Put IRELATIVE relocations after JUMP_SLOT.
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "bfd_stdint.h"
30 #include "objalloc.h"
31 #include "hashtab.h"
32 #include "dwarf2.h"
33 #include "libiberty.h"
34
35 #include "elf/x86-64.h"
36
37 #ifdef CORE_HEADER
38 #include <stdarg.h>
39 #include CORE_HEADER
40 #endif
41
42 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
43 #define MINUS_ONE (~ (bfd_vma) 0)
44
45 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
46 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
47 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
48 since they are the same. */
49
50 #define ABI_64_P(abfd) \
51 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
52
53 /* The relocation "howto" table. Order of fields:
54 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
55 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
56 static reloc_howto_type x86_64_elf_howto_table[] =
57 {
58 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
59 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
60 FALSE),
61 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
63 FALSE),
64 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
66 TRUE),
67 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
72 TRUE),
73 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
75 FALSE),
76 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
78 MINUS_ONE, FALSE),
79 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
81 MINUS_ONE, FALSE),
82 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
86 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
87 0xffffffff, TRUE),
88 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
89 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
90 FALSE),
91 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
93 FALSE),
94 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
96 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
98 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
100 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
102 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
104 MINUS_ONE, FALSE),
105 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
107 MINUS_ONE, FALSE),
108 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
110 MINUS_ONE, FALSE),
111 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
112 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
113 0xffffffff, TRUE),
114 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
116 0xffffffff, TRUE),
117 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
119 0xffffffff, FALSE),
120 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
122 0xffffffff, TRUE),
123 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
125 0xffffffff, FALSE),
126 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
128 TRUE),
129 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
130 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
131 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
132 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
133 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
134 FALSE, 0xffffffff, 0xffffffff, TRUE),
135 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
136 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
137 FALSE),
138 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
139 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
140 MINUS_ONE, TRUE),
141 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
142 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
143 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
144 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
145 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
146 MINUS_ONE, FALSE),
147 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
148 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
149 MINUS_ONE, FALSE),
150 EMPTY_HOWTO (32),
151 EMPTY_HOWTO (33),
152 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
153 complain_overflow_bitfield, bfd_elf_generic_reloc,
154 "R_X86_64_GOTPC32_TLSDESC",
155 FALSE, 0xffffffff, 0xffffffff, TRUE),
156 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
157 complain_overflow_dont, bfd_elf_generic_reloc,
158 "R_X86_64_TLSDESC_CALL",
159 FALSE, 0, 0, FALSE),
160 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
161 complain_overflow_bitfield, bfd_elf_generic_reloc,
162 "R_X86_64_TLSDESC",
163 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
164 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
165 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
166 MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170
171 /* We have a gap in the reloc numbers here.
172 R_X86_64_standard counts the number up to this point, and
173 R_X86_64_vt_offset is the value to subtract from a reloc type of
174 R_X86_64_GNU_VT* to form an index into this table. */
175 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
176 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
177
178 /* GNU extension to record C++ vtable hierarchy. */
179 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
180 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
181
182 /* GNU extension to record C++ vtable member usage. */
183 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
184 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
185 FALSE),
186
187 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
188 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
190 FALSE)
191 };
192
193 #define IS_X86_64_PCREL_TYPE(TYPE) \
194 ( ((TYPE) == R_X86_64_PC8) \
195 || ((TYPE) == R_X86_64_PC16) \
196 || ((TYPE) == R_X86_64_PC32) \
197 || ((TYPE) == R_X86_64_PC64))
198
199 /* Map BFD relocs to the x86_64 elf relocs. */
200 struct elf_reloc_map
201 {
202 bfd_reloc_code_real_type bfd_reloc_val;
203 unsigned char elf_reloc_val;
204 };
205
206 static const struct elf_reloc_map x86_64_reloc_map[] =
207 {
208 { BFD_RELOC_NONE, R_X86_64_NONE, },
209 { BFD_RELOC_64, R_X86_64_64, },
210 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
211 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
212 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
213 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
214 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
215 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
216 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
217 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
218 { BFD_RELOC_32, R_X86_64_32, },
219 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
220 { BFD_RELOC_16, R_X86_64_16, },
221 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
222 { BFD_RELOC_8, R_X86_64_8, },
223 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
224 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
225 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
226 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
227 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
228 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
229 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
230 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
231 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
232 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
233 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
234 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
235 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
236 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
237 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
238 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
239 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
240 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
241 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
242 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
243 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
244 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
245 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
246 };
247
248 static reloc_howto_type *
249 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
250 {
251 unsigned i;
252
253 if (r_type == (unsigned int) R_X86_64_32)
254 {
255 if (ABI_64_P (abfd))
256 i = r_type;
257 else
258 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
259 }
260 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
261 || r_type >= (unsigned int) R_X86_64_max)
262 {
263 if (r_type >= (unsigned int) R_X86_64_standard)
264 {
265 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
266 abfd, (int) r_type);
267 r_type = R_X86_64_NONE;
268 }
269 i = r_type;
270 }
271 else
272 i = r_type - (unsigned int) R_X86_64_vt_offset;
273 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
274 return &x86_64_elf_howto_table[i];
275 }
276
277 /* Given a BFD reloc type, return a HOWTO structure. */
278 static reloc_howto_type *
279 elf_x86_64_reloc_type_lookup (bfd *abfd,
280 bfd_reloc_code_real_type code)
281 {
282 unsigned int i;
283
284 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
285 i++)
286 {
287 if (x86_64_reloc_map[i].bfd_reloc_val == code)
288 return elf_x86_64_rtype_to_howto (abfd,
289 x86_64_reloc_map[i].elf_reloc_val);
290 }
291 return 0;
292 }
293
294 static reloc_howto_type *
295 elf_x86_64_reloc_name_lookup (bfd *abfd,
296 const char *r_name)
297 {
298 unsigned int i;
299
300 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
301 {
302 /* Get x32 R_X86_64_32. */
303 reloc_howto_type *reloc
304 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
305 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
306 return reloc;
307 }
308
309 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
310 if (x86_64_elf_howto_table[i].name != NULL
311 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
312 return &x86_64_elf_howto_table[i];
313
314 return NULL;
315 }
316
317 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
318
319 static void
320 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
321 Elf_Internal_Rela *dst)
322 {
323 unsigned r_type;
324
325 r_type = ELF32_R_TYPE (dst->r_info);
326 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
327 BFD_ASSERT (r_type == cache_ptr->howto->type);
328 }
329 \f
330 /* Support for core dump NOTE sections. */
331 static bfd_boolean
332 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
333 {
334 int offset;
335 size_t size;
336
337 switch (note->descsz)
338 {
339 default:
340 return FALSE;
341
342 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
343 /* pr_cursig */
344 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
345
346 /* pr_pid */
347 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
348
349 /* pr_reg */
350 offset = 72;
351 size = 216;
352
353 break;
354
355 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
356 /* pr_cursig */
357 elf_tdata (abfd)->core_signal
358 = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core_lwpid
362 = bfd_get_32 (abfd, note->descdata + 32);
363
364 /* pr_reg */
365 offset = 112;
366 size = 216;
367
368 break;
369 }
370
371 /* Make a ".reg/999" section. */
372 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
373 size, note->descpos + offset);
374 }
375
376 static bfd_boolean
377 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
378 {
379 switch (note->descsz)
380 {
381 default:
382 return FALSE;
383
384 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
385 elf_tdata (abfd)->core_pid
386 = bfd_get_32 (abfd, note->descdata + 12);
387 elf_tdata (abfd)->core_program
388 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
389 elf_tdata (abfd)->core_command
390 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
391 break;
392
393 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
394 elf_tdata (abfd)->core_pid
395 = bfd_get_32 (abfd, note->descdata + 24);
396 elf_tdata (abfd)->core_program
397 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
398 elf_tdata (abfd)->core_command
399 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
400 }
401
402 /* Note that for some reason, a spurious space is tacked
403 onto the end of the args in some (at least one anyway)
404 implementations, so strip it off if it exists. */
405
406 {
407 char *command = elf_tdata (abfd)->core_command;
408 int n = strlen (command);
409
410 if (0 < n && command[n - 1] == ' ')
411 command[n - 1] = '\0';
412 }
413
414 return TRUE;
415 }
416
417 #ifdef CORE_HEADER
418 static char *
419 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
420 int note_type, ...)
421 {
422 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
423 const void *p;
424 int size;
425 va_list ap;
426 const char *fname, *psargs;
427 long pid;
428 int cursig;
429 const void *gregs;
430
431 switch (note_type)
432 {
433 default:
434 return NULL;
435
436 case NT_PRPSINFO:
437 va_start (ap, note_type);
438 fname = va_arg (ap, const char *);
439 psargs = va_arg (ap, const char *);
440 va_end (ap);
441
442 if (bed->s->elfclass == ELFCLASS32)
443 {
444 prpsinfo32_t data;
445 memset (&data, 0, sizeof (data));
446 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
447 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
448 p = (const void *) &data;
449 size = sizeof (data);
450 }
451 else
452 {
453 prpsinfo_t data;
454 memset (&data, 0, sizeof (data));
455 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
456 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
457 p = (const void *) &data;
458 size = sizeof (data);
459 }
460 break;
461
462 case NT_PRSTATUS:
463 va_start (ap, note_type);
464 pid = va_arg (ap, long);
465 cursig = va_arg (ap, int);
466 gregs = va_arg (ap, const void *);
467 va_end (ap);
468
469 if (bed->s->elfclass == ELFCLASS32)
470 {
471 if (bed->elf_machine_code == EM_X86_64)
472 {
473 prstatusx32_t prstat;
474 memset (&prstat, 0, sizeof (prstat));
475 prstat.pr_pid = pid;
476 prstat.pr_cursig = cursig;
477 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
478 p = (const void *) &prstat;
479 size = sizeof (prstat);
480 }
481 else
482 {
483 prstatus32_t prstat;
484 memset (&prstat, 0, sizeof (prstat));
485 prstat.pr_pid = pid;
486 prstat.pr_cursig = cursig;
487 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
488 p = (const void *) &prstat;
489 size = sizeof (prstat);
490 }
491 }
492 else
493 {
494 prstatus_t prstat;
495 memset (&prstat, 0, sizeof (prstat));
496 prstat.pr_pid = pid;
497 prstat.pr_cursig = cursig;
498 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
499 p = (const void *) &prstat;
500 size = sizeof (prstat);
501 }
502 break;
503 }
504
505 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, p,
506 size);
507 }
508 #endif
509 \f
510 /* Functions for the x86-64 ELF linker. */
511
512 /* The name of the dynamic interpreter. This is put in the .interp
513 section. */
514
515 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
516 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1"
517
518 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
519 copying dynamic variables from a shared lib into an app's dynbss
520 section, and instead use a dynamic relocation to point into the
521 shared lib. */
522 #define ELIMINATE_COPY_RELOCS 1
523
524 /* The size in bytes of an entry in the global offset table. */
525
526 #define GOT_ENTRY_SIZE 8
527
528 /* The size in bytes of an entry in the procedure linkage table. */
529
530 #define PLT_ENTRY_SIZE 16
531
532 /* The first entry in a procedure linkage table looks like this. See the
533 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
534
535 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
536 {
537 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
538 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
539 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
540 };
541
542 /* Subsequent entries in a procedure linkage table look like this. */
543
544 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
547 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
548 0x68, /* pushq immediate */
549 0, 0, 0, 0, /* replaced with index into relocation table. */
550 0xe9, /* jmp relative */
551 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
552 };
553
554 /* .eh_frame covering the .plt section. */
555
556 static const bfd_byte elf_x86_64_eh_frame_plt[] =
557 {
558 #define PLT_CIE_LENGTH 20
559 #define PLT_FDE_LENGTH 36
560 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
561 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
562 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
563 0, 0, 0, 0, /* CIE ID */
564 1, /* CIE version */
565 'z', 'R', 0, /* Augmentation string */
566 1, /* Code alignment factor */
567 0x78, /* Data alignment factor */
568 16, /* Return address column */
569 1, /* Augmentation size */
570 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
571 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
572 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
573 DW_CFA_nop, DW_CFA_nop,
574
575 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
576 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
577 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
578 0, 0, 0, 0, /* .plt size goes here */
579 0, /* Augmentation size */
580 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
581 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
582 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
583 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
584 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
585 11, /* Block length */
586 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
587 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
588 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
589 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
590 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
591 };
592
593 /* x86-64 ELF linker hash entry. */
594
595 struct elf_x86_64_link_hash_entry
596 {
597 struct elf_link_hash_entry elf;
598
599 /* Track dynamic relocs copied for this symbol. */
600 struct elf_dyn_relocs *dyn_relocs;
601
602 #define GOT_UNKNOWN 0
603 #define GOT_NORMAL 1
604 #define GOT_TLS_GD 2
605 #define GOT_TLS_IE 3
606 #define GOT_TLS_GDESC 4
607 #define GOT_TLS_GD_BOTH_P(type) \
608 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
609 #define GOT_TLS_GD_P(type) \
610 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
611 #define GOT_TLS_GDESC_P(type) \
612 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
613 #define GOT_TLS_GD_ANY_P(type) \
614 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
615 unsigned char tls_type;
616
617 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
618 starting at the end of the jump table. */
619 bfd_vma tlsdesc_got;
620 };
621
622 #define elf_x86_64_hash_entry(ent) \
623 ((struct elf_x86_64_link_hash_entry *)(ent))
624
625 struct elf_x86_64_obj_tdata
626 {
627 struct elf_obj_tdata root;
628
629 /* tls_type for each local got entry. */
630 char *local_got_tls_type;
631
632 /* GOTPLT entries for TLS descriptors. */
633 bfd_vma *local_tlsdesc_gotent;
634 };
635
636 #define elf_x86_64_tdata(abfd) \
637 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
638
639 #define elf_x86_64_local_got_tls_type(abfd) \
640 (elf_x86_64_tdata (abfd)->local_got_tls_type)
641
642 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
643 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
644
645 #define is_x86_64_elf(bfd) \
646 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
647 && elf_tdata (bfd) != NULL \
648 && elf_object_id (bfd) == X86_64_ELF_DATA)
649
650 static bfd_boolean
651 elf_x86_64_mkobject (bfd *abfd)
652 {
653 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
654 X86_64_ELF_DATA);
655 }
656
657 /* x86-64 ELF linker hash table. */
658
659 struct elf_x86_64_link_hash_table
660 {
661 struct elf_link_hash_table elf;
662
663 /* Short-cuts to get to dynamic linker sections. */
664 asection *sdynbss;
665 asection *srelbss;
666 asection *plt_eh_frame;
667
668 union
669 {
670 bfd_signed_vma refcount;
671 bfd_vma offset;
672 } tls_ld_got;
673
674 /* The amount of space used by the jump slots in the GOT. */
675 bfd_vma sgotplt_jump_table_size;
676
677 /* Small local sym cache. */
678 struct sym_cache sym_cache;
679
680 bfd_vma (*r_info) (bfd_vma, bfd_vma);
681 bfd_vma (*r_sym) (bfd_vma);
682 unsigned int pointer_r_type;
683 const char *dynamic_interpreter;
684 int dynamic_interpreter_size;
685
686 /* _TLS_MODULE_BASE_ symbol. */
687 struct bfd_link_hash_entry *tls_module_base;
688
689 /* Used by local STT_GNU_IFUNC symbols. */
690 htab_t loc_hash_table;
