Add x86 size relocation support to bfd
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
152 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
153 FALSE),
154 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
155 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
156 FALSE),
157 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
158 complain_overflow_bitfield, bfd_elf_generic_reloc,
159 "R_X86_64_GOTPC32_TLSDESC",
160 FALSE, 0xffffffff, 0xffffffff, TRUE),
161 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
162 complain_overflow_dont, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC_CALL",
164 FALSE, 0, 0, FALSE),
165 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
166 complain_overflow_bitfield, bfd_elf_generic_reloc,
167 "R_X86_64_TLSDESC",
168 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
169 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
170 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
171 MINUS_ONE, FALSE),
172 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
174 MINUS_ONE, FALSE),
175
176 /* We have a gap in the reloc numbers here.
177 R_X86_64_standard counts the number up to this point, and
178 R_X86_64_vt_offset is the value to subtract from a reloc type of
179 R_X86_64_GNU_VT* to form an index into this table. */
180 #define R_X86_64_standard (R_X86_64_RELATIVE64 + 1)
181 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
182
183 /* GNU extension to record C++ vtable hierarchy. */
184 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
186
187 /* GNU extension to record C++ vtable member usage. */
188 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
190 FALSE),
191
192 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
193 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
194 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
195 FALSE)
196 };
197
198 #define IS_X86_64_PCREL_TYPE(TYPE) \
199 ( ((TYPE) == R_X86_64_PC8) \
200 || ((TYPE) == R_X86_64_PC16) \
201 || ((TYPE) == R_X86_64_PC32) \
202 || ((TYPE) == R_X86_64_PC64))
203
204 /* Map BFD relocs to the x86_64 elf relocs. */
205 struct elf_reloc_map
206 {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
209 };
210
211 static const struct elf_reloc_map x86_64_reloc_map[] =
212 {
213 { BFD_RELOC_NONE, R_X86_64_NONE, },
214 { BFD_RELOC_64, R_X86_64_64, },
215 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
216 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
217 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
218 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
219 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
220 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
221 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
222 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
223 { BFD_RELOC_32, R_X86_64_32, },
224 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
225 { BFD_RELOC_16, R_X86_64_16, },
226 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
227 { BFD_RELOC_8, R_X86_64_8, },
228 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
229 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
230 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
231 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
232 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
233 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
234 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
235 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
236 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
237 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
238 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
239 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
240 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
241 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
242 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
243 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
244 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
245 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
246 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
247 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
248 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
249 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
250 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
251 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
252 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
253 };
254
255 static reloc_howto_type *
256 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
257 {
258 unsigned i;
259
260 if (r_type == (unsigned int) R_X86_64_32)
261 {
262 if (ABI_64_P (abfd))
263 i = r_type;
264 else
265 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
266 }
267 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
268 || r_type >= (unsigned int) R_X86_64_max)
269 {
270 if (r_type >= (unsigned int) R_X86_64_standard)
271 {
272 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
273 abfd, (int) r_type);
274 r_type = R_X86_64_NONE;
275 }
276 i = r_type;
277 }
278 else
279 i = r_type - (unsigned int) R_X86_64_vt_offset;
280 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
281 return &x86_64_elf_howto_table[i];
282 }
283
284 /* Given a BFD reloc type, return a HOWTO structure. */
285 static reloc_howto_type *
286 elf_x86_64_reloc_type_lookup (bfd *abfd,
287 bfd_reloc_code_real_type code)
288 {
289 unsigned int i;
290
291 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
292 i++)
293 {
294 if (x86_64_reloc_map[i].bfd_reloc_val == code)
295 return elf_x86_64_rtype_to_howto (abfd,
296 x86_64_reloc_map[i].elf_reloc_val);
297 }
298 return 0;
299 }
300
301 static reloc_howto_type *
302 elf_x86_64_reloc_name_lookup (bfd *abfd,
303 const char *r_name)
304 {
305 unsigned int i;
306
307 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
308 {
309 /* Get x32 R_X86_64_32. */
310 reloc_howto_type *reloc
311 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
312 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
313 return reloc;
314 }
315
316 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
317 if (x86_64_elf_howto_table[i].name != NULL
318 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
319 return &x86_64_elf_howto_table[i];
320
321 return NULL;
322 }
323
324 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
325
326 static void
327 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
328 Elf_Internal_Rela *dst)
329 {
330 unsigned r_type;
331
332 r_type = ELF32_R_TYPE (dst->r_info);
333 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
334 BFD_ASSERT (r_type == cache_ptr->howto->type);
335 }
336 \f
337 /* Support for core dump NOTE sections. */
338 static bfd_boolean
339 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
340 {
341 int offset;
342 size_t size;
343
344 switch (note->descsz)
345 {
346 default:
347 return FALSE;
348
349 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
350 /* pr_cursig */
351 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
352
353 /* pr_pid */
354 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
355
356 /* pr_reg */
357 offset = 72;
358 size = 216;
359
360 break;
361
362 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
363 /* pr_cursig */
364 elf_tdata (abfd)->core_signal
365 = bfd_get_16 (abfd, note->descdata + 12);
366
367 /* pr_pid */
368 elf_tdata (abfd)->core_lwpid
369 = bfd_get_32 (abfd, note->descdata + 32);
370
371 /* pr_reg */
372 offset = 112;
373 size = 216;
374
375 break;
376 }
377
378 /* Make a ".reg/999" section. */
379 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
380 size, note->descpos + offset);
381 }
382
383 static bfd_boolean
384 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
385 {
386 switch (note->descsz)
387 {
388 default:
389 return FALSE;
390
391 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
392 elf_tdata (abfd)->core_pid
393 = bfd_get_32 (abfd, note->descdata + 12);
394 elf_tdata (abfd)->core_program
395 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
396 elf_tdata (abfd)->core_command
397 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
398 break;
399
400 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
401 elf_tdata (abfd)->core_pid
402 = bfd_get_32 (abfd, note->descdata + 24);
403 elf_tdata (abfd)->core_program
404 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
405 elf_tdata (abfd)->core_command
406 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
407 }
408
409 /* Note that for some reason, a spurious space is tacked
410 onto the end of the args in some (at least one anyway)
411 implementations, so strip it off if it exists. */
412
413 {
414 char *command = elf_tdata (abfd)->core_command;
415 int n = strlen (command);
416
417 if (0 < n && command[n - 1] == ' ')
418 command[n - 1] = '\0';
419 }
420
421 return TRUE;
422 }
423
424 #ifdef CORE_HEADER
425 static char *
426 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
427 int note_type, ...)
428 {
429 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
430 va_list ap;
431 const char *fname, *psargs;
432 long pid;
433 int cursig;
434 const void *gregs;
435
436 switch (note_type)
437 {
438 default:
439 return NULL;
440
441 case NT_PRPSINFO:
442 va_start (ap, note_type);
443 fname = va_arg (ap, const char *);
444 psargs = va_arg (ap, const char *);
445 va_end (ap);
446
447 if (bed->s->elfclass == ELFCLASS32)
448 {
449 prpsinfo32_t data;
450 memset (&data, 0, sizeof (data));
451 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
452 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
453 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
454 &data, sizeof (data));
455 }
456 else
457 {
458 prpsinfo64_t data;
459 memset (&data, 0, sizeof (data));
460 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
461 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
462 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
463 &data, sizeof (data));
464 }
465 /* NOTREACHED */
466
467 case NT_PRSTATUS:
468 va_start (ap, note_type);
469 pid = va_arg (ap, long);
470 cursig = va_arg (ap, int);
471 gregs = va_arg (ap, const void *);
472 va_end (ap);
473
474 if (bed->s->elfclass == ELFCLASS32)
475 {
476 if (bed->elf_machine_code == EM_X86_64)
477 {
478 prstatusx32_t prstat;
479 memset (&prstat, 0, sizeof (prstat));
480 prstat.pr_pid = pid;
481 prstat.pr_cursig = cursig;
482 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
483 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
484 &prstat, sizeof (prstat));
485 }
486 else
487 {
488 prstatus32_t prstat;
489 memset (&prstat, 0, sizeof (prstat));
490 prstat.pr_pid = pid;
491 prstat.pr_cursig = cursig;
492 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
493 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
494 &prstat, sizeof (prstat));
495 }
496 }
497 else
498 {
499 prstatus64_t prstat;
500 memset (&prstat, 0, sizeof (prstat));
501 prstat.pr_pid = pid;
502 prstat.pr_cursig = cursig;
503 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
504 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
505 &prstat, sizeof (prstat));
506 }
507 }
508 /* NOTREACHED */
509 }
510 #endif
511 \f
512 /* Functions for the x86-64 ELF linker. */
513
514 /* The name of the dynamic interpreter. This is put in the .interp
515 section. */
516
517 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
518 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
519
520 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
521 copying dynamic variables from a shared lib into an app's dynbss
522 section, and instead use a dynamic relocation to point into the
523 shared lib. */
524 #define ELIMINATE_COPY_RELOCS 1
525
526 /* The size in bytes of an entry in the global offset table. */
527
528 #define GOT_ENTRY_SIZE 8
529
530 /* The size in bytes of an entry in the procedure linkage table. */
531
532 #define PLT_ENTRY_SIZE 16
533
534 /* The first entry in a procedure linkage table looks like this. See the
535 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
536
537 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
538 {
539 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
540 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
541 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
542 };
543
544 /* Subsequent entries in a procedure linkage table look like this. */
545
546 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
547 {
548 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
549 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
550 0x68, /* pushq immediate */
551 0, 0, 0, 0, /* replaced with index into relocation table. */
552 0xe9, /* jmp relative */
553 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
554 };
555
556 /* .eh_frame covering the .plt section. */
557
558 static const bfd_byte elf_x86_64_eh_frame_plt[] =
559 {
560 #define PLT_CIE_LENGTH 20
561 #define PLT_FDE_LENGTH 36
562 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
563 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
564 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
565 0, 0, 0, 0, /* CIE ID */
566 1, /* CIE version */
567 'z', 'R', 0, /* Augmentation string */
568 1, /* Code alignment factor */
569 0x78, /* Data alignment factor */
570 16, /* Return address column */
571 1, /* Augmentation size */
572 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
573 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
574 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
575 DW_CFA_nop, DW_CFA_nop,
576
577 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
578 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
579 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
580 0, 0, 0, 0, /* .plt size goes here */
581 0, /* Augmentation size */
582 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
583 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
584 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
585 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
586 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
587 11, /* Block length */
588 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
589 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
590 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
591 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
592 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
593 };
594
595 /* Architecture-specific backend data for x86-64. */
596
597 struct elf_x86_64_backend_data
598 {
599 /* Templates for the initial PLT entry and for subsequent entries. */
600 const bfd_byte *plt0_entry;
601 const bfd_byte *plt_entry;
602 unsigned int plt_entry_size; /* Size of each PLT entry. */
603
604 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
605 unsigned int plt0_got1_offset;
606 unsigned int plt0_got2_offset;
607
608 /* Offset of the end of the PC-relative instruction containing
609 plt0_got2_offset. */
610 unsigned int plt0_got2_insn_end;
611
612 /* Offsets into plt_entry that are to be replaced with... */
613 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
614 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
615 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
616
617 /* Length of the PC-relative instruction containing plt_got_offset. */
618 unsigned int plt_got_insn_size;
619
620 /* Offset of the end of the PC-relative jump to plt0_entry. */
621 unsigned int plt_plt_insn_end;
622
623 /* Offset into plt_entry where the initial value of the GOT entry points. */
624 unsigned int plt_lazy_offset;
625
626 /* .eh_frame covering the .plt section. */
627 const bfd_byte *eh_frame_plt;
628 unsigned int eh_frame_plt_size;
629 };
630
631 #define get_elf_x86_64_backend_data(abfd) \
632 ((const struct elf_x86_64_backend_data *) \
633 get_elf_backend_data (abfd)->arch_data)
634
635 #define GET_PLT_ENTRY_SIZE(abfd) \
636 get_elf_x86_64_backend_data (abfd)->plt_entry_size
637
638 /* These are the standard parameters. */
639 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
640 {
641 elf_x86_64_plt0_entry, /* plt0_entry */
642 elf_x86_64_plt_entry, /* plt_entry */
643 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
644 2, /* plt0_got1_offset */
645 8, /* plt0_got2_offset */
646 12, /* plt0_got2_insn_end */
647 2, /* plt_got_offset */
648 7, /* plt_reloc_offset */
649 12, /* plt_plt_offset */
650 6, /* plt_got_insn_size */
651 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
652 6, /* plt_lazy_offset */
653 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
654 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
655 };
656
657 #define elf_backend_arch_data &elf_x86_64_arch_bed
658
659 /* x86-64 ELF linker hash entry. */
660
661 struct elf_x86_64_link_hash_entry
662 {
663 struct elf_link_hash_entry elf;
664
665 /* Track dynamic relocs copied for this symbol. */
666 struct elf_dyn_relocs *dyn_relocs;
667
668 #define GOT_UNKNOWN 0
669 #define GOT_NORMAL 1
670 #define GOT_TLS_GD 2
671 #define GOT_TLS_IE 3
672 #define GOT_TLS_GDESC 4
673 #define GOT_TLS_GD_BOTH_P(type) \
674 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
675 #define GOT_TLS_GD_P(type) \
676 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
677 #define GOT_TLS_GDESC_P(type) \
678 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
679 #define GOT_TLS_GD_ANY_P(type) \
680 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
681 unsigned char tls_type;
682
683 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
684 starting at the end of the jump table. */
685 bfd_vma tlsdesc_got;
686 };
687
688 #define elf_x86_64_hash_entry(ent) \
689 ((struct elf_x86_64_link_hash_entry *)(ent))
690
691 struct elf_x86_64_obj_tdata
692 {
693 struct elf_obj_tdata root;
694
695 /* tls_type for each local got entry. */
696 char *local_got_tls_type;
697
698 /* GOTPLT entries for TLS descriptors. */
699 bfd_vma *local_tlsdesc_gotent;
700 };
701
702 #define elf_x86_64_tdata(abfd) \
703 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
704
705 #define elf_x86_64_local_got_tls_type(abfd) \
706 (elf_x86_64_tdata (abfd)->local_got_tls_type)
707
708 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
709 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
710
711 #define is_x86_64_elf(bfd) \
712 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
713 && elf_tdata (bfd) != NULL \
714 && elf_object_id (bfd) == X86_64_ELF_DATA)
715
716 static bfd_boolean
717 elf_x86_64_mkobject (bfd *abfd)
718 {
719 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
720 X86_64_ELF_DATA);
721 }
722
723 /* x86-64 ELF linker hash table. */
724
725 struct elf_x86_64_link_hash_table
726 {
727 struct elf_link_hash_table elf;
728
729 /* Short-cuts to get to dynamic linker sections. */
730 asection *sdynbss;
731 asection *srelbss;
732 asection *plt_eh_frame;
733
734 union
735 {
736 bfd_signed_vma refcount;
737 bfd_vma offset;
738 } tls_ld_got;
739
740 /* The amount of space used by the jump slots in the GOT. */
741 bfd_vma sgotplt_jump_table_size;
742
743 /* Small local sym cache. */
744 struct sym_cache sym_cache;
745
746 bfd_vma (*r_info) (bfd_vma, bfd_vma);
747 bfd_vma (*r_sym) (bfd_vma);
748 unsigned int pointer_r_type;
749 const char *dynamic_interpreter;
750 int dynamic_interpreter_size;
751
752 /* _TLS_MODULE_BASE_ symbol. */
753 struct bfd_link_hash_entry *tls_module_base;
754
755 /* Used by local STT_GNU_IFUNC symbols. */
756 htab_t loc_hash_table;
757 void * loc_hash_memory;
758
759 /* The offset into splt of the PLT entry for the TLS descriptor
760 resolver. Special values are 0, if not necessary (or not found
761 to be necessary yet), and -1 if needed but not determined
762 yet. */
763 bfd_vma tlsdesc_plt;
764 /* The offset into sgot of the GOT entry used by the PLT entry
765 above. */
766 bfd_vma tlsdesc_got;
767
768 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
