daily update
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29
30 #include "elf/x86-64.h"
31
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
34
35 /* The relocation "howto" table. Order of fields:
36 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
37 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
38 static reloc_howto_type x86_64_elf_howto_table[] =
39 {
40 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
41 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
42 FALSE),
43 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
44 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
45 FALSE),
46 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
48 TRUE),
49 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
51 FALSE),
52 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
53 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
54 TRUE),
55 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
57 FALSE),
58 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
60 MINUS_ONE, FALSE),
61 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
63 MINUS_ONE, FALSE),
64 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
65 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
66 MINUS_ONE, FALSE),
67 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
69 0xffffffff, TRUE),
70 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
71 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
72 FALSE),
73 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
74 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
75 FALSE),
76 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
78 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
80 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
82 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
83 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
84 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
86 MINUS_ONE, FALSE),
87 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
89 MINUS_ONE, FALSE),
90 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
92 MINUS_ONE, FALSE),
93 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
95 0xffffffff, TRUE),
96 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
97 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
98 0xffffffff, TRUE),
99 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
101 0xffffffff, FALSE),
102 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
104 0xffffffff, TRUE),
105 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
106 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
107 0xffffffff, FALSE),
108 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
110 TRUE),
111 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
112 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
113 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
114 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
116 FALSE, 0xffffffff, 0xffffffff, TRUE),
117 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
119 FALSE),
120 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
122 MINUS_ONE, TRUE),
123 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
125 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
126 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
127 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
128 MINUS_ONE, FALSE),
129 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
130 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
131 MINUS_ONE, FALSE),
132 EMPTY_HOWTO (32),
133 EMPTY_HOWTO (33),
134 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
135 complain_overflow_bitfield, bfd_elf_generic_reloc,
136 "R_X86_64_GOTPC32_TLSDESC",
137 FALSE, 0xffffffff, 0xffffffff, TRUE),
138 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
139 complain_overflow_dont, bfd_elf_generic_reloc,
140 "R_X86_64_TLSDESC_CALL",
141 FALSE, 0, 0, FALSE),
142 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
143 complain_overflow_bitfield, bfd_elf_generic_reloc,
144 "R_X86_64_TLSDESC",
145 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
146
147 /* We have a gap in the reloc numbers here.
148 R_X86_64_standard counts the number up to this point, and
149 R_X86_64_vt_offset is the value to subtract from a reloc type of
150 R_X86_64_GNU_VT* to form an index into this table. */
151 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
152 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
153
154 /* GNU extension to record C++ vtable hierarchy. */
155 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
156 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
157
158 /* GNU extension to record C++ vtable member usage. */
159 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
160 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
161 FALSE)
162 };
163
164 /* Map BFD relocs to the x86_64 elf relocs. */
165 struct elf_reloc_map
166 {
167 bfd_reloc_code_real_type bfd_reloc_val;
168 unsigned char elf_reloc_val;
169 };
170
171 static const struct elf_reloc_map x86_64_reloc_map[] =
172 {
173 { BFD_RELOC_NONE, R_X86_64_NONE, },
174 { BFD_RELOC_64, R_X86_64_64, },
175 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
176 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
177 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
178 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
179 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
180 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
181 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
182 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
183 { BFD_RELOC_32, R_X86_64_32, },
184 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
185 { BFD_RELOC_16, R_X86_64_16, },
186 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
187 { BFD_RELOC_8, R_X86_64_8, },
188 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
189 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
190 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
191 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
192 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
193 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
194 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
195 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
196 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
197 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
198 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
199 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
200 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
201 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
202 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
203 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
204 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
205 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
206 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
207 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
208 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
209 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
210 };
211
212 static reloc_howto_type *
213 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
214 {
215 unsigned i;
216
217 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
218 || r_type >= (unsigned int) R_X86_64_max)
219 {
220 if (r_type >= (unsigned int) R_X86_64_standard)
221 {
222 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
223 abfd, (int) r_type);
224 r_type = R_X86_64_NONE;
225 }
226 i = r_type;
227 }
228 else
229 i = r_type - (unsigned int) R_X86_64_vt_offset;
230 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
231 return &x86_64_elf_howto_table[i];
232 }
233
234 /* Given a BFD reloc type, return a HOWTO structure. */
235 static reloc_howto_type *
236 elf64_x86_64_reloc_type_lookup (bfd *abfd,
237 bfd_reloc_code_real_type code)
238 {
239 unsigned int i;
240
241 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
242 i++)
243 {
244 if (x86_64_reloc_map[i].bfd_reloc_val == code)
245 return elf64_x86_64_rtype_to_howto (abfd,
246 x86_64_reloc_map[i].elf_reloc_val);
247 }
248 return 0;
249 }
250
251 static reloc_howto_type *
252 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
253 const char *r_name)
254 {
255 unsigned int i;
256
257 for (i = 0;
258 i < (sizeof (x86_64_elf_howto_table)
259 / sizeof (x86_64_elf_howto_table[0]));
260 i++)
261 if (x86_64_elf_howto_table[i].name != NULL
262 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
263 return &x86_64_elf_howto_table[i];
264
265 return NULL;
266 }
267
268 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
269
270 static void
271 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
272 Elf_Internal_Rela *dst)
273 {
274 unsigned r_type;
275
276 r_type = ELF64_R_TYPE (dst->r_info);
277 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
278 BFD_ASSERT (r_type == cache_ptr->howto->type);
279 }
280 \f
281 /* Support for core dump NOTE sections. */
282 static bfd_boolean
283 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
284 {
285 int offset;
286 size_t size;
287
288 switch (note->descsz)
289 {
290 default:
291 return FALSE;
292
293 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
294 /* pr_cursig */
295 elf_tdata (abfd)->core_signal
296 = bfd_get_16 (abfd, note->descdata + 12);
297
298 /* pr_pid */
299 elf_tdata (abfd)->core_pid
300 = bfd_get_32 (abfd, note->descdata + 32);
301
302 /* pr_reg */
303 offset = 112;
304 size = 216;
305
306 break;
307 }
308
309 /* Make a ".reg/999" section. */
310 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
311 size, note->descpos + offset);
312 }
313
314 static bfd_boolean
315 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
316 {
317 switch (note->descsz)
318 {
319 default:
320 return FALSE;
321
322 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
323 elf_tdata (abfd)->core_program
324 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
325 elf_tdata (abfd)->core_command
326 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
327 }
328
329 /* Note that for some reason, a spurious space is tacked
330 onto the end of the args in some (at least one anyway)
331 implementations, so strip it off if it exists. */
332
333 {
334 char *command = elf_tdata (abfd)->core_command;
335 int n = strlen (command);
336
337 if (0 < n && command[n - 1] == ' ')
338 command[n - 1] = '\0';
339 }
340
341 return TRUE;
342 }
343 \f
344 /* Functions for the x86-64 ELF linker. */
345
346 /* The name of the dynamic interpreter. This is put in the .interp
347 section. */
348
349 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
350
351 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
352 copying dynamic variables from a shared lib into an app's dynbss
353 section, and instead use a dynamic relocation to point into the
354 shared lib. */
355 #define ELIMINATE_COPY_RELOCS 1
356
357 /* The size in bytes of an entry in the global offset table. */
358
359 #define GOT_ENTRY_SIZE 8
360
361 /* The size in bytes of an entry in the procedure linkage table. */
362
363 #define PLT_ENTRY_SIZE 16
364
365 /* The first entry in a procedure linkage table looks like this. See the
366 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
367
368 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
369 {
370 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
371 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
372 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
373 };
374
375 /* Subsequent entries in a procedure linkage table look like this. */
376
377 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
378 {
379 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
380 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
381 0x68, /* pushq immediate */
382 0, 0, 0, 0, /* replaced with index into relocation table. */
383 0xe9, /* jmp relative */
384 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
385 };
386
387 /* The x86-64 linker needs to keep track of the number of relocs that
388 it decides to copy as dynamic relocs in check_relocs for each symbol.
389 This is so that it can later discard them if they are found to be
390 unnecessary. We store the information in a field extending the
391 regular ELF linker hash table. */
392
393 struct elf64_x86_64_dyn_relocs
394 {
395 /* Next section. */
396 struct elf64_x86_64_dyn_relocs *next;
397
398 /* The input section of the reloc. */
399 asection *sec;
400
401 /* Total number of relocs copied for the input section. */
402 bfd_size_type count;
403
404 /* Number of pc-relative relocs copied for the input section. */
405 bfd_size_type pc_count;
406 };
407
408 /* x86-64 ELF linker hash entry. */
409
410 struct elf64_x86_64_link_hash_entry
411 {
412 struct elf_link_hash_entry elf;
413
414 /* Track dynamic relocs copied for this symbol. */
415 struct elf64_x86_64_dyn_relocs *dyn_relocs;
416
417 #define GOT_UNKNOWN 0
418 #define GOT_NORMAL 1
419 #define GOT_TLS_GD 2
420 #define GOT_TLS_IE 3
421 #define GOT_TLS_GDESC 4
422 #define GOT_TLS_GD_BOTH_P(type) \
423 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
424 #define GOT_TLS_GD_P(type) \
425 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
426 #define GOT_TLS_GDESC_P(type) \
427 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GD_ANY_P(type) \
429 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
430 unsigned char tls_type;
431
432 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
433 starting at the end of the jump table. */
434 bfd_vma tlsdesc_got;
435 };
436
437 #define elf64_x86_64_hash_entry(ent) \
438 ((struct elf64_x86_64_link_hash_entry *)(ent))
439
440 struct elf64_x86_64_obj_tdata
441 {
442 struct elf_obj_tdata root;
443
444 /* tls_type for each local got entry. */
445 char *local_got_tls_type;
446
447 /* GOTPLT entries for TLS descriptors. */
448 bfd_vma *local_tlsdesc_gotent;
449 };
450
451 #define elf64_x86_64_tdata(abfd) \
452 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
453
454 #define elf64_x86_64_local_got_tls_type(abfd) \
455 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
456
457 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
458 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
459
460 #define is_x86_64_elf(bfd) \
461 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
462 && elf_tdata (bfd) != NULL \
463 && elf_object_id (bfd) == X86_64_ELF_TDATA)
464
465 static bfd_boolean
466 elf64_x86_64_mkobject (bfd *abfd)
467 {
468 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
469 X86_64_ELF_TDATA);
470 }
471
472 /* x86-64 ELF linker hash table. */
473
474 struct elf64_x86_64_link_hash_table
475 {
476 struct elf_link_hash_table elf;
477
478 /* Short-cuts to get to dynamic linker sections. */
479 asection *sgot;
480 asection *sgotplt;
481 asection *srelgot;
482 asection *splt;
483 asection *srelplt;
484 asection *sdynbss;
485 asection *srelbss;
486
487 /* The offset into splt of the PLT entry for the TLS descriptor
488 resolver. Special values are 0, if not necessary (or not found
489 to be necessary yet), and -1 if needed but not determined
490 yet. */
491 bfd_vma tlsdesc_plt;
492 /* The offset into sgot of the GOT entry used by the PLT entry
493 above. */
494 bfd_vma tlsdesc_got;
495
496 union {
497 bfd_signed_vma refcount;
498 bfd_vma offset;
499 } tls_ld_got;
500
501 /* The amount of space used by the jump slots in the GOT. */
502 bfd_vma sgotplt_jump_table_size;
503
504 /* Small local sym to section mapping cache. */
505 struct sym_sec_cache sym_sec;
506
507 /* _TLS_MODULE_BASE_ symbol. */
508 struct bfd_link_hash_entry *tls_module_base;
509 };
510
511 /* Get the x86-64 ELF linker hash table from a link_info structure. */
512
513 #define elf64_x86_64_hash_table(p) \
514 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
515
516 #define elf64_x86_64_compute_jump_table_size(htab) \
517 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
518
519 /* Create an entry in an x86-64 ELF linker hash table. */
520
521 static struct bfd_hash_entry *
522 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
523 const char *string)
524 {
525 /* Allocate the structure if it has not already been allocated by a
526 subclass. */
527 if (entry == NULL)
528 {
529 entry = bfd_hash_allocate (table,
530 sizeof (struct elf64_x86_64_link_hash_entry));
531 if (entry == NULL)
532 return entry;
533 }
534
535 /* Call the allocation method of the superclass. */
536 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
537 if (entry != NULL)
538 {
539 struct elf64_x86_64_link_hash_entry *eh;
540
541 eh = (struct elf64_x86_64_link_hash_entry *) entry;
542 eh->dyn_relocs = NULL;
543 eh->tls_type = GOT_UNKNOWN;
544 eh->tlsdesc_got = (bfd_vma) -1;
545 }
546
547 return entry;
548 }
549
550 /* Create an X86-64 ELF linker hash table. */
551
552 static struct bfd_link_hash_table *
553 elf64_x86_64_link_hash_table_create (bfd *abfd)
554 {
555 struct elf64_x86_64_link_hash_table *ret;
556 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
557
558 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
559 if (ret == NULL)
560 return NULL;
561
562 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
563 sizeof (struct elf64_x86_64_link_hash_entry)))
564 {
565 free (ret);
566 return NULL;
567 }
568
569 ret->sgot = NULL;
570 ret->sgotplt = NULL;
571 ret->srelgot = NULL;
572 ret->splt = NULL;
573 ret->srelplt = NULL;
574 ret->sdynbss = NULL;
575 ret->srelbss = NULL;
576 ret->sym_sec.abfd = NULL;
577 ret->tlsdesc_plt = 0;
578 ret->tlsdesc_got = 0;
579 ret->tls_ld_got.refcount = 0;
580 ret->sgotplt_jump_table_size = 0;
581 ret->tls_module_base = NULL;
582
583 return &ret->elf.root;
584 }
585
586 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
587 shortcuts to them in our hash table. */
588
589 static bfd_boolean
590 create_got_section (bfd *dynobj, struct bfd_link_info *info)
591 {
592 struct elf64_x86_64_link_hash_table *htab;
593
