2009-06-15 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #include "elf/x86-64.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table[] =
41 {
42 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
43 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
44 FALSE),
45 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
46 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
47 FALSE),
48 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
50 TRUE),
51 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
53 FALSE),
54 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
55 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
56 TRUE),
57 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
59 FALSE),
60 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
62 MINUS_ONE, FALSE),
63 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
65 MINUS_ONE, FALSE),
66 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
68 MINUS_ONE, FALSE),
69 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
71 0xffffffff, TRUE),
72 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
73 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
76 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
77 FALSE),
78 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
80 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
82 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
84 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
86 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
88 MINUS_ONE, FALSE),
89 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
91 MINUS_ONE, FALSE),
92 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
94 MINUS_ONE, FALSE),
95 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
97 0xffffffff, TRUE),
98 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
99 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
100 0xffffffff, TRUE),
101 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
103 0xffffffff, FALSE),
104 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
106 0xffffffff, TRUE),
107 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
109 0xffffffff, FALSE),
110 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
112 TRUE),
113 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
115 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
116 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
118 FALSE, 0xffffffff, 0xffffffff, TRUE),
119 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
121 FALSE),
122 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
124 MINUS_ONE, TRUE),
125 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
127 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
128 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
130 MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
133 MINUS_ONE, FALSE),
134 EMPTY_HOWTO (32),
135 EMPTY_HOWTO (33),
136 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
137 complain_overflow_bitfield, bfd_elf_generic_reloc,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE, 0xffffffff, 0xffffffff, TRUE),
140 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
141 complain_overflow_dont, bfd_elf_generic_reloc,
142 "R_X86_64_TLSDESC_CALL",
143 FALSE, 0, 0, FALSE),
144 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
145 complain_overflow_bitfield, bfd_elf_generic_reloc,
146 "R_X86_64_TLSDESC",
147 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
149 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
158
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
161 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
162
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
165 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
166 FALSE)
167 };
168
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
174
175 /* Map BFD relocs to the x86_64 elf relocs. */
176 struct elf_reloc_map
177 {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180 };
181
182 static const struct elf_reloc_map x86_64_reloc_map[] =
183 {
184 { BFD_RELOC_NONE, R_X86_64_NONE, },
185 { BFD_RELOC_64, R_X86_64_64, },
186 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
187 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
188 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
189 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
190 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
191 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
192 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
193 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
194 { BFD_RELOC_32, R_X86_64_32, },
195 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
196 { BFD_RELOC_16, R_X86_64_16, },
197 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
198 { BFD_RELOC_8, R_X86_64_8, },
199 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
200 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
201 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
202 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
203 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
204 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
205 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
206 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
207 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
208 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
209 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
210 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
211 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
212 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
213 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
214 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
215 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
218 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
219 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
220 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
221 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
222 };
223
224 static reloc_howto_type *
225 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
226 {
227 unsigned i;
228
229 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type >= (unsigned int) R_X86_64_max)
231 {
232 if (r_type >= (unsigned int) R_X86_64_standard)
233 {
234 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
235 abfd, (int) r_type);
236 r_type = R_X86_64_NONE;
237 }
238 i = r_type;
239 }
240 else
241 i = r_type - (unsigned int) R_X86_64_vt_offset;
242 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
243 return &x86_64_elf_howto_table[i];
244 }
245
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type *
248 elf64_x86_64_reloc_type_lookup (bfd *abfd,
249 bfd_reloc_code_real_type code)
250 {
251 unsigned int i;
252
253 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
254 i++)
255 {
256 if (x86_64_reloc_map[i].bfd_reloc_val == code)
257 return elf64_x86_64_rtype_to_howto (abfd,
258 x86_64_reloc_map[i].elf_reloc_val);
259 }
260 return 0;
261 }
262
263 static reloc_howto_type *
264 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
265 const char *r_name)
266 {
267 unsigned int i;
268
269 for (i = 0;
270 i < (sizeof (x86_64_elf_howto_table)
271 / sizeof (x86_64_elf_howto_table[0]));
272 i++)
273 if (x86_64_elf_howto_table[i].name != NULL
274 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
275 return &x86_64_elf_howto_table[i];
276
277 return NULL;
278 }
279
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
281
282 static void
283 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
284 Elf_Internal_Rela *dst)
285 {
286 unsigned r_type;
287
288 r_type = ELF64_R_TYPE (dst->r_info);
289 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
290 BFD_ASSERT (r_type == cache_ptr->howto->type);
291 }
292 \f
293 /* Support for core dump NOTE sections. */
294 static bfd_boolean
295 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
296 {
297 int offset;
298 size_t size;
299
300 switch (note->descsz)
301 {
302 default:
303 return FALSE;
304
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
306 /* pr_cursig */
307 elf_tdata (abfd)->core_signal
308 = bfd_get_16 (abfd, note->descdata + 12);
309
310 /* pr_pid */
311 elf_tdata (abfd)->core_pid
312 = bfd_get_32 (abfd, note->descdata + 32);
313
314 /* pr_reg */
315 offset = 112;
316 size = 216;
317
318 break;
319 }
320
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
323 size, note->descpos + offset);
324 }
325
326 static bfd_boolean
327 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
328 {
329 switch (note->descsz)
330 {
331 default:
332 return FALSE;
333
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd)->core_program
336 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
337 elf_tdata (abfd)->core_command
338 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
339 }
340
341 /* Note that for some reason, a spurious space is tacked
342 onto the end of the args in some (at least one anyway)
343 implementations, so strip it off if it exists. */
344
345 {
346 char *command = elf_tdata (abfd)->core_command;
347 int n = strlen (command);
348
349 if (0 < n && command[n - 1] == ' ')
350 command[n - 1] = '\0';
351 }
352
353 return TRUE;
354 }
355 \f
356 /* Functions for the x86-64 ELF linker. */
357
358 /* The name of the dynamic interpreter. This is put in the .interp
359 section. */
360
361 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
362
363 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
364 copying dynamic variables from a shared lib into an app's dynbss
365 section, and instead use a dynamic relocation to point into the
366 shared lib. */
367 #define ELIMINATE_COPY_RELOCS 1
368
369 /* The size in bytes of an entry in the global offset table. */
370
371 #define GOT_ENTRY_SIZE 8
372
373 /* The size in bytes of an entry in the procedure linkage table. */
374
375 #define PLT_ENTRY_SIZE 16
376
377 /* The first entry in a procedure linkage table looks like this. See the
378 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
379
380 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
381 {
382 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
383 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
384 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
385 };
386
387 /* Subsequent entries in a procedure linkage table look like this. */
388
389 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
390 {
391 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
392 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
393 0x68, /* pushq immediate */
394 0, 0, 0, 0, /* replaced with index into relocation table. */
395 0xe9, /* jmp relative */
396 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
397 };
398
399 /* The x86-64 linker needs to keep track of the number of relocs that
400 it decides to copy as dynamic relocs in check_relocs for each symbol.
401 This is so that it can later discard them if they are found to be
402 unnecessary. We store the information in a field extending the
403 regular ELF linker hash table. */
404
405 struct elf64_x86_64_dyn_relocs
406 {
407 /* Next section. */
408 struct elf64_x86_64_dyn_relocs *next;
409
410 /* The input section of the reloc. */
411 asection *sec;
412
413 /* Total number of relocs copied for the input section. */
414 bfd_size_type count;
415
416 /* Number of pc-relative relocs copied for the input section. */
417 bfd_size_type pc_count;
418 };
419
420 /* x86-64 ELF linker hash entry. */
421
422 struct elf64_x86_64_link_hash_entry
423 {
424 struct elf_link_hash_entry elf;
425
426 /* Track dynamic relocs copied for this symbol. */
427 struct elf64_x86_64_dyn_relocs *dyn_relocs;
428
429 #define GOT_UNKNOWN 0
430 #define GOT_NORMAL 1
431 #define GOT_TLS_GD 2
432 #define GOT_TLS_IE 3
433 #define GOT_TLS_GDESC 4
434 #define GOT_TLS_GD_BOTH_P(type) \
435 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
436 #define GOT_TLS_GD_P(type) \
437 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
438 #define GOT_TLS_GDESC_P(type) \
439 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
440 #define GOT_TLS_GD_ANY_P(type) \
441 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
442 unsigned char tls_type;
443
444 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
445 starting at the end of the jump table. */
446 bfd_vma tlsdesc_got;
447 };
448
449 #define elf64_x86_64_hash_entry(ent) \
450 ((struct elf64_x86_64_link_hash_entry *)(ent))
451
452 struct elf64_x86_64_obj_tdata
453 {
454 struct elf_obj_tdata root;
455
456 /* tls_type for each local got entry. */
457 char *local_got_tls_type;
458
459 /* GOTPLT entries for TLS descriptors. */
460 bfd_vma *local_tlsdesc_gotent;
461 };
462
463 #define elf64_x86_64_tdata(abfd) \
464 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
465
466 #define elf64_x86_64_local_got_tls_type(abfd) \
467 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
468
469 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
470 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
471
472 #define is_x86_64_elf(bfd) \
473 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
474 && elf_tdata (bfd) != NULL \
475 && elf_object_id (bfd) == X86_64_ELF_TDATA)
476
477 static bfd_boolean
478 elf64_x86_64_mkobject (bfd *abfd)
479 {
480 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
481 X86_64_ELF_TDATA);
482 }
483
484 /* x86-64 ELF linker hash table. */
485
486 struct elf64_x86_64_link_hash_table
487 {
488 struct elf_link_hash_table elf;
489
490 /* Short-cuts to get to dynamic linker sections. */
491 asection *sgot;
492 asection *sgotplt;
493 asection *srelgot;
494 asection *splt;
495 asection *srelplt;
496 asection *sdynbss;
497 asection *srelbss;
498 asection *igotplt;
499 asection *iplt;
500 asection *irelplt;
501 asection *irelifunc;
502
503 /* The offset into splt of the PLT entry for the TLS descriptor
504 resolver. Special values are 0, if not necessary (or not found
505 to be necessary yet), and -1 if needed but not determined
506 yet. */
507 bfd_vma tlsdesc_plt;
508 /* The offset into sgot of the GOT entry used by the PLT entry
509 above. */
510 bfd_vma tlsdesc_got;
511
512 union {
513 bfd_signed_vma refcount;
514 bfd_vma offset;
515 } tls_ld_got;
516
517 /* The amount of space used by the jump slots in the GOT. */
518 bfd_vma sgotplt_jump_table_size;
519
520 /* Small local sym to section mapping cache. */
521 struct sym_sec_cache sym_sec;
522
523 /* _TLS_MODULE_BASE_ symbol. */
524 struct bfd_link_hash_entry *tls_module_base;
525
526 /* Used by local STT_GNU_IFUNC symbols. */
527 htab_t loc_hash_table;
528 void *loc_hash_memory;
529 };
530
531 /* Get the x86-64 ELF linker hash table from a link_info structure. */
532
533 #define elf64_x86_64_hash_table(p) \
534 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
535
536 #define elf64_x86_64_compute_jump_table_size(htab) \
537 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
538
539 /* Create an entry in an x86-64 ELF linker hash table. */
540
541 static struct bfd_hash_entry *
542 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
543 struct bfd_hash_table *table,
544 const char *string)
545 {
546 /* Allocate the structure if it has not already been allocated by a
547 subclass. */
548 if (entry == NULL)
549 {
550 entry = bfd_hash_allocate (table,
551 sizeof (struct elf64_x86_64_link_hash_entry));
552 if (entry == NULL)
553 return entry;
554 }
555
556 /* Call the allocation method of the superclass. */
557 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
558 if (entry != NULL)
559 {
560 struct elf64_x86_64_link_hash_entry *eh;
561
562 eh = (struct elf64_x86_64_link_hash_entry *) entry;
563 eh->dyn_relocs = NULL;
564 eh->tls_type = GOT_UNKNOWN;
565 eh->tlsdesc_got = (bfd_vma) -1;
566 }
567
568 return entry;
569 }
570
571 static hashval_t
572 elf64_x86_64_local_hash (int id, int r_sym)
573 {
574 return ((((id & 0xff) << 24) | ((id & 0xff00) << 8))
575 ^ r_sym ^ (id >> 16));
576 }
577
578 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
579 for local symbol so that we can handle local STT_GNU_IFUNC symbols
580 as global symbol. We reuse indx and dynstr_index for local symbol
581 hash since they aren't used by global symbols in this backend. */
582
583 static hashval_t
584 elf64_x86_64_local_htab_hash (const void *ptr)
585 {
586 struct elf_link_hash_entry *h
587 = (struct elf_link_hash_entry *) ptr;
588 return elf64_x86_64_local_hash (h->indx, h->dynstr_index);
589 }
590
591 /* Compare local hash entries. */
592
593 static int
594 elf64_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
595 {
596 struct elf_link_hash_entry *h1
597 = (struct elf_link_hash_entry *) ptr1;
598 struct elf_link_hash_entry *h2
599 = (struct elf_link_hash_entry *) ptr2;
600
601 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
602 }
603
604 /* Find and/or create a hash entry for local symbol. */
605
606 static struct elf_link_hash_entry *
607 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table *htab,
608 bfd *abfd, const Elf_Internal_Rela *rel,
609 bfd_boolean create)
610 {
611 struct elf64_x86_64_link_hash_entry e, *ret;
612 asection *sec = abfd->sections;
613 hashval_t h = elf64_x86_64_local_hash (sec->id,
614 ELF64_R_SYM (rel->r_info));
615 void **slot;
616
617 e.elf.indx = sec->id;
618 e.elf.dynstr_index = ELF64_R_SYM (rel->r_info);
619 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
620 create ? INSERT : NO_INSERT);
621
622 if (!slot)
623 return NULL;
624
625 if (*slot)
626 {
627 ret = (struct elf64_x86_64_link_hash_entry *) *slot;
628 return &ret->elf;
629 }
630
631 ret = (struct elf64_x86_64_link_hash_entry *)
632 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
633 sizeof (struct elf64_x86_64_link_hash_entry));
634 if (ret)
635 {