769 bfd_vma next_jump_slot_index;
770 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
771 bfd_vma next_irelative_index;
772 };
773
774 /* Get the x86-64 ELF linker hash table from a link_info structure. */
775
776 #define elf_x86_64_hash_table(p) \
777 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
778 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
779
780 #define elf_x86_64_compute_jump_table_size(htab) \
781 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
782
783 /* Create an entry in an x86-64 ELF linker hash table. */
784
785 static struct bfd_hash_entry *
786 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
787 struct bfd_hash_table *table,
788 const char *string)
789 {
790 /* Allocate the structure if it has not already been allocated by a
791 subclass. */
792 if (entry == NULL)
793 {
794 entry = (struct bfd_hash_entry *)
795 bfd_hash_allocate (table,
796 sizeof (struct elf_x86_64_link_hash_entry));
797 if (entry == NULL)
798 return entry;
799 }
800
801 /* Call the allocation method of the superclass. */
802 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
803 if (entry != NULL)
804 {
805 struct elf_x86_64_link_hash_entry *eh;
806
807 eh = (struct elf_x86_64_link_hash_entry *) entry;
808 eh->dyn_relocs = NULL;
809 eh->tls_type = GOT_UNKNOWN;
810 eh->tlsdesc_got = (bfd_vma) -1;
811 }
812
813 return entry;
814 }
815
816 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
817 for local symbol so that we can handle local STT_GNU_IFUNC symbols
818 as global symbol. We reuse indx and dynstr_index for local symbol
819 hash since they aren't used by global symbols in this backend. */
820
821 static hashval_t
822 elf_x86_64_local_htab_hash (const void *ptr)
823 {
824 struct elf_link_hash_entry *h
825 = (struct elf_link_hash_entry *) ptr;
826 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
827 }
828
829 /* Compare local hash entries. */
830
831 static int
832 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
833 {
834 struct elf_link_hash_entry *h1
835 = (struct elf_link_hash_entry *) ptr1;
836 struct elf_link_hash_entry *h2
837 = (struct elf_link_hash_entry *) ptr2;
838
839 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
840 }
841
842 /* Find and/or create a hash entry for local symbol. */
843
844 static struct elf_link_hash_entry *
845 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
846 bfd *abfd, const Elf_Internal_Rela *rel,
847 bfd_boolean create)
848 {
849 struct elf_x86_64_link_hash_entry e, *ret;
850 asection *sec = abfd->sections;
851 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
852 htab->r_sym (rel->r_info));
853 void **slot;
854
855 e.elf.indx = sec->id;
856 e.elf.dynstr_index = htab->r_sym (rel->r_info);
857 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
858 create ? INSERT : NO_INSERT);
859
860 if (!slot)
861 return NULL;
862
863 if (*slot)
864 {
865 ret = (struct elf_x86_64_link_hash_entry *) *slot;
866 return &ret->elf;
867 }
868
869 ret = (struct elf_x86_64_link_hash_entry *)
870 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
871 sizeof (struct elf_x86_64_link_hash_entry));
872 if (ret)
873 {
874 memset (ret, 0, sizeof (*ret));
875 ret->elf.indx = sec->id;
876 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
877 ret->elf.dynindx = -1;
878 *slot = ret;
879 }
880 return &ret->elf;
881 }
882
883 /* Create an X86-64 ELF linker hash table. */
884
885 static struct bfd_link_hash_table *
886 elf_x86_64_link_hash_table_create (bfd *abfd)
887 {
888 struct elf_x86_64_link_hash_table *ret;
889 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
890
891 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
892 if (ret == NULL)
893 return NULL;
894
895 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
896 elf_x86_64_link_hash_newfunc,
897 sizeof (struct elf_x86_64_link_hash_entry),
898 X86_64_ELF_DATA))
899 {
900 free (ret);
901 return NULL;
902 }
903
904 ret->sdynbss = NULL;
905 ret->srelbss = NULL;
906 ret->plt_eh_frame = NULL;
907 ret->sym_cache.abfd = NULL;
908 ret->tlsdesc_plt = 0;
909 ret->tlsdesc_got = 0;
910 ret->tls_ld_got.refcount = 0;
911 ret->sgotplt_jump_table_size = 0;
912 ret->tls_module_base = NULL;
913 ret->next_jump_slot_index = 0;
914 ret->next_irelative_index = 0;
915
916 if (ABI_64_P (abfd))
917 {
918 ret->r_info = elf64_r_info;
919 ret->r_sym = elf64_r_sym;
920 ret->pointer_r_type = R_X86_64_64;
921 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
922 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
923 }
924 else
925 {
926 ret->r_info = elf32_r_info;
927 ret->r_sym = elf32_r_sym;
928 ret->pointer_r_type = R_X86_64_32;
929 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
930 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
931 }
932
933 ret->loc_hash_table = htab_try_create (1024,
934 elf_x86_64_local_htab_hash,
935 elf_x86_64_local_htab_eq,
936 NULL);
937 ret->loc_hash_memory = objalloc_create ();
938 if (!ret->loc_hash_table || !ret->loc_hash_memory)
939 {
940 free (ret);
941 return NULL;
942 }
943
944 return &ret->elf.root;
945 }
946
947 /* Destroy an X86-64 ELF linker hash table. */
948
949 static void
950 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
951 {
952 struct elf_x86_64_link_hash_table *htab
953 = (struct elf_x86_64_link_hash_table *) hash;
954
955 if (htab->loc_hash_table)
956 htab_delete (htab->loc_hash_table);
957 if (htab->loc_hash_memory)
958 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
959 _bfd_generic_link_hash_table_free (hash);
960 }
961
962 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
963 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
964 hash table. */
965
966 static bfd_boolean
967 elf_x86_64_create_dynamic_sections (bfd *dynobj,
968 struct bfd_link_info *info)
969 {
970 struct elf_x86_64_link_hash_table *htab;
971
972 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
973 return FALSE;
974
975 htab = elf_x86_64_hash_table (info);
976 if (htab == NULL)
977 return FALSE;
978
979 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
980 if (!info->shared)
981 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
982
983 if (!htab->sdynbss
984 || (!info->shared && !htab->srelbss))
985 abort ();
986
987 if (!info->no_ld_generated_unwind_info
988 && htab->plt_eh_frame == NULL
989 && htab->elf.splt != NULL)
990 {
991 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
992 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
993 | SEC_LINKER_CREATED);
994 htab->plt_eh_frame
995 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
996 if (htab->plt_eh_frame == NULL
997 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
998 return FALSE;
999 }
1000 return TRUE;
1001 }
1002
1003 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1004
1005 static void
1006 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1007 struct elf_link_hash_entry *dir,
1008 struct elf_link_hash_entry *ind)
1009 {
1010 struct elf_x86_64_link_hash_entry *edir, *eind;
1011
1012 edir = (struct elf_x86_64_link_hash_entry *) dir;
1013 eind = (struct elf_x86_64_link_hash_entry *) ind;
1014
1015 if (eind->dyn_relocs != NULL)
1016 {
1017 if (edir->dyn_relocs != NULL)
1018 {
1019 struct elf_dyn_relocs **pp;
1020 struct elf_dyn_relocs *p;
1021
1022 /* Add reloc counts against the indirect sym to the direct sym
1023 list. Merge any entries against the same section. */
1024 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1025 {
1026 struct elf_dyn_relocs *q;
1027
1028 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1029 if (q->sec == p->sec)
1030 {
1031 q->pc_count += p->pc_count;
1032 q->count += p->count;
1033 *pp = p->next;
1034 break;
1035 }
1036 if (q == NULL)
1037 pp = &p->next;
1038 }
1039 *pp = edir->dyn_relocs;
1040 }
1041
1042 edir->dyn_relocs = eind->dyn_relocs;
1043 eind->dyn_relocs = NULL;
1044 }
1045
1046 if (ind->root.type == bfd_link_hash_indirect
1047 && dir->got.refcount <= 0)
1048 {
1049 edir->tls_type = eind->tls_type;
1050 eind->tls_type = GOT_UNKNOWN;
1051 }
1052
1053 if (ELIMINATE_COPY_RELOCS
1054 && ind->root.type != bfd_link_hash_indirect
1055 && dir->dynamic_adjusted)
1056 {
1057 /* If called to transfer flags for a weakdef during processing
1058 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1059 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1060 dir->ref_dynamic |= ind->ref_dynamic;
1061 dir->ref_regular |= ind->ref_regular;
1062 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1063 dir->needs_plt |= ind->needs_plt;
1064 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1065 }
1066 else
1067 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1068 }
1069
1070 static bfd_boolean
1071 elf64_x86_64_elf_object_p (bfd *abfd)
1072 {
1073 /* Set the right machine number for an x86-64 elf64 file. */
1074 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1075 return TRUE;
1076 }
1077
1078 static bfd_boolean
1079 elf32_x86_64_elf_object_p (bfd *abfd)
1080 {
1081 /* Set the right machine number for an x86-64 elf32 file. */
1082 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1083 return TRUE;
1084 }
1085
1086 /* Return TRUE if the TLS access code sequence support transition
1087 from R_TYPE. */
1088
1089 static bfd_boolean
1090 elf_x86_64_check_tls_transition (bfd *abfd,
1091 struct bfd_link_info *info,
1092 asection *sec,
1093 bfd_byte *contents,
1094 Elf_Internal_Shdr *symtab_hdr,
1095 struct elf_link_hash_entry **sym_hashes,
1096 unsigned int r_type,
1097 const Elf_Internal_Rela *rel,
1098 const Elf_Internal_Rela *relend)
1099 {
1100 unsigned int val;
1101 unsigned long r_symndx;
1102 struct elf_link_hash_entry *h;
1103 bfd_vma offset;
1104 struct elf_x86_64_link_hash_table *htab;
1105
1106 /* Get the section contents. */
1107 if (contents == NULL)
1108 {
1109 if (elf_section_data (sec)->this_hdr.contents != NULL)
1110 contents = elf_section_data (sec)->this_hdr.contents;
1111 else
1112 {
1113 /* FIXME: How to better handle error condition? */
1114 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1115 return FALSE;
1116
1117 /* Cache the section contents for elf_link_input_bfd. */
1118 elf_section_data (sec)->this_hdr.contents = contents;
1119 }
1120 }
1121
1122 htab = elf_x86_64_hash_table (info);
1123 offset = rel->r_offset;
1124 switch (r_type)
1125 {
1126 case R_X86_64_TLSGD:
1127 case R_X86_64_TLSLD:
1128 if ((rel + 1) >= relend)
1129 return FALSE;
1130
1131 if (r_type == R_X86_64_TLSGD)
1132 {
1133 /* Check transition from GD access model. For 64bit, only
1134 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1135 .word 0x6666; rex64; call __tls_get_addr
1136 can transit to different access model. For 32bit, only
1137 leaq foo@tlsgd(%rip), %rdi
1138 .word 0x6666; rex64; call __tls_get_addr
1139 can transit to different access model. */
1140
1141 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1142 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1143
1144 if ((offset + 12) > sec->size
1145 || memcmp (contents + offset + 4, call, 4) != 0)
1146 return FALSE;
1147
1148 if (ABI_64_P (abfd))
1149 {
1150 if (offset < 4
1151 || memcmp (contents + offset - 4, leaq, 4) != 0)
1152 return FALSE;
1153 }
1154 else
1155 {
1156 if (offset < 3
1157 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1158 return FALSE;
1159 }
1160 }
1161 else
1162 {
1163 /* Check transition from LD access model. Only
1164 leaq foo@tlsld(%rip), %rdi;
1165 call __tls_get_addr
1166 can transit to different access model. */
1167
1168 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1169
1170 if (offset < 3 || (offset + 9) > sec->size)
1171 return FALSE;
1172
1173 if (memcmp (contents + offset - 3, lea, 3) != 0
1174 || 0xe8 != *(contents + offset + 4))
1175 return FALSE;
1176 }
1177
1178 r_symndx = htab->r_sym (rel[1].r_info);
1179 if (r_symndx < symtab_hdr->sh_info)
1180 return FALSE;
1181
1182 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1183 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1184 may be versioned. */
1185 return (h != NULL
1186 && h->root.root.string != NULL
1187 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1188 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1189 && (strncmp (h->root.root.string,
1190 "__tls_get_addr", 14) == 0));
1191
1192 case R_X86_64_GOTTPOFF:
1193 /* Check transition from IE access model:
1194 mov foo@gottpoff(%rip), %reg
1195 add foo@gottpoff(%rip), %reg
1196 */
1197
1198 /* Check REX prefix first. */
1199 if (offset >= 3 && (offset + 4) <= sec->size)
1200 {
1201 val = bfd_get_8 (abfd, contents + offset - 3);
1202 if (val != 0x48 && val != 0x4c)
1203 {
1204 /* X32 may have 0x44 REX prefix or no REX prefix. */
1205 if (ABI_64_P (abfd))
1206 return FALSE;
1207 }
1208 }
1209 else
1210 {
1211 /* X32 may not have any REX prefix. */
1212 if (ABI_64_P (abfd))
1213 return FALSE;
1214 if (offset < 2 || (offset + 3) > sec->size)
1215 return FALSE;
1216 }
1217
1218 val = bfd_get_8 (abfd, contents + offset - 2);
1219 if (val != 0x8b && val != 0x03)
1220 return FALSE;
1221
1222 val = bfd_get_8 (abfd, contents + offset - 1);
1223 return (val & 0xc7) == 5;
1224
1225 case R_X86_64_GOTPC32_TLSDESC:
1226 /* Check transition from GDesc access model:
1227 leaq x@tlsdesc(%rip), %rax
1228
1229 Make sure it's a leaq adding rip to a 32-bit offset
1230 into any register, although it's probably almost always
1231 going to be rax. */
1232
1233 if (offset < 3 || (offset + 4) > sec->size)
1234 return FALSE;
1235
1236 val = bfd_get_8 (abfd, contents + offset - 3);
1237 if ((val & 0xfb) != 0x48)
1238 return FALSE;
1239
1240 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1241 return FALSE;
1242
1243 val = bfd_get_8 (abfd, contents + offset - 1);
1244 return (val & 0xc7) == 0x05;
1245
1246 case R_X86_64_TLSDESC_CALL:
1247 /* Check transition from GDesc access model:
1248 call *x@tlsdesc(%rax)
1249 */
1250 if (offset + 2 <= sec->size)
1251 {
1252 /* Make sure that it's a call *x@tlsdesc(%rax). */
1253 static const unsigned char call[] = { 0xff, 0x10 };
1254 return memcmp (contents + offset, call, 2) == 0;
1255 }
1256
1257 return FALSE;
1258
1259 default:
1260 abort ();
1261 }
1262 }
1263
1264 /* Return TRUE if the TLS access transition is OK or no transition
1265 will be performed. Update R_TYPE if there is a transition. */
1266
1267 static bfd_boolean
1268 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1269 asection *sec, bfd_byte *contents,
1270 Elf_Internal_Shdr *symtab_hdr,
1271 struct elf_link_hash_entry **sym_hashes,
1272 unsigned int *r_type, int tls_type,
1273 const Elf_Internal_Rela *rel,
1274 const Elf_Internal_Rela *relend,
1275 struct elf_link_hash_entry *h,
1276 unsigned long r_symndx)
1277 {
1278 unsigned int from_type = *r_type;
1279 unsigned int to_type = from_type;
1280 bfd_boolean check = TRUE;
1281
1282 /* Skip TLS transition for functions. */
1283 if (h != NULL
1284 && (h->type == STT_FUNC
1285 || h->type == STT_GNU_IFUNC))
1286 return TRUE;
1287
1288 switch (from_type)
1289 {
1290 case R_X86_64_TLSGD:
1291 case R_X86_64_GOTPC32_TLSDESC:
1292 case R_X86_64_TLSDESC_CALL:
1293 case R_X86_64_GOTTPOFF:
1294 if (info->executable)
1295 {
1296 if (h == NULL)
1297 to_type = R_X86_64_TPOFF32;
1298 else
1299 to_type = R_X86_64_GOTTPOFF;
1300 }
1301
1302 /* When we are called from elf_x86_64_relocate_section,
1303 CONTENTS isn't NULL and there may be additional transitions
1304 based on TLS_TYPE. */
1305 if (contents != NULL)
1306 {
1307 unsigned int new_to_type = to_type;
1308
1309 if (info->executable
1310 && h != NULL
1311 && h->dynindx == -1
1312 && tls_type == GOT_TLS_IE)
1313 new_to_type = R_X86_64_TPOFF32;
1314
1315 if (to_type == R_X86_64_TLSGD
1316 || to_type == R_X86_64_GOTPC32_TLSDESC
1317 || to_type == R_X86_64_TLSDESC_CALL)
1318 {
1319 if (tls_type == GOT_TLS_IE)
1320 new_to_type = R_X86_64_GOTTPOFF;
1321 }
1322
1323 /* We checked the transition before when we were called from
1324 elf_x86_64_check_relocs. We only want to check the new
1325 transition which hasn't been checked before. */
1326 check = new_to_type != to_type && from_type == to_type;
1327 to_type = new_to_type;
1328 }
1329
1330 break;
1331
1332 case R_X86_64_TLSLD:
1333 if (info->executable)
1334 to_type = R_X86_64_TPOFF32;
1335 break;
1336
1337 default:
1338 return TRUE;
1339 }
1340
1341 /* Return TRUE if there is no transition. */
1342 if (from_type == to_type)
1343 return TRUE;
1344
1345 /* Check if the transition can be performed. */
1346 if (check
1347 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1348 symtab_hdr, sym_hashes,
1349 from_type, rel, relend))
1350 {
1351 reloc_howto_type *from, *to;
1352 const char *name;
1353
1354 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1355 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1356
1357 if (h)
1358 name = h->root.root.string;
1359 else
1360 {
1361 struct elf_x86_64_link_hash_table *htab;
1362
1363 htab = elf_x86_64_hash_table (info);
1364 if (htab == NULL)
1365 name = "*unknown*";
1366 else
1367 {
1368 Elf_Internal_Sym *isym;
1369
1370 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1371 abfd, r_symndx);
1372 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1373 }
1374 }
1375
1376 (*_bfd_error_handler)
1377 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1378 "in section `%A' failed"),
1379 abfd, sec, from->name, to->name, name,
1380 (unsigned long) rel->r_offset);
1381 bfd_set_error (bfd_error_bad_value);
1382 return FALSE;
1383 }
1384
1385 *r_type = to_type;
1386 return TRUE;
1387 }
1388
1389 /* Look through the relocs for a section during the first phase, and
1390 calculate needed space in the global offset table, procedure
1391 linkage table, and dynamic reloc sections. */
1392
1393 static bfd_boolean
1394 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1395 asection *sec,
1396 const Elf_Internal_Rela *relocs)
1397 {
1398 struct elf_x86_64_link_hash_table *htab;
1399 Elf_Internal_Shdr *symtab_hdr;
1400 struct elf_link_hash_entry **sym_hashes;
1401 const Elf_Internal_Rela *rel;
1402 const Elf_Internal_Rela *rel_end;
1403 asection *sreloc;
1404
1405 if (info->relocatable)
1406 return TRUE;
1407
1408 BFD_ASSERT (is_x86_64_elf (abfd));
1409
1410 htab = elf_x86_64_hash_table (info);
1411 if (htab == NULL)
1412 return FALSE;
1413
1414 symtab_hdr = &elf_symtab_hdr (abfd);
1415 sym_hashes = elf_sym_hashes (abfd);
1416
1417 sreloc = NULL;
1418
1419 rel_end = relocs + sec->reloc_count;
1420 for (rel = relocs; rel < rel_end; rel++)
1421 {
1422 unsigned int r_type;
1423 unsigned long r_symndx;
1424 struct elf_link_hash_entry *h;
1425 Elf_Internal_Sym *isym;
1426 const char *name;
1427
1428 r_symndx = htab->r_sym (rel->r_info);
1429 r_type = ELF32_R_TYPE (rel->r_info);
1430
1431 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1432 {
1433 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1434 abfd, r_symndx);
1435 return FALSE;
1436 }
1437
1438 if (r_symndx < symtab_hdr->sh_info)
1439 {
1440 /* A local symbol. */
1441 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1442 abfd, r_symndx);
1443 if (isym == NULL)
1444 return FALSE;
1445
1446 /* Check relocation against local STT_GNU_IFUNC symbol. */
1447 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1448 {
1449 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1450 TRUE);
1451 if (h == NULL)
1452 return FALSE;
1453
1454 /* Fake a STT_GNU_IFUNC symbol. */
1455 h->type = STT_GNU_IFUNC;
1456 h->def_regular = 1;
1457 h->ref_regular = 1;
1458 h->forced_local = 1;
1459 h->root.type = bfd_link_hash_defined;
1460 }
1461 else
1462 h = NULL;
1463 }
1464 else
1465 {
1466 isym = NULL;
1467 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1468 while (h->root.type == bfd_link_hash_indirect
1469 || h->root.type == bfd_link_hash_warning)
1470 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1471 }
1472
1473 /* Check invalid x32 relocations. */
1474 if (!ABI_64_P (abfd))
1475 switch (r_type)
1476 {
1477 default:
1478 break;
1479
