Keep .plt section and DT_PLTGOT for prelink
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
150 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
151 FALSE),
152 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
153 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
154 FALSE),
155 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
156 complain_overflow_bitfield, bfd_elf_generic_reloc,
157 "R_X86_64_GOTPC32_TLSDESC",
158 FALSE, 0xffffffff, 0xffffffff, TRUE),
159 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
160 complain_overflow_dont, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC_CALL",
162 FALSE, 0, 0, FALSE),
163 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
164 complain_overflow_bitfield, bfd_elf_generic_reloc,
165 "R_X86_64_TLSDESC",
166 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
172 MINUS_ONE, FALSE),
173 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
174 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
175 TRUE),
176 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
177 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
178 TRUE),
179
180 /* We have a gap in the reloc numbers here.
181 R_X86_64_standard counts the number up to this point, and
182 R_X86_64_vt_offset is the value to subtract from a reloc type of
183 R_X86_64_GNU_VT* to form an index into this table. */
184 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
185 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
186
187 /* GNU extension to record C++ vtable hierarchy. */
188 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
190
191 /* GNU extension to record C++ vtable member usage. */
192 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
193 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
194 FALSE),
195
196 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
197 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
199 FALSE)
200 };
201
202 #define IS_X86_64_PCREL_TYPE(TYPE) \
203 ( ((TYPE) == R_X86_64_PC8) \
204 || ((TYPE) == R_X86_64_PC16) \
205 || ((TYPE) == R_X86_64_PC32) \
206 || ((TYPE) == R_X86_64_PC32_BND) \
207 || ((TYPE) == R_X86_64_PC64))
208
209 /* Map BFD relocs to the x86_64 elf relocs. */
210 struct elf_reloc_map
211 {
212 bfd_reloc_code_real_type bfd_reloc_val;
213 unsigned char elf_reloc_val;
214 };
215
216 static const struct elf_reloc_map x86_64_reloc_map[] =
217 {
218 { BFD_RELOC_NONE, R_X86_64_NONE, },
219 { BFD_RELOC_64, R_X86_64_64, },
220 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
221 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
222 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
223 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
224 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
225 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
226 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
227 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
228 { BFD_RELOC_32, R_X86_64_32, },
229 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
230 { BFD_RELOC_16, R_X86_64_16, },
231 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
232 { BFD_RELOC_8, R_X86_64_8, },
233 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
234 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
235 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
236 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
237 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
238 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
239 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
240 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
241 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
242 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
243 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
244 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
245 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
246 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
247 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
248 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
249 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
250 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
251 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
252 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
253 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
254 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
255 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
256 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
257 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
258 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
259 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
260 };
261
262 static reloc_howto_type *
263 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
264 {
265 unsigned i;
266
267 if (r_type == (unsigned int) R_X86_64_32)
268 {
269 if (ABI_64_P (abfd))
270 i = r_type;
271 else
272 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
273 }
274 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
275 || r_type >= (unsigned int) R_X86_64_max)
276 {
277 if (r_type >= (unsigned int) R_X86_64_standard)
278 {
279 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
280 abfd, (int) r_type);
281 r_type = R_X86_64_NONE;
282 }
283 i = r_type;
284 }
285 else
286 i = r_type - (unsigned int) R_X86_64_vt_offset;
287 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
288 return &x86_64_elf_howto_table[i];
289 }
290
291 /* Given a BFD reloc type, return a HOWTO structure. */
292 static reloc_howto_type *
293 elf_x86_64_reloc_type_lookup (bfd *abfd,
294 bfd_reloc_code_real_type code)
295 {
296 unsigned int i;
297
298 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
299 i++)
300 {
301 if (x86_64_reloc_map[i].bfd_reloc_val == code)
302 return elf_x86_64_rtype_to_howto (abfd,
303 x86_64_reloc_map[i].elf_reloc_val);
304 }
305 return NULL;
306 }
307
308 static reloc_howto_type *
309 elf_x86_64_reloc_name_lookup (bfd *abfd,
310 const char *r_name)
311 {
312 unsigned int i;
313
314 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
315 {
316 /* Get x32 R_X86_64_32. */
317 reloc_howto_type *reloc
318 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
319 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
320 return reloc;
321 }
322
323 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
324 if (x86_64_elf_howto_table[i].name != NULL
325 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
326 return &x86_64_elf_howto_table[i];
327
328 return NULL;
329 }
330
331 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
332
333 static void
334 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
335 Elf_Internal_Rela *dst)
336 {
337 unsigned r_type;
338
339 r_type = ELF32_R_TYPE (dst->r_info);
340 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
341 BFD_ASSERT (r_type == cache_ptr->howto->type);
342 }
343 \f
344 /* Support for core dump NOTE sections. */
345 static bfd_boolean
346 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
347 {
348 int offset;
349 size_t size;
350
351 switch (note->descsz)
352 {
353 default:
354 return FALSE;
355
356 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
362
363 /* pr_reg */
364 offset = 72;
365 size = 216;
366
367 break;
368
369 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
370 /* pr_cursig */
371 elf_tdata (abfd)->core->signal
372 = bfd_get_16 (abfd, note->descdata + 12);
373
374 /* pr_pid */
375 elf_tdata (abfd)->core->lwpid
376 = bfd_get_32 (abfd, note->descdata + 32);
377
378 /* pr_reg */
379 offset = 112;
380 size = 216;
381
382 break;
383 }
384
385 /* Make a ".reg/999" section. */
386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
387 size, note->descpos + offset);
388 }
389
390 static bfd_boolean
391 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
392 {
393 switch (note->descsz)
394 {
395 default:
396 return FALSE;
397
398 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
399 elf_tdata (abfd)->core->pid
400 = bfd_get_32 (abfd, note->descdata + 12);
401 elf_tdata (abfd)->core->program
402 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
403 elf_tdata (abfd)->core->command
404 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
405 break;
406
407 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 24);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
414 }
415
416 /* Note that for some reason, a spurious space is tacked
417 onto the end of the args in some (at least one anyway)
418 implementations, so strip it off if it exists. */
419
420 {
421 char *command = elf_tdata (abfd)->core->command;
422 int n = strlen (command);
423
424 if (0 < n && command[n - 1] == ' ')
425 command[n - 1] = '\0';
426 }
427
428 return TRUE;
429 }
430
431 #ifdef CORE_HEADER
432 static char *
433 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
434 int note_type, ...)
435 {
436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
437 va_list ap;
438 const char *fname, *psargs;
439 long pid;
440 int cursig;
441 const void *gregs;
442
443 switch (note_type)
444 {
445 default:
446 return NULL;
447
448 case NT_PRPSINFO:
449 va_start (ap, note_type);
450 fname = va_arg (ap, const char *);
451 psargs = va_arg (ap, const char *);
452 va_end (ap);
453
454 if (bed->s->elfclass == ELFCLASS32)
455 {
456 prpsinfo32_t data;
457 memset (&data, 0, sizeof (data));
458 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
459 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
460 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
461 &data, sizeof (data));
462 }
463 else
464 {
465 prpsinfo64_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 /* NOTREACHED */
473
474 case NT_PRSTATUS:
475 va_start (ap, note_type);
476 pid = va_arg (ap, long);
477 cursig = va_arg (ap, int);
478 gregs = va_arg (ap, const void *);
479 va_end (ap);
480
481 if (bed->s->elfclass == ELFCLASS32)
482 {
483 if (bed->elf_machine_code == EM_X86_64)
484 {
485 prstatusx32_t prstat;
486 memset (&prstat, 0, sizeof (prstat));
487 prstat.pr_pid = pid;
488 prstat.pr_cursig = cursig;
489 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
490 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
491 &prstat, sizeof (prstat));
492 }
493 else
494 {
495 prstatus32_t prstat;
496 memset (&prstat, 0, sizeof (prstat));
497 prstat.pr_pid = pid;
498 prstat.pr_cursig = cursig;
499 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
500 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
501 &prstat, sizeof (prstat));
502 }
503 }
504 else
505 {
506 prstatus64_t prstat;
507 memset (&prstat, 0, sizeof (prstat));
508 prstat.pr_pid = pid;
509 prstat.pr_cursig = cursig;
510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
511 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
512 &prstat, sizeof (prstat));
513 }
514 }
515 /* NOTREACHED */
516 }
517 #endif
518 \f
519 /* Functions for the x86-64 ELF linker. */
520
521 /* The name of the dynamic interpreter. This is put in the .interp
522 section. */
523
524 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
525 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
526
527 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
528 copying dynamic variables from a shared lib into an app's dynbss
529 section, and instead use a dynamic relocation to point into the
530 shared lib. */
531 #define ELIMINATE_COPY_RELOCS 1
532
533 /* The size in bytes of an entry in the global offset table. */
534
535 #define GOT_ENTRY_SIZE 8
536
537 /* The size in bytes of an entry in the procedure linkage table. */
538
539 #define PLT_ENTRY_SIZE 16
540
541 /* The first entry in a procedure linkage table looks like this. See the
542 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
543
544 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
547 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
548 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
549 };
550
551 /* Subsequent entries in a procedure linkage table look like this. */
552
553 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
556 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
557 0x68, /* pushq immediate */
558 0, 0, 0, 0, /* replaced with index into relocation table. */
559 0xe9, /* jmp relative */
560 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
561 };
562
563 /* The first entry in a procedure linkage table with BND relocations
564 like this. */
565
566 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
567 {
568 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
569 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
570 0x0f, 0x1f, 0 /* nopl (%rax) */
571 };
572
573 /* Subsequent entries for legacy branches in a procedure linkage table
574 with BND relocations look like this. */
575
576 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
577 {
578 0x68, 0, 0, 0, 0, /* pushq immediate */
579 0xe9, 0, 0, 0, 0, /* jmpq relative */
580 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
581 };
582
583 /* Subsequent entries for branches with BND prefx in a procedure linkage
584 table with BND relocations look like this. */
585
586 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
587 {
588 0x68, 0, 0, 0, 0, /* pushq immediate */
589 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
590 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
591 };
592
593 /* Entries for legacy branches in the second procedure linkage table
594 look like this. */
595
596 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
597 {
598 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
599 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
600 0x66, 0x90 /* xchg %ax,%ax */
601 };
602
603 /* Entries for branches with BND prefix in the second procedure linkage
604 table look like this. */
605
606 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
607 {
608 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
609 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
610 0x90 /* nop */
611 };
612
613 /* .eh_frame covering the .plt section. */
614
615 static const bfd_byte elf_x86_64_eh_frame_plt[] =
616 {
617 #define PLT_CIE_LENGTH 20
618 #define PLT_FDE_LENGTH 36
619 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
620 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
621 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
622 0, 0, 0, 0, /* CIE ID */
623 1, /* CIE version */
624 'z', 'R', 0, /* Augmentation string */
625 1, /* Code alignment factor */
626 0x78, /* Data alignment factor */
627 16, /* Return address column */
628 1, /* Augmentation size */
629 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
630 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
631 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
632 DW_CFA_nop, DW_CFA_nop,
633
634 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
635 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
636 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
637 0, 0, 0, 0, /* .plt size goes here */
638 0, /* Augmentation size */
639 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
640 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
641 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
642 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
643 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
644 11, /* Block length */
645 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
646 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
647 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
648 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
649 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
650 };
651
652 /* Architecture-specific backend data for x86-64. */
653
654 struct elf_x86_64_backend_data
655 {
656 /* Templates for the initial PLT entry and for subsequent entries. */
657 const bfd_byte *plt0_entry;
658 const bfd_byte *plt_entry;
659 unsigned int plt_entry_size; /* Size of each PLT entry. */
660
661 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
662 unsigned int plt0_got1_offset;
663 unsigned int plt0_got2_offset;
664
665 /* Offset of the end of the PC-relative instruction containing
666 plt0_got2_offset. */
667 unsigned int plt0_got2_insn_end;
668
669 /* Offsets into plt_entry that are to be replaced with... */
670 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
671 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
672 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
673
674 /* Length of the PC-relative instruction containing plt_got_offset. */
675 unsigned int plt_got_insn_size;
676
677 /* Offset of the end of the PC-relative jump to plt0_entry. */
678 unsigned int plt_plt_insn_end;
679
680 /* Offset into plt_entry where the initial value of the GOT entry points. */
681 unsigned int plt_lazy_offset;
682
683 /* .eh_frame covering the .plt section. */
684 const bfd_byte *eh_frame_plt;
685 unsigned int eh_frame_plt_size;
686 };
687
688 #define get_elf_x86_64_arch_data(bed) \
689 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
690
691 #define get_elf_x86_64_backend_data(abfd) \
692 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
693
694 #define GET_PLT_ENTRY_SIZE(abfd) \
695 get_elf_x86_64_backend_data (abfd)->plt_entry_size
696
697 /* These are the standard parameters. */
698 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
699 {
700 elf_x86_64_plt0_entry, /* plt0_entry */
701 elf_x86_64_plt_entry, /* plt_entry */
702 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
703 2, /* plt0_got1_offset */
704 8, /* plt0_got2_offset */
705 12, /* plt0_got2_insn_end */
706 2, /* plt_got_offset */
707 7, /* plt_reloc_offset */
708 12, /* plt_plt_offset */
709 6, /* plt_got_insn_size */
710 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
711 6, /* plt_lazy_offset */
712 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
713 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
714 };
715
716 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
717 {
718 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
719 elf_x86_64_bnd_plt_entry, /* plt_entry */
720 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
721 2, /* plt0_got1_offset */
722 1+8, /* plt0_got2_offset */
723 1+12, /* plt0_got2_insn_end */
724 1+2, /* plt_got_offset */
725 1, /* plt_reloc_offset */
726 7, /* plt_plt_offset */
727 1+6, /* plt_got_insn_size */
728 11, /* plt_plt_insn_end */
729 0, /* plt_lazy_offset */
730 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
731 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
732 };
733
734 #define elf_backend_arch_data &elf_x86_64_arch_bed
735
736 /* x86-64 ELF linker hash entry. */
737
738 struct elf_x86_64_link_hash_entry
739 {
740 struct elf_link_hash_entry elf;
741
742 /* Track dynamic relocs copied for this symbol. */
743 struct elf_dyn_relocs *dyn_relocs;
744
745 #define GOT_UNKNOWN 0
746 #define GOT_NORMAL 1
747 #define GOT_TLS_GD 2
748 #define GOT_TLS_IE 3
749 #define GOT_TLS_GDESC 4
750 #define GOT_TLS_GD_BOTH_P(type) \
751 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
752 #define GOT_TLS_GD_P(type) \
753 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
754 #define GOT_TLS_GDESC_P(type) \
755 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
756 #define GOT_TLS_GD_ANY_P(type) \
757 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
758 unsigned char tls_type;
759
760 /* TRUE if a weak symbol with a real definition needs a copy reloc.
761 When there is a weak symbol with a real definition, the processor
762 independent code will have arranged for us to see the real
763 definition first. We need to copy the needs_copy bit from the
764 real definition and check it when allowing copy reloc in PIE. */
765 unsigned int needs_copy : 1;
766
767 /* TRUE if symbol has at least one BND relocation. */
768 unsigned int has_bnd_reloc : 1;
769
770 /* Information about the GOT PLT entry. Filled when there are both
771 GOT and PLT relocations against the same function. */
772 union gotplt_union plt_got;
773
774 /* Information about the second PLT entry. Filled when has_bnd_reloc is
775 set. */
776 union gotplt_union plt_bnd;
777
778 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
779 starting at the end of the jump table. */
780 bfd_vma tlsdesc_got;
781 };
782
783 #define elf_x86_64_hash_entry(ent) \
784 ((struct elf_x86_64_link_hash_entry *)(ent))
785
786 struct elf_x86_64_obj_tdata
787 {
788 struct elf_obj_tdata root;
789
790 /* tls_type for each local got entry. */
791 char *local_got_tls_type;
792
793 /* GOTPLT entries for TLS descriptors. */
794 bfd_vma *local_tlsdesc_gotent;
795 };
796
797 #define elf_x86_64_tdata(abfd) \
798 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
799
800 #define elf_x86_64_local_got_tls_type(abfd) \
801 (elf_x86_64_tdata (abfd)->local_got_tls_type)
802
803 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
804 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
805
806 #define is_x86_64_elf(bfd) \
807 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
808 && elf_tdata (bfd) != NULL \
809 && elf_object_id (bfd) == X86_64_ELF_DATA)
810
811 static bfd_boolean
812 elf_x86_64_mkobject (bfd *abfd)
813 {
814 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
815 X86_64_ELF_DATA);
816 }
817
818 /* x86-64 ELF linker hash table. */
819
820 struct elf_x86_64_link_hash_table
821 {
822 struct elf_link_hash_table elf;
823
824 /* Short-cuts to get to dynamic linker sections. */
825 asection *sdynbss;
826 asection *srelbss;
827 asection *plt_eh_frame;
828 asection *plt_bnd;
829 asection *plt_got;
830
831 union
832 {
833 bfd_signed_vma refcount;
834 bfd_vma offset;
835 } tls_ld_got;
836
837 /* The amount of space used by the jump slots in the GOT. */
838 bfd_vma sgotplt_jump_table_size;
839
840 /* Small local sym cache. */
841 struct sym_cache sym_cache;
842
843 bfd_vma (*r_info) (bfd_vma, bfd_vma);
844 bfd_vma (*r_sym) (bfd_vma);
845 unsigned int pointer_r_type;
846 const char *dynamic_interpreter;
847 int dynamic_interpreter_size;
848
849 /* _TLS_MODULE_BASE_ symbol. */
850 struct bfd_link_hash_entry *tls_module_base;
851
852 /* Used by local STT_GNU_IFUNC symbols. */
853 htab_t loc_hash_table;
854 void * loc_hash_memory;
855
856 /* The offset into splt of the PLT entry for the TLS descriptor
857 resolver. Special values are 0, if not necessary (or not found
858 to be necessary yet), and -1 if needed but not determined
859 yet. */
860 bfd_vma tlsdesc_plt;
861 /* The offset into sgot of the GOT entry used by the PLT entry
862 above. */
863 bfd_vma tlsdesc_got;
864
865 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
866 bfd_vma next_jump_slot_index;
867 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
868 bfd_vma next_irelative_index;
869 };
870
871 /* Get the x86-64 ELF linker hash table from a link_info structure. */
872
873 #define elf_x86_64_hash_table(p) \
874 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
875 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
876
877 #define elf_x86_64_compute_jump_table_size(htab) \
878 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
879
880 /* Create an entry in an x86-64 ELF linker hash table. */
881
882 static struct bfd_hash_entry *
883 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
884 struct bfd_hash_table *table,
885 const char *string)
886 {
887 /* Allocate the structure if it has not already been allocated by a
888 subclass. */
889 if (entry == NULL)
890 {
891 entry = (struct bfd_hash_entry *)
892 bfd_hash_allocate (table,
893 sizeof (struct elf_x86_64_link_hash_entry));
894 if (entry == NULL)
895 return entry;
896 }
897
898 /* Call the allocation method of the superclass. */
899 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
900 if (entry != NULL)
901 {
902 struct elf_x86_64_link_hash_entry *eh;
903
904 eh = (struct elf_x86_64_link_hash_entry *) entry;
905 eh->dyn_relocs = NULL;
906 eh->tls_type = GOT_UNKNOWN;
907 eh->needs_copy = 0;
908 eh->has_bnd_reloc = 0;
909 eh->plt_bnd.offset = (bfd_vma) -1;
910 eh->plt_got.offset = (bfd_vma) -1;
911 eh->tlsdesc_got = (bfd_vma) -1;
912 }
913
914 return entry;
915 }
916
917 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
918 for local symbol so that we can handle local STT_GNU_IFUNC symbols
919 as global symbol. We reuse indx and dynstr_index for local symbol
920 hash since they aren't used by global symbols in this backend. */
921
922 static hashval_t
923 elf_x86_64_local_htab_hash (const void *ptr)
924 {
925 struct elf_link_hash_entry *h
926 = (struct elf_link_hash_entry *) ptr;
927 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
928 }
929
930 /* Compare local hash entries. */
931
932 static int
933 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
934 {
935 struct elf_link_hash_entry *h1
936 = (struct elf_link_hash_entry *) ptr1;
937 struct elf_link_hash_entry *h2
938 = (struct elf_link_hash_entry *) ptr2;
939
940 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
941 }
942
943 /* Find and/or create a hash entry for local symbol. */
944
945 static struct elf_link_hash_entry *
946 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
947 bfd *abfd, const Elf_Internal_Rela *rel,
948 bfd_boolean create)
949 {
950 struct elf_x86_64_link_hash_entry e, *ret;
951 asection *sec = abfd->sections;
952 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
953 htab->r_sym (rel->r_info));
954 void **slot;
955
956 e.elf.indx = sec->id;
957 e.elf.dynstr_index = htab->r_sym (rel->r_info);
958 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
959 create ? INSERT : NO_INSERT);
960
961 if (!slot)
962 return NULL;
963
964 if (*slot)
965 {
966 ret = (struct elf_x86_64_link_hash_entry *) *slot;
967 return &ret->elf;
968 }
969
970 ret = (struct elf_x86_64_link_hash_entry *)
971 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
972 sizeof (struct elf_x86_64_link_hash_entry));
973 if (ret)
974 {
975 memset (ret, 0, sizeof (*ret));
976 ret->elf.indx = sec->id;
977 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
978 ret->elf.dynindx = -1;
979 ret->plt_got.offset = (bfd_vma) -1;
980 *slot = ret;
981 }
982 return &ret->elf;
983 }
984
985 /* Destroy an X86-64 ELF linker hash table. */
986
987 static void
988 elf_x86_64_link_hash_table_free (bfd *obfd)
989 {
990 struct elf_x86_64_link_hash_table *htab
991 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
992
993 if (htab->loc_hash_table)
994 htab_delete (htab->loc_hash_table);
995 if (htab->loc_hash_memory)
