section->vma
4593 + htab->elf.sgot->output_offset
4594 + htab->tlsdesc_got
4595 - htab->elf.splt->output_section->vma
4596 - htab->elf.splt->output_offset
4597 - htab->tlsdesc_plt
4598 - 12),
4599 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4600 }
4601 }
4602 }
4603
4604 if (htab->elf.sgotplt)
4605 {
4606 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4607 {
4608 (*_bfd_error_handler)
4609 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4610 return FALSE;
4611 }
4612
4613 /* Fill in the first three entries in the global offset table. */
4614 if (htab->elf.sgotplt->size > 0)
4615 {
4616 /* Set the first entry in the global offset table to the address of
4617 the dynamic section. */
4618 if (sdyn == NULL)
4619 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4620 else
4621 bfd_put_64 (output_bfd,
4622 sdyn->output_section->vma + sdyn->output_offset,
4623 htab->elf.sgotplt->contents);
4624 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4625 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4626 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4627 }
4628
4629 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4630 GOT_ENTRY_SIZE;
4631 }
4632
4633 /* Adjust .eh_frame for .plt section. */
4634 if (htab->plt_eh_frame != NULL)
4635 {
4636 if (htab->elf.splt != NULL
4637 && htab->elf.splt->size != 0
4638 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4639 && htab->elf.splt->output_section != NULL
4640 && htab->plt_eh_frame->output_section != NULL)
4641 {
4642 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4643 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4644 + htab->plt_eh_frame->output_offset
4645 + PLT_FDE_START_OFFSET;
4646 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4647 htab->plt_eh_frame->contents
4648 + PLT_FDE_START_OFFSET);
4649 }
4650 if (htab->plt_eh_frame->sec_info_type
4651 == ELF_INFO_TYPE_EH_FRAME)
4652 {
4653 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4654 htab->plt_eh_frame,
4655 htab->plt_eh_frame->contents))
4656 return FALSE;
4657 }
4658 }
4659
4660 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4661 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4662 = GOT_ENTRY_SIZE;
4663
4664 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4665 htab_traverse (htab->loc_hash_table,
4666 elf_x86_64_finish_local_dynamic_symbol,
4667 info);
4668
4669 return TRUE;
4670 }
4671
4672 /* Return address for Ith PLT stub in section PLT, for relocation REL
4673 or (bfd_vma) -1 if it should not be included. */
4674
4675 static bfd_vma
4676 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4677 const arelent *rel ATTRIBUTE_UNUSED)
4678 {
4679 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4680 }
4681
4682 /* Handle an x86-64 specific section when reading an object file. This
4683 is called when elfcode.h finds a section with an unknown type. */
4684
4685 static bfd_boolean
4686 elf_x86_64_section_from_shdr (bfd *abfd,
4687 Elf_Internal_Shdr *hdr,
4688 const char *name,
4689 int shindex)
4690 {
4691 if (hdr->sh_type != SHT_X86_64_UNWIND)
4692 return FALSE;
4693
4694 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4695 return FALSE;
4696
4697 return TRUE;
4698 }
4699
4700 /* Hook called by the linker routine which adds symbols from an object
4701 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4702 of .bss. */
4703
4704 static bfd_boolean
4705 elf_x86_64_add_symbol_hook (bfd *abfd,
4706 struct bfd_link_info *info,
4707 Elf_Internal_Sym *sym,
4708 const char **namep ATTRIBUTE_UNUSED,
4709 flagword *flagsp ATTRIBUTE_UNUSED,
4710 asection **secp,
4711 bfd_vma *valp)
4712 {
4713 asection *lcomm;
4714
4715 switch (sym->st_shndx)
4716 {
4717 case SHN_X86_64_LCOMMON:
4718 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4719 if (lcomm == NULL)
4720 {
4721 lcomm = bfd_make_section_with_flags (abfd,
4722 "LARGE_COMMON",
4723 (SEC_ALLOC
4724 | SEC_IS_COMMON
4725 | SEC_LINKER_CREATED));
4726 if (lcomm == NULL)
4727 return FALSE;
4728 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4729 }
4730 *secp = lcomm;
4731 *valp = sym->st_size;
4732 return TRUE;
4733 }
4734
4735 if ((abfd->flags & DYNAMIC) == 0
4736 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4737 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4738 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4739
4740 return TRUE;
4741 }
4742
4743
4744 /* Given a BFD section, try to locate the corresponding ELF section
4745 index. */
4746
4747 static bfd_boolean