1480 case R_X86_64_DTPOFF64:
1481 case R_X86_64_TPOFF64:
1482 case R_X86_64_PC64:
1483 case R_X86_64_GOTOFF64:
1484 case R_X86_64_GOT64:
1485 case R_X86_64_GOTPCREL64:
1486 case R_X86_64_GOTPC64:
1487 case R_X86_64_GOTPLT64:
1488 case R_X86_64_PLTOFF64:
1489 {
1490 if (h)
1491 name = h->root.root.string;
1492 else
1493 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1494 NULL);
1495 (*_bfd_error_handler)
1496 (_("%B: relocation %s against symbol `%s' isn't "
1497 "supported in x32 mode"), abfd,
1498 x86_64_elf_howto_table[r_type].name, name);
1499 bfd_set_error (bfd_error_bad_value);
1500 return FALSE;
1501 }
1502 break;
1503 }
1504
1505 if (h != NULL)
1506 {
1507 /* Create the ifunc sections for static executables. If we
1508 never see an indirect function symbol nor we are building
1509 a static executable, those sections will be empty and
1510 won't appear in output. */
1511 switch (r_type)
1512 {
1513 default:
1514 break;
1515
1516 case R_X86_64_32S:
1517 case R_X86_64_32:
1518 case R_X86_64_64:
1519 case R_X86_64_PC32:
1520 case R_X86_64_PC64:
1521 case R_X86_64_PLT32:
1522 case R_X86_64_GOTPCREL:
1523 case R_X86_64_GOTPCREL64:
1524 if (htab->elf.dynobj == NULL)
1525 htab->elf.dynobj = abfd;
1526 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1527 return FALSE;
1528 break;
1529 }
1530
1531 /* It is referenced by a non-shared object. */
1532 h->ref_regular = 1;
1533 }
1534
1535 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1536 symtab_hdr, sym_hashes,
1537 &r_type, GOT_UNKNOWN,
1538 rel, rel_end, h, r_symndx))
1539 return FALSE;
1540
1541 switch (r_type)
1542 {
1543 case R_X86_64_TLSLD:
1544 htab->tls_ld_got.refcount += 1;
1545 goto create_got;
1546
1547 case R_X86_64_TPOFF32:
1548 if (!info->executable && ABI_64_P (abfd))
1549 {
1550 if (h)
1551 name = h->root.root.string;
1552 else
1553 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1554 NULL);
1555 (*_bfd_error_handler)
1556 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1557 abfd,
1558 x86_64_elf_howto_table[r_type].name, name);
1559 bfd_set_error (bfd_error_bad_value);
1560 return FALSE;
1561 }
1562 break;
1563
1564 case R_X86_64_GOTTPOFF:
1565 if (!info->executable)
1566 info->flags |= DF_STATIC_TLS;
1567 /* Fall through */
1568
1569 case R_X86_64_GOT32:
1570 case R_X86_64_GOTPCREL:
1571 case R_X86_64_TLSGD:
1572 case R_X86_64_GOT64:
1573 case R_X86_64_GOTPCREL64:
1574 case R_X86_64_GOTPLT64:
1575 case R_X86_64_GOTPC32_TLSDESC:
1576 case R_X86_64_TLSDESC_CALL:
1577 /* This symbol requires a global offset table entry. */
1578 {
1579 int tls_type, old_tls_type;
1580
1581 switch (r_type)
1582 {
1583 default: tls_type = GOT_NORMAL; break;
1584 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1585 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1586 case R_X86_64_GOTPC32_TLSDESC:
1587 case R_X86_64_TLSDESC_CALL:
1588 tls_type = GOT_TLS_GDESC; break;
1589 }
1590
1591 if (h != NULL)
1592 {
1593 if (r_type == R_X86_64_GOTPLT64)
1594 {
1595 /* This relocation indicates that we also need
1596 a PLT entry, as this is a function. We don't need
1597 a PLT entry for local symbols. */
1598 h->needs_plt = 1;
1599 h->plt.refcount += 1;
1600 }
1601 h->got.refcount += 1;
1602 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1603 }
1604 else
1605 {
1606 bfd_signed_vma *local_got_refcounts;
1607
1608 /* This is a global offset table entry for a local symbol. */
1609 local_got_refcounts = elf_local_got_refcounts (abfd);
1610 if (local_got_refcounts == NULL)
1611 {
1612 bfd_size_type size;
1613
1614 size = symtab_hdr->sh_info;
1615 size *= sizeof (bfd_signed_vma)
1616 + sizeof (bfd_vma) + sizeof (char);
1617 local_got_refcounts = ((bfd_signed_vma *)
1618 bfd_zalloc (abfd, size));
1619 if (local_got_refcounts == NULL)
1620 return FALSE;
1621 elf_local_got_refcounts (abfd) = local_got_refcounts;
1622 elf_x86_64_local_tlsdesc_gotent (abfd)
1623 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1624 elf_x86_64_local_got_tls_type (abfd)
1625 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1626 }
1627 local_got_refcounts[r_symndx] += 1;
1628 old_tls_type
1629 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1630 }
1631
1632 /* If a TLS symbol is accessed using IE at least once,
1633 there is no point to use dynamic model for it. */
1634 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1635 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1636 || tls_type != GOT_TLS_IE))
1637 {
1638 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1639 tls_type = old_tls_type;
1640 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1641 && GOT_TLS_GD_ANY_P (tls_type))
1642 tls_type |= old_tls_type;
1643 else
1644 {
1645 if (h)
1646 name = h->root.root.string;
1647 else
1648 name = bfd_elf_sym_name (abfd, symtab_hdr,
1649 isym, NULL);
1650 (*_bfd_error_handler)
1651 (_("%B: '%s' accessed both as normal and thread local symbol"),
1652 abfd, name);
1653 bfd_set_error (bfd_error_bad_value);
1654 return FALSE;
1655 }
1656 }
1657
1658 if (old_tls_type != tls_type)
1659 {
1660 if (h != NULL)
1661 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1662 else
1663 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1664 }
1665 }
1666 /* Fall through */
1667
1668 case R_X86_64_GOTOFF64:
1669 case R_X86_64_GOTPC32:
1670 case R_X86_64_GOTPC64:
1671 create_got:
1672 if (htab->elf.sgot == NULL)
1673 {
1674 if (htab->elf.dynobj == NULL)
1675 htab->elf.dynobj = abfd;
1676 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1677 info))
1678 return FALSE;
1679 }
1680 break;
1681
1682 case R_X86_64_PLT32:
1683 /* This symbol requires a procedure linkage table entry. We
1684 actually build the entry in adjust_dynamic_symbol,
1685 because this might be a case of linking PIC code which is
1686 never referenced by a dynamic object, in which case we
1687 don't need to generate a procedure linkage table entry
1688 after all. */
1689
1690 /* If this is a local symbol, we resolve it directly without
1691 creating a procedure linkage table entry. */
1692 if (h == NULL)
1693 continue;
1694
1695 h->needs_plt = 1;
1696 h->plt.refcount += 1;
1697 break;
1698
1699 case R_X86_64_PLTOFF64:
1700 /* This tries to form the 'address' of a function relative
1701 to GOT. For global symbols we need a PLT entry. */
1702 if (h != NULL)
1703 {
1704 h->needs_plt = 1;
1705 h->plt.refcount += 1;
1706 }
1707 goto create_got;
1708
1709 case R_X86_64_32:
1710 if (!ABI_64_P (abfd))
1711 goto pointer;
1712 case R_X86_64_8:
1713 case R_X86_64_16:
1714 case R_X86_64_32S:
1715 /* Let's help debug shared library creation. These relocs
1716 cannot be used in shared libs. Don't error out for
1717 sections we don't care about, such as debug sections or
1718 non-constant sections. */
1719 if (info->shared
1720 && (sec->flags & SEC_ALLOC) != 0
1721 && (sec->flags & SEC_READONLY) != 0)
1722 {
1723 if (h)
1724 name = h->root.root.string;
1725 else
1726 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1727 (*_bfd_error_handler)
1728 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1729 abfd, x86_64_elf_howto_table[r_type].name, name);
1730 bfd_set_error (bfd_error_bad_value);
1731 return FALSE;
1732 }
1733 /* Fall through. */
1734
1735 case R_X86_64_PC8:
1736 case R_X86_64_PC16:
1737 case R_X86_64_PC32:
1738 case R_X86_64_PC64:
1739 case R_X86_64_64:
1740 case R_X86_64_SIZE32:
1741 case R_X86_64_SIZE64:
1742 pointer:
1743 if (h != NULL && info->executable)
1744 {
1745 /* If this reloc is in a read-only section, we might
1746 need a copy reloc. We can't check reliably at this
1747 stage whether the section is read-only, as input
1748 sections have not yet been mapped to output sections.
1749 Tentatively set the flag for now, and correct in
1750 adjust_dynamic_symbol. */
1751 h->non_got_ref = 1;
1752
1753 /* We may need a .plt entry if the function this reloc
1754 refers to is in a shared lib. */
1755 h->plt.refcount += 1;
1756 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1757 h->pointer_equality_needed = 1;
1758 }
1759
1760 /* If we are creating a shared library, and this is a reloc
1761 against a global symbol, or a non PC relative reloc
1762 against a local symbol, then we need to copy the reloc
1763 into the shared library. However, if we are linking with
1764 -Bsymbolic, we do not need to copy a reloc against a
1765 global symbol which is defined in an object we are
1766 including in the link (i.e., DEF_REGULAR is set). At
1767 this point we have not seen all the input files, so it is
1768 possible that DEF_REGULAR is not set now but will be set
1769 later (it is never cleared). In case of a weak definition,
1770 DEF_REGULAR may be cleared later by a strong definition in
1771 a shared library. We account for that possibility below by
1772 storing information in the relocs_copied field of the hash
1773 table entry. A similar situation occurs when creating
1774 shared libraries and symbol visibility changes render the
1775 symbol local.
1776
1777 If on the other hand, we are creating an executable, we
1778 may need to keep relocations for symbols satisfied by a
1779 dynamic library if we manage to avoid copy relocs for the
1780 symbol. */
1781 if ((info->shared
1782 && (sec->flags & SEC_ALLOC) != 0
1783 && (! IS_X86_64_PCREL_TYPE (r_type)
1784 || (h != NULL
1785 && (! SYMBOLIC_BIND (info, h)
1786 || h->root.type == bfd_link_hash_defweak
1787 || !h->def_regular))))
1788 || (ELIMINATE_COPY_RELOCS
1789 && !info->shared
1790 && (sec->flags & SEC_ALLOC) != 0
1791 && h != NULL
1792 && (h->root.type == bfd_link_hash_defweak
1793 || !h->def_regular)))
1794 {
1795 struct elf_dyn_relocs *p;
1796 struct elf_dyn_relocs **head;
1797
1798 /* We must copy these reloc types into the output file.
1799 Create a reloc section in dynobj and make room for
1800 this reloc. */
1801 if (sreloc == NULL)
1802 {
1803 if (htab->elf.dynobj == NULL)
1804 htab->elf.dynobj = abfd;
1805
1806 sreloc = _bfd_elf_make_dynamic_reloc_section
1807 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1808 abfd, /*rela?*/ TRUE);
1809
1810 if (sreloc == NULL)
1811 return FALSE;
1812 }
1813
1814 /* If this is a global symbol, we count the number of
1815 relocations we need for this symbol. */
1816 if (h != NULL)
1817 {
1818 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1819 }
1820 else
1821 {
1822 /* Track dynamic relocs needed for local syms too.
1823 We really need local syms available to do this
1824 easily. Oh well. */
1825 asection *s;
1826 void **vpp;
1827
1828 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1829 abfd, r_symndx);
1830 if (isym == NULL)
1831 return FALSE;
1832
1833 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1834 if (s == NULL)
1835 s = sec;
1836
1837 /* Beware of type punned pointers vs strict aliasing
1838 rules. */
1839 vpp = &(elf_section_data (s)->local_dynrel);
1840 head = (struct elf_dyn_relocs **)vpp;
1841 }
1842
1843 p = *head;
1844 if (p == NULL || p->sec != sec)
1845 {
1846 bfd_size_type amt = sizeof *p;
1847
1848 p = ((struct elf_dyn_relocs *)
1849 bfd_alloc (htab->elf.dynobj, amt));
1850 if (p == NULL)
1851 return FALSE;
1852 p->next = *head;
1853 *head = p;
1854 p->sec = sec;
1855 p->count = 0;
1856 p->pc_count = 0;
1857 }
1858
1859 p->count += 1;
1860 if (IS_X86_64_PCREL_TYPE (r_type))
1861 p->pc_count += 1;
1862 }
1863 break;
1864
1865 /* This relocation describes the C++ object vtable hierarchy.
1866 Reconstruct it for later use during GC. */
1867 case R_X86_64_GNU_VTINHERIT:
1868 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1869 return FALSE;
1870 break;
1871
1872 /* This relocation describes which C++ vtable entries are actually
1873 used. Record for later use during GC. */
1874 case R_X86_64_GNU_VTENTRY:
1875 BFD_ASSERT (h != NULL);
1876 if (h != NULL
1877 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1878 return FALSE;
1879 break;
1880
1881 default:
1882 break;
1883 }
1884 }
1885
1886 return TRUE;
1887 }
1888
1889 /* Return the section that should be marked against GC for a given
1890 relocation. */
1891
1892 static asection *
1893 elf_x86_64_gc_mark_hook (asection *sec,
1894 struct bfd_link_info *info,
1895 Elf_Internal_Rela *rel,
1896 struct elf_link_hash_entry *h,
1897 Elf_Internal_Sym *sym)
1898 {
1899 if (h != NULL)
1900 switch (ELF32_R_TYPE (rel->r_info))
1901 {
1902 case R_X86_64_GNU_VTINHERIT:
1903 case R_X86_64_GNU_VTENTRY:
1904 return NULL;
1905 }
1906
1907 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1908 }
1909
1910 /* Update the got entry reference counts for the section being removed. */
1911
1912 static bfd_boolean
1913 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1914 asection *sec,
1915 const Elf_Internal_Rela *relocs)
1916 {
1917 struct elf_x86_64_link_hash_table *htab;
1918 Elf_Internal_Shdr *symtab_hdr;
1919 struct elf_link_hash_entry **sym_hashes;
1920 bfd_signed_vma *local_got_refcounts;
1921 const Elf_Internal_Rela *rel, *relend;
1922
1923 if (info->relocatable)
1924 return TRUE;
1925
1926 htab = elf_x86_64_hash_table (info);
1927 if (htab == NULL)
1928 return FALSE;
1929
1930 elf_section_data (sec)->local_dynrel = NULL;
1931
1932 symtab_hdr = &elf_symtab_hdr (abfd);
1933 sym_hashes = elf_sym_hashes (abfd);
1934 local_got_refcounts = elf_local_got_refcounts (abfd);
1935
1936 htab = elf_x86_64_hash_table (info);
1937 relend = relocs + sec->reloc_count;
1938 for (rel = relocs; rel < relend; rel++)
1939 {
1940 unsigned long r_symndx;
1941 unsigned int r_type;
1942 struct elf_link_hash_entry *h = NULL;
1943
1944 r_symndx = htab->r_sym (rel->r_info);
1945 if (r_symndx >= symtab_hdr->sh_info)
1946 {
1947 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1948 while (h->root.type == bfd_link_hash_indirect
1949 || h->root.type == bfd_link_hash_warning)
1950 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1951 }
1952 else
1953 {
1954 /* A local symbol. */
1955 Elf_Internal_Sym *isym;
1956
1957 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1958 abfd, r_symndx);
1959
1960 /* Check relocation against local STT_GNU_IFUNC symbol. */
1961 if (isym != NULL
1962 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1963 {
1964 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1965 if (h == NULL)
1966 abort ();
1967 }
1968 }
1969
1970 if (h)
1971 {
1972 struct elf_x86_64_link_hash_entry *eh;
1973 struct elf_dyn_relocs **pp;
1974 struct elf_dyn_relocs *p;
1975
1976 eh = (struct elf_x86_64_link_hash_entry *) h;
1977
1978 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1979 if (p->sec == sec)
1980 {
1981 /* Everything must go for SEC. */
1982 *pp = p->next;
1983 break;
1984 }
1985 }
1986
1987 r_type = ELF32_R_TYPE (rel->r_info);
1988 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1989 symtab_hdr, sym_hashes,
1990 &r_type, GOT_UNKNOWN,
1991 rel, relend, h, r_symndx))
1992 return FALSE;
1993
1994 switch (r_type)
1995 {
1996 case R_X86_64_TLSLD:
1997 if (htab->tls_ld_got.refcount > 0)
1998 htab->tls_ld_got.refcount -= 1;
1999 break;
2000
2001 case R_X86_64_TLSGD:
2002 case R_X86_64_GOTPC32_TLSDESC:
2003 case R_X86_64_TLSDESC_CALL:
2004 case R_X86_64_GOTTPOFF:
2005 case R_X86_64_GOT32:
2006 case R_X86_64_GOTPCREL:
2007 case R_X86_64_GOT64:
2008 case R_X86_64_GOTPCREL64:
2009 case R_X86_64_GOTPLT64:
2010 if (h != NULL)
2011 {
2012 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2013 h->plt.refcount -= 1;
2014 if (h->got.refcount > 0)
2015 h->got.refcount -= 1;
2016 if (h->type == STT_GNU_IFUNC)
2017 {
2018 if (h->plt.refcount > 0)
2019 h->plt.refcount -= 1;
2020 }
2021 }
2022 else if (local_got_refcounts != NULL)
2023 {
2024 if (local_got_refcounts[r_symndx] > 0)
2025 local_got_refcounts[r_symndx] -= 1;
2026 }
2027 break;
2028
2029 case R_X86_64_8:
2030 case R_X86_64_16:
2031 case R_X86_64_32:
2032 case R_X86_64_64:
2033 case R_X86_64_32S:
2034 case R_X86_64_PC8:
2035 case R_X86_64_PC16:
2036 case R_X86_64_PC32:
2037 case R_X86_64_PC64:
2038 case R_X86_64_SIZE32:
2039 case R_X86_64_SIZE64:
2040 if (info->shared
2041 && (h == NULL || h->type != STT_GNU_IFUNC))
2042 break;
2043 /* Fall thru */
2044
2045 case R_X86_64_PLT32:
2046 case R_X86_64_PLTOFF64:
2047 if (h != NULL)
2048 {
2049 if (h->plt.refcount > 0)
2050 h->plt.refcount -= 1;
2051 }
2052 break;
2053
2054 default:
2055 break;
2056 }
2057 }
2058
2059 return TRUE;
2060 }
2061
2062 /* Adjust a symbol defined by a dynamic object and referenced by a
2063 regular object. The current definition is in some section of the
2064 dynamic object, but we're not including those sections. We have to
2065 change the definition to something the rest of the link can
2066 understand. */
2067
2068 static bfd_boolean
2069 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2070 struct elf_link_hash_entry *h)
2071 {
2072 struct elf_x86_64_link_hash_table *htab;
2073 asection *s;
2074 struct elf_x86_64_link_hash_entry *eh;
2075 struct elf_dyn_relocs *p;
2076
2077 /* STT_GNU_IFUNC symbol must go through PLT. */
2078 if (h->type == STT_GNU_IFUNC)
2079 {
2080 /* All local STT_GNU_IFUNC references must be treate as local
2081 calls via local PLT. */
2082 if (h->ref_regular
2083 && SYMBOL_CALLS_LOCAL (info, h))
2084 {
2085 bfd_size_type pc_count = 0, count = 0;
2086 struct elf_dyn_relocs **pp;
2087
2088 eh = (struct elf_x86_64_link_hash_entry *) h;
2089 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2090 {
2091 pc_count += p->pc_count;
2092 p->count -= p->pc_count;
2093 p->pc_count = 0;
2094 count += p->count;
2095 if (p->count == 0)
2096 *pp = p->next;
2097 else
2098 pp = &p->next;
2099 }
2100
2101 if (pc_count || count)
2102 {
2103 h->needs_plt = 1;
2104 h->non_got_ref = 1;
2105 if (h->plt.refcount <= 0)
2106 h->plt.refcount = 1;
2107 else
2108 h->plt.refcount += 1;
2109 }
2110 }
2111
2112 if (h->plt.refcount <= 0)
2113 {
2114 h->plt.offset = (bfd_vma) -1;
2115 h->needs_plt = 0;
2116 }
2117 return TRUE;
2118 }
2119
2120 /* If this is a function, put it in the procedure linkage table. We
2121 will fill in the contents of the procedure linkage table later,
2122 when we know the address of the .got section. */
2123 if (h->type == STT_FUNC
2124 || h->needs_plt)
2125 {
2126 if (h->plt.refcount <= 0
2127 || SYMBOL_CALLS_LOCAL (info, h)
2128 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2129 && h->root.type == bfd_link_hash_undefweak))
2130 {
2131 /* This case can occur if we saw a PLT32 reloc in an input
2132 file, but the symbol was never referred to by a dynamic
2133 object, or if all references were garbage collected. In
2134 such a case, we don't actually need to build a procedure
2135 linkage table, and we can just do a PC32 reloc instead. */
2136 h->plt.offset = (bfd_vma) -1;
2137 h->needs_plt = 0;
2138 }
2139
2140 return TRUE;
2141 }
2142 else
2143 /* It's possible that we incorrectly decided a .plt reloc was
2144 needed for an R_X86_64_PC32 reloc to a non-function sym in
2145 check_relocs. We can't decide accurately between function and
2146 non-function syms in check-relocs; Objects loaded later in
2147 the link may change h->type. So fix it now. */
2148 h->plt.offset = (bfd_vma) -1;
2149
2150 /* If this is a weak symbol, and there is a real definition, the
2151 processor independent code will have arranged for us to see the
2152 real definition first, and we can just use the same value. */
2153 if (h->u.weakdef != NULL)
2154 {
2155 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2156 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2157 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2158 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2159 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2160 h->non_got_ref = h->u.weakdef->non_got_ref;
2161 return TRUE;
2162 }
2163
2164 /* This is a reference to a symbol defined by a dynamic object which
2165 is not a function. */
2166
2167 /* If we are creating a shared library, we must presume that the
2168 only references to the symbol are via the global offset table.
