Don't update target_dcache if it is not initialized
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
152 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
153 FALSE),
154 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
155 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
156 FALSE),
157 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
158 complain_overflow_bitfield, bfd_elf_generic_reloc,
159 "R_X86_64_GOTPC32_TLSDESC",
160 FALSE, 0xffffffff, 0xffffffff, TRUE),
161 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
162 complain_overflow_dont, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC_CALL",
164 FALSE, 0, 0, FALSE),
165 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
166 complain_overflow_bitfield, bfd_elf_generic_reloc,
167 "R_X86_64_TLSDESC",
168 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
169 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
170 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
171 MINUS_ONE, FALSE),
172 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
174 MINUS_ONE, FALSE),
175 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
176 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
177 TRUE),
178 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
179 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
180 TRUE),
181
182 /* We have a gap in the reloc numbers here.
183 R_X86_64_standard counts the number up to this point, and
184 R_X86_64_vt_offset is the value to subtract from a reloc type of
185 R_X86_64_GNU_VT* to form an index into this table. */
186 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
187 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
188
189 /* GNU extension to record C++ vtable hierarchy. */
190 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
191 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
192
193 /* GNU extension to record C++ vtable member usage. */
194 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
195 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
196 FALSE),
197
198 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
199 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
200 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
201 FALSE)
202 };
203
204 #define IS_X86_64_PCREL_TYPE(TYPE) \
205 ( ((TYPE) == R_X86_64_PC8) \
206 || ((TYPE) == R_X86_64_PC16) \
207 || ((TYPE) == R_X86_64_PC32) \
208 || ((TYPE) == R_X86_64_PC32_BND) \
209 || ((TYPE) == R_X86_64_PC64))
210
211 /* Map BFD relocs to the x86_64 elf relocs. */
212 struct elf_reloc_map
213 {
214 bfd_reloc_code_real_type bfd_reloc_val;
215 unsigned char elf_reloc_val;
216 };
217
218 static const struct elf_reloc_map x86_64_reloc_map[] =
219 {
220 { BFD_RELOC_NONE, R_X86_64_NONE, },
221 { BFD_RELOC_64, R_X86_64_64, },
222 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
223 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
224 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
225 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
226 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
227 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
228 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
229 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
230 { BFD_RELOC_32, R_X86_64_32, },
231 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
232 { BFD_RELOC_16, R_X86_64_16, },
233 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
234 { BFD_RELOC_8, R_X86_64_8, },
235 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
236 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
237 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
238 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
239 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
240 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
241 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
242 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
243 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
244 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
245 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
246 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
247 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
248 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
249 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
250 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
251 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
252 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
253 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
254 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
255 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
256 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
257 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
258 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
259 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
260 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
261 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
262 };
263
264 static reloc_howto_type *
265 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
266 {
267 unsigned i;
268
269 if (r_type == (unsigned int) R_X86_64_32)
270 {
271 if (ABI_64_P (abfd))
272 i = r_type;
273 else
274 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
275 }
276 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
277 || r_type >= (unsigned int) R_X86_64_max)
278 {
279 if (r_type >= (unsigned int) R_X86_64_standard)
280 {
281 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
282 abfd, (int) r_type);
283 r_type = R_X86_64_NONE;
284 }
285 i = r_type;
286 }
287 else
288 i = r_type - (unsigned int) R_X86_64_vt_offset;
289 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
290 return &x86_64_elf_howto_table[i];
291 }
292
293 /* Given a BFD reloc type, return a HOWTO structure. */
294 static reloc_howto_type *
295 elf_x86_64_reloc_type_lookup (bfd *abfd,
296 bfd_reloc_code_real_type code)
297 {
298 unsigned int i;
299
300 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
301 i++)
302 {
303 if (x86_64_reloc_map[i].bfd_reloc_val == code)
304 return elf_x86_64_rtype_to_howto (abfd,
305 x86_64_reloc_map[i].elf_reloc_val);
306 }
307 return 0;
308 }
309
310 static reloc_howto_type *
311 elf_x86_64_reloc_name_lookup (bfd *abfd,
312 const char *r_name)
313 {
314 unsigned int i;
315
316 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
317 {
318 /* Get x32 R_X86_64_32. */
319 reloc_howto_type *reloc
320 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
321 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
322 return reloc;
323 }
324
325 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
326 if (x86_64_elf_howto_table[i].name != NULL
327 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
328 return &x86_64_elf_howto_table[i];
329
330 return NULL;
331 }
332
333 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
334
335 static void
336 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
337 Elf_Internal_Rela *dst)
338 {
339 unsigned r_type;
340
341 r_type = ELF32_R_TYPE (dst->r_info);
342 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
343 BFD_ASSERT (r_type == cache_ptr->howto->type);
344 }
345 \f
346 /* Support for core dump NOTE sections. */
347 static bfd_boolean
348 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
349 {
350 int offset;
351 size_t size;
352
353 switch (note->descsz)
354 {
355 default:
356 return FALSE;
357
358 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
359 /* pr_cursig */
360 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
361
362 /* pr_pid */
363 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
364
365 /* pr_reg */
366 offset = 72;
367 size = 216;
368
369 break;
370
371 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
372 /* pr_cursig */
373 elf_tdata (abfd)->core->signal
374 = bfd_get_16 (abfd, note->descdata + 12);
375
376 /* pr_pid */
377 elf_tdata (abfd)->core->lwpid
378 = bfd_get_32 (abfd, note->descdata + 32);
379
380 /* pr_reg */
381 offset = 112;
382 size = 216;
383
384 break;
385 }
386
387 /* Make a ".reg/999" section. */
388 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
389 size, note->descpos + offset);
390 }
391
392 static bfd_boolean
393 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
394 {
395 switch (note->descsz)
396 {
397 default:
398 return FALSE;
399
400 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
401 elf_tdata (abfd)->core->pid
402 = bfd_get_32 (abfd, note->descdata + 12);
403 elf_tdata (abfd)->core->program
404 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
405 elf_tdata (abfd)->core->command
406 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
407 break;
408
409 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
410 elf_tdata (abfd)->core->pid
411 = bfd_get_32 (abfd, note->descdata + 24);
412 elf_tdata (abfd)->core->program
413 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
414 elf_tdata (abfd)->core->command
415 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
416 }
417
418 /* Note that for some reason, a spurious space is tacked
419 onto the end of the args in some (at least one anyway)
420 implementations, so strip it off if it exists. */
421
422 {
423 char *command = elf_tdata (abfd)->core->command;
424 int n = strlen (command);
425
426 if (0 < n && command[n - 1] == ' ')
427 command[n - 1] = '\0';
428 }
429
430 return TRUE;
431 }
432
433 #ifdef CORE_HEADER
434 static char *
435 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
436 int note_type, ...)
437 {
438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
439 va_list ap;
440 const char *fname, *psargs;
441 long pid;
442 int cursig;
443 const void *gregs;
444
445 switch (note_type)
446 {
447 default:
448 return NULL;
449
450 case NT_PRPSINFO:
451 va_start (ap, note_type);
452 fname = va_arg (ap, const char *);
453 psargs = va_arg (ap, const char *);
454 va_end (ap);
455
456 if (bed->s->elfclass == ELFCLASS32)
457 {
458 prpsinfo32_t data;
459 memset (&data, 0, sizeof (data));
460 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
461 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
462 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
463 &data, sizeof (data));
464 }
465 else
466 {
467 prpsinfo64_t data;
468 memset (&data, 0, sizeof (data));
469 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
470 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
471 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
472 &data, sizeof (data));
473 }
474 /* NOTREACHED */
475
476 case NT_PRSTATUS:
477 va_start (ap, note_type);
478 pid = va_arg (ap, long);
479 cursig = va_arg (ap, int);
480 gregs = va_arg (ap, const void *);
481 va_end (ap);
482
483 if (bed->s->elfclass == ELFCLASS32)
484 {
485 if (bed->elf_machine_code == EM_X86_64)
486 {
487 prstatusx32_t prstat;
488 memset (&prstat, 0, sizeof (prstat));
489 prstat.pr_pid = pid;
490 prstat.pr_cursig = cursig;
491 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
492 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
493 &prstat, sizeof (prstat));
494 }
495 else
496 {
497 prstatus32_t prstat;
498 memset (&prstat, 0, sizeof (prstat));
499 prstat.pr_pid = pid;
500 prstat.pr_cursig = cursig;
501 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
502 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
503 &prstat, sizeof (prstat));
504 }
505 }
506 else
507 {
508 prstatus64_t prstat;
509 memset (&prstat, 0, sizeof (prstat));
510 prstat.pr_pid = pid;
511 prstat.pr_cursig = cursig;
512 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
513 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
514 &prstat, sizeof (prstat));
515 }
516 }
517 /* NOTREACHED */
518 }
519 #endif
520 \f
521 /* Functions for the x86-64 ELF linker. */
522
523 /* The name of the dynamic interpreter. This is put in the .interp
524 section. */
525
526 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
527 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
528
529 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
530 copying dynamic variables from a shared lib into an app's dynbss
531 section, and instead use a dynamic relocation to point into the
532 shared lib. */
533 #define ELIMINATE_COPY_RELOCS 1
534
535 /* The size in bytes of an entry in the global offset table. */
536
537 #define GOT_ENTRY_SIZE 8
538
539 /* The size in bytes of an entry in the procedure linkage table. */
540
541 #define PLT_ENTRY_SIZE 16
542
543 /* The first entry in a procedure linkage table looks like this. See the
544 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
545
546 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
547 {
548 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
549 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
550 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
551 };
552
553 /* Subsequent entries in a procedure linkage table look like this. */
554
555 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
556 {
557 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
558 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
559 0x68, /* pushq immediate */
560 0, 0, 0, 0, /* replaced with index into relocation table. */
561 0xe9, /* jmp relative */
562 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
563 };
564
565 /* .eh_frame covering the .plt section. */
566
567 static const bfd_byte elf_x86_64_eh_frame_plt[] =
568 {
569 #define PLT_CIE_LENGTH 20
570 #define PLT_FDE_LENGTH 36
571 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
572 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
573 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
574 0, 0, 0, 0, /* CIE ID */
575 1, /* CIE version */
576 'z', 'R', 0, /* Augmentation string */
577 1, /* Code alignment factor */
578 0x78, /* Data alignment factor */
579 16, /* Return address column */
580 1, /* Augmentation size */
581 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
582 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
583 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
584 DW_CFA_nop, DW_CFA_nop,
585
586 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
587 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
588 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
589 0, 0, 0, 0, /* .plt size goes here */
590 0, /* Augmentation size */
591 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
592 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
593 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
594 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
595 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
596 11, /* Block length */
597 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
598 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
599 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
600 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
601 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
602 };
603
604 /* Architecture-specific backend data for x86-64. */
605
606 struct elf_x86_64_backend_data
607 {
608 /* Templates for the initial PLT entry and for subsequent entries. */
609 const bfd_byte *plt0_entry;
610 const bfd_byte *plt_entry;
611 unsigned int plt_entry_size; /* Size of each PLT entry. */
612
613 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
614 unsigned int plt0_got1_offset;
615 unsigned int plt0_got2_offset;
616
617 /* Offset of the end of the PC-relative instruction containing
618 plt0_got2_offset. */
619 unsigned int plt0_got2_insn_end;
620
621 /* Offsets into plt_entry that are to be replaced with... */
622 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
623 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
624 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
625
626 /* Length of the PC-relative instruction containing plt_got_offset. */
627 unsigned int plt_got_insn_size;
628
629 /* Offset of the end of the PC-relative jump to plt0_entry. */
630 unsigned int plt_plt_insn_end;
631
632 /* Offset into plt_entry where the initial value of the GOT entry points. */
633 unsigned int plt_lazy_offset;
634
635 /* .eh_frame covering the .plt section. */
636 const bfd_byte *eh_frame_plt;
637 unsigned int eh_frame_plt_size;
638 };
639
640 #define get_elf_x86_64_arch_data(bed) \
641 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
642
643 #define get_elf_x86_64_backend_data(abfd) \
644 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
645
646 #define GET_PLT_ENTRY_SIZE(abfd) \
647 get_elf_x86_64_backend_data (abfd)->plt_entry_size
648
649 /* These are the standard parameters. */
650 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
651 {
652 elf_x86_64_plt0_entry, /* plt0_entry */
653 elf_x86_64_plt_entry, /* plt_entry */
654 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
655 2, /* plt0_got1_offset */
656 8, /* plt0_got2_offset */
657 12, /* plt0_got2_insn_end */
658 2, /* plt_got_offset */
659 7, /* plt_reloc_offset */
660 12, /* plt_plt_offset */
661 6, /* plt_got_insn_size */
662 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
663 6, /* plt_lazy_offset */
664 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
665 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
666 };
667
668 #define elf_backend_arch_data &elf_x86_64_arch_bed
669
670 /* x86-64 ELF linker hash entry. */
671
672 struct elf_x86_64_link_hash_entry
673 {
674 struct elf_link_hash_entry elf;
675
676 /* Track dynamic relocs copied for this symbol. */
677 struct elf_dyn_relocs *dyn_relocs;
678
679 #define GOT_UNKNOWN 0
680 #define GOT_NORMAL 1
681 #define GOT_TLS_GD 2
682 #define GOT_TLS_IE 3
683 #define GOT_TLS_GDESC 4
684 #define GOT_TLS_GD_BOTH_P(type) \
685 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
686 #define GOT_TLS_GD_P(type) \
687 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
688 #define GOT_TLS_GDESC_P(type) \
689 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
690 #define GOT_TLS_GD_ANY_P(type) \
691 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
692 unsigned char tls_type;
693
694 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
695 starting at the end of the jump table. */
696 bfd_vma tlsdesc_got;
697 };
698
699 #define elf_x86_64_hash_entry(ent) \
700 ((struct elf_x86_64_link_hash_entry *)(ent))
701
702 struct elf_x86_64_obj_tdata
703 {
704 struct elf_obj_tdata root;
705
706 /* tls_type for each local got entry. */
707 char *local_got_tls_type;
708
709 /* GOTPLT entries for TLS descriptors. */
710 bfd_vma *local_tlsdesc_gotent;
711 };
712
713 #define elf_x86_64_tdata(abfd) \
714 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
715
716 #define elf_x86_64_local_got_tls_type(abfd) \
717 (elf_x86_64_tdata (abfd)->local_got_tls_type)
718
719 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
720 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
721
722 #define is_x86_64_elf(bfd) \
723 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
724 && elf_tdata (bfd) != NULL \
725 && elf_object_id (bfd) == X86_64_ELF_DATA)
726
727 static bfd_boolean
728 elf_x86_64_mkobject (bfd *abfd)
729 {
730 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
731 X86_64_ELF_DATA);
732 }
733
734 /* x86-64 ELF linker hash table. */
735
736 struct elf_x86_64_link_hash_table
737 {
738 struct elf_link_hash_table elf;
739
740 /* Short-cuts to get to dynamic linker sections. */
741 asection *sdynbss;
742 asection *srelbss;
743 asection *plt_eh_frame;
744
745 union
746 {
747 bfd_signed_vma refcount;
748 bfd_vma offset;
749 } tls_ld_got;
750
751 /* The amount of space used by the jump slots in the GOT. */
752 bfd_vma sgotplt_jump_table_size;
753
754 /* Small local sym cache. */
755 struct sym_cache sym_cache;
756
757 bfd_vma (*r_info) (bfd_vma, bfd_vma);
758 bfd_vma (*r_sym) (bfd_vma);
759 unsigned int pointer_r_type;
760 const char *dynamic_interpreter;
761 int dynamic_interpreter_size;
762
763 /* _TLS_MODULE_BASE_ symbol. */
764 struct bfd_link_hash_entry *tls_module_base;
765
766 /* Used by local STT_GNU_IFUNC symbols. */
767 htab_t loc_hash_table;
768 void * loc_hash_memory;
769
770 /* The offset into splt of the PLT entry for the TLS descriptor
771 resolver. Special values are 0, if not necessary (or not found
772 to be necessary yet), and -1 if needed but not determined
773 yet. */
774 bfd_vma tlsdesc_plt;
775 /* The offset into sgot of the GOT entry used by the PLT entry
776 above. */
777 bfd_vma tlsdesc_got;
778
779 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
780 bfd_vma next_jump_slot_index;
781 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
782 bfd_vma next_irelative_index;
783 };
784
785 /* Get the x86-64 ELF linker hash table from a link_info structure. */
786
787 #define elf_x86_64_hash_table(p) \
788 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
789 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
790
791 #define elf_x86_64_compute_jump_table_size(htab) \
792 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
793
794 /* Create an entry in an x86-64 ELF linker hash table. */
795
796 static struct bfd_hash_entry *
797 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
798 struct bfd_hash_table *table,
799 const char *string)
800 {
801 /* Allocate the structure if it has not already been allocated by a
802 subclass. */
803 if (entry == NULL)
804 {
805 entry = (struct bfd_hash_entry *)
806 bfd_hash_allocate (table,
807 sizeof (struct elf_x86_64_link_hash_entry));
808 if (entry == NULL)
809 return entry;
810 }
811
812 /* Call the allocation method of the superclass. */
813 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
814 if (entry != NULL)
815 {
816 struct elf_x86_64_link_hash_entry *eh;
817
818 eh = (struct elf_x86_64_link_hash_entry *) entry;
819 eh->dyn_relocs = NULL;
820 eh->tls_type = GOT_UNKNOWN;
821 eh->tlsdesc_got = (bfd_vma) -1;
822 }
823
824 return entry;
825 }
826
827 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
828 for local symbol so that we can handle local STT_GNU_IFUNC symbols
829 as global symbol. We reuse indx and dynstr_index for local symbol
830 hash since they aren't used by global symbols in this backend. */
831
832 static hashval_t
833 elf_x86_64_local_htab_hash (const void *ptr)
834 {
835 struct elf_link_hash_entry *h
836 = (struct elf_link_hash_entry *) ptr;
837 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
838 }
839
840 /* Compare local hash entries. */
841
842 static int
843 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
844 {
845 struct elf_link_hash_entry *h1
846 = (struct elf_link_hash_entry *) ptr1;
847 struct elf_link_hash_entry *h2
848 = (struct elf_link_hash_entry *) ptr2;
849
850 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
851 }
852
853 /* Find and/or create a hash entry for local symbol. */
854
855 static struct elf_link_hash_entry *
856 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
857 bfd *abfd, const Elf_Internal_Rela *rel,
858 bfd_boolean create)
859 {
860 struct elf_x86_64_link_hash_entry e, *ret;
861 asection *sec = abfd->sections;
862 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
863 htab->r_sym (rel->r_info));
864 void **slot;
865
866 e.elf.indx = sec->id;
867 e.elf.dynstr_index = htab->r_sym (rel->r_info);
868 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
869 create ? INSERT : NO_INSERT);
870
871 if (!slot)
872 return NULL;
873
874 if (*slot)
875 {
876 ret = (struct elf_x86_64_link_hash_entry *) *slot;
877 return &ret->elf;
878 }
879
880 ret = (struct elf_x86_64_link_hash_entry *)
881 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
882 sizeof (struct elf_x86_64_link_hash_entry));
883 if (ret)
884 {
885 memset (ret, 0, sizeof (*ret));
886 ret->elf.indx = sec->id;
887 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
888 ret->elf.dynindx = -1;
889 *slot = ret;
890 }
891 return &ret->elf;
892 }
893
894 /* Create an X86-64 ELF linker hash table. */
895
896 static struct bfd_link_hash_table *
897 elf_x86_64_link_hash_table_create (bfd *abfd)
898 {
899 struct elf_x86_64_link_hash_table *ret;
900 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
901
902 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
903 if (ret == NULL)
904 return NULL;
905
906 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
907 elf_x86_64_link_hash_newfunc,
908 sizeof (struct elf_x86_64_link_hash_entry),
909 X86_64_ELF_DATA))