4748 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4749 asection *sec, int *index_return)
4750 {
4751 if (sec == &_bfd_elf_large_com_section)
4752 {
4753 *index_return = SHN_X86_64_LCOMMON;
4754 return TRUE;
4755 }
4756 return FALSE;
4757 }
4758
4759 /* Process a symbol. */
4760
4761 static void
4762 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4763 asymbol *asym)
4764 {
4765 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4766
4767 switch (elfsym->internal_elf_sym.st_shndx)
4768 {
4769 case SHN_X86_64_LCOMMON:
4770 asym->section = &_bfd_elf_large_com_section;
4771 asym->value = elfsym->internal_elf_sym.st_size;
4772 /* Common symbol doesn't set BSF_GLOBAL. */
4773 asym->flags &= ~BSF_GLOBAL;
4774 break;
4775 }
4776 }
4777
4778 static bfd_boolean
4779 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4780 {
4781 return (sym->st_shndx == SHN_COMMON
4782 || sym->st_shndx == SHN_X86_64_LCOMMON);
4783 }
4784
4785 static unsigned int
4786 elf_x86_64_common_section_index (asection *sec)
4787 {
4788 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4789 return SHN_COMMON;
4790 else
4791 return SHN_X86_64_LCOMMON;
4792 }
4793
4794 static asection *
4795 elf_x86_64_common_section (asection *sec)
4796 {
4797 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4798 return bfd_com_section_ptr;
4799 else
4800 return &_bfd_elf_large_com_section;
4801 }
4802
4803 static bfd_boolean
4804 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4805 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4806 struct elf_link_hash_entry *h,
4807 Elf_Internal_Sym *sym,
4808 asection **psec,
4809 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4810 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4811 bfd_boolean *skip ATTRIBUTE_UNUSED,
4812 bfd_boolean *override ATTRIBUTE_UNUSED,
4813 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4814 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4815 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4816 bfd_boolean *newdef,
4817 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4818 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4819 bfd *abfd ATTRIBUTE_UNUSED,
4820 asection **sec,
4821 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4822 bfd_boolean *olddef,
4823 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4824 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4825 bfd *oldbfd,
4826 asection **oldsec)
4827 {
4828 /* A normal common symbol and a large common symbol result in a
4829 normal common symbol. We turn the large common symbol into a
4830 normal one. */
4831 if (!*olddef
4832 && h->root.type == bfd_link_hash_common
4833 && !*newdef
4834 && bfd_is_com_section (*sec)
4835 && *oldsec != *sec)
4836 {
4837 if (sym->st_shndx == SHN_COMMON
4838 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4839 {
4840 h->root.u.c.p->section
4841 = bfd_make_section_old_way (oldbfd, "COMMON");
4842 h->root.u.c.p->section->flags = SEC_ALLOC;
4843 }
4844 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4845 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4846 *psec = *sec = bfd_com_section_ptr;
4847 }
4848
4849 return TRUE;
4850 }
4851
4852 static int
4853 elf_x86_64_additional_program_headers (bfd *abfd,
4854 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4855 {
4856 asection *s;
4857 int count = 0;
4858
4859 /* Check to see if we need a large readonly segment. */
4860 s = bfd_get_section_by_name (abfd, ".lrodata");
4861 if (s && (s->flags & SEC_LOAD))
4862 count++;
4863
4864 /* Check to see if we need a large data segment. Since .lbss sections
4865 is placed right after the .bss section, there should be no need for
4866 a large data segment just because of .lbss. */
4867 s = bfd_get_section_by_name (abfd, ".ldata");
4868 if (s && (s->flags & SEC_LOAD))
4869 count++;
4870
4871 return count;
4872 }
4873
4874 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4875
4876 static bfd_boolean
4877 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4878 {
4879 if (h->plt.offset != (bfd_vma) -1
4880 && !h->def_regular
4881 && !h->pointer_equality_needed)
4882 return FALSE;
4883
4884 return _bfd_elf_hash_symbol (h);
4885 }
4886
4887 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4888
4889 static bfd_boolean
4890 elf_x86_64_relocs_compatible (const bfd_target *input,
4891 const bfd_target *output)
4892 {
4893 return ((xvec_get_elf_backend_data (input)->s->elfclass
4894 == xvec_get_elf_backend_data (output)->s->elfclass)
4895 && _bfd_elf_relocs_compatible (input, output));
4896 }