2169 For such cases we need not do anything here; the relocations will
2170 be handled correctly by relocate_section. */
2171 if (info->shared)
2172 return TRUE;
2173
2174 /* If there are no references to this symbol that do not use the
2175 GOT, we don't need to generate a copy reloc. */
2176 if (!h->non_got_ref)
2177 return TRUE;
2178
2179 /* If -z nocopyreloc was given, we won't generate them either. */
2180 if (info->nocopyreloc)
2181 {
2182 h->non_got_ref = 0;
2183 return TRUE;
2184 }
2185
2186 if (ELIMINATE_COPY_RELOCS)
2187 {
2188 eh = (struct elf_x86_64_link_hash_entry *) h;
2189 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2190 {
2191 s = p->sec->output_section;
2192 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2193 break;
2194 }
2195
2196 /* If we didn't find any dynamic relocs in read-only sections, then
2197 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2198 if (p == NULL)
2199 {
2200 h->non_got_ref = 0;
2201 return TRUE;
2202 }
2203 }
2204
2205 /* We must allocate the symbol in our .dynbss section, which will
2206 become part of the .bss section of the executable. There will be
2207 an entry for this symbol in the .dynsym section. The dynamic
2208 object will contain position independent code, so all references
2209 from the dynamic object to this symbol will go through the global
2210 offset table. The dynamic linker will use the .dynsym entry to
2211 determine the address it must put in the global offset table, so
2212 both the dynamic object and the regular object will refer to the
2213 same memory location for the variable. */
2214
2215 htab = elf_x86_64_hash_table (info);
2216 if (htab == NULL)
2217 return FALSE;
2218
2219 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2220 to copy the initial value out of the dynamic object and into the
2221 runtime process image. */
2222 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2223 {
2224 const struct elf_backend_data *bed;
2225 bed = get_elf_backend_data (info->output_bfd);
2226 htab->srelbss->size += bed->s->sizeof_rela;
2227 h->needs_copy = 1;
2228 }
2229
2230 s = htab->sdynbss;
2231
2232 return _bfd_elf_adjust_dynamic_copy (h, s);
2233 }
2234
2235 /* Allocate space in .plt, .got and associated reloc sections for
2236 dynamic relocs. */
2237
2238 static bfd_boolean
2239 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2240 {
2241 struct bfd_link_info *info;
2242 struct elf_x86_64_link_hash_table *htab;
2243 struct elf_x86_64_link_hash_entry *eh;
2244 struct elf_dyn_relocs *p;
2245 const struct elf_backend_data *bed;
2246 unsigned int plt_entry_size;
2247
2248 if (h->root.type == bfd_link_hash_indirect)
2249 return TRUE;
2250
2251 eh = (struct elf_x86_64_link_hash_entry *) h;
2252
2253 info = (struct bfd_link_info *) inf;
2254 htab = elf_x86_64_hash_table (info);
2255 if (htab == NULL)
2256 return FALSE;
2257 bed = get_elf_backend_data (info->output_bfd);
2258 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2259
2260 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2261 here if it is defined and referenced in a non-shared object. */
2262 if (h->type == STT_GNU_IFUNC
2263 && h->def_regular)
2264 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2265 &eh->dyn_relocs,
2266 plt_entry_size,
2267 GOT_ENTRY_SIZE);
2268 else if (htab->elf.dynamic_sections_created
2269 && h->plt.refcount > 0)
2270 {
2271 /* Make sure this symbol is output as a dynamic symbol.
2272 Undefined weak syms won't yet be marked as dynamic. */
2273 if (h->dynindx == -1
2274 && !h->forced_local)
2275 {
2276 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2277 return FALSE;
2278 }
2279
2280 if (info->shared
2281 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2282 {
2283 asection *s = htab->elf.splt;
2284
2285 /* If this is the first .plt entry, make room for the special
2286 first entry. */
2287 if (s->size == 0)
2288 s->size += plt_entry_size;
2289
2290 h->plt.offset = s->size;
2291
2292 /* If this symbol is not defined in a regular file, and we are
2293 not generating a shared library, then set the symbol to this
2294 location in the .plt. This is required to make function
2295 pointers compare as equal between the normal executable and
2296 the shared library. */
2297 if (! info->shared
2298 && !h->def_regular)
2299 {
2300 h->root.u.def.section = s;
2301 h->root.u.def.value = h->plt.offset;
2302 }
2303
2304 /* Make room for this entry. */
2305 s->size += plt_entry_size;
2306
2307 /* We also need to make an entry in the .got.plt section, which
2308 will be placed in the .got section by the linker script. */
2309 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2310
2311 /* We also need to make an entry in the .rela.plt section. */
2312 htab->elf.srelplt->size += bed->s->sizeof_rela;
2313 htab->elf.srelplt->reloc_count++;
2314 }
2315 else
2316 {
2317 h->plt.offset = (bfd_vma) -1;
2318 h->needs_plt = 0;
2319 }
2320 }
2321 else
2322 {
2323 h->plt.offset = (bfd_vma) -1;
2324 h->needs_plt = 0;
2325 }
2326
2327 eh->tlsdesc_got = (bfd_vma) -1;
2328
2329 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2330 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2331 if (h->got.refcount > 0
2332 && info->executable
2333 && h->dynindx == -1
2334 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2335 {
2336 h->got.offset = (bfd_vma) -1;
2337 }
2338 else if (h->got.refcount > 0)
2339 {
2340 asection *s;
2341 bfd_boolean dyn;
2342 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2343
2344 /* Make sure this symbol is output as a dynamic symbol.
2345 Undefined weak syms won't yet be marked as dynamic. */
2346 if (h->dynindx == -1
2347 && !h->forced_local)
2348 {
2349 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2350 return FALSE;
2351 }
2352
2353 if (GOT_TLS_GDESC_P (tls_type))
2354 {
2355 eh->tlsdesc_got = htab->elf.sgotplt->size
2356 - elf_x86_64_compute_jump_table_size (htab);
2357 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2358 h->got.offset = (bfd_vma) -2;
2359 }
2360 if (! GOT_TLS_GDESC_P (tls_type)
2361 || GOT_TLS_GD_P (tls_type))
2362 {
2363 s = htab->elf.sgot;
2364 h->got.offset = s->size;
2365 s->size += GOT_ENTRY_SIZE;
2366 if (GOT_TLS_GD_P (tls_type))
2367 s->size += GOT_ENTRY_SIZE;
2368 }
2369 dyn = htab->elf.dynamic_sections_created;
2370 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2371 and two if global.
2372 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2373 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2374 || tls_type == GOT_TLS_IE)
2375 htab->elf.srelgot->size += bed->s->sizeof_rela;
2376 else if (GOT_TLS_GD_P (tls_type))
2377 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2378 else if (! GOT_TLS_GDESC_P (tls_type)
2379 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2380 || h->root.type != bfd_link_hash_undefweak)
2381 && (info->shared
2382 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2383 htab->elf.srelgot->size += bed->s->sizeof_rela;
2384 if (GOT_TLS_GDESC_P (tls_type))
2385 {
2386 htab->elf.srelplt->size += bed->s->sizeof_rela;
2387 htab->tlsdesc_plt = (bfd_vma) -1;
2388 }
2389 }
2390 else
2391 h->got.offset = (bfd_vma) -1;
2392
2393 if (eh->dyn_relocs == NULL)
2394 return TRUE;
2395
2396 /* In the shared -Bsymbolic case, discard space allocated for
2397 dynamic pc-relative relocs against symbols which turn out to be
2398 defined in regular objects. For the normal shared case, discard
2399 space for pc-relative relocs that have become local due to symbol
2400 visibility changes. */
2401
2402 if (info->shared)
2403 {
2404 /* Relocs that use pc_count are those that appear on a call
2405 insn, or certain REL relocs that can generated via assembly.
2406 We want calls to protected symbols to resolve directly to the
2407 function rather than going via the plt. If people want
2408 function pointer comparisons to work as expected then they
2409 should avoid writing weird assembly. */
2410 if (SYMBOL_CALLS_LOCAL (info, h))
2411 {
2412 struct elf_dyn_relocs **pp;
2413
2414 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2415 {
2416 p->count -= p->pc_count;
2417 p->pc_count = 0;
2418 if (p->count == 0)
2419 *pp = p->next;
2420 else
2421 pp = &p->next;
2422 }
2423 }
2424
2425 /* Also discard relocs on undefined weak syms with non-default
2426 visibility. */
2427 if (eh->dyn_relocs != NULL
2428 && h->root.type == bfd_link_hash_undefweak)
2429 {
2430 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2431 eh->dyn_relocs = NULL;
2432
2433 /* Make sure undefined weak symbols are output as a dynamic
2434 symbol in PIEs. */
2435 else if (h->dynindx == -1
2436 && ! h->forced_local
2437 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2438 return FALSE;
2439 }
2440
2441 }
2442 else if (ELIMINATE_COPY_RELOCS)
2443 {
2444 /* For the non-shared case, discard space for relocs against
2445 symbols which turn out to need copy relocs or are not
2446 dynamic. */
2447
2448 if (!h->non_got_ref
2449 && ((h->def_dynamic
2450 && !h->def_regular)
2451 || (htab->elf.dynamic_sections_created
2452 && (h->root.type == bfd_link_hash_undefweak
2453 || h->root.type == bfd_link_hash_undefined))))
2454 {
2455 /* Make sure this symbol is output as a dynamic symbol.
2456 Undefined weak syms won't yet be marked as dynamic. */
2457 if (h->dynindx == -1
2458 && ! h->forced_local
2459 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2460 return FALSE;
2461
2462 /* If that succeeded, we know we'll be keeping all the
2463 relocs. */
2464 if (h->dynindx != -1)
2465 goto keep;
2466 }
2467
2468 eh->dyn_relocs = NULL;
2469
2470 keep: ;
2471 }
2472
2473 /* Finally, allocate space. */
2474 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2475 {
2476 asection * sreloc;
2477
2478 sreloc = elf_section_data (p->sec)->sreloc;
2479
2480 BFD_ASSERT (sreloc != NULL);
2481
2482 sreloc->size += p->count * bed->s->sizeof_rela;
2483 }
2484
2485 return TRUE;
2486 }
2487
2488 /* Allocate space in .plt, .got and associated reloc sections for
2489 local dynamic relocs. */
2490
2491 static bfd_boolean
2492 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2493 {
2494 struct elf_link_hash_entry *h
2495 = (struct elf_link_hash_entry *) *slot;
2496
2497 if (h->type != STT_GNU_IFUNC
2498 || !h->def_regular
2499 || !h->ref_regular
2500 || !h->forced_local
2501 || h->root.type != bfd_link_hash_defined)
2502 abort ();
2503
2504 return elf_x86_64_allocate_dynrelocs (h, inf);
2505 }
2506
2507 /* Find any dynamic relocs that apply to read-only sections. */
2508
2509 static bfd_boolean
2510 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2511 void * inf)
2512 {
2513 struct elf_x86_64_link_hash_entry *eh;
2514 struct elf_dyn_relocs *p;
2515
2516 /* Skip local IFUNC symbols. */
2517 if (h->forced_local && h->type == STT_GNU_IFUNC)
2518 return TRUE;
2519
2520 eh = (struct elf_x86_64_link_hash_entry *) h;
2521 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2522 {
2523 asection *s = p->sec->output_section;
2524
2525 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2526 {
2527 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2528
2529 info->flags |= DF_TEXTREL;
2530
2531 if (info->warn_shared_textrel && info->shared)
2532 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2533 p->sec->owner, h->root.root.string,
2534 p->sec);
2535
2536 /* Not an error, just cut short the traversal. */
2537 return FALSE;
2538 }
2539 }
2540 return TRUE;
2541 }
2542
2543 /* Convert
2544 mov foo@GOTPCREL(%rip), %reg
2545 to
2546 lea foo(%rip), %reg
2547 with the local symbol, foo. */
2548
2549 static bfd_boolean
2550 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2551 struct bfd_link_info *link_info)
2552 {
2553 Elf_Internal_Shdr *symtab_hdr;
2554 Elf_Internal_Rela *internal_relocs;
2555 Elf_Internal_Rela *irel, *irelend;
2556 bfd_byte *contents;
2557 struct elf_x86_64_link_hash_table *htab;
2558 bfd_boolean changed_contents;
2559 bfd_boolean changed_relocs;
2560 bfd_signed_vma *local_got_refcounts;
2561
2562 /* Don't even try to convert non-ELF outputs. */
2563 if (!is_elf_hash_table (link_info->hash))
2564 return FALSE;
2565
2566 /* Nothing to do if there are no codes, no relocations or no output. */
2567 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2568 || sec->reloc_count == 0
2569 || discarded_section (sec))
2570 return TRUE;
2571
2572 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2573
2574 /* Load the relocations for this section. */
2575 internal_relocs = (_bfd_elf_link_read_relocs
2576 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2577 link_info->keep_memory));
2578 if (internal_relocs == NULL)
2579 return FALSE;
2580
2581 htab = elf_x86_64_hash_table (link_info);
2582 changed_contents = FALSE;
2583 changed_relocs = FALSE;
2584 local_got_refcounts = elf_local_got_refcounts (abfd);
2585
2586 /* Get the section contents. */
2587 if (elf_section_data (sec)->this_hdr.contents != NULL)
2588 contents = elf_section_data (sec)->this_hdr.contents;
2589 else
2590 {
2591 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2592 goto error_return;
2593 }
2594
2595 irelend = internal_relocs + sec->reloc_count;
2596 for (irel = internal_relocs; irel < irelend; irel++)
2597 {
2598 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2599 unsigned int r_symndx = htab->r_sym (irel->r_info);
2600 unsigned int indx;
2601 struct elf_link_hash_entry *h;
2602
2603 if (r_type != R_X86_64_GOTPCREL)
2604 continue;
2605
2606 /* Get the symbol referred to by the reloc. */
2607 if (r_symndx < symtab_hdr->sh_info)
2608 {
2609 Elf_Internal_Sym *isym;
2610
2611 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2612 abfd, r_symndx);
2613
2614 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2615 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2616 && bfd_get_8 (input_bfd,
2617 contents + irel->r_offset - 2) == 0x8b)
2618 {
2619 bfd_put_8 (output_bfd, 0x8d,
2620 contents + irel->r_offset - 2);
2621 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2622 if (local_got_refcounts != NULL
2623 && local_got_refcounts[r_symndx] > 0)
2624 local_got_refcounts[r_symndx] -= 1;
2625 changed_contents = TRUE;
2626 changed_relocs = TRUE;
2627 }
2628 continue;
2629 }
2630
2631 indx = r_symndx - symtab_hdr->sh_info;
2632 h = elf_sym_hashes (abfd)[indx];
2633 BFD_ASSERT (h != NULL);
2634
2635 while (h->root.type == bfd_link_hash_indirect
2636 || h->root.type == bfd_link_hash_warning)
2637 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2638
2639 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2640 avoid optimizing _DYNAMIC since ld.so may use its link-time
2641 address. */
2642 if (h->def_regular
2643 && h->type != STT_GNU_IFUNC
2644 && h != htab->elf.hdynamic
2645 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2646 && bfd_get_8 (input_bfd,
2647 contents + irel->r_offset - 2) == 0x8b)
2648 {
2649 bfd_put_8 (output_bfd, 0x8d,
2650 contents + irel->r_offset - 2);
2651 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2652 if (h->got.refcount > 0)
2653 h->got.refcount -= 1;
2654 changed_contents = TRUE;
2655 changed_relocs = TRUE;
2656 }
2657 }
2658
2659 if (contents != NULL
2660 && elf_section_data (sec)->this_hdr.contents != contents)
2661 {
2662 if (!changed_contents && !link_info->keep_memory)
2663 free (contents);
2664 else
2665 {
2666 /* Cache the section contents for elf_link_input_bfd. */
2667 elf_section_data (sec)->this_hdr.contents = contents;
2668 }
2669 }
2670
2671 if (elf_section_data (sec)->relocs != internal_relocs)
2672 {
2673 if (!changed_relocs)
2674 free (internal_relocs);
2675 else
2676 elf_section_data (sec)->relocs = internal_relocs;
2677 }
2678
2679 return TRUE;
2680
2681 error_return:
2682 if (contents != NULL
2683 && elf_section_data (sec)->this_hdr.contents != contents)
2684 free (contents);
2685 if (internal_relocs != NULL
2686 && elf_section_data (sec)->relocs != internal_relocs)
2687 free (internal_relocs);
2688 return FALSE;
2689 }
2690
2691 /* Set the sizes of the dynamic sections. */
2692
2693 static bfd_boolean
2694 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2695 struct bfd_link_info *info)
2696 {
2697 struct elf_x86_64_link_hash_table *htab;
2698 bfd *dynobj;
2699 asection *s;
2700 bfd_boolean relocs;
2701 bfd *ibfd;
2702 const struct elf_backend_data *bed;
2703
2704 htab = elf_x86_64_hash_table (info);
2705 if (htab == NULL)
2706 return FALSE;
2707 bed = get_elf_backend_data (output_bfd);
2708
2709 dynobj = htab->elf.dynobj;
2710 if (dynobj == NULL)
2711 abort ();
2712
2713 if (htab->elf.dynamic_sections_created)
2714 {
2715 /* Set the contents of the .interp section to the interpreter. */
2716 if (info->executable)
2717 {
2718 s = bfd_get_linker_section (dynobj, ".interp");
2719 if (s == NULL)
2720 abort ();
2721 s->size = htab->dynamic_interpreter_size;
2722 s->contents = (unsigned char *) htab->dynamic_interpreter;
2723 }
2724 }
2725
2726 /* Set up .got offsets for local syms, and space for local dynamic
2727 relocs. */
2728 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2729 {
2730 bfd_signed_vma *local_got;
2731 bfd_signed_vma *end_local_got;
2732 char *local_tls_type;
2733 bfd_vma *local_tlsdesc_gotent;
2734 bfd_size_type locsymcount;
2735 Elf_Internal_Shdr *symtab_hdr;
2736 asection *srel;
2737
2738 if (! is_x86_64_elf (ibfd))
2739 continue;
2740
2741 for (s = ibfd->sections; s != NULL; s = s->next)
2742 {
2743 struct elf_dyn_relocs *p;
2744
2745 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2746 return FALSE;
2747
2748 for (p = (struct elf_dyn_relocs *)
2749 (elf_section_data (s)->local_dynrel);
2750 p != NULL;
2751 p = p->next)
2752 {
2753 if (!bfd_is_abs_section (p->sec)
2754 && bfd_is_abs_section (p->sec->output_section))
2755 {
2756 /* Input section has been discarded, either because
2757 it is a copy of a linkonce section or due to
2758 linker script /DISCARD/, so we'll be discarding
2759 the relocs too. */
2760 }
2761 else if (p->count != 0)
2762 {
2763 srel = elf_section_data (p->sec)->sreloc;
2764 srel->size += p->count * bed->s->sizeof_rela;
2765 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2766 && (info->flags & DF_TEXTREL) == 0)
2767 {
2768 info->flags |= DF_TEXTREL;
2769 if (info->warn_shared_textrel && info->shared)
2770 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2771 p->sec->owner, p->sec);
2772 }
2773 }
2774 }
2775 }
2776
2777 local_got = elf_local_got_refcounts (ibfd);
2778 if (!local_got)
2779 continue;
2780
2781 symtab_hdr = &elf_symtab_hdr (ibfd);
2782 locsymcount = symtab_hdr->sh_info;
2783 end_local_got = local_got + locsymcount;
2784 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2785 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2786 s = htab->elf.sgot;
2787 srel = htab->elf.srelgot;
2788 for (; local_got < end_local_got;
2789 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2790 {
2791 *local_tlsdesc_gotent = (bfd_vma) -1;
2792 if (*local_got > 0)
2793 {
2794 if (GOT_TLS_GDESC_P (*local_tls_type))
2795 {
2796 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2797 - elf_x86_64_compute_jump_table_size (htab);
2798 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2799 *local_got = (bfd_vma) -2;
2800 }
2801 if (! GOT_TLS_GDESC_P (*local_tls_type)
2802 || GOT_TLS_GD_P (*local_tls_type))
2803 {
2804 *local_got = s->size;
2805 s->size += GOT_ENTRY_SIZE;
2806 if (GOT_TLS_GD_P (*local_tls_type))
2807 s->size += GOT_ENTRY_SIZE;
2808 }
2809 if (info->shared
2810 || GOT_TLS_GD_ANY_P (*local_tls_type)
2811 || *local_tls_type == GOT_TLS_IE)
2812 {
2813 if (GOT_TLS_GDESC_P (*local_tls_type))
2814 {
2815 htab->elf.srelplt->size
2816 += bed->s->sizeof_rela;
2817 htab->tlsdesc_plt = (bfd_vma) -1;
2818 }
2819 if (! GOT_TLS_GDESC_P (*local_tls_type)
2820 || GOT_TLS_GD_P (*local_tls_type))
2821 srel->size += bed->s->sizeof_rela;
2822 }
2823 }
2824 else
2825 *local_got = (bfd_vma) -1;
2826 }
2827 }
2828
2829 if (htab->tls_ld_got.refcount > 0)
2830 {
2831 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2832 relocs. */
2833 htab->tls_ld_got.offset = htab->elf.sgot->size;
2834 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2835 htab->elf.srelgot->size += bed->s->sizeof_rela;
2836 }
2837 else
2838 htab->tls_ld_got.offset = -1;
2839
2840 /* Allocate global sym .plt and .got entries, and space for global
2841 sym dynamic relocs. */
2842 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2843 info);
2844
2845 /* Allocate .plt and .got entries, and space for local symbols. */
2846 htab_traverse (htab->loc_hash_table,
2847 elf_x86_64_allocate_local_dynrelocs,
2848 info);
2849
2850 /* For every jump slot reserved in the sgotplt, reloc_count is
2851 incremented. However, when we reserve space for TLS descriptors,
2852 it's not incremented, so in order to compute the space reserved
2853 for them, it suffices to multiply the reloc count by the jump
2854 slot size.
