Pass ignored unresolved relocations to ld backend
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
152 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
153 FALSE),
154 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
155 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
156 FALSE),
157 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
158 complain_overflow_bitfield, bfd_elf_generic_reloc,
159 "R_X86_64_GOTPC32_TLSDESC",
160 FALSE, 0xffffffff, 0xffffffff, TRUE),
161 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
162 complain_overflow_dont, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC_CALL",
164 FALSE, 0, 0, FALSE),
165 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
166 complain_overflow_bitfield, bfd_elf_generic_reloc,
167 "R_X86_64_TLSDESC",
168 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
169 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
170 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
171 MINUS_ONE, FALSE),
172 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
174 MINUS_ONE, FALSE),
175
176 /* We have a gap in the reloc numbers here.
177 R_X86_64_standard counts the number up to this point, and
178 R_X86_64_vt_offset is the value to subtract from a reloc type of
179 R_X86_64_GNU_VT* to form an index into this table. */
180 #define R_X86_64_standard (R_X86_64_RELATIVE64 + 1)
181 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
182
183 /* GNU extension to record C++ vtable hierarchy. */
184 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
186
187 /* GNU extension to record C++ vtable member usage. */
188 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
190 FALSE),
191
192 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
193 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
194 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
195 FALSE)
196 };
197
198 #define IS_X86_64_PCREL_TYPE(TYPE) \
199 ( ((TYPE) == R_X86_64_PC8) \
200 || ((TYPE) == R_X86_64_PC16) \
201 || ((TYPE) == R_X86_64_PC32) \
202 || ((TYPE) == R_X86_64_PC64))
203
204 /* Map BFD relocs to the x86_64 elf relocs. */
205 struct elf_reloc_map
206 {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
209 };
210
211 static const struct elf_reloc_map x86_64_reloc_map[] =
212 {
213 { BFD_RELOC_NONE, R_X86_64_NONE, },
214 { BFD_RELOC_64, R_X86_64_64, },
215 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
216 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
217 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
218 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
219 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
220 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
221 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
222 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
223 { BFD_RELOC_32, R_X86_64_32, },
224 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
225 { BFD_RELOC_16, R_X86_64_16, },
226 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
227 { BFD_RELOC_8, R_X86_64_8, },
228 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
229 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
230 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
231 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
232 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
233 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
234 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
235 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
236 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
237 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
238 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
239 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
240 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
241 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
242 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
243 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
244 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
245 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
246 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
247 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
248 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
249 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
250 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
251 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
252 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
253 };
254
255 static reloc_howto_type *
256 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
257 {
258 unsigned i;
259
260 if (r_type == (unsigned int) R_X86_64_32)
261 {
262 if (ABI_64_P (abfd))
263 i = r_type;
264 else
265 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
266 }
267 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
268 || r_type >= (unsigned int) R_X86_64_max)
269 {
270 if (r_type >= (unsigned int) R_X86_64_standard)
271 {
272 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
273 abfd, (int) r_type);
274 r_type = R_X86_64_NONE;
275 }
276 i = r_type;
277 }
278 else
279 i = r_type - (unsigned int) R_X86_64_vt_offset;
280 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
281 return &x86_64_elf_howto_table[i];
282 }
283
284 /* Given a BFD reloc type, return a HOWTO structure. */
285 static reloc_howto_type *
286 elf_x86_64_reloc_type_lookup (bfd *abfd,
287 bfd_reloc_code_real_type code)
288 {
289 unsigned int i;
290
291 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
292 i++)
293 {
294 if (x86_64_reloc_map[i].bfd_reloc_val == code)
295 return elf_x86_64_rtype_to_howto (abfd,
296 x86_64_reloc_map[i].elf_reloc_val);
297 }
298 return 0;
299 }
300
301 static reloc_howto_type *
302 elf_x86_64_reloc_name_lookup (bfd *abfd,
303 const char *r_name)
304 {
305 unsigned int i;
306
307 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
308 {
309 /* Get x32 R_X86_64_32. */
310 reloc_howto_type *reloc
311 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
312 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
313 return reloc;
314 }
315
316 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
317 if (x86_64_elf_howto_table[i].name != NULL
318 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
319 return &x86_64_elf_howto_table[i];
320
321 return NULL;
322 }
323
324 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
325
326 static void
327 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
328 Elf_Internal_Rela *dst)
329 {
330 unsigned r_type;
331
332 r_type = ELF32_R_TYPE (dst->r_info);
333 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
334 BFD_ASSERT (r_type == cache_ptr->howto->type);
335 }
336 \f
337 /* Support for core dump NOTE sections. */
338 static bfd_boolean
339 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
340 {
341 int offset;
342 size_t size;
343
344 switch (note->descsz)
345 {
346 default:
347 return FALSE;
348
349 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
350 /* pr_cursig */
351 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
352
353 /* pr_pid */
354 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
355
356 /* pr_reg */
357 offset = 72;
358 size = 216;
359
360 break;
361
362 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
363 /* pr_cursig */
364 elf_tdata (abfd)->core->signal
365 = bfd_get_16 (abfd, note->descdata + 12);
366
367 /* pr_pid */
368 elf_tdata (abfd)->core->lwpid
369 = bfd_get_32 (abfd, note->descdata + 32);
370
371 /* pr_reg */
372 offset = 112;
373 size = 216;
374
375 break;
376 }
377
378 /* Make a ".reg/999" section. */
379 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
380 size, note->descpos + offset);
381 }
382
383 static bfd_boolean
384 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
385 {
386 switch (note->descsz)
387 {
388 default:
389 return FALSE;
390
391 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
392 elf_tdata (abfd)->core->pid
393 = bfd_get_32 (abfd, note->descdata + 12);
394 elf_tdata (abfd)->core->program
395 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
396 elf_tdata (abfd)->core->command
397 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
398 break;
399
400 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
401 elf_tdata (abfd)->core->pid
402 = bfd_get_32 (abfd, note->descdata + 24);
403 elf_tdata (abfd)->core->program
404 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
405 elf_tdata (abfd)->core->command
406 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
407 }
408
409 /* Note that for some reason, a spurious space is tacked
410 onto the end of the args in some (at least one anyway)
411 implementations, so strip it off if it exists. */
412
413 {
414 char *command = elf_tdata (abfd)->core->command;
415 int n = strlen (command);
416
417 if (0 < n && command[n - 1] == ' ')
418 command[n - 1] = '\0';
419 }
420
421 return TRUE;
422 }
423
424 #ifdef CORE_HEADER
425 static char *
426 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
427 int note_type, ...)
428 {
429 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
430 va_list ap;
431 const char *fname, *psargs;
432 long pid;
433 int cursig;
434 const void *gregs;
435
436 switch (note_type)
437 {
438 default:
439 return NULL;
440
441 case NT_PRPSINFO:
442 va_start (ap, note_type);
443 fname = va_arg (ap, const char *);
444 psargs = va_arg (ap, const char *);
445 va_end (ap);
446
447 if (bed->s->elfclass == ELFCLASS32)
448 {
449 prpsinfo32_t data;
450 memset (&data, 0, sizeof (data));
451 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
452 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
453 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
454 &data, sizeof (data));
455 }
456 else
457 {
458 prpsinfo64_t data;
459 memset (&data, 0, sizeof (data));
460 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
461 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
462 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
463 &data, sizeof (data));
464 }
465 /* NOTREACHED */
466
467 case NT_PRSTATUS:
468 va_start (ap, note_type);
469 pid = va_arg (ap, long);
470 cursig = va_arg (ap, int);
471 gregs = va_arg (ap, const void *);
472 va_end (ap);
473
474 if (bed->s->elfclass == ELFCLASS32)
475 {
476 if (bed->elf_machine_code == EM_X86_64)
477 {
478 prstatusx32_t prstat;
479 memset (&prstat, 0, sizeof (prstat));
480 prstat.pr_pid = pid;
481 prstat.pr_cursig = cursig;
482 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
483 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
484 &prstat, sizeof (prstat));
485 }
486 else
487 {
488 prstatus32_t prstat;
489 memset (&prstat, 0, sizeof (prstat));
490 prstat.pr_pid = pid;
491 prstat.pr_cursig = cursig;
492 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
493 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
494 &prstat, sizeof (prstat));
495 }
496 }
497 else
498 {
499 prstatus64_t prstat;
500 memset (&prstat, 0, sizeof (prstat));
501 prstat.pr_pid = pid;
502 prstat.pr_cursig = cursig;
503 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
504 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
505 &prstat, sizeof (prstat));
506 }
507 }
508 /* NOTREACHED */
509 }
510 #endif
511 \f
512 /* Functions for the x86-64 ELF linker. */
513
514 /* The name of the dynamic interpreter. This is put in the .interp
515 section. */
516
517 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
518 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
519
520 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
521 copying dynamic variables from a shared lib into an app's dynbss
522 section, and instead use a dynamic relocation to point into the
523 shared lib. */
524 #define ELIMINATE_COPY_RELOCS 1
525
526 /* The size in bytes of an entry in the global offset table. */
527
528 #define GOT_ENTRY_SIZE 8
529
530 /* The size in bytes of an entry in the procedure linkage table. */
531
532 #define PLT_ENTRY_SIZE 16
533
534 /* The first entry in a procedure linkage table looks like this. See the
535 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
536
537 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
538 {
539 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
540 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
541 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
542 };
543
544 /* Subsequent entries in a procedure linkage table look like this. */
545
546 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
547 {
548 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
549 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
550 0x68, /* pushq immediate */
551 0, 0, 0, 0, /* replaced with index into relocation table. */
552 0xe9, /* jmp relative */
553 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
554 };
555
556 /* .eh_frame covering the .plt section. */
557
558 static const bfd_byte elf_x86_64_eh_frame_plt[] =
559 {
560 #define PLT_CIE_LENGTH 20
561 #define PLT_FDE_LENGTH 36
562 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
563 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
564 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
565 0, 0, 0, 0, /* CIE ID */
566 1, /* CIE version */
567 'z', 'R', 0, /* Augmentation string */
568 1, /* Code alignment factor */
569 0x78, /* Data alignment factor */
570 16, /* Return address column */
571 1, /* Augmentation size */
572 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
573 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
574 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
575 DW_CFA_nop, DW_CFA_nop,
576
577 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
578 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
579 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
580 0, 0, 0, 0, /* .plt size goes here */
581 0, /* Augmentation size */
582 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
583 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
584 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
585 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
586 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
587 11, /* Block length */
588 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
589 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
590 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
591 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
592 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
593 };
594
595 /* Architecture-specific backend data for x86-64. */
596
597 struct elf_x86_64_backend_data
598 {
599 /* Templates for the initial PLT entry and for subsequent entries. */
600 const bfd_byte *plt0_entry;
601 const bfd_byte *plt_entry;
602 unsigned int plt_entry_size; /* Size of each PLT entry. */
603
604 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
605 unsigned int plt0_got1_offset;
606 unsigned int plt0_got2_offset;
607
608 /* Offset of the end of the PC-relative instruction containing
609 plt0_got2_offset. */
610 unsigned int plt0_got2_insn_end;
611
612 /* Offsets into plt_entry that are to be replaced with... */
613 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
614 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
615 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
616
617 /* Length of the PC-relative instruction containing plt_got_offset. */
618 unsigned int plt_got_insn_size;
619
620 /* Offset of the end of the PC-relative jump to plt0_entry. */
621 unsigned int plt_plt_insn_end;
622
623 /* Offset into plt_entry where the initial value of the GOT entry points. */
624 unsigned int plt_lazy_offset;
625
626 /* .eh_frame covering the .plt section. */
627 const bfd_byte *eh_frame_plt;
628 unsigned int eh_frame_plt_size;
629 };
630
631 #define get_elf_x86_64_arch_data(bed) \
632 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
633
634 #define get_elf_x86_64_backend_data(abfd) \
635 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
636
637 #define GET_PLT_ENTRY_SIZE(abfd) \
638 get_elf_x86_64_backend_data (abfd)->plt_entry_size
639
640 /* These are the standard parameters. */
641 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
642 {
643 elf_x86_64_plt0_entry, /* plt0_entry */
644 elf_x86_64_plt_entry, /* plt_entry */
645 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
646 2, /* plt0_got1_offset */
647 8, /* plt0_got2_offset */
648 12, /* plt0_got2_insn_end */
649 2, /* plt_got_offset */
650 7, /* plt_reloc_offset */
651 12, /* plt_plt_offset */
652 6, /* plt_got_insn_size */
653 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
654 6, /* plt_lazy_offset */
655 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
656 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
657 };
658
659 #define elf_backend_arch_data &elf_x86_64_arch_bed
660
661 /* x86-64 ELF linker hash entry. */
662
663 struct elf_x86_64_link_hash_entry
664 {
665 struct elf_link_hash_entry elf;
666
667 /* Track dynamic relocs copied for this symbol. */
668 struct elf_dyn_relocs *dyn_relocs;
669
670 #define GOT_UNKNOWN 0
671 #define GOT_NORMAL 1
672 #define GOT_TLS_GD 2
673 #define GOT_TLS_IE 3
674 #define GOT_TLS_GDESC 4
675 #define GOT_TLS_GD_BOTH_P(type) \
676 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
677 #define GOT_TLS_GD_P(type) \
678 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
679 #define GOT_TLS_GDESC_P(type) \
680 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
681 #define GOT_TLS_GD_ANY_P(type) \
682 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
683 unsigned char tls_type;
684
685 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
686 starting at the end of the jump table. */
687 bfd_vma tlsdesc_got;
688 };
689
690 #define elf_x86_64_hash_entry(ent) \
691 ((struct elf_x86_64_link_hash_entry *)(ent))
692
693 struct elf_x86_64_obj_tdata
694 {
695 struct elf_obj_tdata root;
696
697 /* tls_type for each local got entry. */
698 char *local_got_tls_type;
699
700 /* GOTPLT entries for TLS descriptors. */
701 bfd_vma *local_tlsdesc_gotent;
702 };
703
704 #define elf_x86_64_tdata(abfd) \
705 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
706
707 #define elf_x86_64_local_got_tls_type(abfd) \
708 (elf_x86_64_tdata (abfd)->local_got_tls_type)
709
710 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
711 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
712
713 #define is_x86_64_elf(bfd) \
714 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
715 && elf_tdata (bfd) != NULL \
716 && elf_object_id (bfd) == X86_64_ELF_DATA)
717
718 static bfd_boolean
719 elf_x86_64_mkobject (bfd *abfd)
720 {
721 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
722 X86_64_ELF_DATA);
723 }
724
725 /* x86-64 ELF linker hash table. */
726
727 struct elf_x86_64_link_hash_table
728 {
729 struct elf_link_hash_table elf;
730
731 /* Short-cuts to get to dynamic linker sections. */
732 asection *sdynbss;
733 asection *srelbss;
734 asection *plt_eh_frame;
735
736 union
737 {
738 bfd_signed_vma refcount;
739 bfd_vma offset;
740 } tls_ld_got;
741
742 /* The amount of space used by the jump slots in the GOT. */
743 bfd_vma sgotplt_jump_table_size;
744
745 /* Small local sym cache. */
746 struct sym_cache sym_cache;
747
748 bfd_vma (*r_info) (bfd_vma, bfd_vma);
749 bfd_vma (*r_sym) (bfd_vma);
750 unsigned int pointer_r_type;
751 const char *dynamic_interpreter;
752 int dynamic_interpreter_size;
753
754 /* _TLS_MODULE_BASE_ symbol. */
755 struct bfd_link_hash_entry *tls_module_base;
756
757 /* Used by local STT_GNU_IFUNC symbols. */
758 htab_t loc_hash_table;
759 void * loc_hash_memory;
760
761 /* The offset into splt of the PLT entry for the TLS descriptor
762 resolver. Special values are 0, if not necessary (or not found
763 to be necessary yet), and -1 if needed but not determined
764 yet. */
765 bfd_vma tlsdesc_plt;
766 /* The offset into sgot of the GOT entry used by the PLT entry
767 above. */
768 bfd_vma tlsdesc_got;
769
770 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
771 bfd_vma next_jump_slot_index;
772 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
773 bfd_vma next_irelative_index;
774 };
775
776 /* Get the x86-64 ELF linker hash table from a link_info structure. */
777
778 #define elf_x86_64_hash_table(p) \
779 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
780 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
781
782 #define elf_x86_64_compute_jump_table_size(htab) \
783 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
784
785 /* Create an entry in an x86-64 ELF linker hash table. */
786
787 static struct bfd_hash_entry *
788 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
789 struct bfd_hash_table *table,
790 const char *string)
791 {
792 /* Allocate the structure if it has not already been allocated by a
793 subclass. */
794 if (entry == NULL)
795 {
796 entry = (struct bfd_hash_entry *)
797 bfd_hash_allocate (table,
798 sizeof (struct elf_x86_64_link_hash_entry));
799 if (entry == NULL)
800 return entry;
801 }
802
803 /* Call the allocation method of the superclass. */
804 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
805 if (entry != NULL)
806 {
807 struct elf_x86_64_link_hash_entry *eh;
808
809 eh = (struct elf_x86_64_link_hash_entry *) entry;
810 eh->dyn_relocs = NULL;
811 eh->tls_type = GOT_UNKNOWN;
812 eh->tlsdesc_got = (bfd_vma) -1;
813 }
814
815 return entry;
816 }
817
818 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
819 for local symbol so that we can handle local STT_GNU_IFUNC symbols
820 as global symbol. We reuse indx and dynstr_index for local symbol
821 hash since they aren't used by global symbols in this backend. */
822
823 static hashval_t
824 elf_x86_64_local_htab_hash (const void *ptr)
825 {
826 struct elf_link_hash_entry *h
827 = (struct elf_link_hash_entry *) ptr;
828 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
829 }
830
831 /* Compare local hash entries. */
832
833 static int
834 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
835 {
836 struct elf_link_hash_entry *h1
837 = (struct elf_link_hash_entry *) ptr1;
838 struct elf_link_hash_entry *h2
839 = (struct elf_link_hash_entry *) ptr2;
840
841 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
842 }
843
844 /* Find and/or create a hash entry for local symbol. */
845
846 static struct elf_link_hash_entry *
847 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
848 bfd *abfd, const Elf_Internal_Rela *rel,
849 bfd_boolean create)
850 {
851 struct elf_x86_64_link_hash_entry e, *ret;
852 asection *sec = abfd->sections;
853 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
854 htab->r_sym (rel->r_info));
855 void **slot;
856
857 e.elf.indx = sec->id;
858 e.elf.dynstr_index = htab->r_sym (rel->r_info);
859 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
860 create ? INSERT : NO_INSERT);
861
862 if (!slot)
863 return NULL;
864
865 if (*slot)
866 {
867 ret = (struct elf_x86_64_link_hash_entry *) *slot;
868 return &ret->elf;
869 }
870
871 ret = (struct elf_x86_64_link_hash_entry *)
872 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
873 sizeof (struct elf_x86_64_link_hash_entry));
874 if (ret)
875 {
876 memset (ret, 0, sizeof (*ret));
877 ret->elf.indx = sec->id;
878 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
879 ret->elf.dynindx = -1;
880 *slot = ret;
881 }
882 return &ret->elf;
883 }
884
885 /* Create an X86-64 ELF linker hash table. */
886
887 static struct bfd_link_hash_table *
888 elf_x86_64_link_hash_table_create (bfd *abfd)
889 {
890 struct elf_x86_64_link_hash_table *ret;
891 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
892
893 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
894 if (ret == NULL)
895 return NULL;
896
897 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
898 elf_x86_64_link_hash_newfunc,
899 sizeof (struct elf_x86_64_link_hash_entry),
900 X86_64_ELF_DATA))
901 {
902 free (ret);
903 return NULL;
904 }
905
906 if (ABI_64_P (abfd))
907 {
908 ret->r_info = elf64_r_info;
909 ret->r_sym = elf64_r_sym;
910 ret->pointer_r_type = R_X86_64_64;
911 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
912 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