594 if (! _bfd_elf_create_got_section (dynobj, info))
595 return FALSE;
596
597 htab = elf64_x86_64_hash_table (info);
598 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
599 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
600 if (!htab->sgot || !htab->sgotplt)
601 abort ();
602
603 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
604 (SEC_ALLOC | SEC_LOAD
605 | SEC_HAS_CONTENTS
606 | SEC_IN_MEMORY
607 | SEC_LINKER_CREATED
608 | SEC_READONLY));
609 if (htab->srelgot == NULL
610 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
611 return FALSE;
612 return TRUE;
613 }
614
615 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
616 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
617 hash table. */
618
619 static bfd_boolean
620 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
621 {
622 struct elf64_x86_64_link_hash_table *htab;
623
624 htab = elf64_x86_64_hash_table (info);
625 if (!htab->sgot && !create_got_section (dynobj, info))
626 return FALSE;
627
628 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
629 return FALSE;
630
631 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
632 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
633 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
634 if (!info->shared)
635 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
636
637 if (!htab->splt || !htab->srelplt || !htab->sdynbss
638 || (!info->shared && !htab->srelbss))
639 abort ();
640
641 return TRUE;
642 }
643
644 /* Copy the extra info we tack onto an elf_link_hash_entry. */
645
646 static void
647 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
648 struct elf_link_hash_entry *dir,
649 struct elf_link_hash_entry *ind)
650 {
651 struct elf64_x86_64_link_hash_entry *edir, *eind;
652
653 edir = (struct elf64_x86_64_link_hash_entry *) dir;
654 eind = (struct elf64_x86_64_link_hash_entry *) ind;
655
656 if (eind->dyn_relocs != NULL)
657 {
658 if (edir->dyn_relocs != NULL)
659 {
660 struct elf64_x86_64_dyn_relocs **pp;
661 struct elf64_x86_64_dyn_relocs *p;
662
663 /* Add reloc counts against the indirect sym to the direct sym
664 list. Merge any entries against the same section. */
665 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
666 {
667 struct elf64_x86_64_dyn_relocs *q;
668
669 for (q = edir->dyn_relocs; q != NULL; q = q->next)
670 if (q->sec == p->sec)
671 {
672 q->pc_count += p->pc_count;
673 q->count += p->count;
674 *pp = p->next;
675 break;
676 }
677 if (q == NULL)
678 pp = &p->next;
679 }
680 *pp = edir->dyn_relocs;
681 }
682
683 edir->dyn_relocs = eind->dyn_relocs;
684 eind->dyn_relocs = NULL;
685 }
686
687 if (ind->root.type == bfd_link_hash_indirect
688 && dir->got.refcount <= 0)
689 {
690 edir->tls_type = eind->tls_type;
691 eind->tls_type = GOT_UNKNOWN;
692 }
693
694 if (ELIMINATE_COPY_RELOCS
695 && ind->root.type != bfd_link_hash_indirect
696 && dir->dynamic_adjusted)
697 {
698 /* If called to transfer flags for a weakdef during processing
699 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
700 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
701 dir->ref_dynamic |= ind->ref_dynamic;
702 dir->ref_regular |= ind->ref_regular;
703 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
704 dir->needs_plt |= ind->needs_plt;
705 dir->pointer_equality_needed |= ind->pointer_equality_needed;
706 }
707 else
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
709 }
710
711 static bfd_boolean
712 elf64_x86_64_elf_object_p (bfd *abfd)
713 {
714 /* Set the right machine number for an x86-64 elf64 file. */
715 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
716 return TRUE;
717 }
718
719 typedef union
720 {
721 unsigned char c[2];
722 uint16_t i;
723 }
724 x86_64_opcode16;
725
726 typedef union
727 {
728 unsigned char c[4];
729 uint32_t i;
730 }
731 x86_64_opcode32;
732
733 /* Return TRUE if the TLS access code sequence support transition
734 from R_TYPE. */
735
736 static bfd_boolean
737 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
738 bfd_byte *contents,
739 Elf_Internal_Shdr *symtab_hdr,
740 struct elf_link_hash_entry **sym_hashes,
741 unsigned int r_type,
742 const Elf_Internal_Rela *rel,
743 const Elf_Internal_Rela *relend)
744 {
745 unsigned int val;
746 unsigned long r_symndx;
747 struct elf_link_hash_entry *h;
748 bfd_vma offset;
749
750 /* Get the section contents. */
751 if (contents == NULL)
752 {
753 if (elf_section_data (sec)->this_hdr.contents != NULL)
754 contents = elf_section_data (sec)->this_hdr.contents;
755 else
756 {
757 /* FIXME: How to better handle error condition? */
758 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
759 return FALSE;
760
761 /* Cache the section contents for elf_link_input_bfd. */
762 elf_section_data (sec)->this_hdr.contents = contents;
763 }
764 }
765
766 offset = rel->r_offset;
767 switch (r_type)
768 {
769 case R_X86_64_TLSGD:
770 case R_X86_64_TLSLD:
771 if ((rel + 1) >= relend)
772 return FALSE;
773
774 if (r_type == R_X86_64_TLSGD)
775 {
776 /* Check transition from GD access model. Only
777 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
778 .word 0x6666; rex64; call __tls_get_addr
779 can transit to different access model. */
780
781 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
782 call = { { 0x66, 0x66, 0x48, 0xe8 } };
783 if (offset < 4
784 || (offset + 12) > sec->size
785 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
786 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
787 return FALSE;
788 }
789 else
790 {
791 /* Check transition from LD access model. Only
792 leaq foo@tlsld(%rip), %rdi;
793 call __tls_get_addr
794 can transit to different access model. */
795
796 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
797 x86_64_opcode32 op;
798
799 if (offset < 3 || (offset + 9) > sec->size)
800 return FALSE;
801
802 op.i = bfd_get_32 (abfd, contents + offset - 3);
803 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
804 if (op.i != ld.i)
805 return FALSE;
806 }
807
808 r_symndx = ELF64_R_SYM (rel[1].r_info);
809 if (r_symndx < symtab_hdr->sh_info)
810 return FALSE;
811
812 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
813 return (h != NULL
814 && h->root.root.string != NULL
815 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
816 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
817 && (strcmp (h->root.root.string, "__tls_get_addr") == 0));
818
819 case R_X86_64_GOTTPOFF:
820 /* Check transition from IE access model:
821 movq foo@gottpoff(%rip), %reg
822 addq foo@gottpoff(%rip), %reg
823 */
824
825 if (offset < 3 || (offset + 4) > sec->size)
826 return FALSE;
827
828 val = bfd_get_8 (abfd, contents + offset - 3);
829 if (val != 0x48 && val != 0x4c)
830 return FALSE;
831
832 val = bfd_get_8 (abfd, contents + offset - 2);
833 if (val != 0x8b && val != 0x03)
834 return FALSE;
835
836 val = bfd_get_8 (abfd, contents + offset - 1);
837 return (val & 0xc7) == 5;
838
839 case R_X86_64_GOTPC32_TLSDESC:
840 /* Check transition from GDesc access model:
841 leaq x@tlsdesc(%rip), %rax
842
843 Make sure it's a leaq adding rip to a 32-bit offset
844 into any register, although it's probably almost always
845 going to be rax. */
846
847 if (offset < 3 || (offset + 4) > sec->size)
848 return FALSE;
849
850 val = bfd_get_8 (abfd, contents + offset - 3);
851 if ((val & 0xfb) != 0x48)
852 return FALSE;
853
854 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
855 return FALSE;
856
857 val = bfd_get_8 (abfd, contents + offset - 1);
858 return (val & 0xc7) == 0x05;
859
860 case R_X86_64_TLSDESC_CALL:
861 /* Check transition from GDesc access model:
862 call *x@tlsdesc(%rax)
863 */
864 if (offset + 2 <= sec->size)
865 {
866 /* Make sure that it's a call *x@tlsdesc(%rax). */
867 static x86_64_opcode16 call = { { 0xff, 0x10 } };
868 return bfd_get_16 (abfd, contents + offset) == call.i;
869 }
870
871 return FALSE;
872
873 default:
874 abort ();
875 }
876 }
877
878 /* Return TRUE if the TLS access transition is OK or no transition
879 will be performed. Update R_TYPE if there is a transition. */
880
881 static bfd_boolean
882 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
883 asection *sec, bfd_byte *contents,
884 Elf_Internal_Shdr *symtab_hdr,
885 struct elf_link_hash_entry **sym_hashes,
886 unsigned int *r_type, int tls_type,
887 const Elf_Internal_Rela *rel,
888 const Elf_Internal_Rela *relend,
889 struct elf_link_hash_entry *h)
890 {
891 unsigned int from_type = *r_type;
892 unsigned int to_type = from_type;
893 bfd_boolean check = TRUE;
894
895 switch (from_type)
896 {
897 case R_X86_64_TLSGD:
898 case R_X86_64_GOTPC32_TLSDESC:
899 case R_X86_64_TLSDESC_CALL:
900 case R_X86_64_GOTTPOFF:
901 if (!info->shared)
902 {
903 if (h == NULL)
904 to_type = R_X86_64_TPOFF32;
905 else
906 to_type = R_X86_64_GOTTPOFF;
907 }
908
909 /* When we are called from elf64_x86_64_relocate_section,
910 CONTENTS isn't NULL and there may be additional transitions
911 based on TLS_TYPE. */
912 if (contents != NULL)
913 {
914 unsigned int new_to_type = to_type;
915
916 if (!info->shared
917 && h != NULL
918 && h->dynindx == -1
919 && tls_type == GOT_TLS_IE)
920 new_to_type = R_X86_64_TPOFF32;
921
922 if (to_type == R_X86_64_TLSGD
923 || to_type == R_X86_64_GOTPC32_TLSDESC
924 || to_type == R_X86_64_TLSDESC_CALL)
925 {
926 if (tls_type == GOT_TLS_IE)
927 new_to_type = R_X86_64_GOTTPOFF;
928 }
929
930 /* We checked the transition before when we were called from
931 elf64_x86_64_check_relocs. We only want to check the new
932 transition which hasn't been checked before. */
933 check = new_to_type != to_type && from_type == to_type;
934 to_type = new_to_type;
935 }
936
937 break;
938
939 case R_X86_64_TLSLD:
940 if (!info->shared)
941 to_type = R_X86_64_TPOFF32;
942 break;
943
944 default:
945 return TRUE;
946 }
947
948 /* Return TRUE if there is no transition. */
949 if (from_type == to_type)
950 return TRUE;
951
952 /* Check if the transition can be performed. */
953 if (check
954 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
955 symtab_hdr, sym_hashes,
956 from_type, rel, relend))
957 {
958 reloc_howto_type *from, *to;
959
960 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
961 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
962
963 (*_bfd_error_handler)
964 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
965 "in section `%A' failed"),
966 abfd, sec, from->name, to->name,
967 h ? h->root.root.string : "a local symbol",
968 (unsigned long) rel->r_offset);
969 bfd_set_error (bfd_error_bad_value);
970 return FALSE;
971 }
972
973 *r_type = to_type;
974 return TRUE;
975 }
976
977 /* Look through the relocs for a section during the first phase, and
978 calculate needed space in the global offset table, procedure
979 linkage table, and dynamic reloc sections. */
980
981 static bfd_boolean
982 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
983 asection *sec,
984 const Elf_Internal_Rela *relocs)
985 {
986 struct elf64_x86_64_link_hash_table *htab;
987 Elf_Internal_Shdr *symtab_hdr;
988 struct elf_link_hash_entry **sym_hashes;
989 const Elf_Internal_Rela *rel;
990 const Elf_Internal_Rela *rel_end;
991 asection *sreloc;
992
993 if (info->relocatable)
994 return TRUE;
995
996 BFD_ASSERT (is_x86_64_elf (abfd));
997
998 htab = elf64_x86_64_hash_table (info);
999 symtab_hdr = &elf_symtab_hdr (abfd);
1000 sym_hashes = elf_sym_hashes (abfd);
1001
1002 sreloc = NULL;
1003
1004 rel_end = relocs + sec->reloc_count;
1005 for (rel = relocs; rel < rel_end; rel++)
1006 {
1007 unsigned int r_type;
1008 unsigned long r_symndx;
1009 struct elf_link_hash_entry *h;
1010
1011 r_symndx = ELF64_R_SYM (rel->r_info);
1012 r_type = ELF64_R_TYPE (rel->r_info);
1013
1014 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1015 {
1016 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1017 abfd, r_symndx);
1018 return FALSE;
1019 }
1020
1021 if (r_symndx < symtab_hdr->sh_info)
1022 h = NULL;
1023 else
1024 {
1025 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1026 while (h->root.type == bfd_link_hash_indirect
1027 || h->root.type == bfd_link_hash_warning)
1028 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1029 }
1030
1031 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1032 symtab_hdr, sym_hashes,
1033 &r_type, GOT_UNKNOWN,
1034 rel, rel_end, h))
1035 return FALSE;
1036
1037 switch (r_type)
1038 {
1039 case R_X86_64_TLSLD:
1040 htab->tls_ld_got.refcount += 1;
1041 goto create_got;
1042
1043 case R_X86_64_TPOFF32:
1044 if (info->shared)
1045 {
1046 (*_bfd_error_handler)
1047 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1048 abfd,
1049 x86_64_elf_howto_table[r_type].name,
1050 (h) ? h->root.root.string : "a local symbol");
1051 bfd_set_error (bfd_error_bad_value);
1052 return FALSE;
1053 }
1054 break;
1055
1056 case R_X86_64_GOTTPOFF:
1057 if (info->shared)
1058 info->flags |= DF_STATIC_TLS;
1059 /* Fall through */
1060
1061 case R_X86_64_GOT32:
1062 case R_X86_64_GOTPCREL:
1063 case R_X86_64_TLSGD:
1064 case R_X86_64_GOT64:
1065 case R_X86_64_GOTPCREL64:
1066 case R_X86_64_GOTPLT64:
1067 case R_X86_64_GOTPC32_TLSDESC:
1068 case R_X86_64_TLSDESC_CALL:
1069 /* This symbol requires a global offset table entry. */
1070 {
1071 int tls_type, old_tls_type;
1072
1073 switch (r_type)
1074 {
1075 default: tls_type = GOT_NORMAL; break;
1076 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1077 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1078 case R_X86_64_GOTPC32_TLSDESC:
1079 case R_X86_64_TLSDESC_CALL:
1080 tls_type = GOT_TLS_GDESC; break;
1081 }
1082
1083 if (h != NULL)
1084 {
1085 if (r_type == R_X86_64_GOTPLT64)
1086 {
1087 /* This relocation indicates that we also need
1088 a PLT entry, as this is a function. We don't need
1089 a PLT entry for local symbols. */
1090 h->needs_plt = 1;
1091 h->plt.refcount += 1;
1092 }
1093 h->got.refcount += 1;
1094 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1095 }
1096 else
1097 {
1098 bfd_signed_vma *local_got_refcounts;
1099
1100 /* This is a global offset table entry for a local symbol. */
1101 local_got_refcounts = elf_local_got_refcounts (abfd);
1102 if (local_got_refcounts == NULL)
1103 {
1104 bfd_size_type size;
1105
1106 size = symtab_hdr->sh_info;
1107 size *= sizeof (bfd_signed_vma)
1108 + sizeof (bfd_vma) + sizeof (char);
1109 local_got_refcounts = ((bfd_signed_vma *)
1110 bfd_zalloc (abfd, size));
1111 if (local_got_refcounts == NULL)
1112 return FALSE;
1113 elf_local_got_refcounts (abfd) = local_got_refcounts;
1114 elf64_x86_64_local_tlsdesc_gotent (abfd)
1115 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1116 elf64_x86_64_local_got_tls_type (abfd)
1117 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1118 }
1119 local_got_refcounts[r_symndx] += 1;
1120 old_tls_type
1121 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1122 }
1123
1124 /* If a TLS symbol is accessed using IE at least once,
1125 there is no point to use dynamic model for it. */
1126 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1127 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1128 || tls_type != GOT_TLS_IE))
1129 {
1130 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1131 tls_type = old_tls_type;
1132 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1133 && GOT_TLS_GD_ANY_P (tls_type))
1134 tls_type |= old_tls_type;
1135 else
1136 {
1137 (*_bfd_error_handler)
1138 (_("%B: '%s' accessed both as normal and thread local symbol"),
1139 abfd, h ? h->root.root.string : "<local>");
1140 return FALSE;
1141 }
1142 }
1143
1144 if (old_tls_type != tls_type)
1145 {
1146 if (h != NULL)
1147 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1148 else
1149 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1150 }
1151 }
1152 /* Fall through */
1153
1154 case R_X86_64_GOTOFF64:
1155 case R_X86_64_GOTPC32:
1156 case R_X86_64_GOTPC64:
1157 create_got:
1158 if (htab->sgot == NULL)
1159 {
1160 if (htab->elf.dynobj == NULL)
1161 htab->elf.dynobj = abfd;
1162 if (!create_got_section (htab->elf.dynobj, info))
1163 return FALSE;
1164 }
1165 break;
1166
1167 case R_X86_64_PLT32:
1168 /* This symbol requires a procedure linkage table entry. We
1169 actually build the entry in adjust_dynamic_symbol,
1170 because this might be a case of linking PIC code which is
1171 never referenced by a dynamic object, in which case we
1172 don't need to generate a procedure linkage table entry
1173 after all. */
1174
1175 /* If this is a local symbol, we resolve it directly without
1176 creating a procedure linkage table entry. */
1177 if (h == NULL)
1178 continue;
1179
1180 h->needs_plt = 1;
1181 h->plt.refcount += 1;
1182 break;
1183
1184 case R_X86_64_PLTOFF64:
1185 /* This tries to form the 'address' of a function relative
1186 to GOT. For global symbols we need a PLT entry. */
1187 if (h != NULL)
1188 {
1189 h->needs_plt = 1;
1190 h->plt.refcount += 1;
1191 }
1192 goto create_got;
1193
1194 case R_X86_64_8:
1195 case R_X86_64_16:
1196 case R_X86_64_32:
1197 case R_X86_64_32S:
1198 /* Let's help debug shared library creation. These relocs
1199 cannot be used in shared libs. Don't error out for
1200 sections we don't care about, such as debug sections or
1201 non-constant sections. */
1202 if (info->shared
1203 && (sec->flags & SEC_ALLOC) != 0
1204 && (sec->flags & SEC_READONLY) != 0)
1205 {
1206 (*_bfd_error_handler)
1207 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1208 abfd,
1209 x86_64_elf_howto_table[r_type].name,
1210 (h) ? h->root.root.string : "a local symbol");
1211 bfd_set_error (bfd_error_bad_value);
1212 return FALSE;
1213 }
1214 /* Fall through. */
1215
1216 case R_X86_64_PC8:
1217 case R_X86_64_PC16:
1218 case R_X86_64_PC32:
1219 case R_X86_64_PC64:
1220 case R_X86_64_64:
1221 if (h != NULL && !info->shared)
1222 {
1223 /* If this reloc is in a read-only section, we might
1224 need a copy reloc. We can't check reliably at this
1225 stage whether the section is read-only, as input
1226 sections have not yet been mapped to output sections.