2855
2856 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2857 so that R_X86_64_IRELATIVE entries come last. */
2858 if (htab->elf.srelplt)
2859 {
2860 htab->sgotplt_jump_table_size
2861 = elf_x86_64_compute_jump_table_size (htab);
2862 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2863 }
2864 else if (htab->elf.irelplt)
2865 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2866
2867 if (htab->tlsdesc_plt)
2868 {
2869 /* If we're not using lazy TLS relocations, don't generate the
2870 PLT and GOT entries they require. */
2871 if ((info->flags & DF_BIND_NOW))
2872 htab->tlsdesc_plt = 0;
2873 else
2874 {
2875 htab->tlsdesc_got = htab->elf.sgot->size;
2876 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2877 /* Reserve room for the initial entry.
2878 FIXME: we could probably do away with it in this case. */
2879 if (htab->elf.splt->size == 0)
2880 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2881 htab->tlsdesc_plt = htab->elf.splt->size;
2882 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2883 }
2884 }
2885
2886 if (htab->elf.sgotplt)
2887 {
2888 /* Don't allocate .got.plt section if there are no GOT nor PLT
2889 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2890 if ((htab->elf.hgot == NULL
2891 || !htab->elf.hgot->ref_regular_nonweak)
2892 && (htab->elf.sgotplt->size
2893 == get_elf_backend_data (output_bfd)->got_header_size)
2894 && (htab->elf.splt == NULL
2895 || htab->elf.splt->size == 0)
2896 && (htab->elf.sgot == NULL
2897 || htab->elf.sgot->size == 0)
2898 && (htab->elf.iplt == NULL
2899 || htab->elf.iplt->size == 0)
2900 && (htab->elf.igotplt == NULL
2901 || htab->elf.igotplt->size == 0))
2902 htab->elf.sgotplt->size = 0;
2903 }
2904
2905 if (htab->plt_eh_frame != NULL
2906 && htab->elf.splt != NULL
2907 && htab->elf.splt->size != 0
2908 && !bfd_is_abs_section (htab->elf.splt->output_section)
2909 && _bfd_elf_eh_frame_present (info))
2910 {
2911 const struct elf_x86_64_backend_data *arch_data
2912 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2913 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2914 }
2915
2916 /* We now have determined the sizes of the various dynamic sections.
2917 Allocate memory for them. */
2918 relocs = FALSE;
2919 for (s = dynobj->sections; s != NULL; s = s->next)
2920 {
2921 if ((s->flags & SEC_LINKER_CREATED) == 0)
2922 continue;
2923
2924 if (s == htab->elf.splt
2925 || s == htab->elf.sgot
2926 || s == htab->elf.sgotplt
2927 || s == htab->elf.iplt
2928 || s == htab->elf.igotplt
2929 || s == htab->plt_eh_frame
2930 || s == htab->sdynbss)
2931 {
2932 /* Strip this section if we don't need it; see the
2933 comment below. */
2934 }
2935 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2936 {
2937 if (s->size != 0 && s != htab->elf.srelplt)
2938 relocs = TRUE;
2939
2940 /* We use the reloc_count field as a counter if we need
2941 to copy relocs into the output file. */
2942 if (s != htab->elf.srelplt)
2943 s->reloc_count = 0;
2944 }
2945 else
2946 {
2947 /* It's not one of our sections, so don't allocate space. */
2948 continue;
2949 }
2950
2951 if (s->size == 0)
2952 {
2953 /* If we don't need this section, strip it from the
2954 output file. This is mostly to handle .rela.bss and
2955 .rela.plt. We must create both sections in
2956 create_dynamic_sections, because they must be created
2957 before the linker maps input sections to output
2958 sections. The linker does that before
2959 adjust_dynamic_symbol is called, and it is that
2960 function which decides whether anything needs to go
2961 into these sections. */
2962
2963 s->flags |= SEC_EXCLUDE;
2964 continue;
2965 }
2966
2967 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2968 continue;
2969
2970 /* Allocate memory for the section contents. We use bfd_zalloc
2971 here in case unused entries are not reclaimed before the
2972 section's contents are written out. This should not happen,
2973 but this way if it does, we get a R_X86_64_NONE reloc instead
2974 of garbage. */
2975 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2976 if (s->contents == NULL)
2977 return FALSE;
2978 }
2979
2980 if (htab->plt_eh_frame != NULL
2981 && htab->plt_eh_frame->contents != NULL)
2982 {
2983 const struct elf_x86_64_backend_data *arch_data
2984 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2985
2986 memcpy (htab->plt_eh_frame->contents,
2987 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
2988 bfd_put_32 (dynobj, htab->elf.splt->size,
2989 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2990 }
2991
2992 if (htab->elf.dynamic_sections_created)
2993 {
2994 /* Add some entries to the .dynamic section. We fill in the
2995 values later, in elf_x86_64_finish_dynamic_sections, but we
2996 must add the entries now so that we get the correct size for
2997 the .dynamic section. The DT_DEBUG entry is filled in by the
2998 dynamic linker and used by the debugger. */
2999 #define add_dynamic_entry(TAG, VAL) \
3000 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3001
3002 if (info->executable)
3003 {
3004 if (!add_dynamic_entry (DT_DEBUG, 0))
3005 return FALSE;
3006 }
3007
3008 if (htab->elf.splt->size != 0)
3009 {
3010 if (!add_dynamic_entry (DT_PLTGOT, 0)
3011 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3012 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3013 || !add_dynamic_entry (DT_JMPREL, 0))
3014 return FALSE;
3015
3016 if (htab->tlsdesc_plt
3017 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3018 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3019 return FALSE;
3020 }
3021
3022 if (relocs)
3023 {
3024 if (!add_dynamic_entry (DT_RELA, 0)
3025 || !add_dynamic_entry (DT_RELASZ, 0)
3026 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3027 return FALSE;
3028
3029 /* If any dynamic relocs apply to a read-only section,
3030 then we need a DT_TEXTREL entry. */
3031 if ((info->flags & DF_TEXTREL) == 0)
3032 elf_link_hash_traverse (&htab->elf,
3033 elf_x86_64_readonly_dynrelocs,
3034 info);
3035
3036 if ((info->flags & DF_TEXTREL) != 0)
3037 {
3038 if (!add_dynamic_entry (DT_TEXTREL, 0))
3039 return FALSE;
3040 }
3041 }
3042 }
3043 #undef add_dynamic_entry
3044
3045 return TRUE;
3046 }
3047
3048 static bfd_boolean
3049 elf_x86_64_always_size_sections (bfd *output_bfd,
3050 struct bfd_link_info *info)
3051 {
3052 asection *tls_sec = elf_hash_table (info)->tls_sec;
3053
3054 if (tls_sec)
3055 {
3056 struct elf_link_hash_entry *tlsbase;
3057
3058 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3059 "_TLS_MODULE_BASE_",
3060 FALSE, FALSE, FALSE);
3061
3062 if (tlsbase && tlsbase->type == STT_TLS)
3063 {
3064 struct elf_x86_64_link_hash_table *htab;
3065 struct bfd_link_hash_entry *bh = NULL;
3066 const struct elf_backend_data *bed
3067 = get_elf_backend_data (output_bfd);
3068
3069 htab = elf_x86_64_hash_table (info);
3070 if (htab == NULL)
3071 return FALSE;
3072
3073 if (!(_bfd_generic_link_add_one_symbol
3074 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3075 tls_sec, 0, NULL, FALSE,
3076 bed->collect, &bh)))
3077 return FALSE;
3078
3079 htab->tls_module_base = bh;
3080
3081 tlsbase = (struct elf_link_hash_entry *)bh;
3082 tlsbase->def_regular = 1;
3083 tlsbase->other = STV_HIDDEN;
3084 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3085 }
3086 }
3087
3088 return TRUE;
3089 }
3090
3091 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3092 executables. Rather than setting it to the beginning of the TLS
3093 section, we have to set it to the end. This function may be called
3094 multiple times, it is idempotent. */
3095
3096 static void
3097 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3098 {
3099 struct elf_x86_64_link_hash_table *htab;
3100 struct bfd_link_hash_entry *base;
3101
3102 if (!info->executable)
3103 return;
3104
3105 htab = elf_x86_64_hash_table (info);
3106 if (htab == NULL)
3107 return;
3108
3109 base = htab->tls_module_base;
3110 if (base == NULL)
3111 return;
3112
3113 base->u.def.value = htab->elf.tls_size;
3114 }
3115
3116 /* Return the base VMA address which should be subtracted from real addresses
3117 when resolving @dtpoff relocation.
3118 This is PT_TLS segment p_vaddr. */
3119
3120 static bfd_vma
3121 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3122 {
3123 /* If tls_sec is NULL, we should have signalled an error already. */
3124 if (elf_hash_table (info)->tls_sec == NULL)
3125 return 0;
3126 return elf_hash_table (info)->tls_sec->vma;
3127 }
3128
3129 /* Return the relocation value for @tpoff relocation
3130 if STT_TLS virtual address is ADDRESS. */
3131
3132 static bfd_vma
3133 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3134 {
3135 struct elf_link_hash_table *htab = elf_hash_table (info);
3136 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3137 bfd_vma static_tls_size;
3138
3139 /* If tls_segment is NULL, we should have signalled an error already. */
3140 if (htab->tls_sec == NULL)
3141 return 0;
3142
3143 /* Consider special static TLS alignment requirements. */
3144 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3145 return address - static_tls_size - htab->tls_sec->vma;
3146 }
3147
3148 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3149 branch? */
3150
3151 static bfd_boolean
3152 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3153 {
3154 /* Opcode Instruction
3155 0xe8 call
3156 0xe9 jump
3157 0x0f 0x8x conditional jump */
3158 return ((offset > 0
3159 && (contents [offset - 1] == 0xe8
3160 || contents [offset - 1] == 0xe9))
3161 || (offset > 1
3162 && contents [offset - 2] == 0x0f
3163 && (contents [offset - 1] & 0xf0) == 0x80));
3164 }
3165
3166 /* Relocate an x86_64 ELF section. */
3167
3168 static bfd_boolean
3169 elf_x86_64_relocate_section (bfd *output_bfd,
3170 struct bfd_link_info *info,
3171 bfd *input_bfd,
3172 asection *input_section,
3173 bfd_byte *contents,
3174 Elf_Internal_Rela *relocs,
3175 Elf_Internal_Sym *local_syms,
3176 asection **local_sections)
3177 {
3178 struct elf_x86_64_link_hash_table *htab;
3179 Elf_Internal_Shdr *symtab_hdr;
3180 struct elf_link_hash_entry **sym_hashes;
3181 bfd_vma *local_got_offsets;
3182 bfd_vma *local_tlsdesc_gotents;
3183 Elf_Internal_Rela *rel;
3184 Elf_Internal_Rela *relend;
3185 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3186
3187 BFD_ASSERT (is_x86_64_elf (input_bfd));
3188
3189 htab = elf_x86_64_hash_table (info);
3190 if (htab == NULL)
3191 return FALSE;
3192 symtab_hdr = &elf_symtab_hdr (input_bfd);
3193 sym_hashes = elf_sym_hashes (input_bfd);
3194 local_got_offsets = elf_local_got_offsets (input_bfd);
3195 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3196
3197 elf_x86_64_set_tls_module_base (info);
3198
3199 rel = relocs;
3200 relend = relocs + input_section->reloc_count;
3201 for (; rel < relend; rel++)
3202 {
3203 unsigned int r_type;
3204 reloc_howto_type *howto;
3205 unsigned long r_symndx;
3206 struct elf_link_hash_entry *h;
3207 Elf_Internal_Sym *sym;
3208 asection *sec;
3209 bfd_vma off, offplt;
3210 bfd_vma relocation;
3211 bfd_boolean unresolved_reloc;
3212 bfd_reloc_status_type r;
3213 int tls_type;
3214 asection *base_got;
3215 bfd_vma st_size;
3216
3217 r_type = ELF32_R_TYPE (rel->r_info);
3218 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3219 || r_type == (int) R_X86_64_GNU_VTENTRY)
3220 continue;
3221
3222 if (r_type >= (int) R_X86_64_standard)
3223 {
3224 (*_bfd_error_handler)
3225 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3226 input_bfd, input_section, r_type);
3227 bfd_set_error (bfd_error_bad_value);
3228 return FALSE;
3229 }
3230
3231 if (r_type != (int) R_X86_64_32
3232 || ABI_64_P (output_bfd))
3233 howto = x86_64_elf_howto_table + r_type;
3234 else
3235 howto = (x86_64_elf_howto_table
3236 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3237 r_symndx = htab->r_sym (rel->r_info);
3238 h = NULL;
3239 sym = NULL;
3240 sec = NULL;
3241 unresolved_reloc = FALSE;
3242 if (r_symndx < symtab_hdr->sh_info)
3243 {
3244 sym = local_syms + r_symndx;
3245 sec = local_sections[r_symndx];
3246
3247 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3248 &sec, rel);
3249 st_size = sym->st_size;
3250
3251 /* Relocate against local STT_GNU_IFUNC symbol. */
3252 if (!info->relocatable
3253 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3254 {
3255 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3256 rel, FALSE);
3257 if (h == NULL)
3258 abort ();
3259
3260 /* Set STT_GNU_IFUNC symbol value. */
3261 h->root.u.def.value = sym->st_value;
3262 h->root.u.def.section = sec;
3263 }
3264 }
3265 else
3266 {
3267 bfd_boolean warned ATTRIBUTE_UNUSED;
3268
3269 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3270 r_symndx, symtab_hdr, sym_hashes,
3271 h, sec, relocation,
3272 unresolved_reloc, warned);
3273 st_size = h->size;
3274 }
3275
3276 if (sec != NULL && discarded_section (sec))
3277 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3278 rel, 1, relend, howto, 0, contents);
3279
3280 if (info->relocatable)
3281 continue;
3282
3283 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3284 {
3285 if (r_type == R_X86_64_64)
3286 {
3287 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3288 zero-extend it to 64bit if addend is zero. */
3289 r_type = R_X86_64_32;
3290 memset (contents + rel->r_offset + 4, 0, 4);
3291 }
3292 else if (r_type == R_X86_64_SIZE64)
3293 {
3294 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3295 zero-extend it to 64bit if addend is zero. */
3296 r_type = R_X86_64_SIZE32;
3297 memset (contents + rel->r_offset + 4, 0, 4);
3298 }
3299 }
3300
3301 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3302 it here if it is defined in a non-shared object. */
3303 if (h != NULL
3304 && h->type == STT_GNU_IFUNC
3305 && h->def_regular)
3306 {
3307 asection *plt;
3308 bfd_vma plt_index;
3309 const char *name;
3310
3311 if ((input_section->flags & SEC_ALLOC) == 0
3312 || h->plt.offset == (bfd_vma) -1)
3313 abort ();
3314
3315 /* STT_GNU_IFUNC symbol must go through PLT. */
3316 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3317 relocation = (plt->output_section->vma
3318 + plt->output_offset + h->plt.offset);
3319
3320 switch (r_type)
3321 {
3322 default:
3323 if (h->root.root.string)
3324 name = h->root.root.string;
3325 else
3326 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3327 NULL);
3328 (*_bfd_error_handler)
3329 (_("%B: relocation %s against STT_GNU_IFUNC "
3330 "symbol `%s' isn't handled by %s"), input_bfd,
3331 x86_64_elf_howto_table[r_type].name,
3332 name, __FUNCTION__);
3333 bfd_set_error (bfd_error_bad_value);
3334 return FALSE;
3335
3336 case R_X86_64_32S:
3337 if (info->shared)
3338 abort ();
3339 goto do_relocation;
3340
3341 case R_X86_64_32:
3342 if (ABI_64_P (output_bfd))
3343 goto do_relocation;
3344 /* FALLTHROUGH */
3345 case R_X86_64_64:
3346 if (rel->r_addend != 0)
3347 {
3348 if (h->root.root.string)
3349 name = h->root.root.string;
3350 else
3351 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3352 sym, NULL);
3353 (*_bfd_error_handler)
3354 (_("%B: relocation %s against STT_GNU_IFUNC "
3355 "symbol `%s' has non-zero addend: %d"),
3356 input_bfd, x86_64_elf_howto_table[r_type].name,
3357 name, rel->r_addend);
3358 bfd_set_error (bfd_error_bad_value);
3359 return FALSE;
3360 }
3361
3362 /* Generate dynamic relcoation only when there is a
3363 non-GOT reference in a shared object. */
3364 if (info->shared && h->non_got_ref)
3365 {
3366 Elf_Internal_Rela outrel;
3367 asection *sreloc;
3368
3369 /* Need a dynamic relocation to get the real function
3370 address. */
3371 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3372 info,
3373 input_section,
3374 rel->r_offset);
3375 if (outrel.r_offset == (bfd_vma) -1
3376 || outrel.r_offset == (bfd_vma) -2)
3377 abort ();
3378
3379 outrel.r_offset += (input_section->output_section->vma
3380 + input_section->output_offset);
3381
3382 if (h->dynindx == -1
3383 || h->forced_local
3384 || info->executable)
3385 {
3386 /* This symbol is resolved locally. */
3387 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3388 outrel.r_addend = (h->root.u.def.value
3389 + h->root.u.def.section->output_section->vma
3390 + h->root.u.def.section->output_offset);
3391 }
3392 else
3393 {
3394 outrel.r_info = htab->r_info (h->dynindx, r_type);
3395 outrel.r_addend = 0;
3396 }
3397
3398 sreloc = htab->elf.irelifunc;
3399 elf_append_rela (output_bfd, sreloc, &outrel);
3400
3401 /* If this reloc is against an external symbol, we
3402 do not want to fiddle with the addend. Otherwise,
3403 we need to include the symbol value so that it
3404 becomes an addend for the dynamic reloc. For an
3405 internal symbol, we have updated addend. */
3406 continue;
3407 }
3408 /* FALLTHROUGH */
3409 case R_X86_64_PC32:
3410 case R_X86_64_PC64:
3411 case R_X86_64_PLT32:
3412 goto do_relocation;
3413
3414 case R_X86_64_GOTPCREL:
3415 case R_X86_64_GOTPCREL64:
3416 base_got = htab->elf.sgot;
3417 off = h->got.offset;
3418
3419 if (base_got == NULL)
3420 abort ();
3421
3422 if (off == (bfd_vma) -1)
3423 {
3424 /* We can't use h->got.offset here to save state, or
3425 even just remember the offset, as finish_dynamic_symbol
3426 would use that as offset into .got. */
3427
3428 if (htab->elf.splt != NULL)
3429 {
3430 plt_index = h->plt.offset / plt_entry_size - 1;
3431 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3432 base_got = htab->elf.sgotplt;
3433 }
3434 else
3435 {
3436 plt_index = h->plt.offset / plt_entry_size;
3437 off = plt_index * GOT_ENTRY_SIZE;
3438 base_got = htab->elf.igotplt;
3439 }
3440
3441 if (h->dynindx == -1
3442 || h->forced_local
3443 || info->symbolic)
3444 {
3445 /* This references the local defitionion. We must
3446 initialize this entry in the global offset table.