636 memset (ret, 0, sizeof (*ret));
637 ret->elf.indx = sec->id;
638 ret->elf.dynstr_index = ELF64_R_SYM (rel->r_info);
639 ret->elf.dynindx = -1;
640 ret->elf.plt.offset = (bfd_vma) -1;
641 ret->elf.got.offset = (bfd_vma) -1;
642 *slot = ret;
643 }
644 return &ret->elf;
645 }
646
647 /* Create an X86-64 ELF linker hash table. */
648
649 static struct bfd_link_hash_table *
650 elf64_x86_64_link_hash_table_create (bfd *abfd)
651 {
652 struct elf64_x86_64_link_hash_table *ret;
653 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
654
655 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
656 if (ret == NULL)
657 return NULL;
658
659 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
660 elf64_x86_64_link_hash_newfunc,
661 sizeof (struct elf64_x86_64_link_hash_entry)))
662 {
663 free (ret);
664 return NULL;
665 }
666
667 ret->sgot = NULL;
668 ret->sgotplt = NULL;
669 ret->srelgot = NULL;
670 ret->splt = NULL;
671 ret->srelplt = NULL;
672 ret->sdynbss = NULL;
673 ret->srelbss = NULL;
674 ret->igotplt= NULL;
675 ret->iplt = NULL;
676 ret->irelplt= NULL;
677 ret->irelifunc = NULL;
678 ret->sym_sec.abfd = NULL;
679 ret->tlsdesc_plt = 0;
680 ret->tlsdesc_got = 0;
681 ret->tls_ld_got.refcount = 0;
682 ret->sgotplt_jump_table_size = 0;
683 ret->tls_module_base = NULL;
684
685 ret->loc_hash_table = htab_try_create (1024,
686 elf64_x86_64_local_htab_hash,
687 elf64_x86_64_local_htab_eq,
688 NULL);
689 ret->loc_hash_memory = objalloc_create ();
690 if (!ret->loc_hash_table || !ret->loc_hash_memory)
691 {
692 free (ret);
693 return NULL;
694 }
695
696 return &ret->elf.root;
697 }
698
699 /* Destroy an X86-64 ELF linker hash table. */
700
701 static void
702 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
703 {
704 struct elf64_x86_64_link_hash_table *htab
705 = (struct elf64_x86_64_link_hash_table *) hash;
706
707 if (htab->loc_hash_table)
708 htab_delete (htab->loc_hash_table);
709 if (htab->loc_hash_memory)
710 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
711 _bfd_generic_link_hash_table_free (hash);
712 }
713
714 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
715 shortcuts to them in our hash table. */
716
717 static bfd_boolean
718 elf64_x86_64_create_got_section (bfd *dynobj, struct bfd_link_info *info)
719 {
720 struct elf64_x86_64_link_hash_table *htab;
721
722 if (! _bfd_elf_create_got_section (dynobj, info))
723 return FALSE;
724
725 htab = elf64_x86_64_hash_table (info);
726 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
727 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
728 if (!htab->sgot || !htab->sgotplt)
729 abort ();
730
731 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
732 (SEC_ALLOC | SEC_LOAD
733 | SEC_HAS_CONTENTS
734 | SEC_IN_MEMORY
735 | SEC_LINKER_CREATED
736 | SEC_READONLY));
737 if (htab->srelgot == NULL
738 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
739 return FALSE;
740 return TRUE;
741 }
742
743 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
744 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
745 hash table. */
746
747 static bfd_boolean
748 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
749 {
750 struct elf64_x86_64_link_hash_table *htab;
751
752 htab = elf64_x86_64_hash_table (info);
753 if (!htab->sgot && !elf64_x86_64_create_got_section (dynobj, info))
754 return FALSE;
755
756 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
757 return FALSE;
758
759 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
760 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
761 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
762 if (!info->shared)
763 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
764
765 if (!htab->splt || !htab->srelplt || !htab->sdynbss
766 || (!info->shared && !htab->srelbss))
767 abort ();
768
769 return TRUE;
770 }
771
772 /* Copy the extra info we tack onto an elf_link_hash_entry. */
773
774 static void
775 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
776 struct elf_link_hash_entry *dir,
777 struct elf_link_hash_entry *ind)
778 {
779 struct elf64_x86_64_link_hash_entry *edir, *eind;
780
781 edir = (struct elf64_x86_64_link_hash_entry *) dir;
782 eind = (struct elf64_x86_64_link_hash_entry *) ind;
783
784 if (eind->dyn_relocs != NULL)
785 {
786 if (edir->dyn_relocs != NULL)
787 {
788 struct elf64_x86_64_dyn_relocs **pp;
789 struct elf64_x86_64_dyn_relocs *p;
790
791 /* Add reloc counts against the indirect sym to the direct sym
792 list. Merge any entries against the same section. */
793 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
794 {
795 struct elf64_x86_64_dyn_relocs *q;
796
797 for (q = edir->dyn_relocs; q != NULL; q = q->next)
798 if (q->sec == p->sec)
799 {
800 q->pc_count += p->pc_count;
801 q->count += p->count;
802 *pp = p->next;
803 break;
804 }
805 if (q == NULL)
806 pp = &p->next;
807 }
808 *pp = edir->dyn_relocs;
809 }
810
811 edir->dyn_relocs = eind->dyn_relocs;
812 eind->dyn_relocs = NULL;
813 }
814
815 if (ind->root.type == bfd_link_hash_indirect
816 && dir->got.refcount <= 0)
817 {
818 edir->tls_type = eind->tls_type;
819 eind->tls_type = GOT_UNKNOWN;
820 }
821
822 if (ELIMINATE_COPY_RELOCS
823 && ind->root.type != bfd_link_hash_indirect
824 && dir->dynamic_adjusted)
825 {
826 /* If called to transfer flags for a weakdef during processing
827 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
828 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
829 dir->ref_dynamic |= ind->ref_dynamic;
830 dir->ref_regular |= ind->ref_regular;
831 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
832 dir->needs_plt |= ind->needs_plt;
833 dir->pointer_equality_needed |= ind->pointer_equality_needed;
834 }
835 else
836 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
837 }
838
839 static bfd_boolean
840 elf64_x86_64_elf_object_p (bfd *abfd)
841 {
842 /* Set the right machine number for an x86-64 elf64 file. */
843 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
844 return TRUE;
845 }
846
847 typedef union
848 {
849 unsigned char c[2];
850 uint16_t i;
851 }
852 x86_64_opcode16;
853
854 typedef union
855 {
856 unsigned char c[4];
857 uint32_t i;
858 }
859 x86_64_opcode32;
860
861 /* Return TRUE if the TLS access code sequence support transition
862 from R_TYPE. */
863
864 static bfd_boolean
865 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
866 bfd_byte *contents,
867 Elf_Internal_Shdr *symtab_hdr,
868 struct elf_link_hash_entry **sym_hashes,
869 unsigned int r_type,
870 const Elf_Internal_Rela *rel,
871 const Elf_Internal_Rela *relend)
872 {
873 unsigned int val;
874 unsigned long r_symndx;
875 struct elf_link_hash_entry *h;
876 bfd_vma offset;
877
878 /* Get the section contents. */
879 if (contents == NULL)
880 {
881 if (elf_section_data (sec)->this_hdr.contents != NULL)
882 contents = elf_section_data (sec)->this_hdr.contents;
883 else
884 {
885 /* FIXME: How to better handle error condition? */
886 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
887 return FALSE;
888
889 /* Cache the section contents for elf_link_input_bfd. */
890 elf_section_data (sec)->this_hdr.contents = contents;
891 }
892 }
893
894 offset = rel->r_offset;
895 switch (r_type)
896 {
897 case R_X86_64_TLSGD:
898 case R_X86_64_TLSLD:
899 if ((rel + 1) >= relend)
900 return FALSE;
901
902 if (r_type == R_X86_64_TLSGD)
903 {
904 /* Check transition from GD access model. Only
905 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
906 .word 0x6666; rex64; call __tls_get_addr
907 can transit to different access model. */
908
909 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
910 call = { { 0x66, 0x66, 0x48, 0xe8 } };
911 if (offset < 4
912 || (offset + 12) > sec->size
913 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
914 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
915 return FALSE;
916 }
917 else
918 {
919 /* Check transition from LD access model. Only
920 leaq foo@tlsld(%rip), %rdi;
921 call __tls_get_addr
922 can transit to different access model. */
923
924 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
925 x86_64_opcode32 op;
926
927 if (offset < 3 || (offset + 9) > sec->size)
928 return FALSE;
929
930 op.i = bfd_get_32 (abfd, contents + offset - 3);
931 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
932 if (op.i != ld.i)
933 return FALSE;
934 }
935
936 r_symndx = ELF64_R_SYM (rel[1].r_info);
937 if (r_symndx < symtab_hdr->sh_info)
938 return FALSE;
939
940 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
941 /* Use strncmp to check __tls_get_addr since __tls_get_addr
942 may be versioned. */
943 return (h != NULL
944 && h->root.root.string != NULL
945 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
946 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
947 && (strncmp (h->root.root.string,
948 "__tls_get_addr", 14) == 0));
949
950 case R_X86_64_GOTTPOFF:
951 /* Check transition from IE access model:
952 movq foo@gottpoff(%rip), %reg
953 addq foo@gottpoff(%rip), %reg
954 */
955
956 if (offset < 3 || (offset + 4) > sec->size)
957 return FALSE;
958
959 val = bfd_get_8 (abfd, contents + offset - 3);
960 if (val != 0x48 && val != 0x4c)
961 return FALSE;
962
963 val = bfd_get_8 (abfd, contents + offset - 2);
964 if (val != 0x8b && val != 0x03)
965 return FALSE;
966
967 val = bfd_get_8 (abfd, contents + offset - 1);
968 return (val & 0xc7) == 5;
969
970 case R_X86_64_GOTPC32_TLSDESC:
971 /* Check transition from GDesc access model:
972 leaq x@tlsdesc(%rip), %rax
973
974 Make sure it's a leaq adding rip to a 32-bit offset
975 into any register, although it's probably almost always
976 going to be rax. */
977
978 if (offset < 3 || (offset + 4) > sec->size)
979 return FALSE;
980
981 val = bfd_get_8 (abfd, contents + offset - 3);
982 if ((val & 0xfb) != 0x48)
983 return FALSE;
984
985 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
986 return FALSE;
987
988 val = bfd_get_8 (abfd, contents + offset - 1);
989 return (val & 0xc7) == 0x05;
990
991 case R_X86_64_TLSDESC_CALL:
992 /* Check transition from GDesc access model:
993 call *x@tlsdesc(%rax)
994 */
995 if (offset + 2 <= sec->size)
996 {
997 /* Make sure that it's a call *x@tlsdesc(%rax). */
998 static x86_64_opcode16 call = { { 0xff, 0x10 } };
999 return bfd_get_16 (abfd, contents + offset) == call.i;
1000 }
1001
1002 return FALSE;
1003
1004 default:
1005 abort ();
1006 }
1007 }
1008
1009 /* Return TRUE if the TLS access transition is OK or no transition
1010 will be performed. Update R_TYPE if there is a transition. */
1011
1012 static bfd_boolean
1013 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1014 asection *sec, bfd_byte *contents,
1015 Elf_Internal_Shdr *symtab_hdr,
1016 struct elf_link_hash_entry **sym_hashes,
1017 unsigned int *r_type, int tls_type,
1018 const Elf_Internal_Rela *rel,
1019 const Elf_Internal_Rela *relend,
1020 struct elf_link_hash_entry *h)
1021 {
1022 unsigned int from_type = *r_type;
1023 unsigned int to_type = from_type;
1024 bfd_boolean check = TRUE;
1025
1026 switch (from_type)
1027 {
1028 case R_X86_64_TLSGD:
1029 case R_X86_64_GOTPC32_TLSDESC:
1030 case R_X86_64_TLSDESC_CALL:
1031 case R_X86_64_GOTTPOFF:
1032 if (!info->shared)
1033 {
1034 if (h == NULL)
1035 to_type = R_X86_64_TPOFF32;
1036 else
1037 to_type = R_X86_64_GOTTPOFF;
1038 }
1039
1040 /* When we are called from elf64_x86_64_relocate_section,
1041 CONTENTS isn't NULL and there may be additional transitions
1042 based on TLS_TYPE. */
1043 if (contents != NULL)
1044 {
1045 unsigned int new_to_type = to_type;
1046
1047 if (!info->shared
1048 && h != NULL
1049 && h->dynindx == -1
1050 && tls_type == GOT_TLS_IE)
1051 new_to_type = R_X86_64_TPOFF32;
1052
1053 if (to_type == R_X86_64_TLSGD
1054 || to_type == R_X86_64_GOTPC32_TLSDESC
1055 || to_type == R_X86_64_TLSDESC_CALL)
1056 {
1057 if (tls_type == GOT_TLS_IE)
1058 new_to_type = R_X86_64_GOTTPOFF;
1059 }
1060
1061 /* We checked the transition before when we were called from
1062 elf64_x86_64_check_relocs. We only want to check the new
1063 transition which hasn't been checked before. */
1064 check = new_to_type != to_type && from_type == to_type;
1065 to_type = new_to_type;
1066 }
1067
1068 break;
1069
1070 case R_X86_64_TLSLD:
1071 if (!info->shared)
1072 to_type = R_X86_64_TPOFF32;
1073 break;
1074
1075 default:
1076 return TRUE;
1077 }
1078
1079 /* Return TRUE if there is no transition. */
1080 if (from_type == to_type)
1081 return TRUE;
1082
1083 /* Check if the transition can be performed. */
1084 if (check
1085 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
1086 symtab_hdr, sym_hashes,
1087 from_type, rel, relend))
1088 {
1089 reloc_howto_type *from, *to;
1090
1091 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
1092 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
1093
1094 (*_bfd_error_handler)
1095 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1096 "in section `%A' failed"),
1097 abfd, sec, from->name, to->name,
1098 h ? h->root.root.string : "a local symbol",
1099 (unsigned long) rel->r_offset);
1100 bfd_set_error (bfd_error_bad_value);
1101 return FALSE;
1102 }
1103
1104 *r_type = to_type;
1105 return TRUE;
1106 }
1107
1108 /* Look through the relocs for a section during the first phase, and
1109 calculate needed space in the global offset table, procedure
1110 linkage table, and dynamic reloc sections. */
1111
1112 static bfd_boolean
1113 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1114 asection *sec,
1115 const Elf_Internal_Rela *relocs)
1116 {
1117 struct elf64_x86_64_link_hash_table *htab;
1118 Elf_Internal_Shdr *symtab_hdr;
1119 struct elf_link_hash_entry **sym_hashes;
1120 const Elf_Internal_Rela *rel;
1121 const Elf_Internal_Rela *rel_end;
1122 asection *sreloc;
1123 Elf_Internal_Sym *isymbuf;
1124
1125 if (info->relocatable)
1126 return TRUE;
1127
1128 BFD_ASSERT (is_x86_64_elf (abfd));
1129
1130 htab = elf64_x86_64_hash_table (info);
1131 symtab_hdr = &elf_symtab_hdr (abfd);
1132 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1133 sym_hashes = elf_sym_hashes (abfd);
1134
1135 sreloc = NULL;
1136
1137 rel_end = relocs + sec->reloc_count;
1138 for (rel = relocs; rel < rel_end; rel++)
1139 {
1140 unsigned int r_type;
1141 unsigned long r_symndx;
1142 struct elf_link_hash_entry *h;
1143
1144 r_symndx = ELF64_R_SYM (rel->r_info);
1145 r_type = ELF64_R_TYPE (rel->r_info);
1146
1147 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1148 {
1149 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1150 abfd, r_symndx);
1151 return FALSE;
1152 }
1153
1154 if (r_symndx < symtab_hdr->sh_info)
1155 {
1156 /* A local symbol. */
1157 Elf_Internal_Sym *isym;
1158
1159 /* Read this BFD's local symbols. */
1160 if (isymbuf == NULL)
1161 {
1162 if (isymbuf == NULL)
1163 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1164 symtab_hdr->sh_info, 0,
1165 NULL, NULL, NULL);
1166 if (isymbuf == NULL)
1167 return FALSE;
1168 }
1169
1170 /* Check relocation against local STT_GNU_IFUNC symbol. */
1171 isym = isymbuf + r_symndx;
1172 if (ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1173 {
1174 h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1175 TRUE);
1176 if (h == NULL)
1177 return FALSE;
1178
1179 /* Fake a STT_GNU_IFUNC symbol. */
1180 h->type = STT_GNU_IFUNC;
1181 h->def_regular = 1;
1182 h->ref_regular = 1;
1183 h->forced_local = 1;
1184 h->root.type = bfd_link_hash_defined;
1185 }
1186 else
1187 h = NULL;
1188 }
1189 else
1190 {
1191 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1192 while (h->root.type == bfd_link_hash_indirect
1193 || h->root.type == bfd_link_hash_warning)
1194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1195 }
1196
1197 if (h != NULL)
1198 {
1199 /* Create the ifunc sections for static executables. If we
1200 never see an indirect function symbol nor we are building
1201 a static executable, those sections will be empty and
1202 won't appear in output. */
1203 switch (r_type)
1204 {
1205 default:
1206 break;
1207
1208 case R_X86_64_32S:
1209 case R_X86_64_32:
1210 case R_X86_64_64:
1211 case R_X86_64_PC32:
1212 case R_X86_64_PC64:
1213 case R_X86_64_PLT32:
1214 case R_X86_64_GOTPCREL:
1215 case R_X86_64_GOTPCREL64:
1216 if (htab->irelifunc == NULL && htab->iplt == NULL)
1217 {
1218 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1219 return FALSE;
1220
1221 if (info->shared)
1222 {
1223 htab->irelifunc = bfd_get_section_by_name (abfd,
1224 ".rela.ifunc");
1225 if (!htab->irelifunc)
1226 abort ();
1227 }
1228 else
1229 {
1230 htab->iplt = bfd_get_section_by_name (abfd, ".iplt");
1231 htab->irelplt = bfd_get_section_by_name (abfd,
1232 ".rela.iplt");
1233 htab->igotplt = bfd_get_section_by_name (abfd,
1234 ".igot.plt");
1235 if (!htab->iplt
1236 || !htab->irelplt
1237 || !htab->igotplt)
1238 abort ();
1239 }
1240 }
1241 break;
1242 }
1243
1244 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1245 it here if it is defined in a non-shared object. */
1246 if (h->type == STT_GNU_IFUNC
1247 && h->def_regular)
1248 {
1249 /* It is referenced by a non-shared object. */
1250 h->ref_regular = 1;
1251
1252 /* STT_GNU_IFUNC symbol must go through PLT. */
1253 h->plt.refcount += 1;
1254
1255 /* STT_GNU_IFUNC needs dynamic sections. */
1256 if (htab->elf.dynobj == NULL)
1257 htab->elf.dynobj = abfd;
1258
1259 switch (r_type)
1260 {
1261 default:
1262 (*_bfd_error_handler)
1263 (_("%B: relocation %s against STT_GNU_IFUNC "
1264 "symbol `%s' isn't handled by %s"), abfd,
1265 x86_64_elf_howto_table[r_type].name,
1266 (h->root.root.string
1267 ? h->root.root.string : "a local symbol"),
1268 __FUNCTION__);
1269 bfd_set_error (bfd_error_bad_value);
1270 return FALSE;
1271
1272 case R_X86_64_64:
1273 h->non_got_ref = 1;
1274 h->pointer_equality_needed = 1;
1275 if (info->shared)
1276 {
1277 struct elf64_x86_64_dyn_relocs *p;
