Add Intel MCU support to bfd
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
150 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
151 FALSE),
152 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
153 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
154 FALSE),
155 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
156 complain_overflow_bitfield, bfd_elf_generic_reloc,
157 "R_X86_64_GOTPC32_TLSDESC",
158 FALSE, 0xffffffff, 0xffffffff, TRUE),
159 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
160 complain_overflow_dont, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC_CALL",
162 FALSE, 0, 0, FALSE),
163 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
164 complain_overflow_bitfield, bfd_elf_generic_reloc,
165 "R_X86_64_TLSDESC",
166 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
172 MINUS_ONE, FALSE),
173 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
174 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
175 TRUE),
176 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
177 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
178 TRUE),
179
180 /* We have a gap in the reloc numbers here.
181 R_X86_64_standard counts the number up to this point, and
182 R_X86_64_vt_offset is the value to subtract from a reloc type of
183 R_X86_64_GNU_VT* to form an index into this table. */
184 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
185 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
186
187 /* GNU extension to record C++ vtable hierarchy. */
188 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
190
191 /* GNU extension to record C++ vtable member usage. */
192 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
193 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
194 FALSE),
195
196 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
197 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
199 FALSE)
200 };
201
202 #define IS_X86_64_PCREL_TYPE(TYPE) \
203 ( ((TYPE) == R_X86_64_PC8) \
204 || ((TYPE) == R_X86_64_PC16) \
205 || ((TYPE) == R_X86_64_PC32) \
206 || ((TYPE) == R_X86_64_PC32_BND) \
207 || ((TYPE) == R_X86_64_PC64))
208
209 /* Map BFD relocs to the x86_64 elf relocs. */
210 struct elf_reloc_map
211 {
212 bfd_reloc_code_real_type bfd_reloc_val;
213 unsigned char elf_reloc_val;
214 };
215
216 static const struct elf_reloc_map x86_64_reloc_map[] =
217 {
218 { BFD_RELOC_NONE, R_X86_64_NONE, },
219 { BFD_RELOC_64, R_X86_64_64, },
220 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
221 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
222 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
223 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
224 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
225 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
226 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
227 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
228 { BFD_RELOC_32, R_X86_64_32, },
229 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
230 { BFD_RELOC_16, R_X86_64_16, },
231 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
232 { BFD_RELOC_8, R_X86_64_8, },
233 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
234 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
235 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
236 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
237 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
238 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
239 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
240 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
241 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
242 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
243 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
244 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
245 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
246 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
247 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
248 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
249 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
250 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
251 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
252 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
253 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
254 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
255 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
256 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
257 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
258 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
259 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
260 };
261
262 static reloc_howto_type *
263 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
264 {
265 unsigned i;
266
267 if (r_type == (unsigned int) R_X86_64_32)
268 {
269 if (ABI_64_P (abfd))
270 i = r_type;
271 else
272 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
273 }
274 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
275 || r_type >= (unsigned int) R_X86_64_max)
276 {
277 if (r_type >= (unsigned int) R_X86_64_standard)
278 {
279 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
280 abfd, (int) r_type);
281 r_type = R_X86_64_NONE;
282 }
283 i = r_type;
284 }
285 else
286 i = r_type - (unsigned int) R_X86_64_vt_offset;
287 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
288 return &x86_64_elf_howto_table[i];
289 }
290
291 /* Given a BFD reloc type, return a HOWTO structure. */
292 static reloc_howto_type *
293 elf_x86_64_reloc_type_lookup (bfd *abfd,
294 bfd_reloc_code_real_type code)
295 {
296 unsigned int i;
297
298 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
299 i++)
300 {
301 if (x86_64_reloc_map[i].bfd_reloc_val == code)
302 return elf_x86_64_rtype_to_howto (abfd,
303 x86_64_reloc_map[i].elf_reloc_val);
304 }
305 return NULL;
306 }
307
308 static reloc_howto_type *
309 elf_x86_64_reloc_name_lookup (bfd *abfd,
310 const char *r_name)
311 {
312 unsigned int i;
313
314 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
315 {
316 /* Get x32 R_X86_64_32. */
317 reloc_howto_type *reloc
318 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
319 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
320 return reloc;
321 }
322
323 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
324 if (x86_64_elf_howto_table[i].name != NULL
325 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
326 return &x86_64_elf_howto_table[i];
327
328 return NULL;
329 }
330
331 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
332
333 static void
334 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
335 Elf_Internal_Rela *dst)
336 {
337 unsigned r_type;
338
339 r_type = ELF32_R_TYPE (dst->r_info);
340 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
341 BFD_ASSERT (r_type == cache_ptr->howto->type);
342 }
343 \f
344 /* Support for core dump NOTE sections. */
345 static bfd_boolean
346 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
347 {
348 int offset;
349 size_t size;
350
351 switch (note->descsz)
352 {
353 default:
354 return FALSE;
355
356 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
362
363 /* pr_reg */
364 offset = 72;
365 size = 216;
366
367 break;
368
369 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
370 /* pr_cursig */
371 elf_tdata (abfd)->core->signal
372 = bfd_get_16 (abfd, note->descdata + 12);
373
374 /* pr_pid */
375 elf_tdata (abfd)->core->lwpid
376 = bfd_get_32 (abfd, note->descdata + 32);
377
378 /* pr_reg */
379 offset = 112;
380 size = 216;
381
382 break;
383 }
384
385 /* Make a ".reg/999" section. */
386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
387 size, note->descpos + offset);
388 }
389
390 static bfd_boolean
391 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
392 {
393 switch (note->descsz)
394 {
395 default:
396 return FALSE;
397
398 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
399 elf_tdata (abfd)->core->pid
400 = bfd_get_32 (abfd, note->descdata + 12);
401 elf_tdata (abfd)->core->program
402 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
403 elf_tdata (abfd)->core->command
404 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
405 break;
406
407 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 24);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
414 }
415
416 /* Note that for some reason, a spurious space is tacked
417 onto the end of the args in some (at least one anyway)
418 implementations, so strip it off if it exists. */
419
420 {
421 char *command = elf_tdata (abfd)->core->command;
422 int n = strlen (command);
423
424 if (0 < n && command[n - 1] == ' ')
425 command[n - 1] = '\0';
426 }
427
428 return TRUE;
429 }
430
431 #ifdef CORE_HEADER
432 static char *
433 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
434 int note_type, ...)
435 {
436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
437 va_list ap;
438 const char *fname, *psargs;
439 long pid;
440 int cursig;
441 const void *gregs;
442
443 switch (note_type)
444 {
445 default:
446 return NULL;
447
448 case NT_PRPSINFO:
449 va_start (ap, note_type);
450 fname = va_arg (ap, const char *);
451 psargs = va_arg (ap, const char *);
452 va_end (ap);
453
454 if (bed->s->elfclass == ELFCLASS32)
455 {
456 prpsinfo32_t data;
457 memset (&data, 0, sizeof (data));
458 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
459 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
460 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
461 &data, sizeof (data));
462 }
463 else
464 {
465 prpsinfo64_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 /* NOTREACHED */
473
474 case NT_PRSTATUS:
475 va_start (ap, note_type);
476 pid = va_arg (ap, long);
477 cursig = va_arg (ap, int);
478 gregs = va_arg (ap, const void *);
479 va_end (ap);
480
481 if (bed->s->elfclass == ELFCLASS32)
482 {
483 if (bed->elf_machine_code == EM_X86_64)
484 {
485 prstatusx32_t prstat;
486 memset (&prstat, 0, sizeof (prstat));
487 prstat.pr_pid = pid;
488 prstat.pr_cursig = cursig;
489 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
490 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
491 &prstat, sizeof (prstat));
492 }
493 else
494 {
495 prstatus32_t prstat;
496 memset (&prstat, 0, sizeof (prstat));
497 prstat.pr_pid = pid;
498 prstat.pr_cursig = cursig;
499 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
500 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
501 &prstat, sizeof (prstat));
502 }
503 }
504 else
505 {
506 prstatus64_t prstat;
507 memset (&prstat, 0, sizeof (prstat));
508 prstat.pr_pid = pid;
509 prstat.pr_cursig = cursig;
510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
511 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
512 &prstat, sizeof (prstat));
513 }
514 }
515 /* NOTREACHED */
516 }
517 #endif
518 \f
519 /* Functions for the x86-64 ELF linker. */
520
521 /* The name of the dynamic interpreter. This is put in the .interp
522 section. */
523
524 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
525 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
526
527 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
528 copying dynamic variables from a shared lib into an app's dynbss
529 section, and instead use a dynamic relocation to point into the
530 shared lib. */
531 #define ELIMINATE_COPY_RELOCS 1
532
533 /* The size in bytes of an entry in the global offset table. */
534
535 #define GOT_ENTRY_SIZE 8
536
537 /* The size in bytes of an entry in the procedure linkage table. */
538
539 #define PLT_ENTRY_SIZE 16
540
541 /* The first entry in a procedure linkage table looks like this. See the
542 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
543
544 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
547 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
548 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
549 };
550
551 /* Subsequent entries in a procedure linkage table look like this. */
552
553 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
556 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
557 0x68, /* pushq immediate */
558 0, 0, 0, 0, /* replaced with index into relocation table. */
559 0xe9, /* jmp relative */
560 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
561 };
562
563 /* The first entry in a procedure linkage table with BND relocations
564 like this. */
565
566 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
567 {
568 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
569 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
570 0x0f, 0x1f, 0 /* nopl (%rax) */
571 };
572
573 /* Subsequent entries for legacy branches in a procedure linkage table
574 with BND relocations look like this. */
575
576 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
577 {
578 0x68, 0, 0, 0, 0, /* pushq immediate */
579 0xe9, 0, 0, 0, 0, /* jmpq relative */
580 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
581 };
582
583 /* Subsequent entries for branches with BND prefx in a procedure linkage
584 table with BND relocations look like this. */
585
586 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
587 {
588 0x68, 0, 0, 0, 0, /* pushq immediate */
589 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
590 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
591 };
592
593 /* Entries for legacy branches in the second procedure linkage table
594 look like this. */
595
596 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
597 {
598 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
599 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
600 0x66, 0x90 /* xchg %ax,%ax */
601 };
602
603 /* Entries for branches with BND prefix in the second procedure linkage
604 table look like this. */
605
606 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
607 {
608 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
609 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
610 0x90 /* nop */
611 };
612
613 /* .eh_frame covering the .plt section. */
614
615 static const bfd_byte elf_x86_64_eh_frame_plt[] =
616 {
617 #define PLT_CIE_LENGTH 20
618 #define PLT_FDE_LENGTH 36
619 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
620 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
621 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
622 0, 0, 0, 0, /* CIE ID */
623 1, /* CIE version */
624 'z', 'R', 0, /* Augmentation string */
625 1, /* Code alignment factor */
626 0x78, /* Data alignment factor */
627 16, /* Return address column */
628 1, /* Augmentation size */
629 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
630 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
631 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
632 DW_CFA_nop, DW_CFA_nop,
633
634 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
635 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
636 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
637 0, 0, 0, 0, /* .plt size goes here */
638 0, /* Augmentation size */
639 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
640 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
641 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
642 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
643 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
644 11, /* Block length */
645 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
646 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
647 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
648 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
649 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
650 };
651
652 /* Architecture-specific backend data for x86-64. */
653
654 struct elf_x86_64_backend_data
655 {
656 /* Templates for the initial PLT entry and for subsequent entries. */
657 const bfd_byte *plt0_entry;
658 const bfd_byte *plt_entry;
659 unsigned int plt_entry_size; /* Size of each PLT entry. */
660
661 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
662 unsigned int plt0_got1_offset;
663 unsigned int plt0_got2_offset;
664
665 /* Offset of the end of the PC-relative instruction containing
666 plt0_got2_offset. */
667 unsigned int plt0_got2_insn_end;
668
669 /* Offsets into plt_entry that are to be replaced with... */
670 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
671 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
672 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
673
674 /* Length of the PC-relative instruction containing plt_got_offset. */
675 unsigned int plt_got_insn_size;
676
677 /* Offset of the end of the PC-relative jump to plt0_entry. */
678 unsigned int plt_plt_insn_end;
679
680 /* Offset into plt_entry where the initial value of the GOT entry points. */
681 unsigned int plt_lazy_offset;
682
683 /* .eh_frame covering the .plt section. */
684 const bfd_byte *eh_frame_plt;
685 unsigned int eh_frame_plt_size;
686 };
687
688 #define get_elf_x86_64_arch_data(bed) \
689 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
690
691 #define get_elf_x86_64_backend_data(abfd) \
692 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
693
694 #define GET_PLT_ENTRY_SIZE(abfd) \
695 get_elf_x86_64_backend_data (abfd)->plt_entry_size
696
697 /* These are the standard parameters. */
698 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
699 {
700 elf_x86_64_plt0_entry, /* plt0_entry */
701 elf_x86_64_plt_entry, /* plt_entry */
702 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
703 2, /* plt0_got1_offset */
704 8, /* plt0_got2_offset */
705 12, /* plt0_got2_insn_end */
706 2, /* plt_got_offset */
707 7, /* plt_reloc_offset */
708 12, /* plt_plt_offset */
709 6, /* plt_got_insn_size */
710 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
711 6, /* plt_lazy_offset */
712 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
713 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
714 };
715
716 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
717 {
718 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
719 elf_x86_64_bnd_plt_entry, /* plt_entry */
720 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
721 2, /* plt0_got1_offset */
722 1+8, /* plt0_got2_offset */
723 1+12, /* plt0_got2_insn_end */
724 1+2, /* plt_got_offset */
725 1, /* plt_reloc_offset */
726 7, /* plt_plt_offset */
727 1+6, /* plt_got_insn_size */
728 11, /* plt_plt_insn_end */
729 0, /* plt_lazy_offset */
730 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
731 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
732 };
733
734 #define elf_backend_arch_data &elf_x86_64_arch_bed
735
736 /* x86-64 ELF linker hash entry. */
737
738 struct elf_x86_64_link_hash_entry
739 {
740 struct elf_link_hash_entry elf;
741
742 /* Track dynamic relocs copied for this symbol. */
743 struct elf_dyn_relocs *dyn_relocs;
744
745 #define GOT_UNKNOWN 0
746 #define GOT_NORMAL 1
747 #define GOT_TLS_GD 2
748 #define GOT_TLS_IE 3
749 #define GOT_TLS_GDESC 4
750 #define GOT_TLS_GD_BOTH_P(type) \
751 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
752 #define GOT_TLS_GD_P(type) \
753 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
754 #define GOT_TLS_GDESC_P(type) \
755 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
756 #define GOT_TLS_GD_ANY_P(type) \
757 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
758 unsigned char tls_type;
759
760 /* TRUE if a weak symbol with a real definition needs a copy reloc.
761 When there is a weak symbol with a real definition, the processor
762 independent code will have arranged for us to see the real
763 definition first. We need to copy the needs_copy bit from the
764 real definition and check it when allowing copy reloc in PIE. */
765 unsigned int needs_copy : 1;
766
767 /* TRUE if symbol has at least one BND relocation. */
768 unsigned int has_bnd_reloc : 1;
769
770 /* Information about the GOT PLT entry. Filled when there are both
771 GOT and PLT relocations against the same function. */
772 union gotplt_union plt_got;
773
774 /* Information about the second PLT entry. Filled when has_bnd_reloc is
775 set. */
776 union gotplt_union plt_bnd;
777
778 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
779 starting at the end of the jump table. */
780 bfd_vma tlsdesc_got;
781 };
782
783 #define elf_x86_64_hash_entry(ent) \
784 ((struct elf_x86_64_link_hash_entry *)(ent))
785
786 struct elf_x86_64_obj_tdata
787 {
788 struct elf_obj_tdata root;
789
790 /* tls_type for each local got entry. */
791 char *local_got_tls_type;
792
793 /* GOTPLT entries for TLS descriptors. */
794 bfd_vma *local_tlsdesc_gotent;
795 };
796
797 #define elf_x86_64_tdata(abfd) \
798 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
799
800 #define elf_x86_64_local_got_tls_type(abfd) \
801 (elf_x86_64_tdata (abfd)->local_got_tls_type)
802
803 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
804 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
805
806 #define is_x86_64_elf(bfd) \
807 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
808 && elf_tdata (bfd) != NULL \
809 && elf_object_id (bfd) == X86_64_ELF_DATA)
810
811 static bfd_boolean
812 elf_x86_64_mkobject (bfd *abfd)
813 {
814 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
815 X86_64_ELF_DATA);
816 }
817
818 /* x86-64 ELF linker hash table. */
819
820 struct elf_x86_64_link_hash_table
821 {
822 struct elf_link_hash_table elf;
823
824 /* Short-cuts to get to dynamic linker sections. */
825 asection *sdynbss;
826 asection *srelbss;
827 asection *plt_eh_frame;
828 asection *plt_bnd;
829 asection *plt_got;
830
831 union
832 {
833 bfd_signed_vma refcount;
834 bfd_vma offset;
835 } tls_ld_got;
836
837 /* The amount of space used by the jump slots in the GOT. */
838 bfd_vma sgotplt_jump_table_size;
839
840 /* Small local sym cache. */
841 struct sym_cache sym_cache;
842
843 bfd_vma (*r_info) (bfd_vma, bfd_vma);
844 bfd_vma (*r_sym) (bfd_vma);
845 unsigned int pointer_r_type;
846 const char *dynamic_interpreter;
847 int dynamic_interpreter_size;
848
849 /* _TLS_MODULE_BASE_ symbol. */
850 struct bfd_link_hash_entry *tls_module_base;
851
852 /* Used by local STT_GNU_IFUNC symbols. */
853 htab_t loc_hash_table;
854 void * loc_hash_memory;
855
856 /* The offset into splt of the PLT entry for the TLS descriptor
857 resolver. Special values are 0, if not necessary (or not found
858 to be necessary yet), and -1 if needed but not determined
859 yet. */
860 bfd_vma tlsdesc_plt;
861 /* The offset into sgot of the GOT entry used by the PLT entry
862 above. */
863 bfd_vma tlsdesc_got;
864
865 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
866 bfd_vma next_jump_slot_index;
867 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
868 bfd_vma next_irelative_index;
869 };
870
871 /* Get the x86-64 ELF linker hash table from a link_info structure. */
872
873 #define elf_x86_64_hash_table(p) \
874 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
875 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
876
877 #define elf_x86_64_compute_jump_table_size(htab) \
878 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
879
880 /* Create an entry in an x86-64 ELF linker hash table. */
881
882 static struct bfd_hash_entry *
883 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
884 struct bfd_hash_table *table,
885 const char *string)
886 {
887 /* Allocate the structure if it has not already been allocated by a
888 subclass. */
889 if (entry == NULL)
890 {
891 entry = (struct bfd_hash_entry *)
892 bfd_hash_allocate (table,
893 sizeof (struct elf_x86_64_link_hash_entry));
894 if (entry == NULL)
895 return entry;
896 }
897
898 /* Call the allocation method of the superclass. */
899 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
900 if (entry != NULL)
901 {
902 struct elf_x86_64_link_hash_entry *eh;
903
904 eh = (struct elf_x86_64_link_hash_entry *) entry;
905 eh->dyn_relocs = NULL;
906 eh->tls_type = GOT_UNKNOWN;
907 eh->needs_copy = 0;
908 eh->has_bnd_reloc = 0;
909 eh->plt_bnd.offset = (bfd_vma) -1;
910 eh->plt_got.offset = (bfd_vma) -1;
911 eh->tlsdesc_got = (bfd_vma) -1;
912 }
913
914 return entry;
915 }
916
917 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
918 for local symbol so that we can handle local STT_GNU_IFUNC symbols
919 as global symbol. We reuse indx and dynstr_index for local symbol
920 hash since they aren't used by global symbols in this backend. */
921
922 static hashval_t
923 elf_x86_64_local_htab_hash (const void *ptr)
924 {
925 struct elf_link_hash_entry *h
926 = (struct elf_link_hash_entry *) ptr;
927 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
928 }
929
930 /* Compare local hash entries. */
931
932 static int
933 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
934 {
935 struct elf_link_hash_entry *h1
936 = (struct elf_link_hash_entry *) ptr1;
937 struct elf_link_hash_entry *h2
938 = (struct elf_link_hash_entry *) ptr2;
939
940 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
941 }
942
943 /* Find and/or create a hash entry for local symbol. */
944
945 static struct elf_link_hash_entry *
946 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
947 bfd *abfd, const Elf_Internal_Rela *rel,
948 bfd_boolean create)
949 {
950 struct elf_x86_64_link_hash_entry e, *ret;
951 asection *sec = abfd->sections;
952 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
953 htab->r_sym (rel->r_info));
954 void **slot;
955
956 e.elf.indx = sec->id;
957 e.elf.dynstr_index = htab->r_sym (rel->r_info);
958 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
959 create ? INSERT : NO_INSERT);
960
961 if (!slot)
962 return NULL;
963
964 if (*slot)
965 {
966 ret = (struct elf_x86_64_link_hash_entry *) *slot;
967 return &ret->elf;
968 }
969
970 ret = (struct elf_x86_64_link_hash_entry *)
971 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
972 sizeof (struct elf_x86_64_link_hash_entry));
973 if (ret)
974 {
975 memset (ret, 0, sizeof (*ret));
976 ret->elf.indx = sec->id;
977 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
978 ret->elf.dynindx = -1;
979 ret->plt_got.offset = (bfd_vma) -1;
980 *slot = ret;
981 }
982 return &ret->elf;
983 }
984
985 /* Destroy an X86-64 ELF linker hash table. */
986
987 static void
988 elf_x86_64_link_hash_table_free (bfd *obfd)
989 {
990 struct elf_x86_64_link_hash_table *htab
991 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
992
993 if (htab->loc_hash_table)
994 htab_delete (htab->loc_hash_table);
995 if (htab->loc_hash_memory)