1227 Tentatively set the flag for now, and correct in
1228 adjust_dynamic_symbol. */
1229 h->non_got_ref = 1;
1230
1231 /* We may need a .plt entry if the function this reloc
1232 refers to is in a shared lib. */
1233 h->plt.refcount += 1;
1234 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1235 h->pointer_equality_needed = 1;
1236 }
1237
1238 /* If we are creating a shared library, and this is a reloc
1239 against a global symbol, or a non PC relative reloc
1240 against a local symbol, then we need to copy the reloc
1241 into the shared library. However, if we are linking with
1242 -Bsymbolic, we do not need to copy a reloc against a
1243 global symbol which is defined in an object we are
1244 including in the link (i.e., DEF_REGULAR is set). At
1245 this point we have not seen all the input files, so it is
1246 possible that DEF_REGULAR is not set now but will be set
1247 later (it is never cleared). In case of a weak definition,
1248 DEF_REGULAR may be cleared later by a strong definition in
1249 a shared library. We account for that possibility below by
1250 storing information in the relocs_copied field of the hash
1251 table entry. A similar situation occurs when creating
1252 shared libraries and symbol visibility changes render the
1253 symbol local.
1254
1255 If on the other hand, we are creating an executable, we
1256 may need to keep relocations for symbols satisfied by a
1257 dynamic library if we manage to avoid copy relocs for the
1258 symbol. */
1259
1260 if ((info->shared
1261 && (sec->flags & SEC_ALLOC) != 0
1262 && (((r_type != R_X86_64_PC8)
1263 && (r_type != R_X86_64_PC16)
1264 && (r_type != R_X86_64_PC32)
1265 && (r_type != R_X86_64_PC64))
1266 || (h != NULL
1267 && (! SYMBOLIC_BIND (info, h)
1268 || h->root.type == bfd_link_hash_defweak
1269 || !h->def_regular))))
1270 || (ELIMINATE_COPY_RELOCS
1271 && !info->shared
1272 && (sec->flags & SEC_ALLOC) != 0
1273 && h != NULL
1274 && (h->root.type == bfd_link_hash_defweak
1275 || !h->def_regular)))
1276 {
1277 struct elf64_x86_64_dyn_relocs *p;
1278 struct elf64_x86_64_dyn_relocs **head;
1279
1280 /* We must copy these reloc types into the output file.
1281 Create a reloc section in dynobj and make room for
1282 this reloc. */
1283 if (sreloc == NULL)
1284 {
1285 if (htab->elf.dynobj == NULL)
1286 htab->elf.dynobj = abfd;
1287
1288 sreloc = _bfd_elf_make_dynamic_reloc_section
1289 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1290
1291 if (sreloc == NULL)
1292 return FALSE;
1293 }
1294
1295 /* If this is a global symbol, we count the number of
1296 relocations we need for this symbol. */
1297 if (h != NULL)
1298 {
1299 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1300 }
1301 else
1302 {
1303 void **vpp;
1304 /* Track dynamic relocs needed for local syms too.
1305 We really need local syms available to do this
1306 easily. Oh well. */
1307
1308 asection *s;
1309 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1310 sec, r_symndx);
1311 if (s == NULL)
1312 return FALSE;
1313
1314 /* Beware of type punned pointers vs strict aliasing
1315 rules. */
1316 vpp = &(elf_section_data (s)->local_dynrel);
1317 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1318 }
1319
1320 p = *head;
1321 if (p == NULL || p->sec != sec)
1322 {
1323 bfd_size_type amt = sizeof *p;
1324 p = ((struct elf64_x86_64_dyn_relocs *)
1325 bfd_alloc (htab->elf.dynobj, amt));
1326 if (p == NULL)
1327 return FALSE;
1328 p->next = *head;
1329 *head = p;
1330 p->sec = sec;
1331 p->count = 0;
1332 p->pc_count = 0;
1333 }
1334
1335 p->count += 1;
1336 if (r_type == R_X86_64_PC8
1337 || r_type == R_X86_64_PC16
1338 || r_type == R_X86_64_PC32
1339 || r_type == R_X86_64_PC64)
1340 p->pc_count += 1;
1341 }
1342 break;
1343
1344 /* This relocation describes the C++ object vtable hierarchy.
1345 Reconstruct it for later use during GC. */
1346 case R_X86_64_GNU_VTINHERIT:
1347 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1348 return FALSE;
1349 break;
1350
1351 /* This relocation describes which C++ vtable entries are actually
1352 used. Record for later use during GC. */
1353 case R_X86_64_GNU_VTENTRY:
1354 BFD_ASSERT (h != NULL);
1355 if (h != NULL
1356 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1357 return FALSE;
1358 break;
1359
1360 default:
1361 break;
1362 }
1363 }
1364
1365 return TRUE;
1366 }
1367
1368 /* Return the section that should be marked against GC for a given
1369 relocation. */
1370
1371 static asection *
1372 elf64_x86_64_gc_mark_hook (asection *sec,
1373 struct bfd_link_info *info,
1374 Elf_Internal_Rela *rel,
1375 struct elf_link_hash_entry *h,
1376 Elf_Internal_Sym *sym)
1377 {
1378 if (h != NULL)
1379 switch (ELF64_R_TYPE (rel->r_info))
1380 {
1381 case R_X86_64_GNU_VTINHERIT:
1382 case R_X86_64_GNU_VTENTRY:
1383 return NULL;
1384 }
1385
1386 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1387 }
1388
1389 /* Update the got entry reference counts for the section being removed. */
1390
1391 static bfd_boolean
1392 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1393 asection *sec,
1394 const Elf_Internal_Rela *relocs)
1395 {
1396 Elf_Internal_Shdr *symtab_hdr;
1397 struct elf_link_hash_entry **sym_hashes;
1398 bfd_signed_vma *local_got_refcounts;
1399 const Elf_Internal_Rela *rel, *relend;
1400
1401 if (info->relocatable)
1402 return TRUE;
1403
1404 elf_section_data (sec)->local_dynrel = NULL;
1405
1406 symtab_hdr = &elf_symtab_hdr (abfd);
1407 sym_hashes = elf_sym_hashes (abfd);
1408 local_got_refcounts = elf_local_got_refcounts (abfd);
1409
1410 relend = relocs + sec->reloc_count;
1411 for (rel = relocs; rel < relend; rel++)
1412 {
1413 unsigned long r_symndx;
1414 unsigned int r_type;
1415 struct elf_link_hash_entry *h = NULL;
1416
1417 r_symndx = ELF64_R_SYM (rel->r_info);
1418 if (r_symndx >= symtab_hdr->sh_info)
1419 {
1420 struct elf64_x86_64_link_hash_entry *eh;
1421 struct elf64_x86_64_dyn_relocs **pp;
1422 struct elf64_x86_64_dyn_relocs *p;
1423
1424 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1425 while (h->root.type == bfd_link_hash_indirect
1426 || h->root.type == bfd_link_hash_warning)
1427 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1428 eh = (struct elf64_x86_64_link_hash_entry *) h;
1429
1430 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1431 if (p->sec == sec)
1432 {
1433 /* Everything must go for SEC. */
1434 *pp = p->next;
1435 break;
1436 }
1437 }
1438
1439 r_type = ELF64_R_TYPE (rel->r_info);
1440 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1441 symtab_hdr, sym_hashes,
1442 &r_type, GOT_UNKNOWN,
1443 rel, relend, h))
1444 return FALSE;
1445
1446 switch (r_type)
1447 {
1448 case R_X86_64_TLSLD:
1449 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1450 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1451 break;
1452
1453 case R_X86_64_TLSGD:
1454 case R_X86_64_GOTPC32_TLSDESC:
1455 case R_X86_64_TLSDESC_CALL:
1456 case R_X86_64_GOTTPOFF:
1457 case R_X86_64_GOT32:
1458 case R_X86_64_GOTPCREL:
1459 case R_X86_64_GOT64:
1460 case R_X86_64_GOTPCREL64:
1461 case R_X86_64_GOTPLT64:
1462 if (h != NULL)
1463 {
1464 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1465 h->plt.refcount -= 1;
1466 if (h->got.refcount > 0)
1467 h->got.refcount -= 1;
1468 }
1469 else if (local_got_refcounts != NULL)
1470 {
1471 if (local_got_refcounts[r_symndx] > 0)
1472 local_got_refcounts[r_symndx] -= 1;
1473 }
1474 break;
1475
1476 case R_X86_64_8:
1477 case R_X86_64_16:
1478 case R_X86_64_32:
1479 case R_X86_64_64:
1480 case R_X86_64_32S:
1481 case R_X86_64_PC8:
1482 case R_X86_64_PC16:
1483 case R_X86_64_PC32:
1484 case R_X86_64_PC64:
1485 if (info->shared)
1486 break;
1487 /* Fall thru */
1488
1489 case R_X86_64_PLT32:
1490 case R_X86_64_PLTOFF64:
1491 if (h != NULL)
1492 {
1493 if (h->plt.refcount > 0)
1494 h->plt.refcount -= 1;
1495 }
1496 break;
1497
1498 default:
1499 break;
1500 }
1501 }
1502
1503 return TRUE;
1504 }
1505
1506 /* Adjust a symbol defined by a dynamic object and referenced by a
1507 regular object. The current definition is in some section of the
1508 dynamic object, but we're not including those sections. We have to
1509 change the definition to something the rest of the link can
1510 understand. */
1511
1512 static bfd_boolean
1513 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *h)
1515 {
1516 struct elf64_x86_64_link_hash_table *htab;
1517 asection *s;
1518
1519 /* If this is a function, put it in the procedure linkage table. We
1520 will fill in the contents of the procedure linkage table later,
1521 when we know the address of the .got section. */
1522 if (h->type == STT_FUNC
1523 || h->needs_plt)
1524 {
1525 if (h->plt.refcount <= 0
1526 || SYMBOL_CALLS_LOCAL (info, h)
1527 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1528 && h->root.type == bfd_link_hash_undefweak))
1529 {
1530 /* This case can occur if we saw a PLT32 reloc in an input
1531 file, but the symbol was never referred to by a dynamic
1532 object, or if all references were garbage collected. In
1533 such a case, we don't actually need to build a procedure
1534 linkage table, and we can just do a PC32 reloc instead. */
1535 h->plt.offset = (bfd_vma) -1;
1536 h->needs_plt = 0;
1537 }
1538
1539 return TRUE;
1540 }
1541 else
1542 /* It's possible that we incorrectly decided a .plt reloc was
1543 needed for an R_X86_64_PC32 reloc to a non-function sym in
1544 check_relocs. We can't decide accurately between function and
1545 non-function syms in check-relocs; Objects loaded later in
1546 the link may change h->type. So fix it now. */
1547 h->plt.offset = (bfd_vma) -1;
1548
1549 /* If this is a weak symbol, and there is a real definition, the
1550 processor independent code will have arranged for us to see the
1551 real definition first, and we can just use the same value. */
1552 if (h->u.weakdef != NULL)
1553 {
1554 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1555 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1556 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1557 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1558 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1559 h->non_got_ref = h->u.weakdef->non_got_ref;
1560 return TRUE;
1561 }
1562
1563 /* This is a reference to a symbol defined by a dynamic object which
1564 is not a function. */
1565
1566 /* If we are creating a shared library, we must presume that the
1567 only references to the symbol are via the global offset table.
