Add initial Intel K1OM support.
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "bfd_stdint.h"
30 #include "objalloc.h"
31 #include "hashtab.h"
32 #include "dwarf2.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 EMPTY_HOWTO (32),
150 EMPTY_HOWTO (33),
151 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
152 complain_overflow_bitfield, bfd_elf_generic_reloc,
153 "R_X86_64_GOTPC32_TLSDESC",
154 FALSE, 0xffffffff, 0xffffffff, TRUE),
155 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
156 complain_overflow_dont, bfd_elf_generic_reloc,
157 "R_X86_64_TLSDESC_CALL",
158 FALSE, 0, 0, FALSE),
159 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
160 complain_overflow_bitfield, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC",
162 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
163 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
164 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
165 MINUS_ONE, FALSE),
166
167 /* We have a gap in the reloc numbers here.
168 R_X86_64_standard counts the number up to this point, and
169 R_X86_64_vt_offset is the value to subtract from a reloc type of
170 R_X86_64_GNU_VT* to form an index into this table. */
171 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
172 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
173
174 /* GNU extension to record C++ vtable hierarchy. */
175 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
176 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
177
178 /* GNU extension to record C++ vtable member usage. */
179 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
180 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
181 FALSE)
182 };
183
184 #define IS_X86_64_PCREL_TYPE(TYPE) \
185 ( ((TYPE) == R_X86_64_PC8) \
186 || ((TYPE) == R_X86_64_PC16) \
187 || ((TYPE) == R_X86_64_PC32) \
188 || ((TYPE) == R_X86_64_PC64))
189
190 /* Map BFD relocs to the x86_64 elf relocs. */
191 struct elf_reloc_map
192 {
193 bfd_reloc_code_real_type bfd_reloc_val;
194 unsigned char elf_reloc_val;
195 };
196
197 static const struct elf_reloc_map x86_64_reloc_map[] =
198 {
199 { BFD_RELOC_NONE, R_X86_64_NONE, },
200 { BFD_RELOC_64, R_X86_64_64, },
201 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
202 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
203 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
204 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
205 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
206 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
207 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
208 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
209 { BFD_RELOC_32, R_X86_64_32, },
210 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
211 { BFD_RELOC_16, R_X86_64_16, },
212 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
213 { BFD_RELOC_8, R_X86_64_8, },
214 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
215 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
216 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
217 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
218 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
219 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
220 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
221 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
222 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
223 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
224 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
225 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
226 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
227 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
228 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
229 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
230 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
231 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
232 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
233 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
234 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
235 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
236 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
237 };
238
239 static reloc_howto_type *
240 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
241 {
242 unsigned i;
243
244 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
245 || r_type >= (unsigned int) R_X86_64_max)
246 {
247 if (r_type >= (unsigned int) R_X86_64_standard)
248 {
249 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
250 abfd, (int) r_type);
251 r_type = R_X86_64_NONE;
252 }
253 i = r_type;
254 }
255 else
256 i = r_type - (unsigned int) R_X86_64_vt_offset;
257 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
258 return &x86_64_elf_howto_table[i];
259 }
260
261 /* Given a BFD reloc type, return a HOWTO structure. */
262 static reloc_howto_type *
263 elf_x86_64_reloc_type_lookup (bfd *abfd,
264 bfd_reloc_code_real_type code)
265 {
266 unsigned int i;
267
268 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
269 i++)
270 {
271 if (x86_64_reloc_map[i].bfd_reloc_val == code)
272 return elf_x86_64_rtype_to_howto (abfd,
273 x86_64_reloc_map[i].elf_reloc_val);
274 }
275 return 0;
276 }
277
278 static reloc_howto_type *
279 elf_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
280 const char *r_name)
281 {
282 unsigned int i;
283
284 for (i = 0;
285 i < (sizeof (x86_64_elf_howto_table)
286 / sizeof (x86_64_elf_howto_table[0]));
287 i++)
288 if (x86_64_elf_howto_table[i].name != NULL
289 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
290 return &x86_64_elf_howto_table[i];
291
292 return NULL;
293 }
294
295 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
296
297 static void
298 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
299 Elf_Internal_Rela *dst)
300 {
301 unsigned r_type;
302
303 r_type = ELF32_R_TYPE (dst->r_info);
304 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
305 BFD_ASSERT (r_type == cache_ptr->howto->type);
306 }
307 \f
308 /* Support for core dump NOTE sections. */
309 static bfd_boolean
310 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
311 {
312 int offset;
313 size_t size;
314
315 switch (note->descsz)
316 {
317 default:
318 return FALSE;
319
320 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
321 /* pr_cursig */
322 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
323
324 /* pr_pid */
325 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
326
327 /* pr_reg */
328 offset = 72;
329 size = 216;
330
331 break;
332
333 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
334 /* pr_cursig */
335 elf_tdata (abfd)->core_signal
336 = bfd_get_16 (abfd, note->descdata + 12);
337
338 /* pr_pid */
339 elf_tdata (abfd)->core_lwpid
340 = bfd_get_32 (abfd, note->descdata + 32);
341
342 /* pr_reg */
343 offset = 112;
344 size = 216;
345
346 break;
347 }
348
349 /* Make a ".reg/999" section. */
350 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
351 size, note->descpos + offset);
352 }
353
354 static bfd_boolean
355 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
356 {
357 switch (note->descsz)
358 {
359 default:
360 return FALSE;
361
362 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
363 elf_tdata (abfd)->core_pid
364 = bfd_get_32 (abfd, note->descdata + 12);
365 elf_tdata (abfd)->core_program
366 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
367 elf_tdata (abfd)->core_command
368 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
369 break;
370
371 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
372 elf_tdata (abfd)->core_pid
373 = bfd_get_32 (abfd, note->descdata + 24);
374 elf_tdata (abfd)->core_program
375 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
376 elf_tdata (abfd)->core_command
377 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
378 }
379
380 /* Note that for some reason, a spurious space is tacked
381 onto the end of the args in some (at least one anyway)
382 implementations, so strip it off if it exists. */
383
384 {
385 char *command = elf_tdata (abfd)->core_command;
386 int n = strlen (command);
387
388 if (0 < n && command[n - 1] == ' ')
389 command[n - 1] = '\0';
390 }
391
392 return TRUE;
393 }
394
395 #ifdef CORE_HEADER
396 static char *
397 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
398 int note_type, ...)
399 {
400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
401 const void *p;
402 int size;
403 va_list ap;
404 const char *fname, *psargs;
405 long pid;
406 int cursig;
407 const void *gregs;
408
409 switch (note_type)
410 {
411 default:
412 return NULL;
413
414 case NT_PRPSINFO:
415 va_start (ap, note_type);
416 fname = va_arg (ap, const char *);
417 psargs = va_arg (ap, const char *);
418 va_end (ap);
419
420 if (bed->s->elfclass == ELFCLASS32)
421 {
422 prpsinfo32_t data;
423 memset (&data, 0, sizeof (data));
424 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
425 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
426 p = (const void *) &data;
427 size = sizeof (data);
428 }
429 else
430 {
431 prpsinfo_t data;
432 memset (&data, 0, sizeof (data));
433 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
434 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
435 p = (const void *) &data;
436 size = sizeof (data);
437 }
438 break;
439
440 case NT_PRSTATUS:
441 va_start (ap, note_type);
442 pid = va_arg (ap, long);
443 cursig = va_arg (ap, int);
444 gregs = va_arg (ap, const void *);
445 va_end (ap);
446
447 if (bed->s->elfclass == ELFCLASS32)
448 {
449 if (bed->elf_machine_code == EM_X86_64)
450 {
451 prstatusx32_t prstat;
452 memset (&prstat, 0, sizeof (prstat));
453 prstat.pr_pid = pid;
454 prstat.pr_cursig = cursig;
455 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
456 p = (const void *) &prstat;
457 size = sizeof (prstat);
458 }
459 else
460 {
461 prstatus32_t prstat;
462 memset (&prstat, 0, sizeof (prstat));
463 prstat.pr_pid = pid;
464 prstat.pr_cursig = cursig;
465 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
466 p = (const void *) &prstat;
467 size = sizeof (prstat);
468 }
469 }
470 else
471 {
472 prstatus_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 p = (const void *) &prstat;
478 size = sizeof (prstat);
479 }
480 break;
481 }
482
483 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, p,
484 size);
485 }
486 #endif
487 \f
488 /* Functions for the x86-64 ELF linker. */
489
490 /* The name of the dynamic interpreter. This is put in the .interp
491 section. */
492
493 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
494 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1"
495
496 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
497 copying dynamic variables from a shared lib into an app's dynbss
498 section, and instead use a dynamic relocation to point into the
499 shared lib. */
500 #define ELIMINATE_COPY_RELOCS 1
501
502 /* The size in bytes of an entry in the global offset table. */
503
504 #define GOT_ENTRY_SIZE 8
505
506 /* The size in bytes of an entry in the procedure linkage table. */
507
508 #define PLT_ENTRY_SIZE 16
509
510 /* The first entry in a procedure linkage table looks like this. See the
511 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
512
513 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
514 {
515 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
516 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
517 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
518 };
519
520 /* Subsequent entries in a procedure linkage table look like this. */
521
522 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
523 {
524 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
525 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
526 0x68, /* pushq immediate */
527 0, 0, 0, 0, /* replaced with index into relocation table. */
528 0xe9, /* jmp relative */
529 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
530 };
531
532 /* .eh_frame covering the .plt section. */
533
534 static const bfd_byte elf_x86_64_eh_frame_plt[] =
535 {
536 #define PLT_CIE_LENGTH 20
537 #define PLT_FDE_LENGTH 36
538 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
539 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
540 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
541 0, 0, 0, 0, /* CIE ID */
542 1, /* CIE version */
543 'z', 'R', 0, /* Augmentation string */
544 1, /* Code alignment factor */
545 0x78, /* Data alignment factor */
546 16, /* Return address column */
547 1, /* Augmentation size */
548 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
549 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
550 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
551 DW_CFA_nop, DW_CFA_nop,
552
553 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
554 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
555 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
556 0, 0, 0, 0, /* .plt size goes here */
557 0, /* Augmentation size */
558 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
559 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
560 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
561 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
562 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
563 11, /* Block length */
564 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
565 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
566 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
567 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
568 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
569 };
570
571 /* x86-64 ELF linker hash entry. */
572
573 struct elf_x86_64_link_hash_entry
574 {
575 struct elf_link_hash_entry elf;
576
577 /* Track dynamic relocs copied for this symbol. */
578 struct elf_dyn_relocs *dyn_relocs;
579
580 #define GOT_UNKNOWN 0
581 #define GOT_NORMAL 1
582 #define GOT_TLS_GD 2
583 #define GOT_TLS_IE 3
584 #define GOT_TLS_GDESC 4
585 #define GOT_TLS_GD_BOTH_P(type) \
586 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
587 #define GOT_TLS_GD_P(type) \
588 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
589 #define GOT_TLS_GDESC_P(type) \
590 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
591 #define GOT_TLS_GD_ANY_P(type) \
592 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
593 unsigned char tls_type;
594
595 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
596 starting at the end of the jump table. */
597 bfd_vma tlsdesc_got;
598 };
599
600 #define elf_x86_64_hash_entry(ent) \
601 ((struct elf_x86_64_link_hash_entry *)(ent))
602
603 struct elf_x86_64_obj_tdata
604 {
605 struct elf_obj_tdata root;
606
607 /* tls_type for each local got entry. */
608 char *local_got_tls_type;
609
610 /* GOTPLT entries for TLS descriptors. */
611 bfd_vma *local_tlsdesc_gotent;
612 };
613
614 #define elf_x86_64_tdata(abfd) \
615 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
616
617 #define elf_x86_64_local_got_tls_type(abfd) \
618 (elf_x86_64_tdata (abfd)->local_got_tls_type)
619
620 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
621 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
622
623 #define is_x86_64_elf(bfd) \
624 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
625 && elf_tdata (bfd) != NULL \
626 && elf_object_id (bfd) == X86_64_ELF_DATA)
627
628 static bfd_boolean
629 elf_x86_64_mkobject (bfd *abfd)
630 {
631 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
632 X86_64_ELF_DATA);
633 }
634
635 /* x86-64 ELF linker hash table. */
636
637 struct elf_x86_64_link_hash_table
638 {
639 struct elf_link_hash_table elf;
640
641 /* Short-cuts to get to dynamic linker sections. */
642 asection *sdynbss;
643 asection *srelbss;
644 asection *plt_eh_frame;
645
646 union
647 {
648 bfd_signed_vma refcount;
649 bfd_vma offset;
650 } tls_ld_got;
651
652 /* The amount of space used by the jump slots in the GOT. */
653 bfd_vma sgotplt_jump_table_size;
654
655 /* Small local sym cache. */
656 struct sym_cache sym_cache;
657
658 bfd_vma (*r_info) (bfd_vma, bfd_vma);
659 bfd_vma (*r_sym) (bfd_vma);
660 unsigned int pointer_r_type;
661 const char *dynamic_interpreter;
662 int dynamic_interpreter_size;
663
664 /* _TLS_MODULE_BASE_ symbol. */
665 struct bfd_link_hash_entry *tls_module_base;
666
667 /* Used by local STT_GNU_IFUNC symbols. */
668 htab_t loc_hash_table;
669 void * loc_hash_memory;
670
671 /* The offset into splt of the PLT entry for the TLS descriptor
672 resolver. Special values are 0, if not necessary (or not found
673 to be necessary yet), and -1 if needed but not determined
674 yet. */
675 bfd_vma tlsdesc_plt;
676 /* The offset into sgot of the GOT entry used by the PLT entry
677 above. */
678 bfd_vma tlsdesc_got;
679 };
680
681 /* Get the x86-64 ELF linker hash table from a link_info structure. */
682
683 #define elf_x86_64_hash_table(p) \
684 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
685 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
686
687 #define elf_x86_64_compute_jump_table_size(htab) \
688 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
689
690 /* Create an entry in an x86-64 ELF linker hash table. */
691
692 static struct bfd_hash_entry *
693 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
694 struct bfd_hash_table *table,
695 const char *string)
696 {
697 /* Allocate the structure if it has not already been allocated by a
698 subclass. */
699 if (entry == NULL)
700 {
701 entry = (struct bfd_hash_entry *)
702 bfd_hash_allocate (table,
703 sizeof (struct elf_x86_64_link_hash_entry));
704 if (entry == NULL)
705 return entry;
706 }
707
708 /* Call the allocation method of the superclass. */
709 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
710 if (entry != NULL)
711 {
712 struct elf_x86_64_link_hash_entry *eh;
713
714 eh = (struct elf_x86_64_link_hash_entry *) entry;
715 eh->dyn_relocs = NULL;
716 eh->tls_type = GOT_UNKNOWN;
717 eh->tlsdesc_got = (bfd_vma) -1;
718 }
719
720 return entry;
721 }
722
723 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
724 for local symbol so that we can handle local STT_GNU_IFUNC symbols
725 as global symbol. We reuse indx and dynstr_index for local symbol
726 hash since they aren't used by global symbols in this backend. */
727
728 static hashval_t
729 elf_x86_64_local_htab_hash (const void *ptr)
730 {
731 struct elf_link_hash_entry *h
732 = (struct elf_link_hash_entry *) ptr;
733 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
734 }
735
736 /* Compare local hash entries. */
737
738 static int
739 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
740 {
741 struct elf_link_hash_entry *h1
742 = (struct elf_link_hash_entry *) ptr1;
743 struct elf_link_hash_entry *h2
744 = (struct elf_link_hash_entry *) ptr2;
745
746 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
747 }
748
749 /* Find and/or create a hash entry for local symbol. */
750
751 static struct elf_link_hash_entry *
752 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
753 bfd *abfd, const Elf_Internal_Rela *rel,
754 bfd_boolean create)
755 {
756 struct elf_x86_64_link_hash_entry e, *ret;
757 asection *sec = abfd->sections;
758 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
759 htab->r_sym (rel->r_info));
760 void **slot;
761
762 e.elf.indx = sec->id;