910 {
911 free (ret);
912 return NULL;
913 }
914
915 if (ABI_64_P (abfd))
916 {
917 ret->r_info = elf64_r_info;
918 ret->r_sym = elf64_r_sym;
919 ret->pointer_r_type = R_X86_64_64;
920 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
921 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
922 }
923 else
924 {
925 ret->r_info = elf32_r_info;
926 ret->r_sym = elf32_r_sym;
927 ret->pointer_r_type = R_X86_64_32;
928 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
929 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
930 }
931
932 ret->loc_hash_table = htab_try_create (1024,
933 elf_x86_64_local_htab_hash,
934 elf_x86_64_local_htab_eq,
935 NULL);
936 ret->loc_hash_memory = objalloc_create ();
937 if (!ret->loc_hash_table || !ret->loc_hash_memory)
938 {
939 free (ret);
940 return NULL;
941 }
942
943 return &ret->elf.root;
944 }
945
946 /* Destroy an X86-64 ELF linker hash table. */
947
948 static void
949 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
950 {
951 struct elf_x86_64_link_hash_table *htab
952 = (struct elf_x86_64_link_hash_table *) hash;
953
954 if (htab->loc_hash_table)
955 htab_delete (htab->loc_hash_table);
956 if (htab->loc_hash_memory)
957 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
958 _bfd_elf_link_hash_table_free (hash);
959 }
960
961 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
962 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
963 hash table. */
964
965 static bfd_boolean
966 elf_x86_64_create_dynamic_sections (bfd *dynobj,
967 struct bfd_link_info *info)
968 {
969 struct elf_x86_64_link_hash_table *htab;
970
971 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
972 return FALSE;
973
974 htab = elf_x86_64_hash_table (info);
975 if (htab == NULL)
976 return FALSE;
977
978 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
979 if (!info->shared)
980 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
981
982 if (!htab->sdynbss
983 || (!info->shared && !htab->srelbss))
984 abort ();
985
986 if (!info->no_ld_generated_unwind_info
987 && htab->plt_eh_frame == NULL
988 && htab->elf.splt != NULL)
989 {
990 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
991 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
992 | SEC_LINKER_CREATED);
993 htab->plt_eh_frame
994 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
995 if (htab->plt_eh_frame == NULL
996 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
997 return FALSE;
998 }
999 return TRUE;
1000 }
1001
1002 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1003
1004 static void
1005 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1006 struct elf_link_hash_entry *dir,
1007 struct elf_link_hash_entry *ind)
1008 {
1009 struct elf_x86_64_link_hash_entry *edir, *eind;
1010
1011 edir = (struct elf_x86_64_link_hash_entry *) dir;
1012 eind = (struct elf_x86_64_link_hash_entry *) ind;
1013
1014 if (eind->dyn_relocs != NULL)
1015 {
1016 if (edir->dyn_relocs != NULL)
1017 {
1018 struct elf_dyn_relocs **pp;
1019 struct elf_dyn_relocs *p;
1020
1021 /* Add reloc counts against the indirect sym to the direct sym
1022 list. Merge any entries against the same section. */
1023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1024 {
1025 struct elf_dyn_relocs *q;
1026
1027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1028 if (q->sec == p->sec)
1029 {
1030 q->pc_count += p->pc_count;
1031 q->count += p->count;
1032 *pp = p->next;
1033 break;
1034 }
1035 if (q == NULL)
1036 pp = &p->next;
1037 }
1038 *pp = edir->dyn_relocs;
1039 }
1040
1041 edir->dyn_relocs = eind->dyn_relocs;
1042 eind->dyn_relocs = NULL;
1043 }
1044
1045 if (ind->root.type == bfd_link_hash_indirect
1046 && dir->got.refcount <= 0)
1047 {
1048 edir->tls_type = eind->tls_type;
1049 eind->tls_type = GOT_UNKNOWN;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && ind->root.type != bfd_link_hash_indirect
1054 && dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 dir->ref_dynamic |= ind->ref_dynamic;
1060 dir->ref_regular |= ind->ref_regular;
1061 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1062 dir->needs_plt |= ind->needs_plt;
1063 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1064 }
1065 else
1066 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1067 }
1068
1069 static bfd_boolean
1070 elf64_x86_64_elf_object_p (bfd *abfd)
1071 {
1072 /* Set the right machine number for an x86-64 elf64 file. */
1073 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1074 return TRUE;
1075 }
1076
1077 static bfd_boolean
1078 elf32_x86_64_elf_object_p (bfd *abfd)
1079 {
1080 /* Set the right machine number for an x86-64 elf32 file. */
1081 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1082 return TRUE;
1083 }
1084
1085 /* Return TRUE if the TLS access code sequence support transition
1086 from R_TYPE. */
1087
1088 static bfd_boolean
1089 elf_x86_64_check_tls_transition (bfd *abfd,
1090 struct bfd_link_info *info,
1091 asection *sec,
1092 bfd_byte *contents,
1093 Elf_Internal_Shdr *symtab_hdr,
1094 struct elf_link_hash_entry **sym_hashes,
1095 unsigned int r_type,
1096 const Elf_Internal_Rela *rel,
1097 const Elf_Internal_Rela *relend)
1098 {
1099 unsigned int val;
1100 unsigned long r_symndx;
1101 bfd_boolean largepic = FALSE;
1102 struct elf_link_hash_entry *h;
1103 bfd_vma offset;
1104 struct elf_x86_64_link_hash_table *htab;
1105
1106 /* Get the section contents. */
1107 if (contents == NULL)
1108 {
1109 if (elf_section_data (sec)->this_hdr.contents != NULL)
1110 contents = elf_section_data (sec)->this_hdr.contents;
1111 else
1112 {
1113 /* FIXME: How to better handle error condition? */
1114 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1115 return FALSE;
1116
1117 /* Cache the section contents for elf_link_input_bfd. */
1118 elf_section_data (sec)->this_hdr.contents = contents;
1119 }
1120 }
1121
1122 htab = elf_x86_64_hash_table (info);
1123 offset = rel->r_offset;
1124 switch (r_type)
1125 {
1126 case R_X86_64_TLSGD:
1127 case R_X86_64_TLSLD:
1128 if ((rel + 1) >= relend)
1129 return FALSE;
1130
1131 if (r_type == R_X86_64_TLSGD)
1132 {
1133 /* Check transition from GD access model. For 64bit, only
1134 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1135 .word 0x6666; rex64; call __tls_get_addr
1136 can transit to different access model. For 32bit, only
1137 leaq foo@tlsgd(%rip), %rdi
1138 .word 0x6666; rex64; call __tls_get_addr
1139 can transit to different access model. For largepic
1140 we also support:
1141 leaq foo@tlsgd(%rip), %rdi
1142 movabsq $__tls_get_addr@pltoff, %rax
1143 addq $rbx, %rax
1144 call *%rax. */
1145
1146 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1147 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1148
1149 if ((offset + 12) > sec->size)
1150 return FALSE;
1151
1152 if (memcmp (contents + offset + 4, call, 4) != 0)
1153 {
1154 if (!ABI_64_P (abfd)
1155 || (offset + 19) > sec->size
1156 || offset < 3
1157 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1158 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1159 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1160 != 0)
1161 return FALSE;
1162 largepic = TRUE;
1163 }
1164 else if (ABI_64_P (abfd))
1165 {
1166 if (offset < 4
1167 || memcmp (contents + offset - 4, leaq, 4) != 0)
1168 return FALSE;
1169 }
1170 else
1171 {
1172 if (offset < 3
1173 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1174 return FALSE;
1175 }
1176 }
1177 else
1178 {
1179 /* Check transition from LD access model. Only
1180 leaq foo@tlsld(%rip), %rdi;
1181 call __tls_get_addr
1182 can transit to different access model. For largepic
1183 we also support:
1184 leaq foo@tlsld(%rip), %rdi
1185 movabsq $__tls_get_addr@pltoff, %rax
1186 addq $rbx, %rax
1187 call *%rax. */
1188
1189 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1190
1191 if (offset < 3 || (offset + 9) > sec->size)
1192 return FALSE;
1193
1194 if (memcmp (contents + offset - 3, lea, 3) != 0)
1195 return FALSE;
1196
1197 if (0xe8 != *(contents + offset + 4))
1198 {
1199 if (!ABI_64_P (abfd)
1200 || (offset + 19) > sec->size
1201 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1202 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1203 != 0)
1204 return FALSE;
1205 largepic = TRUE;
1206 }
1207 }
1208
1209 r_symndx = htab->r_sym (rel[1].r_info);
1210 if (r_symndx < symtab_hdr->sh_info)
1211 return FALSE;
1212
1213 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1214 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1215 may be versioned. */
1216 return (h != NULL
1217 && h->root.root.string != NULL
1218 && (largepic
1219 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1220 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1221 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1222 && (strncmp (h->root.root.string,
1223 "__tls_get_addr", 14) == 0));
1224
1225 case R_X86_64_GOTTPOFF:
1226 /* Check transition from IE access model:
1227 mov foo@gottpoff(%rip), %reg
1228 add foo@gottpoff(%rip), %reg
1229 */
1230
1231 /* Check REX prefix first. */
1232 if (offset >= 3 && (offset + 4) <= sec->size)
1233 {
1234 val = bfd_get_8 (abfd, contents + offset - 3);
1235 if (val != 0x48 && val != 0x4c)
1236 {
1237 /* X32 may have 0x44 REX prefix or no REX prefix. */
1238 if (ABI_64_P (abfd))
1239 return FALSE;
1240 }
1241 }
1242 else
1243 {
1244 /* X32 may not have any REX prefix. */
1245 if (ABI_64_P (abfd))
1246 return FALSE;
1247 if (offset < 2 || (offset + 3) > sec->size)
1248 return FALSE;
1249 }
1250
1251 val = bfd_get_8 (abfd, contents + offset - 2);
1252 if (val != 0x8b && val != 0x03)
1253 return FALSE;
1254
1255 val = bfd_get_8 (abfd, contents + offset - 1);
1256 return (val & 0xc7) == 5;
1257
1258 case R_X86_64_GOTPC32_TLSDESC:
1259 /* Check transition from GDesc access model:
1260 leaq x@tlsdesc(%rip), %rax
1261
1262 Make sure it's a leaq adding rip to a 32-bit offset
1263 into any register, although it's probably almost always
1264 going to be rax. */
1265
1266 if (offset < 3 || (offset + 4) > sec->size)
1267 return FALSE;
1268
1269 val = bfd_get_8 (abfd, contents + offset - 3);
1270 if ((val & 0xfb) != 0x48)
1271 return FALSE;
1272
1273 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1274 return FALSE;
1275
1276 val = bfd_get_8 (abfd, contents + offset - 1);
1277 return (val & 0xc7) == 0x05;
1278
1279 case R_X86_64_TLSDESC_CALL:
1280 /* Check transition from GDesc access model:
1281 call *x@tlsdesc(%rax)
1282 */
1283 if (offset + 2 <= sec->size)
1284 {
1285 /* Make sure that it's a call *x@tlsdesc(%rax). */
1286 static const unsigned char call[] = { 0xff, 0x10 };
1287 return memcmp (contents + offset, call, 2) == 0;
1288 }
1289
1290 return FALSE;
1291
1292 default:
1293 abort ();
1294 }
1295 }
1296
1297 /* Return TRUE if the TLS access transition is OK or no transition
1298 will be performed. Update R_TYPE if there is a transition. */
1299
1300 static bfd_boolean
1301 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1302 asection *sec, bfd_byte *contents,
1303 Elf_Internal_Shdr *symtab_hdr,
1304 struct elf_link_hash_entry **sym_hashes,
1305 unsigned int *r_type, int tls_type,
1306 const Elf_Internal_Rela *rel,
1307 const Elf_Internal_Rela *relend,
1308 struct elf_link_hash_entry *h,
1309 unsigned long r_symndx)
1310 {
1311 unsigned int from_type = *r_type;
1312 unsigned int to_type = from_type;
1313 bfd_boolean check = TRUE;
1314
1315 /* Skip TLS transition for functions. */
1316 if (h != NULL
1317 && (h->type == STT_FUNC
1318 || h->type == STT_GNU_IFUNC))
1319 return TRUE;
1320
1321 switch (from_type)
1322 {
1323 case R_X86_64_TLSGD:
1324 case R_X86_64_GOTPC32_TLSDESC:
1325 case R_X86_64_TLSDESC_CALL:
1326 case R_X86_64_GOTTPOFF:
1327 if (info->executable)
1328 {
1329 if (h == NULL)
1330 to_type = R_X86_64_TPOFF32;
1331 else
1332 to_type = R_X86_64_GOTTPOFF;
1333 }
1334
1335 /* When we are called from elf_x86_64_relocate_section,
1336 CONTENTS isn't NULL and there may be additional transitions
1337 based on TLS_TYPE. */
1338 if (contents != NULL)
1339 {
1340 unsigned int new_to_type = to_type;
1341
1342 if (info->executable
1343 && h != NULL
1344 && h->dynindx == -1
1345 && tls_type == GOT_TLS_IE)
1346 new_to_type = R_X86_64_TPOFF32;
1347
1348 if (to_type == R_X86_64_TLSGD
1349 || to_type == R_X86_64_GOTPC32_TLSDESC
1350 || to_type == R_X86_64_TLSDESC_CALL)
1351 {
1352 if (tls_type == GOT_TLS_IE)
1353 new_to_type = R_X86_64_GOTTPOFF;
1354 }
1355
1356 /* We checked the transition before when we were called from
1357 elf_x86_64_check_relocs. We only want to check the new
1358 transition which hasn't been checked before. */
1359 check = new_to_type != to_type && from_type == to_type;
1360 to_type = new_to_type;
1361 }
1362
1363 break;
1364
1365 case R_X86_64_TLSLD:
1366 if (info->executable)
1367 to_type = R_X86_64_TPOFF32;
1368 break;
1369
1370 default:
1371 return TRUE;
1372 }
1373
1374 /* Return TRUE if there is no transition. */
1375 if (from_type == to_type)
1376 return TRUE;
1377
1378 /* Check if the transition can be performed. */
1379 if (check
1380 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1381 symtab_hdr, sym_hashes,
1382 from_type, rel, relend))
1383 {
1384 reloc_howto_type *from, *to;
1385 const char *name;
1386
1387 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1388 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1389
1390 if (h)
1391 name = h->root.root.string;
1392 else
1393 {
1394 struct elf_x86_64_link_hash_table *htab;
1395
1396 htab = elf_x86_64_hash_table (info);
1397 if (htab == NULL)
1398 name = "*unknown*";
1399 else
1400 {
1401 Elf_Internal_Sym *isym;
1402
1403 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1404 abfd, r_symndx);
1405 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1406 }
1407 }
1408
1409 (*_bfd_error_handler)
1410 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1411 "in section `%A' failed"),
1412 abfd, sec, from->name, to->name, name,
1413 (unsigned long) rel->r_offset);
1414 bfd_set_error (bfd_error_bad_value);
1415 return FALSE;
1416 }
1417
1418 *r_type = to_type;
1419 return TRUE;
1420 }
1421
1422 /* Look through the relocs for a section during the first phase, and
1423 calculate needed space in the global offset table, procedure
1424 linkage table, and dynamic reloc sections. */
1425
1426 static bfd_boolean
1427 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1428 asection *sec,
1429 const Elf_Internal_Rela *relocs)
1430 {
1431 struct elf_x86_64_link_hash_table *htab;
1432 Elf_Internal_Shdr *symtab_hdr;
1433 struct elf_link_hash_entry **sym_hashes;
1434 const Elf_Internal_Rela *rel;
1435 const Elf_Internal_Rela *rel_end;
1436 asection *sreloc;
1437
1438 if (info->relocatable)
1439 return TRUE;
1440
1441 BFD_ASSERT (is_x86_64_elf (abfd));
1442
1443 htab = elf_x86_64_hash_table (info);
1444 if (htab == NULL)
1445 return FALSE;
1446
1447 symtab_hdr = &elf_symtab_hdr (abfd);
1448 sym_hashes = elf_sym_hashes (abfd);
1449
1450 sreloc = NULL;
1451
1452 rel_end = relocs + sec->reloc_count;
1453 for (rel = relocs; rel < rel_end; rel++)
1454 {
1455 unsigned int r_type;
1456 unsigned long r_symndx;
1457 struct elf_link_hash_entry *h;
1458 Elf_Internal_Sym *isym;
1459 const char *name;
1460 bfd_boolean size_reloc;
1461
1462 r_symndx = htab->r_sym (rel->r_info);
1463 r_type = ELF32_R_TYPE (rel->r_info);
1464
1465 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1466 {
1467 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1468 abfd, r_symndx);
1469 return FALSE;
1470 }
1471
1472 if (r_symndx < symtab_hdr->sh_info)
1473 {
1474 /* A local symbol. */
1475 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1476 abfd, r_symndx);
1477 if (isym == NULL)
1478 return FALSE;
1479
1480 /* Check relocation against local STT_GNU_IFUNC symbol. */
1481 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1482 {
1483 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1484 TRUE);
1485 if (h == NULL)
1486 return FALSE;
1487
1488 /* Fake a STT_GNU_IFUNC symbol. */
1489 h->type = STT_GNU_IFUNC;
1490 h->def_regular = 1;
1491 h->ref_regular = 1;
1492 h->forced_local = 1;
1493 h->root.type = bfd_link_hash_defined;
1494 }
1495 else
1496 h = NULL;
1497 }
1498 else
1499 {
1500 isym = NULL;
1501 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1502 while (h->root.type == bfd_link_hash_indirect
1503 || h->root.type == bfd_link_hash_warning)
1504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1505 }
1506
1507 /* Check invalid x32 relocations. */
1508 if (!ABI_64_P (abfd))
1509 switch (r_type)
1510 {
1511 default:
1512 break;
1513
1514 case R_X86_64_DTPOFF64:
1515 case R_X86_64_TPOFF64:
1516 case R_X86_64_PC64:
1517 case R_X86_64_GOTOFF64:
1518 case R_X86_64_GOT64:
1519 case R_X86_64_GOTPCREL64:
1520 case R_X86_64_GOTPC64:
1521 case R_X86_64_GOTPLT64:
1522 case R_X86_64_PLTOFF64:
1523 {
1524 if (h)
1525 name = h->root.root.string;
1526 else
1527 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1528 NULL);
1529 (*_bfd_error_handler)
1530 (_("%B: relocation %s against symbol `%s' isn't "
1531 "supported in x32 mode"), abfd,
1532 x86_64_elf_howto_table[r_type].name, name);
1533 bfd_set_error (bfd_error_bad_value);
1534 return FALSE;
1535 }
1536 break;
1537 }
1538
1539 if (h != NULL)
1540 {
1541 /* Create the ifunc sections for static executables. If we
1542 never see an indirect function symbol nor we are building
1543 a static executable, those sections will be empty and
1544 won't appear in output. */
1545 switch (r_type)
1546 {
1547 default:
1548 break;
1549
1550 case R_X86_64_32S:
1551 case R_X86_64_32:
1552 case R_X86_64_64:
1553 case R_X86_64_PC32:
1554 case R_X86_64_PC32_BND:
1555 case R_X86_64_PC64:
1556 case R_X86_64_PLT32:
1557 case R_X86_64_PLT32_BND:
1558 case R_X86_64_GOTPCREL:
1559 case R_X86_64_GOTPCREL64:
1560 if (htab->elf.dynobj == NULL)
1561 htab->elf.dynobj = abfd;
1562 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1563 return FALSE;
1564 break;
1565 }
1566
1567 /* It is referenced by a non-shared object. */
1568 h->ref_regular = 1;
1569 h->root.non_ir_ref = 1;
1570 }
1571
1572 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1573 symtab_hdr, sym_hashes,
1574 &r_type, GOT_UNKNOWN,
1575 rel, rel_end, h, r_symndx))
1576 return FALSE;
1577
1578 switch (r_type)
1579 {
1580 case R_X86_64_TLSLD:
1581 htab->tls_ld_got.refcount += 1;
1582 goto create_got;
1583
1584 case R_X86_64_TPOFF32:
1585 if (!info->executable && ABI_64_P (abfd))
1586 {
1587 if (h)
1588 name = h->root.root.string;
1589 else
1590 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1591 NULL);
1592 (*_bfd_error_handler)
1593 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1594 abfd,
1595 x86_64_elf_howto_table[r_type].name, name);
1596 bfd_set_error (bfd_error_bad_value);
1597 return FALSE;
1598 }
1599 break;
1600
1601 case R_X86_64_GOTTPOFF:
1602 if (!info->executable)
1603 info->flags |= DF_STATIC_TLS;
1604 /* Fall through */
1605
1606 case R_X86_64_GOT32:
1607 case R_X86_64_GOTPCREL:
1608 case R_X86_64_TLSGD:
1609 case R_X86_64_GOT64:
1610 case R_X86_64_GOTPCREL64:
1611 case R_X86_64_GOTPLT64:
1612 case R_X86_64_GOTPC32_TLSDESC:
1613 case R_X86_64_TLSDESC_CALL:
1614 /* This symbol requires a global offset table entry. */
1615 {
1616 int tls_type, old_tls_type;
1617
1618 switch (r_type)
1619 {
1620 default: tls_type = GOT_NORMAL; break;
1621 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1622 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1623 case R_X86_64_GOTPC32_TLSDESC:
1624 case R_X86_64_TLSDESC_CALL:
1625 tls_type = GOT_TLS_GDESC; break;
1626 }
1627
1628 if (h != NULL)
1629 {
1630 if (r_type == R_X86_64_GOTPLT64)
1631 {
1632 /* This relocation indicates that we also need
1633 a PLT entry, as this is a function. We don't need
1634 a PLT entry for local symbols. */
1635 h->needs_plt = 1;
1636 h->plt.refcount += 1;
1637 }
1638 h->got.refcount += 1;
1639 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1640 }
1641 else
1642 {
1643 bfd_signed_vma *local_got_refcounts;
1644
1645 /* This is a global offset table entry for a local symbol. */
1646 local_got_refcounts = elf_local_got_refcounts (abfd);
1647 if (local_got_refcounts == NULL)
1648 {
1649 bfd_size_type size;
1650
1651 size = symtab_hdr->sh_info;
1652 size *= sizeof (bfd_signed_vma)
1653 + sizeof (bfd_vma) + sizeof (char);
1654 local_got_refcounts = ((bfd_signed_vma *)
1655 bfd_zalloc (abfd, size));
1656 if (local_got_refcounts == NULL)
1657 return FALSE;
1658 elf_local_got_refcounts (abfd) = local_got_refcounts;
1659 elf_x86_64_local_tlsdesc_gotent (abfd)
1660 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1661 elf_x86_64_local_got_tls_type (abfd)
1662 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1663 }
1664 local_got_refcounts[r_symndx] += 1;
1665 old_tls_type
1666 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1667 }
1668
1669 /* If a TLS symbol is accessed using IE at least once,
1670 there is no point to use dynamic model for it. */
1671 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1672 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1673 || tls_type != GOT_TLS_IE))
1674 {
1675 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1676 tls_type = old_tls_type;
1677 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1678 && GOT_TLS_GD_ANY_P (tls_type))
1679 tls_type |= old_tls_type;
1680 else
1681 {
1682 if (h)
1683 name = h->root.root.string;
1684 else
1685 name = bfd_elf_sym_name (abfd, symtab_hdr,
1686 isym, NULL);
1687 (*_bfd_error_handler)
1688 (_("%B: '%s' accessed both as normal and thread local symbol"),
1689 abfd, name);
1690 bfd_set_error (bfd_error_bad_value);
1691 return FALSE;
1692 }
1693 }
1694
1695 if (old_tls_type != tls_type)
1696 {
1697 if (h != NULL)
1698 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1699 else
1700 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1701 }
1702 }
1703 /* Fall through */
1704
1705 case R_X86_64_GOTOFF64:
1706 case R_X86_64_GOTPC32:
1707 case R_X86_64_GOTPC64:
1708 create_got:
1709 if (htab->elf.sgot == NULL)
1710 {
1711 if (htab->elf.dynobj == NULL)
1712 htab->elf.dynobj = abfd;
1713 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1714 info))
1715 return FALSE;
1716 }
1717 break;
1718
1719 case R_X86_64_PLT32:
1720 case R_X86_64_PLT32_BND:
1721 /* This symbol requires a procedure linkage table entry. We
1722 actually build the entry in adjust_dynamic_symbol,
1723 because this might be a case of linking PIC code which is
1724 never referenced by a dynamic object, in which case we
1725 don't need to generate a procedure linkage table entry
1726 after all. */
1727
1728 /* If this is a local symbol, we resolve it directly without
1729 creating a procedure linkage table entry. */
1730 if (h == NULL)
1731 continue;
1732
1733 h->needs_plt = 1;
1734 h->plt.refcount += 1;
1735 break;
1736
1737 case R_X86_64_PLTOFF64:
1738 /* This tries to form the 'address' of a function relative
1739 to GOT. For global symbols we need a PLT entry. */
1740 if (h != NULL)
1741 {
1742 h->needs_plt = 1;
1743 h->plt.refcount += 1;
1744 }
1745 goto create_got;
1746
1747 case R_X86_64_SIZE32:
1748 case R_X86_64_SIZE64:
1749 size_reloc = TRUE;
1750 goto do_size;
1751
1752 case R_X86_64_32:
1753 if (!ABI_64_P (abfd))
1754 goto pointer;
1755 case R_X86_64_8:
1756 case R_X86_64_16:
1757 case R_X86_64_32S:
1758 /* Let's help debug shared library creation. These relocs
1759 cannot be used in shared libs. Don't error out for
1760 sections we don't care about, such as debug sections or
1761 non-constant sections. */
1762 if (info->shared
1763 && (sec->flags & SEC_ALLOC) != 0
1764 && (sec->flags & SEC_READONLY) != 0)
1765 {
1766 if (h)
1767 name = h->root.root.string;
1768 else
1769 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1770 (*_bfd_error_handler)
1771 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1772 abfd, x86_64_elf_howto_table[r_type].name, name);
1773 bfd_set_error (bfd_error_bad_value);
1774 return FALSE;
1775 }
1776 /* Fall through. */
1777
1778 case R_X86_64_PC8:
1779 case R_X86_64_PC16:
1780 case R_X86_64_PC32:
1781 case R_X86_64_PC32_BND:
1782 case R_X86_64_PC64:
1783 case R_X86_64_64:
1784 pointer:
1785 if (h != NULL && info->executable)
1786 {
1787 /* If this reloc is in a read-only section, we might
1788 need a copy reloc. We can't check reliably at this
1789 stage whether the section is read-only, as input
1790 sections have not yet been mapped to output sections.