996 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
997 _bfd_elf_link_hash_table_free (obfd);
998 }
999
1000 /* Create an X86-64 ELF linker hash table. */
1001
1002 static struct bfd_link_hash_table *
1003 elf_x86_64_link_hash_table_create (bfd *abfd)
1004 {
1005 struct elf_x86_64_link_hash_table *ret;
1006 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
1007
1008 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
1009 if (ret == NULL)
1010 return NULL;
1011
1012 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
1013 elf_x86_64_link_hash_newfunc,
1014 sizeof (struct elf_x86_64_link_hash_entry),
1015 X86_64_ELF_DATA))
1016 {
1017 free (ret);
1018 return NULL;
1019 }
1020
1021 if (ABI_64_P (abfd))
1022 {
1023 ret->r_info = elf64_r_info;
1024 ret->r_sym = elf64_r_sym;
1025 ret->pointer_r_type = R_X86_64_64;
1026 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1027 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1028 }
1029 else
1030 {
1031 ret->r_info = elf32_r_info;
1032 ret->r_sym = elf32_r_sym;
1033 ret->pointer_r_type = R_X86_64_32;
1034 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1035 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1036 }
1037
1038 ret->loc_hash_table = htab_try_create (1024,
1039 elf_x86_64_local_htab_hash,
1040 elf_x86_64_local_htab_eq,
1041 NULL);
1042 ret->loc_hash_memory = objalloc_create ();
1043 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1044 {
1045 elf_x86_64_link_hash_table_free (abfd);
1046 return NULL;
1047 }
1048 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1049
1050 return &ret->elf.root;
1051 }
1052
1053 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1054 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1055 hash table. */
1056
1057 static bfd_boolean
1058 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1059 struct bfd_link_info *info)
1060 {
1061 struct elf_x86_64_link_hash_table *htab;
1062
1063 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1064 return FALSE;
1065
1066 htab = elf_x86_64_hash_table (info);
1067 if (htab == NULL)
1068 return FALSE;
1069
1070 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1071 if (!htab->sdynbss)
1072 abort ();
1073
1074 if (info->executable)
1075 {
1076 /* Always allow copy relocs for building executables. */
1077 asection *s = bfd_get_linker_section (dynobj, ".rela.bss");
1078 if (s == NULL)
1079 {
1080 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
1081 s = bfd_make_section_anyway_with_flags (dynobj,
1082 ".rela.bss",
1083 (bed->dynamic_sec_flags
1084 | SEC_READONLY));
1085 if (s == NULL
1086 || ! bfd_set_section_alignment (dynobj, s,
1087 bed->s->log_file_align))
1088 return FALSE;
1089 }
1090 htab->srelbss = s;
1091 }
1092
1093 if (!info->no_ld_generated_unwind_info
1094 && htab->plt_eh_frame == NULL
1095 && htab->elf.splt != NULL)
1096 {
1097 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1098 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1099 | SEC_LINKER_CREATED);
1100 htab->plt_eh_frame
1101 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1102 if (htab->plt_eh_frame == NULL
1103 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1104 return FALSE;
1105 }
1106 return TRUE;
1107 }
1108
1109 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1110
1111 static void
1112 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1113 struct elf_link_hash_entry *dir,
1114 struct elf_link_hash_entry *ind)
1115 {
1116 struct elf_x86_64_link_hash_entry *edir, *eind;
1117
1118 edir = (struct elf_x86_64_link_hash_entry *) dir;
1119 eind = (struct elf_x86_64_link_hash_entry *) ind;
1120
1121 if (!edir->has_bnd_reloc)
1122 edir->has_bnd_reloc = eind->has_bnd_reloc;
1123
1124 if (eind->dyn_relocs != NULL)
1125 {
1126 if (edir->dyn_relocs != NULL)
1127 {
1128 struct elf_dyn_relocs **pp;
1129 struct elf_dyn_relocs *p;
1130
1131 /* Add reloc counts against the indirect sym to the direct sym
1132 list. Merge any entries against the same section. */
1133 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1134 {
1135 struct elf_dyn_relocs *q;
1136
1137 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1138 if (q->sec == p->sec)
1139 {
1140 q->pc_count += p->pc_count;
1141 q->count += p->count;
1142 *pp = p->next;
1143 break;
1144 }
1145 if (q == NULL)
1146 pp = &p->next;
1147 }
1148 *pp = edir->dyn_relocs;
1149 }
1150
1151 edir->dyn_relocs = eind->dyn_relocs;
1152 eind->dyn_relocs = NULL;
1153 }
1154
1155 if (ind->root.type == bfd_link_hash_indirect
1156 && dir->got.refcount <= 0)
1157 {
1158 edir->tls_type = eind->tls_type;
1159 eind->tls_type = GOT_UNKNOWN;
1160 }
1161
1162 if (ELIMINATE_COPY_RELOCS
1163 && ind->root.type != bfd_link_hash_indirect
1164 && dir->dynamic_adjusted)
1165 {
1166 /* If called to transfer flags for a weakdef during processing
1167 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1168 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1169 dir->ref_dynamic |= ind->ref_dynamic;
1170 dir->ref_regular |= ind->ref_regular;
1171 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1172 dir->needs_plt |= ind->needs_plt;
1173 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1174 }
1175 else
1176 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1177 }
1178
1179 static bfd_boolean
1180 elf64_x86_64_elf_object_p (bfd *abfd)
1181 {
1182 /* Set the right machine number for an x86-64 elf64 file. */
1183 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1184 return TRUE;
1185 }
1186
1187 static bfd_boolean
1188 elf32_x86_64_elf_object_p (bfd *abfd)
1189 {
1190 /* Set the right machine number for an x86-64 elf32 file. */
1191 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1192 return TRUE;
1193 }
1194
1195 /* Return TRUE if the TLS access code sequence support transition
1196 from R_TYPE. */
1197
1198 static bfd_boolean
1199 elf_x86_64_check_tls_transition (bfd *abfd,
1200 struct bfd_link_info *info,
1201 asection *sec,
1202 bfd_byte *contents,
1203 Elf_Internal_Shdr *symtab_hdr,
1204 struct elf_link_hash_entry **sym_hashes,
1205 unsigned int r_type,
1206 const Elf_Internal_Rela *rel,
1207 const Elf_Internal_Rela *relend)
1208 {
1209 unsigned int val;
1210 unsigned long r_symndx;
1211 bfd_boolean largepic = FALSE;
1212 struct elf_link_hash_entry *h;
1213 bfd_vma offset;
1214 struct elf_x86_64_link_hash_table *htab;
1215
1216 /* Get the section contents. */
1217 if (contents == NULL)
1218 {
1219 if (elf_section_data (sec)->this_hdr.contents != NULL)
1220 contents = elf_section_data (sec)->this_hdr.contents;
1221 else
1222 {
1223 /* FIXME: How to better handle error condition? */
1224 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1225 return FALSE;
1226
1227 /* Cache the section contents for elf_link_input_bfd. */
1228 elf_section_data (sec)->this_hdr.contents = contents;
1229 }
1230 }
1231
1232 htab = elf_x86_64_hash_table (info);
1233 offset = rel->r_offset;
1234 switch (r_type)
1235 {
1236 case R_X86_64_TLSGD:
1237 case R_X86_64_TLSLD:
1238 if ((rel + 1) >= relend)
1239 return FALSE;
1240
1241 if (r_type == R_X86_64_TLSGD)
1242 {
1243 /* Check transition from GD access model. For 64bit, only
1244 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1245 .word 0x6666; rex64; call __tls_get_addr
1246 can transit to different access model. For 32bit, only
1247 leaq foo@tlsgd(%rip), %rdi
1248 .word 0x6666; rex64; call __tls_get_addr
1249 can transit to different access model. For largepic
1250 we also support:
1251 leaq foo@tlsgd(%rip), %rdi
1252 movabsq $__tls_get_addr@pltoff, %rax
1253 addq $rbx, %rax
1254 call *%rax. */
1255
1256 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1257 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1258
1259 if ((offset + 12) > sec->size)
1260 return FALSE;
1261
1262 if (memcmp (contents + offset + 4, call, 4) != 0)
1263 {
1264 if (!ABI_64_P (abfd)
1265 || (offset + 19) > sec->size
1266 || offset < 3
1267 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1268 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1269 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1270 != 0)
1271 return FALSE;
1272 largepic = TRUE;
1273 }
1274 else if (ABI_64_P (abfd))
1275 {
1276 if (offset < 4
1277 || memcmp (contents + offset - 4, leaq, 4) != 0)
1278 return FALSE;
1279 }
1280 else
1281 {
1282 if (offset < 3
1283 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1284 return FALSE;
1285 }
1286 }
1287 else
1288 {
1289 /* Check transition from LD access model. Only
1290 leaq foo@tlsld(%rip), %rdi;
1291 call __tls_get_addr
1292 can transit to different access model. For largepic
1293 we also support:
1294 leaq foo@tlsld(%rip), %rdi
1295 movabsq $__tls_get_addr@pltoff, %rax
1296 addq $rbx, %rax
1297 call *%rax. */
1298
1299 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1300
1301 if (offset < 3 || (offset + 9) > sec->size)
1302 return FALSE;
1303
1304 if (memcmp (contents + offset - 3, lea, 3) != 0)
1305 return FALSE;
1306
1307 if (0xe8 != *(contents + offset + 4))
1308 {
1309 if (!ABI_64_P (abfd)
1310 || (offset + 19) > sec->size
1311 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1312 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1313 != 0)
1314 return FALSE;
1315 largepic = TRUE;
1316 }
1317 }
1318
1319 r_symndx = htab->r_sym (rel[1].r_info);
1320 if (r_symndx < symtab_hdr->sh_info)
1321 return FALSE;
1322
1323 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1324 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1325 may be versioned. */
1326 return (h != NULL
1327 && h->root.root.string != NULL
1328 && (largepic
1329 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1330 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1331 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1332 && (strncmp (h->root.root.string,
1333 "__tls_get_addr", 14) == 0));
1334
1335 case R_X86_64_GOTTPOFF:
1336 /* Check transition from IE access model:
1337 mov foo@gottpoff(%rip), %reg
1338 add foo@gottpoff(%rip), %reg
1339 */
1340
1341 /* Check REX prefix first. */
1342 if (offset >= 3 && (offset + 4) <= sec->size)
1343 {
1344 val = bfd_get_8 (abfd, contents + offset - 3);
1345 if (val != 0x48 && val != 0x4c)
1346 {
1347 /* X32 may have 0x44 REX prefix or no REX prefix. */
1348 if (ABI_64_P (abfd))
1349 return FALSE;
1350 }
1351 }
1352 else
1353 {
1354 /* X32 may not have any REX prefix. */
1355 if (ABI_64_P (abfd))
1356 return FALSE;
1357 if (offset < 2 || (offset + 3) > sec->size)
1358 return FALSE;
1359 }
1360
1361 val = bfd_get_8 (abfd, contents + offset - 2);
1362 if (val != 0x8b && val != 0x03)
1363 return FALSE;
1364
1365 val = bfd_get_8 (abfd, contents + offset - 1);
1366 return (val & 0xc7) == 5;
1367
1368 case R_X86_64_GOTPC32_TLSDESC:
1369 /* Check transition from GDesc access model:
1370 leaq x@tlsdesc(%rip), %rax
1371
1372 Make sure it's a leaq adding rip to a 32-bit offset
1373 into any register, although it's probably almost always
1374 going to be rax. */
1375
1376 if (offset < 3 || (offset + 4) > sec->size)
1377 return FALSE;
1378
1379 val = bfd_get_8 (abfd, contents + offset - 3);
1380 if ((val & 0xfb) != 0x48)
1381 return FALSE;
1382
1383 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1384 return FALSE;
1385
1386 val = bfd_get_8 (abfd, contents + offset - 1);
1387 return (val & 0xc7) == 0x05;
1388
1389 case R_X86_64_TLSDESC_CALL:
1390 /* Check transition from GDesc access model:
1391 call *x@tlsdesc(%rax)
1392 */
1393 if (offset + 2 <= sec->size)
1394 {
1395 /* Make sure that it's a call *x@tlsdesc(%rax). */
1396 static const unsigned char call[] = { 0xff, 0x10 };
1397 return memcmp (contents + offset, call, 2) == 0;
1398 }
1399
1400 return FALSE;
1401
1402 default:
1403 abort ();
1404 }
1405 }
1406
1407 /* Return TRUE if the TLS access transition is OK or no transition
1408 will be performed. Update R_TYPE if there is a transition. */
1409
1410 static bfd_boolean
1411 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1412 asection *sec, bfd_byte *contents,
1413 Elf_Internal_Shdr *symtab_hdr,
1414 struct elf_link_hash_entry **sym_hashes,
1415 unsigned int *r_type, int tls_type,
1416 const Elf_Internal_Rela *rel,
1417 const Elf_Internal_Rela *relend,
1418 struct elf_link_hash_entry *h,
1419 unsigned long r_symndx)
1420 {
1421 unsigned int from_type = *r_type;
1422 unsigned int to_type = from_type;
1423 bfd_boolean check = TRUE;
1424
1425 /* Skip TLS transition for functions. */
1426 if (h != NULL
1427 && (h->type == STT_FUNC
1428 || h->type == STT_GNU_IFUNC))
1429 return TRUE;
1430
1431 switch (from_type)
1432 {
1433 case R_X86_64_TLSGD:
1434 case R_X86_64_GOTPC32_TLSDESC:
1435 case R_X86_64_TLSDESC_CALL:
1436 case R_X86_64_GOTTPOFF:
1437 if (info->executable)
1438 {
1439 if (h == NULL)
1440 to_type = R_X86_64_TPOFF32;
1441 else
1442 to_type = R_X86_64_GOTTPOFF;
1443 }
1444
1445 /* When we are called from elf_x86_64_relocate_section,
1446 CONTENTS isn't NULL and there may be additional transitions
1447 based on TLS_TYPE. */
1448 if (contents != NULL)
1449 {
1450 unsigned int new_to_type = to_type;
1451
1452 if (info->executable
1453 && h != NULL
1454 && h->dynindx == -1
1455 && tls_type == GOT_TLS_IE)
1456 new_to_type = R_X86_64_TPOFF32;
1457
1458 if (to_type == R_X86_64_TLSGD
1459 || to_type == R_X86_64_GOTPC32_TLSDESC
1460 || to_type == R_X86_64_TLSDESC_CALL)
1461 {
1462 if (tls_type == GOT_TLS_IE)
1463 new_to_type = R_X86_64_GOTTPOFF;
1464 }
1465
1466 /* We checked the transition before when we were called from
1467 elf_x86_64_check_relocs. We only want to check the new
1468 transition which hasn't been checked before. */
1469 check = new_to_type != to_type && from_type == to_type;
1470 to_type = new_to_type;
1471 }
1472
1473 break;
1474
1475 case R_X86_64_TLSLD:
1476 if (info->executable)
1477 to_type = R_X86_64_TPOFF32;
1478 break;
1479
1480 default:
1481 return TRUE;
1482 }
1483
1484 /* Return TRUE if there is no transition. */
1485 if (from_type == to_type)
1486 return TRUE;
1487
1488 /* Check if the transition can be performed. */
1489 if (check
1490 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1491 symtab_hdr, sym_hashes,
1492 from_type, rel, relend))
1493 {
1494 reloc_howto_type *from, *to;
1495 const char *name;
1496
1497 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1498 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1499
1500 if (h)
1501 name = h->root.root.string;
1502 else
1503 {
1504 struct elf_x86_64_link_hash_table *htab;
1505
1506 htab = elf_x86_64_hash_table (info);
1507 if (htab == NULL)
1508 name = "*unknown*";
1509 else
1510 {
1511 Elf_Internal_Sym *isym;
1512
1513 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1514 abfd, r_symndx);
1515 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1516 }
1517 }
1518
1519 (*_bfd_error_handler)
1520 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1521 "in section `%A' failed"),
1522 abfd, sec, from->name, to->name, name,
1523 (unsigned long) rel->r_offset);
1524 bfd_set_error (bfd_error_bad_value);
1525 return FALSE;
1526 }
1527
1528 *r_type = to_type;
1529 return TRUE;
1530 }
1531
1532 /* Rename some of the generic section flags to better document how they
1533 are used here. */
1534 #define need_convert_mov_to_lea sec_flg0
1535
1536 /* Look through the relocs for a section during the first phase, and
1537 calculate needed space in the global offset table, procedure
1538 linkage table, and dynamic reloc sections. */
1539
1540 static bfd_boolean
1541 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1542 asection *sec,
1543 const Elf_Internal_Rela *relocs)
1544 {
1545 struct elf_x86_64_link_hash_table *htab;
1546 Elf_Internal_Shdr *symtab_hdr;
1547 struct elf_link_hash_entry **sym_hashes;
1548 const Elf_Internal_Rela *rel;
1549 const Elf_Internal_Rela *rel_end;
1550 asection *sreloc;
1551 bfd_boolean use_plt_got;
1552
1553 if (info->relocatable)
1554 return TRUE;
1555
1556 BFD_ASSERT (is_x86_64_elf (abfd));
1557
1558 htab = elf_x86_64_hash_table (info);
1559 if (htab == NULL)
1560 return FALSE;
1561
1562 use_plt_got = get_elf_x86_64_backend_data (abfd) == &elf_x86_64_arch_bed;
1563
1564 symtab_hdr = &elf_symtab_hdr (abfd);
1565 sym_hashes = elf_sym_hashes (abfd);
1566
1567 sreloc = NULL;
1568
1569 rel_end = relocs + sec->reloc_count;
1570 for (rel = relocs; rel < rel_end; rel++)
1571 {
1572 unsigned int r_type;
1573 unsigned long r_symndx;
1574 struct elf_link_hash_entry *h;
1575 Elf_Internal_Sym *isym;
1576 const char *name;
1577 bfd_boolean size_reloc;
1578
1579 r_symndx = htab->r_sym (rel->r_info);
1580 r_type = ELF32_R_TYPE (rel->r_info);
1581
1582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1583 {
1584 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1585 abfd, r_symndx);
1586 return FALSE;
1587 }
1588
1589 if (r_symndx < symtab_hdr->sh_info)
1590 {
1591 /* A local symbol. */
1592 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1593 abfd, r_symndx);
1594 if (isym == NULL)
1595 return FALSE;
1596
1597 /* Check relocation against local STT_GNU_IFUNC symbol. */
1598 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1599 {
1600 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1601 TRUE);
1602 if (h == NULL)
1603 return FALSE;
1604
1605 /* Fake a STT_GNU_IFUNC symbol. */
1606 h->type = STT_GNU_IFUNC;
1607 h->def_regular = 1;
1608 h->ref_regular = 1;
1609 h->forced_local = 1;
1610 h->root.type = bfd_link_hash_defined;
1611 }
1612 else
1613 h = NULL;
1614 }
1615 else
1616 {
1617 isym = NULL;
1618 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1619 while (h->root.type == bfd_link_hash_indirect
1620 || h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1622 }
1623
1624 /* Check invalid x32 relocations. */
1625 if (!ABI_64_P (abfd))
1626 switch (r_type)
1627 {
1628 default:
1629 break;
1630
1631 case R_X86_64_DTPOFF64:
1632 case R_X86_64_TPOFF64:
1633 case R_X86_64_PC64:
1634 case R_X86_64_GOTOFF64:
1635 case R_X86_64_GOT64:
1636 case R_X86_64_GOTPCREL64:
1637 case R_X86_64_GOTPC64:
1638 case R_X86_64_GOTPLT64:
1639 case R_X86_64_PLTOFF64:
1640 {
1641 if (h)
1642 name = h->root.root.string;
1643 else
1644 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1645 NULL);
1646 (*_bfd_error_handler)
1647 (_("%B: relocation %s against symbol `%s' isn't "
1648 "supported in x32 mode"), abfd,
1649 x86_64_elf_howto_table[r_type].name, name);
1650 bfd_set_error (bfd_error_bad_value);
1651 return FALSE;
1652 }
1653 break;
1654 }
1655
1656 if (h != NULL)
1657 {
1658 /* Create the ifunc sections for static executables. If we
1659 never see an indirect function symbol nor we are building
1660 a static executable, those sections will be empty and
1661 won't appear in output. */
1662 switch (r_type)
1663 {
1664 default:
1665 break;
1666
1667 case R_X86_64_PC32_BND:
1668 case R_X86_64_PLT32_BND:
1669 case R_X86_64_PC32:
1670 case R_X86_64_PLT32:
1671 case R_X86_64_32:
1672 case R_X86_64_64:
1673 /* MPX PLT is supported only if elf_x86_64_arch_bed
1674 is used in 64-bit mode. */
1675 if (ABI_64_P (abfd)
1676 && info->bndplt
1677 && (get_elf_x86_64_backend_data (abfd)
1678 == &elf_x86_64_arch_bed))
1679 {
1680 elf_x86_64_hash_entry (h)->has_bnd_reloc = 1;
1681
1682 /* Create the second PLT for Intel MPX support. */
1683 if (htab->plt_bnd == NULL)
1684 {
1685 unsigned int plt_bnd_align;
1686 const struct elf_backend_data *bed;
1687
1688 bed = get_elf_backend_data (info->output_bfd);
1689 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry) == 8
1690 && (sizeof (elf_x86_64_bnd_plt2_entry)
1691 == sizeof (elf_x86_64_legacy_plt2_entry)));
1692 plt_bnd_align = 3;
1693
1694 if (htab->elf.dynobj == NULL)
1695 htab->elf.dynobj = abfd;
1696 htab->plt_bnd
1697 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1698 ".plt.bnd",
1699 (bed->dynamic_sec_flags
1700 | SEC_ALLOC
1701 | SEC_CODE
1702 | SEC_LOAD
1703 | SEC_READONLY));
1704 if (htab->plt_bnd == NULL
1705 || !bfd_set_section_alignment (htab->elf.dynobj,
1706 htab->plt_bnd,
1707 plt_bnd_align))
1708 return FALSE;
1709 }
1710 }
1711
1712 case R_X86_64_32S:
1713 case R_X86_64_PC64:
1714 case R_X86_64_GOTPCREL:
1715 case R_X86_64_GOTPCREL64:
1716 if (htab->elf.dynobj == NULL)
1717 htab->elf.dynobj = abfd;
1718 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1719 return FALSE;
1720 break;
1721 }
1722
1723 /* It is referenced by a non-shared object. */
1724 h->ref_regular = 1;
1725 h->root.non_ir_ref = 1;
1726 }
1727
1728 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1729 symtab_hdr, sym_hashes,
1730 &r_type, GOT_UNKNOWN,
1731 rel, rel_end, h, r_symndx))
1732 return FALSE;
1733
1734 switch (r_type)
1735 {
1736 case R_X86_64_TLSLD:
1737 htab->tls_ld_got.refcount += 1;
1738 goto create_got;
1739
1740 case R_X86_64_TPOFF32:
1741 if (!info->executable && ABI_64_P (abfd))
1742 {
1743 if (h)
1744 name = h->root.root.string;
1745 else
1746 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1747 NULL);
1748 (*_bfd_error_handler)
1749 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1750 abfd,
1751 x86_64_elf_howto_table[r_type].name, name);
1752 bfd_set_error (bfd_error_bad_value);
1753 return FALSE;
1754 }
1755 break;
1756
1757 case R_X86_64_GOTTPOFF:
1758 if (!info->executable)
1759 info->flags |= DF_STATIC_TLS;
1760 /* Fall through */
1761
1762 case R_X86_64_GOT32:
1763 case R_X86_64_GOTPCREL:
1764 case R_X86_64_TLSGD:
1765 case R_X86_64_GOT64:
1766 case R_X86_64_GOTPCREL64:
1767 case R_X86_64_GOTPLT64:
1768 case R_X86_64_GOTPC32_TLSDESC:
1769 case R_X86_64_TLSDESC_CALL:
1770 /* This symbol requires a global offset table entry. */
1771 {
1772 int tls_type, old_tls_type;
1773
1774 switch (r_type)
1775 {
1776 default: tls_type = GOT_NORMAL; break;
1777 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1778 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1779 case R_X86_64_GOTPC32_TLSDESC:
1780 case R_X86_64_TLSDESC_CALL:
1781 tls_type = GOT_TLS_GDESC; break;
1782 }
1783
1784 if (h != NULL)
1785 {
1786 h->got.refcount += 1;
1787 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1788 }
1789 else
1790 {
1791 bfd_signed_vma *local_got_refcounts;
1792
1793 /* This is a global offset table entry for a local symbol. */
1794 local_got_refcounts = elf_local_got_refcounts (abfd);
1795 if (local_got_refcounts == NULL)
1796 {
1797 bfd_size_type size;
1798
1799 size = symtab_hdr->sh_info;
1800 size *= sizeof (bfd_signed_vma)
1801 + sizeof (bfd_vma) + sizeof (char);
1802 local_got_refcounts = ((bfd_signed_vma *)
1803 bfd_zalloc (abfd, size));
1804 if (local_got_refcounts == NULL)
1805 return FALSE;
1806 elf_local_got_refcounts (abfd) = local_got_refcounts;
1807 elf_x86_64_local_tlsdesc_gotent (abfd)
1808 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1809 elf_x86_64_local_got_tls_type (abfd)
1810 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1811 }
1812 local_got_refcounts[r_symndx] += 1;
1813 old_tls_type
1814 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1815 }
1816
1817 /* If a TLS symbol is accessed using IE at least once,
1818 there is no point to use dynamic model for it. */
1819 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1820 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1821 || tls_type != GOT_TLS_IE))
1822 {
1823 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1824 tls_type = old_tls_type;
1825 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1826 && GOT_TLS_GD_ANY_P (tls_type))
1827 tls_type |= old_tls_type;
1828 else
1829 {
1830 if (h)
1831 name = h->root.root.string;
1832 else
1833 name = bfd_elf_sym_name (abfd, symtab_hdr,
1834 isym, NULL);
1835 (*_bfd_error_handler)
1836 (_("%B: '%s' accessed both as normal and thread local symbol"),
1837 abfd, name);
1838 bfd_set_error (bfd_error_bad_value);
1839 return FALSE;
1840 }
1841 }
1842
1843 if (old_tls_type != tls_type)
1844 {
1845 if (h != NULL)
1846 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1847 else
1848 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1849 }
1850 }
1851 /* Fall through */
1852
1853 case R_X86_64_GOTOFF64:
1854 case R_X86_64_GOTPC32:
1855 case R_X86_64_GOTPC64:
1856 create_got:
1857 if (htab->elf.sgot == NULL)
1858 {
1859 if (htab->elf.dynobj == NULL)
1860 htab->elf.dynobj = abfd;
1861 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1862 info))
1863 return FALSE;
1864 }
1865 break;
1866
1867 case R_X86_64_PLT32:
1868 case R_X86_64_PLT32_BND:
1869 /* This symbol requires a procedure linkage table entry. We
1870 actually build the entry in adjust_dynamic_symbol,
1871 because this might be a case of linking PIC code which is
1872 never referenced by a dynamic object, in which case we
1873 don't need to generate a procedure linkage table entry
1874 after all. */
1875
1876 /* If this is a local symbol, we resolve it directly without
1877 creating a procedure linkage table entry. */
1878 if (h == NULL)
1879 continue;
1880
1881 h->needs_plt = 1;
1882 h->plt.refcount += 1;
1883 break;
1884
1885 case R_X86_64_PLTOFF64:
1886 /* This tries to form the 'address' of a function relative
1887 to GOT. For global symbols we need a PLT entry. */
1888 if (h != NULL)
1889 {
1890 h->needs_plt = 1;
1891 h->plt.refcount += 1;
1892 }
1893 goto create_got;
1894
1895 case R_X86_64_SIZE32:
1896 case R_X86_64_SIZE64:
1897 size_reloc = TRUE;
1898 goto do_size;
1899
1900 case R_X86_64_32:
1901 if (!ABI_64_P (abfd))
1902 goto pointer;
1903 case R_X86_64_8:
1904 case R_X86_64_16:
1905 case R_X86_64_32S:
1906 /* Let's help debug shared library creation. These relocs
1907 cannot be used in shared libs. Don't error out for
1908 sections we don't care about, such as debug sections or
1909 non-constant sections. */
1910 if (info->shared
1911 && (sec->flags & SEC_ALLOC) != 0
1912 && (sec->flags & SEC_READONLY) != 0)
1913 {
1914 if (h)
1915 name = h->root.root.string;
1916 else
1917 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1918 (*_bfd_error_handler)
1919 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1920 abfd, x86_64_elf_howto_table[r_type].name, name);
1921 bfd_set_error (bfd_error_bad_value);
1922 return FALSE;
1923 }
1924 /* Fall through. */
1925
1926 case R_X86_64_PC8:
1927 case R_X86_64_PC16:
1928 case R_X86_64_PC32:
1929 case R_X86_64_PC32_BND:
1930 case R_X86_64_PC64:
1931 case R_X86_64_64:
1932 pointer:
1933 if (h != NULL && info->executable)
1934 {
1935 /* If this reloc is in a read-only section, we might
1936 need a copy reloc. We can't check reliably at this
1937 stage whether the section is read-only, as input
1938 sections have not yet been mapped to output sections.