763 e.elf.dynstr_index = htab->r_sym (rel->r_info);
764 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
765 create ? INSERT : NO_INSERT);
766
767 if (!slot)
768 return NULL;
769
770 if (*slot)
771 {
772 ret = (struct elf_x86_64_link_hash_entry *) *slot;
773 return &ret->elf;
774 }
775
776 ret = (struct elf_x86_64_link_hash_entry *)
777 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
778 sizeof (struct elf_x86_64_link_hash_entry));
779 if (ret)
780 {
781 memset (ret, 0, sizeof (*ret));
782 ret->elf.indx = sec->id;
783 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
784 ret->elf.dynindx = -1;
785 *slot = ret;
786 }
787 return &ret->elf;
788 }
789
790 /* Create an X86-64 ELF linker hash table. */
791
792 static struct bfd_link_hash_table *
793 elf_x86_64_link_hash_table_create (bfd *abfd)
794 {
795 struct elf_x86_64_link_hash_table *ret;
796 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
797
798 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
799 if (ret == NULL)
800 return NULL;
801
802 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
803 elf_x86_64_link_hash_newfunc,
804 sizeof (struct elf_x86_64_link_hash_entry),
805 X86_64_ELF_DATA))
806 {
807 free (ret);
808 return NULL;
809 }
810
811 ret->sdynbss = NULL;
812 ret->srelbss = NULL;
813 ret->plt_eh_frame = NULL;
814 ret->sym_cache.abfd = NULL;
815 ret->tlsdesc_plt = 0;
816 ret->tlsdesc_got = 0;
817 ret->tls_ld_got.refcount = 0;
818 ret->sgotplt_jump_table_size = 0;
819 ret->tls_module_base = NULL;
820
821 if (ABI_64_P (abfd))
822 {
823 ret->r_info = elf64_r_info;
824 ret->r_sym = elf64_r_sym;
825 ret->pointer_r_type = R_X86_64_64;
826 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
827 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
828 }
829 else
830 {
831 ret->r_info = elf32_r_info;
832 ret->r_sym = elf32_r_sym;
833 ret->pointer_r_type = R_X86_64_32;
834 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
835 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
836 }
837
838 ret->loc_hash_table = htab_try_create (1024,
839 elf_x86_64_local_htab_hash,
840 elf_x86_64_local_htab_eq,
841 NULL);
842 ret->loc_hash_memory = objalloc_create ();
843 if (!ret->loc_hash_table || !ret->loc_hash_memory)
844 {
845 free (ret);
846 return NULL;
847 }
848
849 return &ret->elf.root;
850 }
851
852 /* Destroy an X86-64 ELF linker hash table. */
853
854 static void
855 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
856 {
857 struct elf_x86_64_link_hash_table *htab
858 = (struct elf_x86_64_link_hash_table *) hash;
859
860 if (htab->loc_hash_table)
861 htab_delete (htab->loc_hash_table);
862 if (htab->loc_hash_memory)
863 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
864 _bfd_generic_link_hash_table_free (hash);
865 }
866
867 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
868 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
869 hash table. */
870
871 static bfd_boolean
872 elf_x86_64_create_dynamic_sections (bfd *dynobj,
873 struct bfd_link_info *info)
874 {
875 struct elf_x86_64_link_hash_table *htab;
876
877 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
878 return FALSE;
879
880 htab = elf_x86_64_hash_table (info);
881 if (htab == NULL)
882 return FALSE;
883
884 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
885 if (!info->shared)
886 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
887
888 if (!htab->sdynbss
889 || (!info->shared && !htab->srelbss))
890 abort ();
891
892 if (!info->no_ld_generated_unwind_info
893 && bfd_get_section_by_name (dynobj, ".eh_frame") == NULL
894 && htab->elf.splt != NULL)
895 {
896 flagword flags = get_elf_backend_data (dynobj)->dynamic_sec_flags;
897 htab->plt_eh_frame
898 = bfd_make_section_with_flags (dynobj, ".eh_frame",
899 flags | SEC_READONLY);
900 if (htab->plt_eh_frame == NULL
901 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
902 return FALSE;
903
904 htab->plt_eh_frame->size = sizeof (elf_x86_64_eh_frame_plt);
905 htab->plt_eh_frame->contents
906 = bfd_alloc (dynobj, htab->plt_eh_frame->size);
907 memcpy (htab->plt_eh_frame->contents, elf_x86_64_eh_frame_plt,
908 sizeof (elf_x86_64_eh_frame_plt));
909 }
910 return TRUE;
911 }
912
913 /* Copy the extra info we tack onto an elf_link_hash_entry. */
914
915 static void
916 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
917 struct elf_link_hash_entry *dir,
918 struct elf_link_hash_entry *ind)
919 {
920 struct elf_x86_64_link_hash_entry *edir, *eind;
921
922 edir = (struct elf_x86_64_link_hash_entry *) dir;
923 eind = (struct elf_x86_64_link_hash_entry *) ind;
924
925 if (eind->dyn_relocs != NULL)
926 {
927 if (edir->dyn_relocs != NULL)
928 {
929 struct elf_dyn_relocs **pp;
930 struct elf_dyn_relocs *p;
931
932 /* Add reloc counts against the indirect sym to the direct sym
933 list. Merge any entries against the same section. */
934 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
935 {
936 struct elf_dyn_relocs *q;
937
938 for (q = edir->dyn_relocs; q != NULL; q = q->next)
939 if (q->sec == p->sec)
940 {
941 q->pc_count += p->pc_count;
942 q->count += p->count;
943 *pp = p->next;
944 break;
945 }
946 if (q == NULL)
947 pp = &p->next;
948 }
949 *pp = edir->dyn_relocs;
950 }
951
952 edir->dyn_relocs = eind->dyn_relocs;
953 eind->dyn_relocs = NULL;
954 }
955
956 if (ind->root.type == bfd_link_hash_indirect
957 && dir->got.refcount <= 0)
958 {
959 edir->tls_type = eind->tls_type;
960 eind->tls_type = GOT_UNKNOWN;
961 }
962
963 if (ELIMINATE_COPY_RELOCS
964 && ind->root.type != bfd_link_hash_indirect
965 && dir->dynamic_adjusted)
966 {
967 /* If called to transfer flags for a weakdef during processing
968 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
969 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
970 dir->ref_dynamic |= ind->ref_dynamic;
971 dir->ref_regular |= ind->ref_regular;
972 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
973 dir->needs_plt |= ind->needs_plt;
974 dir->pointer_equality_needed |= ind->pointer_equality_needed;
975 }
976 else
977 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
978 }
979
980 static bfd_boolean
981 elf64_x86_64_elf_object_p (bfd *abfd)
982 {
983 /* Set the right machine number for an x86-64 elf64 file. */
984 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
985 return TRUE;
986 }
987
988 typedef union
989 {
990 unsigned char c[2];
991 uint16_t i;
992 }
993 x86_64_opcode16;
994
995 typedef union
996 {
997 unsigned char c[4];
998 uint32_t i;
999 }
1000 x86_64_opcode32;
1001
1002 /* Return TRUE if the TLS access code sequence support transition
1003 from R_TYPE. */
1004
1005 static bfd_boolean
1006 elf_x86_64_check_tls_transition (bfd *abfd,
1007 struct bfd_link_info *info,
1008 asection *sec,
1009 bfd_byte *contents,
1010 Elf_Internal_Shdr *symtab_hdr,
1011 struct elf_link_hash_entry **sym_hashes,
1012 unsigned int r_type,
1013 const Elf_Internal_Rela *rel,
1014 const Elf_Internal_Rela *relend)
1015 {
1016 unsigned int val;
1017 unsigned long r_symndx;
1018 struct elf_link_hash_entry *h;
1019 bfd_vma offset;
1020 struct elf_x86_64_link_hash_table *htab;
1021
1022 /* Get the section contents. */
1023 if (contents == NULL)
1024 {
1025 if (elf_section_data (sec)->this_hdr.contents != NULL)
1026 contents = elf_section_data (sec)->this_hdr.contents;
1027 else
1028 {
1029 /* FIXME: How to better handle error condition? */
1030 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1031 return FALSE;
1032
1033 /* Cache the section contents for elf_link_input_bfd. */
1034 elf_section_data (sec)->this_hdr.contents = contents;
1035 }
1036 }
1037
1038 htab = elf_x86_64_hash_table (info);
1039 offset = rel->r_offset;
1040 switch (r_type)
1041 {
1042 case R_X86_64_TLSGD:
1043 case R_X86_64_TLSLD:
1044 if ((rel + 1) >= relend)
1045 return FALSE;
1046
1047 if (r_type == R_X86_64_TLSGD)
1048 {
1049 /* Check transition from GD access model. For 64bit, only
1050 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1051 .word 0x6666; rex64; call __tls_get_addr
1052 can transit to different access model. For 32bit, only
1053 leaq foo@tlsgd(%rip), %rdi
1054 .word 0x6666; rex64; call __tls_get_addr
1055 can transit to different access model. */
1056
1057 static x86_64_opcode32 call = { { 0x66, 0x66, 0x48, 0xe8 } };
1058 if ((offset + 12) > sec->size
1059 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
1060 return FALSE;
1061
1062 if (ABI_64_P (abfd))
1063 {
1064 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } };
1065 if (offset < 4
1066 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i)
1067 return FALSE;
1068 }
1069 else
1070 {
1071 static x86_64_opcode16 lea = { { 0x8d, 0x3d } };
1072 if (offset < 3
1073 || bfd_get_8 (abfd, contents + offset - 3) != 0x48
1074 || bfd_get_16 (abfd, contents + offset - 2) != lea.i)
1075 return FALSE;
1076 }
1077 }
1078 else
1079 {
1080 /* Check transition from LD access model. Only
1081 leaq foo@tlsld(%rip), %rdi;
1082 call __tls_get_addr
1083 can transit to different access model. */
1084
1085 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
1086 x86_64_opcode32 op;
1087
1088 if (offset < 3 || (offset + 9) > sec->size)
1089 return FALSE;
1090
1091 op.i = bfd_get_32 (abfd, contents + offset - 3);
1092 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
1093 if (op.i != ld.i)
1094 return FALSE;
1095 }
1096
1097 r_symndx = htab->r_sym (rel[1].r_info);
1098 if (r_symndx < symtab_hdr->sh_info)
1099 return FALSE;
1100
1101 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1102 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1103 may be versioned. */
1104 return (h != NULL
1105 && h->root.root.string != NULL
1106 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1107 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1108 && (strncmp (h->root.root.string,
1109 "__tls_get_addr", 14) == 0));
1110
1111 case R_X86_64_GOTTPOFF:
1112 /* Check transition from IE access model:
1113 mov foo@gottpoff(%rip), %reg
1114 add foo@gottpoff(%rip), %reg
1115 */
1116
1117 /* Check REX prefix first. */
1118 if (offset >= 3 && (offset + 4) <= sec->size)
1119 {
1120 val = bfd_get_8 (abfd, contents + offset - 3);
1121 if (val != 0x48 && val != 0x4c)
1122 {
1123 /* X32 may have 0x44 REX prefix or no REX prefix. */
1124 if (ABI_64_P (abfd))
1125 return FALSE;
1126 }
1127 }
1128 else
1129 {
1130 /* X32 may not have any REX prefix. */
1131 if (ABI_64_P (abfd))
1132 return FALSE;
1133 if (offset < 2 || (offset + 3) > sec->size)
1134 return FALSE;
1135 }
1136
1137 val = bfd_get_8 (abfd, contents + offset - 2);
1138 if (val != 0x8b && val != 0x03)
1139 return FALSE;
1140
1141 val = bfd_get_8 (abfd, contents + offset - 1);
1142 return (val & 0xc7) == 5;
1143
1144 case R_X86_64_GOTPC32_TLSDESC:
1145 /* Check transition from GDesc access model:
1146 leaq x@tlsdesc(%rip), %rax
1147
1148 Make sure it's a leaq adding rip to a 32-bit offset
1149 into any register, although it's probably almost always
1150 going to be rax. */
1151
1152 if (offset < 3 || (offset + 4) > sec->size)
1153 return FALSE;
1154
1155 val = bfd_get_8 (abfd, contents + offset - 3);
1156 if ((val & 0xfb) != 0x48)
1157 return FALSE;
1158
1159 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1160 return FALSE;
1161
1162 val = bfd_get_8 (abfd, contents + offset - 1);
1163 return (val & 0xc7) == 0x05;
1164
1165 case R_X86_64_TLSDESC_CALL:
1166 /* Check transition from GDesc access model:
1167 call *x@tlsdesc(%rax)
1168 */
1169 if (offset + 2 <= sec->size)
1170 {
1171 /* Make sure that it's a call *x@tlsdesc(%rax). */
1172 static x86_64_opcode16 call = { { 0xff, 0x10 } };
1173 return bfd_get_16 (abfd, contents + offset) == call.i;
1174 }
1175
1176 return FALSE;
1177
1178 default:
1179 abort ();
1180 }
1181 }
1182
1183 /* Return TRUE if the TLS access transition is OK or no transition
1184 will be performed. Update R_TYPE if there is a transition. */
1185
1186 static bfd_boolean
1187 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1188 asection *sec, bfd_byte *contents,
1189 Elf_Internal_Shdr *symtab_hdr,
1190 struct elf_link_hash_entry **sym_hashes,
1191 unsigned int *r_type, int tls_type,
1192 const Elf_Internal_Rela *rel,
1193 const Elf_Internal_Rela *relend,
1194 struct elf_link_hash_entry *h,
1195 unsigned long r_symndx)
1196 {
1197 unsigned int from_type = *r_type;
1198 unsigned int to_type = from_type;
1199 bfd_boolean check = TRUE;
1200
1201 /* Skip TLS transition for functions. */
1202 if (h != NULL
1203 && (h->type == STT_FUNC
1204 || h->type == STT_GNU_IFUNC))
1205 return TRUE;
1206
1207 switch (from_type)
1208 {
1209 case R_X86_64_TLSGD:
1210 case R_X86_64_GOTPC32_TLSDESC:
1211 case R_X86_64_TLSDESC_CALL:
1212 case R_X86_64_GOTTPOFF:
1213 if (info->executable)
1214 {
1215 if (h == NULL)
1216 to_type = R_X86_64_TPOFF32;
1217 else
1218 to_type = R_X86_64_GOTTPOFF;
1219 }
1220
1221 /* When we are called from elf_x86_64_relocate_section,
1222 CONTENTS isn't NULL and there may be additional transitions
1223 based on TLS_TYPE. */
1224 if (contents != NULL)
1225 {
1226 unsigned int new_to_type = to_type;
1227
1228 if (info->executable
1229 && h != NULL
1230 && h->dynindx == -1
1231 && tls_type == GOT_TLS_IE)
1232 new_to_type = R_X86_64_TPOFF32;
1233
1234 if (to_type == R_X86_64_TLSGD
1235 || to_type == R_X86_64_GOTPC32_TLSDESC
1236 || to_type == R_X86_64_TLSDESC_CALL)
1237 {
1238 if (tls_type == GOT_TLS_IE)
1239 new_to_type = R_X86_64_GOTTPOFF;
1240 }
1241
1242 /* We checked the transition before when we were called from
1243 elf_x86_64_check_relocs. We only want to check the new
1244 transition which hasn't been checked before. */
1245 check = new_to_type != to_type && from_type == to_type;
1246 to_type = new_to_type;
1247 }
1248
1249 break;
1250
1251 case R_X86_64_TLSLD:
1252 if (info->executable)
1253 to_type = R_X86_64_TPOFF32;
1254 break;
1255
1256 default:
1257 return TRUE;
1258 }
1259
1260 /* Return TRUE if there is no transition. */
1261 if (from_type == to_type)
1262 return TRUE;
1263
1264 /* Check if the transition can be performed. */
1265 if (check
1266 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1267 symtab_hdr, sym_hashes,
1268 from_type, rel, relend))
1269 {
1270 reloc_howto_type *from, *to;
1271 const char *name;
1272
1273 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1274 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1275
1276 if (h)
1277 name = h->root.root.string;
1278 else
1279 {
1280 struct elf_x86_64_link_hash_table *htab;
1281
1282 htab = elf_x86_64_hash_table (info);
1283 if (htab == NULL)
1284 name = "*unknown*";
1285 else
1286 {
1287 Elf_Internal_Sym *isym;
1288
1289 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1290 abfd, r_symndx);
1291 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1292 }
1293 }
1294
1295 (*_bfd_error_handler)
1296 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1297 "in section `%A' failed"),
1298 abfd, sec, from->name, to->name, name,
1299 (unsigned long) rel->r_offset);
1300 bfd_set_error (bfd_error_bad_value);
1301 return FALSE;
1302 }
1303
1304 *r_type = to_type;
1305 return TRUE;
1306 }
1307
1308 /* Look through the relocs for a section during the first phase, and
1309 calculate needed space in the global offset table, procedure
1310 linkage table, and dynamic reloc sections. */
1311
1312 static bfd_boolean
1313 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1314 asection *sec,
1315 const Elf_Internal_Rela *relocs)
1316 {
1317 struct elf_x86_64_link_hash_table *htab;
1318 Elf_Internal_Shdr *symtab_hdr;
1319 struct elf_link_hash_entry **sym_hashes;
1320 const Elf_Internal_Rela *rel;
1321 const Elf_Internal_Rela *rel_end;
1322 asection *sreloc;
1323
1324 if (info->relocatable)
1325 return TRUE;
1326
1327 BFD_ASSERT (is_x86_64_elf (abfd));
1328
1329 htab = elf_x86_64_hash_table (info);
1330 if (htab == NULL)
1331 return FALSE;
1332
1333 symtab_hdr = &elf_symtab_hdr (abfd);
1334 sym_hashes = elf_sym_hashes (abfd);
1335
1336 sreloc = NULL;
1337
1338 rel_end = relocs + sec->reloc_count;
1339 for (rel = relocs; rel < rel_end; rel++)
1340 {
1341 unsigned int r_type;
1342 unsigned long r_symndx;
1343 struct elf_link_hash_entry *h;
1344 Elf_Internal_Sym *isym;
1345 const char *name;
1346
1347 r_symndx = htab->r_sym (rel->r_info);
1348 r_type = ELF32_R_TYPE (rel->r_info);
1349
1350 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1351 {
1352 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1353 abfd, r_symndx);
1354 return FALSE;
1355 }
1356
1357 if (r_symndx < symtab_hdr->sh_info)
1358 {
1359 /* A local symbol. */
1360 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1361 abfd, r_symndx);
1362 if (isym == NULL)
1363 return FALSE;
1364
1365 /* Check relocation against local STT_GNU_IFUNC symbol. */
1366 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1367 {
1368 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1369 TRUE);
1370 if (h == NULL)
1371 return FALSE;
1372
1373 /* Fake a STT_GNU_IFUNC symbol. */
1374 h->type = STT_GNU_IFUNC;
1375 h->def_regular = 1;
1376 h->ref_regular = 1;
1377 h->forced_local = 1;
1378 h->root.type = bfd_link_hash_defined;
1379 }
1380 else
1381 h = NULL;
1382 }
1383 else
1384 {
1385 isym = NULL;
1386 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1387 while (h->root.type == bfd_link_hash_indirect
1388 || h->root.type == bfd_link_hash_warning)
1389 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1390 }
1391
1392 /* Check invalid x32 relocations. */
1393 if (!ABI_64_P (abfd))
1394 switch (r_type)
1395 {
1396 default:
1397 break;
1398
1399 case R_X86_64_64:
1400 /* Allow R_X86_64_64 relocations in SEC_DEBUGGING sections
1401 when building shared libraries. */
1402 if (info->shared
1403 && !info->executable
1404 && (sec->flags & SEC_DEBUGGING) != 0)
1405 break;
1406
1407 case R_X86_64_DTPOFF64:
1408 case R_X86_64_TPOFF64:
1409 case R_X86_64_PC64:
1410 case R_X86_64_GOTOFF64:
1411 case R_X86_64_GOT64:
1412 case R_X86_64_GOTPCREL64:
1413 case R_X86_64_GOTPC64:
1414 case R_X86_64_GOTPLT64:
1415 case R_X86_64_PLTOFF64:
1416 {
1417 if (h)
1418 name = h->root.root.string;
1419 else
1420 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1421 NULL);
1422 (*_bfd_error_handler)
1423 (_("%B: relocation %s against symbol `%s' isn't "
1424 "supported in x32 mode"), abfd,
1425 x86_64_elf_howto_table[r_type].name, name);
1426 bfd_set_error (bfd_error_bad_value);
1427 return FALSE;
1428 }
1429 break;
1430 }
1431
1432 if (h != NULL)
1433 {
1434 /* Create the ifunc sections for static executables. If we
1435 never see an indirect function symbol nor we are building
1436 a static executable, those sections will be empty and
1437 won't appear in output. */
1438 switch (r_type)
1439 {
1440 default:
1441 break;
1442
1443 case R_X86_64_32S:
1444 case R_X86_64_32:
1445 case R_X86_64_64:
1446 case R_X86_64_PC32:
1447 case R_X86_64_PC64:
1448 case R_X86_64_PLT32:
1449 case R_X86_64_GOTPCREL:
1450 case R_X86_64_GOTPCREL64:
1451 if (htab->elf.dynobj == NULL)
1452 htab->elf.dynobj = abfd;
1453 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1454 return FALSE;
1455 break;
1456 }
1457
1458 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1459 it here if it is defined in a non-shared object. */
1460 if (h->type == STT_GNU_IFUNC
1461 && h->def_regular)
1462 {
1463 /* It is referenced by a non-shared object. */