913 }
914 else
915 {
916 ret->r_info = elf32_r_info;
917 ret->r_sym = elf32_r_sym;
918 ret->pointer_r_type = R_X86_64_32;
919 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
920 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
921 }
922
923 ret->loc_hash_table = htab_try_create (1024,
924 elf_x86_64_local_htab_hash,
925 elf_x86_64_local_htab_eq,
926 NULL);
927 ret->loc_hash_memory = objalloc_create ();
928 if (!ret->loc_hash_table || !ret->loc_hash_memory)
929 {
930 free (ret);
931 return NULL;
932 }
933
934 return &ret->elf.root;
935 }
936
937 /* Destroy an X86-64 ELF linker hash table. */
938
939 static void
940 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
941 {
942 struct elf_x86_64_link_hash_table *htab
943 = (struct elf_x86_64_link_hash_table *) hash;
944
945 if (htab->loc_hash_table)
946 htab_delete (htab->loc_hash_table);
947 if (htab->loc_hash_memory)
948 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
949 _bfd_elf_link_hash_table_free (hash);
950 }
951
952 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
953 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
954 hash table. */
955
956 static bfd_boolean
957 elf_x86_64_create_dynamic_sections (bfd *dynobj,
958 struct bfd_link_info *info)
959 {
960 struct elf_x86_64_link_hash_table *htab;
961
962 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
963 return FALSE;
964
965 htab = elf_x86_64_hash_table (info);
966 if (htab == NULL)
967 return FALSE;
968
969 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
970 if (!info->shared)
971 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
972
973 if (!htab->sdynbss
974 || (!info->shared && !htab->srelbss))
975 abort ();
976
977 if (!info->no_ld_generated_unwind_info
978 && htab->plt_eh_frame == NULL
979 && htab->elf.splt != NULL)
980 {
981 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
982 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
983 | SEC_LINKER_CREATED);
984 htab->plt_eh_frame
985 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
986 if (htab->plt_eh_frame == NULL
987 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
988 return FALSE;
989 }
990 return TRUE;
991 }
992
993 /* Copy the extra info we tack onto an elf_link_hash_entry. */
994
995 static void
996 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
997 struct elf_link_hash_entry *dir,
998 struct elf_link_hash_entry *ind)
999 {
1000 struct elf_x86_64_link_hash_entry *edir, *eind;
1001
1002 edir = (struct elf_x86_64_link_hash_entry *) dir;
1003 eind = (struct elf_x86_64_link_hash_entry *) ind;
1004
1005 if (eind->dyn_relocs != NULL)
1006 {
1007 if (edir->dyn_relocs != NULL)
1008 {
1009 struct elf_dyn_relocs **pp;
1010 struct elf_dyn_relocs *p;
1011
1012 /* Add reloc counts against the indirect sym to the direct sym
1013 list. Merge any entries against the same section. */
1014 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1015 {
1016 struct elf_dyn_relocs *q;
1017
1018 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1019 if (q->sec == p->sec)
1020 {
1021 q->pc_count += p->pc_count;
1022 q->count += p->count;
1023 *pp = p->next;
1024 break;
1025 }
1026 if (q == NULL)
1027 pp = &p->next;
1028 }
1029 *pp = edir->dyn_relocs;
1030 }
1031
1032 edir->dyn_relocs = eind->dyn_relocs;
1033 eind->dyn_relocs = NULL;
1034 }
1035
1036 if (ind->root.type == bfd_link_hash_indirect
1037 && dir->got.refcount <= 0)
1038 {
1039 edir->tls_type = eind->tls_type;
1040 eind->tls_type = GOT_UNKNOWN;
1041 }
1042
1043 if (ELIMINATE_COPY_RELOCS
1044 && ind->root.type != bfd_link_hash_indirect
1045 && dir->dynamic_adjusted)
1046 {
1047 /* If called to transfer flags for a weakdef during processing
1048 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1049 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1050 dir->ref_dynamic |= ind->ref_dynamic;
1051 dir->ref_regular |= ind->ref_regular;
1052 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1053 dir->needs_plt |= ind->needs_plt;
1054 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1055 }
1056 else
1057 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1058 }
1059
1060 static bfd_boolean
1061 elf64_x86_64_elf_object_p (bfd *abfd)
1062 {
1063 /* Set the right machine number for an x86-64 elf64 file. */
1064 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1065 return TRUE;
1066 }
1067
1068 static bfd_boolean
1069 elf32_x86_64_elf_object_p (bfd *abfd)
1070 {
1071 /* Set the right machine number for an x86-64 elf32 file. */
1072 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1073 return TRUE;
1074 }
1075
1076 /* Return TRUE if the TLS access code sequence support transition
1077 from R_TYPE. */
1078
1079 static bfd_boolean
1080 elf_x86_64_check_tls_transition (bfd *abfd,
1081 struct bfd_link_info *info,
1082 asection *sec,
1083 bfd_byte *contents,
1084 Elf_Internal_Shdr *symtab_hdr,
1085 struct elf_link_hash_entry **sym_hashes,
1086 unsigned int r_type,
1087 const Elf_Internal_Rela *rel,
1088 const Elf_Internal_Rela *relend)
1089 {
1090 unsigned int val;
1091 unsigned long r_symndx;
1092 bfd_boolean largepic = FALSE;
1093 struct elf_link_hash_entry *h;
1094 bfd_vma offset;
1095 struct elf_x86_64_link_hash_table *htab;
1096
1097 /* Get the section contents. */
1098 if (contents == NULL)
1099 {
1100 if (elf_section_data (sec)->this_hdr.contents != NULL)
1101 contents = elf_section_data (sec)->this_hdr.contents;
1102 else
1103 {
1104 /* FIXME: How to better handle error condition? */
1105 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1106 return FALSE;
1107
1108 /* Cache the section contents for elf_link_input_bfd. */
1109 elf_section_data (sec)->this_hdr.contents = contents;
1110 }
1111 }
1112
1113 htab = elf_x86_64_hash_table (info);
1114 offset = rel->r_offset;
1115 switch (r_type)
1116 {
1117 case R_X86_64_TLSGD:
1118 case R_X86_64_TLSLD:
1119 if ((rel + 1) >= relend)
1120 return FALSE;
1121
1122 if (r_type == R_X86_64_TLSGD)
1123 {
1124 /* Check transition from GD access model. For 64bit, only
1125 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1126 .word 0x6666; rex64; call __tls_get_addr
1127 can transit to different access model. For 32bit, only
1128 leaq foo@tlsgd(%rip), %rdi
1129 .word 0x6666; rex64; call __tls_get_addr
1130 can transit to different access model. For largepic
1131 we also support:
1132 leaq foo@tlsgd(%rip), %rdi
1133 movabsq $__tls_get_addr@pltoff, %rax
1134 addq $rbx, %rax
1135 call *%rax. */
1136
1137 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1138 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1139
1140 if ((offset + 12) > sec->size)
1141 return FALSE;
1142
1143 if (memcmp (contents + offset + 4, call, 4) != 0)
1144 {
1145 if (!ABI_64_P (abfd)
1146 || (offset + 19) > sec->size
1147 || offset < 3
1148 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1149 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1150 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1151 != 0)
1152 return FALSE;
1153 largepic = TRUE;
1154 }
1155 else if (ABI_64_P (abfd))
1156 {
1157 if (offset < 4
1158 || memcmp (contents + offset - 4, leaq, 4) != 0)
1159 return FALSE;
1160 }
1161 else
1162 {
1163 if (offset < 3
1164 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1165 return FALSE;
1166 }
1167 }
1168 else
1169 {
1170 /* Check transition from LD access model. Only
1171 leaq foo@tlsld(%rip), %rdi;
1172 call __tls_get_addr
1173 can transit to different access model. For largepic
1174 we also support:
1175 leaq foo@tlsld(%rip), %rdi
1176 movabsq $__tls_get_addr@pltoff, %rax
1177 addq $rbx, %rax
1178 call *%rax. */
1179
1180 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1181
1182 if (offset < 3 || (offset + 9) > sec->size)
1183 return FALSE;
1184
1185 if (memcmp (contents + offset - 3, lea, 3) != 0)
1186 return FALSE;
1187
1188 if (0xe8 != *(contents + offset + 4))
1189 {
1190 if (!ABI_64_P (abfd)
1191 || (offset + 19) > sec->size
1192 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1193 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1194 != 0)
1195 return FALSE;
1196 largepic = TRUE;
1197 }
1198 }
1199
1200 r_symndx = htab->r_sym (rel[1].r_info);
1201 if (r_symndx < symtab_hdr->sh_info)
1202 return FALSE;
1203
1204 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1205 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1206 may be versioned. */
1207 return (h != NULL
1208 && h->root.root.string != NULL
1209 && (largepic
1210 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1211 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1212 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1213 && (strncmp (h->root.root.string,
1214 "__tls_get_addr", 14) == 0));
1215
1216 case R_X86_64_GOTTPOFF:
1217 /* Check transition from IE access model:
1218 mov foo@gottpoff(%rip), %reg
1219 add foo@gottpoff(%rip), %reg
1220 */
1221
1222 /* Check REX prefix first. */
1223 if (offset >= 3 && (offset + 4) <= sec->size)
1224 {
1225 val = bfd_get_8 (abfd, contents + offset - 3);
1226 if (val != 0x48 && val != 0x4c)
1227 {
1228 /* X32 may have 0x44 REX prefix or no REX prefix. */
1229 if (ABI_64_P (abfd))
1230 return FALSE;
1231 }
1232 }
1233 else
1234 {
1235 /* X32 may not have any REX prefix. */
1236 if (ABI_64_P (abfd))
1237 return FALSE;
1238 if (offset < 2 || (offset + 3) > sec->size)
1239 return FALSE;
1240 }
1241
1242 val = bfd_get_8 (abfd, contents + offset - 2);
1243 if (val != 0x8b && val != 0x03)
1244 return FALSE;
1245
1246 val = bfd_get_8 (abfd, contents + offset - 1);
1247 return (val & 0xc7) == 5;
1248
1249 case R_X86_64_GOTPC32_TLSDESC:
1250 /* Check transition from GDesc access model:
1251 leaq x@tlsdesc(%rip), %rax
1252
1253 Make sure it's a leaq adding rip to a 32-bit offset
1254 into any register, although it's probably almost always
1255 going to be rax. */
1256
1257 if (offset < 3 || (offset + 4) > sec->size)
1258 return FALSE;
1259
1260 val = bfd_get_8 (abfd, contents + offset - 3);
1261 if ((val & 0xfb) != 0x48)
1262 return FALSE;
1263
1264 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1265 return FALSE;
1266
1267 val = bfd_get_8 (abfd, contents + offset - 1);
1268 return (val & 0xc7) == 0x05;
1269
1270 case R_X86_64_TLSDESC_CALL:
1271 /* Check transition from GDesc access model:
1272 call *x@tlsdesc(%rax)
1273 */
1274 if (offset + 2 <= sec->size)
1275 {
1276 /* Make sure that it's a call *x@tlsdesc(%rax). */
1277 static const unsigned char call[] = { 0xff, 0x10 };
1278 return memcmp (contents + offset, call, 2) == 0;
1279 }
1280
1281 return FALSE;
1282
1283 default:
1284 abort ();
1285 }
1286 }
1287
1288 /* Return TRUE if the TLS access transition is OK or no transition
1289 will be performed. Update R_TYPE if there is a transition. */
1290
1291 static bfd_boolean
1292 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1293 asection *sec, bfd_byte *contents,
1294 Elf_Internal_Shdr *symtab_hdr,
1295 struct elf_link_hash_entry **sym_hashes,
1296 unsigned int *r_type, int tls_type,
1297 const Elf_Internal_Rela *rel,
1298 const Elf_Internal_Rela *relend,
1299 struct elf_link_hash_entry *h,
1300 unsigned long r_symndx)
1301 {
1302 unsigned int from_type = *r_type;
1303 unsigned int to_type = from_type;
1304 bfd_boolean check = TRUE;
1305
1306 /* Skip TLS transition for functions. */
1307 if (h != NULL
1308 && (h->type == STT_FUNC
1309 || h->type == STT_GNU_IFUNC))
1310 return TRUE;
1311
1312 switch (from_type)
1313 {
1314 case R_X86_64_TLSGD:
1315 case R_X86_64_GOTPC32_TLSDESC:
1316 case R_X86_64_TLSDESC_CALL:
1317 case R_X86_64_GOTTPOFF:
1318 if (info->executable)
1319 {
1320 if (h == NULL)
1321 to_type = R_X86_64_TPOFF32;
1322 else
1323 to_type = R_X86_64_GOTTPOFF;
1324 }
1325
1326 /* When we are called from elf_x86_64_relocate_section,
1327 CONTENTS isn't NULL and there may be additional transitions
1328 based on TLS_TYPE. */
1329 if (contents != NULL)
1330 {
1331 unsigned int new_to_type = to_type;
1332
1333 if (info->executable
1334 && h != NULL
1335 && h->dynindx == -1
1336 && tls_type == GOT_TLS_IE)
1337 new_to_type = R_X86_64_TPOFF32;
1338
1339 if (to_type == R_X86_64_TLSGD
1340 || to_type == R_X86_64_GOTPC32_TLSDESC
1341 || to_type == R_X86_64_TLSDESC_CALL)
1342 {
1343 if (tls_type == GOT_TLS_IE)
1344 new_to_type = R_X86_64_GOTTPOFF;
1345 }
1346
1347 /* We checked the transition before when we were called from
1348 elf_x86_64_check_relocs. We only want to check the new
1349 transition which hasn't been checked before. */
1350 check = new_to_type != to_type && from_type == to_type;
1351 to_type = new_to_type;
1352 }
1353
1354 break;
1355
1356 case R_X86_64_TLSLD:
1357 if (info->executable)
1358 to_type = R_X86_64_TPOFF32;
1359 break;
1360
1361 default:
1362 return TRUE;
1363 }
1364
1365 /* Return TRUE if there is no transition. */
1366 if (from_type == to_type)
1367 return TRUE;
1368
1369 /* Check if the transition can be performed. */
1370 if (check
1371 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1372 symtab_hdr, sym_hashes,
1373 from_type, rel, relend))
1374 {
1375 reloc_howto_type *from, *to;
1376 const char *name;
1377
1378 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1379 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1380
1381 if (h)
1382 name = h->root.root.string;
1383 else
1384 {
1385 struct elf_x86_64_link_hash_table *htab;
1386
1387 htab = elf_x86_64_hash_table (info);
1388 if (htab == NULL)
1389 name = "*unknown*";
1390 else
1391 {
1392 Elf_Internal_Sym *isym;
1393
1394 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1395 abfd, r_symndx);
1396 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1397 }
1398 }
1399
1400 (*_bfd_error_handler)
1401 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1402 "in section `%A' failed"),
1403 abfd, sec, from->name, to->name, name,
1404 (unsigned long) rel->r_offset);
1405 bfd_set_error (bfd_error_bad_value);
1406 return FALSE;
1407 }
1408
1409 *r_type = to_type;
1410 return TRUE;
1411 }
1412
1413 /* Look through the relocs for a section during the first phase, and
1414 calculate needed space in the global offset table, procedure
1415 linkage table, and dynamic reloc sections. */
1416
1417 static bfd_boolean
1418 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1419 asection *sec,
1420 const Elf_Internal_Rela *relocs)
1421 {
1422 struct elf_x86_64_link_hash_table *htab;
1423 Elf_Internal_Shdr *symtab_hdr;
1424 struct elf_link_hash_entry **sym_hashes;
1425 const Elf_Internal_Rela *rel;
1426 const Elf_Internal_Rela *rel_end;
1427 asection *sreloc;
1428
1429 if (info->relocatable)
1430 return TRUE;
1431
1432 BFD_ASSERT (is_x86_64_elf (abfd));
1433
1434 htab = elf_x86_64_hash_table (info);
1435 if (htab == NULL)
1436 return FALSE;
1437
1438 symtab_hdr = &elf_symtab_hdr (abfd);
1439 sym_hashes = elf_sym_hashes (abfd);
1440
1441 sreloc = NULL;
1442
1443 rel_end = relocs + sec->reloc_count;
1444 for (rel = relocs; rel < rel_end; rel++)
1445 {
1446 unsigned int r_type;
1447 unsigned long r_symndx;
1448 struct elf_link_hash_entry *h;
1449 Elf_Internal_Sym *isym;
1450 const char *name;
1451 bfd_boolean size_reloc;
1452
1453 r_symndx = htab->r_sym (rel->r_info);
1454 r_type = ELF32_R_TYPE (rel->r_info);
1455
1456 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1457 {
1458 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1459 abfd, r_symndx);
1460 return FALSE;
1461 }
1462
1463 if (r_symndx < symtab_hdr->sh_info)
1464 {
1465 /* A local symbol. */
1466 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1467 abfd, r_symndx);
1468 if (isym == NULL)
1469 return FALSE;
1470
1471 /* Check relocation against local STT_GNU_IFUNC symbol. */
1472 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1473 {
1474 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1475 TRUE);
1476 if (h == NULL)
1477 return FALSE;
1478
1479 /* Fake a STT_GNU_IFUNC symbol. */
1480 h->type = STT_GNU_IFUNC;
1481 h->def_regular = 1;
1482 h->ref_regular = 1;
1483 h->forced_local = 1;
1484 h->root.type = bfd_link_hash_defined;
1485 }
1486 else
1487 h = NULL;
1488 }
1489 else
1490 {
1491 isym = NULL;
1492 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1493 while (h->root.type == bfd_link_hash_indirect
1494 || h->root.type == bfd_link_hash_warning)
1495 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1496 }
1497
1498 /* Check invalid x32 relocations. */
1499 if (!ABI_64_P (abfd))
1500 switch (r_type)
1501 {
1502 default:
1503 break;
1504
1505 case R_X86_64_DTPOFF64:
1506 case R_X86_64_TPOFF64:
1507 case R_X86_64_PC64:
1508 case R_X86_64_GOTOFF64:
1509 case R_X86_64_GOT64:
1510 case R_X86_64_GOTPCREL64:
1511 case R_X86_64_GOTPC64:
1512 case R_X86_64_GOTPLT64:
1513 case R_X86_64_PLTOFF64:
1514 {
1515 if (h)
1516 name = h->root.root.string;
1517 else
1518 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1519 NULL);
1520 (*_bfd_error_handler)
1521 (_("%B: relocation %s against symbol `%s' isn't "
1522 "supported in x32 mode"), abfd,
1523 x86_64_elf_howto_table[r_type].name, name);
1524 bfd_set_error (bfd_error_bad_value);
1525 return FALSE;
1526 }
1527 break;
1528 }
1529
1530 if (h != NULL)
1531 {
1532 /* Create the ifunc sections for static executables. If we
1533 never see an indirect function symbol nor we are building
1534 a static executable, those sections will be empty and
1535 won't appear in output. */
1536 switch (r_type)
1537 {
1538 default:
1539 break;
1540
1541 case R_X86_64_32S:
1542 case R_X86_64_32:
1543 case R_X86_64_64:
1544 case R_X86_64_PC32:
1545 case R_X86_64_PC64:
1546 case R_X86_64_PLT32:
1547 case R_X86_64_GOTPCREL:
1548 case R_X86_64_GOTPCREL64:
1549 if (htab->elf.dynobj == NULL)
1550 htab->elf.dynobj = abfd;
1551 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1552 return FALSE;
1553 break;
1554 }
1555
1556 /* It is referenced by a non-shared object. */
1557 h->ref_regular = 1;
1558 h->root.non_ir_ref = 1;
1559 }
1560
1561 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1562 symtab_hdr, sym_hashes,
1563 &r_type, GOT_UNKNOWN,
1564 rel, rel_end, h, r_symndx))
1565 return FALSE;
1566
1567 switch (r_type)
1568 {
1569 case R_X86_64_TLSLD:
1570 htab->tls_ld_got.refcount += 1;
1571 goto create_got;
1572
1573 case R_X86_64_TPOFF32:
1574 if (!info->executable && ABI_64_P (abfd))
1575 {
1576 if (h)
1577 name = h->root.root.string;
1578 else
1579 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1580 NULL);
1581 (*_bfd_error_handler)
1582 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1583 abfd,
1584 x86_64_elf_howto_table[r_type].name, name);
1585 bfd_set_error (bfd_error_bad_value);
1586 return FALSE;
1587 }
1588 break;
1589
1590 case R_X86_64_GOTTPOFF:
1591 if (!info->executable)
1592 info->flags |= DF_STATIC_TLS;
1593 /* Fall through */
1594
1595 case R_X86_64_GOT32:
1596 case R_X86_64_GOTPCREL:
1597 case R_X86_64_TLSGD:
1598 case R_X86_64_GOT64:
1599 case R_X86_64_GOTPCREL64:
1600 case R_X86_64_GOTPLT64:
1601 case R_X86_64_GOTPC32_TLSDESC:
1602 case R_X86_64_TLSDESC_CALL:
1603 /* This symbol requires a global offset table entry. */
1604 {
1605 int tls_type, old_tls_type;
1606
1607 switch (r_type)
1608 {
1609 default: tls_type = GOT_NORMAL; break;
1610 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1611 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1612 case R_X86_64_GOTPC32_TLSDESC:
1613 case R_X86_64_TLSDESC_CALL:
1614 tls_type = GOT_TLS_GDESC; break;
1615 }
1616
1617 if (h != NULL)
1618 {
1619 if (r_type == R_X86_64_GOTPLT64)
1620 {
1621 /* This relocation indicates that we also need
1622 a PLT entry, as this is a function. We don't need
1623 a PLT entry for local symbols. */
1624 h->needs_plt = 1;
1625 h->plt.refcount += 1;
1626 }
1627 h->got.refcount += 1;
1628 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1629 }
1630 else
1631 {
1632 bfd_signed_vma *local_got_refcounts;
1633
1634 /* This is a global offset table entry for a local symbol. */
1635 local_got_refcounts = elf_local_got_refcounts (abfd);
1636 if (local_got_refcounts == NULL)
1637 {
1638 bfd_size_type size;
1639
1640 size = symtab_hdr->sh_info;
1641 size *= sizeof (bfd_signed_vma)
1642 + sizeof (bfd_vma) + sizeof (char);
1643 local_got_refcounts = ((bfd_signed_vma *)
1644 bfd_zalloc (abfd, size));
1645 if (local_got_refcounts == NULL)
1646 return FALSE;
1647 elf_local_got_refcounts (abfd) = local_got_refcounts;
1648 elf_x86_64_local_tlsdesc_gotent (abfd)
1649 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1650 elf_x86_64_local_got_tls_type (abfd)
1651 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1652 }
1653 local_got_refcounts[r_symndx] += 1;
1654 old_tls_type
1655 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1656 }
1657
1658 /* If a TLS symbol is accessed using IE at least once,
1659 there is no point to use dynamic model for it. */
1660 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1661 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1662 || tls_type != GOT_TLS_IE))
1663 {
1664 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1665 tls_type = old_tls_type;
1666 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1667 && GOT_TLS_GD_ANY_P (tls_type))
1668 tls_type |= old_tls_type;
1669 else
1670 {
1671 if (h)
1672 name = h->root.root.string;
1673 else
1674 name = bfd_elf_sym_name (abfd, symtab_hdr,
1675 isym, NULL);
1676 (*_bfd_error_handler)
1677 (_("%B: '%s' accessed both as normal and thread local symbol"),
1678 abfd, name);
1679 bfd_set_error (bfd_error_bad_value);
1680 return FALSE;
1681 }
1682 }
1683
1684 if (old_tls_type != tls_type)
1685 {
1686 if (h != NULL)
1687 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1688 else
1689 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1690 }
1691 }
1692 /* Fall through */
1693
1694 case R_X86_64_GOTOFF64:
1695 case R_X86_64_GOTPC32:
1696 case R_X86_64_GOTPC64:
1697 create_got:
1698 if (htab->elf.sgot == NULL)
1699 {
1700 if (htab->elf.dynobj == NULL)
1701 htab->elf.dynobj = abfd;
1702 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1703 info))
1704 return FALSE;
1705 }
1706 break;
1707
1708 case R_X86_64_PLT32:
1709 /* This symbol requires a procedure linkage table entry. We
1710 actually build the entry in adjust_dynamic_symbol,
1711 because this might be a case of linking PIC code which is
1712 never referenced by a dynamic object, in which case we
1713 don't need to generate a procedure linkage table entry
1714 after all. */
1715
1716 /* If this is a local symbol, we resolve it directly without
1717 creating a procedure linkage table entry. */
1718 if (h == NULL)
1719 continue;
1720
1721 h->needs_plt = 1;
1722 h->plt.refcount += 1;
1723 break;
1724
1725 case R_X86_64_PLTOFF64:
1726 /* This tries to form the 'address' of a function relative
1727 to GOT. For global symbols we need a PLT entry. */
1728 if (h != NULL)
1729 {
1730 h->needs_plt = 1;
1731 h->plt.refcount += 1;
1732 }
1733 goto create_got;
1734
1735 case R_X86_64_SIZE32:
1736 case R_X86_64_SIZE64:
1737 size_reloc = TRUE;
1738 goto do_size;
1739
1740 case R_X86_64_32:
1741 if (!ABI_64_P (abfd))
1742 goto pointer;
1743 case R_X86_64_8:
1744 case R_X86_64_16:
1745 case R_X86_64_32S:
1746 /* Let's help debug shared library creation. These relocs
1747 cannot be used in shared libs. Don't error out for
1748 sections we don't care about, such as debug sections or
1749 non-constant sections. */
1750 if (info->shared
1751 && (sec->flags & SEC_ALLOC) != 0
1752 && (sec->flags & SEC_READONLY) != 0)
1753 {
1754 if (h)
1755 name = h->root.root.string;
1756 else
1757 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1758 (*_bfd_error_handler)
1759 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1760 abfd, x86_64_elf_howto_table[r_type].name, name);
1761 bfd_set_error (bfd_error_bad_value);
1762 return FALSE;
1763 }
1764 /* Fall through. */
1765
1766 case R_X86_64_PC8:
1767 case R_X86_64_PC16:
1768 case R_X86_64_PC32:
1769 case R_X86_64_PC64:
1770 case R_X86_64_64:
1771 pointer:
1772 if (h != NULL && info->executable)
1773 {
1774 /* If this reloc is in a read-only section, we might
1775 need a copy reloc. We can't check reliably at this
1776 stage whether the section is read-only, as input
1777 sections have not yet been mapped to output sections.