1278 struct elf64_x86_64_dyn_relocs **head;
1279
1280 /* We must copy these reloc types into the output
1281 file. Create a reloc section in dynobj and
1282 make room for this reloc. */
1283 if (sreloc == NULL)
1284 {
1285 if (htab->elf.dynobj == NULL)
1286 htab->elf.dynobj = abfd;
1287
1288 sreloc = _bfd_elf_make_dynamic_reloc_section
1289 (sec, htab->elf.dynobj, 3, abfd, TRUE);
1290
1291 if (sreloc == NULL)
1292 return FALSE;
1293 }
1294
1295 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1296 p = *head;
1297 if (p == NULL || p->sec != sec)
1298 {
1299 bfd_size_type amt = sizeof *p;
1300
1301 p = ((struct elf64_x86_64_dyn_relocs *)
1302 bfd_alloc (htab->elf.dynobj, amt));
1303 if (p == NULL)
1304 return FALSE;
1305 p->next = *head;
1306 *head = p;
1307 p->sec = sec;
1308 p->count = 0;
1309 p->pc_count = 0;
1310 }
1311 p->count += 1;
1312 }
1313 break;
1314
1315 case R_X86_64_32S:
1316 case R_X86_64_32:
1317 case R_X86_64_PC32:
1318 case R_X86_64_PC64:
1319 h->non_got_ref = 1;
1320 if (r_type != R_X86_64_PC32
1321 && r_type != R_X86_64_PC64)
1322 h->pointer_equality_needed = 1;
1323 break;
1324
1325 case R_X86_64_PLT32:
1326 break;
1327
1328 case R_X86_64_GOTPCREL:
1329 case R_X86_64_GOTPCREL64:
1330 h->got.refcount += 1;
1331 if (htab->sgot == NULL
1332 && !elf64_x86_64_create_got_section (htab->elf.dynobj,
1333 info))
1334 return FALSE;
1335 break;
1336 }
1337
1338 continue;
1339 }
1340 }
1341
1342 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1343 symtab_hdr, sym_hashes,
1344 &r_type, GOT_UNKNOWN,
1345 rel, rel_end, h))
1346 return FALSE;
1347
1348 switch (r_type)
1349 {
1350 case R_X86_64_TLSLD:
1351 htab->tls_ld_got.refcount += 1;
1352 goto create_got;
1353
1354 case R_X86_64_TPOFF32:
1355 if (info->shared)
1356 {
1357 (*_bfd_error_handler)
1358 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1359 abfd,
1360 x86_64_elf_howto_table[r_type].name,
1361 (h) ? h->root.root.string : "a local symbol");
1362 bfd_set_error (bfd_error_bad_value);
1363 return FALSE;
1364 }
1365 break;
1366
1367 case R_X86_64_GOTTPOFF:
1368 if (info->shared)
1369 info->flags |= DF_STATIC_TLS;
1370 /* Fall through */
1371
1372 case R_X86_64_GOT32:
1373 case R_X86_64_GOTPCREL:
1374 case R_X86_64_TLSGD:
1375 case R_X86_64_GOT64:
1376 case R_X86_64_GOTPCREL64:
1377 case R_X86_64_GOTPLT64:
1378 case R_X86_64_GOTPC32_TLSDESC:
1379 case R_X86_64_TLSDESC_CALL:
1380 /* This symbol requires a global offset table entry. */
1381 {
1382 int tls_type, old_tls_type;
1383
1384 switch (r_type)
1385 {
1386 default: tls_type = GOT_NORMAL; break;
1387 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1388 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1389 case R_X86_64_GOTPC32_TLSDESC:
1390 case R_X86_64_TLSDESC_CALL:
1391 tls_type = GOT_TLS_GDESC; break;
1392 }
1393
1394 if (h != NULL)
1395 {
1396 if (r_type == R_X86_64_GOTPLT64)
1397 {
1398 /* This relocation indicates that we also need
1399 a PLT entry, as this is a function. We don't need
1400 a PLT entry for local symbols. */
1401 h->needs_plt = 1;
1402 h->plt.refcount += 1;
1403 }
1404 h->got.refcount += 1;
1405 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1406 }
1407 else
1408 {
1409 bfd_signed_vma *local_got_refcounts;
1410
1411 /* This is a global offset table entry for a local symbol. */
1412 local_got_refcounts = elf_local_got_refcounts (abfd);
1413 if (local_got_refcounts == NULL)
1414 {
1415 bfd_size_type size;
1416
1417 size = symtab_hdr->sh_info;
1418 size *= sizeof (bfd_signed_vma)
1419 + sizeof (bfd_vma) + sizeof (char);
1420 local_got_refcounts = ((bfd_signed_vma *)
1421 bfd_zalloc (abfd, size));
1422 if (local_got_refcounts == NULL)
1423 return FALSE;
1424 elf_local_got_refcounts (abfd) = local_got_refcounts;
1425 elf64_x86_64_local_tlsdesc_gotent (abfd)
1426 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1427 elf64_x86_64_local_got_tls_type (abfd)
1428 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1429 }
1430 local_got_refcounts[r_symndx] += 1;
1431 old_tls_type
1432 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1433 }
1434
1435 /* If a TLS symbol is accessed using IE at least once,
1436 there is no point to use dynamic model for it. */
1437 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1438 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1439 || tls_type != GOT_TLS_IE))
1440 {
1441 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1442 tls_type = old_tls_type;
1443 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1444 && GOT_TLS_GD_ANY_P (tls_type))
1445 tls_type |= old_tls_type;
1446 else
1447 {
1448 (*_bfd_error_handler)
1449 (_("%B: '%s' accessed both as normal and thread local symbol"),
1450 abfd, h ? h->root.root.string : "<local>");
1451 return FALSE;
1452 }
1453 }
1454
1455 if (old_tls_type != tls_type)
1456 {
1457 if (h != NULL)
1458 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1459 else
1460 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1461 }
1462 }
1463 /* Fall through */
1464
1465 case R_X86_64_GOTOFF64:
1466 case R_X86_64_GOTPC32:
1467 case R_X86_64_GOTPC64:
1468 create_got:
1469 if (htab->sgot == NULL)
1470 {
1471 if (htab->elf.dynobj == NULL)
1472 htab->elf.dynobj = abfd;
1473 if (!elf64_x86_64_create_got_section (htab->elf.dynobj,
1474 info))
1475 return FALSE;
1476 }
1477 break;
1478
1479 case R_X86_64_PLT32:
1480 /* This symbol requires a procedure linkage table entry. We
1481 actually build the entry in adjust_dynamic_symbol,
1482 because this might be a case of linking PIC code which is
1483 never referenced by a dynamic object, in which case we
1484 don't need to generate a procedure linkage table entry
1485 after all. */
1486
1487 /* If this is a local symbol, we resolve it directly without
1488 creating a procedure linkage table entry. */
1489 if (h == NULL)
1490 continue;
1491
1492 h->needs_plt = 1;
1493 h->plt.refcount += 1;
1494 break;
1495
1496 case R_X86_64_PLTOFF64:
1497 /* This tries to form the 'address' of a function relative
1498 to GOT. For global symbols we need a PLT entry. */
1499 if (h != NULL)
1500 {
1501 h->needs_plt = 1;
1502 h->plt.refcount += 1;
1503 }
1504 goto create_got;
1505
1506 case R_X86_64_8:
1507 case R_X86_64_16:
1508 case R_X86_64_32:
1509 case R_X86_64_32S:
1510 /* Let's help debug shared library creation. These relocs
1511 cannot be used in shared libs. Don't error out for
1512 sections we don't care about, such as debug sections or
1513 non-constant sections. */
1514 if (info->shared
1515 && (sec->flags & SEC_ALLOC) != 0
1516 && (sec->flags & SEC_READONLY) != 0)
1517 {
1518 (*_bfd_error_handler)
1519 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1520 abfd,
1521 x86_64_elf_howto_table[r_type].name,
1522 (h) ? h->root.root.string : "a local symbol");
1523 bfd_set_error (bfd_error_bad_value);
1524 return FALSE;
1525 }
1526 /* Fall through. */
1527
1528 case R_X86_64_PC8:
1529 case R_X86_64_PC16:
1530 case R_X86_64_PC32:
1531 case R_X86_64_PC64:
1532 case R_X86_64_64:
1533 if (h != NULL && info->executable)
1534 {
1535 /* If this reloc is in a read-only section, we might
1536 need a copy reloc. We can't check reliably at this
1537 stage whether the section is read-only, as input
1538 sections have not yet been mapped to output sections.
1539 Tentatively set the flag for now, and correct in
1540 adjust_dynamic_symbol. */
1541 h->non_got_ref = 1;
1542
1543 /* We may need a .plt entry if the function this reloc
1544 refers to is in a shared lib. */
1545 h->plt.refcount += 1;
1546 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1547 h->pointer_equality_needed = 1;
1548 }
1549
1550 /* If we are creating a shared library, and this is a reloc
1551 against a global symbol, or a non PC relative reloc
1552 against a local symbol, then we need to copy the reloc
1553 into the shared library. However, if we are linking with
1554 -Bsymbolic, we do not need to copy a reloc against a
1555 global symbol which is defined in an object we are
1556 including in the link (i.e., DEF_REGULAR is set). At
1557 this point we have not seen all the input files, so it is
1558 possible that DEF_REGULAR is not set now but will be set
1559 later (it is never cleared). In case of a weak definition,
1560 DEF_REGULAR may be cleared later by a strong definition in
1561 a shared library. We account for that possibility below by
1562 storing information in the relocs_copied field of the hash
1563 table entry. A similar situation occurs when creating
1564 shared libraries and symbol visibility changes render the
1565 symbol local.
1566
1567 If on the other hand, we are creating an executable, we
1568 may need to keep relocations for symbols satisfied by a
1569 dynamic library if we manage to avoid copy relocs for the
1570 symbol. */
1571 if ((info->shared
1572 && (sec->flags & SEC_ALLOC) != 0
1573 && (! IS_X86_64_PCREL_TYPE (r_type)
1574 || (h != NULL
1575 && (! SYMBOLIC_BIND (info, h)
1576 || h->root.type == bfd_link_hash_defweak
1577 || !h->def_regular))))
1578 || (ELIMINATE_COPY_RELOCS
1579 && !info->shared
1580 && (sec->flags & SEC_ALLOC) != 0
1581 && h != NULL
1582 && (h->root.type == bfd_link_hash_defweak
1583 || !h->def_regular)))
1584 {
1585 struct elf64_x86_64_dyn_relocs *p;
1586 struct elf64_x86_64_dyn_relocs **head;
1587
1588 /* We must copy these reloc types into the output file.
1589 Create a reloc section in dynobj and make room for
1590 this reloc. */
1591 if (sreloc == NULL)
1592 {
1593 if (htab->elf.dynobj == NULL)
1594 htab->elf.dynobj = abfd;
1595
1596 sreloc = _bfd_elf_make_dynamic_reloc_section
1597 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1598
1599 if (sreloc == NULL)
1600 return FALSE;
1601 }
1602
1603 /* If this is a global symbol, we count the number of
1604 relocations we need for this symbol. */
1605 if (h != NULL)
1606 {
1607 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1608 }
1609 else
1610 {
1611 void **vpp;
1612 /* Track dynamic relocs needed for local syms too.
1613 We really need local syms available to do this
1614 easily. Oh well. */
1615
1616 asection *s;
1617 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1618 sec, r_symndx);
1619 if (s == NULL)
1620 return FALSE;
1621
1622 /* Beware of type punned pointers vs strict aliasing
1623 rules. */
1624 vpp = &(elf_section_data (s)->local_dynrel);
1625 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1626 }
1627
1628 p = *head;
1629 if (p == NULL || p->sec != sec)
1630 {
1631 bfd_size_type amt = sizeof *p;
1632
1633 p = ((struct elf64_x86_64_dyn_relocs *)
1634 bfd_alloc (htab->elf.dynobj, amt));
1635 if (p == NULL)
1636 return FALSE;
1637 p->next = *head;
1638 *head = p;
1639 p->sec = sec;
1640 p->count = 0;
1641 p->pc_count = 0;
1642 }
1643
1644 p->count += 1;
1645 if (IS_X86_64_PCREL_TYPE (r_type))
1646 p->pc_count += 1;
1647 }
1648 break;
1649
1650 /* This relocation describes the C++ object vtable hierarchy.
1651 Reconstruct it for later use during GC. */
1652 case R_X86_64_GNU_VTINHERIT:
1653 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1654 return FALSE;
1655 break;
1656
1657 /* This relocation describes which C++ vtable entries are actually
1658 used. Record for later use during GC. */
1659 case R_X86_64_GNU_VTENTRY:
1660 BFD_ASSERT (h != NULL);
1661 if (h != NULL
1662 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1663 return FALSE;
1664 break;
1665
1666 default:
1667 break;
1668 }
1669 }
1670
1671 return TRUE;
1672 }
1673
1674 /* Return the section that should be marked against GC for a given
1675 relocation. */
1676
1677 static asection *
1678 elf64_x86_64_gc_mark_hook (asection *sec,
1679 struct bfd_link_info *info,
1680 Elf_Internal_Rela *rel,
1681 struct elf_link_hash_entry *h,
1682 Elf_Internal_Sym *sym)
1683 {
1684 if (h != NULL)
1685 switch (ELF64_R_TYPE (rel->r_info))
1686 {
1687 case R_X86_64_GNU_VTINHERIT:
1688 case R_X86_64_GNU_VTENTRY:
1689 return NULL;
1690 }
1691
1692 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1693 }
1694
1695 /* Update the got entry reference counts for the section being removed. */
1696
1697 static bfd_boolean
1698 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1699 asection *sec,
1700 const Elf_Internal_Rela *relocs)
1701 {
1702 Elf_Internal_Shdr *symtab_hdr;
1703 struct elf_link_hash_entry **sym_hashes;
1704 bfd_signed_vma *local_got_refcounts;
1705 const Elf_Internal_Rela *rel, *relend;
1706
1707 if (info->relocatable)
1708 return TRUE;
1709
1710 elf_section_data (sec)->local_dynrel = NULL;
1711
1712 symtab_hdr = &elf_symtab_hdr (abfd);
1713 sym_hashes = elf_sym_hashes (abfd);
1714 local_got_refcounts = elf_local_got_refcounts (abfd);
1715
1716 relend = relocs + sec->reloc_count;
1717 for (rel = relocs; rel < relend; rel++)
1718 {
1719 unsigned long r_symndx;
1720 unsigned int r_type;
1721 struct elf_link_hash_entry *h = NULL;
1722
1723 r_symndx = ELF64_R_SYM (rel->r_info);
1724 if (r_symndx >= symtab_hdr->sh_info)
1725 {
1726 struct elf64_x86_64_link_hash_entry *eh;
1727 struct elf64_x86_64_dyn_relocs **pp;
1728 struct elf64_x86_64_dyn_relocs *p;
1729
1730 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1731 while (h->root.type == bfd_link_hash_indirect
1732 || h->root.type == bfd_link_hash_warning)
1733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1734 eh = (struct elf64_x86_64_link_hash_entry *) h;
1735
1736 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1737 if (p->sec == sec)
1738 {
1739 /* Everything must go for SEC. */
1740 *pp = p->next;
1741 break;
1742 }
1743 }
1744
1745 r_type = ELF64_R_TYPE (rel->r_info);
1746 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1747 symtab_hdr, sym_hashes,
1748 &r_type, GOT_UNKNOWN,
1749 rel, relend, h))
1750 return FALSE;
1751
1752 switch (r_type)
1753 {
1754 case R_X86_64_TLSLD:
1755 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1756 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1757 break;
1758
1759 case R_X86_64_TLSGD:
1760 case R_X86_64_GOTPC32_TLSDESC:
1761 case R_X86_64_TLSDESC_CALL:
1762 case R_X86_64_GOTTPOFF:
1763 case R_X86_64_GOT32:
1764 case R_X86_64_GOTPCREL:
1765 case R_X86_64_GOT64:
1766 case R_X86_64_GOTPCREL64:
1767 case R_X86_64_GOTPLT64:
1768 if (h != NULL)
1769 {
1770 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1771 h->plt.refcount -= 1;
1772 if (h->got.refcount > 0)
1773 h->got.refcount -= 1;
1774 }
1775 else if (local_got_refcounts != NULL)
1776 {
1777 if (local_got_refcounts[r_symndx] > 0)
1778 local_got_refcounts[r_symndx] -= 1;
1779 }
1780 break;
1781
1782 case R_X86_64_8:
1783 case R_X86_64_16:
1784 case R_X86_64_32:
1785 case R_X86_64_64:
1786 case R_X86_64_32S:
1787 case R_X86_64_PC8:
1788 case R_X86_64_PC16:
1789 case R_X86_64_PC32:
1790 case R_X86_64_PC64:
1791 if (info->shared)
1792 break;
1793 /* Fall thru */
1794
1795 case R_X86_64_PLT32:
1796 case R_X86_64_PLTOFF64:
1797 if (h != NULL)
1798 {
1799 if (h->plt.refcount > 0)
1800 h->plt.refcount -= 1;
1801 }
1802 break;
1803
1804 default:
1805 break;
1806 }
1807 }
1808
1809 return TRUE;
1810 }
1811
1812 /* Adjust a symbol defined by a dynamic object and referenced by a
1813 regular object. The current definition is in some section of the
1814 dynamic object, but we're not including those sections. We have to
1815 change the definition to something the rest of the link can
1816 understand. */
1817
1818 static bfd_boolean
1819 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1820 struct elf_link_hash_entry *h)
1821 {
1822 struct elf64_x86_64_link_hash_table *htab;
1823 asection *s;
1824
1825 /* STT_GNU_IFUNC symbol must go through PLT. */
1826 if (h->type == STT_GNU_IFUNC)
1827 {
1828 if (h->plt.refcount <= 0)
1829 {
1830 h->plt.offset = (bfd_vma) -1;
1831 h->needs_plt = 0;
1832 }
1833 return TRUE;
1834 }
1835
1836 /* If this is a function, put it in the procedure linkage table. We
1837 will fill in the contents of the procedure linkage table later,
1838 when we know the address of the .got section. */
1839 if (h->type == STT_FUNC
1840 || h->needs_plt)
1841 {
1842 if (h->plt.refcount <= 0
1843 || SYMBOL_CALLS_LOCAL (info, h)
1844 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1845 && h->root.type == bfd_link_hash_undefweak))
1846 {
1847 /* This case can occur if we saw a PLT32 reloc in an input
1848 file, but the symbol was never referred to by a dynamic
1849 object, or if all references were garbage collected. In
1850 such a case, we don't actually need to build a procedure
1851 linkage table, and we can just do a PC32 reloc instead. */
1852 h->plt.offset = (bfd_vma) -1;
1853 h->needs_plt = 0;
1854 }
1855
1856 return TRUE;
1857 }
1858 else
1859 /* It's possible that we incorrectly decided a .plt reloc was
1860 needed for an R_X86_64_PC32 reloc to a non-function sym in
1861 check_relocs. We can't decide accurately between function and
1862 non-function syms in check-relocs; Objects loaded later in
1863 the link may change h->type. So fix it now. */
1864 h->plt.offset = (bfd_vma) -1;
1865
1866 /* If this is a weak symbol, and there is a real definition, the
1867 processor independent code will have arranged for us to see the
1868 real definition first, and we can just use the same value. */
1869 if (h->u.weakdef != NULL)
1870 {
1871 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1872 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1873 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1874 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1875 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1876 h->non_got_ref = h->u.weakdef->non_got_ref;
1877 return TRUE;
1878 }
1879
1880 /* This is a reference to a symbol defined by a dynamic object which
1881 is not a function. */
1882
1883 /* If we are creating a shared library, we must presume that the
1884 only references to the symbol are via the global offset table.