1464 h->ref_regular = 1;
1465 h->needs_plt = 1;
1466
1467 /* STT_GNU_IFUNC symbol must go through PLT. */
1468 h->plt.refcount += 1;
1469
1470 /* STT_GNU_IFUNC needs dynamic sections. */
1471 if (htab->elf.dynobj == NULL)
1472 htab->elf.dynobj = abfd;
1473
1474 switch (r_type)
1475 {
1476 default:
1477 if (h->root.root.string)
1478 name = h->root.root.string;
1479 else
1480 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1481 NULL);
1482 (*_bfd_error_handler)
1483 (_("%B: relocation %s against STT_GNU_IFUNC "
1484 "symbol `%s' isn't handled by %s"), abfd,
1485 x86_64_elf_howto_table[r_type].name,
1486 name, __FUNCTION__);
1487 bfd_set_error (bfd_error_bad_value);
1488 return FALSE;
1489
1490 case R_X86_64_32:
1491 if (ABI_64_P (abfd))
1492 goto not_pointer;
1493 case R_X86_64_64:
1494 h->non_got_ref = 1;
1495 h->pointer_equality_needed = 1;
1496 if (info->shared)
1497 {
1498 /* We must copy these reloc types into the output
1499 file. Create a reloc section in dynobj and
1500 make room for this reloc. */
1501 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1502 (abfd, info, sec, sreloc,
1503 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1504 if (sreloc == NULL)
1505 return FALSE;
1506 }
1507 break;
1508
1509 case R_X86_64_32S:
1510 case R_X86_64_PC32:
1511 case R_X86_64_PC64:
1512 not_pointer:
1513 h->non_got_ref = 1;
1514 if (r_type != R_X86_64_PC32
1515 && r_type != R_X86_64_PC64)
1516 h->pointer_equality_needed = 1;
1517 break;
1518
1519 case R_X86_64_PLT32:
1520 break;
1521
1522 case R_X86_64_GOTPCREL:
1523 case R_X86_64_GOTPCREL64:
1524 h->got.refcount += 1;
1525 if (htab->elf.sgot == NULL
1526 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1527 info))
1528 return FALSE;
1529 break;
1530 }
1531
1532 continue;
1533 }
1534 }
1535
1536 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1537 symtab_hdr, sym_hashes,
1538 &r_type, GOT_UNKNOWN,
1539 rel, rel_end, h, r_symndx))
1540 return FALSE;
1541
1542 switch (r_type)
1543 {
1544 case R_X86_64_TLSLD:
1545 htab->tls_ld_got.refcount += 1;
1546 goto create_got;
1547
1548 case R_X86_64_TPOFF32:
1549 if (!info->executable && ABI_64_P (abfd))
1550 {
1551 if (h)
1552 name = h->root.root.string;
1553 else
1554 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1555 NULL);
1556 (*_bfd_error_handler)
1557 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1558 abfd,
1559 x86_64_elf_howto_table[r_type].name, name);
1560 bfd_set_error (bfd_error_bad_value);
1561 return FALSE;
1562 }
1563 break;
1564
1565 case R_X86_64_GOTTPOFF:
1566 if (!info->executable)
1567 info->flags |= DF_STATIC_TLS;
1568 /* Fall through */
1569
1570 case R_X86_64_GOT32:
1571 case R_X86_64_GOTPCREL:
1572 case R_X86_64_TLSGD:
1573 case R_X86_64_GOT64:
1574 case R_X86_64_GOTPCREL64:
1575 case R_X86_64_GOTPLT64:
1576 case R_X86_64_GOTPC32_TLSDESC:
1577 case R_X86_64_TLSDESC_CALL:
1578 /* This symbol requires a global offset table entry. */
1579 {
1580 int tls_type, old_tls_type;
1581
1582 switch (r_type)
1583 {
1584 default: tls_type = GOT_NORMAL; break;
1585 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1586 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1587 case R_X86_64_GOTPC32_TLSDESC:
1588 case R_X86_64_TLSDESC_CALL:
1589 tls_type = GOT_TLS_GDESC; break;
1590 }
1591
1592 if (h != NULL)
1593 {
1594 if (r_type == R_X86_64_GOTPLT64)
1595 {
1596 /* This relocation indicates that we also need
1597 a PLT entry, as this is a function. We don't need
1598 a PLT entry for local symbols. */
1599 h->needs_plt = 1;
1600 h->plt.refcount += 1;
1601 }
1602 h->got.refcount += 1;
1603 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1604 }
1605 else
1606 {
1607 bfd_signed_vma *local_got_refcounts;
1608
1609 /* This is a global offset table entry for a local symbol. */
1610 local_got_refcounts = elf_local_got_refcounts (abfd);
1611 if (local_got_refcounts == NULL)
1612 {
1613 bfd_size_type size;
1614
1615 size = symtab_hdr->sh_info;
1616 size *= sizeof (bfd_signed_vma)
1617 + sizeof (bfd_vma) + sizeof (char);
1618 local_got_refcounts = ((bfd_signed_vma *)
1619 bfd_zalloc (abfd, size));
1620 if (local_got_refcounts == NULL)
1621 return FALSE;
1622 elf_local_got_refcounts (abfd) = local_got_refcounts;
1623 elf_x86_64_local_tlsdesc_gotent (abfd)
1624 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1625 elf_x86_64_local_got_tls_type (abfd)
1626 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1627 }
1628 local_got_refcounts[r_symndx] += 1;
1629 old_tls_type
1630 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1631 }
1632
1633 /* If a TLS symbol is accessed using IE at least once,
1634 there is no point to use dynamic model for it. */
1635 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1636 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1637 || tls_type != GOT_TLS_IE))
1638 {
1639 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1640 tls_type = old_tls_type;
1641 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1642 && GOT_TLS_GD_ANY_P (tls_type))
1643 tls_type |= old_tls_type;
1644 else
1645 {
1646 if (h)
1647 name = h->root.root.string;
1648 else
1649 name = bfd_elf_sym_name (abfd, symtab_hdr,
1650 isym, NULL);
1651 (*_bfd_error_handler)
1652 (_("%B: '%s' accessed both as normal and thread local symbol"),
1653 abfd, name);
1654 return FALSE;
1655 }
1656 }
1657
1658 if (old_tls_type != tls_type)
1659 {
1660 if (h != NULL)
1661 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1662 else
1663 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1664 }
1665 }
1666 /* Fall through */
1667
1668 case R_X86_64_GOTOFF64:
1669 case R_X86_64_GOTPC32:
1670 case R_X86_64_GOTPC64:
1671 create_got:
1672 if (htab->elf.sgot == NULL)
1673 {
1674 if (htab->elf.dynobj == NULL)
1675 htab->elf.dynobj = abfd;
1676 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1677 info))
1678 return FALSE;
1679 }
1680 break;
1681
1682 case R_X86_64_PLT32:
1683 /* This symbol requires a procedure linkage table entry. We
1684 actually build the entry in adjust_dynamic_symbol,
1685 because this might be a case of linking PIC code which is
1686 never referenced by a dynamic object, in which case we
1687 don't need to generate a procedure linkage table entry
1688 after all. */
1689
1690 /* If this is a local symbol, we resolve it directly without
1691 creating a procedure linkage table entry. */
1692 if (h == NULL)
1693 continue;
1694
1695 h->needs_plt = 1;
1696 h->plt.refcount += 1;
1697 break;
1698
1699 case R_X86_64_PLTOFF64:
1700 /* This tries to form the 'address' of a function relative
1701 to GOT. For global symbols we need a PLT entry. */
1702 if (h != NULL)
1703 {
1704 h->needs_plt = 1;
1705 h->plt.refcount += 1;
1706 }
1707 goto create_got;
1708
1709 case R_X86_64_32:
1710 if (!ABI_64_P (abfd))
1711 goto pointer;
1712 case R_X86_64_8:
1713 case R_X86_64_16:
1714 case R_X86_64_32S:
1715 /* Let's help debug shared library creation. These relocs
1716 cannot be used in shared libs. Don't error out for
1717 sections we don't care about, such as debug sections or
1718 non-constant sections. */
1719 if (info->shared
1720 && (sec->flags & SEC_ALLOC) != 0
1721 && (sec->flags & SEC_READONLY) != 0)
1722 {
1723 if (h)
1724 name = h->root.root.string;
1725 else
1726 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1727 (*_bfd_error_handler)
1728 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1729 abfd, x86_64_elf_howto_table[r_type].name, name);
1730 bfd_set_error (bfd_error_bad_value);
1731 return FALSE;
1732 }
1733 /* Fall through. */
1734
1735 case R_X86_64_PC8:
1736 case R_X86_64_PC16:
1737 case R_X86_64_PC32:
1738 case R_X86_64_PC64:
1739 case R_X86_64_64:
1740 pointer:
1741 if (h != NULL && info->executable)
1742 {
1743 /* If this reloc is in a read-only section, we might
1744 need a copy reloc. We can't check reliably at this
1745 stage whether the section is read-only, as input
1746 sections have not yet been mapped to output sections.
1747 Tentatively set the flag for now, and correct in
1748 adjust_dynamic_symbol. */
1749 h->non_got_ref = 1;
1750
1751 /* We may need a .plt entry if the function this reloc
1752 refers to is in a shared lib. */
1753 h->plt.refcount += 1;
1754 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1755 h->pointer_equality_needed = 1;
1756 }
1757
1758 /* If we are creating a shared library, and this is a reloc
1759 against a global symbol, or a non PC relative reloc
1760 against a local symbol, then we need to copy the reloc
1761 into the shared library. However, if we are linking with
1762 -Bsymbolic, we do not need to copy a reloc against a
1763 global symbol which is defined in an object we are
1764 including in the link (i.e., DEF_REGULAR is set). At
1765 this point we have not seen all the input files, so it is
1766 possible that DEF_REGULAR is not set now but will be set
1767 later (it is never cleared). In case of a weak definition,
1768 DEF_REGULAR may be cleared later by a strong definition in
1769 a shared library. We account for that possibility below by
1770 storing information in the relocs_copied field of the hash
1771 table entry. A similar situation occurs when creating
1772 shared libraries and symbol visibility changes render the
1773 symbol local.
1774
1775 If on the other hand, we are creating an executable, we
1776 may need to keep relocations for symbols satisfied by a
1777 dynamic library if we manage to avoid copy relocs for the
1778 symbol. */
1779 if ((info->shared
1780 && (sec->flags & SEC_ALLOC) != 0
1781 && (! IS_X86_64_PCREL_TYPE (r_type)
1782 || (h != NULL
1783 && (! SYMBOLIC_BIND (info, h)
1784 || h->root.type == bfd_link_hash_defweak
1785 || !h->def_regular))))
1786 || (ELIMINATE_COPY_RELOCS
1787 && !info->shared
1788 && (sec->flags & SEC_ALLOC) != 0
1789 && h != NULL
1790 && (h->root.type == bfd_link_hash_defweak
1791 || !h->def_regular)))
1792 {
1793 struct elf_dyn_relocs *p;
1794 struct elf_dyn_relocs **head;
1795
1796 /* We must copy these reloc types into the output file.
1797 Create a reloc section in dynobj and make room for
1798 this reloc. */
1799 if (sreloc == NULL)
1800 {
1801 if (htab->elf.dynobj == NULL)
1802 htab->elf.dynobj = abfd;
1803
1804 sreloc = _bfd_elf_make_dynamic_reloc_section
1805 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1806 abfd, /*rela?*/ TRUE);
1807
1808 if (sreloc == NULL)
1809 return FALSE;
1810 }
1811
1812 /* If this is a global symbol, we count the number of
1813 relocations we need for this symbol. */
1814 if (h != NULL)
1815 {
1816 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1817 }
1818 else
1819 {
1820 /* Track dynamic relocs needed for local syms too.
1821 We really need local syms available to do this
1822 easily. Oh well. */
1823 asection *s;
1824 void **vpp;
1825
1826 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1827 abfd, r_symndx);
1828 if (isym == NULL)
1829 return FALSE;
1830
1831 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1832 if (s == NULL)
1833 s = sec;
1834
1835 /* Beware of type punned pointers vs strict aliasing
1836 rules. */
1837 vpp = &(elf_section_data (s)->local_dynrel);
1838 head = (struct elf_dyn_relocs **)vpp;
1839 }
1840
1841 p = *head;
1842 if (p == NULL || p->sec != sec)
1843 {
1844 bfd_size_type amt = sizeof *p;
1845
1846 p = ((struct elf_dyn_relocs *)
1847 bfd_alloc (htab->elf.dynobj, amt));
1848 if (p == NULL)
1849 return FALSE;
1850 p->next = *head;
1851 *head = p;
1852 p->sec = sec;
1853 p->count = 0;
1854 p->pc_count = 0;
1855 }
1856
1857 p->count += 1;
1858 if (IS_X86_64_PCREL_TYPE (r_type))
1859 p->pc_count += 1;
1860 }
1861 break;
1862
1863 /* This relocation describes the C++ object vtable hierarchy.
1864 Reconstruct it for later use during GC. */
1865 case R_X86_64_GNU_VTINHERIT:
1866 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1867 return FALSE;
1868 break;
1869
1870 /* This relocation describes which C++ vtable entries are actually
1871 used. Record for later use during GC. */
1872 case R_X86_64_GNU_VTENTRY:
1873 BFD_ASSERT (h != NULL);
1874 if (h != NULL
1875 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1876 return FALSE;
1877 break;
1878
1879 default:
1880 break;
1881 }
1882 }
1883
1884 return TRUE;
1885 }
1886
1887 /* Return the section that should be marked against GC for a given
1888 relocation. */
1889
1890 static asection *
1891 elf_x86_64_gc_mark_hook (asection *sec,
1892 struct bfd_link_info *info,
1893 Elf_Internal_Rela *rel,
1894 struct elf_link_hash_entry *h,
1895 Elf_Internal_Sym *sym)
1896 {
1897 if (h != NULL)
1898 switch (ELF32_R_TYPE (rel->r_info))
1899 {
1900 case R_X86_64_GNU_VTINHERIT:
1901 case R_X86_64_GNU_VTENTRY:
1902 return NULL;
1903 }
1904
1905 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1906 }
1907
1908 /* Update the got entry reference counts for the section being removed. */
1909
1910 static bfd_boolean
1911 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1912 asection *sec,
1913 const Elf_Internal_Rela *relocs)
1914 {
1915 struct elf_x86_64_link_hash_table *htab;
1916 Elf_Internal_Shdr *symtab_hdr;
1917 struct elf_link_hash_entry **sym_hashes;
1918 bfd_signed_vma *local_got_refcounts;
1919 const Elf_Internal_Rela *rel, *relend;
1920
1921 if (info->relocatable)
1922 return TRUE;
1923
1924 htab = elf_x86_64_hash_table (info);
1925 if (htab == NULL)
1926 return FALSE;
1927
1928 elf_section_data (sec)->local_dynrel = NULL;
1929
1930 symtab_hdr = &elf_symtab_hdr (abfd);
1931 sym_hashes = elf_sym_hashes (abfd);
1932 local_got_refcounts = elf_local_got_refcounts (abfd);
1933
1934 htab = elf_x86_64_hash_table (info);
1935 relend = relocs + sec->reloc_count;
1936 for (rel = relocs; rel < relend; rel++)
1937 {
1938 unsigned long r_symndx;
1939 unsigned int r_type;
1940 struct elf_link_hash_entry *h = NULL;
1941
1942 r_symndx = htab->r_sym (rel->r_info);
1943 if (r_symndx >= symtab_hdr->sh_info)
1944 {
1945 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1946 while (h->root.type == bfd_link_hash_indirect
1947 || h->root.type == bfd_link_hash_warning)
1948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1949 }
1950 else
1951 {
1952 /* A local symbol. */
1953 Elf_Internal_Sym *isym;
1954
1955 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1956 abfd, r_symndx);
1957
1958 /* Check relocation against local STT_GNU_IFUNC symbol. */
1959 if (isym != NULL
1960 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1961 {
1962 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1963 if (h == NULL)
1964 abort ();
1965 }
1966 }
1967
1968 if (h)
1969 {
1970 struct elf_x86_64_link_hash_entry *eh;
1971 struct elf_dyn_relocs **pp;
1972 struct elf_dyn_relocs *p;
1973
1974 eh = (struct elf_x86_64_link_hash_entry *) h;
1975
1976 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1977 if (p->sec == sec)
1978 {
1979 /* Everything must go for SEC. */
1980 *pp = p->next;
1981 break;
1982 }
1983 }
1984
1985 r_type = ELF32_R_TYPE (rel->r_info);
1986 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1987 symtab_hdr, sym_hashes,
1988 &r_type, GOT_UNKNOWN,
1989 rel, relend, h, r_symndx))
1990 return FALSE;
1991
1992 switch (r_type)
1993 {
1994 case R_X86_64_TLSLD:
1995 if (htab->tls_ld_got.refcount > 0)
1996 htab->tls_ld_got.refcount -= 1;
1997 break;
1998
1999 case R_X86_64_TLSGD:
2000 case R_X86_64_GOTPC32_TLSDESC:
2001 case R_X86_64_TLSDESC_CALL:
2002 case R_X86_64_GOTTPOFF:
2003 case R_X86_64_GOT32:
2004 case R_X86_64_GOTPCREL:
2005 case R_X86_64_GOT64:
2006 case R_X86_64_GOTPCREL64:
2007 case R_X86_64_GOTPLT64:
2008 if (h != NULL)
2009 {
2010 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2011 h->plt.refcount -= 1;
2012 if (h->got.refcount > 0)
2013 h->got.refcount -= 1;
2014 if (h->type == STT_GNU_IFUNC)
2015 {
2016 if (h->plt.refcount > 0)
2017 h->plt.refcount -= 1;
2018 }
2019 }
2020 else if (local_got_refcounts != NULL)
2021 {
2022 if (local_got_refcounts[r_symndx] > 0)
2023 local_got_refcounts[r_symndx] -= 1;
2024 }
2025 break;
2026
2027 case R_X86_64_8:
2028 case R_X86_64_16:
2029 case R_X86_64_32:
2030 case R_X86_64_64:
2031 case R_X86_64_32S:
2032 case R_X86_64_PC8:
2033 case R_X86_64_PC16:
2034 case R_X86_64_PC32:
2035 case R_X86_64_PC64:
2036 if (info->shared
2037 && (h == NULL || h->type != STT_GNU_IFUNC))
2038 break;
2039 /* Fall thru */
2040
2041 case R_X86_64_PLT32:
2042 case R_X86_64_PLTOFF64:
2043 if (h != NULL)
2044 {
2045 if (h->plt.refcount > 0)
2046 h->plt.refcount -= 1;
2047 }
2048 break;
2049
2050 default:
2051 break;
2052 }
2053 }
2054
2055 return TRUE;
2056 }
2057
2058 /* Adjust a symbol defined by a dynamic object and referenced by a
2059 regular object. The current definition is in some section of the
2060 dynamic object, but we're not including those sections. We have to
2061 change the definition to something the rest of the link can
2062 understand. */
2063
2064 static bfd_boolean
2065 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2066 struct elf_link_hash_entry *h)
2067 {
2068 struct elf_x86_64_link_hash_table *htab;
2069 asection *s;
2070
2071 /* STT_GNU_IFUNC symbol must go through PLT. */
2072 if (h->type == STT_GNU_IFUNC)
2073 {
2074 if (h->plt.refcount <= 0)
2075 {
2076 h->plt.offset = (bfd_vma) -1;
2077 h->needs_plt = 0;
2078 }
2079 return TRUE;
2080 }
2081
2082 /* If this is a function, put it in the procedure linkage table. We
2083 will fill in the contents of the procedure linkage table later,
2084 when we know the address of the .got section. */
2085 if (h->type == STT_FUNC
2086 || h->needs_plt)
2087 {
2088 if (h->plt.refcount <= 0
2089 || SYMBOL_CALLS_LOCAL (info, h)
2090 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2091 && h->root.type == bfd_link_hash_undefweak))
2092 {
2093 /* This case can occur if we saw a PLT32 reloc in an input
2094 file, but the symbol was never referred to by a dynamic
2095 object, or if all references were garbage collected. In
2096 such a case, we don't actually need to build a procedure
2097 linkage table, and we can just do a PC32 reloc instead. */
2098 h->plt.offset = (bfd_vma) -1;
2099 h->needs_plt = 0;
2100 }
2101
2102 return TRUE;
2103 }
2104 else
2105 /* It's possible that we incorrectly decided a .plt reloc was
2106 needed for an R_X86_64_PC32 reloc to a non-function sym in
2107 check_relocs. We can't decide accurately between function and
2108 non-function syms in check-relocs; Objects loaded later in
2109 the link may change h->type. So fix it now. */
2110 h->plt.offset = (bfd_vma) -1;
2111
2112 /* If this is a weak symbol, and there is a real definition, the
2113 processor independent code will have arranged for us to see the
2114 real definition first, and we can just use the same value. */
2115 if (h->u.weakdef != NULL)
2116 {
2117 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2118 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2119 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2120 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2121 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2122 h->non_got_ref = h->u.weakdef->non_got_ref;
2123 return TRUE;
2124 }
2125
2126 /* This is a reference to a symbol defined by a dynamic object which
2127 is not a function. */
2128
2129 /* If we are creating a shared library, we must presume that the
2130 only references to the symbol are via the global offset table.