4897
4898 static const struct bfd_elf_special_section
4899 elf_x86_64_special_sections[]=
4900 {
4901 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4902 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4903 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4904 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4905 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4906 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4907 { NULL, 0, 0, 0, 0 }
4908 };
4909
4910 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4911 #define TARGET_LITTLE_NAME "elf64-x86-64"
4912 #define ELF_ARCH bfd_arch_i386
4913 #define ELF_TARGET_ID X86_64_ELF_DATA
4914 #define ELF_MACHINE_CODE EM_X86_64
4915 #define ELF_MAXPAGESIZE 0x200000
4916 #define ELF_MINPAGESIZE 0x1000
4917 #define ELF_COMMONPAGESIZE 0x1000
4918
4919 #define elf_backend_can_gc_sections 1
4920 #define elf_backend_can_refcount 1
4921 #define elf_backend_want_got_plt 1
4922 #define elf_backend_plt_readonly 1
4923 #define elf_backend_want_plt_sym 0
4924 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4925 #define elf_backend_rela_normal 1
4926 #define elf_backend_plt_alignment 4
4927
4928 #define elf_info_to_howto elf_x86_64_info_to_howto
4929
4930 #define bfd_elf64_bfd_link_hash_table_create \
4931 elf_x86_64_link_hash_table_create
4932 #define bfd_elf64_bfd_link_hash_table_free \
4933 elf_x86_64_link_hash_table_free
4934 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4935 #define bfd_elf64_bfd_reloc_name_lookup \
4936 elf_x86_64_reloc_name_lookup
4937
4938 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4939 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4940 #define elf_backend_check_relocs elf_x86_64_check_relocs
4941 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4942 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4943 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4944 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4945 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4946 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4947 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4948 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4949 #ifdef CORE_HEADER
4950 #define elf_backend_write_core_note elf_x86_64_write_core_note
4951 #endif
4952 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4953 #define elf_backend_relocate_section elf_x86_64_relocate_section
4954 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4955 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4956 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4957 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4958 #define elf_backend_object_p elf64_x86_64_elf_object_p
4959 #define bfd_elf64_mkobject elf_x86_64_mkobject
4960
4961 #define elf_backend_section_from_shdr \
4962 elf_x86_64_section_from_shdr
4963
4964 #define elf_backend_section_from_bfd_section \
4965 elf_x86_64_elf_section_from_bfd_section
4966 #define elf_backend_add_symbol_hook \
4967 elf_x86_64_add_symbol_hook
4968 #define elf_backend_symbol_processing \
4969 elf_x86_64_symbol_processing
4970 #define elf_backend_common_section_index \
4971 elf_x86_64_common_section_index
4972 #define elf_backend_common_section \
4973 elf_x86_64_common_section
4974 #define elf_backend_common_definition \
4975 elf_x86_64_common_definition
4976 #define elf_backend_merge_symbol \
4977 elf_x86_64_merge_symbol
4978 #define elf_backend_special_sections \
4979 elf_x86_64_special_sections
4980 #define elf_backend_additional_program_headers \
4981 elf_x86_64_additional_program_headers
4982 #define elf_backend_hash_symbol \
4983 elf_x86_64_hash_symbol
4984
4985 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4986
4987 #include "elf64-target.h"
4988
4989 /* FreeBSD support. */
4990
4991 #undef TARGET_LITTLE_SYM
4992 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4993 #undef TARGET_LITTLE_NAME
4994 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4995
4996 #undef ELF_OSABI
4997 #define ELF_OSABI ELFOSABI_FREEBSD
4998
4999 #undef elf64_bed
5000 #define elf64_bed elf64_x86_64_fbsd_bed
5001
5002 #include "elf64-target.h"
5003
5004 /* Solaris 2 support. */
5005
5006 #undef TARGET_LITTLE_SYM
5007 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5008 #undef TARGET_LITTLE_NAME
5009 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5010
5011 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5012 objects won't be recognized. */
5013 #undef ELF_OSABI
5014
5015 #undef elf64_bed