1568 For such cases we need not do anything here; the relocations will
1569 be handled correctly by relocate_section. */
1570 if (info->shared)
1571 return TRUE;
1572
1573 /* If there are no references to this symbol that do not use the
1574 GOT, we don't need to generate a copy reloc. */
1575 if (!h->non_got_ref)
1576 return TRUE;
1577
1578 /* If -z nocopyreloc was given, we won't generate them either. */
1579 if (info->nocopyreloc)
1580 {
1581 h->non_got_ref = 0;
1582 return TRUE;
1583 }
1584
1585 if (ELIMINATE_COPY_RELOCS)
1586 {
1587 struct elf64_x86_64_link_hash_entry * eh;
1588 struct elf64_x86_64_dyn_relocs *p;
1589
1590 eh = (struct elf64_x86_64_link_hash_entry *) h;
1591 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1592 {
1593 s = p->sec->output_section;
1594 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1595 break;
1596 }
1597
1598 /* If we didn't find any dynamic relocs in read-only sections, then
1599 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1600 if (p == NULL)
1601 {
1602 h->non_got_ref = 0;
1603 return TRUE;
1604 }
1605 }
1606
1607 if (h->size == 0)
1608 {
1609 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1610 h->root.root.string);
1611 return TRUE;
1612 }
1613
1614 /* We must allocate the symbol in our .dynbss section, which will
1615 become part of the .bss section of the executable. There will be
1616 an entry for this symbol in the .dynsym section. The dynamic
1617 object will contain position independent code, so all references
1618 from the dynamic object to this symbol will go through the global
1619 offset table. The dynamic linker will use the .dynsym entry to
1620 determine the address it must put in the global offset table, so
1621 both the dynamic object and the regular object will refer to the
1622 same memory location for the variable. */
1623
1624 htab = elf64_x86_64_hash_table (info);
1625
1626 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1627 to copy the initial value out of the dynamic object and into the
1628 runtime process image. */
1629 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1630 {
1631 htab->srelbss->size += sizeof (Elf64_External_Rela);
1632 h->needs_copy = 1;
1633 }
1634
1635 s = htab->sdynbss;
1636
1637 return _bfd_elf_adjust_dynamic_copy (h, s);
1638 }
1639
1640 /* Allocate space in .plt, .got and associated reloc sections for
1641 dynamic relocs. */
1642
1643 static bfd_boolean
1644 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1645 {
1646 struct bfd_link_info *info;
1647 struct elf64_x86_64_link_hash_table *htab;
1648 struct elf64_x86_64_link_hash_entry *eh;
1649 struct elf64_x86_64_dyn_relocs *p;
1650
1651 if (h->root.type == bfd_link_hash_indirect)
1652 return TRUE;
1653
1654 if (h->root.type == bfd_link_hash_warning)
1655 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1656
1657 info = (struct bfd_link_info *) inf;
1658 htab = elf64_x86_64_hash_table (info);
1659
1660 if (htab->elf.dynamic_sections_created
1661 && h->plt.refcount > 0)
1662 {
1663 /* Make sure this symbol is output as a dynamic symbol.
1664 Undefined weak syms won't yet be marked as dynamic. */
1665 if (h->dynindx == -1
1666 && !h->forced_local)
1667 {
1668 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1669 return FALSE;
1670 }
1671
1672 if (info->shared
1673 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1674 {
1675 asection *s = htab->splt;
1676
1677 /* If this is the first .plt entry, make room for the special
1678 first entry. */
1679 if (s->size == 0)
1680 s->size += PLT_ENTRY_SIZE;
1681
1682 h->plt.offset = s->size;
1683
1684 /* If this symbol is not defined in a regular file, and we are
1685 not generating a shared library, then set the symbol to this
1686 location in the .plt. This is required to make function
1687 pointers compare as equal between the normal executable and
1688 the shared library. */
1689 if (! info->shared
1690 && !h->def_regular)
1691 {
1692 h->root.u.def.section = s;
1693 h->root.u.def.value = h->plt.offset;
1694 }
1695
1696 /* Make room for this entry. */
1697 s->size += PLT_ENTRY_SIZE;
1698
1699 /* We also need to make an entry in the .got.plt section, which
1700 will be placed in the .got section by the linker script. */
1701 htab->sgotplt->size += GOT_ENTRY_SIZE;
1702
1703 /* We also need to make an entry in the .rela.plt section. */
1704 htab->srelplt->size += sizeof (Elf64_External_Rela);
1705 htab->srelplt->reloc_count++;
1706 }
1707 else
1708 {
1709 h->plt.offset = (bfd_vma) -1;
1710 h->needs_plt = 0;
1711 }
1712 }
1713 else
1714 {
1715 h->plt.offset = (bfd_vma) -1;
1716 h->needs_plt = 0;
1717 }
1718
1719 eh = (struct elf64_x86_64_link_hash_entry *) h;
1720 eh->tlsdesc_got = (bfd_vma) -1;
1721
1722 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1723 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1724 if (h->got.refcount > 0
1725 && !info->shared
1726 && h->dynindx == -1
1727 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1728 h->got.offset = (bfd_vma) -1;
1729 else if (h->got.refcount > 0)
1730 {
1731 asection *s;
1732 bfd_boolean dyn;
1733 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1734
1735 /* Make sure this symbol is output as a dynamic symbol.
1736 Undefined weak syms won't yet be marked as dynamic. */
1737 if (h->dynindx == -1
1738 && !h->forced_local)
1739 {
1740 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1741 return FALSE;
1742 }
1743
1744 if (GOT_TLS_GDESC_P (tls_type))
1745 {
1746 eh->tlsdesc_got = htab->sgotplt->size
1747 - elf64_x86_64_compute_jump_table_size (htab);
1748 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1749 h->got.offset = (bfd_vma) -2;
1750 }
1751 if (! GOT_TLS_GDESC_P (tls_type)
1752 || GOT_TLS_GD_P (tls_type))
1753 {
1754 s = htab->sgot;
1755 h->got.offset = s->size;
1756 s->size += GOT_ENTRY_SIZE;
1757 if (GOT_TLS_GD_P (tls_type))
1758 s->size += GOT_ENTRY_SIZE;
1759 }
1760 dyn = htab->elf.dynamic_sections_created;
1761 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1762 and two if global.
1763 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1764 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1765 || tls_type == GOT_TLS_IE)
1766 htab->srelgot->size += sizeof (Elf64_External_Rela);
1767 else if (GOT_TLS_GD_P (tls_type))
1768 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1769 else if (! GOT_TLS_GDESC_P (tls_type)
1770 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1771 || h->root.type != bfd_link_hash_undefweak)
1772 && (info->shared
1773 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1774 htab->srelgot->size += sizeof (Elf64_External_Rela);
1775 if (GOT_TLS_GDESC_P (tls_type))
1776 {
1777 htab->srelplt->size += sizeof (Elf64_External_Rela);
1778 htab->tlsdesc_plt = (bfd_vma) -1;
1779 }
1780 }
1781 else
1782 h->got.offset = (bfd_vma) -1;
1783
1784 if (eh->dyn_relocs == NULL)
1785 return TRUE;
1786
1787 /* In the shared -Bsymbolic case, discard space allocated for
1788 dynamic pc-relative relocs against symbols which turn out to be
1789 defined in regular objects. For the normal shared case, discard
1790 space for pc-relative relocs that have become local due to symbol
1791 visibility changes. */
1792
1793 if (info->shared)
1794 {
1795 /* Relocs that use pc_count are those that appear on a call
1796 insn, or certain REL relocs that can generated via assembly.
1797 We want calls to protected symbols to resolve directly to the
1798 function rather than going via the plt. If people want
1799 function pointer comparisons to work as expected then they
1800 should avoid writing weird assembly. */
1801 if (SYMBOL_CALLS_LOCAL (info, h))
1802 {
1803 struct elf64_x86_64_dyn_relocs **pp;
1804
1805 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1806 {
1807 p->count -= p->pc_count;
1808 p->pc_count = 0;
1809 if (p->count == 0)
1810 *pp = p->next;
1811 else
1812 pp = &p->next;
1813 }
1814 }
1815
1816 /* Also discard relocs on undefined weak syms with non-default
1817 visibility. */
1818 if (eh->dyn_relocs != NULL
1819 && h->root.type == bfd_link_hash_undefweak)
1820 {
1821 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1822 eh->dyn_relocs = NULL;
1823
1824 /* Make sure undefined weak symbols are output as a dynamic
1825 symbol in PIEs. */
1826 else if (h->dynindx == -1
1827 && !h->forced_local)
1828 {
1829 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1830 return FALSE;
1831 }
1832 }
1833 }
1834 else if (ELIMINATE_COPY_RELOCS)
1835 {
1836 /* For the non-shared case, discard space for relocs against
1837 symbols which turn out to need copy relocs or are not
1838 dynamic. */
1839
1840 if (!h->non_got_ref
1841 && ((h->def_dynamic
1842 && !h->def_regular)
1843 || (htab->elf.dynamic_sections_created
1844 && (h->root.type == bfd_link_hash_undefweak
1845 || h->root.type == bfd_link_hash_undefined))))
1846 {
1847 /* Make sure this symbol is output as a dynamic symbol.
1848 Undefined weak syms won't yet be marked as dynamic. */
1849 if (h->dynindx == -1
1850 && !h->forced_local)
1851 {
1852 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1853 return FALSE;
1854 }
1855
1856 /* If that succeeded, we know we'll be keeping all the
1857 relocs. */
1858 if (h->dynindx != -1)
1859 goto keep;
1860 }
1861
1862 eh->dyn_relocs = NULL;
1863
1864 keep: ;
1865 }
1866
1867 /* Finally, allocate space. */
1868 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1869 {
1870 asection * sreloc;
1871
1872 sreloc = elf_section_data (p->sec)->sreloc;
1873
1874 BFD_ASSERT (sreloc != NULL);
1875
1876 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1877 }
1878
1879 return TRUE;
1880 }
1881
1882 /* Find any dynamic relocs that apply to read-only sections. */
1883
1884 static bfd_boolean
1885 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1886 {
1887 struct elf64_x86_64_link_hash_entry *eh;
1888 struct elf64_x86_64_dyn_relocs *p;
1889
1890 if (h->root.type == bfd_link_hash_warning)
1891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1892
1893 eh = (struct elf64_x86_64_link_hash_entry *) h;
1894 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1895 {
1896 asection *s = p->sec->output_section;
1897
1898 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1899 {
1900 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1901
1902 info->flags |= DF_TEXTREL;
1903
1904 /* Not an error, just cut short the traversal. */
1905 return FALSE;
1906 }
1907 }
1908 return TRUE;
1909 }
1910
1911 /* Set the sizes of the dynamic sections. */
1912
1913 static bfd_boolean
1914 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1915 struct bfd_link_info *info)
1916 {
1917 struct elf64_x86_64_link_hash_table *htab;
1918 bfd *dynobj;
1919 asection *s;
1920 bfd_boolean relocs;
1921 bfd *ibfd;
1922
1923 htab = elf64_x86_64_hash_table (info);
1924 dynobj = htab->elf.dynobj;
1925 if (dynobj == NULL)
1926 abort ();
1927
1928 if (htab->elf.dynamic_sections_created)
1929 {
1930 /* Set the contents of the .interp section to the interpreter. */
1931 if (info->executable)
1932 {
1933 s = bfd_get_section_by_name (dynobj, ".interp");
1934 if (s == NULL)
1935 abort ();
1936 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1937 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1938 }
1939 }
1940
1941 /* Set up .got offsets for local syms, and space for local dynamic
1942 relocs. */
1943 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1944 {
1945 bfd_signed_vma *local_got;
1946 bfd_signed_vma *end_local_got;
1947 char *local_tls_type;
1948 bfd_vma *local_tlsdesc_gotent;
1949 bfd_size_type locsymcount;
1950 Elf_Internal_Shdr *symtab_hdr;
1951 asection *srel;
1952
1953 if (! is_x86_64_elf (ibfd))
1954 continue;
1955
1956 for (s = ibfd->sections; s != NULL; s = s->next)
1957 {
1958 struct elf64_x86_64_dyn_relocs *p;
1959
1960 for (p = (struct elf64_x86_64_dyn_relocs *)
1961 (elf_section_data (s)->local_dynrel);
1962 p != NULL;
1963 p = p->next)
1964 {
1965 if (!bfd_is_abs_section (p->sec)
1966 && bfd_is_abs_section (p->sec->output_section))
1967 {
1968 /* Input section has been discarded, either because
1969 it is a copy of a linkonce section or due to
1970 linker script /DISCARD/, so we'll be discarding
1971 the relocs too. */
1972 }
1973 else if (p->count != 0)
1974 {
1975 srel = elf_section_data (p->sec)->sreloc;
1976 srel->size += p->count * sizeof (Elf64_External_Rela);
1977 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1978 info->flags |= DF_TEXTREL;
1979 }
1980 }
1981 }
1982
1983 local_got = elf_local_got_refcounts (ibfd);
1984 if (!local_got)
1985 continue;
1986
1987 symtab_hdr = &elf_symtab_hdr (ibfd);
1988 locsymcount = symtab_hdr->sh_info;
1989 end_local_got = local_got + locsymcount;
1990 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1991 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
1992 s = htab->sgot;
1993 srel = htab->srelgot;
1994 for (; local_got < end_local_got;
1995 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
1996 {
1997 *local_tlsdesc_gotent = (bfd_vma) -1;
1998 if (*local_got > 0)
1999 {
2000 if (GOT_TLS_GDESC_P (*local_tls_type))
2001 {
2002 *local_tlsdesc_gotent = htab->sgotplt->size
2003 - elf64_x86_64_compute_jump_table_size (htab);
2004 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2005 *local_got = (bfd_vma) -2;
2006 }
2007 if (! GOT_TLS_GDESC_P (*local_tls_type)
2008 || GOT_TLS_GD_P (*local_tls_type))
2009 {
2010 *local_got = s->size;
2011 s->size += GOT_ENTRY_SIZE;
2012 if (GOT_TLS_GD_P (*local_tls_type))
2013 s->size += GOT_ENTRY_SIZE;
2014 }
2015 if (info->shared
2016 || GOT_TLS_GD_ANY_P (*local_tls_type)
2017 || *local_tls_type == GOT_TLS_IE)
2018 {
2019 if (GOT_TLS_GDESC_P (*local_tls_type))
2020 {
2021 htab->srelplt->size += sizeof (Elf64_External_Rela);
2022 htab->tlsdesc_plt = (bfd_vma) -1;
2023 }
2024 if (! GOT_TLS_GDESC_P (*local_tls_type)
2025 || GOT_TLS_GD_P (*local_tls_type))
2026 srel->size += sizeof (Elf64_External_Rela);
2027 }
2028 }
2029 else
2030 *local_got = (bfd_vma) -1;
2031 }
2032 }
2033
2034 if (htab->tls_ld_got.refcount > 0)
2035 {
2036 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2037 relocs. */
2038 htab->tls_ld_got.offset = htab->sgot->size;
2039 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
2040 htab->srelgot->size += sizeof (Elf64_External_Rela);
2041 }
2042 else
2043 htab->tls_ld_got.offset = -1;
2044
2045 /* Allocate global sym .plt and .got entries, and space for global
2046 sym dynamic relocs. */
2047 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2048
2049 /* For every jump slot reserved in the sgotplt, reloc_count is
2050 incremented. However, when we reserve space for TLS descriptors,
2051 it's not incremented, so in order to compute the space reserved
2052 for them, it suffices to multiply the reloc count by the jump
2053 slot size. */
2054 if (htab->srelplt)
2055 htab->sgotplt_jump_table_size
2056 = elf64_x86_64_compute_jump_table_size (htab);
2057
2058 if (htab->tlsdesc_plt)
2059 {
2060 /* If we're not using lazy TLS relocations, don't generate the
2061 PLT and GOT entries they require. */
2062 if ((info->flags & DF_BIND_NOW))
2063 htab->tlsdesc_plt = 0;
2064 else
2065 {
2066 htab->tlsdesc_got = htab->sgot->size;
2067 htab->sgot->size += GOT_ENTRY_SIZE;
2068 /* Reserve room for the initial entry.