1778 Tentatively set the flag for now, and correct in
1779 adjust_dynamic_symbol. */
1780 h->non_got_ref = 1;
1781
1782 /* We may need a .plt entry if the function this reloc
1783 refers to is in a shared lib. */
1784 h->plt.refcount += 1;
1785 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1786 h->pointer_equality_needed = 1;
1787 }
1788
1789 size_reloc = FALSE;
1790 do_size:
1791 /* If we are creating a shared library, and this is a reloc
1792 against a global symbol, or a non PC relative reloc
1793 against a local symbol, then we need to copy the reloc
1794 into the shared library. However, if we are linking with
1795 -Bsymbolic, we do not need to copy a reloc against a
1796 global symbol which is defined in an object we are
1797 including in the link (i.e., DEF_REGULAR is set). At
1798 this point we have not seen all the input files, so it is
1799 possible that DEF_REGULAR is not set now but will be set
1800 later (it is never cleared). In case of a weak definition,
1801 DEF_REGULAR may be cleared later by a strong definition in
1802 a shared library. We account for that possibility below by
1803 storing information in the relocs_copied field of the hash
1804 table entry. A similar situation occurs when creating
1805 shared libraries and symbol visibility changes render the
1806 symbol local.
1807
1808 If on the other hand, we are creating an executable, we
1809 may need to keep relocations for symbols satisfied by a
1810 dynamic library if we manage to avoid copy relocs for the
1811 symbol. */
1812 if ((info->shared
1813 && (sec->flags & SEC_ALLOC) != 0
1814 && (! IS_X86_64_PCREL_TYPE (r_type)
1815 || (h != NULL
1816 && (! SYMBOLIC_BIND (info, h)
1817 || h->root.type == bfd_link_hash_defweak
1818 || !h->def_regular))))
1819 || (ELIMINATE_COPY_RELOCS
1820 && !info->shared
1821 && (sec->flags & SEC_ALLOC) != 0
1822 && h != NULL
1823 && (h->root.type == bfd_link_hash_defweak
1824 || !h->def_regular)))
1825 {
1826 struct elf_dyn_relocs *p;
1827 struct elf_dyn_relocs **head;
1828
1829 /* We must copy these reloc types into the output file.
1830 Create a reloc section in dynobj and make room for
1831 this reloc. */
1832 if (sreloc == NULL)
1833 {
1834 if (htab->elf.dynobj == NULL)
1835 htab->elf.dynobj = abfd;
1836
1837 sreloc = _bfd_elf_make_dynamic_reloc_section
1838 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1839 abfd, /*rela?*/ TRUE);
1840
1841 if (sreloc == NULL)
1842 return FALSE;
1843 }
1844
1845 /* If this is a global symbol, we count the number of
1846 relocations we need for this symbol. */
1847 if (h != NULL)
1848 {
1849 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1850 }
1851 else
1852 {
1853 /* Track dynamic relocs needed for local syms too.
1854 We really need local syms available to do this
1855 easily. Oh well. */
1856 asection *s;
1857 void **vpp;
1858
1859 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1860 abfd, r_symndx);
1861 if (isym == NULL)
1862 return FALSE;
1863
1864 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1865 if (s == NULL)
1866 s = sec;
1867
1868 /* Beware of type punned pointers vs strict aliasing
1869 rules. */
1870 vpp = &(elf_section_data (s)->local_dynrel);
1871 head = (struct elf_dyn_relocs **)vpp;
1872 }
1873
1874 p = *head;
1875 if (p == NULL || p->sec != sec)
1876 {
1877 bfd_size_type amt = sizeof *p;
1878
1879 p = ((struct elf_dyn_relocs *)
1880 bfd_alloc (htab->elf.dynobj, amt));
1881 if (p == NULL)
1882 return FALSE;
1883 p->next = *head;
1884 *head = p;
1885 p->sec = sec;
1886 p->count = 0;
1887 p->pc_count = 0;
1888 }
1889
1890 p->count += 1;
1891 /* Count size relocation as PC-relative relocation. */
1892 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
1893 p->pc_count += 1;
1894 }
1895 break;
1896
1897 /* This relocation describes the C++ object vtable hierarchy.
1898 Reconstruct it for later use during GC. */
1899 case R_X86_64_GNU_VTINHERIT:
1900 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1901 return FALSE;
1902 break;
1903
1904 /* This relocation describes which C++ vtable entries are actually
1905 used. Record for later use during GC. */
1906 case R_X86_64_GNU_VTENTRY:
1907 BFD_ASSERT (h != NULL);
1908 if (h != NULL
1909 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1910 return FALSE;
1911 break;
1912
1913 default:
1914 break;
1915 }
1916 }
1917
1918 return TRUE;
1919 }
1920
1921 /* Return the section that should be marked against GC for a given
1922 relocation. */
1923
1924 static asection *
1925 elf_x86_64_gc_mark_hook (asection *sec,
1926 struct bfd_link_info *info,
1927 Elf_Internal_Rela *rel,
1928 struct elf_link_hash_entry *h,
1929 Elf_Internal_Sym *sym)
1930 {
1931 if (h != NULL)
1932 switch (ELF32_R_TYPE (rel->r_info))
1933 {
1934 case R_X86_64_GNU_VTINHERIT:
1935 case R_X86_64_GNU_VTENTRY:
1936 return NULL;
1937 }
1938
1939 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1940 }
1941
1942 /* Update the got entry reference counts for the section being removed. */
1943
1944 static bfd_boolean
1945 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1946 asection *sec,
1947 const Elf_Internal_Rela *relocs)
1948 {
1949 struct elf_x86_64_link_hash_table *htab;
1950 Elf_Internal_Shdr *symtab_hdr;
1951 struct elf_link_hash_entry **sym_hashes;
1952 bfd_signed_vma *local_got_refcounts;
1953 const Elf_Internal_Rela *rel, *relend;
1954
1955 if (info->relocatable)
1956 return TRUE;
1957
1958 htab = elf_x86_64_hash_table (info);
1959 if (htab == NULL)
1960 return FALSE;
1961
1962 elf_section_data (sec)->local_dynrel = NULL;
1963
1964 symtab_hdr = &elf_symtab_hdr (abfd);
1965 sym_hashes = elf_sym_hashes (abfd);
1966 local_got_refcounts = elf_local_got_refcounts (abfd);
1967
1968 htab = elf_x86_64_hash_table (info);
1969 relend = relocs + sec->reloc_count;
1970 for (rel = relocs; rel < relend; rel++)
1971 {
1972 unsigned long r_symndx;
1973 unsigned int r_type;
1974 struct elf_link_hash_entry *h = NULL;
1975
1976 r_symndx = htab->r_sym (rel->r_info);
1977 if (r_symndx >= symtab_hdr->sh_info)
1978 {
1979 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1980 while (h->root.type == bfd_link_hash_indirect
1981 || h->root.type == bfd_link_hash_warning)
1982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1983 }
1984 else
1985 {
1986 /* A local symbol. */
1987 Elf_Internal_Sym *isym;
1988
1989 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1990 abfd, r_symndx);
1991
1992 /* Check relocation against local STT_GNU_IFUNC symbol. */
1993 if (isym != NULL
1994 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1995 {
1996 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1997 if (h == NULL)
1998 abort ();
1999 }
2000 }
2001
2002 if (h)
2003 {
2004 struct elf_x86_64_link_hash_entry *eh;
2005 struct elf_dyn_relocs **pp;
2006 struct elf_dyn_relocs *p;
2007
2008 eh = (struct elf_x86_64_link_hash_entry *) h;
2009
2010 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2011 if (p->sec == sec)
2012 {
2013 /* Everything must go for SEC. */
2014 *pp = p->next;
2015 break;
2016 }
2017 }
2018
2019 r_type = ELF32_R_TYPE (rel->r_info);
2020 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2021 symtab_hdr, sym_hashes,
2022 &r_type, GOT_UNKNOWN,
2023 rel, relend, h, r_symndx))
2024 return FALSE;
2025
2026 switch (r_type)
2027 {
2028 case R_X86_64_TLSLD:
2029 if (htab->tls_ld_got.refcount > 0)
2030 htab->tls_ld_got.refcount -= 1;
2031 break;
2032
2033 case R_X86_64_TLSGD:
2034 case R_X86_64_GOTPC32_TLSDESC:
2035 case R_X86_64_TLSDESC_CALL:
2036 case R_X86_64_GOTTPOFF:
2037 case R_X86_64_GOT32:
2038 case R_X86_64_GOTPCREL:
2039 case R_X86_64_GOT64:
2040 case R_X86_64_GOTPCREL64:
2041 case R_X86_64_GOTPLT64:
2042 if (h != NULL)
2043 {
2044 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2045 h->plt.refcount -= 1;
2046 if (h->got.refcount > 0)
2047 h->got.refcount -= 1;
2048 if (h->type == STT_GNU_IFUNC)
2049 {
2050 if (h->plt.refcount > 0)
2051 h->plt.refcount -= 1;
2052 }
2053 }
2054 else if (local_got_refcounts != NULL)
2055 {
2056 if (local_got_refcounts[r_symndx] > 0)
2057 local_got_refcounts[r_symndx] -= 1;
2058 }
2059 break;
2060
2061 case R_X86_64_8:
2062 case R_X86_64_16:
2063 case R_X86_64_32:
2064 case R_X86_64_64:
2065 case R_X86_64_32S:
2066 case R_X86_64_PC8:
2067 case R_X86_64_PC16:
2068 case R_X86_64_PC32:
2069 case R_X86_64_PC64:
2070 case R_X86_64_SIZE32:
2071 case R_X86_64_SIZE64:
2072 if (info->shared
2073 && (h == NULL || h->type != STT_GNU_IFUNC))
2074 break;
2075 /* Fall thru */
2076
2077 case R_X86_64_PLT32:
2078 case R_X86_64_PLTOFF64:
2079 if (h != NULL)
2080 {
2081 if (h->plt.refcount > 0)
2082 h->plt.refcount -= 1;
2083 }
2084 break;
2085
2086 default:
2087 break;
2088 }
2089 }
2090
2091 return TRUE;
2092 }
2093
2094 /* Adjust a symbol defined by a dynamic object and referenced by a
2095 regular object. The current definition is in some section of the
2096 dynamic object, but we're not including those sections. We have to
2097 change the definition to something the rest of the link can
2098 understand. */
2099
2100 static bfd_boolean
2101 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2102 struct elf_link_hash_entry *h)
2103 {
2104 struct elf_x86_64_link_hash_table *htab;
2105 asection *s;
2106 struct elf_x86_64_link_hash_entry *eh;
2107 struct elf_dyn_relocs *p;
2108
2109 /* STT_GNU_IFUNC symbol must go through PLT. */
2110 if (h->type == STT_GNU_IFUNC)
2111 {
2112 /* All local STT_GNU_IFUNC references must be treate as local
2113 calls via local PLT. */
2114 if (h->ref_regular
2115 && SYMBOL_CALLS_LOCAL (info, h))
2116 {
2117 bfd_size_type pc_count = 0, count = 0;
2118 struct elf_dyn_relocs **pp;
2119
2120 eh = (struct elf_x86_64_link_hash_entry *) h;
2121 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2122 {
2123 pc_count += p->pc_count;
2124 p->count -= p->pc_count;
2125 p->pc_count = 0;
2126 count += p->count;
2127 if (p->count == 0)
2128 *pp = p->next;
2129 else
2130 pp = &p->next;
2131 }
2132
2133 if (pc_count || count)
2134 {
2135 h->needs_plt = 1;
2136 h->non_got_ref = 1;
2137 if (h->plt.refcount <= 0)
2138 h->plt.refcount = 1;
2139 else
2140 h->plt.refcount += 1;
2141 }
2142 }
2143
2144 if (h->plt.refcount <= 0)
2145 {
2146 h->plt.offset = (bfd_vma) -1;
2147 h->needs_plt = 0;
2148 }
2149 return TRUE;
2150 }
2151
2152 /* If this is a function, put it in the procedure linkage table. We
2153 will fill in the contents of the procedure linkage table later,
2154 when we know the address of the .got section. */
2155 if (h->type == STT_FUNC
2156 || h->needs_plt)
2157 {
2158 if (h->plt.refcount <= 0
2159 || SYMBOL_CALLS_LOCAL (info, h)
2160 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2161 && h->root.type == bfd_link_hash_undefweak))
2162 {
2163 /* This case can occur if we saw a PLT32 reloc in an input
2164 file, but the symbol was never referred to by a dynamic
2165 object, or if all references were garbage collected. In
2166 such a case, we don't actually need to build a procedure
2167 linkage table, and we can just do a PC32 reloc instead. */
2168 h->plt.offset = (bfd_vma) -1;
2169 h->needs_plt = 0;
2170 }
2171
2172 return TRUE;
2173 }
2174 else
2175 /* It's possible that we incorrectly decided a .plt reloc was
2176 needed for an R_X86_64_PC32 reloc to a non-function sym in
2177 check_relocs. We can't decide accurately between function and
2178 non-function syms in check-relocs; Objects loaded later in
2179 the link may change h->type. So fix it now. */
2180 h->plt.offset = (bfd_vma) -1;
2181
2182 /* If this is a weak symbol, and there is a real definition, the
2183 processor independent code will have arranged for us to see the
2184 real definition first, and we can just use the same value. */
2185 if (h->u.weakdef != NULL)
2186 {
2187 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2188 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2189 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2190 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2191 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2192 h->non_got_ref = h->u.weakdef->non_got_ref;
2193 return TRUE;
2194 }
2195
2196 /* This is a reference to a symbol defined by a dynamic object which
2197 is not a function. */
2198
2199 /* If we are creating a shared library, we must presume that the
2200 only references to the symbol are via the global offset table.
2201 For such cases we need not do anything here; the relocations will
2202 be handled correctly by relocate_section. */
2203 if (info->shared)
2204 return TRUE;
2205
2206 /* If there are no references to this symbol that do not use the
2207 GOT, we don't need to generate a copy reloc. */
2208 if (!h->non_got_ref)
2209 return TRUE;
2210
2211 /* If -z nocopyreloc was given, we won't generate them either. */
2212 if (info->nocopyreloc)
2213 {
2214 h->non_got_ref = 0;
2215 return TRUE;
2216 }
2217
2218 if (ELIMINATE_COPY_RELOCS)
2219 {
2220 eh = (struct elf_x86_64_link_hash_entry *) h;
2221 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2222 {
2223 s = p->sec->output_section;
2224 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2225 break;
2226 }
2227
2228 /* If we didn't find any dynamic relocs in read-only sections, then
2229 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2230 if (p == NULL)
2231 {
2232 h->non_got_ref = 0;
2233 return TRUE;
2234 }
2235 }
2236
2237 /* We must allocate the symbol in our .dynbss section, which will
2238 become part of the .bss section of the executable. There will be
2239 an entry for this symbol in the .dynsym section. The dynamic
2240 object will contain position independent code, so all references
2241 from the dynamic object to this symbol will go through the global
2242 offset table. The dynamic linker will use the .dynsym entry to
2243 determine the address it must put in the global offset table, so
2244 both the dynamic object and the regular object will refer to the
2245 same memory location for the variable. */
2246
2247 htab = elf_x86_64_hash_table (info);
2248 if (htab == NULL)
2249 return FALSE;
2250
2251 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2252 to copy the initial value out of the dynamic object and into the
2253 runtime process image. */
2254 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2255 {
2256 const struct elf_backend_data *bed;
2257 bed = get_elf_backend_data (info->output_bfd);
2258 htab->srelbss->size += bed->s->sizeof_rela;
2259 h->needs_copy = 1;
2260 }
2261
2262 s = htab->sdynbss;
2263
2264 return _bfd_elf_adjust_dynamic_copy (h, s);
2265 }
2266
2267 /* Allocate space in .plt, .got and associated reloc sections for
2268 dynamic relocs. */
2269
2270 static bfd_boolean
2271 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2272 {
2273 struct bfd_link_info *info;
2274 struct elf_x86_64_link_hash_table *htab;
2275 struct elf_x86_64_link_hash_entry *eh;
2276 struct elf_dyn_relocs *p;
2277 const struct elf_backend_data *bed;
2278 unsigned int plt_entry_size;
2279
2280 if (h->root.type == bfd_link_hash_indirect)
2281 return TRUE;
2282
2283 eh = (struct elf_x86_64_link_hash_entry *) h;
2284
2285 info = (struct bfd_link_info *) inf;
2286 htab = elf_x86_64_hash_table (info);
2287 if (htab == NULL)
2288 return FALSE;
2289 bed = get_elf_backend_data (info->output_bfd);
2290 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2291
2292 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2293 here if it is defined and referenced in a non-shared object. */
2294 if (h->type == STT_GNU_IFUNC
2295 && h->def_regular)
2296 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2297 &eh->dyn_relocs,
2298 plt_entry_size,
2299 plt_entry_size,
2300 GOT_ENTRY_SIZE);
2301 else if (htab->elf.dynamic_sections_created
2302 && h->plt.refcount > 0)
2303 {
2304 /* Make sure this symbol is output as a dynamic symbol.
