Updated Vietnamese translation.
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 EMPTY_HOWTO (32),
152 EMPTY_HOWTO (33),
153 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
154 complain_overflow_bitfield, bfd_elf_generic_reloc,
155 "R_X86_64_GOTPC32_TLSDESC",
156 FALSE, 0xffffffff, 0xffffffff, TRUE),
157 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
158 complain_overflow_dont, bfd_elf_generic_reloc,
159 "R_X86_64_TLSDESC_CALL",
160 FALSE, 0, 0, FALSE),
161 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
162 complain_overflow_bitfield, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC",
164 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
165 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
166 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
167 MINUS_ONE, FALSE),
168 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
170 MINUS_ONE, FALSE),
171
172 /* We have a gap in the reloc numbers here.
173 R_X86_64_standard counts the number up to this point, and
174 R_X86_64_vt_offset is the value to subtract from a reloc type of
175 R_X86_64_GNU_VT* to form an index into this table. */
176 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
177 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
178
179 /* GNU extension to record C++ vtable hierarchy. */
180 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
181 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
182
183 /* GNU extension to record C++ vtable member usage. */
184 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
186 FALSE),
187
188 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
189 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
191 FALSE)
192 };
193
194 #define IS_X86_64_PCREL_TYPE(TYPE) \
195 ( ((TYPE) == R_X86_64_PC8) \
196 || ((TYPE) == R_X86_64_PC16) \
197 || ((TYPE) == R_X86_64_PC32) \
198 || ((TYPE) == R_X86_64_PC64))
199
200 /* Map BFD relocs to the x86_64 elf relocs. */
201 struct elf_reloc_map
202 {
203 bfd_reloc_code_real_type bfd_reloc_val;
204 unsigned char elf_reloc_val;
205 };
206
207 static const struct elf_reloc_map x86_64_reloc_map[] =
208 {
209 { BFD_RELOC_NONE, R_X86_64_NONE, },
210 { BFD_RELOC_64, R_X86_64_64, },
211 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
212 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
213 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
214 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
215 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
216 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
217 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
218 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
219 { BFD_RELOC_32, R_X86_64_32, },
220 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
221 { BFD_RELOC_16, R_X86_64_16, },
222 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
223 { BFD_RELOC_8, R_X86_64_8, },
224 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
225 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
226 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
227 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
228 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
229 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
230 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
231 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
232 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
233 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
234 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
235 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
236 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
237 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
238 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
239 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
240 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
241 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
242 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
243 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
244 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
245 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
246 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
247 };
248
249 static reloc_howto_type *
250 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
251 {
252 unsigned i;
253
254 if (r_type == (unsigned int) R_X86_64_32)
255 {
256 if (ABI_64_P (abfd))
257 i = r_type;
258 else
259 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
260 }
261 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
262 || r_type >= (unsigned int) R_X86_64_max)
263 {
264 if (r_type >= (unsigned int) R_X86_64_standard)
265 {
266 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
267 abfd, (int) r_type);
268 r_type = R_X86_64_NONE;
269 }
270 i = r_type;
271 }
272 else
273 i = r_type - (unsigned int) R_X86_64_vt_offset;
274 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
275 return &x86_64_elf_howto_table[i];
276 }
277
278 /* Given a BFD reloc type, return a HOWTO structure. */
279 static reloc_howto_type *
280 elf_x86_64_reloc_type_lookup (bfd *abfd,
281 bfd_reloc_code_real_type code)
282 {
283 unsigned int i;
284
285 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
286 i++)
287 {
288 if (x86_64_reloc_map[i].bfd_reloc_val == code)
289 return elf_x86_64_rtype_to_howto (abfd,
290 x86_64_reloc_map[i].elf_reloc_val);
291 }
292 return 0;
293 }
294
295 static reloc_howto_type *
296 elf_x86_64_reloc_name_lookup (bfd *abfd,
297 const char *r_name)
298 {
299 unsigned int i;
300
301 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
302 {
303 /* Get x32 R_X86_64_32. */
304 reloc_howto_type *reloc
305 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
306 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
307 return reloc;
308 }
309
310 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
311 if (x86_64_elf_howto_table[i].name != NULL
312 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
313 return &x86_64_elf_howto_table[i];
314
315 return NULL;
316 }
317
318 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
319
320 static void
321 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
322 Elf_Internal_Rela *dst)
323 {
324 unsigned r_type;
325
326 r_type = ELF32_R_TYPE (dst->r_info);
327 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
328 BFD_ASSERT (r_type == cache_ptr->howto->type);
329 }
330 \f
331 /* Support for core dump NOTE sections. */
332 static bfd_boolean
333 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
334 {
335 int offset;
336 size_t size;
337
338 switch (note->descsz)
339 {
340 default:
341 return FALSE;
342
343 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
344 /* pr_cursig */
345 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
346
347 /* pr_pid */
348 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
349
350 /* pr_reg */
351 offset = 72;
352 size = 216;
353
354 break;
355
356 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core_signal
359 = bfd_get_16 (abfd, note->descdata + 12);
360
361 /* pr_pid */
362 elf_tdata (abfd)->core_lwpid
363 = bfd_get_32 (abfd, note->descdata + 32);
364
365 /* pr_reg */
366 offset = 112;
367 size = 216;
368
369 break;
370 }
371
372 /* Make a ".reg/999" section. */
373 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
374 size, note->descpos + offset);
375 }
376
377 static bfd_boolean
378 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
379 {
380 switch (note->descsz)
381 {
382 default:
383 return FALSE;
384
385 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
386 elf_tdata (abfd)->core_pid
387 = bfd_get_32 (abfd, note->descdata + 12);
388 elf_tdata (abfd)->core_program
389 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
390 elf_tdata (abfd)->core_command
391 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
392 break;
393
394 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
395 elf_tdata (abfd)->core_pid
396 = bfd_get_32 (abfd, note->descdata + 24);
397 elf_tdata (abfd)->core_program
398 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
399 elf_tdata (abfd)->core_command
400 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
401 }
402
403 /* Note that for some reason, a spurious space is tacked
404 onto the end of the args in some (at least one anyway)
405 implementations, so strip it off if it exists. */
406
407 {
408 char *command = elf_tdata (abfd)->core_command;
409 int n = strlen (command);
410
411 if (0 < n && command[n - 1] == ' ')
412 command[n - 1] = '\0';
413 }
414
415 return TRUE;
416 }
417
418 #ifdef CORE_HEADER
419 static char *
420 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
421 int note_type, ...)
422 {
423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
424 va_list ap;
425 const char *fname, *psargs;
426 long pid;
427 int cursig;
428 const void *gregs;
429
430 switch (note_type)
431 {
432 default:
433 return NULL;
434
435 case NT_PRPSINFO:
436 va_start (ap, note_type);
437 fname = va_arg (ap, const char *);
438 psargs = va_arg (ap, const char *);
439 va_end (ap);
440
441 if (bed->s->elfclass == ELFCLASS32)
442 {
443 prpsinfo32_t data;
444 memset (&data, 0, sizeof (data));
445 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
446 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
447 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
448 &data, sizeof (data));
449 }
450 else
451 {
452 prpsinfo_t data;
453 memset (&data, 0, sizeof (data));
454 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
455 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
456 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
457 &data, sizeof (data));
458 }
459 /* NOTREACHED */
460
461 case NT_PRSTATUS:
462 va_start (ap, note_type);
463 pid = va_arg (ap, long);
464 cursig = va_arg (ap, int);
465 gregs = va_arg (ap, const void *);
466 va_end (ap);
467
468 if (bed->s->elfclass == ELFCLASS32)
469 {
470 if (bed->elf_machine_code == EM_X86_64)
471 {
472 prstatusx32_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
478 &prstat, sizeof (prstat));
479 }
480 else
481 {
482 prstatus32_t prstat;
483 memset (&prstat, 0, sizeof (prstat));
484 prstat.pr_pid = pid;
485 prstat.pr_cursig = cursig;
486 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
487 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
488 &prstat, sizeof (prstat));
489 }
490 }
491 else
492 {
493 prstatus_t prstat;
494 memset (&prstat, 0, sizeof (prstat));
495 prstat.pr_pid = pid;
496 prstat.pr_cursig = cursig;
497 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
498 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
499 &prstat, sizeof (prstat));
500 }
501 }
502 /* NOTREACHED */
503 }
504 #endif
505 \f
506 /* Functions for the x86-64 ELF linker. */
507
508 /* The name of the dynamic interpreter. This is put in the .interp
509 section. */
510
511 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
512 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
513
514 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
515 copying dynamic variables from a shared lib into an app's dynbss
516 section, and instead use a dynamic relocation to point into the
517 shared lib. */
518 #define ELIMINATE_COPY_RELOCS 1
519
520 /* The size in bytes of an entry in the global offset table. */
521
522 #define GOT_ENTRY_SIZE 8
523
524 /* The size in bytes of an entry in the procedure linkage table. */
525
526 #define PLT_ENTRY_SIZE 16
527
528 /* The first entry in a procedure linkage table looks like this. See the
529 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
530
531 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
532 {
533 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
534 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
535 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
536 };
537
538 /* Subsequent entries in a procedure linkage table look like this. */
539
540 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
541 {
542 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
543 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
544 0x68, /* pushq immediate */
545 0, 0, 0, 0, /* replaced with index into relocation table. */
546 0xe9, /* jmp relative */
547 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
548 };
549
550 /* .eh_frame covering the .plt section. */
551
552 static const bfd_byte elf_x86_64_eh_frame_plt[] =
553 {
554 #define PLT_CIE_LENGTH 20
555 #define PLT_FDE_LENGTH 36
556 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
557 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
558 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
559 0, 0, 0, 0, /* CIE ID */
560 1, /* CIE version */
561 'z', 'R', 0, /* Augmentation string */
562 1, /* Code alignment factor */
563 0x78, /* Data alignment factor */
564 16, /* Return address column */
565 1, /* Augmentation size */
566 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
567 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
568 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
569 DW_CFA_nop, DW_CFA_nop,
570
571 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
572 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
573 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
574 0, 0, 0, 0, /* .plt size goes here */
575 0, /* Augmentation size */
576 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
577 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
578 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
579 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
580 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
581 11, /* Block length */
582 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
583 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
584 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
585 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
586 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
587 };
588
589 /* Architecture-specific backend data for x86-64. */
590
591 struct elf_x86_64_backend_data
592 {
593 /* Templates for the initial PLT entry and for subsequent entries. */
594 const bfd_byte *plt0_entry;
595 const bfd_byte *plt_entry;
596 unsigned int plt_entry_size; /* Size of each PLT entry. */
597
598 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
599 unsigned int plt0_got1_offset;
600 unsigned int plt0_got2_offset;
601
602 /* Offset of the end of the PC-relative instruction containing
603 plt0_got2_offset. */
604 unsigned int plt0_got2_insn_end;
605
606 /* Offsets into plt_entry that are to be replaced with... */
607 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
608 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
609 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
610
611 /* Length of the PC-relative instruction containing plt_got_offset. */
612 unsigned int plt_got_insn_size;
613
614 /* Offset of the end of the PC-relative jump to plt0_entry. */
615 unsigned int plt_plt_insn_end;
616
617 /* Offset into plt_entry where the initial value of the GOT entry points. */
618 unsigned int plt_lazy_offset;
619
620 /* .eh_frame covering the .plt section. */
621 const bfd_byte *eh_frame_plt;
622 unsigned int eh_frame_plt_size;
623 };
624
625 #define get_elf_x86_64_backend_data(abfd) \
626 ((const struct elf_x86_64_backend_data *) \
627 get_elf_backend_data (abfd)->arch_data)
628
629 #define GET_PLT_ENTRY_SIZE(abfd) \
630 get_elf_x86_64_backend_data (abfd)->plt_entry_size
631
632 /* These are the standard parameters. */
633 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
634 {
635 elf_x86_64_plt0_entry, /* plt0_entry */
636 elf_x86_64_plt_entry, /* plt_entry */
637 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
638 2, /* plt0_got1_offset */
639 8, /* plt0_got2_offset */
640 12, /* plt0_got2_insn_end */
641 2, /* plt_got_offset */
642 7, /* plt_reloc_offset */
643 12, /* plt_plt_offset */
644 6, /* plt_got_insn_size */
645 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
646 6, /* plt_lazy_offset */
647 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
648 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
649 };
650
651 #define elf_backend_arch_data &elf_x86_64_arch_bed
652
653 /* x86-64 ELF linker hash entry. */
654
655 struct elf_x86_64_link_hash_entry
656 {
657 struct elf_link_hash_entry elf;
658
659 /* Track dynamic relocs copied for this symbol. */
660 struct elf_dyn_relocs *dyn_relocs;
661
662 #define GOT_UNKNOWN 0
663 #define GOT_NORMAL 1
664 #define GOT_TLS_GD 2
665 #define GOT_TLS_IE 3
666 #define GOT_TLS_GDESC 4
667 #define GOT_TLS_GD_BOTH_P(type) \
668 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
669 #define GOT_TLS_GD_P(type) \
670 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
671 #define GOT_TLS_GDESC_P(type) \
672 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
673 #define GOT_TLS_GD_ANY_P(type) \
674 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
675 unsigned char tls_type;
676
677 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
678 starting at the end of the jump table. */
679 bfd_vma tlsdesc_got;
680 };
681
682 #define elf_x86_64_hash_entry(ent) \
683 ((struct elf_x86_64_link_hash_entry *)(ent))
684
685 struct elf_x86_64_obj_tdata
686 {
687 struct elf_obj_tdata root;
688
689 /* tls_type for each local got entry. */
690 char *local_got_tls_type;
691
692 /* GOTPLT entries for TLS descriptors. */
693 bfd_vma *local_tlsdesc_gotent;
694 };
695
696 #define elf_x86_64_tdata(abfd) \
697 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
698
699 #define elf_x86_64_local_got_tls_type(abfd) \
700 (elf_x86_64_tdata (abfd)->local_got_tls_type)
701
702 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
703 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
704
705 #define is_x86_64_elf(bfd) \
706 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
707 && elf_tdata (bfd) != NULL \
708 && elf_object_id (bfd) == X86_64_ELF_DATA)
709
710 static bfd_boolean
711 elf_x86_64_mkobject (bfd *abfd)
712 {
713 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
714 X86_64_ELF_DATA);
715 }
716
717 /* x86-64 ELF linker hash table. */
718
719 struct elf_x86_64_link_hash_table
720 {
721 struct elf_link_hash_table elf;
722
723 /* Short-cuts to get to dynamic linker sections. */
724 asection *sdynbss;
725 asection *srelbss;
726 asection *plt_eh_frame;
727
728 union
729 {
730 bfd_signed_vma refcount;
731 bfd_vma offset;
732 } tls_ld_got;
733
734 /* The amount of space used by the jump slots in the GOT. */
735 bfd_vma sgotplt_jump_table_size;
736
737 /* Small local sym cache. */
738 struct sym_cache sym_cache;
739
740 bfd_vma (*r_info) (bfd_vma, bfd_vma);
741 bfd_vma (*r_sym) (bfd_vma);
742 unsigned int pointer_r_type;
743 const char *dynamic_interpreter;
744 int dynamic_interpreter_size;
745
746 /* _TLS_MODULE_BASE_ symbol. */
747 struct bfd_link_hash_entry *tls_module_base;
748
749 /* Used by local STT_GNU_IFUNC symbols. */
750 htab_t loc_hash_table;
751 void * loc_hash_memory;
752
753 /* The offset into splt of the PLT entry for the TLS descriptor
754 resolver. Special values are 0, if not necessary (or not found
755 to be necessary yet), and -1 if needed but not determined
756 yet. */
757 bfd_vma tlsdesc_plt;
758 /* The offset into sgot of the GOT entry used by the PLT entry
759 above. */
760 bfd_vma tlsdesc_got;
761
762 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
763 bfd_vma next_jump_slot_index;
764 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
765 bfd_vma next_irelative_index;
766 };
767
768 /* Get the x86-64 ELF linker hash table from a link_info structure. */
769
770 #define elf_x86_64_hash_table(p) \
771 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
772 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
773
774 #define elf_x86_64_compute_jump_table_size(htab) \
775 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
776
777 /* Create an entry in an x86-64 ELF linker hash table. */
778
779 static struct bfd_hash_entry *