691 void * loc_hash_memory;
692
693 /* The offset into splt of the PLT entry for the TLS descriptor
694 resolver. Special values are 0, if not necessary (or not found
695 to be necessary yet), and -1 if needed but not determined
696 yet. */
697 bfd_vma tlsdesc_plt;
698 /* The offset into sgot of the GOT entry used by the PLT entry
699 above. */
700 bfd_vma tlsdesc_got;
701
702 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
703 bfd_vma next_jump_slot_index;
704 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
705 bfd_vma next_irelative_index;
706 };
707
708 /* Get the x86-64 ELF linker hash table from a link_info structure. */
709
710 #define elf_x86_64_hash_table(p) \
711 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
712 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
713
714 #define elf_x86_64_compute_jump_table_size(htab) \
715 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
716
717 /* Create an entry in an x86-64 ELF linker hash table. */
718
719 static struct bfd_hash_entry *
720 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
721 struct bfd_hash_table *table,
722 const char *string)
723 {
724 /* Allocate the structure if it has not already been allocated by a
725 subclass. */
726 if (entry == NULL)
727 {
728 entry = (struct bfd_hash_entry *)
729 bfd_hash_allocate (table,
730 sizeof (struct elf_x86_64_link_hash_entry));
731 if (entry == NULL)
732 return entry;
733 }
734
735 /* Call the allocation method of the superclass. */
736 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
737 if (entry != NULL)
738 {
739 struct elf_x86_64_link_hash_entry *eh;
740
741 eh = (struct elf_x86_64_link_hash_entry *) entry;
742 eh->dyn_relocs = NULL;
743 eh->tls_type = GOT_UNKNOWN;
744 eh->tlsdesc_got = (bfd_vma) -1;
745 }
746
747 return entry;
748 }
749
750 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
751 for local symbol so that we can handle local STT_GNU_IFUNC symbols
752 as global symbol. We reuse indx and dynstr_index for local symbol
753 hash since they aren't used by global symbols in this backend. */
754
755 static hashval_t
756 elf_x86_64_local_htab_hash (const void *ptr)
757 {
758 struct elf_link_hash_entry *h
759 = (struct elf_link_hash_entry *) ptr;
760 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
761 }
762
763 /* Compare local hash entries. */
764
765 static int
766 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
767 {
768 struct elf_link_hash_entry *h1
769 = (struct elf_link_hash_entry *) ptr1;
770 struct elf_link_hash_entry *h2
771 = (struct elf_link_hash_entry *) ptr2;
772
773 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
774 }
775
776 /* Find and/or create a hash entry for local symbol. */
777
778 static struct elf_link_hash_entry *
779 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
780 bfd *abfd, const Elf_Internal_Rela *rel,
781 bfd_boolean create)
782 {
783 struct elf_x86_64_link_hash_entry e, *ret;
784 asection *sec = abfd->sections;
785 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
786 htab->r_sym (rel->r_info));
787 void **slot;
788
789 e.elf.indx = sec->id;
790 e.elf.dynstr_index = htab->r_sym (rel->r_info);
791 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
792 create ? INSERT : NO_INSERT);
793
794 if (!slot)
795 return NULL;
796
797 if (*slot)
798 {
799 ret = (struct elf_x86_64_link_hash_entry *) *slot;
800 return &ret->elf;
801 }
802
803 ret = (struct elf_x86_64_link_hash_entry *)
804 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
805 sizeof (struct elf_x86_64_link_hash_entry));
806 if (ret)
807 {
808 memset (ret, 0, sizeof (*ret));
809 ret->elf.indx = sec->id;
810 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
811 ret->elf.dynindx = -1;
812 *slot = ret;
813 }
814 return &ret->elf;
815 }
816
817 /* Create an X86-64 ELF linker hash table. */
818
819 static struct bfd_link_hash_table *
820 elf_x86_64_link_hash_table_create (bfd *abfd)
821 {
822 struct elf_x86_64_link_hash_table *ret;
823 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
824
825 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
826 if (ret == NULL)
827 return NULL;
828
829 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
830 elf_x86_64_link_hash_newfunc,
831 sizeof (struct elf_x86_64_link_hash_entry),
832 X86_64_ELF_DATA))
833 {
834 free (ret);
835 return NULL;
836 }
837
838 ret->sdynbss = NULL;
839 ret->srelbss = NULL;
840 ret->plt_eh_frame = NULL;
841 ret->sym_cache.abfd = NULL;
842 ret->tlsdesc_plt = 0;
843 ret->tlsdesc_got = 0;
844 ret->tls_ld_got.refcount = 0;
845 ret->sgotplt_jump_table_size = 0;
846 ret->tls_module_base = NULL;
847 ret->next_jump_slot_index = 0;
848 ret->next_irelative_index = 0;
849
850 if (ABI_64_P (abfd))
851 {
852 ret->r_info = elf64_r_info;
853 ret->r_sym = elf64_r_sym;
854 ret->pointer_r_type = R_X86_64_64;
855 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
856 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
857 }
858 else
859 {
860 ret->r_info = elf32_r_info;
861 ret->r_sym = elf32_r_sym;
862 ret->pointer_r_type = R_X86_64_32;
863 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
864 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
865 }
866
867 ret->loc_hash_table = htab_try_create (1024,
868 elf_x86_64_local_htab_hash,
869 elf_x86_64_local_htab_eq,
870 NULL);
871 ret->loc_hash_memory = objalloc_create ();
872 if (!ret->loc_hash_table || !ret->loc_hash_memory)
873 {
874 free (ret);
875 return NULL;
876 }
877
878 return &ret->elf.root;
879 }
880
881 /* Destroy an X86-64 ELF linker hash table. */
882
883 static void
884 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
885 {
886 struct elf_x86_64_link_hash_table *htab
887 = (struct elf_x86_64_link_hash_table *) hash;
888
889 if (htab->loc_hash_table)
890 htab_delete (htab->loc_hash_table);
891 if (htab->loc_hash_memory)
892 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
893 _bfd_generic_link_hash_table_free (hash);
894 }
895
896 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
897 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
898 hash table. */
899
900 static bfd_boolean
901 elf_x86_64_create_dynamic_sections (bfd *dynobj,
902 struct bfd_link_info *info)
903 {
904 struct elf_x86_64_link_hash_table *htab;
905
906 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
907 return FALSE;
908
909 htab = elf_x86_64_hash_table (info);
910 if (htab == NULL)
911 return FALSE;
912
913 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
914 if (!info->shared)
915 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
916
917 if (!htab->sdynbss
918 || (!info->shared && !htab->srelbss))
919 abort ();
920
921 if (!info->no_ld_generated_unwind_info
922 && bfd_get_section_by_name (dynobj, ".eh_frame") == NULL
923 && htab->elf.splt != NULL)
924 {
925 flagword flags = get_elf_backend_data (dynobj)->dynamic_sec_flags;
926 htab->plt_eh_frame
927 = bfd_make_section_with_flags (dynobj, ".eh_frame",
928 flags | SEC_READONLY);
929 if (htab->plt_eh_frame == NULL
930 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
931 return FALSE;
932
933 htab->plt_eh_frame->size = sizeof (elf_x86_64_eh_frame_plt);
934 htab->plt_eh_frame->contents
935 = bfd_alloc (dynobj, htab->plt_eh_frame->size);
936 memcpy (htab->plt_eh_frame->contents, elf_x86_64_eh_frame_plt,
937 sizeof (elf_x86_64_eh_frame_plt));
938 }
939 return TRUE;
940 }
941
942 /* Copy the extra info we tack onto an elf_link_hash_entry. */
943
944 static void
945 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
946 struct elf_link_hash_entry *dir,
947 struct elf_link_hash_entry *ind)
948 {
949 struct elf_x86_64_link_hash_entry *edir, *eind;
950
951 edir = (struct elf_x86_64_link_hash_entry *) dir;
952 eind = (struct elf_x86_64_link_hash_entry *) ind;
953
954 if (eind->dyn_relocs != NULL)
955 {
956 if (edir->dyn_relocs != NULL)
957 {
958 struct elf_dyn_relocs **pp;
959 struct elf_dyn_relocs *p;
960
961 /* Add reloc counts against the indirect sym to the direct sym
962 list. Merge any entries against the same section. */
963 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
964 {
965 struct elf_dyn_relocs *q;
966
967 for (q = edir->dyn_relocs; q != NULL; q = q->next)
968 if (q->sec == p->sec)
969 {
970 q->pc_count += p->pc_count;
971 q->count += p->count;
972 *pp = p->next;
973 break;
974 }
975 if (q == NULL)
976 pp = &p->next;
977 }
978 *pp = edir->dyn_relocs;
979 }
980
981 edir->dyn_relocs = eind->dyn_relocs;
982 eind->dyn_relocs = NULL;
983 }
984
985 if (ind->root.type == bfd_link_hash_indirect
986 && dir->got.refcount <= 0)
987 {
988 edir->tls_type = eind->tls_type;
989 eind->tls_type = GOT_UNKNOWN;
990 }
991
992 if (ELIMINATE_COPY_RELOCS
993 && ind->root.type != bfd_link_hash_indirect
994 && dir->dynamic_adjusted)
995 {
996 /* If called to transfer flags for a weakdef during processing
997 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
998 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
999 dir->ref_dynamic |= ind->ref_dynamic;
1000 dir->ref_regular |= ind->ref_regular;
1001 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1002 dir->needs_plt |= ind->needs_plt;
1003 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1004 }
1005 else
1006 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1007 }
1008
1009 static bfd_boolean
1010 elf64_x86_64_elf_object_p (bfd *abfd)
1011 {
1012 /* Set the right machine number for an x86-64 elf64 file. */
1013 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1014 return TRUE;
1015 }
1016
1017 /* Return TRUE if the TLS access code sequence support transition
1018 from R_TYPE. */
1019
1020 static bfd_boolean
1021 elf_x86_64_check_tls_transition (bfd *abfd,
1022 struct bfd_link_info *info,
1023 asection *sec,
1024 bfd_byte *contents,
1025 Elf_Internal_Shdr *symtab_hdr,
1026 struct elf_link_hash_entry **sym_hashes,
1027 unsigned int r_type,
1028 const Elf_Internal_Rela *rel,
1029 const Elf_Internal_Rela *relend)
1030 {
1031 unsigned int val;
1032 unsigned long r_symndx;
1033 struct elf_link_hash_entry *h;
1034 bfd_vma offset;
1035 struct elf_x86_64_link_hash_table *htab;
1036
1037 /* Get the section contents. */
1038 if (contents == NULL)
1039 {
1040 if (elf_section_data (sec)->this_hdr.contents != NULL)
1041 contents = elf_section_data (sec)->this_hdr.contents;
1042 else
1043 {
1044 /* FIXME: How to better handle error condition? */
1045 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1046 return FALSE;
1047
1048 /* Cache the section contents for elf_link_input_bfd. */
1049 elf_section_data (sec)->this_hdr.contents = contents;
1050 }
1051 }
1052
1053 htab = elf_x86_64_hash_table (info);
1054 offset = rel->r_offset;
1055 switch (r_type)
1056 {
1057 case R_X86_64_TLSGD:
1058 case R_X86_64_TLSLD:
1059 if ((rel + 1) >= relend)
1060 return FALSE;
1061
1062 if (r_type == R_X86_64_TLSGD)
1063 {
1064 /* Check transition from GD access model. For 64bit, only
1065 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1066 .word 0x6666; rex64; call __tls_get_addr
1067 can transit to different access model. For 32bit, only
1068 leaq foo@tlsgd(%rip), %rdi
1069 .word 0x6666; rex64; call __tls_get_addr
1070 can transit to different access model. */
1071
1072 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1073 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1074
1075 if ((offset + 12) > sec->size
1076 || memcmp (contents + offset + 4, call, 4) != 0)
1077 return FALSE;
1078
1079 if (ABI_64_P (abfd))
1080 {
1081 if (offset < 4
1082 || memcmp (contents + offset - 4, leaq, 4) != 0)
1083 return FALSE;
1084 }
1085 else
1086 {
1087 if (offset < 3
1088 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1089 return FALSE;
1090 }
1091 }
1092 else
1093 {
1094 /* Check transition from LD access model. Only
1095 leaq foo@tlsld(%rip), %rdi;
1096 call __tls_get_addr
1097 can transit to different access model. */
1098
1099 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1100
1101 if (offset < 3 || (offset + 9) > sec->size)
1102 return FALSE;
1103
1104 if (memcmp (contents + offset - 3, lea, 3) != 0
1105 || 0xe8 != *(contents + offset + 4))
1106 return FALSE;
1107 }
1108
1109 r_symndx = htab->r_sym (rel[1].r_info);
1110 if (r_symndx < symtab_hdr->sh_info)
1111 return FALSE;
1112
1113 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1114 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1115 may be versioned. */
1116 return (h != NULL
1117 && h->root.root.string != NULL
1118 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1119 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1120 && (strncmp (h->root.root.string,
1121 "__tls_get_addr", 14) == 0));
1122
1123 case R_X86_64_GOTTPOFF:
1124 /* Check transition from IE access model:
1125 mov foo@gottpoff(%rip), %reg
1126 add foo@gottpoff(%rip), %reg
1127 */
1128
1129 /* Check REX prefix first. */
1130 if (offset >= 3 && (offset + 4) <= sec->size)
1131 {
1132 val = bfd_get_8 (abfd, contents + offset - 3);
1133 if (val != 0x48 && val != 0x4c)
1134 {
1135 /* X32 may have 0x44 REX prefix or no REX prefix. */
1136 if (ABI_64_P (abfd))
1137 return FALSE;
1138 }
1139 }
1140 else
1141 {
1142 /* X32 may not have any REX prefix. */
1143 if (ABI_64_P (abfd))
1144 return FALSE;
1145 if (offset < 2 || (offset + 3) > sec->size)
1146 return FALSE;
1147 }
1148
1149 val = bfd_get_8 (abfd, contents + offset - 2);
1150 if (val != 0x8b && val != 0x03)
1151 return FALSE;
1152
1153 val = bfd_get_8 (abfd, contents + offset - 1);
1154 return (val & 0xc7) == 5;
1155
1156 case R_X86_64_GOTPC32_TLSDESC:
1157 /* Check transition from GDesc access model:
1158 leaq x@tlsdesc(%rip), %rax
1159
1160 Make sure it's a leaq adding rip to a 32-bit offset
1161 into any register, although it's probably almost always
1162 going to be rax. */
1163
1164 if (offset < 3 || (offset + 4) > sec->size)
1165 return FALSE;
1166
1167 val = bfd_get_8 (abfd, contents + offset - 3);
1168 if ((val & 0xfb) != 0x48)
1169 return FALSE;
1170
1171 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1172 return FALSE;
1173
1174 val = bfd_get_8 (abfd, contents + offset - 1);
1175 return (val & 0xc7) == 0x05;
1176
1177 case R_X86_64_TLSDESC_CALL:
1178 /* Check transition from GDesc access model:
1179 call *x@tlsdesc(%rax)
1180 */
1181 if (offset + 2 <= sec->size)
1182 {
1183 /* Make sure that it's a call *x@tlsdesc(%rax). */
1184 static const unsigned char call[] = { 0xff, 0x10 };
1185 return memcmp (contents + offset, call, 2) == 0;
1186 }
1187
1188 return FALSE;
1189
1190 default:
1191 abort ();
1192 }
1193 }
1194
1195 /* Return TRUE if the TLS access transition is OK or no transition
1196 will be performed. Update R_TYPE if there is a transition. */
1197
1198 static bfd_boolean
1199 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1200 asection *sec, bfd_byte *contents,
1201 Elf_Internal_Shdr *symtab_hdr,
1202 struct elf_link_hash_entry **sym_hashes,
1203 unsigned int *r_type, int tls_type,
1204 const Elf_Internal_Rela *rel,
1205 const Elf_Internal_Rela *relend,
1206 struct elf_link_hash_entry *h,
1207 unsigned long r_symndx)
1208 {
1209 unsigned int from_type = *r_type;
1210 unsigned int to_type = from_type;
1211 bfd_boolean check = TRUE;
1212
1213 /* Skip TLS transition for functions. */
1214 if (h != NULL
1215 && (h->type == STT_FUNC
1216 || h->type == STT_GNU_IFUNC))
1217 return TRUE;
1218
1219 switch (from_type)
1220 {
1221 case R_X86_64_TLSGD:
1222 case R_X86_64_GOTPC32_TLSDESC:
1223 case R_X86_64_TLSDESC_CALL:
1224 case R_X86_64_GOTTPOFF:
1225 if (info->executable)
1226 {
1227 if (h == NULL)
1228 to_type = R_X86_64_TPOFF32;
1229 else
1230 to_type = R_X86_64_GOTTPOFF;
1231 }
1232
1233 /* When we are called from elf_x86_64_relocate_section,
1234 CONTENTS isn't NULL and there may be additional transitions
1235 based on TLS_TYPE. */
1236 if (contents != NULL)
1237 {
1238 unsigned int new_to_type = to_type;
1239
1240 if (info->executable
1241 && h != NULL
1242 && h->dynindx == -1
1243 && tls_type == GOT_TLS_IE)
1244 new_to_type = R_X86_64_TPOFF32;
1245
1246 if (to_type == R_X86_64_TLSGD
1247 || to_type == R_X86_64_GOTPC32_TLSDESC
1248 || to_type == R_X86_64_TLSDESC_CALL)
1249 {
1250 if (tls_type == GOT_TLS_IE)
1251 new_to_type = R_X86_64_GOTTPOFF;
1252 }
1253
1254 /* We checked the transition before when we were called from
1255 elf_x86_64_check_relocs. We only want to check the new
1256 transition which hasn't been checked before. */
1257 check = new_to_type != to_type && from_type == to_type;
1258 to_type = new_to_type;
1259 }
1260
1261 break;
1262
1263 case R_X86_64_TLSLD:
1264 if (info->executable)
1265 to_type = R_X86_64_TPOFF32;
1266 break;
1267
1268 default:
1269 return TRUE;
1270 }
1271
1272 /* Return TRUE if there is no transition. */
1273 if (from_type == to_type)
1274 return TRUE;
1275
1276 /* Check if the transition can be performed. */
1277 if (check
1278 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1279 symtab_hdr, sym_hashes,
1280 from_type, rel, relend))
1281 {
1282 reloc_howto_type *from, *to;
1283 const char *name;
1284
1285 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1286 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1287
1288 if (h)
1289 name = h->root.root.string;
1290 else
1291 {
1292 struct elf_x86_64_link_hash_table *htab;
1293
1294 htab = elf_x86_64_hash_table (info);
1295 if (htab == NULL)
1296 name = "*unknown*";
1297 else
1298 {
1299 Elf_Internal_Sym *isym;
1300
1301 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1302 abfd, r_symndx);
1303 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1304 }
1305 }
1306
1307 (*_bfd_error_handler)
1308 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1309 "in section `%A' failed"),
1310 abfd, sec, from->name, to->name, name,
1311 (unsigned long) rel->r_offset);
1312 bfd_set_error (bfd_error_bad_value);
1313 return FALSE;
1314 }
1315
1316 *r_type = to_type;
1317 return TRUE;
1318 }
1319
1320 /* Look through the relocs for a section during the first phase, and
1321 calculate needed space in the global offset table, procedure
1322 linkage table, and dynamic reloc sections. */
1323
1324 static bfd_boolean
1325 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1326 asection *sec,
1327 const Elf_Internal_Rela *relocs)
1328 {
1329 struct elf_x86_64_link_hash_table *htab;
1330 Elf_Internal_Shdr *symtab_hdr;
1331 struct elf_link_hash_entry **sym_hashes;
1332 const Elf_Internal_Rela *rel;
1333 const Elf_Internal_Rela *rel_end;
1334 asection *sreloc;
1335
1336 if (info->relocatable)
1337 return TRUE;
1338
1339 BFD_ASSERT (is_x86_64_elf (abfd));
1340
1341 htab = elf_x86_64_hash_table (info);
1342 if (htab == NULL)
1343 return FALSE;
1344
1345 symtab_hdr = &elf_symtab_hdr (abfd);
1346 sym_hashes = elf_sym_hashes (abfd);
1347
1348 sreloc = NULL;
1349
1350 rel_end = relocs + sec->reloc_count;
1351 for (rel = relocs; rel < rel_end; rel++)
1352 {
1353 unsigned int r_type;
1354 unsigned long r_symndx;
1355 struct elf_link_hash_entry *h;
1356 Elf_Internal_Sym *isym;
1357 const char *name;
1358
1359 r_symndx = htab->r_sym (rel->r_info);
1360 r_type = ELF32_R_TYPE (rel->r_info);
1361
1362 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1363 {
1364 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1365 abfd, r_symndx);
1366 return FALSE;
1367 }
1368
1369 if (r_symndx < symtab_hdr->sh_info)
1370 {
1371 /* A local symbol. */
1372 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1373 abfd, r_symndx);
1374 if (isym == NULL)
1375 return FALSE;
1376
1377 /* Check relocation against local STT_GNU_IFUNC symbol. */
1378 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1379 {
1380 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1381 TRUE);
1382 if (h == NULL)
1383 return FALSE;
1384
1385 /* Fake a STT_GNU_IFUNC symbol. */
1386 h->type = STT_GNU_IFUNC;
1387 h->def_regular = 1;
1388 h->ref_regular = 1;
1389 h->forced_local = 1;
1390 h->root.type = bfd_link_hash_defined;
1391 }
1392 else
1393 h = NULL;
1394 }
1395 else
1396 {
1397 isym = NULL;
1398 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1399 while (h->root.type == bfd_link_hash_indirect
1400 || h->root.type == bfd_link_hash_warning)
1401 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1402 }
1403
1404 /* Check invalid x32 relocations. */
1405 if (!ABI_64_P (abfd))
1406 switch (r_type)
1407 {
1408 default:
1409 break;
1410
1411 case R_X86_64_DTPOFF64:
1412 case R_X86_64_TPOFF64:
1413 case R_X86_64_PC64:
1414 case R_X86_64_GOTOFF64:
1415 case R_X86_64_GOT64:
1416 case R_X86_64_GOTPCREL64:
1417 case R_X86_64_GOTPC64:
1418 case R_X86_64_GOTPLT64:
1419 case R_X86_64_PLTOFF64:
1420 {
1421 if (h)