3447 Since the offset must always be a multiple of 8,
3448 we use the least significant bit to record
3449 whether we have initialized it already.
3450
3451 When doing a dynamic link, we create a .rela.got
3452 relocation entry to initialize the value. This
3453 is done in the finish_dynamic_symbol routine. */
3454 if ((off & 1) != 0)
3455 off &= ~1;
3456 else
3457 {
3458 bfd_put_64 (output_bfd, relocation,
3459 base_got->contents + off);
3460 /* Note that this is harmless for the GOTPLT64
3461 case, as -1 | 1 still is -1. */
3462 h->got.offset |= 1;
3463 }
3464 }
3465 }
3466
3467 relocation = (base_got->output_section->vma
3468 + base_got->output_offset + off);
3469
3470 goto do_relocation;
3471 }
3472 }
3473
3474 /* When generating a shared object, the relocations handled here are
3475 copied into the output file to be resolved at run time. */
3476 switch (r_type)
3477 {
3478 case R_X86_64_GOT32:
3479 case R_X86_64_GOT64:
3480 /* Relocation is to the entry for this symbol in the global
3481 offset table. */
3482 case R_X86_64_GOTPCREL:
3483 case R_X86_64_GOTPCREL64:
3484 /* Use global offset table entry as symbol value. */
3485 case R_X86_64_GOTPLT64:
3486 /* This is the same as GOT64 for relocation purposes, but
3487 indicates the existence of a PLT entry. The difficulty is,
3488 that we must calculate the GOT slot offset from the PLT
3489 offset, if this symbol got a PLT entry (it was global).
3490 Additionally if it's computed from the PLT entry, then that
3491 GOT offset is relative to .got.plt, not to .got. */
3492 base_got = htab->elf.sgot;
3493
3494 if (htab->elf.sgot == NULL)
3495 abort ();
3496
3497 if (h != NULL)
3498 {
3499 bfd_boolean dyn;
3500
3501 off = h->got.offset;
3502 if (h->needs_plt
3503 && h->plt.offset != (bfd_vma)-1
3504 && off == (bfd_vma)-1)
3505 {
3506 /* We can't use h->got.offset here to save
3507 state, or even just remember the offset, as
3508 finish_dynamic_symbol would use that as offset into
3509 .got. */
3510 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3511 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3512 base_got = htab->elf.sgotplt;
3513 }
3514
3515 dyn = htab->elf.dynamic_sections_created;
3516
3517 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3518 || (info->shared
3519 && SYMBOL_REFERENCES_LOCAL (info, h))
3520 || (ELF_ST_VISIBILITY (h->other)
3521 && h->root.type == bfd_link_hash_undefweak))
3522 {
3523 /* This is actually a static link, or it is a -Bsymbolic
3524 link and the symbol is defined locally, or the symbol
3525 was forced to be local because of a version file. We
3526 must initialize this entry in the global offset table.
3527 Since the offset must always be a multiple of 8, we
3528 use the least significant bit to record whether we
3529 have initialized it already.
3530
3531 When doing a dynamic link, we create a .rela.got
3532 relocation entry to initialize the value. This is
3533 done in the finish_dynamic_symbol routine. */
3534 if ((off & 1) != 0)
3535 off &= ~1;
3536 else
3537 {
3538 bfd_put_64 (output_bfd, relocation,
3539 base_got->contents + off);
3540 /* Note that this is harmless for the GOTPLT64 case,
3541 as -1 | 1 still is -1. */
3542 h->got.offset |= 1;
3543 }
3544 }
3545 else
3546 unresolved_reloc = FALSE;
3547 }
3548 else
3549 {
3550 if (local_got_offsets == NULL)
3551 abort ();
3552
3553 off = local_got_offsets[r_symndx];
3554
3555 /* The offset must always be a multiple of 8. We use
3556 the least significant bit to record whether we have
3557 already generated the necessary reloc. */
3558 if ((off & 1) != 0)
3559 off &= ~1;
3560 else
3561 {
3562 bfd_put_64 (output_bfd, relocation,
3563 base_got->contents + off);
3564
3565 if (info->shared)
3566 {
3567 asection *s;
3568 Elf_Internal_Rela outrel;
3569
3570 /* We need to generate a R_X86_64_RELATIVE reloc
3571 for the dynamic linker. */
3572 s = htab->elf.srelgot;
3573 if (s == NULL)
3574 abort ();
3575
3576 outrel.r_offset = (base_got->output_section->vma
3577 + base_got->output_offset
3578 + off);
3579 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3580 outrel.r_addend = relocation;
3581 elf_append_rela (output_bfd, s, &outrel);
3582 }
3583
3584 local_got_offsets[r_symndx] |= 1;
3585 }
3586 }
3587
3588 if (off >= (bfd_vma) -2)
3589 abort ();
3590
3591 relocation = base_got->output_section->vma
3592 + base_got->output_offset + off;
3593 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3594 relocation -= htab->elf.sgotplt->output_section->vma
3595 - htab->elf.sgotplt->output_offset;
3596
3597 break;
3598
3599 case R_X86_64_GOTOFF64:
3600 /* Relocation is relative to the start of the global offset
3601 table. */
3602
3603 /* Check to make sure it isn't a protected function symbol
3604 for shared library since it may not be local when used
3605 as function address. */
3606 if (!info->executable
3607 && h
3608 && !SYMBOLIC_BIND (info, h)
3609 && h->def_regular
3610 && h->type == STT_FUNC
3611 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3612 {
3613 (*_bfd_error_handler)
3614 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3615 input_bfd, h->root.root.string);
3616 bfd_set_error (bfd_error_bad_value);
3617 return FALSE;
3618 }
3619
3620 /* Note that sgot is not involved in this
3621 calculation. We always want the start of .got.plt. If we
3622 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3623 permitted by the ABI, we might have to change this
3624 calculation. */
3625 relocation -= htab->elf.sgotplt->output_section->vma
3626 + htab->elf.sgotplt->output_offset;
3627 break;
3628
3629 case R_X86_64_GOTPC32:
3630 case R_X86_64_GOTPC64:
3631 /* Use global offset table as symbol value. */
3632 relocation = htab->elf.sgotplt->output_section->vma
3633 + htab->elf.sgotplt->output_offset;
3634 unresolved_reloc = FALSE;
3635 break;
3636
3637 case R_X86_64_PLTOFF64:
3638 /* Relocation is PLT entry relative to GOT. For local
3639 symbols it's the symbol itself relative to GOT. */
3640 if (h != NULL
3641 /* See PLT32 handling. */
3642 && h->plt.offset != (bfd_vma) -1
3643 && htab->elf.splt != NULL)
3644 {
3645 relocation = (htab->elf.splt->output_section->vma
3646 + htab->elf.splt->output_offset
3647 + h->plt.offset);
3648 unresolved_reloc = FALSE;
3649 }
3650
3651 relocation -= htab->elf.sgotplt->output_section->vma
3652 + htab->elf.sgotplt->output_offset;
3653 break;
3654
3655 case R_X86_64_PLT32:
3656 /* Relocation is to the entry for this symbol in the
3657 procedure linkage table. */
3658
3659 /* Resolve a PLT32 reloc against a local symbol directly,
3660 without using the procedure linkage table. */
3661 if (h == NULL)
3662 break;
3663
3664 if (h->plt.offset == (bfd_vma) -1
3665 || htab->elf.splt == NULL)
3666 {
3667 /* We didn't make a PLT entry for this symbol. This
3668 happens when statically linking PIC code, or when
3669 using -Bsymbolic. */
3670 break;
3671 }
3672
3673 relocation = (htab->elf.splt->output_section->vma
3674 + htab->elf.splt->output_offset
3675 + h->plt.offset);
3676 unresolved_reloc = FALSE;
3677 break;
3678
3679 case R_X86_64_SIZE32:
3680 case R_X86_64_SIZE64:
3681 if (h
3682 && h->type == STT_TLS
3683 && (h->root.type == bfd_link_hash_defined
3684 || h->root.type == bfd_link_hash_defweak)
3685 && h->root.u.def.section->output_section != NULL
3686 && htab->elf.tls_sec == NULL)
3687 {
3688 (*_bfd_error_handler)
3689 (_("%B: `%s' accessed both as normal and thread local symbol"),
3690 input_bfd, h->root.root.string);
3691 bfd_set_error (bfd_error_bad_value);
3692 return FALSE;
3693 }
3694
3695 /* Set to symbol size. */
3696 relocation = st_size;
3697 goto direct;
3698
3699 case R_X86_64_PC8:
3700 case R_X86_64_PC16:
3701 case R_X86_64_PC32:
3702 if (info->shared
3703 && (input_section->flags & SEC_ALLOC) != 0
3704 && (input_section->flags & SEC_READONLY) != 0
3705 && h != NULL)
3706 {
3707 bfd_boolean fail = FALSE;
3708 bfd_boolean branch
3709 = (r_type == R_X86_64_PC32
3710 && is_32bit_relative_branch (contents, rel->r_offset));
3711
3712 if (SYMBOL_REFERENCES_LOCAL (info, h))
3713 {
3714 /* Symbol is referenced locally. Make sure it is
3715 defined locally or for a branch. */
3716 fail = !h->def_regular && !branch;
3717 }
3718 else
3719 {
3720 /* Symbol isn't referenced locally. We only allow
3721 branch to symbol with non-default visibility. */
3722 fail = (!branch
3723 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3724 }
3725
3726 if (fail)
3727 {
3728 const char *fmt;
3729 const char *v;
3730 const char *pic = "";
3731
3732 switch (ELF_ST_VISIBILITY (h->other))
3733 {
3734 case STV_HIDDEN:
3735 v = _("hidden symbol");
3736 break;
3737 case STV_INTERNAL:
3738 v = _("internal symbol");
3739 break;
3740 case STV_PROTECTED:
3741 v = _("protected symbol");
3742 break;
3743 default:
3744 v = _("symbol");
3745 pic = _("; recompile with -fPIC");
3746 break;
3747 }
3748
3749 if (h->def_regular)
3750 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3751 else
3752 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3753
3754 (*_bfd_error_handler) (fmt, input_bfd,
3755 x86_64_elf_howto_table[r_type].name,
3756 v, h->root.root.string, pic);
3757 bfd_set_error (bfd_error_bad_value);
3758 return FALSE;
3759 }
3760 }
3761 /* Fall through. */
3762
3763 case R_X86_64_8:
3764 case R_X86_64_16:
3765 case R_X86_64_32:
3766 case R_X86_64_PC64:
3767 case R_X86_64_64:
3768 /* FIXME: The ABI says the linker should make sure the value is
3769 the same when it's zeroextended to 64 bit. */
3770
3771 direct:
3772 if ((input_section->flags & SEC_ALLOC) == 0)
3773 break;
3774
3775 if ((info->shared
3776 && (h == NULL
3777 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3778 || h->root.type != bfd_link_hash_undefweak)
3779 && ((! IS_X86_64_PCREL_TYPE (r_type)
3780 && r_type != R_X86_64_SIZE32
3781 && r_type != R_X86_64_SIZE64)
3782 || ! SYMBOL_CALLS_LOCAL (info, h)))
3783 || (ELIMINATE_COPY_RELOCS
3784 && !info->shared
3785 && h != NULL
3786 && h->dynindx != -1
3787 && !h->non_got_ref
3788 && ((h->def_dynamic
3789 && !h->def_regular)
3790 || h->root.type == bfd_link_hash_undefweak
3791 || h->root.type == bfd_link_hash_undefined)))
3792 {
3793 Elf_Internal_Rela outrel;
3794 bfd_boolean skip, relocate;
3795 asection *sreloc;
3796
3797 /* When generating a shared object, these relocations
3798 are copied into the output file to be resolved at run
3799 time. */
3800 skip = FALSE;
3801 relocate = FALSE;
3802
3803 outrel.r_offset =
3804 _bfd_elf_section_offset (output_bfd, info, input_section,
3805 rel->r_offset);
3806 if (outrel.r_offset == (bfd_vma) -1)
3807 skip = TRUE;
3808 else if (outrel.r_offset == (bfd_vma) -2)
3809 skip = TRUE, relocate = TRUE;
3810
3811 outrel.r_offset += (input_section->output_section->vma
3812 + input_section->output_offset);
3813
3814 if (skip)
3815 memset (&outrel, 0, sizeof outrel);
3816
3817 /* h->dynindx may be -1 if this symbol was marked to
3818 become local. */
3819 else if (h != NULL
3820 && h->dynindx != -1
3821 && (IS_X86_64_PCREL_TYPE (r_type)
3822 || ! info->shared
3823 || ! SYMBOLIC_BIND (info, h)
3824 || ! h->def_regular))
3825 {
3826 outrel.r_info = htab->r_info (h->dynindx, r_type);
3827 outrel.r_addend = rel->r_addend;
3828 }
3829 else
3830 {
3831 /* This symbol is local, or marked to become local. */
3832 if (r_type == htab->pointer_r_type)
3833 {
3834 relocate = TRUE;
3835 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3836 outrel.r_addend = relocation + rel->r_addend;
3837 }
3838 else if (r_type == R_X86_64_64
3839 && !ABI_64_P (output_bfd))
3840 {
3841 relocate = TRUE;
3842 outrel.r_info = htab->r_info (0,
3843 R_X86_64_RELATIVE64);
3844 outrel.r_addend = relocation + rel->r_addend;
3845 /* Check addend overflow. */
3846 if ((outrel.r_addend & 0x80000000)
3847 != (rel->r_addend & 0x80000000))
3848 {
3849 const char *name;
3850 int addend = rel->r_addend;
3851 if (h && h->root.root.string)
3852 name = h->root.root.string;
3853 else
3854 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3855 sym, NULL);
3856 if (addend < 0)
3857 (*_bfd_error_handler)
3858 (_("%B: addend -0x%x in relocation %s against "
3859 "symbol `%s' at 0x%lx in section `%A' is "
3860 "out of range"),
3861 input_bfd, input_section, addend,
3862 x86_64_elf_howto_table[r_type].name,
3863 name, (unsigned long) rel->r_offset);
3864 else
3865 (*_bfd_error_handler)
3866 (_("%B: addend 0x%x in relocation %s against "
3867 "symbol `%s' at 0x%lx in section `%A' is "
3868 "out of range"),
3869 input_bfd, input_section, addend,
3870 x86_64_elf_howto_table[r_type].name,
3871 name, (unsigned long) rel->r_offset);
3872 bfd_set_error (bfd_error_bad_value);
3873 return FALSE;
3874 }
3875 }
3876 else
3877 {
3878 long sindx;
3879
3880 if (bfd_is_abs_section (sec))
3881 sindx = 0;
3882 else if (sec == NULL || sec->owner == NULL)
3883 {
3884 bfd_set_error (bfd_error_bad_value);
3885 return FALSE;
3886 }
3887 else
3888 {
3889 asection *osec;
3890
3891 /* We are turning this relocation into one
3892 against a section symbol. It would be
3893 proper to subtract the symbol's value,
3894 osec->vma, from the emitted reloc addend,
3895 but ld.so expects buggy relocs. */
3896 osec = sec->output_section;
3897 sindx = elf_section_data (osec)->dynindx;
3898 if (sindx == 0)
3899 {
3900 asection *oi = htab->elf.text_index_section;
3901 sindx = elf_section_data (oi)->dynindx;
3902 }
3903 BFD_ASSERT (sindx != 0);
3904 }
3905
3906 outrel.r_info = htab->r_info (sindx, r_type);
3907 outrel.r_addend = relocation + rel->r_addend;
3908 }
3909 }
3910
3911 sreloc = elf_section_data (input_section)->sreloc;
3912
3913 if (sreloc == NULL || sreloc->contents == NULL)
3914 {
3915 r = bfd_reloc_notsupported;
3916 goto check_relocation_error;
3917 }
3918
3919 elf_append_rela (output_bfd, sreloc, &outrel);
3920
3921 /* If this reloc is against an external symbol, we do
3922 not want to fiddle with the addend. Otherwise, we
3923 need to include the symbol value so that it becomes
3924 an addend for the dynamic reloc. */
3925 if (! relocate)
3926 continue;
3927 }
3928
3929 break;
3930
3931 case R_X86_64_TLSGD:
3932 case R_X86_64_GOTPC32_TLSDESC:
3933 case R_X86_64_TLSDESC_CALL:
3934 case R_X86_64_GOTTPOFF:
3935 tls_type = GOT_UNKNOWN;
3936 if (h == NULL && local_got_offsets)
3937 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3938 else if (h != NULL)
3939 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3940
3941 if (! elf_x86_64_tls_transition (info, input_bfd,
3942 input_section, contents,
3943 symtab_hdr, sym_hashes,
3944 &r_type, tls_type, rel,
3945 relend, h, r_symndx))
3946 return FALSE;
3947
3948 if (r_type == R_X86_64_TPOFF32)
3949 {
3950 bfd_vma roff = rel->r_offset;
3951
3952 BFD_ASSERT (! unresolved_reloc);
3953
3954 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3955 {
3956 /* GD->LE transition. For 64bit, change
3957 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3958 .word 0x6666; rex64; call __tls_get_addr
3959 into:
3960 movq %fs:0, %rax
3961 leaq foo@tpoff(%rax), %rax
3962 For 32bit, change
3963 leaq foo@tlsgd(%rip), %rdi
3964 .word 0x6666; rex64; call __tls_get_addr
3965 into:
3966 movl %fs:0, %eax
3967 leaq foo@tpoff(%rax), %rax */
3968 if (ABI_64_P (output_bfd))
3969 memcpy (contents + roff - 4,
3970 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3971 16);
3972 else
3973 memcpy (contents + roff - 3,
3974 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3975 15);
3976 bfd_put_32 (output_bfd,
3977 elf_x86_64_tpoff (info, relocation),
3978 contents + roff + 8);
3979 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3980 rel++;
3981 continue;
3982 }
3983 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3984 {
3985 /* GDesc -> LE transition.
3986 It's originally something like:
3987 leaq x@tlsdesc(%rip), %rax
3988
3989 Change it to:
3990 movl $x@tpoff, %rax. */
3991
3992 unsigned int val, type;
3993
3994 type = bfd_get_8 (input_bfd, contents + roff - 3);
3995 val = bfd_get_8 (input_bfd, contents + roff - 1);
3996 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3997 contents + roff - 3);
3998 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3999 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4000 contents + roff - 1);
4001 bfd_put_32 (output_bfd,
4002 elf_x86_64_tpoff (info, relocation),
4003 contents + roff);
4004 continue;
4005 }
4006 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4007 {
4008 /* GDesc -> LE transition.