780 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
781 struct bfd_hash_table *table,
782 const char *string)
783 {
784 /* Allocate the structure if it has not already been allocated by a
785 subclass. */
786 if (entry == NULL)
787 {
788 entry = (struct bfd_hash_entry *)
789 bfd_hash_allocate (table,
790 sizeof (struct elf_x86_64_link_hash_entry));
791 if (entry == NULL)
792 return entry;
793 }
794
795 /* Call the allocation method of the superclass. */
796 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
797 if (entry != NULL)
798 {
799 struct elf_x86_64_link_hash_entry *eh;
800
801 eh = (struct elf_x86_64_link_hash_entry *) entry;
802 eh->dyn_relocs = NULL;
803 eh->tls_type = GOT_UNKNOWN;
804 eh->tlsdesc_got = (bfd_vma) -1;
805 }
806
807 return entry;
808 }
809
810 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
811 for local symbol so that we can handle local STT_GNU_IFUNC symbols
812 as global symbol. We reuse indx and dynstr_index for local symbol
813 hash since they aren't used by global symbols in this backend. */
814
815 static hashval_t
816 elf_x86_64_local_htab_hash (const void *ptr)
817 {
818 struct elf_link_hash_entry *h
819 = (struct elf_link_hash_entry *) ptr;
820 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
821 }
822
823 /* Compare local hash entries. */
824
825 static int
826 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
827 {
828 struct elf_link_hash_entry *h1
829 = (struct elf_link_hash_entry *) ptr1;
830 struct elf_link_hash_entry *h2
831 = (struct elf_link_hash_entry *) ptr2;
832
833 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
834 }
835
836 /* Find and/or create a hash entry for local symbol. */
837
838 static struct elf_link_hash_entry *
839 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
840 bfd *abfd, const Elf_Internal_Rela *rel,
841 bfd_boolean create)
842 {
843 struct elf_x86_64_link_hash_entry e, *ret;
844 asection *sec = abfd->sections;
845 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
846 htab->r_sym (rel->r_info));
847 void **slot;
848
849 e.elf.indx = sec->id;
850 e.elf.dynstr_index = htab->r_sym (rel->r_info);
851 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
852 create ? INSERT : NO_INSERT);
853
854 if (!slot)
855 return NULL;
856
857 if (*slot)
858 {
859 ret = (struct elf_x86_64_link_hash_entry *) *slot;
860 return &ret->elf;
861 }
862
863 ret = (struct elf_x86_64_link_hash_entry *)
864 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
865 sizeof (struct elf_x86_64_link_hash_entry));
866 if (ret)
867 {
868 memset (ret, 0, sizeof (*ret));
869 ret->elf.indx = sec->id;
870 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
871 ret->elf.dynindx = -1;
872 *slot = ret;
873 }
874 return &ret->elf;
875 }
876
877 /* Create an X86-64 ELF linker hash table. */
878
879 static struct bfd_link_hash_table *
880 elf_x86_64_link_hash_table_create (bfd *abfd)
881 {
882 struct elf_x86_64_link_hash_table *ret;
883 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
884
885 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
886 if (ret == NULL)
887 return NULL;
888
889 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
890 elf_x86_64_link_hash_newfunc,
891 sizeof (struct elf_x86_64_link_hash_entry),
892 X86_64_ELF_DATA))
893 {
894 free (ret);
895 return NULL;
896 }
897
898 ret->sdynbss = NULL;
899 ret->srelbss = NULL;
900 ret->plt_eh_frame = NULL;
901 ret->sym_cache.abfd = NULL;
902 ret->tlsdesc_plt = 0;
903 ret->tlsdesc_got = 0;
904 ret->tls_ld_got.refcount = 0;
905 ret->sgotplt_jump_table_size = 0;
906 ret->tls_module_base = NULL;
907 ret->next_jump_slot_index = 0;
908 ret->next_irelative_index = 0;
909
910 if (ABI_64_P (abfd))
911 {
912 ret->r_info = elf64_r_info;
913 ret->r_sym = elf64_r_sym;
914 ret->pointer_r_type = R_X86_64_64;
915 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
916 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
917 }
918 else
919 {
920 ret->r_info = elf32_r_info;
921 ret->r_sym = elf32_r_sym;
922 ret->pointer_r_type = R_X86_64_32;
923 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
924 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
925 }
926
927 ret->loc_hash_table = htab_try_create (1024,
928 elf_x86_64_local_htab_hash,
929 elf_x86_64_local_htab_eq,
930 NULL);
931 ret->loc_hash_memory = objalloc_create ();
932 if (!ret->loc_hash_table || !ret->loc_hash_memory)
933 {
934 free (ret);
935 return NULL;
936 }
937
938 return &ret->elf.root;
939 }
940
941 /* Destroy an X86-64 ELF linker hash table. */
942
943 static void
944 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
945 {
946 struct elf_x86_64_link_hash_table *htab
947 = (struct elf_x86_64_link_hash_table *) hash;
948
949 if (htab->loc_hash_table)
950 htab_delete (htab->loc_hash_table);
951 if (htab->loc_hash_memory)
952 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
953 _bfd_generic_link_hash_table_free (hash);
954 }
955
956 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
957 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
958 hash table. */
959
960 static bfd_boolean
961 elf_x86_64_create_dynamic_sections (bfd *dynobj,
962 struct bfd_link_info *info)
963 {
964 struct elf_x86_64_link_hash_table *htab;
965
966 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
967 return FALSE;
968
969 htab = elf_x86_64_hash_table (info);
970 if (htab == NULL)
971 return FALSE;
972
973 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
974 if (!info->shared)
975 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
976
977 if (!htab->sdynbss
978 || (!info->shared && !htab->srelbss))
979 abort ();
980
981 if (!info->no_ld_generated_unwind_info
982 && htab->plt_eh_frame == NULL
983 && htab->elf.splt != NULL)
984 {
985 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
986 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED);
988 htab->plt_eh_frame
989 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
990 if (htab->plt_eh_frame == NULL
991 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
992 return FALSE;
993 }
994 return TRUE;
995 }
996
997 /* Copy the extra info we tack onto an elf_link_hash_entry. */
998
999 static void
1000 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1001 struct elf_link_hash_entry *dir,
1002 struct elf_link_hash_entry *ind)
1003 {
1004 struct elf_x86_64_link_hash_entry *edir, *eind;
1005
1006 edir = (struct elf_x86_64_link_hash_entry *) dir;
1007 eind = (struct elf_x86_64_link_hash_entry *) ind;
1008
1009 if (eind->dyn_relocs != NULL)
1010 {
1011 if (edir->dyn_relocs != NULL)
1012 {
1013 struct elf_dyn_relocs **pp;
1014 struct elf_dyn_relocs *p;
1015
1016 /* Add reloc counts against the indirect sym to the direct sym
1017 list. Merge any entries against the same section. */
1018 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1019 {
1020 struct elf_dyn_relocs *q;
1021
1022 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1023 if (q->sec == p->sec)
1024 {
1025 q->pc_count += p->pc_count;
1026 q->count += p->count;
1027 *pp = p->next;
1028 break;
1029 }
1030 if (q == NULL)
1031 pp = &p->next;
1032 }
1033 *pp = edir->dyn_relocs;
1034 }
1035
1036 edir->dyn_relocs = eind->dyn_relocs;
1037 eind->dyn_relocs = NULL;
1038 }
1039
1040 if (ind->root.type == bfd_link_hash_indirect
1041 && dir->got.refcount <= 0)
1042 {
1043 edir->tls_type = eind->tls_type;
1044 eind->tls_type = GOT_UNKNOWN;
1045 }
1046
1047 if (ELIMINATE_COPY_RELOCS
1048 && ind->root.type != bfd_link_hash_indirect
1049 && dir->dynamic_adjusted)
1050 {
1051 /* If called to transfer flags for a weakdef during processing
1052 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1053 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1054 dir->ref_dynamic |= ind->ref_dynamic;
1055 dir->ref_regular |= ind->ref_regular;
1056 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1057 dir->needs_plt |= ind->needs_plt;
1058 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1059 }
1060 else
1061 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1062 }
1063
1064 static bfd_boolean
1065 elf64_x86_64_elf_object_p (bfd *abfd)
1066 {
1067 /* Set the right machine number for an x86-64 elf64 file. */
1068 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1069 return TRUE;
1070 }
1071
1072 static bfd_boolean
1073 elf32_x86_64_elf_object_p (bfd *abfd)
1074 {
1075 /* Set the right machine number for an x86-64 elf32 file. */
1076 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1077 return TRUE;
1078 }
1079
1080 /* Return TRUE if the TLS access code sequence support transition
1081 from R_TYPE. */
1082
1083 static bfd_boolean
1084 elf_x86_64_check_tls_transition (bfd *abfd,
1085 struct bfd_link_info *info,
1086 asection *sec,
1087 bfd_byte *contents,
1088 Elf_Internal_Shdr *symtab_hdr,
1089 struct elf_link_hash_entry **sym_hashes,
1090 unsigned int r_type,
1091 const Elf_Internal_Rela *rel,
1092 const Elf_Internal_Rela *relend)
1093 {
1094 unsigned int val;
1095 unsigned long r_symndx;
1096 struct elf_link_hash_entry *h;
1097 bfd_vma offset;
1098 struct elf_x86_64_link_hash_table *htab;
1099
1100 /* Get the section contents. */
1101 if (contents == NULL)
1102 {
1103 if (elf_section_data (sec)->this_hdr.contents != NULL)
1104 contents = elf_section_data (sec)->this_hdr.contents;
1105 else
1106 {
1107 /* FIXME: How to better handle error condition? */
1108 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1109 return FALSE;
1110
1111 /* Cache the section contents for elf_link_input_bfd. */
1112 elf_section_data (sec)->this_hdr.contents = contents;
1113 }
1114 }
1115
1116 htab = elf_x86_64_hash_table (info);
1117 offset = rel->r_offset;
1118 switch (r_type)
1119 {
1120 case R_X86_64_TLSGD:
1121 case R_X86_64_TLSLD:
1122 if ((rel + 1) >= relend)
1123 return FALSE;
1124
1125 if (r_type == R_X86_64_TLSGD)
1126 {
1127 /* Check transition from GD access model. For 64bit, only
1128 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1129 .word 0x6666; rex64; call __tls_get_addr
1130 can transit to different access model. For 32bit, only
1131 leaq foo@tlsgd(%rip), %rdi
1132 .word 0x6666; rex64; call __tls_get_addr
1133 can transit to different access model. */
1134
1135 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1136 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1137
1138 if ((offset + 12) > sec->size
1139 || memcmp (contents + offset + 4, call, 4) != 0)
1140 return FALSE;
1141
1142 if (ABI_64_P (abfd))
1143 {
1144 if (offset < 4
1145 || memcmp (contents + offset - 4, leaq, 4) != 0)
1146 return FALSE;
1147 }
1148 else
1149 {
1150 if (offset < 3
1151 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1152 return FALSE;
1153 }
1154 }
1155 else
1156 {
1157 /* Check transition from LD access model. Only
1158 leaq foo@tlsld(%rip), %rdi;
1159 call __tls_get_addr
1160 can transit to different access model. */
1161
1162 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1163
1164 if (offset < 3 || (offset + 9) > sec->size)
1165 return FALSE;
1166
1167 if (memcmp (contents + offset - 3, lea, 3) != 0
1168 || 0xe8 != *(contents + offset + 4))
1169 return FALSE;
1170 }
1171
1172 r_symndx = htab->r_sym (rel[1].r_info);
1173 if (r_symndx < symtab_hdr->sh_info)
1174 return FALSE;
1175
1176 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1177 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1178 may be versioned. */
1179 return (h != NULL
1180 && h->root.root.string != NULL
1181 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1182 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1183 && (strncmp (h->root.root.string,
1184 "__tls_get_addr", 14) == 0));
1185
1186 case R_X86_64_GOTTPOFF:
1187 /* Check transition from IE access model:
1188 mov foo@gottpoff(%rip), %reg
1189 add foo@gottpoff(%rip), %reg
1190 */
1191
1192 /* Check REX prefix first. */
1193 if (offset >= 3 && (offset + 4) <= sec->size)
1194 {
1195 val = bfd_get_8 (abfd, contents + offset - 3);
1196 if (val != 0x48 && val != 0x4c)
1197 {
1198 /* X32 may have 0x44 REX prefix or no REX prefix. */
1199 if (ABI_64_P (abfd))
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 /* X32 may not have any REX prefix. */
1206 if (ABI_64_P (abfd))
1207 return FALSE;
1208 if (offset < 2 || (offset + 3) > sec->size)
1209 return FALSE;
1210 }
1211
1212 val = bfd_get_8 (abfd, contents + offset - 2);
1213 if (val != 0x8b && val != 0x03)
1214 return FALSE;
1215
1216 val = bfd_get_8 (abfd, contents + offset - 1);
1217 return (val & 0xc7) == 5;
1218
1219 case R_X86_64_GOTPC32_TLSDESC:
1220 /* Check transition from GDesc access model:
1221 leaq x@tlsdesc(%rip), %rax
1222
1223 Make sure it's a leaq adding rip to a 32-bit offset
1224 into any register, although it's probably almost always
1225 going to be rax. */
1226
1227 if (offset < 3 || (offset + 4) > sec->size)
1228 return FALSE;
1229
1230 val = bfd_get_8 (abfd, contents + offset - 3);
1231 if ((val & 0xfb) != 0x48)
1232 return FALSE;
1233
1234 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1235 return FALSE;
1236
1237 val = bfd_get_8 (abfd, contents + offset - 1);
1238 return (val & 0xc7) == 0x05;
1239
1240 case R_X86_64_TLSDESC_CALL:
1241 /* Check transition from GDesc access model:
1242 call *x@tlsdesc(%rax)
1243 */
1244 if (offset + 2 <= sec->size)
1245 {
1246 /* Make sure that it's a call *x@tlsdesc(%rax). */
1247 static const unsigned char call[] = { 0xff, 0x10 };
1248 return memcmp (contents + offset, call, 2) == 0;
1249 }
1250
1251 return FALSE;
1252
1253 default:
1254 abort ();
1255 }
1256 }
1257
1258 /* Return TRUE if the TLS access transition is OK or no transition
1259 will be performed. Update R_TYPE if there is a transition. */
1260
1261 static bfd_boolean
1262 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1263 asection *sec, bfd_byte *contents,
1264 Elf_Internal_Shdr *symtab_hdr,
1265 struct elf_link_hash_entry **sym_hashes,
1266 unsigned int *r_type, int tls_type,
1267 const Elf_Internal_Rela *rel,
1268 const Elf_Internal_Rela *relend,
1269 struct elf_link_hash_entry *h,
1270 unsigned long r_symndx)
1271 {
1272 unsigned int from_type = *r_type;
1273 unsigned int to_type = from_type;
1274 bfd_boolean check = TRUE;
1275
1276 /* Skip TLS transition for functions. */
1277 if (h != NULL
1278 && (h->type == STT_FUNC
1279 || h->type == STT_GNU_IFUNC))
1280 return TRUE;
1281
1282 switch (from_type)
1283 {
1284 case R_X86_64_TLSGD:
1285 case R_X86_64_GOTPC32_TLSDESC:
1286 case R_X86_64_TLSDESC_CALL:
1287 case R_X86_64_GOTTPOFF:
1288 if (info->executable)
1289 {
1290 if (h == NULL)
1291 to_type = R_X86_64_TPOFF32;
1292 else
1293 to_type = R_X86_64_GOTTPOFF;
1294 }
1295
1296 /* When we are called from elf_x86_64_relocate_section,
1297 CONTENTS isn't NULL and there may be additional transitions
1298 based on TLS_TYPE. */
1299 if (contents != NULL)
1300 {
1301 unsigned int new_to_type = to_type;
1302
1303 if (info->executable
1304 && h != NULL
1305 && h->dynindx == -1
1306 && tls_type == GOT_TLS_IE)
1307 new_to_type = R_X86_64_TPOFF32;
1308
1309 if (to_type == R_X86_64_TLSGD
1310 || to_type == R_X86_64_GOTPC32_TLSDESC
1311 || to_type == R_X86_64_TLSDESC_CALL)
1312 {
1313 if (tls_type == GOT_TLS_IE)
1314 new_to_type = R_X86_64_GOTTPOFF;
1315 }
1316
1317 /* We checked the transition before when we were called from
1318 elf_x86_64_check_relocs. We only want to check the new
1319 transition which hasn't been checked before. */
1320 check = new_to_type != to_type && from_type == to_type;
1321 to_type = new_to_type;
1322 }
1323
1324 break;
1325
1326 case R_X86_64_TLSLD:
1327 if (info->executable)
1328 to_type = R_X86_64_TPOFF32;
1329 break;
1330
1331 default:
1332 return TRUE;
1333 }
1334
1335 /* Return TRUE if there is no transition. */
1336 if (from_type == to_type)
1337 return TRUE;
1338
1339 /* Check if the transition can be performed. */
1340 if (check
1341 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1342 symtab_hdr, sym_hashes,
1343 from_type, rel, relend))
1344 {
1345 reloc_howto_type *from, *to;
1346 const char *name;
1347
1348 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1349 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1350
1351 if (h)
1352 name = h->root.root.string;
1353 else
1354 {
1355 struct elf_x86_64_link_hash_table *htab;
1356
1357 htab = elf_x86_64_hash_table (info);
1358 if (htab == NULL)
1359 name = "*unknown*";
1360 else
1361 {
1362 Elf_Internal_Sym *isym;
1363
1364 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1365 abfd, r_symndx);
1366 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1367 }
1368 }
1369
1370 (*_bfd_error_handler)
1371 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1372 "in section `%A' failed"),
1373 abfd, sec, from->name, to->name, name,
1374 (unsigned long) rel->r_offset);
1375 bfd_set_error (bfd_error_bad_value);
1376 return FALSE;
1377 }
1378
1379 *r_type = to_type;
1380 return TRUE;
1381 }
1382
1383 /* Look through the relocs for a section during the first phase, and
1384 calculate needed space in the global offset table, procedure
1385 linkage table, and dynamic reloc sections. */
1386
1387 static bfd_boolean
1388 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1389 asection *sec,
1390 const Elf_Internal_Rela *relocs)
1391 {
1392 struct elf_x86_64_link_hash_table *htab;
1393 Elf_Internal_Shdr *symtab_hdr;
1394 struct elf_link_hash_entry **sym_hashes;
1395 const Elf_Internal_Rela *rel;
1396 const Elf_Internal_Rela *rel_end;
1397 asection *sreloc;
1398
1399 if (info->relocatable)
1400 return TRUE;
1401
1402 BFD_ASSERT (is_x86_64_elf (abfd));
1403
1404 htab = elf_x86_64_hash_table (info);
1405 if (htab == NULL)
1406 return FALSE;
1407
1408 symtab_hdr = &elf_symtab_hdr (abfd);
1409 sym_hashes = elf_sym_hashes (abfd);
1410
1411 sreloc = NULL;
1412
1413 rel_end = relocs + sec->reloc_count;
1414 for (rel = relocs; rel < rel_end; rel++)
1415 {
1416 unsigned int r_type;
1417 unsigned long r_symndx;
1418 struct elf_link_hash_entry *h;
1419 Elf_Internal_Sym *isym;
1420 const char *name;
1421
1422 r_symndx = htab->r_sym (rel->r_info);
1423 r_type = ELF32_R_TYPE (rel->r_info);
1424
1425 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1426 {
1427 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1428 abfd, r_symndx);
1429 return FALSE;
1430 }
1431
1432 if (r_symndx < symtab_hdr->sh_info)
1433 {
1434 /* A local symbol. */
1435 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1436 abfd, r_symndx);
1437 if (isym == NULL)
1438 return FALSE;
1439
1440 /* Check relocation against local STT_GNU_IFUNC symbol. */
1441 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1442 {
1443 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1444 TRUE);
1445 if (h == NULL)
1446 return FALSE;
1447
1448 /* Fake a STT_GNU_IFUNC symbol. */
1449 h->type = STT_GNU_IFUNC;
1450 h->def_regular = 1;
1451 h->ref_regular = 1;
1452 h->forced_local = 1;
1453 h->root.type = bfd_link_hash_defined;
1454 }
1455 else
1456 h = NULL;
1457 }
1458 else
1459 {
1460 isym = NULL;
1461 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1462 while (h->root.type == bfd_link_hash_indirect
1463 || h->root.type == bfd_link_hash_warning)
1464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1465 }
1466
1467 /* Check invalid x32 relocations. */
1468 if (!ABI_64_P (abfd))
1469 switch (r_type)
1470 {
1471 default:
1472 break;
1473
1474 case R_X86_64_DTPOFF64:
1475 case R_X86_64_TPOFF64:
1476 case R_X86_64_PC64:
1477 case R_X86_64_GOTOFF64:
1478 case R_X86_64_GOT64:
1479 case R_X86_64_GOTPCREL64:
1480 case R_X86_64_GOTPC64:
1481 case R_X86_64_GOTPLT64:
1482 case R_X86_64_PLTOFF64:
1483 {
1484 if (h)
1485 name = h->root.root.string;
1486 else
1487 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1488 NULL);
1489 (*_bfd_error_handler)
1490 (_("%B: relocation %s against symbol `%s' isn't "
1491 "supported in x32 mode"), abfd,
1492 x86_64_elf_howto_table[r_type].name, name);
1493 bfd_set_error (bfd_error_bad_value);
1494 return FALSE;
1495 }
1496 break;
1497 }
1498
1499 if (h != NULL)
1500 {
1501 /* Create the ifunc sections for static executables. If we