1422 name = h->root.root.string;
1423 else
1424 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1425 NULL);
1426 (*_bfd_error_handler)
1427 (_("%B: relocation %s against symbol `%s' isn't "
1428 "supported in x32 mode"), abfd,
1429 x86_64_elf_howto_table[r_type].name, name);
1430 bfd_set_error (bfd_error_bad_value);
1431 return FALSE;
1432 }
1433 break;
1434 }
1435
1436 if (h != NULL)
1437 {
1438 /* Create the ifunc sections for static executables. If we
1439 never see an indirect function symbol nor we are building
1440 a static executable, those sections will be empty and
1441 won't appear in output. */
1442 switch (r_type)
1443 {
1444 default:
1445 break;
1446
1447 case R_X86_64_32S:
1448 case R_X86_64_32:
1449 case R_X86_64_64:
1450 case R_X86_64_PC32:
1451 case R_X86_64_PC64:
1452 case R_X86_64_PLT32:
1453 case R_X86_64_GOTPCREL:
1454 case R_X86_64_GOTPCREL64:
1455 if (htab->elf.dynobj == NULL)
1456 htab->elf.dynobj = abfd;
1457 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1458 return FALSE;
1459 break;
1460 }
1461
1462 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1463 it here if it is defined in a non-shared object. */
1464 if (h->type == STT_GNU_IFUNC
1465 && h->def_regular)
1466 {
1467 /* It is referenced by a non-shared object. */
1468 h->ref_regular = 1;
1469 h->needs_plt = 1;
1470
1471 /* STT_GNU_IFUNC symbol must go through PLT. */
1472 h->plt.refcount += 1;
1473
1474 /* STT_GNU_IFUNC needs dynamic sections. */
1475 if (htab->elf.dynobj == NULL)
1476 htab->elf.dynobj = abfd;
1477
1478 switch (r_type)
1479 {
1480 default:
1481 if (h->root.root.string)
1482 name = h->root.root.string;
1483 else
1484 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1485 NULL);
1486 (*_bfd_error_handler)
1487 (_("%B: relocation %s against STT_GNU_IFUNC "
1488 "symbol `%s' isn't handled by %s"), abfd,
1489 x86_64_elf_howto_table[r_type].name,
1490 name, __FUNCTION__);
1491 bfd_set_error (bfd_error_bad_value);
1492 return FALSE;
1493
1494 case R_X86_64_32:
1495 if (ABI_64_P (abfd))
1496 goto not_pointer;
1497 case R_X86_64_64:
1498 h->non_got_ref = 1;
1499 h->pointer_equality_needed = 1;
1500 if (info->shared)
1501 {
1502 /* We must copy these reloc types into the output
1503 file. Create a reloc section in dynobj and
1504 make room for this reloc. */
1505 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1506 (abfd, info, sec, sreloc,
1507 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1508 if (sreloc == NULL)
1509 return FALSE;
1510 }
1511 break;
1512
1513 case R_X86_64_32S:
1514 case R_X86_64_PC32:
1515 case R_X86_64_PC64:
1516 not_pointer:
1517 h->non_got_ref = 1;
1518 if (r_type != R_X86_64_PC32
1519 && r_type != R_X86_64_PC64)
1520 h->pointer_equality_needed = 1;
1521 break;
1522
1523 case R_X86_64_PLT32:
1524 break;
1525
1526 case R_X86_64_GOTPCREL:
1527 case R_X86_64_GOTPCREL64:
1528 h->got.refcount += 1;
1529 if (htab->elf.sgot == NULL
1530 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1531 info))
1532 return FALSE;
1533 break;
1534 }
1535
1536 continue;
1537 }
1538 }
1539
1540 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1541 symtab_hdr, sym_hashes,
1542 &r_type, GOT_UNKNOWN,
1543 rel, rel_end, h, r_symndx))
1544 return FALSE;
1545
1546 switch (r_type)
1547 {
1548 case R_X86_64_TLSLD:
1549 htab->tls_ld_got.refcount += 1;
1550 goto create_got;
1551
1552 case R_X86_64_TPOFF32:
1553 if (!info->executable && ABI_64_P (abfd))
1554 {
1555 if (h)
1556 name = h->root.root.string;
1557 else
1558 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1559 NULL);
1560 (*_bfd_error_handler)
1561 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1562 abfd,
1563 x86_64_elf_howto_table[r_type].name, name);
1564 bfd_set_error (bfd_error_bad_value);
1565 return FALSE;
1566 }
1567 break;
1568
1569 case R_X86_64_GOTTPOFF:
1570 if (!info->executable)
1571 info->flags |= DF_STATIC_TLS;
1572 /* Fall through */
1573
1574 case R_X86_64_GOT32:
1575 case R_X86_64_GOTPCREL:
1576 case R_X86_64_TLSGD:
1577 case R_X86_64_GOT64:
1578 case R_X86_64_GOTPCREL64:
1579 case R_X86_64_GOTPLT64:
1580 case R_X86_64_GOTPC32_TLSDESC:
1581 case R_X86_64_TLSDESC_CALL:
1582 /* This symbol requires a global offset table entry. */
1583 {
1584 int tls_type, old_tls_type;
1585
1586 switch (r_type)
1587 {
1588 default: tls_type = GOT_NORMAL; break;
1589 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1590 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1591 case R_X86_64_GOTPC32_TLSDESC:
1592 case R_X86_64_TLSDESC_CALL:
1593 tls_type = GOT_TLS_GDESC; break;
1594 }
1595
1596 if (h != NULL)
1597 {
1598 if (r_type == R_X86_64_GOTPLT64)
1599 {
1600 /* This relocation indicates that we also need
1601 a PLT entry, as this is a function. We don't need
1602 a PLT entry for local symbols. */
1603 h->needs_plt = 1;
1604 h->plt.refcount += 1;
1605 }
1606 h->got.refcount += 1;
1607 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1608 }
1609 else
1610 {
1611 bfd_signed_vma *local_got_refcounts;
1612
1613 /* This is a global offset table entry for a local symbol. */
1614 local_got_refcounts = elf_local_got_refcounts (abfd);
1615 if (local_got_refcounts == NULL)
1616 {
1617 bfd_size_type size;
1618
1619 size = symtab_hdr->sh_info;
1620 size *= sizeof (bfd_signed_vma)
1621 + sizeof (bfd_vma) + sizeof (char);
1622 local_got_refcounts = ((bfd_signed_vma *)
1623 bfd_zalloc (abfd, size));
1624 if (local_got_refcounts == NULL)
1625 return FALSE;
1626 elf_local_got_refcounts (abfd) = local_got_refcounts;
1627 elf_x86_64_local_tlsdesc_gotent (abfd)
1628 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1629 elf_x86_64_local_got_tls_type (abfd)
1630 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1631 }
1632 local_got_refcounts[r_symndx] += 1;
1633 old_tls_type
1634 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1635 }
1636
1637 /* If a TLS symbol is accessed using IE at least once,
1638 there is no point to use dynamic model for it. */
1639 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1640 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1641 || tls_type != GOT_TLS_IE))
1642 {
1643 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1644 tls_type = old_tls_type;
1645 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1646 && GOT_TLS_GD_ANY_P (tls_type))
1647 tls_type |= old_tls_type;
1648 else
1649 {
1650 if (h)
1651 name = h->root.root.string;
1652 else
1653 name = bfd_elf_sym_name (abfd, symtab_hdr,
1654 isym, NULL);
1655 (*_bfd_error_handler)
1656 (_("%B: '%s' accessed both as normal and thread local symbol"),
1657 abfd, name);
1658 return FALSE;
1659 }
1660 }
1661
1662 if (old_tls_type != tls_type)
1663 {
1664 if (h != NULL)
1665 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1666 else
1667 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1668 }
1669 }
1670 /* Fall through */
1671
1672 case R_X86_64_GOTOFF64:
1673 case R_X86_64_GOTPC32:
1674 case R_X86_64_GOTPC64:
1675 create_got:
1676 if (htab->elf.sgot == NULL)
1677 {
1678 if (htab->elf.dynobj == NULL)
1679 htab->elf.dynobj = abfd;
1680 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1681 info))
1682 return FALSE;
1683 }
1684 break;
1685
1686 case R_X86_64_PLT32:
1687 /* This symbol requires a procedure linkage table entry. We
1688 actually build the entry in adjust_dynamic_symbol,
1689 because this might be a case of linking PIC code which is
1690 never referenced by a dynamic object, in which case we
1691 don't need to generate a procedure linkage table entry
1692 after all. */
1693
1694 /* If this is a local symbol, we resolve it directly without
1695 creating a procedure linkage table entry. */
1696 if (h == NULL)
1697 continue;
1698
1699 h->needs_plt = 1;
1700 h->plt.refcount += 1;
1701 break;
1702
1703 case R_X86_64_PLTOFF64:
1704 /* This tries to form the 'address' of a function relative
1705 to GOT. For global symbols we need a PLT entry. */
1706 if (h != NULL)
1707 {
1708 h->needs_plt = 1;
1709 h->plt.refcount += 1;
1710 }
1711 goto create_got;
1712
1713 case R_X86_64_32:
1714 if (!ABI_64_P (abfd))
1715 goto pointer;
1716 case R_X86_64_8:
1717 case R_X86_64_16:
1718 case R_X86_64_32S:
1719 /* Let's help debug shared library creation. These relocs
1720 cannot be used in shared libs. Don't error out for
1721 sections we don't care about, such as debug sections or
1722 non-constant sections. */
1723 if (info->shared
1724 && (sec->flags & SEC_ALLOC) != 0
1725 && (sec->flags & SEC_READONLY) != 0)
1726 {
1727 if (h)
1728 name = h->root.root.string;
1729 else
1730 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1731 (*_bfd_error_handler)
1732 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1733 abfd, x86_64_elf_howto_table[r_type].name, name);
1734 bfd_set_error (bfd_error_bad_value);
1735 return FALSE;
1736 }
1737 /* Fall through. */
1738
1739 case R_X86_64_PC8:
1740 case R_X86_64_PC16:
1741 case R_X86_64_PC32:
1742 case R_X86_64_PC64:
1743 case R_X86_64_64:
1744 pointer:
1745 if (h != NULL && info->executable)
1746 {
1747 /* If this reloc is in a read-only section, we might
1748 need a copy reloc. We can't check reliably at this
1749 stage whether the section is read-only, as input
1750 sections have not yet been mapped to output sections.
1751 Tentatively set the flag for now, and correct in
1752 adjust_dynamic_symbol. */
1753 h->non_got_ref = 1;
1754
1755 /* We may need a .plt entry if the function this reloc
1756 refers to is in a shared lib. */
1757 h->plt.refcount += 1;
1758 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1759 h->pointer_equality_needed = 1;
1760 }
1761
1762 /* If we are creating a shared library, and this is a reloc
1763 against a global symbol, or a non PC relative reloc
1764 against a local symbol, then we need to copy the reloc
1765 into the shared library. However, if we are linking with
1766 -Bsymbolic, we do not need to copy a reloc against a
1767 global symbol which is defined in an object we are
1768 including in the link (i.e., DEF_REGULAR is set). At
1769 this point we have not seen all the input files, so it is
1770 possible that DEF_REGULAR is not set now but will be set
1771 later (it is never cleared). In case of a weak definition,
1772 DEF_REGULAR may be cleared later by a strong definition in
1773 a shared library. We account for that possibility below by
1774 storing information in the relocs_copied field of the hash
1775 table entry. A similar situation occurs when creating
1776 shared libraries and symbol visibility changes render the
1777 symbol local.
1778
1779 If on the other hand, we are creating an executable, we
1780 may need to keep relocations for symbols satisfied by a
1781 dynamic library if we manage to avoid copy relocs for the
1782 symbol. */
1783 if ((info->shared
1784 && (sec->flags & SEC_ALLOC) != 0
1785 && (! IS_X86_64_PCREL_TYPE (r_type)
1786 || (h != NULL
1787 && (! SYMBOLIC_BIND (info, h)
1788 || h->root.type == bfd_link_hash_defweak
1789 || !h->def_regular))))
1790 || (ELIMINATE_COPY_RELOCS
1791 && !info->shared
1792 && (sec->flags & SEC_ALLOC) != 0
1793 && h != NULL
1794 && (h->root.type == bfd_link_hash_defweak
1795 || !h->def_regular)))
1796 {
1797 struct elf_dyn_relocs *p;
1798 struct elf_dyn_relocs **head;
1799
1800 /* We must copy these reloc types into the output file.
1801 Create a reloc section in dynobj and make room for
1802 this reloc. */
1803 if (sreloc == NULL)
1804 {
1805 if (htab->elf.dynobj == NULL)
1806 htab->elf.dynobj = abfd;
1807
1808 sreloc = _bfd_elf_make_dynamic_reloc_section
1809 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1810 abfd, /*rela?*/ TRUE);
1811
1812 if (sreloc == NULL)
1813 return FALSE;
1814 }
1815
1816 /* If this is a global symbol, we count the number of
1817 relocations we need for this symbol. */
1818 if (h != NULL)
1819 {
1820 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1821 }
1822 else
1823 {
1824 /* Track dynamic relocs needed for local syms too.
1825 We really need local syms available to do this
1826 easily. Oh well. */
1827 asection *s;
1828 void **vpp;
1829
1830 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1831 abfd, r_symndx);
1832 if (isym == NULL)
1833 return FALSE;
1834
1835 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1836 if (s == NULL)
1837 s = sec;
1838
1839 /* Beware of type punned pointers vs strict aliasing
1840 rules. */
1841 vpp = &(elf_section_data (s)->local_dynrel);
1842 head = (struct elf_dyn_relocs **)vpp;
1843 }
1844
1845 p = *head;
1846 if (p == NULL || p->sec != sec)
1847 {
1848 bfd_size_type amt = sizeof *p;
1849
1850 p = ((struct elf_dyn_relocs *)
1851 bfd_alloc (htab->elf.dynobj, amt));
1852 if (p == NULL)
1853 return FALSE;
1854 p->next = *head;
1855 *head = p;
1856 p->sec = sec;
1857 p->count = 0;
1858 p->pc_count = 0;
1859 }
1860
1861 p->count += 1;
1862 if (IS_X86_64_PCREL_TYPE (r_type))
1863 p->pc_count += 1;
1864 }
1865 break;
1866
1867 /* This relocation describes the C++ object vtable hierarchy.
1868 Reconstruct it for later use during GC. */
1869 case R_X86_64_GNU_VTINHERIT:
1870 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1871 return FALSE;
1872 break;
1873
1874 /* This relocation describes which C++ vtable entries are actually
1875 used. Record for later use during GC. */
1876 case R_X86_64_GNU_VTENTRY:
1877 BFD_ASSERT (h != NULL);
1878 if (h != NULL
1879 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1880 return FALSE;
1881 break;
1882
1883 default:
1884 break;
1885 }
1886 }
1887
1888 return TRUE;
1889 }
1890
1891 /* Return the section that should be marked against GC for a given
1892 relocation. */
1893
1894 static asection *
1895 elf_x86_64_gc_mark_hook (asection *sec,
1896 struct bfd_link_info *info,
1897 Elf_Internal_Rela *rel,
1898 struct elf_link_hash_entry *h,
1899 Elf_Internal_Sym *sym)
1900 {
1901 if (h != NULL)
1902 switch (ELF32_R_TYPE (rel->r_info))
1903 {
1904 case R_X86_64_GNU_VTINHERIT:
1905 case R_X86_64_GNU_VTENTRY:
1906 return NULL;
1907 }
1908
1909 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1910 }
1911
1912 /* Update the got entry reference counts for the section being removed. */
1913
1914 static bfd_boolean
1915 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1916 asection *sec,
1917 const Elf_Internal_Rela *relocs)
1918 {
1919 struct elf_x86_64_link_hash_table *htab;
1920 Elf_Internal_Shdr *symtab_hdr;
1921 struct elf_link_hash_entry **sym_hashes;
1922 bfd_signed_vma *local_got_refcounts;
1923 const Elf_Internal_Rela *rel, *relend;
1924
1925 if (info->relocatable)
1926 return TRUE;
1927
1928 htab = elf_x86_64_hash_table (info);
1929 if (htab == NULL)
1930 return FALSE;
1931
1932 elf_section_data (sec)->local_dynrel = NULL;
1933
1934 symtab_hdr = &elf_symtab_hdr (abfd);
1935 sym_hashes = elf_sym_hashes (abfd);
1936 local_got_refcounts = elf_local_got_refcounts (abfd);
1937
1938 htab = elf_x86_64_hash_table (info);
1939 relend = relocs + sec->reloc_count;
1940 for (rel = relocs; rel < relend; rel++)
1941 {
1942 unsigned long r_symndx;
1943 unsigned int r_type;
1944 struct elf_link_hash_entry *h = NULL;
1945
1946 r_symndx = htab->r_sym (rel->r_info);
1947 if (r_symndx >= symtab_hdr->sh_info)
1948 {
1949 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1950 while (h->root.type == bfd_link_hash_indirect
1951 || h->root.type == bfd_link_hash_warning)
1952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1953 }
1954 else
1955 {
1956 /* A local symbol. */
1957 Elf_Internal_Sym *isym;
1958
1959 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1960 abfd, r_symndx);
1961
1962 /* Check relocation against local STT_GNU_IFUNC symbol. */
1963 if (isym != NULL
1964 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1965 {
1966 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1967 if (h == NULL)
1968 abort ();
1969 }
1970 }
1971
1972 if (h)
1973 {
1974 struct elf_x86_64_link_hash_entry *eh;
1975 struct elf_dyn_relocs **pp;
1976 struct elf_dyn_relocs *p;
1977
1978 eh = (struct elf_x86_64_link_hash_entry *) h;
1979
1980 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1981 if (p->sec == sec)
1982 {
1983 /* Everything must go for SEC. */
1984 *pp = p->next;
1985 break;
1986 }
1987 }
1988
1989 r_type = ELF32_R_TYPE (rel->r_info);
1990 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1991 symtab_hdr, sym_hashes,
1992 &r_type, GOT_UNKNOWN,
1993 rel, relend, h, r_symndx))
1994 return FALSE;
1995
1996 switch (r_type)
1997 {
1998 case R_X86_64_TLSLD:
1999 if (htab->tls_ld_got.refcount > 0)
2000 htab->tls_ld_got.refcount -= 1;
2001 break;
2002
2003 case R_X86_64_TLSGD:
2004 case R_X86_64_GOTPC32_TLSDESC:
2005 case R_X86_64_TLSDESC_CALL:
2006 case R_X86_64_GOTTPOFF:
2007 case R_X86_64_GOT32:
2008 case R_X86_64_GOTPCREL:
2009 case R_X86_64_GOT64:
2010 case R_X86_64_GOTPCREL64:
2011 case R_X86_64_GOTPLT64:
2012 if (h != NULL)
2013 {
2014 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2015 h->plt.refcount -= 1;
2016 if (h->got.refcount > 0)
2017 h->got.refcount -= 1;
2018 if (h->type == STT_GNU_IFUNC)
2019 {
2020 if (h->plt.refcount > 0)
2021 h->plt.refcount -= 1;
2022 }
2023 }
2024 else if (local_got_refcounts != NULL)
2025 {
2026 if (local_got_refcounts[r_symndx] > 0)
2027 local_got_refcounts[r_symndx] -= 1;
2028 }
2029 break;
2030
2031 case R_X86_64_8:
2032 case R_X86_64_16:
2033 case R_X86_64_32:
2034 case R_X86_64_64:
2035 case R_X86_64_32S:
2036 case R_X86_64_PC8:
2037 case R_X86_64_PC16:
2038 case R_X86_64_PC32:
2039 case R_X86_64_PC64:
2040 if (info->shared
2041 && (h == NULL || h->type != STT_GNU_IFUNC))
2042 break;
2043 /* Fall thru */
2044
2045 case R_X86_64_PLT32:
2046 case R_X86_64_PLTOFF64:
2047 if (h != NULL)
2048 {
2049 if (h->plt.refcount > 0)
2050 h->plt.refcount -= 1;
2051 }
2052 break;
2053
2054 default:
2055 break;
2056 }
2057 }
2058
2059 return TRUE;
2060 }
2061
2062 /* Adjust a symbol defined by a dynamic object and referenced by a
2063 regular object. The current definition is in some section of the
2064 dynamic object, but we're not including those sections. We have to
2065 change the definition to something the rest of the link can
2066 understand. */
2067
2068 static bfd_boolean
2069 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2070 struct elf_link_hash_entry *h)
2071 {
2072 struct elf_x86_64_link_hash_table *htab;
2073 asection *s;
2074
2075 /* STT_GNU_IFUNC symbol must go through PLT. */
2076 if (h->type == STT_GNU_IFUNC)
2077 {
2078 if (h->plt.refcount <= 0)
2079 {
2080 h->plt.offset = (bfd_vma) -1;
2081 h->needs_plt = 0;
2082 }
2083 return TRUE;
2084 }
2085
2086 /* If this is a function, put it in the procedure linkage table. We
2087 will fill in the contents of the procedure linkage table later,
2088 when we know the address of the .got section. */
2089 if (h->type == STT_FUNC
2090 || h->needs_plt)
2091 {
2092 if (h->plt.refcount <= 0
2093 || SYMBOL_CALLS_LOCAL (info, h)
2094 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2095 && h->root.type == bfd_link_hash_undefweak))
2096 {
2097 /* This case can occur if we saw a PLT32 reloc in an input
2098 file, but the symbol was never referred to by a dynamic
2099 object, or if all references were garbage collected. In
2100 such a case, we don't actually need to build a procedure
2101 linkage table, and we can just do a PC32 reloc instead. */
2102 h->plt.offset = (bfd_vma) -1;
2103 h->needs_plt = 0;
2104 }
2105
2106 return TRUE;
2107 }
2108 else
2109 /* It's possible that we incorrectly decided a .plt reloc was
2110 needed for an R_X86_64_PC32 reloc to a non-function sym in
2111 check_relocs. We can't decide accurately between function and
2112 non-function syms in check-relocs; Objects loaded later in
2113 the link may change h->type. So fix it now. */
2114 h->plt.offset = (bfd_vma) -1;
2115
2116 /* If this is a weak symbol, and there is a real definition, the
2117 processor independent code will have arranged for us to see the
2118 real definition first, and we can just use the same value. */
2119 if (h->u.weakdef != NULL)
2120 {
2121 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2122 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2123 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2124 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2125 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2126 h->non_got_ref = h->u.weakdef->non_got_ref;
2127 return TRUE;
2128 }
2129
2130 /* This is a reference to a symbol defined by a dynamic object which
2131 is not a function. */
2132
2133 /* If we are creating a shared library, we must presume that the
2134 only references to the symbol are via the global offset table.