1939 Tentatively set the flag for now, and correct in
1940 adjust_dynamic_symbol. */
1941 h->non_got_ref = 1;
1942
1943 /* We may need a .plt entry if the function this reloc
1944 refers to is in a shared lib. */
1945 h->plt.refcount += 1;
1946 if (r_type != R_X86_64_PC32
1947 && r_type != R_X86_64_PC32_BND
1948 && r_type != R_X86_64_PC64)
1949 h->pointer_equality_needed = 1;
1950 }
1951
1952 size_reloc = FALSE;
1953 do_size:
1954 /* If we are creating a shared library, and this is a reloc
1955 against a global symbol, or a non PC relative reloc
1956 against a local symbol, then we need to copy the reloc
1957 into the shared library. However, if we are linking with
1958 -Bsymbolic, we do not need to copy a reloc against a
1959 global symbol which is defined in an object we are
1960 including in the link (i.e., DEF_REGULAR is set). At
1961 this point we have not seen all the input files, so it is
1962 possible that DEF_REGULAR is not set now but will be set
1963 later (it is never cleared). In case of a weak definition,
1964 DEF_REGULAR may be cleared later by a strong definition in
1965 a shared library. We account for that possibility below by
1966 storing information in the relocs_copied field of the hash
1967 table entry. A similar situation occurs when creating
1968 shared libraries and symbol visibility changes render the
1969 symbol local.
1970
1971 If on the other hand, we are creating an executable, we
1972 may need to keep relocations for symbols satisfied by a
1973 dynamic library if we manage to avoid copy relocs for the
1974 symbol. */
1975 if ((info->shared
1976 && (sec->flags & SEC_ALLOC) != 0
1977 && (! IS_X86_64_PCREL_TYPE (r_type)
1978 || (h != NULL
1979 && (! SYMBOLIC_BIND (info, h)
1980 || h->root.type == bfd_link_hash_defweak
1981 || !h->def_regular))))
1982 || (ELIMINATE_COPY_RELOCS
1983 && !info->shared
1984 && (sec->flags & SEC_ALLOC) != 0
1985 && h != NULL
1986 && (h->root.type == bfd_link_hash_defweak
1987 || !h->def_regular)))
1988 {
1989 struct elf_dyn_relocs *p;
1990 struct elf_dyn_relocs **head;
1991
1992 /* We must copy these reloc types into the output file.
1993 Create a reloc section in dynobj and make room for
1994 this reloc. */
1995 if (sreloc == NULL)
1996 {
1997 if (htab->elf.dynobj == NULL)
1998 htab->elf.dynobj = abfd;
1999
2000 sreloc = _bfd_elf_make_dynamic_reloc_section
2001 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
2002 abfd, /*rela?*/ TRUE);
2003
2004 if (sreloc == NULL)
2005 return FALSE;
2006 }
2007
2008 /* If this is a global symbol, we count the number of
2009 relocations we need for this symbol. */
2010 if (h != NULL)
2011 {
2012 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
2013 }
2014 else
2015 {
2016 /* Track dynamic relocs needed for local syms too.
2017 We really need local syms available to do this
2018 easily. Oh well. */
2019 asection *s;
2020 void **vpp;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024 if (isym == NULL)
2025 return FALSE;
2026
2027 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2028 if (s == NULL)
2029 s = sec;
2030
2031 /* Beware of type punned pointers vs strict aliasing
2032 rules. */
2033 vpp = &(elf_section_data (s)->local_dynrel);
2034 head = (struct elf_dyn_relocs **)vpp;
2035 }
2036
2037 p = *head;
2038 if (p == NULL || p->sec != sec)
2039 {
2040 bfd_size_type amt = sizeof *p;
2041
2042 p = ((struct elf_dyn_relocs *)
2043 bfd_alloc (htab->elf.dynobj, amt));
2044 if (p == NULL)
2045 return FALSE;
2046 p->next = *head;
2047 *head = p;
2048 p->sec = sec;
2049 p->count = 0;
2050 p->pc_count = 0;
2051 }
2052
2053 p->count += 1;
2054 /* Count size relocation as PC-relative relocation. */
2055 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2056 p->pc_count += 1;
2057 }
2058 break;
2059
2060 /* This relocation describes the C++ object vtable hierarchy.
2061 Reconstruct it for later use during GC. */
2062 case R_X86_64_GNU_VTINHERIT:
2063 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2064 return FALSE;
2065 break;
2066
2067 /* This relocation describes which C++ vtable entries are actually
2068 used. Record for later use during GC. */
2069 case R_X86_64_GNU_VTENTRY:
2070 BFD_ASSERT (h != NULL);
2071 if (h != NULL
2072 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2073 return FALSE;
2074 break;
2075
2076 default:
2077 break;
2078 }
2079
2080 if (use_plt_got
2081 && h != NULL
2082 && h->plt.refcount > 0
2083 && (((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed)
2084 || h->got.refcount > 0)
2085 && htab->plt_got == NULL)
2086 {
2087 /* Create the GOT procedure linkage table. */
2088 unsigned int plt_got_align;
2089 const struct elf_backend_data *bed;
2090
2091 bed = get_elf_backend_data (info->output_bfd);
2092 BFD_ASSERT (sizeof (elf_x86_64_legacy_plt2_entry) == 8
2093 && (sizeof (elf_x86_64_bnd_plt2_entry)
2094 == sizeof (elf_x86_64_legacy_plt2_entry)));
2095 plt_got_align = 3;
2096
2097 if (htab->elf.dynobj == NULL)
2098 htab->elf.dynobj = abfd;
2099 htab->plt_got
2100 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
2101 ".plt.got",
2102 (bed->dynamic_sec_flags
2103 | SEC_ALLOC
2104 | SEC_CODE
2105 | SEC_LOAD
2106 | SEC_READONLY));
2107 if (htab->plt_got == NULL
2108 || !bfd_set_section_alignment (htab->elf.dynobj,
2109 htab->plt_got,
2110 plt_got_align))
2111 return FALSE;
2112 }
2113
2114 if (r_type == R_X86_64_GOTPCREL
2115 && (h == NULL || h->type != STT_GNU_IFUNC))
2116 sec->need_convert_mov_to_lea = 1;
2117 }
2118
2119 return TRUE;
2120 }
2121
2122 /* Return the section that should be marked against GC for a given
2123 relocation. */
2124
2125 static asection *
2126 elf_x86_64_gc_mark_hook (asection *sec,
2127 struct bfd_link_info *info,
2128 Elf_Internal_Rela *rel,
2129 struct elf_link_hash_entry *h,
2130 Elf_Internal_Sym *sym)
2131 {
2132 if (h != NULL)
2133 switch (ELF32_R_TYPE (rel->r_info))
2134 {
2135 case R_X86_64_GNU_VTINHERIT:
2136 case R_X86_64_GNU_VTENTRY:
2137 return NULL;
2138 }
2139
2140 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2141 }
2142
2143 /* Update the got entry reference counts for the section being removed. */
2144
2145 static bfd_boolean
2146 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2147 asection *sec,
2148 const Elf_Internal_Rela *relocs)
2149 {
2150 struct elf_x86_64_link_hash_table *htab;
2151 Elf_Internal_Shdr *symtab_hdr;
2152 struct elf_link_hash_entry **sym_hashes;
2153 bfd_signed_vma *local_got_refcounts;
2154 const Elf_Internal_Rela *rel, *relend;
2155
2156 if (info->relocatable)
2157 return TRUE;
2158
2159 htab = elf_x86_64_hash_table (info);
2160 if (htab == NULL)
2161 return FALSE;
2162
2163 elf_section_data (sec)->local_dynrel = NULL;
2164
2165 symtab_hdr = &elf_symtab_hdr (abfd);
2166 sym_hashes = elf_sym_hashes (abfd);
2167 local_got_refcounts = elf_local_got_refcounts (abfd);
2168
2169 htab = elf_x86_64_hash_table (info);
2170 relend = relocs + sec->reloc_count;
2171 for (rel = relocs; rel < relend; rel++)
2172 {
2173 unsigned long r_symndx;
2174 unsigned int r_type;
2175 struct elf_link_hash_entry *h = NULL;
2176
2177 r_symndx = htab->r_sym (rel->r_info);
2178 if (r_symndx >= symtab_hdr->sh_info)
2179 {
2180 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2181 while (h->root.type == bfd_link_hash_indirect
2182 || h->root.type == bfd_link_hash_warning)
2183 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2184 }
2185 else
2186 {
2187 /* A local symbol. */
2188 Elf_Internal_Sym *isym;
2189
2190 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2191 abfd, r_symndx);
2192
2193 /* Check relocation against local STT_GNU_IFUNC symbol. */
2194 if (isym != NULL
2195 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2196 {
2197 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2198 if (h == NULL)
2199 abort ();
2200 }
2201 }
2202
2203 if (h)
2204 {
2205 struct elf_x86_64_link_hash_entry *eh;
2206 struct elf_dyn_relocs **pp;
2207 struct elf_dyn_relocs *p;
2208
2209 eh = (struct elf_x86_64_link_hash_entry *) h;
2210
2211 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2212 if (p->sec == sec)
2213 {
2214 /* Everything must go for SEC. */
2215 *pp = p->next;
2216 break;
2217 }
2218 }
2219
2220 r_type = ELF32_R_TYPE (rel->r_info);
2221 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2222 symtab_hdr, sym_hashes,
2223 &r_type, GOT_UNKNOWN,
2224 rel, relend, h, r_symndx))
2225 return FALSE;
2226
2227 switch (r_type)
2228 {
2229 case R_X86_64_TLSLD:
2230 if (htab->tls_ld_got.refcount > 0)
2231 htab->tls_ld_got.refcount -= 1;
2232 break;
2233
2234 case R_X86_64_TLSGD:
2235 case R_X86_64_GOTPC32_TLSDESC:
2236 case R_X86_64_TLSDESC_CALL:
2237 case R_X86_64_GOTTPOFF:
2238 case R_X86_64_GOT32:
2239 case R_X86_64_GOTPCREL:
2240 case R_X86_64_GOT64:
2241 case R_X86_64_GOTPCREL64:
2242 case R_X86_64_GOTPLT64:
2243 if (h != NULL)
2244 {
2245 if (h->got.refcount > 0)
2246 h->got.refcount -= 1;
2247 if (h->type == STT_GNU_IFUNC)
2248 {
2249 if (h->plt.refcount > 0)
2250 h->plt.refcount -= 1;
2251 }
2252 }
2253 else if (local_got_refcounts != NULL)
2254 {
2255 if (local_got_refcounts[r_symndx] > 0)
2256 local_got_refcounts[r_symndx] -= 1;
2257 }
2258 break;
2259
2260 case R_X86_64_8:
2261 case R_X86_64_16:
2262 case R_X86_64_32:
2263 case R_X86_64_64:
2264 case R_X86_64_32S:
2265 case R_X86_64_PC8:
2266 case R_X86_64_PC16:
2267 case R_X86_64_PC32:
2268 case R_X86_64_PC32_BND:
2269 case R_X86_64_PC64:
2270 case R_X86_64_SIZE32:
2271 case R_X86_64_SIZE64:
2272 if (info->shared
2273 && (h == NULL || h->type != STT_GNU_IFUNC))
2274 break;
2275 /* Fall thru */
2276
2277 case R_X86_64_PLT32:
2278 case R_X86_64_PLT32_BND:
2279 case R_X86_64_PLTOFF64:
2280 if (h != NULL)
2281 {
2282 if (h->plt.refcount > 0)
2283 h->plt.refcount -= 1;
2284 }
2285 break;
2286
2287 default:
2288 break;
2289 }
2290 }
2291
2292 return TRUE;
2293 }
2294
2295 /* Adjust a symbol defined by a dynamic object and referenced by a
2296 regular object. The current definition is in some section of the
2297 dynamic object, but we're not including those sections. We have to
2298 change the definition to something the rest of the link can
2299 understand. */
2300
2301 static bfd_boolean
2302 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2303 struct elf_link_hash_entry *h)
2304 {
2305 struct elf_x86_64_link_hash_table *htab;
2306 asection *s;
2307 struct elf_x86_64_link_hash_entry *eh;
2308 struct elf_dyn_relocs *p;
2309
2310 /* STT_GNU_IFUNC symbol must go through PLT. */
2311 if (h->type == STT_GNU_IFUNC)
2312 {
2313 /* All local STT_GNU_IFUNC references must be treate as local
2314 calls via local PLT. */
2315 if (h->ref_regular
2316 && SYMBOL_CALLS_LOCAL (info, h))
2317 {
2318 bfd_size_type pc_count = 0, count = 0;
2319 struct elf_dyn_relocs **pp;
2320
2321 eh = (struct elf_x86_64_link_hash_entry *) h;
2322 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2323 {
2324 pc_count += p->pc_count;
2325 p->count -= p->pc_count;
2326 p->pc_count = 0;
2327 count += p->count;
2328 if (p->count == 0)
2329 *pp = p->next;
2330 else
2331 pp = &p->next;
2332 }
2333
2334 if (pc_count || count)
2335 {
2336 h->needs_plt = 1;
2337 h->non_got_ref = 1;
2338 if (h->plt.refcount <= 0)
2339 h->plt.refcount = 1;
2340 else
2341 h->plt.refcount += 1;
2342 }
2343 }
2344
2345 if (h->plt.refcount <= 0)
2346 {
2347 h->plt.offset = (bfd_vma) -1;
2348 h->needs_plt = 0;
2349 }
2350 return TRUE;
2351 }
2352
2353 /* If this is a function, put it in the procedure linkage table. We
2354 will fill in the contents of the procedure linkage table later,
2355 when we know the address of the .got section. */
2356 if (h->type == STT_FUNC
2357 || h->needs_plt)
2358 {
2359 if (h->plt.refcount <= 0
2360 || SYMBOL_CALLS_LOCAL (info, h)
2361 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2362 && h->root.type == bfd_link_hash_undefweak))
2363 {
2364 /* This case can occur if we saw a PLT32 reloc in an input
2365 file, but the symbol was never referred to by a dynamic
2366 object, or if all references were garbage collected. In
2367 such a case, we don't actually need to build a procedure
2368 linkage table, and we can just do a PC32 reloc instead. */
2369 h->plt.offset = (bfd_vma) -1;
2370 h->needs_plt = 0;
2371 }
2372
2373 return TRUE;
2374 }
2375 else
2376 /* It's possible that we incorrectly decided a .plt reloc was
2377 needed for an R_X86_64_PC32 reloc to a non-function sym in
2378 check_relocs. We can't decide accurately between function and
2379 non-function syms in check-relocs; Objects loaded later in
2380 the link may change h->type. So fix it now. */
2381 h->plt.offset = (bfd_vma) -1;
2382
2383 /* If this is a weak symbol, and there is a real definition, the
2384 processor independent code will have arranged for us to see the
2385 real definition first, and we can just use the same value. */
2386 if (h->u.weakdef != NULL)
2387 {
2388 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2389 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2390 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2391 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2392 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2393 {
2394 eh = (struct elf_x86_64_link_hash_entry *) h;
2395 h->non_got_ref = h->u.weakdef->non_got_ref;
2396 eh->needs_copy = h->u.weakdef->needs_copy;
2397 }
2398 return TRUE;
2399 }
2400
2401 /* This is a reference to a symbol defined by a dynamic object which
2402 is not a function. */
2403
2404 /* If we are creating a shared library, we must presume that the
2405 only references to the symbol are via the global offset table.
2406 For such cases we need not do anything here; the relocations will
2407 be handled correctly by relocate_section. */
2408 if (!info->executable)
2409 return TRUE;
2410
2411 /* If there are no references to this symbol that do not use the
2412 GOT, we don't need to generate a copy reloc. */
2413 if (!h->non_got_ref)
2414 return TRUE;
2415
2416 /* If -z nocopyreloc was given, we won't generate them either. */
2417 if (info->nocopyreloc)
2418 {
2419 h->non_got_ref = 0;
2420 return TRUE;
2421 }
2422
2423 if (ELIMINATE_COPY_RELOCS)
2424 {
2425 eh = (struct elf_x86_64_link_hash_entry *) h;
2426 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2427 {
2428 s = p->sec->output_section;
2429 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2430 break;
2431 }
2432
2433 /* If we didn't find any dynamic relocs in read-only sections, then
2434 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2435 if (p == NULL)
2436 {
2437 h->non_got_ref = 0;
2438 return TRUE;
2439 }
2440 }
2441
2442 /* We must allocate the symbol in our .dynbss section, which will
2443 become part of the .bss section of the executable. There will be
2444 an entry for this symbol in the .dynsym section. The dynamic
2445 object will contain position independent code, so all references
2446 from the dynamic object to this symbol will go through the global
2447 offset table. The dynamic linker will use the .dynsym entry to
2448 determine the address it must put in the global offset table, so
2449 both the dynamic object and the regular object will refer to the
2450 same memory location for the variable. */
2451
2452 htab = elf_x86_64_hash_table (info);
2453 if (htab == NULL)
2454 return FALSE;
2455
2456 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2457 to copy the initial value out of the dynamic object and into the
2458 runtime process image. */
2459 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2460 {
2461 const struct elf_backend_data *bed;
2462 bed = get_elf_backend_data (info->output_bfd);
2463 htab->srelbss->size += bed->s->sizeof_rela;
2464 h->needs_copy = 1;
2465 }
2466
2467 s = htab->sdynbss;
2468
2469 return _bfd_elf_adjust_dynamic_copy (info, h, s);
2470 }
2471
2472 /* Allocate space in .plt, .got and associated reloc sections for
2473 dynamic relocs. */
2474
2475 static bfd_boolean
2476 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2477 {
2478 struct bfd_link_info *info;
2479 struct elf_x86_64_link_hash_table *htab;
2480 struct elf_x86_64_link_hash_entry *eh;
2481 struct elf_dyn_relocs *p;
2482 const struct elf_backend_data *bed;
2483 unsigned int plt_entry_size;
2484
2485 if (h->root.type == bfd_link_hash_indirect)
2486 return TRUE;
2487
2488 eh = (struct elf_x86_64_link_hash_entry *) h;
2489
2490 info = (struct bfd_link_info *) inf;
2491 htab = elf_x86_64_hash_table (info);
2492 if (htab == NULL)
2493 return FALSE;
2494 bed = get_elf_backend_data (info->output_bfd);
2495 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2496
2497 /* We can't use the GOT PLT if pointer equality is needed since
2498 finish_dynamic_symbol won't clear symbol value and the dynamic
2499 linker won't update the GOT slot. We will get into an infinite
2500 loop at run-time. */
2501 if (htab->plt_got != NULL
2502 && h->type != STT_GNU_IFUNC
2503 && !h->pointer_equality_needed
2504 && h->plt.refcount > 0
2505 && h->got.refcount > 0)
2506 {
2507 /* Don't use the regular PLT if there are both GOT and GOTPLT
2508 reloctions. */
2509 h->plt.offset = (bfd_vma) -1;
2510
2511 /* Use the GOT PLT. */
2512 eh->plt_got.refcount = 1;
2513 }
2514
2515 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2516 here if it is defined and referenced in a non-shared object. */
2517 if (h->type == STT_GNU_IFUNC
2518 && h->def_regular)
2519 {
2520 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2521 &eh->dyn_relocs,
2522 plt_entry_size,
2523 plt_entry_size,
2524 GOT_ENTRY_SIZE))
2525 {
2526 asection *s = htab->plt_bnd;
2527 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2528 {
2529 /* Use the .plt.bnd section if it is created. */
2530 eh->plt_bnd.offset = s->size;
2531
2532 /* Make room for this entry in the .plt.bnd section. */
2533 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2534 }
2535
2536 return TRUE;
2537 }
2538 else
2539 return FALSE;
2540 }
2541 else if (htab->elf.dynamic_sections_created
2542 && (h->plt.refcount > 0 || eh->plt_got.refcount > 0))
2543 {
2544 bfd_boolean use_plt_got;
2545
2546 if ((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed)
2547 {
2548 /* Don't use the regular PLT for DF_BIND_NOW. */
2549 h->plt.offset = (bfd_vma) -1;
2550
2551 /* Use the GOT PLT. */
2552 h->got.refcount = 1;
2553 eh->plt_got.refcount = 1;
2554 }
2555
2556 use_plt_got = eh->plt_got.refcount > 0;
2557
2558 /* Make sure this symbol is output as a dynamic symbol.
2559 Undefined weak syms won't yet be marked as dynamic. */
2560 if (h->dynindx == -1
2561 && !h->forced_local)
2562 {
2563 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2564 return FALSE;
2565 }
2566
2567 if (info->shared
2568 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2569 {
2570 asection *s = htab->elf.splt;
2571 asection *bnd_s = htab->plt_bnd;
2572 asection *got_s = htab->plt_got;
2573
2574 /* If this is the first .plt entry, make room for the special
2575 first entry. The .plt section is used by prelink to undo
2576 prelinking for dynamic relocations. */
2577 if (s->size == 0)
2578 s->size = plt_entry_size;
2579
2580 if (use_plt_got)
2581 eh->plt_got.offset = got_s->size;
2582 else
2583 {
2584 h->plt.offset = s->size;
2585 if (bnd_s)
2586 eh->plt_bnd.offset = bnd_s->size;
2587 }
2588
2589 /* If this symbol is not defined in a regular file, and we are
2590 not generating a shared library, then set the symbol to this
2591 location in the .plt. This is required to make function
2592 pointers compare as equal between the normal executable and
2593 the shared library. */
2594 if (! info->shared
2595 && !h->def_regular)
2596 {
2597 if (use_plt_got)
2598 {
2599 /* We need to make a call to the entry of the GOT PLT
2600 instead of regular PLT entry. */
2601 h->root.u.def.section = got_s;
2602 h->root.u.def.value = eh->plt_got.offset;
2603 }
2604 else
2605 {
2606 if (bnd_s)
2607 {
2608 /* We need to make a call to the entry of the second
2609 PLT instead of regular PLT entry. */
2610 h->root.u.def.section = bnd_s;
2611 h->root.u.def.value = eh->plt_bnd.offset;
2612 }
2613 else
2614 {
2615 h->root.u.def.section = s;
2616 h->root.u.def.value = h->plt.offset;
2617 }
2618 }
2619 }
2620
2621 /* Make room for this entry. */
2622 if (use_plt_got)
2623 got_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2624 else
2625 {
2626 s->size += plt_entry_size;
2627 if (bnd_s)
2628 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2629
2630 /* We also need to make an entry in the .got.plt section,
2631 which will be placed in the .got section by the linker
2632 script. */
2633 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2634
2635 /* We also need to make an entry in the .rela.plt
2636 section. */
2637 htab->elf.srelplt->size += bed->s->sizeof_rela;
2638 htab->elf.srelplt->reloc_count++;
2639 }
2640 }
2641 else
2642 {
2643 h->plt.offset = (bfd_vma) -1;
2644 h->needs_plt = 0;
2645 }
2646 }
2647 else
2648 {
2649 h->plt.offset = (bfd_vma) -1;
2650 h->needs_plt = 0;
2651 }
2652
2653 eh->tlsdesc_got = (bfd_vma) -1;
2654
2655 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2656 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2657 if (h->got.refcount > 0
2658 && info->executable
2659 && h->dynindx == -1
2660 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2661 {
2662 h->got.offset = (bfd_vma) -1;
2663 }
2664 else if (h->got.refcount > 0)
2665 {
2666 asection *s;
2667 bfd_boolean dyn;
2668 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2669
2670 /* Make sure this symbol is output as a dynamic symbol.