5016 #define elf64_bed elf64_x86_64_sol2_bed
5017
5018 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5019 boundary. */
5020 #undef elf_backend_static_tls_alignment
5021 #define elf_backend_static_tls_alignment 16
5022
5023 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5024
5025 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5026 File, p.63. */
5027 #undef elf_backend_want_plt_sym
5028 #define elf_backend_want_plt_sym 1
5029
5030 #include "elf64-target.h"
5031
5032 /* Intel L1OM support. */
5033
5034 static bfd_boolean
5035 elf64_l1om_elf_object_p (bfd *abfd)
5036 {
5037 /* Set the right machine number for an L1OM elf64 file. */
5038 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5039 return TRUE;
5040 }
5041
5042 #undef TARGET_LITTLE_SYM
5043 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5044 #undef TARGET_LITTLE_NAME
5045 #define TARGET_LITTLE_NAME "elf64-l1om"
5046 #undef ELF_ARCH
5047 #define ELF_ARCH bfd_arch_l1om
5048
5049 #undef ELF_MACHINE_CODE
5050 #define ELF_MACHINE_CODE EM_L1OM
5051
5052 #undef ELF_OSABI
5053
5054 #undef elf64_bed
5055 #define elf64_bed elf64_l1om_bed
5056
5057 #undef elf_backend_object_p
5058 #define elf_backend_object_p elf64_l1om_elf_object_p
5059
5060 #undef elf_backend_static_tls_alignment
5061
5062 #undef elf_backend_want_plt_sym
5063 #define elf_backend_want_plt_sym 0
5064
5065 #include "elf64-target.h"
5066
5067 /* FreeBSD L1OM support. */
5068
5069 #undef TARGET_LITTLE_SYM
5070 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5071 #undef TARGET_LITTLE_NAME
5072 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5073
5074 #undef ELF_OSABI
5075 #define ELF_OSABI ELFOSABI_FREEBSD
5076
5077 #undef elf64_bed
5078 #define elf64_bed elf64_l1om_fbsd_bed
5079
5080 #include "elf64-target.h"
5081
5082 /* Intel K1OM support. */
5083
5084 static bfd_boolean
5085 elf64_k1om_elf_object_p (bfd *abfd)
5086 {
5087 /* Set the right machine number for an K1OM elf64 file. */
5088 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5089 return TRUE;
5090 }
5091
5092 #undef TARGET_LITTLE_SYM
5093 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5094 #undef TARGET_LITTLE_NAME
5095 #define TARGET_LITTLE_NAME "elf64-k1om"
5096 #undef ELF_ARCH
5097 #define ELF_ARCH bfd_arch_k1om
5098
5099 #undef ELF_MACHINE_CODE
5100 #define ELF_MACHINE_CODE EM_K1OM
5101
5102 #undef ELF_OSABI
5103
5104 #undef elf64_bed
5105 #define elf64_bed elf64_k1om_bed
5106
5107 #undef elf_backend_object_p
5108 #define elf_backend_object_p elf64_k1om_elf_object_p
5109
5110 #undef elf_backend_static_tls_alignment
5111
5112 #undef elf_backend_want_plt_sym
5113 #define elf_backend_want_plt_sym 0
5114
5115 #include "elf64-target.h"
5116
5117 /* FreeBSD K1OM support. */
5118
5119 #undef TARGET_LITTLE_SYM
5120 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5121 #undef TARGET_LITTLE_NAME
5122 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5123
5124 #undef ELF_OSABI
5125 #define ELF_OSABI ELFOSABI_FREEBSD
5126
5127 #undef elf64_bed
5128 #define elf64_bed elf64_k1om_fbsd_bed
5129
5130 #include "elf64-target.h"
5131
5132 /* 32bit x86-64 support. */
5133
5134 static bfd_boolean
5135 elf32_x86_64_elf_object_p (bfd *abfd)
5136 {
5137 /* Set the right machine number for an x86-64 elf32 file. */
5138 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
5139 return TRUE;
5140 }
5141
5142 #undef TARGET_LITTLE_SYM
5143 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5144 #undef TARGET_LITTLE_NAME
5145 #define TARGET_LITTLE_NAME "elf32-x86-64"
5146
5147 #undef ELF_ARCH
5148 #define ELF_ARCH bfd_arch_i386
5149
5150 #undef ELF_MACHINE_CODE
5151 #define ELF_MACHINE_CODE EM_X86_64
5152
5153 #define bfd_elf32_bfd_link_hash_table_create \
5154 elf_x86_64_link_hash_table_create
5155 #define bfd_elf32_bfd_link_hash_table_free \
5156 elf_x86_64_link_hash_table_free
5157 #define bfd_elf32_bfd_reloc_type_lookup \
5158 elf_x86_64_reloc_type_lookup
5159 #define bfd_elf32_bfd_reloc_name_lookup \
5160 elf_x86_64_reloc_name_lookup
5161 #define bfd_elf32_mkobject \
5162 elf_x86_64_mkobject
5163
5164 #undef ELF_OSABI
5165
5166 #undef elf_backend_object_p
5167 #define elf_backend_object_p \
5168 elf32_x86_64_elf_object_p
5169
5170 #undef elf_backend_bfd_from_remote_memory
5171 #define elf_backend_bfd_from_remote_memory \
5172 _bfd_elf32_bfd_from_remote_memory
5173
5174 #undef elf_backend_size_info
5175 #define elf_backend_size_info \
5176 _bfd_elf32_size_info
5177
5178 #include "elf32-target.h"
This page took 0.146014 seconds and 4 git commands to generate.