1502 never see an indirect function symbol nor we are building
1503 a static executable, those sections will be empty and
1504 won't appear in output. */
1505 switch (r_type)
1506 {
1507 default:
1508 break;
1509
1510 case R_X86_64_32S:
1511 case R_X86_64_32:
1512 case R_X86_64_64:
1513 case R_X86_64_PC32:
1514 case R_X86_64_PC64:
1515 case R_X86_64_PLT32:
1516 case R_X86_64_GOTPCREL:
1517 case R_X86_64_GOTPCREL64:
1518 if (htab->elf.dynobj == NULL)
1519 htab->elf.dynobj = abfd;
1520 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1521 return FALSE;
1522 break;
1523 }
1524
1525 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1526 it here if it is defined in a non-shared object. */
1527 if (h->type == STT_GNU_IFUNC
1528 && h->def_regular)
1529 {
1530 /* It is referenced by a non-shared object. */
1531 h->ref_regular = 1;
1532 h->needs_plt = 1;
1533
1534 /* STT_GNU_IFUNC symbol must go through PLT. */
1535 h->plt.refcount += 1;
1536
1537 /* STT_GNU_IFUNC needs dynamic sections. */
1538 if (htab->elf.dynobj == NULL)
1539 htab->elf.dynobj = abfd;
1540
1541 switch (r_type)
1542 {
1543 default:
1544 if (h->root.root.string)
1545 name = h->root.root.string;
1546 else
1547 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1548 NULL);
1549 (*_bfd_error_handler)
1550 (_("%B: relocation %s against STT_GNU_IFUNC "
1551 "symbol `%s' isn't handled by %s"), abfd,
1552 x86_64_elf_howto_table[r_type].name,
1553 name, __FUNCTION__);
1554 bfd_set_error (bfd_error_bad_value);
1555 return FALSE;
1556
1557 case R_X86_64_32:
1558 if (ABI_64_P (abfd))
1559 goto not_pointer;
1560 case R_X86_64_64:
1561 h->non_got_ref = 1;
1562 h->pointer_equality_needed = 1;
1563 if (info->shared)
1564 {
1565 /* We must copy these reloc types into the output
1566 file. Create a reloc section in dynobj and
1567 make room for this reloc. */
1568 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1569 (abfd, info, sec, sreloc,
1570 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1571 if (sreloc == NULL)
1572 return FALSE;
1573 }
1574 break;
1575
1576 case R_X86_64_32S:
1577 case R_X86_64_PC32:
1578 case R_X86_64_PC64:
1579 not_pointer:
1580 h->non_got_ref = 1;
1581 if (r_type != R_X86_64_PC32
1582 && r_type != R_X86_64_PC64)
1583 h->pointer_equality_needed = 1;
1584 break;
1585
1586 case R_X86_64_PLT32:
1587 break;
1588
1589 case R_X86_64_GOTPCREL:
1590 case R_X86_64_GOTPCREL64:
1591 h->got.refcount += 1;
1592 if (htab->elf.sgot == NULL
1593 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1594 info))
1595 return FALSE;
1596 break;
1597 }
1598
1599 continue;
1600 }
1601 }
1602
1603 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1604 symtab_hdr, sym_hashes,
1605 &r_type, GOT_UNKNOWN,
1606 rel, rel_end, h, r_symndx))
1607 return FALSE;
1608
1609 switch (r_type)
1610 {
1611 case R_X86_64_TLSLD:
1612 htab->tls_ld_got.refcount += 1;
1613 goto create_got;
1614
1615 case R_X86_64_TPOFF32:
1616 if (!info->executable && ABI_64_P (abfd))
1617 {
1618 if (h)
1619 name = h->root.root.string;
1620 else
1621 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1622 NULL);
1623 (*_bfd_error_handler)
1624 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1625 abfd,
1626 x86_64_elf_howto_table[r_type].name, name);
1627 bfd_set_error (bfd_error_bad_value);
1628 return FALSE;
1629 }
1630 break;
1631
1632 case R_X86_64_GOTTPOFF:
1633 if (!info->executable)
1634 info->flags |= DF_STATIC_TLS;
1635 /* Fall through */
1636
1637 case R_X86_64_GOT32:
1638 case R_X86_64_GOTPCREL:
1639 case R_X86_64_TLSGD:
1640 case R_X86_64_GOT64:
1641 case R_X86_64_GOTPCREL64:
1642 case R_X86_64_GOTPLT64:
1643 case R_X86_64_GOTPC32_TLSDESC:
1644 case R_X86_64_TLSDESC_CALL:
1645 /* This symbol requires a global offset table entry. */
1646 {
1647 int tls_type, old_tls_type;
1648
1649 switch (r_type)
1650 {
1651 default: tls_type = GOT_NORMAL; break;
1652 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1653 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1654 case R_X86_64_GOTPC32_TLSDESC:
1655 case R_X86_64_TLSDESC_CALL:
1656 tls_type = GOT_TLS_GDESC; break;
1657 }
1658
1659 if (h != NULL)
1660 {
1661 if (r_type == R_X86_64_GOTPLT64)
1662 {
1663 /* This relocation indicates that we also need
1664 a PLT entry, as this is a function. We don't need
1665 a PLT entry for local symbols. */
1666 h->needs_plt = 1;
1667 h->plt.refcount += 1;
1668 }
1669 h->got.refcount += 1;
1670 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1671 }
1672 else
1673 {
1674 bfd_signed_vma *local_got_refcounts;
1675
1676 /* This is a global offset table entry for a local symbol. */
1677 local_got_refcounts = elf_local_got_refcounts (abfd);
1678 if (local_got_refcounts == NULL)
1679 {
1680 bfd_size_type size;
1681
1682 size = symtab_hdr->sh_info;
1683 size *= sizeof (bfd_signed_vma)
1684 + sizeof (bfd_vma) + sizeof (char);
1685 local_got_refcounts = ((bfd_signed_vma *)
1686 bfd_zalloc (abfd, size));
1687 if (local_got_refcounts == NULL)
1688 return FALSE;
1689 elf_local_got_refcounts (abfd) = local_got_refcounts;
1690 elf_x86_64_local_tlsdesc_gotent (abfd)
1691 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1692 elf_x86_64_local_got_tls_type (abfd)
1693 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1694 }
1695 local_got_refcounts[r_symndx] += 1;
1696 old_tls_type
1697 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1698 }
1699
1700 /* If a TLS symbol is accessed using IE at least once,
1701 there is no point to use dynamic model for it. */
1702 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1703 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1704 || tls_type != GOT_TLS_IE))
1705 {
1706 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1707 tls_type = old_tls_type;
1708 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1709 && GOT_TLS_GD_ANY_P (tls_type))
1710 tls_type |= old_tls_type;
1711 else
1712 {
1713 if (h)
1714 name = h->root.root.string;
1715 else
1716 name = bfd_elf_sym_name (abfd, symtab_hdr,
1717 isym, NULL);
1718 (*_bfd_error_handler)
1719 (_("%B: '%s' accessed both as normal and thread local symbol"),
1720 abfd, name);
1721 return FALSE;
1722 }
1723 }
1724
1725 if (old_tls_type != tls_type)
1726 {
1727 if (h != NULL)
1728 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1729 else
1730 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1731 }
1732 }
1733 /* Fall through */
1734
1735 case R_X86_64_GOTOFF64:
1736 case R_X86_64_GOTPC32:
1737 case R_X86_64_GOTPC64:
1738 create_got:
1739 if (htab->elf.sgot == NULL)
1740 {
1741 if (htab->elf.dynobj == NULL)
1742 htab->elf.dynobj = abfd;
1743 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1744 info))
1745 return FALSE;
1746 }
1747 break;
1748
1749 case R_X86_64_PLT32:
1750 /* This symbol requires a procedure linkage table entry. We
1751 actually build the entry in adjust_dynamic_symbol,
1752 because this might be a case of linking PIC code which is
1753 never referenced by a dynamic object, in which case we
1754 don't need to generate a procedure linkage table entry
1755 after all. */
1756
1757 /* If this is a local symbol, we resolve it directly without
1758 creating a procedure linkage table entry. */
1759 if (h == NULL)
1760 continue;
1761
1762 h->needs_plt = 1;
1763 h->plt.refcount += 1;
1764 break;
1765
1766 case R_X86_64_PLTOFF64:
1767 /* This tries to form the 'address' of a function relative
1768 to GOT. For global symbols we need a PLT entry. */
1769 if (h != NULL)
1770 {
1771 h->needs_plt = 1;
1772 h->plt.refcount += 1;
1773 }
1774 goto create_got;
1775
1776 case R_X86_64_32:
1777 if (!ABI_64_P (abfd))
1778 goto pointer;
1779 case R_X86_64_8:
1780 case R_X86_64_16:
1781 case R_X86_64_32S:
1782 /* Let's help debug shared library creation. These relocs
1783 cannot be used in shared libs. Don't error out for
1784 sections we don't care about, such as debug sections or
1785 non-constant sections. */
1786 if (info->shared
1787 && (sec->flags & SEC_ALLOC) != 0
1788 && (sec->flags & SEC_READONLY) != 0)
1789 {
1790 if (h)
1791 name = h->root.root.string;
1792 else
1793 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1794 (*_bfd_error_handler)
1795 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1796 abfd, x86_64_elf_howto_table[r_type].name, name);
1797 bfd_set_error (bfd_error_bad_value);
1798 return FALSE;
1799 }
1800 /* Fall through. */
1801
1802 case R_X86_64_PC8:
1803 case R_X86_64_PC16:
1804 case R_X86_64_PC32:
1805 case R_X86_64_PC64:
1806 case R_X86_64_64:
1807 pointer:
1808 if (h != NULL && info->executable)
1809 {
1810 /* If this reloc is in a read-only section, we might
1811 need a copy reloc. We can't check reliably at this
1812 stage whether the section is read-only, as input
1813 sections have not yet been mapped to output sections.
1814 Tentatively set the flag for now, and correct in
1815 adjust_dynamic_symbol. */
1816 h->non_got_ref = 1;
1817
1818 /* We may need a .plt entry if the function this reloc
1819 refers to is in a shared lib. */
1820 h->plt.refcount += 1;
1821 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1822 h->pointer_equality_needed = 1;
1823 }
1824
1825 /* If we are creating a shared library, and this is a reloc
1826 against a global symbol, or a non PC relative reloc
1827 against a local symbol, then we need to copy the reloc
1828 into the shared library. However, if we are linking with
1829 -Bsymbolic, we do not need to copy a reloc against a
1830 global symbol which is defined in an object we are
1831 including in the link (i.e., DEF_REGULAR is set). At
1832 this point we have not seen all the input files, so it is
1833 possible that DEF_REGULAR is not set now but will be set
1834 later (it is never cleared). In case of a weak definition,
1835 DEF_REGULAR may be cleared later by a strong definition in
1836 a shared library. We account for that possibility below by
1837 storing information in the relocs_copied field of the hash
1838 table entry. A similar situation occurs when creating
1839 shared libraries and symbol visibility changes render the
1840 symbol local.
1841
1842 If on the other hand, we are creating an executable, we
1843 may need to keep relocations for symbols satisfied by a
1844 dynamic library if we manage to avoid copy relocs for the
1845 symbol. */
1846 if ((info->shared
1847 && (sec->flags & SEC_ALLOC) != 0
1848 && (! IS_X86_64_PCREL_TYPE (r_type)
1849 || (h != NULL
1850 && (! SYMBOLIC_BIND (info, h)
1851 || h->root.type == bfd_link_hash_defweak
1852 || !h->def_regular))))
1853 || (ELIMINATE_COPY_RELOCS
1854 && !info->shared
1855 && (sec->flags & SEC_ALLOC) != 0
1856 && h != NULL
1857 && (h->root.type == bfd_link_hash_defweak
1858 || !h->def_regular)))
1859 {
1860 struct elf_dyn_relocs *p;
1861 struct elf_dyn_relocs **head;
1862
1863 /* We must copy these reloc types into the output file.
1864 Create a reloc section in dynobj and make room for
1865 this reloc. */
1866 if (sreloc == NULL)
1867 {
1868 if (htab->elf.dynobj == NULL)
1869 htab->elf.dynobj = abfd;
1870
1871 sreloc = _bfd_elf_make_dynamic_reloc_section
1872 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1873 abfd, /*rela?*/ TRUE);
1874
1875 if (sreloc == NULL)
1876 return FALSE;
1877 }
1878
1879 /* If this is a global symbol, we count the number of
1880 relocations we need for this symbol. */
1881 if (h != NULL)
1882 {
1883 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1884 }
1885 else
1886 {
1887 /* Track dynamic relocs needed for local syms too.
1888 We really need local syms available to do this
1889 easily. Oh well. */
1890 asection *s;
1891 void **vpp;
1892
1893 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1894 abfd, r_symndx);
1895 if (isym == NULL)
1896 return FALSE;
1897
1898 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1899 if (s == NULL)
1900 s = sec;
1901
1902 /* Beware of type punned pointers vs strict aliasing
1903 rules. */
1904 vpp = &(elf_section_data (s)->local_dynrel);
1905 head = (struct elf_dyn_relocs **)vpp;
1906 }
1907
1908 p = *head;
1909 if (p == NULL || p->sec != sec)
1910 {
1911 bfd_size_type amt = sizeof *p;
1912
1913 p = ((struct elf_dyn_relocs *)
1914 bfd_alloc (htab->elf.dynobj, amt));
1915 if (p == NULL)
1916 return FALSE;
1917 p->next = *head;
1918 *head = p;
1919 p->sec = sec;
1920 p->count = 0;
1921 p->pc_count = 0;
1922 }
1923
1924 p->count += 1;
1925 if (IS_X86_64_PCREL_TYPE (r_type))
1926 p->pc_count += 1;
1927 }
1928 break;
1929
1930 /* This relocation describes the C++ object vtable hierarchy.
1931 Reconstruct it for later use during GC. */
1932 case R_X86_64_GNU_VTINHERIT:
1933 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1934 return FALSE;
1935 break;
1936
1937 /* This relocation describes which C++ vtable entries are actually
1938 used. Record for later use during GC. */
1939 case R_X86_64_GNU_VTENTRY:
1940 BFD_ASSERT (h != NULL);
1941 if (h != NULL
1942 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1943 return FALSE;
1944 break;
1945
1946 default:
1947 break;
1948 }
1949 }
1950
1951 return TRUE;
1952 }
1953
1954 /* Return the section that should be marked against GC for a given
1955 relocation. */
1956
1957 static asection *
1958 elf_x86_64_gc_mark_hook (asection *sec,
1959 struct bfd_link_info *info,
1960 Elf_Internal_Rela *rel,
1961 struct elf_link_hash_entry *h,
1962 Elf_Internal_Sym *sym)
1963 {
1964 if (h != NULL)
1965 switch (ELF32_R_TYPE (rel->r_info))
1966 {
1967 case R_X86_64_GNU_VTINHERIT:
1968 case R_X86_64_GNU_VTENTRY:
1969 return NULL;
1970 }
1971
1972 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1973 }
1974
1975 /* Update the got entry reference counts for the section being removed. */
1976
1977 static bfd_boolean
1978 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1979 asection *sec,
1980 const Elf_Internal_Rela *relocs)
1981 {
1982 struct elf_x86_64_link_hash_table *htab;
1983 Elf_Internal_Shdr *symtab_hdr;
1984 struct elf_link_hash_entry **sym_hashes;
1985 bfd_signed_vma *local_got_refcounts;
1986 const Elf_Internal_Rela *rel, *relend;
1987
1988 if (info->relocatable)
1989 return TRUE;
1990
1991 htab = elf_x86_64_hash_table (info);
1992 if (htab == NULL)
1993 return FALSE;
1994
1995 elf_section_data (sec)->local_dynrel = NULL;
1996
1997 symtab_hdr = &elf_symtab_hdr (abfd);
1998 sym_hashes = elf_sym_hashes (abfd);
1999 local_got_refcounts = elf_local_got_refcounts (abfd);
2000
2001 htab = elf_x86_64_hash_table (info);
2002 relend = relocs + sec->reloc_count;
2003 for (rel = relocs; rel < relend; rel++)
2004 {
2005 unsigned long r_symndx;
2006 unsigned int r_type;
2007 struct elf_link_hash_entry *h = NULL;
2008
2009 r_symndx = htab->r_sym (rel->r_info);
2010 if (r_symndx >= symtab_hdr->sh_info)
2011 {
2012 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2013 while (h->root.type == bfd_link_hash_indirect
2014 || h->root.type == bfd_link_hash_warning)
2015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2016 }
2017 else
2018 {
2019 /* A local symbol. */
2020 Elf_Internal_Sym *isym;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024
2025 /* Check relocation against local STT_GNU_IFUNC symbol. */
2026 if (isym != NULL
2027 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2028 {
2029 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2030 if (h == NULL)
2031 abort ();
2032 }
2033 }
2034
2035 if (h)
2036 {
2037 struct elf_x86_64_link_hash_entry *eh;
2038 struct elf_dyn_relocs **pp;
2039 struct elf_dyn_relocs *p;
2040
2041 eh = (struct elf_x86_64_link_hash_entry *) h;
2042
2043 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2044 if (p->sec == sec)
2045 {
2046 /* Everything must go for SEC. */
2047 *pp = p->next;
2048 break;
2049 }
2050 }
2051
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2054 symtab_hdr, sym_hashes,
2055 &r_type, GOT_UNKNOWN,
2056 rel, relend, h, r_symndx))
2057 return FALSE;
2058
2059 switch (r_type)
2060 {
2061 case R_X86_64_TLSLD:
2062 if (htab->tls_ld_got.refcount > 0)
2063 htab->tls_ld_got.refcount -= 1;
2064 break;
2065
2066 case R_X86_64_TLSGD:
2067 case R_X86_64_GOTPC32_TLSDESC:
2068 case R_X86_64_TLSDESC_CALL:
2069 case R_X86_64_GOTTPOFF:
2070 case R_X86_64_GOT32:
2071 case R_X86_64_GOTPCREL:
2072 case R_X86_64_GOT64:
2073 case R_X86_64_GOTPCREL64:
2074 case R_X86_64_GOTPLT64:
2075 if (h != NULL)
2076 {
2077 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2078 h->plt.refcount -= 1;
2079 if (h->got.refcount > 0)
2080 h->got.refcount -= 1;
2081 if (h->type == STT_GNU_IFUNC)
2082 {
2083 if (h->plt.refcount > 0)
2084 h->plt.refcount -= 1;
2085 }
2086 }
2087 else if (local_got_refcounts != NULL)
2088 {
2089 if (local_got_refcounts[r_symndx] > 0)
2090 local_got_refcounts[r_symndx] -= 1;
2091 }
2092 break;
2093
2094 case R_X86_64_8:
2095 case R_X86_64_16:
2096 case R_X86_64_32:
2097 case R_X86_64_64:
2098 case R_X86_64_32S:
2099 case R_X86_64_PC8:
2100 case R_X86_64_PC16:
2101 case R_X86_64_PC32:
2102 case R_X86_64_PC64:
2103 if (info->shared
2104 && (h == NULL || h->type != STT_GNU_IFUNC))
2105 break;
2106 /* Fall thru */
2107
2108 case R_X86_64_PLT32:
2109 case R_X86_64_PLTOFF64:
2110 if (h != NULL)
2111 {
2112 if (h->plt.refcount > 0)
2113 h->plt.refcount -= 1;
2114 }
2115 break;
2116
2117 default:
2118 break;
2119 }
2120 }
2121
2122 return TRUE;
2123 }
2124
2125 /* Adjust a symbol defined by a dynamic object and referenced by a
2126 regular object. The current definition is in some section of the
2127 dynamic object, but we're not including those sections. We have to
2128 change the definition to something the rest of the link can
2129 understand. */
2130
2131 static bfd_boolean
2132 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2133 struct elf_link_hash_entry *h)
2134 {
2135 struct elf_x86_64_link_hash_table *htab;
2136 asection *s;
2137
2138 /* STT_GNU_IFUNC symbol must go through PLT. */
2139 if (h->type == STT_GNU_IFUNC)
2140 {
2141 if (h->plt.refcount <= 0)
2142 {
2143 h->plt.offset = (bfd_vma) -1;
2144 h->needs_plt = 0;
2145 }
2146 return TRUE;
2147 }
2148
2149 /* If this is a function, put it in the procedure linkage table. We
2150 will fill in the contents of the procedure linkage table later,
2151 when we know the address of the .got section. */
2152 if (h->type == STT_FUNC
2153 || h->needs_plt)
2154 {
2155 if (h->plt.refcount <= 0
2156 || SYMBOL_CALLS_LOCAL (info, h)
2157 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2158 && h->root.type == bfd_link_hash_undefweak))
2159 {
2160 /* This case can occur if we saw a PLT32 reloc in an input
2161 file, but the symbol was never referred to by a dynamic
2162 object, or if all references were garbage collected. In
2163 such a case, we don't actually need to build a procedure
2164 linkage table, and we can just do a PC32 reloc instead. */
2165 h->plt.offset = (bfd_vma) -1;
2166 h->needs_plt = 0;
2167 }
2168
2169 return TRUE;
2170 }
2171 else
2172 /* It's possible that we incorrectly decided a .plt reloc was
2173 needed for an R_X86_64_PC32 reloc to a non-function sym in
2174 check_relocs. We can't decide accurately between function and
2175 non-function syms in check-relocs; Objects loaded later in
2176 the link may change h->type. So fix it now. */
2177 h->plt.offset = (bfd_vma) -1;
2178
2179 /* If this is a weak symbol, and there is a real definition, the
2180 processor independent code will have arranged for us to see the
2181 real definition first, and we can just use the same value. */
2182 if (h->u.weakdef != NULL)
2183 {
2184 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2185 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2186 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2187 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2188 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2189 h->non_got_ref = h->u.weakdef->non_got_ref;
2190 return TRUE;
2191 }
2192
2193 /* This is a reference to a symbol defined by a dynamic object which
2194 is not a function. */
2195
2196 /* If we are creating a shared library, we must presume that the
2197 only references to the symbol are via the global offset table.