1885 For such cases we need not do anything here; the relocations will
1886 be handled correctly by relocate_section. */
1887 if (info->shared)
1888 return TRUE;
1889
1890 /* If there are no references to this symbol that do not use the
1891 GOT, we don't need to generate a copy reloc. */
1892 if (!h->non_got_ref)
1893 return TRUE;
1894
1895 /* If -z nocopyreloc was given, we won't generate them either. */
1896 if (info->nocopyreloc)
1897 {
1898 h->non_got_ref = 0;
1899 return TRUE;
1900 }
1901
1902 if (ELIMINATE_COPY_RELOCS)
1903 {
1904 struct elf64_x86_64_link_hash_entry * eh;
1905 struct elf64_x86_64_dyn_relocs *p;
1906
1907 eh = (struct elf64_x86_64_link_hash_entry *) h;
1908 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1909 {
1910 s = p->sec->output_section;
1911 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1912 break;
1913 }
1914
1915 /* If we didn't find any dynamic relocs in read-only sections, then
1916 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1917 if (p == NULL)
1918 {
1919 h->non_got_ref = 0;
1920 return TRUE;
1921 }
1922 }
1923
1924 if (h->size == 0)
1925 {
1926 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1927 h->root.root.string);
1928 return TRUE;
1929 }
1930
1931 /* We must allocate the symbol in our .dynbss section, which will
1932 become part of the .bss section of the executable. There will be
1933 an entry for this symbol in the .dynsym section. The dynamic
1934 object will contain position independent code, so all references
1935 from the dynamic object to this symbol will go through the global
1936 offset table. The dynamic linker will use the .dynsym entry to
1937 determine the address it must put in the global offset table, so
1938 both the dynamic object and the regular object will refer to the
1939 same memory location for the variable. */
1940
1941 htab = elf64_x86_64_hash_table (info);
1942
1943 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1944 to copy the initial value out of the dynamic object and into the
1945 runtime process image. */
1946 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1947 {
1948 htab->srelbss->size += sizeof (Elf64_External_Rela);
1949 h->needs_copy = 1;
1950 }
1951
1952 s = htab->sdynbss;
1953
1954 return _bfd_elf_adjust_dynamic_copy (h, s);
1955 }
1956
1957 /* Allocate space in .plt, .got and associated reloc sections for
1958 dynamic relocs. */
1959
1960 static bfd_boolean
1961 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1962 {
1963 struct bfd_link_info *info;
1964 struct elf64_x86_64_link_hash_table *htab;
1965 struct elf64_x86_64_link_hash_entry *eh;
1966 struct elf64_x86_64_dyn_relocs *p;
1967
1968 if (h->root.type == bfd_link_hash_indirect)
1969 return TRUE;
1970
1971 if (h->root.type == bfd_link_hash_warning)
1972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1973 eh = (struct elf64_x86_64_link_hash_entry *) h;
1974
1975 info = (struct bfd_link_info *) inf;
1976 htab = elf64_x86_64_hash_table (info);
1977
1978 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1979 here if it is defined and referenced in a non-shared object. */
1980 if (h->type == STT_GNU_IFUNC
1981 && h->def_regular)
1982 {
1983 asection *plt, *gotplt, *relplt;
1984
1985 /* When a shared library references a STT_GNU_IFUNC symbol
1986 defined in executable. the .got.plt slot in the shared library
1987 will contain address of the .plt slot in the binary and only
1988 its .got.plt will contain the resolved function that should be
1989 called. Pointer equality won't work correctly. PIE should
1990 be used if pointer equality is required here. */
1991 if (!info->shared
1992 && (h->dynindx != -1
1993 || info->export_dynamic)
1994 && h->pointer_equality_needed)
1995 {
1996 info->callbacks->einfo
1997 (_("%F%P: dynamic STT_GNU_IFUNC symbol `%s' with pointer "
1998 "equality in `%B' can not be used when making an "
1999 "executable; recompile with -fPIE and relink with -pie\n"),
2000 h->root.root.string,
2001 h->root.u.def.section->owner);
2002 bfd_set_error (bfd_error_bad_value);
2003 return FALSE;
2004 }
2005
2006 /* Return and discard space for dynamic relocations against it if
2007 it is never referenced in a non-shared object. */
2008 if (!h->ref_regular)
2009 {
2010 if (h->plt.refcount > 0
2011 || h->got.refcount > 0)
2012 abort ();
2013 h->got.offset = (bfd_vma) -1;
2014 eh->dyn_relocs = NULL;
2015 return TRUE;
2016 }
2017
2018 /* When building a static executable, use .iplt, .igot.plt and
2019 .rela.iplt sections for STT_GNU_IFUNC symbols. */
2020 if (htab->splt != NULL)
2021 {
2022 plt = htab->splt;
2023 gotplt = htab->sgotplt;
2024 relplt = htab->srelplt;
2025
2026 /* If this is the first .plt entry, make room for the special
2027 first entry. */
2028 if (plt->size == 0)
2029 plt->size += PLT_ENTRY_SIZE;
2030 }
2031 else
2032 {
2033 plt = htab->iplt;
2034 gotplt = htab->igotplt;
2035 relplt = htab->irelplt;
2036 }
2037
2038 /* Don't update value of STT_GNU_IFUNC symbol to PLT. We need
2039 the original value for R_X86_64_IRELATIVE. */
2040 h->plt.offset = plt->size;
2041
2042 /* Make room for this entry in the .plt/.iplt section. */
2043 plt->size += PLT_ENTRY_SIZE;
2044
2045 /* We also need to make an entry in the .got.plt/.got.iplt
2046 section, which will be placed in the .got section by the
2047 linker script. */
2048 gotplt->size += GOT_ENTRY_SIZE;
2049
2050 /* We also need to make an entry in the .rela.plt/.rela.iplt
2051 section. */
2052 relplt->size += sizeof (Elf64_External_Rela);
2053 relplt->reloc_count++;
2054
2055 /* We need dynamic relocation for STT_GNU_IFUNC symbol only
2056 when there is a non-GOT reference in a shared object. */
2057 if (!info->shared
2058 || !h->non_got_ref)
2059 eh->dyn_relocs = NULL;
2060
2061 /* Finally, allocate space. */
2062 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2063 htab->irelifunc->size += p->count * sizeof (Elf64_External_Rela);
2064
2065 /* For STT_GNU_IFUNC symbol, .got.plt has the real function
2066 addres and .got has the PLT entry adddress. We will load
2067 the GOT entry with the PLT entry in finish_dynamic_symbol if
2068 it is used. For branch, it uses .got.plt. For symbol value,
2069 1. Use .got.plt in a shared object if it is forced local or
2070 not dynamic.
2071 2. Use .got.plt in a non-shared object if pointer equality
2072 isn't needed.
2073 3. Use .got.plt in PIE.
2074 4. Use .got.plt if .got isn't used.
2075 5. Otherwise use .got so that it can be shared among different
2076 objects at run-time.
2077 We only need to relocate .got entry in shared object. */
2078 if ((info->shared
2079 && (h->dynindx == -1
2080 || h->forced_local))
2081 || (!info->shared
2082 && !h->pointer_equality_needed)
2083 || (info->executable && info->shared)
2084 || htab->sgot == NULL)
2085 {
2086 /* Use .got.plt. */
2087 h->got.offset = (bfd_vma) -1;
2088 }
2089 else
2090 {
2091 h->got.offset = htab->sgot->size;
2092 htab->sgot->size += GOT_ENTRY_SIZE;
2093 if (info->shared)
2094 htab->srelgot->size += sizeof (Elf64_External_Rela);
2095 }
2096
2097 return TRUE;
2098 }
2099 else if (htab->elf.dynamic_sections_created
2100 && h->plt.refcount > 0)
2101 {
2102 /* Make sure this symbol is output as a dynamic symbol.
2103 Undefined weak syms won't yet be marked as dynamic. */
2104 if (h->dynindx == -1
2105 && !h->forced_local)
2106 {
2107 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2108 return FALSE;
2109 }
2110
2111 if (info->shared
2112 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2113 {
2114 asection *s = htab->splt;
2115
2116 /* If this is the first .plt entry, make room for the special
2117 first entry. */
2118 if (s->size == 0)
2119 s->size += PLT_ENTRY_SIZE;
2120
2121 h->plt.offset = s->size;
2122
2123 /* If this symbol is not defined in a regular file, and we are
2124 not generating a shared library, then set the symbol to this
2125 location in the .plt. This is required to make function
2126 pointers compare as equal between the normal executable and
2127 the shared library. */
2128 if (! info->shared
2129 && !h->def_regular)
2130 {
2131 h->root.u.def.section = s;
2132 h->root.u.def.value = h->plt.offset;
2133 }
2134
2135 /* Make room for this entry. */
2136 s->size += PLT_ENTRY_SIZE;
2137
2138 /* We also need to make an entry in the .got.plt section, which
2139 will be placed in the .got section by the linker script. */
2140 htab->sgotplt->size += GOT_ENTRY_SIZE;
2141
2142 /* We also need to make an entry in the .rela.plt section. */
2143 htab->srelplt->size += sizeof (Elf64_External_Rela);
2144 htab->srelplt->reloc_count++;
2145 }
2146 else
2147 {
2148 h->plt.offset = (bfd_vma) -1;
2149 h->needs_plt = 0;
2150 }
2151 }
2152 else
2153 {
2154 h->plt.offset = (bfd_vma) -1;
2155 h->needs_plt = 0;
2156 }
2157
2158 eh->tlsdesc_got = (bfd_vma) -1;
2159
2160 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2161 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2162 if (h->got.refcount > 0
2163 && !info->shared
2164 && h->dynindx == -1
2165 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2166 {
2167 h->got.offset = (bfd_vma) -1;
2168 }
2169 else if (h->got.refcount > 0)
2170 {
2171 asection *s;
2172 bfd_boolean dyn;
2173 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2174
2175 /* Make sure this symbol is output as a dynamic symbol.
2176 Undefined weak syms won't yet be marked as dynamic. */
2177 if (h->dynindx == -1
2178 && !h->forced_local)
2179 {
2180 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2181 return FALSE;
2182 }
2183
2184 if (GOT_TLS_GDESC_P (tls_type))
2185 {
2186 eh->tlsdesc_got = htab->sgotplt->size
2187 - elf64_x86_64_compute_jump_table_size (htab);
2188 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2189 h->got.offset = (bfd_vma) -2;
2190 }
2191 if (! GOT_TLS_GDESC_P (tls_type)
2192 || GOT_TLS_GD_P (tls_type))
2193 {
2194 s = htab->sgot;
2195 h->got.offset = s->size;
2196 s->size += GOT_ENTRY_SIZE;
2197 if (GOT_TLS_GD_P (tls_type))
2198 s->size += GOT_ENTRY_SIZE;
2199 }
2200 dyn = htab->elf.dynamic_sections_created;
2201 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2202 and two if global.
2203 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2204 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2205 || tls_type == GOT_TLS_IE)
2206 htab->srelgot->size += sizeof (Elf64_External_Rela);
2207 else if (GOT_TLS_GD_P (tls_type))
2208 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
2209 else if (! GOT_TLS_GDESC_P (tls_type)
2210 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2211 || h->root.type != bfd_link_hash_undefweak)
2212 && (info->shared
2213 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2214 htab->srelgot->size += sizeof (Elf64_External_Rela);
2215 if (GOT_TLS_GDESC_P (tls_type))
2216 {
2217 htab->srelplt->size += sizeof (Elf64_External_Rela);
2218 htab->tlsdesc_plt = (bfd_vma) -1;
2219 }
2220 }
2221 else
2222 h->got.offset = (bfd_vma) -1;
2223
2224 if (eh->dyn_relocs == NULL)
2225 return TRUE;
2226
2227 /* In the shared -Bsymbolic case, discard space allocated for
2228 dynamic pc-relative relocs against symbols which turn out to be
2229 defined in regular objects. For the normal shared case, discard
2230 space for pc-relative relocs that have become local due to symbol
2231 visibility changes. */
2232
2233 if (info->shared)
2234 {
2235 /* Relocs that use pc_count are those that appear on a call
2236 insn, or certain REL relocs that can generated via assembly.
2237 We want calls to protected symbols to resolve directly to the
2238 function rather than going via the plt. If people want
2239 function pointer comparisons to work as expected then they
2240 should avoid writing weird assembly. */
2241 if (SYMBOL_CALLS_LOCAL (info, h))
2242 {
2243 struct elf64_x86_64_dyn_relocs **pp;
2244
2245 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2246 {
2247 p->count -= p->pc_count;
2248 p->pc_count = 0;
2249 if (p->count == 0)
2250 *pp = p->next;
2251 else
2252 pp = &p->next;
2253 }
2254 }
2255
2256 /* Also discard relocs on undefined weak syms with non-default
2257 visibility. */
2258 if (eh->dyn_relocs != NULL
2259 && h->root.type == bfd_link_hash_undefweak)
2260 {
2261 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2262 eh->dyn_relocs = NULL;
2263
2264 /* Make sure undefined weak symbols are output as a dynamic
2265 symbol in PIEs. */
2266 else if (h->dynindx == -1
2267 && ! h->forced_local
2268 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2269 return FALSE;
2270 }
2271
2272 }
2273 else if (ELIMINATE_COPY_RELOCS)
2274 {
2275 /* For the non-shared case, discard space for relocs against
2276 symbols which turn out to need copy relocs or are not
2277 dynamic. */
2278
2279 if (!h->non_got_ref
2280 && ((h->def_dynamic
2281 && !h->def_regular)
2282 || (htab->elf.dynamic_sections_created
2283 && (h->root.type == bfd_link_hash_undefweak
2284 || h->root.type == bfd_link_hash_undefined))))
2285 {
2286 /* Make sure this symbol is output as a dynamic symbol.
2287 Undefined weak syms won't yet be marked as dynamic. */
2288 if (h->dynindx == -1
2289 && ! h->forced_local
2290 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2291 return FALSE;
2292
2293 /* If that succeeded, we know we'll be keeping all the
2294 relocs. */
2295 if (h->dynindx != -1)
2296 goto keep;
2297 }
2298
2299 eh->dyn_relocs = NULL;
2300
2301 keep: ;
2302 }
2303
2304 /* Finally, allocate space. */
2305 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2306 {
2307 asection * sreloc;
2308
2309 sreloc = elf_section_data (p->sec)->sreloc;
2310
2311 BFD_ASSERT (sreloc != NULL);
2312
2313 sreloc->size += p->count * sizeof (Elf64_External_Rela);
2314 }
2315
2316 return TRUE;
2317 }
2318
2319 /* Allocate space in .plt, .got and associated reloc sections for
2320 local dynamic relocs. */
2321
2322 static bfd_boolean
2323 elf64_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2324 {
2325 struct elf_link_hash_entry *h
2326 = (struct elf_link_hash_entry *) *slot;
2327
2328 if (h->type != STT_GNU_IFUNC
2329 || !h->def_regular
2330 || !h->ref_regular
2331 || !h->forced_local
2332 || h->root.type != bfd_link_hash_defined)
2333 abort ();
2334
2335 return elf64_x86_64_allocate_dynrelocs (h, inf);
2336 }
2337
2338 /* Find any dynamic relocs that apply to read-only sections. */
2339
2340 static bfd_boolean
2341 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2342 {
2343 struct elf64_x86_64_link_hash_entry *eh;
2344 struct elf64_x86_64_dyn_relocs *p;
2345
2346 if (h->root.type == bfd_link_hash_warning)
2347 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2348
2349 eh = (struct elf64_x86_64_link_hash_entry *) h;
2350 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2351 {
2352 asection *s = p->sec->output_section;
2353
2354 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2355 {
2356 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2357
2358 info->flags |= DF_TEXTREL;
2359
2360 /* Not an error, just cut short the traversal. */
2361 return FALSE;
2362 }
2363 }
2364 return TRUE;
2365 }
2366
2367 /* Set the sizes of the dynamic sections. */
2368
2369 static bfd_boolean
2370 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2371 struct bfd_link_info *info)
2372 {
2373 struct elf64_x86_64_link_hash_table *htab;
2374 bfd *dynobj;
2375 asection *s;
2376 bfd_boolean relocs;
2377 bfd *ibfd;
2378
2379 htab = elf64_x86_64_hash_table (info);
2380 dynobj = htab->elf.dynobj;
2381 if (dynobj == NULL)
2382 abort ();
2383
2384 if (htab->elf.dynamic_sections_created)
2385 {
2386 /* Set the contents of the .interp section to the interpreter. */
2387 if (info->executable)
2388 {
2389 s = bfd_get_section_by_name (dynobj, ".interp");
2390 if (s == NULL)
2391 abort ();
2392 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2393 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2394 }
2395 }
2396
2397 /* Set up .got offsets for local syms, and space for local dynamic
2398 relocs. */
2399 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2400 {
2401 bfd_signed_vma *local_got;
2402 bfd_signed_vma *end_local_got;
2403 char *local_tls_type;
2404 bfd_vma *local_tlsdesc_gotent;
2405 bfd_size_type locsymcount;
2406 Elf_Internal_Shdr *symtab_hdr;
2407 asection *srel;
2408
2409 if (! is_x86_64_elf (ibfd))
2410 continue;
2411
2412 for (s = ibfd->sections; s != NULL; s = s->next)
2413 {
2414 struct elf64_x86_64_dyn_relocs *p;
2415
2416 for (p = (struct elf64_x86_64_dyn_relocs *)
2417 (elf_section_data (s)->local_dynrel);
2418 p != NULL;
2419 p = p->next)
2420 {
2421 if (!bfd_is_abs_section (p->sec)
2422 && bfd_is_abs_section (p->sec->output_section))
2423 {
2424 /* Input section has been discarded, either because
2425 it is a copy of a linkonce section or due to
2426 linker script /DISCARD/, so we'll be discarding
2427 the relocs too. */
2428 }
2429 else if (p->count != 0)
2430 {
2431 srel = elf_section_data (p->sec)->sreloc;
2432 srel->size += p->count * sizeof (Elf64_External_Rela);
2433 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2434 info->flags |= DF_TEXTREL;
2435 }
2436 }
2437 }
2438
2439 local_got = elf_local_got_refcounts (ibfd);
2440 if (!local_got)
2441 continue;
2442
2443 symtab_hdr = &elf_symtab_hdr (ibfd);
2444 locsymcount = symtab_hdr->sh_info;
2445 end_local_got = local_got + locsymcount;
2446 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2447 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2448 s = htab->sgot;
2449 srel = htab->srelgot;
2450 for (; local_got < end_local_got;
2451 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2452 {
2453 *local_tlsdesc_gotent = (bfd_vma) -1;
2454 if (*local_got > 0)
2455 {
2456 if (GOT_TLS_GDESC_P (*local_tls_type))
2457 {
2458 *local_tlsdesc_gotent = htab->sgotplt->size
2459 - elf64_x86_64_compute_jump_table_size (htab);
2460 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2461 *local_got = (bfd_vma) -2;
2462 }
2463 if (! GOT_TLS_GDESC_P (*local_tls_type)
2464 || GOT_TLS_GD_P (*local_tls_type))
2465 {
2466 *local_got = s->size;
2467 s->size += GOT_ENTRY_SIZE;
2468 if (GOT_TLS_GD_P (*local_tls_type))
2469 s->size += GOT_ENTRY_SIZE;
2470 }
2471 if (info->shared
2472 || GOT_TLS_GD_ANY_P (*local_tls_type)
2473 || *local_tls_type == GOT_TLS_IE)
2474 {
2475 if (GOT_TLS_GDESC_P (*local_tls_type))
2476 {
2477 htab->srelplt->size += sizeof (Elf64_External_Rela);
2478 htab->tlsdesc_plt = (bfd_vma) -1;
2479 }
2480 if (! GOT_TLS_GDESC_P (*local_tls_type)
2481 || GOT_TLS_GD_P (*local_tls_type))
2482 srel->size += sizeof (Elf64_External_Rela);
2483 }
2484 }
2485 else
2486 *local_got = (bfd_vma) -1;
2487 }
2488 }
2489
2490 if (htab->tls_ld_got.refcount > 0)
2491 {
2492 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2493 relocs. */
2494 htab->tls_ld_got.offset = htab->sgot->size;
2495 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
2496 htab->srelgot->size += sizeof (Elf64_External_Rela);
2497 }
2498 else
2499 htab->tls_ld_got.offset = -1;
2500
2501 /* Allocate global sym .plt and .got entries, and space for global
2502 sym dynamic relocs. */
2503 elf_link_hash_traverse (&htab->elf, elf64_x86_64_allocate_dynrelocs,
2504 info);
2505
2506 /* Allocate .plt and .got entries, and space for local symbols. */
2507 htab_traverse (htab->loc_hash_table,
2508 elf64_x86_64_allocate_local_dynrelocs,
2509 info);
2510
2511 /* For every jump slot reserved in the sgotplt, reloc_count is
2512 incremented. However, when we reserve space for TLS descriptors,
2513 it's not incremented, so in order to compute the space reserved
2514 for them, it suffices to multiply the reloc count by the jump
2515 slot size. */
2516 if (htab->srelplt)
2517 htab->sgotplt_jump_table_size
2518 = elf64_x86_64_compute_jump_table_size (htab);
2519
2520 if (htab->tlsdesc_plt)
2521 {
2522 /* If we're not using lazy TLS relocations, don't generate the
2523 PLT and GOT entries they require. */
2524 if ((info->flags & DF_BIND_NOW))
2525 htab->tlsdesc_plt = 0;
2526 else
2527 {
2528 htab->tlsdesc_got = htab->sgot->size;
2529 htab->sgot->size += GOT_ENTRY_SIZE;
2530 /* Reserve room for the initial entry.