2671 Undefined weak syms won't yet be marked as dynamic. */
2672 if (h->dynindx == -1
2673 && !h->forced_local)
2674 {
2675 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2676 return FALSE;
2677 }
2678
2679 if (GOT_TLS_GDESC_P (tls_type))
2680 {
2681 eh->tlsdesc_got = htab->elf.sgotplt->size
2682 - elf_x86_64_compute_jump_table_size (htab);
2683 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2684 h->got.offset = (bfd_vma) -2;
2685 }
2686 if (! GOT_TLS_GDESC_P (tls_type)
2687 || GOT_TLS_GD_P (tls_type))
2688 {
2689 s = htab->elf.sgot;
2690 h->got.offset = s->size;
2691 s->size += GOT_ENTRY_SIZE;
2692 if (GOT_TLS_GD_P (tls_type))
2693 s->size += GOT_ENTRY_SIZE;
2694 }
2695 dyn = htab->elf.dynamic_sections_created;
2696 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2697 and two if global.
2698 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2699 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2700 || tls_type == GOT_TLS_IE)
2701 htab->elf.srelgot->size += bed->s->sizeof_rela;
2702 else if (GOT_TLS_GD_P (tls_type))
2703 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2704 else if (! GOT_TLS_GDESC_P (tls_type)
2705 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2706 || h->root.type != bfd_link_hash_undefweak)
2707 && (info->shared
2708 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2709 htab->elf.srelgot->size += bed->s->sizeof_rela;
2710 if (GOT_TLS_GDESC_P (tls_type))
2711 {
2712 htab->elf.srelplt->size += bed->s->sizeof_rela;
2713 htab->tlsdesc_plt = (bfd_vma) -1;
2714 }
2715 }
2716 else
2717 h->got.offset = (bfd_vma) -1;
2718
2719 if (eh->dyn_relocs == NULL)
2720 return TRUE;
2721
2722 /* In the shared -Bsymbolic case, discard space allocated for
2723 dynamic pc-relative relocs against symbols which turn out to be
2724 defined in regular objects. For the normal shared case, discard
2725 space for pc-relative relocs that have become local due to symbol
2726 visibility changes. */
2727
2728 if (info->shared)
2729 {
2730 /* Relocs that use pc_count are those that appear on a call
2731 insn, or certain REL relocs that can generated via assembly.
2732 We want calls to protected symbols to resolve directly to the
2733 function rather than going via the plt. If people want
2734 function pointer comparisons to work as expected then they
2735 should avoid writing weird assembly. */
2736 if (SYMBOL_CALLS_LOCAL (info, h))
2737 {
2738 struct elf_dyn_relocs **pp;
2739
2740 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2741 {
2742 p->count -= p->pc_count;
2743 p->pc_count = 0;
2744 if (p->count == 0)
2745 *pp = p->next;
2746 else
2747 pp = &p->next;
2748 }
2749 }
2750
2751 /* Also discard relocs on undefined weak syms with non-default
2752 visibility. */
2753 if (eh->dyn_relocs != NULL)
2754 {
2755 if (h->root.type == bfd_link_hash_undefweak)
2756 {
2757 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2758 eh->dyn_relocs = NULL;
2759
2760 /* Make sure undefined weak symbols are output as a dynamic
2761 symbol in PIEs. */
2762 else if (h->dynindx == -1
2763 && ! h->forced_local
2764 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2765 return FALSE;
2766 }
2767 /* For PIE, discard space for pc-relative relocs against
2768 symbols which turn out to need copy relocs. */
2769 else if (info->executable
2770 && (h->needs_copy || eh->needs_copy)
2771 && h->def_dynamic
2772 && !h->def_regular)
2773 {
2774 struct elf_dyn_relocs **pp;
2775
2776 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2777 {
2778 if (p->pc_count != 0)
2779 *pp = p->next;
2780 else
2781 pp = &p->next;
2782 }
2783 }
2784 }
2785 }
2786 else if (ELIMINATE_COPY_RELOCS)
2787 {
2788 /* For the non-shared case, discard space for relocs against
2789 symbols which turn out to need copy relocs or are not
2790 dynamic. */
2791
2792 if (!h->non_got_ref
2793 && ((h->def_dynamic
2794 && !h->def_regular)
2795 || (htab->elf.dynamic_sections_created
2796 && (h->root.type == bfd_link_hash_undefweak
2797 || h->root.type == bfd_link_hash_undefined))))
2798 {
2799 /* Make sure this symbol is output as a dynamic symbol.
2800 Undefined weak syms won't yet be marked as dynamic. */
2801 if (h->dynindx == -1
2802 && ! h->forced_local
2803 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2804 return FALSE;
2805
2806 /* If that succeeded, we know we'll be keeping all the
2807 relocs. */
2808 if (h->dynindx != -1)
2809 goto keep;
2810 }
2811
2812 eh->dyn_relocs = NULL;
2813
2814 keep: ;
2815 }
2816
2817 /* Finally, allocate space. */
2818 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2819 {
2820 asection * sreloc;
2821
2822 sreloc = elf_section_data (p->sec)->sreloc;
2823
2824 BFD_ASSERT (sreloc != NULL);
2825
2826 sreloc->size += p->count * bed->s->sizeof_rela;
2827 }
2828
2829 return TRUE;
2830 }
2831
2832 /* Allocate space in .plt, .got and associated reloc sections for
2833 local dynamic relocs. */
2834
2835 static bfd_boolean
2836 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2837 {
2838 struct elf_link_hash_entry *h
2839 = (struct elf_link_hash_entry *) *slot;
2840
2841 if (h->type != STT_GNU_IFUNC
2842 || !h->def_regular
2843 || !h->ref_regular
2844 || !h->forced_local
2845 || h->root.type != bfd_link_hash_defined)
2846 abort ();
2847
2848 return elf_x86_64_allocate_dynrelocs (h, inf);
2849 }
2850
2851 /* Find any dynamic relocs that apply to read-only sections. */
2852
2853 static bfd_boolean
2854 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2855 void * inf)
2856 {
2857 struct elf_x86_64_link_hash_entry *eh;
2858 struct elf_dyn_relocs *p;
2859
2860 /* Skip local IFUNC symbols. */
2861 if (h->forced_local && h->type == STT_GNU_IFUNC)
2862 return TRUE;
2863
2864 eh = (struct elf_x86_64_link_hash_entry *) h;
2865 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2866 {
2867 asection *s = p->sec->output_section;
2868
2869 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2870 {
2871 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2872
2873 info->flags |= DF_TEXTREL;
2874
2875 if ((info->warn_shared_textrel && info->shared)
2876 || info->error_textrel)
2877 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'\n"),
2878 p->sec->owner, h->root.root.string,
2879 p->sec);
2880
2881 /* Not an error, just cut short the traversal. */
2882 return FALSE;
2883 }
2884 }
2885 return TRUE;
2886 }
2887
2888 /* Convert
2889 mov foo@GOTPCREL(%rip), %reg
2890 to
2891 lea foo(%rip), %reg
2892 with the local symbol, foo. */
2893
2894 static bfd_boolean
2895 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2896 struct bfd_link_info *link_info)
2897 {
2898 Elf_Internal_Shdr *symtab_hdr;
2899 Elf_Internal_Rela *internal_relocs;
2900 Elf_Internal_Rela *irel, *irelend;
2901 bfd_byte *contents;
2902 struct elf_x86_64_link_hash_table *htab;
2903 bfd_boolean changed_contents;
2904 bfd_boolean changed_relocs;
2905 bfd_signed_vma *local_got_refcounts;
2906 bfd_vma maxpagesize;
2907
2908 /* Don't even try to convert non-ELF outputs. */
2909 if (!is_elf_hash_table (link_info->hash))
2910 return FALSE;
2911
2912 /* Nothing to do if there is no need or no output. */
2913 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2914 || sec->need_convert_mov_to_lea == 0
2915 || bfd_is_abs_section (sec->output_section))
2916 return TRUE;
2917
2918 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2919
2920 /* Load the relocations for this section. */
2921 internal_relocs = (_bfd_elf_link_read_relocs
2922 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2923 link_info->keep_memory));
2924 if (internal_relocs == NULL)
2925 return FALSE;
2926
2927 htab = elf_x86_64_hash_table (link_info);
2928 changed_contents = FALSE;
2929 changed_relocs = FALSE;
2930 local_got_refcounts = elf_local_got_refcounts (abfd);
2931 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
2932
2933 /* Get the section contents. */
2934 if (elf_section_data (sec)->this_hdr.contents != NULL)
2935 contents = elf_section_data (sec)->this_hdr.contents;
2936 else
2937 {
2938 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2939 goto error_return;
2940 }
2941
2942 irelend = internal_relocs + sec->reloc_count;
2943 for (irel = internal_relocs; irel < irelend; irel++)
2944 {
2945 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2946 unsigned int r_symndx = htab->r_sym (irel->r_info);
2947 unsigned int indx;
2948 struct elf_link_hash_entry *h;
2949 asection *tsec;
2950 char symtype;
2951 bfd_vma toff, roff;
2952 enum {
2953 none, local, global
2954 } convert_mov_to_lea;
2955
2956 if (r_type != R_X86_64_GOTPCREL)
2957 continue;
2958
2959 roff = irel->r_offset;
2960
2961 /* Don't convert R_X86_64_GOTPCREL relocation if it isn't for mov
2962 instruction. */
2963 if (roff < 2
2964 || bfd_get_8 (abfd, contents + roff - 2) != 0x8b)
2965 continue;
2966
2967 tsec = NULL;
2968 convert_mov_to_lea = none;
2969
2970 /* Get the symbol referred to by the reloc. */
2971 if (r_symndx < symtab_hdr->sh_info)
2972 {
2973 Elf_Internal_Sym *isym;
2974
2975 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2976 abfd, r_symndx);
2977
2978 symtype = ELF_ST_TYPE (isym->st_info);
2979
2980 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation and
2981 skip relocation against undefined symbols. */
2982 if (symtype != STT_GNU_IFUNC && isym->st_shndx != SHN_UNDEF)
2983 {
2984 if (isym->st_shndx == SHN_ABS)
2985 tsec = bfd_abs_section_ptr;
2986 else if (isym->st_shndx == SHN_COMMON)
2987 tsec = bfd_com_section_ptr;
2988 else if (isym->st_shndx == SHN_X86_64_LCOMMON)
2989 tsec = &_bfd_elf_large_com_section;
2990 else
2991 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2992
2993 toff = isym->st_value;
2994 convert_mov_to_lea = local;
2995 }
2996 }
2997 else
2998 {
2999 indx = r_symndx - symtab_hdr->sh_info;
3000 h = elf_sym_hashes (abfd)[indx];
3001 BFD_ASSERT (h != NULL);
3002
3003 while (h->root.type == bfd_link_hash_indirect
3004 || h->root.type == bfd_link_hash_warning)
3005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3006
3007 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
3008 avoid optimizing _DYNAMIC since ld.so may use its link-time
3009 address. */
3010 if (h->def_regular
3011 && h->type != STT_GNU_IFUNC
3012 && h != htab->elf.hdynamic
3013 && SYMBOL_REFERENCES_LOCAL (link_info, h))
3014 {
3015 tsec = h->root.u.def.section;
3016 toff = h->root.u.def.value;
3017 symtype = h->type;
3018 convert_mov_to_lea = global;
3019 }
3020 }
3021
3022 if (convert_mov_to_lea == none)
3023 continue;
3024
3025 if (tsec->sec_info_type == SEC_INFO_TYPE_MERGE)
3026 {
3027 /* At this stage in linking, no SEC_MERGE symbol has been
3028 adjusted, so all references to such symbols need to be
3029 passed through _bfd_merged_section_offset. (Later, in
3030 relocate_section, all SEC_MERGE symbols *except* for
3031 section symbols have been adjusted.)
3032
3033 gas may reduce relocations against symbols in SEC_MERGE
3034 sections to a relocation against the section symbol when
3035 the original addend was zero. When the reloc is against
3036 a section symbol we should include the addend in the
3037 offset passed to _bfd_merged_section_offset, since the
3038 location of interest is the original symbol. On the
3039 other hand, an access to "sym+addend" where "sym" is not
3040 a section symbol should not include the addend; Such an
3041 access is presumed to be an offset from "sym"; The
3042 location of interest is just "sym". */
3043 if (symtype == STT_SECTION)
3044 toff += irel->r_addend;
3045
3046 toff = _bfd_merged_section_offset (abfd, &tsec,
3047 elf_section_data (tsec)->sec_info,
3048 toff);
3049
3050 if (symtype != STT_SECTION)
3051 toff += irel->r_addend;
3052 }
3053 else
3054 toff += irel->r_addend;
3055
3056 /* Don't convert if R_X86_64_PC32 relocation overflows. */
3057 if (tsec->output_section == sec->output_section)
3058 {
3059 if ((toff - roff + 0x80000000) > 0xffffffff)
3060 continue;
3061 }
3062 else
3063 {
3064 asection *asect;
3065 bfd_size_type size;
3066
3067 /* At this point, we don't know the load addresses of TSEC
3068 section nor SEC section. We estimate the distrance between
3069 SEC and TSEC. */
3070 size = 0;
3071 for (asect = sec->output_section;
3072 asect != NULL && asect != tsec->output_section;
3073 asect = asect->next)
3074 {
3075 asection *i;
3076 for (i = asect->output_section->map_head.s;
3077 i != NULL;
3078 i = i->map_head.s)
3079 {
3080 size = align_power (size, i->alignment_power);
3081 size += i->size;
3082 }
3083 }
3084
3085 /* Don't convert R_X86_64_GOTPCREL if TSEC isn't placed after
3086 SEC. */
3087 if (asect == NULL)
3088 continue;
3089
3090 /* Take PT_GNU_RELRO segment into account by adding
3091 maxpagesize. */
3092 if ((toff + size + maxpagesize - roff + 0x80000000)
3093 > 0xffffffff)
3094 continue;
3095 }
3096
3097 bfd_put_8 (abfd, 0x8d, contents + roff - 2);
3098 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
3099 changed_contents = TRUE;
3100 changed_relocs = TRUE;
3101
3102 if (convert_mov_to_lea == local)
3103 {
3104 if (local_got_refcounts != NULL
3105 && local_got_refcounts[r_symndx] > 0)
3106 local_got_refcounts[r_symndx] -= 1;
3107 }
3108 else
3109 {
3110 if (h->got.refcount > 0)
3111 h->got.refcount -= 1;
3112 }
3113 }
3114
3115 if (contents != NULL
3116 && elf_section_data (sec)->this_hdr.contents != contents)
3117 {
3118 if (!changed_contents && !link_info->keep_memory)
3119 free (contents);
3120 else
3121 {
3122 /* Cache the section contents for elf_link_input_bfd. */
3123 elf_section_data (sec)->this_hdr.contents = contents;
3124 }
3125 }
3126
3127 if (elf_section_data (sec)->relocs != internal_relocs)
3128 {
3129 if (!changed_relocs)
3130 free (internal_relocs);
3131 else
3132 elf_section_data (sec)->relocs = internal_relocs;
3133 }
3134
3135 return TRUE;
3136
3137 error_return:
3138 if (contents != NULL
3139 && elf_section_data (sec)->this_hdr.contents != contents)
3140 free (contents);
3141 if (internal_relocs != NULL
3142 && elf_section_data (sec)->relocs != internal_relocs)
3143 free (internal_relocs);
3144 return FALSE;
3145 }
3146
3147 /* Set the sizes of the dynamic sections. */
3148
3149 static bfd_boolean
3150 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
3151 struct bfd_link_info *info)
3152 {
3153 struct elf_x86_64_link_hash_table *htab;
3154 bfd *dynobj;
3155 asection *s;
3156 bfd_boolean relocs;
3157 bfd *ibfd;
3158 const struct elf_backend_data *bed;
3159
3160 htab = elf_x86_64_hash_table (info);
3161 if (htab == NULL)
3162 return FALSE;
3163 bed = get_elf_backend_data (output_bfd);
3164
3165 dynobj = htab->elf.dynobj;
3166 if (dynobj == NULL)
3167 abort ();
3168
3169 if (htab->elf.dynamic_sections_created)
3170 {
3171 /* Set the contents of the .interp section to the interpreter. */
3172 if (info->executable)
3173 {
3174 s = bfd_get_linker_section (dynobj, ".interp");
3175 if (s == NULL)
3176 abort ();
3177 s->size = htab->dynamic_interpreter_size;
3178 s->contents = (unsigned char *) htab->dynamic_interpreter;
3179 }
3180 }
3181
3182 /* Set up .got offsets for local syms, and space for local dynamic
3183 relocs. */
3184 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
3185 {
3186 bfd_signed_vma *local_got;
3187 bfd_signed_vma *end_local_got;
3188 char *local_tls_type;
3189 bfd_vma *local_tlsdesc_gotent;
3190 bfd_size_type locsymcount;
3191 Elf_Internal_Shdr *symtab_hdr;
3192 asection *srel;
3193
3194 if (! is_x86_64_elf (ibfd))
3195 continue;
3196
3197 for (s = ibfd->sections; s != NULL; s = s->next)
3198 {
3199 struct elf_dyn_relocs *p;
3200
3201 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
3202 return FALSE;
3203
3204 for (p = (struct elf_dyn_relocs *)
3205 (elf_section_data (s)->local_dynrel);
3206 p != NULL;
3207 p = p->next)
3208 {
3209 if (!bfd_is_abs_section (p->sec)
3210 && bfd_is_abs_section (p->sec->output_section))
3211 {
3212 /* Input section has been discarded, either because
3213 it is a copy of a linkonce section or due to
3214 linker script /DISCARD/, so we'll be discarding
3215 the relocs too. */
3216 }
3217 else if (p->count != 0)
3218 {
3219 srel = elf_section_data (p->sec)->sreloc;
3220 srel->size += p->count * bed->s->sizeof_rela;
3221 if ((p->sec->output_section->flags & SEC_READONLY) != 0
3222 && (info->flags & DF_TEXTREL) == 0)
3223 {
3224 info->flags |= DF_TEXTREL;
3225 if ((info->warn_shared_textrel && info->shared)
3226 || info->error_textrel)
3227 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'\n"),
3228 p->sec->owner, p->sec);
3229 }
3230 }
3231 }
3232 }
3233
3234 local_got = elf_local_got_refcounts (ibfd);
3235 if (!local_got)
3236 continue;
3237
3238 symtab_hdr = &elf_symtab_hdr (ibfd);
3239 locsymcount = symtab_hdr->sh_info;
3240 end_local_got = local_got + locsymcount;
3241 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
3242 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
3243 s = htab->elf.sgot;
3244 srel = htab->elf.srelgot;
3245 for (; local_got < end_local_got;
3246 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
3247 {
3248 *local_tlsdesc_gotent = (bfd_vma) -1;
3249 if (*local_got > 0)
3250 {
3251 if (GOT_TLS_GDESC_P (*local_tls_type))
3252 {
3253 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3254 - elf_x86_64_compute_jump_table_size (htab);
3255 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3256 *local_got = (bfd_vma) -2;
3257 }
3258 if (! GOT_TLS_GDESC_P (*local_tls_type)
3259 || GOT_TLS_GD_P (*local_tls_type))
3260 {
3261 *local_got = s->size;
3262 s->size += GOT_ENTRY_SIZE;
3263 if (GOT_TLS_GD_P (*local_tls_type))
3264 s->size += GOT_ENTRY_SIZE;
3265 }
3266 if (info->shared
3267 || GOT_TLS_GD_ANY_P (*local_tls_type)
3268 || *local_tls_type == GOT_TLS_IE)
3269 {
3270 if (GOT_TLS_GDESC_P (*local_tls_type))
3271 {
3272 htab->elf.srelplt->size
3273 += bed->s->sizeof_rela;
3274 htab->tlsdesc_plt = (bfd_vma) -1;
3275 }
3276 if (! GOT_TLS_GDESC_P (*local_tls_type)
3277 || GOT_TLS_GD_P (*local_tls_type))
3278 srel->size += bed->s->sizeof_rela;
3279 }
3280 }
3281 else
3282 *local_got = (bfd_vma) -1;
3283 }
3284 }
3285
3286 if (htab->tls_ld_got.refcount > 0)
3287 {
3288 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3289 relocs. */
3290 htab->tls_ld_got.offset = htab->elf.sgot->size;
3291 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3292 htab->elf.srelgot->size += bed->s->sizeof_rela;
3293 }
3294 else
3295 htab->tls_ld_got.offset = -1;
3296
3297 /* Allocate global sym .plt and .got entries, and space for global
3298 sym dynamic relocs. */
3299 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3300 info);
3301
3302 /* Allocate .plt and .got entries, and space for local symbols. */
3303 htab_traverse (htab->loc_hash_table,
3304 elf_x86_64_allocate_local_dynrelocs,
3305 info);
3306
3307 /* For every jump slot reserved in the sgotplt, reloc_count is
3308 incremented. However, when we reserve space for TLS descriptors,
3309 it's not incremented, so in order to compute the space reserved
3310 for them, it suffices to multiply the reloc count by the jump
3311 slot size.
3312
3313 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3314 so that R_X86_64_IRELATIVE entries come last. */
3315 if (htab->elf.srelplt)
3316 {
3317 htab->sgotplt_jump_table_size
3318 = elf_x86_64_compute_jump_table_size (htab);
3319 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3320 }
3321 else if (htab->elf.irelplt)
3322 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3323
3324 if (htab->tlsdesc_plt)
3325 {
3326 /* If we're not using lazy TLS relocations, don't generate the
3327 PLT and GOT entries they require. */
3328 if ((info->flags & DF_BIND_NOW))
3329 htab->tlsdesc_plt = 0;
3330 else
3331 {
3332 htab->tlsdesc_got = htab->elf.sgot->size;
3333 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3334 /* Reserve room for the initial entry.
3335 FIXME: we could probably do away with it in this case. */
3336 if (htab->elf.splt->size == 0)
3337 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3338 htab->tlsdesc_plt = htab->elf.splt->size;
3339 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3340 }
3341 }
3342
3343 if (htab->elf.sgotplt)
3344 {
3345 /* Don't allocate .got.plt section if there are no GOT nor PLT
3346 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3347 if ((htab->elf.hgot == NULL
3348 || !htab->elf.hgot->ref_regular_nonweak)
3349 && (htab->elf.sgotplt->size
3350 == get_elf_backend_data (output_bfd)->got_header_size)
3351 && (htab->elf.splt == NULL
3352 || htab->elf.splt->size == 0)
3353 && (htab->elf.sgot == NULL
3354 || htab->elf.sgot->size == 0)
3355 && (htab->elf.iplt == NULL
3356 || htab->elf.iplt->size == 0)
3357 && (htab->elf.igotplt == NULL
3358 || htab->elf.igotplt->size == 0))
3359 htab->elf.sgotplt->size = 0;
3360 }
3361
3362 if (htab->plt_eh_frame != NULL
3363 && htab->elf.splt != NULL
3364 && htab->elf.splt->size != 0
3365 && !bfd_is_abs_section (htab->elf.splt->output_section)
3366 && _bfd_elf_eh_frame_present (info))
3367 {
3368 const struct elf_x86_64_backend_data *arch_data
3369 = get_elf_x86_64_arch_data (bed);
3370 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3371 }
3372
3373 /* We now have determined the sizes of the various dynamic sections.