2135 For such cases we need not do anything here; the relocations will
2136 be handled correctly by relocate_section. */
2137 if (info->shared)
2138 return TRUE;
2139
2140 /* If there are no references to this symbol that do not use the
2141 GOT, we don't need to generate a copy reloc. */
2142 if (!h->non_got_ref)
2143 return TRUE;
2144
2145 /* If -z nocopyreloc was given, we won't generate them either. */
2146 if (info->nocopyreloc)
2147 {
2148 h->non_got_ref = 0;
2149 return TRUE;
2150 }
2151
2152 if (ELIMINATE_COPY_RELOCS)
2153 {
2154 struct elf_x86_64_link_hash_entry * eh;
2155 struct elf_dyn_relocs *p;
2156
2157 eh = (struct elf_x86_64_link_hash_entry *) h;
2158 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2159 {
2160 s = p->sec->output_section;
2161 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2162 break;
2163 }
2164
2165 /* If we didn't find any dynamic relocs in read-only sections, then
2166 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2167 if (p == NULL)
2168 {
2169 h->non_got_ref = 0;
2170 return TRUE;
2171 }
2172 }
2173
2174 if (h->size == 0)
2175 {
2176 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2177 h->root.root.string);
2178 return TRUE;
2179 }
2180
2181 /* We must allocate the symbol in our .dynbss section, which will
2182 become part of the .bss section of the executable. There will be
2183 an entry for this symbol in the .dynsym section. The dynamic
2184 object will contain position independent code, so all references
2185 from the dynamic object to this symbol will go through the global
2186 offset table. The dynamic linker will use the .dynsym entry to
2187 determine the address it must put in the global offset table, so
2188 both the dynamic object and the regular object will refer to the
2189 same memory location for the variable. */
2190
2191 htab = elf_x86_64_hash_table (info);
2192 if (htab == NULL)
2193 return FALSE;
2194
2195 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2196 to copy the initial value out of the dynamic object and into the
2197 runtime process image. */
2198 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2199 {
2200 const struct elf_backend_data *bed;
2201 bed = get_elf_backend_data (info->output_bfd);
2202 htab->srelbss->size += bed->s->sizeof_rela;
2203 h->needs_copy = 1;
2204 }
2205
2206 s = htab->sdynbss;
2207
2208 return _bfd_elf_adjust_dynamic_copy (h, s);
2209 }
2210
2211 /* Allocate space in .plt, .got and associated reloc sections for
2212 dynamic relocs. */
2213
2214 static bfd_boolean
2215 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2216 {
2217 struct bfd_link_info *info;
2218 struct elf_x86_64_link_hash_table *htab;
2219 struct elf_x86_64_link_hash_entry *eh;
2220 struct elf_dyn_relocs *p;
2221 const struct elf_backend_data *bed;
2222
2223 if (h->root.type == bfd_link_hash_indirect)
2224 return TRUE;
2225
2226 eh = (struct elf_x86_64_link_hash_entry *) h;
2227
2228 info = (struct bfd_link_info *) inf;
2229 htab = elf_x86_64_hash_table (info);
2230 if (htab == NULL)
2231 return FALSE;
2232 bed = get_elf_backend_data (info->output_bfd);
2233
2234 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2235 here if it is defined and referenced in a non-shared object. */
2236 if (h->type == STT_GNU_IFUNC
2237 && h->def_regular)
2238 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2239 &eh->dyn_relocs,
2240 PLT_ENTRY_SIZE,
2241 GOT_ENTRY_SIZE);
2242 else if (htab->elf.dynamic_sections_created
2243 && h->plt.refcount > 0)
2244 {
2245 /* Make sure this symbol is output as a dynamic symbol.
2246 Undefined weak syms won't yet be marked as dynamic. */
2247 if (h->dynindx == -1
2248 && !h->forced_local)
2249 {
2250 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2251 return FALSE;
2252 }
2253
2254 if (info->shared
2255 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2256 {
2257 asection *s = htab->elf.splt;
2258
2259 /* If this is the first .plt entry, make room for the special
2260 first entry. */
2261 if (s->size == 0)
2262 s->size += PLT_ENTRY_SIZE;
2263
2264 h->plt.offset = s->size;
2265
2266 /* If this symbol is not defined in a regular file, and we are
2267 not generating a shared library, then set the symbol to this
2268 location in the .plt. This is required to make function
2269 pointers compare as equal between the normal executable and
2270 the shared library. */
2271 if (! info->shared
2272 && !h->def_regular)
2273 {
2274 h->root.u.def.section = s;
2275 h->root.u.def.value = h->plt.offset;
2276 }
2277
2278 /* Make room for this entry. */
2279 s->size += PLT_ENTRY_SIZE;
2280
2281 /* We also need to make an entry in the .got.plt section, which
2282 will be placed in the .got section by the linker script. */
2283 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2284
2285 /* We also need to make an entry in the .rela.plt section. */
2286 htab->elf.srelplt->size += bed->s->sizeof_rela;
2287 htab->elf.srelplt->reloc_count++;
2288 }
2289 else
2290 {
2291 h->plt.offset = (bfd_vma) -1;
2292 h->needs_plt = 0;
2293 }
2294 }
2295 else
2296 {
2297 h->plt.offset = (bfd_vma) -1;
2298 h->needs_plt = 0;
2299 }
2300
2301 eh->tlsdesc_got = (bfd_vma) -1;
2302
2303 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2304 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2305 if (h->got.refcount > 0
2306 && info->executable
2307 && h->dynindx == -1
2308 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2309 {
2310 h->got.offset = (bfd_vma) -1;
2311 }
2312 else if (h->got.refcount > 0)
2313 {
2314 asection *s;
2315 bfd_boolean dyn;
2316 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2317
2318 /* Make sure this symbol is output as a dynamic symbol.
2319 Undefined weak syms won't yet be marked as dynamic. */
2320 if (h->dynindx == -1
2321 && !h->forced_local)
2322 {
2323 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2324 return FALSE;
2325 }
2326
2327 if (GOT_TLS_GDESC_P (tls_type))
2328 {
2329 eh->tlsdesc_got = htab->elf.sgotplt->size
2330 - elf_x86_64_compute_jump_table_size (htab);
2331 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2332 h->got.offset = (bfd_vma) -2;
2333 }
2334 if (! GOT_TLS_GDESC_P (tls_type)
2335 || GOT_TLS_GD_P (tls_type))
2336 {
2337 s = htab->elf.sgot;
2338 h->got.offset = s->size;
2339 s->size += GOT_ENTRY_SIZE;
2340 if (GOT_TLS_GD_P (tls_type))
2341 s->size += GOT_ENTRY_SIZE;
2342 }
2343 dyn = htab->elf.dynamic_sections_created;
2344 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2345 and two if global.
2346 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2347 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2348 || tls_type == GOT_TLS_IE)
2349 htab->elf.srelgot->size += bed->s->sizeof_rela;
2350 else if (GOT_TLS_GD_P (tls_type))
2351 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2352 else if (! GOT_TLS_GDESC_P (tls_type)
2353 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2354 || h->root.type != bfd_link_hash_undefweak)
2355 && (info->shared
2356 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2357 htab->elf.srelgot->size += bed->s->sizeof_rela;
2358 if (GOT_TLS_GDESC_P (tls_type))
2359 {
2360 htab->elf.srelplt->size += bed->s->sizeof_rela;
2361 htab->tlsdesc_plt = (bfd_vma) -1;
2362 }
2363 }
2364 else
2365 h->got.offset = (bfd_vma) -1;
2366
2367 if (eh->dyn_relocs == NULL)
2368 return TRUE;
2369
2370 /* In the shared -Bsymbolic case, discard space allocated for
2371 dynamic pc-relative relocs against symbols which turn out to be
2372 defined in regular objects. For the normal shared case, discard
2373 space for pc-relative relocs that have become local due to symbol
2374 visibility changes. */
2375
2376 if (info->shared)
2377 {
2378 /* Relocs that use pc_count are those that appear on a call
2379 insn, or certain REL relocs that can generated via assembly.
2380 We want calls to protected symbols to resolve directly to the
2381 function rather than going via the plt. If people want
2382 function pointer comparisons to work as expected then they
2383 should avoid writing weird assembly. */
2384 if (SYMBOL_CALLS_LOCAL (info, h))
2385 {
2386 struct elf_dyn_relocs **pp;
2387
2388 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2389 {
2390 p->count -= p->pc_count;
2391 p->pc_count = 0;
2392 if (p->count == 0)
2393 *pp = p->next;
2394 else
2395 pp = &p->next;
2396 }
2397 }
2398
2399 /* Also discard relocs on undefined weak syms with non-default
2400 visibility. */
2401 if (eh->dyn_relocs != NULL
2402 && h->root.type == bfd_link_hash_undefweak)
2403 {
2404 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2405 eh->dyn_relocs = NULL;
2406
2407 /* Make sure undefined weak symbols are output as a dynamic
2408 symbol in PIEs. */
2409 else if (h->dynindx == -1
2410 && ! h->forced_local
2411 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2412 return FALSE;
2413 }
2414
2415 }
2416 else if (ELIMINATE_COPY_RELOCS)
2417 {
2418 /* For the non-shared case, discard space for relocs against
2419 symbols which turn out to need copy relocs or are not
2420 dynamic. */
2421
2422 if (!h->non_got_ref
2423 && ((h->def_dynamic
2424 && !h->def_regular)
2425 || (htab->elf.dynamic_sections_created
2426 && (h->root.type == bfd_link_hash_undefweak
2427 || h->root.type == bfd_link_hash_undefined))))
2428 {
2429 /* Make sure this symbol is output as a dynamic symbol.
2430 Undefined weak syms won't yet be marked as dynamic. */
2431 if (h->dynindx == -1
2432 && ! h->forced_local
2433 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2434 return FALSE;
2435
2436 /* If that succeeded, we know we'll be keeping all the
2437 relocs. */
2438 if (h->dynindx != -1)
2439 goto keep;
2440 }
2441
2442 eh->dyn_relocs = NULL;
2443
2444 keep: ;
2445 }
2446
2447 /* Finally, allocate space. */
2448 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2449 {
2450 asection * sreloc;
2451
2452 sreloc = elf_section_data (p->sec)->sreloc;
2453
2454 BFD_ASSERT (sreloc != NULL);
2455
2456 sreloc->size += p->count * bed->s->sizeof_rela;
2457 }
2458
2459 return TRUE;
2460 }
2461
2462 /* Allocate space in .plt, .got and associated reloc sections for
2463 local dynamic relocs. */
2464
2465 static bfd_boolean
2466 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2467 {
2468 struct elf_link_hash_entry *h
2469 = (struct elf_link_hash_entry *) *slot;
2470
2471 if (h->type != STT_GNU_IFUNC
2472 || !h->def_regular
2473 || !h->ref_regular
2474 || !h->forced_local
2475 || h->root.type != bfd_link_hash_defined)
2476 abort ();
2477
2478 return elf_x86_64_allocate_dynrelocs (h, inf);
2479 }
2480
2481 /* Find any dynamic relocs that apply to read-only sections. */
2482
2483 static bfd_boolean
2484 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2485 void * inf)
2486 {
2487 struct elf_x86_64_link_hash_entry *eh;
2488 struct elf_dyn_relocs *p;
2489
2490 /* Skip local IFUNC symbols. */
2491 if (h->forced_local && h->type == STT_GNU_IFUNC)
2492 return TRUE;
2493
2494 eh = (struct elf_x86_64_link_hash_entry *) h;
2495 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2496 {
2497 asection *s = p->sec->output_section;
2498
2499 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2500 {
2501 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2502
2503 info->flags |= DF_TEXTREL;
2504
2505 if (info->warn_shared_textrel && info->shared)
2506 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2507 p->sec->owner, h->root.root.string,
2508 p->sec);
2509
2510 /* Not an error, just cut short the traversal. */
2511 return FALSE;
2512 }
2513 }
2514 return TRUE;
2515 }
2516
2517 /* Set the sizes of the dynamic sections. */
2518
2519 static bfd_boolean
2520 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2521 struct bfd_link_info *info)
2522 {
2523 struct elf_x86_64_link_hash_table *htab;
2524 bfd *dynobj;
2525 asection *s;
2526 bfd_boolean relocs;
2527 bfd *ibfd;
2528 const struct elf_backend_data *bed;
2529
2530 htab = elf_x86_64_hash_table (info);
2531 if (htab == NULL)
2532 return FALSE;
2533 bed = get_elf_backend_data (output_bfd);
2534
2535 dynobj = htab->elf.dynobj;
2536 if (dynobj == NULL)
2537 abort ();
2538
2539 if (htab->elf.dynamic_sections_created)
2540 {
2541 /* Set the contents of the .interp section to the interpreter. */
2542 if (info->executable)
2543 {
2544 s = bfd_get_section_by_name (dynobj, ".interp");
2545 if (s == NULL)
2546 abort ();
2547 s->size = htab->dynamic_interpreter_size;
2548 s->contents = (unsigned char *) htab->dynamic_interpreter;
2549 }
2550 }
2551
2552 /* Set up .got offsets for local syms, and space for local dynamic
2553 relocs. */
2554 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2555 {
2556 bfd_signed_vma *local_got;
2557 bfd_signed_vma *end_local_got;
2558 char *local_tls_type;
2559 bfd_vma *local_tlsdesc_gotent;
2560 bfd_size_type locsymcount;
2561 Elf_Internal_Shdr *symtab_hdr;
2562 asection *srel;
2563
2564 if (! is_x86_64_elf (ibfd))
2565 continue;
2566
2567 for (s = ibfd->sections; s != NULL; s = s->next)
2568 {
2569 struct elf_dyn_relocs *p;
2570
2571 for (p = (struct elf_dyn_relocs *)
2572 (elf_section_data (s)->local_dynrel);
2573 p != NULL;
2574 p = p->next)
2575 {
2576 if (!bfd_is_abs_section (p->sec)
2577 && bfd_is_abs_section (p->sec->output_section))
2578 {
2579 /* Input section has been discarded, either because
2580 it is a copy of a linkonce section or due to
2581 linker script /DISCARD/, so we'll be discarding
2582 the relocs too. */
2583 }
2584 else if (p->count != 0)
2585 {
2586 srel = elf_section_data (p->sec)->sreloc;
2587 srel->size += p->count * bed->s->sizeof_rela;
2588 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2589 && (info->flags & DF_TEXTREL) == 0)
2590 {
2591 info->flags |= DF_TEXTREL;
2592 if (info->warn_shared_textrel && info->shared)
2593 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2594 p->sec->owner, p->sec);
2595 }
2596 }
2597 }
2598 }
2599
2600 local_got = elf_local_got_refcounts (ibfd);
2601 if (!local_got)
2602 continue;
2603
2604 symtab_hdr = &elf_symtab_hdr (ibfd);
2605 locsymcount = symtab_hdr->sh_info;
2606 end_local_got = local_got + locsymcount;
2607 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2608 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2609 s = htab->elf.sgot;
2610 srel = htab->elf.srelgot;
2611 for (; local_got < end_local_got;
2612 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2613 {
2614 *local_tlsdesc_gotent = (bfd_vma) -1;
2615 if (*local_got > 0)
2616 {
2617 if (GOT_TLS_GDESC_P (*local_tls_type))
2618 {
2619 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2620 - elf_x86_64_compute_jump_table_size (htab);
2621 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2622 *local_got = (bfd_vma) -2;
2623 }
2624 if (! GOT_TLS_GDESC_P (*local_tls_type)
2625 || GOT_TLS_GD_P (*local_tls_type))
2626 {
2627 *local_got = s->size;
2628 s->size += GOT_ENTRY_SIZE;
2629 if (GOT_TLS_GD_P (*local_tls_type))
2630 s->size += GOT_ENTRY_SIZE;
2631 }
2632 if (info->shared
2633 || GOT_TLS_GD_ANY_P (*local_tls_type)
2634 || *local_tls_type == GOT_TLS_IE)
2635 {
2636 if (GOT_TLS_GDESC_P (*local_tls_type))
2637 {
2638 htab->elf.srelplt->size
2639 += bed->s->sizeof_rela;
2640 htab->tlsdesc_plt = (bfd_vma) -1;
2641 }
2642 if (! GOT_TLS_GDESC_P (*local_tls_type)
2643 || GOT_TLS_GD_P (*local_tls_type))
2644 srel->size += bed->s->sizeof_rela;
2645 }
2646 }
2647 else
2648 *local_got = (bfd_vma) -1;
2649 }
2650 }
2651
2652 if (htab->tls_ld_got.refcount > 0)
2653 {
2654 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2655 relocs. */
2656 htab->tls_ld_got.offset = htab->elf.sgot->size;
2657 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2658 htab->elf.srelgot->size += bed->s->sizeof_rela;
2659 }
2660 else
2661 htab->tls_ld_got.offset = -1;
2662
2663 /* Allocate global sym .plt and .got entries, and space for global
2664 sym dynamic relocs. */
2665 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2666 info);
2667
2668 /* Allocate .plt and .got entries, and space for local symbols. */
2669 htab_traverse (htab->loc_hash_table,
2670 elf_x86_64_allocate_local_dynrelocs,
2671 info);
2672
2673 /* For every jump slot reserved in the sgotplt, reloc_count is
2674 incremented. However, when we reserve space for TLS descriptors,
2675 it's not incremented, so in order to compute the space reserved
2676 for them, it suffices to multiply the reloc count by the jump
2677 slot size.
2678
2679 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2680 so that R_X86_64_IRELATIVE entries come last. */
2681 if (htab->elf.srelplt)
2682 {
2683 htab->sgotplt_jump_table_size
2684 = elf_x86_64_compute_jump_table_size (htab);
2685 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2686 }
2687 else if (htab->elf.irelplt)
2688 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2689
2690 if (htab->tlsdesc_plt)
2691 {
2692 /* If we're not using lazy TLS relocations, don't generate the
2693 PLT and GOT entries they require. */
2694 if ((info->flags & DF_BIND_NOW))
2695 htab->tlsdesc_plt = 0;
2696 else
2697 {
2698 htab->tlsdesc_got = htab->elf.sgot->size;
2699 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2700 /* Reserve room for the initial entry.