2198 For such cases we need not do anything here; the relocations will
2199 be handled correctly by relocate_section. */
2200 if (info->shared)
2201 return TRUE;
2202
2203 /* If there are no references to this symbol that do not use the
2204 GOT, we don't need to generate a copy reloc. */
2205 if (!h->non_got_ref)
2206 return TRUE;
2207
2208 /* If -z nocopyreloc was given, we won't generate them either. */
2209 if (info->nocopyreloc)
2210 {
2211 h->non_got_ref = 0;
2212 return TRUE;
2213 }
2214
2215 if (ELIMINATE_COPY_RELOCS)
2216 {
2217 struct elf_x86_64_link_hash_entry * eh;
2218 struct elf_dyn_relocs *p;
2219
2220 eh = (struct elf_x86_64_link_hash_entry *) h;
2221 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2222 {
2223 s = p->sec->output_section;
2224 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2225 break;
2226 }
2227
2228 /* If we didn't find any dynamic relocs in read-only sections, then
2229 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2230 if (p == NULL)
2231 {
2232 h->non_got_ref = 0;
2233 return TRUE;
2234 }
2235 }
2236
2237 /* We must allocate the symbol in our .dynbss section, which will
2238 become part of the .bss section of the executable. There will be
2239 an entry for this symbol in the .dynsym section. The dynamic
2240 object will contain position independent code, so all references
2241 from the dynamic object to this symbol will go through the global
2242 offset table. The dynamic linker will use the .dynsym entry to
2243 determine the address it must put in the global offset table, so
2244 both the dynamic object and the regular object will refer to the
2245 same memory location for the variable. */
2246
2247 htab = elf_x86_64_hash_table (info);
2248 if (htab == NULL)
2249 return FALSE;
2250
2251 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2252 to copy the initial value out of the dynamic object and into the
2253 runtime process image. */
2254 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2255 {
2256 const struct elf_backend_data *bed;
2257 bed = get_elf_backend_data (info->output_bfd);
2258 htab->srelbss->size += bed->s->sizeof_rela;
2259 h->needs_copy = 1;
2260 }
2261
2262 s = htab->sdynbss;
2263
2264 return _bfd_elf_adjust_dynamic_copy (h, s);
2265 }
2266
2267 /* Allocate space in .plt, .got and associated reloc sections for
2268 dynamic relocs. */
2269
2270 static bfd_boolean
2271 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2272 {
2273 struct bfd_link_info *info;
2274 struct elf_x86_64_link_hash_table *htab;
2275 struct elf_x86_64_link_hash_entry *eh;
2276 struct elf_dyn_relocs *p;
2277 const struct elf_backend_data *bed;
2278 unsigned int plt_entry_size;
2279
2280 if (h->root.type == bfd_link_hash_indirect)
2281 return TRUE;
2282
2283 eh = (struct elf_x86_64_link_hash_entry *) h;
2284
2285 info = (struct bfd_link_info *) inf;
2286 htab = elf_x86_64_hash_table (info);
2287 if (htab == NULL)
2288 return FALSE;
2289 bed = get_elf_backend_data (info->output_bfd);
2290 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2291
2292 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2293 here if it is defined and referenced in a non-shared object. */
2294 if (h->type == STT_GNU_IFUNC
2295 && h->def_regular)
2296 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2297 &eh->dyn_relocs,
2298 plt_entry_size,
2299 GOT_ENTRY_SIZE);
2300 else if (htab->elf.dynamic_sections_created
2301 && h->plt.refcount > 0)
2302 {
2303 /* Make sure this symbol is output as a dynamic symbol.
2304 Undefined weak syms won't yet be marked as dynamic. */
2305 if (h->dynindx == -1
2306 && !h->forced_local)
2307 {
2308 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2309 return FALSE;
2310 }
2311
2312 if (info->shared
2313 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2314 {
2315 asection *s = htab->elf.splt;
2316
2317 /* If this is the first .plt entry, make room for the special
2318 first entry. */
2319 if (s->size == 0)
2320 s->size += plt_entry_size;
2321
2322 h->plt.offset = s->size;
2323
2324 /* If this symbol is not defined in a regular file, and we are
2325 not generating a shared library, then set the symbol to this
2326 location in the .plt. This is required to make function
2327 pointers compare as equal between the normal executable and
2328 the shared library. */
2329 if (! info->shared
2330 && !h->def_regular)
2331 {
2332 h->root.u.def.section = s;
2333 h->root.u.def.value = h->plt.offset;
2334 }
2335
2336 /* Make room for this entry. */
2337 s->size += plt_entry_size;
2338
2339 /* We also need to make an entry in the .got.plt section, which
2340 will be placed in the .got section by the linker script. */
2341 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2342
2343 /* We also need to make an entry in the .rela.plt section. */
2344 htab->elf.srelplt->size += bed->s->sizeof_rela;
2345 htab->elf.srelplt->reloc_count++;
2346 }
2347 else
2348 {
2349 h->plt.offset = (bfd_vma) -1;
2350 h->needs_plt = 0;
2351 }
2352 }
2353 else
2354 {
2355 h->plt.offset = (bfd_vma) -1;
2356 h->needs_plt = 0;
2357 }
2358
2359 eh->tlsdesc_got = (bfd_vma) -1;
2360
2361 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2362 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2363 if (h->got.refcount > 0
2364 && info->executable
2365 && h->dynindx == -1
2366 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2367 {
2368 h->got.offset = (bfd_vma) -1;
2369 }
2370 else if (h->got.refcount > 0)
2371 {
2372 asection *s;
2373 bfd_boolean dyn;
2374 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2375
2376 /* Make sure this symbol is output as a dynamic symbol.
2377 Undefined weak syms won't yet be marked as dynamic. */
2378 if (h->dynindx == -1
2379 && !h->forced_local)
2380 {
2381 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2382 return FALSE;
2383 }
2384
2385 if (GOT_TLS_GDESC_P (tls_type))
2386 {
2387 eh->tlsdesc_got = htab->elf.sgotplt->size
2388 - elf_x86_64_compute_jump_table_size (htab);
2389 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2390 h->got.offset = (bfd_vma) -2;
2391 }
2392 if (! GOT_TLS_GDESC_P (tls_type)
2393 || GOT_TLS_GD_P (tls_type))
2394 {
2395 s = htab->elf.sgot;
2396 h->got.offset = s->size;
2397 s->size += GOT_ENTRY_SIZE;
2398 if (GOT_TLS_GD_P (tls_type))
2399 s->size += GOT_ENTRY_SIZE;
2400 }
2401 dyn = htab->elf.dynamic_sections_created;
2402 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2403 and two if global.
2404 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2405 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2406 || tls_type == GOT_TLS_IE)
2407 htab->elf.srelgot->size += bed->s->sizeof_rela;
2408 else if (GOT_TLS_GD_P (tls_type))
2409 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2410 else if (! GOT_TLS_GDESC_P (tls_type)
2411 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2412 || h->root.type != bfd_link_hash_undefweak)
2413 && (info->shared
2414 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2415 htab->elf.srelgot->size += bed->s->sizeof_rela;
2416 if (GOT_TLS_GDESC_P (tls_type))
2417 {
2418 htab->elf.srelplt->size += bed->s->sizeof_rela;
2419 htab->tlsdesc_plt = (bfd_vma) -1;
2420 }
2421 }
2422 else
2423 h->got.offset = (bfd_vma) -1;
2424
2425 if (eh->dyn_relocs == NULL)
2426 return TRUE;
2427
2428 /* In the shared -Bsymbolic case, discard space allocated for
2429 dynamic pc-relative relocs against symbols which turn out to be
2430 defined in regular objects. For the normal shared case, discard
2431 space for pc-relative relocs that have become local due to symbol
2432 visibility changes. */
2433
2434 if (info->shared)
2435 {
2436 /* Relocs that use pc_count are those that appear on a call
2437 insn, or certain REL relocs that can generated via assembly.
2438 We want calls to protected symbols to resolve directly to the
2439 function rather than going via the plt. If people want
2440 function pointer comparisons to work as expected then they
2441 should avoid writing weird assembly. */
2442 if (SYMBOL_CALLS_LOCAL (info, h))
2443 {
2444 struct elf_dyn_relocs **pp;
2445
2446 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2447 {
2448 p->count -= p->pc_count;
2449 p->pc_count = 0;
2450 if (p->count == 0)
2451 *pp = p->next;
2452 else
2453 pp = &p->next;
2454 }
2455 }
2456
2457 /* Also discard relocs on undefined weak syms with non-default
2458 visibility. */
2459 if (eh->dyn_relocs != NULL
2460 && h->root.type == bfd_link_hash_undefweak)
2461 {
2462 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2463 eh->dyn_relocs = NULL;
2464
2465 /* Make sure undefined weak symbols are output as a dynamic
2466 symbol in PIEs. */
2467 else if (h->dynindx == -1
2468 && ! h->forced_local
2469 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2470 return FALSE;
2471 }
2472
2473 }
2474 else if (ELIMINATE_COPY_RELOCS)
2475 {
2476 /* For the non-shared case, discard space for relocs against
2477 symbols which turn out to need copy relocs or are not
2478 dynamic. */
2479
2480 if (!h->non_got_ref
2481 && ((h->def_dynamic
2482 && !h->def_regular)
2483 || (htab->elf.dynamic_sections_created
2484 && (h->root.type == bfd_link_hash_undefweak
2485 || h->root.type == bfd_link_hash_undefined))))
2486 {
2487 /* Make sure this symbol is output as a dynamic symbol.
2488 Undefined weak syms won't yet be marked as dynamic. */
2489 if (h->dynindx == -1
2490 && ! h->forced_local
2491 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2492 return FALSE;
2493
2494 /* If that succeeded, we know we'll be keeping all the
2495 relocs. */
2496 if (h->dynindx != -1)
2497 goto keep;
2498 }
2499
2500 eh->dyn_relocs = NULL;
2501
2502 keep: ;
2503 }
2504
2505 /* Finally, allocate space. */
2506 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2507 {
2508 asection * sreloc;
2509
2510 sreloc = elf_section_data (p->sec)->sreloc;
2511
2512 BFD_ASSERT (sreloc != NULL);
2513
2514 sreloc->size += p->count * bed->s->sizeof_rela;
2515 }
2516
2517 return TRUE;
2518 }
2519
2520 /* Allocate space in .plt, .got and associated reloc sections for
2521 local dynamic relocs. */
2522
2523 static bfd_boolean
2524 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2525 {
2526 struct elf_link_hash_entry *h
2527 = (struct elf_link_hash_entry *) *slot;
2528
2529 if (h->type != STT_GNU_IFUNC
2530 || !h->def_regular
2531 || !h->ref_regular
2532 || !h->forced_local
2533 || h->root.type != bfd_link_hash_defined)
2534 abort ();
2535
2536 return elf_x86_64_allocate_dynrelocs (h, inf);
2537 }
2538
2539 /* Find any dynamic relocs that apply to read-only sections. */
2540
2541 static bfd_boolean
2542 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2543 void * inf)
2544 {
2545 struct elf_x86_64_link_hash_entry *eh;
2546 struct elf_dyn_relocs *p;
2547
2548 /* Skip local IFUNC symbols. */
2549 if (h->forced_local && h->type == STT_GNU_IFUNC)
2550 return TRUE;
2551
2552 eh = (struct elf_x86_64_link_hash_entry *) h;
2553 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2554 {
2555 asection *s = p->sec->output_section;
2556
2557 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2558 {
2559 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2560
2561 info->flags |= DF_TEXTREL;
2562
2563 if (info->warn_shared_textrel && info->shared)
2564 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2565 p->sec->owner, h->root.root.string,
2566 p->sec);
2567
2568 /* Not an error, just cut short the traversal. */
2569 return FALSE;
2570 }
2571 }
2572 return TRUE;
2573 }
2574
2575 /* Set the sizes of the dynamic sections. */
2576
2577 static bfd_boolean
2578 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2579 struct bfd_link_info *info)
2580 {
2581 struct elf_x86_64_link_hash_table *htab;
2582 bfd *dynobj;
2583 asection *s;
2584 bfd_boolean relocs;
2585 bfd *ibfd;
2586 const struct elf_backend_data *bed;
2587
2588 htab = elf_x86_64_hash_table (info);
2589 if (htab == NULL)
2590 return FALSE;
2591 bed = get_elf_backend_data (output_bfd);
2592
2593 dynobj = htab->elf.dynobj;
2594 if (dynobj == NULL)
2595 abort ();
2596
2597 if (htab->elf.dynamic_sections_created)
2598 {
2599 /* Set the contents of the .interp section to the interpreter. */
2600 if (info->executable)
2601 {
2602 s = bfd_get_linker_section (dynobj, ".interp");
2603 if (s == NULL)
2604 abort ();
2605 s->size = htab->dynamic_interpreter_size;
2606 s->contents = (unsigned char *) htab->dynamic_interpreter;
2607 }
2608 }
2609
2610 /* Set up .got offsets for local syms, and space for local dynamic
2611 relocs. */
2612 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2613 {
2614 bfd_signed_vma *local_got;
2615 bfd_signed_vma *end_local_got;
2616 char *local_tls_type;
2617 bfd_vma *local_tlsdesc_gotent;
2618 bfd_size_type locsymcount;
2619 Elf_Internal_Shdr *symtab_hdr;
2620 asection *srel;
2621
2622 if (! is_x86_64_elf (ibfd))
2623 continue;
2624
2625 for (s = ibfd->sections; s != NULL; s = s->next)
2626 {
2627 struct elf_dyn_relocs *p;
2628
2629 for (p = (struct elf_dyn_relocs *)
2630 (elf_section_data (s)->local_dynrel);
2631 p != NULL;
2632 p = p->next)
2633 {
2634 if (!bfd_is_abs_section (p->sec)
2635 && bfd_is_abs_section (p->sec->output_section))
2636 {
2637 /* Input section has been discarded, either because
2638 it is a copy of a linkonce section or due to
2639 linker script /DISCARD/, so we'll be discarding
2640 the relocs too. */
2641 }
2642 else if (p->count != 0)
2643 {
2644 srel = elf_section_data (p->sec)->sreloc;
2645 srel->size += p->count * bed->s->sizeof_rela;
2646 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2647 && (info->flags & DF_TEXTREL) == 0)
2648 {
2649 info->flags |= DF_TEXTREL;
2650 if (info->warn_shared_textrel && info->shared)
2651 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2652 p->sec->owner, p->sec);
2653 }
2654 }
2655 }
2656 }
2657
2658 local_got = elf_local_got_refcounts (ibfd);
2659 if (!local_got)
2660 continue;
2661
2662 symtab_hdr = &elf_symtab_hdr (ibfd);
2663 locsymcount = symtab_hdr->sh_info;
2664 end_local_got = local_got + locsymcount;
2665 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2666 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2667 s = htab->elf.sgot;
2668 srel = htab->elf.srelgot;
2669 for (; local_got < end_local_got;
2670 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2671 {
2672 *local_tlsdesc_gotent = (bfd_vma) -1;
2673 if (*local_got > 0)
2674 {
2675 if (GOT_TLS_GDESC_P (*local_tls_type))
2676 {
2677 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2678 - elf_x86_64_compute_jump_table_size (htab);
2679 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2680 *local_got = (bfd_vma) -2;
2681 }
2682 if (! GOT_TLS_GDESC_P (*local_tls_type)
2683 || GOT_TLS_GD_P (*local_tls_type))
2684 {
2685 *local_got = s->size;
2686 s->size += GOT_ENTRY_SIZE;
2687 if (GOT_TLS_GD_P (*local_tls_type))
2688 s->size += GOT_ENTRY_SIZE;
2689 }
2690 if (info->shared
2691 || GOT_TLS_GD_ANY_P (*local_tls_type)
2692 || *local_tls_type == GOT_TLS_IE)
2693 {
2694 if (GOT_TLS_GDESC_P (*local_tls_type))
2695 {
2696 htab->elf.srelplt->size
2697 += bed->s->sizeof_rela;
2698 htab->tlsdesc_plt = (bfd_vma) -1;
2699 }
2700 if (! GOT_TLS_GDESC_P (*local_tls_type)
2701 || GOT_TLS_GD_P (*local_tls_type))
2702 srel->size += bed->s->sizeof_rela;
2703 }
2704 }
2705 else
2706 *local_got = (bfd_vma) -1;
2707 }
2708 }
2709
2710 if (htab->tls_ld_got.refcount > 0)
2711 {
2712 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2713 relocs. */
2714 htab->tls_ld_got.offset = htab->elf.sgot->size;
2715 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2716 htab->elf.srelgot->size += bed->s->sizeof_rela;
2717 }
2718 else
2719 htab->tls_ld_got.offset = -1;
2720
2721 /* Allocate global sym .plt and .got entries, and space for global
2722 sym dynamic relocs. */
2723 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2724 info);
2725
2726 /* Allocate .plt and .got entries, and space for local symbols. */
2727 htab_traverse (htab->loc_hash_table,
2728 elf_x86_64_allocate_local_dynrelocs,
2729 info);
2730
2731 /* For every jump slot reserved in the sgotplt, reloc_count is
2732 incremented. However, when we reserve space for TLS descriptors,
2733 it's not incremented, so in order to compute the space reserved
2734 for them, it suffices to multiply the reloc count by the jump
2735 slot size.
2736
2737 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2738 so that R_X86_64_IRELATIVE entries come last. */
2739 if (htab->elf.srelplt)
2740 {
2741 htab->sgotplt_jump_table_size
2742 = elf_x86_64_compute_jump_table_size (htab);
2743 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2744 }
2745 else if (htab->elf.irelplt)
2746 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2747
2748 if (htab->tlsdesc_plt)
2749 {
2750 /* If we're not using lazy TLS relocations, don't generate the
2751 PLT and GOT entries they require. */
2752 if ((info->flags & DF_BIND_NOW))
2753 htab->tlsdesc_plt = 0;
2754 else
2755 {
2756 htab->tlsdesc_got = htab->elf.sgot->size;
2757 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2758 /* Reserve room for the initial entry.
2759 FIXME: we could probably do away with it in this case. */
2760 if (htab->elf.splt->size == 0)
2761 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2762 htab->tlsdesc_plt = htab->elf.splt->size;
2763 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2764 }
2765 }
2766
2767 if (htab->elf.sgotplt)
2768 {
2769 struct elf_link_hash_entry *got;
2770 got = elf_link_hash_lookup (elf_hash_table (info),
2771 "_GLOBAL_OFFSET_TABLE_",
2772 FALSE, FALSE, FALSE);
2773
2774 /* Don't allocate .got.plt section if there are no GOT nor PLT
2775 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2776 if ((got == NULL
2777 || !got->ref_regular_nonweak)
2778 && (htab->elf.sgotplt->size
2779 == get_elf_backend_data (output_bfd)->got_header_size)
2780 && (htab->elf.splt == NULL
2781 || htab->elf.splt->size == 0)
2782 && (htab->elf.sgot == NULL
2783 || htab->elf.sgot->size == 0)
2784 && (htab->elf.iplt == NULL
2785 || htab->elf.iplt->size == 0)
2786 && (htab->elf.igotplt == NULL
2787 || htab->elf.igotplt->size == 0))
2788 htab->elf.sgotplt->size = 0;
2789 }
2790
2791 if (htab->plt_eh_frame != NULL
2792 && htab->elf.splt != NULL
2793 && htab->elf.splt->size != 0
2794 && !bfd_is_abs_section (htab->elf.splt->output_section)
2795 && _bfd_elf_eh_frame_present (info))
2796 {
2797 const struct elf_x86_64_backend_data *arch_data
2798 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2799 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2800 }
2801
2802 /* We now have determined the sizes of the various dynamic sections.