1791 Tentatively set the flag for now, and correct in
1792 adjust_dynamic_symbol. */
1793 h->non_got_ref = 1;
1794
1795 /* We may need a .plt entry if the function this reloc
1796 refers to is in a shared lib. */
1797 h->plt.refcount += 1;
1798 if (r_type != R_X86_64_PC32
1799 && r_type != R_X86_64_PC32_BND
1800 && r_type != R_X86_64_PC64)
1801 h->pointer_equality_needed = 1;
1802 }
1803
1804 size_reloc = FALSE;
1805 do_size:
1806 /* If we are creating a shared library, and this is a reloc
1807 against a global symbol, or a non PC relative reloc
1808 against a local symbol, then we need to copy the reloc
1809 into the shared library. However, if we are linking with
1810 -Bsymbolic, we do not need to copy a reloc against a
1811 global symbol which is defined in an object we are
1812 including in the link (i.e., DEF_REGULAR is set). At
1813 this point we have not seen all the input files, so it is
1814 possible that DEF_REGULAR is not set now but will be set
1815 later (it is never cleared). In case of a weak definition,
1816 DEF_REGULAR may be cleared later by a strong definition in
1817 a shared library. We account for that possibility below by
1818 storing information in the relocs_copied field of the hash
1819 table entry. A similar situation occurs when creating
1820 shared libraries and symbol visibility changes render the
1821 symbol local.
1822
1823 If on the other hand, we are creating an executable, we
1824 may need to keep relocations for symbols satisfied by a
1825 dynamic library if we manage to avoid copy relocs for the
1826 symbol. */
1827 if ((info->shared
1828 && (sec->flags & SEC_ALLOC) != 0
1829 && (! IS_X86_64_PCREL_TYPE (r_type)
1830 || (h != NULL
1831 && (! SYMBOLIC_BIND (info, h)
1832 || h->root.type == bfd_link_hash_defweak
1833 || !h->def_regular))))
1834 || (ELIMINATE_COPY_RELOCS
1835 && !info->shared
1836 && (sec->flags & SEC_ALLOC) != 0
1837 && h != NULL
1838 && (h->root.type == bfd_link_hash_defweak
1839 || !h->def_regular)))
1840 {
1841 struct elf_dyn_relocs *p;
1842 struct elf_dyn_relocs **head;
1843
1844 /* We must copy these reloc types into the output file.
1845 Create a reloc section in dynobj and make room for
1846 this reloc. */
1847 if (sreloc == NULL)
1848 {
1849 if (htab->elf.dynobj == NULL)
1850 htab->elf.dynobj = abfd;
1851
1852 sreloc = _bfd_elf_make_dynamic_reloc_section
1853 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1854 abfd, /*rela?*/ TRUE);
1855
1856 if (sreloc == NULL)
1857 return FALSE;
1858 }
1859
1860 /* If this is a global symbol, we count the number of
1861 relocations we need for this symbol. */
1862 if (h != NULL)
1863 {
1864 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1865 }
1866 else
1867 {
1868 /* Track dynamic relocs needed for local syms too.
1869 We really need local syms available to do this
1870 easily. Oh well. */
1871 asection *s;
1872 void **vpp;
1873
1874 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1875 abfd, r_symndx);
1876 if (isym == NULL)
1877 return FALSE;
1878
1879 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1880 if (s == NULL)
1881 s = sec;
1882
1883 /* Beware of type punned pointers vs strict aliasing
1884 rules. */
1885 vpp = &(elf_section_data (s)->local_dynrel);
1886 head = (struct elf_dyn_relocs **)vpp;
1887 }
1888
1889 p = *head;
1890 if (p == NULL || p->sec != sec)
1891 {
1892 bfd_size_type amt = sizeof *p;
1893
1894 p = ((struct elf_dyn_relocs *)
1895 bfd_alloc (htab->elf.dynobj, amt));
1896 if (p == NULL)
1897 return FALSE;
1898 p->next = *head;
1899 *head = p;
1900 p->sec = sec;
1901 p->count = 0;
1902 p->pc_count = 0;
1903 }
1904
1905 p->count += 1;
1906 /* Count size relocation as PC-relative relocation. */
1907 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
1908 p->pc_count += 1;
1909 }
1910 break;
1911
1912 /* This relocation describes the C++ object vtable hierarchy.
1913 Reconstruct it for later use during GC. */
1914 case R_X86_64_GNU_VTINHERIT:
1915 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1916 return FALSE;
1917 break;
1918
1919 /* This relocation describes which C++ vtable entries are actually
1920 used. Record for later use during GC. */
1921 case R_X86_64_GNU_VTENTRY:
1922 BFD_ASSERT (h != NULL);
1923 if (h != NULL
1924 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1925 return FALSE;
1926 break;
1927
1928 default:
1929 break;
1930 }
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* Return the section that should be marked against GC for a given
1937 relocation. */
1938
1939 static asection *
1940 elf_x86_64_gc_mark_hook (asection *sec,
1941 struct bfd_link_info *info,
1942 Elf_Internal_Rela *rel,
1943 struct elf_link_hash_entry *h,
1944 Elf_Internal_Sym *sym)
1945 {
1946 if (h != NULL)
1947 switch (ELF32_R_TYPE (rel->r_info))
1948 {
1949 case R_X86_64_GNU_VTINHERIT:
1950 case R_X86_64_GNU_VTENTRY:
1951 return NULL;
1952 }
1953
1954 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1955 }
1956
1957 /* Update the got entry reference counts for the section being removed. */
1958
1959 static bfd_boolean
1960 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1961 asection *sec,
1962 const Elf_Internal_Rela *relocs)
1963 {
1964 struct elf_x86_64_link_hash_table *htab;
1965 Elf_Internal_Shdr *symtab_hdr;
1966 struct elf_link_hash_entry **sym_hashes;
1967 bfd_signed_vma *local_got_refcounts;
1968 const Elf_Internal_Rela *rel, *relend;
1969
1970 if (info->relocatable)
1971 return TRUE;
1972
1973 htab = elf_x86_64_hash_table (info);
1974 if (htab == NULL)
1975 return FALSE;
1976
1977 elf_section_data (sec)->local_dynrel = NULL;
1978
1979 symtab_hdr = &elf_symtab_hdr (abfd);
1980 sym_hashes = elf_sym_hashes (abfd);
1981 local_got_refcounts = elf_local_got_refcounts (abfd);
1982
1983 htab = elf_x86_64_hash_table (info);
1984 relend = relocs + sec->reloc_count;
1985 for (rel = relocs; rel < relend; rel++)
1986 {
1987 unsigned long r_symndx;
1988 unsigned int r_type;
1989 struct elf_link_hash_entry *h = NULL;
1990
1991 r_symndx = htab->r_sym (rel->r_info);
1992 if (r_symndx >= symtab_hdr->sh_info)
1993 {
1994 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1995 while (h->root.type == bfd_link_hash_indirect
1996 || h->root.type == bfd_link_hash_warning)
1997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1998 }
1999 else
2000 {
2001 /* A local symbol. */
2002 Elf_Internal_Sym *isym;
2003
2004 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2005 abfd, r_symndx);
2006
2007 /* Check relocation against local STT_GNU_IFUNC symbol. */
2008 if (isym != NULL
2009 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2010 {
2011 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2012 if (h == NULL)
2013 abort ();
2014 }
2015 }
2016
2017 if (h)
2018 {
2019 struct elf_x86_64_link_hash_entry *eh;
2020 struct elf_dyn_relocs **pp;
2021 struct elf_dyn_relocs *p;
2022
2023 eh = (struct elf_x86_64_link_hash_entry *) h;
2024
2025 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2026 if (p->sec == sec)
2027 {
2028 /* Everything must go for SEC. */
2029 *pp = p->next;
2030 break;
2031 }
2032 }
2033
2034 r_type = ELF32_R_TYPE (rel->r_info);
2035 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2036 symtab_hdr, sym_hashes,
2037 &r_type, GOT_UNKNOWN,
2038 rel, relend, h, r_symndx))
2039 return FALSE;
2040
2041 switch (r_type)
2042 {
2043 case R_X86_64_TLSLD:
2044 if (htab->tls_ld_got.refcount > 0)
2045 htab->tls_ld_got.refcount -= 1;
2046 break;
2047
2048 case R_X86_64_TLSGD:
2049 case R_X86_64_GOTPC32_TLSDESC:
2050 case R_X86_64_TLSDESC_CALL:
2051 case R_X86_64_GOTTPOFF:
2052 case R_X86_64_GOT32:
2053 case R_X86_64_GOTPCREL:
2054 case R_X86_64_GOT64:
2055 case R_X86_64_GOTPCREL64:
2056 case R_X86_64_GOTPLT64:
2057 if (h != NULL)
2058 {
2059 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2060 h->plt.refcount -= 1;
2061 if (h->got.refcount > 0)
2062 h->got.refcount -= 1;
2063 if (h->type == STT_GNU_IFUNC)
2064 {
2065 if (h->plt.refcount > 0)
2066 h->plt.refcount -= 1;
2067 }
2068 }
2069 else if (local_got_refcounts != NULL)
2070 {
2071 if (local_got_refcounts[r_symndx] > 0)
2072 local_got_refcounts[r_symndx] -= 1;
2073 }
2074 break;
2075
2076 case R_X86_64_8:
2077 case R_X86_64_16:
2078 case R_X86_64_32:
2079 case R_X86_64_64:
2080 case R_X86_64_32S:
2081 case R_X86_64_PC8:
2082 case R_X86_64_PC16:
2083 case R_X86_64_PC32:
2084 case R_X86_64_PC32_BND:
2085 case R_X86_64_PC64:
2086 case R_X86_64_SIZE32:
2087 case R_X86_64_SIZE64:
2088 if (info->shared
2089 && (h == NULL || h->type != STT_GNU_IFUNC))
2090 break;
2091 /* Fall thru */
2092
2093 case R_X86_64_PLT32:
2094 case R_X86_64_PLT32_BND:
2095 case R_X86_64_PLTOFF64:
2096 if (h != NULL)
2097 {
2098 if (h->plt.refcount > 0)
2099 h->plt.refcount -= 1;
2100 }
2101 break;
2102
2103 default:
2104 break;
2105 }
2106 }
2107
2108 return TRUE;
2109 }
2110
2111 /* Adjust a symbol defined by a dynamic object and referenced by a
2112 regular object. The current definition is in some section of the
2113 dynamic object, but we're not including those sections. We have to
2114 change the definition to something the rest of the link can
2115 understand. */
2116
2117 static bfd_boolean
2118 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2119 struct elf_link_hash_entry *h)
2120 {
2121 struct elf_x86_64_link_hash_table *htab;
2122 asection *s;
2123 struct elf_x86_64_link_hash_entry *eh;
2124 struct elf_dyn_relocs *p;
2125
2126 /* STT_GNU_IFUNC symbol must go through PLT. */
2127 if (h->type == STT_GNU_IFUNC)
2128 {
2129 /* All local STT_GNU_IFUNC references must be treate as local
2130 calls via local PLT. */
2131 if (h->ref_regular
2132 && SYMBOL_CALLS_LOCAL (info, h))
2133 {
2134 bfd_size_type pc_count = 0, count = 0;
2135 struct elf_dyn_relocs **pp;
2136
2137 eh = (struct elf_x86_64_link_hash_entry *) h;
2138 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2139 {
2140 pc_count += p->pc_count;
2141 p->count -= p->pc_count;
2142 p->pc_count = 0;
2143 count += p->count;
2144 if (p->count == 0)
2145 *pp = p->next;
2146 else
2147 pp = &p->next;
2148 }
2149
2150 if (pc_count || count)
2151 {
2152 h->needs_plt = 1;
2153 h->non_got_ref = 1;
2154 if (h->plt.refcount <= 0)
2155 h->plt.refcount = 1;
2156 else
2157 h->plt.refcount += 1;
2158 }
2159 }
2160
2161 if (h->plt.refcount <= 0)
2162 {
2163 h->plt.offset = (bfd_vma) -1;
2164 h->needs_plt = 0;
2165 }
2166 return TRUE;
2167 }
2168
2169 /* If this is a function, put it in the procedure linkage table. We
2170 will fill in the contents of the procedure linkage table later,
2171 when we know the address of the .got section. */
2172 if (h->type == STT_FUNC
2173 || h->needs_plt)
2174 {
2175 if (h->plt.refcount <= 0
2176 || SYMBOL_CALLS_LOCAL (info, h)
2177 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2178 && h->root.type == bfd_link_hash_undefweak))
2179 {
2180 /* This case can occur if we saw a PLT32 reloc in an input
2181 file, but the symbol was never referred to by a dynamic
2182 object, or if all references were garbage collected. In
2183 such a case, we don't actually need to build a procedure
2184 linkage table, and we can just do a PC32 reloc instead. */
2185 h->plt.offset = (bfd_vma) -1;
2186 h->needs_plt = 0;
2187 }
2188
2189 return TRUE;
2190 }
2191 else
2192 /* It's possible that we incorrectly decided a .plt reloc was
2193 needed for an R_X86_64_PC32 reloc to a non-function sym in
2194 check_relocs. We can't decide accurately between function and
2195 non-function syms in check-relocs; Objects loaded later in
2196 the link may change h->type. So fix it now. */
2197 h->plt.offset = (bfd_vma) -1;
2198
2199 /* If this is a weak symbol, and there is a real definition, the
2200 processor independent code will have arranged for us to see the
2201 real definition first, and we can just use the same value. */
2202 if (h->u.weakdef != NULL)
2203 {
2204 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2205 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2206 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2207 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2208 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2209 h->non_got_ref = h->u.weakdef->non_got_ref;
2210 return TRUE;
2211 }
2212
2213 /* This is a reference to a symbol defined by a dynamic object which
2214 is not a function. */
2215
2216 /* If we are creating a shared library, we must presume that the
2217 only references to the symbol are via the global offset table.
2218 For such cases we need not do anything here; the relocations will
2219 be handled correctly by relocate_section. */
2220 if (info->shared)
2221 return TRUE;
2222
2223 /* If there are no references to this symbol that do not use the
2224 GOT, we don't need to generate a copy reloc. */
2225 if (!h->non_got_ref)
2226 return TRUE;
2227
2228 /* If -z nocopyreloc was given, we won't generate them either. */
2229 if (info->nocopyreloc)
2230 {
2231 h->non_got_ref = 0;
2232 return TRUE;
2233 }
2234
2235 if (ELIMINATE_COPY_RELOCS)
2236 {
2237 eh = (struct elf_x86_64_link_hash_entry *) h;
2238 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2239 {
2240 s = p->sec->output_section;
2241 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2242 break;
2243 }
2244
2245 /* If we didn't find any dynamic relocs in read-only sections, then
2246 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2247 if (p == NULL)
2248 {
2249 h->non_got_ref = 0;
2250 return TRUE;
2251 }
2252 }
2253
2254 /* We must allocate the symbol in our .dynbss section, which will
2255 become part of the .bss section of the executable. There will be
2256 an entry for this symbol in the .dynsym section. The dynamic
2257 object will contain position independent code, so all references
2258 from the dynamic object to this symbol will go through the global
2259 offset table. The dynamic linker will use the .dynsym entry to
2260 determine the address it must put in the global offset table, so
2261 both the dynamic object and the regular object will refer to the
2262 same memory location for the variable. */
2263
2264 htab = elf_x86_64_hash_table (info);
2265 if (htab == NULL)
2266 return FALSE;
2267
2268 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2269 to copy the initial value out of the dynamic object and into the
2270 runtime process image. */
2271 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2272 {
2273 const struct elf_backend_data *bed;
2274 bed = get_elf_backend_data (info->output_bfd);
2275 htab->srelbss->size += bed->s->sizeof_rela;
2276 h->needs_copy = 1;
2277 }
2278
2279 s = htab->sdynbss;
2280
2281 return _bfd_elf_adjust_dynamic_copy (h, s);
2282 }
2283
2284 /* Allocate space in .plt, .got and associated reloc sections for
2285 dynamic relocs. */
2286
2287 static bfd_boolean
2288 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2289 {
2290 struct bfd_link_info *info;
2291 struct elf_x86_64_link_hash_table *htab;
2292 struct elf_x86_64_link_hash_entry *eh;
2293 struct elf_dyn_relocs *p;
2294 const struct elf_backend_data *bed;
2295 unsigned int plt_entry_size;
2296
2297 if (h->root.type == bfd_link_hash_indirect)
2298 return TRUE;
2299
2300 eh = (struct elf_x86_64_link_hash_entry *) h;
2301
2302 info = (struct bfd_link_info *) inf;
2303 htab = elf_x86_64_hash_table (info);
2304 if (htab == NULL)
2305 return FALSE;
2306 bed = get_elf_backend_data (info->output_bfd);
2307 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2308
2309 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2310 here if it is defined and referenced in a non-shared object. */
2311 if (h->type == STT_GNU_IFUNC
2312 && h->def_regular)
2313 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2314 &eh->dyn_relocs,
2315 plt_entry_size,
2316 plt_entry_size,
2317 GOT_ENTRY_SIZE);
2318 else if (htab->elf.dynamic_sections_created
2319 && h->plt.refcount > 0)
2320 {
2321 /* Make sure this symbol is output as a dynamic symbol.