2069 FIXME: we could probably do away with it in this case. */
2070 if (htab->splt->size == 0)
2071 htab->splt->size += PLT_ENTRY_SIZE;
2072 htab->tlsdesc_plt = htab->splt->size;
2073 htab->splt->size += PLT_ENTRY_SIZE;
2074 }
2075 }
2076
2077 /* We now have determined the sizes of the various dynamic sections.
2078 Allocate memory for them. */
2079 relocs = FALSE;
2080 for (s = dynobj->sections; s != NULL; s = s->next)
2081 {
2082 if ((s->flags & SEC_LINKER_CREATED) == 0)
2083 continue;
2084
2085 if (s == htab->splt
2086 || s == htab->sgot
2087 || s == htab->sgotplt
2088 || s == htab->sdynbss)
2089 {
2090 /* Strip this section if we don't need it; see the
2091 comment below. */
2092 }
2093 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2094 {
2095 if (s->size != 0 && s != htab->srelplt)
2096 relocs = TRUE;
2097
2098 /* We use the reloc_count field as a counter if we need
2099 to copy relocs into the output file. */
2100 if (s != htab->srelplt)
2101 s->reloc_count = 0;
2102 }
2103 else
2104 {
2105 /* It's not one of our sections, so don't allocate space. */
2106 continue;
2107 }
2108
2109 if (s->size == 0)
2110 {
2111 /* If we don't need this section, strip it from the
2112 output file. This is mostly to handle .rela.bss and
2113 .rela.plt. We must create both sections in
2114 create_dynamic_sections, because they must be created
2115 before the linker maps input sections to output
2116 sections. The linker does that before
2117 adjust_dynamic_symbol is called, and it is that
2118 function which decides whether anything needs to go
2119 into these sections. */
2120
2121 s->flags |= SEC_EXCLUDE;
2122 continue;
2123 }
2124
2125 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2126 continue;
2127
2128 /* Allocate memory for the section contents. We use bfd_zalloc
2129 here in case unused entries are not reclaimed before the
2130 section's contents are written out. This should not happen,
2131 but this way if it does, we get a R_X86_64_NONE reloc instead
2132 of garbage. */
2133 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2134 if (s->contents == NULL)
2135 return FALSE;
2136 }
2137
2138 if (htab->elf.dynamic_sections_created)
2139 {
2140 /* Add some entries to the .dynamic section. We fill in the
2141 values later, in elf64_x86_64_finish_dynamic_sections, but we
2142 must add the entries now so that we get the correct size for
2143 the .dynamic section. The DT_DEBUG entry is filled in by the
2144 dynamic linker and used by the debugger. */
2145 #define add_dynamic_entry(TAG, VAL) \
2146 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2147
2148 if (info->executable)
2149 {
2150 if (!add_dynamic_entry (DT_DEBUG, 0))
2151 return FALSE;
2152 }
2153
2154 if (htab->splt->size != 0)
2155 {
2156 if (!add_dynamic_entry (DT_PLTGOT, 0)
2157 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2158 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2159 || !add_dynamic_entry (DT_JMPREL, 0))
2160 return FALSE;
2161
2162 if (htab->tlsdesc_plt
2163 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2164 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2165 return FALSE;
2166 }
2167
2168 if (relocs)
2169 {
2170 if (!add_dynamic_entry (DT_RELA, 0)
2171 || !add_dynamic_entry (DT_RELASZ, 0)
2172 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2173 return FALSE;
2174
2175 /* If any dynamic relocs apply to a read-only section,
2176 then we need a DT_TEXTREL entry. */
2177 if ((info->flags & DF_TEXTREL) == 0)
2178 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2179
2180 if ((info->flags & DF_TEXTREL) != 0)
2181 {
2182 if (!add_dynamic_entry (DT_TEXTREL, 0))
2183 return FALSE;
2184 }
2185 }
2186 }
2187 #undef add_dynamic_entry
2188
2189 return TRUE;
2190 }
2191
2192 static bfd_boolean
2193 elf64_x86_64_always_size_sections (bfd *output_bfd,
2194 struct bfd_link_info *info)
2195 {
2196 asection *tls_sec = elf_hash_table (info)->tls_sec;
2197
2198 if (tls_sec)
2199 {
2200 struct elf_link_hash_entry *tlsbase;
2201
2202 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2203 "_TLS_MODULE_BASE_",
2204 FALSE, FALSE, FALSE);
2205
2206 if (tlsbase && tlsbase->type == STT_TLS)
2207 {
2208 struct bfd_link_hash_entry *bh = NULL;
2209 const struct elf_backend_data *bed
2210 = get_elf_backend_data (output_bfd);
2211
2212 if (!(_bfd_generic_link_add_one_symbol
2213 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2214 tls_sec, 0, NULL, FALSE,
2215 bed->collect, &bh)))
2216 return FALSE;
2217
2218 elf64_x86_64_hash_table (info)->tls_module_base = bh;
2219
2220 tlsbase = (struct elf_link_hash_entry *)bh;
2221 tlsbase->def_regular = 1;
2222 tlsbase->other = STV_HIDDEN;
2223 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2224 }
2225 }
2226
2227 return TRUE;
2228 }
2229
2230 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2231 executables. Rather than setting it to the beginning of the TLS
2232 section, we have to set it to the end. This function may be called
2233 multiple times, it is idempotent. */
2234
2235 static void
2236 set_tls_module_base (struct bfd_link_info *info)
2237 {
2238 struct bfd_link_hash_entry *base;
2239
2240 if (!info->executable)
2241 return;
2242
2243 base = elf64_x86_64_hash_table (info)->tls_module_base;
2244
2245 if (!base)
2246 return;
2247
2248 base->u.def.value = elf_hash_table (info)->tls_size;
2249 }
2250
2251 /* Return the base VMA address which should be subtracted from real addresses
2252 when resolving @dtpoff relocation.
2253 This is PT_TLS segment p_vaddr. */
2254
2255 static bfd_vma
2256 dtpoff_base (struct bfd_link_info *info)
2257 {
2258 /* If tls_sec is NULL, we should have signalled an error already. */
2259 if (elf_hash_table (info)->tls_sec == NULL)
2260 return 0;
2261 return elf_hash_table (info)->tls_sec->vma;
2262 }
2263
2264 /* Return the relocation value for @tpoff relocation
2265 if STT_TLS virtual address is ADDRESS. */
2266
2267 static bfd_vma
2268 tpoff (struct bfd_link_info *info, bfd_vma address)
2269 {
2270 struct elf_link_hash_table *htab = elf_hash_table (info);
2271
2272 /* If tls_segment is NULL, we should have signalled an error already. */
2273 if (htab->tls_sec == NULL)
2274 return 0;
2275 return address - htab->tls_size - htab->tls_sec->vma;
2276 }
2277
2278 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2279 branch? */
2280
2281 static bfd_boolean
2282 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2283 {
2284 /* Opcode Instruction
2285 0xe8 call
2286 0xe9 jump
2287 0x0f 0x8x conditional jump */
2288 return ((offset > 0
2289 && (contents [offset - 1] == 0xe8
2290 || contents [offset - 1] == 0xe9))
2291 || (offset > 1
2292 && contents [offset - 2] == 0x0f
2293 && (contents [offset - 1] & 0xf0) == 0x80));
2294 }
2295
2296 /* Relocate an x86_64 ELF section. */
2297
2298 static bfd_boolean
2299 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2300 bfd *input_bfd, asection *input_section,
2301 bfd_byte *contents, Elf_Internal_Rela *relocs,
2302 Elf_Internal_Sym *local_syms,
2303 asection **local_sections)
2304 {
2305 struct elf64_x86_64_link_hash_table *htab;
2306 Elf_Internal_Shdr *symtab_hdr;
2307 struct elf_link_hash_entry **sym_hashes;
2308 bfd_vma *local_got_offsets;
2309 bfd_vma *local_tlsdesc_gotents;
2310 Elf_Internal_Rela *rel;
2311 Elf_Internal_Rela *relend;
2312
2313 BFD_ASSERT (is_x86_64_elf (input_bfd));
2314
2315 htab = elf64_x86_64_hash_table (info);
2316 symtab_hdr = &elf_symtab_hdr (input_bfd);
2317 sym_hashes = elf_sym_hashes (input_bfd);
2318 local_got_offsets = elf_local_got_offsets (input_bfd);
2319 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2320
2321 set_tls_module_base (info);
2322
2323 rel = relocs;
2324 relend = relocs + input_section->reloc_count;
2325 for (; rel < relend; rel++)
2326 {
2327 unsigned int r_type;
2328 reloc_howto_type *howto;
2329 unsigned long r_symndx;
2330 struct elf_link_hash_entry *h;
2331 Elf_Internal_Sym *sym;
2332 asection *sec;
2333 bfd_vma off, offplt;
2334 bfd_vma relocation;
2335 bfd_boolean unresolved_reloc;
2336 bfd_reloc_status_type r;
2337 int tls_type;
2338
2339 r_type = ELF64_R_TYPE (rel->r_info);
2340 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2341 || r_type == (int) R_X86_64_GNU_VTENTRY)
2342 continue;
2343
2344 if (r_type >= R_X86_64_max)
2345 {
2346 bfd_set_error (bfd_error_bad_value);
2347 return FALSE;
2348 }
2349
2350 howto = x86_64_elf_howto_table + r_type;
2351 r_symndx = ELF64_R_SYM (rel->r_info);
2352 h = NULL;
2353 sym = NULL;
2354 sec = NULL;
2355 unresolved_reloc = FALSE;
2356 if (r_symndx < symtab_hdr->sh_info)
2357 {
2358 sym = local_syms + r_symndx;
2359 sec = local_sections[r_symndx];
2360
2361 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2362 }
2363 else
2364 {
2365 bfd_boolean warned;
2366
2367 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2368 r_symndx, symtab_hdr, sym_hashes,
2369 h, sec, relocation,
2370 unresolved_reloc, warned);
2371 }
2372
2373 if (sec != NULL && elf_discarded_section (sec))
2374 {
2375 /* For relocs against symbols from removed linkonce sections,
2376 or sections discarded by a linker script, we just want the
2377 section contents zeroed. Avoid any special processing. */
2378 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2379 rel->r_info = 0;
2380 rel->r_addend = 0;
2381 continue;
2382 }
2383
2384 if (info->relocatable)
2385 continue;
2386
2387 /* When generating a shared object, the relocations handled here are
2388 copied into the output file to be resolved at run time. */
2389 switch (r_type)
2390 {
2391 asection *base_got;
2392 case R_X86_64_GOT32:
2393 case R_X86_64_GOT64:
2394 /* Relocation is to the entry for this symbol in the global
2395 offset table. */
2396 case R_X86_64_GOTPCREL:
2397 case R_X86_64_GOTPCREL64:
2398 /* Use global offset table entry as symbol value. */
2399 case R_X86_64_GOTPLT64:
2400 /* This is the same as GOT64 for relocation purposes, but
2401 indicates the existence of a PLT entry. The difficulty is,
2402 that we must calculate the GOT slot offset from the PLT
2403 offset, if this symbol got a PLT entry (it was global).
2404 Additionally if it's computed from the PLT entry, then that
2405 GOT offset is relative to .got.plt, not to .got. */
2406 base_got = htab->sgot;
2407
2408 if (htab->sgot == NULL)
2409 abort ();
2410
2411 if (h != NULL)
2412 {
2413 bfd_boolean dyn;
2414
2415 off = h->got.offset;
2416 if (h->needs_plt
2417 && h->plt.offset != (bfd_vma)-1
2418 && off == (bfd_vma)-1)
2419 {
2420 /* We can't use h->got.offset here to save
2421 state, or even just remember the offset, as
2422 finish_dynamic_symbol would use that as offset into
2423 .got. */
2424 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2425 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2426 base_got = htab->sgotplt;
2427 }
2428
2429 dyn = htab->elf.dynamic_sections_created;
2430
2431 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2432 || (info->shared
2433 && SYMBOL_REFERENCES_LOCAL (info, h))
2434 || (ELF_ST_VISIBILITY (h->other)
2435 && h->root.type == bfd_link_hash_undefweak))
2436 {
2437 /* This is actually a static link, or it is a -Bsymbolic
2438 link and the symbol is defined locally, or the symbol
2439 was forced to be local because of a version file. We
2440 must initialize this entry in the global offset table.
2441 Since the offset must always be a multiple of 8, we
2442 use the least significant bit to record whether we
2443 have initialized it already.