2305 Undefined weak syms won't yet be marked as dynamic. */
2306 if (h->dynindx == -1
2307 && !h->forced_local)
2308 {
2309 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2310 return FALSE;
2311 }
2312
2313 if (info->shared
2314 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2315 {
2316 asection *s = htab->elf.splt;
2317
2318 /* If this is the first .plt entry, make room for the special
2319 first entry. */
2320 if (s->size == 0)
2321 s->size += plt_entry_size;
2322
2323 h->plt.offset = s->size;
2324
2325 /* If this symbol is not defined in a regular file, and we are
2326 not generating a shared library, then set the symbol to this
2327 location in the .plt. This is required to make function
2328 pointers compare as equal between the normal executable and
2329 the shared library. */
2330 if (! info->shared
2331 && !h->def_regular)
2332 {
2333 h->root.u.def.section = s;
2334 h->root.u.def.value = h->plt.offset;
2335 }
2336
2337 /* Make room for this entry. */
2338 s->size += plt_entry_size;
2339
2340 /* We also need to make an entry in the .got.plt section, which
2341 will be placed in the .got section by the linker script. */
2342 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2343
2344 /* We also need to make an entry in the .rela.plt section. */
2345 htab->elf.srelplt->size += bed->s->sizeof_rela;
2346 htab->elf.srelplt->reloc_count++;
2347 }
2348 else
2349 {
2350 h->plt.offset = (bfd_vma) -1;
2351 h->needs_plt = 0;
2352 }
2353 }
2354 else
2355 {
2356 h->plt.offset = (bfd_vma) -1;
2357 h->needs_plt = 0;
2358 }
2359
2360 eh->tlsdesc_got = (bfd_vma) -1;
2361
2362 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2363 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2364 if (h->got.refcount > 0
2365 && info->executable
2366 && h->dynindx == -1
2367 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2368 {
2369 h->got.offset = (bfd_vma) -1;
2370 }
2371 else if (h->got.refcount > 0)
2372 {
2373 asection *s;
2374 bfd_boolean dyn;
2375 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2376
2377 /* Make sure this symbol is output as a dynamic symbol.
2378 Undefined weak syms won't yet be marked as dynamic. */
2379 if (h->dynindx == -1
2380 && !h->forced_local)
2381 {
2382 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2383 return FALSE;
2384 }
2385
2386 if (GOT_TLS_GDESC_P (tls_type))
2387 {
2388 eh->tlsdesc_got = htab->elf.sgotplt->size
2389 - elf_x86_64_compute_jump_table_size (htab);
2390 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2391 h->got.offset = (bfd_vma) -2;
2392 }
2393 if (! GOT_TLS_GDESC_P (tls_type)
2394 || GOT_TLS_GD_P (tls_type))
2395 {
2396 s = htab->elf.sgot;
2397 h->got.offset = s->size;
2398 s->size += GOT_ENTRY_SIZE;
2399 if (GOT_TLS_GD_P (tls_type))
2400 s->size += GOT_ENTRY_SIZE;
2401 }
2402 dyn = htab->elf.dynamic_sections_created;
2403 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2404 and two if global.
2405 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2406 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2407 || tls_type == GOT_TLS_IE)
2408 htab->elf.srelgot->size += bed->s->sizeof_rela;
2409 else if (GOT_TLS_GD_P (tls_type))
2410 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2411 else if (! GOT_TLS_GDESC_P (tls_type)
2412 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2413 || h->root.type != bfd_link_hash_undefweak)
2414 && (info->shared
2415 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2416 htab->elf.srelgot->size += bed->s->sizeof_rela;
2417 if (GOT_TLS_GDESC_P (tls_type))
2418 {
2419 htab->elf.srelplt->size += bed->s->sizeof_rela;
2420 htab->tlsdesc_plt = (bfd_vma) -1;
2421 }
2422 }
2423 else
2424 h->got.offset = (bfd_vma) -1;
2425
2426 if (eh->dyn_relocs == NULL)
2427 return TRUE;
2428
2429 /* In the shared -Bsymbolic case, discard space allocated for
2430 dynamic pc-relative relocs against symbols which turn out to be
2431 defined in regular objects. For the normal shared case, discard
2432 space for pc-relative relocs that have become local due to symbol
2433 visibility changes. */
2434
2435 if (info->shared)
2436 {
2437 /* Relocs that use pc_count are those that appear on a call
2438 insn, or certain REL relocs that can generated via assembly.
2439 We want calls to protected symbols to resolve directly to the
2440 function rather than going via the plt. If people want
2441 function pointer comparisons to work as expected then they
2442 should avoid writing weird assembly. */
2443 if (SYMBOL_CALLS_LOCAL (info, h))
2444 {
2445 struct elf_dyn_relocs **pp;
2446
2447 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2448 {
2449 p->count -= p->pc_count;
2450 p->pc_count = 0;
2451 if (p->count == 0)
2452 *pp = p->next;
2453 else
2454 pp = &p->next;
2455 }
2456 }
2457
2458 /* Also discard relocs on undefined weak syms with non-default
2459 visibility. */
2460 if (eh->dyn_relocs != NULL
2461 && h->root.type == bfd_link_hash_undefweak)
2462 {
2463 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2464 eh->dyn_relocs = NULL;
2465
2466 /* Make sure undefined weak symbols are output as a dynamic
2467 symbol in PIEs. */
2468 else if (h->dynindx == -1
2469 && ! h->forced_local
2470 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2471 return FALSE;
2472 }
2473
2474 }
2475 else if (ELIMINATE_COPY_RELOCS)
2476 {
2477 /* For the non-shared case, discard space for relocs against
2478 symbols which turn out to need copy relocs or are not
2479 dynamic. */
2480
2481 if (!h->non_got_ref
2482 && ((h->def_dynamic
2483 && !h->def_regular)
2484 || (htab->elf.dynamic_sections_created
2485 && (h->root.type == bfd_link_hash_undefweak
2486 || h->root.type == bfd_link_hash_undefined))))
2487 {
2488 /* Make sure this symbol is output as a dynamic symbol.
2489 Undefined weak syms won't yet be marked as dynamic. */
2490 if (h->dynindx == -1
2491 && ! h->forced_local
2492 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2493 return FALSE;
2494
2495 /* If that succeeded, we know we'll be keeping all the
2496 relocs. */
2497 if (h->dynindx != -1)
2498 goto keep;
2499 }
2500
2501 eh->dyn_relocs = NULL;
2502
2503 keep: ;
2504 }
2505
2506 /* Finally, allocate space. */
2507 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2508 {
2509 asection * sreloc;
2510
2511 sreloc = elf_section_data (p->sec)->sreloc;
2512
2513 BFD_ASSERT (sreloc != NULL);
2514
2515 sreloc->size += p->count * bed->s->sizeof_rela;
2516 }
2517
2518 return TRUE;
2519 }
2520
2521 /* Allocate space in .plt, .got and associated reloc sections for
2522 local dynamic relocs. */
2523
2524 static bfd_boolean
2525 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2526 {
2527 struct elf_link_hash_entry *h
2528 = (struct elf_link_hash_entry *) *slot;
2529
2530 if (h->type != STT_GNU_IFUNC
2531 || !h->def_regular
2532 || !h->ref_regular
2533 || !h->forced_local
2534 || h->root.type != bfd_link_hash_defined)
2535 abort ();
2536
2537 return elf_x86_64_allocate_dynrelocs (h, inf);
2538 }
2539
2540 /* Find any dynamic relocs that apply to read-only sections. */
2541
2542 static bfd_boolean
2543 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2544 void * inf)
2545 {
2546 struct elf_x86_64_link_hash_entry *eh;
2547 struct elf_dyn_relocs *p;
2548
2549 /* Skip local IFUNC symbols. */
2550 if (h->forced_local && h->type == STT_GNU_IFUNC)
2551 return TRUE;
2552
2553 eh = (struct elf_x86_64_link_hash_entry *) h;
2554 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2555 {
2556 asection *s = p->sec->output_section;
2557
2558 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2559 {
2560 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2561
2562 info->flags |= DF_TEXTREL;
2563
2564 if (info->warn_shared_textrel && info->shared)
2565 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2566 p->sec->owner, h->root.root.string,
2567 p->sec);
2568
2569 /* Not an error, just cut short the traversal. */
2570 return FALSE;
2571 }
2572 }
2573 return TRUE;
2574 }
2575
2576 /* Convert
2577 mov foo@GOTPCREL(%rip), %reg
2578 to
2579 lea foo(%rip), %reg
2580 with the local symbol, foo. */
2581
2582 static bfd_boolean
2583 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2584 struct bfd_link_info *link_info)
2585 {
2586 Elf_Internal_Shdr *symtab_hdr;
2587 Elf_Internal_Rela *internal_relocs;
2588 Elf_Internal_Rela *irel, *irelend;
2589 bfd_byte *contents;
2590 struct elf_x86_64_link_hash_table *htab;
2591 bfd_boolean changed_contents;
2592 bfd_boolean changed_relocs;
2593 bfd_signed_vma *local_got_refcounts;
2594
2595 /* Don't even try to convert non-ELF outputs. */
2596 if (!is_elf_hash_table (link_info->hash))
2597 return FALSE;
2598
2599 /* Nothing to do if there are no codes, no relocations or no output. */
2600 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2601 || sec->reloc_count == 0
2602 || discarded_section (sec))
2603 return TRUE;
2604
2605 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2606
2607 /* Load the relocations for this section. */
2608 internal_relocs = (_bfd_elf_link_read_relocs
2609 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2610 link_info->keep_memory));
2611 if (internal_relocs == NULL)
2612 return FALSE;
2613
2614 htab = elf_x86_64_hash_table (link_info);
2615 changed_contents = FALSE;
2616 changed_relocs = FALSE;
2617 local_got_refcounts = elf_local_got_refcounts (abfd);
2618
2619 /* Get the section contents. */
2620 if (elf_section_data (sec)->this_hdr.contents != NULL)
2621 contents = elf_section_data (sec)->this_hdr.contents;
2622 else
2623 {
2624 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2625 goto error_return;
2626 }
2627
2628 irelend = internal_relocs + sec->reloc_count;
2629 for (irel = internal_relocs; irel < irelend; irel++)
2630 {
2631 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2632 unsigned int r_symndx = htab->r_sym (irel->r_info);
2633 unsigned int indx;
2634 struct elf_link_hash_entry *h;
2635
2636 if (r_type != R_X86_64_GOTPCREL)
2637 continue;
2638
2639 /* Get the symbol referred to by the reloc. */
2640 if (r_symndx < symtab_hdr->sh_info)
2641 {
2642 Elf_Internal_Sym *isym;
2643
2644 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2645 abfd, r_symndx);
2646
2647 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2648 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2649 && bfd_get_8 (input_bfd,
2650 contents + irel->r_offset - 2) == 0x8b)
2651 {
2652 bfd_put_8 (output_bfd, 0x8d,
2653 contents + irel->r_offset - 2);
2654 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2655 if (local_got_refcounts != NULL
2656 && local_got_refcounts[r_symndx] > 0)
2657 local_got_refcounts[r_symndx] -= 1;
2658 changed_contents = TRUE;
2659 changed_relocs = TRUE;
2660 }
2661 continue;
2662 }
2663
2664 indx = r_symndx - symtab_hdr->sh_info;
2665 h = elf_sym_hashes (abfd)[indx];
2666 BFD_ASSERT (h != NULL);
2667
2668 while (h->root.type == bfd_link_hash_indirect
2669 || h->root.type == bfd_link_hash_warning)
2670 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2671
2672 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2673 avoid optimizing _DYNAMIC since ld.so may use its link-time
2674 address. */
2675 if (h->def_regular
2676 && h->type != STT_GNU_IFUNC
2677 && h != htab->elf.hdynamic
2678 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2679 && bfd_get_8 (input_bfd,
2680 contents + irel->r_offset - 2) == 0x8b)
2681 {
2682 bfd_put_8 (output_bfd, 0x8d,
2683 contents + irel->r_offset - 2);
2684 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2685 if (h->got.refcount > 0)
2686 h->got.refcount -= 1;
2687 changed_contents = TRUE;
2688 changed_relocs = TRUE;
2689 }
2690 }
2691
2692 if (contents != NULL
2693 && elf_section_data (sec)->this_hdr.contents != contents)
2694 {
2695 if (!changed_contents && !link_info->keep_memory)
2696 free (contents);
2697 else
2698 {
2699 /* Cache the section contents for elf_link_input_bfd. */
2700 elf_section_data (sec)->this_hdr.contents = contents;
2701 }
2702 }
2703
2704 if (elf_section_data (sec)->relocs != internal_relocs)
2705 {
2706 if (!changed_relocs)
2707 free (internal_relocs);
2708 else
2709 elf_section_data (sec)->relocs = internal_relocs;
2710 }
2711
2712 return TRUE;
2713
2714 error_return:
2715 if (contents != NULL
2716 && elf_section_data (sec)->this_hdr.contents != contents)
2717 free (contents);
2718 if (internal_relocs != NULL
2719 && elf_section_data (sec)->relocs != internal_relocs)
2720 free (internal_relocs);
2721 return FALSE;
2722 }
2723
2724 /* Set the sizes of the dynamic sections. */
2725
2726 static bfd_boolean
2727 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2728 struct bfd_link_info *info)
2729 {
2730 struct elf_x86_64_link_hash_table *htab;
2731 bfd *dynobj;
2732 asection *s;
2733 bfd_boolean relocs;
2734 bfd *ibfd;
2735 const struct elf_backend_data *bed;
2736
2737 htab = elf_x86_64_hash_table (info);
2738 if (htab == NULL)
2739 return FALSE;
2740 bed = get_elf_backend_data (output_bfd);
2741
2742 dynobj = htab->elf.dynobj;
2743 if (dynobj == NULL)
2744 abort ();
2745
2746 if (htab->elf.dynamic_sections_created)
2747 {
2748 /* Set the contents of the .interp section to the interpreter. */
2749 if (info->executable)
2750 {
2751 s = bfd_get_linker_section (dynobj, ".interp");
2752 if (s == NULL)
2753 abort ();
2754 s->size = htab->dynamic_interpreter_size;
2755 s->contents = (unsigned char *) htab->dynamic_interpreter;
2756 }
2757 }
2758
2759 /* Set up .got offsets for local syms, and space for local dynamic
2760 relocs. */
2761 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2762 {
2763 bfd_signed_vma *local_got;
2764 bfd_signed_vma *end_local_got;
2765 char *local_tls_type;
2766 bfd_vma *local_tlsdesc_gotent;
2767 bfd_size_type locsymcount;
2768 Elf_Internal_Shdr *symtab_hdr;
2769 asection *srel;
2770
2771 if (! is_x86_64_elf (ibfd))
2772 continue;
2773
2774 for (s = ibfd->sections; s != NULL; s = s->next)
2775 {
2776 struct elf_dyn_relocs *p;
2777
2778 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2779 return FALSE;
2780
2781 for (p = (struct elf_dyn_relocs *)
2782 (elf_section_data (s)->local_dynrel);
2783 p != NULL;
2784 p = p->next)
2785 {
2786 if (!bfd_is_abs_section (p->sec)
2787 && bfd_is_abs_section (p->sec->output_section))
2788 {
2789 /* Input section has been discarded, either because
2790 it is a copy of a linkonce section or due to
2791 linker script /DISCARD/, so we'll be discarding
2792 the relocs too. */
2793 }
2794 else if (p->count != 0)
2795 {
2796 srel = elf_section_data (p->sec)->sreloc;
2797 srel->size += p->count * bed->s->sizeof_rela;
2798 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2799 && (info->flags & DF_TEXTREL) == 0)
2800 {
2801 info->flags |= DF_TEXTREL;
2802 if (info->warn_shared_textrel && info->shared)
2803 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2804 p->sec->owner, p->sec);
2805 }
2806 }
2807 }
2808 }
2809
2810 local_got = elf_local_got_refcounts (ibfd);
2811 if (!local_got)
2812 continue;
2813
2814 symtab_hdr = &elf_symtab_hdr (ibfd);
2815 locsymcount = symtab_hdr->sh_info;
2816 end_local_got = local_got + locsymcount;
2817 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2818 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2819 s = htab->elf.sgot;
2820 srel = htab->elf.srelgot;
2821 for (; local_got < end_local_got;
2822 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2823 {
2824 *local_tlsdesc_gotent = (bfd_vma) -1;
2825 if (*local_got > 0)
2826 {
2827 if (GOT_TLS_GDESC_P (*local_tls_type))
2828 {
2829 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2830 - elf_x86_64_compute_jump_table_size (htab);
2831 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2832 *local_got = (bfd_vma) -2;
2833 }
2834 if (! GOT_TLS_GDESC_P (*local_tls_type)
2835 || GOT_TLS_GD_P (*local_tls_type))
2836 {
2837 *local_got = s->size;
2838 s->size += GOT_ENTRY_SIZE;
2839 if (GOT_TLS_GD_P (*local_tls_type))
2840 s->size += GOT_ENTRY_SIZE;
2841 }
2842 if (info->shared
2843 || GOT_TLS_GD_ANY_P (*local_tls_type)
2844 || *local_tls_type == GOT_TLS_IE)
2845 {
2846 if (GOT_TLS_GDESC_P (*local_tls_type))
2847 {
2848 htab->elf.srelplt->size
2849 += bed->s->sizeof_rela;
2850 htab->tlsdesc_plt = (bfd_vma) -1;
2851 }
2852 if (! GOT_TLS_GDESC_P (*local_tls_type)
2853 || GOT_TLS_GD_P (*local_tls_type))
2854 srel->size += bed->s->sizeof_rela;
2855 }
2856 }
2857 else
2858 *local_got = (bfd_vma) -1;
2859 }
2860 }
2861
2862 if (htab->tls_ld_got.refcount > 0)
2863 {
2864 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2865 relocs. */
2866 htab->tls_ld_got.offset = htab->elf.sgot->size;
2867 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2868 htab->elf.srelgot->size += bed->s->sizeof_rela;
2869 }
2870 else
2871 htab->tls_ld_got.offset = -1;
2872
2873 /* Allocate global sym .plt and .got entries, and space for global
2874 sym dynamic relocs. */
2875 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2876 info);
2877
2878 /* Allocate .plt and .got entries, and space for local symbols. */
2879 htab_traverse (htab->loc_hash_table,
2880 elf_x86_64_allocate_local_dynrelocs,
2881 info);
2882
2883 /* For every jump slot reserved in the sgotplt, reloc_count is
2884 incremented. However, when we reserve space for TLS descriptors,
2885 it's not incremented, so in order to compute the space reserved
2886 for them, it suffices to multiply the reloc count by the jump
2887 slot size.
2888
2889 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2890 so that R_X86_64_IRELATIVE entries come last. */
2891 if (htab->elf.srelplt)
2892 {
2893 htab->sgotplt_jump_table_size
2894 = elf_x86_64_compute_jump_table_size (htab);
2895 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2896 }
2897 else if (htab->elf.irelplt)
2898 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2899
2900 if (htab->tlsdesc_plt)
2901 {
2902 /* If we're not using lazy TLS relocations, don't generate the
2903 PLT and GOT entries they require. */
2904 if ((info->flags & DF_BIND_NOW))
2905 htab->tlsdesc_plt = 0;
2906 else
2907 {
2908 htab->tlsdesc_got = htab->elf.sgot->size;
2909 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2910 /* Reserve room for the initial entry.
2911 FIXME: we could probably do away with it in this case. */
2912 if (htab->elf.splt->size == 0)
2913 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2914 htab->tlsdesc_plt = htab->elf.splt->size;
2915 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2916 }
2917 }
2918
2919 if (htab->elf.sgotplt)
2920 {
2921 /* Don't allocate .got.plt section if there are no GOT nor PLT
2922 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2923 if ((htab->elf.hgot == NULL
2924 || !htab->elf.hgot->ref_regular_nonweak)
2925 && (htab->elf.sgotplt->size
2926 == get_elf_backend_data (output_bfd)->got_header_size)
2927 && (htab->elf.splt == NULL
2928 || htab->elf.splt->size == 0)
2929 && (htab->elf.sgot == NULL
2930 || htab->elf.sgot->size == 0)
2931 && (htab->elf.iplt == NULL
2932 || htab->elf.iplt->size == 0)
2933 && (htab->elf.igotplt == NULL
2934 || htab->elf.igotplt->size == 0))
2935 htab->elf.sgotplt->size = 0;
2936 }
2937
2938 if (htab->plt_eh_frame != NULL
2939 && htab->elf.splt != NULL
2940 && htab->elf.splt->size != 0
2941 && !bfd_is_abs_section (htab->elf.splt->output_section)
2942 && _bfd_elf_eh_frame_present (info))
2943 {
2944 const struct elf_x86_64_backend_data *arch_data
2945 = get_elf_x86_64_arch_data (bed);
2946 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2947 }
2948
2949 /* We now have determined the sizes of the various dynamic sections.