2803 Allocate memory for them. */
2804 relocs = FALSE;
2805 for (s = dynobj->sections; s != NULL; s = s->next)
2806 {
2807 if ((s->flags & SEC_LINKER_CREATED) == 0)
2808 continue;
2809
2810 if (s == htab->elf.splt
2811 || s == htab->elf.sgot
2812 || s == htab->elf.sgotplt
2813 || s == htab->elf.iplt
2814 || s == htab->elf.igotplt
2815 || s == htab->plt_eh_frame
2816 || s == htab->sdynbss)
2817 {
2818 /* Strip this section if we don't need it; see the
2819 comment below. */
2820 }
2821 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2822 {
2823 if (s->size != 0 && s != htab->elf.srelplt)
2824 relocs = TRUE;
2825
2826 /* We use the reloc_count field as a counter if we need
2827 to copy relocs into the output file. */
2828 if (s != htab->elf.srelplt)
2829 s->reloc_count = 0;
2830 }
2831 else
2832 {
2833 /* It's not one of our sections, so don't allocate space. */
2834 continue;
2835 }
2836
2837 if (s->size == 0)
2838 {
2839 /* If we don't need this section, strip it from the
2840 output file. This is mostly to handle .rela.bss and
2841 .rela.plt. We must create both sections in
2842 create_dynamic_sections, because they must be created
2843 before the linker maps input sections to output
2844 sections. The linker does that before
2845 adjust_dynamic_symbol is called, and it is that
2846 function which decides whether anything needs to go
2847 into these sections. */
2848
2849 s->flags |= SEC_EXCLUDE;
2850 continue;
2851 }
2852
2853 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2854 continue;
2855
2856 /* Allocate memory for the section contents. We use bfd_zalloc
2857 here in case unused entries are not reclaimed before the
2858 section's contents are written out. This should not happen,
2859 but this way if it does, we get a R_X86_64_NONE reloc instead
2860 of garbage. */
2861 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2862 if (s->contents == NULL)
2863 return FALSE;
2864 }
2865
2866 if (htab->plt_eh_frame != NULL
2867 && htab->plt_eh_frame->contents != NULL)
2868 {
2869 const struct elf_x86_64_backend_data *arch_data
2870 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2871
2872 memcpy (htab->plt_eh_frame->contents,
2873 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
2874 bfd_put_32 (dynobj, htab->elf.splt->size,
2875 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2876 }
2877
2878 if (htab->elf.dynamic_sections_created)
2879 {
2880 /* Add some entries to the .dynamic section. We fill in the
2881 values later, in elf_x86_64_finish_dynamic_sections, but we
2882 must add the entries now so that we get the correct size for
2883 the .dynamic section. The DT_DEBUG entry is filled in by the
2884 dynamic linker and used by the debugger. */
2885 #define add_dynamic_entry(TAG, VAL) \
2886 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2887
2888 if (info->executable)
2889 {
2890 if (!add_dynamic_entry (DT_DEBUG, 0))
2891 return FALSE;
2892 }
2893
2894 if (htab->elf.splt->size != 0)
2895 {
2896 if (!add_dynamic_entry (DT_PLTGOT, 0)
2897 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2898 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2899 || !add_dynamic_entry (DT_JMPREL, 0))
2900 return FALSE;
2901
2902 if (htab->tlsdesc_plt
2903 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2904 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2905 return FALSE;
2906 }
2907
2908 if (relocs)
2909 {
2910 if (!add_dynamic_entry (DT_RELA, 0)
2911 || !add_dynamic_entry (DT_RELASZ, 0)
2912 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2913 return FALSE;
2914
2915 /* If any dynamic relocs apply to a read-only section,
2916 then we need a DT_TEXTREL entry. */
2917 if ((info->flags & DF_TEXTREL) == 0)
2918 elf_link_hash_traverse (&htab->elf,
2919 elf_x86_64_readonly_dynrelocs,
2920 info);
2921
2922 if ((info->flags & DF_TEXTREL) != 0)
2923 {
2924 if (!add_dynamic_entry (DT_TEXTREL, 0))
2925 return FALSE;
2926 }
2927 }
2928 }
2929 #undef add_dynamic_entry
2930
2931 return TRUE;
2932 }
2933
2934 static bfd_boolean
2935 elf_x86_64_always_size_sections (bfd *output_bfd,
2936 struct bfd_link_info *info)
2937 {
2938 asection *tls_sec = elf_hash_table (info)->tls_sec;
2939
2940 if (tls_sec)
2941 {
2942 struct elf_link_hash_entry *tlsbase;
2943
2944 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2945 "_TLS_MODULE_BASE_",
2946 FALSE, FALSE, FALSE);
2947
2948 if (tlsbase && tlsbase->type == STT_TLS)
2949 {
2950 struct elf_x86_64_link_hash_table *htab;
2951 struct bfd_link_hash_entry *bh = NULL;
2952 const struct elf_backend_data *bed
2953 = get_elf_backend_data (output_bfd);
2954
2955 htab = elf_x86_64_hash_table (info);
2956 if (htab == NULL)
2957 return FALSE;
2958
2959 if (!(_bfd_generic_link_add_one_symbol
2960 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2961 tls_sec, 0, NULL, FALSE,
2962 bed->collect, &bh)))
2963 return FALSE;
2964
2965 htab->tls_module_base = bh;
2966
2967 tlsbase = (struct elf_link_hash_entry *)bh;
2968 tlsbase->def_regular = 1;
2969 tlsbase->other = STV_HIDDEN;
2970 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2971 }
2972 }
2973
2974 return TRUE;
2975 }
2976
2977 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2978 executables. Rather than setting it to the beginning of the TLS
2979 section, we have to set it to the end. This function may be called
2980 multiple times, it is idempotent. */
2981
2982 static void
2983 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2984 {
2985 struct elf_x86_64_link_hash_table *htab;
2986 struct bfd_link_hash_entry *base;
2987
2988 if (!info->executable)
2989 return;
2990
2991 htab = elf_x86_64_hash_table (info);
2992 if (htab == NULL)
2993 return;
2994
2995 base = htab->tls_module_base;
2996 if (base == NULL)
2997 return;
2998
2999 base->u.def.value = htab->elf.tls_size;
3000 }
3001
3002 /* Return the base VMA address which should be subtracted from real addresses
3003 when resolving @dtpoff relocation.
3004 This is PT_TLS segment p_vaddr. */
3005
3006 static bfd_vma
3007 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3008 {
3009 /* If tls_sec is NULL, we should have signalled an error already. */
3010 if (elf_hash_table (info)->tls_sec == NULL)
3011 return 0;
3012 return elf_hash_table (info)->tls_sec->vma;
3013 }
3014
3015 /* Return the relocation value for @tpoff relocation
3016 if STT_TLS virtual address is ADDRESS. */
3017
3018 static bfd_vma
3019 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3020 {
3021 struct elf_link_hash_table *htab = elf_hash_table (info);
3022 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3023 bfd_vma static_tls_size;
3024
3025 /* If tls_segment is NULL, we should have signalled an error already. */
3026 if (htab->tls_sec == NULL)
3027 return 0;
3028
3029 /* Consider special static TLS alignment requirements. */
3030 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3031 return address - static_tls_size - htab->tls_sec->vma;
3032 }
3033
3034 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3035 branch? */
3036
3037 static bfd_boolean
3038 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3039 {
3040 /* Opcode Instruction
3041 0xe8 call
3042 0xe9 jump
3043 0x0f 0x8x conditional jump */
3044 return ((offset > 0
3045 && (contents [offset - 1] == 0xe8
3046 || contents [offset - 1] == 0xe9))
3047 || (offset > 1
3048 && contents [offset - 2] == 0x0f
3049 && (contents [offset - 1] & 0xf0) == 0x80));
3050 }
3051
3052 /* Relocate an x86_64 ELF section. */
3053
3054 static bfd_boolean
3055 elf_x86_64_relocate_section (bfd *output_bfd,
3056 struct bfd_link_info *info,
3057 bfd *input_bfd,
3058 asection *input_section,
3059 bfd_byte *contents,
3060 Elf_Internal_Rela *relocs,
3061 Elf_Internal_Sym *local_syms,
3062 asection **local_sections)
3063 {
3064 struct elf_x86_64_link_hash_table *htab;
3065 Elf_Internal_Shdr *symtab_hdr;
3066 struct elf_link_hash_entry **sym_hashes;
3067 bfd_vma *local_got_offsets;
3068 bfd_vma *local_tlsdesc_gotents;
3069 Elf_Internal_Rela *rel;
3070 Elf_Internal_Rela *relend;
3071 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3072
3073 BFD_ASSERT (is_x86_64_elf (input_bfd));
3074
3075 htab = elf_x86_64_hash_table (info);
3076 if (htab == NULL)
3077 return FALSE;
3078 symtab_hdr = &elf_symtab_hdr (input_bfd);
3079 sym_hashes = elf_sym_hashes (input_bfd);
3080 local_got_offsets = elf_local_got_offsets (input_bfd);
3081 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3082
3083 elf_x86_64_set_tls_module_base (info);
3084
3085 rel = relocs;
3086 relend = relocs + input_section->reloc_count;
3087 for (; rel < relend; rel++)
3088 {
3089 unsigned int r_type;
3090 reloc_howto_type *howto;
3091 unsigned long r_symndx;
3092 struct elf_link_hash_entry *h;
3093 Elf_Internal_Sym *sym;
3094 asection *sec;
3095 bfd_vma off, offplt;
3096 bfd_vma relocation;
3097 bfd_boolean unresolved_reloc;
3098 bfd_reloc_status_type r;
3099 int tls_type;
3100 asection *base_got;
3101
3102 r_type = ELF32_R_TYPE (rel->r_info);
3103 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3104 || r_type == (int) R_X86_64_GNU_VTENTRY)
3105 continue;
3106
3107 if (r_type >= R_X86_64_max)
3108 {
3109 bfd_set_error (bfd_error_bad_value);
3110 return FALSE;
3111 }
3112
3113 if (r_type != (int) R_X86_64_32
3114 || ABI_64_P (output_bfd))
3115 howto = x86_64_elf_howto_table + r_type;
3116 else
3117 howto = (x86_64_elf_howto_table
3118 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3119 r_symndx = htab->r_sym (rel->r_info);
3120 h = NULL;
3121 sym = NULL;
3122 sec = NULL;
3123 unresolved_reloc = FALSE;
3124 if (r_symndx < symtab_hdr->sh_info)
3125 {
3126 sym = local_syms + r_symndx;
3127 sec = local_sections[r_symndx];
3128
3129 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3130 &sec, rel);
3131
3132 /* Relocate against local STT_GNU_IFUNC symbol. */
3133 if (!info->relocatable
3134 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3135 {
3136 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3137 rel, FALSE);
3138 if (h == NULL)
3139 abort ();
3140
3141 /* Set STT_GNU_IFUNC symbol value. */
3142 h->root.u.def.value = sym->st_value;
3143 h->root.u.def.section = sec;
3144 }
3145 }
3146 else
3147 {
3148 bfd_boolean warned ATTRIBUTE_UNUSED;
3149
3150 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3151 r_symndx, symtab_hdr, sym_hashes,
3152 h, sec, relocation,
3153 unresolved_reloc, warned);
3154 }
3155
3156 if (sec != NULL && discarded_section (sec))
3157 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3158 rel, 1, relend, howto, 0, contents);
3159
3160 if (info->relocatable)
3161 continue;
3162
3163 if (rel->r_addend == 0
3164 && r_type == R_X86_64_64
3165 && !ABI_64_P (output_bfd))
3166 {
3167 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3168 it to 64bit if addend is zero. */
3169 r_type = R_X86_64_32;
3170 memset (contents + rel->r_offset + 4, 0, 4);
3171 }
3172
3173 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3174 it here if it is defined in a non-shared object. */
3175 if (h != NULL
3176 && h->type == STT_GNU_IFUNC
3177 && h->def_regular)
3178 {
3179 asection *plt;
3180 bfd_vma plt_index;
3181 const char *name;
3182
3183 if ((input_section->flags & SEC_ALLOC) == 0
3184 || h->plt.offset == (bfd_vma) -1)
3185 abort ();
3186
3187 /* STT_GNU_IFUNC symbol must go through PLT. */
3188 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3189 relocation = (plt->output_section->vma
3190 + plt->output_offset + h->plt.offset);
3191
3192 switch (r_type)
3193 {
3194 default:
3195 if (h->root.root.string)
3196 name = h->root.root.string;
3197 else
3198 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3199 NULL);
3200 (*_bfd_error_handler)
3201 (_("%B: relocation %s against STT_GNU_IFUNC "
3202 "symbol `%s' isn't handled by %s"), input_bfd,
3203 x86_64_elf_howto_table[r_type].name,
3204 name, __FUNCTION__);
3205 bfd_set_error (bfd_error_bad_value);
3206 return FALSE;
3207
3208 case R_X86_64_32S:
3209 if (info->shared)
3210 abort ();
3211 goto do_relocation;
3212
3213 case R_X86_64_32:
3214 if (ABI_64_P (output_bfd))
3215 goto do_relocation;
3216 /* FALLTHROUGH */
3217 case R_X86_64_64:
3218 if (rel->r_addend != 0)
3219 {
3220 if (h->root.root.string)
3221 name = h->root.root.string;
3222 else
3223 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3224 sym, NULL);
3225 (*_bfd_error_handler)
3226 (_("%B: relocation %s against STT_GNU_IFUNC "
3227 "symbol `%s' has non-zero addend: %d"),
3228 input_bfd, x86_64_elf_howto_table[r_type].name,
3229 name, rel->r_addend);
3230 bfd_set_error (bfd_error_bad_value);
3231 return FALSE;
3232 }
3233
3234 /* Generate dynamic relcoation only when there is a
3235 non-GOT reference in a shared object. */
3236 if (info->shared && h->non_got_ref)
3237 {
3238 Elf_Internal_Rela outrel;
3239 asection *sreloc;
3240
3241 /* Need a dynamic relocation to get the real function
3242 address. */
3243 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3244 info,
3245 input_section,
3246 rel->r_offset);
3247 if (outrel.r_offset == (bfd_vma) -1
3248 || outrel.r_offset == (bfd_vma) -2)
3249 abort ();
3250
3251 outrel.r_offset += (input_section->output_section->vma
3252 + input_section->output_offset);
3253
3254 if (h->dynindx == -1
3255 || h->forced_local
3256 || info->executable)
3257 {
3258 /* This symbol is resolved locally. */
3259 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3260 outrel.r_addend = (h->root.u.def.value
3261 + h->root.u.def.section->output_section->vma
3262 + h->root.u.def.section->output_offset);
3263 }
3264 else
3265 {
3266 outrel.r_info = htab->r_info (h->dynindx, r_type);
3267 outrel.r_addend = 0;
3268 }
3269
3270 sreloc = htab->elf.irelifunc;
3271 elf_append_rela (output_bfd, sreloc, &outrel);
3272
3273 /* If this reloc is against an external symbol, we
3274 do not want to fiddle with the addend. Otherwise,
3275 we need to include the symbol value so that it
3276 becomes an addend for the dynamic reloc. For an
3277 internal symbol, we have updated addend. */
3278 continue;
3279 }
3280 /* FALLTHROUGH */
3281 case R_X86_64_PC32:
3282 case R_X86_64_PC64:
3283 case R_X86_64_PLT32:
3284 goto do_relocation;
3285
3286 case R_X86_64_GOTPCREL:
3287 case R_X86_64_GOTPCREL64:
3288 base_got = htab->elf.sgot;
3289 off = h->got.offset;
3290
3291 if (base_got == NULL)
3292 abort ();
3293
3294 if (off == (bfd_vma) -1)
3295 {
3296 /* We can't use h->got.offset here to save state, or
3297 even just remember the offset, as finish_dynamic_symbol
3298 would use that as offset into .got. */
3299
3300 if (htab->elf.splt != NULL)
3301 {
3302 plt_index = h->plt.offset / plt_entry_size - 1;
3303 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3304 base_got = htab->elf.sgotplt;
3305 }
3306 else
3307 {
3308 plt_index = h->plt.offset / plt_entry_size;
3309 off = plt_index * GOT_ENTRY_SIZE;
3310 base_got = htab->elf.igotplt;
3311 }
3312
3313 if (h->dynindx == -1
3314 || h->forced_local
3315 || info->symbolic)
3316 {
3317 /* This references the local defitionion. We must
3318 initialize this entry in the global offset table.
3319 Since the offset must always be a multiple of 8,
3320 we use the least significant bit to record
3321 whether we have initialized it already.
3322
3323 When doing a dynamic link, we create a .rela.got
3324 relocation entry to initialize the value. This
3325 is done in the finish_dynamic_symbol routine. */
3326 if ((off & 1) != 0)
3327 off &= ~1;
3328 else
3329 {
3330 bfd_put_64 (output_bfd, relocation,
3331 base_got->contents + off);
3332 /* Note that this is harmless for the GOTPLT64
3333 case, as -1 | 1 still is -1. */
3334 h->got.offset |= 1;
3335 }
3336 }
3337 }
3338
3339 relocation = (base_got->output_section->vma
3340 + base_got->output_offset + off);
3341
3342 goto do_relocation;
3343 }
3344 }
3345
3346 /* When generating a shared object, the relocations handled here are
3347 copied into the output file to be resolved at run time. */
3348 switch (r_type)
3349 {
3350 case R_X86_64_GOT32:
3351 case R_X86_64_GOT64:
3352 /* Relocation is to the entry for this symbol in the global
3353 offset table. */
3354 case R_X86_64_GOTPCREL:
3355 case R_X86_64_GOTPCREL64:
3356 /* Use global offset table entry as symbol value. */
3357 case R_X86_64_GOTPLT64:
3358 /* This is the same as GOT64 for relocation purposes, but
3359 indicates the existence of a PLT entry. The difficulty is,
3360 that we must calculate the GOT slot offset from the PLT
3361 offset, if this symbol got a PLT entry (it was global).
3362 Additionally if it's computed from the PLT entry, then that
3363 GOT offset is relative to .got.plt, not to .got. */
3364 base_got = htab->elf.sgot;
3365
3366 if (htab->elf.sgot == NULL)
3367 abort ();
3368
3369 if (h != NULL)
3370 {
3371 bfd_boolean dyn;
3372
3373 off = h->got.offset;
3374 if (h->needs_plt
3375 && h->plt.offset != (bfd_vma)-1
3376 && off == (bfd_vma)-1)
3377 {
3378 /* We can't use h->got.offset here to save
3379 state, or even just remember the offset, as
3380 finish_dynamic_symbol would use that as offset into
3381 .got. */
3382 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3383 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3384 base_got = htab->elf.sgotplt;
3385 }
3386
3387 dyn = htab->elf.dynamic_sections_created;
3388
3389 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3390 || (info->shared
3391 && SYMBOL_REFERENCES_LOCAL (info, h))
3392 || (ELF_ST_VISIBILITY (h->other)
3393 && h->root.type == bfd_link_hash_undefweak))
3394 {
3395 /* This is actually a static link, or it is a -Bsymbolic
3396 link and the symbol is defined locally, or the symbol
3397 was forced to be local because of a version file. We
3398 must initialize this entry in the global offset table.
3399 Since the offset must always be a multiple of 8, we
3400 use the least significant bit to record whether we
3401 have initialized it already.