2322 Undefined weak syms won't yet be marked as dynamic. */
2323 if (h->dynindx == -1
2324 && !h->forced_local)
2325 {
2326 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2327 return FALSE;
2328 }
2329
2330 if (info->shared
2331 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2332 {
2333 asection *s = htab->elf.splt;
2334
2335 /* If this is the first .plt entry, make room for the special
2336 first entry. */
2337 if (s->size == 0)
2338 s->size = plt_entry_size;
2339
2340 h->plt.offset = s->size;
2341
2342 /* If this symbol is not defined in a regular file, and we are
2343 not generating a shared library, then set the symbol to this
2344 location in the .plt. This is required to make function
2345 pointers compare as equal between the normal executable and
2346 the shared library. */
2347 if (! info->shared
2348 && !h->def_regular)
2349 {
2350 h->root.u.def.section = s;
2351 h->root.u.def.value = h->plt.offset;
2352 }
2353
2354 /* Make room for this entry. */
2355 s->size += plt_entry_size;
2356
2357 /* We also need to make an entry in the .got.plt section, which
2358 will be placed in the .got section by the linker script. */
2359 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2360
2361 /* We also need to make an entry in the .rela.plt section. */
2362 htab->elf.srelplt->size += bed->s->sizeof_rela;
2363 htab->elf.srelplt->reloc_count++;
2364 }
2365 else
2366 {
2367 h->plt.offset = (bfd_vma) -1;
2368 h->needs_plt = 0;
2369 }
2370 }
2371 else
2372 {
2373 h->plt.offset = (bfd_vma) -1;
2374 h->needs_plt = 0;
2375 }
2376
2377 eh->tlsdesc_got = (bfd_vma) -1;
2378
2379 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2380 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2381 if (h->got.refcount > 0
2382 && info->executable
2383 && h->dynindx == -1
2384 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2385 {
2386 h->got.offset = (bfd_vma) -1;
2387 }
2388 else if (h->got.refcount > 0)
2389 {
2390 asection *s;
2391 bfd_boolean dyn;
2392 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2393
2394 /* Make sure this symbol is output as a dynamic symbol.
2395 Undefined weak syms won't yet be marked as dynamic. */
2396 if (h->dynindx == -1
2397 && !h->forced_local)
2398 {
2399 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2400 return FALSE;
2401 }
2402
2403 if (GOT_TLS_GDESC_P (tls_type))
2404 {
2405 eh->tlsdesc_got = htab->elf.sgotplt->size
2406 - elf_x86_64_compute_jump_table_size (htab);
2407 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2408 h->got.offset = (bfd_vma) -2;
2409 }
2410 if (! GOT_TLS_GDESC_P (tls_type)
2411 || GOT_TLS_GD_P (tls_type))
2412 {
2413 s = htab->elf.sgot;
2414 h->got.offset = s->size;
2415 s->size += GOT_ENTRY_SIZE;
2416 if (GOT_TLS_GD_P (tls_type))
2417 s->size += GOT_ENTRY_SIZE;
2418 }
2419 dyn = htab->elf.dynamic_sections_created;
2420 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2421 and two if global.
2422 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2423 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2424 || tls_type == GOT_TLS_IE)
2425 htab->elf.srelgot->size += bed->s->sizeof_rela;
2426 else if (GOT_TLS_GD_P (tls_type))
2427 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2428 else if (! GOT_TLS_GDESC_P (tls_type)
2429 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2430 || h->root.type != bfd_link_hash_undefweak)
2431 && (info->shared
2432 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2433 htab->elf.srelgot->size += bed->s->sizeof_rela;
2434 if (GOT_TLS_GDESC_P (tls_type))
2435 {
2436 htab->elf.srelplt->size += bed->s->sizeof_rela;
2437 htab->tlsdesc_plt = (bfd_vma) -1;
2438 }
2439 }
2440 else
2441 h->got.offset = (bfd_vma) -1;
2442
2443 if (eh->dyn_relocs == NULL)
2444 return TRUE;
2445
2446 /* In the shared -Bsymbolic case, discard space allocated for
2447 dynamic pc-relative relocs against symbols which turn out to be
2448 defined in regular objects. For the normal shared case, discard
2449 space for pc-relative relocs that have become local due to symbol
2450 visibility changes. */
2451
2452 if (info->shared)
2453 {
2454 /* Relocs that use pc_count are those that appear on a call
2455 insn, or certain REL relocs that can generated via assembly.
2456 We want calls to protected symbols to resolve directly to the
2457 function rather than going via the plt. If people want
2458 function pointer comparisons to work as expected then they
2459 should avoid writing weird assembly. */
2460 if (SYMBOL_CALLS_LOCAL (info, h))
2461 {
2462 struct elf_dyn_relocs **pp;
2463
2464 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2465 {
2466 p->count -= p->pc_count;
2467 p->pc_count = 0;
2468 if (p->count == 0)
2469 *pp = p->next;
2470 else
2471 pp = &p->next;
2472 }
2473 }
2474
2475 /* Also discard relocs on undefined weak syms with non-default
2476 visibility. */
2477 if (eh->dyn_relocs != NULL
2478 && h->root.type == bfd_link_hash_undefweak)
2479 {
2480 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2481 eh->dyn_relocs = NULL;
2482
2483 /* Make sure undefined weak symbols are output as a dynamic
2484 symbol in PIEs. */
2485 else if (h->dynindx == -1
2486 && ! h->forced_local
2487 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2488 return FALSE;
2489 }
2490
2491 }
2492 else if (ELIMINATE_COPY_RELOCS)
2493 {
2494 /* For the non-shared case, discard space for relocs against
2495 symbols which turn out to need copy relocs or are not
2496 dynamic. */
2497
2498 if (!h->non_got_ref
2499 && ((h->def_dynamic
2500 && !h->def_regular)
2501 || (htab->elf.dynamic_sections_created
2502 && (h->root.type == bfd_link_hash_undefweak
2503 || h->root.type == bfd_link_hash_undefined))))
2504 {
2505 /* Make sure this symbol is output as a dynamic symbol.
2506 Undefined weak syms won't yet be marked as dynamic. */
2507 if (h->dynindx == -1
2508 && ! h->forced_local
2509 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2510 return FALSE;
2511
2512 /* If that succeeded, we know we'll be keeping all the
2513 relocs. */
2514 if (h->dynindx != -1)
2515 goto keep;
2516 }
2517
2518 eh->dyn_relocs = NULL;
2519
2520 keep: ;
2521 }
2522
2523 /* Finally, allocate space. */
2524 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2525 {
2526 asection * sreloc;
2527
2528 sreloc = elf_section_data (p->sec)->sreloc;
2529
2530 BFD_ASSERT (sreloc != NULL);
2531
2532 sreloc->size += p->count * bed->s->sizeof_rela;
2533 }
2534
2535 return TRUE;
2536 }
2537
2538 /* Allocate space in .plt, .got and associated reloc sections for
2539 local dynamic relocs. */
2540
2541 static bfd_boolean
2542 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2543 {
2544 struct elf_link_hash_entry *h
2545 = (struct elf_link_hash_entry *) *slot;
2546
2547 if (h->type != STT_GNU_IFUNC
2548 || !h->def_regular
2549 || !h->ref_regular
2550 || !h->forced_local
2551 || h->root.type != bfd_link_hash_defined)
2552 abort ();
2553
2554 return elf_x86_64_allocate_dynrelocs (h, inf);
2555 }
2556
2557 /* Find any dynamic relocs that apply to read-only sections. */
2558
2559 static bfd_boolean
2560 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2561 void * inf)
2562 {
2563 struct elf_x86_64_link_hash_entry *eh;
2564 struct elf_dyn_relocs *p;
2565
2566 /* Skip local IFUNC symbols. */
2567 if (h->forced_local && h->type == STT_GNU_IFUNC)
2568 return TRUE;
2569
2570 eh = (struct elf_x86_64_link_hash_entry *) h;
2571 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2572 {
2573 asection *s = p->sec->output_section;
2574
2575 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2576 {
2577 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2578
2579 info->flags |= DF_TEXTREL;
2580
2581 if (info->warn_shared_textrel && info->shared)
2582 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2583 p->sec->owner, h->root.root.string,
2584 p->sec);
2585
2586 /* Not an error, just cut short the traversal. */
2587 return FALSE;
2588 }
2589 }
2590 return TRUE;
2591 }
2592
2593 /* Convert
2594 mov foo@GOTPCREL(%rip), %reg
2595 to
2596 lea foo(%rip), %reg
2597 with the local symbol, foo. */
2598
2599 static bfd_boolean
2600 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2601 struct bfd_link_info *link_info)
2602 {
2603 Elf_Internal_Shdr *symtab_hdr;
2604 Elf_Internal_Rela *internal_relocs;
2605 Elf_Internal_Rela *irel, *irelend;
2606 bfd_byte *contents;
2607 struct elf_x86_64_link_hash_table *htab;
2608 bfd_boolean changed_contents;
2609 bfd_boolean changed_relocs;
2610 bfd_signed_vma *local_got_refcounts;
2611
2612 /* Don't even try to convert non-ELF outputs. */
2613 if (!is_elf_hash_table (link_info->hash))
2614 return FALSE;
2615
2616 /* Nothing to do if there are no codes, no relocations or no output. */
2617 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2618 || sec->reloc_count == 0
2619 || discarded_section (sec))
2620 return TRUE;
2621
2622 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2623
2624 /* Load the relocations for this section. */
2625 internal_relocs = (_bfd_elf_link_read_relocs
2626 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2627 link_info->keep_memory));
2628 if (internal_relocs == NULL)
2629 return FALSE;
2630
2631 htab = elf_x86_64_hash_table (link_info);
2632 changed_contents = FALSE;
2633 changed_relocs = FALSE;
2634 local_got_refcounts = elf_local_got_refcounts (abfd);
2635
2636 /* Get the section contents. */
2637 if (elf_section_data (sec)->this_hdr.contents != NULL)
2638 contents = elf_section_data (sec)->this_hdr.contents;
2639 else
2640 {
2641 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2642 goto error_return;
2643 }
2644
2645 irelend = internal_relocs + sec->reloc_count;
2646 for (irel = internal_relocs; irel < irelend; irel++)
2647 {
2648 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2649 unsigned int r_symndx = htab->r_sym (irel->r_info);
2650 unsigned int indx;
2651 struct elf_link_hash_entry *h;
2652
2653 if (r_type != R_X86_64_GOTPCREL)
2654 continue;
2655
2656 /* Get the symbol referred to by the reloc. */
2657 if (r_symndx < symtab_hdr->sh_info)
2658 {
2659 Elf_Internal_Sym *isym;
2660
2661 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2662 abfd, r_symndx);
2663
2664 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2665 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2666 && bfd_get_8 (input_bfd,
2667 contents + irel->r_offset - 2) == 0x8b)
2668 {
2669 bfd_put_8 (output_bfd, 0x8d,
2670 contents + irel->r_offset - 2);
2671 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2672 if (local_got_refcounts != NULL
2673 && local_got_refcounts[r_symndx] > 0)
2674 local_got_refcounts[r_symndx] -= 1;
2675 changed_contents = TRUE;
2676 changed_relocs = TRUE;
2677 }
2678 continue;
2679 }
2680
2681 indx = r_symndx - symtab_hdr->sh_info;
2682 h = elf_sym_hashes (abfd)[indx];
2683 BFD_ASSERT (h != NULL);
2684
2685 while (h->root.type == bfd_link_hash_indirect
2686 || h->root.type == bfd_link_hash_warning)
2687 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2688
2689 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2690 avoid optimizing _DYNAMIC since ld.so may use its link-time
2691 address. */
2692 if (h->def_regular
2693 && h->type != STT_GNU_IFUNC
2694 && h != htab->elf.hdynamic
2695 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2696 && bfd_get_8 (input_bfd,
2697 contents + irel->r_offset - 2) == 0x8b)
2698 {
2699 bfd_put_8 (output_bfd, 0x8d,
2700 contents + irel->r_offset - 2);
2701 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2702 if (h->got.refcount > 0)
2703 h->got.refcount -= 1;
2704 changed_contents = TRUE;
2705 changed_relocs = TRUE;
2706 }
2707 }
2708
2709 if (contents != NULL
2710 && elf_section_data (sec)->this_hdr.contents != contents)
2711 {
2712 if (!changed_contents && !link_info->keep_memory)
2713 free (contents);
2714 else
2715 {
2716 /* Cache the section contents for elf_link_input_bfd. */
2717 elf_section_data (sec)->this_hdr.contents = contents;
2718 }
2719 }
2720
2721 if (elf_section_data (sec)->relocs != internal_relocs)
2722 {
2723 if (!changed_relocs)
2724 free (internal_relocs);
2725 else
2726 elf_section_data (sec)->relocs = internal_relocs;
2727 }
2728
2729 return TRUE;
2730
2731 error_return:
2732 if (contents != NULL
2733 && elf_section_data (sec)->this_hdr.contents != contents)
2734 free (contents);
2735 if (internal_relocs != NULL
2736 && elf_section_data (sec)->relocs != internal_relocs)
2737 free (internal_relocs);
2738 return FALSE;
2739 }
2740
2741 /* Set the sizes of the dynamic sections. */
2742
2743 static bfd_boolean
2744 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2745 struct bfd_link_info *info)
2746 {
2747 struct elf_x86_64_link_hash_table *htab;
2748 bfd *dynobj;
2749 asection *s;
2750 bfd_boolean relocs;
2751 bfd *ibfd;
2752 const struct elf_backend_data *bed;
2753
2754 htab = elf_x86_64_hash_table (info);
2755 if (htab == NULL)
2756 return FALSE;
2757 bed = get_elf_backend_data (output_bfd);
2758
2759 dynobj = htab->elf.dynobj;
2760 if (dynobj == NULL)
2761 abort ();
2762
2763 if (htab->elf.dynamic_sections_created)
2764 {
2765 /* Set the contents of the .interp section to the interpreter. */
2766 if (info->executable)
2767 {
2768 s = bfd_get_linker_section (dynobj, ".interp");
2769 if (s == NULL)
2770 abort ();
2771 s->size = htab->dynamic_interpreter_size;
2772 s->contents = (unsigned char *) htab->dynamic_interpreter;
2773 }
2774 }
2775
2776 /* Set up .got offsets for local syms, and space for local dynamic
2777 relocs. */
2778 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2779 {
2780 bfd_signed_vma *local_got;
2781 bfd_signed_vma *end_local_got;
2782 char *local_tls_type;
2783 bfd_vma *local_tlsdesc_gotent;
2784 bfd_size_type locsymcount;
2785 Elf_Internal_Shdr *symtab_hdr;
2786 asection *srel;
2787
2788 if (! is_x86_64_elf (ibfd))
2789 continue;
2790
2791 for (s = ibfd->sections; s != NULL; s = s->next)
2792 {
2793 struct elf_dyn_relocs *p;
2794
2795 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2796 return FALSE;
2797
2798 for (p = (struct elf_dyn_relocs *)
2799 (elf_section_data (s)->local_dynrel);
2800 p != NULL;
2801 p = p->next)
2802 {
2803 if (!bfd_is_abs_section (p->sec)
2804 && bfd_is_abs_section (p->sec->output_section))
2805 {
2806 /* Input section has been discarded, either because
2807 it is a copy of a linkonce section or due to
2808 linker script /DISCARD/, so we'll be discarding
2809 the relocs too. */
2810 }
2811 else if (p->count != 0)
2812 {
2813 srel = elf_section_data (p->sec)->sreloc;
2814 srel->size += p->count * bed->s->sizeof_rela;
2815 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2816 && (info->flags & DF_TEXTREL) == 0)
2817 {
2818 info->flags |= DF_TEXTREL;
2819 if (info->warn_shared_textrel && info->shared)
2820 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2821 p->sec->owner, p->sec);
2822 }
2823 }
2824 }
2825 }
2826
2827 local_got = elf_local_got_refcounts (ibfd);
2828 if (!local_got)
2829 continue;
2830
2831 symtab_hdr = &elf_symtab_hdr (ibfd);
2832 locsymcount = symtab_hdr->sh_info;
2833 end_local_got = local_got + locsymcount;
2834 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2835 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2836 s = htab->elf.sgot;
2837 srel = htab->elf.srelgot;
2838 for (; local_got < end_local_got;
2839 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2840 {
2841 *local_tlsdesc_gotent = (bfd_vma) -1;
2842 if (*local_got > 0)
2843 {
2844 if (GOT_TLS_GDESC_P (*local_tls_type))
2845 {
2846 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2847 - elf_x86_64_compute_jump_table_size (htab);
2848 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2849 *local_got = (bfd_vma) -2;
2850 }
2851 if (! GOT_TLS_GDESC_P (*local_tls_type)
2852 || GOT_TLS_GD_P (*local_tls_type))
2853 {
2854 *local_got = s->size;
2855 s->size += GOT_ENTRY_SIZE;
2856 if (GOT_TLS_GD_P (*local_tls_type))
2857 s->size += GOT_ENTRY_SIZE;
2858 }
2859 if (info->shared
2860 || GOT_TLS_GD_ANY_P (*local_tls_type)
2861 || *local_tls_type == GOT_TLS_IE)
2862 {
2863 if (GOT_TLS_GDESC_P (*local_tls_type))
2864 {
2865 htab->elf.srelplt->size
2866 += bed->s->sizeof_rela;
2867 htab->tlsdesc_plt = (bfd_vma) -1;
2868 }
2869 if (! GOT_TLS_GDESC_P (*local_tls_type)
2870 || GOT_TLS_GD_P (*local_tls_type))
2871 srel->size += bed->s->sizeof_rela;
2872 }
2873 }
2874 else
2875 *local_got = (bfd_vma) -1;
2876 }
2877 }
2878
2879 if (htab->tls_ld_got.refcount > 0)
2880 {
2881 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2882 relocs. */
2883 htab->tls_ld_got.offset = htab->elf.sgot->size;
2884 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2885 htab->elf.srelgot->size += bed->s->sizeof_rela;
2886 }
2887 else
2888 htab->tls_ld_got.offset = -1;
2889
2890 /* Allocate global sym .plt and .got entries, and space for global
2891 sym dynamic relocs. */
2892 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2893 info);
2894
2895 /* Allocate .plt and .got entries, and space for local symbols. */
2896 htab_traverse (htab->loc_hash_table,
2897 elf_x86_64_allocate_local_dynrelocs,
2898 info);
2899
2900 /* For every jump slot reserved in the sgotplt, reloc_count is
2901 incremented. However, when we reserve space for TLS descriptors,
2902 it's not incremented, so in order to compute the space reserved
2903 for them, it suffices to multiply the reloc count by the jump
2904 slot size.
2905
2906 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2907 so that R_X86_64_IRELATIVE entries come last. */
2908 if (htab->elf.srelplt)
2909 {
2910 htab->sgotplt_jump_table_size
2911 = elf_x86_64_compute_jump_table_size (htab);
2912 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2913 }
2914 else if (htab->elf.irelplt)
2915 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2916
2917 if (htab->tlsdesc_plt)
2918 {
2919 /* If we're not using lazy TLS relocations, don't generate the
2920 PLT and GOT entries they require. */
2921 if ((info->flags & DF_BIND_NOW))
2922 htab->tlsdesc_plt = 0;
2923 else
2924 {
2925 htab->tlsdesc_got = htab->elf.sgot->size;
2926 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2927 /* Reserve room for the initial entry.
2928 FIXME: we could probably do away with it in this case. */
2929 if (htab->elf.splt->size == 0)
2930 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2931 htab->tlsdesc_plt = htab->elf.splt->size;
2932 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2933 }
2934 }
2935
2936 if (htab->elf.sgotplt)
2937 {
2938 /* Don't allocate .got.plt section if there are no GOT nor PLT
2939 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2940 if ((htab->elf.hgot == NULL
2941 || !htab->elf.hgot->ref_regular_nonweak)
2942 && (htab->elf.sgotplt->size
2943 == get_elf_backend_data (output_bfd)->got_header_size)
2944 && (htab->elf.splt == NULL
2945 || htab->elf.splt->size == 0)
2946 && (htab->elf.sgot == NULL
2947 || htab->elf.sgot->size == 0)
2948 && (htab->elf.iplt == NULL
2949 || htab->elf.iplt->size == 0)
2950 && (htab->elf.igotplt == NULL
2951 || htab->elf.igotplt->size == 0))
2952 htab->elf.sgotplt->size = 0;
2953 }
2954
2955 if (htab->plt_eh_frame != NULL
2956 && htab->elf.splt != NULL
2957 && htab->elf.splt->size != 0
2958 && !bfd_is_abs_section (htab->elf.splt->output_section)
2959 && _bfd_elf_eh_frame_present (info))
2960 {
2961 const struct elf_x86_64_backend_data *arch_data
2962 = get_elf_x86_64_arch_data (bed);
2963 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2964 }
2965
2966 /* We now have determined the sizes of the various dynamic sections.