2950 Allocate memory for them. */
2951 relocs = FALSE;
2952 for (s = dynobj->sections; s != NULL; s = s->next)
2953 {
2954 if ((s->flags & SEC_LINKER_CREATED) == 0)
2955 continue;
2956
2957 if (s == htab->elf.splt
2958 || s == htab->elf.sgot
2959 || s == htab->elf.sgotplt
2960 || s == htab->elf.iplt
2961 || s == htab->elf.igotplt
2962 || s == htab->plt_eh_frame
2963 || s == htab->sdynbss)
2964 {
2965 /* Strip this section if we don't need it; see the
2966 comment below. */
2967 }
2968 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2969 {
2970 if (s->size != 0 && s != htab->elf.srelplt)
2971 relocs = TRUE;
2972
2973 /* We use the reloc_count field as a counter if we need
2974 to copy relocs into the output file. */
2975 if (s != htab->elf.srelplt)
2976 s->reloc_count = 0;
2977 }
2978 else
2979 {
2980 /* It's not one of our sections, so don't allocate space. */
2981 continue;
2982 }
2983
2984 if (s->size == 0)
2985 {
2986 /* If we don't need this section, strip it from the
2987 output file. This is mostly to handle .rela.bss and
2988 .rela.plt. We must create both sections in
2989 create_dynamic_sections, because they must be created
2990 before the linker maps input sections to output
2991 sections. The linker does that before
2992 adjust_dynamic_symbol is called, and it is that
2993 function which decides whether anything needs to go
2994 into these sections. */
2995
2996 s->flags |= SEC_EXCLUDE;
2997 continue;
2998 }
2999
3000 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3001 continue;
3002
3003 /* Allocate memory for the section contents. We use bfd_zalloc
3004 here in case unused entries are not reclaimed before the
3005 section's contents are written out. This should not happen,
3006 but this way if it does, we get a R_X86_64_NONE reloc instead
3007 of garbage. */
3008 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3009 if (s->contents == NULL)
3010 return FALSE;
3011 }
3012
3013 if (htab->plt_eh_frame != NULL
3014 && htab->plt_eh_frame->contents != NULL)
3015 {
3016 const struct elf_x86_64_backend_data *arch_data
3017 = get_elf_x86_64_arch_data (bed);
3018
3019 memcpy (htab->plt_eh_frame->contents,
3020 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3021 bfd_put_32 (dynobj, htab->elf.splt->size,
3022 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3023 }
3024
3025 if (htab->elf.dynamic_sections_created)
3026 {
3027 /* Add some entries to the .dynamic section. We fill in the
3028 values later, in elf_x86_64_finish_dynamic_sections, but we
3029 must add the entries now so that we get the correct size for
3030 the .dynamic section. The DT_DEBUG entry is filled in by the
3031 dynamic linker and used by the debugger. */
3032 #define add_dynamic_entry(TAG, VAL) \
3033 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3034
3035 if (info->executable)
3036 {
3037 if (!add_dynamic_entry (DT_DEBUG, 0))
3038 return FALSE;
3039 }
3040
3041 if (htab->elf.splt->size != 0)
3042 {
3043 if (!add_dynamic_entry (DT_PLTGOT, 0)
3044 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3045 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3046 || !add_dynamic_entry (DT_JMPREL, 0))
3047 return FALSE;
3048
3049 if (htab->tlsdesc_plt
3050 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3051 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3052 return FALSE;
3053 }
3054
3055 if (relocs)
3056 {
3057 if (!add_dynamic_entry (DT_RELA, 0)
3058 || !add_dynamic_entry (DT_RELASZ, 0)
3059 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3060 return FALSE;
3061
3062 /* If any dynamic relocs apply to a read-only section,
3063 then we need a DT_TEXTREL entry. */
3064 if ((info->flags & DF_TEXTREL) == 0)
3065 elf_link_hash_traverse (&htab->elf,
3066 elf_x86_64_readonly_dynrelocs,
3067 info);
3068
3069 if ((info->flags & DF_TEXTREL) != 0)
3070 {
3071 if (!add_dynamic_entry (DT_TEXTREL, 0))
3072 return FALSE;
3073 }
3074 }
3075 }
3076 #undef add_dynamic_entry
3077
3078 return TRUE;
3079 }
3080
3081 static bfd_boolean
3082 elf_x86_64_always_size_sections (bfd *output_bfd,
3083 struct bfd_link_info *info)
3084 {
3085 asection *tls_sec = elf_hash_table (info)->tls_sec;
3086
3087 if (tls_sec)
3088 {
3089 struct elf_link_hash_entry *tlsbase;
3090
3091 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3092 "_TLS_MODULE_BASE_",
3093 FALSE, FALSE, FALSE);
3094
3095 if (tlsbase && tlsbase->type == STT_TLS)
3096 {
3097 struct elf_x86_64_link_hash_table *htab;
3098 struct bfd_link_hash_entry *bh = NULL;
3099 const struct elf_backend_data *bed
3100 = get_elf_backend_data (output_bfd);
3101
3102 htab = elf_x86_64_hash_table (info);
3103 if (htab == NULL)
3104 return FALSE;
3105
3106 if (!(_bfd_generic_link_add_one_symbol
3107 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3108 tls_sec, 0, NULL, FALSE,
3109 bed->collect, &bh)))
3110 return FALSE;
3111
3112 htab->tls_module_base = bh;
3113
3114 tlsbase = (struct elf_link_hash_entry *)bh;
3115 tlsbase->def_regular = 1;
3116 tlsbase->other = STV_HIDDEN;
3117 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3118 }
3119 }
3120
3121 return TRUE;
3122 }
3123
3124 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3125 executables. Rather than setting it to the beginning of the TLS
3126 section, we have to set it to the end. This function may be called
3127 multiple times, it is idempotent. */
3128
3129 static void
3130 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3131 {
3132 struct elf_x86_64_link_hash_table *htab;
3133 struct bfd_link_hash_entry *base;
3134
3135 if (!info->executable)
3136 return;
3137
3138 htab = elf_x86_64_hash_table (info);
3139 if (htab == NULL)
3140 return;
3141
3142 base = htab->tls_module_base;
3143 if (base == NULL)
3144 return;
3145
3146 base->u.def.value = htab->elf.tls_size;
3147 }
3148
3149 /* Return the base VMA address which should be subtracted from real addresses
3150 when resolving @dtpoff relocation.
3151 This is PT_TLS segment p_vaddr. */
3152
3153 static bfd_vma
3154 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3155 {
3156 /* If tls_sec is NULL, we should have signalled an error already. */
3157 if (elf_hash_table (info)->tls_sec == NULL)
3158 return 0;
3159 return elf_hash_table (info)->tls_sec->vma;
3160 }
3161
3162 /* Return the relocation value for @tpoff relocation
3163 if STT_TLS virtual address is ADDRESS. */
3164
3165 static bfd_vma
3166 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3167 {
3168 struct elf_link_hash_table *htab = elf_hash_table (info);
3169 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3170 bfd_vma static_tls_size;
3171
3172 /* If tls_segment is NULL, we should have signalled an error already. */
3173 if (htab->tls_sec == NULL)
3174 return 0;
3175
3176 /* Consider special static TLS alignment requirements. */
3177 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3178 return address - static_tls_size - htab->tls_sec->vma;
3179 }
3180
3181 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3182 branch? */
3183
3184 static bfd_boolean
3185 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3186 {
3187 /* Opcode Instruction
3188 0xe8 call
3189 0xe9 jump
3190 0x0f 0x8x conditional jump */
3191 return ((offset > 0
3192 && (contents [offset - 1] == 0xe8
3193 || contents [offset - 1] == 0xe9))
3194 || (offset > 1
3195 && contents [offset - 2] == 0x0f
3196 && (contents [offset - 1] & 0xf0) == 0x80));
3197 }
3198
3199 /* Relocate an x86_64 ELF section. */
3200
3201 static bfd_boolean
3202 elf_x86_64_relocate_section (bfd *output_bfd,
3203 struct bfd_link_info *info,
3204 bfd *input_bfd,
3205 asection *input_section,
3206 bfd_byte *contents,
3207 Elf_Internal_Rela *relocs,
3208 Elf_Internal_Sym *local_syms,
3209 asection **local_sections)
3210 {
3211 struct elf_x86_64_link_hash_table *htab;
3212 Elf_Internal_Shdr *symtab_hdr;
3213 struct elf_link_hash_entry **sym_hashes;
3214 bfd_vma *local_got_offsets;
3215 bfd_vma *local_tlsdesc_gotents;
3216 Elf_Internal_Rela *rel;
3217 Elf_Internal_Rela *relend;
3218 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3219
3220 BFD_ASSERT (is_x86_64_elf (input_bfd));
3221
3222 htab = elf_x86_64_hash_table (info);
3223 if (htab == NULL)
3224 return FALSE;
3225 symtab_hdr = &elf_symtab_hdr (input_bfd);
3226 sym_hashes = elf_sym_hashes (input_bfd);
3227 local_got_offsets = elf_local_got_offsets (input_bfd);
3228 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3229
3230 elf_x86_64_set_tls_module_base (info);
3231
3232 rel = relocs;
3233 relend = relocs + input_section->reloc_count;
3234 for (; rel < relend; rel++)
3235 {
3236 unsigned int r_type;
3237 reloc_howto_type *howto;
3238 unsigned long r_symndx;
3239 struct elf_link_hash_entry *h;
3240 Elf_Internal_Sym *sym;
3241 asection *sec;
3242 bfd_vma off, offplt;
3243 bfd_vma relocation;
3244 bfd_boolean unresolved_reloc;
3245 bfd_reloc_status_type r;
3246 int tls_type;
3247 asection *base_got;
3248 bfd_vma st_size;
3249
3250 r_type = ELF32_R_TYPE (rel->r_info);
3251 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3252 || r_type == (int) R_X86_64_GNU_VTENTRY)
3253 continue;
3254
3255 if (r_type >= (int) R_X86_64_standard)
3256 {
3257 (*_bfd_error_handler)
3258 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3259 input_bfd, input_section, r_type);
3260 bfd_set_error (bfd_error_bad_value);
3261 return FALSE;
3262 }
3263
3264 if (r_type != (int) R_X86_64_32
3265 || ABI_64_P (output_bfd))
3266 howto = x86_64_elf_howto_table + r_type;
3267 else
3268 howto = (x86_64_elf_howto_table
3269 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3270 r_symndx = htab->r_sym (rel->r_info);
3271 h = NULL;
3272 sym = NULL;
3273 sec = NULL;
3274 unresolved_reloc = FALSE;
3275 if (r_symndx < symtab_hdr->sh_info)
3276 {
3277 sym = local_syms + r_symndx;
3278 sec = local_sections[r_symndx];
3279
3280 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3281 &sec, rel);
3282 st_size = sym->st_size;
3283
3284 /* Relocate against local STT_GNU_IFUNC symbol. */
3285 if (!info->relocatable
3286 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3287 {
3288 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3289 rel, FALSE);
3290 if (h == NULL)
3291 abort ();
3292
3293 /* Set STT_GNU_IFUNC symbol value. */
3294 h->root.u.def.value = sym->st_value;
3295 h->root.u.def.section = sec;
3296 }
3297 }
3298 else
3299 {
3300 bfd_boolean warned ATTRIBUTE_UNUSED;
3301 bfd_boolean ignored ATTRIBUTE_UNUSED;
3302
3303 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3304 r_symndx, symtab_hdr, sym_hashes,
3305 h, sec, relocation,
3306 unresolved_reloc, warned, ignored);
3307 st_size = h->size;
3308 }
3309
3310 if (sec != NULL && discarded_section (sec))
3311 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3312 rel, 1, relend, howto, 0, contents);
3313
3314 if (info->relocatable)
3315 continue;
3316
3317 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3318 {
3319 if (r_type == R_X86_64_64)
3320 {
3321 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3322 zero-extend it to 64bit if addend is zero. */
3323 r_type = R_X86_64_32;
3324 memset (contents + rel->r_offset + 4, 0, 4);
3325 }
3326 else if (r_type == R_X86_64_SIZE64)
3327 {
3328 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3329 zero-extend it to 64bit if addend is zero. */
3330 r_type = R_X86_64_SIZE32;
3331 memset (contents + rel->r_offset + 4, 0, 4);
3332 }
3333 }
3334
3335 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3336 it here if it is defined in a non-shared object. */
3337 if (h != NULL
3338 && h->type == STT_GNU_IFUNC
3339 && h->def_regular)
3340 {
3341 asection *plt;
3342 bfd_vma plt_index;
3343 const char *name;
3344
3345 if ((input_section->flags & SEC_ALLOC) == 0
3346 || h->plt.offset == (bfd_vma) -1)
3347 abort ();
3348
3349 /* STT_GNU_IFUNC symbol must go through PLT. */
3350 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3351 relocation = (plt->output_section->vma
3352 + plt->output_offset + h->plt.offset);
3353
3354 switch (r_type)
3355 {
3356 default:
3357 if (h->root.root.string)
3358 name = h->root.root.string;
3359 else
3360 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3361 NULL);
3362 (*_bfd_error_handler)
3363 (_("%B: relocation %s against STT_GNU_IFUNC "
3364 "symbol `%s' isn't handled by %s"), input_bfd,
3365 x86_64_elf_howto_table[r_type].name,
3366 name, __FUNCTION__);
3367 bfd_set_error (bfd_error_bad_value);
3368 return FALSE;
3369
3370 case R_X86_64_32S:
3371 if (info->shared)
3372 abort ();
3373 goto do_relocation;
3374
3375 case R_X86_64_32:
3376 if (ABI_64_P (output_bfd))
3377 goto do_relocation;
3378 /* FALLTHROUGH */
3379 case R_X86_64_64:
3380 if (rel->r_addend != 0)
3381 {
3382 if (h->root.root.string)
3383 name = h->root.root.string;
3384 else
3385 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3386 sym, NULL);
3387 (*_bfd_error_handler)
3388 (_("%B: relocation %s against STT_GNU_IFUNC "
3389 "symbol `%s' has non-zero addend: %d"),
3390 input_bfd, x86_64_elf_howto_table[r_type].name,
3391 name, rel->r_addend);
3392 bfd_set_error (bfd_error_bad_value);
3393 return FALSE;
3394 }
3395
3396 /* Generate dynamic relcoation only when there is a
3397 non-GOT reference in a shared object. */
3398 if (info->shared && h->non_got_ref)
3399 {
3400 Elf_Internal_Rela outrel;
3401 asection *sreloc;
3402
3403 /* Need a dynamic relocation to get the real function
3404 address. */
3405 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3406 info,
3407 input_section,
3408 rel->r_offset);
3409 if (outrel.r_offset == (bfd_vma) -1
3410 || outrel.r_offset == (bfd_vma) -2)
3411 abort ();
3412
3413 outrel.r_offset += (input_section->output_section->vma
3414 + input_section->output_offset);
3415
3416 if (h->dynindx == -1
3417 || h->forced_local
3418 || info->executable)
3419 {
3420 /* This symbol is resolved locally. */
3421 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3422 outrel.r_addend = (h->root.u.def.value
3423 + h->root.u.def.section->output_section->vma
3424 + h->root.u.def.section->output_offset);
3425 }
3426 else
3427 {
3428 outrel.r_info = htab->r_info (h->dynindx, r_type);
3429 outrel.r_addend = 0;
3430 }
3431
3432 sreloc = htab->elf.irelifunc;
3433 elf_append_rela (output_bfd, sreloc, &outrel);
3434
3435 /* If this reloc is against an external symbol, we
3436 do not want to fiddle with the addend. Otherwise,
3437 we need to include the symbol value so that it
3438 becomes an addend for the dynamic reloc. For an
3439 internal symbol, we have updated addend. */
3440 continue;
3441 }
3442 /* FALLTHROUGH */
3443 case R_X86_64_PC32:
3444 case R_X86_64_PC64:
3445 case R_X86_64_PLT32:
3446 goto do_relocation;
3447
3448 case R_X86_64_GOTPCREL:
3449 case R_X86_64_GOTPCREL64:
3450 base_got = htab->elf.sgot;
3451 off = h->got.offset;
3452
3453 if (base_got == NULL)
3454 abort ();
3455
3456 if (off == (bfd_vma) -1)
3457 {
3458 /* We can't use h->got.offset here to save state, or
3459 even just remember the offset, as finish_dynamic_symbol
3460 would use that as offset into .got. */
3461
3462 if (htab->elf.splt != NULL)
3463 {
3464 plt_index = h->plt.offset / plt_entry_size - 1;
3465 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3466 base_got = htab->elf.sgotplt;
3467 }
3468 else
3469 {
3470 plt_index = h->plt.offset / plt_entry_size;
3471 off = plt_index * GOT_ENTRY_SIZE;
3472 base_got = htab->elf.igotplt;
3473 }
3474
3475 if (h->dynindx == -1
3476 || h->forced_local
3477 || info->symbolic)
3478 {
3479 /* This references the local defitionion. We must
3480 initialize this entry in the global offset table.
3481 Since the offset must always be a multiple of 8,
3482 we use the least significant bit to record
3483 whether we have initialized it already.
3484
3485 When doing a dynamic link, we create a .rela.got
3486 relocation entry to initialize the value. This
3487 is done in the finish_dynamic_symbol routine. */
3488 if ((off & 1) != 0)
3489 off &= ~1;
3490 else
3491 {
3492 bfd_put_64 (output_bfd, relocation,
3493 base_got->contents + off);
3494 /* Note that this is harmless for the GOTPLT64
3495 case, as -1 | 1 still is -1. */
3496 h->got.offset |= 1;
3497 }
3498 }
3499 }
3500
3501 relocation = (base_got->output_section->vma
3502 + base_got->output_offset + off);
3503
3504 goto do_relocation;
3505 }
3506 }
3507
3508 /* When generating a shared object, the relocations handled here are
3509 copied into the output file to be resolved at run time. */
3510 switch (r_type)
3511 {
3512 case R_X86_64_GOT32:
3513 case R_X86_64_GOT64:
3514 /* Relocation is to the entry for this symbol in the global
3515 offset table. */
3516 case R_X86_64_GOTPCREL:
3517 case R_X86_64_GOTPCREL64:
3518 /* Use global offset table entry as symbol value. */
3519 case R_X86_64_GOTPLT64:
3520 /* This is the same as GOT64 for relocation purposes, but
3521 indicates the existence of a PLT entry. The difficulty is,
3522 that we must calculate the GOT slot offset from the PLT
3523 offset, if this symbol got a PLT entry (it was global).
3524 Additionally if it's computed from the PLT entry, then that
3525 GOT offset is relative to .got.plt, not to .got. */
3526 base_got = htab->elf.sgot;
3527
3528 if (htab->elf.sgot == NULL)
3529 abort ();
3530
3531 if (h != NULL)
3532 {
3533 bfd_boolean dyn;
3534
3535 off = h->got.offset;
3536 if (h->needs_plt
3537 && h->plt.offset != (bfd_vma)-1
3538 && off == (bfd_vma)-1)
3539 {
3540 /* We can't use h->got.offset here to save
3541 state, or even just remember the offset, as
3542 finish_dynamic_symbol would use that as offset into
3543 .got. */
3544 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3545 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3546 base_got = htab->elf.sgotplt;
3547 }
3548
3549 dyn = htab->elf.dynamic_sections_created;
3550
3551 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3552 || (info->shared
3553 && SYMBOL_REFERENCES_LOCAL (info, h))
3554 || (ELF_ST_VISIBILITY (h->other)
3555 && h->root.type == bfd_link_hash_undefweak))
3556 {
3557 /* This is actually a static link, or it is a -Bsymbolic
3558 link and the symbol is defined locally, or the symbol
3559 was forced to be local because of a version file. We
3560 must initialize this entry in the global offset table.
3561 Since the offset must always be a multiple of 8, we
3562 use the least significant bit to record whether we
3563 have initialized it already.