3402
3403 When doing a dynamic link, we create a .rela.got
3404 relocation entry to initialize the value. This is
3405 done in the finish_dynamic_symbol routine. */
3406 if ((off & 1) != 0)
3407 off &= ~1;
3408 else
3409 {
3410 bfd_put_64 (output_bfd, relocation,
3411 base_got->contents + off);
3412 /* Note that this is harmless for the GOTPLT64 case,
3413 as -1 | 1 still is -1. */
3414 h->got.offset |= 1;
3415 }
3416 }
3417 else
3418 unresolved_reloc = FALSE;
3419 }
3420 else
3421 {
3422 if (local_got_offsets == NULL)
3423 abort ();
3424
3425 off = local_got_offsets[r_symndx];
3426
3427 /* The offset must always be a multiple of 8. We use
3428 the least significant bit to record whether we have
3429 already generated the necessary reloc. */
3430 if ((off & 1) != 0)
3431 off &= ~1;
3432 else
3433 {
3434 bfd_put_64 (output_bfd, relocation,
3435 base_got->contents + off);
3436
3437 if (info->shared)
3438 {
3439 asection *s;
3440 Elf_Internal_Rela outrel;
3441
3442 /* We need to generate a R_X86_64_RELATIVE reloc
3443 for the dynamic linker. */
3444 s = htab->elf.srelgot;
3445 if (s == NULL)
3446 abort ();
3447
3448 outrel.r_offset = (base_got->output_section->vma
3449 + base_got->output_offset
3450 + off);
3451 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3452 outrel.r_addend = relocation;
3453 elf_append_rela (output_bfd, s, &outrel);
3454 }
3455
3456 local_got_offsets[r_symndx] |= 1;
3457 }
3458 }
3459
3460 if (off >= (bfd_vma) -2)
3461 abort ();
3462
3463 relocation = base_got->output_section->vma
3464 + base_got->output_offset + off;
3465 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3466 relocation -= htab->elf.sgotplt->output_section->vma
3467 - htab->elf.sgotplt->output_offset;
3468
3469 break;
3470
3471 case R_X86_64_GOTOFF64:
3472 /* Relocation is relative to the start of the global offset
3473 table. */
3474
3475 /* Check to make sure it isn't a protected function symbol
3476 for shared library since it may not be local when used
3477 as function address. */
3478 if (!info->executable
3479 && h
3480 && !SYMBOLIC_BIND (info, h)
3481 && h->def_regular
3482 && h->type == STT_FUNC
3483 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3484 {
3485 (*_bfd_error_handler)
3486 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3487 input_bfd, h->root.root.string);
3488 bfd_set_error (bfd_error_bad_value);
3489 return FALSE;
3490 }
3491
3492 /* Note that sgot is not involved in this
3493 calculation. We always want the start of .got.plt. If we
3494 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3495 permitted by the ABI, we might have to change this
3496 calculation. */
3497 relocation -= htab->elf.sgotplt->output_section->vma
3498 + htab->elf.sgotplt->output_offset;
3499 break;
3500
3501 case R_X86_64_GOTPC32:
3502 case R_X86_64_GOTPC64:
3503 /* Use global offset table as symbol value. */
3504 relocation = htab->elf.sgotplt->output_section->vma
3505 + htab->elf.sgotplt->output_offset;
3506 unresolved_reloc = FALSE;
3507 break;
3508
3509 case R_X86_64_PLTOFF64:
3510 /* Relocation is PLT entry relative to GOT. For local
3511 symbols it's the symbol itself relative to GOT. */
3512 if (h != NULL
3513 /* See PLT32 handling. */
3514 && h->plt.offset != (bfd_vma) -1
3515 && htab->elf.splt != NULL)
3516 {
3517 relocation = (htab->elf.splt->output_section->vma
3518 + htab->elf.splt->output_offset
3519 + h->plt.offset);
3520 unresolved_reloc = FALSE;
3521 }
3522
3523 relocation -= htab->elf.sgotplt->output_section->vma
3524 + htab->elf.sgotplt->output_offset;
3525 break;
3526
3527 case R_X86_64_PLT32:
3528 /* Relocation is to the entry for this symbol in the
3529 procedure linkage table. */
3530
3531 /* Resolve a PLT32 reloc against a local symbol directly,
3532 without using the procedure linkage table. */
3533 if (h == NULL)
3534 break;
3535
3536 if (h->plt.offset == (bfd_vma) -1
3537 || htab->elf.splt == NULL)
3538 {
3539 /* We didn't make a PLT entry for this symbol. This
3540 happens when statically linking PIC code, or when
3541 using -Bsymbolic. */
3542 break;
3543 }
3544
3545 relocation = (htab->elf.splt->output_section->vma
3546 + htab->elf.splt->output_offset
3547 + h->plt.offset);
3548 unresolved_reloc = FALSE;
3549 break;
3550
3551 case R_X86_64_PC8:
3552 case R_X86_64_PC16:
3553 case R_X86_64_PC32:
3554 if (info->shared
3555 && (input_section->flags & SEC_ALLOC) != 0
3556 && (input_section->flags & SEC_READONLY) != 0
3557 && h != NULL)
3558 {
3559 bfd_boolean fail = FALSE;
3560 bfd_boolean branch
3561 = (r_type == R_X86_64_PC32
3562 && is_32bit_relative_branch (contents, rel->r_offset));
3563
3564 if (SYMBOL_REFERENCES_LOCAL (info, h))
3565 {
3566 /* Symbol is referenced locally. Make sure it is
3567 defined locally or for a branch. */
3568 fail = !h->def_regular && !branch;
3569 }
3570 else
3571 {
3572 /* Symbol isn't referenced locally. We only allow
3573 branch to symbol with non-default visibility. */
3574 fail = (!branch
3575 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3576 }
3577
3578 if (fail)
3579 {
3580 const char *fmt;
3581 const char *v;
3582 const char *pic = "";
3583
3584 switch (ELF_ST_VISIBILITY (h->other))
3585 {
3586 case STV_HIDDEN:
3587 v = _("hidden symbol");
3588 break;
3589 case STV_INTERNAL:
3590 v = _("internal symbol");
3591 break;
3592 case STV_PROTECTED:
3593 v = _("protected symbol");
3594 break;
3595 default:
3596 v = _("symbol");
3597 pic = _("; recompile with -fPIC");
3598 break;
3599 }
3600
3601 if (h->def_regular)
3602 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3603 else
3604 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3605
3606 (*_bfd_error_handler) (fmt, input_bfd,
3607 x86_64_elf_howto_table[r_type].name,
3608 v, h->root.root.string, pic);
3609 bfd_set_error (bfd_error_bad_value);
3610 return FALSE;
3611 }
3612 }
3613 /* Fall through. */
3614
3615 case R_X86_64_8:
3616 case R_X86_64_16:
3617 case R_X86_64_32:
3618 case R_X86_64_PC64:
3619 case R_X86_64_64:
3620 /* FIXME: The ABI says the linker should make sure the value is
3621 the same when it's zeroextended to 64 bit. */
3622
3623 if ((input_section->flags & SEC_ALLOC) == 0)
3624 break;
3625
3626 if ((info->shared
3627 && (h == NULL
3628 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3629 || h->root.type != bfd_link_hash_undefweak)
3630 && (! IS_X86_64_PCREL_TYPE (r_type)
3631 || ! SYMBOL_CALLS_LOCAL (info, h)))
3632 || (ELIMINATE_COPY_RELOCS
3633 && !info->shared
3634 && h != NULL
3635 && h->dynindx != -1
3636 && !h->non_got_ref
3637 && ((h->def_dynamic
3638 && !h->def_regular)
3639 || h->root.type == bfd_link_hash_undefweak
3640 || h->root.type == bfd_link_hash_undefined)))
3641 {
3642 Elf_Internal_Rela outrel;
3643 bfd_boolean skip, relocate;
3644 asection *sreloc;
3645
3646 /* When generating a shared object, these relocations
3647 are copied into the output file to be resolved at run
3648 time. */
3649 skip = FALSE;
3650 relocate = FALSE;
3651
3652 outrel.r_offset =
3653 _bfd_elf_section_offset (output_bfd, info, input_section,
3654 rel->r_offset);
3655 if (outrel.r_offset == (bfd_vma) -1)
3656 skip = TRUE;
3657 else if (outrel.r_offset == (bfd_vma) -2)
3658 skip = TRUE, relocate = TRUE;
3659
3660 outrel.r_offset += (input_section->output_section->vma
3661 + input_section->output_offset);
3662
3663 if (skip)
3664 memset (&outrel, 0, sizeof outrel);
3665
3666 /* h->dynindx may be -1 if this symbol was marked to
3667 become local. */
3668 else if (h != NULL
3669 && h->dynindx != -1
3670 && (IS_X86_64_PCREL_TYPE (r_type)
3671 || ! info->shared
3672 || ! SYMBOLIC_BIND (info, h)
3673 || ! h->def_regular))
3674 {
3675 outrel.r_info = htab->r_info (h->dynindx, r_type);
3676 outrel.r_addend = rel->r_addend;
3677 }
3678 else
3679 {
3680 /* This symbol is local, or marked to become local. */
3681 if (r_type == htab->pointer_r_type)
3682 {
3683 relocate = TRUE;
3684 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3685 outrel.r_addend = relocation + rel->r_addend;
3686 }
3687 else if (r_type == R_X86_64_64
3688 && !ABI_64_P (output_bfd))
3689 {
3690 relocate = TRUE;
3691 outrel.r_info = htab->r_info (0,
3692 R_X86_64_RELATIVE64);
3693 outrel.r_addend = relocation + rel->r_addend;
3694 /* Check addend overflow. */
3695 if ((outrel.r_addend & 0x80000000)
3696 != (rel->r_addend & 0x80000000))
3697 {
3698 const char *name;
3699 int addend = rel->r_addend;
3700 if (h && h->root.root.string)
3701 name = h->root.root.string;
3702 else
3703 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3704 sym, NULL);
3705 if (addend < 0)
3706 (*_bfd_error_handler)
3707 (_("%B: addend -0x%x in relocation %s against "
3708 "symbol `%s' at 0x%lx in section `%A' is "
3709 "out of range"),
3710 input_bfd, input_section, addend,
3711 x86_64_elf_howto_table[r_type].name,
3712 name, (unsigned long) rel->r_offset);
3713 else
3714 (*_bfd_error_handler)
3715 (_("%B: addend 0x%x in relocation %s against "
3716 "symbol `%s' at 0x%lx in section `%A' is "
3717 "out of range"),
3718 input_bfd, input_section, addend,
3719 x86_64_elf_howto_table[r_type].name,
3720 name, (unsigned long) rel->r_offset);
3721 bfd_set_error (bfd_error_bad_value);
3722 return FALSE;
3723 }
3724 }
3725 else
3726 {
3727 long sindx;
3728
3729 if (bfd_is_abs_section (sec))
3730 sindx = 0;
3731 else if (sec == NULL || sec->owner == NULL)
3732 {
3733 bfd_set_error (bfd_error_bad_value);
3734 return FALSE;
3735 }
3736 else
3737 {
3738 asection *osec;
3739
3740 /* We are turning this relocation into one
3741 against a section symbol. It would be
3742 proper to subtract the symbol's value,
3743 osec->vma, from the emitted reloc addend,
3744 but ld.so expects buggy relocs. */
3745 osec = sec->output_section;
3746 sindx = elf_section_data (osec)->dynindx;
3747 if (sindx == 0)
3748 {
3749 asection *oi = htab->elf.text_index_section;
3750 sindx = elf_section_data (oi)->dynindx;
3751 }
3752 BFD_ASSERT (sindx != 0);
3753 }
3754
3755 outrel.r_info = htab->r_info (sindx, r_type);
3756 outrel.r_addend = relocation + rel->r_addend;
3757 }
3758 }
3759
3760 sreloc = elf_section_data (input_section)->sreloc;
3761
3762 if (sreloc == NULL || sreloc->contents == NULL)
3763 {
3764 r = bfd_reloc_notsupported;
3765 goto check_relocation_error;
3766 }
3767
3768 elf_append_rela (output_bfd, sreloc, &outrel);
3769
3770 /* If this reloc is against an external symbol, we do
3771 not want to fiddle with the addend. Otherwise, we
3772 need to include the symbol value so that it becomes
3773 an addend for the dynamic reloc. */
3774 if (! relocate)
3775 continue;
3776 }
3777
3778 break;
3779
3780 case R_X86_64_TLSGD:
3781 case R_X86_64_GOTPC32_TLSDESC:
3782 case R_X86_64_TLSDESC_CALL:
3783 case R_X86_64_GOTTPOFF:
3784 tls_type = GOT_UNKNOWN;
3785 if (h == NULL && local_got_offsets)
3786 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3787 else if (h != NULL)
3788 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3789
3790 if (! elf_x86_64_tls_transition (info, input_bfd,
3791 input_section, contents,
3792 symtab_hdr, sym_hashes,
3793 &r_type, tls_type, rel,
3794 relend, h, r_symndx))
3795 return FALSE;
3796
3797 if (r_type == R_X86_64_TPOFF32)
3798 {
3799 bfd_vma roff = rel->r_offset;
3800
3801 BFD_ASSERT (! unresolved_reloc);
3802
3803 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3804 {
3805 /* GD->LE transition. For 64bit, change
3806 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3807 .word 0x6666; rex64; call __tls_get_addr
3808 into:
3809 movq %fs:0, %rax
3810 leaq foo@tpoff(%rax), %rax
3811 For 32bit, change
3812 leaq foo@tlsgd(%rip), %rdi
3813 .word 0x6666; rex64; call __tls_get_addr
3814 into:
3815 movl %fs:0, %eax
3816 leaq foo@tpoff(%rax), %rax */
3817 if (ABI_64_P (output_bfd))
3818 memcpy (contents + roff - 4,
3819 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3820 16);
3821 else
3822 memcpy (contents + roff - 3,
3823 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3824 15);
3825 bfd_put_32 (output_bfd,
3826 elf_x86_64_tpoff (info, relocation),
3827 contents + roff + 8);
3828 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3829 rel++;
3830 continue;
3831 }
3832 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3833 {
3834 /* GDesc -> LE transition.
3835 It's originally something like:
3836 leaq x@tlsdesc(%rip), %rax
3837
3838 Change it to:
3839 movl $x@tpoff, %rax. */
3840
3841 unsigned int val, type;
3842
3843 type = bfd_get_8 (input_bfd, contents + roff - 3);
3844 val = bfd_get_8 (input_bfd, contents + roff - 1);
3845 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3846 contents + roff - 3);
3847 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3848 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3849 contents + roff - 1);
3850 bfd_put_32 (output_bfd,
3851 elf_x86_64_tpoff (info, relocation),
3852 contents + roff);
3853 continue;
3854 }
3855 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3856 {
3857 /* GDesc -> LE transition.
3858 It's originally:
3859 call *(%rax)
3860 Turn it into:
3861 xchg %ax,%ax. */
3862 bfd_put_8 (output_bfd, 0x66, contents + roff);
3863 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3864 continue;
3865 }
3866 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3867 {
3868 /* IE->LE transition:
3869 Originally it can be one of:
3870 movq foo@gottpoff(%rip), %reg
3871 addq foo@gottpoff(%rip), %reg
3872 We change it into:
3873 movq $foo, %reg
3874 leaq foo(%reg), %reg
3875 addq $foo, %reg. */
3876
3877 unsigned int val, type, reg;
3878
3879 val = bfd_get_8 (input_bfd, contents + roff - 3);
3880 type = bfd_get_8 (input_bfd, contents + roff - 2);
3881 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3882 reg >>= 3;
3883 if (type == 0x8b)
3884 {
3885 /* movq */
3886 if (val == 0x4c)
3887 bfd_put_8 (output_bfd, 0x49,
3888 contents + roff - 3);
3889 else if (!ABI_64_P (output_bfd) && val == 0x44)
3890 bfd_put_8 (output_bfd, 0x41,
3891 contents + roff - 3);
3892 bfd_put_8 (output_bfd, 0xc7,
3893 contents + roff - 2);
3894 bfd_put_8 (output_bfd, 0xc0 | reg,
3895 contents + roff - 1);
3896 }
3897 else if (reg == 4)
3898 {
3899 /* addq -> addq - addressing with %rsp/%r12 is
3900 special */
3901 if (val == 0x4c)
3902 bfd_put_8 (output_bfd, 0x49,
3903 contents + roff - 3);
3904 else if (!ABI_64_P (output_bfd) && val == 0x44)
3905 bfd_put_8 (output_bfd, 0x41,
3906 contents + roff - 3);
3907 bfd_put_8 (output_bfd, 0x81,
3908 contents + roff - 2);
3909 bfd_put_8 (output_bfd, 0xc0 | reg,
3910 contents + roff - 1);
3911 }
3912 else
3913 {
3914 /* addq -> leaq */
3915 if (val == 0x4c)
3916 bfd_put_8 (output_bfd, 0x4d,
3917 contents + roff - 3);
3918 else if (!ABI_64_P (output_bfd) && val == 0x44)
3919 bfd_put_8 (output_bfd, 0x45,
3920 contents + roff - 3);
3921 bfd_put_8 (output_bfd, 0x8d,
3922 contents + roff - 2);
3923 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3924 contents + roff - 1);
3925 }
3926 bfd_put_32 (output_bfd,
3927 elf_x86_64_tpoff (info, relocation),
3928 contents + roff);
3929 continue;
3930 }
3931 else
3932 BFD_ASSERT (FALSE);
3933 }
3934
3935 if (htab->elf.sgot == NULL)
3936 abort ();
3937
3938 if (h != NULL)
3939 {
3940 off = h->got.offset;
3941 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3942 }
3943 else
3944 {
3945 if (local_got_offsets == NULL)
3946 abort ();
3947
3948 off = local_got_offsets[r_symndx];
3949 offplt = local_tlsdesc_gotents[r_symndx];
3950 }
3951
3952 if ((off & 1) != 0)
3953 off &= ~1;
3954 else
3955 {
3956 Elf_Internal_Rela outrel;
3957 int dr_type, indx;
3958 asection *sreloc;
3959
3960 if (htab->elf.srelgot == NULL)
3961 abort ();
3962
3963 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3964
3965 if (GOT_TLS_GDESC_P (tls_type))
3966 {
3967 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3968 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3969 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3970 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3971 + htab->elf.sgotplt->output_offset
3972 + offplt
3973 + htab->sgotplt_jump_table_size);
3974 sreloc = htab->elf.srelplt;
3975 if (indx == 0)
3976 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3977 else
3978 outrel.r_addend = 0;
3979 elf_append_rela (output_bfd, sreloc, &outrel);
3980 }
3981
3982 sreloc = htab->elf.srelgot;
3983
3984 outrel.r_offset = (htab->elf.sgot->output_section->vma
3985 + htab->elf.sgot->output_offset + off);
3986
3987 if (GOT_TLS_GD_P (tls_type))
3988 dr_type = R_X86_64_DTPMOD64;
3989 else if (GOT_TLS_GDESC_P (tls_type))
3990 goto dr_done;
3991 else
3992 dr_type = R_X86_64_TPOFF64;
3993
3994 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3995 outrel.r_addend = 0;
3996 if ((dr_type == R_X86_64_TPOFF64
3997 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3998 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3999 outrel.r_info = htab->r_info (indx, dr_type);
4000
4001 elf_append_rela (output_bfd, sreloc, &outrel);
4002
4003 if (GOT_TLS_GD_P (tls_type))
4004 {
4005 if (indx == 0)
4006 {
4007 BFD_ASSERT (! unresolved_reloc);
4008 bfd_put_64 (output_bfd,
4009 relocation - elf_x86_64_dtpoff_base (info),
4010 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4011 }
4012 else
4013 {
4014 bfd_put_64 (output_bfd, 0,
4015 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4016 outrel.r_info = htab->r_info (indx,
4017 R_X86_64_DTPOFF64);
4018 outrel.r_offset += GOT_ENTRY_SIZE;
4019 elf_append_rela (output_bfd, sreloc,
4020 &outrel);
4021 }
4022 }
4023
4024 dr_done:
4025 if (h != NULL)
4026 h->got.offset |= 1;
4027 else
4028 local_got_offsets[r_symndx] |= 1;
4029 }
4030
4031 if (off >= (bfd_vma) -2
4032 && ! GOT_TLS_GDESC_P (tls_type))
4033 abort ();
4034 if (r_type == ELF32_R_TYPE (rel->r_info))
4035 {
4036 if (r_type == R_X86_64_GOTPC32_TLSDESC
4037 || r_type == R_X86_64_TLSDESC_CALL)
4038 relocation = htab->elf.sgotplt->output_section->vma
4039 + htab->elf.sgotplt->output_offset
4040 + offplt + htab->sgotplt_jump_table_size;
4041 else
4042 relocation = htab->elf.sgot->output_section->vma
4043 + htab->elf.sgot->output_offset + off;
4044 unresolved_reloc = FALSE;
4045 }
4046 else
4047 {
4048 bfd_vma roff = rel->r_offset;
4049
4050 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4051 {
4052 /* GD->IE transition. For 64bit, change
4053 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4054 .word 0x6666; rex64; call __tls_get_addr@plt
4055 into:
4056 movq %fs:0, %rax
4057 addq foo@gottpoff(%rip), %rax
4058 For 32bit, change
4059 leaq foo@tlsgd(%rip), %rdi
4060 .word 0x6666; rex64; call __tls_get_addr@plt
4061 into:
4062 movl %fs:0, %eax
4063 addq foo@gottpoff(%rip), %rax */
4064 if (ABI_64_P (output_bfd))
4065 memcpy (contents + roff - 4,
4066 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4067 16);
4068 else
4069 memcpy (contents + roff - 3,
4070 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4071 15);
4072
4073 relocation = (htab->elf.sgot->output_section->vma
4074 + htab->elf.sgot->output_offset + off
4075 - roff
4076 - input_section->output_section->vma
4077 - input_section->output_offset
4078 - 12);
4079 bfd_put_32 (output_bfd, relocation,
4080 contents + roff + 8);
4081 /* Skip R_X86_64_PLT32. */
4082 rel++;
4083 continue;
4084 }
4085 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4086 {
4087 /* GDesc -> IE transition.
4088 It's originally something like:
4089 leaq x@tlsdesc(%rip), %rax
4090
4091 Change it to:
4092 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4093
4094 /* Now modify the instruction as appropriate. To
4095 turn a leaq into a movq in the form we use it, it
4096 suffices to change the second byte from 0x8d to
4097 0x8b. */
4098 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4099
4100 bfd_put_32 (output_bfd,
4101 htab->elf.sgot->output_section->vma
4102 + htab->elf.sgot->output_offset + off
4103 - rel->r_offset
4104 - input_section->output_section->vma
4105 - input_section->output_offset
4106 - 4,
4107 contents + roff);
4108 continue;
4109 }
4110 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4111 {
4112 /* GDesc -> IE transition.