2967 Allocate memory for them. */
2968 relocs = FALSE;
2969 for (s = dynobj->sections; s != NULL; s = s->next)
2970 {
2971 if ((s->flags & SEC_LINKER_CREATED) == 0)
2972 continue;
2973
2974 if (s == htab->elf.splt
2975 || s == htab->elf.sgot
2976 || s == htab->elf.sgotplt
2977 || s == htab->elf.iplt
2978 || s == htab->elf.igotplt
2979 || s == htab->plt_eh_frame
2980 || s == htab->sdynbss)
2981 {
2982 /* Strip this section if we don't need it; see the
2983 comment below. */
2984 }
2985 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2986 {
2987 if (s->size != 0 && s != htab->elf.srelplt)
2988 relocs = TRUE;
2989
2990 /* We use the reloc_count field as a counter if we need
2991 to copy relocs into the output file. */
2992 if (s != htab->elf.srelplt)
2993 s->reloc_count = 0;
2994 }
2995 else
2996 {
2997 /* It's not one of our sections, so don't allocate space. */
2998 continue;
2999 }
3000
3001 if (s->size == 0)
3002 {
3003 /* If we don't need this section, strip it from the
3004 output file. This is mostly to handle .rela.bss and
3005 .rela.plt. We must create both sections in
3006 create_dynamic_sections, because they must be created
3007 before the linker maps input sections to output
3008 sections. The linker does that before
3009 adjust_dynamic_symbol is called, and it is that
3010 function which decides whether anything needs to go
3011 into these sections. */
3012
3013 s->flags |= SEC_EXCLUDE;
3014 continue;
3015 }
3016
3017 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3018 continue;
3019
3020 /* Allocate memory for the section contents. We use bfd_zalloc
3021 here in case unused entries are not reclaimed before the
3022 section's contents are written out. This should not happen,
3023 but this way if it does, we get a R_X86_64_NONE reloc instead
3024 of garbage. */
3025 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3026 if (s->contents == NULL)
3027 return FALSE;
3028 }
3029
3030 if (htab->plt_eh_frame != NULL
3031 && htab->plt_eh_frame->contents != NULL)
3032 {
3033 const struct elf_x86_64_backend_data *arch_data
3034 = get_elf_x86_64_arch_data (bed);
3035
3036 memcpy (htab->plt_eh_frame->contents,
3037 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3038 bfd_put_32 (dynobj, htab->elf.splt->size,
3039 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3040 }
3041
3042 if (htab->elf.dynamic_sections_created)
3043 {
3044 /* Add some entries to the .dynamic section. We fill in the
3045 values later, in elf_x86_64_finish_dynamic_sections, but we
3046 must add the entries now so that we get the correct size for
3047 the .dynamic section. The DT_DEBUG entry is filled in by the
3048 dynamic linker and used by the debugger. */
3049 #define add_dynamic_entry(TAG, VAL) \
3050 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3051
3052 if (info->executable)
3053 {
3054 if (!add_dynamic_entry (DT_DEBUG, 0))
3055 return FALSE;
3056 }
3057
3058 if (htab->elf.splt->size != 0)
3059 {
3060 if (!add_dynamic_entry (DT_PLTGOT, 0)
3061 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3062 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3063 || !add_dynamic_entry (DT_JMPREL, 0))
3064 return FALSE;
3065
3066 if (htab->tlsdesc_plt
3067 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3068 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3069 return FALSE;
3070 }
3071
3072 if (relocs)
3073 {
3074 if (!add_dynamic_entry (DT_RELA, 0)
3075 || !add_dynamic_entry (DT_RELASZ, 0)
3076 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3077 return FALSE;
3078
3079 /* If any dynamic relocs apply to a read-only section,
3080 then we need a DT_TEXTREL entry. */
3081 if ((info->flags & DF_TEXTREL) == 0)
3082 elf_link_hash_traverse (&htab->elf,
3083 elf_x86_64_readonly_dynrelocs,
3084 info);
3085
3086 if ((info->flags & DF_TEXTREL) != 0)
3087 {
3088 if (!add_dynamic_entry (DT_TEXTREL, 0))
3089 return FALSE;
3090 }
3091 }
3092 }
3093 #undef add_dynamic_entry
3094
3095 return TRUE;
3096 }
3097
3098 static bfd_boolean
3099 elf_x86_64_always_size_sections (bfd *output_bfd,
3100 struct bfd_link_info *info)
3101 {
3102 asection *tls_sec = elf_hash_table (info)->tls_sec;
3103
3104 if (tls_sec)
3105 {
3106 struct elf_link_hash_entry *tlsbase;
3107
3108 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3109 "_TLS_MODULE_BASE_",
3110 FALSE, FALSE, FALSE);
3111
3112 if (tlsbase && tlsbase->type == STT_TLS)
3113 {
3114 struct elf_x86_64_link_hash_table *htab;
3115 struct bfd_link_hash_entry *bh = NULL;
3116 const struct elf_backend_data *bed
3117 = get_elf_backend_data (output_bfd);
3118
3119 htab = elf_x86_64_hash_table (info);
3120 if (htab == NULL)
3121 return FALSE;
3122
3123 if (!(_bfd_generic_link_add_one_symbol
3124 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3125 tls_sec, 0, NULL, FALSE,
3126 bed->collect, &bh)))
3127 return FALSE;
3128
3129 htab->tls_module_base = bh;
3130
3131 tlsbase = (struct elf_link_hash_entry *)bh;
3132 tlsbase->def_regular = 1;
3133 tlsbase->other = STV_HIDDEN;
3134 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3135 }
3136 }
3137
3138 return TRUE;
3139 }
3140
3141 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3142 executables. Rather than setting it to the beginning of the TLS
3143 section, we have to set it to the end. This function may be called
3144 multiple times, it is idempotent. */
3145
3146 static void
3147 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3148 {
3149 struct elf_x86_64_link_hash_table *htab;
3150 struct bfd_link_hash_entry *base;
3151
3152 if (!info->executable)
3153 return;
3154
3155 htab = elf_x86_64_hash_table (info);
3156 if (htab == NULL)
3157 return;
3158
3159 base = htab->tls_module_base;
3160 if (base == NULL)
3161 return;
3162
3163 base->u.def.value = htab->elf.tls_size;
3164 }
3165
3166 /* Return the base VMA address which should be subtracted from real addresses
3167 when resolving @dtpoff relocation.
3168 This is PT_TLS segment p_vaddr. */
3169
3170 static bfd_vma
3171 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3172 {
3173 /* If tls_sec is NULL, we should have signalled an error already. */
3174 if (elf_hash_table (info)->tls_sec == NULL)
3175 return 0;
3176 return elf_hash_table (info)->tls_sec->vma;
3177 }
3178
3179 /* Return the relocation value for @tpoff relocation
3180 if STT_TLS virtual address is ADDRESS. */
3181
3182 static bfd_vma
3183 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3184 {
3185 struct elf_link_hash_table *htab = elf_hash_table (info);
3186 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3187 bfd_vma static_tls_size;
3188
3189 /* If tls_segment is NULL, we should have signalled an error already. */
3190 if (htab->tls_sec == NULL)
3191 return 0;
3192
3193 /* Consider special static TLS alignment requirements. */
3194 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3195 return address - static_tls_size - htab->tls_sec->vma;
3196 }
3197
3198 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3199 branch? */
3200
3201 static bfd_boolean
3202 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3203 {
3204 /* Opcode Instruction
3205 0xe8 call
3206 0xe9 jump
3207 0x0f 0x8x conditional jump */
3208 return ((offset > 0
3209 && (contents [offset - 1] == 0xe8
3210 || contents [offset - 1] == 0xe9))
3211 || (offset > 1
3212 && contents [offset - 2] == 0x0f
3213 && (contents [offset - 1] & 0xf0) == 0x80));
3214 }
3215
3216 /* Relocate an x86_64 ELF section. */
3217
3218 static bfd_boolean
3219 elf_x86_64_relocate_section (bfd *output_bfd,
3220 struct bfd_link_info *info,
3221 bfd *input_bfd,
3222 asection *input_section,
3223 bfd_byte *contents,
3224 Elf_Internal_Rela *relocs,
3225 Elf_Internal_Sym *local_syms,
3226 asection **local_sections)
3227 {
3228 struct elf_x86_64_link_hash_table *htab;
3229 Elf_Internal_Shdr *symtab_hdr;
3230 struct elf_link_hash_entry **sym_hashes;
3231 bfd_vma *local_got_offsets;
3232 bfd_vma *local_tlsdesc_gotents;
3233 Elf_Internal_Rela *rel;
3234 Elf_Internal_Rela *relend;
3235 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3236
3237 BFD_ASSERT (is_x86_64_elf (input_bfd));
3238
3239 htab = elf_x86_64_hash_table (info);
3240 if (htab == NULL)
3241 return FALSE;
3242 symtab_hdr = &elf_symtab_hdr (input_bfd);
3243 sym_hashes = elf_sym_hashes (input_bfd);
3244 local_got_offsets = elf_local_got_offsets (input_bfd);
3245 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3246
3247 elf_x86_64_set_tls_module_base (info);
3248
3249 rel = relocs;
3250 relend = relocs + input_section->reloc_count;
3251 for (; rel < relend; rel++)
3252 {
3253 unsigned int r_type;
3254 reloc_howto_type *howto;
3255 unsigned long r_symndx;
3256 struct elf_link_hash_entry *h;
3257 Elf_Internal_Sym *sym;
3258 asection *sec;
3259 bfd_vma off, offplt;
3260 bfd_vma relocation;
3261 bfd_boolean unresolved_reloc;
3262 bfd_reloc_status_type r;
3263 int tls_type;
3264 asection *base_got;
3265 bfd_vma st_size;
3266
3267 r_type = ELF32_R_TYPE (rel->r_info);
3268 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3269 || r_type == (int) R_X86_64_GNU_VTENTRY)
3270 continue;
3271
3272 if (r_type >= (int) R_X86_64_standard)
3273 {
3274 (*_bfd_error_handler)
3275 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3276 input_bfd, input_section, r_type);
3277 bfd_set_error (bfd_error_bad_value);
3278 return FALSE;
3279 }
3280
3281 if (r_type != (int) R_X86_64_32
3282 || ABI_64_P (output_bfd))
3283 howto = x86_64_elf_howto_table + r_type;
3284 else
3285 howto = (x86_64_elf_howto_table
3286 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3287 r_symndx = htab->r_sym (rel->r_info);
3288 h = NULL;
3289 sym = NULL;
3290 sec = NULL;
3291 unresolved_reloc = FALSE;
3292 if (r_symndx < symtab_hdr->sh_info)
3293 {
3294 sym = local_syms + r_symndx;
3295 sec = local_sections[r_symndx];
3296
3297 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3298 &sec, rel);
3299 st_size = sym->st_size;
3300
3301 /* Relocate against local STT_GNU_IFUNC symbol. */
3302 if (!info->relocatable
3303 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3304 {
3305 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3306 rel, FALSE);
3307 if (h == NULL)
3308 abort ();
3309
3310 /* Set STT_GNU_IFUNC symbol value. */
3311 h->root.u.def.value = sym->st_value;
3312 h->root.u.def.section = sec;
3313 }
3314 }
3315 else
3316 {
3317 bfd_boolean warned ATTRIBUTE_UNUSED;
3318 bfd_boolean ignored ATTRIBUTE_UNUSED;
3319
3320 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3321 r_symndx, symtab_hdr, sym_hashes,
3322 h, sec, relocation,
3323 unresolved_reloc, warned, ignored);
3324 st_size = h->size;
3325 }
3326
3327 if (sec != NULL && discarded_section (sec))
3328 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3329 rel, 1, relend, howto, 0, contents);
3330
3331 if (info->relocatable)
3332 continue;
3333
3334 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3335 {
3336 if (r_type == R_X86_64_64)
3337 {
3338 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3339 zero-extend it to 64bit if addend is zero. */
3340 r_type = R_X86_64_32;
3341 memset (contents + rel->r_offset + 4, 0, 4);
3342 }
3343 else if (r_type == R_X86_64_SIZE64)
3344 {
3345 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3346 zero-extend it to 64bit if addend is zero. */
3347 r_type = R_X86_64_SIZE32;
3348 memset (contents + rel->r_offset + 4, 0, 4);
3349 }
3350 }
3351
3352 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3353 it here if it is defined in a non-shared object. */
3354 if (h != NULL
3355 && h->type == STT_GNU_IFUNC
3356 && h->def_regular)
3357 {
3358 asection *plt;
3359 bfd_vma plt_index;
3360 const char *name;
3361
3362 if ((input_section->flags & SEC_ALLOC) == 0
3363 || h->plt.offset == (bfd_vma) -1)
3364 abort ();
3365
3366 /* STT_GNU_IFUNC symbol must go through PLT. */
3367 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3368 relocation = (plt->output_section->vma
3369 + plt->output_offset + h->plt.offset);
3370
3371 switch (r_type)
3372 {
3373 default:
3374 if (h->root.root.string)
3375 name = h->root.root.string;
3376 else
3377 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3378 NULL);
3379 (*_bfd_error_handler)
3380 (_("%B: relocation %s against STT_GNU_IFUNC "
3381 "symbol `%s' isn't handled by %s"), input_bfd,
3382 x86_64_elf_howto_table[r_type].name,
3383 name, __FUNCTION__);
3384 bfd_set_error (bfd_error_bad_value);
3385 return FALSE;
3386
3387 case R_X86_64_32S:
3388 if (info->shared)
3389 abort ();
3390 goto do_relocation;
3391
3392 case R_X86_64_32:
3393 if (ABI_64_P (output_bfd))
3394 goto do_relocation;
3395 /* FALLTHROUGH */
3396 case R_X86_64_64:
3397 if (rel->r_addend != 0)
3398 {
3399 if (h->root.root.string)
3400 name = h->root.root.string;
3401 else
3402 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3403 sym, NULL);
3404 (*_bfd_error_handler)
3405 (_("%B: relocation %s against STT_GNU_IFUNC "
3406 "symbol `%s' has non-zero addend: %d"),
3407 input_bfd, x86_64_elf_howto_table[r_type].name,
3408 name, rel->r_addend);
3409 bfd_set_error (bfd_error_bad_value);
3410 return FALSE;
3411 }
3412
3413 /* Generate dynamic relcoation only when there is a
3414 non-GOT reference in a shared object. */
3415 if (info->shared && h->non_got_ref)
3416 {
3417 Elf_Internal_Rela outrel;
3418 asection *sreloc;
3419
3420 /* Need a dynamic relocation to get the real function
3421 address. */
3422 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3423 info,
3424 input_section,
3425 rel->r_offset);
3426 if (outrel.r_offset == (bfd_vma) -1
3427 || outrel.r_offset == (bfd_vma) -2)
3428 abort ();
3429
3430 outrel.r_offset += (input_section->output_section->vma
3431 + input_section->output_offset);
3432
3433 if (h->dynindx == -1
3434 || h->forced_local
3435 || info->executable)
3436 {
3437 /* This symbol is resolved locally. */
3438 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3439 outrel.r_addend = (h->root.u.def.value
3440 + h->root.u.def.section->output_section->vma
3441 + h->root.u.def.section->output_offset);
3442 }
3443 else
3444 {
3445 outrel.r_info = htab->r_info (h->dynindx, r_type);
3446 outrel.r_addend = 0;
3447 }
3448
3449 sreloc = htab->elf.irelifunc;
3450 elf_append_rela (output_bfd, sreloc, &outrel);
3451
3452 /* If this reloc is against an external symbol, we
3453 do not want to fiddle with the addend. Otherwise,
3454 we need to include the symbol value so that it
3455 becomes an addend for the dynamic reloc. For an
3456 internal symbol, we have updated addend. */
3457 continue;
3458 }
3459 /* FALLTHROUGH */
3460 case R_X86_64_PC32:
3461 case R_X86_64_PC32_BND:
3462 case R_X86_64_PC64:
3463 case R_X86_64_PLT32:
3464 case R_X86_64_PLT32_BND:
3465 goto do_relocation;
3466
3467 case R_X86_64_GOTPCREL:
3468 case R_X86_64_GOTPCREL64:
3469 base_got = htab->elf.sgot;
3470 off = h->got.offset;
3471
3472 if (base_got == NULL)
3473 abort ();
3474
3475 if (off == (bfd_vma) -1)
3476 {
3477 /* We can't use h->got.offset here to save state, or
3478 even just remember the offset, as finish_dynamic_symbol
3479 would use that as offset into .got. */
3480
3481 if (htab->elf.splt != NULL)
3482 {
3483 plt_index = h->plt.offset / plt_entry_size - 1;
3484 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3485 base_got = htab->elf.sgotplt;
3486 }
3487 else
3488 {
3489 plt_index = h->plt.offset / plt_entry_size;
3490 off = plt_index * GOT_ENTRY_SIZE;
3491 base_got = htab->elf.igotplt;
3492 }
3493
3494 if (h->dynindx == -1
3495 || h->forced_local
3496 || info->symbolic)
3497 {
3498 /* This references the local defitionion. We must
3499 initialize this entry in the global offset table.
3500 Since the offset must always be a multiple of 8,
3501 we use the least significant bit to record
3502 whether we have initialized it already.
3503
3504 When doing a dynamic link, we create a .rela.got
3505 relocation entry to initialize the value. This
3506 is done in the finish_dynamic_symbol routine. */
3507 if ((off & 1) != 0)
3508 off &= ~1;
3509 else
3510 {
3511 bfd_put_64 (output_bfd, relocation,
3512 base_got->contents + off);
3513 /* Note that this is harmless for the GOTPLT64
3514 case, as -1 | 1 still is -1. */
3515 h->got.offset |= 1;
3516 }
3517 }
3518 }
3519
3520 relocation = (base_got->output_section->vma
3521 + base_got->output_offset + off);
3522
3523 goto do_relocation;
3524 }
3525 }
3526
3527 /* When generating a shared object, the relocations handled here are
3528 copied into the output file to be resolved at run time. */
3529 switch (r_type)
3530 {
3531 case R_X86_64_GOT32:
3532 case R_X86_64_GOT64:
3533 /* Relocation is to the entry for this symbol in the global
3534 offset table. */
3535 case R_X86_64_GOTPCREL:
3536 case R_X86_64_GOTPCREL64:
3537 /* Use global offset table entry as symbol value. */
3538 case R_X86_64_GOTPLT64:
3539 /* This is the same as GOT64 for relocation purposes, but
3540 indicates the existence of a PLT entry. The difficulty is,
3541 that we must calculate the GOT slot offset from the PLT
3542 offset, if this symbol got a PLT entry (it was global).
3543 Additionally if it's computed from the PLT entry, then that
3544 GOT offset is relative to .got.plt, not to .got. */
3545 base_got = htab->elf.sgot;
3546
3547 if (htab->elf.sgot == NULL)
3548 abort ();
3549
3550 if (h != NULL)
3551 {
3552 bfd_boolean dyn;
3553
3554 off = h->got.offset;
3555 if (h->needs_plt
3556 && h->plt.offset != (bfd_vma)-1
3557 && off == (bfd_vma)-1)
3558 {
3559 /* We can't use h->got.offset here to save
3560 state, or even just remember the offset, as
3561 finish_dynamic_symbol would use that as offset into
3562 .got. */
3563 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3564 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3565 base_got = htab->elf.sgotplt;
3566 }
3567
3568 dyn = htab->elf.dynamic_sections_created;
3569
3570 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3571 || (info->shared
3572 && SYMBOL_REFERENCES_LOCAL (info, h))
3573 || (ELF_ST_VISIBILITY (h->other)
3574 && h->root.type == bfd_link_hash_undefweak))
3575 {
3576 /* This is actually a static link, or it is a -Bsymbolic
3577 link and the symbol is defined locally, or the symbol
3578 was forced to be local because of a version file. We
3579 must initialize this entry in the global offset table.
3580 Since the offset must always be a multiple of 8, we
3581 use the least significant bit to record whether we
3582 have initialized it already.