2701 FIXME: we could probably do away with it in this case. */
2702 if (htab->elf.splt->size == 0)
2703 htab->elf.splt->size += PLT_ENTRY_SIZE;
2704 htab->tlsdesc_plt = htab->elf.splt->size;
2705 htab->elf.splt->size += PLT_ENTRY_SIZE;
2706 }
2707 }
2708
2709 if (htab->elf.sgotplt)
2710 {
2711 struct elf_link_hash_entry *got;
2712 got = elf_link_hash_lookup (elf_hash_table (info),
2713 "_GLOBAL_OFFSET_TABLE_",
2714 FALSE, FALSE, FALSE);
2715
2716 /* Don't allocate .got.plt section if there are no GOT nor PLT
2717 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2718 if ((got == NULL
2719 || !got->ref_regular_nonweak)
2720 && (htab->elf.sgotplt->size
2721 == get_elf_backend_data (output_bfd)->got_header_size)
2722 && (htab->elf.splt == NULL
2723 || htab->elf.splt->size == 0)
2724 && (htab->elf.sgot == NULL
2725 || htab->elf.sgot->size == 0)
2726 && (htab->elf.iplt == NULL
2727 || htab->elf.iplt->size == 0)
2728 && (htab->elf.igotplt == NULL
2729 || htab->elf.igotplt->size == 0))
2730 htab->elf.sgotplt->size = 0;
2731 }
2732
2733 /* We now have determined the sizes of the various dynamic sections.
2734 Allocate memory for them. */
2735 relocs = FALSE;
2736 for (s = dynobj->sections; s != NULL; s = s->next)
2737 {
2738 if ((s->flags & SEC_LINKER_CREATED) == 0)
2739 continue;
2740
2741 if (s == htab->elf.splt
2742 || s == htab->elf.sgot
2743 || s == htab->elf.sgotplt
2744 || s == htab->elf.iplt
2745 || s == htab->elf.igotplt
2746 || s == htab->sdynbss)
2747 {
2748 /* Strip this section if we don't need it; see the
2749 comment below. */
2750 }
2751 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2752 {
2753 if (s->size != 0 && s != htab->elf.srelplt)
2754 relocs = TRUE;
2755
2756 /* We use the reloc_count field as a counter if we need
2757 to copy relocs into the output file. */
2758 if (s != htab->elf.srelplt)
2759 s->reloc_count = 0;
2760 }
2761 else
2762 {
2763 /* It's not one of our sections, so don't allocate space. */
2764 continue;
2765 }
2766
2767 if (s->size == 0)
2768 {
2769 /* If we don't need this section, strip it from the
2770 output file. This is mostly to handle .rela.bss and
2771 .rela.plt. We must create both sections in
2772 create_dynamic_sections, because they must be created
2773 before the linker maps input sections to output
2774 sections. The linker does that before
2775 adjust_dynamic_symbol is called, and it is that
2776 function which decides whether anything needs to go
2777 into these sections. */
2778
2779 s->flags |= SEC_EXCLUDE;
2780 continue;
2781 }
2782
2783 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2784 continue;
2785
2786 /* Allocate memory for the section contents. We use bfd_zalloc
2787 here in case unused entries are not reclaimed before the
2788 section's contents are written out. This should not happen,
2789 but this way if it does, we get a R_X86_64_NONE reloc instead
2790 of garbage. */
2791 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2792 if (s->contents == NULL)
2793 return FALSE;
2794 }
2795
2796 if (htab->plt_eh_frame != NULL
2797 && htab->elf.splt != NULL
2798 && htab->elf.splt->size != 0
2799 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0)
2800 bfd_put_32 (dynobj, htab->elf.splt->size,
2801 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2802
2803 if (htab->elf.dynamic_sections_created)
2804 {
2805 /* Add some entries to the .dynamic section. We fill in the
2806 values later, in elf_x86_64_finish_dynamic_sections, but we
2807 must add the entries now so that we get the correct size for
2808 the .dynamic section. The DT_DEBUG entry is filled in by the
2809 dynamic linker and used by the debugger. */
2810 #define add_dynamic_entry(TAG, VAL) \
2811 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2812
2813 if (info->executable)
2814 {
2815 if (!add_dynamic_entry (DT_DEBUG, 0))
2816 return FALSE;
2817 }
2818
2819 if (htab->elf.splt->size != 0)
2820 {
2821 if (!add_dynamic_entry (DT_PLTGOT, 0)
2822 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2823 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2824 || !add_dynamic_entry (DT_JMPREL, 0))
2825 return FALSE;
2826
2827 if (htab->tlsdesc_plt
2828 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2829 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2830 return FALSE;
2831 }
2832
2833 if (relocs)
2834 {
2835 if (!add_dynamic_entry (DT_RELA, 0)
2836 || !add_dynamic_entry (DT_RELASZ, 0)
2837 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2838 return FALSE;
2839
2840 /* If any dynamic relocs apply to a read-only section,
2841 then we need a DT_TEXTREL entry. */
2842 if ((info->flags & DF_TEXTREL) == 0)
2843 elf_link_hash_traverse (&htab->elf,
2844 elf_x86_64_readonly_dynrelocs,
2845 info);
2846
2847 if ((info->flags & DF_TEXTREL) != 0)
2848 {
2849 if (!add_dynamic_entry (DT_TEXTREL, 0))
2850 return FALSE;
2851 }
2852 }
2853 }
2854 #undef add_dynamic_entry
2855
2856 return TRUE;
2857 }
2858
2859 static bfd_boolean
2860 elf_x86_64_always_size_sections (bfd *output_bfd,
2861 struct bfd_link_info *info)
2862 {
2863 asection *tls_sec = elf_hash_table (info)->tls_sec;
2864
2865 if (tls_sec)
2866 {
2867 struct elf_link_hash_entry *tlsbase;
2868
2869 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2870 "_TLS_MODULE_BASE_",
2871 FALSE, FALSE, FALSE);
2872
2873 if (tlsbase && tlsbase->type == STT_TLS)
2874 {
2875 struct elf_x86_64_link_hash_table *htab;
2876 struct bfd_link_hash_entry *bh = NULL;
2877 const struct elf_backend_data *bed
2878 = get_elf_backend_data (output_bfd);
2879
2880 htab = elf_x86_64_hash_table (info);
2881 if (htab == NULL)
2882 return FALSE;
2883
2884 if (!(_bfd_generic_link_add_one_symbol
2885 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2886 tls_sec, 0, NULL, FALSE,
2887 bed->collect, &bh)))
2888 return FALSE;
2889
2890 htab->tls_module_base = bh;
2891
2892 tlsbase = (struct elf_link_hash_entry *)bh;
2893 tlsbase->def_regular = 1;
2894 tlsbase->other = STV_HIDDEN;
2895 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2896 }
2897 }
2898
2899 return TRUE;
2900 }
2901
2902 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2903 executables. Rather than setting it to the beginning of the TLS
2904 section, we have to set it to the end. This function may be called
2905 multiple times, it is idempotent. */
2906
2907 static void
2908 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2909 {
2910 struct elf_x86_64_link_hash_table *htab;
2911 struct bfd_link_hash_entry *base;
2912
2913 if (!info->executable)
2914 return;
2915
2916 htab = elf_x86_64_hash_table (info);
2917 if (htab == NULL)
2918 return;
2919
2920 base = htab->tls_module_base;
2921 if (base == NULL)
2922 return;
2923
2924 base->u.def.value = htab->elf.tls_size;
2925 }
2926
2927 /* Return the base VMA address which should be subtracted from real addresses
2928 when resolving @dtpoff relocation.
2929 This is PT_TLS segment p_vaddr. */
2930
2931 static bfd_vma
2932 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2933 {
2934 /* If tls_sec is NULL, we should have signalled an error already. */
2935 if (elf_hash_table (info)->tls_sec == NULL)
2936 return 0;
2937 return elf_hash_table (info)->tls_sec->vma;
2938 }
2939
2940 /* Return the relocation value for @tpoff relocation
2941 if STT_TLS virtual address is ADDRESS. */
2942
2943 static bfd_vma
2944 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2945 {
2946 struct elf_link_hash_table *htab = elf_hash_table (info);
2947 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2948 bfd_vma static_tls_size;
2949
2950 /* If tls_segment is NULL, we should have signalled an error already. */
2951 if (htab->tls_sec == NULL)
2952 return 0;
2953
2954 /* Consider special static TLS alignment requirements. */
2955 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2956 return address - static_tls_size - htab->tls_sec->vma;
2957 }
2958
2959 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2960 branch? */
2961
2962 static bfd_boolean
2963 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2964 {
2965 /* Opcode Instruction
2966 0xe8 call
2967 0xe9 jump
2968 0x0f 0x8x conditional jump */
2969 return ((offset > 0
2970 && (contents [offset - 1] == 0xe8
2971 || contents [offset - 1] == 0xe9))
2972 || (offset > 1
2973 && contents [offset - 2] == 0x0f
2974 && (contents [offset - 1] & 0xf0) == 0x80));
2975 }
2976
2977 /* Relocate an x86_64 ELF section. */
2978
2979 static bfd_boolean
2980 elf_x86_64_relocate_section (bfd *output_bfd,
2981 struct bfd_link_info *info,
2982 bfd *input_bfd,
2983 asection *input_section,
2984 bfd_byte *contents,
2985 Elf_Internal_Rela *relocs,
2986 Elf_Internal_Sym *local_syms,
2987 asection **local_sections)
2988 {
2989 struct elf_x86_64_link_hash_table *htab;
2990 Elf_Internal_Shdr *symtab_hdr;
2991 struct elf_link_hash_entry **sym_hashes;
2992 bfd_vma *local_got_offsets;
2993 bfd_vma *local_tlsdesc_gotents;
2994 Elf_Internal_Rela *rel;
2995 Elf_Internal_Rela *relend;
2996
2997 BFD_ASSERT (is_x86_64_elf (input_bfd));
2998
2999 htab = elf_x86_64_hash_table (info);
3000 if (htab == NULL)
3001 return FALSE;
3002 symtab_hdr = &elf_symtab_hdr (input_bfd);
3003 sym_hashes = elf_sym_hashes (input_bfd);
3004 local_got_offsets = elf_local_got_offsets (input_bfd);
3005 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3006
3007 elf_x86_64_set_tls_module_base (info);
3008
3009 rel = relocs;
3010 relend = relocs + input_section->reloc_count;
3011 for (; rel < relend; rel++)
3012 {
3013 unsigned int r_type;
3014 reloc_howto_type *howto;
3015 unsigned long r_symndx;
3016 struct elf_link_hash_entry *h;
3017 Elf_Internal_Sym *sym;
3018 asection *sec;
3019 bfd_vma off, offplt;
3020 bfd_vma relocation;
3021 bfd_boolean unresolved_reloc;
3022 bfd_reloc_status_type r;
3023 int tls_type;
3024 asection *base_got;
3025
3026 r_type = ELF32_R_TYPE (rel->r_info);
3027 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3028 || r_type == (int) R_X86_64_GNU_VTENTRY)
3029 continue;
3030
3031 if (r_type >= R_X86_64_max)
3032 {
3033 bfd_set_error (bfd_error_bad_value);
3034 return FALSE;
3035 }
3036
3037 if (r_type != (int) R_X86_64_32
3038 || ABI_64_P (output_bfd))
3039 howto = x86_64_elf_howto_table + r_type;
3040 else
3041 howto = (x86_64_elf_howto_table
3042 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3043 r_symndx = htab->r_sym (rel->r_info);
3044 h = NULL;
3045 sym = NULL;
3046 sec = NULL;
3047 unresolved_reloc = FALSE;
3048 if (r_symndx < symtab_hdr->sh_info)
3049 {
3050 sym = local_syms + r_symndx;
3051 sec = local_sections[r_symndx];
3052
3053 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3054 &sec, rel);
3055
3056 /* Relocate against local STT_GNU_IFUNC symbol. */
3057 if (!info->relocatable
3058 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3059 {
3060 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3061 rel, FALSE);
3062 if (h == NULL)
3063 abort ();
3064
3065 /* Set STT_GNU_IFUNC symbol value. */
3066 h->root.u.def.value = sym->st_value;
3067 h->root.u.def.section = sec;
3068 }
3069 }
3070 else
3071 {
3072 bfd_boolean warned ATTRIBUTE_UNUSED;
3073
3074 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3075 r_symndx, symtab_hdr, sym_hashes,
3076 h, sec, relocation,
3077 unresolved_reloc, warned);
3078 }
3079
3080 if (sec != NULL && elf_discarded_section (sec))
3081 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3082 rel, relend, howto, contents);
3083
3084 if (info->relocatable)
3085 continue;
3086
3087 if (rel->r_addend == 0
3088 && r_type == R_X86_64_64
3089 && !ABI_64_P (output_bfd))
3090 {
3091 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3092 it to 64bit if addend is zero. */
3093 r_type = R_X86_64_32;
3094 memset (contents + rel->r_offset + 4, 0, 4);
3095 }
3096
3097 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3098 it here if it is defined in a non-shared object. */
3099 if (h != NULL
3100 && h->type == STT_GNU_IFUNC
3101 && h->def_regular)
3102 {
3103 asection *plt;
3104 bfd_vma plt_index;
3105 const char *name;
3106
3107 if ((input_section->flags & SEC_ALLOC) == 0
3108 || h->plt.offset == (bfd_vma) -1)
3109 abort ();
3110
3111 /* STT_GNU_IFUNC symbol must go through PLT. */
3112 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3113 relocation = (plt->output_section->vma
3114 + plt->output_offset + h->plt.offset);
3115
3116 switch (r_type)
3117 {
3118 default:
3119 if (h->root.root.string)
3120 name = h->root.root.string;
3121 else
3122 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3123 NULL);
3124 (*_bfd_error_handler)
3125 (_("%B: relocation %s against STT_GNU_IFUNC "
3126 "symbol `%s' isn't handled by %s"), input_bfd,
3127 x86_64_elf_howto_table[r_type].name,
3128 name, __FUNCTION__);
3129 bfd_set_error (bfd_error_bad_value);
3130 return FALSE;
3131
3132 case R_X86_64_32S:
3133 if (info->shared)
3134 abort ();
3135 goto do_relocation;
3136
3137 case R_X86_64_32:
3138 if (ABI_64_P (output_bfd))
3139 goto do_relocation;
3140 /* FALLTHROUGH */
3141 case R_X86_64_64:
3142 if (rel->r_addend != 0)
3143 {
3144 if (h->root.root.string)
3145 name = h->root.root.string;
3146 else
3147 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3148 sym, NULL);
3149 (*_bfd_error_handler)
3150 (_("%B: relocation %s against STT_GNU_IFUNC "
3151 "symbol `%s' has non-zero addend: %d"),
3152 input_bfd, x86_64_elf_howto_table[r_type].name,
3153 name, rel->r_addend);
3154 bfd_set_error (bfd_error_bad_value);
3155 return FALSE;
3156 }
3157
3158 /* Generate dynamic relcoation only when there is a
3159 non-GOF reference in a shared object. */
3160 if (info->shared && h->non_got_ref)
3161 {
3162 Elf_Internal_Rela outrel;
3163 asection *sreloc;
3164
3165 /* Need a dynamic relocation to get the real function
3166 address. */
3167 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3168 info,
3169 input_section,
3170 rel->r_offset);
3171 if (outrel.r_offset == (bfd_vma) -1
3172 || outrel.r_offset == (bfd_vma) -2)
3173 abort ();
3174
3175 outrel.r_offset += (input_section->output_section->vma
3176 + input_section->output_offset);
3177
3178 if (h->dynindx == -1
3179 || h->forced_local
3180 || info->executable)
3181 {
3182 /* This symbol is resolved locally. */
3183 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3184 outrel.r_addend = (h->root.u.def.value
3185 + h->root.u.def.section->output_section->vma
3186 + h->root.u.def.section->output_offset);
3187 }
3188 else
3189 {
3190 outrel.r_info = htab->r_info (h->dynindx, r_type);
3191 outrel.r_addend = 0;
3192 }
3193
3194 sreloc = htab->elf.irelifunc;
3195 elf_append_rela (output_bfd, sreloc, &outrel);
3196
3197 /* If this reloc is against an external symbol, we
3198 do not want to fiddle with the addend. Otherwise,
3199 we need to include the symbol value so that it
3200 becomes an addend for the dynamic reloc. For an
3201 internal symbol, we have updated addend. */
3202 continue;
3203 }
3204 /* FALLTHROUGH */
3205 case R_X86_64_PC32:
3206 case R_X86_64_PC64:
3207 case R_X86_64_PLT32:
3208 goto do_relocation;
3209
3210 case R_X86_64_GOTPCREL:
3211 case R_X86_64_GOTPCREL64:
3212 base_got = htab->elf.sgot;
3213 off = h->got.offset;
3214
3215 if (base_got == NULL)
3216 abort ();
3217
3218 if (off == (bfd_vma) -1)
3219 {
3220 /* We can't use h->got.offset here to save state, or
3221 even just remember the offset, as finish_dynamic_symbol
3222 would use that as offset into .got. */
3223
3224 if (htab->elf.splt != NULL)
3225 {
3226 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3227 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3228 base_got = htab->elf.sgotplt;
3229 }
3230 else
3231 {
3232 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3233 off = plt_index * GOT_ENTRY_SIZE;
3234 base_got = htab->elf.igotplt;
3235 }
3236
3237 if (h->dynindx == -1
3238 || h->forced_local
3239 || info->symbolic)
3240 {
3241 /* This references the local defitionion. We must
3242 initialize this entry in the global offset table.
3243 Since the offset must always be a multiple of 8,
3244 we use the least significant bit to record
3245 whether we have initialized it already.
3246
3247 When doing a dynamic link, we create a .rela.got
3248 relocation entry to initialize the value. This
3249 is done in the finish_dynamic_symbol routine. */
3250 if ((off & 1) != 0)
3251 off &= ~1;
3252 else
3253 {
3254 bfd_put_64 (output_bfd, relocation,
3255 base_got->contents + off);
3256 /* Note that this is harmless for the GOTPLT64
3257 case, as -1 | 1 still is -1. */
3258 h->got.offset |= 1;
3259 }
3260 }
3261 }
3262
3263 relocation = (base_got->output_section->vma
3264 + base_got->output_offset + off);
3265
3266 goto do_relocation;
3267 }
3268 }
3269
3270 /* When generating a shared object, the relocations handled here are
3271 copied into the output file to be resolved at run time. */
3272 switch (r_type)
3273 {
3274 case R_X86_64_GOT32:
3275 case R_X86_64_GOT64:
3276 /* Relocation is to the entry for this symbol in the global
3277 offset table. */
3278 case R_X86_64_GOTPCREL:
3279 case R_X86_64_GOTPCREL64:
3280 /* Use global offset table entry as symbol value. */
3281 case R_X86_64_GOTPLT64:
3282 /* This is the same as GOT64 for relocation purposes, but
3283 indicates the existence of a PLT entry. The difficulty is,
3284 that we must calculate the GOT slot offset from the PLT
3285 offset, if this symbol got a PLT entry (it was global).