2131 For such cases we need not do anything here; the relocations will
2132 be handled correctly by relocate_section. */
2133 if (info->shared)
2134 return TRUE;
2135
2136 /* If there are no references to this symbol that do not use the
2137 GOT, we don't need to generate a copy reloc. */
2138 if (!h->non_got_ref)
2139 return TRUE;
2140
2141 /* If -z nocopyreloc was given, we won't generate them either. */
2142 if (info->nocopyreloc)
2143 {
2144 h->non_got_ref = 0;
2145 return TRUE;
2146 }
2147
2148 if (ELIMINATE_COPY_RELOCS)
2149 {
2150 struct elf_x86_64_link_hash_entry * eh;
2151 struct elf_dyn_relocs *p;
2152
2153 eh = (struct elf_x86_64_link_hash_entry *) h;
2154 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2155 {
2156 s = p->sec->output_section;
2157 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2158 break;
2159 }
2160
2161 /* If we didn't find any dynamic relocs in read-only sections, then
2162 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2163 if (p == NULL)
2164 {
2165 h->non_got_ref = 0;
2166 return TRUE;
2167 }
2168 }
2169
2170 if (h->size == 0)
2171 {
2172 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2173 h->root.root.string);
2174 return TRUE;
2175 }
2176
2177 /* We must allocate the symbol in our .dynbss section, which will
2178 become part of the .bss section of the executable. There will be
2179 an entry for this symbol in the .dynsym section. The dynamic
2180 object will contain position independent code, so all references
2181 from the dynamic object to this symbol will go through the global
2182 offset table. The dynamic linker will use the .dynsym entry to
2183 determine the address it must put in the global offset table, so
2184 both the dynamic object and the regular object will refer to the
2185 same memory location for the variable. */
2186
2187 htab = elf_x86_64_hash_table (info);
2188 if (htab == NULL)
2189 return FALSE;
2190
2191 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2192 to copy the initial value out of the dynamic object and into the
2193 runtime process image. */
2194 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2195 {
2196 const struct elf_backend_data *bed;
2197 bed = get_elf_backend_data (info->output_bfd);
2198 htab->srelbss->size += bed->s->sizeof_rela;
2199 h->needs_copy = 1;
2200 }
2201
2202 s = htab->sdynbss;
2203
2204 return _bfd_elf_adjust_dynamic_copy (h, s);
2205 }
2206
2207 /* Allocate space in .plt, .got and associated reloc sections for
2208 dynamic relocs. */
2209
2210 static bfd_boolean
2211 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2212 {
2213 struct bfd_link_info *info;
2214 struct elf_x86_64_link_hash_table *htab;
2215 struct elf_x86_64_link_hash_entry *eh;
2216 struct elf_dyn_relocs *p;
2217 const struct elf_backend_data *bed;
2218
2219 if (h->root.type == bfd_link_hash_indirect)
2220 return TRUE;
2221
2222 eh = (struct elf_x86_64_link_hash_entry *) h;
2223
2224 info = (struct bfd_link_info *) inf;
2225 htab = elf_x86_64_hash_table (info);
2226 if (htab == NULL)
2227 return FALSE;
2228 bed = get_elf_backend_data (info->output_bfd);
2229
2230 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2231 here if it is defined and referenced in a non-shared object. */
2232 if (h->type == STT_GNU_IFUNC
2233 && h->def_regular)
2234 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2235 &eh->dyn_relocs,
2236 PLT_ENTRY_SIZE,
2237 GOT_ENTRY_SIZE);
2238 else if (htab->elf.dynamic_sections_created
2239 && h->plt.refcount > 0)
2240 {
2241 /* Make sure this symbol is output as a dynamic symbol.
2242 Undefined weak syms won't yet be marked as dynamic. */
2243 if (h->dynindx == -1
2244 && !h->forced_local)
2245 {
2246 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2247 return FALSE;
2248 }
2249
2250 if (info->shared
2251 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2252 {
2253 asection *s = htab->elf.splt;
2254
2255 /* If this is the first .plt entry, make room for the special
2256 first entry. */
2257 if (s->size == 0)
2258 s->size += PLT_ENTRY_SIZE;
2259
2260 h->plt.offset = s->size;
2261
2262 /* If this symbol is not defined in a regular file, and we are
2263 not generating a shared library, then set the symbol to this
2264 location in the .plt. This is required to make function
2265 pointers compare as equal between the normal executable and
2266 the shared library. */
2267 if (! info->shared
2268 && !h->def_regular)
2269 {
2270 h->root.u.def.section = s;
2271 h->root.u.def.value = h->plt.offset;
2272 }
2273
2274 /* Make room for this entry. */
2275 s->size += PLT_ENTRY_SIZE;
2276
2277 /* We also need to make an entry in the .got.plt section, which
2278 will be placed in the .got section by the linker script. */
2279 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2280
2281 /* We also need to make an entry in the .rela.plt section. */
2282 htab->elf.srelplt->size += bed->s->sizeof_rela;
2283 htab->elf.srelplt->reloc_count++;
2284 }
2285 else
2286 {
2287 h->plt.offset = (bfd_vma) -1;
2288 h->needs_plt = 0;
2289 }
2290 }
2291 else
2292 {
2293 h->plt.offset = (bfd_vma) -1;
2294 h->needs_plt = 0;
2295 }
2296
2297 eh->tlsdesc_got = (bfd_vma) -1;
2298
2299 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2300 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2301 if (h->got.refcount > 0
2302 && info->executable
2303 && h->dynindx == -1
2304 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2305 {
2306 h->got.offset = (bfd_vma) -1;
2307 }
2308 else if (h->got.refcount > 0)
2309 {
2310 asection *s;
2311 bfd_boolean dyn;
2312 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2313
2314 /* Make sure this symbol is output as a dynamic symbol.
2315 Undefined weak syms won't yet be marked as dynamic. */
2316 if (h->dynindx == -1
2317 && !h->forced_local)
2318 {
2319 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2320 return FALSE;
2321 }
2322
2323 if (GOT_TLS_GDESC_P (tls_type))
2324 {
2325 eh->tlsdesc_got = htab->elf.sgotplt->size
2326 - elf_x86_64_compute_jump_table_size (htab);
2327 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2328 h->got.offset = (bfd_vma) -2;
2329 }
2330 if (! GOT_TLS_GDESC_P (tls_type)
2331 || GOT_TLS_GD_P (tls_type))
2332 {
2333 s = htab->elf.sgot;
2334 h->got.offset = s->size;
2335 s->size += GOT_ENTRY_SIZE;
2336 if (GOT_TLS_GD_P (tls_type))
2337 s->size += GOT_ENTRY_SIZE;
2338 }
2339 dyn = htab->elf.dynamic_sections_created;
2340 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2341 and two if global.
2342 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2343 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2344 || tls_type == GOT_TLS_IE)
2345 htab->elf.srelgot->size += bed->s->sizeof_rela;
2346 else if (GOT_TLS_GD_P (tls_type))
2347 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2348 else if (! GOT_TLS_GDESC_P (tls_type)
2349 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2350 || h->root.type != bfd_link_hash_undefweak)
2351 && (info->shared
2352 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2353 htab->elf.srelgot->size += bed->s->sizeof_rela;
2354 if (GOT_TLS_GDESC_P (tls_type))
2355 {
2356 htab->elf.srelplt->size += bed->s->sizeof_rela;
2357 htab->tlsdesc_plt = (bfd_vma) -1;
2358 }
2359 }
2360 else
2361 h->got.offset = (bfd_vma) -1;
2362
2363 if (eh->dyn_relocs == NULL)
2364 return TRUE;
2365
2366 /* In the shared -Bsymbolic case, discard space allocated for
2367 dynamic pc-relative relocs against symbols which turn out to be
2368 defined in regular objects. For the normal shared case, discard
2369 space for pc-relative relocs that have become local due to symbol
2370 visibility changes. */
2371
2372 if (info->shared)
2373 {
2374 /* Relocs that use pc_count are those that appear on a call
2375 insn, or certain REL relocs that can generated via assembly.
2376 We want calls to protected symbols to resolve directly to the
2377 function rather than going via the plt. If people want
2378 function pointer comparisons to work as expected then they
2379 should avoid writing weird assembly. */
2380 if (SYMBOL_CALLS_LOCAL (info, h))
2381 {
2382 struct elf_dyn_relocs **pp;
2383
2384 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2385 {
2386 p->count -= p->pc_count;
2387 p->pc_count = 0;
2388 if (p->count == 0)
2389 *pp = p->next;
2390 else
2391 pp = &p->next;
2392 }
2393 }
2394
2395 /* Also discard relocs on undefined weak syms with non-default
2396 visibility. */
2397 if (eh->dyn_relocs != NULL
2398 && h->root.type == bfd_link_hash_undefweak)
2399 {
2400 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2401 eh->dyn_relocs = NULL;
2402
2403 /* Make sure undefined weak symbols are output as a dynamic
2404 symbol in PIEs. */
2405 else if (h->dynindx == -1
2406 && ! h->forced_local
2407 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2408 return FALSE;
2409 }
2410
2411 }
2412 else if (ELIMINATE_COPY_RELOCS)
2413 {
2414 /* For the non-shared case, discard space for relocs against
2415 symbols which turn out to need copy relocs or are not
2416 dynamic. */
2417
2418 if (!h->non_got_ref
2419 && ((h->def_dynamic
2420 && !h->def_regular)
2421 || (htab->elf.dynamic_sections_created
2422 && (h->root.type == bfd_link_hash_undefweak
2423 || h->root.type == bfd_link_hash_undefined))))
2424 {
2425 /* Make sure this symbol is output as a dynamic symbol.
2426 Undefined weak syms won't yet be marked as dynamic. */
2427 if (h->dynindx == -1
2428 && ! h->forced_local
2429 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2430 return FALSE;
2431
2432 /* If that succeeded, we know we'll be keeping all the
2433 relocs. */
2434 if (h->dynindx != -1)
2435 goto keep;
2436 }
2437
2438 eh->dyn_relocs = NULL;
2439
2440 keep: ;
2441 }
2442
2443 /* Finally, allocate space. */
2444 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2445 {
2446 asection * sreloc;
2447
2448 sreloc = elf_section_data (p->sec)->sreloc;
2449
2450 BFD_ASSERT (sreloc != NULL);
2451
2452 sreloc->size += p->count * bed->s->sizeof_rela;
2453 }
2454
2455 return TRUE;
2456 }
2457
2458 /* Allocate space in .plt, .got and associated reloc sections for
2459 local dynamic relocs. */
2460
2461 static bfd_boolean
2462 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2463 {
2464 struct elf_link_hash_entry *h
2465 = (struct elf_link_hash_entry *) *slot;
2466
2467 if (h->type != STT_GNU_IFUNC
2468 || !h->def_regular
2469 || !h->ref_regular
2470 || !h->forced_local
2471 || h->root.type != bfd_link_hash_defined)
2472 abort ();
2473
2474 return elf_x86_64_allocate_dynrelocs (h, inf);
2475 }
2476
2477 /* Find any dynamic relocs that apply to read-only sections. */
2478
2479 static bfd_boolean
2480 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2481 void * inf)
2482 {
2483 struct elf_x86_64_link_hash_entry *eh;
2484 struct elf_dyn_relocs *p;
2485
2486 /* Skip local IFUNC symbols. */
2487 if (h->forced_local && h->type == STT_GNU_IFUNC)
2488 return TRUE;
2489
2490 eh = (struct elf_x86_64_link_hash_entry *) h;
2491 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2492 {
2493 asection *s = p->sec->output_section;
2494
2495 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2496 {
2497 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2498
2499 info->flags |= DF_TEXTREL;
2500
2501 if (info->warn_shared_textrel && info->shared)
2502 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2503 p->sec->owner, h->root.root.string,
2504 p->sec);
2505
2506 /* Not an error, just cut short the traversal. */
2507 return FALSE;
2508 }
2509 }
2510 return TRUE;
2511 }
2512
2513 /* Set the sizes of the dynamic sections. */
2514
2515 static bfd_boolean
2516 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2517 struct bfd_link_info *info)
2518 {
2519 struct elf_x86_64_link_hash_table *htab;
2520 bfd *dynobj;
2521 asection *s;
2522 bfd_boolean relocs;
2523 bfd *ibfd;
2524 const struct elf_backend_data *bed;
2525
2526 htab = elf_x86_64_hash_table (info);
2527 if (htab == NULL)
2528 return FALSE;
2529 bed = get_elf_backend_data (output_bfd);
2530
2531 dynobj = htab->elf.dynobj;
2532 if (dynobj == NULL)
2533 abort ();
2534
2535 if (htab->elf.dynamic_sections_created)
2536 {
2537 /* Set the contents of the .interp section to the interpreter. */
2538 if (info->executable)
2539 {
2540 s = bfd_get_section_by_name (dynobj, ".interp");
2541 if (s == NULL)
2542 abort ();
2543 s->size = htab->dynamic_interpreter_size;
2544 s->contents = (unsigned char *) htab->dynamic_interpreter;
2545 }
2546 }
2547
2548 /* Set up .got offsets for local syms, and space for local dynamic
2549 relocs. */
2550 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2551 {
2552 bfd_signed_vma *local_got;
2553 bfd_signed_vma *end_local_got;
2554 char *local_tls_type;
2555 bfd_vma *local_tlsdesc_gotent;
2556 bfd_size_type locsymcount;
2557 Elf_Internal_Shdr *symtab_hdr;
2558 asection *srel;
2559
2560 if (! is_x86_64_elf (ibfd))
2561 continue;
2562
2563 for (s = ibfd->sections; s != NULL; s = s->next)
2564 {
2565 struct elf_dyn_relocs *p;
2566
2567 for (p = (struct elf_dyn_relocs *)
2568 (elf_section_data (s)->local_dynrel);
2569 p != NULL;
2570 p = p->next)
2571 {
2572 if (!bfd_is_abs_section (p->sec)
2573 && bfd_is_abs_section (p->sec->output_section))
2574 {
2575 /* Input section has been discarded, either because
2576 it is a copy of a linkonce section or due to
2577 linker script /DISCARD/, so we'll be discarding
2578 the relocs too. */
2579 }
2580 else if (p->count != 0)
2581 {
2582 srel = elf_section_data (p->sec)->sreloc;
2583 srel->size += p->count * bed->s->sizeof_rela;
2584 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2585 && (info->flags & DF_TEXTREL) == 0)
2586 {
2587 info->flags |= DF_TEXTREL;
2588 if (info->warn_shared_textrel && info->shared)
2589 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2590 p->sec->owner, p->sec);
2591 }
2592 }
2593 }
2594 }
2595
2596 local_got = elf_local_got_refcounts (ibfd);
2597 if (!local_got)
2598 continue;
2599
2600 symtab_hdr = &elf_symtab_hdr (ibfd);
2601 locsymcount = symtab_hdr->sh_info;
2602 end_local_got = local_got + locsymcount;
2603 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2604 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2605 s = htab->elf.sgot;
2606 srel = htab->elf.srelgot;
2607 for (; local_got < end_local_got;
2608 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2609 {
2610 *local_tlsdesc_gotent = (bfd_vma) -1;
2611 if (*local_got > 0)
2612 {
2613 if (GOT_TLS_GDESC_P (*local_tls_type))
2614 {
2615 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2616 - elf_x86_64_compute_jump_table_size (htab);
2617 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2618 *local_got = (bfd_vma) -2;
2619 }
2620 if (! GOT_TLS_GDESC_P (*local_tls_type)
2621 || GOT_TLS_GD_P (*local_tls_type))
2622 {
2623 *local_got = s->size;
2624 s->size += GOT_ENTRY_SIZE;
2625 if (GOT_TLS_GD_P (*local_tls_type))
2626 s->size += GOT_ENTRY_SIZE;
2627 }
2628 if (info->shared
2629 || GOT_TLS_GD_ANY_P (*local_tls_type)
2630 || *local_tls_type == GOT_TLS_IE)
2631 {
2632 if (GOT_TLS_GDESC_P (*local_tls_type))
2633 {
2634 htab->elf.srelplt->size
2635 += bed->s->sizeof_rela;
2636 htab->tlsdesc_plt = (bfd_vma) -1;
2637 }
2638 if (! GOT_TLS_GDESC_P (*local_tls_type)
2639 || GOT_TLS_GD_P (*local_tls_type))
2640 srel->size += bed->s->sizeof_rela;
2641 }
2642 }
2643 else
2644 *local_got = (bfd_vma) -1;
2645 }
2646 }
2647
2648 if (htab->tls_ld_got.refcount > 0)
2649 {
2650 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2651 relocs. */
2652 htab->tls_ld_got.offset = htab->elf.sgot->size;
2653 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2654 htab->elf.srelgot->size += bed->s->sizeof_rela;
2655 }
2656 else
2657 htab->tls_ld_got.offset = -1;
2658
2659 /* Allocate global sym .plt and .got entries, and space for global
2660 sym dynamic relocs. */
2661 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2662 info);
2663
2664 /* Allocate .plt and .got entries, and space for local symbols. */
2665 htab_traverse (htab->loc_hash_table,
2666 elf_x86_64_allocate_local_dynrelocs,
2667 info);
2668
2669 /* For every jump slot reserved in the sgotplt, reloc_count is
2670 incremented. However, when we reserve space for TLS descriptors,
2671 it's not incremented, so in order to compute the space reserved
2672 for them, it suffices to multiply the reloc count by the jump
2673 slot size. */
2674 if (htab->elf.srelplt)
2675 htab->sgotplt_jump_table_size
2676 = elf_x86_64_compute_jump_table_size (htab);
2677
2678 if (htab->tlsdesc_plt)
2679 {
2680 /* If we're not using lazy TLS relocations, don't generate the
2681 PLT and GOT entries they require. */
2682 if ((info->flags & DF_BIND_NOW))
2683 htab->tlsdesc_plt = 0;
2684 else
2685 {
2686 htab->tlsdesc_got = htab->elf.sgot->size;
2687 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2688 /* Reserve room for the initial entry.