3564
3565 When doing a dynamic link, we create a .rela.got
3566 relocation entry to initialize the value. This is
3567 done in the finish_dynamic_symbol routine. */
3568 if ((off & 1) != 0)
3569 off &= ~1;
3570 else
3571 {
3572 bfd_put_64 (output_bfd, relocation,
3573 base_got->contents + off);
3574 /* Note that this is harmless for the GOTPLT64 case,
3575 as -1 | 1 still is -1. */
3576 h->got.offset |= 1;
3577 }
3578 }
3579 else
3580 unresolved_reloc = FALSE;
3581 }
3582 else
3583 {
3584 if (local_got_offsets == NULL)
3585 abort ();
3586
3587 off = local_got_offsets[r_symndx];
3588
3589 /* The offset must always be a multiple of 8. We use
3590 the least significant bit to record whether we have
3591 already generated the necessary reloc. */
3592 if ((off & 1) != 0)
3593 off &= ~1;
3594 else
3595 {
3596 bfd_put_64 (output_bfd, relocation,
3597 base_got->contents + off);
3598
3599 if (info->shared)
3600 {
3601 asection *s;
3602 Elf_Internal_Rela outrel;
3603
3604 /* We need to generate a R_X86_64_RELATIVE reloc
3605 for the dynamic linker. */
3606 s = htab->elf.srelgot;
3607 if (s == NULL)
3608 abort ();
3609
3610 outrel.r_offset = (base_got->output_section->vma
3611 + base_got->output_offset
3612 + off);
3613 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3614 outrel.r_addend = relocation;
3615 elf_append_rela (output_bfd, s, &outrel);
3616 }
3617
3618 local_got_offsets[r_symndx] |= 1;
3619 }
3620 }
3621
3622 if (off >= (bfd_vma) -2)
3623 abort ();
3624
3625 relocation = base_got->output_section->vma
3626 + base_got->output_offset + off;
3627 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3628 relocation -= htab->elf.sgotplt->output_section->vma
3629 - htab->elf.sgotplt->output_offset;
3630
3631 break;
3632
3633 case R_X86_64_GOTOFF64:
3634 /* Relocation is relative to the start of the global offset
3635 table. */
3636
3637 /* Check to make sure it isn't a protected function symbol
3638 for shared library since it may not be local when used
3639 as function address. */
3640 if (!info->executable
3641 && h
3642 && !SYMBOLIC_BIND (info, h)
3643 && h->def_regular
3644 && h->type == STT_FUNC
3645 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3646 {
3647 (*_bfd_error_handler)
3648 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3649 input_bfd, h->root.root.string);
3650 bfd_set_error (bfd_error_bad_value);
3651 return FALSE;
3652 }
3653
3654 /* Note that sgot is not involved in this
3655 calculation. We always want the start of .got.plt. If we
3656 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3657 permitted by the ABI, we might have to change this
3658 calculation. */
3659 relocation -= htab->elf.sgotplt->output_section->vma
3660 + htab->elf.sgotplt->output_offset;
3661 break;
3662
3663 case R_X86_64_GOTPC32:
3664 case R_X86_64_GOTPC64:
3665 /* Use global offset table as symbol value. */
3666 relocation = htab->elf.sgotplt->output_section->vma
3667 + htab->elf.sgotplt->output_offset;
3668 unresolved_reloc = FALSE;
3669 break;
3670
3671 case R_X86_64_PLTOFF64:
3672 /* Relocation is PLT entry relative to GOT. For local
3673 symbols it's the symbol itself relative to GOT. */
3674 if (h != NULL
3675 /* See PLT32 handling. */
3676 && h->plt.offset != (bfd_vma) -1
3677 && htab->elf.splt != NULL)
3678 {
3679 relocation = (htab->elf.splt->output_section->vma
3680 + htab->elf.splt->output_offset
3681 + h->plt.offset);
3682 unresolved_reloc = FALSE;
3683 }
3684
3685 relocation -= htab->elf.sgotplt->output_section->vma
3686 + htab->elf.sgotplt->output_offset;
3687 break;
3688
3689 case R_X86_64_PLT32:
3690 /* Relocation is to the entry for this symbol in the
3691 procedure linkage table. */
3692
3693 /* Resolve a PLT32 reloc against a local symbol directly,
3694 without using the procedure linkage table. */
3695 if (h == NULL)
3696 break;
3697
3698 if (h->plt.offset == (bfd_vma) -1
3699 || htab->elf.splt == NULL)
3700 {
3701 /* We didn't make a PLT entry for this symbol. This
3702 happens when statically linking PIC code, or when
3703 using -Bsymbolic. */
3704 break;
3705 }
3706
3707 relocation = (htab->elf.splt->output_section->vma
3708 + htab->elf.splt->output_offset
3709 + h->plt.offset);
3710 unresolved_reloc = FALSE;
3711 break;
3712
3713 case R_X86_64_SIZE32:
3714 case R_X86_64_SIZE64:
3715 /* Set to symbol size. */
3716 relocation = st_size;
3717 goto direct;
3718
3719 case R_X86_64_PC8:
3720 case R_X86_64_PC16:
3721 case R_X86_64_PC32:
3722 if (info->shared
3723 && (input_section->flags & SEC_ALLOC) != 0
3724 && (input_section->flags & SEC_READONLY) != 0
3725 && h != NULL)
3726 {
3727 bfd_boolean fail = FALSE;
3728 bfd_boolean branch
3729 = (r_type == R_X86_64_PC32
3730 && is_32bit_relative_branch (contents, rel->r_offset));
3731
3732 if (SYMBOL_REFERENCES_LOCAL (info, h))
3733 {
3734 /* Symbol is referenced locally. Make sure it is
3735 defined locally or for a branch. */
3736 fail = !h->def_regular && !branch;
3737 }
3738 else
3739 {
3740 /* Symbol isn't referenced locally. We only allow
3741 branch to symbol with non-default visibility. */
3742 fail = (!branch
3743 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3744 }
3745
3746 if (fail)
3747 {
3748 const char *fmt;
3749 const char *v;
3750 const char *pic = "";
3751
3752 switch (ELF_ST_VISIBILITY (h->other))
3753 {
3754 case STV_HIDDEN:
3755 v = _("hidden symbol");
3756 break;
3757 case STV_INTERNAL:
3758 v = _("internal symbol");
3759 break;
3760 case STV_PROTECTED:
3761 v = _("protected symbol");
3762 break;
3763 default:
3764 v = _("symbol");
3765 pic = _("; recompile with -fPIC");
3766 break;
3767 }
3768
3769 if (h->def_regular)
3770 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3771 else
3772 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3773
3774 (*_bfd_error_handler) (fmt, input_bfd,
3775 x86_64_elf_howto_table[r_type].name,
3776 v, h->root.root.string, pic);
3777 bfd_set_error (bfd_error_bad_value);
3778 return FALSE;
3779 }
3780 }
3781 /* Fall through. */
3782
3783 case R_X86_64_8:
3784 case R_X86_64_16:
3785 case R_X86_64_32:
3786 case R_X86_64_PC64:
3787 case R_X86_64_64:
3788 /* FIXME: The ABI says the linker should make sure the value is
3789 the same when it's zeroextended to 64 bit. */
3790
3791 direct:
3792 if ((input_section->flags & SEC_ALLOC) == 0)
3793 break;
3794
3795 if ((info->shared
3796 && (h == NULL
3797 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3798 || h->root.type != bfd_link_hash_undefweak)
3799 && ((! IS_X86_64_PCREL_TYPE (r_type)
3800 && r_type != R_X86_64_SIZE32
3801 && r_type != R_X86_64_SIZE64)
3802 || ! SYMBOL_CALLS_LOCAL (info, h)))
3803 || (ELIMINATE_COPY_RELOCS
3804 && !info->shared
3805 && h != NULL
3806 && h->dynindx != -1
3807 && !h->non_got_ref
3808 && ((h->def_dynamic
3809 && !h->def_regular)
3810 || h->root.type == bfd_link_hash_undefweak
3811 || h->root.type == bfd_link_hash_undefined)))
3812 {
3813 Elf_Internal_Rela outrel;
3814 bfd_boolean skip, relocate;
3815 asection *sreloc;
3816
3817 /* When generating a shared object, these relocations
3818 are copied into the output file to be resolved at run
3819 time. */
3820 skip = FALSE;
3821 relocate = FALSE;
3822
3823 outrel.r_offset =
3824 _bfd_elf_section_offset (output_bfd, info, input_section,
3825 rel->r_offset);
3826 if (outrel.r_offset == (bfd_vma) -1)
3827 skip = TRUE;
3828 else if (outrel.r_offset == (bfd_vma) -2)
3829 skip = TRUE, relocate = TRUE;
3830
3831 outrel.r_offset += (input_section->output_section->vma
3832 + input_section->output_offset);
3833
3834 if (skip)
3835 memset (&outrel, 0, sizeof outrel);
3836
3837 /* h->dynindx may be -1 if this symbol was marked to
3838 become local. */
3839 else if (h != NULL
3840 && h->dynindx != -1
3841 && (IS_X86_64_PCREL_TYPE (r_type)
3842 || ! info->shared
3843 || ! SYMBOLIC_BIND (info, h)
3844 || ! h->def_regular))
3845 {
3846 outrel.r_info = htab->r_info (h->dynindx, r_type);
3847 outrel.r_addend = rel->r_addend;
3848 }
3849 else
3850 {
3851 /* This symbol is local, or marked to become local. */
3852 if (r_type == htab->pointer_r_type)
3853 {
3854 relocate = TRUE;
3855 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3856 outrel.r_addend = relocation + rel->r_addend;
3857 }
3858 else if (r_type == R_X86_64_64
3859 && !ABI_64_P (output_bfd))
3860 {
3861 relocate = TRUE;
3862 outrel.r_info = htab->r_info (0,
3863 R_X86_64_RELATIVE64);
3864 outrel.r_addend = relocation + rel->r_addend;
3865 /* Check addend overflow. */
3866 if ((outrel.r_addend & 0x80000000)
3867 != (rel->r_addend & 0x80000000))
3868 {
3869 const char *name;
3870 int addend = rel->r_addend;
3871 if (h && h->root.root.string)
3872 name = h->root.root.string;
3873 else
3874 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3875 sym, NULL);
3876 if (addend < 0)
3877 (*_bfd_error_handler)
3878 (_("%B: addend -0x%x in relocation %s against "
3879 "symbol `%s' at 0x%lx in section `%A' is "
3880 "out of range"),
3881 input_bfd, input_section, addend,
3882 x86_64_elf_howto_table[r_type].name,
3883 name, (unsigned long) rel->r_offset);
3884 else
3885 (*_bfd_error_handler)
3886 (_("%B: addend 0x%x in relocation %s against "
3887 "symbol `%s' at 0x%lx in section `%A' is "
3888 "out of range"),
3889 input_bfd, input_section, addend,
3890 x86_64_elf_howto_table[r_type].name,
3891 name, (unsigned long) rel->r_offset);
3892 bfd_set_error (bfd_error_bad_value);
3893 return FALSE;
3894 }
3895 }
3896 else
3897 {
3898 long sindx;
3899
3900 if (bfd_is_abs_section (sec))
3901 sindx = 0;
3902 else if (sec == NULL || sec->owner == NULL)
3903 {
3904 bfd_set_error (bfd_error_bad_value);
3905 return FALSE;
3906 }
3907 else
3908 {
3909 asection *osec;
3910
3911 /* We are turning this relocation into one
3912 against a section symbol. It would be
3913 proper to subtract the symbol's value,
3914 osec->vma, from the emitted reloc addend,
3915 but ld.so expects buggy relocs. */
3916 osec = sec->output_section;
3917 sindx = elf_section_data (osec)->dynindx;
3918 if (sindx == 0)
3919 {
3920 asection *oi = htab->elf.text_index_section;
3921 sindx = elf_section_data (oi)->dynindx;
3922 }
3923 BFD_ASSERT (sindx != 0);
3924 }
3925
3926 outrel.r_info = htab->r_info (sindx, r_type);
3927 outrel.r_addend = relocation + rel->r_addend;
3928 }
3929 }
3930
3931 sreloc = elf_section_data (input_section)->sreloc;
3932
3933 if (sreloc == NULL || sreloc->contents == NULL)
3934 {
3935 r = bfd_reloc_notsupported;
3936 goto check_relocation_error;
3937 }
3938
3939 elf_append_rela (output_bfd, sreloc, &outrel);
3940
3941 /* If this reloc is against an external symbol, we do
3942 not want to fiddle with the addend. Otherwise, we
3943 need to include the symbol value so that it becomes
3944 an addend for the dynamic reloc. */
3945 if (! relocate)
3946 continue;
3947 }
3948
3949 break;
3950
3951 case R_X86_64_TLSGD:
3952 case R_X86_64_GOTPC32_TLSDESC:
3953 case R_X86_64_TLSDESC_CALL:
3954 case R_X86_64_GOTTPOFF:
3955 tls_type = GOT_UNKNOWN;
3956 if (h == NULL && local_got_offsets)
3957 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3958 else if (h != NULL)
3959 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3960
3961 if (! elf_x86_64_tls_transition (info, input_bfd,
3962 input_section, contents,
3963 symtab_hdr, sym_hashes,
3964 &r_type, tls_type, rel,
3965 relend, h, r_symndx))
3966 return FALSE;
3967
3968 if (r_type == R_X86_64_TPOFF32)
3969 {
3970 bfd_vma roff = rel->r_offset;
3971
3972 BFD_ASSERT (! unresolved_reloc);
3973
3974 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3975 {
3976 /* GD->LE transition. For 64bit, change
3977 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3978 .word 0x6666; rex64; call __tls_get_addr
3979 into:
3980 movq %fs:0, %rax
3981 leaq foo@tpoff(%rax), %rax
3982 For 32bit, change
3983 leaq foo@tlsgd(%rip), %rdi
3984 .word 0x6666; rex64; call __tls_get_addr
3985 into:
3986 movl %fs:0, %eax
3987 leaq foo@tpoff(%rax), %rax
3988 For largepic, change:
3989 leaq foo@tlsgd(%rip), %rdi
3990 movabsq $__tls_get_addr@pltoff, %rax
3991 addq %rbx, %rax
3992 call *%rax
3993 into:
3994 movq %fs:0, %rax
3995 leaq foo@tpoff(%rax), %rax
3996 nopw 0x0(%rax,%rax,1) */
3997 int largepic = 0;
3998 if (ABI_64_P (output_bfd)
3999 && contents[roff + 5] == (bfd_byte) '\xb8')
4000 {
4001 memcpy (contents + roff - 3,
4002 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4003 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4004 largepic = 1;
4005 }
4006 else if (ABI_64_P (output_bfd))
4007 memcpy (contents + roff - 4,
4008 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4009 16);
4010 else
4011 memcpy (contents + roff - 3,
4012 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4013 15);
4014 bfd_put_32 (output_bfd,
4015 elf_x86_64_tpoff (info, relocation),
4016 contents + roff + 8 + largepic);
4017 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4018 rel++;
4019 continue;
4020 }
4021 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4022 {
4023 /* GDesc -> LE transition.
4024 It's originally something like:
4025 leaq x@tlsdesc(%rip), %rax
4026
4027 Change it to:
4028 movl $x@tpoff, %rax. */
4029
4030 unsigned int val, type;
4031
4032 type = bfd_get_8 (input_bfd, contents + roff - 3);
4033 val = bfd_get_8 (input_bfd, contents + roff - 1);
4034 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4035 contents + roff - 3);
4036 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4037 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4038 contents + roff - 1);
4039 bfd_put_32 (output_bfd,
4040 elf_x86_64_tpoff (info, relocation),
4041 contents + roff);
4042 continue;
4043 }
4044 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4045 {
4046 /* GDesc -> LE transition.
4047 It's originally:
4048 call *(%rax)
4049 Turn it into:
4050 xchg %ax,%ax. */
4051 bfd_put_8 (output_bfd, 0x66, contents + roff);
4052 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4053 continue;
4054 }
4055 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4056 {
4057 /* IE->LE transition:
4058 Originally it can be one of:
4059 movq foo@gottpoff(%rip), %reg
4060 addq foo@gottpoff(%rip), %reg
4061 We change it into:
4062 movq $foo, %reg
4063 leaq foo(%reg), %reg
4064 addq $foo, %reg. */
4065
4066 unsigned int val, type, reg;
4067
4068 val = bfd_get_8 (input_bfd, contents + roff - 3);
4069 type = bfd_get_8 (input_bfd, contents + roff - 2);
4070 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4071 reg >>= 3;
4072 if (type == 0x8b)
4073 {
4074 /* movq */
4075 if (val == 0x4c)
4076 bfd_put_8 (output_bfd, 0x49,
4077 contents + roff - 3);
4078 else if (!ABI_64_P (output_bfd) && val == 0x44)
4079 bfd_put_8 (output_bfd, 0x41,
4080 contents + roff - 3);
4081 bfd_put_8 (output_bfd, 0xc7,
4082 contents + roff - 2);
4083 bfd_put_8 (output_bfd, 0xc0 | reg,
4084 contents + roff - 1);
4085 }
4086 else if (reg == 4)
4087 {
4088 /* addq -> addq - addressing with %rsp/%r12 is
4089 special */
4090 if (val == 0x4c)
4091 bfd_put_8 (output_bfd, 0x49,
4092 contents + roff - 3);
4093 else if (!ABI_64_P (output_bfd) && val == 0x44)
4094 bfd_put_8 (output_bfd, 0x41,
4095 contents + roff - 3);
4096 bfd_put_8 (output_bfd, 0x81,
4097 contents + roff - 2);
4098 bfd_put_8 (output_bfd, 0xc0 | reg,
4099 contents + roff - 1);
4100 }
4101 else
4102 {
4103 /* addq -> leaq */
4104 if (val == 0x4c)
4105 bfd_put_8 (output_bfd, 0x4d,
4106 contents + roff - 3);
4107 else if (!ABI_64_P (output_bfd) && val == 0x44)
4108 bfd_put_8 (output_bfd, 0x45,
4109 contents + roff - 3);
4110 bfd_put_8 (output_bfd, 0x8d,
4111 contents + roff - 2);
4112 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4113 contents + roff - 1);
4114 }
4115 bfd_put_32 (output_bfd,
4116 elf_x86_64_tpoff (info, relocation),
4117 contents + roff);
4118 continue;
4119 }
4120 else
4121 BFD_ASSERT (FALSE);
4122 }
4123
4124 if (htab->elf.sgot == NULL)
4125 abort ();
4126
4127 if (h != NULL)
4128 {
4129 off = h->got.offset;
4130 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4131 }
4132 else
4133 {
4134 if (local_got_offsets == NULL)
4135 abort ();
4136
4137 off = local_got_offsets[r_symndx];
4138 offplt = local_tlsdesc_gotents[r_symndx];
4139 }
4140
4141 if ((off & 1) != 0)
4142 off &= ~1;
4143 else
4144 {
4145 Elf_Internal_Rela outrel;
4146 int dr_type, indx;
4147 asection *sreloc;
4148
4149 if (htab->elf.srelgot == NULL)
4150 abort ();
4151
4152 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4153
4154 if (GOT_TLS_GDESC_P (tls_type))
4155 {
4156 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4157 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4158 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4159 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4160 + htab->elf.sgotplt->output_offset
4161 + offplt
4162 + htab->sgotplt_jump_table_size);
4163 sreloc = htab->elf.srelplt;
4164 if (indx == 0)
4165 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4166 else
4167 outrel.r_addend = 0;
4168 elf_append_rela (output_bfd, sreloc, &outrel);
4169 }
4170
4171 sreloc = htab->elf.srelgot;
4172
4173 outrel.r_offset = (htab->elf.sgot->output_section->vma
4174 + htab->elf.sgot->output_offset + off);
4175
4176 if (GOT_TLS_GD_P (tls_type))
4177 dr_type = R_X86_64_DTPMOD64;
4178 else if (GOT_TLS_GDESC_P (tls_type))
4179 goto dr_done;
4180 else
4181 dr_type = R_X86_64_TPOFF64;
4182
4183 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4184 outrel.r_addend = 0;
4185 if ((dr_type == R_X86_64_TPOFF64
4186 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4187 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4188 outrel.r_info = htab->r_info (indx, dr_type);
4189
4190 elf_append_rela (output_bfd, sreloc, &outrel);
4191
4192 if (GOT_TLS_GD_P (tls_type))
4193 {
4194 if (indx == 0)
4195 {
4196 BFD_ASSERT (! unresolved_reloc);
4197 bfd_put_64 (output_bfd,
4198 relocation - elf_x86_64_dtpoff_base (info),
4199 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4200 }
4201 else
4202 {
4203 bfd_put_64 (output_bfd, 0,
4204 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4205 outrel.r_info = htab->r_info (indx,
4206 R_X86_64_DTPOFF64);
4207 outrel.r_offset += GOT_ENTRY_SIZE;
4208 elf_append_rela (output_bfd, sreloc,
4209 &outrel);
4210 }
4211 }
4212
4213 dr_done:
4214 if (h != NULL)
4215 h->got.offset |= 1;
4216 else
4217 local_got_offsets[r_symndx] |= 1;
4218 }
4219
4220 if (off >= (bfd_vma) -2
4221 && ! GOT_TLS_GDESC_P (tls_type))
4222 abort ();
4223 if (r_type == ELF32_R_TYPE (rel->r_info))
4224 {
4225 if (r_type == R_X86_64_GOTPC32_TLSDESC
4226 || r_type == R_X86_64_TLSDESC_CALL)
4227 relocation = htab->elf.sgotplt->output_section->vma
4228 + htab->elf.sgotplt->output_offset
4229 + offplt + htab->sgotplt_jump_table_size;
4230 else
4231 relocation = htab->elf.sgot->output_section->vma
4232 + htab->elf.sgot->output_offset + off;
4233 unresolved_reloc = FALSE;
4234 }
4235 else
4236 {
4237 bfd_vma roff = rel->r_offset;
4238
4239 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4240 {
4241 /* GD->IE transition. For 64bit, change
4242 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4243 .word 0x6666; rex64; call __tls_get_addr@plt
4244 into:
4245 movq %fs:0, %rax
4246 addq foo@gottpoff(%rip), %rax
4247 For 32bit, change
4248 leaq foo@tlsgd(%rip), %rdi
4249 .word 0x6666; rex64; call __tls_get_addr@plt
4250 into:
4251 movl %fs:0, %eax
4252 addq foo@gottpoff(%rip), %rax
4253 For largepic, change:
4254 leaq foo@tlsgd(%rip), %rdi
4255 movabsq $__tls_get_addr@pltoff, %rax
4256 addq %rbx, %rax
4257 call *%rax
4258 into:
4259 movq %fs:0, %rax
4260 addq foo@gottpoff(%rax), %rax
4261 nopw 0x0(%rax,%rax,1) */
4262 int largepic = 0;
4263 if (ABI_64_P (output_bfd)
4264 && contents[roff + 5] == (bfd_byte) '\xb8')
4265 {
4266 memcpy (contents + roff - 3,
4267 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4268 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4269 largepic = 1;
4270 }
4271 else if (ABI_64_P (output_bfd))
4272 memcpy (contents + roff - 4,
4273 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4274 16);
4275 else
4276 memcpy (contents + roff - 3,
4277 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4278 15);
4279
4280 relocation = (htab->elf.sgot->output_section->vma
4281 + htab->elf.sgot->output_offset + off
4282 - roff
4283 - largepic
4284 - input_section->output_section->vma
4285 - input_section->output_offset
4286 - 12);
4287 bfd_put_32 (output_bfd, relocation,
4288 contents + roff + 8 + largepic);
4289 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4290 rel++;
4291 continue;
4292 }
4293 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4294 {
4295 /* GDesc -> IE transition.