2531 FIXME: we could probably do away with it in this case. */
2532 if (htab->splt->size == 0)
2533 htab->splt->size += PLT_ENTRY_SIZE;
2534 htab->tlsdesc_plt = htab->splt->size;
2535 htab->splt->size += PLT_ENTRY_SIZE;
2536 }
2537 }
2538
2539 /* We now have determined the sizes of the various dynamic sections.
2540 Allocate memory for them. */
2541 relocs = FALSE;
2542 for (s = dynobj->sections; s != NULL; s = s->next)
2543 {
2544 if ((s->flags & SEC_LINKER_CREATED) == 0)
2545 continue;
2546
2547 if (s == htab->splt
2548 || s == htab->sgot
2549 || s == htab->sgotplt
2550 || s == htab->iplt
2551 || s == htab->igotplt
2552 || s == htab->sdynbss)
2553 {
2554 /* Strip this section if we don't need it; see the
2555 comment below. */
2556 }
2557 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2558 {
2559 if (s->size != 0 && s != htab->srelplt)
2560 relocs = TRUE;
2561
2562 /* We use the reloc_count field as a counter if we need
2563 to copy relocs into the output file. */
2564 if (s != htab->srelplt)
2565 s->reloc_count = 0;
2566 }
2567 else
2568 {
2569 /* It's not one of our sections, so don't allocate space. */
2570 continue;
2571 }
2572
2573 if (s->size == 0)
2574 {
2575 /* If we don't need this section, strip it from the
2576 output file. This is mostly to handle .rela.bss and
2577 .rela.plt. We must create both sections in
2578 create_dynamic_sections, because they must be created
2579 before the linker maps input sections to output
2580 sections. The linker does that before
2581 adjust_dynamic_symbol is called, and it is that
2582 function which decides whether anything needs to go
2583 into these sections. */
2584
2585 s->flags |= SEC_EXCLUDE;
2586 continue;
2587 }
2588
2589 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2590 continue;
2591
2592 /* Allocate memory for the section contents. We use bfd_zalloc
2593 here in case unused entries are not reclaimed before the
2594 section's contents are written out. This should not happen,
2595 but this way if it does, we get a R_X86_64_NONE reloc instead
2596 of garbage. */
2597 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2598 if (s->contents == NULL)
2599 return FALSE;
2600 }
2601
2602 if (htab->elf.dynamic_sections_created)
2603 {
2604 /* Add some entries to the .dynamic section. We fill in the
2605 values later, in elf64_x86_64_finish_dynamic_sections, but we
2606 must add the entries now so that we get the correct size for
2607 the .dynamic section. The DT_DEBUG entry is filled in by the
2608 dynamic linker and used by the debugger. */
2609 #define add_dynamic_entry(TAG, VAL) \
2610 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2611
2612 if (info->executable)
2613 {
2614 if (!add_dynamic_entry (DT_DEBUG, 0))
2615 return FALSE;
2616 }
2617
2618 if (htab->splt->size != 0)
2619 {
2620 if (!add_dynamic_entry (DT_PLTGOT, 0)
2621 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2622 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2623 || !add_dynamic_entry (DT_JMPREL, 0))
2624 return FALSE;
2625
2626 if (htab->tlsdesc_plt
2627 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2628 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2629 return FALSE;
2630 }
2631
2632 if (relocs)
2633 {
2634 if (!add_dynamic_entry (DT_RELA, 0)
2635 || !add_dynamic_entry (DT_RELASZ, 0)
2636 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2637 return FALSE;
2638
2639 /* If any dynamic relocs apply to a read-only section,
2640 then we need a DT_TEXTREL entry. */
2641 if ((info->flags & DF_TEXTREL) == 0)
2642 elf_link_hash_traverse (&htab->elf,
2643 elf64_x86_64_readonly_dynrelocs,
2644 info);
2645
2646 if ((info->flags & DF_TEXTREL) != 0)
2647 {
2648 if (!add_dynamic_entry (DT_TEXTREL, 0))
2649 return FALSE;
2650 }
2651 }
2652 }
2653 #undef add_dynamic_entry
2654
2655 return TRUE;
2656 }
2657
2658 static bfd_boolean
2659 elf64_x86_64_always_size_sections (bfd *output_bfd,
2660 struct bfd_link_info *info)
2661 {
2662 asection *tls_sec = elf_hash_table (info)->tls_sec;
2663
2664 if (tls_sec)
2665 {
2666 struct elf_link_hash_entry *tlsbase;
2667
2668 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2669 "_TLS_MODULE_BASE_",
2670 FALSE, FALSE, FALSE);
2671
2672 if (tlsbase && tlsbase->type == STT_TLS)
2673 {
2674 struct bfd_link_hash_entry *bh = NULL;
2675 const struct elf_backend_data *bed
2676 = get_elf_backend_data (output_bfd);
2677
2678 if (!(_bfd_generic_link_add_one_symbol
2679 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2680 tls_sec, 0, NULL, FALSE,
2681 bed->collect, &bh)))
2682 return FALSE;
2683
2684 elf64_x86_64_hash_table (info)->tls_module_base = bh;
2685
2686 tlsbase = (struct elf_link_hash_entry *)bh;
2687 tlsbase->def_regular = 1;
2688 tlsbase->other = STV_HIDDEN;
2689 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2690 }
2691 }
2692
2693 return TRUE;
2694 }
2695
2696 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2697 executables. Rather than setting it to the beginning of the TLS
2698 section, we have to set it to the end. This function may be called
2699 multiple times, it is idempotent. */
2700
2701 static void
2702 elf64_x86_64_set_tls_module_base (struct bfd_link_info *info)
2703 {
2704 struct bfd_link_hash_entry *base;
2705
2706 if (!info->executable)
2707 return;
2708
2709 base = elf64_x86_64_hash_table (info)->tls_module_base;
2710
2711 if (!base)
2712 return;
2713
2714 base->u.def.value = elf_hash_table (info)->tls_size;
2715 }
2716
2717 /* Return the base VMA address which should be subtracted from real addresses
2718 when resolving @dtpoff relocation.
2719 This is PT_TLS segment p_vaddr. */
2720
2721 static bfd_vma
2722 elf64_x86_64_dtpoff_base (struct bfd_link_info *info)
2723 {
2724 /* If tls_sec is NULL, we should have signalled an error already. */
2725 if (elf_hash_table (info)->tls_sec == NULL)
2726 return 0;
2727 return elf_hash_table (info)->tls_sec->vma;
2728 }
2729
2730 /* Return the relocation value for @tpoff relocation
2731 if STT_TLS virtual address is ADDRESS. */
2732
2733 static bfd_vma
2734 elf64_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2735 {
2736 struct elf_link_hash_table *htab = elf_hash_table (info);
2737
2738 /* If tls_segment is NULL, we should have signalled an error already. */
2739 if (htab->tls_sec == NULL)
2740 return 0;
2741 return address - htab->tls_size - htab->tls_sec->vma;
2742 }
2743
2744 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2745 branch? */
2746
2747 static bfd_boolean
2748 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2749 {
2750 /* Opcode Instruction
2751 0xe8 call
2752 0xe9 jump
2753 0x0f 0x8x conditional jump */
2754 return ((offset > 0
2755 && (contents [offset - 1] == 0xe8
2756 || contents [offset - 1] == 0xe9))
2757 || (offset > 1
2758 && contents [offset - 2] == 0x0f
2759 && (contents [offset - 1] & 0xf0) == 0x80));
2760 }
2761
2762 /* Relocate an x86_64 ELF section. */
2763
2764 static bfd_boolean
2765 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2766 bfd *input_bfd, asection *input_section,
2767 bfd_byte *contents, Elf_Internal_Rela *relocs,
2768 Elf_Internal_Sym *local_syms,
2769 asection **local_sections)
2770 {
2771 struct elf64_x86_64_link_hash_table *htab;
2772 Elf_Internal_Shdr *symtab_hdr;
2773 struct elf_link_hash_entry **sym_hashes;
2774 bfd_vma *local_got_offsets;
2775 bfd_vma *local_tlsdesc_gotents;
2776 Elf_Internal_Rela *rel;
2777 Elf_Internal_Rela *relend;
2778
2779 BFD_ASSERT (is_x86_64_elf (input_bfd));
2780
2781 htab = elf64_x86_64_hash_table (info);
2782 symtab_hdr = &elf_symtab_hdr (input_bfd);
2783 sym_hashes = elf_sym_hashes (input_bfd);
2784 local_got_offsets = elf_local_got_offsets (input_bfd);
2785 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2786
2787 elf64_x86_64_set_tls_module_base (info);
2788
2789 rel = relocs;
2790 relend = relocs + input_section->reloc_count;
2791 for (; rel < relend; rel++)
2792 {
2793 unsigned int r_type;
2794 reloc_howto_type *howto;
2795 unsigned long r_symndx;
2796 struct elf_link_hash_entry *h;
2797 Elf_Internal_Sym *sym;
2798 asection *sec;
2799 bfd_vma off, offplt;
2800 bfd_vma relocation;
2801 bfd_boolean unresolved_reloc;
2802 bfd_reloc_status_type r;
2803 int tls_type;
2804 asection *base_got;
2805
2806 r_type = ELF64_R_TYPE (rel->r_info);
2807 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2808 || r_type == (int) R_X86_64_GNU_VTENTRY)
2809 continue;
2810
2811 if (r_type >= R_X86_64_max)
2812 {
2813 bfd_set_error (bfd_error_bad_value);
2814 return FALSE;
2815 }
2816
2817 howto = x86_64_elf_howto_table + r_type;
2818 r_symndx = ELF64_R_SYM (rel->r_info);
2819 h = NULL;
2820 sym = NULL;
2821 sec = NULL;
2822 unresolved_reloc = FALSE;
2823 if (r_symndx < symtab_hdr->sh_info)
2824 {
2825 sym = local_syms + r_symndx;
2826 sec = local_sections[r_symndx];
2827
2828 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2829 &sec, rel);
2830
2831 /* Relocate against local STT_GNU_IFUNC symbol. */
2832 if (ELF64_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2833 {
2834 h = elf64_x86_64_get_local_sym_hash (htab, input_bfd,
2835 rel, FALSE);
2836 if (h == NULL)
2837 abort ();
2838
2839 /* Set STT_GNU_IFUNC symbol value. */
2840 h->root.u.def.value = sym->st_value;
2841 h->root.u.def.section = sec;
2842 }
2843 }
2844 else
2845 {
2846 bfd_boolean warned;
2847
2848 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2849 r_symndx, symtab_hdr, sym_hashes,
2850 h, sec, relocation,
2851 unresolved_reloc, warned);
2852 }
2853
2854 if (sec != NULL && elf_discarded_section (sec))
2855 {
2856 /* For relocs against symbols from removed linkonce sections,
2857 or sections discarded by a linker script, we just want the
2858 section contents zeroed. Avoid any special processing. */
2859 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2860 rel->r_info = 0;
2861 rel->r_addend = 0;
2862 continue;
2863 }
2864
2865 if (info->relocatable)
2866 continue;
2867
2868 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2869 it here if it is defined in a non-shared object. */
2870 if (h != NULL
2871 && h->type == STT_GNU_IFUNC
2872 && h->def_regular)
2873 {
2874 asection *plt;
2875 bfd_vma plt_index;
2876
2877 if ((input_section->flags & SEC_ALLOC) == 0
2878 || h->plt.offset == (bfd_vma) -1)
2879 abort ();
2880
2881 /* STT_GNU_IFUNC symbol must go through PLT. */
2882 plt = htab->splt ? htab->splt : htab->iplt;
2883 relocation = (plt->output_section->vma
2884 + plt->output_offset + h->plt.offset);
2885
2886 switch (r_type)
2887 {
2888 default:
2889 (*_bfd_error_handler)
2890 (_("%B: relocation %s against STT_GNU_IFUNC "
2891 "symbol `%s' isn't handled by %s"), input_bfd,
2892 x86_64_elf_howto_table[r_type].name,
2893 (h->root.root.string
2894 ? h->root.root.string : "a local symbol"),
2895 __FUNCTION__);
2896 bfd_set_error (bfd_error_bad_value);
2897 return FALSE;
2898
2899 case R_X86_64_32S:
2900 if (info->shared)
2901 abort ();
2902 goto do_relocation;
2903
2904 case R_X86_64_64:
2905 if (rel->r_addend != 0)
2906 {
2907 (*_bfd_error_handler)
2908 (_("%B: relocation %s against STT_GNU_IFUNC "
2909 "symbol `%s' has non-zero addend: %d"),
2910 input_bfd, x86_64_elf_howto_table[r_type].name,
2911 (h->root.root.string
2912 ? h->root.root.string : "a local symbol"),
2913 rel->r_addend);
2914 bfd_set_error (bfd_error_bad_value);
2915 return FALSE;
2916 }
2917
2918 /* Generate dynamic relcoation only when there is a
2919 non-GOF reference in a shared object. */
2920 if (info->shared && h->non_got_ref)
2921 {
2922 Elf_Internal_Rela outrel;
2923 bfd_byte *loc;
2924 asection *sreloc;
2925
2926 /* Need a dynamic relocation to get the real function
2927 address. */
2928 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2929 info,
2930 input_section,
2931 rel->r_offset);
2932 if (outrel.r_offset == (bfd_vma) -1
2933 || outrel.r_offset == (bfd_vma) -2)
2934 abort ();
2935
2936 outrel.r_offset += (input_section->output_section->vma
2937 + input_section->output_offset);
2938
2939 if (h->dynindx == -1
2940 || h->forced_local
2941 || info->executable)
2942 {
2943 /* This symbol is resolved locally. */
2944 outrel.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
2945 outrel.r_addend = (h->root.u.def.value
2946 + h->root.u.def.section->output_section->vma
2947 + h->root.u.def.section->output_offset);
2948 }
2949 else
2950 {
2951 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2952 outrel.r_addend = 0;
2953 }
2954
2955 sreloc = htab->irelifunc;
2956 loc = sreloc->contents;
2957 loc += (sreloc->reloc_count++
2958 * sizeof (Elf64_External_Rela));
2959 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2960
2961 /* If this reloc is against an external symbol, we
2962 do not want to fiddle with the addend. Otherwise,
2963 we need to include the symbol value so that it
2964 becomes an addend for the dynamic reloc. For an
2965 internal symbol, we have updated addend. */
2966 continue;
2967 }
2968
2969 case R_X86_64_32:
2970 case R_X86_64_PC32:
2971 case R_X86_64_PC64:
2972 case R_X86_64_PLT32:
2973 goto do_relocation;
2974
2975 case R_X86_64_GOTPCREL:
2976 case R_X86_64_GOTPCREL64:
2977 base_got = htab->sgot;
2978 off = h->got.offset;
2979
2980 if (base_got == NULL)
2981 abort ();
2982
2983 if (off == (bfd_vma) -1)
2984 {
2985 /* We can't use h->got.offset here to save state, or
2986 even just remember the offset, as finish_dynamic_symbol
2987 would use that as offset into .got. */
2988
2989 if (htab->splt != NULL)
2990 {
2991 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2992 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2993 base_got = htab->sgotplt;
2994 }
2995 else
2996 {
2997 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2998 off = plt_index * GOT_ENTRY_SIZE;
2999 base_got = htab->igotplt;
3000 }
3001
3002 if (h->dynindx == -1
3003 || h->forced_local
3004 || info->symbolic)
3005 {
3006 /* This references the local defitionion. We must
3007 initialize this entry in the global offset table.