2689 FIXME: we could probably do away with it in this case. */
2690 if (htab->elf.splt->size == 0)
2691 htab->elf.splt->size += PLT_ENTRY_SIZE;
2692 htab->tlsdesc_plt = htab->elf.splt->size;
2693 htab->elf.splt->size += PLT_ENTRY_SIZE;
2694 }
2695 }
2696
2697 if (htab->elf.sgotplt)
2698 {
2699 struct elf_link_hash_entry *got;
2700 got = elf_link_hash_lookup (elf_hash_table (info),
2701 "_GLOBAL_OFFSET_TABLE_",
2702 FALSE, FALSE, FALSE);
2703
2704 /* Don't allocate .got.plt section if there are no GOT nor PLT
2705 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2706 if ((got == NULL
2707 || !got->ref_regular_nonweak)
2708 && (htab->elf.sgotplt->size
2709 == get_elf_backend_data (output_bfd)->got_header_size)
2710 && (htab->elf.splt == NULL
2711 || htab->elf.splt->size == 0)
2712 && (htab->elf.sgot == NULL
2713 || htab->elf.sgot->size == 0)
2714 && (htab->elf.iplt == NULL
2715 || htab->elf.iplt->size == 0)
2716 && (htab->elf.igotplt == NULL
2717 || htab->elf.igotplt->size == 0))
2718 htab->elf.sgotplt->size = 0;
2719 }
2720
2721 /* We now have determined the sizes of the various dynamic sections.
2722 Allocate memory for them. */
2723 relocs = FALSE;
2724 for (s = dynobj->sections; s != NULL; s = s->next)
2725 {
2726 if ((s->flags & SEC_LINKER_CREATED) == 0)
2727 continue;
2728
2729 if (s == htab->elf.splt
2730 || s == htab->elf.sgot
2731 || s == htab->elf.sgotplt
2732 || s == htab->elf.iplt
2733 || s == htab->elf.igotplt
2734 || s == htab->sdynbss)
2735 {
2736 /* Strip this section if we don't need it; see the
2737 comment below. */
2738 }
2739 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2740 {
2741 if (s->size != 0 && s != htab->elf.srelplt)
2742 relocs = TRUE;
2743
2744 /* We use the reloc_count field as a counter if we need
2745 to copy relocs into the output file. */
2746 if (s != htab->elf.srelplt)
2747 s->reloc_count = 0;
2748 }
2749 else
2750 {
2751 /* It's not one of our sections, so don't allocate space. */
2752 continue;
2753 }
2754
2755 if (s->size == 0)
2756 {
2757 /* If we don't need this section, strip it from the
2758 output file. This is mostly to handle .rela.bss and
2759 .rela.plt. We must create both sections in
2760 create_dynamic_sections, because they must be created
2761 before the linker maps input sections to output
2762 sections. The linker does that before
2763 adjust_dynamic_symbol is called, and it is that
2764 function which decides whether anything needs to go
2765 into these sections. */
2766
2767 s->flags |= SEC_EXCLUDE;
2768 continue;
2769 }
2770
2771 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2772 continue;
2773
2774 /* Allocate memory for the section contents. We use bfd_zalloc
2775 here in case unused entries are not reclaimed before the
2776 section's contents are written out. This should not happen,
2777 but this way if it does, we get a R_X86_64_NONE reloc instead
2778 of garbage. */
2779 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2780 if (s->contents == NULL)
2781 return FALSE;
2782 }
2783
2784 if (htab->plt_eh_frame != NULL
2785 && htab->elf.splt != NULL
2786 && htab->elf.splt->size != 0
2787 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0)
2788 bfd_put_32 (dynobj, htab->elf.splt->size,
2789 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2790
2791 if (htab->elf.dynamic_sections_created)
2792 {
2793 /* Add some entries to the .dynamic section. We fill in the
2794 values later, in elf_x86_64_finish_dynamic_sections, but we
2795 must add the entries now so that we get the correct size for
2796 the .dynamic section. The DT_DEBUG entry is filled in by the
2797 dynamic linker and used by the debugger. */
2798 #define add_dynamic_entry(TAG, VAL) \
2799 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2800
2801 if (info->executable)
2802 {
2803 if (!add_dynamic_entry (DT_DEBUG, 0))
2804 return FALSE;
2805 }
2806
2807 if (htab->elf.splt->size != 0)
2808 {
2809 if (!add_dynamic_entry (DT_PLTGOT, 0)
2810 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2811 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2812 || !add_dynamic_entry (DT_JMPREL, 0))
2813 return FALSE;
2814
2815 if (htab->tlsdesc_plt
2816 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2817 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2818 return FALSE;
2819 }
2820
2821 if (relocs)
2822 {
2823 if (!add_dynamic_entry (DT_RELA, 0)
2824 || !add_dynamic_entry (DT_RELASZ, 0)
2825 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2826 return FALSE;
2827
2828 /* If any dynamic relocs apply to a read-only section,
2829 then we need a DT_TEXTREL entry. */
2830 if ((info->flags & DF_TEXTREL) == 0)
2831 elf_link_hash_traverse (&htab->elf,
2832 elf_x86_64_readonly_dynrelocs,
2833 info);
2834
2835 if ((info->flags & DF_TEXTREL) != 0)
2836 {
2837 if (!add_dynamic_entry (DT_TEXTREL, 0))
2838 return FALSE;
2839 }
2840 }
2841 }
2842 #undef add_dynamic_entry
2843
2844 return TRUE;
2845 }
2846
2847 static bfd_boolean
2848 elf_x86_64_always_size_sections (bfd *output_bfd,
2849 struct bfd_link_info *info)
2850 {
2851 asection *tls_sec = elf_hash_table (info)->tls_sec;
2852
2853 if (tls_sec)
2854 {
2855 struct elf_link_hash_entry *tlsbase;
2856
2857 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2858 "_TLS_MODULE_BASE_",
2859 FALSE, FALSE, FALSE);
2860
2861 if (tlsbase && tlsbase->type == STT_TLS)
2862 {
2863 struct elf_x86_64_link_hash_table *htab;
2864 struct bfd_link_hash_entry *bh = NULL;
2865 const struct elf_backend_data *bed
2866 = get_elf_backend_data (output_bfd);
2867
2868 htab = elf_x86_64_hash_table (info);
2869 if (htab == NULL)
2870 return FALSE;
2871
2872 if (!(_bfd_generic_link_add_one_symbol
2873 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2874 tls_sec, 0, NULL, FALSE,
2875 bed->collect, &bh)))
2876 return FALSE;
2877
2878 htab->tls_module_base = bh;
2879
2880 tlsbase = (struct elf_link_hash_entry *)bh;
2881 tlsbase->def_regular = 1;
2882 tlsbase->other = STV_HIDDEN;
2883 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2884 }
2885 }
2886
2887 return TRUE;
2888 }
2889
2890 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2891 executables. Rather than setting it to the beginning of the TLS
2892 section, we have to set it to the end. This function may be called
2893 multiple times, it is idempotent. */
2894
2895 static void
2896 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2897 {
2898 struct elf_x86_64_link_hash_table *htab;
2899 struct bfd_link_hash_entry *base;
2900
2901 if (!info->executable)
2902 return;
2903
2904 htab = elf_x86_64_hash_table (info);
2905 if (htab == NULL)
2906 return;
2907
2908 base = htab->tls_module_base;
2909 if (base == NULL)
2910 return;
2911
2912 base->u.def.value = htab->elf.tls_size;
2913 }
2914
2915 /* Return the base VMA address which should be subtracted from real addresses
2916 when resolving @dtpoff relocation.
2917 This is PT_TLS segment p_vaddr. */
2918
2919 static bfd_vma
2920 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2921 {
2922 /* If tls_sec is NULL, we should have signalled an error already. */
2923 if (elf_hash_table (info)->tls_sec == NULL)
2924 return 0;
2925 return elf_hash_table (info)->tls_sec->vma;
2926 }
2927
2928 /* Return the relocation value for @tpoff relocation
2929 if STT_TLS virtual address is ADDRESS. */
2930
2931 static bfd_vma
2932 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2933 {
2934 struct elf_link_hash_table *htab = elf_hash_table (info);
2935 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2936 bfd_vma static_tls_size;
2937
2938 /* If tls_segment is NULL, we should have signalled an error already. */
2939 if (htab->tls_sec == NULL)
2940 return 0;
2941
2942 /* Consider special static TLS alignment requirements. */
2943 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2944 return address - static_tls_size - htab->tls_sec->vma;
2945 }
2946
2947 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2948 branch? */
2949
2950 static bfd_boolean
2951 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2952 {
2953 /* Opcode Instruction
2954 0xe8 call
2955 0xe9 jump
2956 0x0f 0x8x conditional jump */
2957 return ((offset > 0
2958 && (contents [offset - 1] == 0xe8
2959 || contents [offset - 1] == 0xe9))
2960 || (offset > 1
2961 && contents [offset - 2] == 0x0f
2962 && (contents [offset - 1] & 0xf0) == 0x80));
2963 }
2964
2965 /* Relocate an x86_64 ELF section. */
2966
2967 static bfd_boolean
2968 elf_x86_64_relocate_section (bfd *output_bfd,
2969 struct bfd_link_info *info,
2970 bfd *input_bfd,
2971 asection *input_section,
2972 bfd_byte *contents,
2973 Elf_Internal_Rela *relocs,
2974 Elf_Internal_Sym *local_syms,
2975 asection **local_sections)
2976 {
2977 struct elf_x86_64_link_hash_table *htab;
2978 Elf_Internal_Shdr *symtab_hdr;
2979 struct elf_link_hash_entry **sym_hashes;
2980 bfd_vma *local_got_offsets;
2981 bfd_vma *local_tlsdesc_gotents;
2982 Elf_Internal_Rela *rel;
2983 Elf_Internal_Rela *relend;
2984
2985 BFD_ASSERT (is_x86_64_elf (input_bfd));
2986
2987 htab = elf_x86_64_hash_table (info);
2988 if (htab == NULL)
2989 return FALSE;
2990 symtab_hdr = &elf_symtab_hdr (input_bfd);
2991 sym_hashes = elf_sym_hashes (input_bfd);
2992 local_got_offsets = elf_local_got_offsets (input_bfd);
2993 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
2994
2995 elf_x86_64_set_tls_module_base (info);
2996
2997 rel = relocs;
2998 relend = relocs + input_section->reloc_count;
2999 for (; rel < relend; rel++)
3000 {
3001 unsigned int r_type;
3002 reloc_howto_type *howto;
3003 unsigned long r_symndx;
3004 struct elf_link_hash_entry *h;
3005 Elf_Internal_Sym *sym;
3006 asection *sec;
3007 bfd_vma off, offplt;
3008 bfd_vma relocation;
3009 bfd_boolean unresolved_reloc;
3010 bfd_reloc_status_type r;
3011 int tls_type;
3012 asection *base_got;
3013
3014 r_type = ELF32_R_TYPE (rel->r_info);
3015 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3016 || r_type == (int) R_X86_64_GNU_VTENTRY)
3017 continue;
3018
3019 if (r_type >= R_X86_64_max)
3020 {
3021 bfd_set_error (bfd_error_bad_value);
3022 return FALSE;
3023 }
3024
3025 howto = x86_64_elf_howto_table + r_type;
3026 r_symndx = htab->r_sym (rel->r_info);
3027 h = NULL;
3028 sym = NULL;
3029 sec = NULL;
3030 unresolved_reloc = FALSE;
3031 if (r_symndx < symtab_hdr->sh_info)
3032 {
3033 sym = local_syms + r_symndx;
3034 sec = local_sections[r_symndx];
3035
3036 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3037 &sec, rel);
3038
3039 /* Relocate against local STT_GNU_IFUNC symbol. */
3040 if (!info->relocatable
3041 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3042 {
3043 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3044 rel, FALSE);
3045 if (h == NULL)
3046 abort ();
3047
3048 /* Set STT_GNU_IFUNC symbol value. */
3049 h->root.u.def.value = sym->st_value;
3050 h->root.u.def.section = sec;
3051 }
3052 }
3053 else
3054 {
3055 bfd_boolean warned ATTRIBUTE_UNUSED;
3056
3057 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3058 r_symndx, symtab_hdr, sym_hashes,
3059 h, sec, relocation,
3060 unresolved_reloc, warned);
3061 }
3062
3063 if (sec != NULL && elf_discarded_section (sec))
3064 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3065 rel, relend, howto, contents);
3066
3067 if (info->relocatable)
3068 continue;
3069
3070 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3071 it here if it is defined in a non-shared object. */
3072 if (h != NULL
3073 && h->type == STT_GNU_IFUNC
3074 && h->def_regular)
3075 {
3076 asection *plt;
3077 bfd_vma plt_index;
3078 const char *name;
3079
3080 if ((input_section->flags & SEC_ALLOC) == 0
3081 || h->plt.offset == (bfd_vma) -1)
3082 abort ();
3083
3084 /* STT_GNU_IFUNC symbol must go through PLT. */
3085 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3086 relocation = (plt->output_section->vma
3087 + plt->output_offset + h->plt.offset);
3088
3089 switch (r_type)
3090 {
3091 default:
3092 if (h->root.root.string)
3093 name = h->root.root.string;
3094 else
3095 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3096 NULL);
3097 (*_bfd_error_handler)
3098 (_("%B: relocation %s against STT_GNU_IFUNC "
3099 "symbol `%s' isn't handled by %s"), input_bfd,
3100 x86_64_elf_howto_table[r_type].name,
3101 name, __FUNCTION__);
3102 bfd_set_error (bfd_error_bad_value);
3103 return FALSE;
3104
3105 case R_X86_64_32S:
3106 if (info->shared)
3107 abort ();
3108 goto do_relocation;
3109
3110 case R_X86_64_32:
3111 if (ABI_64_P (output_bfd))
3112 goto do_relocation;
3113 /* FALLTHROUGH */
3114 case R_X86_64_64:
3115 if (rel->r_addend != 0)
3116 {
3117 if (h->root.root.string)
3118 name = h->root.root.string;
3119 else
3120 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3121 sym, NULL);
3122 (*_bfd_error_handler)
3123 (_("%B: relocation %s against STT_GNU_IFUNC "
3124 "symbol `%s' has non-zero addend: %d"),
3125 input_bfd, x86_64_elf_howto_table[r_type].name,
3126 name, rel->r_addend);
3127 bfd_set_error (bfd_error_bad_value);
3128 return FALSE;
3129 }
3130
3131 /* Generate dynamic relcoation only when there is a
3132 non-GOF reference in a shared object. */
3133 if (info->shared && h->non_got_ref)
3134 {
3135 Elf_Internal_Rela outrel;
3136 asection *sreloc;
3137
3138 /* Need a dynamic relocation to get the real function
3139 address. */
3140 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3141 info,
3142 input_section,
3143 rel->r_offset);
3144 if (outrel.r_offset == (bfd_vma) -1
3145 || outrel.r_offset == (bfd_vma) -2)
3146 abort ();
3147
3148 outrel.r_offset += (input_section->output_section->vma
3149 + input_section->output_offset);
3150
3151 if (h->dynindx == -1
3152 || h->forced_local
3153 || info->executable)
3154 {
3155 /* This symbol is resolved locally. */
3156 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3157 outrel.r_addend = (h->root.u.def.value
3158 + h->root.u.def.section->output_section->vma
3159 + h->root.u.def.section->output_offset);
3160 }
3161 else
3162 {
3163 outrel.r_info = htab->r_info (h->dynindx, r_type);
3164 outrel.r_addend = 0;
3165 }
3166
3167 sreloc = htab->elf.irelifunc;
3168 elf_append_rela (output_bfd, sreloc, &outrel);
3169
3170 /* If this reloc is against an external symbol, we
3171 do not want to fiddle with the addend. Otherwise,
3172 we need to include the symbol value so that it
3173 becomes an addend for the dynamic reloc. For an
3174 internal symbol, we have updated addend. */
3175 continue;
3176 }
3177 /* FALLTHROUGH */
3178 case R_X86_64_PC32:
3179 case R_X86_64_PC64:
3180 case R_X86_64_PLT32:
3181 goto do_relocation;
3182
3183 case R_X86_64_GOTPCREL:
3184 case R_X86_64_GOTPCREL64:
3185 base_got = htab->elf.sgot;
3186 off = h->got.offset;
3187
3188 if (base_got == NULL)
3189 abort ();
3190
3191 if (off == (bfd_vma) -1)
3192 {
3193 /* We can't use h->got.offset here to save state, or
3194 even just remember the offset, as finish_dynamic_symbol
3195 would use that as offset into .got. */
3196
3197 if (htab->elf.splt != NULL)
3198 {
3199 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3200 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3201 base_got = htab->elf.sgotplt;
3202 }
3203 else
3204 {
3205 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3206 off = plt_index * GOT_ENTRY_SIZE;
3207 base_got = htab->elf.igotplt;
3208 }
3209
3210 if (h->dynindx == -1
3211 || h->forced_local
3212 || info->symbolic)
3213 {
3214 /* This references the local defitionion. We must
3215 initialize this entry in the global offset table.
3216 Since the offset must always be a multiple of 8,
3217 we use the least significant bit to record
3218 whether we have initialized it already.
3219
3220 When doing a dynamic link, we create a .rela.got
3221 relocation entry to initialize the value. This
3222 is done in the finish_dynamic_symbol routine. */
3223 if ((off & 1) != 0)
3224 off &= ~1;
3225 else
3226 {
3227 bfd_put_64 (output_bfd, relocation,
3228 base_got->contents + off);
3229 /* Note that this is harmless for the GOTPLT64
3230 case, as -1 | 1 still is -1. */
3231 h->got.offset |= 1;
3232 }
3233 }
3234 }
3235
3236 relocation = (base_got->output_section->vma
3237 + base_got->output_offset + off);
3238
3239 goto do_relocation;
3240 }
3241 }
3242
3243 /* When generating a shared object, the relocations handled here are
3244 copied into the output file to be resolved at run time. */
3245 switch (r_type)
3246 {
3247 case R_X86_64_GOT32:
3248 case R_X86_64_GOT64:
3249 /* Relocation is to the entry for this symbol in the global
3250 offset table. */
3251 case R_X86_64_GOTPCREL:
3252 case R_X86_64_GOTPCREL64:
3253 /* Use global offset table entry as symbol value. */
3254 case R_X86_64_GOTPLT64:
3255 /* This is the same as GOT64 for relocation purposes, but
3256 indicates the existence of a PLT entry. The difficulty is,
3257 that we must calculate the GOT slot offset from the PLT
3258 offset, if this symbol got a PLT entry (it was global).
3259 Additionally if it's computed from the PLT entry, then that
3260 GOT offset is relative to .got.plt, not to .got. */
3261 base_got = htab->elf.sgot;
3262
3263 if (htab->elf.sgot == NULL)
3264 abort ();
3265
3266 if (h != NULL)
3267 {
3268 bfd_boolean dyn;
3269
3270 off = h->got.offset;
3271 if (h->needs_plt
3272 && h->plt.offset != (bfd_vma)-1
3273 && off == (bfd_vma)-1)
3274 {
3275 /* We can't use h->got.offset here to save
3276 state, or even just remember the offset, as
3277 finish_dynamic_symbol would use that as offset into
3278 .got. */
3279 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3280 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3281 base_got = htab->elf.sgotplt;
3282 }
3283
3284 dyn = htab->elf.dynamic_sections_created;
3285
3286 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3287 || (info->shared
3288 && SYMBOL_REFERENCES_LOCAL (info, h))
3289 || (ELF_ST_VISIBILITY (h->other)
3290 && h->root.type == bfd_link_hash_undefweak))
3291 {
3292 /* This is actually a static link, or it is a -Bsymbolic
3293 link and the symbol is defined locally, or the symbol
3294 was forced to be local because of a version file. We
3295 must initialize this entry in the global offset table.