3374 Allocate memory for them. */
3375 relocs = FALSE;
3376 for (s = dynobj->sections; s != NULL; s = s->next)
3377 {
3378 if ((s->flags & SEC_LINKER_CREATED) == 0)
3379 continue;
3380
3381 if (s == htab->elf.splt
3382 || s == htab->elf.sgot
3383 || s == htab->elf.sgotplt
3384 || s == htab->elf.iplt
3385 || s == htab->elf.igotplt
3386 || s == htab->plt_bnd
3387 || s == htab->plt_got
3388 || s == htab->plt_eh_frame
3389 || s == htab->sdynbss)
3390 {
3391 /* Strip this section if we don't need it; see the
3392 comment below. */
3393 }
3394 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3395 {
3396 if (s->size != 0 && s != htab->elf.srelplt)
3397 relocs = TRUE;
3398
3399 /* We use the reloc_count field as a counter if we need
3400 to copy relocs into the output file. */
3401 if (s != htab->elf.srelplt)
3402 s->reloc_count = 0;
3403 }
3404 else
3405 {
3406 /* It's not one of our sections, so don't allocate space. */
3407 continue;
3408 }
3409
3410 if (s->size == 0)
3411 {
3412 /* If we don't need this section, strip it from the
3413 output file. This is mostly to handle .rela.bss and
3414 .rela.plt. We must create both sections in
3415 create_dynamic_sections, because they must be created
3416 before the linker maps input sections to output
3417 sections. The linker does that before
3418 adjust_dynamic_symbol is called, and it is that
3419 function which decides whether anything needs to go
3420 into these sections. */
3421
3422 s->flags |= SEC_EXCLUDE;
3423 continue;
3424 }
3425
3426 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3427 continue;
3428
3429 /* Allocate memory for the section contents. We use bfd_zalloc
3430 here in case unused entries are not reclaimed before the
3431 section's contents are written out. This should not happen,
3432 but this way if it does, we get a R_X86_64_NONE reloc instead
3433 of garbage. */
3434 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3435 if (s->contents == NULL)
3436 return FALSE;
3437 }
3438
3439 if (htab->plt_eh_frame != NULL
3440 && htab->plt_eh_frame->contents != NULL)
3441 {
3442 const struct elf_x86_64_backend_data *arch_data
3443 = get_elf_x86_64_arch_data (bed);
3444
3445 memcpy (htab->plt_eh_frame->contents,
3446 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3447 bfd_put_32 (dynobj, htab->elf.splt->size,
3448 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3449 }
3450
3451 if (htab->elf.dynamic_sections_created)
3452 {
3453 /* Add some entries to the .dynamic section. We fill in the
3454 values later, in elf_x86_64_finish_dynamic_sections, but we
3455 must add the entries now so that we get the correct size for
3456 the .dynamic section. The DT_DEBUG entry is filled in by the
3457 dynamic linker and used by the debugger. */
3458 #define add_dynamic_entry(TAG, VAL) \
3459 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3460
3461 if (info->executable)
3462 {
3463 if (!add_dynamic_entry (DT_DEBUG, 0))
3464 return FALSE;
3465 }
3466
3467 if (htab->elf.splt->size != 0)
3468 {
3469 /* DT_PLTGOT is used by prelink even if there is no PLT
3470 relocation. */
3471 if (!add_dynamic_entry (DT_PLTGOT, 0))
3472 return FALSE;
3473
3474 if (htab->elf.srelplt->size != 0)
3475 {
3476 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3477 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3478 || !add_dynamic_entry (DT_JMPREL, 0))
3479 return FALSE;
3480 }
3481
3482 if (htab->tlsdesc_plt
3483 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3484 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3485 return FALSE;
3486 }
3487
3488 if (relocs)
3489 {
3490 if (!add_dynamic_entry (DT_RELA, 0)
3491 || !add_dynamic_entry (DT_RELASZ, 0)
3492 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3493 return FALSE;
3494
3495 /* If any dynamic relocs apply to a read-only section,
3496 then we need a DT_TEXTREL entry. */
3497 if ((info->flags & DF_TEXTREL) == 0)
3498 elf_link_hash_traverse (&htab->elf,
3499 elf_x86_64_readonly_dynrelocs,
3500 info);
3501
3502 if ((info->flags & DF_TEXTREL) != 0)
3503 {
3504 if (!add_dynamic_entry (DT_TEXTREL, 0))
3505 return FALSE;
3506 }
3507 }
3508 }
3509 #undef add_dynamic_entry
3510
3511 return TRUE;
3512 }
3513
3514 static bfd_boolean
3515 elf_x86_64_always_size_sections (bfd *output_bfd,
3516 struct bfd_link_info *info)
3517 {
3518 asection *tls_sec = elf_hash_table (info)->tls_sec;
3519
3520 if (tls_sec)
3521 {
3522 struct elf_link_hash_entry *tlsbase;
3523
3524 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3525 "_TLS_MODULE_BASE_",
3526 FALSE, FALSE, FALSE);
3527
3528 if (tlsbase && tlsbase->type == STT_TLS)
3529 {
3530 struct elf_x86_64_link_hash_table *htab;
3531 struct bfd_link_hash_entry *bh = NULL;
3532 const struct elf_backend_data *bed
3533 = get_elf_backend_data (output_bfd);
3534
3535 htab = elf_x86_64_hash_table (info);
3536 if (htab == NULL)
3537 return FALSE;
3538
3539 if (!(_bfd_generic_link_add_one_symbol
3540 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3541 tls_sec, 0, NULL, FALSE,
3542 bed->collect, &bh)))
3543 return FALSE;
3544
3545 htab->tls_module_base = bh;
3546
3547 tlsbase = (struct elf_link_hash_entry *)bh;
3548 tlsbase->def_regular = 1;
3549 tlsbase->other = STV_HIDDEN;
3550 tlsbase->root.linker_def = 1;
3551 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3552 }
3553 }
3554
3555 return TRUE;
3556 }
3557
3558 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3559 executables. Rather than setting it to the beginning of the TLS
3560 section, we have to set it to the end. This function may be called
3561 multiple times, it is idempotent. */
3562
3563 static void
3564 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3565 {
3566 struct elf_x86_64_link_hash_table *htab;
3567 struct bfd_link_hash_entry *base;
3568
3569 if (!info->executable)
3570 return;
3571
3572 htab = elf_x86_64_hash_table (info);
3573 if (htab == NULL)
3574 return;
3575
3576 base = htab->tls_module_base;
3577 if (base == NULL)
3578 return;
3579
3580 base->u.def.value = htab->elf.tls_size;
3581 }
3582
3583 /* Return the base VMA address which should be subtracted from real addresses
3584 when resolving @dtpoff relocation.
3585 This is PT_TLS segment p_vaddr. */
3586
3587 static bfd_vma
3588 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3589 {
3590 /* If tls_sec is NULL, we should have signalled an error already. */
3591 if (elf_hash_table (info)->tls_sec == NULL)
3592 return 0;
3593 return elf_hash_table (info)->tls_sec->vma;
3594 }
3595
3596 /* Return the relocation value for @tpoff relocation
3597 if STT_TLS virtual address is ADDRESS. */
3598
3599 static bfd_vma
3600 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3601 {
3602 struct elf_link_hash_table *htab = elf_hash_table (info);
3603 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3604 bfd_vma static_tls_size;
3605
3606 /* If tls_segment is NULL, we should have signalled an error already. */
3607 if (htab->tls_sec == NULL)
3608 return 0;
3609
3610 /* Consider special static TLS alignment requirements. */
3611 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3612 return address - static_tls_size - htab->tls_sec->vma;
3613 }
3614
3615 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3616 branch? */
3617
3618 static bfd_boolean
3619 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3620 {
3621 /* Opcode Instruction
3622 0xe8 call
3623 0xe9 jump
3624 0x0f 0x8x conditional jump */
3625 return ((offset > 0
3626 && (contents [offset - 1] == 0xe8
3627 || contents [offset - 1] == 0xe9))
3628 || (offset > 1
3629 && contents [offset - 2] == 0x0f
3630 && (contents [offset - 1] & 0xf0) == 0x80));
3631 }
3632
3633 /* Relocate an x86_64 ELF section. */
3634
3635 static bfd_boolean
3636 elf_x86_64_relocate_section (bfd *output_bfd,
3637 struct bfd_link_info *info,
3638 bfd *input_bfd,
3639 asection *input_section,
3640 bfd_byte *contents,
3641 Elf_Internal_Rela *relocs,
3642 Elf_Internal_Sym *local_syms,
3643 asection **local_sections)
3644 {
3645 struct elf_x86_64_link_hash_table *htab;
3646 Elf_Internal_Shdr *symtab_hdr;
3647 struct elf_link_hash_entry **sym_hashes;
3648 bfd_vma *local_got_offsets;
3649 bfd_vma *local_tlsdesc_gotents;
3650 Elf_Internal_Rela *rel;
3651 Elf_Internal_Rela *relend;
3652 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3653
3654 BFD_ASSERT (is_x86_64_elf (input_bfd));
3655
3656 htab = elf_x86_64_hash_table (info);
3657 if (htab == NULL)
3658 return FALSE;
3659 symtab_hdr = &elf_symtab_hdr (input_bfd);
3660 sym_hashes = elf_sym_hashes (input_bfd);
3661 local_got_offsets = elf_local_got_offsets (input_bfd);
3662 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3663
3664 elf_x86_64_set_tls_module_base (info);
3665
3666 rel = relocs;
3667 relend = relocs + input_section->reloc_count;
3668 for (; rel < relend; rel++)
3669 {
3670 unsigned int r_type;
3671 reloc_howto_type *howto;
3672 unsigned long r_symndx;
3673 struct elf_link_hash_entry *h;
3674 struct elf_x86_64_link_hash_entry *eh;
3675 Elf_Internal_Sym *sym;
3676 asection *sec;
3677 bfd_vma off, offplt, plt_offset;
3678 bfd_vma relocation;
3679 bfd_boolean unresolved_reloc;
3680 bfd_reloc_status_type r;
3681 int tls_type;
3682 asection *base_got, *resolved_plt;
3683 bfd_vma st_size;
3684
3685 r_type = ELF32_R_TYPE (rel->r_info);
3686 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3687 || r_type == (int) R_X86_64_GNU_VTENTRY)
3688 continue;
3689
3690 if (r_type >= (int) R_X86_64_standard)
3691 {
3692 (*_bfd_error_handler)
3693 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3694 input_bfd, input_section, r_type);
3695 bfd_set_error (bfd_error_bad_value);
3696 return FALSE;
3697 }
3698
3699 if (r_type != (int) R_X86_64_32
3700 || ABI_64_P (output_bfd))
3701 howto = x86_64_elf_howto_table + r_type;
3702 else
3703 howto = (x86_64_elf_howto_table
3704 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3705 r_symndx = htab->r_sym (rel->r_info);
3706 h = NULL;
3707 sym = NULL;
3708 sec = NULL;
3709 unresolved_reloc = FALSE;
3710 if (r_symndx < symtab_hdr->sh_info)
3711 {
3712 sym = local_syms + r_symndx;
3713 sec = local_sections[r_symndx];
3714
3715 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3716 &sec, rel);
3717 st_size = sym->st_size;
3718
3719 /* Relocate against local STT_GNU_IFUNC symbol. */
3720 if (!info->relocatable
3721 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3722 {
3723 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3724 rel, FALSE);
3725 if (h == NULL)
3726 abort ();
3727
3728 /* Set STT_GNU_IFUNC symbol value. */
3729 h->root.u.def.value = sym->st_value;
3730 h->root.u.def.section = sec;
3731 }
3732 }
3733 else
3734 {
3735 bfd_boolean warned ATTRIBUTE_UNUSED;
3736 bfd_boolean ignored ATTRIBUTE_UNUSED;
3737
3738 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3739 r_symndx, symtab_hdr, sym_hashes,
3740 h, sec, relocation,
3741 unresolved_reloc, warned, ignored);
3742 st_size = h->size;
3743 }
3744
3745 if (sec != NULL && discarded_section (sec))
3746 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3747 rel, 1, relend, howto, 0, contents);
3748
3749 if (info->relocatable)
3750 continue;
3751
3752 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3753 {
3754 if (r_type == R_X86_64_64)
3755 {
3756 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3757 zero-extend it to 64bit if addend is zero. */
3758 r_type = R_X86_64_32;
3759 memset (contents + rel->r_offset + 4, 0, 4);
3760 }
3761 else if (r_type == R_X86_64_SIZE64)
3762 {
3763 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3764 zero-extend it to 64bit if addend is zero. */
3765 r_type = R_X86_64_SIZE32;
3766 memset (contents + rel->r_offset + 4, 0, 4);
3767 }
3768 }
3769
3770 eh = (struct elf_x86_64_link_hash_entry *) h;
3771
3772 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3773 it here if it is defined in a non-shared object. */
3774 if (h != NULL
3775 && h->type == STT_GNU_IFUNC
3776 && h->def_regular)
3777 {
3778 bfd_vma plt_index;
3779 const char *name;
3780
3781 if ((input_section->flags & SEC_ALLOC) == 0
3782 || h->plt.offset == (bfd_vma) -1)
3783 abort ();
3784
3785 /* STT_GNU_IFUNC symbol must go through PLT. */
3786 if (htab->elf.splt != NULL)
3787 {
3788 if (htab->plt_bnd != NULL)
3789 {
3790 resolved_plt = htab->plt_bnd;
3791 plt_offset = eh->plt_bnd.offset;
3792 }
3793 else
3794 {
3795 resolved_plt = htab->elf.splt;
3796 plt_offset = h->plt.offset;
3797 }
3798 }
3799 else
3800 {
3801 resolved_plt = htab->elf.iplt;
3802 plt_offset = h->plt.offset;
3803 }
3804
3805 relocation = (resolved_plt->output_section->vma
3806 + resolved_plt->output_offset + plt_offset);
3807
3808 switch (r_type)
3809 {
3810 default:
3811 if (h->root.root.string)
3812 name = h->root.root.string;
3813 else
3814 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3815 NULL);
3816 (*_bfd_error_handler)
3817 (_("%B: relocation %s against STT_GNU_IFUNC "
3818 "symbol `%s' isn't handled by %s"), input_bfd,
3819 x86_64_elf_howto_table[r_type].name,
3820 name, __FUNCTION__);
3821 bfd_set_error (bfd_error_bad_value);
3822 return FALSE;
3823
3824 case R_X86_64_32S:
3825 if (info->shared)
3826 abort ();
3827 goto do_relocation;
3828
3829 case R_X86_64_32:
3830 if (ABI_64_P (output_bfd))
3831 goto do_relocation;
3832 /* FALLTHROUGH */
3833 case R_X86_64_64:
3834 if (rel->r_addend != 0)
3835 {
3836 if (h->root.root.string)
3837 name = h->root.root.string;
3838 else
3839 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3840 sym, NULL);
3841 (*_bfd_error_handler)
3842 (_("%B: relocation %s against STT_GNU_IFUNC "
3843 "symbol `%s' has non-zero addend: %d"),
3844 input_bfd, x86_64_elf_howto_table[r_type].name,
3845 name, rel->r_addend);
3846 bfd_set_error (bfd_error_bad_value);
3847 return FALSE;
3848 }
3849
3850 /* Generate dynamic relcoation only when there is a
3851 non-GOT reference in a shared object. */
3852 if (info->shared && h->non_got_ref)
3853 {
3854 Elf_Internal_Rela outrel;
3855 asection *sreloc;
3856
3857 /* Need a dynamic relocation to get the real function
3858 address. */
3859 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3860 info,
3861 input_section,
3862 rel->r_offset);
3863 if (outrel.r_offset == (bfd_vma) -1
3864 || outrel.r_offset == (bfd_vma) -2)
3865 abort ();
3866
3867 outrel.r_offset += (input_section->output_section->vma
3868 + input_section->output_offset);
3869
3870 if (h->dynindx == -1
3871 || h->forced_local
3872 || info->executable)
3873 {
3874 /* This symbol is resolved locally. */
3875 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3876 outrel.r_addend = (h->root.u.def.value
3877 + h->root.u.def.section->output_section->vma
3878 + h->root.u.def.section->output_offset);
3879 }
3880 else
3881 {
3882 outrel.r_info = htab->r_info (h->dynindx, r_type);
3883 outrel.r_addend = 0;
3884 }
3885
3886 sreloc = htab->elf.irelifunc;
3887 elf_append_rela (output_bfd, sreloc, &outrel);
3888
3889 /* If this reloc is against an external symbol, we
3890 do not want to fiddle with the addend. Otherwise,
3891 we need to include the symbol value so that it
3892 becomes an addend for the dynamic reloc. For an
3893 internal symbol, we have updated addend. */
3894 continue;
3895 }
3896 /* FALLTHROUGH */
3897 case R_X86_64_PC32:
3898 case R_X86_64_PC32_BND:
3899 case R_X86_64_PC64:
3900 case R_X86_64_PLT32:
3901 case R_X86_64_PLT32_BND:
3902 goto do_relocation;
3903
3904 case R_X86_64_GOTPCREL:
3905 case R_X86_64_GOTPCREL64:
3906 base_got = htab->elf.sgot;
3907 off = h->got.offset;
3908
3909 if (base_got == NULL)
3910 abort ();
3911
3912 if (off == (bfd_vma) -1)
3913 {
3914 /* We can't use h->got.offset here to save state, or
3915 even just remember the offset, as finish_dynamic_symbol
3916 would use that as offset into .got. */
3917
3918 if (htab->elf.splt != NULL)
3919 {
3920 plt_index = h->plt.offset / plt_entry_size - 1;
3921 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3922 base_got = htab->elf.sgotplt;
3923 }
3924 else
3925 {
3926 plt_index = h->plt.offset / plt_entry_size;
3927 off = plt_index * GOT_ENTRY_SIZE;
3928 base_got = htab->elf.igotplt;
3929 }
3930
3931 if (h->dynindx == -1
3932 || h->forced_local
3933 || info->symbolic)
3934 {
3935 /* This references the local defitionion. We must
3936 initialize this entry in the global offset table.
3937 Since the offset must always be a multiple of 8,
3938 we use the least significant bit to record
3939 whether we have initialized it already.
3940
3941 When doing a dynamic link, we create a .rela.got
3942 relocation entry to initialize the value. This
3943 is done in the finish_dynamic_symbol routine. */
3944 if ((off & 1) != 0)
3945 off &= ~1;
3946 else
3947 {
3948 bfd_put_64 (output_bfd, relocation,
3949 base_got->contents + off);
3950 /* Note that this is harmless for the GOTPLT64
3951 case, as -1 | 1 still is -1. */
3952 h->got.offset |= 1;
3953 }
3954 }
3955 }
3956
3957 relocation = (base_got->output_section->vma
3958 + base_got->output_offset + off);
3959
3960 goto do_relocation;
3961 }
3962 }
3963
3964 /* When generating a shared object, the relocations handled here are
3965 copied into the output file to be resolved at run time. */
3966 switch (r_type)
3967 {
3968 case R_X86_64_GOT32:
3969 case R_X86_64_GOT64:
3970 /* Relocation is to the entry for this symbol in the global
3971 offset table. */
3972 case R_X86_64_GOTPCREL:
3973 case R_X86_64_GOTPCREL64:
3974 /* Use global offset table entry as symbol value. */
3975 case R_X86_64_GOTPLT64:
3976 /* This is obsolete and treated the the same as GOT64. */
3977 base_got = htab->elf.sgot;
3978
3979 if (htab->elf.sgot == NULL)
3980 abort ();
3981
3982 if (h != NULL)
3983 {
3984 bfd_boolean dyn;
3985
3986 off = h->got.offset;
3987 if (h->needs_plt
3988 && h->plt.offset != (bfd_vma)-1
3989 && off == (bfd_vma)-1)
3990 {
3991 /* We can't use h->got.offset here to save
3992 state, or even just remember the offset, as
3993 finish_dynamic_symbol would use that as offset into
3994 .got. */
3995 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3996 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3997 base_got = htab->elf.sgotplt;
3998 }
3999
4000 dyn = htab->elf.dynamic_sections_created;
4001
4002 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
4003 || (info->shared
4004 && SYMBOL_REFERENCES_LOCAL (info, h))
4005 || (ELF_ST_VISIBILITY (h->other)
4006 && h->root.type == bfd_link_hash_undefweak))
4007 {
4008 /* This is actually a static link, or it is a -Bsymbolic
4009 link and the symbol is defined locally, or the symbol
4010 was forced to be local because of a version file. We
4011 must initialize this entry in the global offset table.
4012 Since the offset must always be a multiple of 8, we
4013 use the least significant bit to record whether we
4014 have initialized it already.