996 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
997 _bfd_elf_link_hash_table_free (obfd);
998 }
999
1000 /* Create an X86-64 ELF linker hash table. */
1001
1002 static struct bfd_link_hash_table *
1003 elf_x86_64_link_hash_table_create (bfd *abfd)
1004 {
1005 struct elf_x86_64_link_hash_table *ret;
1006 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
1007
1008 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
1009 if (ret == NULL)
1010 return NULL;
1011
1012 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
1013 elf_x86_64_link_hash_newfunc,
1014 sizeof (struct elf_x86_64_link_hash_entry),
1015 X86_64_ELF_DATA))
1016 {
1017 free (ret);
1018 return NULL;
1019 }
1020
1021 if (ABI_64_P (abfd))
1022 {
1023 ret->r_info = elf64_r_info;
1024 ret->r_sym = elf64_r_sym;
1025 ret->pointer_r_type = R_X86_64_64;
1026 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1027 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1028 }
1029 else
1030 {
1031 ret->r_info = elf32_r_info;
1032 ret->r_sym = elf32_r_sym;
1033 ret->pointer_r_type = R_X86_64_32;
1034 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1035 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1036 }
1037
1038 ret->loc_hash_table = htab_try_create (1024,
1039 elf_x86_64_local_htab_hash,
1040 elf_x86_64_local_htab_eq,
1041 NULL);
1042 ret->loc_hash_memory = objalloc_create ();
1043 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1044 {
1045 elf_x86_64_link_hash_table_free (abfd);
1046 return NULL;
1047 }
1048 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1049
1050 return &ret->elf.root;
1051 }
1052
1053 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1054 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1055 hash table. */
1056
1057 static bfd_boolean
1058 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1059 struct bfd_link_info *info)
1060 {
1061 struct elf_x86_64_link_hash_table *htab;
1062
1063 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1064 return FALSE;
1065
1066 htab = elf_x86_64_hash_table (info);
1067 if (htab == NULL)
1068 return FALSE;
1069
1070 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1071 if (!htab->sdynbss)
1072 abort ();
1073
1074 if (info->executable)
1075 {
1076 /* Always allow copy relocs for building executables. */
1077 asection *s = bfd_get_linker_section (dynobj, ".rela.bss");
1078 if (s == NULL)
1079 {
1080 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
1081 s = bfd_make_section_anyway_with_flags (dynobj,
1082 ".rela.bss",
1083 (bed->dynamic_sec_flags
1084 | SEC_READONLY));
1085 if (s == NULL
1086 || ! bfd_set_section_alignment (dynobj, s,
1087 bed->s->log_file_align))
1088 return FALSE;
1089 }
1090 htab->srelbss = s;
1091 }
1092
1093 if (!info->no_ld_generated_unwind_info
1094 && htab->plt_eh_frame == NULL
1095 && htab->elf.splt != NULL)
1096 {
1097 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1098 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1099 | SEC_LINKER_CREATED);
1100 htab->plt_eh_frame
1101 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1102 if (htab->plt_eh_frame == NULL
1103 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1104 return FALSE;
1105 }
1106 return TRUE;
1107 }
1108
1109 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1110
1111 static void
1112 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1113 struct elf_link_hash_entry *dir,
1114 struct elf_link_hash_entry *ind)
1115 {
1116 struct elf_x86_64_link_hash_entry *edir, *eind;
1117
1118 edir = (struct elf_x86_64_link_hash_entry *) dir;
1119 eind = (struct elf_x86_64_link_hash_entry *) ind;
1120
1121 if (!edir->has_bnd_reloc)
1122 edir->has_bnd_reloc = eind->has_bnd_reloc;
1123
1124 if (eind->dyn_relocs != NULL)
1125 {
1126 if (edir->dyn_relocs != NULL)
1127 {
1128 struct elf_dyn_relocs **pp;
1129 struct elf_dyn_relocs *p;
1130
1131 /* Add reloc counts against the indirect sym to the direct sym
1132 list. Merge any entries against the same section. */
1133 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1134 {
1135 struct elf_dyn_relocs *q;
1136
1137 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1138 if (q->sec == p->sec)
1139 {
1140 q->pc_count += p->pc_count;
1141 q->count += p->count;
1142 *pp = p->next;
1143 break;
1144 }
1145 if (q == NULL)
1146 pp = &p->next;
1147 }
1148 *pp = edir->dyn_relocs;
1149 }
1150
1151 edir->dyn_relocs = eind->dyn_relocs;
1152 eind->dyn_relocs = NULL;
1153 }
1154
1155 if (ind->root.type == bfd_link_hash_indirect
1156 && dir->got.refcount <= 0)
1157 {
1158 edir->tls_type = eind->tls_type;
1159 eind->tls_type = GOT_UNKNOWN;
1160 }
1161
1162 if (ELIMINATE_COPY_RELOCS
1163 && ind->root.type != bfd_link_hash_indirect
1164 && dir->dynamic_adjusted)
1165 {
1166 /* If called to transfer flags for a weakdef during processing
1167 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1168 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1169 dir->ref_dynamic |= ind->ref_dynamic;
1170 dir->ref_regular |= ind->ref_regular;
1171 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1172 dir->needs_plt |= ind->needs_plt;
1173 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1174 }
1175 else
1176 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1177 }
1178
1179 static bfd_boolean
1180 elf64_x86_64_elf_object_p (bfd *abfd)
1181 {
1182 /* Set the right machine number for an x86-64 elf64 file. */
1183 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1184 return TRUE;
1185 }
1186
1187 static bfd_boolean
1188 elf32_x86_64_elf_object_p (bfd *abfd)
1189 {
1190 /* Set the right machine number for an x86-64 elf32 file. */
1191 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1192 return TRUE;
1193 }
1194
1195 /* Return TRUE if the TLS access code sequence support transition
1196 from R_TYPE. */
1197
1198 static bfd_boolean
1199 elf_x86_64_check_tls_transition (bfd *abfd,
1200 struct bfd_link_info *info,
1201 asection *sec,
1202 bfd_byte *contents,
1203 Elf_Internal_Shdr *symtab_hdr,
1204 struct elf_link_hash_entry **sym_hashes,
1205 unsigned int r_type,
1206 const Elf_Internal_Rela *rel,
1207 const Elf_Internal_Rela *relend)
1208 {
1209 unsigned int val;
1210 unsigned long r_symndx;
1211 bfd_boolean largepic = FALSE;
1212 struct elf_link_hash_entry *h;
1213 bfd_vma offset;
1214 struct elf_x86_64_link_hash_table *htab;
1215
1216 /* Get the section contents. */
1217 if (contents == NULL)
1218 {
1219 if (elf_section_data (sec)->this_hdr.contents != NULL)
1220 contents = elf_section_data (sec)->this_hdr.contents;
1221 else
1222 {
1223 /* FIXME: How to better handle error condition? */
1224 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1225 return FALSE;
1226
1227 /* Cache the section contents for elf_link_input_bfd. */
1228 elf_section_data (sec)->this_hdr.contents = contents;
1229 }
1230 }
1231
1232 htab = elf_x86_64_hash_table (info);
1233 offset = rel->r_offset;
1234 switch (r_type)
1235 {
1236 case R_X86_64_TLSGD:
1237 case R_X86_64_TLSLD:
1238 if ((rel + 1) >= relend)
1239 return FALSE;
1240
1241 if (r_type == R_X86_64_TLSGD)
1242 {
1243 /* Check transition from GD access model. For 64bit, only
1244 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1245 .word 0x6666; rex64; call __tls_get_addr
1246 can transit to different access model. For 32bit, only
1247 leaq foo@tlsgd(%rip), %rdi
1248 .word 0x6666; rex64; call __tls_get_addr
1249 can transit to different access model. For largepic
1250 we also support:
1251 leaq foo@tlsgd(%rip), %rdi
1252 movabsq $__tls_get_addr@pltoff, %rax
1253 addq $rbx, %rax
1254 call *%rax. */
1255
1256 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1257 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1258
1259 if ((offset + 12) > sec->size)
1260 return FALSE;
1261
1262 if (memcmp (contents + offset + 4, call, 4) != 0)
1263 {
1264 if (!ABI_64_P (abfd)
1265 || (offset + 19) > sec->size
1266 || offset < 3
1267 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1268 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1269 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1270 != 0)
1271 return FALSE;
1272 largepic = TRUE;
1273 }
1274 else if (ABI_64_P (abfd))
1275 {
1276 if (offset < 4
1277 || memcmp (contents + offset - 4, leaq, 4) != 0)
1278 return FALSE;
1279 }
1280 else
1281 {
1282 if (offset < 3
1283 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1284 return FALSE;
1285 }
1286 }
1287 else
1288 {
1289 /* Check transition from LD access model. Only
1290 leaq foo@tlsld(%rip), %rdi;
1291 call __tls_get_addr
1292 can transit to different access model. For largepic
1293 we also support:
1294 leaq foo@tlsld(%rip), %rdi
1295 movabsq $__tls_get_addr@pltoff, %rax
1296 addq $rbx, %rax
1297 call *%rax. */
1298
1299 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1300
1301 if (offset < 3 || (offset + 9) > sec->size)
1302 return FALSE;
1303
1304 if (memcmp (contents + offset - 3, lea, 3) != 0)
1305 return FALSE;
1306
1307 if (0xe8 != *(contents + offset + 4))
1308 {
1309 if (!ABI_64_P (abfd)
1310 || (offset + 19) > sec->size
1311 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1312 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1313 != 0)
1314 return FALSE;
1315 largepic = TRUE;
1316 }
1317 }
1318
1319 r_symndx = htab->r_sym (rel[1].r_info);
1320 if (r_symndx < symtab_hdr->sh_info)
1321 return FALSE;
1322
1323 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1324 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1325 may be versioned. */
1326 return (h != NULL
1327 && h->root.root.string != NULL
1328 && (largepic
1329 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1330 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1331 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1332 && (strncmp (h->root.root.string,
1333 "__tls_get_addr", 14) == 0));
1334
1335 case R_X86_64_GOTTPOFF:
1336 /* Check transition from IE access model:
1337 mov foo@gottpoff(%rip), %reg
1338 add foo@gottpoff(%rip), %reg
1339 */
1340
1341 /* Check REX prefix first. */
1342 if (offset >= 3 && (offset + 4) <= sec->size)
1343 {
1344 val = bfd_get_8 (abfd, contents + offset - 3);
1345 if (val != 0x48 && val != 0x4c)
1346 {
1347 /* X32 may have 0x44 REX prefix or no REX prefix. */
1348 if (ABI_64_P (abfd))
1349 return FALSE;
1350 }
1351 }
1352 else
1353 {
1354 /* X32 may not have any REX prefix. */
1355 if (ABI_64_P (abfd))
1356 return FALSE;
1357 if (offset < 2 || (offset + 3) > sec->size)
1358 return FALSE;
1359 }
1360
1361 val = bfd_get_8 (abfd, contents + offset - 2);
1362 if (val != 0x8b && val != 0x03)
1363 return FALSE;
1364
1365 val = bfd_get_8 (abfd, contents + offset - 1);
1366 return (val & 0xc7) == 5;
1367
1368 case R_X86_64_GOTPC32_TLSDESC:
1369 /* Check transition from GDesc access model:
1370 leaq x@tlsdesc(%rip), %rax
1371
1372 Make sure it's a leaq adding rip to a 32-bit offset
1373 into any register, although it's probably almost always
1374 going to be rax. */
1375
1376 if (offset < 3 || (offset + 4) > sec->size)
1377 return FALSE;
1378
1379 val = bfd_get_8 (abfd, contents + offset - 3);
1380 if ((val & 0xfb) != 0x48)
1381 return FALSE;
1382
1383 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1384 return FALSE;
1385
1386 val = bfd_get_8 (abfd, contents + offset - 1);
1387 return (val & 0xc7) == 0x05;
1388
1389 case R_X86_64_TLSDESC_CALL:
1390 /* Check transition from GDesc access model:
1391 call *x@tlsdesc(%rax)
1392 */
1393 if (offset + 2 <= sec->size)
1394 {
1395 /* Make sure that it's a call *x@tlsdesc(%rax). */
1396 static const unsigned char call[] = { 0xff, 0x10 };
1397 return memcmp (contents + offset, call, 2) == 0;
1398 }
1399
1400 return FALSE;
1401
1402 default:
1403 abort ();
1404 }
1405 }
1406
1407 /* Return TRUE if the TLS access transition is OK or no transition
1408 will be performed. Update R_TYPE if there is a transition. */
1409
1410 static bfd_boolean
1411 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1412 asection *sec, bfd_byte *contents,
1413 Elf_Internal_Shdr *symtab_hdr,
1414 struct elf_link_hash_entry **sym_hashes,
1415 unsigned int *r_type, int tls_type,
1416 const Elf_Internal_Rela *rel,
1417 const Elf_Internal_Rela *relend,
1418 struct elf_link_hash_entry *h,
1419 unsigned long r_symndx)
1420 {
1421 unsigned int from_type = *r_type;
1422 unsigned int to_type = from_type;
1423 bfd_boolean check = TRUE;
1424
1425 /* Skip TLS transition for functions. */
1426 if (h != NULL
1427 && (h->type == STT_FUNC
1428 || h->type == STT_GNU_IFUNC))
1429 return TRUE;
1430
1431 switch (from_type)
1432 {
1433 case R_X86_64_TLSGD:
1434 case R_X86_64_GOTPC32_TLSDESC:
1435 case R_X86_64_TLSDESC_CALL:
1436 case R_X86_64_GOTTPOFF:
1437 if (info->executable)
1438 {
1439 if (h == NULL)
1440 to_type = R_X86_64_TPOFF32;
1441 else
1442 to_type = R_X86_64_GOTTPOFF;
1443 }
1444
1445 /* When we are called from elf_x86_64_relocate_section,
1446 CONTENTS isn't NULL and there may be additional transitions
1447 based on TLS_TYPE. */
1448 if (contents != NULL)
1449 {
1450 unsigned int new_to_type = to_type;
1451
1452 if (info->executable
1453 && h != NULL
1454 && h->dynindx == -1
1455 && tls_type == GOT_TLS_IE)
1456 new_to_type = R_X86_64_TPOFF32;
1457
1458 if (to_type == R_X86_64_TLSGD
1459 || to_type == R_X86_64_GOTPC32_TLSDESC
1460 || to_type == R_X86_64_TLSDESC_CALL)
1461 {
1462 if (tls_type == GOT_TLS_IE)
1463 new_to_type = R_X86_64_GOTTPOFF;
1464 }
1465
1466 /* We checked the transition before when we were called from
1467 elf_x86_64_check_relocs. We only want to check the new
1468 transition which hasn't been checked before. */
1469 check = new_to_type != to_type && from_type == to_type;
1470 to_type = new_to_type;
1471 }
1472
1473 break;
1474
1475 case R_X86_64_TLSLD:
1476 if (info->executable)
1477 to_type = R_X86_64_TPOFF32;
1478 break;
1479
1480 default:
1481 return TRUE;
1482 }
1483
1484 /* Return TRUE if there is no transition. */
1485 if (from_type == to_type)
1486 return TRUE;
1487
1488 /* Check if the transition can be performed. */
1489 if (check
1490 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1491 symtab_hdr, sym_hashes,
1492 from_type, rel, relend))
1493 {
1494 reloc_howto_type *from, *to;
1495 const char *name;
1496
1497 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1498 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1499
1500 if (h)
1501 name = h->root.root.string;
1502 else
1503 {
1504 struct elf_x86_64_link_hash_table *htab;
1505
1506 htab = elf_x86_64_hash_table (info);
1507 if (htab == NULL)
1508 name = "*unknown*";
1509 else
1510 {
1511 Elf_Internal_Sym *isym;
1512
1513 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1514 abfd, r_symndx);
1515 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1516 }
1517 }
1518
1519 (*_bfd_error_handler)
1520 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1521 "in section `%A' failed"),
1522 abfd, sec, from->name, to->name, name,
1523 (unsigned long) rel->r_offset);
1524 bfd_set_error (bfd_error_bad_value);
1525 return FALSE;
1526 }
1527
1528 *r_type = to_type;
1529 return TRUE;
1530 }
1531
1532 /* Rename some of the generic section flags to better document how they
1533 are used here. */
1534 #define need_convert_mov_to_lea sec_flg0
1535
1536 /* Look through the relocs for a section during the first phase, and
1537 calculate needed space in the global offset table, procedure
1538 linkage table, and dynamic reloc sections. */
1539
1540 static bfd_boolean
1541 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1542 asection *sec,
1543 const Elf_Internal_Rela *relocs)
1544 {
1545 struct elf_x86_64_link_hash_table *htab;
1546 Elf_Internal_Shdr *symtab_hdr;
1547 struct elf_link_hash_entry **sym_hashes;
1548 const Elf_Internal_Rela *rel;
1549 const Elf_Internal_Rela *rel_end;
1550 asection *sreloc;
1551 bfd_boolean use_plt_got;
1552
1553 if (info->relocatable)
1554 return TRUE;
1555
1556 BFD_ASSERT (is_x86_64_elf (abfd));
1557
1558 htab = elf_x86_64_hash_table (info);
1559 if (htab == NULL)
1560 return FALSE;
1561
1562 use_plt_got = get_elf_x86_64_backend_data (abfd) == &elf_x86_64_arch_bed;
1563
1564 symtab_hdr = &elf_symtab_hdr (abfd);
1565 sym_hashes = elf_sym_hashes (abfd);
1566
1567 sreloc = NULL;
1568
1569 rel_end = relocs + sec->reloc_count;
1570 for (rel = relocs; rel < rel_end; rel++)
1571 {
1572 unsigned int r_type;
1573 unsigned long r_symndx;
1574 struct elf_link_hash_entry *h;
1575 Elf_Internal_Sym *isym;
1576 const char *name;
1577 bfd_boolean size_reloc;
1578
1579 r_symndx = htab->r_sym (rel->r_info);
1580 r_type = ELF32_R_TYPE (rel->r_info);
1581
1582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1583 {
1584 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1585 abfd, r_symndx);
1586 return FALSE;
1587 }
1588
1589 if (r_symndx < symtab_hdr->sh_info)
1590 {
1591 /* A local symbol. */
1592 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1593 abfd, r_symndx);
1594 if (isym == NULL)
1595 return FALSE;
1596
1597 /* Check relocation against local STT_GNU_IFUNC symbol. */
1598 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1599 {
1600 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1601 TRUE);
1602 if (h == NULL)
1603 return FALSE;
1604
1605 /* Fake a STT_GNU_IFUNC symbol. */
1606 h->type = STT_GNU_IFUNC;
1607 h->def_regular = 1;
1608 h->ref_regular = 1;
1609 h->forced_local = 1;
1610 h->root.type = bfd_link_hash_defined;
1611 }
1612 else
1613 h = NULL;
1614 }
1615 else
1616 {
1617 isym = NULL;
1618 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1619 while (h->root.type == bfd_link_hash_indirect
1620 || h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1622 }
1623
1624 /* Check invalid x32 relocations. */
1625 if (!ABI_64_P (abfd))
1626 switch (r_type)
1627 {
1628 default:
1629 break;
1630
1631 case R_X86_64_DTPOFF64:
1632 case R_X86_64_TPOFF64:
1633 case R_X86_64_PC64:
1634 case R_X86_64_GOTOFF64:
1635 case R_X86_64_GOT64:
1636 case R_X86_64_GOTPCREL64:
1637 case R_X86_64_GOTPC64:
1638 case R_X86_64_GOTPLT64:
1639 case R_X86_64_PLTOFF64:
1640 {
1641 if (h)
1642 name = h->root.root.string;
1643 else
1644 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1645 NULL);
1646 (*_bfd_error_handler)
1647 (_("%B: relocation %s against symbol `%s' isn't "
1648 "supported in x32 mode"), abfd,
1649 x86_64_elf_howto_table[r_type].name, name);
1650 bfd_set_error (bfd_error_bad_value);
1651 return FALSE;
1652 }
1653 break;
1654 }
1655
1656 if (h != NULL)
1657 {
1658 /* Create the ifunc sections for static executables. If we
1659 never see an indirect function symbol nor we are building
1660 a static executable, those sections will be empty and
1661 won't appear in output. */
1662 switch (r_type)
1663 {
1664 default:
1665 break;
1666
1667 case R_X86_64_PC32_BND:
1668 case R_X86_64_PLT32_BND:
1669 case R_X86_64_PC32:
1670 case R_X86_64_PLT32:
1671 case R_X86_64_32:
1672 case R_X86_64_64:
1673 /* MPX PLT is supported only if elf_x86_64_arch_bed
1674 is used in 64-bit mode. */
1675 if (ABI_64_P (abfd)
1676 && info->bndplt
1677 && (get_elf_x86_64_backend_data (abfd)
1678 == &elf_x86_64_arch_bed))
1679 {
1680 elf_x86_64_hash_entry (h)->has_bnd_reloc = 1;
1681
1682 /* Create the second PLT for Intel MPX support. */
1683 if (htab->plt_bnd == NULL)
1684 {
1685 unsigned int plt_bnd_align;
1686 const struct elf_backend_data *bed;
1687
1688 bed = get_elf_backend_data (info->output_bfd);
1689 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry) == 8
1690 && (sizeof (elf_x86_64_bnd_plt2_entry)
1691 == sizeof (elf_x86_64_legacy_plt2_entry)));
1692 plt_bnd_align = 3;
1693
1694 if (htab->elf.dynobj == NULL)
1695 htab->elf.dynobj = abfd;
1696 htab->plt_bnd
1697 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1698 ".plt.bnd",
1699 (bed->dynamic_sec_flags
1700 | SEC_ALLOC
1701 | SEC_CODE
1702 | SEC_LOAD
1703 | SEC_READONLY));
1704 if (htab->plt_bnd == NULL
1705 || !bfd_set_section_alignment (htab->elf.dynobj,
1706 htab->plt_bnd,
1707 plt_bnd_align))
1708 return FALSE;
1709 }
1710 }
1711
1712 case R_X86_64_32S:
1713 case R_X86_64_PC64:
1714 case R_X86_64_GOTPCREL:
1715 case R_X86_64_GOTPCREL64:
1716 if (htab->elf.dynobj == NULL)
1717 htab->elf.dynobj = abfd;
1718 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1719 return FALSE;
1720 break;
1721 }
1722
1723 /* It is referenced by a non-shared object. */
1724 h->ref_regular = 1;
1725 h->root.non_ir_ref = 1;
1726 }
1727
1728 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1729 symtab_hdr, sym_hashes,
1730 &r_type, GOT_UNKNOWN,
1731 rel, rel_end, h, r_symndx))
1732 return FALSE;
1733
1734 switch (r_type)
1735 {
1736 case R_X86_64_TLSLD:
1737 htab->tls_ld_got.refcount += 1;
1738 goto create_got;
1739
1740 case R_X86_64_TPOFF32:
1741 if (!info->executable && ABI_64_P (abfd))
1742 {
1743 if (h)
1744 name = h->root.root.string;
1745 else
1746 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1747 NULL);
1748 (*_bfd_error_handler)
1749 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1750 abfd,
1751 x86_64_elf_howto_table[r_type].name, name);
1752 bfd_set_error (bfd_error_bad_value);
1753 return FALSE;
1754 }
1755 break;
1756
1757 case R_X86_64_GOTTPOFF:
1758 if (!info->executable)
1759 info->flags |= DF_STATIC_TLS;
1760 /* Fall through */
1761
1762 case R_X86_64_GOT32:
1763 case R_X86_64_GOTPCREL:
1764 case R_X86_64_TLSGD:
1765 case R_X86_64_GOT64:
1766 case R_X86_64_GOTPCREL64:
1767 case R_X86_64_GOTPLT64:
1768 case R_X86_64_GOTPC32_TLSDESC:
1769 case R_X86_64_TLSDESC_CALL:
1770 /* This symbol requires a global offset table entry. */
1771 {
1772 int tls_type, old_tls_type;
1773
1774 switch (r_type)
1775 {
1776 default: tls_type = GOT_NORMAL; break;
1777 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1778 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1779 case R_X86_64_GOTPC32_TLSDESC:
1780 case R_X86_64_TLSDESC_CALL:
1781 tls_type = GOT_TLS_GDESC; break;
1782 }
1783
1784 if (h != NULL)
1785 {
1786 h->got.refcount += 1;
1787 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1788 }
1789 else
1790 {
1791 bfd_signed_vma *local_got_refcounts;
1792
1793 /* This is a global offset table entry for a local symbol. */
1794 local_got_refcounts = elf_local_got_refcounts (abfd);
1795 if (local_got_refcounts == NULL)
1796 {
1797 bfd_size_type size;
1798
1799 size = symtab_hdr->sh_info;
1800 size *= sizeof (bfd_signed_vma)
1801 + sizeof (bfd_vma) + sizeof (char);
1802 local_got_refcounts = ((bfd_signed_vma *)
1803 bfd_zalloc (abfd, size));
1804 if (local_got_refcounts == NULL)
1805 return FALSE;
1806 elf_local_got_refcounts (abfd) = local_got_refcounts;
1807 elf_x86_64_local_tlsdesc_gotent (abfd)
1808 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1809 elf_x86_64_local_got_tls_type (abfd)
1810 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1811 }
1812 local_got_refcounts[r_symndx] += 1;
1813 old_tls_type
1814 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1815 }
1816
1817 /* If a TLS symbol is accessed using IE at least once,
1818 there is no point to use dynamic model for it. */
1819 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1820 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1821 || tls_type != GOT_TLS_IE))
1822 {
1823 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1824 tls_type = old_tls_type;
1825 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1826 && GOT_TLS_GD_ANY_P (tls_type))
1827 tls_type |= old_tls_type;
1828 else
1829 {
1830 if (h)
1831 name = h->root.root.string;
1832 else
1833 name = bfd_elf_sym_name (abfd, symtab_hdr,
1834 isym, NULL);
1835 (*_bfd_error_handler)
1836 (_("%B: '%s' accessed both as normal and thread local symbol"),
1837 abfd, name);
1838 bfd_set_error (bfd_error_bad_value);
1839 return FALSE;
1840 }
1841 }
1842
1843 if (old_tls_type != tls_type)
1844 {
1845 if (h != NULL)
1846 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1847 else
1848 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1849 }
1850 }
1851 /* Fall through */
1852
1853 case R_X86_64_GOTOFF64:
1854 case R_X86_64_GOTPC32:
1855 case R_X86_64_GOTPC64:
1856 create_got:
1857 if (htab->elf.sgot == NULL)
1858 {
1859 if (htab->elf.dynobj == NULL)
1860 htab->elf.dynobj = abfd;
1861 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1862 info))
1863 return FALSE;
1864 }
1865 break;
1866
1867 case R_X86_64_PLT32:
1868 case R_X86_64_PLT32_BND:
1869 /* This symbol requires a procedure linkage table entry. We
1870 actually build the entry in adjust_dynamic_symbol,
1871 because this might be a case of linking PIC code which is
1872 never referenced by a dynamic object, in which case we
1873 don't need to generate a procedure linkage table entry
1874 after all. */
1875
1876 /* If this is a local symbol, we resolve it directly without
1877 creating a procedure linkage table entry. */
1878 if (h == NULL)
1879 continue;
1880
1881 h->needs_plt = 1;
1882 h->plt.refcount += 1;
1883 break;
1884
1885 case R_X86_64_PLTOFF64:
1886 /* This tries to form the 'address' of a function relative
1887 to GOT. For global symbols we need a PLT entry. */
1888 if (h != NULL)
1889 {
1890 h->needs_plt = 1;
1891 h->plt.refcount += 1;
1892 }
1893 goto create_got;
1894
1895 case R_X86_64_SIZE32:
1896 case R_X86_64_SIZE64:
1897 size_reloc = TRUE;
1898 goto do_size;
1899
1900 case R_X86_64_32:
1901 if (!ABI_64_P (abfd))
1902 goto pointer;
1903 case R_X86_64_8:
1904 case R_X86_64_16:
1905 case R_X86_64_32S:
1906 /* Let's help debug shared library creation. These relocs
1907 cannot be used in shared libs. Don't error out for
1908 sections we don't care about, such as debug sections or
1909 non-constant sections. */
1910 if (info->shared
1911 && (sec->flags & SEC_ALLOC) != 0
1912 && (sec->flags & SEC_READONLY) != 0)
1913 {
1914 if (h)
1915 name = h->root.root.string;
1916 else
1917 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1918 (*_bfd_error_handler)
1919 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1920 abfd, x86_64_elf_howto_table[r_type].name, name);
1921 bfd_set_error (bfd_error_bad_value);
1922 return FALSE;
1923 }
1924 /* Fall through. */
1925
1926 case R_X86_64_PC8:
1927 case R_X86_64_PC16:
1928 case R_X86_64_PC32:
1929 case R_X86_64_PC32_BND:
1930 case R_X86_64_PC64:
1931 case R_X86_64_64:
1932 pointer:
1933 if (h != NULL && info->executable)
1934 {
1935 /* If this reloc is in a read-only section, we might
1936 need a copy reloc. We can't check reliably at this
1937 stage whether the section is read-only, as input
1938 sections have not yet been mapped to output sections.