3296 Since the offset must always be a multiple of 8, we
3297 use the least significant bit to record whether we
3298 have initialized it already.
3299
3300 When doing a dynamic link, we create a .rela.got
3301 relocation entry to initialize the value. This is
3302 done in the finish_dynamic_symbol routine. */
3303 if ((off & 1) != 0)
3304 off &= ~1;
3305 else
3306 {
3307 bfd_put_64 (output_bfd, relocation,
3308 base_got->contents + off);
3309 /* Note that this is harmless for the GOTPLT64 case,
3310 as -1 | 1 still is -1. */
3311 h->got.offset |= 1;
3312 }
3313 }
3314 else
3315 unresolved_reloc = FALSE;
3316 }
3317 else
3318 {
3319 if (local_got_offsets == NULL)
3320 abort ();
3321
3322 off = local_got_offsets[r_symndx];
3323
3324 /* The offset must always be a multiple of 8. We use
3325 the least significant bit to record whether we have
3326 already generated the necessary reloc. */
3327 if ((off & 1) != 0)
3328 off &= ~1;
3329 else
3330 {
3331 bfd_put_64 (output_bfd, relocation,
3332 base_got->contents + off);
3333
3334 if (info->shared)
3335 {
3336 asection *s;
3337 Elf_Internal_Rela outrel;
3338
3339 /* We need to generate a R_X86_64_RELATIVE reloc
3340 for the dynamic linker. */
3341 s = htab->elf.srelgot;
3342 if (s == NULL)
3343 abort ();
3344
3345 outrel.r_offset = (base_got->output_section->vma
3346 + base_got->output_offset
3347 + off);
3348 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3349 outrel.r_addend = relocation;
3350 elf_append_rela (output_bfd, s, &outrel);
3351 }
3352
3353 local_got_offsets[r_symndx] |= 1;
3354 }
3355 }
3356
3357 if (off >= (bfd_vma) -2)
3358 abort ();
3359
3360 relocation = base_got->output_section->vma
3361 + base_got->output_offset + off;
3362 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3363 relocation -= htab->elf.sgotplt->output_section->vma
3364 - htab->elf.sgotplt->output_offset;
3365
3366 break;
3367
3368 case R_X86_64_GOTOFF64:
3369 /* Relocation is relative to the start of the global offset
3370 table. */
3371
3372 /* Check to make sure it isn't a protected function symbol
3373 for shared library since it may not be local when used
3374 as function address. */
3375 if (info->shared
3376 && h
3377 && h->def_regular
3378 && h->type == STT_FUNC
3379 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3380 {
3381 (*_bfd_error_handler)
3382 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3383 input_bfd, h->root.root.string);
3384 bfd_set_error (bfd_error_bad_value);
3385 return FALSE;
3386 }
3387
3388 /* Note that sgot is not involved in this
3389 calculation. We always want the start of .got.plt. If we
3390 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3391 permitted by the ABI, we might have to change this
3392 calculation. */
3393 relocation -= htab->elf.sgotplt->output_section->vma
3394 + htab->elf.sgotplt->output_offset;
3395 break;
3396
3397 case R_X86_64_GOTPC32:
3398 case R_X86_64_GOTPC64:
3399 /* Use global offset table as symbol value. */
3400 relocation = htab->elf.sgotplt->output_section->vma
3401 + htab->elf.sgotplt->output_offset;
3402 unresolved_reloc = FALSE;
3403 break;
3404
3405 case R_X86_64_PLTOFF64:
3406 /* Relocation is PLT entry relative to GOT. For local
3407 symbols it's the symbol itself relative to GOT. */
3408 if (h != NULL
3409 /* See PLT32 handling. */
3410 && h->plt.offset != (bfd_vma) -1
3411 && htab->elf.splt != NULL)
3412 {
3413 relocation = (htab->elf.splt->output_section->vma
3414 + htab->elf.splt->output_offset
3415 + h->plt.offset);
3416 unresolved_reloc = FALSE;
3417 }
3418
3419 relocation -= htab->elf.sgotplt->output_section->vma
3420 + htab->elf.sgotplt->output_offset;
3421 break;
3422
3423 case R_X86_64_PLT32:
3424 /* Relocation is to the entry for this symbol in the
3425 procedure linkage table. */
3426
3427 /* Resolve a PLT32 reloc against a local symbol directly,
3428 without using the procedure linkage table. */
3429 if (h == NULL)
3430 break;
3431
3432 if (h->plt.offset == (bfd_vma) -1
3433 || htab->elf.splt == NULL)
3434 {
3435 /* We didn't make a PLT entry for this symbol. This
3436 happens when statically linking PIC code, or when
3437 using -Bsymbolic. */
3438 break;
3439 }
3440
3441 relocation = (htab->elf.splt->output_section->vma
3442 + htab->elf.splt->output_offset
3443 + h->plt.offset);
3444 unresolved_reloc = FALSE;
3445 break;
3446
3447 case R_X86_64_PC8:
3448 case R_X86_64_PC16:
3449 case R_X86_64_PC32:
3450 if (info->shared
3451 && ABI_64_P (output_bfd)
3452 && (input_section->flags & SEC_ALLOC) != 0
3453 && (input_section->flags & SEC_READONLY) != 0
3454 && h != NULL)
3455 {
3456 bfd_boolean fail = FALSE;
3457 bfd_boolean branch
3458 = (r_type == R_X86_64_PC32
3459 && is_32bit_relative_branch (contents, rel->r_offset));
3460
3461 if (SYMBOL_REFERENCES_LOCAL (info, h))
3462 {
3463 /* Symbol is referenced locally. Make sure it is
3464 defined locally or for a branch. */
3465 fail = !h->def_regular && !branch;
3466 }
3467 else
3468 {
3469 /* Symbol isn't referenced locally. We only allow
3470 branch to symbol with non-default visibility. */
3471 fail = (!branch
3472 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3473 }
3474
3475 if (fail)
3476 {
3477 const char *fmt;
3478 const char *v;
3479 const char *pic = "";
3480
3481 switch (ELF_ST_VISIBILITY (h->other))
3482 {
3483 case STV_HIDDEN:
3484 v = _("hidden symbol");
3485 break;
3486 case STV_INTERNAL:
3487 v = _("internal symbol");
3488 break;
3489 case STV_PROTECTED:
3490 v = _("protected symbol");
3491 break;
3492 default:
3493 v = _("symbol");
3494 pic = _("; recompile with -fPIC");
3495 break;
3496 }
3497
3498 if (h->def_regular)
3499 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3500 else
3501 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3502
3503 (*_bfd_error_handler) (fmt, input_bfd,
3504 x86_64_elf_howto_table[r_type].name,
3505 v, h->root.root.string, pic);
3506 bfd_set_error (bfd_error_bad_value);
3507 return FALSE;
3508 }
3509 }
3510 /* Fall through. */
3511
3512 case R_X86_64_8:
3513 case R_X86_64_16:
3514 case R_X86_64_32:
3515 case R_X86_64_PC64:
3516 case R_X86_64_64:
3517 /* FIXME: The ABI says the linker should make sure the value is
3518 the same when it's zeroextended to 64 bit. */
3519
3520 if ((input_section->flags & SEC_ALLOC) == 0)
3521 break;
3522
3523 if ((info->shared
3524 && (h == NULL
3525 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3526 || h->root.type != bfd_link_hash_undefweak)
3527 && (! IS_X86_64_PCREL_TYPE (r_type)
3528 || ! SYMBOL_CALLS_LOCAL (info, h)))
3529 || (ELIMINATE_COPY_RELOCS
3530 && !info->shared
3531 && h != NULL
3532 && h->dynindx != -1
3533 && !h->non_got_ref
3534 && ((h->def_dynamic
3535 && !h->def_regular)
3536 || h->root.type == bfd_link_hash_undefweak
3537 || h->root.type == bfd_link_hash_undefined)))
3538 {
3539 Elf_Internal_Rela outrel;
3540 bfd_boolean skip, relocate;
3541 asection *sreloc;
3542
3543 /* When generating a shared object, these relocations
3544 are copied into the output file to be resolved at run
3545 time. */
3546 skip = FALSE;
3547 relocate = FALSE;
3548
3549 outrel.r_offset =
3550 _bfd_elf_section_offset (output_bfd, info, input_section,
3551 rel->r_offset);
3552 if (outrel.r_offset == (bfd_vma) -1)
3553 skip = TRUE;
3554 else if (outrel.r_offset == (bfd_vma) -2)
3555 skip = TRUE, relocate = TRUE;
3556
3557 outrel.r_offset += (input_section->output_section->vma
3558 + input_section->output_offset);
3559
3560 if (skip)
3561 memset (&outrel, 0, sizeof outrel);
3562
3563 /* h->dynindx may be -1 if this symbol was marked to
3564 become local. */
3565 else if (h != NULL
3566 && h->dynindx != -1
3567 && (IS_X86_64_PCREL_TYPE (r_type)
3568 || ! info->shared
3569 || ! SYMBOLIC_BIND (info, h)
3570 || ! h->def_regular))
3571 {
3572 outrel.r_info = htab->r_info (h->dynindx, r_type);
3573 outrel.r_addend = rel->r_addend;
3574 }
3575 else
3576 {
3577 /* This symbol is local, or marked to become local. */
3578 if (r_type == htab->pointer_r_type)
3579 {
3580 relocate = TRUE;
3581 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3582 outrel.r_addend = relocation + rel->r_addend;
3583 }
3584 else
3585 {
3586 long sindx;
3587
3588 if (bfd_is_abs_section (sec))
3589 sindx = 0;
3590 else if (sec == NULL || sec->owner == NULL)
3591 {
3592 bfd_set_error (bfd_error_bad_value);
3593 return FALSE;
3594 }
3595 else
3596 {
3597 asection *osec;
3598
3599 /* We are turning this relocation into one
3600 against a section symbol. It would be
3601 proper to subtract the symbol's value,
3602 osec->vma, from the emitted reloc addend,
3603 but ld.so expects buggy relocs. */
3604 osec = sec->output_section;
3605 sindx = elf_section_data (osec)->dynindx;
3606 if (sindx == 0)
3607 {
3608 asection *oi = htab->elf.text_index_section;
3609 sindx = elf_section_data (oi)->dynindx;
3610 }
3611 BFD_ASSERT (sindx != 0);
3612 }
3613
3614 outrel.r_info = htab->r_info (sindx, r_type);
3615 outrel.r_addend = relocation + rel->r_addend;
3616 }
3617 }
3618
3619 sreloc = elf_section_data (input_section)->sreloc;
3620
3621 if (sreloc == NULL || sreloc->contents == NULL)
3622 {
3623 r = bfd_reloc_notsupported;
3624 goto check_relocation_error;
3625 }
3626
3627 elf_append_rela (output_bfd, sreloc, &outrel);
3628
3629 /* If this reloc is against an external symbol, we do
3630 not want to fiddle with the addend. Otherwise, we
3631 need to include the symbol value so that it becomes
3632 an addend for the dynamic reloc. */
3633 if (! relocate)
3634 continue;
3635 }
3636
3637 break;
3638
3639 case R_X86_64_TLSGD:
3640 case R_X86_64_GOTPC32_TLSDESC:
3641 case R_X86_64_TLSDESC_CALL:
3642 case R_X86_64_GOTTPOFF:
3643 tls_type = GOT_UNKNOWN;
3644 if (h == NULL && local_got_offsets)
3645 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3646 else if (h != NULL)
3647 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3648
3649 if (! elf_x86_64_tls_transition (info, input_bfd,
3650 input_section, contents,
3651 symtab_hdr, sym_hashes,
3652 &r_type, tls_type, rel,
3653 relend, h, r_symndx))
3654 return FALSE;
3655
3656 if (r_type == R_X86_64_TPOFF32)
3657 {
3658 bfd_vma roff = rel->r_offset;
3659
3660 BFD_ASSERT (! unresolved_reloc);
3661
3662 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3663 {
3664 /* GD->LE transition. For 64bit, change
3665 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3666 .word 0x6666; rex64; call __tls_get_addr
3667 into:
3668 movq %fs:0, %rax
3669 leaq foo@tpoff(%rax), %rax
3670 For 32bit, change
3671 leaq foo@tlsgd(%rip), %rdi
3672 .word 0x6666; rex64; call __tls_get_addr
3673 into:
3674 movl %fs:0, %eax
3675 leaq foo@tpoff(%rax), %rax */
3676 if (ABI_64_P (output_bfd))
3677 memcpy (contents + roff - 4,
3678 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3679 16);
3680 else
3681 memcpy (contents + roff - 3,
3682 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3683 15);
3684 bfd_put_32 (output_bfd,
3685 elf_x86_64_tpoff (info, relocation),
3686 contents + roff + 8);
3687 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3688 rel++;
3689 continue;
3690 }
3691 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3692 {
3693 /* GDesc -> LE transition.
3694 It's originally something like:
3695 leaq x@tlsdesc(%rip), %rax
3696
3697 Change it to:
3698 movl $x@tpoff, %rax. */
3699
3700 unsigned int val, type;
3701
3702 type = bfd_get_8 (input_bfd, contents + roff - 3);
3703 val = bfd_get_8 (input_bfd, contents + roff - 1);
3704 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3705 contents + roff - 3);
3706 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3707 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3708 contents + roff - 1);
3709 bfd_put_32 (output_bfd,
3710 elf_x86_64_tpoff (info, relocation),
3711 contents + roff);
3712 continue;
3713 }
3714 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3715 {
3716 /* GDesc -> LE transition.
3717 It's originally:
3718 call *(%rax)
3719 Turn it into:
3720 xchg %ax,%ax. */
3721 bfd_put_8 (output_bfd, 0x66, contents + roff);
3722 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3723 continue;
3724 }
3725 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3726 {
3727 /* IE->LE transition:
3728 Originally it can be one of:
3729 movq foo@gottpoff(%rip), %reg
3730 addq foo@gottpoff(%rip), %reg
3731 We change it into:
3732 movq $foo, %reg
3733 leaq foo(%reg), %reg
3734 addq $foo, %reg. */
3735
3736 unsigned int val, type, reg;
3737
3738 val = bfd_get_8 (input_bfd, contents + roff - 3);
3739 type = bfd_get_8 (input_bfd, contents + roff - 2);
3740 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3741 reg >>= 3;
3742 if (type == 0x8b)
3743 {
3744 /* movq */
3745 if (val == 0x4c)
3746 bfd_put_8 (output_bfd, 0x49,
3747 contents + roff - 3);
3748 else if (!ABI_64_P (output_bfd) && val == 0x44)
3749 bfd_put_8 (output_bfd, 0x41,
3750 contents + roff - 3);
3751 bfd_put_8 (output_bfd, 0xc7,
3752 contents + roff - 2);
3753 bfd_put_8 (output_bfd, 0xc0 | reg,
3754 contents + roff - 1);
3755 }
3756 else if (reg == 4)
3757 {
3758 /* addq -> addq - addressing with %rsp/%r12 is
3759 special */
3760 if (val == 0x4c)
3761 bfd_put_8 (output_bfd, 0x49,
3762 contents + roff - 3);
3763 else if (!ABI_64_P (output_bfd) && val == 0x44)
3764 bfd_put_8 (output_bfd, 0x41,
3765 contents + roff - 3);
3766 bfd_put_8 (output_bfd, 0x81,
3767 contents + roff - 2);
3768 bfd_put_8 (output_bfd, 0xc0 | reg,
3769 contents + roff - 1);
3770 }
3771 else
3772 {
3773 /* addq -> leaq */
3774 if (val == 0x4c)
3775 bfd_put_8 (output_bfd, 0x4d,
3776 contents + roff - 3);
3777 else if (!ABI_64_P (output_bfd) && val == 0x44)
3778 bfd_put_8 (output_bfd, 0x45,
3779 contents + roff - 3);
3780 bfd_put_8 (output_bfd, 0x8d,
3781 contents + roff - 2);
3782 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3783 contents + roff - 1);
3784 }
3785 bfd_put_32 (output_bfd,
3786 elf_x86_64_tpoff (info, relocation),
3787 contents + roff);
3788 continue;
3789 }
3790 else
3791 BFD_ASSERT (FALSE);
3792 }
3793
3794 if (htab->elf.sgot == NULL)
3795 abort ();
3796
3797 if (h != NULL)
3798 {
3799 off = h->got.offset;
3800 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3801 }
3802 else
3803 {
3804 if (local_got_offsets == NULL)
3805 abort ();
3806
3807 off = local_got_offsets[r_symndx];
3808 offplt = local_tlsdesc_gotents[r_symndx];
3809 }
3810
3811 if ((off & 1) != 0)
3812 off &= ~1;
3813 else
3814 {
3815 Elf_Internal_Rela outrel;
3816 int dr_type, indx;
3817 asection *sreloc;
3818
3819 if (htab->elf.srelgot == NULL)
3820 abort ();
3821
3822 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3823
3824 if (GOT_TLS_GDESC_P (tls_type))
3825 {
3826 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3827 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3828 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3829 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3830 + htab->elf.sgotplt->output_offset
3831 + offplt
3832 + htab->sgotplt_jump_table_size);
3833 sreloc = htab->elf.srelplt;
3834 if (indx == 0)
3835 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3836 else
3837 outrel.r_addend = 0;
3838 elf_append_rela (output_bfd, sreloc, &outrel);
3839 }
3840
3841 sreloc = htab->elf.srelgot;
3842
3843 outrel.r_offset = (htab->elf.sgot->output_section->vma
3844 + htab->elf.sgot->output_offset + off);
3845
3846 if (GOT_TLS_GD_P (tls_type))
3847 dr_type = R_X86_64_DTPMOD64;
3848 else if (GOT_TLS_GDESC_P (tls_type))
3849 goto dr_done;
3850 else
3851 dr_type = R_X86_64_TPOFF64;
3852
3853 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3854 outrel.r_addend = 0;
3855 if ((dr_type == R_X86_64_TPOFF64
3856 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3857 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3858 outrel.r_info = htab->r_info (indx, dr_type);
3859
3860 elf_append_rela (output_bfd, sreloc, &outrel);
3861
3862 if (GOT_TLS_GD_P (tls_type))
3863 {
3864 if (indx == 0)
3865 {
3866 BFD_ASSERT (! unresolved_reloc);
3867 bfd_put_64 (output_bfd,
3868 relocation - elf_x86_64_dtpoff_base (info),
3869 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3870 }
3871 else
3872 {
3873 bfd_put_64 (output_bfd, 0,
3874 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3875 outrel.r_info = htab->r_info (indx,
3876 R_X86_64_DTPOFF64);
3877 outrel.r_offset += GOT_ENTRY_SIZE;
3878 elf_append_rela (output_bfd, sreloc,
3879 &outrel);
3880 }
3881 }
3882
3883 dr_done:
3884 if (h != NULL)
3885 h->got.offset |= 1;
3886 else
3887 local_got_offsets[r_symndx] |= 1;
3888 }
3889
3890 if (off >= (bfd_vma) -2
3891 && ! GOT_TLS_GDESC_P (tls_type))
3892 abort ();
3893 if (r_type == ELF32_R_TYPE (rel->r_info))
3894 {
3895 if (r_type == R_X86_64_GOTPC32_TLSDESC
3896 || r_type == R_X86_64_TLSDESC_CALL)
3897 relocation = htab->elf.sgotplt->output_section->vma
3898 + htab->elf.sgotplt->output_offset
3899 + offplt + htab->sgotplt_jump_table_size;
3900 else
3901 relocation = htab->elf.sgot->output_section->vma
3902 + htab->elf.sgot->output_offset + off;
3903 unresolved_reloc = FALSE;
3904 }
3905 else
3906 {
3907 bfd_vma roff = rel->r_offset;
3908
3909 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3910 {
3911 /* GD->IE transition. For 64bit, change
3912 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3913 .word 0x6666; rex64; call __tls_get_addr@plt
3914 into:
3915 movq %fs:0, %rax
3916 addq foo@gottpoff(%rip), %rax
3917 For 32bit, change
3918 leaq foo@tlsgd(%rip), %rdi
3919 .word 0x6666; rex64; call __tls_get_addr@plt
3920 into:
3921 movl %fs:0, %eax
3922 addq foo@gottpoff(%rip), %rax */
3923 if (ABI_64_P (output_bfd))
3924 memcpy (contents + roff - 4,
3925 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3926 16);
3927 else
3928 memcpy (contents + roff - 3,
3929 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3930 15);
3931
3932 relocation = (htab->elf.sgot->output_section->vma
3933 + htab->elf.sgot->output_offset + off
3934 - roff
3935 - input_section->output_section->vma
3936 - input_section->output_offset
3937 - 12);
3938 bfd_put_32 (output_bfd, relocation,
3939 contents + roff + 8);
3940 /* Skip R_X86_64_PLT32. */
3941 rel++;
3942 continue;
3943 }
3944 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3945 {
3946 /* GDesc -> IE transition.