3583
3584 When doing a dynamic link, we create a .rela.got
3585 relocation entry to initialize the value. This is
3586 done in the finish_dynamic_symbol routine. */
3587 if ((off & 1) != 0)
3588 off &= ~1;
3589 else
3590 {
3591 bfd_put_64 (output_bfd, relocation,
3592 base_got->contents + off);
3593 /* Note that this is harmless for the GOTPLT64 case,
3594 as -1 | 1 still is -1. */
3595 h->got.offset |= 1;
3596 }
3597 }
3598 else
3599 unresolved_reloc = FALSE;
3600 }
3601 else
3602 {
3603 if (local_got_offsets == NULL)
3604 abort ();
3605
3606 off = local_got_offsets[r_symndx];
3607
3608 /* The offset must always be a multiple of 8. We use
3609 the least significant bit to record whether we have
3610 already generated the necessary reloc. */
3611 if ((off & 1) != 0)
3612 off &= ~1;
3613 else
3614 {
3615 bfd_put_64 (output_bfd, relocation,
3616 base_got->contents + off);
3617
3618 if (info->shared)
3619 {
3620 asection *s;
3621 Elf_Internal_Rela outrel;
3622
3623 /* We need to generate a R_X86_64_RELATIVE reloc
3624 for the dynamic linker. */
3625 s = htab->elf.srelgot;
3626 if (s == NULL)
3627 abort ();
3628
3629 outrel.r_offset = (base_got->output_section->vma
3630 + base_got->output_offset
3631 + off);
3632 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3633 outrel.r_addend = relocation;
3634 elf_append_rela (output_bfd, s, &outrel);
3635 }
3636
3637 local_got_offsets[r_symndx] |= 1;
3638 }
3639 }
3640
3641 if (off >= (bfd_vma) -2)
3642 abort ();
3643
3644 relocation = base_got->output_section->vma
3645 + base_got->output_offset + off;
3646 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3647 relocation -= htab->elf.sgotplt->output_section->vma
3648 - htab->elf.sgotplt->output_offset;
3649
3650 break;
3651
3652 case R_X86_64_GOTOFF64:
3653 /* Relocation is relative to the start of the global offset
3654 table. */
3655
3656 /* Check to make sure it isn't a protected function symbol
3657 for shared library since it may not be local when used
3658 as function address. */
3659 if (!info->executable
3660 && h
3661 && !SYMBOLIC_BIND (info, h)
3662 && h->def_regular
3663 && h->type == STT_FUNC
3664 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3665 {
3666 (*_bfd_error_handler)
3667 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3668 input_bfd, h->root.root.string);
3669 bfd_set_error (bfd_error_bad_value);
3670 return FALSE;
3671 }
3672
3673 /* Note that sgot is not involved in this
3674 calculation. We always want the start of .got.plt. If we
3675 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3676 permitted by the ABI, we might have to change this
3677 calculation. */
3678 relocation -= htab->elf.sgotplt->output_section->vma
3679 + htab->elf.sgotplt->output_offset;
3680 break;
3681
3682 case R_X86_64_GOTPC32:
3683 case R_X86_64_GOTPC64:
3684 /* Use global offset table as symbol value. */
3685 relocation = htab->elf.sgotplt->output_section->vma
3686 + htab->elf.sgotplt->output_offset;
3687 unresolved_reloc = FALSE;
3688 break;
3689
3690 case R_X86_64_PLTOFF64:
3691 /* Relocation is PLT entry relative to GOT. For local
3692 symbols it's the symbol itself relative to GOT. */
3693 if (h != NULL
3694 /* See PLT32 handling. */
3695 && h->plt.offset != (bfd_vma) -1
3696 && htab->elf.splt != NULL)
3697 {
3698 relocation = (htab->elf.splt->output_section->vma
3699 + htab->elf.splt->output_offset
3700 + h->plt.offset);
3701 unresolved_reloc = FALSE;
3702 }
3703
3704 relocation -= htab->elf.sgotplt->output_section->vma
3705 + htab->elf.sgotplt->output_offset;
3706 break;
3707
3708 case R_X86_64_PLT32:
3709 case R_X86_64_PLT32_BND:
3710 /* Relocation is to the entry for this symbol in the
3711 procedure linkage table. */
3712
3713 /* Resolve a PLT32 reloc against a local symbol directly,
3714 without using the procedure linkage table. */
3715 if (h == NULL)
3716 break;
3717
3718 if (h->plt.offset == (bfd_vma) -1
3719 || htab->elf.splt == NULL)
3720 {
3721 /* We didn't make a PLT entry for this symbol. This
3722 happens when statically linking PIC code, or when
3723 using -Bsymbolic. */
3724 break;
3725 }
3726
3727 relocation = (htab->elf.splt->output_section->vma
3728 + htab->elf.splt->output_offset
3729 + h->plt.offset);
3730 unresolved_reloc = FALSE;
3731 break;
3732
3733 case R_X86_64_SIZE32:
3734 case R_X86_64_SIZE64:
3735 /* Set to symbol size. */
3736 relocation = st_size;
3737 goto direct;
3738
3739 case R_X86_64_PC8:
3740 case R_X86_64_PC16:
3741 case R_X86_64_PC32:
3742 case R_X86_64_PC32_BND:
3743 if (info->shared
3744 && (input_section->flags & SEC_ALLOC) != 0
3745 && (input_section->flags & SEC_READONLY) != 0
3746 && h != NULL)
3747 {
3748 bfd_boolean fail = FALSE;
3749 bfd_boolean branch
3750 = ((r_type == R_X86_64_PC32
3751 || r_type == R_X86_64_PC32_BND)
3752 && is_32bit_relative_branch (contents, rel->r_offset));
3753
3754 if (SYMBOL_REFERENCES_LOCAL (info, h))
3755 {
3756 /* Symbol is referenced locally. Make sure it is
3757 defined locally or for a branch. */
3758 fail = !h->def_regular && !branch;
3759 }
3760 else
3761 {
3762 /* Symbol isn't referenced locally. We only allow
3763 branch to symbol with non-default visibility. */
3764 fail = (!branch
3765 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3766 }
3767
3768 if (fail)
3769 {
3770 const char *fmt;
3771 const char *v;
3772 const char *pic = "";
3773
3774 switch (ELF_ST_VISIBILITY (h->other))
3775 {
3776 case STV_HIDDEN:
3777 v = _("hidden symbol");
3778 break;
3779 case STV_INTERNAL:
3780 v = _("internal symbol");
3781 break;
3782 case STV_PROTECTED:
3783 v = _("protected symbol");
3784 break;
3785 default:
3786 v = _("symbol");
3787 pic = _("; recompile with -fPIC");
3788 break;
3789 }
3790
3791 if (h->def_regular)
3792 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3793 else
3794 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3795
3796 (*_bfd_error_handler) (fmt, input_bfd,
3797 x86_64_elf_howto_table[r_type].name,
3798 v, h->root.root.string, pic);
3799 bfd_set_error (bfd_error_bad_value);
3800 return FALSE;
3801 }
3802 }
3803 /* Fall through. */
3804
3805 case R_X86_64_8:
3806 case R_X86_64_16:
3807 case R_X86_64_32:
3808 case R_X86_64_PC64:
3809 case R_X86_64_64:
3810 /* FIXME: The ABI says the linker should make sure the value is
3811 the same when it's zeroextended to 64 bit. */
3812
3813 direct:
3814 if ((input_section->flags & SEC_ALLOC) == 0)
3815 break;
3816
3817 if ((info->shared
3818 && (h == NULL
3819 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3820 || h->root.type != bfd_link_hash_undefweak)
3821 && ((! IS_X86_64_PCREL_TYPE (r_type)
3822 && r_type != R_X86_64_SIZE32
3823 && r_type != R_X86_64_SIZE64)
3824 || ! SYMBOL_CALLS_LOCAL (info, h)))
3825 || (ELIMINATE_COPY_RELOCS
3826 && !info->shared
3827 && h != NULL
3828 && h->dynindx != -1
3829 && !h->non_got_ref
3830 && ((h->def_dynamic
3831 && !h->def_regular)
3832 || h->root.type == bfd_link_hash_undefweak
3833 || h->root.type == bfd_link_hash_undefined)))
3834 {
3835 Elf_Internal_Rela outrel;
3836 bfd_boolean skip, relocate;
3837 asection *sreloc;
3838
3839 /* When generating a shared object, these relocations
3840 are copied into the output file to be resolved at run
3841 time. */
3842 skip = FALSE;
3843 relocate = FALSE;
3844
3845 outrel.r_offset =
3846 _bfd_elf_section_offset (output_bfd, info, input_section,
3847 rel->r_offset);
3848 if (outrel.r_offset == (bfd_vma) -1)
3849 skip = TRUE;
3850 else if (outrel.r_offset == (bfd_vma) -2)
3851 skip = TRUE, relocate = TRUE;
3852
3853 outrel.r_offset += (input_section->output_section->vma
3854 + input_section->output_offset);
3855
3856 if (skip)
3857 memset (&outrel, 0, sizeof outrel);
3858
3859 /* h->dynindx may be -1 if this symbol was marked to
3860 become local. */
3861 else if (h != NULL
3862 && h->dynindx != -1
3863 && (IS_X86_64_PCREL_TYPE (r_type)
3864 || ! info->shared
3865 || ! SYMBOLIC_BIND (info, h)
3866 || ! h->def_regular))
3867 {
3868 outrel.r_info = htab->r_info (h->dynindx, r_type);
3869 outrel.r_addend = rel->r_addend;
3870 }
3871 else
3872 {
3873 /* This symbol is local, or marked to become local. */
3874 if (r_type == htab->pointer_r_type)
3875 {
3876 relocate = TRUE;
3877 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3878 outrel.r_addend = relocation + rel->r_addend;
3879 }
3880 else if (r_type == R_X86_64_64
3881 && !ABI_64_P (output_bfd))
3882 {
3883 relocate = TRUE;
3884 outrel.r_info = htab->r_info (0,
3885 R_X86_64_RELATIVE64);
3886 outrel.r_addend = relocation + rel->r_addend;
3887 /* Check addend overflow. */
3888 if ((outrel.r_addend & 0x80000000)
3889 != (rel->r_addend & 0x80000000))
3890 {
3891 const char *name;
3892 int addend = rel->r_addend;
3893 if (h && h->root.root.string)
3894 name = h->root.root.string;
3895 else
3896 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3897 sym, NULL);
3898 if (addend < 0)
3899 (*_bfd_error_handler)
3900 (_("%B: addend -0x%x in relocation %s against "
3901 "symbol `%s' at 0x%lx in section `%A' is "
3902 "out of range"),
3903 input_bfd, input_section, addend,
3904 x86_64_elf_howto_table[r_type].name,
3905 name, (unsigned long) rel->r_offset);
3906 else
3907 (*_bfd_error_handler)
3908 (_("%B: addend 0x%x in relocation %s against "
3909 "symbol `%s' at 0x%lx in section `%A' is "
3910 "out of range"),
3911 input_bfd, input_section, addend,
3912 x86_64_elf_howto_table[r_type].name,
3913 name, (unsigned long) rel->r_offset);
3914 bfd_set_error (bfd_error_bad_value);
3915 return FALSE;
3916 }
3917 }
3918 else
3919 {
3920 long sindx;
3921
3922 if (bfd_is_abs_section (sec))
3923 sindx = 0;
3924 else if (sec == NULL || sec->owner == NULL)
3925 {
3926 bfd_set_error (bfd_error_bad_value);
3927 return FALSE;
3928 }
3929 else
3930 {
3931 asection *osec;
3932
3933 /* We are turning this relocation into one
3934 against a section symbol. It would be
3935 proper to subtract the symbol's value,
3936 osec->vma, from the emitted reloc addend,
3937 but ld.so expects buggy relocs. */
3938 osec = sec->output_section;
3939 sindx = elf_section_data (osec)->dynindx;
3940 if (sindx == 0)
3941 {
3942 asection *oi = htab->elf.text_index_section;
3943 sindx = elf_section_data (oi)->dynindx;
3944 }
3945 BFD_ASSERT (sindx != 0);
3946 }
3947
3948 outrel.r_info = htab->r_info (sindx, r_type);
3949 outrel.r_addend = relocation + rel->r_addend;
3950 }
3951 }
3952
3953 sreloc = elf_section_data (input_section)->sreloc;
3954
3955 if (sreloc == NULL || sreloc->contents == NULL)
3956 {
3957 r = bfd_reloc_notsupported;
3958 goto check_relocation_error;
3959 }
3960
3961 elf_append_rela (output_bfd, sreloc, &outrel);
3962
3963 /* If this reloc is against an external symbol, we do
3964 not want to fiddle with the addend. Otherwise, we
3965 need to include the symbol value so that it becomes
3966 an addend for the dynamic reloc. */
3967 if (! relocate)
3968 continue;
3969 }
3970
3971 break;
3972
3973 case R_X86_64_TLSGD:
3974 case R_X86_64_GOTPC32_TLSDESC:
3975 case R_X86_64_TLSDESC_CALL:
3976 case R_X86_64_GOTTPOFF:
3977 tls_type = GOT_UNKNOWN;
3978 if (h == NULL && local_got_offsets)
3979 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3980 else if (h != NULL)
3981 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3982
3983 if (! elf_x86_64_tls_transition (info, input_bfd,
3984 input_section, contents,
3985 symtab_hdr, sym_hashes,
3986 &r_type, tls_type, rel,
3987 relend, h, r_symndx))
3988 return FALSE;
3989
3990 if (r_type == R_X86_64_TPOFF32)
3991 {
3992 bfd_vma roff = rel->r_offset;
3993
3994 BFD_ASSERT (! unresolved_reloc);
3995
3996 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3997 {
3998 /* GD->LE transition. For 64bit, change
3999 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4000 .word 0x6666; rex64; call __tls_get_addr
4001 into:
4002 movq %fs:0, %rax
4003 leaq foo@tpoff(%rax), %rax
4004 For 32bit, change
4005 leaq foo@tlsgd(%rip), %rdi
4006 .word 0x6666; rex64; call __tls_get_addr
4007 into:
4008 movl %fs:0, %eax
4009 leaq foo@tpoff(%rax), %rax
4010 For largepic, change:
4011 leaq foo@tlsgd(%rip), %rdi
4012 movabsq $__tls_get_addr@pltoff, %rax
4013 addq %rbx, %rax
4014 call *%rax
4015 into:
4016 movq %fs:0, %rax
4017 leaq foo@tpoff(%rax), %rax
4018 nopw 0x0(%rax,%rax,1) */
4019 int largepic = 0;
4020 if (ABI_64_P (output_bfd)
4021 && contents[roff + 5] == (bfd_byte) '\xb8')
4022 {
4023 memcpy (contents + roff - 3,
4024 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4025 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4026 largepic = 1;
4027 }
4028 else if (ABI_64_P (output_bfd))
4029 memcpy (contents + roff - 4,
4030 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4031 16);
4032 else
4033 memcpy (contents + roff - 3,
4034 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4035 15);
4036 bfd_put_32 (output_bfd,
4037 elf_x86_64_tpoff (info, relocation),
4038 contents + roff + 8 + largepic);
4039 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4040 rel++;
4041 continue;
4042 }
4043 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4044 {
4045 /* GDesc -> LE transition.
4046 It's originally something like:
4047 leaq x@tlsdesc(%rip), %rax
4048
4049 Change it to:
4050 movl $x@tpoff, %rax. */
4051
4052 unsigned int val, type;
4053
4054 type = bfd_get_8 (input_bfd, contents + roff - 3);
4055 val = bfd_get_8 (input_bfd, contents + roff - 1);
4056 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4057 contents + roff - 3);
4058 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4059 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4060 contents + roff - 1);
4061 bfd_put_32 (output_bfd,
4062 elf_x86_64_tpoff (info, relocation),
4063 contents + roff);
4064 continue;
4065 }
4066 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4067 {
4068 /* GDesc -> LE transition.
4069 It's originally:
4070 call *(%rax)
4071 Turn it into:
4072 xchg %ax,%ax. */
4073 bfd_put_8 (output_bfd, 0x66, contents + roff);
4074 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4075 continue;
4076 }
4077 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4078 {
4079 /* IE->LE transition:
4080 Originally it can be one of:
4081 movq foo@gottpoff(%rip), %reg
4082 addq foo@gottpoff(%rip), %reg
4083 We change it into:
4084 movq $foo, %reg
4085 leaq foo(%reg), %reg
4086 addq $foo, %reg. */
4087
4088 unsigned int val, type, reg;
4089
4090 val = bfd_get_8 (input_bfd, contents + roff - 3);
4091 type = bfd_get_8 (input_bfd, contents + roff - 2);
4092 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4093 reg >>= 3;
4094 if (type == 0x8b)
4095 {
4096 /* movq */
4097 if (val == 0x4c)
4098 bfd_put_8 (output_bfd, 0x49,
4099 contents + roff - 3);
4100 else if (!ABI_64_P (output_bfd) && val == 0x44)
4101 bfd_put_8 (output_bfd, 0x41,
4102 contents + roff - 3);
4103 bfd_put_8 (output_bfd, 0xc7,
4104 contents + roff - 2);
4105 bfd_put_8 (output_bfd, 0xc0 | reg,
4106 contents + roff - 1);
4107 }
4108 else if (reg == 4)
4109 {
4110 /* addq -> addq - addressing with %rsp/%r12 is
4111 special */
4112 if (val == 0x4c)
4113 bfd_put_8 (output_bfd, 0x49,
4114 contents + roff - 3);
4115 else if (!ABI_64_P (output_bfd) && val == 0x44)
4116 bfd_put_8 (output_bfd, 0x41,
4117 contents + roff - 3);
4118 bfd_put_8 (output_bfd, 0x81,
4119 contents + roff - 2);
4120 bfd_put_8 (output_bfd, 0xc0 | reg,
4121 contents + roff - 1);
4122 }
4123 else
4124 {
4125 /* addq -> leaq */
4126 if (val == 0x4c)
4127 bfd_put_8 (output_bfd, 0x4d,
4128 contents + roff - 3);
4129 else if (!ABI_64_P (output_bfd) && val == 0x44)
4130 bfd_put_8 (output_bfd, 0x45,
4131 contents + roff - 3);
4132 bfd_put_8 (output_bfd, 0x8d,
4133 contents + roff - 2);
4134 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4135 contents + roff - 1);
4136 }
4137 bfd_put_32 (output_bfd,
4138 elf_x86_64_tpoff (info, relocation),
4139 contents + roff);
4140 continue;
4141 }
4142 else
4143 BFD_ASSERT (FALSE);
4144 }
4145
4146 if (htab->elf.sgot == NULL)
4147 abort ();
4148
4149 if (h != NULL)
4150 {
4151 off = h->got.offset;
4152 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4153 }
4154 else
4155 {
4156 if (local_got_offsets == NULL)
4157 abort ();
4158
4159 off = local_got_offsets[r_symndx];
4160 offplt = local_tlsdesc_gotents[r_symndx];
4161 }
4162
4163 if ((off & 1) != 0)
4164 off &= ~1;
4165 else
4166 {
4167 Elf_Internal_Rela outrel;
4168 int dr_type, indx;
4169 asection *sreloc;
4170
4171 if (htab->elf.srelgot == NULL)
4172 abort ();
4173
4174 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4175
4176 if (GOT_TLS_GDESC_P (tls_type))
4177 {
4178 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4179 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4180 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4181 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4182 + htab->elf.sgotplt->output_offset
4183 + offplt
4184 + htab->sgotplt_jump_table_size);
4185 sreloc = htab->elf.srelplt;
4186 if (indx == 0)
4187 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4188 else
4189 outrel.r_addend = 0;
4190 elf_append_rela (output_bfd, sreloc, &outrel);
4191 }
4192
4193 sreloc = htab->elf.srelgot;
4194
4195 outrel.r_offset = (htab->elf.sgot->output_section->vma
4196 + htab->elf.sgot->output_offset + off);
4197
4198 if (GOT_TLS_GD_P (tls_type))
4199 dr_type = R_X86_64_DTPMOD64;
4200 else if (GOT_TLS_GDESC_P (tls_type))
4201 goto dr_done;
4202 else
4203 dr_type = R_X86_64_TPOFF64;
4204
4205 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4206 outrel.r_addend = 0;
4207 if ((dr_type == R_X86_64_TPOFF64
4208 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4209 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4210 outrel.r_info = htab->r_info (indx, dr_type);
4211
4212 elf_append_rela (output_bfd, sreloc, &outrel);
4213
4214 if (GOT_TLS_GD_P (tls_type))
4215 {
4216 if (indx == 0)
4217 {
4218 BFD_ASSERT (! unresolved_reloc);
4219 bfd_put_64 (output_bfd,
4220 relocation - elf_x86_64_dtpoff_base (info),
4221 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4222 }
4223 else
4224 {
4225 bfd_put_64 (output_bfd, 0,
4226 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4227 outrel.r_info = htab->r_info (indx,
4228 R_X86_64_DTPOFF64);
4229 outrel.r_offset += GOT_ENTRY_SIZE;
4230 elf_append_rela (output_bfd, sreloc,
4231 &outrel);
4232 }
4233 }
4234
4235 dr_done:
4236 if (h != NULL)
4237 h->got.offset |= 1;
4238 else
4239 local_got_offsets[r_symndx] |= 1;
4240 }
4241
4242 if (off >= (bfd_vma) -2
4243 && ! GOT_TLS_GDESC_P (tls_type))
4244 abort ();
4245 if (r_type == ELF32_R_TYPE (rel->r_info))
4246 {
4247 if (r_type == R_X86_64_GOTPC32_TLSDESC
4248 || r_type == R_X86_64_TLSDESC_CALL)
4249 relocation = htab->elf.sgotplt->output_section->vma
4250 + htab->elf.sgotplt->output_offset
4251 + offplt + htab->sgotplt_jump_table_size;
4252 else
4253 relocation = htab->elf.sgot->output_section->vma
4254 + htab->elf.sgot->output_offset + off;
4255 unresolved_reloc = FALSE;
4256 }
4257 else
4258 {
4259 bfd_vma roff = rel->r_offset;
4260
4261 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4262 {
4263 /* GD->IE transition. For 64bit, change
4264 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4265 .word 0x6666; rex64; call __tls_get_addr@plt
4266 into:
4267 movq %fs:0, %rax
4268 addq foo@gottpoff(%rip), %rax
4269 For 32bit, change
4270 leaq foo@tlsgd(%rip), %rdi
4271 .word 0x6666; rex64; call __tls_get_addr@plt
4272 into:
4273 movl %fs:0, %eax
4274 addq foo@gottpoff(%rip), %rax
4275 For largepic, change:
4276 leaq foo@tlsgd(%rip), %rdi
4277 movabsq $__tls_get_addr@pltoff, %rax
4278 addq %rbx, %rax
4279 call *%rax
4280 into:
4281 movq %fs:0, %rax
4282 addq foo@gottpoff(%rax), %rax
4283 nopw 0x0(%rax,%rax,1) */
4284 int largepic = 0;
4285 if (ABI_64_P (output_bfd)
4286 && contents[roff + 5] == (bfd_byte) '\xb8')
4287 {
4288 memcpy (contents + roff - 3,
4289 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4290 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4291 largepic = 1;
4292 }
4293 else if (ABI_64_P (output_bfd))
4294 memcpy (contents + roff - 4,
4295 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4296 16);
4297 else
4298 memcpy (contents + roff - 3,
4299 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4300 15);
4301
4302 relocation = (htab->elf.sgot->output_section->vma
4303 + htab->elf.sgot->output_offset + off
4304 - roff
4305 - largepic
4306 - input_section->output_section->vma
4307 - input_section->output_offset
4308 - 12);
4309 bfd_put_32 (output_bfd, relocation,
4310 contents + roff + 8 + largepic);
4311 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4312 rel++;
4313 continue;
4314 }
4315 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4316 {
4317 /* GDesc -> IE transition.