3008 Since the offset must always be a multiple of 8,
3009 we use the least significant bit to record
3010 whether we have initialized it already.
3011
3012 When doing a dynamic link, we create a .rela.got
3013 relocation entry to initialize the value. This
3014 is done in the finish_dynamic_symbol routine. */
3015 if ((off & 1) != 0)
3016 off &= ~1;
3017 else
3018 {
3019 bfd_put_64 (output_bfd, relocation,
3020 base_got->contents + off);
3021 /* Note that this is harmless for the GOTPLT64
3022 case, as -1 | 1 still is -1. */
3023 h->got.offset |= 1;
3024 }
3025 }
3026 }
3027
3028 relocation = (base_got->output_section->vma
3029 + base_got->output_offset + off);
3030
3031 if (r_type != R_X86_64_GOTPCREL
3032 && r_type != R_X86_64_GOTPCREL64)
3033 {
3034 asection *gotplt;
3035 if (htab->splt != NULL)
3036 gotplt = htab->sgotplt;
3037 else
3038 gotplt = htab->igotplt;
3039 relocation -= (gotplt->output_section->vma
3040 - gotplt->output_offset);
3041 }
3042
3043 goto do_relocation;
3044 }
3045 }
3046
3047 /* When generating a shared object, the relocations handled here are
3048 copied into the output file to be resolved at run time. */
3049 switch (r_type)
3050 {
3051 case R_X86_64_GOT32:
3052 case R_X86_64_GOT64:
3053 /* Relocation is to the entry for this symbol in the global
3054 offset table. */
3055 case R_X86_64_GOTPCREL:
3056 case R_X86_64_GOTPCREL64:
3057 /* Use global offset table entry as symbol value. */
3058 case R_X86_64_GOTPLT64:
3059 /* This is the same as GOT64 for relocation purposes, but
3060 indicates the existence of a PLT entry. The difficulty is,
3061 that we must calculate the GOT slot offset from the PLT
3062 offset, if this symbol got a PLT entry (it was global).
3063 Additionally if it's computed from the PLT entry, then that
3064 GOT offset is relative to .got.plt, not to .got. */
3065 base_got = htab->sgot;
3066
3067 if (htab->sgot == NULL)
3068 abort ();
3069
3070 if (h != NULL)
3071 {
3072 bfd_boolean dyn;
3073
3074 off = h->got.offset;
3075 if (h->needs_plt
3076 && h->plt.offset != (bfd_vma)-1
3077 && off == (bfd_vma)-1)
3078 {
3079 /* We can't use h->got.offset here to save
3080 state, or even just remember the offset, as
3081 finish_dynamic_symbol would use that as offset into
3082 .got. */
3083 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3084 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3085 base_got = htab->sgotplt;
3086 }
3087
3088 dyn = htab->elf.dynamic_sections_created;
3089
3090 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3091 || (info->shared
3092 && SYMBOL_REFERENCES_LOCAL (info, h))
3093 || (ELF_ST_VISIBILITY (h->other)
3094 && h->root.type == bfd_link_hash_undefweak))
3095 {
3096 /* This is actually a static link, or it is a -Bsymbolic
3097 link and the symbol is defined locally, or the symbol
3098 was forced to be local because of a version file. We
3099 must initialize this entry in the global offset table.
3100 Since the offset must always be a multiple of 8, we
3101 use the least significant bit to record whether we
3102 have initialized it already.
3103
3104 When doing a dynamic link, we create a .rela.got
3105 relocation entry to initialize the value. This is
3106 done in the finish_dynamic_symbol routine. */
3107 if ((off & 1) != 0)
3108 off &= ~1;
3109 else
3110 {
3111 bfd_put_64 (output_bfd, relocation,
3112 base_got->contents + off);
3113 /* Note that this is harmless for the GOTPLT64 case,
3114 as -1 | 1 still is -1. */
3115 h->got.offset |= 1;
3116 }
3117 }
3118 else
3119 unresolved_reloc = FALSE;
3120 }
3121 else
3122 {
3123 if (local_got_offsets == NULL)
3124 abort ();
3125
3126 off = local_got_offsets[r_symndx];
3127
3128 /* The offset must always be a multiple of 8. We use
3129 the least significant bit to record whether we have
3130 already generated the necessary reloc. */
3131 if ((off & 1) != 0)
3132 off &= ~1;
3133 else
3134 {
3135 bfd_put_64 (output_bfd, relocation,
3136 base_got->contents + off);
3137
3138 if (info->shared)
3139 {
3140 asection *s;
3141 Elf_Internal_Rela outrel;
3142 bfd_byte *loc;
3143
3144 /* We need to generate a R_X86_64_RELATIVE reloc
3145 for the dynamic linker. */
3146 s = htab->srelgot;
3147 if (s == NULL)
3148 abort ();
3149
3150 outrel.r_offset = (base_got->output_section->vma
3151 + base_got->output_offset
3152 + off);
3153 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3154 outrel.r_addend = relocation;
3155 loc = s->contents;
3156 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
3157 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3158 }
3159
3160 local_got_offsets[r_symndx] |= 1;
3161 }
3162 }
3163
3164 if (off >= (bfd_vma) -2)
3165 abort ();
3166
3167 relocation = base_got->output_section->vma
3168 + base_got->output_offset + off;
3169 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3170 relocation -= htab->sgotplt->output_section->vma
3171 - htab->sgotplt->output_offset;
3172
3173 break;
3174
3175 case R_X86_64_GOTOFF64:
3176 /* Relocation is relative to the start of the global offset
3177 table. */
3178
3179 /* Check to make sure it isn't a protected function symbol
3180 for shared library since it may not be local when used
3181 as function address. */
3182 if (info->shared
3183 && h
3184 && h->def_regular
3185 && h->type == STT_FUNC
3186 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3187 {
3188 (*_bfd_error_handler)
3189 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3190 input_bfd, h->root.root.string);
3191 bfd_set_error (bfd_error_bad_value);
3192 return FALSE;
3193 }
3194
3195 /* Note that sgot is not involved in this
3196 calculation. We always want the start of .got.plt. If we
3197 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3198 permitted by the ABI, we might have to change this
3199 calculation. */
3200 relocation -= htab->sgotplt->output_section->vma
3201 + htab->sgotplt->output_offset;
3202 break;
3203
3204 case R_X86_64_GOTPC32:
3205 case R_X86_64_GOTPC64:
3206 /* Use global offset table as symbol value. */
3207 relocation = htab->sgotplt->output_section->vma
3208 + htab->sgotplt->output_offset;
3209 unresolved_reloc = FALSE;
3210 break;
3211
3212 case R_X86_64_PLTOFF64:
3213 /* Relocation is PLT entry relative to GOT. For local
3214 symbols it's the symbol itself relative to GOT. */
3215 if (h != NULL
3216 /* See PLT32 handling. */
3217 && h->plt.offset != (bfd_vma) -1
3218 && htab->splt != NULL)
3219 {
3220 relocation = (htab->splt->output_section->vma
3221 + htab->splt->output_offset
3222 + h->plt.offset);
3223 unresolved_reloc = FALSE;
3224 }
3225
3226 relocation -= htab->sgotplt->output_section->vma
3227 + htab->sgotplt->output_offset;
3228 break;
3229
3230 case R_X86_64_PLT32:
3231 /* Relocation is to the entry for this symbol in the
3232 procedure linkage table. */
3233
3234 /* Resolve a PLT32 reloc against a local symbol directly,
3235 without using the procedure linkage table. */
3236 if (h == NULL)
3237 break;
3238
3239 if (h->plt.offset == (bfd_vma) -1
3240 || htab->splt == NULL)
3241 {
3242 /* We didn't make a PLT entry for this symbol. This
3243 happens when statically linking PIC code, or when
3244 using -Bsymbolic. */
3245 break;
3246 }
3247
3248 relocation = (htab->splt->output_section->vma
3249 + htab->splt->output_offset
3250 + h->plt.offset);
3251 unresolved_reloc = FALSE;
3252 break;
3253
3254 case R_X86_64_PC8:
3255 case R_X86_64_PC16:
3256 case R_X86_64_PC32:
3257 if (info->shared
3258 && (input_section->flags & SEC_ALLOC) != 0
3259 && (input_section->flags & SEC_READONLY) != 0
3260 && h != NULL)
3261 {
3262 bfd_boolean fail = FALSE;
3263 bfd_boolean branch
3264 = (r_type == R_X86_64_PC32
3265 && is_32bit_relative_branch (contents, rel->r_offset));
3266
3267 if (SYMBOL_REFERENCES_LOCAL (info, h))
3268 {
3269 /* Symbol is referenced locally. Make sure it is
3270 defined locally or for a branch. */
3271 fail = !h->def_regular && !branch;
3272 }
3273 else
3274 {
3275 /* Symbol isn't referenced locally. We only allow
3276 branch to symbol with non-default visibility. */
3277 fail = (!branch
3278 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3279 }
3280
3281 if (fail)
3282 {
3283 const char *fmt;
3284 const char *v;
3285 const char *pic = "";
3286
3287 switch (ELF_ST_VISIBILITY (h->other))
3288 {
3289 case STV_HIDDEN:
3290 v = _("hidden symbol");
3291 break;
3292 case STV_INTERNAL:
3293 v = _("internal symbol");
3294 break;
3295 case STV_PROTECTED:
3296 v = _("protected symbol");
3297 break;
3298 default:
3299 v = _("symbol");
3300 pic = _("; recompile with -fPIC");
3301 break;
3302 }
3303
3304 if (h->def_regular)
3305 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3306 else
3307 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3308
3309 (*_bfd_error_handler) (fmt, input_bfd,
3310 x86_64_elf_howto_table[r_type].name,
3311 v, h->root.root.string, pic);
3312 bfd_set_error (bfd_error_bad_value);
3313 return FALSE;
3314 }
3315 }
3316 /* Fall through. */
3317
3318 case R_X86_64_8:
3319 case R_X86_64_16:
3320 case R_X86_64_32:
3321 case R_X86_64_PC64:
3322 case R_X86_64_64:
3323 /* FIXME: The ABI says the linker should make sure the value is
3324 the same when it's zeroextended to 64 bit. */
3325
3326 if ((input_section->flags & SEC_ALLOC) == 0)
3327 break;
3328
3329 if ((info->shared
3330 && (h == NULL
3331 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3332 || h->root.type != bfd_link_hash_undefweak)
3333 && (! IS_X86_64_PCREL_TYPE (r_type)
3334 || ! SYMBOL_CALLS_LOCAL (info, h)))
3335 || (ELIMINATE_COPY_RELOCS
3336 && !info->shared
3337 && h != NULL
3338 && h->dynindx != -1
3339 && !h->non_got_ref
3340 && ((h->def_dynamic
3341 && !h->def_regular)
3342 || h->root.type == bfd_link_hash_undefweak
3343 || h->root.type == bfd_link_hash_undefined)))
3344 {
3345 Elf_Internal_Rela outrel;
3346 bfd_byte *loc;
3347 bfd_boolean skip, relocate;
3348 asection *sreloc;
3349
3350 /* When generating a shared object, these relocations
3351 are copied into the output file to be resolved at run
3352 time. */
3353 skip = FALSE;
3354 relocate = FALSE;
3355
3356 outrel.r_offset =
3357 _bfd_elf_section_offset (output_bfd, info, input_section,
3358 rel->r_offset);
3359 if (outrel.r_offset == (bfd_vma) -1)
3360 skip = TRUE;
3361 else if (outrel.r_offset == (bfd_vma) -2)
3362 skip = TRUE, relocate = TRUE;
3363
3364 outrel.r_offset += (input_section->output_section->vma
3365 + input_section->output_offset);
3366
3367 if (skip)
3368 memset (&outrel, 0, sizeof outrel);
3369
3370 /* h->dynindx may be -1 if this symbol was marked to
3371 become local. */
3372 else if (h != NULL
3373 && h->dynindx != -1
3374 && (IS_X86_64_PCREL_TYPE (r_type)
3375 || ! info->shared
3376 || ! SYMBOLIC_BIND (info, h)
3377 || ! h->def_regular))
3378 {
3379 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
3380 outrel.r_addend = rel->r_addend;
3381 }
3382 else
3383 {
3384 /* This symbol is local, or marked to become local. */
3385 if (r_type == R_X86_64_64)
3386 {
3387 relocate = TRUE;
3388 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3389 outrel.r_addend = relocation + rel->r_addend;
3390 }
3391 else
3392 {
3393 long sindx;
3394
3395 if (bfd_is_abs_section (sec))
3396 sindx = 0;
3397 else if (sec == NULL || sec->owner == NULL)
3398 {
3399 bfd_set_error (bfd_error_bad_value);
3400 return FALSE;
3401 }
3402 else
3403 {
3404 asection *osec;
3405
3406 /* We are turning this relocation into one
3407 against a section symbol. It would be
3408 proper to subtract the symbol's value,
3409 osec->vma, from the emitted reloc addend,
3410 but ld.so expects buggy relocs. */
3411 osec = sec->output_section;
3412 sindx = elf_section_data (osec)->dynindx;
3413 if (sindx == 0)
3414 {
3415 asection *oi = htab->elf.text_index_section;
3416 sindx = elf_section_data (oi)->dynindx;
3417 }
3418 BFD_ASSERT (sindx != 0);
3419 }
3420
3421 outrel.r_info = ELF64_R_INFO (sindx, r_type);
3422 outrel.r_addend = relocation + rel->r_addend;
3423 }
3424 }
3425
3426 sreloc = elf_section_data (input_section)->sreloc;
3427
3428 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3429
3430 loc = sreloc->contents;
3431 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3432 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3433
3434 /* If this reloc is against an external symbol, we do
3435 not want to fiddle with the addend. Otherwise, we
3436 need to include the symbol value so that it becomes
3437 an addend for the dynamic reloc. */
3438 if (! relocate)
3439 continue;
3440 }
3441
3442 break;
3443
3444 case R_X86_64_TLSGD:
3445 case R_X86_64_GOTPC32_TLSDESC:
3446 case R_X86_64_TLSDESC_CALL:
3447 case R_X86_64_GOTTPOFF:
3448 tls_type = GOT_UNKNOWN;
3449 if (h == NULL && local_got_offsets)
3450 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3451 else if (h != NULL)
3452 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
3453
3454 if (! elf64_x86_64_tls_transition (info, input_bfd,
3455 input_section, contents,
3456 symtab_hdr, sym_hashes,
3457 &r_type, tls_type, rel,
3458 relend, h))
3459 return FALSE;
3460
3461 if (r_type == R_X86_64_TPOFF32)
3462 {
3463 bfd_vma roff = rel->r_offset;
3464
3465 BFD_ASSERT (! unresolved_reloc);
3466
3467 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3468 {
3469 /* GD->LE transition.
3470 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3471 .word 0x6666; rex64; call __tls_get_addr
3472 Change it into:
3473 movq %fs:0, %rax
3474 leaq foo@tpoff(%rax), %rax */
3475 memcpy (contents + roff - 4,
3476 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3477 16);
3478 bfd_put_32 (output_bfd,
3479 elf64_x86_64_tpoff (info, relocation),
3480 contents + roff + 8);
3481 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3482 rel++;
3483 continue;
3484 }
3485 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3486 {
3487 /* GDesc -> LE transition.
3488 It's originally something like:
3489 leaq x@tlsdesc(%rip), %rax
3490
3491 Change it to:
3492 movl $x@tpoff, %rax
3493 */
3494
3495 unsigned int val, type, type2;
3496
3497 type = bfd_get_8 (input_bfd, contents + roff - 3);
3498 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3499 val = bfd_get_8 (input_bfd, contents + roff - 1);
3500 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3501 contents + roff - 3);
3502 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3503 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3504 contents + roff - 1);
3505 bfd_put_32 (output_bfd,
3506 elf64_x86_64_tpoff (info, relocation),
3507 contents + roff);
3508 continue;
3509 }
3510 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3511 {
3512 /* GDesc -> LE transition.