1939 Tentatively set the flag for now, and correct in
1940 adjust_dynamic_symbol. */
1941 h->non_got_ref = 1;
1942
1943 /* We may need a .plt entry if the function this reloc
1944 refers to is in a shared lib. */
1945 h->plt.refcount += 1;
1946 if (r_type != R_X86_64_PC32
1947 && r_type != R_X86_64_PC32_BND
1948 && r_type != R_X86_64_PC64)
1949 h->pointer_equality_needed = 1;
1950 }
1951
1952 size_reloc = FALSE;
1953 do_size:
1954 /* If we are creating a shared library, and this is a reloc
1955 against a global symbol, or a non PC relative reloc
1956 against a local symbol, then we need to copy the reloc
1957 into the shared library. However, if we are linking with
1958 -Bsymbolic, we do not need to copy a reloc against a
1959 global symbol which is defined in an object we are
1960 including in the link (i.e., DEF_REGULAR is set). At
1961 this point we have not seen all the input files, so it is
1962 possible that DEF_REGULAR is not set now but will be set
1963 later (it is never cleared). In case of a weak definition,
1964 DEF_REGULAR may be cleared later by a strong definition in
1965 a shared library. We account for that possibility below by
1966 storing information in the relocs_copied field of the hash
1967 table entry. A similar situation occurs when creating
1968 shared libraries and symbol visibility changes render the
1969 symbol local.
1970
1971 If on the other hand, we are creating an executable, we
1972 may need to keep relocations for symbols satisfied by a
1973 dynamic library if we manage to avoid copy relocs for the
1974 symbol. */
1975 if ((info->shared
1976 && (sec->flags & SEC_ALLOC) != 0
1977 && (! IS_X86_64_PCREL_TYPE (r_type)
1978 || (h != NULL
1979 && (! SYMBOLIC_BIND (info, h)
1980 || h->root.type == bfd_link_hash_defweak
1981 || !h->def_regular))))
1982 || (ELIMINATE_COPY_RELOCS
1983 && !info->shared
1984 && (sec->flags & SEC_ALLOC) != 0
1985 && h != NULL
1986 && (h->root.type == bfd_link_hash_defweak
1987 || !h->def_regular)))
1988 {
1989 struct elf_dyn_relocs *p;
1990 struct elf_dyn_relocs **head;
1991
1992 /* We must copy these reloc types into the output file.
1993 Create a reloc section in dynobj and make room for
1994 this reloc. */
1995 if (sreloc == NULL)
1996 {
1997 if (htab->elf.dynobj == NULL)
1998 htab->elf.dynobj = abfd;
1999
2000 sreloc = _bfd_elf_make_dynamic_reloc_section
2001 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
2002 abfd, /*rela?*/ TRUE);
2003
2004 if (sreloc == NULL)
2005 return FALSE;
2006 }
2007
2008 /* If this is a global symbol, we count the number of
2009 relocations we need for this symbol. */
2010 if (h != NULL)
2011 {
2012 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
2013 }
2014 else
2015 {
2016 /* Track dynamic relocs needed for local syms too.
2017 We really need local syms available to do this
2018 easily. Oh well. */
2019 asection *s;
2020 void **vpp;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024 if (isym == NULL)
2025 return FALSE;
2026
2027 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2028 if (s == NULL)
2029 s = sec;
2030
2031 /* Beware of type punned pointers vs strict aliasing
2032 rules. */
2033 vpp = &(elf_section_data (s)->local_dynrel);
2034 head = (struct elf_dyn_relocs **)vpp;
2035 }
2036
2037 p = *head;
2038 if (p == NULL || p->sec != sec)
2039 {
2040 bfd_size_type amt = sizeof *p;
2041
2042 p = ((struct elf_dyn_relocs *)
2043 bfd_alloc (htab->elf.dynobj, amt));
2044 if (p == NULL)
2045 return FALSE;
2046 p->next = *head;
2047 *head = p;
2048 p->sec = sec;
2049 p->count = 0;
2050 p->pc_count = 0;
2051 }
2052
2053 p->count += 1;
2054 /* Count size relocation as PC-relative relocation. */
2055 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2056 p->pc_count += 1;
2057 }
2058 break;
2059
2060 /* This relocation describes the C++ object vtable hierarchy.
2061 Reconstruct it for later use during GC. */
2062 case R_X86_64_GNU_VTINHERIT:
2063 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2064 return FALSE;
2065 break;
2066
2067 /* This relocation describes which C++ vtable entries are actually
2068 used. Record for later use during GC. */
2069 case R_X86_64_GNU_VTENTRY:
2070 BFD_ASSERT (h != NULL);
2071 if (h != NULL
2072 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2073 return FALSE;
2074 break;
2075
2076 default:
2077 break;
2078 }
2079
2080 if (use_plt_got
2081 && h != NULL
2082 && h->plt.refcount > 0
2083 && h->got.refcount > 0
2084 && htab->plt_got == NULL)
2085 {
2086 /* Create the GOT procedure linkage table. */
2087 unsigned int plt_got_align;
2088 const struct elf_backend_data *bed;
2089
2090 bed = get_elf_backend_data (info->output_bfd);
2091 BFD_ASSERT (sizeof (elf_x86_64_legacy_plt2_entry) == 8
2092 && (sizeof (elf_x86_64_bnd_plt2_entry)
2093 == sizeof (elf_x86_64_legacy_plt2_entry)));
2094 plt_got_align = 3;
2095
2096 if (htab->elf.dynobj == NULL)
2097 htab->elf.dynobj = abfd;
2098 htab->plt_got
2099 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
2100 ".plt.got",
2101 (bed->dynamic_sec_flags
2102 | SEC_ALLOC
2103 | SEC_CODE
2104 | SEC_LOAD
2105 | SEC_READONLY));
2106 if (htab->plt_got == NULL
2107 || !bfd_set_section_alignment (htab->elf.dynobj,
2108 htab->plt_got,
2109 plt_got_align))
2110 return FALSE;
2111 }
2112
2113 if (r_type == R_X86_64_GOTPCREL
2114 && (h == NULL || h->type != STT_GNU_IFUNC))
2115 sec->need_convert_mov_to_lea = 1;
2116 }
2117
2118 return TRUE;
2119 }
2120
2121 /* Return the section that should be marked against GC for a given
2122 relocation. */
2123
2124 static asection *
2125 elf_x86_64_gc_mark_hook (asection *sec,
2126 struct bfd_link_info *info,
2127 Elf_Internal_Rela *rel,
2128 struct elf_link_hash_entry *h,
2129 Elf_Internal_Sym *sym)
2130 {
2131 if (h != NULL)
2132 switch (ELF32_R_TYPE (rel->r_info))
2133 {
2134 case R_X86_64_GNU_VTINHERIT:
2135 case R_X86_64_GNU_VTENTRY:
2136 return NULL;
2137 }
2138
2139 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2140 }
2141
2142 /* Update the got entry reference counts for the section being removed. */
2143
2144 static bfd_boolean
2145 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2146 asection *sec,
2147 const Elf_Internal_Rela *relocs)
2148 {
2149 struct elf_x86_64_link_hash_table *htab;
2150 Elf_Internal_Shdr *symtab_hdr;
2151 struct elf_link_hash_entry **sym_hashes;
2152 bfd_signed_vma *local_got_refcounts;
2153 const Elf_Internal_Rela *rel, *relend;
2154
2155 if (info->relocatable)
2156 return TRUE;
2157
2158 htab = elf_x86_64_hash_table (info);
2159 if (htab == NULL)
2160 return FALSE;
2161
2162 elf_section_data (sec)->local_dynrel = NULL;
2163
2164 symtab_hdr = &elf_symtab_hdr (abfd);
2165 sym_hashes = elf_sym_hashes (abfd);
2166 local_got_refcounts = elf_local_got_refcounts (abfd);
2167
2168 htab = elf_x86_64_hash_table (info);
2169 relend = relocs + sec->reloc_count;
2170 for (rel = relocs; rel < relend; rel++)
2171 {
2172 unsigned long r_symndx;
2173 unsigned int r_type;
2174 struct elf_link_hash_entry *h = NULL;
2175
2176 r_symndx = htab->r_sym (rel->r_info);
2177 if (r_symndx >= symtab_hdr->sh_info)
2178 {
2179 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2180 while (h->root.type == bfd_link_hash_indirect
2181 || h->root.type == bfd_link_hash_warning)
2182 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2183 }
2184 else
2185 {
2186 /* A local symbol. */
2187 Elf_Internal_Sym *isym;
2188
2189 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2190 abfd, r_symndx);
2191
2192 /* Check relocation against local STT_GNU_IFUNC symbol. */
2193 if (isym != NULL
2194 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2195 {
2196 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2197 if (h == NULL)
2198 abort ();
2199 }
2200 }
2201
2202 if (h)
2203 {
2204 struct elf_x86_64_link_hash_entry *eh;
2205 struct elf_dyn_relocs **pp;
2206 struct elf_dyn_relocs *p;
2207
2208 eh = (struct elf_x86_64_link_hash_entry *) h;
2209
2210 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2211 if (p->sec == sec)
2212 {
2213 /* Everything must go for SEC. */
2214 *pp = p->next;
2215 break;
2216 }
2217 }
2218
2219 r_type = ELF32_R_TYPE (rel->r_info);
2220 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2221 symtab_hdr, sym_hashes,
2222 &r_type, GOT_UNKNOWN,
2223 rel, relend, h, r_symndx))
2224 return FALSE;
2225
2226 switch (r_type)
2227 {
2228 case R_X86_64_TLSLD:
2229 if (htab->tls_ld_got.refcount > 0)
2230 htab->tls_ld_got.refcount -= 1;
2231 break;
2232
2233 case R_X86_64_TLSGD:
2234 case R_X86_64_GOTPC32_TLSDESC:
2235 case R_X86_64_TLSDESC_CALL:
2236 case R_X86_64_GOTTPOFF:
2237 case R_X86_64_GOT32:
2238 case R_X86_64_GOTPCREL:
2239 case R_X86_64_GOT64:
2240 case R_X86_64_GOTPCREL64:
2241 case R_X86_64_GOTPLT64:
2242 if (h != NULL)
2243 {
2244 if (h->got.refcount > 0)
2245 h->got.refcount -= 1;
2246 if (h->type == STT_GNU_IFUNC)
2247 {
2248 if (h->plt.refcount > 0)
2249 h->plt.refcount -= 1;
2250 }
2251 }
2252 else if (local_got_refcounts != NULL)
2253 {
2254 if (local_got_refcounts[r_symndx] > 0)
2255 local_got_refcounts[r_symndx] -= 1;
2256 }
2257 break;
2258
2259 case R_X86_64_8:
2260 case R_X86_64_16:
2261 case R_X86_64_32:
2262 case R_X86_64_64:
2263 case R_X86_64_32S:
2264 case R_X86_64_PC8:
2265 case R_X86_64_PC16:
2266 case R_X86_64_PC32:
2267 case R_X86_64_PC32_BND:
2268 case R_X86_64_PC64:
2269 case R_X86_64_SIZE32:
2270 case R_X86_64_SIZE64:
2271 if (info->shared
2272 && (h == NULL || h->type != STT_GNU_IFUNC))
2273 break;
2274 /* Fall thru */
2275
2276 case R_X86_64_PLT32:
2277 case R_X86_64_PLT32_BND:
2278 case R_X86_64_PLTOFF64:
2279 if (h != NULL)
2280 {
2281 if (h->plt.refcount > 0)
2282 h->plt.refcount -= 1;
2283 }
2284 break;
2285
2286 default:
2287 break;
2288 }
2289 }
2290
2291 return TRUE;
2292 }
2293
2294 /* Adjust a symbol defined by a dynamic object and referenced by a
2295 regular object. The current definition is in some section of the
2296 dynamic object, but we're not including those sections. We have to
2297 change the definition to something the rest of the link can
2298 understand. */
2299
2300 static bfd_boolean
2301 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2302 struct elf_link_hash_entry *h)
2303 {
2304 struct elf_x86_64_link_hash_table *htab;
2305 asection *s;
2306 struct elf_x86_64_link_hash_entry *eh;
2307 struct elf_dyn_relocs *p;
2308
2309 /* STT_GNU_IFUNC symbol must go through PLT. */
2310 if (h->type == STT_GNU_IFUNC)
2311 {
2312 /* All local STT_GNU_IFUNC references must be treate as local
2313 calls via local PLT. */
2314 if (h->ref_regular
2315 && SYMBOL_CALLS_LOCAL (info, h))
2316 {
2317 bfd_size_type pc_count = 0, count = 0;
2318 struct elf_dyn_relocs **pp;
2319
2320 eh = (struct elf_x86_64_link_hash_entry *) h;
2321 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2322 {
2323 pc_count += p->pc_count;
2324 p->count -= p->pc_count;
2325 p->pc_count = 0;
2326 count += p->count;
2327 if (p->count == 0)
2328 *pp = p->next;
2329 else
2330 pp = &p->next;
2331 }
2332
2333 if (pc_count || count)
2334 {
2335 h->needs_plt = 1;
2336 h->non_got_ref = 1;
2337 if (h->plt.refcount <= 0)
2338 h->plt.refcount = 1;
2339 else
2340 h->plt.refcount += 1;
2341 }
2342 }
2343
2344 if (h->plt.refcount <= 0)
2345 {
2346 h->plt.offset = (bfd_vma) -1;
2347 h->needs_plt = 0;
2348 }
2349 return TRUE;
2350 }
2351
2352 /* If this is a function, put it in the procedure linkage table. We
2353 will fill in the contents of the procedure linkage table later,
2354 when we know the address of the .got section. */
2355 if (h->type == STT_FUNC
2356 || h->needs_plt)
2357 {
2358 if (h->plt.refcount <= 0
2359 || SYMBOL_CALLS_LOCAL (info, h)
2360 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2361 && h->root.type == bfd_link_hash_undefweak))
2362 {
2363 /* This case can occur if we saw a PLT32 reloc in an input
2364 file, but the symbol was never referred to by a dynamic
2365 object, or if all references were garbage collected. In
2366 such a case, we don't actually need to build a procedure
2367 linkage table, and we can just do a PC32 reloc instead. */
2368 h->plt.offset = (bfd_vma) -1;
2369 h->needs_plt = 0;
2370 }
2371
2372 return TRUE;
2373 }
2374 else
2375 /* It's possible that we incorrectly decided a .plt reloc was
2376 needed for an R_X86_64_PC32 reloc to a non-function sym in
2377 check_relocs. We can't decide accurately between function and
2378 non-function syms in check-relocs; Objects loaded later in
2379 the link may change h->type. So fix it now. */
2380 h->plt.offset = (bfd_vma) -1;
2381
2382 /* If this is a weak symbol, and there is a real definition, the
2383 processor independent code will have arranged for us to see the
2384 real definition first, and we can just use the same value. */
2385 if (h->u.weakdef != NULL)
2386 {
2387 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2388 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2389 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2390 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2391 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2392 {
2393 eh = (struct elf_x86_64_link_hash_entry *) h;
2394 h->non_got_ref = h->u.weakdef->non_got_ref;
2395 eh->needs_copy = h->u.weakdef->needs_copy;
2396 }
2397 return TRUE;
2398 }
2399
2400 /* This is a reference to a symbol defined by a dynamic object which
2401 is not a function. */
2402
2403 /* If we are creating a shared library, we must presume that the
2404 only references to the symbol are via the global offset table.
2405 For such cases we need not do anything here; the relocations will
2406 be handled correctly by relocate_section. */
2407 if (!info->executable)
2408 return TRUE;
2409
2410 /* If there are no references to this symbol that do not use the
2411 GOT, we don't need to generate a copy reloc. */
2412 if (!h->non_got_ref)
2413 return TRUE;
2414
2415 /* If -z nocopyreloc was given, we won't generate them either. */
2416 if (info->nocopyreloc)
2417 {
2418 h->non_got_ref = 0;
2419 return TRUE;
2420 }
2421
2422 if (ELIMINATE_COPY_RELOCS)
2423 {
2424 eh = (struct elf_x86_64_link_hash_entry *) h;
2425 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2426 {
2427 s = p->sec->output_section;
2428 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2429 break;
2430 }
2431
2432 /* If we didn't find any dynamic relocs in read-only sections, then
2433 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2434 if (p == NULL)
2435 {
2436 h->non_got_ref = 0;
2437 return TRUE;
2438 }
2439 }
2440
2441 /* We must allocate the symbol in our .dynbss section, which will
2442 become part of the .bss section of the executable. There will be
2443 an entry for this symbol in the .dynsym section. The dynamic
2444 object will contain position independent code, so all references
2445 from the dynamic object to this symbol will go through the global
2446 offset table. The dynamic linker will use the .dynsym entry to
2447 determine the address it must put in the global offset table, so
2448 both the dynamic object and the regular object will refer to the
2449 same memory location for the variable. */
2450
2451 htab = elf_x86_64_hash_table (info);
2452 if (htab == NULL)
2453 return FALSE;
2454
2455 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2456 to copy the initial value out of the dynamic object and into the
2457 runtime process image. */
2458 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2459 {
2460 const struct elf_backend_data *bed;
2461 bed = get_elf_backend_data (info->output_bfd);
2462 htab->srelbss->size += bed->s->sizeof_rela;
2463 h->needs_copy = 1;
2464 }
2465
2466 s = htab->sdynbss;
2467
2468 return _bfd_elf_adjust_dynamic_copy (info, h, s);
2469 }
2470
2471 /* Allocate space in .plt, .got and associated reloc sections for
2472 dynamic relocs. */
2473
2474 static bfd_boolean
2475 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2476 {
2477 struct bfd_link_info *info;
2478 struct elf_x86_64_link_hash_table *htab;
2479 struct elf_x86_64_link_hash_entry *eh;
2480 struct elf_dyn_relocs *p;
2481 const struct elf_backend_data *bed;
2482 unsigned int plt_entry_size;
2483
2484 if (h->root.type == bfd_link_hash_indirect)
2485 return TRUE;
2486
2487 eh = (struct elf_x86_64_link_hash_entry *) h;
2488
2489 info = (struct bfd_link_info *) inf;
2490 htab = elf_x86_64_hash_table (info);
2491 if (htab == NULL)
2492 return FALSE;
2493 bed = get_elf_backend_data (info->output_bfd);
2494 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2495
2496 /* We can't use the GOT PLT if pointer equality is needed since
2497 finish_dynamic_symbol won't clear symbol value and the dynamic
2498 linker won't update the GOT slot. We will get into an infinite
2499 loop at run-time. */
2500 if (htab->plt_got != NULL
2501 && h->type != STT_GNU_IFUNC
2502 && !h->pointer_equality_needed
2503 && h->plt.refcount > 0
2504 && h->got.refcount > 0)
2505 {
2506 /* Don't use the regular PLT if there are both GOT and GOTPLT
2507 reloctions. */
2508 h->plt.offset = (bfd_vma) -1;
2509
2510 /* Use the GOT PLT. */
2511 eh->plt_got.refcount = 1;
2512 }
2513
2514 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2515 here if it is defined and referenced in a non-shared object. */
2516 if (h->type == STT_GNU_IFUNC
2517 && h->def_regular)
2518 {
2519 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2520 &eh->dyn_relocs,
2521 plt_entry_size,
2522 plt_entry_size,
2523 GOT_ENTRY_SIZE))
2524 {
2525 asection *s = htab->plt_bnd;
2526 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2527 {
2528 /* Use the .plt.bnd section if it is created. */
2529 eh->plt_bnd.offset = s->size;
2530
2531 /* Make room for this entry in the .plt.bnd section. */
2532 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2533 }
2534
2535 return TRUE;
2536 }
2537 else
2538 return FALSE;
2539 }
2540 else if (htab->elf.dynamic_sections_created
2541 && (h->plt.refcount > 0 || eh->plt_got.refcount > 0))
2542 {
2543 bfd_boolean use_plt_got = eh->plt_got.refcount > 0;
2544
2545 /* Make sure this symbol is output as a dynamic symbol.
2546 Undefined weak syms won't yet be marked as dynamic. */
2547 if (h->dynindx == -1
2548 && !h->forced_local)
2549 {
2550 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2551 return FALSE;
2552 }
2553
2554 if (info->shared
2555 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2556 {
2557 asection *s = htab->elf.splt;
2558 asection *bnd_s = htab->plt_bnd;
2559 asection *got_s = htab->plt_got;
2560
2561 /* If this is the first .plt entry, make room for the special
2562 first entry. */
2563 if (s->size == 0)
2564 s->size = plt_entry_size;
2565
2566 if (use_plt_got)
2567 eh->plt_got.offset = got_s->size;
2568 else
2569 {
2570 h->plt.offset = s->size;
2571 if (bnd_s)
2572 eh->plt_bnd.offset = bnd_s->size;
2573 }
2574
2575 /* If this symbol is not defined in a regular file, and we are
2576 not generating a shared library, then set the symbol to this
2577 location in the .plt. This is required to make function
2578 pointers compare as equal between the normal executable and
2579 the shared library. */
2580 if (! info->shared
2581 && !h->def_regular)
2582 {
2583 if (use_plt_got)
2584 {
2585 /* We need to make a call to the entry of the GOT PLT
2586 instead of regular PLT entry. */
2587 h->root.u.def.section = got_s;
2588 h->root.u.def.value = eh->plt_got.offset;
2589 }
2590 else
2591 {
2592 if (bnd_s)
2593 {
2594 /* We need to make a call to the entry of the second
2595 PLT instead of regular PLT entry. */
2596 h->root.u.def.section = bnd_s;
2597 h->root.u.def.value = eh->plt_bnd.offset;
2598 }
2599 else
2600 {
2601 h->root.u.def.section = s;
2602 h->root.u.def.value = h->plt.offset;
2603 }
2604 }
2605 }
2606
2607 /* Make room for this entry. */
2608 if (use_plt_got)
2609 got_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2610 else
2611 {
2612 s->size += plt_entry_size;
2613 if (bnd_s)
2614 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2615
2616 /* We also need to make an entry in the .got.plt section,
2617 which will be placed in the .got section by the linker
2618 script. */
2619 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2620
2621 /* We also need to make an entry in the .rela.plt
2622 section. */
2623 htab->elf.srelplt->size += bed->s->sizeof_rela;
2624 htab->elf.srelplt->reloc_count++;
2625 }
2626 }
2627 else
2628 {
2629 h->plt.offset = (bfd_vma) -1;
2630 h->needs_plt = 0;
2631 }
2632 }
2633 else
2634 {
2635 h->plt.offset = (bfd_vma) -1;
2636 h->needs_plt = 0;
2637 }
2638
2639 eh->tlsdesc_got = (bfd_vma) -1;
2640
2641 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2642 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2643 if (h->got.refcount > 0
2644 && info->executable
2645 && h->dynindx == -1
2646 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2647 {
2648 h->got.offset = (bfd_vma) -1;
2649 }
2650 else if (h->got.refcount > 0)
2651 {
2652 asection *s;
2653 bfd_boolean dyn;
2654 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2655
2656 /* Make sure this symbol is output as a dynamic symbol.