2444
2445 When doing a dynamic link, we create a .rela.got
2446 relocation entry to initialize the value. This is
2447 done in the finish_dynamic_symbol routine. */
2448 if ((off & 1) != 0)
2449 off &= ~1;
2450 else
2451 {
2452 bfd_put_64 (output_bfd, relocation,
2453 base_got->contents + off);
2454 /* Note that this is harmless for the GOTPLT64 case,
2455 as -1 | 1 still is -1. */
2456 h->got.offset |= 1;
2457 }
2458 }
2459 else
2460 unresolved_reloc = FALSE;
2461 }
2462 else
2463 {
2464 if (local_got_offsets == NULL)
2465 abort ();
2466
2467 off = local_got_offsets[r_symndx];
2468
2469 /* The offset must always be a multiple of 8. We use
2470 the least significant bit to record whether we have
2471 already generated the necessary reloc. */
2472 if ((off & 1) != 0)
2473 off &= ~1;
2474 else
2475 {
2476 bfd_put_64 (output_bfd, relocation,
2477 base_got->contents + off);
2478
2479 if (info->shared)
2480 {
2481 asection *s;
2482 Elf_Internal_Rela outrel;
2483 bfd_byte *loc;
2484
2485 /* We need to generate a R_X86_64_RELATIVE reloc
2486 for the dynamic linker. */
2487 s = htab->srelgot;
2488 if (s == NULL)
2489 abort ();
2490
2491 outrel.r_offset = (base_got->output_section->vma
2492 + base_got->output_offset
2493 + off);
2494 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2495 outrel.r_addend = relocation;
2496 loc = s->contents;
2497 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2498 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2499 }
2500
2501 local_got_offsets[r_symndx] |= 1;
2502 }
2503 }
2504
2505 if (off >= (bfd_vma) -2)
2506 abort ();
2507
2508 relocation = base_got->output_section->vma
2509 + base_got->output_offset + off;
2510 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2511 relocation -= htab->sgotplt->output_section->vma
2512 - htab->sgotplt->output_offset;
2513
2514 break;
2515
2516 case R_X86_64_GOTOFF64:
2517 /* Relocation is relative to the start of the global offset
2518 table. */
2519
2520 /* Check to make sure it isn't a protected function symbol
2521 for shared library since it may not be local when used
2522 as function address. */
2523 if (info->shared
2524 && h
2525 && h->def_regular
2526 && h->type == STT_FUNC
2527 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2528 {
2529 (*_bfd_error_handler)
2530 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2531 input_bfd, h->root.root.string);
2532 bfd_set_error (bfd_error_bad_value);
2533 return FALSE;
2534 }
2535
2536 /* Note that sgot is not involved in this
2537 calculation. We always want the start of .got.plt. If we
2538 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2539 permitted by the ABI, we might have to change this
2540 calculation. */
2541 relocation -= htab->sgotplt->output_section->vma
2542 + htab->sgotplt->output_offset;
2543 break;
2544
2545 case R_X86_64_GOTPC32:
2546 case R_X86_64_GOTPC64:
2547 /* Use global offset table as symbol value. */
2548 relocation = htab->sgotplt->output_section->vma
2549 + htab->sgotplt->output_offset;
2550 unresolved_reloc = FALSE;
2551 break;
2552
2553 case R_X86_64_PLTOFF64:
2554 /* Relocation is PLT entry relative to GOT. For local
2555 symbols it's the symbol itself relative to GOT. */
2556 if (h != NULL
2557 /* See PLT32 handling. */
2558 && h->plt.offset != (bfd_vma) -1
2559 && htab->splt != NULL)
2560 {
2561 relocation = (htab->splt->output_section->vma
2562 + htab->splt->output_offset
2563 + h->plt.offset);
2564 unresolved_reloc = FALSE;
2565 }
2566
2567 relocation -= htab->sgotplt->output_section->vma
2568 + htab->sgotplt->output_offset;
2569 break;
2570
2571 case R_X86_64_PLT32:
2572 /* Relocation is to the entry for this symbol in the
2573 procedure linkage table. */
2574
2575 /* Resolve a PLT32 reloc against a local symbol directly,
2576 without using the procedure linkage table. */
2577 if (h == NULL)
2578 break;
2579
2580 if (h->plt.offset == (bfd_vma) -1
2581 || htab->splt == NULL)
2582 {
2583 /* We didn't make a PLT entry for this symbol. This
2584 happens when statically linking PIC code, or when
2585 using -Bsymbolic. */
2586 break;
2587 }
2588
2589 relocation = (htab->splt->output_section->vma
2590 + htab->splt->output_offset
2591 + h->plt.offset);
2592 unresolved_reloc = FALSE;
2593 break;
2594
2595 case R_X86_64_PC8:
2596 case R_X86_64_PC16:
2597 case R_X86_64_PC32:
2598 if (info->shared
2599 && (input_section->flags & SEC_ALLOC) != 0
2600 && (input_section->flags & SEC_READONLY) != 0
2601 && h != NULL)
2602 {
2603 bfd_boolean fail = FALSE;
2604 bfd_boolean branch
2605 = (r_type == R_X86_64_PC32
2606 && is_32bit_relative_branch (contents, rel->r_offset));
2607
2608 if (SYMBOL_REFERENCES_LOCAL (info, h))
2609 {
2610 /* Symbol is referenced locally. Make sure it is
2611 defined locally or for a branch. */
2612 fail = !h->def_regular && !branch;
2613 }
2614 else
2615 {
2616 /* Symbol isn't referenced locally. We only allow
2617 branch to symbol with non-default visibility. */
2618 fail = (!branch
2619 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
2620 }
2621
2622 if (fail)
2623 {
2624 const char *fmt;
2625 const char *v;
2626 const char *pic = "";
2627
2628 switch (ELF_ST_VISIBILITY (h->other))
2629 {
2630 case STV_HIDDEN:
2631 v = _("hidden symbol");
2632 break;
2633 case STV_INTERNAL:
2634 v = _("internal symbol");
2635 break;
2636 case STV_PROTECTED:
2637 v = _("protected symbol");
2638 break;
2639 default:
2640 v = _("symbol");
2641 pic = _("; recompile with -fPIC");
2642 break;
2643 }
2644
2645 if (h->def_regular)
2646 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
2647 else
2648 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
2649
2650 (*_bfd_error_handler) (fmt, input_bfd,
2651 x86_64_elf_howto_table[r_type].name,
2652 v, h->root.root.string, pic);
2653 bfd_set_error (bfd_error_bad_value);
2654 return FALSE;
2655 }
2656 }
2657 /* Fall through. */
2658
2659 case R_X86_64_8:
2660 case R_X86_64_16:
2661 case R_X86_64_32:
2662 case R_X86_64_PC64:
2663 case R_X86_64_64:
2664 /* FIXME: The ABI says the linker should make sure the value is
2665 the same when it's zeroextended to 64 bit. */
2666
2667 if ((input_section->flags & SEC_ALLOC) == 0)
2668 break;
2669
2670 if ((info->shared
2671 && (h == NULL
2672 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2673 || h->root.type != bfd_link_hash_undefweak)
2674 && ((r_type != R_X86_64_PC8
2675 && r_type != R_X86_64_PC16
2676 && r_type != R_X86_64_PC32
2677 && r_type != R_X86_64_PC64)
2678 || !SYMBOL_CALLS_LOCAL (info, h)))
2679 || (ELIMINATE_COPY_RELOCS
2680 && !info->shared
2681 && h != NULL
2682 && h->dynindx != -1
2683 && !h->non_got_ref
2684 && ((h->def_dynamic
2685 && !h->def_regular)
2686 || h->root.type == bfd_link_hash_undefweak
2687 || h->root.type == bfd_link_hash_undefined)))
2688 {
2689 Elf_Internal_Rela outrel;
2690 bfd_byte *loc;
2691 bfd_boolean skip, relocate;
2692 asection *sreloc;
2693
2694 /* When generating a shared object, these relocations
2695 are copied into the output file to be resolved at run
2696 time. */
2697 skip = FALSE;
2698 relocate = FALSE;
2699
2700 outrel.r_offset =
2701 _bfd_elf_section_offset (output_bfd, info, input_section,
2702 rel->r_offset);
2703 if (outrel.r_offset == (bfd_vma) -1)
2704 skip = TRUE;
2705 else if (outrel.r_offset == (bfd_vma) -2)
2706 skip = TRUE, relocate = TRUE;
2707
2708 outrel.r_offset += (input_section->output_section->vma
2709 + input_section->output_offset);
2710
2711 if (skip)
2712 memset (&outrel, 0, sizeof outrel);
2713
2714 /* h->dynindx may be -1 if this symbol was marked to
2715 become local. */
2716 else if (h != NULL
2717 && h->dynindx != -1
2718 && (r_type == R_X86_64_PC8
2719 || r_type == R_X86_64_PC16
2720 || r_type == R_X86_64_PC32
2721 || r_type == R_X86_64_PC64
2722 || !info->shared
2723 || !SYMBOLIC_BIND (info, h)
2724 || !h->def_regular))
2725 {
2726 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2727 outrel.r_addend = rel->r_addend;
2728 }
2729 else
2730 {
2731 /* This symbol is local, or marked to become local. */
2732 if (r_type == R_X86_64_64)
2733 {
2734 relocate = TRUE;
2735 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2736 outrel.r_addend = relocation + rel->r_addend;
2737 }
2738 else
2739 {
2740 long sindx;
2741
2742 if (bfd_is_abs_section (sec))
2743 sindx = 0;
2744 else if (sec == NULL || sec->owner == NULL)
2745 {
2746 bfd_set_error (bfd_error_bad_value);
2747 return FALSE;
2748 }
2749 else
2750 {
2751 asection *osec;
2752
2753 /* We are turning this relocation into one
2754 against a section symbol. It would be
2755 proper to subtract the symbol's value,
2756 osec->vma, from the emitted reloc addend,
2757 but ld.so expects buggy relocs. */
2758 osec = sec->output_section;
2759 sindx = elf_section_data (osec)->dynindx;
2760 if (sindx == 0)
2761 {
2762 asection *oi = htab->elf.text_index_section;
2763 sindx = elf_section_data (oi)->dynindx;
2764 }
2765 BFD_ASSERT (sindx != 0);
2766 }
2767
2768 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2769 outrel.r_addend = relocation + rel->r_addend;
2770 }
2771 }
2772
2773 sreloc = elf_section_data (input_section)->sreloc;
2774
2775 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
2776
2777 loc = sreloc->contents;
2778 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2779 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2780
2781 /* If this reloc is against an external symbol, we do
2782 not want to fiddle with the addend. Otherwise, we
2783 need to include the symbol value so that it becomes
2784 an addend for the dynamic reloc. */
2785 if (! relocate)
2786 continue;
2787 }
2788
2789 break;
2790
2791 case R_X86_64_TLSGD:
2792 case R_X86_64_GOTPC32_TLSDESC:
2793 case R_X86_64_TLSDESC_CALL:
2794 case R_X86_64_GOTTPOFF:
2795 tls_type = GOT_UNKNOWN;
2796 if (h == NULL && local_got_offsets)
2797 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2798 else if (h != NULL)
2799 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2800
2801 if (! elf64_x86_64_tls_transition (info, input_bfd,
2802 input_section, contents,
2803 symtab_hdr, sym_hashes,
2804 &r_type, tls_type, rel,
2805 relend, h))
2806 return FALSE;
2807
2808 if (r_type == R_X86_64_TPOFF32)
2809 {
2810 bfd_vma roff = rel->r_offset;
2811
2812 BFD_ASSERT (! unresolved_reloc);
2813
2814 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2815 {
2816 /* GD->LE transition.
2817 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2818 .word 0x6666; rex64; call __tls_get_addr
2819 Change it into:
2820 movq %fs:0, %rax
2821 leaq foo@tpoff(%rax), %rax */
2822 memcpy (contents + roff - 4,
2823 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2824 16);
2825 bfd_put_32 (output_bfd, tpoff (info, relocation),
2826 contents + roff + 8);
2827 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2828 rel++;
2829 continue;
2830 }
2831 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2832 {
2833 /* GDesc -> LE transition.
2834 It's originally something like:
2835 leaq x@tlsdesc(%rip), %rax
2836
2837 Change it to:
2838 movl $x@tpoff, %rax
2839 */
2840
2841 unsigned int val, type, type2;
2842
2843 type = bfd_get_8 (input_bfd, contents + roff - 3);
2844 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2845 val = bfd_get_8 (input_bfd, contents + roff - 1);
2846 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2847 contents + roff - 3);
2848 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2849 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2850 contents + roff - 1);
2851 bfd_put_32 (output_bfd, tpoff (info, relocation),
2852 contents + roff);
2853 continue;
2854 }
2855 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2856 {
2857 /* GDesc -> LE transition.
2858 It's originally:
2859 call *(%rax)
2860 Turn it into:
2861 xchg %ax,%ax. */
2862 bfd_put_8 (output_bfd, 0x66, contents + roff);
2863 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2864 continue;
2865 }
2866 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
2867 {
2868 /* IE->LE transition:
2869 Originally it can be one of:
2870 movq foo@gottpoff(%rip), %reg
2871 addq foo@gottpoff(%rip), %reg
2872 We change it into:
2873 movq $foo, %reg
2874 leaq foo(%reg), %reg
2875 addq $foo, %reg. */
2876
2877 unsigned int val, type, reg;
2878
2879 val = bfd_get_8 (input_bfd, contents + roff - 3);
2880 type = bfd_get_8 (input_bfd, contents + roff - 2);
2881 reg = bfd_get_8 (input_bfd, contents + roff - 1);
2882 reg >>= 3;
2883 if (type == 0x8b)
2884 {
2885 /* movq */
2886 if (val == 0x4c)
2887 bfd_put_8 (output_bfd, 0x49,
2888 contents + roff - 3);
2889 bfd_put_8 (output_bfd, 0xc7,
2890 contents + roff - 2);
2891 bfd_put_8 (output_bfd, 0xc0 | reg,
2892 contents + roff - 1);
2893 }
2894 else if (reg == 4)
2895 {
2896 /* addq -> addq - addressing with %rsp/%r12 is
2897 special */
2898 if (val == 0x4c)
2899 bfd_put_8 (output_bfd, 0x49,
2900 contents + roff - 3);
2901 bfd_put_8 (output_bfd, 0x81,
2902 contents + roff - 2);
2903 bfd_put_8 (output_bfd, 0xc0 | reg,
2904 contents + roff - 1);
2905 }
2906 else
2907 {
2908 /* addq -> leaq */
2909 if (val == 0x4c)
2910 bfd_put_8 (output_bfd, 0x4d,
2911 contents + roff - 3);
2912 bfd_put_8 (output_bfd, 0x8d,
2913 contents + roff - 2);
2914 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2915 contents + roff - 1);
2916 }
2917 bfd_put_32 (output_bfd, tpoff (info, relocation),
2918 contents + roff);
2919 continue;
2920 }
2921 else
2922 BFD_ASSERT (FALSE);
2923 }
2924
2925 if (htab->sgot == NULL)
2926 abort ();
2927
2928 if (h != NULL)
2929 {
2930 off = h->got.offset;
2931 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2932 }
2933 else
2934 {
2935 if (local_got_offsets == NULL)
2936 abort ();
2937
2938 off = local_got_offsets[r_symndx];
2939 offplt = local_tlsdesc_gotents[r_symndx];
2940 }
2941
2942 if ((off & 1) != 0)
2943 off &= ~1;
2944 else
2945 {
2946 Elf_Internal_Rela outrel;
2947 bfd_byte *loc;
2948 int dr_type, indx;
2949 asection *sreloc;
2950
2951 if (htab->srelgot == NULL)
2952 abort ();
2953
2954 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2955
2956 if (GOT_TLS_GDESC_P (tls_type))
2957 {
2958 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2959 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2960 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2961 outrel.r_offset = (htab->sgotplt->output_section->vma
2962 + htab->sgotplt->output_offset
2963 + offplt
2964 + htab->sgotplt_jump_table_size);
2965 sreloc = htab->srelplt;
2966 loc = sreloc->contents;
2967 loc += sreloc->reloc_count++
2968 * sizeof (Elf64_External_Rela);
2969 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2970 <= sreloc->contents + sreloc->size);
2971 if (indx == 0)
2972 outrel.r_addend = relocation - dtpoff_base (info);
2973 else
2974 outrel.r_addend = 0;
2975 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2976 }
2977
2978 sreloc = htab->srelgot;
2979
2980 outrel.r_offset = (htab->sgot->output_section->vma
2981 + htab->sgot->output_offset + off);
2982
2983 if (GOT_TLS_GD_P (tls_type))
2984 dr_type = R_X86_64_DTPMOD64;
2985 else if (GOT_TLS_GDESC_P (tls_type))
2986 goto dr_done;
2987 else
2988 dr_type = R_X86_64_TPOFF64;
2989
2990 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2991 outrel.r_addend = 0;
2992 if ((dr_type == R_X86_64_TPOFF64
2993 || dr_type == R_X86_64_TLSDESC) && indx == 0)
2994 outrel.r_addend = relocation - dtpoff_base (info);
2995 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2996
2997 loc = sreloc->contents;
2998 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2999 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3000 <= sreloc->contents + sreloc->size);
3001 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3002
3003 if (GOT_TLS_GD_P (tls_type))
3004 {
3005 if (indx == 0)
3006 {
3007 BFD_ASSERT (! unresolved_reloc);
3008 bfd_put_64 (output_bfd,
3009 relocation - dtpoff_base (info),
3010 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3011 }
3012 else
3013 {
3014 bfd_put_64 (output_bfd, 0,
3015 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3016 outrel.r_info = ELF64_R_INFO (indx,
3017 R_X86_64_DTPOFF64);
3018 outrel.r_offset += GOT_ENTRY_SIZE;
3019 sreloc->reloc_count++;
3020 loc += sizeof (Elf64_External_Rela);
3021 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3022 <= sreloc->contents + sreloc->size);
3023 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3024 }
3025 }
3026
3027 dr_done:
3028 if (h != NULL)
3029 h->got.offset |= 1;
3030 else
3031 local_got_offsets[r_symndx] |= 1;
3032 }
3033
3034 if (off >= (bfd_vma) -2
3035 && ! GOT_TLS_GDESC_P (tls_type))
3036 abort ();
3037 if (r_type == ELF64_R_TYPE (rel->r_info))
3038 {
3039 if (r_type == R_X86_64_GOTPC32_TLSDESC
3040 || r_type == R_X86_64_TLSDESC_CALL)
3041 relocation = htab->sgotplt->output_section->vma
3042 + htab->sgotplt->output_offset
3043 + offplt + htab->sgotplt_jump_table_size;
3044 else
3045 relocation = htab->sgot->output_section->vma
3046 + htab->sgot->output_offset + off;
3047 unresolved_reloc = FALSE;
3048 }
3049 else
3050 {
3051 bfd_vma roff = rel->r_offset;
3052
3053 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3054 {
3055 /* GD->IE transition.