4113 It's originally:
4114 call *(%rax)
4115
4116 Change it to:
4117 xchg %ax, %ax. */
4118
4119 bfd_put_8 (output_bfd, 0x66, contents + roff);
4120 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4121 continue;
4122 }
4123 else
4124 BFD_ASSERT (FALSE);
4125 }
4126 break;
4127
4128 case R_X86_64_TLSLD:
4129 if (! elf_x86_64_tls_transition (info, input_bfd,
4130 input_section, contents,
4131 symtab_hdr, sym_hashes,
4132 &r_type, GOT_UNKNOWN,
4133 rel, relend, h, r_symndx))
4134 return FALSE;
4135
4136 if (r_type != R_X86_64_TLSLD)
4137 {
4138 /* LD->LE transition:
4139 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4140 For 64bit, we change it into:
4141 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4142 For 32bit, we change it into:
4143 nopl 0x0(%rax); movl %fs:0, %eax. */
4144
4145 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4146 if (ABI_64_P (output_bfd))
4147 memcpy (contents + rel->r_offset - 3,
4148 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4149 else
4150 memcpy (contents + rel->r_offset - 3,
4151 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4152 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4153 rel++;
4154 continue;
4155 }
4156
4157 if (htab->elf.sgot == NULL)
4158 abort ();
4159
4160 off = htab->tls_ld_got.offset;
4161 if (off & 1)
4162 off &= ~1;
4163 else
4164 {
4165 Elf_Internal_Rela outrel;
4166
4167 if (htab->elf.srelgot == NULL)
4168 abort ();
4169
4170 outrel.r_offset = (htab->elf.sgot->output_section->vma
4171 + htab->elf.sgot->output_offset + off);
4172
4173 bfd_put_64 (output_bfd, 0,
4174 htab->elf.sgot->contents + off);
4175 bfd_put_64 (output_bfd, 0,
4176 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4177 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4178 outrel.r_addend = 0;
4179 elf_append_rela (output_bfd, htab->elf.srelgot,
4180 &outrel);
4181 htab->tls_ld_got.offset |= 1;
4182 }
4183 relocation = htab->elf.sgot->output_section->vma
4184 + htab->elf.sgot->output_offset + off;
4185 unresolved_reloc = FALSE;
4186 break;
4187
4188 case R_X86_64_DTPOFF32:
4189 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4190 relocation -= elf_x86_64_dtpoff_base (info);
4191 else
4192 relocation = elf_x86_64_tpoff (info, relocation);
4193 break;
4194
4195 case R_X86_64_TPOFF32:
4196 case R_X86_64_TPOFF64:
4197 BFD_ASSERT (info->executable);
4198 relocation = elf_x86_64_tpoff (info, relocation);
4199 break;
4200
4201 default:
4202 break;
4203 }
4204
4205 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4206 because such sections are not SEC_ALLOC and thus ld.so will
4207 not process them. */
4208 if (unresolved_reloc
4209 && !((input_section->flags & SEC_DEBUGGING) != 0
4210 && h->def_dynamic)
4211 && _bfd_elf_section_offset (output_bfd, info, input_section,
4212 rel->r_offset) != (bfd_vma) -1)
4213 {
4214 (*_bfd_error_handler)
4215 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4216 input_bfd,
4217 input_section,
4218 (long) rel->r_offset,
4219 howto->name,
4220 h->root.root.string);
4221 return FALSE;
4222 }
4223
4224 do_relocation:
4225 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4226 contents, rel->r_offset,
4227 relocation, rel->r_addend);
4228
4229 check_relocation_error:
4230 if (r != bfd_reloc_ok)
4231 {
4232 const char *name;
4233
4234 if (h != NULL)
4235 name = h->root.root.string;
4236 else
4237 {
4238 name = bfd_elf_string_from_elf_section (input_bfd,
4239 symtab_hdr->sh_link,
4240 sym->st_name);
4241 if (name == NULL)
4242 return FALSE;
4243 if (*name == '\0')
4244 name = bfd_section_name (input_bfd, sec);
4245 }
4246
4247 if (r == bfd_reloc_overflow)
4248 {
4249 if (! ((*info->callbacks->reloc_overflow)
4250 (info, (h ? &h->root : NULL), name, howto->name,
4251 (bfd_vma) 0, input_bfd, input_section,
4252 rel->r_offset)))
4253 return FALSE;
4254 }
4255 else
4256 {
4257 (*_bfd_error_handler)
4258 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4259 input_bfd, input_section,
4260 (long) rel->r_offset, name, (int) r);
4261 return FALSE;
4262 }
4263 }
4264 }
4265
4266 return TRUE;
4267 }
4268
4269 /* Finish up dynamic symbol handling. We set the contents of various
4270 dynamic sections here. */
4271
4272 static bfd_boolean
4273 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4274 struct bfd_link_info *info,
4275 struct elf_link_hash_entry *h,
4276 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4277 {
4278 struct elf_x86_64_link_hash_table *htab;
4279 const struct elf_x86_64_backend_data *const abed
4280 = get_elf_x86_64_backend_data (output_bfd);
4281
4282 htab = elf_x86_64_hash_table (info);
4283 if (htab == NULL)
4284 return FALSE;
4285
4286 if (h->plt.offset != (bfd_vma) -1)
4287 {
4288 bfd_vma plt_index;
4289 bfd_vma got_offset;
4290 Elf_Internal_Rela rela;
4291 bfd_byte *loc;
4292 asection *plt, *gotplt, *relplt;
4293 const struct elf_backend_data *bed;
4294
4295 /* When building a static executable, use .iplt, .igot.plt and
4296 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4297 if (htab->elf.splt != NULL)
4298 {
4299 plt = htab->elf.splt;
4300 gotplt = htab->elf.sgotplt;
4301 relplt = htab->elf.srelplt;
4302 }
4303 else
4304 {
4305 plt = htab->elf.iplt;
4306 gotplt = htab->elf.igotplt;
4307 relplt = htab->elf.irelplt;
4308 }
4309
4310 /* This symbol has an entry in the procedure linkage table. Set
4311 it up. */
4312 if ((h->dynindx == -1
4313 && !((h->forced_local || info->executable)
4314 && h->def_regular
4315 && h->type == STT_GNU_IFUNC))
4316 || plt == NULL
4317 || gotplt == NULL
4318 || relplt == NULL)
4319 return FALSE;
4320
4321 /* Get the index in the procedure linkage table which
4322 corresponds to this symbol. This is the index of this symbol
4323 in all the symbols for which we are making plt entries. The
4324 first entry in the procedure linkage table is reserved.
4325
4326 Get the offset into the .got table of the entry that
4327 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4328 bytes. The first three are reserved for the dynamic linker.
4329
4330 For static executables, we don't reserve anything. */
4331
4332 if (plt == htab->elf.splt)
4333 {
4334 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4335 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4336 }
4337 else
4338 {
4339 got_offset = h->plt.offset / abed->plt_entry_size;
4340 got_offset = got_offset * GOT_ENTRY_SIZE;
4341 }
4342
4343 /* Fill in the entry in the procedure linkage table. */
4344 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4345 abed->plt_entry_size);
4346
4347 /* Insert the relocation positions of the plt section. */
4348
4349 /* Put offset the PC-relative instruction referring to the GOT entry,
4350 subtracting the size of that instruction. */
4351 bfd_put_32 (output_bfd,
4352 (gotplt->output_section->vma
4353 + gotplt->output_offset
4354 + got_offset
4355 - plt->output_section->vma
4356 - plt->output_offset
4357 - h->plt.offset
4358 - abed->plt_got_insn_size),
4359 plt->contents + h->plt.offset + abed->plt_got_offset);
4360
4361 /* Fill in the entry in the global offset table, initially this
4362 points to the second part of the PLT entry. */
4363 bfd_put_64 (output_bfd, (plt->output_section->vma
4364 + plt->output_offset
4365 + h->plt.offset + abed->plt_lazy_offset),
4366 gotplt->contents + got_offset);
4367
4368 /* Fill in the entry in the .rela.plt section. */
4369 rela.r_offset = (gotplt->output_section->vma
4370 + gotplt->output_offset
4371 + got_offset);
4372 if (h->dynindx == -1
4373 || ((info->executable
4374 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4375 && h->def_regular
4376 && h->type == STT_GNU_IFUNC))
4377 {
4378 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4379 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4380 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4381 rela.r_addend = (h->root.u.def.value
4382 + h->root.u.def.section->output_section->vma
4383 + h->root.u.def.section->output_offset);
4384 /* R_X86_64_IRELATIVE comes last. */
4385 plt_index = htab->next_irelative_index--;
4386 }
4387 else
4388 {
4389 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4390 rela.r_addend = 0;
4391 plt_index = htab->next_jump_slot_index++;
4392 }
4393
4394 /* Don't fill PLT entry for static executables. */
4395 if (plt == htab->elf.splt)
4396 {
4397 /* Put relocation index. */
4398 bfd_put_32 (output_bfd, plt_index,
4399 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4400 /* Put offset for jmp .PLT0. */
4401 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4402 plt->contents + h->plt.offset + abed->plt_plt_offset);
4403 }
4404
4405 bed = get_elf_backend_data (output_bfd);
4406 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4407 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4408
4409 if (!h->def_regular)
4410 {
4411 /* Mark the symbol as undefined, rather than as defined in
4412 the .plt section. Leave the value if there were any
4413 relocations where pointer equality matters (this is a clue
4414 for the dynamic linker, to make function pointer
4415 comparisons work between an application and shared
4416 library), otherwise set it to zero. If a function is only
4417 called from a binary, there is no need to slow down
4418 shared libraries because of that. */
4419 sym->st_shndx = SHN_UNDEF;
4420 if (!h->pointer_equality_needed)
4421 sym->st_value = 0;
4422 }
4423 }
4424
4425 if (h->got.offset != (bfd_vma) -1
4426 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4427 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4428 {
4429 Elf_Internal_Rela rela;
4430
4431 /* This symbol has an entry in the global offset table. Set it
4432 up. */
4433 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4434 abort ();
4435
4436 rela.r_offset = (htab->elf.sgot->output_section->vma
4437 + htab->elf.sgot->output_offset
4438 + (h->got.offset &~ (bfd_vma) 1));
4439
4440 /* If this is a static link, or it is a -Bsymbolic link and the
4441 symbol is defined locally or was forced to be local because
4442 of a version file, we just want to emit a RELATIVE reloc.
4443 The entry in the global offset table will already have been
4444 initialized in the relocate_section function. */
4445 if (h->def_regular
4446 && h->type == STT_GNU_IFUNC)
4447 {
4448 if (info->shared)
4449 {
4450 /* Generate R_X86_64_GLOB_DAT. */
4451 goto do_glob_dat;
4452 }
4453 else
4454 {
4455 asection *plt;
4456
4457 if (!h->pointer_equality_needed)
4458 abort ();
4459
4460 /* For non-shared object, we can't use .got.plt, which
4461 contains the real function addres if we need pointer
4462 equality. We load the GOT entry with the PLT entry. */
4463 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4464 bfd_put_64 (output_bfd, (plt->output_section->vma
4465 + plt->output_offset
4466 + h->plt.offset),
4467 htab->elf.sgot->contents + h->got.offset);
4468 return TRUE;
4469 }
4470 }
4471 else if (info->shared
4472 && SYMBOL_REFERENCES_LOCAL (info, h))
4473 {
4474 if (!h->def_regular)
4475 return FALSE;
4476 BFD_ASSERT((h->got.offset & 1) != 0);
4477 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4478 rela.r_addend = (h->root.u.def.value
4479 + h->root.u.def.section->output_section->vma
4480 + h->root.u.def.section->output_offset);
4481 }
4482 else
4483 {
4484 BFD_ASSERT((h->got.offset & 1) == 0);
4485 do_glob_dat:
4486 bfd_put_64 (output_bfd, (bfd_vma) 0,
4487 htab->elf.sgot->contents + h->got.offset);
4488 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4489 rela.r_addend = 0;
4490 }
4491
4492 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4493 }
4494
4495 if (h->needs_copy)
4496 {
4497 Elf_Internal_Rela rela;
4498
4499 /* This symbol needs a copy reloc. Set it up. */
4500
4501 if (h->dynindx == -1
4502 || (h->root.type != bfd_link_hash_defined
4503 && h->root.type != bfd_link_hash_defweak)
4504 || htab->srelbss == NULL)
4505 abort ();
4506
4507 rela.r_offset = (h->root.u.def.value
4508 + h->root.u.def.section->output_section->vma
4509 + h->root.u.def.section->output_offset);
4510 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4511 rela.r_addend = 0;
4512 elf_append_rela (output_bfd, htab->srelbss, &rela);
4513 }
4514
4515 return TRUE;
4516 }
4517
4518 /* Finish up local dynamic symbol handling. We set the contents of
4519 various dynamic sections here. */
4520
4521 static bfd_boolean
4522 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4523 {
4524 struct elf_link_hash_entry *h
4525 = (struct elf_link_hash_entry *) *slot;
4526 struct bfd_link_info *info
4527 = (struct bfd_link_info *) inf;
4528
4529 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4530 info, h, NULL);
4531 }
4532
4533 /* Used to decide how to sort relocs in an optimal manner for the
4534 dynamic linker, before writing them out. */
4535
4536 static enum elf_reloc_type_class
4537 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4538 {
4539 switch ((int) ELF32_R_TYPE (rela->r_info))
4540 {
4541 case R_X86_64_RELATIVE:
4542 case R_X86_64_RELATIVE64:
4543 return reloc_class_relative;
4544 case R_X86_64_JUMP_SLOT:
4545 return reloc_class_plt;
4546 case R_X86_64_COPY:
4547 return reloc_class_copy;
4548 default:
4549 return reloc_class_normal;
4550 }
4551 }
4552
4553 /* Finish up the dynamic sections. */
4554
4555 static bfd_boolean
4556 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4557 struct bfd_link_info *info)
4558 {
4559 struct elf_x86_64_link_hash_table *htab;
4560 bfd *dynobj;
4561 asection *sdyn;
4562 const struct elf_x86_64_backend_data *const abed
4563 = get_elf_x86_64_backend_data (output_bfd);
4564
4565 htab = elf_x86_64_hash_table (info);
4566 if (htab == NULL)
4567 return FALSE;
4568
4569 dynobj = htab->elf.dynobj;
4570 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4571
4572 if (htab->elf.dynamic_sections_created)
4573 {
4574 bfd_byte *dyncon, *dynconend;
4575 const struct elf_backend_data *bed;
4576 bfd_size_type sizeof_dyn;
4577
4578 if (sdyn == NULL || htab->elf.sgot == NULL)
4579 abort ();
4580
4581 bed = get_elf_backend_data (dynobj);
4582 sizeof_dyn = bed->s->sizeof_dyn;
4583 dyncon = sdyn->contents;
4584 dynconend = sdyn->contents + sdyn->size;
4585 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4586 {
4587 Elf_Internal_Dyn dyn;
4588 asection *s;
4589
4590 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4591
4592 switch (dyn.d_tag)
4593 {
4594 default:
4595 continue;
4596
4597 case DT_PLTGOT:
4598 s = htab->elf.sgotplt;
4599 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4600 break;
4601
4602 case DT_JMPREL:
4603 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4604 break;
4605
4606 case DT_PLTRELSZ:
4607 s = htab->elf.srelplt->output_section;
4608 dyn.d_un.d_val = s->size;
4609 break;
4610
4611 case DT_RELASZ:
4612 /* The procedure linkage table relocs (DT_JMPREL) should
4613 not be included in the overall relocs (DT_RELA).