2657 Undefined weak syms won't yet be marked as dynamic. */
2658 if (h->dynindx == -1
2659 && !h->forced_local)
2660 {
2661 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2662 return FALSE;
2663 }
2664
2665 if (GOT_TLS_GDESC_P (tls_type))
2666 {
2667 eh->tlsdesc_got = htab->elf.sgotplt->size
2668 - elf_x86_64_compute_jump_table_size (htab);
2669 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2670 h->got.offset = (bfd_vma) -2;
2671 }
2672 if (! GOT_TLS_GDESC_P (tls_type)
2673 || GOT_TLS_GD_P (tls_type))
2674 {
2675 s = htab->elf.sgot;
2676 h->got.offset = s->size;
2677 s->size += GOT_ENTRY_SIZE;
2678 if (GOT_TLS_GD_P (tls_type))
2679 s->size += GOT_ENTRY_SIZE;
2680 }
2681 dyn = htab->elf.dynamic_sections_created;
2682 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2683 and two if global.
2684 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2685 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2686 || tls_type == GOT_TLS_IE)
2687 htab->elf.srelgot->size += bed->s->sizeof_rela;
2688 else if (GOT_TLS_GD_P (tls_type))
2689 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2690 else if (! GOT_TLS_GDESC_P (tls_type)
2691 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2692 || h->root.type != bfd_link_hash_undefweak)
2693 && (info->shared
2694 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2695 htab->elf.srelgot->size += bed->s->sizeof_rela;
2696 if (GOT_TLS_GDESC_P (tls_type))
2697 {
2698 htab->elf.srelplt->size += bed->s->sizeof_rela;
2699 htab->tlsdesc_plt = (bfd_vma) -1;
2700 }
2701 }
2702 else
2703 h->got.offset = (bfd_vma) -1;
2704
2705 if (eh->dyn_relocs == NULL)
2706 return TRUE;
2707
2708 /* In the shared -Bsymbolic case, discard space allocated for
2709 dynamic pc-relative relocs against symbols which turn out to be
2710 defined in regular objects. For the normal shared case, discard
2711 space for pc-relative relocs that have become local due to symbol
2712 visibility changes. */
2713
2714 if (info->shared)
2715 {
2716 /* Relocs that use pc_count are those that appear on a call
2717 insn, or certain REL relocs that can generated via assembly.
2718 We want calls to protected symbols to resolve directly to the
2719 function rather than going via the plt. If people want
2720 function pointer comparisons to work as expected then they
2721 should avoid writing weird assembly. */
2722 if (SYMBOL_CALLS_LOCAL (info, h))
2723 {
2724 struct elf_dyn_relocs **pp;
2725
2726 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2727 {
2728 p->count -= p->pc_count;
2729 p->pc_count = 0;
2730 if (p->count == 0)
2731 *pp = p->next;
2732 else
2733 pp = &p->next;
2734 }
2735 }
2736
2737 /* Also discard relocs on undefined weak syms with non-default
2738 visibility. */
2739 if (eh->dyn_relocs != NULL)
2740 {
2741 if (h->root.type == bfd_link_hash_undefweak)
2742 {
2743 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2744 eh->dyn_relocs = NULL;
2745
2746 /* Make sure undefined weak symbols are output as a dynamic
2747 symbol in PIEs. */
2748 else if (h->dynindx == -1
2749 && ! h->forced_local
2750 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2751 return FALSE;
2752 }
2753 /* For PIE, discard space for pc-relative relocs against
2754 symbols which turn out to need copy relocs. */
2755 else if (info->executable
2756 && (h->needs_copy || eh->needs_copy)
2757 && h->def_dynamic
2758 && !h->def_regular)
2759 {
2760 struct elf_dyn_relocs **pp;
2761
2762 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2763 {
2764 if (p->pc_count != 0)
2765 *pp = p->next;
2766 else
2767 pp = &p->next;
2768 }
2769 }
2770 }
2771 }
2772 else if (ELIMINATE_COPY_RELOCS)
2773 {
2774 /* For the non-shared case, discard space for relocs against
2775 symbols which turn out to need copy relocs or are not
2776 dynamic. */
2777
2778 if (!h->non_got_ref
2779 && ((h->def_dynamic
2780 && !h->def_regular)
2781 || (htab->elf.dynamic_sections_created
2782 && (h->root.type == bfd_link_hash_undefweak
2783 || h->root.type == bfd_link_hash_undefined))))
2784 {
2785 /* Make sure this symbol is output as a dynamic symbol.
2786 Undefined weak syms won't yet be marked as dynamic. */
2787 if (h->dynindx == -1
2788 && ! h->forced_local
2789 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2790 return FALSE;
2791
2792 /* If that succeeded, we know we'll be keeping all the
2793 relocs. */
2794 if (h->dynindx != -1)
2795 goto keep;
2796 }
2797
2798 eh->dyn_relocs = NULL;
2799
2800 keep: ;
2801 }
2802
2803 /* Finally, allocate space. */
2804 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2805 {
2806 asection * sreloc;
2807
2808 sreloc = elf_section_data (p->sec)->sreloc;
2809
2810 BFD_ASSERT (sreloc != NULL);
2811
2812 sreloc->size += p->count * bed->s->sizeof_rela;
2813 }
2814
2815 return TRUE;
2816 }
2817
2818 /* Allocate space in .plt, .got and associated reloc sections for
2819 local dynamic relocs. */
2820
2821 static bfd_boolean
2822 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2823 {
2824 struct elf_link_hash_entry *h
2825 = (struct elf_link_hash_entry *) *slot;
2826
2827 if (h->type != STT_GNU_IFUNC
2828 || !h->def_regular
2829 || !h->ref_regular
2830 || !h->forced_local
2831 || h->root.type != bfd_link_hash_defined)
2832 abort ();
2833
2834 return elf_x86_64_allocate_dynrelocs (h, inf);
2835 }
2836
2837 /* Find any dynamic relocs that apply to read-only sections. */
2838
2839 static bfd_boolean
2840 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2841 void * inf)
2842 {
2843 struct elf_x86_64_link_hash_entry *eh;
2844 struct elf_dyn_relocs *p;
2845
2846 /* Skip local IFUNC symbols. */
2847 if (h->forced_local && h->type == STT_GNU_IFUNC)
2848 return TRUE;
2849
2850 eh = (struct elf_x86_64_link_hash_entry *) h;
2851 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2852 {
2853 asection *s = p->sec->output_section;
2854
2855 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2856 {
2857 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2858
2859 info->flags |= DF_TEXTREL;
2860
2861 if ((info->warn_shared_textrel && info->shared)
2862 || info->error_textrel)
2863 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'\n"),
2864 p->sec->owner, h->root.root.string,
2865 p->sec);
2866
2867 /* Not an error, just cut short the traversal. */
2868 return FALSE;
2869 }
2870 }
2871 return TRUE;
2872 }
2873
2874 /* Convert
2875 mov foo@GOTPCREL(%rip), %reg
2876 to
2877 lea foo(%rip), %reg
2878 with the local symbol, foo. */
2879
2880 static bfd_boolean
2881 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2882 struct bfd_link_info *link_info)
2883 {
2884 Elf_Internal_Shdr *symtab_hdr;
2885 Elf_Internal_Rela *internal_relocs;
2886 Elf_Internal_Rela *irel, *irelend;
2887 bfd_byte *contents;
2888 struct elf_x86_64_link_hash_table *htab;
2889 bfd_boolean changed_contents;
2890 bfd_boolean changed_relocs;
2891 bfd_signed_vma *local_got_refcounts;
2892
2893 /* Don't even try to convert non-ELF outputs. */
2894 if (!is_elf_hash_table (link_info->hash))
2895 return FALSE;
2896
2897 /* Nothing to do if there is no need or no output. */
2898 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2899 || sec->need_convert_mov_to_lea == 0
2900 || bfd_is_abs_section (sec->output_section))
2901 return TRUE;
2902
2903 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2904
2905 /* Load the relocations for this section. */
2906 internal_relocs = (_bfd_elf_link_read_relocs
2907 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2908 link_info->keep_memory));
2909 if (internal_relocs == NULL)
2910 return FALSE;
2911
2912 htab = elf_x86_64_hash_table (link_info);
2913 changed_contents = FALSE;
2914 changed_relocs = FALSE;
2915 local_got_refcounts = elf_local_got_refcounts (abfd);
2916
2917 /* Get the section contents. */
2918 if (elf_section_data (sec)->this_hdr.contents != NULL)
2919 contents = elf_section_data (sec)->this_hdr.contents;
2920 else
2921 {
2922 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2923 goto error_return;
2924 }
2925
2926 irelend = internal_relocs + sec->reloc_count;
2927 for (irel = internal_relocs; irel < irelend; irel++)
2928 {
2929 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2930 unsigned int r_symndx = htab->r_sym (irel->r_info);
2931 unsigned int indx;
2932 struct elf_link_hash_entry *h;
2933
2934 if (r_type != R_X86_64_GOTPCREL)
2935 continue;
2936
2937 /* Get the symbol referred to by the reloc. */
2938 if (r_symndx < symtab_hdr->sh_info)
2939 {
2940 Elf_Internal_Sym *isym;
2941
2942 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2943 abfd, r_symndx);
2944
2945 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2946 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2947 && irel->r_offset >= 2
2948 && bfd_get_8 (abfd, contents + irel->r_offset - 2) == 0x8b)
2949 {
2950 bfd_put_8 (abfd, 0x8d, contents + irel->r_offset - 2);
2951 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2952 if (local_got_refcounts != NULL
2953 && local_got_refcounts[r_symndx] > 0)
2954 local_got_refcounts[r_symndx] -= 1;
2955 changed_contents = TRUE;
2956 changed_relocs = TRUE;
2957 }
2958 continue;
2959 }
2960
2961 indx = r_symndx - symtab_hdr->sh_info;
2962 h = elf_sym_hashes (abfd)[indx];
2963 BFD_ASSERT (h != NULL);
2964
2965 while (h->root.type == bfd_link_hash_indirect
2966 || h->root.type == bfd_link_hash_warning)
2967 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2968
2969 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2970 avoid optimizing _DYNAMIC since ld.so may use its link-time
2971 address. */
2972 if (h->def_regular
2973 && h->type != STT_GNU_IFUNC
2974 && h != htab->elf.hdynamic
2975 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2976 && irel->r_offset >= 2
2977 && bfd_get_8 (abfd, contents + irel->r_offset - 2) == 0x8b)
2978 {
2979 bfd_put_8 (abfd, 0x8d, contents + irel->r_offset - 2);
2980 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2981 if (h->got.refcount > 0)
2982 h->got.refcount -= 1;
2983 changed_contents = TRUE;
2984 changed_relocs = TRUE;
2985 }
2986 }
2987
2988 if (contents != NULL
2989 && elf_section_data (sec)->this_hdr.contents != contents)
2990 {
2991 if (!changed_contents && !link_info->keep_memory)
2992 free (contents);
2993 else
2994 {
2995 /* Cache the section contents for elf_link_input_bfd. */
2996 elf_section_data (sec)->this_hdr.contents = contents;
2997 }
2998 }
2999
3000 if (elf_section_data (sec)->relocs != internal_relocs)
3001 {
3002 if (!changed_relocs)
3003 free (internal_relocs);
3004 else
3005 elf_section_data (sec)->relocs = internal_relocs;
3006 }
3007
3008 return TRUE;
3009
3010 error_return:
3011 if (contents != NULL
3012 && elf_section_data (sec)->this_hdr.contents != contents)
3013 free (contents);
3014 if (internal_relocs != NULL
3015 && elf_section_data (sec)->relocs != internal_relocs)
3016 free (internal_relocs);
3017 return FALSE;
3018 }
3019
3020 /* Set the sizes of the dynamic sections. */
3021
3022 static bfd_boolean
3023 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
3024 struct bfd_link_info *info)
3025 {
3026 struct elf_x86_64_link_hash_table *htab;
3027 bfd *dynobj;
3028 asection *s;
3029 bfd_boolean relocs;
3030 bfd *ibfd;
3031 const struct elf_backend_data *bed;
3032
3033 htab = elf_x86_64_hash_table (info);
3034 if (htab == NULL)
3035 return FALSE;
3036 bed = get_elf_backend_data (output_bfd);
3037
3038 dynobj = htab->elf.dynobj;
3039 if (dynobj == NULL)
3040 abort ();
3041
3042 if (htab->elf.dynamic_sections_created)
3043 {
3044 /* Set the contents of the .interp section to the interpreter. */
3045 if (info->executable)
3046 {
3047 s = bfd_get_linker_section (dynobj, ".interp");
3048 if (s == NULL)
3049 abort ();
3050 s->size = htab->dynamic_interpreter_size;
3051 s->contents = (unsigned char *) htab->dynamic_interpreter;
3052 }
3053 }
3054
3055 /* Set up .got offsets for local syms, and space for local dynamic
3056 relocs. */
3057 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
3058 {
3059 bfd_signed_vma *local_got;
3060 bfd_signed_vma *end_local_got;
3061 char *local_tls_type;
3062 bfd_vma *local_tlsdesc_gotent;
3063 bfd_size_type locsymcount;
3064 Elf_Internal_Shdr *symtab_hdr;
3065 asection *srel;
3066
3067 if (! is_x86_64_elf (ibfd))
3068 continue;
3069
3070 for (s = ibfd->sections; s != NULL; s = s->next)
3071 {
3072 struct elf_dyn_relocs *p;
3073
3074 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
3075 return FALSE;
3076
3077 for (p = (struct elf_dyn_relocs *)
3078 (elf_section_data (s)->local_dynrel);
3079 p != NULL;
3080 p = p->next)
3081 {
3082 if (!bfd_is_abs_section (p->sec)
3083 && bfd_is_abs_section (p->sec->output_section))
3084 {
3085 /* Input section has been discarded, either because
3086 it is a copy of a linkonce section or due to
3087 linker script /DISCARD/, so we'll be discarding
3088 the relocs too. */
3089 }
3090 else if (p->count != 0)
3091 {
3092 srel = elf_section_data (p->sec)->sreloc;
3093 srel->size += p->count * bed->s->sizeof_rela;
3094 if ((p->sec->output_section->flags & SEC_READONLY) != 0
3095 && (info->flags & DF_TEXTREL) == 0)
3096 {
3097 info->flags |= DF_TEXTREL;
3098 if ((info->warn_shared_textrel && info->shared)
3099 || info->error_textrel)
3100 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'\n"),
3101 p->sec->owner, p->sec);
3102 }
3103 }
3104 }
3105 }
3106
3107 local_got = elf_local_got_refcounts (ibfd);
3108 if (!local_got)
3109 continue;
3110
3111 symtab_hdr = &elf_symtab_hdr (ibfd);
3112 locsymcount = symtab_hdr->sh_info;
3113 end_local_got = local_got + locsymcount;
3114 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
3115 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
3116 s = htab->elf.sgot;
3117 srel = htab->elf.srelgot;
3118 for (; local_got < end_local_got;
3119 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
3120 {
3121 *local_tlsdesc_gotent = (bfd_vma) -1;
3122 if (*local_got > 0)
3123 {
3124 if (GOT_TLS_GDESC_P (*local_tls_type))
3125 {
3126 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3127 - elf_x86_64_compute_jump_table_size (htab);
3128 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3129 *local_got = (bfd_vma) -2;
3130 }
3131 if (! GOT_TLS_GDESC_P (*local_tls_type)
3132 || GOT_TLS_GD_P (*local_tls_type))
3133 {
3134 *local_got = s->size;
3135 s->size += GOT_ENTRY_SIZE;
3136 if (GOT_TLS_GD_P (*local_tls_type))
3137 s->size += GOT_ENTRY_SIZE;
3138 }
3139 if (info->shared
3140 || GOT_TLS_GD_ANY_P (*local_tls_type)
3141 || *local_tls_type == GOT_TLS_IE)
3142 {
3143 if (GOT_TLS_GDESC_P (*local_tls_type))
3144 {
3145 htab->elf.srelplt->size
3146 += bed->s->sizeof_rela;
3147 htab->tlsdesc_plt = (bfd_vma) -1;
3148 }
3149 if (! GOT_TLS_GDESC_P (*local_tls_type)
3150 || GOT_TLS_GD_P (*local_tls_type))
3151 srel->size += bed->s->sizeof_rela;
3152 }
3153 }
3154 else
3155 *local_got = (bfd_vma) -1;
3156 }
3157 }
3158
3159 if (htab->tls_ld_got.refcount > 0)
3160 {
3161 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3162 relocs. */
3163 htab->tls_ld_got.offset = htab->elf.sgot->size;
3164 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3165 htab->elf.srelgot->size += bed->s->sizeof_rela;
3166 }
3167 else
3168 htab->tls_ld_got.offset = -1;
3169
3170 /* Allocate global sym .plt and .got entries, and space for global
3171 sym dynamic relocs. */
3172 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3173 info);
3174
3175 /* Allocate .plt and .got entries, and space for local symbols. */
3176 htab_traverse (htab->loc_hash_table,
3177 elf_x86_64_allocate_local_dynrelocs,
3178 info);
3179
3180 /* For every jump slot reserved in the sgotplt, reloc_count is
3181 incremented. However, when we reserve space for TLS descriptors,
3182 it's not incremented, so in order to compute the space reserved
3183 for them, it suffices to multiply the reloc count by the jump
3184 slot size.
3185
3186 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3187 so that R_X86_64_IRELATIVE entries come last. */
3188 if (htab->elf.srelplt)
3189 {
3190 htab->sgotplt_jump_table_size
3191 = elf_x86_64_compute_jump_table_size (htab);
3192 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3193 }
3194 else if (htab->elf.irelplt)
3195 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3196
3197 if (htab->tlsdesc_plt)
3198 {
3199 /* If we're not using lazy TLS relocations, don't generate the
3200 PLT and GOT entries they require. */
3201 if ((info->flags & DF_BIND_NOW))
3202 htab->tlsdesc_plt = 0;
3203 else
3204 {
3205 htab->tlsdesc_got = htab->elf.sgot->size;
3206 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3207 /* Reserve room for the initial entry.
3208 FIXME: we could probably do away with it in this case. */
3209 if (htab->elf.splt->size == 0)
3210 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3211 htab->tlsdesc_plt = htab->elf.splt->size;
3212 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3213 }
3214 }
3215
3216 if (htab->elf.sgotplt)
3217 {
3218 /* Don't allocate .got.plt section if there are no GOT nor PLT
3219 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3220 if ((htab->elf.hgot == NULL
3221 || !htab->elf.hgot->ref_regular_nonweak)
3222 && (htab->elf.sgotplt->size
3223 == get_elf_backend_data (output_bfd)->got_header_size)
3224 && (htab->elf.splt == NULL
3225 || htab->elf.splt->size == 0)
3226 && (htab->elf.sgot == NULL
3227 || htab->elf.sgot->size == 0)
3228 && (htab->elf.iplt == NULL
3229 || htab->elf.iplt->size == 0)
3230 && (htab->elf.igotplt == NULL
3231 || htab->elf.igotplt->size == 0))
3232 htab->elf.sgotplt->size = 0;
3233 }
3234
3235 if (htab->plt_eh_frame != NULL
3236 && htab->elf.splt != NULL
3237 && htab->elf.splt->size != 0
3238 && !bfd_is_abs_section (htab->elf.splt->output_section)
3239 && _bfd_elf_eh_frame_present (info))
3240 {
3241 const struct elf_x86_64_backend_data *arch_data
3242 = get_elf_x86_64_arch_data (bed);
3243 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3244 }
3245
3246 /* We now have determined the sizes of the various dynamic sections.
3247 Allocate memory for them. */
3248 relocs = FALSE;
3249 for (s = dynobj->sections; s != NULL; s = s->next)
3250 {
3251 if ((s->flags & SEC_LINKER_CREATED) == 0)
3252 continue;
3253
3254 if (s == htab->elf.splt
3255 || s == htab->elf.sgot
3256 || s == htab->elf.sgotplt
3257 || s == htab->elf.iplt
3258 || s == htab->elf.igotplt
3259 || s == htab->plt_bnd
3260 || s == htab->plt_got
3261 || s == htab->plt_eh_frame
3262 || s == htab->sdynbss)
3263 {
3264 /* Strip this section if we don't need it; see the
3265 comment below. */
3266 }
3267 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3268 {
3269 if (s->size != 0 && s != htab->elf.srelplt)
3270 relocs = TRUE;
3271
3272 /* We use the reloc_count field as a counter if we need
3273 to copy relocs into the output file. */
3274 if (s != htab->elf.srelplt)
3275 s->reloc_count = 0;
3276 }
3277 else
3278 {
3279 /* It's not one of our sections, so don't allocate space. */
3280 continue;
3281 }
3282
3283 if (s->size == 0)
3284 {
3285 /* If we don't need this section, strip it from the
3286 output file. This is mostly to handle .rela.bss and
3287 .rela.plt. We must create both sections in
3288 create_dynamic_sections, because they must be created
3289 before the linker maps input sections to output
3290 sections. The linker does that before
3291 adjust_dynamic_symbol is called, and it is that
3292 function which decides whether anything needs to go
3293 into these sections. */
3294
3295 s->flags |= SEC_EXCLUDE;
3296 continue;
3297 }
3298
3299 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3300 continue;
3301
3302 /* Allocate memory for the section contents. We use bfd_zalloc
3303 here in case unused entries are not reclaimed before the
3304 section's contents are written out. This should not happen,
3305 but this way if it does, we get a R_X86_64_NONE reloc instead
3306 of garbage. */
3307 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3308 if (s->contents == NULL)
3309 return FALSE;
3310 }
3311
3312 if (htab->plt_eh_frame != NULL
3313 && htab->plt_eh_frame->contents != NULL)
3314 {
3315 const struct elf_x86_64_backend_data *arch_data
3316 = get_elf_x86_64_arch_data (bed);
3317
3318 memcpy (htab->plt_eh_frame->contents,
3319 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3320 bfd_put_32 (dynobj, htab->elf.splt->size,
3321 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3322 }
3323
3324 if (htab->elf.dynamic_sections_created)
3325 {
3326 /* Add some entries to the .dynamic section. We fill in the
3327 values later, in elf_x86_64_finish_dynamic_sections, but we
3328 must add the entries now so that we get the correct size for
3329 the .dynamic section. The DT_DEBUG entry is filled in by the
3330 dynamic linker and used by the debugger. */
3331 #define add_dynamic_entry(TAG, VAL) \
3332 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3333
3334 if (info->executable)
3335 {
3336 if (!add_dynamic_entry (DT_DEBUG, 0))
3337 return FALSE;
3338 }
3339
3340 if (htab->elf.splt->size != 0)
3341 {
3342 if (!add_dynamic_entry (DT_PLTGOT, 0)
3343 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3344 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3345 || !add_dynamic_entry (DT_JMPREL, 0))
3346 return FALSE;
3347
3348 if (htab->tlsdesc_plt
3349 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3350 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3351 return FALSE;
3352 }
3353
3354 if (relocs)
3355 {
3356 if (!add_dynamic_entry (DT_RELA, 0)
3357 || !add_dynamic_entry (DT_RELASZ, 0)
3358 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3359 return FALSE;
3360
3361 /* If any dynamic relocs apply to a read-only section,
3362 then we need a DT_TEXTREL entry. */
3363 if ((info->flags & DF_TEXTREL) == 0)
3364 elf_link_hash_traverse (&htab->elf,
3365 elf_x86_64_readonly_dynrelocs,
3366 info);
3367
3368 if ((info->flags & DF_TEXTREL) != 0)
3369 {
3370 if (!add_dynamic_entry (DT_TEXTREL, 0))
3371 return FALSE;
3372 }
3373 }
3374 }
3375 #undef add_dynamic_entry
3376
3377 return TRUE;
3378 }
3379
3380 static bfd_boolean
3381 elf_x86_64_always_size_sections (bfd *output_bfd,
3382 struct bfd_link_info *info)
3383 {
3384 asection *tls_sec = elf_hash_table (info)->tls_sec;
3385
3386 if (tls_sec)
3387 {
3388 struct elf_link_hash_entry *tlsbase;
3389
3390 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3391 "_TLS_MODULE_BASE_",
3392 FALSE, FALSE, FALSE);
3393
3394 if (tlsbase && tlsbase->type == STT_TLS)
3395 {
3396 struct elf_x86_64_link_hash_table *htab;
3397 struct bfd_link_hash_entry *bh = NULL;
3398 const struct elf_backend_data *bed
3399 = get_elf_backend_data (output_bfd);
3400
3401 htab = elf_x86_64_hash_table (info);
3402 if (htab == NULL)
3403 return FALSE;
3404
3405 if (!(_bfd_generic_link_add_one_symbol
3406 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3407 tls_sec, 0, NULL, FALSE,
3408 bed->collect, &bh)))
3409 return FALSE;
3410
3411 htab->tls_module_base = bh;
3412
3413 tlsbase = (struct elf_link_hash_entry *)bh;
3414 tlsbase->def_regular = 1;
3415 tlsbase->other = STV_HIDDEN;
3416 tlsbase->root.linker_def = 1;
3417 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3418 }
3419 }
3420
3421 return TRUE;
3422 }
3423
3424 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3425 executables. Rather than setting it to the beginning of the TLS
3426 section, we have to set it to the end. This function may be called
3427 multiple times, it is idempotent. */
3428
3429 static void
3430 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3431 {
3432 struct elf_x86_64_link_hash_table *htab;
3433 struct bfd_link_hash_entry *base;
3434
3435 if (!info->executable)
3436 return;
3437
3438 htab = elf_x86_64_hash_table (info);
3439 if (htab == NULL)
3440 return;
3441
3442 base = htab->tls_module_base;
3443 if (base == NULL)
3444 return;
3445
3446 base->u.def.value = htab->elf.tls_size;
3447 }
3448
3449 /* Return the base VMA address which should be subtracted from real addresses
3450 when resolving @dtpoff relocation.