3286 Additionally if it's computed from the PLT entry, then that
3287 GOT offset is relative to .got.plt, not to .got. */
3288 base_got = htab->elf.sgot;
3289
3290 if (htab->elf.sgot == NULL)
3291 abort ();
3292
3293 if (h != NULL)
3294 {
3295 bfd_boolean dyn;
3296
3297 off = h->got.offset;
3298 if (h->needs_plt
3299 && h->plt.offset != (bfd_vma)-1
3300 && off == (bfd_vma)-1)
3301 {
3302 /* We can't use h->got.offset here to save
3303 state, or even just remember the offset, as
3304 finish_dynamic_symbol would use that as offset into
3305 .got. */
3306 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3307 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3308 base_got = htab->elf.sgotplt;
3309 }
3310
3311 dyn = htab->elf.dynamic_sections_created;
3312
3313 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3314 || (info->shared
3315 && SYMBOL_REFERENCES_LOCAL (info, h))
3316 || (ELF_ST_VISIBILITY (h->other)
3317 && h->root.type == bfd_link_hash_undefweak))
3318 {
3319 /* This is actually a static link, or it is a -Bsymbolic
3320 link and the symbol is defined locally, or the symbol
3321 was forced to be local because of a version file. We
3322 must initialize this entry in the global offset table.
3323 Since the offset must always be a multiple of 8, we
3324 use the least significant bit to record whether we
3325 have initialized it already.
3326
3327 When doing a dynamic link, we create a .rela.got
3328 relocation entry to initialize the value. This is
3329 done in the finish_dynamic_symbol routine. */
3330 if ((off & 1) != 0)
3331 off &= ~1;
3332 else
3333 {
3334 bfd_put_64 (output_bfd, relocation,
3335 base_got->contents + off);
3336 /* Note that this is harmless for the GOTPLT64 case,
3337 as -1 | 1 still is -1. */
3338 h->got.offset |= 1;
3339 }
3340 }
3341 else
3342 unresolved_reloc = FALSE;
3343 }
3344 else
3345 {
3346 if (local_got_offsets == NULL)
3347 abort ();
3348
3349 off = local_got_offsets[r_symndx];
3350
3351 /* The offset must always be a multiple of 8. We use
3352 the least significant bit to record whether we have
3353 already generated the necessary reloc. */
3354 if ((off & 1) != 0)
3355 off &= ~1;
3356 else
3357 {
3358 bfd_put_64 (output_bfd, relocation,
3359 base_got->contents + off);
3360
3361 if (info->shared)
3362 {
3363 asection *s;
3364 Elf_Internal_Rela outrel;
3365
3366 /* We need to generate a R_X86_64_RELATIVE reloc
3367 for the dynamic linker. */
3368 s = htab->elf.srelgot;
3369 if (s == NULL)
3370 abort ();
3371
3372 outrel.r_offset = (base_got->output_section->vma
3373 + base_got->output_offset
3374 + off);
3375 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3376 outrel.r_addend = relocation;
3377 elf_append_rela (output_bfd, s, &outrel);
3378 }
3379
3380 local_got_offsets[r_symndx] |= 1;
3381 }
3382 }
3383
3384 if (off >= (bfd_vma) -2)
3385 abort ();
3386
3387 relocation = base_got->output_section->vma
3388 + base_got->output_offset + off;
3389 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3390 relocation -= htab->elf.sgotplt->output_section->vma
3391 - htab->elf.sgotplt->output_offset;
3392
3393 break;
3394
3395 case R_X86_64_GOTOFF64:
3396 /* Relocation is relative to the start of the global offset
3397 table. */
3398
3399 /* Check to make sure it isn't a protected function symbol
3400 for shared library since it may not be local when used
3401 as function address. */
3402 if (info->shared
3403 && h
3404 && h->def_regular
3405 && h->type == STT_FUNC
3406 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3407 {
3408 (*_bfd_error_handler)
3409 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3410 input_bfd, h->root.root.string);
3411 bfd_set_error (bfd_error_bad_value);
3412 return FALSE;
3413 }
3414
3415 /* Note that sgot is not involved in this
3416 calculation. We always want the start of .got.plt. If we
3417 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3418 permitted by the ABI, we might have to change this
3419 calculation. */
3420 relocation -= htab->elf.sgotplt->output_section->vma
3421 + htab->elf.sgotplt->output_offset;
3422 break;
3423
3424 case R_X86_64_GOTPC32:
3425 case R_X86_64_GOTPC64:
3426 /* Use global offset table as symbol value. */
3427 relocation = htab->elf.sgotplt->output_section->vma
3428 + htab->elf.sgotplt->output_offset;
3429 unresolved_reloc = FALSE;
3430 break;
3431
3432 case R_X86_64_PLTOFF64:
3433 /* Relocation is PLT entry relative to GOT. For local
3434 symbols it's the symbol itself relative to GOT. */
3435 if (h != NULL
3436 /* See PLT32 handling. */
3437 && h->plt.offset != (bfd_vma) -1
3438 && htab->elf.splt != NULL)
3439 {
3440 relocation = (htab->elf.splt->output_section->vma
3441 + htab->elf.splt->output_offset
3442 + h->plt.offset);
3443 unresolved_reloc = FALSE;
3444 }
3445
3446 relocation -= htab->elf.sgotplt->output_section->vma
3447 + htab->elf.sgotplt->output_offset;
3448 break;
3449
3450 case R_X86_64_PLT32:
3451 /* Relocation is to the entry for this symbol in the
3452 procedure linkage table. */
3453
3454 /* Resolve a PLT32 reloc against a local symbol directly,
3455 without using the procedure linkage table. */
3456 if (h == NULL)
3457 break;
3458
3459 if (h->plt.offset == (bfd_vma) -1
3460 || htab->elf.splt == NULL)
3461 {
3462 /* We didn't make a PLT entry for this symbol. This
3463 happens when statically linking PIC code, or when
3464 using -Bsymbolic. */
3465 break;
3466 }
3467
3468 relocation = (htab->elf.splt->output_section->vma
3469 + htab->elf.splt->output_offset
3470 + h->plt.offset);
3471 unresolved_reloc = FALSE;
3472 break;
3473
3474 case R_X86_64_PC8:
3475 case R_X86_64_PC16:
3476 case R_X86_64_PC32:
3477 if (info->shared
3478 && ABI_64_P (output_bfd)
3479 && (input_section->flags & SEC_ALLOC) != 0
3480 && (input_section->flags & SEC_READONLY) != 0
3481 && h != NULL)
3482 {
3483 bfd_boolean fail = FALSE;
3484 bfd_boolean branch
3485 = (r_type == R_X86_64_PC32
3486 && is_32bit_relative_branch (contents, rel->r_offset));
3487
3488 if (SYMBOL_REFERENCES_LOCAL (info, h))
3489 {
3490 /* Symbol is referenced locally. Make sure it is
3491 defined locally or for a branch. */
3492 fail = !h->def_regular && !branch;
3493 }
3494 else
3495 {
3496 /* Symbol isn't referenced locally. We only allow
3497 branch to symbol with non-default visibility. */
3498 fail = (!branch
3499 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3500 }
3501
3502 if (fail)
3503 {
3504 const char *fmt;
3505 const char *v;
3506 const char *pic = "";
3507
3508 switch (ELF_ST_VISIBILITY (h->other))
3509 {
3510 case STV_HIDDEN:
3511 v = _("hidden symbol");
3512 break;
3513 case STV_INTERNAL:
3514 v = _("internal symbol");
3515 break;
3516 case STV_PROTECTED:
3517 v = _("protected symbol");
3518 break;
3519 default:
3520 v = _("symbol");
3521 pic = _("; recompile with -fPIC");
3522 break;
3523 }
3524
3525 if (h->def_regular)
3526 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3527 else
3528 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3529
3530 (*_bfd_error_handler) (fmt, input_bfd,
3531 x86_64_elf_howto_table[r_type].name,
3532 v, h->root.root.string, pic);
3533 bfd_set_error (bfd_error_bad_value);
3534 return FALSE;
3535 }
3536 }
3537 /* Fall through. */
3538
3539 case R_X86_64_8:
3540 case R_X86_64_16:
3541 case R_X86_64_32:
3542 case R_X86_64_PC64:
3543 case R_X86_64_64:
3544 /* FIXME: The ABI says the linker should make sure the value is
3545 the same when it's zeroextended to 64 bit. */
3546
3547 if ((input_section->flags & SEC_ALLOC) == 0)
3548 break;
3549
3550 if ((info->shared
3551 && (h == NULL
3552 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3553 || h->root.type != bfd_link_hash_undefweak)
3554 && (! IS_X86_64_PCREL_TYPE (r_type)
3555 || ! SYMBOL_CALLS_LOCAL (info, h)))
3556 || (ELIMINATE_COPY_RELOCS
3557 && !info->shared
3558 && h != NULL
3559 && h->dynindx != -1
3560 && !h->non_got_ref
3561 && ((h->def_dynamic
3562 && !h->def_regular)
3563 || h->root.type == bfd_link_hash_undefweak
3564 || h->root.type == bfd_link_hash_undefined)))
3565 {
3566 Elf_Internal_Rela outrel;
3567 bfd_boolean skip, relocate;
3568 asection *sreloc;
3569
3570 /* When generating a shared object, these relocations
3571 are copied into the output file to be resolved at run
3572 time. */
3573 skip = FALSE;
3574 relocate = FALSE;
3575
3576 outrel.r_offset =
3577 _bfd_elf_section_offset (output_bfd, info, input_section,
3578 rel->r_offset);
3579 if (outrel.r_offset == (bfd_vma) -1)
3580 skip = TRUE;
3581 else if (outrel.r_offset == (bfd_vma) -2)
3582 skip = TRUE, relocate = TRUE;
3583
3584 outrel.r_offset += (input_section->output_section->vma
3585 + input_section->output_offset);
3586
3587 if (skip)
3588 memset (&outrel, 0, sizeof outrel);
3589
3590 /* h->dynindx may be -1 if this symbol was marked to
3591 become local. */
3592 else if (h != NULL
3593 && h->dynindx != -1
3594 && (IS_X86_64_PCREL_TYPE (r_type)
3595 || ! info->shared
3596 || ! SYMBOLIC_BIND (info, h)
3597 || ! h->def_regular))
3598 {
3599 outrel.r_info = htab->r_info (h->dynindx, r_type);
3600 outrel.r_addend = rel->r_addend;
3601 }
3602 else
3603 {
3604 /* This symbol is local, or marked to become local. */
3605 if (r_type == htab->pointer_r_type)
3606 {
3607 relocate = TRUE;
3608 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3609 outrel.r_addend = relocation + rel->r_addend;
3610 }
3611 else if (r_type == R_X86_64_64
3612 && !ABI_64_P (output_bfd))
3613 {
3614 relocate = TRUE;
3615 outrel.r_info = htab->r_info (0,
3616 R_X86_64_RELATIVE64);
3617 outrel.r_addend = relocation + rel->r_addend;
3618 }
3619 else
3620 {
3621 long sindx;
3622
3623 if (bfd_is_abs_section (sec))
3624 sindx = 0;
3625 else if (sec == NULL || sec->owner == NULL)
3626 {
3627 bfd_set_error (bfd_error_bad_value);
3628 return FALSE;
3629 }
3630 else
3631 {
3632 asection *osec;
3633
3634 /* We are turning this relocation into one
3635 against a section symbol. It would be
3636 proper to subtract the symbol's value,
3637 osec->vma, from the emitted reloc addend,
3638 but ld.so expects buggy relocs. */
3639 osec = sec->output_section;
3640 sindx = elf_section_data (osec)->dynindx;
3641 if (sindx == 0)
3642 {
3643 asection *oi = htab->elf.text_index_section;
3644 sindx = elf_section_data (oi)->dynindx;
3645 }
3646 BFD_ASSERT (sindx != 0);
3647 }
3648
3649 outrel.r_info = htab->r_info (sindx, r_type);
3650 outrel.r_addend = relocation + rel->r_addend;
3651 }
3652 }
3653
3654 sreloc = elf_section_data (input_section)->sreloc;
3655
3656 if (sreloc == NULL || sreloc->contents == NULL)
3657 {
3658 r = bfd_reloc_notsupported;
3659 goto check_relocation_error;
3660 }
3661
3662 elf_append_rela (output_bfd, sreloc, &outrel);
3663
3664 /* If this reloc is against an external symbol, we do
3665 not want to fiddle with the addend. Otherwise, we
3666 need to include the symbol value so that it becomes
3667 an addend for the dynamic reloc. */
3668 if (! relocate)
3669 continue;
3670 }
3671
3672 break;
3673
3674 case R_X86_64_TLSGD:
3675 case R_X86_64_GOTPC32_TLSDESC:
3676 case R_X86_64_TLSDESC_CALL:
3677 case R_X86_64_GOTTPOFF:
3678 tls_type = GOT_UNKNOWN;
3679 if (h == NULL && local_got_offsets)
3680 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3681 else if (h != NULL)
3682 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3683
3684 if (! elf_x86_64_tls_transition (info, input_bfd,
3685 input_section, contents,
3686 symtab_hdr, sym_hashes,
3687 &r_type, tls_type, rel,
3688 relend, h, r_symndx))
3689 return FALSE;
3690
3691 if (r_type == R_X86_64_TPOFF32)
3692 {
3693 bfd_vma roff = rel->r_offset;
3694
3695 BFD_ASSERT (! unresolved_reloc);
3696
3697 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3698 {
3699 /* GD->LE transition. For 64bit, change
3700 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3701 .word 0x6666; rex64; call __tls_get_addr
3702 into:
3703 movq %fs:0, %rax
3704 leaq foo@tpoff(%rax), %rax
3705 For 32bit, change
3706 leaq foo@tlsgd(%rip), %rdi
3707 .word 0x6666; rex64; call __tls_get_addr
3708 into:
3709 movl %fs:0, %eax
3710 leaq foo@tpoff(%rax), %rax */
3711 if (ABI_64_P (output_bfd))
3712 memcpy (contents + roff - 4,
3713 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3714 16);
3715 else
3716 memcpy (contents + roff - 3,
3717 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3718 15);
3719 bfd_put_32 (output_bfd,
3720 elf_x86_64_tpoff (info, relocation),
3721 contents + roff + 8);
3722 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3723 rel++;
3724 continue;
3725 }
3726 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3727 {
3728 /* GDesc -> LE transition.
3729 It's originally something like:
3730 leaq x@tlsdesc(%rip), %rax
3731
3732 Change it to:
3733 movl $x@tpoff, %rax. */
3734
3735 unsigned int val, type;
3736
3737 type = bfd_get_8 (input_bfd, contents + roff - 3);
3738 val = bfd_get_8 (input_bfd, contents + roff - 1);
3739 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3740 contents + roff - 3);
3741 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3742 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3743 contents + roff - 1);
3744 bfd_put_32 (output_bfd,
3745 elf_x86_64_tpoff (info, relocation),
3746 contents + roff);
3747 continue;
3748 }
3749 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3750 {
3751 /* GDesc -> LE transition.
3752 It's originally:
3753 call *(%rax)
3754 Turn it into:
3755 xchg %ax,%ax. */
3756 bfd_put_8 (output_bfd, 0x66, contents + roff);
3757 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3758 continue;
3759 }
3760 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3761 {
3762 /* IE->LE transition:
3763 Originally it can be one of:
3764 movq foo@gottpoff(%rip), %reg
3765 addq foo@gottpoff(%rip), %reg
3766 We change it into:
3767 movq $foo, %reg
3768 leaq foo(%reg), %reg
3769 addq $foo, %reg. */
3770
3771 unsigned int val, type, reg;
3772
3773 val = bfd_get_8 (input_bfd, contents + roff - 3);
3774 type = bfd_get_8 (input_bfd, contents + roff - 2);
3775 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3776 reg >>= 3;
3777 if (type == 0x8b)
3778 {
3779 /* movq */
3780 if (val == 0x4c)
3781 bfd_put_8 (output_bfd, 0x49,
3782 contents + roff - 3);
3783 else if (!ABI_64_P (output_bfd) && val == 0x44)
3784 bfd_put_8 (output_bfd, 0x41,
3785 contents + roff - 3);
3786 bfd_put_8 (output_bfd, 0xc7,
3787 contents + roff - 2);
3788 bfd_put_8 (output_bfd, 0xc0 | reg,
3789 contents + roff - 1);
3790 }
3791 else if (reg == 4)
3792 {
3793 /* addq -> addq - addressing with %rsp/%r12 is
3794 special */
3795 if (val == 0x4c)
3796 bfd_put_8 (output_bfd, 0x49,
3797 contents + roff - 3);
3798 else if (!ABI_64_P (output_bfd) && val == 0x44)
3799 bfd_put_8 (output_bfd, 0x41,
3800 contents + roff - 3);
3801 bfd_put_8 (output_bfd, 0x81,
3802 contents + roff - 2);
3803 bfd_put_8 (output_bfd, 0xc0 | reg,
3804 contents + roff - 1);
3805 }
3806 else
3807 {
3808 /* addq -> leaq */
3809 if (val == 0x4c)
3810 bfd_put_8 (output_bfd, 0x4d,
3811 contents + roff - 3);
3812 else if (!ABI_64_P (output_bfd) && val == 0x44)
3813 bfd_put_8 (output_bfd, 0x45,
3814 contents + roff - 3);
3815 bfd_put_8 (output_bfd, 0x8d,
3816 contents + roff - 2);
3817 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3818 contents + roff - 1);
3819 }
3820 bfd_put_32 (output_bfd,
3821 elf_x86_64_tpoff (info, relocation),
3822 contents + roff);
3823 continue;
3824 }
3825 else
3826 BFD_ASSERT (FALSE);
3827 }
3828
3829 if (htab->elf.sgot == NULL)
3830 abort ();
3831
3832 if (h != NULL)
3833 {
3834 off = h->got.offset;
3835 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3836 }
3837 else
3838 {
3839 if (local_got_offsets == NULL)
3840 abort ();
3841
3842 off = local_got_offsets[r_symndx];
3843 offplt = local_tlsdesc_gotents[r_symndx];
3844 }
3845
3846 if ((off & 1) != 0)
3847 off &= ~1;
3848 else
3849 {
3850 Elf_Internal_Rela outrel;
3851 int dr_type, indx;
3852 asection *sreloc;
3853
3854 if (htab->elf.srelgot == NULL)
3855 abort ();
3856
3857 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3858
3859 if (GOT_TLS_GDESC_P (tls_type))
3860 {
3861 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3862 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3863 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3864 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3865 + htab->elf.sgotplt->output_offset
3866 + offplt
3867 + htab->sgotplt_jump_table_size);
3868 sreloc = htab->elf.srelplt;
3869 if (indx == 0)
3870 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3871 else
3872 outrel.r_addend = 0;
3873 elf_append_rela (output_bfd, sreloc, &outrel);
3874 }
3875
3876 sreloc = htab->elf.srelgot;
3877
3878 outrel.r_offset = (htab->elf.sgot->output_section->vma
3879 + htab->elf.sgot->output_offset + off);
3880
3881 if (GOT_TLS_GD_P (tls_type))
3882 dr_type = R_X86_64_DTPMOD64;
3883 else if (GOT_TLS_GDESC_P (tls_type))
3884 goto dr_done;
3885 else
3886 dr_type = R_X86_64_TPOFF64;
3887
3888 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3889 outrel.r_addend = 0;
3890 if ((dr_type == R_X86_64_TPOFF64
3891 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3892 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3893 outrel.r_info = htab->r_info (indx, dr_type);
3894
3895 elf_append_rela (output_bfd, sreloc, &outrel);
3896
3897 if (GOT_TLS_GD_P (tls_type))
3898 {
3899 if (indx == 0)
3900 {
3901 BFD_ASSERT (! unresolved_reloc);
3902 bfd_put_64 (output_bfd,
3903 relocation - elf_x86_64_dtpoff_base (info),
3904 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3905 }
3906 else
3907 {
3908 bfd_put_64 (output_bfd, 0,
3909 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3910 outrel.r_info = htab->r_info (indx,
3911 R_X86_64_DTPOFF64);
3912 outrel.r_offset += GOT_ENTRY_SIZE;
3913 elf_append_rela (output_bfd, sreloc,
3914 &outrel);
3915 }
3916 }
3917
3918 dr_done:
3919 if (h != NULL)
3920 h->got.offset |= 1;
3921 else
3922 local_got_offsets[r_symndx] |= 1;
3923 }
3924
3925 if (off >= (bfd_vma) -2
3926 && ! GOT_TLS_GDESC_P (tls_type))
3927 abort ();
3928 if (r_type == ELF32_R_TYPE (rel->r_info))
3929 {
3930 if (r_type == R_X86_64_GOTPC32_TLSDESC
3931 || r_type == R_X86_64_TLSDESC_CALL)
3932 relocation = htab->elf.sgotplt->output_section->vma
3933 + htab->elf.sgotplt->output_offset
3934 + offplt + htab->sgotplt_jump_table_size;
3935 else
3936 relocation = htab->elf.sgot->output_section->vma
3937 + htab->elf.sgot->output_offset + off;
3938 unresolved_reloc = FALSE;
3939 }
3940 else
3941 {
3942 bfd_vma roff = rel->r_offset;
3943
3944 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3945 {
3946 /* GD->IE transition. For 64bit, change
3947 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3948 .word 0x6666; rex64; call __tls_get_addr@plt
3949 into:
3950 movq %fs:0, %rax
3951 addq foo@gottpoff(%rip), %rax
3952 For 32bit, change
3953 leaq foo@tlsgd(%rip), %rdi
3954 .word 0x6666; rex64; call __tls_get_addr@plt
3955 into:
3956 movl %fs:0, %eax
3957 addq foo@gottpoff(%rip), %rax */
3958 if (ABI_64_P (output_bfd))
3959 memcpy (contents + roff - 4,
3960 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3961 16);
3962 else
3963 memcpy (contents + roff - 3,
3964 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3965 15);
3966
3967 relocation = (htab->elf.sgot->output_section->vma
3968 + htab->elf.sgot->output_offset + off
3969 - roff
3970 - input_section->output_section->vma
3971 - input_section->output_offset
3972 - 12);
3973 bfd_put_32 (output_bfd, relocation,
3974 contents + roff + 8);
3975 /* Skip R_X86_64_PLT32. */
3976 rel++;
3977 continue;
3978 }
3979 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3980 {
3981 /* GDesc -> IE transition.