4009 It's originally:
4010 call *(%rax)
4011 Turn it into:
4012 xchg %ax,%ax. */
4013 bfd_put_8 (output_bfd, 0x66, contents + roff);
4014 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4015 continue;
4016 }
4017 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4018 {
4019 /* IE->LE transition:
4020 Originally it can be one of:
4021 movq foo@gottpoff(%rip), %reg
4022 addq foo@gottpoff(%rip), %reg
4023 We change it into:
4024 movq $foo, %reg
4025 leaq foo(%reg), %reg
4026 addq $foo, %reg. */
4027
4028 unsigned int val, type, reg;
4029
4030 val = bfd_get_8 (input_bfd, contents + roff - 3);
4031 type = bfd_get_8 (input_bfd, contents + roff - 2);
4032 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4033 reg >>= 3;
4034 if (type == 0x8b)
4035 {
4036 /* movq */
4037 if (val == 0x4c)
4038 bfd_put_8 (output_bfd, 0x49,
4039 contents + roff - 3);
4040 else if (!ABI_64_P (output_bfd) && val == 0x44)
4041 bfd_put_8 (output_bfd, 0x41,
4042 contents + roff - 3);
4043 bfd_put_8 (output_bfd, 0xc7,
4044 contents + roff - 2);
4045 bfd_put_8 (output_bfd, 0xc0 | reg,
4046 contents + roff - 1);
4047 }
4048 else if (reg == 4)
4049 {
4050 /* addq -> addq - addressing with %rsp/%r12 is
4051 special */
4052 if (val == 0x4c)
4053 bfd_put_8 (output_bfd, 0x49,
4054 contents + roff - 3);
4055 else if (!ABI_64_P (output_bfd) && val == 0x44)
4056 bfd_put_8 (output_bfd, 0x41,
4057 contents + roff - 3);
4058 bfd_put_8 (output_bfd, 0x81,
4059 contents + roff - 2);
4060 bfd_put_8 (output_bfd, 0xc0 | reg,
4061 contents + roff - 1);
4062 }
4063 else
4064 {
4065 /* addq -> leaq */
4066 if (val == 0x4c)
4067 bfd_put_8 (output_bfd, 0x4d,
4068 contents + roff - 3);
4069 else if (!ABI_64_P (output_bfd) && val == 0x44)
4070 bfd_put_8 (output_bfd, 0x45,
4071 contents + roff - 3);
4072 bfd_put_8 (output_bfd, 0x8d,
4073 contents + roff - 2);
4074 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4075 contents + roff - 1);
4076 }
4077 bfd_put_32 (output_bfd,
4078 elf_x86_64_tpoff (info, relocation),
4079 contents + roff);
4080 continue;
4081 }
4082 else
4083 BFD_ASSERT (FALSE);
4084 }
4085
4086 if (htab->elf.sgot == NULL)
4087 abort ();
4088
4089 if (h != NULL)
4090 {
4091 off = h->got.offset;
4092 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4093 }
4094 else
4095 {
4096 if (local_got_offsets == NULL)
4097 abort ();
4098
4099 off = local_got_offsets[r_symndx];
4100 offplt = local_tlsdesc_gotents[r_symndx];
4101 }
4102
4103 if ((off & 1) != 0)
4104 off &= ~1;
4105 else
4106 {
4107 Elf_Internal_Rela outrel;
4108 int dr_type, indx;
4109 asection *sreloc;
4110
4111 if (htab->elf.srelgot == NULL)
4112 abort ();
4113
4114 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4115
4116 if (GOT_TLS_GDESC_P (tls_type))
4117 {
4118 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4119 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4120 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4121 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4122 + htab->elf.sgotplt->output_offset
4123 + offplt
4124 + htab->sgotplt_jump_table_size);
4125 sreloc = htab->elf.srelplt;
4126 if (indx == 0)
4127 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4128 else
4129 outrel.r_addend = 0;
4130 elf_append_rela (output_bfd, sreloc, &outrel);
4131 }
4132
4133 sreloc = htab->elf.srelgot;
4134
4135 outrel.r_offset = (htab->elf.sgot->output_section->vma
4136 + htab->elf.sgot->output_offset + off);
4137
4138 if (GOT_TLS_GD_P (tls_type))
4139 dr_type = R_X86_64_DTPMOD64;
4140 else if (GOT_TLS_GDESC_P (tls_type))
4141 goto dr_done;
4142 else
4143 dr_type = R_X86_64_TPOFF64;
4144
4145 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4146 outrel.r_addend = 0;
4147 if ((dr_type == R_X86_64_TPOFF64
4148 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4149 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4150 outrel.r_info = htab->r_info (indx, dr_type);
4151
4152 elf_append_rela (output_bfd, sreloc, &outrel);
4153
4154 if (GOT_TLS_GD_P (tls_type))
4155 {
4156 if (indx == 0)
4157 {
4158 BFD_ASSERT (! unresolved_reloc);
4159 bfd_put_64 (output_bfd,
4160 relocation - elf_x86_64_dtpoff_base (info),
4161 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4162 }
4163 else
4164 {
4165 bfd_put_64 (output_bfd, 0,
4166 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4167 outrel.r_info = htab->r_info (indx,
4168 R_X86_64_DTPOFF64);
4169 outrel.r_offset += GOT_ENTRY_SIZE;
4170 elf_append_rela (output_bfd, sreloc,
4171 &outrel);
4172 }
4173 }
4174
4175 dr_done:
4176 if (h != NULL)
4177 h->got.offset |= 1;
4178 else
4179 local_got_offsets[r_symndx] |= 1;
4180 }
4181
4182 if (off >= (bfd_vma) -2
4183 && ! GOT_TLS_GDESC_P (tls_type))
4184 abort ();
4185 if (r_type == ELF32_R_TYPE (rel->r_info))
4186 {
4187 if (r_type == R_X86_64_GOTPC32_TLSDESC
4188 || r_type == R_X86_64_TLSDESC_CALL)
4189 relocation = htab->elf.sgotplt->output_section->vma
4190 + htab->elf.sgotplt->output_offset
4191 + offplt + htab->sgotplt_jump_table_size;
4192 else
4193 relocation = htab->elf.sgot->output_section->vma
4194 + htab->elf.sgot->output_offset + off;
4195 unresolved_reloc = FALSE;
4196 }
4197 else
4198 {
4199 bfd_vma roff = rel->r_offset;
4200
4201 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4202 {
4203 /* GD->IE transition. For 64bit, change
4204 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4205 .word 0x6666; rex64; call __tls_get_addr@plt
4206 into:
4207 movq %fs:0, %rax
4208 addq foo@gottpoff(%rip), %rax
4209 For 32bit, change
4210 leaq foo@tlsgd(%rip), %rdi
4211 .word 0x6666; rex64; call __tls_get_addr@plt
4212 into:
4213 movl %fs:0, %eax
4214 addq foo@gottpoff(%rip), %rax */
4215 if (ABI_64_P (output_bfd))
4216 memcpy (contents + roff - 4,
4217 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4218 16);
4219 else
4220 memcpy (contents + roff - 3,
4221 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4222 15);
4223
4224 relocation = (htab->elf.sgot->output_section->vma
4225 + htab->elf.sgot->output_offset + off
4226 - roff
4227 - input_section->output_section->vma
4228 - input_section->output_offset
4229 - 12);
4230 bfd_put_32 (output_bfd, relocation,
4231 contents + roff + 8);
4232 /* Skip R_X86_64_PLT32. */
4233 rel++;
4234 continue;
4235 }
4236 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4237 {
4238 /* GDesc -> IE transition.
4239 It's originally something like:
4240 leaq x@tlsdesc(%rip), %rax
4241
4242 Change it to:
4243 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4244
4245 /* Now modify the instruction as appropriate. To
4246 turn a leaq into a movq in the form we use it, it
4247 suffices to change the second byte from 0x8d to
4248 0x8b. */
4249 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4250
4251 bfd_put_32 (output_bfd,
4252 htab->elf.sgot->output_section->vma
4253 + htab->elf.sgot->output_offset + off
4254 - rel->r_offset
4255 - input_section->output_section->vma
4256 - input_section->output_offset
4257 - 4,
4258 contents + roff);
4259 continue;
4260 }
4261 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4262 {
4263 /* GDesc -> IE transition.
4264 It's originally:
4265 call *(%rax)
4266
4267 Change it to:
4268 xchg %ax, %ax. */
4269
4270 bfd_put_8 (output_bfd, 0x66, contents + roff);
4271 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4272 continue;
4273 }
4274 else
4275 BFD_ASSERT (FALSE);
4276 }
4277 break;
4278
4279 case R_X86_64_TLSLD:
4280 if (! elf_x86_64_tls_transition (info, input_bfd,
4281 input_section, contents,
4282 symtab_hdr, sym_hashes,
4283 &r_type, GOT_UNKNOWN,
4284 rel, relend, h, r_symndx))
4285 return FALSE;
4286
4287 if (r_type != R_X86_64_TLSLD)
4288 {
4289 /* LD->LE transition:
4290 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4291 For 64bit, we change it into:
4292 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4293 For 32bit, we change it into:
4294 nopl 0x0(%rax); movl %fs:0, %eax. */
4295
4296 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4297 if (ABI_64_P (output_bfd))
4298 memcpy (contents + rel->r_offset - 3,
4299 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4300 else
4301 memcpy (contents + rel->r_offset - 3,
4302 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4303 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4304 rel++;
4305 continue;
4306 }
4307
4308 if (htab->elf.sgot == NULL)
4309 abort ();
4310
4311 off = htab->tls_ld_got.offset;
4312 if (off & 1)
4313 off &= ~1;
4314 else
4315 {
4316 Elf_Internal_Rela outrel;
4317
4318 if (htab->elf.srelgot == NULL)
4319 abort ();
4320
4321 outrel.r_offset = (htab->elf.sgot->output_section->vma
4322 + htab->elf.sgot->output_offset + off);
4323
4324 bfd_put_64 (output_bfd, 0,
4325 htab->elf.sgot->contents + off);
4326 bfd_put_64 (output_bfd, 0,
4327 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4328 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4329 outrel.r_addend = 0;
4330 elf_append_rela (output_bfd, htab->elf.srelgot,
4331 &outrel);
4332 htab->tls_ld_got.offset |= 1;
4333 }
4334 relocation = htab->elf.sgot->output_section->vma
4335 + htab->elf.sgot->output_offset + off;
4336 unresolved_reloc = FALSE;
4337 break;
4338
4339 case R_X86_64_DTPOFF32:
4340 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4341 relocation -= elf_x86_64_dtpoff_base (info);
4342 else
4343 relocation = elf_x86_64_tpoff (info, relocation);
4344 break;
4345
4346 case R_X86_64_TPOFF32:
4347 case R_X86_64_TPOFF64:
4348 BFD_ASSERT (info->executable);
4349 relocation = elf_x86_64_tpoff (info, relocation);
4350 break;
4351
4352 default:
4353 break;
4354 }
4355
4356 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4357 because such sections are not SEC_ALLOC and thus ld.so will
4358 not process them. */
4359 if (unresolved_reloc
4360 && !((input_section->flags & SEC_DEBUGGING) != 0
4361 && h->def_dynamic)
4362 && _bfd_elf_section_offset (output_bfd, info, input_section,
4363 rel->r_offset) != (bfd_vma) -1)
4364 {
4365 (*_bfd_error_handler)
4366 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4367 input_bfd,
4368 input_section,
4369 (long) rel->r_offset,
4370 howto->name,
4371 h->root.root.string);
4372 return FALSE;
4373 }
4374
4375 do_relocation:
4376 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4377 contents, rel->r_offset,
4378 relocation, rel->r_addend);
4379
4380 check_relocation_error:
4381 if (r != bfd_reloc_ok)
4382 {
4383 const char *name;
4384
4385 if (h != NULL)
4386 name = h->root.root.string;
4387 else
4388 {
4389 name = bfd_elf_string_from_elf_section (input_bfd,
4390 symtab_hdr->sh_link,
4391 sym->st_name);
4392 if (name == NULL)
4393 return FALSE;
4394 if (*name == '\0')
4395 name = bfd_section_name (input_bfd, sec);
4396 }
4397
4398 if (r == bfd_reloc_overflow)
4399 {
4400 if (! ((*info->callbacks->reloc_overflow)
4401 (info, (h ? &h->root : NULL), name, howto->name,
4402 (bfd_vma) 0, input_bfd, input_section,
4403 rel->r_offset)))
4404 return FALSE;
4405 }
4406 else
4407 {
4408 (*_bfd_error_handler)
4409 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4410 input_bfd, input_section,
4411 (long) rel->r_offset, name, (int) r);
4412 return FALSE;
4413 }
4414 }
4415 }
4416
4417 return TRUE;
4418 }
4419
4420 /* Finish up dynamic symbol handling. We set the contents of various
4421 dynamic sections here. */
4422
4423 static bfd_boolean
4424 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4425 struct bfd_link_info *info,
4426 struct elf_link_hash_entry *h,
4427 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4428 {
4429 struct elf_x86_64_link_hash_table *htab;
4430 const struct elf_x86_64_backend_data *const abed
4431 = get_elf_x86_64_backend_data (output_bfd);
4432
4433 htab = elf_x86_64_hash_table (info);
4434 if (htab == NULL)
4435 return FALSE;
4436
4437 if (h->plt.offset != (bfd_vma) -1)
4438 {
4439 bfd_vma plt_index;
4440 bfd_vma got_offset;
4441 Elf_Internal_Rela rela;
4442 bfd_byte *loc;
4443 asection *plt, *gotplt, *relplt;
4444 const struct elf_backend_data *bed;
4445
4446 /* When building a static executable, use .iplt, .igot.plt and
4447 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4448 if (htab->elf.splt != NULL)
4449 {
4450 plt = htab->elf.splt;
4451 gotplt = htab->elf.sgotplt;
4452 relplt = htab->elf.srelplt;
4453 }
4454 else
4455 {
4456 plt = htab->elf.iplt;
4457 gotplt = htab->elf.igotplt;
4458 relplt = htab->elf.irelplt;
4459 }
4460
4461 /* This symbol has an entry in the procedure linkage table. Set
4462 it up. */
4463 if ((h->dynindx == -1
4464 && !((h->forced_local || info->executable)
4465 && h->def_regular
4466 && h->type == STT_GNU_IFUNC))
4467 || plt == NULL
4468 || gotplt == NULL
4469 || relplt == NULL)
4470 abort ();
4471
4472 /* Get the index in the procedure linkage table which
4473 corresponds to this symbol. This is the index of this symbol
4474 in all the symbols for which we are making plt entries. The
4475 first entry in the procedure linkage table is reserved.
4476
4477 Get the offset into the .got table of the entry that
4478 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4479 bytes. The first three are reserved for the dynamic linker.
4480
4481 For static executables, we don't reserve anything. */
4482
4483 if (plt == htab->elf.splt)
4484 {
4485 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4486 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4487 }
4488 else
4489 {
4490 got_offset = h->plt.offset / abed->plt_entry_size;
4491 got_offset = got_offset * GOT_ENTRY_SIZE;
4492 }
4493
4494 /* Fill in the entry in the procedure linkage table. */
4495 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4496 abed->plt_entry_size);
4497
4498 /* Insert the relocation positions of the plt section. */
4499
4500 /* Put offset the PC-relative instruction referring to the GOT entry,
4501 subtracting the size of that instruction. */
4502 bfd_put_32 (output_bfd,
4503 (gotplt->output_section->vma
4504 + gotplt->output_offset
4505 + got_offset
4506 - plt->output_section->vma
4507 - plt->output_offset
4508 - h->plt.offset
4509 - abed->plt_got_insn_size),
4510 plt->contents + h->plt.offset + abed->plt_got_offset);
4511
4512 /* Fill in the entry in the global offset table, initially this
4513 points to the second part of the PLT entry. */
4514 bfd_put_64 (output_bfd, (plt->output_section->vma
4515 + plt->output_offset
4516 + h->plt.offset + abed->plt_lazy_offset),
4517 gotplt->contents + got_offset);
4518
4519 /* Fill in the entry in the .rela.plt section. */
4520 rela.r_offset = (gotplt->output_section->vma
4521 + gotplt->output_offset
4522 + got_offset);
4523 if (h->dynindx == -1
4524 || ((info->executable
4525 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4526 && h->def_regular
4527 && h->type == STT_GNU_IFUNC))
4528 {
4529 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4530 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4531 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4532 rela.r_addend = (h->root.u.def.value
4533 + h->root.u.def.section->output_section->vma
4534 + h->root.u.def.section->output_offset);
4535 /* R_X86_64_IRELATIVE comes last. */
4536 plt_index = htab->next_irelative_index--;
4537 }
4538 else
4539 {
4540 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4541 rela.r_addend = 0;
4542 plt_index = htab->next_jump_slot_index++;
4543 }
4544
4545 /* Don't fill PLT entry for static executables. */
4546 if (plt == htab->elf.splt)
4547 {
4548 /* Put relocation index. */
4549 bfd_put_32 (output_bfd, plt_index,
4550 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4551 /* Put offset for jmp .PLT0. */
4552 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4553 plt->contents + h->plt.offset + abed->plt_plt_offset);
4554 }
4555
4556 bed = get_elf_backend_data (output_bfd);
4557 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4558 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4559
4560 if (!h->def_regular)
4561 {
4562 /* Mark the symbol as undefined, rather than as defined in
4563 the .plt section. Leave the value if there were any
4564 relocations where pointer equality matters (this is a clue
4565 for the dynamic linker, to make function pointer
4566 comparisons work between an application and shared
4567 library), otherwise set it to zero. If a function is only
4568 called from a binary, there is no need to slow down
4569 shared libraries because of that. */
4570 sym->st_shndx = SHN_UNDEF;
4571 if (!h->pointer_equality_needed)
4572 sym->st_value = 0;
4573 }
4574 }
4575
4576 if (h->got.offset != (bfd_vma) -1
4577 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4578 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4579 {
4580 Elf_Internal_Rela rela;
4581
4582 /* This symbol has an entry in the global offset table. Set it
4583 up. */
4584 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4585 abort ();
4586
4587 rela.r_offset = (htab->elf.sgot->output_section->vma
4588 + htab->elf.sgot->output_offset
4589 + (h->got.offset &~ (bfd_vma) 1));
4590
4591 /* If this is a static link, or it is a -Bsymbolic link and the
4592 symbol is defined locally or was forced to be local because
4593 of a version file, we just want to emit a RELATIVE reloc.