3451 This is PT_TLS segment p_vaddr. */
3452
3453 static bfd_vma
3454 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3455 {
3456 /* If tls_sec is NULL, we should have signalled an error already. */
3457 if (elf_hash_table (info)->tls_sec == NULL)
3458 return 0;
3459 return elf_hash_table (info)->tls_sec->vma;
3460 }
3461
3462 /* Return the relocation value for @tpoff relocation
3463 if STT_TLS virtual address is ADDRESS. */
3464
3465 static bfd_vma
3466 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3467 {
3468 struct elf_link_hash_table *htab = elf_hash_table (info);
3469 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3470 bfd_vma static_tls_size;
3471
3472 /* If tls_segment is NULL, we should have signalled an error already. */
3473 if (htab->tls_sec == NULL)
3474 return 0;
3475
3476 /* Consider special static TLS alignment requirements. */
3477 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3478 return address - static_tls_size - htab->tls_sec->vma;
3479 }
3480
3481 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3482 branch? */
3483
3484 static bfd_boolean
3485 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3486 {
3487 /* Opcode Instruction
3488 0xe8 call
3489 0xe9 jump
3490 0x0f 0x8x conditional jump */
3491 return ((offset > 0
3492 && (contents [offset - 1] == 0xe8
3493 || contents [offset - 1] == 0xe9))
3494 || (offset > 1
3495 && contents [offset - 2] == 0x0f
3496 && (contents [offset - 1] & 0xf0) == 0x80));
3497 }
3498
3499 /* Relocate an x86_64 ELF section. */
3500
3501 static bfd_boolean
3502 elf_x86_64_relocate_section (bfd *output_bfd,
3503 struct bfd_link_info *info,
3504 bfd *input_bfd,
3505 asection *input_section,
3506 bfd_byte *contents,
3507 Elf_Internal_Rela *relocs,
3508 Elf_Internal_Sym *local_syms,
3509 asection **local_sections)
3510 {
3511 struct elf_x86_64_link_hash_table *htab;
3512 Elf_Internal_Shdr *symtab_hdr;
3513 struct elf_link_hash_entry **sym_hashes;
3514 bfd_vma *local_got_offsets;
3515 bfd_vma *local_tlsdesc_gotents;
3516 Elf_Internal_Rela *rel;
3517 Elf_Internal_Rela *relend;
3518 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3519
3520 BFD_ASSERT (is_x86_64_elf (input_bfd));
3521
3522 htab = elf_x86_64_hash_table (info);
3523 if (htab == NULL)
3524 return FALSE;
3525 symtab_hdr = &elf_symtab_hdr (input_bfd);
3526 sym_hashes = elf_sym_hashes (input_bfd);
3527 local_got_offsets = elf_local_got_offsets (input_bfd);
3528 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3529
3530 elf_x86_64_set_tls_module_base (info);
3531
3532 rel = relocs;
3533 relend = relocs + input_section->reloc_count;
3534 for (; rel < relend; rel++)
3535 {
3536 unsigned int r_type;
3537 reloc_howto_type *howto;
3538 unsigned long r_symndx;
3539 struct elf_link_hash_entry *h;
3540 struct elf_x86_64_link_hash_entry *eh;
3541 Elf_Internal_Sym *sym;
3542 asection *sec;
3543 bfd_vma off, offplt, plt_offset;
3544 bfd_vma relocation;
3545 bfd_boolean unresolved_reloc;
3546 bfd_reloc_status_type r;
3547 int tls_type;
3548 asection *base_got, *resolved_plt;
3549 bfd_vma st_size;
3550
3551 r_type = ELF32_R_TYPE (rel->r_info);
3552 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3553 || r_type == (int) R_X86_64_GNU_VTENTRY)
3554 continue;
3555
3556 if (r_type >= (int) R_X86_64_standard)
3557 {
3558 (*_bfd_error_handler)
3559 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3560 input_bfd, input_section, r_type);
3561 bfd_set_error (bfd_error_bad_value);
3562 return FALSE;
3563 }
3564
3565 if (r_type != (int) R_X86_64_32
3566 || ABI_64_P (output_bfd))
3567 howto = x86_64_elf_howto_table + r_type;
3568 else
3569 howto = (x86_64_elf_howto_table
3570 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3571 r_symndx = htab->r_sym (rel->r_info);
3572 h = NULL;
3573 sym = NULL;
3574 sec = NULL;
3575 unresolved_reloc = FALSE;
3576 if (r_symndx < symtab_hdr->sh_info)
3577 {
3578 sym = local_syms + r_symndx;
3579 sec = local_sections[r_symndx];
3580
3581 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3582 &sec, rel);
3583 st_size = sym->st_size;
3584
3585 /* Relocate against local STT_GNU_IFUNC symbol. */
3586 if (!info->relocatable
3587 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3588 {
3589 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3590 rel, FALSE);
3591 if (h == NULL)
3592 abort ();
3593
3594 /* Set STT_GNU_IFUNC symbol value. */
3595 h->root.u.def.value = sym->st_value;
3596 h->root.u.def.section = sec;
3597 }
3598 }
3599 else
3600 {
3601 bfd_boolean warned ATTRIBUTE_UNUSED;
3602 bfd_boolean ignored ATTRIBUTE_UNUSED;
3603
3604 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3605 r_symndx, symtab_hdr, sym_hashes,
3606 h, sec, relocation,
3607 unresolved_reloc, warned, ignored);
3608 st_size = h->size;
3609 }
3610
3611 if (sec != NULL && discarded_section (sec))
3612 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3613 rel, 1, relend, howto, 0, contents);
3614
3615 if (info->relocatable)
3616 continue;
3617
3618 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3619 {
3620 if (r_type == R_X86_64_64)
3621 {
3622 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3623 zero-extend it to 64bit if addend is zero. */
3624 r_type = R_X86_64_32;
3625 memset (contents + rel->r_offset + 4, 0, 4);
3626 }
3627 else if (r_type == R_X86_64_SIZE64)
3628 {
3629 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3630 zero-extend it to 64bit if addend is zero. */
3631 r_type = R_X86_64_SIZE32;
3632 memset (contents + rel->r_offset + 4, 0, 4);
3633 }
3634 }
3635
3636 eh = (struct elf_x86_64_link_hash_entry *) h;
3637
3638 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3639 it here if it is defined in a non-shared object. */
3640 if (h != NULL
3641 && h->type == STT_GNU_IFUNC
3642 && h->def_regular)
3643 {
3644 bfd_vma plt_index;
3645 const char *name;
3646
3647 if ((input_section->flags & SEC_ALLOC) == 0
3648 || h->plt.offset == (bfd_vma) -1)
3649 abort ();
3650
3651 /* STT_GNU_IFUNC symbol must go through PLT. */
3652 if (htab->elf.splt != NULL)
3653 {
3654 if (htab->plt_bnd != NULL)
3655 {
3656 resolved_plt = htab->plt_bnd;
3657 plt_offset = eh->plt_bnd.offset;
3658 }
3659 else
3660 {
3661 resolved_plt = htab->elf.splt;
3662 plt_offset = h->plt.offset;
3663 }
3664 }
3665 else
3666 {
3667 resolved_plt = htab->elf.iplt;
3668 plt_offset = h->plt.offset;
3669 }
3670
3671 relocation = (resolved_plt->output_section->vma
3672 + resolved_plt->output_offset + plt_offset);
3673
3674 switch (r_type)
3675 {
3676 default:
3677 if (h->root.root.string)
3678 name = h->root.root.string;
3679 else
3680 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3681 NULL);
3682 (*_bfd_error_handler)
3683 (_("%B: relocation %s against STT_GNU_IFUNC "
3684 "symbol `%s' isn't handled by %s"), input_bfd,
3685 x86_64_elf_howto_table[r_type].name,
3686 name, __FUNCTION__);
3687 bfd_set_error (bfd_error_bad_value);
3688 return FALSE;
3689
3690 case R_X86_64_32S:
3691 if (info->shared)
3692 abort ();
3693 goto do_relocation;
3694
3695 case R_X86_64_32:
3696 if (ABI_64_P (output_bfd))
3697 goto do_relocation;
3698 /* FALLTHROUGH */
3699 case R_X86_64_64:
3700 if (rel->r_addend != 0)
3701 {
3702 if (h->root.root.string)
3703 name = h->root.root.string;
3704 else
3705 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3706 sym, NULL);
3707 (*_bfd_error_handler)
3708 (_("%B: relocation %s against STT_GNU_IFUNC "
3709 "symbol `%s' has non-zero addend: %d"),
3710 input_bfd, x86_64_elf_howto_table[r_type].name,
3711 name, rel->r_addend);
3712 bfd_set_error (bfd_error_bad_value);
3713 return FALSE;
3714 }
3715
3716 /* Generate dynamic relcoation only when there is a
3717 non-GOT reference in a shared object. */
3718 if (info->shared && h->non_got_ref)
3719 {
3720 Elf_Internal_Rela outrel;
3721 asection *sreloc;
3722
3723 /* Need a dynamic relocation to get the real function
3724 address. */
3725 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3726 info,
3727 input_section,
3728 rel->r_offset);
3729 if (outrel.r_offset == (bfd_vma) -1
3730 || outrel.r_offset == (bfd_vma) -2)
3731 abort ();
3732
3733 outrel.r_offset += (input_section->output_section->vma
3734 + input_section->output_offset);
3735
3736 if (h->dynindx == -1
3737 || h->forced_local
3738 || info->executable)
3739 {
3740 /* This symbol is resolved locally. */
3741 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3742 outrel.r_addend = (h->root.u.def.value
3743 + h->root.u.def.section->output_section->vma
3744 + h->root.u.def.section->output_offset);
3745 }
3746 else
3747 {
3748 outrel.r_info = htab->r_info (h->dynindx, r_type);
3749 outrel.r_addend = 0;
3750 }
3751
3752 sreloc = htab->elf.irelifunc;
3753 elf_append_rela (output_bfd, sreloc, &outrel);
3754
3755 /* If this reloc is against an external symbol, we
3756 do not want to fiddle with the addend. Otherwise,
3757 we need to include the symbol value so that it
3758 becomes an addend for the dynamic reloc. For an
3759 internal symbol, we have updated addend. */
3760 continue;
3761 }
3762 /* FALLTHROUGH */
3763 case R_X86_64_PC32:
3764 case R_X86_64_PC32_BND:
3765 case R_X86_64_PC64:
3766 case R_X86_64_PLT32:
3767 case R_X86_64_PLT32_BND:
3768 goto do_relocation;
3769
3770 case R_X86_64_GOTPCREL:
3771 case R_X86_64_GOTPCREL64:
3772 base_got = htab->elf.sgot;
3773 off = h->got.offset;
3774
3775 if (base_got == NULL)
3776 abort ();
3777
3778 if (off == (bfd_vma) -1)
3779 {
3780 /* We can't use h->got.offset here to save state, or
3781 even just remember the offset, as finish_dynamic_symbol
3782 would use that as offset into .got. */
3783
3784 if (htab->elf.splt != NULL)
3785 {
3786 plt_index = h->plt.offset / plt_entry_size - 1;
3787 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3788 base_got = htab->elf.sgotplt;
3789 }
3790 else
3791 {
3792 plt_index = h->plt.offset / plt_entry_size;
3793 off = plt_index * GOT_ENTRY_SIZE;
3794 base_got = htab->elf.igotplt;
3795 }
3796
3797 if (h->dynindx == -1
3798 || h->forced_local
3799 || info->symbolic)
3800 {
3801 /* This references the local defitionion. We must
3802 initialize this entry in the global offset table.
3803 Since the offset must always be a multiple of 8,
3804 we use the least significant bit to record
3805 whether we have initialized it already.
3806
3807 When doing a dynamic link, we create a .rela.got
3808 relocation entry to initialize the value. This
3809 is done in the finish_dynamic_symbol routine. */
3810 if ((off & 1) != 0)
3811 off &= ~1;
3812 else
3813 {
3814 bfd_put_64 (output_bfd, relocation,
3815 base_got->contents + off);
3816 /* Note that this is harmless for the GOTPLT64
3817 case, as -1 | 1 still is -1. */
3818 h->got.offset |= 1;
3819 }
3820 }
3821 }
3822
3823 relocation = (base_got->output_section->vma
3824 + base_got->output_offset + off);
3825
3826 goto do_relocation;
3827 }
3828 }
3829
3830 /* When generating a shared object, the relocations handled here are
3831 copied into the output file to be resolved at run time. */
3832 switch (r_type)
3833 {
3834 case R_X86_64_GOT32:
3835 case R_X86_64_GOT64:
3836 /* Relocation is to the entry for this symbol in the global
3837 offset table. */
3838 case R_X86_64_GOTPCREL:
3839 case R_X86_64_GOTPCREL64:
3840 /* Use global offset table entry as symbol value. */
3841 case R_X86_64_GOTPLT64:
3842 /* This is obsolete and treated the the same as GOT64. */
3843 base_got = htab->elf.sgot;
3844
3845 if (htab->elf.sgot == NULL)
3846 abort ();
3847
3848 if (h != NULL)
3849 {
3850 bfd_boolean dyn;
3851
3852 off = h->got.offset;
3853 if (h->needs_plt
3854 && h->plt.offset != (bfd_vma)-1
3855 && off == (bfd_vma)-1)
3856 {
3857 /* We can't use h->got.offset here to save
3858 state, or even just remember the offset, as
3859 finish_dynamic_symbol would use that as offset into
3860 .got. */
3861 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3862 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3863 base_got = htab->elf.sgotplt;
3864 }
3865
3866 dyn = htab->elf.dynamic_sections_created;
3867
3868 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3869 || (info->shared
3870 && SYMBOL_REFERENCES_LOCAL (info, h))
3871 || (ELF_ST_VISIBILITY (h->other)
3872 && h->root.type == bfd_link_hash_undefweak))
3873 {
3874 /* This is actually a static link, or it is a -Bsymbolic
3875 link and the symbol is defined locally, or the symbol
3876 was forced to be local because of a version file. We
3877 must initialize this entry in the global offset table.
3878 Since the offset must always be a multiple of 8, we
3879 use the least significant bit to record whether we
3880 have initialized it already.
3881
3882 When doing a dynamic link, we create a .rela.got
3883 relocation entry to initialize the value. This is
3884 done in the finish_dynamic_symbol routine. */
3885 if ((off & 1) != 0)
3886 off &= ~1;
3887 else
3888 {
3889 bfd_put_64 (output_bfd, relocation,
3890 base_got->contents + off);
3891 /* Note that this is harmless for the GOTPLT64 case,
3892 as -1 | 1 still is -1. */
3893 h->got.offset |= 1;
3894 }
3895 }
3896 else
3897 unresolved_reloc = FALSE;
3898 }
3899 else
3900 {
3901 if (local_got_offsets == NULL)
3902 abort ();
3903
3904 off = local_got_offsets[r_symndx];
3905
3906 /* The offset must always be a multiple of 8. We use
3907 the least significant bit to record whether we have
3908 already generated the necessary reloc. */
3909 if ((off & 1) != 0)
3910 off &= ~1;
3911 else
3912 {
3913 bfd_put_64 (output_bfd, relocation,
3914 base_got->contents + off);
3915
3916 if (info->shared)
3917 {
3918 asection *s;
3919 Elf_Internal_Rela outrel;
3920
3921 /* We need to generate a R_X86_64_RELATIVE reloc
3922 for the dynamic linker. */
3923 s = htab->elf.srelgot;
3924 if (s == NULL)
3925 abort ();
3926
3927 outrel.r_offset = (base_got->output_section->vma
3928 + base_got->output_offset
3929 + off);
3930 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3931 outrel.r_addend = relocation;
3932 elf_append_rela (output_bfd, s, &outrel);
3933 }
3934
3935 local_got_offsets[r_symndx] |= 1;
3936 }
3937 }
3938
3939 if (off >= (bfd_vma) -2)
3940 abort ();
3941
3942 relocation = base_got->output_section->vma
3943 + base_got->output_offset + off;
3944 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3945 relocation -= htab->elf.sgotplt->output_section->vma
3946 - htab->elf.sgotplt->output_offset;
3947
3948 break;
3949
3950 case R_X86_64_GOTOFF64:
3951 /* Relocation is relative to the start of the global offset
3952 table. */
3953
3954 /* Check to make sure it isn't a protected function or data
3955 symbol for shared library since it may not be local when
3956 used as function address or with copy relocation. We also
3957 need to make sure that a symbol is referenced locally. */
3958 if (info->shared && h)
3959 {
3960 if (!h->def_regular)
3961 {
3962 const char *v;
3963
3964 switch (ELF_ST_VISIBILITY (h->other))
3965 {
3966 case STV_HIDDEN:
3967 v = _("hidden symbol");
3968 break;
3969 case STV_INTERNAL:
3970 v = _("internal symbol");
3971 break;
3972 case STV_PROTECTED:
3973 v = _("protected symbol");
3974 break;
3975 default:
3976 v = _("symbol");
3977 break;
3978 }
3979
3980 (*_bfd_error_handler)
3981 (_("%B: relocation R_X86_64_GOTOFF64 against undefined %s `%s' can not be used when making a shared object"),
3982 input_bfd, v, h->root.root.string);
3983 bfd_set_error (bfd_error_bad_value);
3984 return FALSE;
3985 }
3986 else if (!info->executable
3987 && !SYMBOL_REFERENCES_LOCAL (info, h)
3988 && (h->type == STT_FUNC
3989 || h->type == STT_OBJECT)
3990 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3991 {
3992 (*_bfd_error_handler)
3993 (_("%B: relocation R_X86_64_GOTOFF64 against protected %s `%s' can not be used when making a shared object"),
3994 input_bfd,
3995 h->type == STT_FUNC ? "function" : "data",
3996 h->root.root.string);
3997 bfd_set_error (bfd_error_bad_value);
3998 return FALSE;
3999 }
4000 }
4001
4002 /* Note that sgot is not involved in this
4003 calculation. We always want the start of .got.plt. If we
4004 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
4005 permitted by the ABI, we might have to change this
4006 calculation. */
4007 relocation -= htab->elf.sgotplt->output_section->vma
4008 + htab->elf.sgotplt->output_offset;
4009 break;
4010
4011 case R_X86_64_GOTPC32:
4012 case R_X86_64_GOTPC64:
4013 /* Use global offset table as symbol value. */
4014 relocation = htab->elf.sgotplt->output_section->vma
4015 + htab->elf.sgotplt->output_offset;
4016 unresolved_reloc = FALSE;
4017 break;
4018
4019 case R_X86_64_PLTOFF64:
4020 /* Relocation is PLT entry relative to GOT. For local
4021 symbols it's the symbol itself relative to GOT. */
4022 if (h != NULL
4023 /* See PLT32 handling. */
4024 && h->plt.offset != (bfd_vma) -1
4025 && htab->elf.splt != NULL)
4026 {
4027 if (htab->plt_bnd != NULL)
4028 {
4029 resolved_plt = htab->plt_bnd;
4030 plt_offset = eh->plt_bnd.offset;
4031 }
4032 else
4033 {
4034 resolved_plt = htab->elf.splt;
4035 plt_offset = h->plt.offset;
4036 }
4037
4038 relocation = (resolved_plt->output_section->vma
4039 + resolved_plt->output_offset
4040 + plt_offset);
4041 unresolved_reloc = FALSE;
4042 }
4043
4044 relocation -= htab->elf.sgotplt->output_section->vma
4045 + htab->elf.sgotplt->output_offset;
4046 break;
4047
4048 case R_X86_64_PLT32:
4049 case R_X86_64_PLT32_BND:
4050 /* Relocation is to the entry for this symbol in the
4051 procedure linkage table. */
4052
4053 /* Resolve a PLT32 reloc against a local symbol directly,
4054 without using the procedure linkage table. */
4055 if (h == NULL)
4056 break;
4057
4058 if ((h->plt.offset == (bfd_vma) -1
4059 && eh->plt_got.offset == (bfd_vma) -1)
4060 || htab->elf.splt == NULL)
4061 {
4062 /* We didn't make a PLT entry for this symbol. This
4063 happens when statically linking PIC code, or when
4064 using -Bsymbolic. */
4065 break;
4066 }
4067
4068 if (h->plt.offset != (bfd_vma) -1)
4069 {
4070 if (htab->plt_bnd != NULL)
4071 {
4072 resolved_plt = htab->plt_bnd;
4073 plt_offset = eh->plt_bnd.offset;
4074 }
4075 else
4076 {
4077 resolved_plt = htab->elf.splt;
4078 plt_offset = h->plt.offset;
4079 }
4080 }
4081 else
4082 {
4083 /* Use the GOT PLT. */
4084 resolved_plt = htab->plt_got;
4085 plt_offset = eh->plt_got.offset;
4086 }
4087
4088 relocation = (resolved_plt->output_section->vma
4089 + resolved_plt->output_offset
4090 + plt_offset);
4091 unresolved_reloc = FALSE;
4092 break;
4093
4094 case R_X86_64_SIZE32:
4095 case R_X86_64_SIZE64:
4096 /* Set to symbol size. */
4097 relocation = st_size;
4098 goto direct;
4099
4100 case R_X86_64_PC8:
4101 case R_X86_64_PC16:
4102 case R_X86_64_PC32:
4103 case R_X86_64_PC32_BND:
4104 /* Don't complain about -fPIC if the symbol is undefined when
4105 building executable. */
4106 if (info->shared
4107 && (input_section->flags & SEC_ALLOC) != 0
4108 && (input_section->flags & SEC_READONLY) != 0
4109 && h != NULL
4110 && !(info->executable
4111 && h->root.type == bfd_link_hash_undefined))
4112 {
4113 bfd_boolean fail = FALSE;
4114 bfd_boolean branch
4115 = ((r_type == R_X86_64_PC32
4116 || r_type == R_X86_64_PC32_BND)
4117 && is_32bit_relative_branch (contents, rel->r_offset));
4118
4119 if (SYMBOL_REFERENCES_LOCAL (info, h))
4120 {
4121 /* Symbol is referenced locally. Make sure it is
4122 defined locally or for a branch. */
4123 fail = !h->def_regular && !branch;
4124 }
4125 else if (!(info->executable
4126 && (h->needs_copy || eh->needs_copy)))
4127 {
4128 /* Symbol doesn't need copy reloc and isn't referenced
4129 locally. We only allow branch to symbol with
4130 non-default visibility. */
4131 fail = (!branch
4132 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
4133 }
4134
4135 if (fail)
4136 {
4137 const char *fmt;
4138 const char *v;
4139 const char *pic = "";
4140
4141 switch (ELF_ST_VISIBILITY (h->other))
4142 {
4143 case STV_HIDDEN:
4144 v = _("hidden symbol");
4145 break;
4146 case STV_INTERNAL:
4147 v = _("internal symbol");
4148 break;
4149 case STV_PROTECTED:
4150 v = _("protected symbol");
4151 break;
4152 default:
4153 v = _("symbol");
4154 pic = _("; recompile with -fPIC");
4155 break;
4156 }
4157
4158 if (h->def_regular)
4159 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
4160 else
4161 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
4162
4163 (*_bfd_error_handler) (fmt, input_bfd,
4164 x86_64_elf_howto_table[r_type].name,
4165 v, h->root.root.string, pic);
4166 bfd_set_error (bfd_error_bad_value);
4167 return FALSE;
4168 }
4169 }
4170 /* Fall through. */
4171
4172 case R_X86_64_8:
4173 case R_X86_64_16:
4174 case R_X86_64_32:
4175 case R_X86_64_PC64:
4176 case R_X86_64_64:
4177 /* FIXME: The ABI says the linker should make sure the value is
4178 the same when it's zeroextended to 64 bit. */
4179
4180 direct:
4181 if ((input_section->flags & SEC_ALLOC) == 0)
4182 break;
4183
4184 /* Don't copy a pc-relative relocation into the output file
4185 if the symbol needs copy reloc or the symbol is undefined
4186 when building executable. */
4187 if ((info->shared
4188 && !(info->executable
4189 && h != NULL
4190 && (h->needs_copy
4191 || eh->needs_copy
4192 || h->root.type == bfd_link_hash_undefined)
4193 && IS_X86_64_PCREL_TYPE (r_type))
4194 && (h == NULL
4195 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4196 || h->root.type != bfd_link_hash_undefweak)
4197 && ((! IS_X86_64_PCREL_TYPE (r_type)
4198 && r_type != R_X86_64_SIZE32
4199 && r_type != R_X86_64_SIZE64)
4200 || ! SYMBOL_CALLS_LOCAL (info, h)))
4201 || (ELIMINATE_COPY_RELOCS
4202 && !info->shared
4203 && h != NULL
4204 && h->dynindx != -1
4205 && !h->non_got_ref
4206 && ((h->def_dynamic
4207 && !h->def_regular)
4208 || h->root.type == bfd_link_hash_undefweak
4209 || h->root.type == bfd_link_hash_undefined)))
4210 {
4211 Elf_Internal_Rela outrel;
4212 bfd_boolean skip, relocate;
4213 asection *sreloc;
4214
4215 /* When generating a shared object, these relocations
4216 are copied into the output file to be resolved at run
4217 time. */
4218 skip = FALSE;
4219 relocate = FALSE;
4220
4221 outrel.r_offset =
4222 _bfd_elf_section_offset (output_bfd, info, input_section,
4223 rel->r_offset);
4224 if (outrel.r_offset == (bfd_vma) -1)
4225 skip = TRUE;
4226 else if (outrel.r_offset == (bfd_vma) -2)
4227 skip = TRUE, relocate = TRUE;
4228
4229 outrel.r_offset += (input_section->output_section->vma
4230 + input_section->output_offset);
4231
4232 if (skip)
4233 memset (&outrel, 0, sizeof outrel);
4234
4235 /* h->dynindx may be -1 if this symbol was marked to
4236 become local. */
4237 else if (h != NULL
4238 && h->dynindx != -1
4239 && (IS_X86_64_PCREL_TYPE (r_type)
4240 || ! info->shared
4241 || ! SYMBOLIC_BIND (info, h)
4242 || ! h->def_regular))
4243 {
4244 outrel.r_info = htab->r_info (h->dynindx, r_type);
4245 outrel.r_addend = rel->r_addend;
4246 }
4247 else
4248 {
4249 /* This symbol is local, or marked to become local. */
4250 if (r_type == htab->pointer_r_type)
4251 {
4252 relocate = TRUE;
4253 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4254 outrel.r_addend = relocation + rel->r_addend;
4255 }
4256 else if (r_type == R_X86_64_64
4257 && !ABI_64_P (output_bfd))
4258 {
4259 relocate = TRUE;
4260 outrel.r_info = htab->r_info (0,
4261 R_X86_64_RELATIVE64);
4262 outrel.r_addend = relocation + rel->r_addend;
4263 /* Check addend overflow. */
4264 if ((outrel.r_addend & 0x80000000)
4265 != (rel->r_addend & 0x80000000))
4266 {
4267 const char *name;
4268 int addend = rel->r_addend;
4269 if (h && h->root.root.string)
4270 name = h->root.root.string;
4271 else
4272 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4273 sym, NULL);
4274 if (addend < 0)
4275 (*_bfd_error_handler)
4276 (_("%B: addend -0x%x in relocation %s against "
4277 "symbol `%s' at 0x%lx in section `%A' is "
4278 "out of range"),
4279 input_bfd, input_section, addend,
4280 x86_64_elf_howto_table[r_type].name,
4281 name, (unsigned long) rel->r_offset);
4282 else
4283 (*_bfd_error_handler)
4284 (_("%B: addend 0x%x in relocation %s against "
4285 "symbol `%s' at 0x%lx in section `%A' is "
4286 "out of range"),
4287 input_bfd, input_section, addend,
4288 x86_64_elf_howto_table[r_type].name,
4289 name, (unsigned long) rel->r_offset);
4290 bfd_set_error (bfd_error_bad_value);
4291 return FALSE;
4292 }
4293 }
4294 else
4295 {
4296 long sindx;
4297
4298 if (bfd_is_abs_section (sec))
4299 sindx = 0;
4300 else if (sec == NULL || sec->owner == NULL)
4301 {
4302 bfd_set_error (bfd_error_bad_value);
4303 return FALSE;
4304 }
4305 else
4306 {
4307 asection *osec;
4308
4309 /* We are turning this relocation into one
4310 against a section symbol. It would be
4311 proper to subtract the symbol's value,
4312 osec->vma, from the emitted reloc addend,
4313 but ld.so expects buggy relocs. */
4314 osec = sec->output_section;
4315 sindx = elf_section_data (osec)->dynindx;
4316 if (sindx == 0)
4317 {
4318 asection *oi = htab->elf.text_index_section;
4319 sindx = elf_section_data (oi)->dynindx;
4320 }
4321 BFD_ASSERT (sindx != 0);
4322 }
4323
4324 outrel.r_info = htab->r_info (sindx, r_type);
4325 outrel.r_addend = relocation + rel->r_addend;
4326 }
4327 }
4328
4329 sreloc = elf_section_data (input_section)->sreloc;
4330
4331 if (sreloc == NULL || sreloc->contents == NULL)
4332 {
4333 r = bfd_reloc_notsupported;
4334 goto check_relocation_error;
4335 }
4336
4337 elf_append_rela (output_bfd, sreloc, &outrel);
4338
4339 /* If this reloc is against an external symbol, we do
4340 not want to fiddle with the addend. Otherwise, we
4341 need to include the symbol value so that it becomes
4342 an addend for the dynamic reloc. */
4343 if (! relocate)
4344 continue;
4345 }
4346
4347 break;
4348
4349 case R_X86_64_TLSGD:
4350 case R_X86_64_GOTPC32_TLSDESC:
4351 case R_X86_64_TLSDESC_CALL:
4352 case R_X86_64_GOTTPOFF:
4353 tls_type = GOT_UNKNOWN;
4354 if (h == NULL && local_got_offsets)
4355 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4356 else if (h != NULL)
4357 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4358
4359 if (! elf_x86_64_tls_transition (info, input_bfd,
4360 input_section, contents,
4361 symtab_hdr, sym_hashes,
4362 &r_type, tls_type, rel,
4363 relend, h, r_symndx))
4364 return FALSE;
4365
4366 if (r_type == R_X86_64_TPOFF32)
4367 {
4368 bfd_vma roff = rel->r_offset;
4369
4370 BFD_ASSERT (! unresolved_reloc);
4371
4372 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4373 {
4374 /* GD->LE transition. For 64bit, change
4375 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4376 .word 0x6666; rex64; call __tls_get_addr
4377 into:
4378 movq %fs:0, %rax
4379 leaq foo@tpoff(%rax), %rax
4380 For 32bit, change
4381 leaq foo@tlsgd(%rip), %rdi
4382 .word 0x6666; rex64; call __tls_get_addr
4383 into:
4384 movl %fs:0, %eax
4385 leaq foo@tpoff(%rax), %rax
4386 For largepic, change:
4387 leaq foo@tlsgd(%rip), %rdi
4388 movabsq $__tls_get_addr@pltoff, %rax
4389 addq %rbx, %rax
4390 call *%rax
4391 into:
4392 movq %fs:0, %rax
4393 leaq foo@tpoff(%rax), %rax
4394 nopw 0x0(%rax,%rax,1) */
4395 int largepic = 0;
4396 if (ABI_64_P (output_bfd)
4397 && contents[roff + 5] == (bfd_byte) '\xb8')
4398 {
4399 memcpy (contents + roff - 3,
4400 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4401 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4402 largepic = 1;
4403 }
4404 else if (ABI_64_P (output_bfd))
4405 memcpy (contents + roff - 4,
4406 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4407 16);
4408 else
4409 memcpy (contents + roff - 3,
4410 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4411 15);
4412 bfd_put_32 (output_bfd,
4413 elf_x86_64_tpoff (info, relocation),
4414 contents + roff + 8 + largepic);
4415 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4416 rel++;
4417 continue;
4418 }
4419 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4420 {
4421 /* GDesc -> LE transition.
4422 It's originally something like:
4423 leaq x@tlsdesc(%rip), %rax
4424
4425 Change it to:
4426 movl $x@tpoff, %rax. */
4427
4428 unsigned int val, type;
4429
4430 type = bfd_get_8 (input_bfd, contents + roff - 3);
4431 val = bfd_get_8 (input_bfd, contents + roff - 1);
4432 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4433 contents + roff - 3);
4434 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4435 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4436 contents + roff - 1);
4437 bfd_put_32 (output_bfd,
4438 elf_x86_64_tpoff (info, relocation),
4439 contents + roff);
4440 continue;
4441 }
4442 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4443 {
4444 /* GDesc -> LE transition.
4445 It's originally:
4446 call *(%rax)
4447 Turn it into:
4448 xchg %ax,%ax. */
4449 bfd_put_8 (output_bfd, 0x66, contents + roff);
4450 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4451 continue;
4452 }
4453 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4454 {
4455 /* IE->LE transition:
4456 For 64bit, originally it can be one of:
4457 movq foo@gottpoff(%rip), %reg
4458 addq foo@gottpoff(%rip), %reg
4459 We change it into:
4460 movq $foo, %reg
4461 leaq foo(%reg), %reg
4462 addq $foo, %reg.
4463 For 32bit, originally it can be one of:
4464 movq foo@gottpoff(%rip), %reg
4465 addl foo@gottpoff(%rip), %reg
4466 We change it into:
4467 movq $foo, %reg
4468 leal foo(%reg), %reg
4469 addl $foo, %reg. */
4470
4471 unsigned int val, type, reg;
4472
4473 if (roff >= 3)
4474 val = bfd_get_8 (input_bfd, contents + roff - 3);
4475 else
4476 val = 0;
4477 type = bfd_get_8 (input_bfd, contents + roff - 2);
4478 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4479 reg >>= 3;
4480 if (type == 0x8b)
4481 {
4482 /* movq */
4483 if (val == 0x4c)
4484 bfd_put_8 (output_bfd, 0x49,
4485 contents + roff - 3);
4486 else if (!ABI_64_P (output_bfd) && val == 0x44)
4487 bfd_put_8 (output_bfd, 0x41,
4488 contents + roff - 3);
4489 bfd_put_8 (output_bfd, 0xc7,
4490 contents + roff - 2);
4491 bfd_put_8 (output_bfd, 0xc0 | reg,
4492 contents + roff - 1);
4493 }
4494 else if (reg == 4)
4495 {
4496 /* addq/addl -> addq/addl - addressing with %rsp/%r12
4497 is special */
4498 if (val == 0x4c)
4499 bfd_put_8 (output_bfd, 0x49,
4500 contents + roff - 3);
4501 else if (!ABI_64_P (output_bfd) && val == 0x44)
4502 bfd_put_8 (output_bfd, 0x41,
4503 contents + roff - 3);
4504 bfd_put_8 (output_bfd, 0x81,
4505 contents + roff - 2);
4506 bfd_put_8 (output_bfd, 0xc0 | reg,
4507 contents + roff - 1);
4508 }
4509 else
4510 {
4511 /* addq/addl -> leaq/leal */
4512 if (val == 0x4c)
4513 bfd_put_8 (output_bfd, 0x4d,
4514 contents + roff - 3);
4515 else if (!ABI_64_P (output_bfd) && val == 0x44)
4516 bfd_put_8 (output_bfd, 0x45,
4517 contents + roff - 3);
4518 bfd_put_8 (output_bfd, 0x8d,
4519 contents + roff - 2);
4520 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4521 contents + roff - 1);
4522 }
4523 bfd_put_32 (output_bfd,
4524 elf_x86_64_tpoff (info, relocation),
4525 contents + roff);
4526 continue;
4527 }
4528 else
4529 BFD_ASSERT (FALSE);
4530 }
4531
4532 if (htab->elf.sgot == NULL)
4533 abort ();
4534
4535 if (h != NULL)
4536 {
4537 off = h->got.offset;
4538 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4539 }
4540 else
4541 {
4542 if (local_got_offsets == NULL)
4543 abort ();
4544
4545 off = local_got_offsets[r_symndx];
4546 offplt = local_tlsdesc_gotents[r_symndx];
4547 }
4548
4549 if ((off & 1) != 0)
4550 off &= ~1;
4551 else
4552 {
4553 Elf_Internal_Rela outrel;
4554 int dr_type, indx;
4555 asection *sreloc;
4556
4557 if (htab->elf.srelgot == NULL)
4558 abort ();
4559
4560 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4561
4562 if (GOT_TLS_GDESC_P (tls_type))
4563 {
4564 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4565 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4566 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4567 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4568 + htab->elf.sgotplt->output_offset
4569 + offplt
4570 + htab->sgotplt_jump_table_size);
4571 sreloc = htab->elf.srelplt;
4572 if (indx == 0)
4573 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4574 else
4575 outrel.r_addend = 0;
4576 elf_append_rela (output_bfd, sreloc, &outrel);
4577 }
4578
4579 sreloc = htab->elf.srelgot;
4580
4581 outrel.r_offset = (htab->elf.sgot->output_section->vma
4582 + htab->elf.sgot->output_offset + off);
4583
4584 if (GOT_TLS_GD_P (tls_type))
4585 dr_type = R_X86_64_DTPMOD64;
4586 else if (GOT_TLS_GDESC_P (tls_type))
4587 goto dr_done;
4588 else
4589 dr_type = R_X86_64_TPOFF64;
4590
4591 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4592 outrel.r_addend = 0;
4593 if ((dr_type == R_X86_64_TPOFF64
4594 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4595 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4596 outrel.r_info = htab->r_info (indx, dr_type);
4597
4598 elf_append_rela (output_bfd, sreloc, &outrel);
4599
4600 if (GOT_TLS_GD_P (tls_type))
4601 {
4602 if (indx == 0)
4603 {
4604 BFD_ASSERT (! unresolved_reloc);
4605 bfd_put_64 (output_bfd,
4606 relocation - elf_x86_64_dtpoff_base (info),
4607 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4608 }
4609 else
4610 {
4611 bfd_put_64 (output_bfd, 0,
4612 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4613 outrel.r_info = htab->r_info (indx,
4614 R_X86_64_DTPOFF64);
4615 outrel.r_offset += GOT_ENTRY_SIZE;
4616 elf_append_rela (output_bfd, sreloc,
4617 &outrel);
4618 }
4619 }
4620
4621 dr_done:
4622 if (h != NULL)
4623 h->got.offset |= 1;
4624 else
4625 local_got_offsets[r_symndx] |= 1;
4626 }
4627
4628 if (off >= (bfd_vma) -2
4629 && ! GOT_TLS_GDESC_P (tls_type))
4630 abort ();
4631 if (r_type == ELF32_R_TYPE (rel->r_info))
4632 {
4633 if (r_type == R_X86_64_GOTPC32_TLSDESC
4634 || r_type == R_X86_64_TLSDESC_CALL)
4635 relocation = htab->elf.sgotplt->output_section->vma
4636 + htab->elf.sgotplt->output_offset
4637 + offplt + htab->sgotplt_jump_table_size;
4638 else
4639 relocation = htab->elf.sgot->output_section->vma
4640 + htab->elf.sgot->output_offset + off;
4641 unresolved_reloc = FALSE;
4642 }
4643 else
4644 {
4645 bfd_vma roff = rel->r_offset;
4646
4647 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4648 {
4649 /* GD->IE transition. For 64bit, change
4650 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4651 .word 0x6666; rex64; call __tls_get_addr@plt
4652 into:
4653 movq %fs:0, %rax
4654 addq foo@gottpoff(%rip), %rax
4655 For 32bit, change
4656 leaq foo@tlsgd(%rip), %rdi
4657 .word 0x6666; rex64; call __tls_get_addr@plt
4658 into:
4659 movl %fs:0, %eax
4660 addq foo@gottpoff(%rip), %rax
4661 For largepic, change:
4662 leaq foo@tlsgd(%rip), %rdi
4663 movabsq $__tls_get_addr@pltoff, %rax
4664 addq %rbx, %rax
4665 call *%rax
4666 into:
4667 movq %fs:0, %rax
4668 addq foo@gottpoff(%rax), %rax
4669 nopw 0x0(%rax,%rax,1) */
4670 int largepic = 0;
4671 if (ABI_64_P (output_bfd)
4672 && contents[roff + 5] == (bfd_byte) '\xb8')
4673 {
4674 memcpy (contents + roff - 3,
4675 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4676 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4677 largepic = 1;
4678 }
4679 else if (ABI_64_P (output_bfd))
4680 memcpy (contents + roff - 4,
4681 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4682 16);
4683 else
4684 memcpy (contents + roff - 3,
4685 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4686 15);
4687
4688 relocation = (htab->elf.sgot->output_section->vma
4689 + htab->elf.sgot->output_offset + off
4690 - roff
4691 - largepic
4692 - input_section->output_section->vma
4693 - input_section->output_offset
4694 - 12);
4695 bfd_put_32 (output_bfd, relocation,
4696 contents + roff + 8 + largepic);
4697 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4698 rel++;
4699 continue;
4700 }
4701 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4702 {
4703 /* GDesc -> IE transition.
4704 It's originally something like:
4705 leaq x@tlsdesc(%rip), %rax
4706
4707 Change it to:
4708 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4709
4710 /* Now modify the instruction as appropriate. To
4711 turn a leaq into a movq in the form we use it, it
4712 suffices to change the second byte from 0x8d to
4713 0x8b. */
4714 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4715
4716 bfd_put_32 (output_bfd,
4717 htab->elf.sgot->output_section->vma
4718 + htab->elf.sgot->output_offset + off
4719 - rel->r_offset
4720 - input_section->output_section->vma
4721 - input_section->output_offset
4722 - 4,
4723 contents + roff);
4724 continue;
4725 }
4726 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4727 {
4728 /* GDesc -> IE transition.
4729 It's originally:
4730 call *(%rax)
4731
4732 Change it to:
4733 xchg %ax, %ax. */
4734
4735 bfd_put_8 (output_bfd, 0x66, contents + roff);
4736 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4737 continue;
4738 }
4739 else
4740 BFD_ASSERT (FALSE);
4741 }
4742 break;
4743
4744 case R_X86_64_TLSLD:
4745 if (! elf_x86_64_tls_transition (info, input_bfd,
4746 input_section, contents,
4747 symtab_hdr, sym_hashes,
4748 &r_type, GOT_UNKNOWN,
4749 rel, relend, h, r_symndx))
4750 return FALSE;
4751
4752 if (r_type != R_X86_64_TLSLD)
4753 {
4754 /* LD->LE transition:
4755 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4756 For 64bit, we change it into:
4757 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4758 For 32bit, we change it into:
4759 nopl 0x0(%rax); movl %fs:0, %eax.