4318 It's originally something like:
4319 leaq x@tlsdesc(%rip), %rax
4320
4321 Change it to:
4322 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4323
4324 /* Now modify the instruction as appropriate. To
4325 turn a leaq into a movq in the form we use it, it
4326 suffices to change the second byte from 0x8d to
4327 0x8b. */
4328 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4329
4330 bfd_put_32 (output_bfd,
4331 htab->elf.sgot->output_section->vma
4332 + htab->elf.sgot->output_offset + off
4333 - rel->r_offset
4334 - input_section->output_section->vma
4335 - input_section->output_offset
4336 - 4,
4337 contents + roff);
4338 continue;
4339 }
4340 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4341 {
4342 /* GDesc -> IE transition.
4343 It's originally:
4344 call *(%rax)
4345
4346 Change it to:
4347 xchg %ax, %ax. */
4348
4349 bfd_put_8 (output_bfd, 0x66, contents + roff);
4350 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4351 continue;
4352 }
4353 else
4354 BFD_ASSERT (FALSE);
4355 }
4356 break;
4357
4358 case R_X86_64_TLSLD:
4359 if (! elf_x86_64_tls_transition (info, input_bfd,
4360 input_section, contents,
4361 symtab_hdr, sym_hashes,
4362 &r_type, GOT_UNKNOWN,
4363 rel, relend, h, r_symndx))
4364 return FALSE;
4365
4366 if (r_type != R_X86_64_TLSLD)
4367 {
4368 /* LD->LE transition:
4369 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4370 For 64bit, we change it into:
4371 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4372 For 32bit, we change it into:
4373 nopl 0x0(%rax); movl %fs:0, %eax.
4374 For largepic, change:
4375 leaq foo@tlsgd(%rip), %rdi
4376 movabsq $__tls_get_addr@pltoff, %rax
4377 addq %rbx, %rax
4378 call *%rax
4379 into:
4380 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4381 movq %fs:0, %eax */
4382
4383 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4384 if (ABI_64_P (output_bfd)
4385 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4386 memcpy (contents + rel->r_offset - 3,
4387 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4388 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4389 else if (ABI_64_P (output_bfd))
4390 memcpy (contents + rel->r_offset - 3,
4391 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4392 else
4393 memcpy (contents + rel->r_offset - 3,
4394 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4395 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4396 rel++;
4397 continue;
4398 }
4399
4400 if (htab->elf.sgot == NULL)
4401 abort ();
4402
4403 off = htab->tls_ld_got.offset;
4404 if (off & 1)
4405 off &= ~1;
4406 else
4407 {
4408 Elf_Internal_Rela outrel;
4409
4410 if (htab->elf.srelgot == NULL)
4411 abort ();
4412
4413 outrel.r_offset = (htab->elf.sgot->output_section->vma
4414 + htab->elf.sgot->output_offset + off);
4415
4416 bfd_put_64 (output_bfd, 0,
4417 htab->elf.sgot->contents + off);
4418 bfd_put_64 (output_bfd, 0,
4419 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4420 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4421 outrel.r_addend = 0;
4422 elf_append_rela (output_bfd, htab->elf.srelgot,
4423 &outrel);
4424 htab->tls_ld_got.offset |= 1;
4425 }
4426 relocation = htab->elf.sgot->output_section->vma
4427 + htab->elf.sgot->output_offset + off;
4428 unresolved_reloc = FALSE;
4429 break;
4430
4431 case R_X86_64_DTPOFF32:
4432 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4433 relocation -= elf_x86_64_dtpoff_base (info);
4434 else
4435 relocation = elf_x86_64_tpoff (info, relocation);
4436 break;
4437
4438 case R_X86_64_TPOFF32:
4439 case R_X86_64_TPOFF64:
4440 BFD_ASSERT (info->executable);
4441 relocation = elf_x86_64_tpoff (info, relocation);
4442 break;
4443
4444 case R_X86_64_DTPOFF64:
4445 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4446 relocation -= elf_x86_64_dtpoff_base (info);
4447 break;
4448
4449 default:
4450 break;
4451 }
4452
4453 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4454 because such sections are not SEC_ALLOC and thus ld.so will
4455 not process them. */
4456 if (unresolved_reloc
4457 && !((input_section->flags & SEC_DEBUGGING) != 0
4458 && h->def_dynamic)
4459 && _bfd_elf_section_offset (output_bfd, info, input_section,
4460 rel->r_offset) != (bfd_vma) -1)
4461 {
4462 (*_bfd_error_handler)
4463 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4464 input_bfd,
4465 input_section,
4466 (long) rel->r_offset,
4467 howto->name,
4468 h->root.root.string);
4469 return FALSE;
4470 }
4471
4472 do_relocation:
4473 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4474 contents, rel->r_offset,
4475 relocation, rel->r_addend);
4476
4477 check_relocation_error:
4478 if (r != bfd_reloc_ok)
4479 {
4480 const char *name;
4481
4482 if (h != NULL)
4483 name = h->root.root.string;
4484 else
4485 {
4486 name = bfd_elf_string_from_elf_section (input_bfd,
4487 symtab_hdr->sh_link,
4488 sym->st_name);
4489 if (name == NULL)
4490 return FALSE;
4491 if (*name == '\0')
4492 name = bfd_section_name (input_bfd, sec);
4493 }
4494
4495 if (r == bfd_reloc_overflow)
4496 {
4497 if (! ((*info->callbacks->reloc_overflow)
4498 (info, (h ? &h->root : NULL), name, howto->name,
4499 (bfd_vma) 0, input_bfd, input_section,
4500 rel->r_offset)))
4501 return FALSE;
4502 }
4503 else
4504 {
4505 (*_bfd_error_handler)
4506 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4507 input_bfd, input_section,
4508 (long) rel->r_offset, name, (int) r);
4509 return FALSE;
4510 }
4511 }
4512 }
4513
4514 return TRUE;
4515 }
4516
4517 /* Finish up dynamic symbol handling. We set the contents of various
4518 dynamic sections here. */
4519
4520 static bfd_boolean
4521 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4522 struct bfd_link_info *info,
4523 struct elf_link_hash_entry *h,
4524 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4525 {
4526 struct elf_x86_64_link_hash_table *htab;
4527 const struct elf_x86_64_backend_data *const abed
4528 = get_elf_x86_64_backend_data (output_bfd);
4529
4530 htab = elf_x86_64_hash_table (info);
4531 if (htab == NULL)
4532 return FALSE;
4533
4534 if (h->plt.offset != (bfd_vma) -1)
4535 {
4536 bfd_vma plt_index;
4537 bfd_vma got_offset;
4538 Elf_Internal_Rela rela;
4539 bfd_byte *loc;
4540 asection *plt, *gotplt, *relplt;
4541 const struct elf_backend_data *bed;
4542
4543 /* When building a static executable, use .iplt, .igot.plt and
4544 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4545 if (htab->elf.splt != NULL)
4546 {
4547 plt = htab->elf.splt;
4548 gotplt = htab->elf.sgotplt;
4549 relplt = htab->elf.srelplt;
4550 }
4551 else
4552 {
4553 plt = htab->elf.iplt;
4554 gotplt = htab->elf.igotplt;
4555 relplt = htab->elf.irelplt;
4556 }
4557
4558 /* This symbol has an entry in the procedure linkage table. Set
4559 it up. */
4560 if ((h->dynindx == -1
4561 && !((h->forced_local || info->executable)
4562 && h->def_regular
4563 && h->type == STT_GNU_IFUNC))
4564 || plt == NULL
4565 || gotplt == NULL
4566 || relplt == NULL)
4567 abort ();
4568
4569 /* Get the index in the procedure linkage table which
4570 corresponds to this symbol. This is the index of this symbol
4571 in all the symbols for which we are making plt entries. The
4572 first entry in the procedure linkage table is reserved.
4573
4574 Get the offset into the .got table of the entry that
4575 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4576 bytes. The first three are reserved for the dynamic linker.
4577
4578 For static executables, we don't reserve anything. */
4579
4580 if (plt == htab->elf.splt)
4581 {
4582 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4583 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4584 }
4585 else
4586 {
4587 got_offset = h->plt.offset / abed->plt_entry_size;
4588 got_offset = got_offset * GOT_ENTRY_SIZE;
4589 }
4590
4591 /* Fill in the entry in the procedure linkage table. */
4592 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4593 abed->plt_entry_size);
4594
4595 /* Insert the relocation positions of the plt section. */
4596
4597 /* Put offset the PC-relative instruction referring to the GOT entry,
4598 subtracting the size of that instruction. */
4599 bfd_put_32 (output_bfd,
4600 (gotplt->output_section->vma
4601 + gotplt->output_offset
4602 + got_offset
4603 - plt->output_section->vma
4604 - plt->output_offset
4605 - h->plt.offset
4606 - abed->plt_got_insn_size),
4607 plt->contents + h->plt.offset + abed->plt_got_offset);
4608
4609 /* Fill in the entry in the global offset table, initially this
4610 points to the second part of the PLT entry. */
4611 bfd_put_64 (output_bfd, (plt->output_section->vma
4612 + plt->output_offset
4613 + h->plt.offset + abed->plt_lazy_offset),
4614 gotplt->contents + got_offset);
4615
4616 /* Fill in the entry in the .rela.plt section. */
4617 rela.r_offset = (gotplt->output_section->vma
4618 + gotplt->output_offset
4619 + got_offset);
4620 if (h->dynindx == -1
4621 || ((info->executable
4622 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4623 && h->def_regular
4624 && h->type == STT_GNU_IFUNC))
4625 {
4626 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4627 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4628 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4629 rela.r_addend = (h->root.u.def.value
4630 + h->root.u.def.section->output_section->vma
4631 + h->root.u.def.section->output_offset);
4632 /* R_X86_64_IRELATIVE comes last. */
4633 plt_index = htab->next_irelative_index--;
4634 }
4635 else
4636 {
4637 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4638 rela.r_addend = 0;
4639 plt_index = htab->next_jump_slot_index++;
4640 }
4641
4642 /* Don't fill PLT entry for static executables. */
4643 if (plt == htab->elf.splt)
4644 {
4645 /* Put relocation index. */
4646 bfd_put_32 (output_bfd, plt_index,
4647 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4648 /* Put offset for jmp .PLT0. */
4649 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4650 plt->contents + h->plt.offset + abed->plt_plt_offset);
4651 }
4652
4653 bed = get_elf_backend_data (output_bfd);
4654 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4655 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4656
4657 if (!h->def_regular)
4658 {
4659 /* Mark the symbol as undefined, rather than as defined in
4660 the .plt section. Leave the value if there were any
4661 relocations where pointer equality matters (this is a clue
4662 for the dynamic linker, to make function pointer
4663 comparisons work between an application and shared
4664 library), otherwise set it to zero. If a function is only
4665 called from a binary, there is no need to slow down
4666 shared libraries because of that. */
4667 sym->st_shndx = SHN_UNDEF;
4668 if (!h->pointer_equality_needed)
4669 sym->st_value = 0;
4670 }
4671 }
4672
4673 if (h->got.offset != (bfd_vma) -1
4674 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4675 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4676 {
4677 Elf_Internal_Rela rela;
4678
4679 /* This symbol has an entry in the global offset table. Set it
4680 up. */
4681 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4682 abort ();
4683
4684 rela.r_offset = (htab->elf.sgot->output_section->vma
4685 + htab->elf.sgot->output_offset
4686 + (h->got.offset &~ (bfd_vma) 1));
4687
4688 /* If this is a static link, or it is a -Bsymbolic link and the
4689 symbol is defined locally or was forced to be local because
4690 of a version file, we just want to emit a RELATIVE reloc.
4691 The entry in the global offset table will already have been
4692 initialized in the relocate_section function. */
4693 if (h->def_regular
4694 && h->type == STT_GNU_IFUNC)
4695 {
4696 if (info->shared)
4697 {
4698 /* Generate R_X86_64_GLOB_DAT. */
4699 goto do_glob_dat;
4700 }
4701 else
4702 {
4703 asection *plt;
4704
4705 if (!h->pointer_equality_needed)
4706 abort ();
4707
4708 /* For non-shared object, we can't use .got.plt, which
4709 contains the real function addres if we need pointer
4710 equality. We load the GOT entry with the PLT entry. */
4711 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4712 bfd_put_64 (output_bfd, (plt->output_section->vma
4713 + plt->output_offset
4714 + h->plt.offset),
4715 htab->elf.sgot->contents + h->got.offset);
4716 return TRUE;
4717 }
4718 }
4719 else if (info->shared
4720 && SYMBOL_REFERENCES_LOCAL (info, h))
4721 {
4722 if (!h->def_regular)
4723 return FALSE;
4724 BFD_ASSERT((h->got.offset & 1) != 0);
4725 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4726 rela.r_addend = (h->root.u.def.value
4727 + h->root.u.def.section->output_section->vma
4728 + h->root.u.def.section->output_offset);
4729 }
4730 else
4731 {
4732 BFD_ASSERT((h->got.offset & 1) == 0);
4733 do_glob_dat:
4734 bfd_put_64 (output_bfd, (bfd_vma) 0,
4735 htab->elf.sgot->contents + h->got.offset);
4736 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4737 rela.r_addend = 0;
4738 }
4739
4740 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4741 }
4742
4743 if (h->needs_copy)
4744 {
4745 Elf_Internal_Rela rela;
4746
4747 /* This symbol needs a copy reloc. Set it up. */
4748
4749 if (h->dynindx == -1
4750 || (h->root.type != bfd_link_hash_defined
4751 && h->root.type != bfd_link_hash_defweak)
4752 || htab->srelbss == NULL)
4753 abort ();
4754
4755 rela.r_offset = (h->root.u.def.value
4756 + h->root.u.def.section->output_section->vma
4757 + h->root.u.def.section->output_offset);
4758 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4759 rela.r_addend = 0;
4760 elf_append_rela (output_bfd, htab->srelbss, &rela);
4761 }
4762
4763 return TRUE;
4764 }
4765
4766 /* Finish up local dynamic symbol handling. We set the contents of
4767 various dynamic sections here. */
4768
4769 static bfd_boolean
4770 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4771 {
4772 struct elf_link_hash_entry *h
4773 = (struct elf_link_hash_entry *) *slot;
4774 struct bfd_link_info *info
4775 = (struct bfd_link_info *) inf;
4776
4777 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4778 info, h, NULL);
4779 }
4780
4781 /* Used to decide how to sort relocs in an optimal manner for the
4782 dynamic linker, before writing them out. */
4783
4784 static enum elf_reloc_type_class
4785 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4786 const asection *rel_sec ATTRIBUTE_UNUSED,
4787 const Elf_Internal_Rela *rela)
4788 {
4789 switch ((int) ELF32_R_TYPE (rela->r_info))
4790 {
4791 case R_X86_64_RELATIVE:
4792 case R_X86_64_RELATIVE64:
4793 return reloc_class_relative;
4794 case R_X86_64_JUMP_SLOT:
4795 return reloc_class_plt;
4796 case R_X86_64_COPY:
4797 return reloc_class_copy;
4798 default:
4799 return reloc_class_normal;
4800 }
4801 }
4802
4803 /* Finish up the dynamic sections. */
4804
4805 static bfd_boolean
4806 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4807 struct bfd_link_info *info)
4808 {
4809 struct elf_x86_64_link_hash_table *htab;
4810 bfd *dynobj;
4811 asection *sdyn;
4812 const struct elf_x86_64_backend_data *const abed
4813 = get_elf_x86_64_backend_data (output_bfd);
4814
4815 htab = elf_x86_64_hash_table (info);
4816 if (htab == NULL)
4817 return FALSE;
4818
4819 dynobj = htab->elf.dynobj;
4820 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4821
4822 if (htab->elf.dynamic_sections_created)
4823 {
4824 bfd_byte *dyncon, *dynconend;
4825 const struct elf_backend_data *bed;
4826 bfd_size_type sizeof_dyn;
4827
4828 if (sdyn == NULL || htab->elf.sgot == NULL)
4829 abort ();
4830
4831 bed = get_elf_backend_data (dynobj);
4832 sizeof_dyn = bed->s->sizeof_dyn;
4833 dyncon = sdyn->contents;
4834 dynconend = sdyn->contents + sdyn->size;
4835 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4836 {
4837 Elf_Internal_Dyn dyn;
4838 asection *s;
4839
4840 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4841
4842 switch (dyn.d_tag)
4843 {
4844 default:
4845 continue;
4846
4847 case DT_PLTGOT:
4848 s = htab->elf.sgotplt;
4849 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4850 break;
4851
4852 case DT_JMPREL:
4853 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4854 break;
4855
4856 case DT_PLTRELSZ:
4857 s = htab->elf.srelplt->output_section;
4858 dyn.d_un.d_val = s->size;
4859 break;
4860
4861 case DT_RELASZ:
4862 /* The procedure linkage table relocs (DT_JMPREL) should
4863 not be included in the overall relocs (DT_RELA).