4015
4016 When doing a dynamic link, we create a .rela.got
4017 relocation entry to initialize the value. This is
4018 done in the finish_dynamic_symbol routine. */
4019 if ((off & 1) != 0)
4020 off &= ~1;
4021 else
4022 {
4023 bfd_put_64 (output_bfd, relocation,
4024 base_got->contents + off);
4025 /* Note that this is harmless for the GOTPLT64 case,
4026 as -1 | 1 still is -1. */
4027 h->got.offset |= 1;
4028 }
4029 }
4030 else
4031 unresolved_reloc = FALSE;
4032 }
4033 else
4034 {
4035 if (local_got_offsets == NULL)
4036 abort ();
4037
4038 off = local_got_offsets[r_symndx];
4039
4040 /* The offset must always be a multiple of 8. We use
4041 the least significant bit to record whether we have
4042 already generated the necessary reloc. */
4043 if ((off & 1) != 0)
4044 off &= ~1;
4045 else
4046 {
4047 bfd_put_64 (output_bfd, relocation,
4048 base_got->contents + off);
4049
4050 if (info->shared)
4051 {
4052 asection *s;
4053 Elf_Internal_Rela outrel;
4054
4055 /* We need to generate a R_X86_64_RELATIVE reloc
4056 for the dynamic linker. */
4057 s = htab->elf.srelgot;
4058 if (s == NULL)
4059 abort ();
4060
4061 outrel.r_offset = (base_got->output_section->vma
4062 + base_got->output_offset
4063 + off);
4064 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4065 outrel.r_addend = relocation;
4066 elf_append_rela (output_bfd, s, &outrel);
4067 }
4068
4069 local_got_offsets[r_symndx] |= 1;
4070 }
4071 }
4072
4073 if (off >= (bfd_vma) -2)
4074 abort ();
4075
4076 relocation = base_got->output_section->vma
4077 + base_got->output_offset + off;
4078 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
4079 relocation -= htab->elf.sgotplt->output_section->vma
4080 - htab->elf.sgotplt->output_offset;
4081
4082 break;
4083
4084 case R_X86_64_GOTOFF64:
4085 /* Relocation is relative to the start of the global offset
4086 table. */
4087
4088 /* Check to make sure it isn't a protected function or data
4089 symbol for shared library since it may not be local when
4090 used as function address or with copy relocation. We also
4091 need to make sure that a symbol is referenced locally. */
4092 if (info->shared && h)
4093 {
4094 if (!h->def_regular)
4095 {
4096 const char *v;
4097
4098 switch (ELF_ST_VISIBILITY (h->other))
4099 {
4100 case STV_HIDDEN:
4101 v = _("hidden symbol");
4102 break;
4103 case STV_INTERNAL:
4104 v = _("internal symbol");
4105 break;
4106 case STV_PROTECTED:
4107 v = _("protected symbol");
4108 break;
4109 default:
4110 v = _("symbol");
4111 break;
4112 }
4113
4114 (*_bfd_error_handler)
4115 (_("%B: relocation R_X86_64_GOTOFF64 against undefined %s `%s' can not be used when making a shared object"),
4116 input_bfd, v, h->root.root.string);
4117 bfd_set_error (bfd_error_bad_value);
4118 return FALSE;
4119 }
4120 else if (!info->executable
4121 && !SYMBOL_REFERENCES_LOCAL (info, h)
4122 && (h->type == STT_FUNC
4123 || h->type == STT_OBJECT)
4124 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
4125 {
4126 (*_bfd_error_handler)
4127 (_("%B: relocation R_X86_64_GOTOFF64 against protected %s `%s' can not be used when making a shared object"),
4128 input_bfd,
4129 h->type == STT_FUNC ? "function" : "data",
4130 h->root.root.string);
4131 bfd_set_error (bfd_error_bad_value);
4132 return FALSE;
4133 }
4134 }
4135
4136 /* Note that sgot is not involved in this
4137 calculation. We always want the start of .got.plt. If we
4138 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
4139 permitted by the ABI, we might have to change this
4140 calculation. */
4141 relocation -= htab->elf.sgotplt->output_section->vma
4142 + htab->elf.sgotplt->output_offset;
4143 break;
4144
4145 case R_X86_64_GOTPC32:
4146 case R_X86_64_GOTPC64:
4147 /* Use global offset table as symbol value. */
4148 relocation = htab->elf.sgotplt->output_section->vma
4149 + htab->elf.sgotplt->output_offset;
4150 unresolved_reloc = FALSE;
4151 break;
4152
4153 case R_X86_64_PLTOFF64:
4154 /* Relocation is PLT entry relative to GOT. For local
4155 symbols it's the symbol itself relative to GOT. */
4156 if (h != NULL
4157 /* See PLT32 handling. */
4158 && h->plt.offset != (bfd_vma) -1
4159 && htab->elf.splt != NULL)
4160 {
4161 if (htab->plt_bnd != NULL)
4162 {
4163 resolved_plt = htab->plt_bnd;
4164 plt_offset = eh->plt_bnd.offset;
4165 }
4166 else
4167 {
4168 resolved_plt = htab->elf.splt;
4169 plt_offset = h->plt.offset;
4170 }
4171
4172 relocation = (resolved_plt->output_section->vma
4173 + resolved_plt->output_offset
4174 + plt_offset);
4175 unresolved_reloc = FALSE;
4176 }
4177
4178 relocation -= htab->elf.sgotplt->output_section->vma
4179 + htab->elf.sgotplt->output_offset;
4180 break;
4181
4182 case R_X86_64_PLT32:
4183 case R_X86_64_PLT32_BND:
4184 /* Relocation is to the entry for this symbol in the
4185 procedure linkage table. */
4186
4187 /* Resolve a PLT32 reloc against a local symbol directly,
4188 without using the procedure linkage table. */
4189 if (h == NULL)
4190 break;
4191
4192 if ((h->plt.offset == (bfd_vma) -1
4193 && eh->plt_got.offset == (bfd_vma) -1)
4194 || htab->elf.splt == NULL)
4195 {
4196 /* We didn't make a PLT entry for this symbol. This
4197 happens when statically linking PIC code, or when
4198 using -Bsymbolic. */
4199 break;
4200 }
4201
4202 if (h->plt.offset != (bfd_vma) -1)
4203 {
4204 if (htab->plt_bnd != NULL)
4205 {
4206 resolved_plt = htab->plt_bnd;
4207 plt_offset = eh->plt_bnd.offset;
4208 }
4209 else
4210 {
4211 resolved_plt = htab->elf.splt;
4212 plt_offset = h->plt.offset;
4213 }
4214 }
4215 else
4216 {
4217 /* Use the GOT PLT. */
4218 resolved_plt = htab->plt_got;
4219 plt_offset = eh->plt_got.offset;
4220 }
4221
4222 relocation = (resolved_plt->output_section->vma
4223 + resolved_plt->output_offset
4224 + plt_offset);
4225 unresolved_reloc = FALSE;
4226 break;
4227
4228 case R_X86_64_SIZE32:
4229 case R_X86_64_SIZE64:
4230 /* Set to symbol size. */
4231 relocation = st_size;
4232 goto direct;
4233
4234 case R_X86_64_PC8:
4235 case R_X86_64_PC16:
4236 case R_X86_64_PC32:
4237 case R_X86_64_PC32_BND:
4238 /* Don't complain about -fPIC if the symbol is undefined when
4239 building executable. */
4240 if (info->shared
4241 && (input_section->flags & SEC_ALLOC) != 0
4242 && (input_section->flags & SEC_READONLY) != 0
4243 && h != NULL
4244 && !(info->executable
4245 && h->root.type == bfd_link_hash_undefined))
4246 {
4247 bfd_boolean fail = FALSE;
4248 bfd_boolean branch
4249 = ((r_type == R_X86_64_PC32
4250 || r_type == R_X86_64_PC32_BND)
4251 && is_32bit_relative_branch (contents, rel->r_offset));
4252
4253 if (SYMBOL_REFERENCES_LOCAL (info, h))
4254 {
4255 /* Symbol is referenced locally. Make sure it is
4256 defined locally or for a branch. */
4257 fail = !h->def_regular && !branch;
4258 }
4259 else if (!(info->executable
4260 && (h->needs_copy || eh->needs_copy)))
4261 {
4262 /* Symbol doesn't need copy reloc and isn't referenced
4263 locally. We only allow branch to symbol with
4264 non-default visibility. */
4265 fail = (!branch
4266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
4267 }
4268
4269 if (fail)
4270 {
4271 const char *fmt;
4272 const char *v;
4273 const char *pic = "";
4274
4275 switch (ELF_ST_VISIBILITY (h->other))
4276 {
4277 case STV_HIDDEN:
4278 v = _("hidden symbol");
4279 break;
4280 case STV_INTERNAL:
4281 v = _("internal symbol");
4282 break;
4283 case STV_PROTECTED:
4284 v = _("protected symbol");
4285 break;
4286 default:
4287 v = _("symbol");
4288 pic = _("; recompile with -fPIC");
4289 break;
4290 }
4291
4292 if (h->def_regular)
4293 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
4294 else
4295 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
4296
4297 (*_bfd_error_handler) (fmt, input_bfd,
4298 x86_64_elf_howto_table[r_type].name,
4299 v, h->root.root.string, pic);
4300 bfd_set_error (bfd_error_bad_value);
4301 return FALSE;
4302 }
4303 }
4304 /* Fall through. */
4305
4306 case R_X86_64_8:
4307 case R_X86_64_16:
4308 case R_X86_64_32:
4309 case R_X86_64_PC64:
4310 case R_X86_64_64:
4311 /* FIXME: The ABI says the linker should make sure the value is
4312 the same when it's zeroextended to 64 bit. */
4313
4314 direct:
4315 if ((input_section->flags & SEC_ALLOC) == 0)
4316 break;
4317
4318 /* Don't copy a pc-relative relocation into the output file
4319 if the symbol needs copy reloc or the symbol is undefined
4320 when building executable. */
4321 if ((info->shared
4322 && !(info->executable
4323 && h != NULL
4324 && (h->needs_copy
4325 || eh->needs_copy
4326 || h->root.type == bfd_link_hash_undefined)
4327 && IS_X86_64_PCREL_TYPE (r_type))
4328 && (h == NULL
4329 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4330 || h->root.type != bfd_link_hash_undefweak)
4331 && ((! IS_X86_64_PCREL_TYPE (r_type)
4332 && r_type != R_X86_64_SIZE32
4333 && r_type != R_X86_64_SIZE64)
4334 || ! SYMBOL_CALLS_LOCAL (info, h)))
4335 || (ELIMINATE_COPY_RELOCS
4336 && !info->shared
4337 && h != NULL
4338 && h->dynindx != -1
4339 && !h->non_got_ref
4340 && ((h->def_dynamic
4341 && !h->def_regular)
4342 || h->root.type == bfd_link_hash_undefweak
4343 || h->root.type == bfd_link_hash_undefined)))
4344 {
4345 Elf_Internal_Rela outrel;
4346 bfd_boolean skip, relocate;
4347 asection *sreloc;
4348
4349 /* When generating a shared object, these relocations
4350 are copied into the output file to be resolved at run
4351 time. */
4352 skip = FALSE;
4353 relocate = FALSE;
4354
4355 outrel.r_offset =
4356 _bfd_elf_section_offset (output_bfd, info, input_section,
4357 rel->r_offset);
4358 if (outrel.r_offset == (bfd_vma) -1)
4359 skip = TRUE;
4360 else if (outrel.r_offset == (bfd_vma) -2)
4361 skip = TRUE, relocate = TRUE;
4362
4363 outrel.r_offset += (input_section->output_section->vma
4364 + input_section->output_offset);
4365
4366 if (skip)
4367 memset (&outrel, 0, sizeof outrel);
4368
4369 /* h->dynindx may be -1 if this symbol was marked to
4370 become local. */
4371 else if (h != NULL
4372 && h->dynindx != -1
4373 && (IS_X86_64_PCREL_TYPE (r_type)
4374 || ! info->shared
4375 || ! SYMBOLIC_BIND (info, h)
4376 || ! h->def_regular))
4377 {
4378 outrel.r_info = htab->r_info (h->dynindx, r_type);
4379 outrel.r_addend = rel->r_addend;
4380 }
4381 else
4382 {
4383 /* This symbol is local, or marked to become local. */
4384 if (r_type == htab->pointer_r_type)
4385 {
4386 relocate = TRUE;
4387 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4388 outrel.r_addend = relocation + rel->r_addend;
4389 }
4390 else if (r_type == R_X86_64_64
4391 && !ABI_64_P (output_bfd))
4392 {
4393 relocate = TRUE;
4394 outrel.r_info = htab->r_info (0,
4395 R_X86_64_RELATIVE64);
4396 outrel.r_addend = relocation + rel->r_addend;
4397 /* Check addend overflow. */
4398 if ((outrel.r_addend & 0x80000000)
4399 != (rel->r_addend & 0x80000000))
4400 {
4401 const char *name;
4402 int addend = rel->r_addend;
4403 if (h && h->root.root.string)
4404 name = h->root.root.string;
4405 else
4406 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4407 sym, NULL);
4408 if (addend < 0)
4409 (*_bfd_error_handler)
4410 (_("%B: addend -0x%x in relocation %s against "
4411 "symbol `%s' at 0x%lx in section `%A' is "
4412 "out of range"),
4413 input_bfd, input_section, addend,
4414 x86_64_elf_howto_table[r_type].name,
4415 name, (unsigned long) rel->r_offset);
4416 else
4417 (*_bfd_error_handler)
4418 (_("%B: addend 0x%x in relocation %s against "
4419 "symbol `%s' at 0x%lx in section `%A' is "
4420 "out of range"),
4421 input_bfd, input_section, addend,
4422 x86_64_elf_howto_table[r_type].name,
4423 name, (unsigned long) rel->r_offset);
4424 bfd_set_error (bfd_error_bad_value);
4425 return FALSE;
4426 }
4427 }
4428 else
4429 {
4430 long sindx;
4431
4432 if (bfd_is_abs_section (sec))
4433 sindx = 0;
4434 else if (sec == NULL || sec->owner == NULL)
4435 {
4436 bfd_set_error (bfd_error_bad_value);
4437 return FALSE;
4438 }
4439 else
4440 {
4441 asection *osec;
4442
4443 /* We are turning this relocation into one
4444 against a section symbol. It would be
4445 proper to subtract the symbol's value,
4446 osec->vma, from the emitted reloc addend,
4447 but ld.so expects buggy relocs. */
4448 osec = sec->output_section;
4449 sindx = elf_section_data (osec)->dynindx;
4450 if (sindx == 0)
4451 {
4452 asection *oi = htab->elf.text_index_section;
4453 sindx = elf_section_data (oi)->dynindx;
4454 }
4455 BFD_ASSERT (sindx != 0);
4456 }
4457
4458 outrel.r_info = htab->r_info (sindx, r_type);
4459 outrel.r_addend = relocation + rel->r_addend;
4460 }
4461 }
4462
4463 sreloc = elf_section_data (input_section)->sreloc;
4464
4465 if (sreloc == NULL || sreloc->contents == NULL)
4466 {
4467 r = bfd_reloc_notsupported;
4468 goto check_relocation_error;
4469 }
4470
4471 elf_append_rela (output_bfd, sreloc, &outrel);
4472
4473 /* If this reloc is against an external symbol, we do
4474 not want to fiddle with the addend. Otherwise, we
4475 need to include the symbol value so that it becomes
4476 an addend for the dynamic reloc. */
4477 if (! relocate)
4478 continue;
4479 }
4480
4481 break;
4482
4483 case R_X86_64_TLSGD:
4484 case R_X86_64_GOTPC32_TLSDESC:
4485 case R_X86_64_TLSDESC_CALL:
4486 case R_X86_64_GOTTPOFF:
4487 tls_type = GOT_UNKNOWN;
4488 if (h == NULL && local_got_offsets)
4489 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4490 else if (h != NULL)
4491 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4492
4493 if (! elf_x86_64_tls_transition (info, input_bfd,
4494 input_section, contents,
4495 symtab_hdr, sym_hashes,
4496 &r_type, tls_type, rel,
4497 relend, h, r_symndx))
4498 return FALSE;
4499
4500 if (r_type == R_X86_64_TPOFF32)
4501 {
4502 bfd_vma roff = rel->r_offset;
4503
4504 BFD_ASSERT (! unresolved_reloc);
4505
4506 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4507 {
4508 /* GD->LE transition. For 64bit, change
4509 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4510 .word 0x6666; rex64; call __tls_get_addr
4511 into:
4512 movq %fs:0, %rax
4513 leaq foo@tpoff(%rax), %rax
4514 For 32bit, change
4515 leaq foo@tlsgd(%rip), %rdi
4516 .word 0x6666; rex64; call __tls_get_addr
4517 into:
4518 movl %fs:0, %eax
4519 leaq foo@tpoff(%rax), %rax
4520 For largepic, change:
4521 leaq foo@tlsgd(%rip), %rdi
4522 movabsq $__tls_get_addr@pltoff, %rax
4523 addq %rbx, %rax
4524 call *%rax
4525 into:
4526 movq %fs:0, %rax
4527 leaq foo@tpoff(%rax), %rax
4528 nopw 0x0(%rax,%rax,1) */
4529 int largepic = 0;
4530 if (ABI_64_P (output_bfd)
4531 && contents[roff + 5] == (bfd_byte) '\xb8')
4532 {
4533 memcpy (contents + roff - 3,
4534 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4535 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4536 largepic = 1;
4537 }
4538 else if (ABI_64_P (output_bfd))
4539 memcpy (contents + roff - 4,
4540 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4541 16);
4542 else
4543 memcpy (contents + roff - 3,
4544 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4545 15);
4546 bfd_put_32 (output_bfd,
4547 elf_x86_64_tpoff (info, relocation),
4548 contents + roff + 8 + largepic);
4549 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4550 rel++;
4551 continue;
4552 }
4553 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4554 {
4555 /* GDesc -> LE transition.
4556 It's originally something like:
4557 leaq x@tlsdesc(%rip), %rax
4558
4559 Change it to:
4560 movl $x@tpoff, %rax. */
4561
4562 unsigned int val, type;
4563
4564 type = bfd_get_8 (input_bfd, contents + roff - 3);
4565 val = bfd_get_8 (input_bfd, contents + roff - 1);
4566 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4567 contents + roff - 3);
4568 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4569 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4570 contents + roff - 1);
4571 bfd_put_32 (output_bfd,
4572 elf_x86_64_tpoff (info, relocation),
4573 contents + roff);
4574 continue;
4575 }
4576 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4577 {
4578 /* GDesc -> LE transition.
4579 It's originally:
4580 call *(%rax)
4581 Turn it into:
4582 xchg %ax,%ax. */
4583 bfd_put_8 (output_bfd, 0x66, contents + roff);
4584 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4585 continue;
4586 }
4587 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4588 {
4589 /* IE->LE transition:
4590 For 64bit, originally it can be one of:
4591 movq foo@gottpoff(%rip), %reg
4592 addq foo@gottpoff(%rip), %reg
4593 We change it into:
4594 movq $foo, %reg
4595 leaq foo(%reg), %reg
4596 addq $foo, %reg.
4597 For 32bit, originally it can be one of:
4598 movq foo@gottpoff(%rip), %reg
4599 addl foo@gottpoff(%rip), %reg
4600 We change it into:
4601 movq $foo, %reg
4602 leal foo(%reg), %reg
4603 addl $foo, %reg. */
4604
4605 unsigned int val, type, reg;
4606
4607 if (roff >= 3)
4608 val = bfd_get_8 (input_bfd, contents + roff - 3);
4609 else
4610 val = 0;
4611 type = bfd_get_8 (input_bfd, contents + roff - 2);
4612 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4613 reg >>= 3;
4614 if (type == 0x8b)
4615 {
4616 /* movq */
4617 if (val == 0x4c)
4618 bfd_put_8 (output_bfd, 0x49,
4619 contents + roff - 3);
4620 else if (!ABI_64_P (output_bfd) && val == 0x44)
4621 bfd_put_8 (output_bfd, 0x41,
4622 contents + roff - 3);
4623 bfd_put_8 (output_bfd, 0xc7,
4624 contents + roff - 2);
4625 bfd_put_8 (output_bfd, 0xc0 | reg,
4626 contents + roff - 1);
4627 }
4628 else if (reg == 4)
4629 {
4630 /* addq/addl -> addq/addl - addressing with %rsp/%r12
4631 is special */
4632 if (val == 0x4c)
4633 bfd_put_8 (output_bfd, 0x49,
4634 contents + roff - 3);
4635 else if (!ABI_64_P (output_bfd) && val == 0x44)
4636 bfd_put_8 (output_bfd, 0x41,
4637 contents + roff - 3);
4638 bfd_put_8 (output_bfd, 0x81,
4639 contents + roff - 2);
4640 bfd_put_8 (output_bfd, 0xc0 | reg,
4641 contents + roff - 1);
4642 }
4643 else
4644 {
4645 /* addq/addl -> leaq/leal */
4646 if (val == 0x4c)
4647 bfd_put_8 (output_bfd, 0x4d,
4648 contents + roff - 3);
4649 else if (!ABI_64_P (output_bfd) && val == 0x44)
4650 bfd_put_8 (output_bfd, 0x45,
4651 contents + roff - 3);
4652 bfd_put_8 (output_bfd, 0x8d,
4653 contents + roff - 2);
4654 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4655 contents + roff - 1);
4656 }
4657 bfd_put_32 (output_bfd,
4658 elf_x86_64_tpoff (info, relocation),
4659 contents + roff);
4660 continue;
4661 }
4662 else
4663 BFD_ASSERT (FALSE);
4664 }
4665
4666 if (htab->elf.sgot == NULL)
4667 abort ();
4668
4669 if (h != NULL)
4670 {
4671 off = h->got.offset;
4672 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4673 }
4674 else
4675 {
4676 if (local_got_offsets == NULL)
4677 abort ();
4678
4679 off = local_got_offsets[r_symndx];
4680 offplt = local_tlsdesc_gotents[r_symndx];
4681 }
4682
4683 if ((off & 1) != 0)
4684 off &= ~1;
4685 else
4686 {
4687 Elf_Internal_Rela outrel;
4688 int dr_type, indx;
4689 asection *sreloc;
4690
4691 if (htab->elf.srelgot == NULL)
4692 abort ();
4693
4694 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4695
4696 if (GOT_TLS_GDESC_P (tls_type))
4697 {
4698 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4699 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4700 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4701 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4702 + htab->elf.sgotplt->output_offset
4703 + offplt
4704 + htab->sgotplt_jump_table_size);
4705 sreloc = htab->elf.srelplt;
4706 if (indx == 0)
4707 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4708 else
4709 outrel.r_addend = 0;
4710 elf_append_rela (output_bfd, sreloc, &outrel);
4711 }
4712
4713 sreloc = htab->elf.srelgot;
4714
4715 outrel.r_offset = (htab->elf.sgot->output_section->vma
4716 + htab->elf.sgot->output_offset + off);
4717
4718 if (GOT_TLS_GD_P (tls_type))
4719 dr_type = R_X86_64_DTPMOD64;
4720 else if (GOT_TLS_GDESC_P (tls_type))
4721 goto dr_done;
4722 else
4723 dr_type = R_X86_64_TPOFF64;
4724
4725 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4726 outrel.r_addend = 0;
4727 if ((dr_type == R_X86_64_TPOFF64
4728 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4729 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4730 outrel.r_info = htab->r_info (indx, dr_type);
4731
4732 elf_append_rela (output_bfd, sreloc, &outrel);
4733
4734 if (GOT_TLS_GD_P (tls_type))
4735 {
4736 if (indx == 0)
4737 {
4738 BFD_ASSERT (! unresolved_reloc);
4739 bfd_put_64 (output_bfd,
4740 relocation - elf_x86_64_dtpoff_base (info),
4741 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4742 }
4743 else
4744 {
4745 bfd_put_64 (output_bfd, 0,
4746 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4747 outrel.r_info = htab->r_info (indx,
4748 R_X86_64_DTPOFF64);
4749 outrel.r_offset += GOT_ENTRY_SIZE;
4750 elf_append_rela (output_bfd, sreloc,
4751 &outrel);
4752 }
4753 }
4754
4755 dr_done:
4756 if (h != NULL)
4757 h->got.offset |= 1;
4758 else
4759 local_got_offsets[r_symndx] |= 1;
4760 }
4761
4762 if (off >= (bfd_vma) -2
4763 && ! GOT_TLS_GDESC_P (tls_type))
4764 abort ();
4765 if (r_type == ELF32_R_TYPE (rel->r_info))
4766 {
4767 if (r_type == R_X86_64_GOTPC32_TLSDESC
4768 || r_type == R_X86_64_TLSDESC_CALL)
4769 relocation = htab->elf.sgotplt->output_section->vma
4770 + htab->elf.sgotplt->output_offset
4771 + offplt + htab->sgotplt_jump_table_size;
4772 else
4773 relocation = htab->elf.sgot->output_section->vma
4774 + htab->elf.sgot->output_offset + off;
4775 unresolved_reloc = FALSE;
4776 }
4777 else
4778 {
4779 bfd_vma roff = rel->r_offset;
4780
4781 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4782 {
4783 /* GD->IE transition. For 64bit, change
4784 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4785 .word 0x6666; rex64; call __tls_get_addr@plt
4786 into:
4787 movq %fs:0, %rax
4788 addq foo@gottpoff(%rip), %rax
4789 For 32bit, change
4790 leaq foo@tlsgd(%rip), %rdi
4791 .word 0x6666; rex64; call __tls_get_addr@plt
4792 into:
4793 movl %fs:0, %eax
4794 addq foo@gottpoff(%rip), %rax
4795 For largepic, change:
4796 leaq foo@tlsgd(%rip), %rdi
4797 movabsq $__tls_get_addr@pltoff, %rax
4798 addq %rbx, %rax
4799 call *%rax
4800 into:
4801 movq %fs:0, %rax
4802 addq foo@gottpoff(%rax), %rax
4803 nopw 0x0(%rax,%rax,1) */
4804 int largepic = 0;
4805 if (ABI_64_P (output_bfd)
4806 && contents[roff + 5] == (bfd_byte) '\xb8')
4807 {
4808 memcpy (contents + roff - 3,
4809 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4810 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4811 largepic = 1;
4812 }
4813 else if (ABI_64_P (output_bfd))
4814 memcpy (contents + roff - 4,
4815 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4816 16);
4817 else
4818 memcpy (contents + roff - 3,
4819 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4820 15);
4821
4822 relocation = (htab->elf.sgot->output_section->vma
4823 + htab->elf.sgot->output_offset + off
4824 - roff
4825 - largepic
4826 - input_section->output_section->vma
4827 - input_section->output_offset
4828 - 12);
4829 bfd_put_32 (output_bfd, relocation,
4830 contents + roff + 8 + largepic);
4831 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4832 rel++;
4833 continue;
4834 }
4835 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4836 {
4837 /* GDesc -> IE transition.
4838 It's originally something like:
4839 leaq x@tlsdesc(%rip), %rax
4840
4841 Change it to:
4842 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4843
4844 /* Now modify the instruction as appropriate. To
4845 turn a leaq into a movq in the form we use it, it
4846 suffices to change the second byte from 0x8d to
4847 0x8b. */
4848 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4849
4850 bfd_put_32 (output_bfd,
4851 htab->elf.sgot->output_section->vma
4852 + htab->elf.sgot->output_offset + off
4853 - rel->r_offset
4854 - input_section->output_section->vma
4855 - input_section->output_offset
4856 - 4,
4857 contents + roff);
4858 continue;
4859 }
4860 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4861 {
4862 /* GDesc -> IE transition.
4863 It's originally:
4864 call *(%rax)
4865
4866 Change it to:
4867 xchg %ax, %ax. */
4868
4869 bfd_put_8 (output_bfd, 0x66, contents + roff);
4870 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4871 continue;
4872 }
4873 else
4874 BFD_ASSERT (FALSE);
4875 }
4876 break;
4877
4878 case R_X86_64_TLSLD:
4879 if (! elf_x86_64_tls_transition (info, input_bfd,
4880 input_section, contents,
4881 symtab_hdr, sym_hashes,
4882 &r_type, GOT_UNKNOWN,
4883 rel, relend, h, r_symndx))
4884 return FALSE;
4885
4886 if (r_type != R_X86_64_TLSLD)
4887 {
4888 /* LD->LE transition:
4889 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4890 For 64bit, we change it into:
4891 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4892 For 32bit, we change it into:
4893 nopl 0x0(%rax); movl %fs:0, %eax.