4760 For largepic, change:
4761 leaq foo@tlsgd(%rip), %rdi
4762 movabsq $__tls_get_addr@pltoff, %rax
4763 addq %rbx, %rax
4764 call *%rax
4765 into:
4766 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4767 movq %fs:0, %eax */
4768
4769 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4770 if (ABI_64_P (output_bfd)
4771 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4772 memcpy (contents + rel->r_offset - 3,
4773 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4774 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4775 else if (ABI_64_P (output_bfd))
4776 memcpy (contents + rel->r_offset - 3,
4777 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4778 else
4779 memcpy (contents + rel->r_offset - 3,
4780 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4781 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4782 rel++;
4783 continue;
4784 }
4785
4786 if (htab->elf.sgot == NULL)
4787 abort ();
4788
4789 off = htab->tls_ld_got.offset;
4790 if (off & 1)
4791 off &= ~1;
4792 else
4793 {
4794 Elf_Internal_Rela outrel;
4795
4796 if (htab->elf.srelgot == NULL)
4797 abort ();
4798
4799 outrel.r_offset = (htab->elf.sgot->output_section->vma
4800 + htab->elf.sgot->output_offset + off);
4801
4802 bfd_put_64 (output_bfd, 0,
4803 htab->elf.sgot->contents + off);
4804 bfd_put_64 (output_bfd, 0,
4805 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4806 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4807 outrel.r_addend = 0;
4808 elf_append_rela (output_bfd, htab->elf.srelgot,
4809 &outrel);
4810 htab->tls_ld_got.offset |= 1;
4811 }
4812 relocation = htab->elf.sgot->output_section->vma
4813 + htab->elf.sgot->output_offset + off;
4814 unresolved_reloc = FALSE;
4815 break;
4816
4817 case R_X86_64_DTPOFF32:
4818 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4819 relocation -= elf_x86_64_dtpoff_base (info);
4820 else
4821 relocation = elf_x86_64_tpoff (info, relocation);
4822 break;
4823
4824 case R_X86_64_TPOFF32:
4825 case R_X86_64_TPOFF64:
4826 BFD_ASSERT (info->executable);
4827 relocation = elf_x86_64_tpoff (info, relocation);
4828 break;
4829
4830 case R_X86_64_DTPOFF64:
4831 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4832 relocation -= elf_x86_64_dtpoff_base (info);
4833 break;
4834
4835 default:
4836 break;
4837 }
4838
4839 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4840 because such sections are not SEC_ALLOC and thus ld.so will
4841 not process them. */
4842 if (unresolved_reloc
4843 && !((input_section->flags & SEC_DEBUGGING) != 0
4844 && h->def_dynamic)
4845 && _bfd_elf_section_offset (output_bfd, info, input_section,
4846 rel->r_offset) != (bfd_vma) -1)
4847 {
4848 (*_bfd_error_handler)
4849 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4850 input_bfd,
4851 input_section,
4852 (long) rel->r_offset,
4853 howto->name,
4854 h->root.root.string);
4855 return FALSE;
4856 }
4857
4858 do_relocation:
4859 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4860 contents, rel->r_offset,
4861 relocation, rel->r_addend);
4862
4863 check_relocation_error:
4864 if (r != bfd_reloc_ok)
4865 {
4866 const char *name;
4867
4868 if (h != NULL)
4869 name = h->root.root.string;
4870 else
4871 {
4872 name = bfd_elf_string_from_elf_section (input_bfd,
4873 symtab_hdr->sh_link,
4874 sym->st_name);
4875 if (name == NULL)
4876 return FALSE;
4877 if (*name == '\0')
4878 name = bfd_section_name (input_bfd, sec);
4879 }
4880
4881 if (r == bfd_reloc_overflow)
4882 {
4883 if (! ((*info->callbacks->reloc_overflow)
4884 (info, (h ? &h->root : NULL), name, howto->name,
4885 (bfd_vma) 0, input_bfd, input_section,
4886 rel->r_offset)))
4887 return FALSE;
4888 }
4889 else
4890 {
4891 (*_bfd_error_handler)
4892 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4893 input_bfd, input_section,
4894 (long) rel->r_offset, name, (int) r);
4895 return FALSE;
4896 }
4897 }
4898 }
4899
4900 return TRUE;
4901 }
4902
4903 /* Finish up dynamic symbol handling. We set the contents of various
4904 dynamic sections here. */
4905
4906 static bfd_boolean
4907 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4908 struct bfd_link_info *info,
4909 struct elf_link_hash_entry *h,
4910 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4911 {
4912 struct elf_x86_64_link_hash_table *htab;
4913 const struct elf_x86_64_backend_data *abed;
4914 bfd_boolean use_plt_bnd;
4915 struct elf_x86_64_link_hash_entry *eh;
4916
4917 htab = elf_x86_64_hash_table (info);
4918 if (htab == NULL)
4919 return FALSE;
4920
4921 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
4922 section only if there is .plt section. */
4923 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
4924 abed = (use_plt_bnd
4925 ? &elf_x86_64_bnd_arch_bed
4926 : get_elf_x86_64_backend_data (output_bfd));
4927
4928 eh = (struct elf_x86_64_link_hash_entry *) h;
4929
4930 if (h->plt.offset != (bfd_vma) -1)
4931 {
4932 bfd_vma plt_index;
4933 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
4934 bfd_vma plt_plt_insn_end, plt_got_insn_size;
4935 Elf_Internal_Rela rela;
4936 bfd_byte *loc;
4937 asection *plt, *gotplt, *relplt, *resolved_plt;
4938 const struct elf_backend_data *bed;
4939 bfd_vma plt_got_pcrel_offset;
4940
4941 /* When building a static executable, use .iplt, .igot.plt and
4942 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4943 if (htab->elf.splt != NULL)
4944 {
4945 plt = htab->elf.splt;
4946 gotplt = htab->elf.sgotplt;
4947 relplt = htab->elf.srelplt;
4948 }
4949 else
4950 {
4951 plt = htab->elf.iplt;
4952 gotplt = htab->elf.igotplt;
4953 relplt = htab->elf.irelplt;
4954 }
4955
4956 /* This symbol has an entry in the procedure linkage table. Set
4957 it up. */
4958 if ((h->dynindx == -1
4959 && !((h->forced_local || info->executable)
4960 && h->def_regular
4961 && h->type == STT_GNU_IFUNC))
4962 || plt == NULL
4963 || gotplt == NULL
4964 || relplt == NULL)
4965 abort ();
4966
4967 /* Get the index in the procedure linkage table which
4968 corresponds to this symbol. This is the index of this symbol
4969 in all the symbols for which we are making plt entries. The
4970 first entry in the procedure linkage table is reserved.
4971
4972 Get the offset into the .got table of the entry that
4973 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4974 bytes. The first three are reserved for the dynamic linker.
4975
4976 For static executables, we don't reserve anything. */
4977
4978 if (plt == htab->elf.splt)
4979 {
4980 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4981 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4982 }
4983 else
4984 {
4985 got_offset = h->plt.offset / abed->plt_entry_size;
4986 got_offset = got_offset * GOT_ENTRY_SIZE;
4987 }
4988
4989 plt_plt_insn_end = abed->plt_plt_insn_end;
4990 plt_plt_offset = abed->plt_plt_offset;
4991 plt_got_insn_size = abed->plt_got_insn_size;
4992 plt_got_offset = abed->plt_got_offset;
4993 if (use_plt_bnd)
4994 {
4995 /* Use the second PLT with BND relocations. */
4996 const bfd_byte *plt_entry, *plt2_entry;
4997
4998 if (eh->has_bnd_reloc)
4999 {
5000 plt_entry = elf_x86_64_bnd_plt_entry;
5001 plt2_entry = elf_x86_64_bnd_plt2_entry;
5002 }
5003 else
5004 {
5005 plt_entry = elf_x86_64_legacy_plt_entry;
5006 plt2_entry = elf_x86_64_legacy_plt2_entry;
5007
5008 /* Subtract 1 since there is no BND prefix. */
5009 plt_plt_insn_end -= 1;
5010 plt_plt_offset -= 1;
5011 plt_got_insn_size -= 1;
5012 plt_got_offset -= 1;
5013 }
5014
5015 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
5016 == sizeof (elf_x86_64_legacy_plt_entry));
5017
5018 /* Fill in the entry in the procedure linkage table. */
5019 memcpy (plt->contents + h->plt.offset,
5020 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
5021 /* Fill in the entry in the second PLT. */
5022 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
5023 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5024
5025 resolved_plt = htab->plt_bnd;
5026 plt_offset = eh->plt_bnd.offset;
5027 }
5028 else
5029 {
5030 /* Fill in the entry in the procedure linkage table. */
5031 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
5032 abed->plt_entry_size);
5033
5034 resolved_plt = plt;
5035 plt_offset = h->plt.offset;
5036 }
5037
5038 /* Insert the relocation positions of the plt section. */
5039
5040 /* Put offset the PC-relative instruction referring to the GOT entry,
5041 subtracting the size of that instruction. */
5042 plt_got_pcrel_offset = (gotplt->output_section->vma
5043 + gotplt->output_offset
5044 + got_offset
5045 - resolved_plt->output_section->vma
5046 - resolved_plt->output_offset
5047 - plt_offset
5048 - plt_got_insn_size);
5049
5050 /* Check PC-relative offset overflow in PLT entry. */
5051 if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff)
5052 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
5053 output_bfd, h->root.root.string);
5054
5055 bfd_put_32 (output_bfd, plt_got_pcrel_offset,
5056 resolved_plt->contents + plt_offset + plt_got_offset);
5057
5058 /* Fill in the entry in the global offset table, initially this
5059 points to the second part of the PLT entry. */
5060 bfd_put_64 (output_bfd, (plt->output_section->vma
5061 + plt->output_offset
5062 + h->plt.offset + abed->plt_lazy_offset),
5063 gotplt->contents + got_offset);
5064
5065 /* Fill in the entry in the .rela.plt section. */
5066 rela.r_offset = (gotplt->output_section->vma
5067 + gotplt->output_offset
5068 + got_offset);
5069 if (h->dynindx == -1
5070 || ((info->executable
5071 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
5072 && h->def_regular
5073 && h->type == STT_GNU_IFUNC))
5074 {
5075 /* If an STT_GNU_IFUNC symbol is locally defined, generate
5076 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
5077 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
5078 rela.r_addend = (h->root.u.def.value
5079 + h->root.u.def.section->output_section->vma
5080 + h->root.u.def.section->output_offset);
5081 /* R_X86_64_IRELATIVE comes last. */
5082 plt_index = htab->next_irelative_index--;
5083 }
5084 else
5085 {
5086 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
5087 rela.r_addend = 0;
5088 plt_index = htab->next_jump_slot_index++;
5089 }
5090
5091 /* Don't fill PLT entry for static executables. */
5092 if (plt == htab->elf.splt)
5093 {
5094 bfd_vma plt0_offset = h->plt.offset + plt_plt_insn_end;
5095
5096 /* Put relocation index. */
5097 bfd_put_32 (output_bfd, plt_index,
5098 plt->contents + h->plt.offset + abed->plt_reloc_offset);
5099
5100 /* Put offset for jmp .PLT0 and check for overflow. We don't
5101 check relocation index for overflow since branch displacement
5102 will overflow first. */
5103 if (plt0_offset > 0x80000000)
5104 info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"),
5105 output_bfd, h->root.root.string);
5106 bfd_put_32 (output_bfd, - plt0_offset,
5107 plt->contents + h->plt.offset + plt_plt_offset);
5108 }
5109
5110 bed = get_elf_backend_data (output_bfd);
5111 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
5112 bed->s->swap_reloca_out (output_bfd, &rela, loc);
5113 }
5114 else if (eh->plt_got.offset != (bfd_vma) -1)
5115 {
5116 bfd_vma got_offset, plt_offset, plt_got_offset, plt_got_insn_size;
5117 asection *plt, *got;
5118 bfd_boolean got_after_plt;
5119 int32_t got_pcrel_offset;
5120 const bfd_byte *got_plt_entry;
5121
5122 /* Set the entry in the GOT procedure linkage table. */
5123 plt = htab->plt_got;
5124 got = htab->elf.sgot;
5125 got_offset = h->got.offset;
5126
5127 if (got_offset == (bfd_vma) -1
5128 || h->type == STT_GNU_IFUNC
5129 || plt == NULL
5130 || got == NULL)
5131 abort ();
5132
5133 /* Use the second PLT entry template for the GOT PLT since they
5134 are the identical. */
5135 plt_got_insn_size = elf_x86_64_bnd_arch_bed.plt_got_insn_size;
5136 plt_got_offset = elf_x86_64_bnd_arch_bed.plt_got_offset;
5137 if (eh->has_bnd_reloc)
5138 got_plt_entry = elf_x86_64_bnd_plt2_entry;
5139 else
5140 {
5141 got_plt_entry = elf_x86_64_legacy_plt2_entry;
5142
5143 /* Subtract 1 since there is no BND prefix. */
5144 plt_got_insn_size -= 1;
5145 plt_got_offset -= 1;
5146 }
5147
5148 /* Fill in the entry in the GOT procedure linkage table. */
5149 plt_offset = eh->plt_got.offset;
5150 memcpy (plt->contents + plt_offset,
5151 got_plt_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5152
5153 /* Put offset the PC-relative instruction referring to the GOT
5154 entry, subtracting the size of that instruction. */
5155 got_pcrel_offset = (got->output_section->vma
5156 + got->output_offset
5157 + got_offset
5158 - plt->output_section->vma
5159 - plt->output_offset
5160 - plt_offset
5161 - plt_got_insn_size);
5162
5163 /* Check PC-relative offset overflow in GOT PLT entry. */
5164 got_after_plt = got->output_section->vma > plt->output_section->vma;
5165 if ((got_after_plt && got_pcrel_offset < 0)
5166 || (!got_after_plt && got_pcrel_offset > 0))
5167 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"),
5168 output_bfd, h->root.root.string);
5169
5170 bfd_put_32 (output_bfd, got_pcrel_offset,
5171 plt->contents + plt_offset + plt_got_offset);
5172 }
5173
5174 if (!h->def_regular
5175 && (h->plt.offset != (bfd_vma) -1
5176 || eh->plt_got.offset != (bfd_vma) -1))
5177 {
5178 /* Mark the symbol as undefined, rather than as defined in
5179 the .plt section. Leave the value if there were any
5180 relocations where pointer equality matters (this is a clue
5181 for the dynamic linker, to make function pointer
5182 comparisons work between an application and shared
5183 library), otherwise set it to zero. If a function is only
5184 called from a binary, there is no need to slow down
5185 shared libraries because of that. */
5186 sym->st_shndx = SHN_UNDEF;
5187 if (!h->pointer_equality_needed)
5188 sym->st_value = 0;
5189 }
5190
5191 if (h->got.offset != (bfd_vma) -1
5192 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
5193 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
5194 {
5195 Elf_Internal_Rela rela;
5196
5197 /* This symbol has an entry in the global offset table. Set it
5198 up. */
5199 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
5200 abort ();
5201
5202 rela.r_offset = (htab->elf.sgot->output_section->vma
5203 + htab->elf.sgot->output_offset
5204 + (h->got.offset &~ (bfd_vma) 1));
5205
5206 /* If this is a static link, or it is a -Bsymbolic link and the
5207 symbol is defined locally or was forced to be local because
5208 of a version file, we just want to emit a RELATIVE reloc.
5209 The entry in the global offset table will already have been
5210 initialized in the relocate_section function. */
5211 if (h->def_regular
5212 && h->type == STT_GNU_IFUNC)
5213 {
5214 if (info->shared)
5215 {
5216 /* Generate R_X86_64_GLOB_DAT. */
5217 goto do_glob_dat;
5218 }
5219 else
5220 {
5221 asection *plt;
5222
5223 if (!h->pointer_equality_needed)
5224 abort ();
5225
5226 /* For non-shared object, we can't use .got.plt, which
5227 contains the real function addres if we need pointer
5228 equality. We load the GOT entry with the PLT entry. */
5229 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
5230 bfd_put_64 (output_bfd, (plt->output_section->vma
5231 + plt->output_offset
5232 + h->plt.offset),
5233 htab->elf.sgot->contents + h->got.offset);
5234 return TRUE;
5235 }
5236 }
5237 else if (info->shared
5238 && SYMBOL_REFERENCES_LOCAL (info, h))
5239 {
5240 if (!h->def_regular)
5241 return FALSE;
5242 BFD_ASSERT((h->got.offset & 1) != 0);
5243 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
5244 rela.r_addend = (h->root.u.def.value
5245 + h->root.u.def.section->output_section->vma
5246 + h->root.u.def.section->output_offset);
5247 }
5248 else
5249 {
5250 BFD_ASSERT((h->got.offset & 1) == 0);
5251 do_glob_dat:
5252 bfd_put_64 (output_bfd, (bfd_vma) 0,
5253 htab->elf.sgot->contents + h->got.offset);
5254 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
5255 rela.r_addend = 0;
5256 }
5257
5258 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5259 }
5260
5261 if (h->needs_copy)
5262 {
5263 Elf_Internal_Rela rela;
5264
5265 /* This symbol needs a copy reloc. Set it up. */
5266
5267 if (h->dynindx == -1
5268 || (h->root.type != bfd_link_hash_defined
5269 && h->root.type != bfd_link_hash_defweak)
5270 || htab->srelbss == NULL)
5271 abort ();
5272
5273 rela.r_offset = (h->root.u.def.value
5274 + h->root.u.def.section->output_section->vma
5275 + h->root.u.def.section->output_offset);
5276 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5277 rela.r_addend = 0;
5278 elf_append_rela (output_bfd, htab->srelbss, &rela);
5279 }
5280
5281 return TRUE;
5282 }
5283
5284 /* Finish up local dynamic symbol handling. We set the contents of
5285 various dynamic sections here. */
5286
5287 static bfd_boolean
5288 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5289 {
5290 struct elf_link_hash_entry *h
5291 = (struct elf_link_hash_entry *) *slot;
5292 struct bfd_link_info *info
5293 = (struct bfd_link_info *) inf;
5294
5295 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5296 info, h, NULL);
5297 }
5298
5299 /* Used to decide how to sort relocs in an optimal manner for the
5300 dynamic linker, before writing them out. */
5301
5302 static enum elf_reloc_type_class
5303 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5304 const asection *rel_sec ATTRIBUTE_UNUSED,
5305 const Elf_Internal_Rela *rela)
5306 {
5307 switch ((int) ELF32_R_TYPE (rela->r_info))
5308 {
5309 case R_X86_64_RELATIVE:
5310 case R_X86_64_RELATIVE64:
5311 return reloc_class_relative;
5312 case R_X86_64_JUMP_SLOT:
5313 return reloc_class_plt;
5314 case R_X86_64_COPY:
5315 return reloc_class_copy;
5316 default:
5317 return reloc_class_normal;
5318 }
5319 }
5320
5321 /* Finish up the dynamic sections. */
5322
5323 static bfd_boolean
5324 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5325 struct bfd_link_info *info)
5326 {
5327 struct elf_x86_64_link_hash_table *htab;
5328 bfd *dynobj;
5329 asection *sdyn;
5330 const struct elf_x86_64_backend_data *abed;
5331
5332 htab = elf_x86_64_hash_table (info);
5333 if (htab == NULL)
5334 return FALSE;
5335
5336 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5337 section only if there is .plt section. */
5338 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5339 ? &elf_x86_64_bnd_arch_bed
5340 : get_elf_x86_64_backend_data (output_bfd));
5341
5342 dynobj = htab->elf.dynobj;
5343 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5344
5345 if (htab->elf.dynamic_sections_created)
5346 {
5347 bfd_byte *dyncon, *dynconend;
5348 const struct elf_backend_data *bed;
5349 bfd_size_type sizeof_dyn;
5350
5351 if (sdyn == NULL || htab->elf.sgot == NULL)
5352 abort ();
5353
5354 bed = get_elf_backend_data (dynobj);
5355 sizeof_dyn = bed->s->sizeof_dyn;
5356 dyncon = sdyn->contents;
5357 dynconend = sdyn->contents + sdyn->size;
5358 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5359 {
5360 Elf_Internal_Dyn dyn;
5361 asection *s;
5362
5363 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5364
5365 switch (dyn.d_tag)
5366 {
5367 default:
5368 continue;
5369
5370 case DT_PLTGOT:
5371 s = htab->elf.sgotplt;
5372 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5373 break;
5374
5375 case DT_JMPREL:
5376 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5377 break;
5378
5379 case DT_PLTRELSZ:
5380 s = htab->elf.srelplt->output_section;
5381 dyn.d_un.d_val = s->size;
5382 break;
5383
5384 case DT_RELASZ:
5385 /* The procedure linkage table relocs (DT_JMPREL) should
5386 not be included in the overall relocs (DT_RELA).