3982 It's originally something like:
3983 leaq x@tlsdesc(%rip), %rax
3984
3985 Change it to:
3986 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3987
3988 /* Now modify the instruction as appropriate. To
3989 turn a leaq into a movq in the form we use it, it
3990 suffices to change the second byte from 0x8d to
3991 0x8b. */
3992 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3993
3994 bfd_put_32 (output_bfd,
3995 htab->elf.sgot->output_section->vma
3996 + htab->elf.sgot->output_offset + off
3997 - rel->r_offset
3998 - input_section->output_section->vma
3999 - input_section->output_offset
4000 - 4,
4001 contents + roff);
4002 continue;
4003 }
4004 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4005 {
4006 /* GDesc -> IE transition.
4007 It's originally:
4008 call *(%rax)
4009
4010 Change it to:
4011 xchg %ax, %ax. */
4012
4013 bfd_put_8 (output_bfd, 0x66, contents + roff);
4014 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4015 continue;
4016 }
4017 else
4018 BFD_ASSERT (FALSE);
4019 }
4020 break;
4021
4022 case R_X86_64_TLSLD:
4023 if (! elf_x86_64_tls_transition (info, input_bfd,
4024 input_section, contents,
4025 symtab_hdr, sym_hashes,
4026 &r_type, GOT_UNKNOWN,
4027 rel, relend, h, r_symndx))
4028 return FALSE;
4029
4030 if (r_type != R_X86_64_TLSLD)
4031 {
4032 /* LD->LE transition:
4033 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4034 For 64bit, we change it into:
4035 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4036 For 32bit, we change it into:
4037 nopl 0x0(%rax); movl %fs:0, %eax. */
4038
4039 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4040 if (ABI_64_P (output_bfd))
4041 memcpy (contents + rel->r_offset - 3,
4042 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4043 else
4044 memcpy (contents + rel->r_offset - 3,
4045 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4046 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4047 rel++;
4048 continue;
4049 }
4050
4051 if (htab->elf.sgot == NULL)
4052 abort ();
4053
4054 off = htab->tls_ld_got.offset;
4055 if (off & 1)
4056 off &= ~1;
4057 else
4058 {
4059 Elf_Internal_Rela outrel;
4060
4061 if (htab->elf.srelgot == NULL)
4062 abort ();
4063
4064 outrel.r_offset = (htab->elf.sgot->output_section->vma
4065 + htab->elf.sgot->output_offset + off);
4066
4067 bfd_put_64 (output_bfd, 0,
4068 htab->elf.sgot->contents + off);
4069 bfd_put_64 (output_bfd, 0,
4070 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4071 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4072 outrel.r_addend = 0;
4073 elf_append_rela (output_bfd, htab->elf.srelgot,
4074 &outrel);
4075 htab->tls_ld_got.offset |= 1;
4076 }
4077 relocation = htab->elf.sgot->output_section->vma
4078 + htab->elf.sgot->output_offset + off;
4079 unresolved_reloc = FALSE;
4080 break;
4081
4082 case R_X86_64_DTPOFF32:
4083 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4084 relocation -= elf_x86_64_dtpoff_base (info);
4085 else
4086 relocation = elf_x86_64_tpoff (info, relocation);
4087 break;
4088
4089 case R_X86_64_TPOFF32:
4090 case R_X86_64_TPOFF64:
4091 BFD_ASSERT (info->executable);
4092 relocation = elf_x86_64_tpoff (info, relocation);
4093 break;
4094
4095 default:
4096 break;
4097 }
4098
4099 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4100 because such sections are not SEC_ALLOC and thus ld.so will
4101 not process them. */
4102 if (unresolved_reloc
4103 && !((input_section->flags & SEC_DEBUGGING) != 0
4104 && h->def_dynamic)
4105 && _bfd_elf_section_offset (output_bfd, info, input_section,
4106 rel->r_offset) != (bfd_vma) -1)
4107 (*_bfd_error_handler)
4108 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4109 input_bfd,
4110 input_section,
4111 (long) rel->r_offset,
4112 howto->name,
4113 h->root.root.string);
4114
4115 do_relocation:
4116 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4117 contents, rel->r_offset,
4118 relocation, rel->r_addend);
4119
4120 check_relocation_error:
4121 if (r != bfd_reloc_ok)
4122 {
4123 const char *name;
4124
4125 if (h != NULL)
4126 name = h->root.root.string;
4127 else
4128 {
4129 name = bfd_elf_string_from_elf_section (input_bfd,
4130 symtab_hdr->sh_link,
4131 sym->st_name);
4132 if (name == NULL)
4133 return FALSE;
4134 if (*name == '\0')
4135 name = bfd_section_name (input_bfd, sec);
4136 }
4137
4138 if (r == bfd_reloc_overflow)
4139 {
4140 if (! ((*info->callbacks->reloc_overflow)
4141 (info, (h ? &h->root : NULL), name, howto->name,
4142 (bfd_vma) 0, input_bfd, input_section,
4143 rel->r_offset)))
4144 return FALSE;
4145 }
4146 else
4147 {
4148 (*_bfd_error_handler)
4149 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4150 input_bfd, input_section,
4151 (long) rel->r_offset, name, (int) r);
4152 return FALSE;
4153 }
4154 }
4155 }
4156
4157 return TRUE;
4158 }
4159
4160 /* Finish up dynamic symbol handling. We set the contents of various
4161 dynamic sections here. */
4162
4163 static bfd_boolean
4164 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4165 struct bfd_link_info *info,
4166 struct elf_link_hash_entry *h,
4167 Elf_Internal_Sym *sym)
4168 {
4169 struct elf_x86_64_link_hash_table *htab;
4170
4171 htab = elf_x86_64_hash_table (info);
4172 if (htab == NULL)
4173 return FALSE;
4174
4175 if (h->plt.offset != (bfd_vma) -1)
4176 {
4177 bfd_vma plt_index;
4178 bfd_vma got_offset;
4179 Elf_Internal_Rela rela;
4180 bfd_byte *loc;
4181 asection *plt, *gotplt, *relplt;
4182 const struct elf_backend_data *bed;
4183
4184 /* When building a static executable, use .iplt, .igot.plt and
4185 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4186 if (htab->elf.splt != NULL)
4187 {
4188 plt = htab->elf.splt;
4189 gotplt = htab->elf.sgotplt;
4190 relplt = htab->elf.srelplt;
4191 }
4192 else
4193 {
4194 plt = htab->elf.iplt;
4195 gotplt = htab->elf.igotplt;
4196 relplt = htab->elf.irelplt;
4197 }
4198
4199 /* This symbol has an entry in the procedure linkage table. Set
4200 it up. */
4201 if ((h->dynindx == -1
4202 && !((h->forced_local || info->executable)
4203 && h->def_regular
4204 && h->type == STT_GNU_IFUNC))
4205 || plt == NULL
4206 || gotplt == NULL
4207 || relplt == NULL)
4208 return FALSE;
4209
4210 /* Get the index in the procedure linkage table which
4211 corresponds to this symbol. This is the index of this symbol
4212 in all the symbols for which we are making plt entries. The
4213 first entry in the procedure linkage table is reserved.
4214
4215 Get the offset into the .got table of the entry that
4216 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4217 bytes. The first three are reserved for the dynamic linker.
4218
4219 For static executables, we don't reserve anything. */
4220
4221 if (plt == htab->elf.splt)
4222 {
4223 got_offset = h->plt.offset / PLT_ENTRY_SIZE - 1;
4224 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4225 }
4226 else
4227 {
4228 got_offset = h->plt.offset / PLT_ENTRY_SIZE;
4229 got_offset = got_offset * GOT_ENTRY_SIZE;
4230 }
4231
4232 /* Fill in the entry in the procedure linkage table. */
4233 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
4234 PLT_ENTRY_SIZE);
4235
4236 /* Insert the relocation positions of the plt section. The magic
4237 numbers at the end of the statements are the positions of the
4238 relocations in the plt section. */
4239 /* Put offset for jmp *name@GOTPCREL(%rip), since the
4240 instruction uses 6 bytes, subtract this value. */
4241 bfd_put_32 (output_bfd,
4242 (gotplt->output_section->vma
4243 + gotplt->output_offset
4244 + got_offset
4245 - plt->output_section->vma
4246 - plt->output_offset
4247 - h->plt.offset
4248 - 6),
4249 plt->contents + h->plt.offset + 2);
4250
4251 /* Fill in the entry in the global offset table, initially this
4252 points to the pushq instruction in the PLT which is at offset 6. */
4253 bfd_put_64 (output_bfd, (plt->output_section->vma
4254 + plt->output_offset
4255 + h->plt.offset + 6),
4256 gotplt->contents + got_offset);
4257
4258 /* Fill in the entry in the .rela.plt section. */
4259 rela.r_offset = (gotplt->output_section->vma
4260 + gotplt->output_offset
4261 + got_offset);
4262 if (h->dynindx == -1
4263 || ((info->executable
4264 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4265 && h->def_regular
4266 && h->type == STT_GNU_IFUNC))
4267 {
4268 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4269 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4270 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4271 rela.r_addend = (h->root.u.def.value
4272 + h->root.u.def.section->output_section->vma
4273 + h->root.u.def.section->output_offset);
4274 /* R_X86_64_IRELATIVE comes last. */
4275 plt_index = htab->next_irelative_index--;
4276 }
4277 else
4278 {
4279 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4280 rela.r_addend = 0;
4281 plt_index = htab->next_jump_slot_index++;
4282 }
4283
4284 /* Don't fill PLT entry for static executables. */
4285 if (plt == htab->elf.splt)
4286 {
4287 /* Put relocation index. */
4288 bfd_put_32 (output_bfd, plt_index,
4289 plt->contents + h->plt.offset + 7);
4290 /* Put offset for jmp .PLT0. */
4291 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4292 plt->contents + h->plt.offset + 12);
4293 }
4294
4295 bed = get_elf_backend_data (output_bfd);
4296 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4297 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4298
4299 if (!h->def_regular)
4300 {
4301 /* Mark the symbol as undefined, rather than as defined in
4302 the .plt section. Leave the value if there were any
4303 relocations where pointer equality matters (this is a clue
4304 for the dynamic linker, to make function pointer
4305 comparisons work between an application and shared
4306 library), otherwise set it to zero. If a function is only
4307 called from a binary, there is no need to slow down
4308 shared libraries because of that. */
4309 sym->st_shndx = SHN_UNDEF;
4310 if (!h->pointer_equality_needed)
4311 sym->st_value = 0;
4312 }
4313 }
4314
4315 if (h->got.offset != (bfd_vma) -1
4316 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4317 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4318 {
4319 Elf_Internal_Rela rela;
4320
4321 /* This symbol has an entry in the global offset table. Set it
4322 up. */
4323 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4324 abort ();
4325
4326 rela.r_offset = (htab->elf.sgot->output_section->vma
4327 + htab->elf.sgot->output_offset
4328 + (h->got.offset &~ (bfd_vma) 1));
4329
4330 /* If this is a static link, or it is a -Bsymbolic link and the
4331 symbol is defined locally or was forced to be local because
4332 of a version file, we just want to emit a RELATIVE reloc.
4333 The entry in the global offset table will already have been
4334 initialized in the relocate_section function. */
4335 if (h->def_regular
4336 && h->type == STT_GNU_IFUNC)
4337 {
4338 if (info->shared)
4339 {
4340 /* Generate R_X86_64_GLOB_DAT. */
4341 goto do_glob_dat;
4342 }
4343 else
4344 {
4345 asection *plt;
4346
4347 if (!h->pointer_equality_needed)
4348 abort ();
4349
4350 /* For non-shared object, we can't use .got.plt, which
4351 contains the real function addres if we need pointer
4352 equality. We load the GOT entry with the PLT entry. */
4353 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4354 bfd_put_64 (output_bfd, (plt->output_section->vma
4355 + plt->output_offset
4356 + h->plt.offset),
4357 htab->elf.sgot->contents + h->got.offset);
4358 return TRUE;
4359 }
4360 }
4361 else if (info->shared
4362 && SYMBOL_REFERENCES_LOCAL (info, h))
4363 {
4364 if (!h->def_regular)
4365 return FALSE;
4366 BFD_ASSERT((h->got.offset & 1) != 0);
4367 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4368 rela.r_addend = (h->root.u.def.value
4369 + h->root.u.def.section->output_section->vma
4370 + h->root.u.def.section->output_offset);
4371 }
4372 else
4373 {
4374 BFD_ASSERT((h->got.offset & 1) == 0);
4375 do_glob_dat:
4376 bfd_put_64 (output_bfd, (bfd_vma) 0,
4377 htab->elf.sgot->contents + h->got.offset);
4378 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4379 rela.r_addend = 0;
4380 }
4381
4382 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4383 }
4384
4385 if (h->needs_copy)
4386 {
4387 Elf_Internal_Rela rela;
4388
4389 /* This symbol needs a copy reloc. Set it up. */
4390
4391 if (h->dynindx == -1
4392 || (h->root.type != bfd_link_hash_defined
4393 && h->root.type != bfd_link_hash_defweak)
4394 || htab->srelbss == NULL)
4395 abort ();
4396
4397 rela.r_offset = (h->root.u.def.value
4398 + h->root.u.def.section->output_section->vma
4399 + h->root.u.def.section->output_offset);
4400 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4401 rela.r_addend = 0;
4402 elf_append_rela (output_bfd, htab->srelbss, &rela);
4403 }
4404
4405 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4406 be NULL for local symbols. */
4407 if (sym != NULL
4408 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4409 || h == htab->elf.hgot))
4410 sym->st_shndx = SHN_ABS;
4411
4412 return TRUE;
4413 }
4414
4415 /* Finish up local dynamic symbol handling. We set the contents of
4416 various dynamic sections here. */
4417
4418 static bfd_boolean
4419 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4420 {
4421 struct elf_link_hash_entry *h
4422 = (struct elf_link_hash_entry *) *slot;
4423 struct bfd_link_info *info
4424 = (struct bfd_link_info *) inf;
4425
4426 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4427 info, h, NULL);
4428 }
4429
4430 /* Used to decide how to sort relocs in an optimal manner for the
4431 dynamic linker, before writing them out. */
4432
4433 static enum elf_reloc_type_class
4434 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4435 {
4436 switch ((int) ELF32_R_TYPE (rela->r_info))
4437 {
4438 case R_X86_64_RELATIVE:
4439 return reloc_class_relative;
4440 case R_X86_64_JUMP_SLOT:
4441 return reloc_class_plt;
4442 case R_X86_64_COPY:
4443 return reloc_class_copy;
4444 default:
4445 return reloc_class_normal;
4446 }
4447 }
4448
4449 /* Finish up the dynamic sections. */
4450
4451 static bfd_boolean
4452 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4453 struct bfd_link_info *info)
4454 {
4455 struct elf_x86_64_link_hash_table *htab;
4456 bfd *dynobj;
4457 asection *sdyn;
4458
4459 htab = elf_x86_64_hash_table (info);
4460 if (htab == NULL)
4461 return FALSE;
4462
4463 dynobj = htab->elf.dynobj;
4464 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4465
4466 if (htab->elf.dynamic_sections_created)
4467 {
4468 bfd_byte *dyncon, *dynconend;
4469 const struct elf_backend_data *bed;
4470 bfd_size_type sizeof_dyn;
4471
4472 if (sdyn == NULL || htab->elf.sgot == NULL)
4473 abort ();
4474
4475 bed = get_elf_backend_data (dynobj);
4476 sizeof_dyn = bed->s->sizeof_dyn;
4477 dyncon = sdyn->contents;
4478 dynconend = sdyn->contents + sdyn->size;
4479 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4480 {
4481 Elf_Internal_Dyn dyn;
4482 asection *s;
4483
4484 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4485
4486 switch (dyn.d_tag)
4487 {
4488 default:
4489 continue;
4490
4491 case DT_PLTGOT:
4492 s = htab->elf.sgotplt;
4493 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4494 break;
4495
4496 case DT_JMPREL:
4497 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4498 break;
4499
4500 case DT_PLTRELSZ:
4501 s = htab->elf.srelplt->output_section;
4502 dyn.d_un.d_val = s->size;
4503 break;
4504
4505 case DT_RELASZ:
4506 /* The procedure linkage table relocs (DT_JMPREL) should
4507 not be included in the overall relocs (DT_RELA).