4296 It's originally something like:
4297 leaq x@tlsdesc(%rip), %rax
4298
4299 Change it to:
4300 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4301
4302 /* Now modify the instruction as appropriate. To
4303 turn a leaq into a movq in the form we use it, it
4304 suffices to change the second byte from 0x8d to
4305 0x8b. */
4306 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4307
4308 bfd_put_32 (output_bfd,
4309 htab->elf.sgot->output_section->vma
4310 + htab->elf.sgot->output_offset + off
4311 - rel->r_offset
4312 - input_section->output_section->vma
4313 - input_section->output_offset
4314 - 4,
4315 contents + roff);
4316 continue;
4317 }
4318 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4319 {
4320 /* GDesc -> IE transition.
4321 It's originally:
4322 call *(%rax)
4323
4324 Change it to:
4325 xchg %ax, %ax. */
4326
4327 bfd_put_8 (output_bfd, 0x66, contents + roff);
4328 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4329 continue;
4330 }
4331 else
4332 BFD_ASSERT (FALSE);
4333 }
4334 break;
4335
4336 case R_X86_64_TLSLD:
4337 if (! elf_x86_64_tls_transition (info, input_bfd,
4338 input_section, contents,
4339 symtab_hdr, sym_hashes,
4340 &r_type, GOT_UNKNOWN,
4341 rel, relend, h, r_symndx))
4342 return FALSE;
4343
4344 if (r_type != R_X86_64_TLSLD)
4345 {
4346 /* LD->LE transition:
4347 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4348 For 64bit, we change it into:
4349 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4350 For 32bit, we change it into:
4351 nopl 0x0(%rax); movl %fs:0, %eax.
4352 For largepic, change:
4353 leaq foo@tlsgd(%rip), %rdi
4354 movabsq $__tls_get_addr@pltoff, %rax
4355 addq %rbx, %rax
4356 call *%rax
4357 into:
4358 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4359 movq %fs:0, %eax */
4360
4361 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4362 if (ABI_64_P (output_bfd)
4363 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4364 memcpy (contents + rel->r_offset - 3,
4365 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4366 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4367 else if (ABI_64_P (output_bfd))
4368 memcpy (contents + rel->r_offset - 3,
4369 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4370 else
4371 memcpy (contents + rel->r_offset - 3,
4372 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4373 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4374 rel++;
4375 continue;
4376 }
4377
4378 if (htab->elf.sgot == NULL)
4379 abort ();
4380
4381 off = htab->tls_ld_got.offset;
4382 if (off & 1)
4383 off &= ~1;
4384 else
4385 {
4386 Elf_Internal_Rela outrel;
4387
4388 if (htab->elf.srelgot == NULL)
4389 abort ();
4390
4391 outrel.r_offset = (htab->elf.sgot->output_section->vma
4392 + htab->elf.sgot->output_offset + off);
4393
4394 bfd_put_64 (output_bfd, 0,
4395 htab->elf.sgot->contents + off);
4396 bfd_put_64 (output_bfd, 0,
4397 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4398 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4399 outrel.r_addend = 0;
4400 elf_append_rela (output_bfd, htab->elf.srelgot,
4401 &outrel);
4402 htab->tls_ld_got.offset |= 1;
4403 }
4404 relocation = htab->elf.sgot->output_section->vma
4405 + htab->elf.sgot->output_offset + off;
4406 unresolved_reloc = FALSE;
4407 break;
4408
4409 case R_X86_64_DTPOFF32:
4410 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4411 relocation -= elf_x86_64_dtpoff_base (info);
4412 else
4413 relocation = elf_x86_64_tpoff (info, relocation);
4414 break;
4415
4416 case R_X86_64_TPOFF32:
4417 case R_X86_64_TPOFF64:
4418 BFD_ASSERT (info->executable);
4419 relocation = elf_x86_64_tpoff (info, relocation);
4420 break;
4421
4422 case R_X86_64_DTPOFF64:
4423 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4424 relocation -= elf_x86_64_dtpoff_base (info);
4425 break;
4426
4427 default:
4428 break;
4429 }
4430
4431 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4432 because such sections are not SEC_ALLOC and thus ld.so will
4433 not process them. */
4434 if (unresolved_reloc
4435 && !((input_section->flags & SEC_DEBUGGING) != 0
4436 && h->def_dynamic)
4437 && _bfd_elf_section_offset (output_bfd, info, input_section,
4438 rel->r_offset) != (bfd_vma) -1)
4439 {
4440 (*_bfd_error_handler)
4441 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4442 input_bfd,
4443 input_section,
4444 (long) rel->r_offset,
4445 howto->name,
4446 h->root.root.string);
4447 return FALSE;
4448 }
4449
4450 do_relocation:
4451 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4452 contents, rel->r_offset,
4453 relocation, rel->r_addend);
4454
4455 check_relocation_error:
4456 if (r != bfd_reloc_ok)
4457 {
4458 const char *name;
4459
4460 if (h != NULL)
4461 name = h->root.root.string;
4462 else
4463 {
4464 name = bfd_elf_string_from_elf_section (input_bfd,
4465 symtab_hdr->sh_link,
4466 sym->st_name);
4467 if (name == NULL)
4468 return FALSE;
4469 if (*name == '\0')
4470 name = bfd_section_name (input_bfd, sec);
4471 }
4472
4473 if (r == bfd_reloc_overflow)
4474 {
4475 if (! ((*info->callbacks->reloc_overflow)
4476 (info, (h ? &h->root : NULL), name, howto->name,
4477 (bfd_vma) 0, input_bfd, input_section,
4478 rel->r_offset)))
4479 return FALSE;
4480 }
4481 else
4482 {
4483 (*_bfd_error_handler)
4484 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4485 input_bfd, input_section,
4486 (long) rel->r_offset, name, (int) r);
4487 return FALSE;
4488 }
4489 }
4490 }
4491
4492 return TRUE;
4493 }
4494
4495 /* Finish up dynamic symbol handling. We set the contents of various
4496 dynamic sections here. */
4497
4498 static bfd_boolean
4499 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4500 struct bfd_link_info *info,
4501 struct elf_link_hash_entry *h,
4502 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4503 {
4504 struct elf_x86_64_link_hash_table *htab;
4505 const struct elf_x86_64_backend_data *const abed
4506 = get_elf_x86_64_backend_data (output_bfd);
4507
4508 htab = elf_x86_64_hash_table (info);
4509 if (htab == NULL)
4510 return FALSE;
4511
4512 if (h->plt.offset != (bfd_vma) -1)
4513 {
4514 bfd_vma plt_index;
4515 bfd_vma got_offset;
4516 Elf_Internal_Rela rela;
4517 bfd_byte *loc;
4518 asection *plt, *gotplt, *relplt;
4519 const struct elf_backend_data *bed;
4520
4521 /* When building a static executable, use .iplt, .igot.plt and
4522 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4523 if (htab->elf.splt != NULL)
4524 {
4525 plt = htab->elf.splt;
4526 gotplt = htab->elf.sgotplt;
4527 relplt = htab->elf.srelplt;
4528 }
4529 else
4530 {
4531 plt = htab->elf.iplt;
4532 gotplt = htab->elf.igotplt;
4533 relplt = htab->elf.irelplt;
4534 }
4535
4536 /* This symbol has an entry in the procedure linkage table. Set
4537 it up. */
4538 if ((h->dynindx == -1
4539 && !((h->forced_local || info->executable)
4540 && h->def_regular
4541 && h->type == STT_GNU_IFUNC))
4542 || plt == NULL
4543 || gotplt == NULL
4544 || relplt == NULL)
4545 abort ();
4546
4547 /* Get the index in the procedure linkage table which
4548 corresponds to this symbol. This is the index of this symbol
4549 in all the symbols for which we are making plt entries. The
4550 first entry in the procedure linkage table is reserved.
4551
4552 Get the offset into the .got table of the entry that
4553 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4554 bytes. The first three are reserved for the dynamic linker.
4555
4556 For static executables, we don't reserve anything. */
4557
4558 if (plt == htab->elf.splt)
4559 {
4560 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4561 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4562 }
4563 else
4564 {
4565 got_offset = h->plt.offset / abed->plt_entry_size;
4566 got_offset = got_offset * GOT_ENTRY_SIZE;
4567 }
4568
4569 /* Fill in the entry in the procedure linkage table. */
4570 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4571 abed->plt_entry_size);
4572
4573 /* Insert the relocation positions of the plt section. */
4574
4575 /* Put offset the PC-relative instruction referring to the GOT entry,
4576 subtracting the size of that instruction. */
4577 bfd_put_32 (output_bfd,
4578 (gotplt->output_section->vma
4579 + gotplt->output_offset
4580 + got_offset
4581 - plt->output_section->vma
4582 - plt->output_offset
4583 - h->plt.offset
4584 - abed->plt_got_insn_size),
4585 plt->contents + h->plt.offset + abed->plt_got_offset);
4586
4587 /* Fill in the entry in the global offset table, initially this
4588 points to the second part of the PLT entry. */
4589 bfd_put_64 (output_bfd, (plt->output_section->vma
4590 + plt->output_offset
4591 + h->plt.offset + abed->plt_lazy_offset),
4592 gotplt->contents + got_offset);
4593
4594 /* Fill in the entry in the .rela.plt section. */
4595 rela.r_offset = (gotplt->output_section->vma
4596 + gotplt->output_offset
4597 + got_offset);
4598 if (h->dynindx == -1
4599 || ((info->executable
4600 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4601 && h->def_regular
4602 && h->type == STT_GNU_IFUNC))
4603 {
4604 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4605 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4606 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4607 rela.r_addend = (h->root.u.def.value
4608 + h->root.u.def.section->output_section->vma
4609 + h->root.u.def.section->output_offset);
4610 /* R_X86_64_IRELATIVE comes last. */
4611 plt_index = htab->next_irelative_index--;
4612 }
4613 else
4614 {
4615 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4616 rela.r_addend = 0;
4617 plt_index = htab->next_jump_slot_index++;
4618 }
4619
4620 /* Don't fill PLT entry for static executables. */
4621 if (plt == htab->elf.splt)
4622 {
4623 /* Put relocation index. */
4624 bfd_put_32 (output_bfd, plt_index,
4625 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4626 /* Put offset for jmp .PLT0. */
4627 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4628 plt->contents + h->plt.offset + abed->plt_plt_offset);
4629 }
4630
4631 bed = get_elf_backend_data (output_bfd);
4632 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4633 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4634
4635 if (!h->def_regular)
4636 {
4637 /* Mark the symbol as undefined, rather than as defined in
4638 the .plt section. Leave the value if there were any
4639 relocations where pointer equality matters (this is a clue
4640 for the dynamic linker, to make function pointer
4641 comparisons work between an application and shared
4642 library), otherwise set it to zero. If a function is only
4643 called from a binary, there is no need to slow down
4644 shared libraries because of that. */
4645 sym->st_shndx = SHN_UNDEF;
4646 if (!h->pointer_equality_needed)
4647 sym->st_value = 0;
4648 }
4649 }
4650
4651 if (h->got.offset != (bfd_vma) -1
4652 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4653 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4654 {
4655 Elf_Internal_Rela rela;
4656
4657 /* This symbol has an entry in the global offset table. Set it
4658 up. */
4659 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4660 abort ();
4661
4662 rela.r_offset = (htab->elf.sgot->output_section->vma
4663 + htab->elf.sgot->output_offset
4664 + (h->got.offset &~ (bfd_vma) 1));
4665
4666 /* If this is a static link, or it is a -Bsymbolic link and the
4667 symbol is defined locally or was forced to be local because
4668 of a version file, we just want to emit a RELATIVE reloc.
4669 The entry in the global offset table will already have been
4670 initialized in the relocate_section function. */
4671 if (h->def_regular
4672 && h->type == STT_GNU_IFUNC)
4673 {
4674 if (info->shared)
4675 {
4676 /* Generate R_X86_64_GLOB_DAT. */
4677 goto do_glob_dat;
4678 }
4679 else
4680 {
4681 asection *plt;
4682
4683 if (!h->pointer_equality_needed)
4684 abort ();
4685
4686 /* For non-shared object, we can't use .got.plt, which
4687 contains the real function addres if we need pointer
4688 equality. We load the GOT entry with the PLT entry. */
4689 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4690 bfd_put_64 (output_bfd, (plt->output_section->vma
4691 + plt->output_offset
4692 + h->plt.offset),
4693 htab->elf.sgot->contents + h->got.offset);
4694 return TRUE;
4695 }
4696 }
4697 else if (info->shared
4698 && SYMBOL_REFERENCES_LOCAL (info, h))
4699 {
4700 if (!h->def_regular)
4701 return FALSE;
4702 BFD_ASSERT((h->got.offset & 1) != 0);
4703 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4704 rela.r_addend = (h->root.u.def.value
4705 + h->root.u.def.section->output_section->vma
4706 + h->root.u.def.section->output_offset);
4707 }
4708 else
4709 {
4710 BFD_ASSERT((h->got.offset & 1) == 0);
4711 do_glob_dat:
4712 bfd_put_64 (output_bfd, (bfd_vma) 0,
4713 htab->elf.sgot->contents + h->got.offset);
4714 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4715 rela.r_addend = 0;
4716 }
4717
4718 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4719 }
4720
4721 if (h->needs_copy)
4722 {
4723 Elf_Internal_Rela rela;
4724
4725 /* This symbol needs a copy reloc. Set it up. */
4726
4727 if (h->dynindx == -1
4728 || (h->root.type != bfd_link_hash_defined
4729 && h->root.type != bfd_link_hash_defweak)
4730 || htab->srelbss == NULL)
4731 abort ();
4732
4733 rela.r_offset = (h->root.u.def.value
4734 + h->root.u.def.section->output_section->vma
4735 + h->root.u.def.section->output_offset);
4736 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4737 rela.r_addend = 0;
4738 elf_append_rela (output_bfd, htab->srelbss, &rela);
4739 }
4740
4741 return TRUE;
4742 }
4743
4744 /* Finish up local dynamic symbol handling. We set the contents of
4745 various dynamic sections here. */
4746
4747 static bfd_boolean
4748 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4749 {
4750 struct elf_link_hash_entry *h
4751 = (struct elf_link_hash_entry *) *slot;
4752 struct bfd_link_info *info
4753 = (struct bfd_link_info *) inf;
4754
4755 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4756 info, h, NULL);
4757 }
4758
4759 /* Used to decide how to sort relocs in an optimal manner for the
4760 dynamic linker, before writing them out. */
4761
4762 static enum elf_reloc_type_class
4763 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4764 const asection *rel_sec ATTRIBUTE_UNUSED,
4765 const Elf_Internal_Rela *rela)
4766 {
4767 switch ((int) ELF32_R_TYPE (rela->r_info))
4768 {
4769 case R_X86_64_RELATIVE:
4770 case R_X86_64_RELATIVE64:
4771 return reloc_class_relative;
4772 case R_X86_64_JUMP_SLOT:
4773 return reloc_class_plt;
4774 case R_X86_64_COPY:
4775 return reloc_class_copy;
4776 default:
4777 return reloc_class_normal;
4778 }
4779 }
4780
4781 /* Finish up the dynamic sections. */
4782
4783 static bfd_boolean
4784 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4785 struct bfd_link_info *info)
4786 {
4787 struct elf_x86_64_link_hash_table *htab;
4788 bfd *dynobj;
4789 asection *sdyn;
4790 const struct elf_x86_64_backend_data *const abed
4791 = get_elf_x86_64_backend_data (output_bfd);
4792
4793 htab = elf_x86_64_hash_table (info);
4794 if (htab == NULL)
4795 return FALSE;
4796
4797 dynobj = htab->elf.dynobj;
4798 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4799
4800 if (htab->elf.dynamic_sections_created)
4801 {
4802 bfd_byte *dyncon, *dynconend;
4803 const struct elf_backend_data *bed;
4804 bfd_size_type sizeof_dyn;
4805
4806 if (sdyn == NULL || htab->elf.sgot == NULL)
4807 abort ();
4808
4809 bed = get_elf_backend_data (dynobj);
4810 sizeof_dyn = bed->s->sizeof_dyn;
4811 dyncon = sdyn->contents;
4812 dynconend = sdyn->contents + sdyn->size;
4813 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4814 {
4815 Elf_Internal_Dyn dyn;
4816 asection *s;
4817
4818 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4819
4820 switch (dyn.d_tag)
4821 {
4822 default:
4823 continue;
4824
4825 case DT_PLTGOT:
4826 s = htab->elf.sgotplt;
4827 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4828 break;
4829
4830 case DT_JMPREL:
4831 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4832 break;
4833
4834 case DT_PLTRELSZ:
4835 s = htab->elf.srelplt->output_section;
4836 dyn.d_un.d_val = s->size;
4837 break;
4838
4839 case DT_RELASZ:
4840 /* The procedure linkage table relocs (DT_JMPREL) should
4841 not be included in the overall relocs (DT_RELA).