3513 It's originally:
3514 call *(%rax)
3515 Turn it into:
3516 xchg %ax,%ax. */
3517 bfd_put_8 (output_bfd, 0x66, contents + roff);
3518 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3519 continue;
3520 }
3521 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3522 {
3523 /* IE->LE transition:
3524 Originally it can be one of:
3525 movq foo@gottpoff(%rip), %reg
3526 addq foo@gottpoff(%rip), %reg
3527 We change it into:
3528 movq $foo, %reg
3529 leaq foo(%reg), %reg
3530 addq $foo, %reg. */
3531
3532 unsigned int val, type, reg;
3533
3534 val = bfd_get_8 (input_bfd, contents + roff - 3);
3535 type = bfd_get_8 (input_bfd, contents + roff - 2);
3536 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3537 reg >>= 3;
3538 if (type == 0x8b)
3539 {
3540 /* movq */
3541 if (val == 0x4c)
3542 bfd_put_8 (output_bfd, 0x49,
3543 contents + roff - 3);
3544 bfd_put_8 (output_bfd, 0xc7,
3545 contents + roff - 2);
3546 bfd_put_8 (output_bfd, 0xc0 | reg,
3547 contents + roff - 1);
3548 }
3549 else if (reg == 4)
3550 {
3551 /* addq -> addq - addressing with %rsp/%r12 is
3552 special */
3553 if (val == 0x4c)
3554 bfd_put_8 (output_bfd, 0x49,
3555 contents + roff - 3);
3556 bfd_put_8 (output_bfd, 0x81,
3557 contents + roff - 2);
3558 bfd_put_8 (output_bfd, 0xc0 | reg,
3559 contents + roff - 1);
3560 }
3561 else
3562 {
3563 /* addq -> leaq */
3564 if (val == 0x4c)
3565 bfd_put_8 (output_bfd, 0x4d,
3566 contents + roff - 3);
3567 bfd_put_8 (output_bfd, 0x8d,
3568 contents + roff - 2);
3569 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3570 contents + roff - 1);
3571 }
3572 bfd_put_32 (output_bfd,
3573 elf64_x86_64_tpoff (info, relocation),
3574 contents + roff);
3575 continue;
3576 }
3577 else
3578 BFD_ASSERT (FALSE);
3579 }
3580
3581 if (htab->sgot == NULL)
3582 abort ();
3583
3584 if (h != NULL)
3585 {
3586 off = h->got.offset;
3587 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
3588 }
3589 else
3590 {
3591 if (local_got_offsets == NULL)
3592 abort ();
3593
3594 off = local_got_offsets[r_symndx];
3595 offplt = local_tlsdesc_gotents[r_symndx];
3596 }
3597
3598 if ((off & 1) != 0)
3599 off &= ~1;
3600 else
3601 {
3602 Elf_Internal_Rela outrel;
3603 bfd_byte *loc;
3604 int dr_type, indx;
3605 asection *sreloc;
3606
3607 if (htab->srelgot == NULL)
3608 abort ();
3609
3610 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3611
3612 if (GOT_TLS_GDESC_P (tls_type))
3613 {
3614 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
3615 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3616 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
3617 outrel.r_offset = (htab->sgotplt->output_section->vma
3618 + htab->sgotplt->output_offset
3619 + offplt
3620 + htab->sgotplt_jump_table_size);
3621 sreloc = htab->srelplt;
3622 loc = sreloc->contents;
3623 loc += sreloc->reloc_count++
3624 * sizeof (Elf64_External_Rela);
3625 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3626 <= sreloc->contents + sreloc->size);
3627 if (indx == 0)
3628 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3629 else
3630 outrel.r_addend = 0;
3631 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3632 }
3633
3634 sreloc = htab->srelgot;
3635
3636 outrel.r_offset = (htab->sgot->output_section->vma
3637 + htab->sgot->output_offset + off);
3638
3639 if (GOT_TLS_GD_P (tls_type))
3640 dr_type = R_X86_64_DTPMOD64;
3641 else if (GOT_TLS_GDESC_P (tls_type))
3642 goto dr_done;
3643 else
3644 dr_type = R_X86_64_TPOFF64;
3645
3646 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
3647 outrel.r_addend = 0;
3648 if ((dr_type == R_X86_64_TPOFF64
3649 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3650 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3651 outrel.r_info = ELF64_R_INFO (indx, dr_type);
3652
3653 loc = sreloc->contents;
3654 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3655 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3656 <= sreloc->contents + sreloc->size);
3657 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3658
3659 if (GOT_TLS_GD_P (tls_type))
3660 {
3661 if (indx == 0)
3662 {
3663 BFD_ASSERT (! unresolved_reloc);
3664 bfd_put_64 (output_bfd,
3665 relocation - elf64_x86_64_dtpoff_base (info),
3666 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3667 }
3668 else
3669 {
3670 bfd_put_64 (output_bfd, 0,
3671 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3672 outrel.r_info = ELF64_R_INFO (indx,
3673 R_X86_64_DTPOFF64);
3674 outrel.r_offset += GOT_ENTRY_SIZE;
3675 sreloc->reloc_count++;
3676 loc += sizeof (Elf64_External_Rela);
3677 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3678 <= sreloc->contents + sreloc->size);
3679 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3680 }
3681 }
3682
3683 dr_done:
3684 if (h != NULL)
3685 h->got.offset |= 1;
3686 else
3687 local_got_offsets[r_symndx] |= 1;
3688 }
3689
3690 if (off >= (bfd_vma) -2
3691 && ! GOT_TLS_GDESC_P (tls_type))
3692 abort ();
3693 if (r_type == ELF64_R_TYPE (rel->r_info))
3694 {
3695 if (r_type == R_X86_64_GOTPC32_TLSDESC
3696 || r_type == R_X86_64_TLSDESC_CALL)
3697 relocation = htab->sgotplt->output_section->vma
3698 + htab->sgotplt->output_offset
3699 + offplt + htab->sgotplt_jump_table_size;
3700 else
3701 relocation = htab->sgot->output_section->vma
3702 + htab->sgot->output_offset + off;
3703 unresolved_reloc = FALSE;
3704 }
3705 else
3706 {
3707 bfd_vma roff = rel->r_offset;
3708
3709 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3710 {
3711 /* GD->IE transition.
3712 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3713 .word 0x6666; rex64; call __tls_get_addr@plt
3714 Change it into:
3715 movq %fs:0, %rax
3716 addq foo@gottpoff(%rip), %rax */
3717 memcpy (contents + roff - 4,
3718 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3719 16);
3720
3721 relocation = (htab->sgot->output_section->vma
3722 + htab->sgot->output_offset + off
3723 - roff
3724 - input_section->output_section->vma
3725 - input_section->output_offset
3726 - 12);
3727 bfd_put_32 (output_bfd, relocation,
3728 contents + roff + 8);
3729 /* Skip R_X86_64_PLT32. */
3730 rel++;
3731 continue;
3732 }
3733 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3734 {
3735 /* GDesc -> IE transition.
3736 It's originally something like:
3737 leaq x@tlsdesc(%rip), %rax
3738
3739 Change it to:
3740 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3741 */
3742
3743 unsigned int val, type, type2;
3744
3745 type = bfd_get_8 (input_bfd, contents + roff - 3);
3746 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3747 val = bfd_get_8 (input_bfd, contents + roff - 1);
3748
3749 /* Now modify the instruction as appropriate. To
3750 turn a leaq into a movq in the form we use it, it
3751 suffices to change the second byte from 0x8d to
3752 0x8b. */
3753 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3754
3755 bfd_put_32 (output_bfd,
3756 htab->sgot->output_section->vma
3757 + htab->sgot->output_offset + off
3758 - rel->r_offset
3759 - input_section->output_section->vma
3760 - input_section->output_offset
3761 - 4,
3762 contents + roff);
3763 continue;
3764 }
3765 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3766 {
3767 /* GDesc -> IE transition.
3768 It's originally:
3769 call *(%rax)
3770
3771 Change it to:
3772 xchg %ax,%ax. */
3773
3774 unsigned int val, type;
3775
3776 type = bfd_get_8 (input_bfd, contents + roff);
3777 val = bfd_get_8 (input_bfd, contents + roff + 1);
3778 bfd_put_8 (output_bfd, 0x66, contents + roff);
3779 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3780 continue;
3781 }
3782 else
3783 BFD_ASSERT (FALSE);
3784 }
3785 break;
3786
3787 case R_X86_64_TLSLD:
3788 if (! elf64_x86_64_tls_transition (info, input_bfd,
3789 input_section, contents,
3790 symtab_hdr, sym_hashes,
3791 &r_type, GOT_UNKNOWN,
3792 rel, relend, h))
3793 return FALSE;
3794
3795 if (r_type != R_X86_64_TLSLD)
3796 {
3797 /* LD->LE transition:
3798 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3799 We change it into:
3800 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3801
3802 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3803 memcpy (contents + rel->r_offset - 3,
3804 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3805 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3806 rel++;
3807 continue;
3808 }
3809
3810 if (htab->sgot == NULL)
3811 abort ();
3812
3813 off = htab->tls_ld_got.offset;
3814 if (off & 1)
3815 off &= ~1;
3816 else
3817 {
3818 Elf_Internal_Rela outrel;
3819 bfd_byte *loc;
3820
3821 if (htab->srelgot == NULL)
3822 abort ();
3823
3824 outrel.r_offset = (htab->sgot->output_section->vma
3825 + htab->sgot->output_offset + off);
3826
3827 bfd_put_64 (output_bfd, 0,
3828 htab->sgot->contents + off);
3829 bfd_put_64 (output_bfd, 0,
3830 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3831 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3832 outrel.r_addend = 0;
3833 loc = htab->srelgot->contents;
3834 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3835 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3836 htab->tls_ld_got.offset |= 1;
3837 }
3838 relocation = htab->sgot->output_section->vma
3839 + htab->sgot->output_offset + off;
3840 unresolved_reloc = FALSE;
3841 break;
3842
3843 case R_X86_64_DTPOFF32:
3844 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3845 relocation -= elf64_x86_64_dtpoff_base (info);
3846 else
3847 relocation = elf64_x86_64_tpoff (info, relocation);
3848 break;
3849
3850 case R_X86_64_TPOFF32:
3851 BFD_ASSERT (! info->shared);
3852 relocation = elf64_x86_64_tpoff (info, relocation);
3853 break;
3854
3855 default:
3856 break;
3857 }
3858
3859 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3860 because such sections are not SEC_ALLOC and thus ld.so will
3861 not process them. */
3862 if (unresolved_reloc
3863 && !((input_section->flags & SEC_DEBUGGING) != 0
3864 && h->def_dynamic))
3865 (*_bfd_error_handler)
3866 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3867 input_bfd,
3868 input_section,
3869 (long) rel->r_offset,
3870 howto->name,
3871 h->root.root.string);
3872
3873 do_relocation:
3874 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3875 contents, rel->r_offset,
3876 relocation, rel->r_addend);
3877
3878 if (r != bfd_reloc_ok)
3879 {
3880 const char *name;
3881
3882 if (h != NULL)
3883 name = h->root.root.string;
3884 else
3885 {
3886 name = bfd_elf_string_from_elf_section (input_bfd,
3887 symtab_hdr->sh_link,
3888 sym->st_name);
3889 if (name == NULL)
3890 return FALSE;
3891 if (*name == '\0')
3892 name = bfd_section_name (input_bfd, sec);
3893 }
3894
3895 if (r == bfd_reloc_overflow)
3896 {
3897 if (! ((*info->callbacks->reloc_overflow)
3898 (info, (h ? &h->root : NULL), name, howto->name,
3899 (bfd_vma) 0, input_bfd, input_section,
3900 rel->r_offset)))
3901 return FALSE;
3902 }
3903 else
3904 {
3905 (*_bfd_error_handler)
3906 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3907 input_bfd, input_section,
3908 (long) rel->r_offset, name, (int) r);
3909 return FALSE;
3910 }
3911 }
3912 }
3913
3914 return TRUE;
3915 }
3916
3917 /* Finish up dynamic symbol handling. We set the contents of various
3918 dynamic sections here. */
3919
3920 static bfd_boolean
3921 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3922 struct bfd_link_info *info,
3923 struct elf_link_hash_entry *h,
3924 Elf_Internal_Sym *sym)
3925 {
3926 struct elf64_x86_64_link_hash_table *htab;
3927
3928 htab = elf64_x86_64_hash_table (info);
3929
3930 if (h->plt.offset != (bfd_vma) -1)
3931 {
3932 bfd_vma plt_index;
3933 bfd_vma got_offset;
3934 Elf_Internal_Rela rela;
3935 bfd_byte *loc;
3936 asection *plt, *gotplt, *relplt;
3937
3938 /* When building a static executable, use .iplt, .igot.plt and
3939 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3940 if (htab->splt != NULL)
3941 {
3942 plt = htab->splt;
3943 gotplt = htab->sgotplt;
3944 relplt = htab->srelplt;
3945 }
3946 else
3947 {
3948 plt = htab->iplt;
3949 gotplt = htab->igotplt;
3950 relplt = htab->irelplt;
3951 }
3952
3953 /* This symbol has an entry in the procedure linkage table. Set
3954 it up. */
3955 if ((h->dynindx == -1
3956 && !((h->forced_local || info->executable)
3957 && h->def_regular
3958 && h->type == STT_GNU_IFUNC))
3959 || plt == NULL
3960 || gotplt == NULL
3961 || relplt == NULL)
3962 abort ();
3963
3964 /* Get the index in the procedure linkage table which
3965 corresponds to this symbol. This is the index of this symbol
3966 in all the symbols for which we are making plt entries. The
3967 first entry in the procedure linkage table is reserved.
3968
3969 Get the offset into the .got table of the entry that
3970 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3971 bytes. The first three are reserved for the dynamic linker.
3972
3973 For static executables, we don't reserve anything. */
3974
3975 if (plt == htab->splt)
3976 {
3977 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3978 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3979 }
3980 else
3981 {
3982 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3983 got_offset = plt_index * GOT_ENTRY_SIZE;
3984 }
3985
3986 /* Fill in the entry in the procedure linkage table. */
3987 memcpy (plt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3988 PLT_ENTRY_SIZE);
3989
3990 /* Insert the relocation positions of the plt section. The magic
3991 numbers at the end of the statements are the positions of the
3992 relocations in the plt section. */
3993 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3994 instruction uses 6 bytes, subtract this value. */
3995 bfd_put_32 (output_bfd,
3996 (gotplt->output_section->vma
3997 + gotplt->output_offset
3998 + got_offset
3999 - plt->output_section->vma
4000 - plt->output_offset
4001 - h->plt.offset
4002 - 6),
4003 plt->contents + h->plt.offset + 2);
4004
4005 /* Don't fill PLT entry for static executables. */
4006 if (plt == htab->splt)
4007 {
4008 /* Put relocation index. */
4009 bfd_put_32 (output_bfd, plt_index,
4010 plt->contents + h->plt.offset + 7);
4011 /* Put offset for jmp .PLT0. */
4012 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4013 plt->contents + h->plt.offset + 12);
4014 }
4015
4016 /* Fill in the entry in the global offset table, initially this
4017 points to the pushq instruction in the PLT which is at offset 6. */
4018 bfd_put_64 (output_bfd, (plt->output_section->vma
4019 + plt->output_offset
4020 + h->plt.offset + 6),
4021 gotplt->contents + got_offset);
4022
4023 /* Fill in the entry in the .rela.plt section. */
4024 rela.r_offset = (gotplt->output_section->vma
4025 + gotplt->output_offset
4026 + got_offset);
4027 if (h->dynindx == -1
4028 || ((info->executable
4029 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4030 && h->def_regular
4031 && h->type == STT_GNU_IFUNC))
4032 {
4033 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4034 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4035 rela.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
4036 rela.r_addend = (h->root.u.def.value
4037 + h->root.u.def.section->output_section->vma
4038 + h->root.u.def.section->output_offset);
4039 }
4040 else
4041 {
4042 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
4043 rela.r_addend = 0;
4044 }
4045 loc = relplt->contents + plt_index * sizeof (Elf64_External_Rela);
4046 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
4047
4048 if (!h->def_regular)
4049 {
4050 /* Mark the symbol as undefined, rather than as defined in
4051 the .plt section. Leave the value if there were any
4052 relocations where pointer equality matters (this is a clue
4053 for the dynamic linker, to make function pointer
4054 comparisons work between an application and shared
4055 library), otherwise set it to zero. If a function is only
4056 called from a binary, there is no need to slow down
4057 shared libraries because of that. */
4058 sym->st_shndx = SHN_UNDEF;
4059 if (!h->pointer_equality_needed)
4060 sym->st_value = 0;
4061 }
4062 }
4063
4064 if (h->got.offset != (bfd_vma) -1
4065 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
4066 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4067 {
4068 Elf_Internal_Rela rela;
4069 bfd_byte *loc;
4070
4071 /* This symbol has an entry in the global offset table. Set it
4072 up. */
4073 if (htab->sgot == NULL || htab->srelgot == NULL)
4074 abort ();
4075
4076 rela.r_offset = (htab->sgot->output_section->vma
4077 + htab->sgot->output_offset
4078 + (h->got.offset &~ (bfd_vma) 1));
4079
4080 /* If this is a static link, or it is a -Bsymbolic link and the
4081 symbol is defined locally or was forced to be local because
4082 of a version file, we just want to emit a RELATIVE reloc.