4864 Therefore, we override the DT_RELASZ entry here to
4865 make it not include the JMPREL relocs. Since the
4866 linker script arranges for .rela.plt to follow all
4867 other relocation sections, we don't have to worry
4868 about changing the DT_RELA entry. */
4869 if (htab->elf.srelplt != NULL)
4870 {
4871 s = htab->elf.srelplt->output_section;
4872 dyn.d_un.d_val -= s->size;
4873 }
4874 break;
4875
4876 case DT_TLSDESC_PLT:
4877 s = htab->elf.splt;
4878 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4879 + htab->tlsdesc_plt;
4880 break;
4881
4882 case DT_TLSDESC_GOT:
4883 s = htab->elf.sgot;
4884 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4885 + htab->tlsdesc_got;
4886 break;
4887 }
4888
4889 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4890 }
4891
4892 /* Fill in the special first entry in the procedure linkage table. */
4893 if (htab->elf.splt && htab->elf.splt->size > 0)
4894 {
4895 /* Fill in the first entry in the procedure linkage table. */
4896 memcpy (htab->elf.splt->contents,
4897 abed->plt0_entry, abed->plt_entry_size);
4898 /* Add offset for pushq GOT+8(%rip), since the instruction
4899 uses 6 bytes subtract this value. */
4900 bfd_put_32 (output_bfd,
4901 (htab->elf.sgotplt->output_section->vma
4902 + htab->elf.sgotplt->output_offset
4903 + 8
4904 - htab->elf.splt->output_section->vma
4905 - htab->elf.splt->output_offset
4906 - 6),
4907 htab->elf.splt->contents + abed->plt0_got1_offset);
4908 /* Add offset for the PC-relative instruction accessing GOT+16,
4909 subtracting the offset to the end of that instruction. */
4910 bfd_put_32 (output_bfd,
4911 (htab->elf.sgotplt->output_section->vma
4912 + htab->elf.sgotplt->output_offset
4913 + 16
4914 - htab->elf.splt->output_section->vma
4915 - htab->elf.splt->output_offset
4916 - abed->plt0_got2_insn_end),
4917 htab->elf.splt->contents + abed->plt0_got2_offset);
4918
4919 elf_section_data (htab->elf.splt->output_section)
4920 ->this_hdr.sh_entsize = abed->plt_entry_size;
4921
4922 if (htab->tlsdesc_plt)
4923 {
4924 bfd_put_64 (output_bfd, (bfd_vma) 0,
4925 htab->elf.sgot->contents + htab->tlsdesc_got);
4926
4927 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4928 abed->plt0_entry, abed->plt_entry_size);
4929
4930 /* Add offset for pushq GOT+8(%rip), since the
4931 instruction uses 6 bytes subtract this value. */
4932 bfd_put_32 (output_bfd,
4933 (htab->elf.sgotplt->output_section->vma
4934 + htab->elf.sgotplt->output_offset
4935 + 8
4936 - htab->elf.splt->output_section->vma
4937 - htab->elf.splt->output_offset
4938 - htab->tlsdesc_plt
4939 - 6),
4940 htab->elf.splt->contents
4941 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4942 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4943 where TGD stands for htab->tlsdesc_got, subtracting the offset
4944 to the end of that instruction. */
4945 bfd_put_32 (output_bfd,
4946 (htab->elf.sgot->output_section->vma
4947 + htab->elf.sgot->output_offset
4948 + htab->tlsdesc_got
4949 - htab->elf.splt->output_section->vma
4950 - htab->elf.splt->output_offset
4951 - htab->tlsdesc_plt
4952 - abed->plt0_got2_insn_end),
4953 htab->elf.splt->contents
4954 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4955 }
4956 }
4957 }
4958
4959 if (htab->elf.sgotplt)
4960 {
4961 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4962 {
4963 (*_bfd_error_handler)
4964 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4965 return FALSE;
4966 }
4967
4968 /* Fill in the first three entries in the global offset table. */
4969 if (htab->elf.sgotplt->size > 0)
4970 {
4971 /* Set the first entry in the global offset table to the address of
4972 the dynamic section. */
4973 if (sdyn == NULL)
4974 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4975 else
4976 bfd_put_64 (output_bfd,
4977 sdyn->output_section->vma + sdyn->output_offset,
4978 htab->elf.sgotplt->contents);
4979 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4980 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4981 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4982 }
4983
4984 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4985 GOT_ENTRY_SIZE;
4986 }
4987
4988 /* Adjust .eh_frame for .plt section. */
4989 if (htab->plt_eh_frame != NULL
4990 && htab->plt_eh_frame->contents != NULL)
4991 {
4992 if (htab->elf.splt != NULL
4993 && htab->elf.splt->size != 0
4994 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4995 && htab->elf.splt->output_section != NULL
4996 && htab->plt_eh_frame->output_section != NULL)
4997 {
4998 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4999 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5000 + htab->plt_eh_frame->output_offset
5001 + PLT_FDE_START_OFFSET;
5002 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5003 htab->plt_eh_frame->contents
5004 + PLT_FDE_START_OFFSET);
5005 }
5006 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5007 {
5008 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5009 htab->plt_eh_frame,
5010 htab->plt_eh_frame->contents))
5011 return FALSE;
5012 }
5013 }
5014
5015 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5016 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5017 = GOT_ENTRY_SIZE;
5018
5019 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5020 htab_traverse (htab->loc_hash_table,
5021 elf_x86_64_finish_local_dynamic_symbol,
5022 info);
5023
5024 return TRUE;
5025 }
5026
5027 /* Return address for Ith PLT stub in section PLT, for relocation REL
5028 or (bfd_vma) -1 if it should not be included. */
5029
5030 static bfd_vma
5031 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
5032 const arelent *rel ATTRIBUTE_UNUSED)
5033 {
5034 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
5035 }
5036
5037 /* Handle an x86-64 specific section when reading an object file. This
5038 is called when elfcode.h finds a section with an unknown type. */
5039
5040 static bfd_boolean
5041 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5042 const char *name, int shindex)
5043 {
5044 if (hdr->sh_type != SHT_X86_64_UNWIND)
5045 return FALSE;
5046
5047 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5048 return FALSE;
5049
5050 return TRUE;
5051 }
5052
5053 /* Hook called by the linker routine which adds symbols from an object
5054 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5055 of .bss. */
5056
5057 static bfd_boolean
5058 elf_x86_64_add_symbol_hook (bfd *abfd,
5059 struct bfd_link_info *info,
5060 Elf_Internal_Sym *sym,
5061 const char **namep ATTRIBUTE_UNUSED,
5062 flagword *flagsp ATTRIBUTE_UNUSED,
5063 asection **secp,
5064 bfd_vma *valp)
5065 {
5066 asection *lcomm;
5067
5068 switch (sym->st_shndx)
5069 {
5070 case SHN_X86_64_LCOMMON:
5071 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5072 if (lcomm == NULL)
5073 {
5074 lcomm = bfd_make_section_with_flags (abfd,
5075 "LARGE_COMMON",
5076 (SEC_ALLOC
5077 | SEC_IS_COMMON
5078 | SEC_LINKER_CREATED));
5079 if (lcomm == NULL)
5080 return FALSE;
5081 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5082 }
5083 *secp = lcomm;
5084 *valp = sym->st_size;
5085 return TRUE;
5086 }
5087
5088 if ((abfd->flags & DYNAMIC) == 0
5089 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5090 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
5091 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5092
5093 return TRUE;
5094 }
5095
5096
5097 /* Given a BFD section, try to locate the corresponding ELF section
5098 index. */
5099
5100 static bfd_boolean
5101 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5102 asection *sec, int *index_return)
5103 {
5104 if (sec == &_bfd_elf_large_com_section)
5105 {
5106 *index_return = SHN_X86_64_LCOMMON;
5107 return TRUE;
5108 }
5109 return FALSE;
5110 }
5111
5112 /* Process a symbol. */
5113
5114 static void
5115 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5116 asymbol *asym)
5117 {
5118 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5119
5120 switch (elfsym->internal_elf_sym.st_shndx)
5121 {
5122 case SHN_X86_64_LCOMMON:
5123 asym->section = &_bfd_elf_large_com_section;
5124 asym->value = elfsym->internal_elf_sym.st_size;
5125 /* Common symbol doesn't set BSF_GLOBAL. */
5126 asym->flags &= ~BSF_GLOBAL;
5127 break;
5128 }
5129 }
5130
5131 static bfd_boolean
5132 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5133 {
5134 return (sym->st_shndx == SHN_COMMON
5135 || sym->st_shndx == SHN_X86_64_LCOMMON);
5136 }
5137
5138 static unsigned int
5139 elf_x86_64_common_section_index (asection *sec)
5140 {
5141 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5142 return SHN_COMMON;
5143 else
5144 return SHN_X86_64_LCOMMON;
5145 }
5146
5147 static asection *
5148 elf_x86_64_common_section (asection *sec)
5149 {
5150 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5151 return bfd_com_section_ptr;
5152 else
5153 return &_bfd_elf_large_com_section;
5154 }
5155
5156 static bfd_boolean
5157 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5158 const Elf_Internal_Sym *sym,
5159 asection **psec,
5160 bfd_boolean newdef,
5161 bfd_boolean olddef,
5162 bfd *oldbfd,
5163 const asection *oldsec)
5164 {
5165 /* A normal common symbol and a large common symbol result in a
5166 normal common symbol. We turn the large common symbol into a
5167 normal one. */
5168 if (!olddef
5169 && h->root.type == bfd_link_hash_common
5170 && !newdef
5171 && bfd_is_com_section (*psec)
5172 && oldsec != *psec)
5173 {
5174 if (sym->st_shndx == SHN_COMMON
5175 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5176 {
5177 h->root.u.c.p->section
5178 = bfd_make_section_old_way (oldbfd, "COMMON");
5179 h->root.u.c.p->section->flags = SEC_ALLOC;
5180 }
5181 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5182 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5183 *psec = bfd_com_section_ptr;
5184 }
5185
5186 return TRUE;
5187 }
5188
5189 static int
5190 elf_x86_64_additional_program_headers (bfd *abfd,
5191 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5192 {
5193 asection *s;
5194 int count = 0;
5195
5196 /* Check to see if we need a large readonly segment. */
5197 s = bfd_get_section_by_name (abfd, ".lrodata");
5198 if (s && (s->flags & SEC_LOAD))
5199 count++;
5200
5201 /* Check to see if we need a large data segment. Since .lbss sections
5202 is placed right after the .bss section, there should be no need for
5203 a large data segment just because of .lbss. */
5204 s = bfd_get_section_by_name (abfd, ".ldata");
5205 if (s && (s->flags & SEC_LOAD))
5206 count++;
5207
5208 return count;
5209 }
5210
5211 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5212
5213 static bfd_boolean
5214 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5215 {
5216 if (h->plt.offset != (bfd_vma) -1
5217 && !h->def_regular
5218 && !h->pointer_equality_needed)
5219 return FALSE;
5220
5221 return _bfd_elf_hash_symbol (h);
5222 }
5223
5224 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5225
5226 static bfd_boolean
5227 elf_x86_64_relocs_compatible (const bfd_target *input,
5228 const bfd_target *output)
5229 {
5230 return ((xvec_get_elf_backend_data (input)->s->elfclass
5231 == xvec_get_elf_backend_data (output)->s->elfclass)
5232 && _bfd_elf_relocs_compatible (input, output));
5233 }
5234
5235 static const struct bfd_elf_special_section
5236 elf_x86_64_special_sections[]=
5237 {
5238 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5239 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5240 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5241 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5242 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5243 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5244 { NULL, 0, 0, 0, 0 }
5245 };
5246
5247 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5248 #define TARGET_LITTLE_NAME "elf64-x86-64"
5249 #define ELF_ARCH bfd_arch_i386
5250 #define ELF_TARGET_ID X86_64_ELF_DATA
5251 #define ELF_MACHINE_CODE EM_X86_64
5252 #define ELF_MAXPAGESIZE 0x200000
5253 #define ELF_MINPAGESIZE 0x1000
5254 #define ELF_COMMONPAGESIZE 0x1000
5255
5256 #define elf_backend_can_gc_sections 1
5257 #define elf_backend_can_refcount 1
5258 #define elf_backend_want_got_plt 1
5259 #define elf_backend_plt_readonly 1
5260 #define elf_backend_want_plt_sym 0
5261 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5262 #define elf_backend_rela_normal 1
5263 #define elf_backend_plt_alignment 4
5264
5265 #define elf_info_to_howto elf_x86_64_info_to_howto
5266
5267 #define bfd_elf64_bfd_link_hash_table_create \
5268 elf_x86_64_link_hash_table_create
5269 #define bfd_elf64_bfd_link_hash_table_free \
5270 elf_x86_64_link_hash_table_free
5271 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5272 #define bfd_elf64_bfd_reloc_name_lookup \
5273 elf_x86_64_reloc_name_lookup
5274
5275 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5276 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5277 #define elf_backend_check_relocs elf_x86_64_check_relocs
5278 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5279 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5280 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5281 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5282 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5283 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5284 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5285 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5286 #ifdef CORE_HEADER
5287 #define elf_backend_write_core_note elf_x86_64_write_core_note
5288 #endif
5289 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5290 #define elf_backend_relocate_section elf_x86_64_relocate_section
5291 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5292 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5293 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5294 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5295 #define elf_backend_object_p elf64_x86_64_elf_object_p
5296 #define bfd_elf64_mkobject elf_x86_64_mkobject
5297
5298 #define elf_backend_section_from_shdr \
5299 elf_x86_64_section_from_shdr
5300
5301 #define elf_backend_section_from_bfd_section \
5302 elf_x86_64_elf_section_from_bfd_section
5303 #define elf_backend_add_symbol_hook \
5304 elf_x86_64_add_symbol_hook
5305 #define elf_backend_symbol_processing \
5306 elf_x86_64_symbol_processing
5307 #define elf_backend_common_section_index \
5308 elf_x86_64_common_section_index
5309 #define elf_backend_common_section \
5310 elf_x86_64_common_section
5311 #define elf_backend_common_definition \
5312 elf_x86_64_common_definition
5313 #define elf_backend_merge_symbol \
5314 elf_x86_64_merge_symbol
5315 #define elf_backend_special_sections \
5316 elf_x86_64_special_sections
5317 #define elf_backend_additional_program_headers \
5318 elf_x86_64_additional_program_headers
5319 #define elf_backend_hash_symbol \
5320 elf_x86_64_hash_symbol
5321
5322 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5323
5324 #include "elf64-target.h"
5325
5326 /* FreeBSD support. */
5327
5328 #undef TARGET_LITTLE_SYM
5329 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5330 #undef TARGET_LITTLE_NAME
5331 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5332
5333 #undef ELF_OSABI
5334 #define ELF_OSABI ELFOSABI_FREEBSD
5335
5336 #undef elf64_bed
5337 #define elf64_bed elf64_x86_64_fbsd_bed
5338
5339 #include "elf64-target.h"
5340
5341 /* Solaris 2 support. */
5342
5343 #undef TARGET_LITTLE_SYM
5344 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5345 #undef TARGET_LITTLE_NAME
5346 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5347
5348 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5349 objects won't be recognized. */
5350 #undef ELF_OSABI
5351
5352 #undef elf64_bed
5353 #define elf64_bed elf64_x86_64_sol2_bed
5354
5355 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5356 boundary. */
5357 #undef elf_backend_static_tls_alignment
5358 #define elf_backend_static_tls_alignment 16
5359
5360 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5361
5362 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5363 File, p.63. */
5364 #undef elf_backend_want_plt_sym
5365 #define elf_backend_want_plt_sym 1
5366
5367 #include "elf64-target.h"
5368
5369 /* Native Client support. */
5370
5371 static bfd_boolean
5372 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
5373 {
5374 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
5375 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
5376 return TRUE;
5377 }
5378
5379 #undef TARGET_LITTLE_SYM
5380 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5381 #undef TARGET_LITTLE_NAME
5382 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5383 #undef elf64_bed
5384 #define elf64_bed elf64_x86_64_nacl_bed
5385
5386 #undef ELF_MAXPAGESIZE
5387 #undef ELF_MINPAGESIZE
5388 #undef ELF_COMMONPAGESIZE
5389 #define ELF_MAXPAGESIZE 0x10000
5390 #define ELF_MINPAGESIZE 0x10000
5391 #define ELF_COMMONPAGESIZE 0x10000
5392
5393 /* Restore defaults. */
5394 #undef ELF_OSABI
5395 #undef elf_backend_static_tls_alignment
5396 #undef elf_backend_want_plt_sym
5397 #define elf_backend_want_plt_sym 0
5398
5399 /* NaCl uses substantially different PLT entries for the same effects. */
5400
5401 #undef elf_backend_plt_alignment
5402 #define elf_backend_plt_alignment 5
5403 #define NACL_PLT_ENTRY_SIZE 64
5404 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5405
5406 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5407 {
5408 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5409 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5410 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5411 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5412 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5413
5414 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5415 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
5416
5417 /* 32 bytes of nop to pad out to the standard size. */
5418 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5419 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5420 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5421 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5422 0x66, /* excess data32 prefix */
5423 0x90 /* nop */
5424 };
5425
5426 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5427 {
5428 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5429 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5430 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5431 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5432
5433 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5434 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5435 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5436
5437 /* Lazy GOT entries point here (32-byte aligned). */
5438 0x68, /* pushq immediate */
5439 0, 0, 0, 0, /* replaced with index into relocation table. */
5440 0xe9, /* jmp relative */
5441 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5442
5443 /* 22 bytes of nop to pad out to the standard size. */
5444 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5445 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5446 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5447 };
5448
5449 /* .eh_frame covering the .plt section. */
5450
5451 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5452 {
5453 #if (PLT_CIE_LENGTH != 20 \
5454 || PLT_FDE_LENGTH != 36 \
5455 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5456 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5457 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5458 #endif
5459 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5460 0, 0, 0, 0, /* CIE ID */
5461 1, /* CIE version */
5462 'z', 'R', 0, /* Augmentation string */
5463 1, /* Code alignment factor */
5464 0x78, /* Data alignment factor */
5465 16, /* Return address column */
5466 1, /* Augmentation size */
5467 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5468 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5469 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5470 DW_CFA_nop, DW_CFA_nop,
5471
5472 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5473 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5474 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5475 0, 0, 0, 0, /* .plt size goes here */
5476 0, /* Augmentation size */
5477 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5478 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5479 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5480 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5481 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5482 13, /* Block length */
5483 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5484 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5485 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5486 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5487 DW_CFA_nop, DW_CFA_nop
5488 };
5489
5490 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5491 {
5492 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5493 elf_x86_64_nacl_plt_entry, /* plt_entry */
5494 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5495 2, /* plt0_got1_offset */
5496 9, /* plt0_got2_offset */
5497 13, /* plt0_got2_insn_end */
5498 3, /* plt_got_offset */
5499 33, /* plt_reloc_offset */
5500 38, /* plt_plt_offset */
5501 7, /* plt_got_insn_size */
5502 42, /* plt_plt_insn_end */
5503 32, /* plt_lazy_offset */
5504 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5505 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5506 };
5507
5508 #undef elf_backend_arch_data
5509 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5510
5511 #undef elf_backend_object_p
5512 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
5513 #undef elf_backend_modify_segment_map
5514 #define elf_backend_modify_segment_map nacl_modify_segment_map
5515 #undef elf_backend_modify_program_headers
5516 #define elf_backend_modify_program_headers nacl_modify_program_headers
5517 #undef elf_backend_final_write_processing
5518 #define elf_backend_final_write_processing nacl_final_write_processing
5519
5520 #include "elf64-target.h"
5521
5522 /* Native Client x32 support. */
5523
5524 static bfd_boolean
5525 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
5526 {
5527 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
5528 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
5529 return TRUE;
5530 }
5531
5532 #undef TARGET_LITTLE_SYM
5533 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5534 #undef TARGET_LITTLE_NAME
5535 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5536 #undef elf32_bed
5537 #define elf32_bed elf32_x86_64_nacl_bed
5538
5539 #define bfd_elf32_bfd_link_hash_table_create \
5540 elf_x86_64_link_hash_table_create
5541 #define bfd_elf32_bfd_link_hash_table_free \
5542 elf_x86_64_link_hash_table_free
5543 #define bfd_elf32_bfd_reloc_type_lookup \
5544 elf_x86_64_reloc_type_lookup
5545 #define bfd_elf32_bfd_reloc_name_lookup \
5546 elf_x86_64_reloc_name_lookup
5547 #define bfd_elf32_mkobject \
5548 elf_x86_64_mkobject
5549
5550 #undef elf_backend_object_p
5551 #define elf_backend_object_p \
5552 elf32_x86_64_nacl_elf_object_p
5553
5554 #undef elf_backend_bfd_from_remote_memory
5555 #define elf_backend_bfd_from_remote_memory \
5556 _bfd_elf32_bfd_from_remote_memory
5557
5558 #undef elf_backend_size_info
5559 #define elf_backend_size_info \
5560 _bfd_elf32_size_info
5561
5562 #include "elf32-target.h"
5563
5564 /* Restore defaults. */
5565 #undef elf_backend_object_p
5566 #define elf_backend_object_p elf64_x86_64_elf_object_p
5567 #undef elf_backend_bfd_from_remote_memory
5568 #undef elf_backend_size_info
5569 #undef elf_backend_modify_segment_map
5570 #undef elf_backend_modify_program_headers
5571 #undef elf_backend_final_write_processing
5572
5573 /* Intel L1OM support. */
5574
5575 static bfd_boolean
5576 elf64_l1om_elf_object_p (bfd *abfd)
5577 {
5578 /* Set the right machine number for an L1OM elf64 file. */
5579 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5580 return TRUE;
5581 }
5582
5583 #undef TARGET_LITTLE_SYM
5584 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5585 #undef TARGET_LITTLE_NAME
5586 #define TARGET_LITTLE_NAME "elf64-l1om"
5587 #undef ELF_ARCH
5588 #define ELF_ARCH bfd_arch_l1om
5589
5590 #undef ELF_MACHINE_CODE
5591 #define ELF_MACHINE_CODE EM_L1OM
5592
5593 #undef ELF_OSABI
5594
5595 #undef elf64_bed
5596 #define elf64_bed elf64_l1om_bed
5597
5598 #undef elf_backend_object_p
5599 #define elf_backend_object_p elf64_l1om_elf_object_p
5600
5601 /* Restore defaults. */
5602 #undef ELF_MAXPAGESIZE
5603 #undef ELF_MINPAGESIZE
5604 #undef ELF_COMMONPAGESIZE
5605 #define ELF_MAXPAGESIZE 0x200000
5606 #define ELF_MINPAGESIZE 0x1000
5607 #define ELF_COMMONPAGESIZE 0x1000
5608 #undef elf_backend_plt_alignment
5609 #define elf_backend_plt_alignment 4
5610 #undef elf_backend_arch_data
5611 #define elf_backend_arch_data &elf_x86_64_arch_bed
5612
5613 #include "elf64-target.h"
5614
5615 /* FreeBSD L1OM support. */
5616
5617 #undef TARGET_LITTLE_SYM
5618 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5619 #undef TARGET_LITTLE_NAME
5620 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5621
5622 #undef ELF_OSABI
5623 #define ELF_OSABI ELFOSABI_FREEBSD
5624
5625 #undef elf64_bed
5626 #define elf64_bed elf64_l1om_fbsd_bed
5627
5628 #include "elf64-target.h"
5629
5630 /* Intel K1OM support. */
5631
5632 static bfd_boolean
5633 elf64_k1om_elf_object_p (bfd *abfd)
5634 {
5635 /* Set the right machine number for an K1OM elf64 file. */
5636 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5637 return TRUE;
5638 }
5639
5640 #undef TARGET_LITTLE_SYM
5641 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5642 #undef TARGET_LITTLE_NAME
5643 #define TARGET_LITTLE_NAME "elf64-k1om"
5644 #undef ELF_ARCH
5645 #define ELF_ARCH bfd_arch_k1om
5646
5647 #undef ELF_MACHINE_CODE
5648 #define ELF_MACHINE_CODE EM_K1OM
5649
5650 #undef ELF_OSABI
5651
5652 #undef elf64_bed
5653 #define elf64_bed elf64_k1om_bed
5654
5655 #undef elf_backend_object_p
5656 #define elf_backend_object_p elf64_k1om_elf_object_p
5657
5658 #undef elf_backend_static_tls_alignment
5659
5660 #undef elf_backend_want_plt_sym
5661 #define elf_backend_want_plt_sym 0
5662
5663 #include "elf64-target.h"
5664
5665 /* FreeBSD K1OM support. */
5666
5667 #undef TARGET_LITTLE_SYM
5668 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5669 #undef TARGET_LITTLE_NAME
5670 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5671
5672 #undef ELF_OSABI
5673 #define ELF_OSABI ELFOSABI_FREEBSD
5674
5675 #undef elf64_bed
5676 #define elf64_bed elf64_k1om_fbsd_bed
5677
5678 #include "elf64-target.h"
5679
5680 /* 32bit x86-64 support. */
5681
5682 #undef TARGET_LITTLE_SYM
5683 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5684 #undef TARGET_LITTLE_NAME
5685 #define TARGET_LITTLE_NAME "elf32-x86-64"
5686 #undef elf32_bed
5687
5688 #undef ELF_ARCH
5689 #define ELF_ARCH bfd_arch_i386
5690
5691 #undef ELF_MACHINE_CODE
5692 #define ELF_MACHINE_CODE EM_X86_64
5693
5694 #undef ELF_OSABI
5695
5696 #undef elf_backend_object_p
5697 #define elf_backend_object_p \
5698 elf32_x86_64_elf_object_p
5699
5700 #undef elf_backend_bfd_from_remote_memory
5701 #define elf_backend_bfd_from_remote_memory \
5702 _bfd_elf32_bfd_from_remote_memory
5703
5704 #undef elf_backend_size_info
5705 #define elf_backend_size_info \
5706 _bfd_elf32_size_info
5707
5708 #include "elf32-target.h"
This page took 0.156948 seconds and 4 git commands to generate.