4894 For largepic, change:
4895 leaq foo@tlsgd(%rip), %rdi
4896 movabsq $__tls_get_addr@pltoff, %rax
4897 addq %rbx, %rax
4898 call *%rax
4899 into:
4900 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4901 movq %fs:0, %eax */
4902
4903 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4904 if (ABI_64_P (output_bfd)
4905 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4906 memcpy (contents + rel->r_offset - 3,
4907 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4908 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4909 else if (ABI_64_P (output_bfd))
4910 memcpy (contents + rel->r_offset - 3,
4911 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4912 else
4913 memcpy (contents + rel->r_offset - 3,
4914 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4915 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4916 rel++;
4917 continue;
4918 }
4919
4920 if (htab->elf.sgot == NULL)
4921 abort ();
4922
4923 off = htab->tls_ld_got.offset;
4924 if (off & 1)
4925 off &= ~1;
4926 else
4927 {
4928 Elf_Internal_Rela outrel;
4929
4930 if (htab->elf.srelgot == NULL)
4931 abort ();
4932
4933 outrel.r_offset = (htab->elf.sgot->output_section->vma
4934 + htab->elf.sgot->output_offset + off);
4935
4936 bfd_put_64 (output_bfd, 0,
4937 htab->elf.sgot->contents + off);
4938 bfd_put_64 (output_bfd, 0,
4939 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4940 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4941 outrel.r_addend = 0;
4942 elf_append_rela (output_bfd, htab->elf.srelgot,
4943 &outrel);
4944 htab->tls_ld_got.offset |= 1;
4945 }
4946 relocation = htab->elf.sgot->output_section->vma
4947 + htab->elf.sgot->output_offset + off;
4948 unresolved_reloc = FALSE;
4949 break;
4950
4951 case R_X86_64_DTPOFF32:
4952 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4953 relocation -= elf_x86_64_dtpoff_base (info);
4954 else
4955 relocation = elf_x86_64_tpoff (info, relocation);
4956 break;
4957
4958 case R_X86_64_TPOFF32:
4959 case R_X86_64_TPOFF64:
4960 BFD_ASSERT (info->executable);
4961 relocation = elf_x86_64_tpoff (info, relocation);
4962 break;
4963
4964 case R_X86_64_DTPOFF64:
4965 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4966 relocation -= elf_x86_64_dtpoff_base (info);
4967 break;
4968
4969 default:
4970 break;
4971 }
4972
4973 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4974 because such sections are not SEC_ALLOC and thus ld.so will
4975 not process them. */
4976 if (unresolved_reloc
4977 && !((input_section->flags & SEC_DEBUGGING) != 0
4978 && h->def_dynamic)
4979 && _bfd_elf_section_offset (output_bfd, info, input_section,
4980 rel->r_offset) != (bfd_vma) -1)
4981 {
4982 (*_bfd_error_handler)
4983 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4984 input_bfd,
4985 input_section,
4986 (long) rel->r_offset,
4987 howto->name,
4988 h->root.root.string);
4989 return FALSE;
4990 }
4991
4992 do_relocation:
4993 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4994 contents, rel->r_offset,
4995 relocation, rel->r_addend);
4996
4997 check_relocation_error:
4998 if (r != bfd_reloc_ok)
4999 {
5000 const char *name;
5001
5002 if (h != NULL)
5003 name = h->root.root.string;
5004 else
5005 {
5006 name = bfd_elf_string_from_elf_section (input_bfd,
5007 symtab_hdr->sh_link,
5008 sym->st_name);
5009 if (name == NULL)
5010 return FALSE;
5011 if (*name == '\0')
5012 name = bfd_section_name (input_bfd, sec);
5013 }
5014
5015 if (r == bfd_reloc_overflow)
5016 {
5017 if (! ((*info->callbacks->reloc_overflow)
5018 (info, (h ? &h->root : NULL), name, howto->name,
5019 (bfd_vma) 0, input_bfd, input_section,
5020 rel->r_offset)))
5021 return FALSE;
5022 }
5023 else
5024 {
5025 (*_bfd_error_handler)
5026 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
5027 input_bfd, input_section,
5028 (long) rel->r_offset, name, (int) r);
5029 return FALSE;
5030 }
5031 }
5032 }
5033
5034 return TRUE;
5035 }
5036
5037 /* Finish up dynamic symbol handling. We set the contents of various
5038 dynamic sections here. */
5039
5040 static bfd_boolean
5041 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
5042 struct bfd_link_info *info,
5043 struct elf_link_hash_entry *h,
5044 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
5045 {
5046 struct elf_x86_64_link_hash_table *htab;
5047 const struct elf_x86_64_backend_data *abed;
5048 bfd_boolean use_plt_bnd;
5049 struct elf_x86_64_link_hash_entry *eh;
5050
5051 htab = elf_x86_64_hash_table (info);
5052 if (htab == NULL)
5053 return FALSE;
5054
5055 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5056 section only if there is .plt section. */
5057 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
5058 abed = (use_plt_bnd
5059 ? &elf_x86_64_bnd_arch_bed
5060 : get_elf_x86_64_backend_data (output_bfd));
5061
5062 eh = (struct elf_x86_64_link_hash_entry *) h;
5063
5064 if (h->plt.offset != (bfd_vma) -1)
5065 {
5066 bfd_vma plt_index;
5067 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
5068 bfd_vma plt_plt_insn_end, plt_got_insn_size;
5069 Elf_Internal_Rela rela;
5070 bfd_byte *loc;
5071 asection *plt, *gotplt, *relplt, *resolved_plt;
5072 const struct elf_backend_data *bed;
5073 bfd_vma plt_got_pcrel_offset;
5074
5075 /* When building a static executable, use .iplt, .igot.plt and
5076 .rela.iplt sections for STT_GNU_IFUNC symbols. */
5077 if (htab->elf.splt != NULL)
5078 {
5079 plt = htab->elf.splt;
5080 gotplt = htab->elf.sgotplt;
5081 relplt = htab->elf.srelplt;
5082 }
5083 else
5084 {
5085 plt = htab->elf.iplt;
5086 gotplt = htab->elf.igotplt;
5087 relplt = htab->elf.irelplt;
5088 }
5089
5090 /* This symbol has an entry in the procedure linkage table. Set
5091 it up. */
5092 if ((h->dynindx == -1
5093 && !((h->forced_local || info->executable)
5094 && h->def_regular
5095 && h->type == STT_GNU_IFUNC))
5096 || plt == NULL
5097 || gotplt == NULL
5098 || relplt == NULL)
5099 abort ();
5100
5101 /* Get the index in the procedure linkage table which
5102 corresponds to this symbol. This is the index of this symbol
5103 in all the symbols for which we are making plt entries. The
5104 first entry in the procedure linkage table is reserved.
5105
5106 Get the offset into the .got table of the entry that
5107 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
5108 bytes. The first three are reserved for the dynamic linker.
5109
5110 For static executables, we don't reserve anything. */
5111
5112 if (plt == htab->elf.splt)
5113 {
5114 got_offset = h->plt.offset / abed->plt_entry_size - 1;
5115 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
5116 }
5117 else
5118 {
5119 got_offset = h->plt.offset / abed->plt_entry_size;
5120 got_offset = got_offset * GOT_ENTRY_SIZE;
5121 }
5122
5123 plt_plt_insn_end = abed->plt_plt_insn_end;
5124 plt_plt_offset = abed->plt_plt_offset;
5125 plt_got_insn_size = abed->plt_got_insn_size;
5126 plt_got_offset = abed->plt_got_offset;
5127 if (use_plt_bnd)
5128 {
5129 /* Use the second PLT with BND relocations. */
5130 const bfd_byte *plt_entry, *plt2_entry;
5131
5132 if (eh->has_bnd_reloc)
5133 {
5134 plt_entry = elf_x86_64_bnd_plt_entry;
5135 plt2_entry = elf_x86_64_bnd_plt2_entry;
5136 }
5137 else
5138 {
5139 plt_entry = elf_x86_64_legacy_plt_entry;
5140 plt2_entry = elf_x86_64_legacy_plt2_entry;
5141
5142 /* Subtract 1 since there is no BND prefix. */
5143 plt_plt_insn_end -= 1;
5144 plt_plt_offset -= 1;
5145 plt_got_insn_size -= 1;
5146 plt_got_offset -= 1;
5147 }
5148
5149 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
5150 == sizeof (elf_x86_64_legacy_plt_entry));
5151
5152 /* Fill in the entry in the procedure linkage table. */
5153 memcpy (plt->contents + h->plt.offset,
5154 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
5155 /* Fill in the entry in the second PLT. */
5156 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
5157 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5158
5159 resolved_plt = htab->plt_bnd;
5160 plt_offset = eh->plt_bnd.offset;
5161 }
5162 else
5163 {
5164 /* Fill in the entry in the procedure linkage table. */
5165 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
5166 abed->plt_entry_size);
5167
5168 resolved_plt = plt;
5169 plt_offset = h->plt.offset;
5170 }
5171
5172 /* Insert the relocation positions of the plt section. */
5173
5174 /* Put offset the PC-relative instruction referring to the GOT entry,
5175 subtracting the size of that instruction. */
5176 plt_got_pcrel_offset = (gotplt->output_section->vma
5177 + gotplt->output_offset
5178 + got_offset
5179 - resolved_plt->output_section->vma
5180 - resolved_plt->output_offset
5181 - plt_offset
5182 - plt_got_insn_size);
5183
5184 /* Check PC-relative offset overflow in PLT entry. */
5185 if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff)
5186 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
5187 output_bfd, h->root.root.string);
5188
5189 bfd_put_32 (output_bfd, plt_got_pcrel_offset,
5190 resolved_plt->contents + plt_offset + plt_got_offset);
5191
5192 /* Fill in the entry in the global offset table, initially this
5193 points to the second part of the PLT entry. */
5194 bfd_put_64 (output_bfd, (plt->output_section->vma
5195 + plt->output_offset
5196 + h->plt.offset + abed->plt_lazy_offset),
5197 gotplt->contents + got_offset);
5198
5199 /* Fill in the entry in the .rela.plt section. */
5200 rela.r_offset = (gotplt->output_section->vma
5201 + gotplt->output_offset
5202 + got_offset);
5203 if (h->dynindx == -1
5204 || ((info->executable
5205 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
5206 && h->def_regular
5207 && h->type == STT_GNU_IFUNC))
5208 {
5209 /* If an STT_GNU_IFUNC symbol is locally defined, generate
5210 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
5211 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
5212 rela.r_addend = (h->root.u.def.value
5213 + h->root.u.def.section->output_section->vma
5214 + h->root.u.def.section->output_offset);
5215 /* R_X86_64_IRELATIVE comes last. */
5216 plt_index = htab->next_irelative_index--;
5217 }
5218 else
5219 {
5220 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
5221 rela.r_addend = 0;
5222 plt_index = htab->next_jump_slot_index++;
5223 }
5224
5225 /* Don't fill PLT entry for static executables. */
5226 if (plt == htab->elf.splt)
5227 {
5228 bfd_vma plt0_offset = h->plt.offset + plt_plt_insn_end;
5229
5230 /* Put relocation index. */
5231 bfd_put_32 (output_bfd, plt_index,
5232 plt->contents + h->plt.offset + abed->plt_reloc_offset);
5233
5234 /* Put offset for jmp .PLT0 and check for overflow. We don't
5235 check relocation index for overflow since branch displacement
5236 will overflow first. */
5237 if (plt0_offset > 0x80000000)
5238 info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"),
5239 output_bfd, h->root.root.string);
5240 bfd_put_32 (output_bfd, - plt0_offset,
5241 plt->contents + h->plt.offset + plt_plt_offset);
5242 }
5243
5244 bed = get_elf_backend_data (output_bfd);
5245 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
5246 bed->s->swap_reloca_out (output_bfd, &rela, loc);
5247 }
5248 else if (eh->plt_got.offset != (bfd_vma) -1)
5249 {
5250 bfd_vma got_offset, plt_offset, plt_got_offset, plt_got_insn_size;
5251 asection *plt, *got;
5252 bfd_boolean got_after_plt;
5253 int32_t got_pcrel_offset;
5254 const bfd_byte *got_plt_entry;
5255
5256 /* Set the entry in the GOT procedure linkage table. */
5257 plt = htab->plt_got;
5258 got = htab->elf.sgot;
5259 got_offset = h->got.offset;
5260
5261 if (got_offset == (bfd_vma) -1
5262 || h->type == STT_GNU_IFUNC
5263 || plt == NULL
5264 || got == NULL)
5265 abort ();
5266
5267 /* Use the second PLT entry template for the GOT PLT since they
5268 are the identical. */
5269 plt_got_insn_size = elf_x86_64_bnd_arch_bed.plt_got_insn_size;
5270 plt_got_offset = elf_x86_64_bnd_arch_bed.plt_got_offset;
5271 if (eh->has_bnd_reloc)
5272 got_plt_entry = elf_x86_64_bnd_plt2_entry;
5273 else
5274 {
5275 got_plt_entry = elf_x86_64_legacy_plt2_entry;
5276
5277 /* Subtract 1 since there is no BND prefix. */
5278 plt_got_insn_size -= 1;
5279 plt_got_offset -= 1;
5280 }
5281
5282 /* Fill in the entry in the GOT procedure linkage table. */
5283 plt_offset = eh->plt_got.offset;
5284 memcpy (plt->contents + plt_offset,
5285 got_plt_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5286
5287 /* Put offset the PC-relative instruction referring to the GOT
5288 entry, subtracting the size of that instruction. */
5289 got_pcrel_offset = (got->output_section->vma
5290 + got->output_offset
5291 + got_offset
5292 - plt->output_section->vma
5293 - plt->output_offset
5294 - plt_offset
5295 - plt_got_insn_size);
5296
5297 /* Check PC-relative offset overflow in GOT PLT entry. */
5298 got_after_plt = got->output_section->vma > plt->output_section->vma;
5299 if ((got_after_plt && got_pcrel_offset < 0)
5300 || (!got_after_plt && got_pcrel_offset > 0))
5301 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"),
5302 output_bfd, h->root.root.string);
5303
5304 bfd_put_32 (output_bfd, got_pcrel_offset,
5305 plt->contents + plt_offset + plt_got_offset);
5306 }
5307
5308 if (!h->def_regular
5309 && (h->plt.offset != (bfd_vma) -1
5310 || eh->plt_got.offset != (bfd_vma) -1))
5311 {
5312 /* Mark the symbol as undefined, rather than as defined in
5313 the .plt section. Leave the value if there were any
5314 relocations where pointer equality matters (this is a clue
5315 for the dynamic linker, to make function pointer
5316 comparisons work between an application and shared
5317 library), otherwise set it to zero. If a function is only
5318 called from a binary, there is no need to slow down
5319 shared libraries because of that. */
5320 sym->st_shndx = SHN_UNDEF;
5321 if (!h->pointer_equality_needed)
5322 sym->st_value = 0;
5323 }
5324
5325 if (h->got.offset != (bfd_vma) -1
5326 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
5327 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
5328 {
5329 Elf_Internal_Rela rela;
5330
5331 /* This symbol has an entry in the global offset table. Set it
5332 up. */
5333 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
5334 abort ();
5335
5336 rela.r_offset = (htab->elf.sgot->output_section->vma
5337 + htab->elf.sgot->output_offset
5338 + (h->got.offset &~ (bfd_vma) 1));
5339
5340 /* If this is a static link, or it is a -Bsymbolic link and the
5341 symbol is defined locally or was forced to be local because
5342 of a version file, we just want to emit a RELATIVE reloc.
5343 The entry in the global offset table will already have been
5344 initialized in the relocate_section function. */
5345 if (h->def_regular
5346 && h->type == STT_GNU_IFUNC)
5347 {
5348 if (info->shared)
5349 {
5350 /* Generate R_X86_64_GLOB_DAT. */
5351 goto do_glob_dat;
5352 }
5353 else
5354 {
5355 asection *plt;
5356
5357 if (!h->pointer_equality_needed)
5358 abort ();
5359
5360 /* For non-shared object, we can't use .got.plt, which
5361 contains the real function addres if we need pointer
5362 equality. We load the GOT entry with the PLT entry. */
5363 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
5364 bfd_put_64 (output_bfd, (plt->output_section->vma
5365 + plt->output_offset
5366 + h->plt.offset),
5367 htab->elf.sgot->contents + h->got.offset);
5368 return TRUE;
5369 }
5370 }
5371 else if (info->shared
5372 && SYMBOL_REFERENCES_LOCAL (info, h))
5373 {
5374 if (!h->def_regular)
5375 return FALSE;
5376 BFD_ASSERT((h->got.offset & 1) != 0);
5377 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
5378 rela.r_addend = (h->root.u.def.value
5379 + h->root.u.def.section->output_section->vma
5380 + h->root.u.def.section->output_offset);
5381 }
5382 else
5383 {
5384 BFD_ASSERT((h->got.offset & 1) == 0);
5385 do_glob_dat:
5386 bfd_put_64 (output_bfd, (bfd_vma) 0,
5387 htab->elf.sgot->contents + h->got.offset);
5388 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
5389 rela.r_addend = 0;
5390 }
5391
5392 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5393 }
5394
5395 if (h->needs_copy)
5396 {
5397 Elf_Internal_Rela rela;
5398
5399 /* This symbol needs a copy reloc. Set it up. */
5400
5401 if (h->dynindx == -1
5402 || (h->root.type != bfd_link_hash_defined
5403 && h->root.type != bfd_link_hash_defweak)
5404 || htab->srelbss == NULL)
5405 abort ();
5406
5407 rela.r_offset = (h->root.u.def.value
5408 + h->root.u.def.section->output_section->vma
5409 + h->root.u.def.section->output_offset);
5410 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5411 rela.r_addend = 0;
5412 elf_append_rela (output_bfd, htab->srelbss, &rela);
5413 }
5414
5415 return TRUE;
5416 }
5417
5418 /* Finish up local dynamic symbol handling. We set the contents of
5419 various dynamic sections here. */
5420
5421 static bfd_boolean
5422 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5423 {
5424 struct elf_link_hash_entry *h
5425 = (struct elf_link_hash_entry *) *slot;
5426 struct bfd_link_info *info
5427 = (struct bfd_link_info *) inf;
5428
5429 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5430 info, h, NULL);
5431 }
5432
5433 /* Used to decide how to sort relocs in an optimal manner for the
5434 dynamic linker, before writing them out. */
5435
5436 static enum elf_reloc_type_class
5437 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5438 const asection *rel_sec ATTRIBUTE_UNUSED,
5439 const Elf_Internal_Rela *rela)
5440 {
5441 switch ((int) ELF32_R_TYPE (rela->r_info))
5442 {
5443 case R_X86_64_RELATIVE:
5444 case R_X86_64_RELATIVE64:
5445 return reloc_class_relative;
5446 case R_X86_64_JUMP_SLOT:
5447 return reloc_class_plt;
5448 case R_X86_64_COPY:
5449 return reloc_class_copy;
5450 default:
5451 return reloc_class_normal;
5452 }
5453 }
5454
5455 /* Finish up the dynamic sections. */
5456
5457 static bfd_boolean
5458 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5459 struct bfd_link_info *info)
5460 {
5461 struct elf_x86_64_link_hash_table *htab;
5462 bfd *dynobj;
5463 asection *sdyn;
5464 const struct elf_x86_64_backend_data *abed;
5465
5466 htab = elf_x86_64_hash_table (info);
5467 if (htab == NULL)
5468 return FALSE;
5469
5470 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5471 section only if there is .plt section. */
5472 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5473 ? &elf_x86_64_bnd_arch_bed
5474 : get_elf_x86_64_backend_data (output_bfd));
5475
5476 dynobj = htab->elf.dynobj;
5477 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5478
5479 if (htab->elf.dynamic_sections_created)
5480 {
5481 bfd_byte *dyncon, *dynconend;
5482 const struct elf_backend_data *bed;
5483 bfd_size_type sizeof_dyn;
5484
5485 if (sdyn == NULL || htab->elf.sgot == NULL)
5486 abort ();
5487
5488 bed = get_elf_backend_data (dynobj);
5489 sizeof_dyn = bed->s->sizeof_dyn;
5490 dyncon = sdyn->contents;
5491 dynconend = sdyn->contents + sdyn->size;
5492 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5493 {
5494 Elf_Internal_Dyn dyn;
5495 asection *s;
5496
5497 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5498
5499 switch (dyn.d_tag)
5500 {
5501 default:
5502 continue;
5503
5504 case DT_PLTGOT:
5505 s = htab->elf.sgotplt;
5506 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5507 break;
5508
5509 case DT_JMPREL:
5510 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5511 break;
5512
5513 case DT_PLTRELSZ:
5514 s = htab->elf.srelplt->output_section;
5515 dyn.d_un.d_val = s->size;
5516 break;
5517
5518 case DT_RELASZ:
5519 /* The procedure linkage table relocs (DT_JMPREL) should
5520 not be included in the overall relocs (DT_RELA).