4842 Therefore, we override the DT_RELASZ entry here to
4843 make it not include the JMPREL relocs. Since the
4844 linker script arranges for .rela.plt to follow all
4845 other relocation sections, we don't have to worry
4846 about changing the DT_RELA entry. */
4847 if (htab->elf.srelplt != NULL)
4848 {
4849 s = htab->elf.srelplt->output_section;
4850 dyn.d_un.d_val -= s->size;
4851 }
4852 break;
4853
4854 case DT_TLSDESC_PLT:
4855 s = htab->elf.splt;
4856 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4857 + htab->tlsdesc_plt;
4858 break;
4859
4860 case DT_TLSDESC_GOT:
4861 s = htab->elf.sgot;
4862 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4863 + htab->tlsdesc_got;
4864 break;
4865 }
4866
4867 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4868 }
4869
4870 /* Fill in the special first entry in the procedure linkage table. */
4871 if (htab->elf.splt && htab->elf.splt->size > 0)
4872 {
4873 /* Fill in the first entry in the procedure linkage table. */
4874 memcpy (htab->elf.splt->contents,
4875 abed->plt0_entry, abed->plt_entry_size);
4876 /* Add offset for pushq GOT+8(%rip), since the instruction
4877 uses 6 bytes subtract this value. */
4878 bfd_put_32 (output_bfd,
4879 (htab->elf.sgotplt->output_section->vma
4880 + htab->elf.sgotplt->output_offset
4881 + 8
4882 - htab->elf.splt->output_section->vma
4883 - htab->elf.splt->output_offset
4884 - 6),
4885 htab->elf.splt->contents + abed->plt0_got1_offset);
4886 /* Add offset for the PC-relative instruction accessing GOT+16,
4887 subtracting the offset to the end of that instruction. */
4888 bfd_put_32 (output_bfd,
4889 (htab->elf.sgotplt->output_section->vma
4890 + htab->elf.sgotplt->output_offset
4891 + 16
4892 - htab->elf.splt->output_section->vma
4893 - htab->elf.splt->output_offset
4894 - abed->plt0_got2_insn_end),
4895 htab->elf.splt->contents + abed->plt0_got2_offset);
4896
4897 elf_section_data (htab->elf.splt->output_section)
4898 ->this_hdr.sh_entsize = abed->plt_entry_size;
4899
4900 if (htab->tlsdesc_plt)
4901 {
4902 bfd_put_64 (output_bfd, (bfd_vma) 0,
4903 htab->elf.sgot->contents + htab->tlsdesc_got);
4904
4905 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4906 abed->plt0_entry, abed->plt_entry_size);
4907
4908 /* Add offset for pushq GOT+8(%rip), since the
4909 instruction uses 6 bytes subtract this value. */
4910 bfd_put_32 (output_bfd,
4911 (htab->elf.sgotplt->output_section->vma
4912 + htab->elf.sgotplt->output_offset
4913 + 8
4914 - htab->elf.splt->output_section->vma
4915 - htab->elf.splt->output_offset
4916 - htab->tlsdesc_plt
4917 - 6),
4918 htab->elf.splt->contents
4919 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4920 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4921 where TGD stands for htab->tlsdesc_got, subtracting the offset
4922 to the end of that instruction. */
4923 bfd_put_32 (output_bfd,
4924 (htab->elf.sgot->output_section->vma
4925 + htab->elf.sgot->output_offset
4926 + htab->tlsdesc_got
4927 - htab->elf.splt->output_section->vma
4928 - htab->elf.splt->output_offset
4929 - htab->tlsdesc_plt
4930 - abed->plt0_got2_insn_end),
4931 htab->elf.splt->contents
4932 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4933 }
4934 }
4935 }
4936
4937 if (htab->elf.sgotplt)
4938 {
4939 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4940 {
4941 (*_bfd_error_handler)
4942 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4943 return FALSE;
4944 }
4945
4946 /* Fill in the first three entries in the global offset table. */
4947 if (htab->elf.sgotplt->size > 0)
4948 {
4949 /* Set the first entry in the global offset table to the address of
4950 the dynamic section. */
4951 if (sdyn == NULL)
4952 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4953 else
4954 bfd_put_64 (output_bfd,
4955 sdyn->output_section->vma + sdyn->output_offset,
4956 htab->elf.sgotplt->contents);
4957 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4958 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4959 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4960 }
4961
4962 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4963 GOT_ENTRY_SIZE;
4964 }
4965
4966 /* Adjust .eh_frame for .plt section. */
4967 if (htab->plt_eh_frame != NULL
4968 && htab->plt_eh_frame->contents != NULL)
4969 {
4970 if (htab->elf.splt != NULL
4971 && htab->elf.splt->size != 0
4972 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4973 && htab->elf.splt->output_section != NULL
4974 && htab->plt_eh_frame->output_section != NULL)
4975 {
4976 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4977 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4978 + htab->plt_eh_frame->output_offset
4979 + PLT_FDE_START_OFFSET;
4980 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4981 htab->plt_eh_frame->contents
4982 + PLT_FDE_START_OFFSET);
4983 }
4984 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4985 {
4986 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4987 htab->plt_eh_frame,
4988 htab->plt_eh_frame->contents))
4989 return FALSE;
4990 }
4991 }
4992
4993 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4994 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4995 = GOT_ENTRY_SIZE;
4996
4997 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4998 htab_traverse (htab->loc_hash_table,
4999 elf_x86_64_finish_local_dynamic_symbol,
5000 info);
5001
5002 return TRUE;
5003 }
5004
5005 /* Return address for Ith PLT stub in section PLT, for relocation REL
5006 or (bfd_vma) -1 if it should not be included. */
5007
5008 static bfd_vma
5009 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
5010 const arelent *rel ATTRIBUTE_UNUSED)
5011 {
5012 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
5013 }
5014
5015 /* Handle an x86-64 specific section when reading an object file. This
5016 is called when elfcode.h finds a section with an unknown type. */
5017
5018 static bfd_boolean
5019 elf_x86_64_section_from_shdr (bfd *abfd,
5020 Elf_Internal_Shdr *hdr,
5021 const char *name,
5022 int shindex)
5023 {
5024 if (hdr->sh_type != SHT_X86_64_UNWIND)
5025 return FALSE;
5026
5027 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5028 return FALSE;
5029
5030 return TRUE;
5031 }
5032
5033 /* Hook called by the linker routine which adds symbols from an object
5034 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5035 of .bss. */
5036
5037 static bfd_boolean
5038 elf_x86_64_add_symbol_hook (bfd *abfd,
5039 struct bfd_link_info *info,
5040 Elf_Internal_Sym *sym,
5041 const char **namep ATTRIBUTE_UNUSED,
5042 flagword *flagsp ATTRIBUTE_UNUSED,
5043 asection **secp,
5044 bfd_vma *valp)
5045 {
5046 asection *lcomm;
5047
5048 switch (sym->st_shndx)
5049 {
5050 case SHN_X86_64_LCOMMON:
5051 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5052 if (lcomm == NULL)
5053 {
5054 lcomm = bfd_make_section_with_flags (abfd,
5055 "LARGE_COMMON",
5056 (SEC_ALLOC
5057 | SEC_IS_COMMON
5058 | SEC_LINKER_CREATED));
5059 if (lcomm == NULL)
5060 return FALSE;
5061 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5062 }
5063 *secp = lcomm;
5064 *valp = sym->st_size;
5065 return TRUE;
5066 }
5067
5068 if ((abfd->flags & DYNAMIC) == 0
5069 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5070 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
5071 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5072
5073 return TRUE;
5074 }
5075
5076
5077 /* Given a BFD section, try to locate the corresponding ELF section
5078 index. */
5079
5080 static bfd_boolean
5081 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5082 asection *sec, int *index_return)
5083 {
5084 if (sec == &_bfd_elf_large_com_section)
5085 {
5086 *index_return = SHN_X86_64_LCOMMON;
5087 return TRUE;
5088 }
5089 return FALSE;
5090 }
5091
5092 /* Process a symbol. */
5093
5094 static void
5095 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5096 asymbol *asym)
5097 {
5098 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5099
5100 switch (elfsym->internal_elf_sym.st_shndx)
5101 {
5102 case SHN_X86_64_LCOMMON:
5103 asym->section = &_bfd_elf_large_com_section;
5104 asym->value = elfsym->internal_elf_sym.st_size;
5105 /* Common symbol doesn't set BSF_GLOBAL. */
5106 asym->flags &= ~BSF_GLOBAL;
5107 break;
5108 }
5109 }
5110
5111 static bfd_boolean
5112 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5113 {
5114 return (sym->st_shndx == SHN_COMMON
5115 || sym->st_shndx == SHN_X86_64_LCOMMON);
5116 }
5117
5118 static unsigned int
5119 elf_x86_64_common_section_index (asection *sec)
5120 {
5121 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5122 return SHN_COMMON;
5123 else
5124 return SHN_X86_64_LCOMMON;
5125 }
5126
5127 static asection *
5128 elf_x86_64_common_section (asection *sec)
5129 {
5130 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5131 return bfd_com_section_ptr;
5132 else
5133 return &_bfd_elf_large_com_section;
5134 }
5135
5136 static bfd_boolean
5137 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5138 const Elf_Internal_Sym *sym,
5139 asection **psec,
5140 bfd_boolean newdef,
5141 bfd_boolean olddef,
5142 bfd *oldbfd,
5143 const asection *oldsec)
5144 {
5145 /* A normal common symbol and a large common symbol result in a
5146 normal common symbol. We turn the large common symbol into a
5147 normal one. */
5148 if (!olddef
5149 && h->root.type == bfd_link_hash_common
5150 && !newdef
5151 && bfd_is_com_section (*psec)
5152 && oldsec != *psec)
5153 {
5154 if (sym->st_shndx == SHN_COMMON
5155 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5156 {
5157 h->root.u.c.p->section
5158 = bfd_make_section_old_way (oldbfd, "COMMON");
5159 h->root.u.c.p->section->flags = SEC_ALLOC;
5160 }
5161 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5162 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5163 *psec = bfd_com_section_ptr;
5164 }
5165
5166 return TRUE;
5167 }
5168
5169 static int
5170 elf_x86_64_additional_program_headers (bfd *abfd,
5171 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5172 {
5173 asection *s;
5174 int count = 0;
5175
5176 /* Check to see if we need a large readonly segment. */
5177 s = bfd_get_section_by_name (abfd, ".lrodata");
5178 if (s && (s->flags & SEC_LOAD))
5179 count++;
5180
5181 /* Check to see if we need a large data segment. Since .lbss sections
5182 is placed right after the .bss section, there should be no need for
5183 a large data segment just because of .lbss. */
5184 s = bfd_get_section_by_name (abfd, ".ldata");
5185 if (s && (s->flags & SEC_LOAD))
5186 count++;
5187
5188 return count;
5189 }
5190
5191 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5192
5193 static bfd_boolean
5194 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5195 {
5196 if (h->plt.offset != (bfd_vma) -1
5197 && !h->def_regular
5198 && !h->pointer_equality_needed)
5199 return FALSE;
5200
5201 return _bfd_elf_hash_symbol (h);
5202 }
5203
5204 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5205
5206 static bfd_boolean
5207 elf_x86_64_relocs_compatible (const bfd_target *input,
5208 const bfd_target *output)
5209 {
5210 return ((xvec_get_elf_backend_data (input)->s->elfclass
5211 == xvec_get_elf_backend_data (output)->s->elfclass)
5212 && _bfd_elf_relocs_compatible (input, output));
5213 }
5214
5215 static const struct bfd_elf_special_section
5216 elf_x86_64_special_sections[]=
5217 {
5218 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5219 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5220 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5221 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5222 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5223 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5224 { NULL, 0, 0, 0, 0 }
5225 };
5226
5227 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5228 #define TARGET_LITTLE_NAME "elf64-x86-64"
5229 #define ELF_ARCH bfd_arch_i386
5230 #define ELF_TARGET_ID X86_64_ELF_DATA
5231 #define ELF_MACHINE_CODE EM_X86_64
5232 #define ELF_MAXPAGESIZE 0x200000
5233 #define ELF_MINPAGESIZE 0x1000
5234 #define ELF_COMMONPAGESIZE 0x1000
5235
5236 #define elf_backend_can_gc_sections 1
5237 #define elf_backend_can_refcount 1
5238 #define elf_backend_want_got_plt 1
5239 #define elf_backend_plt_readonly 1
5240 #define elf_backend_want_plt_sym 0
5241 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5242 #define elf_backend_rela_normal 1
5243 #define elf_backend_plt_alignment 4
5244
5245 #define elf_info_to_howto elf_x86_64_info_to_howto
5246
5247 #define bfd_elf64_bfd_link_hash_table_create \
5248 elf_x86_64_link_hash_table_create
5249 #define bfd_elf64_bfd_link_hash_table_free \
5250 elf_x86_64_link_hash_table_free
5251 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5252 #define bfd_elf64_bfd_reloc_name_lookup \
5253 elf_x86_64_reloc_name_lookup
5254
5255 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5256 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5257 #define elf_backend_check_relocs elf_x86_64_check_relocs
5258 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5259 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5260 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5261 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5262 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5263 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5264 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5265 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5266 #ifdef CORE_HEADER
5267 #define elf_backend_write_core_note elf_x86_64_write_core_note
5268 #endif
5269 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5270 #define elf_backend_relocate_section elf_x86_64_relocate_section
5271 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5272 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5273 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5274 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5275 #define elf_backend_object_p elf64_x86_64_elf_object_p
5276 #define bfd_elf64_mkobject elf_x86_64_mkobject
5277
5278 #define elf_backend_section_from_shdr \
5279 elf_x86_64_section_from_shdr
5280
5281 #define elf_backend_section_from_bfd_section \
5282 elf_x86_64_elf_section_from_bfd_section
5283 #define elf_backend_add_symbol_hook \
5284 elf_x86_64_add_symbol_hook
5285 #define elf_backend_symbol_processing \
5286 elf_x86_64_symbol_processing
5287 #define elf_backend_common_section_index \
5288 elf_x86_64_common_section_index
5289 #define elf_backend_common_section \
5290 elf_x86_64_common_section
5291 #define elf_backend_common_definition \
5292 elf_x86_64_common_definition
5293 #define elf_backend_merge_symbol \
5294 elf_x86_64_merge_symbol
5295 #define elf_backend_special_sections \
5296 elf_x86_64_special_sections
5297 #define elf_backend_additional_program_headers \
5298 elf_x86_64_additional_program_headers
5299 #define elf_backend_hash_symbol \
5300 elf_x86_64_hash_symbol
5301
5302 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5303
5304 #include "elf64-target.h"
5305
5306 /* FreeBSD support. */
5307
5308 #undef TARGET_LITTLE_SYM
5309 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5310 #undef TARGET_LITTLE_NAME
5311 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5312
5313 #undef ELF_OSABI
5314 #define ELF_OSABI ELFOSABI_FREEBSD
5315
5316 #undef elf64_bed
5317 #define elf64_bed elf64_x86_64_fbsd_bed
5318
5319 #include "elf64-target.h"
5320
5321 /* Solaris 2 support. */
5322
5323 #undef TARGET_LITTLE_SYM
5324 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5325 #undef TARGET_LITTLE_NAME
5326 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5327
5328 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5329 objects won't be recognized. */
5330 #undef ELF_OSABI
5331
5332 #undef elf64_bed
5333 #define elf64_bed elf64_x86_64_sol2_bed
5334
5335 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5336 boundary. */
5337 #undef elf_backend_static_tls_alignment
5338 #define elf_backend_static_tls_alignment 16
5339
5340 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5341
5342 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5343 File, p.63. */
5344 #undef elf_backend_want_plt_sym
5345 #define elf_backend_want_plt_sym 1
5346
5347 #include "elf64-target.h"
5348
5349 /* Native Client support. */
5350
5351 #undef TARGET_LITTLE_SYM
5352 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5353 #undef TARGET_LITTLE_NAME
5354 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5355 #undef elf64_bed
5356 #define elf64_bed elf64_x86_64_nacl_bed
5357
5358 #undef ELF_MAXPAGESIZE
5359 #undef ELF_MINPAGESIZE
5360 #undef ELF_COMMONPAGESIZE
5361 #define ELF_MAXPAGESIZE 0x10000
5362 #define ELF_MINPAGESIZE 0x10000
5363 #define ELF_COMMONPAGESIZE 0x10000
5364
5365 /* Restore defaults. */
5366 #undef ELF_OSABI
5367 #undef elf_backend_static_tls_alignment
5368 #undef elf_backend_want_plt_sym
5369 #define elf_backend_want_plt_sym 0
5370
5371 /* NaCl uses substantially different PLT entries for the same effects. */
5372
5373 #undef elf_backend_plt_alignment
5374 #define elf_backend_plt_alignment 5
5375 #define NACL_PLT_ENTRY_SIZE 64
5376 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5377
5378 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5379 {
5380 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5381 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5382 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5383 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5384 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5385
5386 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5387 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
5388
5389 /* 32 bytes of nop to pad out to the standard size. */
5390 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5391 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5392 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5393 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5394 0x66, /* excess data32 prefix */
5395 0x90 /* nop */
5396 };
5397
5398 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5399 {
5400 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5401 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5402 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5403 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5404
5405 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5406 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5407 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5408
5409 /* Lazy GOT entries point here (32-byte aligned). */
5410 0x68, /* pushq immediate */
5411 0, 0, 0, 0, /* replaced with index into relocation table. */
5412 0xe9, /* jmp relative */
5413 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5414
5415 /* 22 bytes of nop to pad out to the standard size. */
5416 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5417 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5418 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5419 };
5420
5421 /* .eh_frame covering the .plt section. */
5422
5423 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5424 {
5425 #if (PLT_CIE_LENGTH != 20 \
5426 || PLT_FDE_LENGTH != 36 \
5427 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5428 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5429 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5430 #endif
5431 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5432 0, 0, 0, 0, /* CIE ID */
5433 1, /* CIE version */
5434 'z', 'R', 0, /* Augmentation string */
5435 1, /* Code alignment factor */
5436 0x78, /* Data alignment factor */
5437 16, /* Return address column */
5438 1, /* Augmentation size */
5439 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5440 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5441 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5442 DW_CFA_nop, DW_CFA_nop,
5443
5444 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5445 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5446 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5447 0, 0, 0, 0, /* .plt size goes here */
5448 0, /* Augmentation size */
5449 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5450 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5451 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5452 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5453 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5454 13, /* Block length */
5455 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5456 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5457 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5458 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5459 DW_CFA_nop, DW_CFA_nop
5460 };
5461
5462 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5463 {
5464 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5465 elf_x86_64_nacl_plt_entry, /* plt_entry */
5466 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5467 2, /* plt0_got1_offset */
5468 9, /* plt0_got2_offset */
5469 13, /* plt0_got2_insn_end */
5470 3, /* plt_got_offset */
5471 33, /* plt_reloc_offset */
5472 38, /* plt_plt_offset */
5473 7, /* plt_got_insn_size */
5474 42, /* plt_plt_insn_end */
5475 32, /* plt_lazy_offset */
5476 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5477 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5478 };
5479
5480 #undef elf_backend_arch_data
5481 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5482
5483 #undef elf_backend_modify_segment_map
5484 #define elf_backend_modify_segment_map nacl_modify_segment_map
5485 #undef elf_backend_modify_program_headers
5486 #define elf_backend_modify_program_headers nacl_modify_program_headers
5487 #undef elf_backend_final_write_processing
5488 #define elf_backend_final_write_processing nacl_final_write_processing
5489
5490 #include "elf64-target.h"
5491
5492 /* Native Client x32 support. */
5493
5494 #undef TARGET_LITTLE_SYM
5495 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5496 #undef TARGET_LITTLE_NAME
5497 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5498 #undef elf32_bed
5499 #define elf32_bed elf32_x86_64_nacl_bed
5500
5501 #define bfd_elf32_bfd_link_hash_table_create \
5502 elf_x86_64_link_hash_table_create
5503 #define bfd_elf32_bfd_link_hash_table_free \
5504 elf_x86_64_link_hash_table_free
5505 #define bfd_elf32_bfd_reloc_type_lookup \
5506 elf_x86_64_reloc_type_lookup
5507 #define bfd_elf32_bfd_reloc_name_lookup \
5508 elf_x86_64_reloc_name_lookup
5509 #define bfd_elf32_mkobject \
5510 elf_x86_64_mkobject
5511
5512 #undef elf_backend_object_p
5513 #define elf_backend_object_p \
5514 elf32_x86_64_elf_object_p
5515
5516 #undef elf_backend_bfd_from_remote_memory
5517 #define elf_backend_bfd_from_remote_memory \
5518 _bfd_elf32_bfd_from_remote_memory
5519
5520 #undef elf_backend_size_info
5521 #define elf_backend_size_info \
5522 _bfd_elf32_size_info
5523
5524 #include "elf32-target.h"
5525
5526 /* Restore defaults. */
5527 #undef elf_backend_object_p
5528 #define elf_backend_object_p elf64_x86_64_elf_object_p
5529 #undef elf_backend_bfd_from_remote_memory
5530 #undef elf_backend_size_info
5531 #undef elf_backend_modify_segment_map
5532 #undef elf_backend_modify_program_headers
5533 #undef elf_backend_final_write_processing
5534
5535 /* Intel L1OM support. */
5536
5537 static bfd_boolean
5538 elf64_l1om_elf_object_p (bfd *abfd)
5539 {
5540 /* Set the right machine number for an L1OM elf64 file. */
5541 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5542 return TRUE;
5543 }
5544
5545 #undef TARGET_LITTLE_SYM
5546 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5547 #undef TARGET_LITTLE_NAME
5548 #define TARGET_LITTLE_NAME "elf64-l1om"
5549 #undef ELF_ARCH
5550 #define ELF_ARCH bfd_arch_l1om
5551
5552 #undef ELF_MACHINE_CODE
5553 #define ELF_MACHINE_CODE EM_L1OM
5554
5555 #undef ELF_OSABI
5556
5557 #undef elf64_bed
5558 #define elf64_bed elf64_l1om_bed
5559
5560 #undef elf_backend_object_p
5561 #define elf_backend_object_p elf64_l1om_elf_object_p
5562
5563 /* Restore defaults. */
5564 #undef ELF_MAXPAGESIZE
5565 #undef ELF_MINPAGESIZE
5566 #undef ELF_COMMONPAGESIZE
5567 #define ELF_MAXPAGESIZE 0x200000
5568 #define ELF_MINPAGESIZE 0x1000
5569 #define ELF_COMMONPAGESIZE 0x1000
5570 #undef elf_backend_plt_alignment
5571 #define elf_backend_plt_alignment 4
5572 #undef elf_backend_arch_data
5573 #define elf_backend_arch_data &elf_x86_64_arch_bed
5574
5575 #include "elf64-target.h"
5576
5577 /* FreeBSD L1OM support. */
5578
5579 #undef TARGET_LITTLE_SYM
5580 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5581 #undef TARGET_LITTLE_NAME
5582 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5583
5584 #undef ELF_OSABI
5585 #define ELF_OSABI ELFOSABI_FREEBSD
5586
5587 #undef elf64_bed
5588 #define elf64_bed elf64_l1om_fbsd_bed
5589
5590 #include "elf64-target.h"
5591
5592 /* Intel K1OM support. */
5593
5594 static bfd_boolean
5595 elf64_k1om_elf_object_p (bfd *abfd)
5596 {
5597 /* Set the right machine number for an K1OM elf64 file. */
5598 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5599 return TRUE;
5600 }
5601
5602 #undef TARGET_LITTLE_SYM
5603 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5604 #undef TARGET_LITTLE_NAME
5605 #define TARGET_LITTLE_NAME "elf64-k1om"
5606 #undef ELF_ARCH
5607 #define ELF_ARCH bfd_arch_k1om
5608
5609 #undef ELF_MACHINE_CODE
5610 #define ELF_MACHINE_CODE EM_K1OM
5611
5612 #undef ELF_OSABI
5613
5614 #undef elf64_bed
5615 #define elf64_bed elf64_k1om_bed
5616
5617 #undef elf_backend_object_p
5618 #define elf_backend_object_p elf64_k1om_elf_object_p
5619
5620 #undef elf_backend_static_tls_alignment
5621
5622 #undef elf_backend_want_plt_sym
5623 #define elf_backend_want_plt_sym 0
5624
5625 #include "elf64-target.h"
5626
5627 /* FreeBSD K1OM support. */
5628
5629 #undef TARGET_LITTLE_SYM
5630 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5631 #undef TARGET_LITTLE_NAME
5632 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5633
5634 #undef ELF_OSABI
5635 #define ELF_OSABI ELFOSABI_FREEBSD
5636
5637 #undef elf64_bed
5638 #define elf64_bed elf64_k1om_fbsd_bed
5639
5640 #include "elf64-target.h"
5641
5642 /* 32bit x86-64 support. */
5643
5644 #undef TARGET_LITTLE_SYM
5645 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5646 #undef TARGET_LITTLE_NAME
5647 #define TARGET_LITTLE_NAME "elf32-x86-64"
5648 #undef elf32_bed
5649
5650 #undef ELF_ARCH
5651 #define ELF_ARCH bfd_arch_i386
5652
5653 #undef ELF_MACHINE_CODE
5654 #define ELF_MACHINE_CODE EM_X86_64
5655
5656 #undef ELF_OSABI
5657
5658 #undef elf_backend_object_p
5659 #define elf_backend_object_p \
5660 elf32_x86_64_elf_object_p
5661
5662 #undef elf_backend_bfd_from_remote_memory
5663 #define elf_backend_bfd_from_remote_memory \
5664 _bfd_elf32_bfd_from_remote_memory
5665
5666 #undef elf_backend_size_info
5667 #define elf_backend_size_info \
5668 _bfd_elf32_size_info
5669
5670 #include "elf32-target.h"
This page took 0.232505 seconds and 4 git commands to generate.