4508 Therefore, we override the DT_RELASZ entry here to
4509 make it not include the JMPREL relocs. Since the
4510 linker script arranges for .rela.plt to follow all
4511 other relocation sections, we don't have to worry
4512 about changing the DT_RELA entry. */
4513 if (htab->elf.srelplt != NULL)
4514 {
4515 s = htab->elf.srelplt->output_section;
4516 dyn.d_un.d_val -= s->size;
4517 }
4518 break;
4519
4520 case DT_TLSDESC_PLT:
4521 s = htab->elf.splt;
4522 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4523 + htab->tlsdesc_plt;
4524 break;
4525
4526 case DT_TLSDESC_GOT:
4527 s = htab->elf.sgot;
4528 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4529 + htab->tlsdesc_got;
4530 break;
4531 }
4532
4533 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4534 }
4535
4536 /* Fill in the special first entry in the procedure linkage table. */
4537 if (htab->elf.splt && htab->elf.splt->size > 0)
4538 {
4539 /* Fill in the first entry in the procedure linkage table. */
4540 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4541 PLT_ENTRY_SIZE);
4542 /* Add offset for pushq GOT+8(%rip), since the instruction
4543 uses 6 bytes subtract this value. */
4544 bfd_put_32 (output_bfd,
4545 (htab->elf.sgotplt->output_section->vma
4546 + htab->elf.sgotplt->output_offset
4547 + 8
4548 - htab->elf.splt->output_section->vma
4549 - htab->elf.splt->output_offset
4550 - 6),
4551 htab->elf.splt->contents + 2);
4552 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4553 the end of the instruction. */
4554 bfd_put_32 (output_bfd,
4555 (htab->elf.sgotplt->output_section->vma
4556 + htab->elf.sgotplt->output_offset
4557 + 16
4558 - htab->elf.splt->output_section->vma
4559 - htab->elf.splt->output_offset
4560 - 12),
4561 htab->elf.splt->contents + 8);
4562
4563 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4564 PLT_ENTRY_SIZE;
4565
4566 if (htab->tlsdesc_plt)
4567 {
4568 bfd_put_64 (output_bfd, (bfd_vma) 0,
4569 htab->elf.sgot->contents + htab->tlsdesc_got);
4570
4571 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4572 elf_x86_64_plt0_entry,
4573 PLT_ENTRY_SIZE);
4574
4575 /* Add offset for pushq GOT+8(%rip), since the
4576 instruction uses 6 bytes subtract this value. */
4577 bfd_put_32 (output_bfd,
4578 (htab->elf.sgotplt->output_section->vma
4579 + htab->elf.sgotplt->output_offset
4580 + 8
4581 - htab->elf.splt->output_section->vma
4582 - htab->elf.splt->output_offset
4583 - htab->tlsdesc_plt
4584 - 6),
4585 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4586 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4587 htab->tlsdesc_got. The 12 is the offset to the end of
4588 the instruction. */
4589 bfd_put_32 (output_bfd,
4590 (htab->elf.sgot->output_section->vma
4591 + htab->elf.sgot->output_offset
4592 + htab->tlsdesc_got
4593 - htab->elf.splt->output_section->vma
4594 - htab->elf.splt->output_offset
4595 - htab->tlsdesc_plt
4596 - 12),
4597 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4598 }
4599 }
4600 }
4601
4602 if (htab->elf.sgotplt)
4603 {
4604 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4605 {
4606 (*_bfd_error_handler)
4607 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4608 return FALSE;
4609 }
4610
4611 /* Fill in the first three entries in the global offset table. */
4612 if (htab->elf.sgotplt->size > 0)
4613 {
4614 /* Set the first entry in the global offset table to the address of
4615 the dynamic section. */
4616 if (sdyn == NULL)
4617 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4618 else
4619 bfd_put_64 (output_bfd,
4620 sdyn->output_section->vma + sdyn->output_offset,
4621 htab->elf.sgotplt->contents);
4622 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4623 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4624 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4625 }
4626
4627 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4628 GOT_ENTRY_SIZE;
4629 }
4630
4631 /* Adjust .eh_frame for .plt section. */
4632 if (htab->plt_eh_frame != NULL)
4633 {
4634 if (htab->elf.splt != NULL
4635 && htab->elf.splt->size != 0
4636 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4637 && htab->elf.splt->output_section != NULL
4638 && htab->plt_eh_frame->output_section != NULL)
4639 {
4640 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4641 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4642 + htab->plt_eh_frame->output_offset
4643 + PLT_FDE_START_OFFSET;
4644 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4645 htab->plt_eh_frame->contents
4646 + PLT_FDE_START_OFFSET);
4647 }
4648 if (htab->plt_eh_frame->sec_info_type
4649 == ELF_INFO_TYPE_EH_FRAME)
4650 {
4651 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4652 htab->plt_eh_frame,
4653 htab->plt_eh_frame->contents))
4654 return FALSE;
4655 }
4656 }
4657
4658 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4659 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4660 = GOT_ENTRY_SIZE;
4661
4662 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4663 htab_traverse (htab->loc_hash_table,
4664 elf_x86_64_finish_local_dynamic_symbol,
4665 info);
4666
4667 return TRUE;
4668 }
4669
4670 /* Return address for Ith PLT stub in section PLT, for relocation REL
4671 or (bfd_vma) -1 if it should not be included. */
4672
4673 static bfd_vma
4674 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4675 const arelent *rel ATTRIBUTE_UNUSED)
4676 {
4677 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4678 }
4679
4680 /* Handle an x86-64 specific section when reading an object file. This
4681 is called when elfcode.h finds a section with an unknown type. */
4682
4683 static bfd_boolean
4684 elf_x86_64_section_from_shdr (bfd *abfd,
4685 Elf_Internal_Shdr *hdr,
4686 const char *name,
4687 int shindex)
4688 {
4689 if (hdr->sh_type != SHT_X86_64_UNWIND)
4690 return FALSE;
4691
4692 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4693 return FALSE;
4694
4695 return TRUE;
4696 }
4697
4698 /* Hook called by the linker routine which adds symbols from an object
4699 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4700 of .bss. */
4701
4702 static bfd_boolean
4703 elf_x86_64_add_symbol_hook (bfd *abfd,
4704 struct bfd_link_info *info,
4705 Elf_Internal_Sym *sym,
4706 const char **namep ATTRIBUTE_UNUSED,
4707 flagword *flagsp ATTRIBUTE_UNUSED,
4708 asection **secp,
4709 bfd_vma *valp)
4710 {
4711 asection *lcomm;
4712
4713 switch (sym->st_shndx)
4714 {
4715 case SHN_X86_64_LCOMMON:
4716 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4717 if (lcomm == NULL)
4718 {
4719 lcomm = bfd_make_section_with_flags (abfd,
4720 "LARGE_COMMON",
4721 (SEC_ALLOC
4722 | SEC_IS_COMMON
4723 | SEC_LINKER_CREATED));
4724 if (lcomm == NULL)
4725 return FALSE;
4726 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4727 }
4728 *secp = lcomm;
4729 *valp = sym->st_size;
4730 return TRUE;
4731 }
4732
4733 if ((abfd->flags & DYNAMIC) == 0
4734 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4735 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4736 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4737
4738 return TRUE;
4739 }
4740
4741
4742 /* Given a BFD section, try to locate the corresponding ELF section
4743 index. */
4744
4745 static bfd_boolean
4746 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4747 asection *sec, int *index_return)
4748 {
4749 if (sec == &_bfd_elf_large_com_section)
4750 {
4751 *index_return = SHN_X86_64_LCOMMON;
4752 return TRUE;
4753 }
4754 return FALSE;
4755 }
4756
4757 /* Process a symbol. */
4758
4759 static void
4760 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4761 asymbol *asym)
4762 {
4763 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4764
4765 switch (elfsym->internal_elf_sym.st_shndx)
4766 {
4767 case SHN_X86_64_LCOMMON:
4768 asym->section = &_bfd_elf_large_com_section;
4769 asym->value = elfsym->internal_elf_sym.st_size;
4770 /* Common symbol doesn't set BSF_GLOBAL. */
4771 asym->flags &= ~BSF_GLOBAL;
4772 break;
4773 }
4774 }
4775
4776 static bfd_boolean
4777 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4778 {
4779 return (sym->st_shndx == SHN_COMMON
4780 || sym->st_shndx == SHN_X86_64_LCOMMON);
4781 }
4782
4783 static unsigned int
4784 elf_x86_64_common_section_index (asection *sec)
4785 {
4786 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4787 return SHN_COMMON;
4788 else
4789 return SHN_X86_64_LCOMMON;
4790 }
4791
4792 static asection *
4793 elf_x86_64_common_section (asection *sec)
4794 {
4795 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4796 return bfd_com_section_ptr;
4797 else
4798 return &_bfd_elf_large_com_section;
4799 }
4800
4801 static bfd_boolean
4802 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4803 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4804 struct elf_link_hash_entry *h,
4805 Elf_Internal_Sym *sym,
4806 asection **psec,
4807 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4808 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4809 bfd_boolean *skip ATTRIBUTE_UNUSED,
4810 bfd_boolean *override ATTRIBUTE_UNUSED,
4811 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4812 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4813 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4814 bfd_boolean *newdef,
4815 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4816 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4817 bfd *abfd ATTRIBUTE_UNUSED,
4818 asection **sec,
4819 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4820 bfd_boolean *olddef,
4821 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4822 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4823 bfd *oldbfd,
4824 asection **oldsec)
4825 {
4826 /* A normal common symbol and a large common symbol result in a
4827 normal common symbol. We turn the large common symbol into a
4828 normal one. */
4829 if (!*olddef
4830 && h->root.type == bfd_link_hash_common
4831 && !*newdef
4832 && bfd_is_com_section (*sec)
4833 && *oldsec != *sec)
4834 {
4835 if (sym->st_shndx == SHN_COMMON
4836 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4837 {
4838 h->root.u.c.p->section
4839 = bfd_make_section_old_way (oldbfd, "COMMON");
4840 h->root.u.c.p->section->flags = SEC_ALLOC;
4841 }
4842 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4843 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4844 *psec = *sec = bfd_com_section_ptr;
4845 }
4846
4847 return TRUE;
4848 }
4849
4850 static int
4851 elf_x86_64_additional_program_headers (bfd *abfd,
4852 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4853 {
4854 asection *s;
4855 int count = 0;
4856
4857 /* Check to see if we need a large readonly segment. */
4858 s = bfd_get_section_by_name (abfd, ".lrodata");
4859 if (s && (s->flags & SEC_LOAD))
4860 count++;
4861
4862 /* Check to see if we need a large data segment. Since .lbss sections
4863 is placed right after the .bss section, there should be no need for
4864 a large data segment just because of .lbss. */
4865 s = bfd_get_section_by_name (abfd, ".ldata");
4866 if (s && (s->flags & SEC_LOAD))
4867 count++;
4868
4869 return count;
4870 }
4871
4872 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4873
4874 static bfd_boolean
4875 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4876 {
4877 if (h->plt.offset != (bfd_vma) -1
4878 && !h->def_regular
4879 && !h->pointer_equality_needed)
4880 return FALSE;
4881
4882 return _bfd_elf_hash_symbol (h);
4883 }
4884
4885 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4886
4887 static bfd_boolean
4888 elf_x86_64_relocs_compatible (const bfd_target *input,
4889 const bfd_target *output)
4890 {
4891 return ((xvec_get_elf_backend_data (input)->s->elfclass
4892 == xvec_get_elf_backend_data (output)->s->elfclass)
4893 && _bfd_elf_relocs_compatible (input, output));
4894 }
4895
4896 static const struct bfd_elf_special_section
4897 elf_x86_64_special_sections[]=
4898 {
4899 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4900 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4901 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4902 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4903 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4904 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4905 { NULL, 0, 0, 0, 0 }
4906 };
4907
4908 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4909 #define TARGET_LITTLE_NAME "elf64-x86-64"
4910 #define ELF_ARCH bfd_arch_i386
4911 #define ELF_TARGET_ID X86_64_ELF_DATA
4912 #define ELF_MACHINE_CODE EM_X86_64
4913 #define ELF_MAXPAGESIZE 0x200000
4914 #define ELF_MINPAGESIZE 0x1000
4915 #define ELF_COMMONPAGESIZE 0x1000
4916
4917 #define elf_backend_can_gc_sections 1
4918 #define elf_backend_can_refcount 1
4919 #define elf_backend_want_got_plt 1
4920 #define elf_backend_plt_readonly 1
4921 #define elf_backend_want_plt_sym 0
4922 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4923 #define elf_backend_rela_normal 1
4924 #define elf_backend_plt_alignment 4
4925
4926 #define elf_info_to_howto elf_x86_64_info_to_howto
4927
4928 #define bfd_elf64_bfd_link_hash_table_create \
4929 elf_x86_64_link_hash_table_create
4930 #define bfd_elf64_bfd_link_hash_table_free \
4931 elf_x86_64_link_hash_table_free
4932 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4933 #define bfd_elf64_bfd_reloc_name_lookup \
4934 elf_x86_64_reloc_name_lookup
4935
4936 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4937 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4938 #define elf_backend_check_relocs elf_x86_64_check_relocs
4939 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4940 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4941 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4942 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4943 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4944 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4945 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4946 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4947 #ifdef CORE_HEADER
4948 #define elf_backend_write_core_note elf_x86_64_write_core_note
4949 #endif
4950 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4951 #define elf_backend_relocate_section elf_x86_64_relocate_section
4952 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4953 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4954 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4955 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4956 #define elf_backend_object_p elf64_x86_64_elf_object_p
4957 #define bfd_elf64_mkobject elf_x86_64_mkobject
4958
4959 #define elf_backend_section_from_shdr \
4960 elf_x86_64_section_from_shdr
4961
4962 #define elf_backend_section_from_bfd_section \
4963 elf_x86_64_elf_section_from_bfd_section
4964 #define elf_backend_add_symbol_hook \
4965 elf_x86_64_add_symbol_hook
4966 #define elf_backend_symbol_processing \
4967 elf_x86_64_symbol_processing
4968 #define elf_backend_common_section_index \
4969 elf_x86_64_common_section_index
4970 #define elf_backend_common_section \
4971 elf_x86_64_common_section
4972 #define elf_backend_common_definition \
4973 elf_x86_64_common_definition
4974 #define elf_backend_merge_symbol \
4975 elf_x86_64_merge_symbol
4976 #define elf_backend_special_sections \
4977 elf_x86_64_special_sections
4978 #define elf_backend_additional_program_headers \
4979 elf_x86_64_additional_program_headers
4980 #define elf_backend_hash_symbol \
4981 elf_x86_64_hash_symbol
4982
4983 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4984
4985 #include "elf64-target.h"
4986
4987 /* FreeBSD support. */
4988
4989 #undef TARGET_LITTLE_SYM
4990 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4991 #undef TARGET_LITTLE_NAME
4992 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4993
4994 #undef ELF_OSABI
4995 #define ELF_OSABI ELFOSABI_FREEBSD
4996
4997 #undef elf64_bed
4998 #define elf64_bed elf64_x86_64_fbsd_bed
4999
5000 #include "elf64-target.h"
5001
5002 /* Solaris 2 support. */
5003
5004 #undef TARGET_LITTLE_SYM
5005 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5006 #undef TARGET_LITTLE_NAME
5007 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5008
5009 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5010 objects won't be recognized. */
5011 #undef ELF_OSABI
5012
5013 #undef elf64_bed
5014 #define elf64_bed elf64_x86_64_sol2_bed
5015
5016 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5017 boundary. */
5018 #undef elf_backend_static_tls_alignment
5019 #define elf_backend_static_tls_alignment 16
5020
5021 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5022
5023 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5024 File, p.63. */
5025 #undef elf_backend_want_plt_sym
5026 #define elf_backend_want_plt_sym 1
5027
5028 #include "elf64-target.h"
5029
5030 /* Intel L1OM support. */
5031
5032 static bfd_boolean
5033 elf64_l1om_elf_object_p (bfd *abfd)
5034 {
5035 /* Set the right machine number for an L1OM elf64 file. */
5036 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5037 return TRUE;
5038 }
5039
5040 #undef TARGET_LITTLE_SYM
5041 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5042 #undef TARGET_LITTLE_NAME
5043 #define TARGET_LITTLE_NAME "elf64-l1om"
5044 #undef ELF_ARCH
5045 #define ELF_ARCH bfd_arch_l1om
5046
5047 #undef ELF_MACHINE_CODE
5048 #define ELF_MACHINE_CODE EM_L1OM
5049
5050 #undef ELF_OSABI
5051
5052 #undef elf64_bed
5053 #define elf64_bed elf64_l1om_bed
5054
5055 #undef elf_backend_object_p
5056 #define elf_backend_object_p elf64_l1om_elf_object_p
5057
5058 #undef elf_backend_static_tls_alignment
5059
5060 #undef elf_backend_want_plt_sym
5061 #define elf_backend_want_plt_sym 0
5062
5063 #include "elf64-target.h"
5064
5065 /* FreeBSD L1OM support. */
5066
5067 #undef TARGET_LITTLE_SYM
5068 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5069 #undef TARGET_LITTLE_NAME
5070 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5071
5072 #undef ELF_OSABI
5073 #define ELF_OSABI ELFOSABI_FREEBSD
5074
5075 #undef elf64_bed
5076 #define elf64_bed elf64_l1om_fbsd_bed
5077
5078 #include "elf64-target.h"
5079
5080 /* Intel K1OM support. */
5081
5082 static bfd_boolean
5083 elf64_k1om_elf_object_p (bfd *abfd)
5084 {
5085 /* Set the right machine number for an K1OM elf64 file. */
5086 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5087 return TRUE;
5088 }
5089
5090 #undef TARGET_LITTLE_SYM
5091 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5092 #undef TARGET_LITTLE_NAME
5093 #define TARGET_LITTLE_NAME "elf64-k1om"
5094 #undef ELF_ARCH
5095 #define ELF_ARCH bfd_arch_k1om
5096
5097 #undef ELF_MACHINE_CODE
5098 #define ELF_MACHINE_CODE EM_K1OM
5099
5100 #undef ELF_OSABI
5101
5102 #undef elf64_bed
5103 #define elf64_bed elf64_k1om_bed
5104
5105 #undef elf_backend_object_p
5106 #define elf_backend_object_p elf64_k1om_elf_object_p
5107
5108 #undef elf_backend_static_tls_alignment
5109
5110 #undef elf_backend_want_plt_sym
5111 #define elf_backend_want_plt_sym 0
5112
5113 #include "elf64-target.h"
5114
5115 /* FreeBSD K1OM support. */
5116
5117 #undef TARGET_LITTLE_SYM
5118 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5119 #undef TARGET_LITTLE_NAME
5120 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5121
5122 #undef ELF_OSABI
5123 #define ELF_OSABI ELFOSABI_FREEBSD
5124
5125 #undef elf64_bed
5126 #define elf64_bed elf64_k1om_fbsd_bed
5127
5128 #include "elf64-target.h"
5129
5130 /* 32bit x86-64 support. */
5131
5132 static bfd_boolean
5133 elf32_x86_64_elf_object_p (bfd *abfd)
5134 {
5135 /* Set the right machine number for an x86-64 elf32 file. */
5136 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
5137 return TRUE;
5138 }
5139
5140 #undef TARGET_LITTLE_SYM
5141 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5142 #undef TARGET_LITTLE_NAME
5143 #define TARGET_LITTLE_NAME "elf32-x86-64"
5144
5145 #undef ELF_ARCH
5146 #define ELF_ARCH bfd_arch_i386
5147
5148 #undef ELF_MACHINE_CODE
5149 #define ELF_MACHINE_CODE EM_X86_64
5150
5151 #define bfd_elf32_bfd_link_hash_table_create \
5152 elf_x86_64_link_hash_table_create
5153 #define bfd_elf32_bfd_link_hash_table_free \
5154 elf_x86_64_link_hash_table_free
5155 #define bfd_elf32_bfd_reloc_type_lookup \
5156 elf_x86_64_reloc_type_lookup
5157 #define bfd_elf32_bfd_reloc_name_lookup \
5158 elf_x86_64_reloc_name_lookup
5159 #define bfd_elf32_mkobject \
5160 elf_x86_64_mkobject
5161
5162 #undef ELF_OSABI
5163
5164 #undef elf_backend_object_p
5165 #define elf_backend_object_p \
5166 elf32_x86_64_elf_object_p
5167
5168 #undef elf_backend_bfd_from_remote_memory
5169 #define elf_backend_bfd_from_remote_memory \
5170 _bfd_elf32_bfd_from_remote_memory
5171
5172 #undef elf_backend_size_info
5173 #define elf_backend_size_info \
5174 _bfd_elf32_size_info
5175
5176 #include "elf32-target.h"
This page took 0.179413 seconds and 4 git commands to generate.