5521 Therefore, we override the DT_RELASZ entry here to
5522 make it not include the JMPREL relocs. Since the
5523 linker script arranges for .rela.plt to follow all
5524 other relocation sections, we don't have to worry
5525 about changing the DT_RELA entry. */
5526 if (htab->elf.srelplt != NULL)
5527 {
5528 s = htab->elf.srelplt->output_section;
5529 dyn.d_un.d_val -= s->size;
5530 }
5531 break;
5532
5533 case DT_TLSDESC_PLT:
5534 s = htab->elf.splt;
5535 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5536 + htab->tlsdesc_plt;
5537 break;
5538
5539 case DT_TLSDESC_GOT:
5540 s = htab->elf.sgot;
5541 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5542 + htab->tlsdesc_got;
5543 break;
5544 }
5545
5546 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5547 }
5548
5549 /* Fill in the special first entry in the procedure linkage table. */
5550 if (htab->elf.splt && htab->elf.splt->size > 0)
5551 {
5552 /* Fill in the first entry in the procedure linkage table. */
5553 memcpy (htab->elf.splt->contents,
5554 abed->plt0_entry, abed->plt_entry_size);
5555 /* Add offset for pushq GOT+8(%rip), since the instruction
5556 uses 6 bytes subtract this value. */
5557 bfd_put_32 (output_bfd,
5558 (htab->elf.sgotplt->output_section->vma
5559 + htab->elf.sgotplt->output_offset
5560 + 8
5561 - htab->elf.splt->output_section->vma
5562 - htab->elf.splt->output_offset
5563 - 6),
5564 htab->elf.splt->contents + abed->plt0_got1_offset);
5565 /* Add offset for the PC-relative instruction accessing GOT+16,
5566 subtracting the offset to the end of that instruction. */
5567 bfd_put_32 (output_bfd,
5568 (htab->elf.sgotplt->output_section->vma
5569 + htab->elf.sgotplt->output_offset
5570 + 16
5571 - htab->elf.splt->output_section->vma
5572 - htab->elf.splt->output_offset
5573 - abed->plt0_got2_insn_end),
5574 htab->elf.splt->contents + abed->plt0_got2_offset);
5575
5576 elf_section_data (htab->elf.splt->output_section)
5577 ->this_hdr.sh_entsize = abed->plt_entry_size;
5578
5579 if (htab->tlsdesc_plt)
5580 {
5581 bfd_put_64 (output_bfd, (bfd_vma) 0,
5582 htab->elf.sgot->contents + htab->tlsdesc_got);
5583
5584 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5585 abed->plt0_entry, abed->plt_entry_size);
5586
5587 /* Add offset for pushq GOT+8(%rip), since the
5588 instruction uses 6 bytes subtract this value. */
5589 bfd_put_32 (output_bfd,
5590 (htab->elf.sgotplt->output_section->vma
5591 + htab->elf.sgotplt->output_offset
5592 + 8
5593 - htab->elf.splt->output_section->vma
5594 - htab->elf.splt->output_offset
5595 - htab->tlsdesc_plt
5596 - 6),
5597 htab->elf.splt->contents
5598 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5599 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5600 where TGD stands for htab->tlsdesc_got, subtracting the offset
5601 to the end of that instruction. */
5602 bfd_put_32 (output_bfd,
5603 (htab->elf.sgot->output_section->vma
5604 + htab->elf.sgot->output_offset
5605 + htab->tlsdesc_got
5606 - htab->elf.splt->output_section->vma
5607 - htab->elf.splt->output_offset
5608 - htab->tlsdesc_plt
5609 - abed->plt0_got2_insn_end),
5610 htab->elf.splt->contents
5611 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5612 }
5613 }
5614 }
5615
5616 if (htab->plt_bnd != NULL)
5617 elf_section_data (htab->plt_bnd->output_section)
5618 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5619
5620 if (htab->elf.sgotplt)
5621 {
5622 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5623 {
5624 (*_bfd_error_handler)
5625 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5626 return FALSE;
5627 }
5628
5629 /* Fill in the first three entries in the global offset table. */
5630 if (htab->elf.sgotplt->size > 0)
5631 {
5632 /* Set the first entry in the global offset table to the address of
5633 the dynamic section. */
5634 if (sdyn == NULL)
5635 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5636 else
5637 bfd_put_64 (output_bfd,
5638 sdyn->output_section->vma + sdyn->output_offset,
5639 htab->elf.sgotplt->contents);
5640 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5641 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5642 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5643 }
5644
5645 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5646 GOT_ENTRY_SIZE;
5647 }
5648
5649 /* Adjust .eh_frame for .plt section. */
5650 if (htab->plt_eh_frame != NULL
5651 && htab->plt_eh_frame->contents != NULL)
5652 {
5653 if (htab->elf.splt != NULL
5654 && htab->elf.splt->size != 0
5655 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5656 && htab->elf.splt->output_section != NULL
5657 && htab->plt_eh_frame->output_section != NULL)
5658 {
5659 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5660 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5661 + htab->plt_eh_frame->output_offset
5662 + PLT_FDE_START_OFFSET;
5663 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5664 htab->plt_eh_frame->contents
5665 + PLT_FDE_START_OFFSET);
5666 }
5667 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5668 {
5669 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5670 htab->plt_eh_frame,
5671 htab->plt_eh_frame->contents))
5672 return FALSE;
5673 }
5674 }
5675
5676 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5677 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5678 = GOT_ENTRY_SIZE;
5679
5680 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5681 htab_traverse (htab->loc_hash_table,
5682 elf_x86_64_finish_local_dynamic_symbol,
5683 info);
5684
5685 return TRUE;
5686 }
5687
5688 /* Return an array of PLT entry symbol values. */
5689
5690 static bfd_vma *
5691 elf_x86_64_get_plt_sym_val (bfd *abfd, asymbol **dynsyms, asection *plt,
5692 asection *relplt)
5693 {
5694 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5695 arelent *p;
5696 long count, i;
5697 bfd_vma *plt_sym_val;
5698 bfd_vma plt_offset;
5699 bfd_byte *plt_contents;
5700 const struct elf_x86_64_backend_data *bed;
5701 Elf_Internal_Shdr *hdr;
5702 asection *plt_bnd;
5703
5704 /* Get the .plt section contents. PLT passed down may point to the
5705 .plt.bnd section. Make sure that PLT always points to the .plt
5706 section. */
5707 plt_bnd = bfd_get_section_by_name (abfd, ".plt.bnd");
5708 if (plt_bnd)
5709 {
5710 if (plt != plt_bnd)
5711 abort ();
5712 plt = bfd_get_section_by_name (abfd, ".plt");
5713 if (plt == NULL)
5714 abort ();
5715 bed = &elf_x86_64_bnd_arch_bed;
5716 }
5717 else
5718 bed = get_elf_x86_64_backend_data (abfd);
5719
5720 plt_contents = (bfd_byte *) bfd_malloc (plt->size);
5721 if (plt_contents == NULL)
5722 return NULL;
5723 if (!bfd_get_section_contents (abfd, (asection *) plt,
5724 plt_contents, 0, plt->size))
5725 {
5726 bad_return:
5727 free (plt_contents);
5728 return NULL;
5729 }
5730
5731 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5732 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5733 goto bad_return;
5734
5735 hdr = &elf_section_data (relplt)->this_hdr;
5736 count = relplt->size / hdr->sh_entsize;
5737
5738 plt_sym_val = (bfd_vma *) bfd_malloc (sizeof (bfd_vma) * count);
5739 if (plt_sym_val == NULL)
5740 goto bad_return;
5741
5742 for (i = 0; i < count; i++)
5743 plt_sym_val[i] = -1;
5744
5745 plt_offset = bed->plt_entry_size;
5746 p = relplt->relocation;
5747 for (i = 0; i < count; i++, p++)
5748 {
5749 long reloc_index;
5750
5751 /* Skip unknown relocation. */
5752 if (p->howto == NULL)
5753 continue;
5754
5755 if (p->howto->type != R_X86_64_JUMP_SLOT
5756 && p->howto->type != R_X86_64_IRELATIVE)
5757 continue;
5758
5759 reloc_index = H_GET_32 (abfd, (plt_contents + plt_offset
5760 + bed->plt_reloc_offset));
5761 if (reloc_index >= count)
5762 abort ();
5763 if (plt_bnd)
5764 {
5765 /* This is the index in .plt section. */
5766 long plt_index = plt_offset / bed->plt_entry_size;
5767 /* Store VMA + the offset in .plt.bnd section. */
5768 plt_sym_val[reloc_index] =
5769 (plt_bnd->vma
5770 + (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry));
5771 }
5772 else
5773 plt_sym_val[reloc_index] = plt->vma + plt_offset;
5774 plt_offset += bed->plt_entry_size;
5775
5776 /* PR binutils/18437: Skip extra relocations in the .rela.plt
5777 section. */
5778 if (plt_offset >= plt->size)
5779 break;
5780 }
5781
5782 free (plt_contents);
5783
5784 return plt_sym_val;
5785 }
5786
5787 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
5788 support. */
5789
5790 static long
5791 elf_x86_64_get_synthetic_symtab (bfd *abfd,
5792 long symcount,
5793 asymbol **syms,
5794 long dynsymcount,
5795 asymbol **dynsyms,
5796 asymbol **ret)
5797 {
5798 /* Pass the .plt.bnd section to _bfd_elf_ifunc_get_synthetic_symtab
5799 as PLT if it exists. */
5800 asection *plt = bfd_get_section_by_name (abfd, ".plt.bnd");
5801 if (plt == NULL)
5802 plt = bfd_get_section_by_name (abfd, ".plt");
5803 return _bfd_elf_ifunc_get_synthetic_symtab (abfd, symcount, syms,
5804 dynsymcount, dynsyms, ret,
5805 plt,
5806 elf_x86_64_get_plt_sym_val);
5807 }
5808
5809 /* Handle an x86-64 specific section when reading an object file. This
5810 is called when elfcode.h finds a section with an unknown type. */
5811
5812 static bfd_boolean
5813 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5814 const char *name, int shindex)
5815 {
5816 if (hdr->sh_type != SHT_X86_64_UNWIND)
5817 return FALSE;
5818
5819 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5820 return FALSE;
5821
5822 return TRUE;
5823 }
5824
5825 /* Hook called by the linker routine which adds symbols from an object
5826 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5827 of .bss. */
5828
5829 static bfd_boolean
5830 elf_x86_64_add_symbol_hook (bfd *abfd,
5831 struct bfd_link_info *info,
5832 Elf_Internal_Sym *sym,
5833 const char **namep ATTRIBUTE_UNUSED,
5834 flagword *flagsp ATTRIBUTE_UNUSED,
5835 asection **secp,
5836 bfd_vma *valp)
5837 {
5838 asection *lcomm;
5839
5840 switch (sym->st_shndx)
5841 {
5842 case SHN_X86_64_LCOMMON:
5843 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5844 if (lcomm == NULL)
5845 {
5846 lcomm = bfd_make_section_with_flags (abfd,
5847 "LARGE_COMMON",
5848 (SEC_ALLOC
5849 | SEC_IS_COMMON
5850 | SEC_LINKER_CREATED));
5851 if (lcomm == NULL)
5852 return FALSE;
5853 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5854 }
5855 *secp = lcomm;
5856 *valp = sym->st_size;
5857 return TRUE;
5858 }
5859
5860 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5861 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
5862 && (abfd->flags & DYNAMIC) == 0
5863 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
5864 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5865
5866 return TRUE;
5867 }
5868
5869
5870 /* Given a BFD section, try to locate the corresponding ELF section
5871 index. */
5872
5873 static bfd_boolean
5874 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5875 asection *sec, int *index_return)
5876 {
5877 if (sec == &_bfd_elf_large_com_section)
5878 {
5879 *index_return = SHN_X86_64_LCOMMON;
5880 return TRUE;
5881 }
5882 return FALSE;
5883 }
5884
5885 /* Process a symbol. */
5886
5887 static void
5888 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5889 asymbol *asym)
5890 {
5891 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5892
5893 switch (elfsym->internal_elf_sym.st_shndx)
5894 {
5895 case SHN_X86_64_LCOMMON:
5896 asym->section = &_bfd_elf_large_com_section;
5897 asym->value = elfsym->internal_elf_sym.st_size;
5898 /* Common symbol doesn't set BSF_GLOBAL. */
5899 asym->flags &= ~BSF_GLOBAL;
5900 break;
5901 }
5902 }
5903
5904 static bfd_boolean
5905 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5906 {
5907 return (sym->st_shndx == SHN_COMMON
5908 || sym->st_shndx == SHN_X86_64_LCOMMON);
5909 }
5910
5911 static unsigned int
5912 elf_x86_64_common_section_index (asection *sec)
5913 {
5914 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5915 return SHN_COMMON;
5916 else
5917 return SHN_X86_64_LCOMMON;
5918 }
5919
5920 static asection *
5921 elf_x86_64_common_section (asection *sec)
5922 {
5923 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5924 return bfd_com_section_ptr;
5925 else
5926 return &_bfd_elf_large_com_section;
5927 }
5928
5929 static bfd_boolean
5930 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5931 const Elf_Internal_Sym *sym,
5932 asection **psec,
5933 bfd_boolean newdef,
5934 bfd_boolean olddef,
5935 bfd *oldbfd,
5936 const asection *oldsec)
5937 {
5938 /* A normal common symbol and a large common symbol result in a
5939 normal common symbol. We turn the large common symbol into a
5940 normal one. */
5941 if (!olddef
5942 && h->root.type == bfd_link_hash_common
5943 && !newdef
5944 && bfd_is_com_section (*psec)
5945 && oldsec != *psec)
5946 {
5947 if (sym->st_shndx == SHN_COMMON
5948 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5949 {
5950 h->root.u.c.p->section
5951 = bfd_make_section_old_way (oldbfd, "COMMON");
5952 h->root.u.c.p->section->flags = SEC_ALLOC;
5953 }
5954 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5955 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5956 *psec = bfd_com_section_ptr;
5957 }
5958
5959 return TRUE;
5960 }
5961
5962 static int
5963 elf_x86_64_additional_program_headers (bfd *abfd,
5964 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5965 {
5966 asection *s;
5967 int count = 0;
5968
5969 /* Check to see if we need a large readonly segment. */
5970 s = bfd_get_section_by_name (abfd, ".lrodata");
5971 if (s && (s->flags & SEC_LOAD))
5972 count++;
5973
5974 /* Check to see if we need a large data segment. Since .lbss sections
5975 is placed right after the .bss section, there should be no need for
5976 a large data segment just because of .lbss. */
5977 s = bfd_get_section_by_name (abfd, ".ldata");
5978 if (s && (s->flags & SEC_LOAD))
5979 count++;
5980
5981 return count;
5982 }
5983
5984 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5985
5986 static bfd_boolean
5987 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5988 {
5989 if (h->plt.offset != (bfd_vma) -1
5990 && !h->def_regular
5991 && !h->pointer_equality_needed)
5992 return FALSE;
5993
5994 return _bfd_elf_hash_symbol (h);
5995 }
5996
5997 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5998
5999 static bfd_boolean
6000 elf_x86_64_relocs_compatible (const bfd_target *input,
6001 const bfd_target *output)
6002 {
6003 return ((xvec_get_elf_backend_data (input)->s->elfclass
6004 == xvec_get_elf_backend_data (output)->s->elfclass)
6005 && _bfd_elf_relocs_compatible (input, output));
6006 }
6007
6008 static const struct bfd_elf_special_section
6009 elf_x86_64_special_sections[]=
6010 {
6011 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6012 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
6013 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
6014 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6015 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6016 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
6017 { NULL, 0, 0, 0, 0 }
6018 };
6019
6020 #define TARGET_LITTLE_SYM x86_64_elf64_vec
6021 #define TARGET_LITTLE_NAME "elf64-x86-64"
6022 #define ELF_ARCH bfd_arch_i386
6023 #define ELF_TARGET_ID X86_64_ELF_DATA
6024 #define ELF_MACHINE_CODE EM_X86_64
6025 #define ELF_MAXPAGESIZE 0x200000
6026 #define ELF_MINPAGESIZE 0x1000
6027 #define ELF_COMMONPAGESIZE 0x1000
6028
6029 #define elf_backend_can_gc_sections 1
6030 #define elf_backend_can_refcount 1
6031 #define elf_backend_want_got_plt 1
6032 #define elf_backend_plt_readonly 1
6033 #define elf_backend_want_plt_sym 0
6034 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
6035 #define elf_backend_rela_normal 1
6036 #define elf_backend_plt_alignment 4
6037 #define elf_backend_extern_protected_data 1
6038
6039 #define elf_info_to_howto elf_x86_64_info_to_howto
6040
6041 #define bfd_elf64_bfd_link_hash_table_create \
6042 elf_x86_64_link_hash_table_create
6043 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
6044 #define bfd_elf64_bfd_reloc_name_lookup \
6045 elf_x86_64_reloc_name_lookup
6046
6047 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
6048 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
6049 #define elf_backend_check_relocs elf_x86_64_check_relocs
6050 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
6051 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
6052 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
6053 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
6054 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
6055 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
6056 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
6057 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
6058 #ifdef CORE_HEADER
6059 #define elf_backend_write_core_note elf_x86_64_write_core_note
6060 #endif
6061 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
6062 #define elf_backend_relocate_section elf_x86_64_relocate_section
6063 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
6064 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
6065 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
6066 #define elf_backend_object_p elf64_x86_64_elf_object_p
6067 #define bfd_elf64_mkobject elf_x86_64_mkobject
6068 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
6069
6070 #define elf_backend_section_from_shdr \
6071 elf_x86_64_section_from_shdr
6072
6073 #define elf_backend_section_from_bfd_section \
6074 elf_x86_64_elf_section_from_bfd_section
6075 #define elf_backend_add_symbol_hook \
6076 elf_x86_64_add_symbol_hook
6077 #define elf_backend_symbol_processing \
6078 elf_x86_64_symbol_processing
6079 #define elf_backend_common_section_index \
6080 elf_x86_64_common_section_index
6081 #define elf_backend_common_section \
6082 elf_x86_64_common_section
6083 #define elf_backend_common_definition \
6084 elf_x86_64_common_definition
6085 #define elf_backend_merge_symbol \
6086 elf_x86_64_merge_symbol
6087 #define elf_backend_special_sections \
6088 elf_x86_64_special_sections
6089 #define elf_backend_additional_program_headers \
6090 elf_x86_64_additional_program_headers
6091 #define elf_backend_hash_symbol \
6092 elf_x86_64_hash_symbol
6093
6094 #include "elf64-target.h"
6095
6096 /* CloudABI support. */
6097
6098 #undef TARGET_LITTLE_SYM
6099 #define TARGET_LITTLE_SYM x86_64_elf64_cloudabi_vec
6100 #undef TARGET_LITTLE_NAME
6101 #define TARGET_LITTLE_NAME "elf64-x86-64-cloudabi"
6102
6103 #undef ELF_OSABI
6104 #define ELF_OSABI ELFOSABI_CLOUDABI
6105
6106 #undef elf64_bed
6107 #define elf64_bed elf64_x86_64_cloudabi_bed
6108
6109 #include "elf64-target.h"
6110
6111 /* FreeBSD support. */
6112
6113 #undef TARGET_LITTLE_SYM
6114 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
6115 #undef TARGET_LITTLE_NAME
6116 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
6117
6118 #undef ELF_OSABI
6119 #define ELF_OSABI ELFOSABI_FREEBSD
6120
6121 #undef elf64_bed
6122 #define elf64_bed elf64_x86_64_fbsd_bed
6123
6124 #include "elf64-target.h"
6125
6126 /* Solaris 2 support. */
6127
6128 #undef TARGET_LITTLE_SYM
6129 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
6130 #undef TARGET_LITTLE_NAME
6131 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
6132
6133 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
6134 objects won't be recognized. */
6135 #undef ELF_OSABI
6136
6137 #undef elf64_bed
6138 #define elf64_bed elf64_x86_64_sol2_bed
6139
6140 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
6141 boundary. */
6142 #undef elf_backend_static_tls_alignment
6143 #define elf_backend_static_tls_alignment 16
6144
6145 /* The Solaris 2 ABI requires a plt symbol on all platforms.
6146
6147 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
6148 File, p.63. */
6149 #undef elf_backend_want_plt_sym
6150 #define elf_backend_want_plt_sym 1
6151
6152 #include "elf64-target.h"
6153
6154 /* Native Client support. */
6155
6156 static bfd_boolean
6157 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
6158 {
6159 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
6160 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
6161 return TRUE;
6162 }
6163
6164 #undef TARGET_LITTLE_SYM
6165 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
6166 #undef TARGET_LITTLE_NAME
6167 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
6168 #undef elf64_bed
6169 #define elf64_bed elf64_x86_64_nacl_bed
6170
6171 #undef ELF_MAXPAGESIZE
6172 #undef ELF_MINPAGESIZE
6173 #undef ELF_COMMONPAGESIZE
6174 #define ELF_MAXPAGESIZE 0x10000
6175 #define ELF_MINPAGESIZE 0x10000
6176 #define ELF_COMMONPAGESIZE 0x10000
6177
6178 /* Restore defaults. */
6179 #undef ELF_OSABI
6180 #undef elf_backend_static_tls_alignment
6181 #undef elf_backend_want_plt_sym
6182 #define elf_backend_want_plt_sym 0
6183
6184 /* NaCl uses substantially different PLT entries for the same effects. */
6185
6186 #undef elf_backend_plt_alignment
6187 #define elf_backend_plt_alignment 5
6188 #define NACL_PLT_ENTRY_SIZE 64
6189 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
6190
6191 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
6192 {
6193 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
6194 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
6195 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6196 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6197 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6198
6199 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
6200 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
6201
6202 /* 32 bytes of nop to pad out to the standard size. */
6203 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6204 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6205 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6206 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6207 0x66, /* excess data32 prefix */
6208 0x90 /* nop */
6209 };
6210
6211 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
6212 {
6213 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
6214 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6215 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6216 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6217
6218 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
6219 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6220 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6221
6222 /* Lazy GOT entries point here (32-byte aligned). */
6223 0x68, /* pushq immediate */
6224 0, 0, 0, 0, /* replaced with index into relocation table. */
6225 0xe9, /* jmp relative */
6226 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
6227
6228 /* 22 bytes of nop to pad out to the standard size. */
6229 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6230 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6231 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
6232 };
6233
6234 /* .eh_frame covering the .plt section. */
6235
6236 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
6237 {
6238 #if (PLT_CIE_LENGTH != 20 \
6239 || PLT_FDE_LENGTH != 36 \
6240 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
6241 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
6242 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
6243 #endif
6244 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
6245 0, 0, 0, 0, /* CIE ID */
6246 1, /* CIE version */
6247 'z', 'R', 0, /* Augmentation string */
6248 1, /* Code alignment factor */
6249 0x78, /* Data alignment factor */
6250 16, /* Return address column */
6251 1, /* Augmentation size */
6252 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
6253 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
6254 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
6255 DW_CFA_nop, DW_CFA_nop,
6256
6257 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
6258 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
6259 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
6260 0, 0, 0, 0, /* .plt size goes here */
6261 0, /* Augmentation size */
6262 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
6263 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
6264 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
6265 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
6266 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
6267 13, /* Block length */
6268 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
6269 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
6270 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
6271 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
6272 DW_CFA_nop, DW_CFA_nop
6273 };
6274
6275 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
6276 {
6277 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
6278 elf_x86_64_nacl_plt_entry, /* plt_entry */
6279 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
6280 2, /* plt0_got1_offset */
6281 9, /* plt0_got2_offset */
6282 13, /* plt0_got2_insn_end */
6283 3, /* plt_got_offset */
6284 33, /* plt_reloc_offset */
6285 38, /* plt_plt_offset */
6286 7, /* plt_got_insn_size */
6287 42, /* plt_plt_insn_end */
6288 32, /* plt_lazy_offset */
6289 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
6290 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
6291 };
6292
6293 #undef elf_backend_arch_data
6294 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
6295
6296 #undef elf_backend_object_p
6297 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
6298 #undef elf_backend_modify_segment_map
6299 #define elf_backend_modify_segment_map nacl_modify_segment_map
6300 #undef elf_backend_modify_program_headers
6301 #define elf_backend_modify_program_headers nacl_modify_program_headers
6302 #undef elf_backend_final_write_processing
6303 #define elf_backend_final_write_processing nacl_final_write_processing
6304
6305 #include "elf64-target.h"
6306
6307 /* Native Client x32 support. */
6308
6309 static bfd_boolean
6310 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
6311 {
6312 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
6313 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
6314 return TRUE;
6315 }
6316
6317 #undef TARGET_LITTLE_SYM
6318 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
6319 #undef TARGET_LITTLE_NAME
6320 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
6321 #undef elf32_bed
6322 #define elf32_bed elf32_x86_64_nacl_bed
6323
6324 #define bfd_elf32_bfd_link_hash_table_create \
6325 elf_x86_64_link_hash_table_create
6326 #define bfd_elf32_bfd_reloc_type_lookup \
6327 elf_x86_64_reloc_type_lookup
6328 #define bfd_elf32_bfd_reloc_name_lookup \
6329 elf_x86_64_reloc_name_lookup
6330 #define bfd_elf32_mkobject \
6331 elf_x86_64_mkobject
6332 #define bfd_elf32_get_synthetic_symtab \
6333 elf_x86_64_get_synthetic_symtab
6334
6335 #undef elf_backend_object_p
6336 #define elf_backend_object_p \
6337 elf32_x86_64_nacl_elf_object_p
6338
6339 #undef elf_backend_bfd_from_remote_memory
6340 #define elf_backend_bfd_from_remote_memory \
6341 _bfd_elf32_bfd_from_remote_memory
6342
6343 #undef elf_backend_size_info
6344 #define elf_backend_size_info \
6345 _bfd_elf32_size_info
6346
6347 #include "elf32-target.h"
6348
6349 /* Restore defaults. */
6350 #undef elf_backend_object_p
6351 #define elf_backend_object_p elf64_x86_64_elf_object_p
6352 #undef elf_backend_bfd_from_remote_memory
6353 #undef elf_backend_size_info
6354 #undef elf_backend_modify_segment_map
6355 #undef elf_backend_modify_program_headers
6356 #undef elf_backend_final_write_processing
6357
6358 /* Intel L1OM support. */
6359
6360 static bfd_boolean
6361 elf64_l1om_elf_object_p (bfd *abfd)
6362 {
6363 /* Set the right machine number for an L1OM elf64 file. */
6364 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6365 return TRUE;
6366 }
6367
6368 #undef TARGET_LITTLE_SYM
6369 #define TARGET_LITTLE_SYM l1om_elf64_vec
6370 #undef TARGET_LITTLE_NAME
6371 #define TARGET_LITTLE_NAME "elf64-l1om"
6372 #undef ELF_ARCH
6373 #define ELF_ARCH bfd_arch_l1om
6374
6375 #undef ELF_MACHINE_CODE
6376 #define ELF_MACHINE_CODE EM_L1OM
6377
6378 #undef ELF_OSABI
6379
6380 #undef elf64_bed
6381 #define elf64_bed elf64_l1om_bed
6382
6383 #undef elf_backend_object_p
6384 #define elf_backend_object_p elf64_l1om_elf_object_p
6385
6386 /* Restore defaults. */
6387 #undef ELF_MAXPAGESIZE
6388 #undef ELF_MINPAGESIZE
6389 #undef ELF_COMMONPAGESIZE
6390 #define ELF_MAXPAGESIZE 0x200000
6391 #define ELF_MINPAGESIZE 0x1000
6392 #define ELF_COMMONPAGESIZE 0x1000
6393 #undef elf_backend_plt_alignment
6394 #define elf_backend_plt_alignment 4
6395 #undef elf_backend_arch_data
6396 #define elf_backend_arch_data &elf_x86_64_arch_bed
6397
6398 #include "elf64-target.h"
6399
6400 /* FreeBSD L1OM support. */
6401
6402 #undef TARGET_LITTLE_SYM
6403 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6404 #undef TARGET_LITTLE_NAME
6405 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6406
6407 #undef ELF_OSABI
6408 #define ELF_OSABI ELFOSABI_FREEBSD
6409
6410 #undef elf64_bed
6411 #define elf64_bed elf64_l1om_fbsd_bed
6412
6413 #include "elf64-target.h"
6414
6415 /* Intel K1OM support. */
6416
6417 static bfd_boolean
6418 elf64_k1om_elf_object_p (bfd *abfd)
6419 {
6420 /* Set the right machine number for an K1OM elf64 file. */
6421 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6422 return TRUE;
6423 }
6424
6425 #undef TARGET_LITTLE_SYM
6426 #define TARGET_LITTLE_SYM k1om_elf64_vec
6427 #undef TARGET_LITTLE_NAME
6428 #define TARGET_LITTLE_NAME "elf64-k1om"
6429 #undef ELF_ARCH
6430 #define ELF_ARCH bfd_arch_k1om
6431
6432 #undef ELF_MACHINE_CODE
6433 #define ELF_MACHINE_CODE EM_K1OM
6434
6435 #undef ELF_OSABI
6436
6437 #undef elf64_bed
6438 #define elf64_bed elf64_k1om_bed
6439
6440 #undef elf_backend_object_p
6441 #define elf_backend_object_p elf64_k1om_elf_object_p
6442
6443 #undef elf_backend_static_tls_alignment
6444
6445 #undef elf_backend_want_plt_sym
6446 #define elf_backend_want_plt_sym 0
6447
6448 #include "elf64-target.h"
6449
6450 /* FreeBSD K1OM support. */
6451
6452 #undef TARGET_LITTLE_SYM
6453 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6454 #undef TARGET_LITTLE_NAME
6455 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6456
6457 #undef ELF_OSABI
6458 #define ELF_OSABI ELFOSABI_FREEBSD
6459
6460 #undef elf64_bed
6461 #define elf64_bed elf64_k1om_fbsd_bed
6462
6463 #include "elf64-target.h"
6464
6465 /* 32bit x86-64 support. */
6466
6467 #undef TARGET_LITTLE_SYM
6468 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6469 #undef TARGET_LITTLE_NAME
6470 #define TARGET_LITTLE_NAME "elf32-x86-64"
6471 #undef elf32_bed
6472
6473 #undef ELF_ARCH
6474 #define ELF_ARCH bfd_arch_i386
6475
6476 #undef ELF_MACHINE_CODE
6477 #define ELF_MACHINE_CODE EM_X86_64
6478
6479 #undef ELF_OSABI
6480
6481 #undef elf_backend_object_p
6482 #define elf_backend_object_p \
6483 elf32_x86_64_elf_object_p
6484
6485 #undef elf_backend_bfd_from_remote_memory
6486 #define elf_backend_bfd_from_remote_memory \
6487 _bfd_elf32_bfd_from_remote_memory
6488
6489 #undef elf_backend_size_info
6490 #define elf_backend_size_info \
6491 _bfd_elf32_size_info
6492
6493 #include "elf32-target.h"
This page took 0.17031 seconds and 4 git commands to generate.