3056 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3057 .word 0x6666; rex64; call __tls_get_addr@plt
3058 Change it into:
3059 movq %fs:0, %rax
3060 addq foo@gottpoff(%rip), %rax */
3061 memcpy (contents + roff - 4,
3062 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3063 16);
3064
3065 relocation = (htab->sgot->output_section->vma
3066 + htab->sgot->output_offset + off
3067 - roff
3068 - input_section->output_section->vma
3069 - input_section->output_offset
3070 - 12);
3071 bfd_put_32 (output_bfd, relocation,
3072 contents + roff + 8);
3073 /* Skip R_X86_64_PLT32. */
3074 rel++;
3075 continue;
3076 }
3077 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3078 {
3079 /* GDesc -> IE transition.
3080 It's originally something like:
3081 leaq x@tlsdesc(%rip), %rax
3082
3083 Change it to:
3084 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3085 */
3086
3087 unsigned int val, type, type2;
3088
3089 type = bfd_get_8 (input_bfd, contents + roff - 3);
3090 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3091 val = bfd_get_8 (input_bfd, contents + roff - 1);
3092
3093 /* Now modify the instruction as appropriate. To
3094 turn a leaq into a movq in the form we use it, it
3095 suffices to change the second byte from 0x8d to
3096 0x8b. */
3097 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3098
3099 bfd_put_32 (output_bfd,
3100 htab->sgot->output_section->vma
3101 + htab->sgot->output_offset + off
3102 - rel->r_offset
3103 - input_section->output_section->vma
3104 - input_section->output_offset
3105 - 4,
3106 contents + roff);
3107 continue;
3108 }
3109 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3110 {
3111 /* GDesc -> IE transition.
3112 It's originally:
3113 call *(%rax)
3114
3115 Change it to:
3116 xchg %ax,%ax. */
3117
3118 unsigned int val, type;
3119
3120 type = bfd_get_8 (input_bfd, contents + roff);
3121 val = bfd_get_8 (input_bfd, contents + roff + 1);
3122 bfd_put_8 (output_bfd, 0x66, contents + roff);
3123 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3124 continue;
3125 }
3126 else
3127 BFD_ASSERT (FALSE);
3128 }
3129 break;
3130
3131 case R_X86_64_TLSLD:
3132 if (! elf64_x86_64_tls_transition (info, input_bfd,
3133 input_section, contents,
3134 symtab_hdr, sym_hashes,
3135 &r_type, GOT_UNKNOWN,
3136 rel, relend, h))
3137 return FALSE;
3138
3139 if (r_type != R_X86_64_TLSLD)
3140 {
3141 /* LD->LE transition:
3142 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3143 We change it into:
3144 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3145
3146 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3147 memcpy (contents + rel->r_offset - 3,
3148 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3149 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3150 rel++;
3151 continue;
3152 }
3153
3154 if (htab->sgot == NULL)
3155 abort ();
3156
3157 off = htab->tls_ld_got.offset;
3158 if (off & 1)
3159 off &= ~1;
3160 else
3161 {
3162 Elf_Internal_Rela outrel;
3163 bfd_byte *loc;
3164
3165 if (htab->srelgot == NULL)
3166 abort ();
3167
3168 outrel.r_offset = (htab->sgot->output_section->vma
3169 + htab->sgot->output_offset + off);
3170
3171 bfd_put_64 (output_bfd, 0,
3172 htab->sgot->contents + off);
3173 bfd_put_64 (output_bfd, 0,
3174 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3175 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3176 outrel.r_addend = 0;
3177 loc = htab->srelgot->contents;
3178 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3179 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3180 htab->tls_ld_got.offset |= 1;
3181 }
3182 relocation = htab->sgot->output_section->vma
3183 + htab->sgot->output_offset + off;
3184 unresolved_reloc = FALSE;
3185 break;
3186
3187 case R_X86_64_DTPOFF32:
3188 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3189 relocation -= dtpoff_base (info);
3190 else
3191 relocation = tpoff (info, relocation);
3192 break;
3193
3194 case R_X86_64_TPOFF32:
3195 BFD_ASSERT (! info->shared);
3196 relocation = tpoff (info, relocation);
3197 break;
3198
3199 default:
3200 break;
3201 }
3202
3203 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3204 because such sections are not SEC_ALLOC and thus ld.so will
3205 not process them. */
3206 if (unresolved_reloc
3207 && !((input_section->flags & SEC_DEBUGGING) != 0
3208 && h->def_dynamic))
3209 (*_bfd_error_handler)
3210 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3211 input_bfd,
3212 input_section,
3213 (long) rel->r_offset,
3214 howto->name,
3215 h->root.root.string);
3216
3217 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3218 contents, rel->r_offset,
3219 relocation, rel->r_addend);
3220
3221 if (r != bfd_reloc_ok)
3222 {
3223 const char *name;
3224
3225 if (h != NULL)
3226 name = h->root.root.string;
3227 else
3228 {
3229 name = bfd_elf_string_from_elf_section (input_bfd,
3230 symtab_hdr->sh_link,
3231 sym->st_name);
3232 if (name == NULL)
3233 return FALSE;
3234 if (*name == '\0')
3235 name = bfd_section_name (input_bfd, sec);
3236 }
3237
3238 if (r == bfd_reloc_overflow)
3239 {
3240 if (! ((*info->callbacks->reloc_overflow)
3241 (info, (h ? &h->root : NULL), name, howto->name,
3242 (bfd_vma) 0, input_bfd, input_section,
3243 rel->r_offset)))
3244 return FALSE;
3245 }
3246 else
3247 {
3248 (*_bfd_error_handler)
3249 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3250 input_bfd, input_section,
3251 (long) rel->r_offset, name, (int) r);
3252 return FALSE;
3253 }
3254 }
3255 }
3256
3257 return TRUE;
3258 }
3259
3260 /* Finish up dynamic symbol handling. We set the contents of various
3261 dynamic sections here. */
3262
3263 static bfd_boolean
3264 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3265 struct bfd_link_info *info,
3266 struct elf_link_hash_entry *h,
3267 Elf_Internal_Sym *sym)
3268 {
3269 struct elf64_x86_64_link_hash_table *htab;
3270
3271 htab = elf64_x86_64_hash_table (info);
3272
3273 if (h->plt.offset != (bfd_vma) -1)
3274 {
3275 bfd_vma plt_index;
3276 bfd_vma got_offset;
3277 Elf_Internal_Rela rela;
3278 bfd_byte *loc;
3279
3280 /* This symbol has an entry in the procedure linkage table. Set
3281 it up. */
3282 if (h->dynindx == -1
3283 || htab->splt == NULL
3284 || htab->sgotplt == NULL
3285 || htab->srelplt == NULL)
3286 abort ();
3287
3288 /* Get the index in the procedure linkage table which
3289 corresponds to this symbol. This is the index of this symbol
3290 in all the symbols for which we are making plt entries. The
3291 first entry in the procedure linkage table is reserved. */
3292 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3293
3294 /* Get the offset into the .got table of the entry that
3295 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3296 bytes. The first three are reserved for the dynamic linker. */
3297 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3298
3299 /* Fill in the entry in the procedure linkage table. */
3300 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3301 PLT_ENTRY_SIZE);
3302
3303 /* Insert the relocation positions of the plt section. The magic
3304 numbers at the end of the statements are the positions of the
3305 relocations in the plt section. */
3306 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3307 instruction uses 6 bytes, subtract this value. */
3308 bfd_put_32 (output_bfd,
3309 (htab->sgotplt->output_section->vma
3310 + htab->sgotplt->output_offset
3311 + got_offset
3312 - htab->splt->output_section->vma
3313 - htab->splt->output_offset
3314 - h->plt.offset
3315 - 6),
3316 htab->splt->contents + h->plt.offset + 2);
3317 /* Put relocation index. */
3318 bfd_put_32 (output_bfd, plt_index,
3319 htab->splt->contents + h->plt.offset + 7);
3320 /* Put offset for jmp .PLT0. */
3321 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3322 htab->splt->contents + h->plt.offset + 12);
3323
3324 /* Fill in the entry in the global offset table, initially this
3325 points to the pushq instruction in the PLT which is at offset 6. */
3326 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3327 + htab->splt->output_offset
3328 + h->plt.offset + 6),
3329 htab->sgotplt->contents + got_offset);
3330
3331 /* Fill in the entry in the .rela.plt section. */
3332 rela.r_offset = (htab->sgotplt->output_section->vma
3333 + htab->sgotplt->output_offset
3334 + got_offset);
3335 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3336 rela.r_addend = 0;
3337 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3338 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3339
3340 if (!h->def_regular)
3341 {
3342 /* Mark the symbol as undefined, rather than as defined in
3343 the .plt section. Leave the value if there were any
3344 relocations where pointer equality matters (this is a clue
3345 for the dynamic linker, to make function pointer
3346 comparisons work between an application and shared
3347 library), otherwise set it to zero. If a function is only
3348 called from a binary, there is no need to slow down
3349 shared libraries because of that. */
3350 sym->st_shndx = SHN_UNDEF;
3351 if (!h->pointer_equality_needed)
3352 sym->st_value = 0;
3353 }
3354 }
3355
3356 if (h->got.offset != (bfd_vma) -1
3357 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3358 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3359 {
3360 Elf_Internal_Rela rela;
3361 bfd_byte *loc;
3362
3363 /* This symbol has an entry in the global offset table. Set it
3364 up. */
3365 if (htab->sgot == NULL || htab->srelgot == NULL)
3366 abort ();
3367
3368 rela.r_offset = (htab->sgot->output_section->vma
3369 + htab->sgot->output_offset
3370 + (h->got.offset &~ (bfd_vma) 1));
3371
3372 /* If this is a static link, or it is a -Bsymbolic link and the
3373 symbol is defined locally or was forced to be local because
3374 of a version file, we just want to emit a RELATIVE reloc.
3375 The entry in the global offset table will already have been
3376 initialized in the relocate_section function. */
3377 if (info->shared
3378 && SYMBOL_REFERENCES_LOCAL (info, h))
3379 {
3380 if (!h->def_regular)
3381 return FALSE;
3382 BFD_ASSERT((h->got.offset & 1) != 0);
3383 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3384 rela.r_addend = (h->root.u.def.value
3385 + h->root.u.def.section->output_section->vma
3386 + h->root.u.def.section->output_offset);
3387 }
3388 else
3389 {
3390 BFD_ASSERT((h->got.offset & 1) == 0);
3391 bfd_put_64 (output_bfd, (bfd_vma) 0,
3392 htab->sgot->contents + h->got.offset);
3393 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3394 rela.r_addend = 0;
3395 }
3396
3397 loc = htab->srelgot->contents;
3398 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3399 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3400 }
3401
3402 if (h->needs_copy)
3403 {
3404 Elf_Internal_Rela rela;
3405 bfd_byte *loc;
3406
3407 /* This symbol needs a copy reloc. Set it up. */
3408
3409 if (h->dynindx == -1
3410 || (h->root.type != bfd_link_hash_defined
3411 && h->root.type != bfd_link_hash_defweak)
3412 || htab->srelbss == NULL)
3413 abort ();
3414
3415 rela.r_offset = (h->root.u.def.value
3416 + h->root.u.def.section->output_section->vma
3417 + h->root.u.def.section->output_offset);
3418 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3419 rela.r_addend = 0;
3420 loc = htab->srelbss->contents;
3421 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3422 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3423 }
3424
3425 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3426 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3427 || h == htab->elf.hgot)
3428 sym->st_shndx = SHN_ABS;
3429
3430 return TRUE;
3431 }
3432
3433 /* Used to decide how to sort relocs in an optimal manner for the
3434 dynamic linker, before writing them out. */
3435
3436 static enum elf_reloc_type_class
3437 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3438 {
3439 switch ((int) ELF64_R_TYPE (rela->r_info))
3440 {
3441 case R_X86_64_RELATIVE:
3442 return reloc_class_relative;
3443 case R_X86_64_JUMP_SLOT:
3444 return reloc_class_plt;
3445 case R_X86_64_COPY:
3446 return reloc_class_copy;
3447 default:
3448 return reloc_class_normal;
3449 }
3450 }
3451
3452 /* Finish up the dynamic sections. */
3453
3454 static bfd_boolean
3455 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3456 {
3457 struct elf64_x86_64_link_hash_table *htab;
3458 bfd *dynobj;
3459 asection *sdyn;
3460
3461 htab = elf64_x86_64_hash_table (info);
3462 dynobj = htab->elf.dynobj;
3463 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3464
3465 if (htab->elf.dynamic_sections_created)
3466 {
3467 Elf64_External_Dyn *dyncon, *dynconend;
3468
3469 if (sdyn == NULL || htab->sgot == NULL)
3470 abort ();
3471
3472 dyncon = (Elf64_External_Dyn *) sdyn->contents;
3473 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3474 for (; dyncon < dynconend; dyncon++)
3475 {
3476 Elf_Internal_Dyn dyn;
3477 asection *s;
3478
3479 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3480
3481 switch (dyn.d_tag)
3482 {
3483 default:
3484 continue;
3485
3486 case DT_PLTGOT:
3487 s = htab->sgotplt;
3488 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3489 break;
3490
3491 case DT_JMPREL:
3492 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3493 break;
3494
3495 case DT_PLTRELSZ:
3496 s = htab->srelplt->output_section;
3497 dyn.d_un.d_val = s->size;
3498 break;
3499
3500 case DT_RELASZ:
3501 /* The procedure linkage table relocs (DT_JMPREL) should
3502 not be included in the overall relocs (DT_RELA).