5387 Therefore, we override the DT_RELASZ entry here to
5388 make it not include the JMPREL relocs. Since the
5389 linker script arranges for .rela.plt to follow all
5390 other relocation sections, we don't have to worry
5391 about changing the DT_RELA entry. */
5392 if (htab->elf.srelplt != NULL)
5393 {
5394 s = htab->elf.srelplt->output_section;
5395 dyn.d_un.d_val -= s->size;
5396 }
5397 break;
5398
5399 case DT_TLSDESC_PLT:
5400 s = htab->elf.splt;
5401 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5402 + htab->tlsdesc_plt;
5403 break;
5404
5405 case DT_TLSDESC_GOT:
5406 s = htab->elf.sgot;
5407 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5408 + htab->tlsdesc_got;
5409 break;
5410 }
5411
5412 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5413 }
5414
5415 /* Fill in the special first entry in the procedure linkage table. */
5416 if (htab->elf.splt && htab->elf.splt->size > 0)
5417 {
5418 /* Fill in the first entry in the procedure linkage table. */
5419 memcpy (htab->elf.splt->contents,
5420 abed->plt0_entry, abed->plt_entry_size);
5421 /* Add offset for pushq GOT+8(%rip), since the instruction
5422 uses 6 bytes subtract this value. */
5423 bfd_put_32 (output_bfd,
5424 (htab->elf.sgotplt->output_section->vma
5425 + htab->elf.sgotplt->output_offset
5426 + 8
5427 - htab->elf.splt->output_section->vma
5428 - htab->elf.splt->output_offset
5429 - 6),
5430 htab->elf.splt->contents + abed->plt0_got1_offset);
5431 /* Add offset for the PC-relative instruction accessing GOT+16,
5432 subtracting the offset to the end of that instruction. */
5433 bfd_put_32 (output_bfd,
5434 (htab->elf.sgotplt->output_section->vma
5435 + htab->elf.sgotplt->output_offset
5436 + 16
5437 - htab->elf.splt->output_section->vma
5438 - htab->elf.splt->output_offset
5439 - abed->plt0_got2_insn_end),
5440 htab->elf.splt->contents + abed->plt0_got2_offset);
5441
5442 elf_section_data (htab->elf.splt->output_section)
5443 ->this_hdr.sh_entsize = abed->plt_entry_size;
5444
5445 if (htab->tlsdesc_plt)
5446 {
5447 bfd_put_64 (output_bfd, (bfd_vma) 0,
5448 htab->elf.sgot->contents + htab->tlsdesc_got);
5449
5450 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5451 abed->plt0_entry, abed->plt_entry_size);
5452
5453 /* Add offset for pushq GOT+8(%rip), since the
5454 instruction uses 6 bytes subtract this value. */
5455 bfd_put_32 (output_bfd,
5456 (htab->elf.sgotplt->output_section->vma
5457 + htab->elf.sgotplt->output_offset
5458 + 8
5459 - htab->elf.splt->output_section->vma
5460 - htab->elf.splt->output_offset
5461 - htab->tlsdesc_plt
5462 - 6),
5463 htab->elf.splt->contents
5464 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5465 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5466 where TGD stands for htab->tlsdesc_got, subtracting the offset
5467 to the end of that instruction. */
5468 bfd_put_32 (output_bfd,
5469 (htab->elf.sgot->output_section->vma
5470 + htab->elf.sgot->output_offset
5471 + htab->tlsdesc_got
5472 - htab->elf.splt->output_section->vma
5473 - htab->elf.splt->output_offset
5474 - htab->tlsdesc_plt
5475 - abed->plt0_got2_insn_end),
5476 htab->elf.splt->contents
5477 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5478 }
5479 }
5480 }
5481
5482 if (htab->plt_bnd != NULL)
5483 elf_section_data (htab->plt_bnd->output_section)
5484 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5485
5486 if (htab->elf.sgotplt)
5487 {
5488 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5489 {
5490 (*_bfd_error_handler)
5491 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5492 return FALSE;
5493 }
5494
5495 /* Fill in the first three entries in the global offset table. */
5496 if (htab->elf.sgotplt->size > 0)
5497 {
5498 /* Set the first entry in the global offset table to the address of
5499 the dynamic section. */
5500 if (sdyn == NULL)
5501 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5502 else
5503 bfd_put_64 (output_bfd,
5504 sdyn->output_section->vma + sdyn->output_offset,
5505 htab->elf.sgotplt->contents);
5506 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5507 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5508 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5509 }
5510
5511 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5512 GOT_ENTRY_SIZE;
5513 }
5514
5515 /* Adjust .eh_frame for .plt section. */
5516 if (htab->plt_eh_frame != NULL
5517 && htab->plt_eh_frame->contents != NULL)
5518 {
5519 if (htab->elf.splt != NULL
5520 && htab->elf.splt->size != 0
5521 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5522 && htab->elf.splt->output_section != NULL
5523 && htab->plt_eh_frame->output_section != NULL)
5524 {
5525 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5526 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5527 + htab->plt_eh_frame->output_offset
5528 + PLT_FDE_START_OFFSET;
5529 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5530 htab->plt_eh_frame->contents
5531 + PLT_FDE_START_OFFSET);
5532 }
5533 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5534 {
5535 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5536 htab->plt_eh_frame,
5537 htab->plt_eh_frame->contents))
5538 return FALSE;
5539 }
5540 }
5541
5542 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5543 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5544 = GOT_ENTRY_SIZE;
5545
5546 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5547 htab_traverse (htab->loc_hash_table,
5548 elf_x86_64_finish_local_dynamic_symbol,
5549 info);
5550
5551 return TRUE;
5552 }
5553
5554 /* Return an array of PLT entry symbol values. */
5555
5556 static bfd_vma *
5557 elf_x86_64_get_plt_sym_val (bfd *abfd, asymbol **dynsyms, asection *plt,
5558 asection *relplt)
5559 {
5560 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5561 arelent *p;
5562 long count, i;
5563 bfd_vma *plt_sym_val;
5564 bfd_vma plt_offset;
5565 bfd_byte *plt_contents;
5566 const struct elf_x86_64_backend_data *bed;
5567 Elf_Internal_Shdr *hdr;
5568 asection *plt_bnd;
5569
5570 /* Get the .plt section contents. PLT passed down may point to the
5571 .plt.bnd section. Make sure that PLT always points to the .plt
5572 section. */
5573 plt_bnd = bfd_get_section_by_name (abfd, ".plt.bnd");
5574 if (plt_bnd)
5575 {
5576 if (plt != plt_bnd)
5577 abort ();
5578 plt = bfd_get_section_by_name (abfd, ".plt");
5579 if (plt == NULL)
5580 abort ();
5581 bed = &elf_x86_64_bnd_arch_bed;
5582 }
5583 else
5584 bed = get_elf_x86_64_backend_data (abfd);
5585
5586 plt_contents = (bfd_byte *) bfd_malloc (plt->size);
5587 if (plt_contents == NULL)
5588 return NULL;
5589 if (!bfd_get_section_contents (abfd, (asection *) plt,
5590 plt_contents, 0, plt->size))
5591 {
5592 bad_return:
5593 free (plt_contents);
5594 return NULL;
5595 }
5596
5597 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5598 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5599 goto bad_return;
5600
5601 hdr = &elf_section_data (relplt)->this_hdr;
5602 count = relplt->size / hdr->sh_entsize;
5603
5604 plt_sym_val = (bfd_vma *) bfd_malloc (sizeof (bfd_vma) * count);
5605 if (plt_sym_val == NULL)
5606 goto bad_return;
5607
5608 for (i = 0; i < count; i++)
5609 plt_sym_val[i] = -1;
5610
5611 plt_offset = bed->plt_entry_size;
5612 p = relplt->relocation;
5613 for (i = 0; i < count; i++, p++)
5614 {
5615 long reloc_index;
5616
5617 /* Skip unknown relocation. */
5618 if (p->howto == NULL)
5619 continue;
5620
5621 if (p->howto->type != R_X86_64_JUMP_SLOT
5622 && p->howto->type != R_X86_64_IRELATIVE)
5623 continue;
5624
5625 reloc_index = H_GET_32 (abfd, (plt_contents + plt_offset
5626 + bed->plt_reloc_offset));
5627 if (reloc_index >= count)
5628 abort ();
5629 if (plt_bnd)
5630 {
5631 /* This is the index in .plt section. */
5632 long plt_index = plt_offset / bed->plt_entry_size;
5633 /* Store VMA + the offset in .plt.bnd section. */
5634 plt_sym_val[reloc_index] =
5635 (plt_bnd->vma
5636 + (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry));
5637 }
5638 else
5639 plt_sym_val[reloc_index] = plt->vma + plt_offset;
5640 plt_offset += bed->plt_entry_size;
5641 }
5642
5643 free (plt_contents);
5644
5645 return plt_sym_val;
5646 }
5647
5648 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
5649 support. */
5650
5651 static long
5652 elf_x86_64_get_synthetic_symtab (bfd *abfd,
5653 long symcount,
5654 asymbol **syms,
5655 long dynsymcount,
5656 asymbol **dynsyms,
5657 asymbol **ret)
5658 {
5659 /* Pass the .plt.bnd section to _bfd_elf_ifunc_get_synthetic_symtab
5660 as PLT if it exists. */
5661 asection *plt = bfd_get_section_by_name (abfd, ".plt.bnd");
5662 if (plt == NULL)
5663 plt = bfd_get_section_by_name (abfd, ".plt");
5664 return _bfd_elf_ifunc_get_synthetic_symtab (abfd, symcount, syms,
5665 dynsymcount, dynsyms, ret,
5666 plt,
5667 elf_x86_64_get_plt_sym_val);
5668 }
5669
5670 /* Handle an x86-64 specific section when reading an object file. This
5671 is called when elfcode.h finds a section with an unknown type. */
5672
5673 static bfd_boolean
5674 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5675 const char *name, int shindex)
5676 {
5677 if (hdr->sh_type != SHT_X86_64_UNWIND)
5678 return FALSE;
5679
5680 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5681 return FALSE;
5682
5683 return TRUE;
5684 }
5685
5686 /* Hook called by the linker routine which adds symbols from an object
5687 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5688 of .bss. */
5689
5690 static bfd_boolean
5691 elf_x86_64_add_symbol_hook (bfd *abfd,
5692 struct bfd_link_info *info,
5693 Elf_Internal_Sym *sym,
5694 const char **namep ATTRIBUTE_UNUSED,
5695 flagword *flagsp ATTRIBUTE_UNUSED,
5696 asection **secp,
5697 bfd_vma *valp)
5698 {
5699 asection *lcomm;
5700
5701 switch (sym->st_shndx)
5702 {
5703 case SHN_X86_64_LCOMMON:
5704 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5705 if (lcomm == NULL)
5706 {
5707 lcomm = bfd_make_section_with_flags (abfd,
5708 "LARGE_COMMON",
5709 (SEC_ALLOC
5710 | SEC_IS_COMMON
5711 | SEC_LINKER_CREATED));
5712 if (lcomm == NULL)
5713 return FALSE;
5714 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5715 }
5716 *secp = lcomm;
5717 *valp = sym->st_size;
5718 return TRUE;
5719 }
5720
5721 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5722 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
5723 && (abfd->flags & DYNAMIC) == 0
5724 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
5725 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5726
5727 return TRUE;
5728 }
5729
5730
5731 /* Given a BFD section, try to locate the corresponding ELF section
5732 index. */
5733
5734 static bfd_boolean
5735 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5736 asection *sec, int *index_return)
5737 {
5738 if (sec == &_bfd_elf_large_com_section)
5739 {
5740 *index_return = SHN_X86_64_LCOMMON;
5741 return TRUE;
5742 }
5743 return FALSE;
5744 }
5745
5746 /* Process a symbol. */
5747
5748 static void
5749 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5750 asymbol *asym)
5751 {
5752 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5753
5754 switch (elfsym->internal_elf_sym.st_shndx)
5755 {
5756 case SHN_X86_64_LCOMMON:
5757 asym->section = &_bfd_elf_large_com_section;
5758 asym->value = elfsym->internal_elf_sym.st_size;
5759 /* Common symbol doesn't set BSF_GLOBAL. */
5760 asym->flags &= ~BSF_GLOBAL;
5761 break;
5762 }
5763 }
5764
5765 static bfd_boolean
5766 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5767 {
5768 return (sym->st_shndx == SHN_COMMON
5769 || sym->st_shndx == SHN_X86_64_LCOMMON);
5770 }
5771
5772 static unsigned int
5773 elf_x86_64_common_section_index (asection *sec)
5774 {
5775 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5776 return SHN_COMMON;
5777 else
5778 return SHN_X86_64_LCOMMON;
5779 }
5780
5781 static asection *
5782 elf_x86_64_common_section (asection *sec)
5783 {
5784 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5785 return bfd_com_section_ptr;
5786 else
5787 return &_bfd_elf_large_com_section;
5788 }
5789
5790 static bfd_boolean
5791 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5792 const Elf_Internal_Sym *sym,
5793 asection **psec,
5794 bfd_boolean newdef,
5795 bfd_boolean olddef,
5796 bfd *oldbfd,
5797 const asection *oldsec)
5798 {
5799 /* A normal common symbol and a large common symbol result in a
5800 normal common symbol. We turn the large common symbol into a
5801 normal one. */
5802 if (!olddef
5803 && h->root.type == bfd_link_hash_common
5804 && !newdef
5805 && bfd_is_com_section (*psec)
5806 && oldsec != *psec)
5807 {
5808 if (sym->st_shndx == SHN_COMMON
5809 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5810 {
5811 h->root.u.c.p->section
5812 = bfd_make_section_old_way (oldbfd, "COMMON");
5813 h->root.u.c.p->section->flags = SEC_ALLOC;
5814 }
5815 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5816 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5817 *psec = bfd_com_section_ptr;
5818 }
5819
5820 return TRUE;
5821 }
5822
5823 static int
5824 elf_x86_64_additional_program_headers (bfd *abfd,
5825 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5826 {
5827 asection *s;
5828 int count = 0;
5829
5830 /* Check to see if we need a large readonly segment. */
5831 s = bfd_get_section_by_name (abfd, ".lrodata");
5832 if (s && (s->flags & SEC_LOAD))
5833 count++;
5834
5835 /* Check to see if we need a large data segment. Since .lbss sections
5836 is placed right after the .bss section, there should be no need for
5837 a large data segment just because of .lbss. */
5838 s = bfd_get_section_by_name (abfd, ".ldata");
5839 if (s && (s->flags & SEC_LOAD))
5840 count++;
5841
5842 return count;
5843 }
5844
5845 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5846
5847 static bfd_boolean
5848 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5849 {
5850 if (h->plt.offset != (bfd_vma) -1
5851 && !h->def_regular
5852 && !h->pointer_equality_needed)
5853 return FALSE;
5854
5855 return _bfd_elf_hash_symbol (h);
5856 }
5857
5858 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5859
5860 static bfd_boolean
5861 elf_x86_64_relocs_compatible (const bfd_target *input,
5862 const bfd_target *output)
5863 {
5864 return ((xvec_get_elf_backend_data (input)->s->elfclass
5865 == xvec_get_elf_backend_data (output)->s->elfclass)
5866 && _bfd_elf_relocs_compatible (input, output));
5867 }
5868
5869 static const struct bfd_elf_special_section
5870 elf_x86_64_special_sections[]=
5871 {
5872 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5873 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5874 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5875 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5876 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5877 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5878 { NULL, 0, 0, 0, 0 }
5879 };
5880
5881 #define TARGET_LITTLE_SYM x86_64_elf64_vec
5882 #define TARGET_LITTLE_NAME "elf64-x86-64"
5883 #define ELF_ARCH bfd_arch_i386
5884 #define ELF_TARGET_ID X86_64_ELF_DATA
5885 #define ELF_MACHINE_CODE EM_X86_64
5886 #define ELF_MAXPAGESIZE 0x200000
5887 #define ELF_MINPAGESIZE 0x1000
5888 #define ELF_COMMONPAGESIZE 0x1000
5889
5890 #define elf_backend_can_gc_sections 1
5891 #define elf_backend_can_refcount 1
5892 #define elf_backend_want_got_plt 1
5893 #define elf_backend_plt_readonly 1
5894 #define elf_backend_want_plt_sym 0
5895 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5896 #define elf_backend_rela_normal 1
5897 #define elf_backend_plt_alignment 4
5898 #define elf_backend_extern_protected_data 1
5899
5900 #define elf_info_to_howto elf_x86_64_info_to_howto
5901
5902 #define bfd_elf64_bfd_link_hash_table_create \
5903 elf_x86_64_link_hash_table_create
5904 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5905 #define bfd_elf64_bfd_reloc_name_lookup \
5906 elf_x86_64_reloc_name_lookup
5907
5908 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5909 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5910 #define elf_backend_check_relocs elf_x86_64_check_relocs
5911 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5912 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5913 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5914 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5915 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5916 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5917 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5918 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5919 #ifdef CORE_HEADER
5920 #define elf_backend_write_core_note elf_x86_64_write_core_note
5921 #endif
5922 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5923 #define elf_backend_relocate_section elf_x86_64_relocate_section
5924 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5925 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5926 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5927 #define elf_backend_object_p elf64_x86_64_elf_object_p
5928 #define bfd_elf64_mkobject elf_x86_64_mkobject
5929 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
5930
5931 #define elf_backend_section_from_shdr \
5932 elf_x86_64_section_from_shdr
5933
5934 #define elf_backend_section_from_bfd_section \
5935 elf_x86_64_elf_section_from_bfd_section
5936 #define elf_backend_add_symbol_hook \
5937 elf_x86_64_add_symbol_hook
5938 #define elf_backend_symbol_processing \
5939 elf_x86_64_symbol_processing
5940 #define elf_backend_common_section_index \
5941 elf_x86_64_common_section_index
5942 #define elf_backend_common_section \
5943 elf_x86_64_common_section
5944 #define elf_backend_common_definition \
5945 elf_x86_64_common_definition
5946 #define elf_backend_merge_symbol \
5947 elf_x86_64_merge_symbol
5948 #define elf_backend_special_sections \
5949 elf_x86_64_special_sections
5950 #define elf_backend_additional_program_headers \
5951 elf_x86_64_additional_program_headers
5952 #define elf_backend_hash_symbol \
5953 elf_x86_64_hash_symbol
5954
5955 #include "elf64-target.h"
5956
5957 /* CloudABI support. */
5958
5959 #undef TARGET_LITTLE_SYM
5960 #define TARGET_LITTLE_SYM x86_64_elf64_cloudabi_vec
5961 #undef TARGET_LITTLE_NAME
5962 #define TARGET_LITTLE_NAME "elf64-x86-64-cloudabi"
5963
5964 #undef ELF_OSABI
5965 #define ELF_OSABI ELFOSABI_CLOUDABI
5966
5967 #undef elf64_bed
5968 #define elf64_bed elf64_x86_64_cloudabi_bed
5969
5970 #include "elf64-target.h"
5971
5972 /* FreeBSD support. */
5973
5974 #undef TARGET_LITTLE_SYM
5975 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
5976 #undef TARGET_LITTLE_NAME
5977 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5978
5979 #undef ELF_OSABI
5980 #define ELF_OSABI ELFOSABI_FREEBSD
5981
5982 #undef elf64_bed
5983 #define elf64_bed elf64_x86_64_fbsd_bed
5984
5985 #include "elf64-target.h"
5986
5987 /* Solaris 2 support. */
5988
5989 #undef TARGET_LITTLE_SYM
5990 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
5991 #undef TARGET_LITTLE_NAME
5992 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5993
5994 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5995 objects won't be recognized. */
5996 #undef ELF_OSABI
5997
5998 #undef elf64_bed
5999 #define elf64_bed elf64_x86_64_sol2_bed
6000
6001 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
6002 boundary. */
6003 #undef elf_backend_static_tls_alignment
6004 #define elf_backend_static_tls_alignment 16
6005
6006 /* The Solaris 2 ABI requires a plt symbol on all platforms.
6007
6008 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
6009 File, p.63. */
6010 #undef elf_backend_want_plt_sym
6011 #define elf_backend_want_plt_sym 1
6012
6013 #include "elf64-target.h"
6014
6015 /* Native Client support. */
6016
6017 static bfd_boolean
6018 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
6019 {
6020 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
6021 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
6022 return TRUE;
6023 }
6024
6025 #undef TARGET_LITTLE_SYM
6026 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
6027 #undef TARGET_LITTLE_NAME
6028 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
6029 #undef elf64_bed
6030 #define elf64_bed elf64_x86_64_nacl_bed
6031
6032 #undef ELF_MAXPAGESIZE
6033 #undef ELF_MINPAGESIZE
6034 #undef ELF_COMMONPAGESIZE
6035 #define ELF_MAXPAGESIZE 0x10000
6036 #define ELF_MINPAGESIZE 0x10000
6037 #define ELF_COMMONPAGESIZE 0x10000
6038
6039 /* Restore defaults. */
6040 #undef ELF_OSABI
6041 #undef elf_backend_static_tls_alignment
6042 #undef elf_backend_want_plt_sym
6043 #define elf_backend_want_plt_sym 0
6044
6045 /* NaCl uses substantially different PLT entries for the same effects. */
6046
6047 #undef elf_backend_plt_alignment
6048 #define elf_backend_plt_alignment 5
6049 #define NACL_PLT_ENTRY_SIZE 64
6050 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
6051
6052 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
6053 {
6054 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
6055 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
6056 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6057 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6058 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6059
6060 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
6061 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
6062
6063 /* 32 bytes of nop to pad out to the standard size. */
6064 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6065 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6066 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6067 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6068 0x66, /* excess data32 prefix */
6069 0x90 /* nop */
6070 };
6071
6072 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
6073 {
6074 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
6075 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6076 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6077 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6078
6079 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
6080 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6081 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6082
6083 /* Lazy GOT entries point here (32-byte aligned). */
6084 0x68, /* pushq immediate */
6085 0, 0, 0, 0, /* replaced with index into relocation table. */
6086 0xe9, /* jmp relative */
6087 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
6088
6089 /* 22 bytes of nop to pad out to the standard size. */
6090 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6091 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6092 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
6093 };
6094
6095 /* .eh_frame covering the .plt section. */
6096
6097 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
6098 {
6099 #if (PLT_CIE_LENGTH != 20 \
6100 || PLT_FDE_LENGTH != 36 \
6101 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
6102 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
6103 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
6104 #endif
6105 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
6106 0, 0, 0, 0, /* CIE ID */
6107 1, /* CIE version */
6108 'z', 'R', 0, /* Augmentation string */
6109 1, /* Code alignment factor */
6110 0x78, /* Data alignment factor */
6111 16, /* Return address column */
6112 1, /* Augmentation size */
6113 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
6114 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
6115 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
6116 DW_CFA_nop, DW_CFA_nop,
6117
6118 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
6119 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
6120 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
6121 0, 0, 0, 0, /* .plt size goes here */
6122 0, /* Augmentation size */
6123 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
6124 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
6125 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
6126 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
6127 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
6128 13, /* Block length */
6129 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
6130 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
6131 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
6132 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
6133 DW_CFA_nop, DW_CFA_nop
6134 };
6135
6136 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
6137 {
6138 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
6139 elf_x86_64_nacl_plt_entry, /* plt_entry */
6140 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
6141 2, /* plt0_got1_offset */
6142 9, /* plt0_got2_offset */
6143 13, /* plt0_got2_insn_end */
6144 3, /* plt_got_offset */
6145 33, /* plt_reloc_offset */
6146 38, /* plt_plt_offset */
6147 7, /* plt_got_insn_size */
6148 42, /* plt_plt_insn_end */
6149 32, /* plt_lazy_offset */
6150 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
6151 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
6152 };
6153
6154 #undef elf_backend_arch_data
6155 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
6156
6157 #undef elf_backend_object_p
6158 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
6159 #undef elf_backend_modify_segment_map
6160 #define elf_backend_modify_segment_map nacl_modify_segment_map
6161 #undef elf_backend_modify_program_headers
6162 #define elf_backend_modify_program_headers nacl_modify_program_headers
6163 #undef elf_backend_final_write_processing
6164 #define elf_backend_final_write_processing nacl_final_write_processing
6165
6166 #include "elf64-target.h"
6167
6168 /* Native Client x32 support. */
6169
6170 static bfd_boolean
6171 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
6172 {
6173 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
6174 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
6175 return TRUE;
6176 }
6177
6178 #undef TARGET_LITTLE_SYM
6179 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
6180 #undef TARGET_LITTLE_NAME
6181 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
6182 #undef elf32_bed
6183 #define elf32_bed elf32_x86_64_nacl_bed
6184
6185 #define bfd_elf32_bfd_link_hash_table_create \
6186 elf_x86_64_link_hash_table_create
6187 #define bfd_elf32_bfd_reloc_type_lookup \
6188 elf_x86_64_reloc_type_lookup
6189 #define bfd_elf32_bfd_reloc_name_lookup \
6190 elf_x86_64_reloc_name_lookup
6191 #define bfd_elf32_mkobject \
6192 elf_x86_64_mkobject
6193 #define bfd_elf32_get_synthetic_symtab \
6194 elf_x86_64_get_synthetic_symtab
6195
6196 #undef elf_backend_object_p
6197 #define elf_backend_object_p \
6198 elf32_x86_64_nacl_elf_object_p
6199
6200 #undef elf_backend_bfd_from_remote_memory
6201 #define elf_backend_bfd_from_remote_memory \
6202 _bfd_elf32_bfd_from_remote_memory
6203
6204 #undef elf_backend_size_info
6205 #define elf_backend_size_info \
6206 _bfd_elf32_size_info
6207
6208 #include "elf32-target.h"
6209
6210 /* Restore defaults. */
6211 #undef elf_backend_object_p
6212 #define elf_backend_object_p elf64_x86_64_elf_object_p
6213 #undef elf_backend_bfd_from_remote_memory
6214 #undef elf_backend_size_info
6215 #undef elf_backend_modify_segment_map
6216 #undef elf_backend_modify_program_headers
6217 #undef elf_backend_final_write_processing
6218
6219 /* Intel L1OM support. */
6220
6221 static bfd_boolean
6222 elf64_l1om_elf_object_p (bfd *abfd)
6223 {
6224 /* Set the right machine number for an L1OM elf64 file. */
6225 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6226 return TRUE;
6227 }
6228
6229 #undef TARGET_LITTLE_SYM
6230 #define TARGET_LITTLE_SYM l1om_elf64_vec
6231 #undef TARGET_LITTLE_NAME
6232 #define TARGET_LITTLE_NAME "elf64-l1om"
6233 #undef ELF_ARCH
6234 #define ELF_ARCH bfd_arch_l1om
6235
6236 #undef ELF_MACHINE_CODE
6237 #define ELF_MACHINE_CODE EM_L1OM
6238
6239 #undef ELF_OSABI
6240
6241 #undef elf64_bed
6242 #define elf64_bed elf64_l1om_bed
6243
6244 #undef elf_backend_object_p
6245 #define elf_backend_object_p elf64_l1om_elf_object_p
6246
6247 /* Restore defaults. */
6248 #undef ELF_MAXPAGESIZE
6249 #undef ELF_MINPAGESIZE
6250 #undef ELF_COMMONPAGESIZE
6251 #define ELF_MAXPAGESIZE 0x200000
6252 #define ELF_MINPAGESIZE 0x1000
6253 #define ELF_COMMONPAGESIZE 0x1000
6254 #undef elf_backend_plt_alignment
6255 #define elf_backend_plt_alignment 4
6256 #undef elf_backend_arch_data
6257 #define elf_backend_arch_data &elf_x86_64_arch_bed
6258
6259 #include "elf64-target.h"
6260
6261 /* FreeBSD L1OM support. */
6262
6263 #undef TARGET_LITTLE_SYM
6264 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6265 #undef TARGET_LITTLE_NAME
6266 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6267
6268 #undef ELF_OSABI
6269 #define ELF_OSABI ELFOSABI_FREEBSD
6270
6271 #undef elf64_bed
6272 #define elf64_bed elf64_l1om_fbsd_bed
6273
6274 #include "elf64-target.h"
6275
6276 /* Intel K1OM support. */
6277
6278 static bfd_boolean
6279 elf64_k1om_elf_object_p (bfd *abfd)
6280 {
6281 /* Set the right machine number for an K1OM elf64 file. */
6282 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6283 return TRUE;
6284 }
6285
6286 #undef TARGET_LITTLE_SYM
6287 #define TARGET_LITTLE_SYM k1om_elf64_vec
6288 #undef TARGET_LITTLE_NAME
6289 #define TARGET_LITTLE_NAME "elf64-k1om"
6290 #undef ELF_ARCH
6291 #define ELF_ARCH bfd_arch_k1om
6292
6293 #undef ELF_MACHINE_CODE
6294 #define ELF_MACHINE_CODE EM_K1OM
6295
6296 #undef ELF_OSABI
6297
6298 #undef elf64_bed
6299 #define elf64_bed elf64_k1om_bed
6300
6301 #undef elf_backend_object_p
6302 #define elf_backend_object_p elf64_k1om_elf_object_p
6303
6304 #undef elf_backend_static_tls_alignment
6305
6306 #undef elf_backend_want_plt_sym
6307 #define elf_backend_want_plt_sym 0
6308
6309 #include "elf64-target.h"
6310
6311 /* FreeBSD K1OM support. */
6312
6313 #undef TARGET_LITTLE_SYM
6314 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6315 #undef TARGET_LITTLE_NAME
6316 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6317
6318 #undef ELF_OSABI
6319 #define ELF_OSABI ELFOSABI_FREEBSD
6320
6321 #undef elf64_bed
6322 #define elf64_bed elf64_k1om_fbsd_bed
6323
6324 #include "elf64-target.h"
6325
6326 /* 32bit x86-64 support. */
6327
6328 #undef TARGET_LITTLE_SYM
6329 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6330 #undef TARGET_LITTLE_NAME
6331 #define TARGET_LITTLE_NAME "elf32-x86-64"
6332 #undef elf32_bed
6333
6334 #undef ELF_ARCH
6335 #define ELF_ARCH bfd_arch_i386
6336
6337 #undef ELF_MACHINE_CODE
6338 #define ELF_MACHINE_CODE EM_X86_64
6339
6340 #undef ELF_OSABI
6341
6342 #undef elf_backend_object_p
6343 #define elf_backend_object_p \
6344 elf32_x86_64_elf_object_p
6345
6346 #undef elf_backend_bfd_from_remote_memory
6347 #define elf_backend_bfd_from_remote_memory \
6348 _bfd_elf32_bfd_from_remote_memory
6349
6350 #undef elf_backend_size_info
6351 #define elf_backend_size_info \
6352 _bfd_elf32_size_info
6353
6354 #include "elf32-target.h"
This page took 0.222985 seconds and 4 git commands to generate.