3947 It's originally something like:
3948 leaq x@tlsdesc(%rip), %rax
3949
3950 Change it to:
3951 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3952
3953 /* Now modify the instruction as appropriate. To
3954 turn a leaq into a movq in the form we use it, it
3955 suffices to change the second byte from 0x8d to
3956 0x8b. */
3957 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3958
3959 bfd_put_32 (output_bfd,
3960 htab->elf.sgot->output_section->vma
3961 + htab->elf.sgot->output_offset + off
3962 - rel->r_offset
3963 - input_section->output_section->vma
3964 - input_section->output_offset
3965 - 4,
3966 contents + roff);
3967 continue;
3968 }
3969 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3970 {
3971 /* GDesc -> IE transition.
3972 It's originally:
3973 call *(%rax)
3974
3975 Change it to:
3976 xchg %ax, %ax. */
3977
3978 bfd_put_8 (output_bfd, 0x66, contents + roff);
3979 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3980 continue;
3981 }
3982 else
3983 BFD_ASSERT (FALSE);
3984 }
3985 break;
3986
3987 case R_X86_64_TLSLD:
3988 if (! elf_x86_64_tls_transition (info, input_bfd,
3989 input_section, contents,
3990 symtab_hdr, sym_hashes,
3991 &r_type, GOT_UNKNOWN,
3992 rel, relend, h, r_symndx))
3993 return FALSE;
3994
3995 if (r_type != R_X86_64_TLSLD)
3996 {
3997 /* LD->LE transition:
3998 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3999 For 64bit, we change it into:
4000 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4001 For 32bit, we change it into:
4002 nopl 0x0(%rax); movl %fs:0, %eax. */
4003
4004 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4005 if (ABI_64_P (output_bfd))
4006 memcpy (contents + rel->r_offset - 3,
4007 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4008 else
4009 memcpy (contents + rel->r_offset - 3,
4010 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4011 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4012 rel++;
4013 continue;
4014 }
4015
4016 if (htab->elf.sgot == NULL)
4017 abort ();
4018
4019 off = htab->tls_ld_got.offset;
4020 if (off & 1)
4021 off &= ~1;
4022 else
4023 {
4024 Elf_Internal_Rela outrel;
4025
4026 if (htab->elf.srelgot == NULL)
4027 abort ();
4028
4029 outrel.r_offset = (htab->elf.sgot->output_section->vma
4030 + htab->elf.sgot->output_offset + off);
4031
4032 bfd_put_64 (output_bfd, 0,
4033 htab->elf.sgot->contents + off);
4034 bfd_put_64 (output_bfd, 0,
4035 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4036 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4037 outrel.r_addend = 0;
4038 elf_append_rela (output_bfd, htab->elf.srelgot,
4039 &outrel);
4040 htab->tls_ld_got.offset |= 1;
4041 }
4042 relocation = htab->elf.sgot->output_section->vma
4043 + htab->elf.sgot->output_offset + off;
4044 unresolved_reloc = FALSE;
4045 break;
4046
4047 case R_X86_64_DTPOFF32:
4048 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4049 relocation -= elf_x86_64_dtpoff_base (info);
4050 else
4051 relocation = elf_x86_64_tpoff (info, relocation);
4052 break;
4053
4054 case R_X86_64_TPOFF32:
4055 case R_X86_64_TPOFF64:
4056 BFD_ASSERT (info->executable);
4057 relocation = elf_x86_64_tpoff (info, relocation);
4058 break;
4059
4060 default:
4061 break;
4062 }
4063
4064 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4065 because such sections are not SEC_ALLOC and thus ld.so will
4066 not process them. */
4067 if (unresolved_reloc
4068 && !((input_section->flags & SEC_DEBUGGING) != 0
4069 && h->def_dynamic))
4070 (*_bfd_error_handler)
4071 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4072 input_bfd,
4073 input_section,
4074 (long) rel->r_offset,
4075 howto->name,
4076 h->root.root.string);
4077
4078 do_relocation:
4079 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4080 contents, rel->r_offset,
4081 relocation, rel->r_addend);
4082
4083 check_relocation_error:
4084 if (r != bfd_reloc_ok)
4085 {
4086 const char *name;
4087
4088 if (h != NULL)
4089 name = h->root.root.string;
4090 else
4091 {
4092 name = bfd_elf_string_from_elf_section (input_bfd,
4093 symtab_hdr->sh_link,
4094 sym->st_name);
4095 if (name == NULL)
4096 return FALSE;
4097 if (*name == '\0')
4098 name = bfd_section_name (input_bfd, sec);
4099 }
4100
4101 if (r == bfd_reloc_overflow)
4102 {
4103 if (! ((*info->callbacks->reloc_overflow)
4104 (info, (h ? &h->root : NULL), name, howto->name,
4105 (bfd_vma) 0, input_bfd, input_section,
4106 rel->r_offset)))
4107 return FALSE;
4108 }
4109 else
4110 {
4111 (*_bfd_error_handler)
4112 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4113 input_bfd, input_section,
4114 (long) rel->r_offset, name, (int) r);
4115 return FALSE;
4116 }
4117 }
4118 }
4119
4120 return TRUE;
4121 }
4122
4123 /* Finish up dynamic symbol handling. We set the contents of various
4124 dynamic sections here. */
4125
4126 static bfd_boolean
4127 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4128 struct bfd_link_info *info,
4129 struct elf_link_hash_entry *h,
4130 Elf_Internal_Sym *sym)
4131 {
4132 struct elf_x86_64_link_hash_table *htab;
4133
4134 htab = elf_x86_64_hash_table (info);
4135 if (htab == NULL)
4136 return FALSE;
4137
4138 if (h->plt.offset != (bfd_vma) -1)
4139 {
4140 bfd_vma plt_index;
4141 bfd_vma got_offset;
4142 Elf_Internal_Rela rela;
4143 bfd_byte *loc;
4144 asection *plt, *gotplt, *relplt;
4145 const struct elf_backend_data *bed;
4146
4147 /* When building a static executable, use .iplt, .igot.plt and
4148 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4149 if (htab->elf.splt != NULL)
4150 {
4151 plt = htab->elf.splt;
4152 gotplt = htab->elf.sgotplt;
4153 relplt = htab->elf.srelplt;
4154 }
4155 else
4156 {
4157 plt = htab->elf.iplt;
4158 gotplt = htab->elf.igotplt;
4159 relplt = htab->elf.irelplt;
4160 }
4161
4162 /* This symbol has an entry in the procedure linkage table. Set
4163 it up. */
4164 if ((h->dynindx == -1
4165 && !((h->forced_local || info->executable)
4166 && h->def_regular
4167 && h->type == STT_GNU_IFUNC))
4168 || plt == NULL
4169 || gotplt == NULL
4170 || relplt == NULL)
4171 return FALSE;
4172
4173 /* Get the index in the procedure linkage table which
4174 corresponds to this symbol. This is the index of this symbol
4175 in all the symbols for which we are making plt entries. The
4176 first entry in the procedure linkage table is reserved.
4177
4178 Get the offset into the .got table of the entry that
4179 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4180 bytes. The first three are reserved for the dynamic linker.
4181
4182 For static executables, we don't reserve anything. */
4183
4184 if (plt == htab->elf.splt)
4185 {
4186 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
4187 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
4188 }
4189 else
4190 {
4191 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
4192 got_offset = plt_index * GOT_ENTRY_SIZE;
4193 }
4194
4195 /* Fill in the entry in the procedure linkage table. */
4196 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
4197 PLT_ENTRY_SIZE);
4198
4199 /* Insert the relocation positions of the plt section. The magic
4200 numbers at the end of the statements are the positions of the
4201 relocations in the plt section. */
4202 /* Put offset for jmp *name@GOTPCREL(%rip), since the
4203 instruction uses 6 bytes, subtract this value. */
4204 bfd_put_32 (output_bfd,
4205 (gotplt->output_section->vma
4206 + gotplt->output_offset
4207 + got_offset
4208 - plt->output_section->vma
4209 - plt->output_offset
4210 - h->plt.offset
4211 - 6),
4212 plt->contents + h->plt.offset + 2);
4213
4214 /* Don't fill PLT entry for static executables. */
4215 if (plt == htab->elf.splt)
4216 {
4217 /* Put relocation index. */
4218 bfd_put_32 (output_bfd, plt_index,
4219 plt->contents + h->plt.offset + 7);
4220 /* Put offset for jmp .PLT0. */
4221 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4222 plt->contents + h->plt.offset + 12);
4223 }
4224
4225 /* Fill in the entry in the global offset table, initially this
4226 points to the pushq instruction in the PLT which is at offset 6. */
4227 bfd_put_64 (output_bfd, (plt->output_section->vma
4228 + plt->output_offset
4229 + h->plt.offset + 6),
4230 gotplt->contents + got_offset);
4231
4232 /* Fill in the entry in the .rela.plt section. */
4233 rela.r_offset = (gotplt->output_section->vma
4234 + gotplt->output_offset
4235 + got_offset);
4236 if (h->dynindx == -1
4237 || ((info->executable
4238 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4239 && h->def_regular
4240 && h->type == STT_GNU_IFUNC))
4241 {
4242 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4243 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4244 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4245 rela.r_addend = (h->root.u.def.value
4246 + h->root.u.def.section->output_section->vma
4247 + h->root.u.def.section->output_offset);
4248 }
4249 else
4250 {
4251 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4252 rela.r_addend = 0;
4253 }
4254
4255 bed = get_elf_backend_data (output_bfd);
4256 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4257 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4258
4259 if (!h->def_regular)
4260 {
4261 /* Mark the symbol as undefined, rather than as defined in
4262 the .plt section. Leave the value if there were any
4263 relocations where pointer equality matters (this is a clue
4264 for the dynamic linker, to make function pointer
4265 comparisons work between an application and shared
4266 library), otherwise set it to zero. If a function is only
4267 called from a binary, there is no need to slow down
4268 shared libraries because of that. */
4269 sym->st_shndx = SHN_UNDEF;
4270 if (!h->pointer_equality_needed)
4271 sym->st_value = 0;
4272 }
4273 }
4274
4275 if (h->got.offset != (bfd_vma) -1
4276 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4277 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4278 {
4279 Elf_Internal_Rela rela;
4280
4281 /* This symbol has an entry in the global offset table. Set it
4282 up. */
4283 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4284 abort ();
4285
4286 rela.r_offset = (htab->elf.sgot->output_section->vma
4287 + htab->elf.sgot->output_offset
4288 + (h->got.offset &~ (bfd_vma) 1));
4289
4290 /* If this is a static link, or it is a -Bsymbolic link and the
4291 symbol is defined locally or was forced to be local because
4292 of a version file, we just want to emit a RELATIVE reloc.
4293 The entry in the global offset table will already have been
4294 initialized in the relocate_section function. */
4295 if (h->def_regular
4296 && h->type == STT_GNU_IFUNC)
4297 {
4298 if (info->shared)
4299 {
4300 /* Generate R_X86_64_GLOB_DAT. */
4301 goto do_glob_dat;
4302 }
4303 else
4304 {
4305 asection *plt;
4306
4307 if (!h->pointer_equality_needed)
4308 abort ();
4309
4310 /* For non-shared object, we can't use .got.plt, which
4311 contains the real function addres if we need pointer
4312 equality. We load the GOT entry with the PLT entry. */
4313 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4314 bfd_put_64 (output_bfd, (plt->output_section->vma
4315 + plt->output_offset
4316 + h->plt.offset),
4317 htab->elf.sgot->contents + h->got.offset);
4318 return TRUE;
4319 }
4320 }
4321 else if (info->shared
4322 && SYMBOL_REFERENCES_LOCAL (info, h))
4323 {
4324 if (!h->def_regular)
4325 return FALSE;
4326 BFD_ASSERT((h->got.offset & 1) != 0);
4327 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4328 rela.r_addend = (h->root.u.def.value
4329 + h->root.u.def.section->output_section->vma
4330 + h->root.u.def.section->output_offset);
4331 }
4332 else
4333 {
4334 BFD_ASSERT((h->got.offset & 1) == 0);
4335 do_glob_dat:
4336 bfd_put_64 (output_bfd, (bfd_vma) 0,
4337 htab->elf.sgot->contents + h->got.offset);
4338 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4339 rela.r_addend = 0;
4340 }
4341
4342 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4343 }
4344
4345 if (h->needs_copy)
4346 {
4347 Elf_Internal_Rela rela;
4348
4349 /* This symbol needs a copy reloc. Set it up. */
4350
4351 if (h->dynindx == -1
4352 || (h->root.type != bfd_link_hash_defined
4353 && h->root.type != bfd_link_hash_defweak)
4354 || htab->srelbss == NULL)
4355 abort ();
4356
4357 rela.r_offset = (h->root.u.def.value
4358 + h->root.u.def.section->output_section->vma
4359 + h->root.u.def.section->output_offset);
4360 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4361 rela.r_addend = 0;
4362 elf_append_rela (output_bfd, htab->srelbss, &rela);
4363 }
4364
4365 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4366 be NULL for local symbols. */
4367 if (sym != NULL
4368 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4369 || h == htab->elf.hgot))
4370 sym->st_shndx = SHN_ABS;
4371
4372 return TRUE;
4373 }
4374
4375 /* Finish up local dynamic symbol handling. We set the contents of
4376 various dynamic sections here. */
4377
4378 static bfd_boolean
4379 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4380 {
4381 struct elf_link_hash_entry *h
4382 = (struct elf_link_hash_entry *) *slot;
4383 struct bfd_link_info *info
4384 = (struct bfd_link_info *) inf;
4385
4386 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4387 info, h, NULL);
4388 }
4389
4390 /* Used to decide how to sort relocs in an optimal manner for the
4391 dynamic linker, before writing them out. */
4392
4393 static enum elf_reloc_type_class
4394 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4395 {
4396 switch ((int) ELF32_R_TYPE (rela->r_info))
4397 {
4398 case R_X86_64_RELATIVE:
4399 return reloc_class_relative;
4400 case R_X86_64_JUMP_SLOT:
4401 return reloc_class_plt;
4402 case R_X86_64_COPY:
4403 return reloc_class_copy;
4404 default:
4405 return reloc_class_normal;
4406 }
4407 }
4408
4409 /* Finish up the dynamic sections. */
4410
4411 static bfd_boolean
4412 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4413 struct bfd_link_info *info)
4414 {
4415 struct elf_x86_64_link_hash_table *htab;
4416 bfd *dynobj;
4417 asection *sdyn;
4418
4419 htab = elf_x86_64_hash_table (info);
4420 if (htab == NULL)
4421 return FALSE;
4422
4423 dynobj = htab->elf.dynobj;
4424 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4425
4426 if (htab->elf.dynamic_sections_created)
4427 {
4428 bfd_byte *dyncon, *dynconend;
4429 const struct elf_backend_data *bed;
4430 bfd_size_type sizeof_dyn;
4431
4432 if (sdyn == NULL || htab->elf.sgot == NULL)
4433 abort ();
4434
4435 bed = get_elf_backend_data (dynobj);
4436 sizeof_dyn = bed->s->sizeof_dyn;
4437 dyncon = sdyn->contents;
4438 dynconend = sdyn->contents + sdyn->size;
4439 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4440 {
4441 Elf_Internal_Dyn dyn;
4442 asection *s;
4443
4444 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4445
4446 switch (dyn.d_tag)
4447 {
4448 default:
4449 continue;
4450
4451 case DT_PLTGOT:
4452 s = htab->elf.sgotplt;
4453 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4454 break;
4455
4456 case DT_JMPREL:
4457 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4458 break;
4459
4460 case DT_PLTRELSZ:
4461 s = htab->elf.srelplt->output_section;
4462 dyn.d_un.d_val = s->size;
4463 break;
4464
4465 case DT_RELASZ:
4466 /* The procedure linkage table relocs (DT_JMPREL) should
4467 not be included in the overall relocs (DT_RELA).