3503 Therefore, we override the DT_RELASZ entry here to
3504 make it not include the JMPREL relocs. Since the
3505 linker script arranges for .rela.plt to follow all
3506 other relocation sections, we don't have to worry
3507 about changing the DT_RELA entry. */
3508 if (htab->srelplt != NULL)
3509 {
3510 s = htab->srelplt->output_section;
3511 dyn.d_un.d_val -= s->size;
3512 }
3513 break;
3514
3515 case DT_TLSDESC_PLT:
3516 s = htab->splt;
3517 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3518 + htab->tlsdesc_plt;
3519 break;
3520
3521 case DT_TLSDESC_GOT:
3522 s = htab->sgot;
3523 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3524 + htab->tlsdesc_got;
3525 break;
3526 }
3527
3528 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3529 }
3530
3531 /* Fill in the special first entry in the procedure linkage table. */
3532 if (htab->splt && htab->splt->size > 0)
3533 {
3534 /* Fill in the first entry in the procedure linkage table. */
3535 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3536 PLT_ENTRY_SIZE);
3537 /* Add offset for pushq GOT+8(%rip), since the instruction
3538 uses 6 bytes subtract this value. */
3539 bfd_put_32 (output_bfd,
3540 (htab->sgotplt->output_section->vma
3541 + htab->sgotplt->output_offset
3542 + 8
3543 - htab->splt->output_section->vma
3544 - htab->splt->output_offset
3545 - 6),
3546 htab->splt->contents + 2);
3547 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3548 the end of the instruction. */
3549 bfd_put_32 (output_bfd,
3550 (htab->sgotplt->output_section->vma
3551 + htab->sgotplt->output_offset
3552 + 16
3553 - htab->splt->output_section->vma
3554 - htab->splt->output_offset
3555 - 12),
3556 htab->splt->contents + 8);
3557
3558 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3559 PLT_ENTRY_SIZE;
3560
3561 if (htab->tlsdesc_plt)
3562 {
3563 bfd_put_64 (output_bfd, (bfd_vma) 0,
3564 htab->sgot->contents + htab->tlsdesc_got);
3565
3566 memcpy (htab->splt->contents + htab->tlsdesc_plt,
3567 elf64_x86_64_plt0_entry,
3568 PLT_ENTRY_SIZE);
3569
3570 /* Add offset for pushq GOT+8(%rip), since the
3571 instruction uses 6 bytes subtract this value. */
3572 bfd_put_32 (output_bfd,
3573 (htab->sgotplt->output_section->vma
3574 + htab->sgotplt->output_offset
3575 + 8
3576 - htab->splt->output_section->vma
3577 - htab->splt->output_offset
3578 - htab->tlsdesc_plt
3579 - 6),
3580 htab->splt->contents + htab->tlsdesc_plt + 2);
3581 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3582 htab->tlsdesc_got. The 12 is the offset to the end of
3583 the instruction. */
3584 bfd_put_32 (output_bfd,
3585 (htab->sgot->output_section->vma
3586 + htab->sgot->output_offset
3587 + htab->tlsdesc_got
3588 - htab->splt->output_section->vma
3589 - htab->splt->output_offset
3590 - htab->tlsdesc_plt
3591 - 12),
3592 htab->splt->contents + htab->tlsdesc_plt + 8);
3593 }
3594 }
3595 }
3596
3597 if (htab->sgotplt)
3598 {
3599 /* Fill in the first three entries in the global offset table. */
3600 if (htab->sgotplt->size > 0)
3601 {
3602 /* Set the first entry in the global offset table to the address of
3603 the dynamic section. */
3604 if (sdyn == NULL)
3605 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3606 else
3607 bfd_put_64 (output_bfd,
3608 sdyn->output_section->vma + sdyn->output_offset,
3609 htab->sgotplt->contents);
3610 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3611 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3612 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3613 }
3614
3615 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3616 GOT_ENTRY_SIZE;
3617 }
3618
3619 if (htab->sgot && htab->sgot->size > 0)
3620 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3621 = GOT_ENTRY_SIZE;
3622
3623 return TRUE;
3624 }
3625
3626 /* Return address for Ith PLT stub in section PLT, for relocation REL
3627 or (bfd_vma) -1 if it should not be included. */
3628
3629 static bfd_vma
3630 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3631 const arelent *rel ATTRIBUTE_UNUSED)
3632 {
3633 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3634 }
3635
3636 /* Handle an x86-64 specific section when reading an object file. This
3637 is called when elfcode.h finds a section with an unknown type. */
3638
3639 static bfd_boolean
3640 elf64_x86_64_section_from_shdr (bfd *abfd,
3641 Elf_Internal_Shdr *hdr,
3642 const char *name,
3643 int shindex)
3644 {
3645 if (hdr->sh_type != SHT_X86_64_UNWIND)
3646 return FALSE;
3647
3648 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3649 return FALSE;
3650
3651 return TRUE;
3652 }
3653
3654 /* Hook called by the linker routine which adds symbols from an object
3655 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3656 of .bss. */
3657
3658 static bfd_boolean
3659 elf64_x86_64_add_symbol_hook (bfd *abfd,
3660 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3661 Elf_Internal_Sym *sym,
3662 const char **namep ATTRIBUTE_UNUSED,
3663 flagword *flagsp ATTRIBUTE_UNUSED,
3664 asection **secp, bfd_vma *valp)
3665 {
3666 asection *lcomm;
3667
3668 switch (sym->st_shndx)
3669 {
3670 case SHN_X86_64_LCOMMON:
3671 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3672 if (lcomm == NULL)
3673 {
3674 lcomm = bfd_make_section_with_flags (abfd,
3675 "LARGE_COMMON",
3676 (SEC_ALLOC
3677 | SEC_IS_COMMON
3678 | SEC_LINKER_CREATED));
3679 if (lcomm == NULL)
3680 return FALSE;
3681 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3682 }
3683 *secp = lcomm;
3684 *valp = sym->st_size;
3685 break;
3686 }
3687 return TRUE;
3688 }
3689
3690
3691 /* Given a BFD section, try to locate the corresponding ELF section
3692 index. */
3693
3694 static bfd_boolean
3695 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3696 asection *sec, int *index)
3697 {
3698 if (sec == &_bfd_elf_large_com_section)
3699 {
3700 *index = SHN_X86_64_LCOMMON;
3701 return TRUE;
3702 }
3703 return FALSE;
3704 }
3705
3706 /* Process a symbol. */
3707
3708 static void
3709 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3710 asymbol *asym)
3711 {
3712 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3713
3714 switch (elfsym->internal_elf_sym.st_shndx)
3715 {
3716 case SHN_X86_64_LCOMMON:
3717 asym->section = &_bfd_elf_large_com_section;
3718 asym->value = elfsym->internal_elf_sym.st_size;
3719 /* Common symbol doesn't set BSF_GLOBAL. */
3720 asym->flags &= ~BSF_GLOBAL;
3721 break;
3722 }
3723 }
3724
3725 static bfd_boolean
3726 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3727 {
3728 return (sym->st_shndx == SHN_COMMON
3729 || sym->st_shndx == SHN_X86_64_LCOMMON);
3730 }
3731
3732 static unsigned int
3733 elf64_x86_64_common_section_index (asection *sec)
3734 {
3735 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3736 return SHN_COMMON;
3737 else
3738 return SHN_X86_64_LCOMMON;
3739 }
3740
3741 static asection *
3742 elf64_x86_64_common_section (asection *sec)
3743 {
3744 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3745 return bfd_com_section_ptr;
3746 else
3747 return &_bfd_elf_large_com_section;
3748 }
3749
3750 static bfd_boolean
3751 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3752 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3753 struct elf_link_hash_entry *h,
3754 Elf_Internal_Sym *sym,
3755 asection **psec,
3756 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3757 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3758 bfd_boolean *skip ATTRIBUTE_UNUSED,
3759 bfd_boolean *override ATTRIBUTE_UNUSED,
3760 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3761 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3762 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3763 bfd_boolean *newdyn,
3764 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3765 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3766 bfd *abfd ATTRIBUTE_UNUSED,
3767 asection **sec,
3768 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3769 bfd_boolean *olddyn,
3770 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3771 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3772 bfd *oldbfd,
3773 asection **oldsec)
3774 {
3775 /* A normal common symbol and a large common symbol result in a
3776 normal common symbol. We turn the large common symbol into a
3777 normal one. */
3778 if (!*olddyn
3779 && h->root.type == bfd_link_hash_common
3780 && !*newdyn
3781 && bfd_is_com_section (*sec)
3782 && *oldsec != *sec)
3783 {
3784 if (sym->st_shndx == SHN_COMMON
3785 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3786 {
3787 h->root.u.c.p->section
3788 = bfd_make_section_old_way (oldbfd, "COMMON");
3789 h->root.u.c.p->section->flags = SEC_ALLOC;
3790 }
3791 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3792 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3793 *psec = *sec = bfd_com_section_ptr;
3794 }
3795
3796 return TRUE;
3797 }
3798
3799 static int
3800 elf64_x86_64_additional_program_headers (bfd *abfd,
3801 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3802 {
3803 asection *s;
3804 int count = 0;
3805
3806 /* Check to see if we need a large readonly segment. */
3807 s = bfd_get_section_by_name (abfd, ".lrodata");
3808 if (s && (s->flags & SEC_LOAD))
3809 count++;
3810
3811 /* Check to see if we need a large data segment. Since .lbss sections
3812 is placed right after the .bss section, there should be no need for
3813 a large data segment just because of .lbss. */
3814 s = bfd_get_section_by_name (abfd, ".ldata");
3815 if (s && (s->flags & SEC_LOAD))
3816 count++;
3817
3818 return count;
3819 }
3820
3821 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3822
3823 static bfd_boolean
3824 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
3825 {
3826 if (h->plt.offset != (bfd_vma) -1
3827 && !h->def_regular
3828 && !h->pointer_equality_needed)
3829 return FALSE;
3830
3831 return _bfd_elf_hash_symbol (h);
3832 }
3833
3834 static const struct bfd_elf_special_section
3835 elf64_x86_64_special_sections[]=
3836 {
3837 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3838 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3839 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3840 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3841 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3842 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3843 { NULL, 0, 0, 0, 0 }
3844 };
3845
3846 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3847 #define TARGET_LITTLE_NAME "elf64-x86-64"
3848 #define ELF_ARCH bfd_arch_i386
3849 #define ELF_MACHINE_CODE EM_X86_64
3850 #define ELF_MAXPAGESIZE 0x200000
3851 #define ELF_MINPAGESIZE 0x1000
3852 #define ELF_COMMONPAGESIZE 0x1000
3853
3854 #define elf_backend_can_gc_sections 1
3855 #define elf_backend_can_refcount 1
3856 #define elf_backend_want_got_plt 1
3857 #define elf_backend_plt_readonly 1
3858 #define elf_backend_want_plt_sym 0
3859 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3860 #define elf_backend_rela_normal 1
3861
3862 #define elf_info_to_howto elf64_x86_64_info_to_howto
3863
3864 #define bfd_elf64_bfd_link_hash_table_create \
3865 elf64_x86_64_link_hash_table_create
3866 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3867 #define bfd_elf64_bfd_reloc_name_lookup \
3868 elf64_x86_64_reloc_name_lookup
3869
3870 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3871 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
3872 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3873 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3874 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3875 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3876 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3877 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3878 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3879 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3880 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3881 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3882 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3883 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3884 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3885 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3886 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3887 #define elf_backend_object_p elf64_x86_64_elf_object_p
3888 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3889
3890 #define elf_backend_section_from_shdr \
3891 elf64_x86_64_section_from_shdr
3892
3893 #define elf_backend_section_from_bfd_section \
3894 elf64_x86_64_elf_section_from_bfd_section
3895 #define elf_backend_add_symbol_hook \
3896 elf64_x86_64_add_symbol_hook
3897 #define elf_backend_symbol_processing \
3898 elf64_x86_64_symbol_processing
3899 #define elf_backend_common_section_index \
3900 elf64_x86_64_common_section_index
3901 #define elf_backend_common_section \
3902 elf64_x86_64_common_section
3903 #define elf_backend_common_definition \
3904 elf64_x86_64_common_definition
3905 #define elf_backend_merge_symbol \
3906 elf64_x86_64_merge_symbol
3907 #define elf_backend_special_sections \
3908 elf64_x86_64_special_sections
3909 #define elf_backend_additional_program_headers \
3910 elf64_x86_64_additional_program_headers
3911 #define elf_backend_hash_symbol \
3912 elf64_x86_64_hash_symbol
3913
3914 #include "elf64-target.h"
3915
3916 /* FreeBSD support. */
3917
3918 #undef TARGET_LITTLE_SYM
3919 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3920 #undef TARGET_LITTLE_NAME
3921 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3922
3923 #undef ELF_OSABI
3924 #define ELF_OSABI ELFOSABI_FREEBSD
3925
3926 #undef elf_backend_post_process_headers
3927 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3928
3929 #undef elf64_bed
3930 #define elf64_bed elf64_x86_64_fbsd_bed
3931
3932 #include "elf64-target.h"
This page took 0.121319 seconds and 4 git commands to generate.