4614 Therefore, we override the DT_RELASZ entry here to
4615 make it not include the JMPREL relocs. Since the
4616 linker script arranges for .rela.plt to follow all
4617 other relocation sections, we don't have to worry
4618 about changing the DT_RELA entry. */
4619 if (htab->elf.srelplt != NULL)
4620 {
4621 s = htab->elf.srelplt->output_section;
4622 dyn.d_un.d_val -= s->size;
4623 }
4624 break;
4625
4626 case DT_TLSDESC_PLT:
4627 s = htab->elf.splt;
4628 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4629 + htab->tlsdesc_plt;
4630 break;
4631
4632 case DT_TLSDESC_GOT:
4633 s = htab->elf.sgot;
4634 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4635 + htab->tlsdesc_got;
4636 break;
4637 }
4638
4639 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4640 }
4641
4642 /* Fill in the special first entry in the procedure linkage table. */
4643 if (htab->elf.splt && htab->elf.splt->size > 0)
4644 {
4645 /* Fill in the first entry in the procedure linkage table. */
4646 memcpy (htab->elf.splt->contents,
4647 abed->plt0_entry, abed->plt_entry_size);
4648 /* Add offset for pushq GOT+8(%rip), since the instruction
4649 uses 6 bytes subtract this value. */
4650 bfd_put_32 (output_bfd,
4651 (htab->elf.sgotplt->output_section->vma
4652 + htab->elf.sgotplt->output_offset
4653 + 8
4654 - htab->elf.splt->output_section->vma
4655 - htab->elf.splt->output_offset
4656 - 6),
4657 htab->elf.splt->contents + abed->plt0_got1_offset);
4658 /* Add offset for the PC-relative instruction accessing GOT+16,
4659 subtracting the offset to the end of that instruction. */
4660 bfd_put_32 (output_bfd,
4661 (htab->elf.sgotplt->output_section->vma
4662 + htab->elf.sgotplt->output_offset
4663 + 16
4664 - htab->elf.splt->output_section->vma
4665 - htab->elf.splt->output_offset
4666 - abed->plt0_got2_insn_end),
4667 htab->elf.splt->contents + abed->plt0_got2_offset);
4668
4669 elf_section_data (htab->elf.splt->output_section)
4670 ->this_hdr.sh_entsize = abed->plt_entry_size;
4671
4672 if (htab->tlsdesc_plt)
4673 {
4674 bfd_put_64 (output_bfd, (bfd_vma) 0,
4675 htab->elf.sgot->contents + htab->tlsdesc_got);
4676
4677 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4678 abed->plt0_entry, abed->plt_entry_size);
4679
4680 /* Add offset for pushq GOT+8(%rip), since the
4681 instruction uses 6 bytes subtract this value. */
4682 bfd_put_32 (output_bfd,
4683 (htab->elf.sgotplt->output_section->vma
4684 + htab->elf.sgotplt->output_offset
4685 + 8
4686 - htab->elf.splt->output_section->vma
4687 - htab->elf.splt->output_offset
4688 - htab->tlsdesc_plt
4689 - 6),
4690 htab->elf.splt->contents
4691 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4692 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4693 where TGD stands for htab->tlsdesc_got, subtracting the offset
4694 to the end of that instruction. */
4695 bfd_put_32 (output_bfd,
4696 (htab->elf.sgot->output_section->vma
4697 + htab->elf.sgot->output_offset
4698 + htab->tlsdesc_got
4699 - htab->elf.splt->output_section->vma
4700 - htab->elf.splt->output_offset
4701 - htab->tlsdesc_plt
4702 - abed->plt0_got2_insn_end),
4703 htab->elf.splt->contents
4704 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4705 }
4706 }
4707 }
4708
4709 if (htab->elf.sgotplt)
4710 {
4711 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4712 {
4713 (*_bfd_error_handler)
4714 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4715 return FALSE;
4716 }
4717
4718 /* Fill in the first three entries in the global offset table. */
4719 if (htab->elf.sgotplt->size > 0)
4720 {
4721 /* Set the first entry in the global offset table to the address of
4722 the dynamic section. */
4723 if (sdyn == NULL)
4724 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4725 else
4726 bfd_put_64 (output_bfd,
4727 sdyn->output_section->vma + sdyn->output_offset,
4728 htab->elf.sgotplt->contents);
4729 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4730 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4731 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4732 }
4733
4734 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4735 GOT_ENTRY_SIZE;
4736 }
4737
4738 /* Adjust .eh_frame for .plt section. */
4739 if (htab->plt_eh_frame != NULL
4740 && htab->plt_eh_frame->contents != NULL)
4741 {
4742 if (htab->elf.splt != NULL
4743 && htab->elf.splt->size != 0
4744 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4745 && htab->elf.splt->output_section != NULL
4746 && htab->plt_eh_frame->output_section != NULL)
4747 {
4748 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4749 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4750 + htab->plt_eh_frame->output_offset
4751 + PLT_FDE_START_OFFSET;
4752 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4753 htab->plt_eh_frame->contents
4754 + PLT_FDE_START_OFFSET);
4755 }
4756 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4757 {
4758 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4759 htab->plt_eh_frame,
4760 htab->plt_eh_frame->contents))
4761 return FALSE;
4762 }
4763 }
4764
4765 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4766 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4767 = GOT_ENTRY_SIZE;
4768
4769 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4770 htab_traverse (htab->loc_hash_table,
4771 elf_x86_64_finish_local_dynamic_symbol,
4772 info);
4773
4774 return TRUE;
4775 }
4776
4777 /* Return address for Ith PLT stub in section PLT, for relocation REL
4778 or (bfd_vma) -1 if it should not be included. */
4779
4780 static bfd_vma
4781 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4782 const arelent *rel ATTRIBUTE_UNUSED)
4783 {
4784 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
4785 }
4786
4787 /* Handle an x86-64 specific section when reading an object file. This
4788 is called when elfcode.h finds a section with an unknown type. */
4789
4790 static bfd_boolean
4791 elf_x86_64_section_from_shdr (bfd *abfd,
4792 Elf_Internal_Shdr *hdr,
4793 const char *name,
4794 int shindex)
4795 {
4796 if (hdr->sh_type != SHT_X86_64_UNWIND)
4797 return FALSE;
4798
4799 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4800 return FALSE;
4801
4802 return TRUE;
4803 }
4804
4805 /* Hook called by the linker routine which adds symbols from an object
4806 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4807 of .bss. */
4808
4809 static bfd_boolean
4810 elf_x86_64_add_symbol_hook (bfd *abfd,
4811 struct bfd_link_info *info,
4812 Elf_Internal_Sym *sym,
4813 const char **namep ATTRIBUTE_UNUSED,
4814 flagword *flagsp ATTRIBUTE_UNUSED,
4815 asection **secp,
4816 bfd_vma *valp)
4817 {
4818 asection *lcomm;
4819
4820 switch (sym->st_shndx)
4821 {
4822 case SHN_X86_64_LCOMMON:
4823 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4824 if (lcomm == NULL)
4825 {
4826 lcomm = bfd_make_section_with_flags (abfd,
4827 "LARGE_COMMON",
4828 (SEC_ALLOC
4829 | SEC_IS_COMMON
4830 | SEC_LINKER_CREATED));
4831 if (lcomm == NULL)
4832 return FALSE;
4833 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4834 }
4835 *secp = lcomm;
4836 *valp = sym->st_size;
4837 return TRUE;
4838 }
4839
4840 if ((abfd->flags & DYNAMIC) == 0
4841 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4842 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4843 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4844
4845 return TRUE;
4846 }
4847
4848
4849 /* Given a BFD section, try to locate the corresponding ELF section
4850 index. */
4851
4852 static bfd_boolean
4853 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4854 asection *sec, int *index_return)
4855 {
4856 if (sec == &_bfd_elf_large_com_section)
4857 {
4858 *index_return = SHN_X86_64_LCOMMON;
4859 return TRUE;
4860 }
4861 return FALSE;
4862 }
4863
4864 /* Process a symbol. */
4865
4866 static void
4867 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4868 asymbol *asym)
4869 {
4870 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4871
4872 switch (elfsym->internal_elf_sym.st_shndx)
4873 {
4874 case SHN_X86_64_LCOMMON:
4875 asym->section = &_bfd_elf_large_com_section;
4876 asym->value = elfsym->internal_elf_sym.st_size;
4877 /* Common symbol doesn't set BSF_GLOBAL. */
4878 asym->flags &= ~BSF_GLOBAL;
4879 break;
4880 }
4881 }
4882
4883 static bfd_boolean
4884 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4885 {
4886 return (sym->st_shndx == SHN_COMMON
4887 || sym->st_shndx == SHN_X86_64_LCOMMON);
4888 }
4889
4890 static unsigned int
4891 elf_x86_64_common_section_index (asection *sec)
4892 {
4893 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4894 return SHN_COMMON;
4895 else
4896 return SHN_X86_64_LCOMMON;
4897 }
4898
4899 static asection *
4900 elf_x86_64_common_section (asection *sec)
4901 {
4902 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4903 return bfd_com_section_ptr;
4904 else
4905 return &_bfd_elf_large_com_section;
4906 }
4907
4908 static bfd_boolean
4909 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4910 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4911 struct elf_link_hash_entry *h,
4912 Elf_Internal_Sym *sym,
4913 asection **psec,
4914 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4915 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4916 bfd_boolean *skip ATTRIBUTE_UNUSED,
4917 bfd_boolean *override ATTRIBUTE_UNUSED,
4918 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4919 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4920 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4921 bfd_boolean *newdef,
4922 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4923 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4924 bfd *abfd ATTRIBUTE_UNUSED,
4925 asection **sec,
4926 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4927 bfd_boolean *olddef,
4928 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4929 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4930 bfd *oldbfd,
4931 asection **oldsec)
4932 {
4933 /* A normal common symbol and a large common symbol result in a
4934 normal common symbol. We turn the large common symbol into a
4935 normal one. */
4936 if (!*olddef
4937 && h->root.type == bfd_link_hash_common
4938 && !*newdef
4939 && bfd_is_com_section (*sec)
4940 && *oldsec != *sec)
4941 {
4942 if (sym->st_shndx == SHN_COMMON
4943 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4944 {
4945 h->root.u.c.p->section
4946 = bfd_make_section_old_way (oldbfd, "COMMON");
4947 h->root.u.c.p->section->flags = SEC_ALLOC;
4948 }
4949 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4950 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4951 *psec = *sec = bfd_com_section_ptr;
4952 }
4953
4954 return TRUE;
4955 }
4956
4957 static int
4958 elf_x86_64_additional_program_headers (bfd *abfd,
4959 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4960 {
4961 asection *s;
4962 int count = 0;
4963
4964 /* Check to see if we need a large readonly segment. */
4965 s = bfd_get_section_by_name (abfd, ".lrodata");
4966 if (s && (s->flags & SEC_LOAD))
4967 count++;
4968
4969 /* Check to see if we need a large data segment. Since .lbss sections
4970 is placed right after the .bss section, there should be no need for
4971 a large data segment just because of .lbss. */
4972 s = bfd_get_section_by_name (abfd, ".ldata");
4973 if (s && (s->flags & SEC_LOAD))
4974 count++;
4975
4976 return count;
4977 }
4978
4979 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4980
4981 static bfd_boolean
4982 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4983 {
4984 if (h->plt.offset != (bfd_vma) -1
4985 && !h->def_regular
4986 && !h->pointer_equality_needed)
4987 return FALSE;
4988
4989 return _bfd_elf_hash_symbol (h);
4990 }
4991
4992 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4993
4994 static bfd_boolean
4995 elf_x86_64_relocs_compatible (const bfd_target *input,
4996 const bfd_target *output)
4997 {
4998 return ((xvec_get_elf_backend_data (input)->s->elfclass
4999 == xvec_get_elf_backend_data (output)->s->elfclass)
5000 && _bfd_elf_relocs_compatible (input, output));
5001 }
5002
5003 static const struct bfd_elf_special_section
5004 elf_x86_64_special_sections[]=
5005 {
5006 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5007 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5008 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5009 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5010 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5011 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5012 { NULL, 0, 0, 0, 0 }
5013 };
5014
5015 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5016 #define TARGET_LITTLE_NAME "elf64-x86-64"
5017 #define ELF_ARCH bfd_arch_i386
5018 #define ELF_TARGET_ID X86_64_ELF_DATA
5019 #define ELF_MACHINE_CODE EM_X86_64
5020 #define ELF_MAXPAGESIZE 0x200000
5021 #define ELF_MINPAGESIZE 0x1000
5022 #define ELF_COMMONPAGESIZE 0x1000
5023
5024 #define elf_backend_can_gc_sections 1
5025 #define elf_backend_can_refcount 1
5026 #define elf_backend_want_got_plt 1
5027 #define elf_backend_plt_readonly 1
5028 #define elf_backend_want_plt_sym 0
5029 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5030 #define elf_backend_rela_normal 1
5031 #define elf_backend_plt_alignment 4
5032
5033 #define elf_info_to_howto elf_x86_64_info_to_howto
5034
5035 #define bfd_elf64_bfd_link_hash_table_create \
5036 elf_x86_64_link_hash_table_create
5037 #define bfd_elf64_bfd_link_hash_table_free \
5038 elf_x86_64_link_hash_table_free
5039 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5040 #define bfd_elf64_bfd_reloc_name_lookup \
5041 elf_x86_64_reloc_name_lookup
5042
5043 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5044 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5045 #define elf_backend_check_relocs elf_x86_64_check_relocs
5046 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5047 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5048 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5049 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5050 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5051 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5052 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5053 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5054 #ifdef CORE_HEADER
5055 #define elf_backend_write_core_note elf_x86_64_write_core_note
5056 #endif
5057 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5058 #define elf_backend_relocate_section elf_x86_64_relocate_section
5059 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5060 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5061 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5062 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5063 #define elf_backend_object_p elf64_x86_64_elf_object_p
5064 #define bfd_elf64_mkobject elf_x86_64_mkobject
5065
5066 #define elf_backend_section_from_shdr \
5067 elf_x86_64_section_from_shdr
5068
5069 #define elf_backend_section_from_bfd_section \
5070 elf_x86_64_elf_section_from_bfd_section
5071 #define elf_backend_add_symbol_hook \
5072 elf_x86_64_add_symbol_hook
5073 #define elf_backend_symbol_processing \
5074 elf_x86_64_symbol_processing
5075 #define elf_backend_common_section_index \
5076 elf_x86_64_common_section_index
5077 #define elf_backend_common_section \
5078 elf_x86_64_common_section
5079 #define elf_backend_common_definition \
5080 elf_x86_64_common_definition
5081 #define elf_backend_merge_symbol \
5082 elf_x86_64_merge_symbol
5083 #define elf_backend_special_sections \
5084 elf_x86_64_special_sections
5085 #define elf_backend_additional_program_headers \
5086 elf_x86_64_additional_program_headers
5087 #define elf_backend_hash_symbol \
5088 elf_x86_64_hash_symbol
5089
5090 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5091
5092 #include "elf64-target.h"
5093
5094 /* FreeBSD support. */
5095
5096 #undef TARGET_LITTLE_SYM
5097 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5098 #undef TARGET_LITTLE_NAME
5099 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5100
5101 #undef ELF_OSABI
5102 #define ELF_OSABI ELFOSABI_FREEBSD
5103
5104 #undef elf64_bed
5105 #define elf64_bed elf64_x86_64_fbsd_bed
5106
5107 #include "elf64-target.h"
5108
5109 /* Solaris 2 support. */
5110
5111 #undef TARGET_LITTLE_SYM
5112 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5113 #undef TARGET_LITTLE_NAME
5114 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5115
5116 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5117 objects won't be recognized. */
5118 #undef ELF_OSABI
5119
5120 #undef elf64_bed
5121 #define elf64_bed elf64_x86_64_sol2_bed
5122
5123 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5124 boundary. */
5125 #undef elf_backend_static_tls_alignment
5126 #define elf_backend_static_tls_alignment 16
5127
5128 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5129
5130 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5131 File, p.63. */
5132 #undef elf_backend_want_plt_sym
5133 #define elf_backend_want_plt_sym 1
5134
5135 #include "elf64-target.h"
5136
5137 /* Native Client support. */
5138
5139 #undef TARGET_LITTLE_SYM
5140 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5141 #undef TARGET_LITTLE_NAME
5142 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5143 #undef elf64_bed
5144 #define elf64_bed elf64_x86_64_nacl_bed
5145
5146 #undef ELF_MAXPAGESIZE
5147 #undef ELF_MINPAGESIZE
5148 #undef ELF_COMMONPAGESIZE
5149 #define ELF_MAXPAGESIZE 0x10000
5150 #define ELF_MINPAGESIZE 0x10000
5151 #define ELF_COMMONPAGESIZE 0x10000
5152
5153 /* Restore defaults. */
5154 #undef ELF_OSABI
5155 #undef elf_backend_static_tls_alignment
5156 #undef elf_backend_want_plt_sym
5157 #define elf_backend_want_plt_sym 0
5158
5159 /* NaCl uses substantially different PLT entries for the same effects. */
5160
5161 #undef elf_backend_plt_alignment
5162 #define elf_backend_plt_alignment 5
5163 #define NACL_PLT_ENTRY_SIZE 64
5164 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5165
5166 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5167 {
5168 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5169 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5170 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5171 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5172 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5173
5174 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5175 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
5176
5177 /* 32 bytes of nop to pad out to the standard size. */
5178 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5179 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5180 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5181 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5182 0x66, /* excess data32 prefix */
5183 0x90 /* nop */
5184 };
5185
5186 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5187 {
5188 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5189 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5190 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5191 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5192
5193 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5194 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5195 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5196
5197 /* Lazy GOT entries point here (32-byte aligned). */
5198 0x68, /* pushq immediate */
5199 0, 0, 0, 0, /* replaced with index into relocation table. */
5200 0xe9, /* jmp relative */
5201 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5202
5203 /* 22 bytes of nop to pad out to the standard size. */
5204 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5205 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5206 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5207 };
5208
5209 /* .eh_frame covering the .plt section. */
5210
5211 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5212 {
5213 #if (PLT_CIE_LENGTH != 20 \
5214 || PLT_FDE_LENGTH != 36 \
5215 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5216 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5217 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5218 #endif
5219 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5220 0, 0, 0, 0, /* CIE ID */
5221 1, /* CIE version */
5222 'z', 'R', 0, /* Augmentation string */
5223 1, /* Code alignment factor */
5224 0x78, /* Data alignment factor */
5225 16, /* Return address column */
5226 1, /* Augmentation size */
5227 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5228 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5229 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5230 DW_CFA_nop, DW_CFA_nop,
5231
5232 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5233 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5234 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5235 0, 0, 0, 0, /* .plt size goes here */
5236 0, /* Augmentation size */
5237 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5238 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5239 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5240 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5241 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5242 13, /* Block length */
5243 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5244 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5245 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5246 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5247 DW_CFA_nop, DW_CFA_nop
5248 };
5249
5250 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5251 {
5252 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5253 elf_x86_64_nacl_plt_entry, /* plt_entry */
5254 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5255 2, /* plt0_got1_offset */
5256 9, /* plt0_got2_offset */
5257 13, /* plt0_got2_insn_end */
5258 3, /* plt_got_offset */
5259 33, /* plt_reloc_offset */
5260 38, /* plt_plt_offset */
5261 7, /* plt_got_insn_size */
5262 42, /* plt_plt_insn_end */
5263 32, /* plt_lazy_offset */
5264 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5265 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5266 };
5267
5268 #undef elf_backend_arch_data
5269 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5270
5271 #undef elf_backend_modify_segment_map
5272 #define elf_backend_modify_segment_map nacl_modify_segment_map
5273 #undef elf_backend_modify_program_headers
5274 #define elf_backend_modify_program_headers nacl_modify_program_headers
5275
5276 #include "elf64-target.h"
5277
5278 /* Native Client x32 support. */
5279
5280 #undef TARGET_LITTLE_SYM
5281 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5282 #undef TARGET_LITTLE_NAME
5283 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5284 #undef elf32_bed
5285 #define elf32_bed elf32_x86_64_nacl_bed
5286
5287 #define bfd_elf32_bfd_link_hash_table_create \
5288 elf_x86_64_link_hash_table_create
5289 #define bfd_elf32_bfd_link_hash_table_free \
5290 elf_x86_64_link_hash_table_free
5291 #define bfd_elf32_bfd_reloc_type_lookup \
5292 elf_x86_64_reloc_type_lookup
5293 #define bfd_elf32_bfd_reloc_name_lookup \
5294 elf_x86_64_reloc_name_lookup
5295 #define bfd_elf32_mkobject \
5296 elf_x86_64_mkobject
5297
5298 #undef elf_backend_object_p
5299 #define elf_backend_object_p \
5300 elf32_x86_64_elf_object_p
5301
5302 #undef elf_backend_bfd_from_remote_memory
5303 #define elf_backend_bfd_from_remote_memory \
5304 _bfd_elf32_bfd_from_remote_memory
5305
5306 #undef elf_backend_size_info
5307 #define elf_backend_size_info \
5308 _bfd_elf32_size_info
5309
5310 #include "elf32-target.h"
5311
5312 /* Restore defaults. */
5313 #undef elf_backend_object_p
5314 #define elf_backend_object_p elf64_x86_64_elf_object_p
5315 #undef elf_backend_bfd_from_remote_memory
5316 #undef elf_backend_size_info
5317 #undef elf_backend_modify_segment_map
5318 #undef elf_backend_modify_program_headers
5319
5320 /* Intel L1OM support. */
5321
5322 static bfd_boolean
5323 elf64_l1om_elf_object_p (bfd *abfd)
5324 {
5325 /* Set the right machine number for an L1OM elf64 file. */
5326 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5327 return TRUE;
5328 }
5329
5330 #undef TARGET_LITTLE_SYM
5331 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5332 #undef TARGET_LITTLE_NAME
5333 #define TARGET_LITTLE_NAME "elf64-l1om"
5334 #undef ELF_ARCH
5335 #define ELF_ARCH bfd_arch_l1om
5336
5337 #undef ELF_MACHINE_CODE
5338 #define ELF_MACHINE_CODE EM_L1OM
5339
5340 #undef ELF_OSABI
5341
5342 #undef elf64_bed
5343 #define elf64_bed elf64_l1om_bed
5344
5345 #undef elf_backend_object_p
5346 #define elf_backend_object_p elf64_l1om_elf_object_p
5347
5348 /* Restore defaults. */
5349 #undef ELF_MAXPAGESIZE
5350 #undef ELF_MINPAGESIZE
5351 #undef ELF_COMMONPAGESIZE
5352 #define ELF_MAXPAGESIZE 0x200000
5353 #define ELF_MINPAGESIZE 0x1000
5354 #define ELF_COMMONPAGESIZE 0x1000
5355 #undef elf_backend_plt_alignment
5356 #define elf_backend_plt_alignment 4
5357 #undef elf_backend_arch_data
5358 #define elf_backend_arch_data &elf_x86_64_arch_bed
5359
5360 #include "elf64-target.h"
5361
5362 /* FreeBSD L1OM support. */
5363
5364 #undef TARGET_LITTLE_SYM
5365 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5366 #undef TARGET_LITTLE_NAME
5367 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5368
5369 #undef ELF_OSABI
5370 #define ELF_OSABI ELFOSABI_FREEBSD
5371
5372 #undef elf64_bed
5373 #define elf64_bed elf64_l1om_fbsd_bed
5374
5375 #include "elf64-target.h"
5376
5377 /* Intel K1OM support. */
5378
5379 static bfd_boolean
5380 elf64_k1om_elf_object_p (bfd *abfd)
5381 {
5382 /* Set the right machine number for an K1OM elf64 file. */
5383 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5384 return TRUE;
5385 }
5386
5387 #undef TARGET_LITTLE_SYM
5388 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5389 #undef TARGET_LITTLE_NAME
5390 #define TARGET_LITTLE_NAME "elf64-k1om"
5391 #undef ELF_ARCH
5392 #define ELF_ARCH bfd_arch_k1om
5393
5394 #undef ELF_MACHINE_CODE
5395 #define ELF_MACHINE_CODE EM_K1OM
5396
5397 #undef ELF_OSABI
5398
5399 #undef elf64_bed
5400 #define elf64_bed elf64_k1om_bed
5401
5402 #undef elf_backend_object_p
5403 #define elf_backend_object_p elf64_k1om_elf_object_p
5404
5405 #undef elf_backend_static_tls_alignment
5406
5407 #undef elf_backend_want_plt_sym
5408 #define elf_backend_want_plt_sym 0
5409
5410 #include "elf64-target.h"
5411
5412 /* FreeBSD K1OM support. */
5413
5414 #undef TARGET_LITTLE_SYM
5415 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5416 #undef TARGET_LITTLE_NAME
5417 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5418
5419 #undef ELF_OSABI
5420 #define ELF_OSABI ELFOSABI_FREEBSD
5421
5422 #undef elf64_bed
5423 #define elf64_bed elf64_k1om_fbsd_bed
5424
5425 #include "elf64-target.h"
5426
5427 /* 32bit x86-64 support. */
5428
5429 #undef TARGET_LITTLE_SYM
5430 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5431 #undef TARGET_LITTLE_NAME
5432 #define TARGET_LITTLE_NAME "elf32-x86-64"
5433 #undef elf32_bed
5434
5435 #undef ELF_ARCH
5436 #define ELF_ARCH bfd_arch_i386
5437
5438 #undef ELF_MACHINE_CODE
5439 #define ELF_MACHINE_CODE EM_X86_64
5440
5441 #undef ELF_OSABI
5442
5443 #undef elf_backend_object_p
5444 #define elf_backend_object_p \
5445 elf32_x86_64_elf_object_p
5446
5447 #undef elf_backend_bfd_from_remote_memory
5448 #define elf_backend_bfd_from_remote_memory \
5449 _bfd_elf32_bfd_from_remote_memory
5450
5451 #undef elf_backend_size_info
5452 #define elf_backend_size_info \
5453 _bfd_elf32_size_info
5454
5455 #include "elf32-target.h"
This page took 0.841452 seconds and 4 git commands to generate.