4468 Therefore, we override the DT_RELASZ entry here to
4469 make it not include the JMPREL relocs. Since the
4470 linker script arranges for .rela.plt to follow all
4471 other relocation sections, we don't have to worry
4472 about changing the DT_RELA entry. */
4473 if (htab->elf.srelplt != NULL)
4474 {
4475 s = htab->elf.srelplt->output_section;
4476 dyn.d_un.d_val -= s->size;
4477 }
4478 break;
4479
4480 case DT_TLSDESC_PLT:
4481 s = htab->elf.splt;
4482 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4483 + htab->tlsdesc_plt;
4484 break;
4485
4486 case DT_TLSDESC_GOT:
4487 s = htab->elf.sgot;
4488 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4489 + htab->tlsdesc_got;
4490 break;
4491 }
4492
4493 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4494 }
4495
4496 /* Fill in the special first entry in the procedure linkage table. */
4497 if (htab->elf.splt && htab->elf.splt->size > 0)
4498 {
4499 /* Fill in the first entry in the procedure linkage table. */
4500 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4501 PLT_ENTRY_SIZE);
4502 /* Add offset for pushq GOT+8(%rip), since the instruction
4503 uses 6 bytes subtract this value. */
4504 bfd_put_32 (output_bfd,
4505 (htab->elf.sgotplt->output_section->vma
4506 + htab->elf.sgotplt->output_offset
4507 + 8
4508 - htab->elf.splt->output_section->vma
4509 - htab->elf.splt->output_offset
4510 - 6),
4511 htab->elf.splt->contents + 2);
4512 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4513 the end of the instruction. */
4514 bfd_put_32 (output_bfd,
4515 (htab->elf.sgotplt->output_section->vma
4516 + htab->elf.sgotplt->output_offset
4517 + 16
4518 - htab->elf.splt->output_section->vma
4519 - htab->elf.splt->output_offset
4520 - 12),
4521 htab->elf.splt->contents + 8);
4522
4523 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4524 PLT_ENTRY_SIZE;
4525
4526 if (htab->tlsdesc_plt)
4527 {
4528 bfd_put_64 (output_bfd, (bfd_vma) 0,
4529 htab->elf.sgot->contents + htab->tlsdesc_got);
4530
4531 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4532 elf_x86_64_plt0_entry,
4533 PLT_ENTRY_SIZE);
4534
4535 /* Add offset for pushq GOT+8(%rip), since the
4536 instruction uses 6 bytes subtract this value. */
4537 bfd_put_32 (output_bfd,
4538 (htab->elf.sgotplt->output_section->vma
4539 + htab->elf.sgotplt->output_offset
4540 + 8
4541 - htab->elf.splt->output_section->vma
4542 - htab->elf.splt->output_offset
4543 - htab->tlsdesc_plt
4544 - 6),
4545 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4546 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4547 htab->tlsdesc_got. The 12 is the offset to the end of
4548 the instruction. */
4549 bfd_put_32 (output_bfd,
4550 (htab->elf.sgot->output_section->vma
4551 + htab->elf.sgot->output_offset
4552 + htab->tlsdesc_got
4553 - htab->elf.splt->output_section->vma
4554 - htab->elf.splt->output_offset
4555 - htab->tlsdesc_plt
4556 - 12),
4557 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4558 }
4559 }
4560 }
4561
4562 if (htab->elf.sgotplt)
4563 {
4564 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4565 {
4566 (*_bfd_error_handler)
4567 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4568 return FALSE;
4569 }
4570
4571 /* Fill in the first three entries in the global offset table. */
4572 if (htab->elf.sgotplt->size > 0)
4573 {
4574 /* Set the first entry in the global offset table to the address of
4575 the dynamic section. */
4576 if (sdyn == NULL)
4577 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4578 else
4579 bfd_put_64 (output_bfd,
4580 sdyn->output_section->vma + sdyn->output_offset,
4581 htab->elf.sgotplt->contents);
4582 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4583 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4584 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4585 }
4586
4587 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4588 GOT_ENTRY_SIZE;
4589 }
4590
4591 /* Adjust .eh_frame for .plt section. */
4592 if (htab->plt_eh_frame != NULL)
4593 {
4594 if (htab->elf.splt != NULL
4595 && htab->elf.splt->size != 0
4596 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4597 && htab->elf.splt->output_section != NULL
4598 && htab->plt_eh_frame->output_section != NULL)
4599 {
4600 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4601 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4602 + htab->plt_eh_frame->output_offset
4603 + PLT_FDE_START_OFFSET;
4604 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4605 htab->plt_eh_frame->contents
4606 + PLT_FDE_START_OFFSET);
4607 }
4608 if (htab->plt_eh_frame->sec_info_type
4609 == ELF_INFO_TYPE_EH_FRAME)
4610 {
4611 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4612 htab->plt_eh_frame,
4613 htab->plt_eh_frame->contents))
4614 return FALSE;
4615 }
4616 }
4617
4618 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4619 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4620 = GOT_ENTRY_SIZE;
4621
4622 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4623 htab_traverse (htab->loc_hash_table,
4624 elf_x86_64_finish_local_dynamic_symbol,
4625 info);
4626
4627 return TRUE;
4628 }
4629
4630 /* Return address for Ith PLT stub in section PLT, for relocation REL
4631 or (bfd_vma) -1 if it should not be included. */
4632
4633 static bfd_vma
4634 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4635 const arelent *rel ATTRIBUTE_UNUSED)
4636 {
4637 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4638 }
4639
4640 /* Handle an x86-64 specific section when reading an object file. This
4641 is called when elfcode.h finds a section with an unknown type. */
4642
4643 static bfd_boolean
4644 elf_x86_64_section_from_shdr (bfd *abfd,
4645 Elf_Internal_Shdr *hdr,
4646 const char *name,
4647 int shindex)
4648 {
4649 if (hdr->sh_type != SHT_X86_64_UNWIND)
4650 return FALSE;
4651
4652 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4653 return FALSE;
4654
4655 return TRUE;
4656 }
4657
4658 /* Hook called by the linker routine which adds symbols from an object
4659 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4660 of .bss. */
4661
4662 static bfd_boolean
4663 elf_x86_64_add_symbol_hook (bfd *abfd,
4664 struct bfd_link_info *info,
4665 Elf_Internal_Sym *sym,
4666 const char **namep ATTRIBUTE_UNUSED,
4667 flagword *flagsp ATTRIBUTE_UNUSED,
4668 asection **secp,
4669 bfd_vma *valp)
4670 {
4671 asection *lcomm;
4672
4673 switch (sym->st_shndx)
4674 {
4675 case SHN_X86_64_LCOMMON:
4676 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4677 if (lcomm == NULL)
4678 {
4679 lcomm = bfd_make_section_with_flags (abfd,
4680 "LARGE_COMMON",
4681 (SEC_ALLOC
4682 | SEC_IS_COMMON
4683 | SEC_LINKER_CREATED));
4684 if (lcomm == NULL)
4685 return FALSE;
4686 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4687 }
4688 *secp = lcomm;
4689 *valp = sym->st_size;
4690 return TRUE;
4691 }
4692
4693 if ((abfd->flags & DYNAMIC) == 0
4694 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4695 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4696 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4697
4698 return TRUE;
4699 }
4700
4701
4702 /* Given a BFD section, try to locate the corresponding ELF section
4703 index. */
4704
4705 static bfd_boolean
4706 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4707 asection *sec, int *index_return)
4708 {
4709 if (sec == &_bfd_elf_large_com_section)
4710 {
4711 *index_return = SHN_X86_64_LCOMMON;
4712 return TRUE;
4713 }
4714 return FALSE;
4715 }
4716
4717 /* Process a symbol. */
4718
4719 static void
4720 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4721 asymbol *asym)
4722 {
4723 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4724
4725 switch (elfsym->internal_elf_sym.st_shndx)
4726 {
4727 case SHN_X86_64_LCOMMON:
4728 asym->section = &_bfd_elf_large_com_section;
4729 asym->value = elfsym->internal_elf_sym.st_size;
4730 /* Common symbol doesn't set BSF_GLOBAL. */
4731 asym->flags &= ~BSF_GLOBAL;
4732 break;
4733 }
4734 }
4735
4736 static bfd_boolean
4737 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4738 {
4739 return (sym->st_shndx == SHN_COMMON
4740 || sym->st_shndx == SHN_X86_64_LCOMMON);
4741 }
4742
4743 static unsigned int
4744 elf_x86_64_common_section_index (asection *sec)
4745 {
4746 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4747 return SHN_COMMON;
4748 else
4749 return SHN_X86_64_LCOMMON;
4750 }
4751
4752 static asection *
4753 elf_x86_64_common_section (asection *sec)
4754 {
4755 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4756 return bfd_com_section_ptr;
4757 else
4758 return &_bfd_elf_large_com_section;
4759 }
4760
4761 static bfd_boolean
4762 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4763 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4764 struct elf_link_hash_entry *h,
4765 Elf_Internal_Sym *sym,
4766 asection **psec,
4767 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4768 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4769 bfd_boolean *skip ATTRIBUTE_UNUSED,
4770 bfd_boolean *override ATTRIBUTE_UNUSED,
4771 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4772 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4773 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4774 bfd_boolean *newdef,
4775 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4776 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4777 bfd *abfd ATTRIBUTE_UNUSED,
4778 asection **sec,
4779 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4780 bfd_boolean *olddef,
4781 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4782 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4783 bfd *oldbfd,
4784 asection **oldsec)
4785 {
4786 /* A normal common symbol and a large common symbol result in a
4787 normal common symbol. We turn the large common symbol into a
4788 normal one. */
4789 if (!*olddef
4790 && h->root.type == bfd_link_hash_common
4791 && !*newdef
4792 && bfd_is_com_section (*sec)
4793 && *oldsec != *sec)
4794 {
4795 if (sym->st_shndx == SHN_COMMON
4796 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4797 {
4798 h->root.u.c.p->section
4799 = bfd_make_section_old_way (oldbfd, "COMMON");
4800 h->root.u.c.p->section->flags = SEC_ALLOC;
4801 }
4802 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4803 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4804 *psec = *sec = bfd_com_section_ptr;
4805 }
4806
4807 return TRUE;
4808 }
4809
4810 static int
4811 elf_x86_64_additional_program_headers (bfd *abfd,
4812 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4813 {
4814 asection *s;
4815 int count = 0;
4816
4817 /* Check to see if we need a large readonly segment. */
4818 s = bfd_get_section_by_name (abfd, ".lrodata");
4819 if (s && (s->flags & SEC_LOAD))
4820 count++;
4821
4822 /* Check to see if we need a large data segment. Since .lbss sections
4823 is placed right after the .bss section, there should be no need for
4824 a large data segment just because of .lbss. */
4825 s = bfd_get_section_by_name (abfd, ".ldata");
4826 if (s && (s->flags & SEC_LOAD))
4827 count++;
4828
4829 return count;
4830 }
4831
4832 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4833
4834 static bfd_boolean
4835 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4836 {
4837 if (h->plt.offset != (bfd_vma) -1
4838 && !h->def_regular
4839 && !h->pointer_equality_needed)
4840 return FALSE;
4841
4842 return _bfd_elf_hash_symbol (h);
4843 }
4844
4845 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4846
4847 static bfd_boolean
4848 elf_x86_64_relocs_compatible (const bfd_target *input,
4849 const bfd_target *output)
4850 {
4851 return ((xvec_get_elf_backend_data (input)->s->elfclass
4852 == xvec_get_elf_backend_data (output)->s->elfclass)
4853 && _bfd_elf_relocs_compatible (input, output));
4854 }
4855
4856 static const struct bfd_elf_special_section
4857 elf_x86_64_special_sections[]=
4858 {
4859 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4860 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4861 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4862 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4863 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4864 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4865 { NULL, 0, 0, 0, 0 }
4866 };
4867
4868 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4869 #define TARGET_LITTLE_NAME "elf64-x86-64"
4870 #define ELF_ARCH bfd_arch_i386
4871 #define ELF_TARGET_ID X86_64_ELF_DATA
4872 #define ELF_MACHINE_CODE EM_X86_64
4873 #define ELF_MAXPAGESIZE 0x200000
4874 #define ELF_MINPAGESIZE 0x1000
4875 #define ELF_COMMONPAGESIZE 0x1000
4876
4877 #define elf_backend_can_gc_sections 1
4878 #define elf_backend_can_refcount 1
4879 #define elf_backend_want_got_plt 1
4880 #define elf_backend_plt_readonly 1
4881 #define elf_backend_want_plt_sym 0
4882 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4883 #define elf_backend_rela_normal 1
4884 #define elf_backend_plt_alignment 4
4885
4886 #define elf_info_to_howto elf_x86_64_info_to_howto
4887
4888 #define bfd_elf64_bfd_link_hash_table_create \
4889 elf_x86_64_link_hash_table_create
4890 #define bfd_elf64_bfd_link_hash_table_free \
4891 elf_x86_64_link_hash_table_free
4892 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4893 #define bfd_elf64_bfd_reloc_name_lookup \
4894 elf_x86_64_reloc_name_lookup
4895
4896 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4897 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4898 #define elf_backend_check_relocs elf_x86_64_check_relocs
4899 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4900 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4901 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4902 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4903 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4904 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4905 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4906 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4907 #ifdef CORE_HEADER
4908 #define elf_backend_write_core_note elf_x86_64_write_core_note
4909 #endif
4910 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4911 #define elf_backend_relocate_section elf_x86_64_relocate_section
4912 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4913 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4914 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4915 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4916 #define elf_backend_object_p elf64_x86_64_elf_object_p
4917 #define bfd_elf64_mkobject elf_x86_64_mkobject
4918
4919 #define elf_backend_section_from_shdr \
4920 elf_x86_64_section_from_shdr
4921
4922 #define elf_backend_section_from_bfd_section \
4923 elf_x86_64_elf_section_from_bfd_section
4924 #define elf_backend_add_symbol_hook \
4925 elf_x86_64_add_symbol_hook
4926 #define elf_backend_symbol_processing \
4927 elf_x86_64_symbol_processing
4928 #define elf_backend_common_section_index \
4929 elf_x86_64_common_section_index
4930 #define elf_backend_common_section \
4931 elf_x86_64_common_section
4932 #define elf_backend_common_definition \
4933 elf_x86_64_common_definition
4934 #define elf_backend_merge_symbol \
4935 elf_x86_64_merge_symbol
4936 #define elf_backend_special_sections \
4937 elf_x86_64_special_sections
4938 #define elf_backend_additional_program_headers \
4939 elf_x86_64_additional_program_headers
4940 #define elf_backend_hash_symbol \
4941 elf_x86_64_hash_symbol
4942
4943 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4944
4945 #include "elf64-target.h"
4946
4947 /* FreeBSD support. */
4948
4949 #undef TARGET_LITTLE_SYM
4950 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4951 #undef TARGET_LITTLE_NAME
4952 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4953
4954 #undef ELF_OSABI
4955 #define ELF_OSABI ELFOSABI_FREEBSD
4956
4957 #undef elf64_bed
4958 #define elf64_bed elf64_x86_64_fbsd_bed
4959
4960 #include "elf64-target.h"
4961
4962 /* Solaris 2 support. */
4963
4964 #undef TARGET_LITTLE_SYM
4965 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
4966 #undef TARGET_LITTLE_NAME
4967 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
4968
4969 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4970 objects won't be recognized. */
4971 #undef ELF_OSABI
4972
4973 #undef elf64_bed
4974 #define elf64_bed elf64_x86_64_sol2_bed
4975
4976 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
4977 boundary. */
4978 #undef elf_backend_static_tls_alignment
4979 #define elf_backend_static_tls_alignment 16
4980
4981 /* The Solaris 2 ABI requires a plt symbol on all platforms.
4982
4983 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
4984 File, p.63. */
4985 #undef elf_backend_want_plt_sym
4986 #define elf_backend_want_plt_sym 1
4987
4988 #include "elf64-target.h"
4989
4990 /* Intel L1OM support. */
4991
4992 static bfd_boolean
4993 elf64_l1om_elf_object_p (bfd *abfd)
4994 {
4995 /* Set the right machine number for an L1OM elf64 file. */
4996 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
4997 return TRUE;
4998 }
4999
5000 #undef TARGET_LITTLE_SYM
5001 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5002 #undef TARGET_LITTLE_NAME
5003 #define TARGET_LITTLE_NAME "elf64-l1om"
5004 #undef ELF_ARCH
5005 #define ELF_ARCH bfd_arch_l1om
5006
5007 #undef ELF_MACHINE_CODE
5008 #define ELF_MACHINE_CODE EM_L1OM
5009
5010 #undef ELF_OSABI
5011
5012 #undef elf64_bed
5013 #define elf64_bed elf64_l1om_bed
5014
5015 #undef elf_backend_object_p
5016 #define elf_backend_object_p elf64_l1om_elf_object_p
5017
5018 #undef elf_backend_static_tls_alignment
5019
5020 #undef elf_backend_want_plt_sym
5021 #define elf_backend_want_plt_sym 0
5022
5023 #include "elf64-target.h"
5024
5025 /* FreeBSD L1OM support. */
5026
5027 #undef TARGET_LITTLE_SYM
5028 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5029 #undef TARGET_LITTLE_NAME
5030 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5031
5032 #undef ELF_OSABI
5033 #define ELF_OSABI ELFOSABI_FREEBSD
5034
5035 #undef elf64_bed
5036 #define elf64_bed elf64_l1om_fbsd_bed
5037
5038 #include "elf64-target.h"
5039
5040 /* Intel K1OM support. */
5041
5042 static bfd_boolean
5043 elf64_k1om_elf_object_p (bfd *abfd)
5044 {
5045 /* Set the right machine number for an K1OM elf64 file. */
5046 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5047 return TRUE;
5048 }
5049
5050 #undef TARGET_LITTLE_SYM
5051 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5052 #undef TARGET_LITTLE_NAME
5053 #define TARGET_LITTLE_NAME "elf64-k1om"
5054 #undef ELF_ARCH
5055 #define ELF_ARCH bfd_arch_k1om
5056
5057 #undef ELF_MACHINE_CODE
5058 #define ELF_MACHINE_CODE EM_K1OM
5059
5060 #undef ELF_OSABI
5061
5062 #undef elf64_bed
5063 #define elf64_bed elf64_k1om_bed
5064
5065 #undef elf_backend_object_p
5066 #define elf_backend_object_p elf64_k1om_elf_object_p
5067
5068 #undef elf_backend_static_tls_alignment
5069
5070 #undef elf_backend_want_plt_sym
5071 #define elf_backend_want_plt_sym 0
5072
5073 #include "elf64-target.h"
5074
5075 /* FreeBSD K1OM support. */
5076
5077 #undef TARGET_LITTLE_SYM
5078 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5079 #undef TARGET_LITTLE_NAME
5080 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5081
5082 #undef ELF_OSABI
5083 #define ELF_OSABI ELFOSABI_FREEBSD
5084
5085 #undef elf64_bed
5086 #define elf64_bed elf64_k1om_fbsd_bed
5087
5088 #include "elf64-target.h"
5089
5090 /* 32bit x86-64 support. */
5091
5092 static bfd_boolean
5093 elf32_x86_64_elf_object_p (bfd *abfd)
5094 {
5095 /* Set the right machine number for an x86-64 elf32 file. */
5096 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
5097 return TRUE;
5098 }
5099
5100 #undef TARGET_LITTLE_SYM
5101 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5102 #undef TARGET_LITTLE_NAME
5103 #define TARGET_LITTLE_NAME "elf32-x86-64"
5104
5105 #undef ELF_ARCH
5106 #define ELF_ARCH bfd_arch_i386
5107
5108 #undef ELF_MACHINE_CODE
5109 #define ELF_MACHINE_CODE EM_X86_64
5110
5111 #define bfd_elf32_bfd_link_hash_table_create \
5112 elf_x86_64_link_hash_table_create
5113 #define bfd_elf32_bfd_link_hash_table_free \
5114 elf_x86_64_link_hash_table_free
5115 #define bfd_elf32_bfd_reloc_type_lookup \
5116 elf_x86_64_reloc_type_lookup
5117 #define bfd_elf32_bfd_reloc_name_lookup \
5118 elf_x86_64_reloc_name_lookup
5119 #define bfd_elf32_mkobject \
5120 elf_x86_64_mkobject
5121
5122 #undef ELF_OSABI
5123
5124 #undef elf_backend_object_p
5125 #define elf_backend_object_p \
5126 elf32_x86_64_elf_object_p
5127
5128 #undef elf_backend_bfd_from_remote_memory
5129 #define elf_backend_bfd_from_remote_memory \
5130 _bfd_elf32_bfd_from_remote_memory
5131
5132 #undef elf_backend_size_info
5133 #define elf_backend_size_info \
5134 _bfd_elf32_size_info
5135
5136 #include "elf32-target.h"
This page took 0.214021 seconds and 4 git commands to generate.