4083 The entry in the global offset table will already have been
4084 initialized in the relocate_section function. */
4085 if (h->def_regular
4086 && h->type == STT_GNU_IFUNC)
4087 {
4088 if (info->shared)
4089 {
4090 /* Generate R_X86_64_GLOB_DAT. */
4091 goto do_glob_dat;
4092 }
4093 else
4094 {
4095 if (!h->pointer_equality_needed)
4096 abort ();
4097
4098 /* For non-shared object, we can't use .got.plt, which
4099 contains the real function addres if we need pointer
4100 equality. We load the GOT entry with the PLT entry. */
4101 asection *plt = htab->splt ? htab->splt : htab->iplt;
4102 bfd_put_64 (output_bfd, (plt->output_section->vma
4103 + plt->output_offset
4104 + h->plt.offset),
4105 htab->sgot->contents + h->got.offset);
4106 return TRUE;
4107 }
4108 }
4109 else if (info->shared
4110 && SYMBOL_REFERENCES_LOCAL (info, h))
4111 {
4112 if (!h->def_regular)
4113 return FALSE;
4114 BFD_ASSERT((h->got.offset & 1) != 0);
4115 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
4116 rela.r_addend = (h->root.u.def.value
4117 + h->root.u.def.section->output_section->vma
4118 + h->root.u.def.section->output_offset);
4119 }
4120 else
4121 {
4122 BFD_ASSERT((h->got.offset & 1) == 0);
4123 do_glob_dat:
4124 bfd_put_64 (output_bfd, (bfd_vma) 0,
4125 htab->sgot->contents + h->got.offset);
4126 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
4127 rela.r_addend = 0;
4128 }
4129
4130 loc = htab->srelgot->contents;
4131 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
4132 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
4133 }
4134
4135 if (h->needs_copy)
4136 {
4137 Elf_Internal_Rela rela;
4138 bfd_byte *loc;
4139
4140 /* This symbol needs a copy reloc. Set it up. */
4141
4142 if (h->dynindx == -1
4143 || (h->root.type != bfd_link_hash_defined
4144 && h->root.type != bfd_link_hash_defweak)
4145 || htab->srelbss == NULL)
4146 abort ();
4147
4148 rela.r_offset = (h->root.u.def.value
4149 + h->root.u.def.section->output_section->vma
4150 + h->root.u.def.section->output_offset);
4151 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
4152 rela.r_addend = 0;
4153 loc = htab->srelbss->contents;
4154 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
4155 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
4156 }
4157
4158 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4159 be NULL for local symbols. */
4160 if (sym != NULL
4161 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4162 || h == htab->elf.hgot))
4163 sym->st_shndx = SHN_ABS;
4164
4165 return TRUE;
4166 }
4167
4168 /* Finish up local dynamic symbol handling. We set the contents of
4169 various dynamic sections here. */
4170
4171 static bfd_boolean
4172 elf64_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4173 {
4174 struct elf_link_hash_entry *h
4175 = (struct elf_link_hash_entry *) *slot;
4176 struct bfd_link_info *info
4177 = (struct bfd_link_info *) inf;
4178
4179 return elf64_x86_64_finish_dynamic_symbol (info->output_bfd,
4180 info, h, NULL);
4181 }
4182
4183 /* Used to decide how to sort relocs in an optimal manner for the
4184 dynamic linker, before writing them out. */
4185
4186 static enum elf_reloc_type_class
4187 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4188 {
4189 switch ((int) ELF64_R_TYPE (rela->r_info))
4190 {
4191 case R_X86_64_RELATIVE:
4192 return reloc_class_relative;
4193 case R_X86_64_JUMP_SLOT:
4194 return reloc_class_plt;
4195 case R_X86_64_COPY:
4196 return reloc_class_copy;
4197 default:
4198 return reloc_class_normal;
4199 }
4200 }
4201
4202 /* Finish up the dynamic sections. */
4203
4204 static bfd_boolean
4205 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4206 {
4207 struct elf64_x86_64_link_hash_table *htab;
4208 bfd *dynobj;
4209 asection *sdyn;
4210
4211 htab = elf64_x86_64_hash_table (info);
4212 dynobj = htab->elf.dynobj;
4213 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4214
4215 if (htab->elf.dynamic_sections_created)
4216 {
4217 Elf64_External_Dyn *dyncon, *dynconend;
4218
4219 if (sdyn == NULL || htab->sgot == NULL)
4220 abort ();
4221
4222 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4223 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4224 for (; dyncon < dynconend; dyncon++)
4225 {
4226 Elf_Internal_Dyn dyn;
4227 asection *s;
4228
4229 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4230
4231 switch (dyn.d_tag)
4232 {
4233 default:
4234 continue;
4235
4236 case DT_PLTGOT:
4237 s = htab->sgotplt;
4238 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4239 break;
4240
4241 case DT_JMPREL:
4242 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
4243 break;
4244
4245 case DT_PLTRELSZ:
4246 s = htab->srelplt->output_section;
4247 dyn.d_un.d_val = s->size;
4248 break;
4249
4250 case DT_RELASZ:
4251 /* The procedure linkage table relocs (DT_JMPREL) should
4252 not be included in the overall relocs (DT_RELA).
4253 Therefore, we override the DT_RELASZ entry here to
4254 make it not include the JMPREL relocs. Since the
4255 linker script arranges for .rela.plt to follow all
4256 other relocation sections, we don't have to worry
4257 about changing the DT_RELA entry. */
4258 if (htab->srelplt != NULL)
4259 {
4260 s = htab->srelplt->output_section;
4261 dyn.d_un.d_val -= s->size;
4262 }
4263 break;
4264
4265 case DT_TLSDESC_PLT:
4266 s = htab->splt;
4267 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4268 + htab->tlsdesc_plt;
4269 break;
4270
4271 case DT_TLSDESC_GOT:
4272 s = htab->sgot;
4273 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4274 + htab->tlsdesc_got;
4275 break;
4276 }
4277
4278 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4279 }
4280
4281 /* Fill in the special first entry in the procedure linkage table. */
4282 if (htab->splt && htab->splt->size > 0)
4283 {
4284 /* Fill in the first entry in the procedure linkage table. */
4285 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
4286 PLT_ENTRY_SIZE);
4287 /* Add offset for pushq GOT+8(%rip), since the instruction
4288 uses 6 bytes subtract this value. */
4289 bfd_put_32 (output_bfd,
4290 (htab->sgotplt->output_section->vma
4291 + htab->sgotplt->output_offset
4292 + 8
4293 - htab->splt->output_section->vma
4294 - htab->splt->output_offset
4295 - 6),
4296 htab->splt->contents + 2);
4297 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4298 the end of the instruction. */
4299 bfd_put_32 (output_bfd,
4300 (htab->sgotplt->output_section->vma
4301 + htab->sgotplt->output_offset
4302 + 16
4303 - htab->splt->output_section->vma
4304 - htab->splt->output_offset
4305 - 12),
4306 htab->splt->contents + 8);
4307
4308 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
4309 PLT_ENTRY_SIZE;
4310
4311 if (htab->tlsdesc_plt)
4312 {
4313 bfd_put_64 (output_bfd, (bfd_vma) 0,
4314 htab->sgot->contents + htab->tlsdesc_got);
4315
4316 memcpy (htab->splt->contents + htab->tlsdesc_plt,
4317 elf64_x86_64_plt0_entry,
4318 PLT_ENTRY_SIZE);
4319
4320 /* Add offset for pushq GOT+8(%rip), since the
4321 instruction uses 6 bytes subtract this value. */
4322 bfd_put_32 (output_bfd,
4323 (htab->sgotplt->output_section->vma
4324 + htab->sgotplt->output_offset
4325 + 8
4326 - htab->splt->output_section->vma
4327 - htab->splt->output_offset
4328 - htab->tlsdesc_plt
4329 - 6),
4330 htab->splt->contents + htab->tlsdesc_plt + 2);
4331 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4332 htab->tlsdesc_got. The 12 is the offset to the end of
4333 the instruction. */
4334 bfd_put_32 (output_bfd,
4335 (htab->sgot->output_section->vma
4336 + htab->sgot->output_offset
4337 + htab->tlsdesc_got
4338 - htab->splt->output_section->vma
4339 - htab->splt->output_offset
4340 - htab->tlsdesc_plt
4341 - 12),
4342 htab->splt->contents + htab->tlsdesc_plt + 8);
4343 }
4344 }
4345 }
4346
4347 if (htab->sgotplt)
4348 {
4349 /* Fill in the first three entries in the global offset table. */
4350 if (htab->sgotplt->size > 0)
4351 {
4352 /* Set the first entry in the global offset table to the address of
4353 the dynamic section. */
4354 if (sdyn == NULL)
4355 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
4356 else
4357 bfd_put_64 (output_bfd,
4358 sdyn->output_section->vma + sdyn->output_offset,
4359 htab->sgotplt->contents);
4360 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4361 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
4362 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
4363 }
4364
4365 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
4366 GOT_ENTRY_SIZE;
4367 }
4368
4369 if (htab->sgot && htab->sgot->size > 0)
4370 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
4371 = GOT_ENTRY_SIZE;
4372
4373 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4374 htab_traverse (htab->loc_hash_table,
4375 elf64_x86_64_finish_local_dynamic_symbol,
4376 info);
4377
4378 return TRUE;
4379 }
4380
4381 /* Return address for Ith PLT stub in section PLT, for relocation REL
4382 or (bfd_vma) -1 if it should not be included. */
4383
4384 static bfd_vma
4385 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4386 const arelent *rel ATTRIBUTE_UNUSED)
4387 {
4388 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4389 }
4390
4391 /* Handle an x86-64 specific section when reading an object file. This
4392 is called when elfcode.h finds a section with an unknown type. */
4393
4394 static bfd_boolean
4395 elf64_x86_64_section_from_shdr (bfd *abfd,
4396 Elf_Internal_Shdr *hdr,
4397 const char *name,
4398 int shindex)
4399 {
4400 if (hdr->sh_type != SHT_X86_64_UNWIND)
4401 return FALSE;
4402
4403 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4404 return FALSE;
4405
4406 return TRUE;
4407 }
4408
4409 /* Hook called by the linker routine which adds symbols from an object
4410 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4411 of .bss. */
4412
4413 static bfd_boolean
4414 elf64_x86_64_add_symbol_hook (bfd *abfd,
4415 struct bfd_link_info *info,
4416 Elf_Internal_Sym *sym,
4417 const char **namep ATTRIBUTE_UNUSED,
4418 flagword *flagsp ATTRIBUTE_UNUSED,
4419 asection **secp,
4420 bfd_vma *valp)
4421 {
4422 asection *lcomm;
4423
4424 switch (sym->st_shndx)
4425 {
4426 case SHN_X86_64_LCOMMON:
4427 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4428 if (lcomm == NULL)
4429 {
4430 lcomm = bfd_make_section_with_flags (abfd,
4431 "LARGE_COMMON",
4432 (SEC_ALLOC
4433 | SEC_IS_COMMON
4434 | SEC_LINKER_CREATED));
4435 if (lcomm == NULL)
4436 return FALSE;
4437 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4438 }
4439 *secp = lcomm;
4440 *valp = sym->st_size;
4441 break;
4442 }
4443
4444 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4445 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
4446
4447 return TRUE;
4448 }
4449
4450
4451 /* Given a BFD section, try to locate the corresponding ELF section
4452 index. */
4453
4454 static bfd_boolean
4455 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4456 asection *sec, int *index)
4457 {
4458 if (sec == &_bfd_elf_large_com_section)
4459 {
4460 *index = SHN_X86_64_LCOMMON;
4461 return TRUE;
4462 }
4463 return FALSE;
4464 }
4465
4466 /* Process a symbol. */
4467
4468 static void
4469 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4470 asymbol *asym)
4471 {
4472 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4473
4474 switch (elfsym->internal_elf_sym.st_shndx)
4475 {
4476 case SHN_X86_64_LCOMMON:
4477 asym->section = &_bfd_elf_large_com_section;
4478 asym->value = elfsym->internal_elf_sym.st_size;
4479 /* Common symbol doesn't set BSF_GLOBAL. */
4480 asym->flags &= ~BSF_GLOBAL;
4481 break;
4482 }
4483 }
4484
4485 static bfd_boolean
4486 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
4487 {
4488 return (sym->st_shndx == SHN_COMMON
4489 || sym->st_shndx == SHN_X86_64_LCOMMON);
4490 }
4491
4492 static unsigned int
4493 elf64_x86_64_common_section_index (asection *sec)
4494 {
4495 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4496 return SHN_COMMON;
4497 else
4498 return SHN_X86_64_LCOMMON;
4499 }
4500
4501 static asection *
4502 elf64_x86_64_common_section (asection *sec)
4503 {
4504 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4505 return bfd_com_section_ptr;
4506 else
4507 return &_bfd_elf_large_com_section;
4508 }
4509
4510 static bfd_boolean
4511 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4512 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4513 struct elf_link_hash_entry *h,
4514 Elf_Internal_Sym *sym,
4515 asection **psec,
4516 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4517 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4518 bfd_boolean *skip ATTRIBUTE_UNUSED,
4519 bfd_boolean *override ATTRIBUTE_UNUSED,
4520 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4521 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4522 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4523 bfd_boolean *newdyn,
4524 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4525 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4526 bfd *abfd ATTRIBUTE_UNUSED,
4527 asection **sec,
4528 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4529 bfd_boolean *olddyn,
4530 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4531 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4532 bfd *oldbfd,
4533 asection **oldsec)
4534 {
4535 /* A normal common symbol and a large common symbol result in a
4536 normal common symbol. We turn the large common symbol into a
4537 normal one. */
4538 if (!*olddyn
4539 && h->root.type == bfd_link_hash_common
4540 && !*newdyn
4541 && bfd_is_com_section (*sec)
4542 && *oldsec != *sec)
4543 {
4544 if (sym->st_shndx == SHN_COMMON
4545 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4546 {
4547 h->root.u.c.p->section
4548 = bfd_make_section_old_way (oldbfd, "COMMON");
4549 h->root.u.c.p->section->flags = SEC_ALLOC;
4550 }
4551 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4552 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4553 *psec = *sec = bfd_com_section_ptr;
4554 }
4555
4556 return TRUE;
4557 }
4558
4559 static int
4560 elf64_x86_64_additional_program_headers (bfd *abfd,
4561 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4562 {
4563 asection *s;
4564 int count = 0;
4565
4566 /* Check to see if we need a large readonly segment. */
4567 s = bfd_get_section_by_name (abfd, ".lrodata");
4568 if (s && (s->flags & SEC_LOAD))
4569 count++;
4570
4571 /* Check to see if we need a large data segment. Since .lbss sections
4572 is placed right after the .bss section, there should be no need for
4573 a large data segment just because of .lbss. */
4574 s = bfd_get_section_by_name (abfd, ".ldata");
4575 if (s && (s->flags & SEC_LOAD))
4576 count++;
4577
4578 return count;
4579 }
4580
4581 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4582
4583 static bfd_boolean
4584 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4585 {
4586 if (h->plt.offset != (bfd_vma) -1
4587 && !h->def_regular
4588 && !h->pointer_equality_needed)
4589 return FALSE;
4590
4591 return _bfd_elf_hash_symbol (h);
4592 }
4593
4594 static const struct bfd_elf_special_section
4595 elf64_x86_64_special_sections[]=
4596 {
4597 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4598 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4599 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4600 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4601 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4602 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4603 { NULL, 0, 0, 0, 0 }
4604 };
4605
4606 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4607 #define TARGET_LITTLE_NAME "elf64-x86-64"
4608 #define ELF_ARCH bfd_arch_i386
4609 #define ELF_MACHINE_CODE EM_X86_64
4610 #define ELF_MAXPAGESIZE 0x200000
4611 #define ELF_MINPAGESIZE 0x1000
4612 #define ELF_COMMONPAGESIZE 0x1000
4613
4614 #define elf_backend_can_gc_sections 1
4615 #define elf_backend_can_refcount 1
4616 #define elf_backend_want_got_plt 1
4617 #define elf_backend_plt_readonly 1
4618 #define elf_backend_want_plt_sym 0
4619 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4620 #define elf_backend_rela_normal 1
4621
4622 #define elf_info_to_howto elf64_x86_64_info_to_howto
4623
4624 #define bfd_elf64_bfd_link_hash_table_create \
4625 elf64_x86_64_link_hash_table_create
4626 #define bfd_elf64_bfd_link_hash_table_free \
4627 elf64_x86_64_link_hash_table_free
4628 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4629 #define bfd_elf64_bfd_reloc_name_lookup \
4630 elf64_x86_64_reloc_name_lookup
4631
4632 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4633 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4634 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4635 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4636 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4637 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4638 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4639 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4640 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4641 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4642 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4643 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4644 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4645 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4646 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4647 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4648 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4649 #define elf_backend_object_p elf64_x86_64_elf_object_p
4650 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4651
4652 #define elf_backend_section_from_shdr \
4653 elf64_x86_64_section_from_shdr
4654
4655 #define elf_backend_section_from_bfd_section \
4656 elf64_x86_64_elf_section_from_bfd_section
4657 #define elf_backend_add_symbol_hook \
4658 elf64_x86_64_add_symbol_hook
4659 #define elf_backend_symbol_processing \
4660 elf64_x86_64_symbol_processing
4661 #define elf_backend_common_section_index \
4662 elf64_x86_64_common_section_index
4663 #define elf_backend_common_section \
4664 elf64_x86_64_common_section
4665 #define elf_backend_common_definition \
4666 elf64_x86_64_common_definition
4667 #define elf_backend_merge_symbol \
4668 elf64_x86_64_merge_symbol
4669 #define elf_backend_special_sections \
4670 elf64_x86_64_special_sections
4671 #define elf_backend_additional_program_headers \
4672 elf64_x86_64_additional_program_headers
4673 #define elf_backend_hash_symbol \
4674 elf64_x86_64_hash_symbol
4675
4676 #undef elf_backend_post_process_headers
4677 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4678
4679 #include "elf64-target.h"
4680
4681 /* FreeBSD support. */
4682
4683 #undef TARGET_LITTLE_SYM
4684 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4685 #undef TARGET_LITTLE_NAME
4686 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4687
4688 #undef ELF_OSABI
4689 #define ELF_OSABI ELFOSABI_FREEBSD
4690
4691 #undef elf64_bed
4692 #define elf64_bed elf64_x86_64_fbsd_bed
4693
4694 #include "elf64-target.h"
This page took 0.122612 seconds and 5 git commands to generate.