4594 The entry in the global offset table will already have been
4595 initialized in the relocate_section function. */
4596 if (h->def_regular
4597 && h->type == STT_GNU_IFUNC)
4598 {
4599 if (info->shared)
4600 {
4601 /* Generate R_X86_64_GLOB_DAT. */
4602 goto do_glob_dat;
4603 }
4604 else
4605 {
4606 asection *plt;
4607
4608 if (!h->pointer_equality_needed)
4609 abort ();
4610
4611 /* For non-shared object, we can't use .got.plt, which
4612 contains the real function addres if we need pointer
4613 equality. We load the GOT entry with the PLT entry. */
4614 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4615 bfd_put_64 (output_bfd, (plt->output_section->vma
4616 + plt->output_offset
4617 + h->plt.offset),
4618 htab->elf.sgot->contents + h->got.offset);
4619 return TRUE;
4620 }
4621 }
4622 else if (info->shared
4623 && SYMBOL_REFERENCES_LOCAL (info, h))
4624 {
4625 if (!h->def_regular)
4626 return FALSE;
4627 BFD_ASSERT((h->got.offset & 1) != 0);
4628 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4629 rela.r_addend = (h->root.u.def.value
4630 + h->root.u.def.section->output_section->vma
4631 + h->root.u.def.section->output_offset);
4632 }
4633 else
4634 {
4635 BFD_ASSERT((h->got.offset & 1) == 0);
4636 do_glob_dat:
4637 bfd_put_64 (output_bfd, (bfd_vma) 0,
4638 htab->elf.sgot->contents + h->got.offset);
4639 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4640 rela.r_addend = 0;
4641 }
4642
4643 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4644 }
4645
4646 if (h->needs_copy)
4647 {
4648 Elf_Internal_Rela rela;
4649
4650 /* This symbol needs a copy reloc. Set it up. */
4651
4652 if (h->dynindx == -1
4653 || (h->root.type != bfd_link_hash_defined
4654 && h->root.type != bfd_link_hash_defweak)
4655 || htab->srelbss == NULL)
4656 abort ();
4657
4658 rela.r_offset = (h->root.u.def.value
4659 + h->root.u.def.section->output_section->vma
4660 + h->root.u.def.section->output_offset);
4661 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4662 rela.r_addend = 0;
4663 elf_append_rela (output_bfd, htab->srelbss, &rela);
4664 }
4665
4666 return TRUE;
4667 }
4668
4669 /* Finish up local dynamic symbol handling. We set the contents of
4670 various dynamic sections here. */
4671
4672 static bfd_boolean
4673 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4674 {
4675 struct elf_link_hash_entry *h
4676 = (struct elf_link_hash_entry *) *slot;
4677 struct bfd_link_info *info
4678 = (struct bfd_link_info *) inf;
4679
4680 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4681 info, h, NULL);
4682 }
4683
4684 /* Used to decide how to sort relocs in an optimal manner for the
4685 dynamic linker, before writing them out. */
4686
4687 static enum elf_reloc_type_class
4688 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4689 {
4690 switch ((int) ELF32_R_TYPE (rela->r_info))
4691 {
4692 case R_X86_64_RELATIVE:
4693 case R_X86_64_RELATIVE64:
4694 return reloc_class_relative;
4695 case R_X86_64_JUMP_SLOT:
4696 return reloc_class_plt;
4697 case R_X86_64_COPY:
4698 return reloc_class_copy;
4699 default:
4700 return reloc_class_normal;
4701 }
4702 }
4703
4704 /* Finish up the dynamic sections. */
4705
4706 static bfd_boolean
4707 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4708 struct bfd_link_info *info)
4709 {
4710 struct elf_x86_64_link_hash_table *htab;
4711 bfd *dynobj;
4712 asection *sdyn;
4713 const struct elf_x86_64_backend_data *const abed
4714 = get_elf_x86_64_backend_data (output_bfd);
4715
4716 htab = elf_x86_64_hash_table (info);
4717 if (htab == NULL)
4718 return FALSE;
4719
4720 dynobj = htab->elf.dynobj;
4721 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4722
4723 if (htab->elf.dynamic_sections_created)
4724 {
4725 bfd_byte *dyncon, *dynconend;
4726 const struct elf_backend_data *bed;
4727 bfd_size_type sizeof_dyn;
4728
4729 if (sdyn == NULL || htab->elf.sgot == NULL)
4730 abort ();
4731
4732 bed = get_elf_backend_data (dynobj);
4733 sizeof_dyn = bed->s->sizeof_dyn;
4734 dyncon = sdyn->contents;
4735 dynconend = sdyn->contents + sdyn->size;
4736 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4737 {
4738 Elf_Internal_Dyn dyn;
4739 asection *s;
4740
4741 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4742
4743 switch (dyn.d_tag)
4744 {
4745 default:
4746 continue;
4747
4748 case DT_PLTGOT:
4749 s = htab->elf.sgotplt;
4750 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4751 break;
4752
4753 case DT_JMPREL:
4754 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4755 break;
4756
4757 case DT_PLTRELSZ:
4758 s = htab->elf.srelplt->output_section;
4759 dyn.d_un.d_val = s->size;
4760 break;
4761
4762 case DT_RELASZ:
4763 /* The procedure linkage table relocs (DT_JMPREL) should
4764 not be included in the overall relocs (DT_RELA).
4765 Therefore, we override the DT_RELASZ entry here to
4766 make it not include the JMPREL relocs. Since the
4767 linker script arranges for .rela.plt to follow all
4768 other relocation sections, we don't have to worry
4769 about changing the DT_RELA entry. */
4770 if (htab->elf.srelplt != NULL)
4771 {
4772 s = htab->elf.srelplt->output_section;
4773 dyn.d_un.d_val -= s->size;
4774 }
4775 break;
4776
4777 case DT_TLSDESC_PLT:
4778 s = htab->elf.splt;
4779 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4780 + htab->tlsdesc_plt;
4781 break;
4782
4783 case DT_TLSDESC_GOT:
4784 s = htab->elf.sgot;
4785 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4786 + htab->tlsdesc_got;
4787 break;
4788 }
4789
4790 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4791 }
4792
4793 /* Fill in the special first entry in the procedure linkage table. */
4794 if (htab->elf.splt && htab->elf.splt->size > 0)
4795 {
4796 /* Fill in the first entry in the procedure linkage table. */
4797 memcpy (htab->elf.splt->contents,
4798 abed->plt0_entry, abed->plt_entry_size);
4799 /* Add offset for pushq GOT+8(%rip), since the instruction
4800 uses 6 bytes subtract this value. */
4801 bfd_put_32 (output_bfd,
4802 (htab->elf.sgotplt->output_section->vma
4803 + htab->elf.sgotplt->output_offset
4804 + 8
4805 - htab->elf.splt->output_section->vma
4806 - htab->elf.splt->output_offset
4807 - 6),
4808 htab->elf.splt->contents + abed->plt0_got1_offset);
4809 /* Add offset for the PC-relative instruction accessing GOT+16,
4810 subtracting the offset to the end of that instruction. */
4811 bfd_put_32 (output_bfd,
4812 (htab->elf.sgotplt->output_section->vma
4813 + htab->elf.sgotplt->output_offset
4814 + 16
4815 - htab->elf.splt->output_section->vma
4816 - htab->elf.splt->output_offset
4817 - abed->plt0_got2_insn_end),
4818 htab->elf.splt->contents + abed->plt0_got2_offset);
4819
4820 elf_section_data (htab->elf.splt->output_section)
4821 ->this_hdr.sh_entsize = abed->plt_entry_size;
4822
4823 if (htab->tlsdesc_plt)
4824 {
4825 bfd_put_64 (output_bfd, (bfd_vma) 0,
4826 htab->elf.sgot->contents + htab->tlsdesc_got);
4827
4828 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4829 abed->plt0_entry, abed->plt_entry_size);
4830
4831 /* Add offset for pushq GOT+8(%rip), since the
4832 instruction uses 6 bytes subtract this value. */
4833 bfd_put_32 (output_bfd,
4834 (htab->elf.sgotplt->output_section->vma
4835 + htab->elf.sgotplt->output_offset
4836 + 8
4837 - htab->elf.splt->output_section->vma
4838 - htab->elf.splt->output_offset
4839 - htab->tlsdesc_plt
4840 - 6),
4841 htab->elf.splt->contents
4842 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4843 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4844 where TGD stands for htab->tlsdesc_got, subtracting the offset
4845 to the end of that instruction. */
4846 bfd_put_32 (output_bfd,
4847 (htab->elf.sgot->output_section->vma
4848 + htab->elf.sgot->output_offset
4849 + htab->tlsdesc_got
4850 - htab->elf.splt->output_section->vma
4851 - htab->elf.splt->output_offset
4852 - htab->tlsdesc_plt
4853 - abed->plt0_got2_insn_end),
4854 htab->elf.splt->contents
4855 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4856 }
4857 }
4858 }
4859
4860 if (htab->elf.sgotplt)
4861 {
4862 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4863 {
4864 (*_bfd_error_handler)
4865 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4866 return FALSE;
4867 }
4868
4869 /* Fill in the first three entries in the global offset table. */
4870 if (htab->elf.sgotplt->size > 0)
4871 {
4872 /* Set the first entry in the global offset table to the address of
4873 the dynamic section. */
4874 if (sdyn == NULL)
4875 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4876 else
4877 bfd_put_64 (output_bfd,
4878 sdyn->output_section->vma + sdyn->output_offset,
4879 htab->elf.sgotplt->contents);
4880 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4881 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4882 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4883 }
4884
4885 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4886 GOT_ENTRY_SIZE;
4887 }
4888
4889 /* Adjust .eh_frame for .plt section. */
4890 if (htab->plt_eh_frame != NULL
4891 && htab->plt_eh_frame->contents != NULL)
4892 {
4893 if (htab->elf.splt != NULL
4894 && htab->elf.splt->size != 0
4895 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4896 && htab->elf.splt->output_section != NULL
4897 && htab->plt_eh_frame->output_section != NULL)
4898 {
4899 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4900 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4901 + htab->plt_eh_frame->output_offset
4902 + PLT_FDE_START_OFFSET;
4903 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4904 htab->plt_eh_frame->contents
4905 + PLT_FDE_START_OFFSET);
4906 }
4907 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4908 {
4909 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4910 htab->plt_eh_frame,
4911 htab->plt_eh_frame->contents))
4912 return FALSE;
4913 }
4914 }
4915
4916 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4917 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4918 = GOT_ENTRY_SIZE;
4919
4920 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4921 htab_traverse (htab->loc_hash_table,
4922 elf_x86_64_finish_local_dynamic_symbol,
4923 info);
4924
4925 return TRUE;
4926 }
4927
4928 /* Return address for Ith PLT stub in section PLT, for relocation REL
4929 or (bfd_vma) -1 if it should not be included. */
4930
4931 static bfd_vma
4932 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4933 const arelent *rel ATTRIBUTE_UNUSED)
4934 {
4935 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
4936 }
4937
4938 /* Handle an x86-64 specific section when reading an object file. This
4939 is called when elfcode.h finds a section with an unknown type. */
4940
4941 static bfd_boolean
4942 elf_x86_64_section_from_shdr (bfd *abfd,
4943 Elf_Internal_Shdr *hdr,
4944 const char *name,
4945 int shindex)
4946 {
4947 if (hdr->sh_type != SHT_X86_64_UNWIND)
4948 return FALSE;
4949
4950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4951 return FALSE;
4952
4953 return TRUE;
4954 }
4955
4956 /* Hook called by the linker routine which adds symbols from an object
4957 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4958 of .bss. */
4959
4960 static bfd_boolean
4961 elf_x86_64_add_symbol_hook (bfd *abfd,
4962 struct bfd_link_info *info,
4963 Elf_Internal_Sym *sym,
4964 const char **namep ATTRIBUTE_UNUSED,
4965 flagword *flagsp ATTRIBUTE_UNUSED,
4966 asection **secp,
4967 bfd_vma *valp)
4968 {
4969 asection *lcomm;
4970
4971 switch (sym->st_shndx)
4972 {
4973 case SHN_X86_64_LCOMMON:
4974 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4975 if (lcomm == NULL)
4976 {
4977 lcomm = bfd_make_section_with_flags (abfd,
4978 "LARGE_COMMON",
4979 (SEC_ALLOC
4980 | SEC_IS_COMMON
4981 | SEC_LINKER_CREATED));
4982 if (lcomm == NULL)
4983 return FALSE;
4984 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4985 }
4986 *secp = lcomm;
4987 *valp = sym->st_size;
4988 return TRUE;
4989 }
4990
4991 if ((abfd->flags & DYNAMIC) == 0
4992 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4993 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4994 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4995
4996 return TRUE;
4997 }
4998
4999
5000 /* Given a BFD section, try to locate the corresponding ELF section
5001 index. */
5002
5003 static bfd_boolean
5004 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5005 asection *sec, int *index_return)
5006 {
5007 if (sec == &_bfd_elf_large_com_section)
5008 {
5009 *index_return = SHN_X86_64_LCOMMON;
5010 return TRUE;
5011 }
5012 return FALSE;
5013 }
5014
5015 /* Process a symbol. */
5016
5017 static void
5018 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5019 asymbol *asym)
5020 {
5021 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5022
5023 switch (elfsym->internal_elf_sym.st_shndx)
5024 {
5025 case SHN_X86_64_LCOMMON:
5026 asym->section = &_bfd_elf_large_com_section;
5027 asym->value = elfsym->internal_elf_sym.st_size;
5028 /* Common symbol doesn't set BSF_GLOBAL. */
5029 asym->flags &= ~BSF_GLOBAL;
5030 break;
5031 }
5032 }
5033
5034 static bfd_boolean
5035 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5036 {
5037 return (sym->st_shndx == SHN_COMMON
5038 || sym->st_shndx == SHN_X86_64_LCOMMON);
5039 }
5040
5041 static unsigned int
5042 elf_x86_64_common_section_index (asection *sec)
5043 {
5044 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5045 return SHN_COMMON;
5046 else
5047 return SHN_X86_64_LCOMMON;
5048 }
5049
5050 static asection *
5051 elf_x86_64_common_section (asection *sec)
5052 {
5053 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5054 return bfd_com_section_ptr;
5055 else
5056 return &_bfd_elf_large_com_section;
5057 }
5058
5059 static bfd_boolean
5060 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5061 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
5062 struct elf_link_hash_entry *h,
5063 Elf_Internal_Sym *sym,
5064 asection **psec,
5065 bfd_vma *pvalue ATTRIBUTE_UNUSED,
5066 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
5067 bfd_boolean *skip ATTRIBUTE_UNUSED,
5068 bfd_boolean *override ATTRIBUTE_UNUSED,
5069 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
5070 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
5071 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
5072 bfd_boolean *newdef,
5073 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
5074 bfd_boolean *newweak ATTRIBUTE_UNUSED,
5075 bfd *abfd ATTRIBUTE_UNUSED,
5076 asection **sec,
5077 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
5078 bfd_boolean *olddef,
5079 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
5080 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
5081 bfd *oldbfd,
5082 asection **oldsec)
5083 {
5084 /* A normal common symbol and a large common symbol result in a
5085 normal common symbol. We turn the large common symbol into a
5086 normal one. */
5087 if (!*olddef
5088 && h->root.type == bfd_link_hash_common
5089 && !*newdef
5090 && bfd_is_com_section (*sec)
5091 && *oldsec != *sec)
5092 {
5093 if (sym->st_shndx == SHN_COMMON
5094 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
5095 {
5096 h->root.u.c.p->section
5097 = bfd_make_section_old_way (oldbfd, "COMMON");
5098 h->root.u.c.p->section->flags = SEC_ALLOC;
5099 }
5100 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5101 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
5102 *psec = *sec = bfd_com_section_ptr;
5103 }
5104
5105 return TRUE;
5106 }
5107
5108 static int
5109 elf_x86_64_additional_program_headers (bfd *abfd,
5110 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5111 {
5112 asection *s;
5113 int count = 0;
5114
5115 /* Check to see if we need a large readonly segment. */
5116 s = bfd_get_section_by_name (abfd, ".lrodata");
5117 if (s && (s->flags & SEC_LOAD))
5118 count++;
5119
5120 /* Check to see if we need a large data segment. Since .lbss sections
5121 is placed right after the .bss section, there should be no need for
5122 a large data segment just because of .lbss. */
5123 s = bfd_get_section_by_name (abfd, ".ldata");
5124 if (s && (s->flags & SEC_LOAD))
5125 count++;
5126
5127 return count;
5128 }
5129
5130 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5131
5132 static bfd_boolean
5133 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5134 {
5135 if (h->plt.offset != (bfd_vma) -1
5136 && !h->def_regular
5137 && !h->pointer_equality_needed)
5138 return FALSE;
5139
5140 return _bfd_elf_hash_symbol (h);
5141 }
5142
5143 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5144
5145 static bfd_boolean
5146 elf_x86_64_relocs_compatible (const bfd_target *input,
5147 const bfd_target *output)
5148 {
5149 return ((xvec_get_elf_backend_data (input)->s->elfclass
5150 == xvec_get_elf_backend_data (output)->s->elfclass)
5151 && _bfd_elf_relocs_compatible (input, output));
5152 }
5153
5154 static const struct bfd_elf_special_section
5155 elf_x86_64_special_sections[]=
5156 {
5157 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5158 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5159 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5160 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5161 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5162 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5163 { NULL, 0, 0, 0, 0 }
5164 };
5165
5166 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5167 #define TARGET_LITTLE_NAME "elf64-x86-64"
5168 #define ELF_ARCH bfd_arch_i386
5169 #define ELF_TARGET_ID X86_64_ELF_DATA
5170 #define ELF_MACHINE_CODE EM_X86_64
5171 #define ELF_MAXPAGESIZE 0x200000
5172 #define ELF_MINPAGESIZE 0x1000
5173 #define ELF_COMMONPAGESIZE 0x1000
5174
5175 #define elf_backend_can_gc_sections 1
5176 #define elf_backend_can_refcount 1
5177 #define elf_backend_want_got_plt 1
5178 #define elf_backend_plt_readonly 1
5179 #define elf_backend_want_plt_sym 0
5180 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5181 #define elf_backend_rela_normal 1
5182 #define elf_backend_plt_alignment 4
5183
5184 #define elf_info_to_howto elf_x86_64_info_to_howto
5185
5186 #define bfd_elf64_bfd_link_hash_table_create \
5187 elf_x86_64_link_hash_table_create
5188 #define bfd_elf64_bfd_link_hash_table_free \
5189 elf_x86_64_link_hash_table_free
5190 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5191 #define bfd_elf64_bfd_reloc_name_lookup \
5192 elf_x86_64_reloc_name_lookup
5193
5194 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5195 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5196 #define elf_backend_check_relocs elf_x86_64_check_relocs
5197 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5198 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5199 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5200 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5201 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5202 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5203 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5204 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5205 #ifdef CORE_HEADER
5206 #define elf_backend_write_core_note elf_x86_64_write_core_note
5207 #endif
5208 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5209 #define elf_backend_relocate_section elf_x86_64_relocate_section
5210 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5211 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5212 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5213 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5214 #define elf_backend_object_p elf64_x86_64_elf_object_p
5215 #define bfd_elf64_mkobject elf_x86_64_mkobject
5216
5217 #define elf_backend_section_from_shdr \
5218 elf_x86_64_section_from_shdr
5219
5220 #define elf_backend_section_from_bfd_section \
5221 elf_x86_64_elf_section_from_bfd_section
5222 #define elf_backend_add_symbol_hook \
5223 elf_x86_64_add_symbol_hook
5224 #define elf_backend_symbol_processing \
5225 elf_x86_64_symbol_processing
5226 #define elf_backend_common_section_index \
5227 elf_x86_64_common_section_index
5228 #define elf_backend_common_section \
5229 elf_x86_64_common_section
5230 #define elf_backend_common_definition \
5231 elf_x86_64_common_definition
5232 #define elf_backend_merge_symbol \
5233 elf_x86_64_merge_symbol
5234 #define elf_backend_special_sections \
5235 elf_x86_64_special_sections
5236 #define elf_backend_additional_program_headers \
5237 elf_x86_64_additional_program_headers
5238 #define elf_backend_hash_symbol \
5239 elf_x86_64_hash_symbol
5240
5241 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5242
5243 #include "elf64-target.h"
5244
5245 /* FreeBSD support. */
5246
5247 #undef TARGET_LITTLE_SYM
5248 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5249 #undef TARGET_LITTLE_NAME
5250 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5251
5252 #undef ELF_OSABI
5253 #define ELF_OSABI ELFOSABI_FREEBSD
5254
5255 #undef elf64_bed
5256 #define elf64_bed elf64_x86_64_fbsd_bed
5257
5258 #include "elf64-target.h"
5259
5260 /* Solaris 2 support. */
5261
5262 #undef TARGET_LITTLE_SYM
5263 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5264 #undef TARGET_LITTLE_NAME
5265 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5266
5267 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5268 objects won't be recognized. */
5269 #undef ELF_OSABI
5270
5271 #undef elf64_bed
5272 #define elf64_bed elf64_x86_64_sol2_bed
5273
5274 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5275 boundary. */
5276 #undef elf_backend_static_tls_alignment
5277 #define elf_backend_static_tls_alignment 16
5278
5279 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5280
5281 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5282 File, p.63. */
5283 #undef elf_backend_want_plt_sym
5284 #define elf_backend_want_plt_sym 1
5285
5286 #include "elf64-target.h"
5287
5288 /* Native Client support. */
5289
5290 #undef TARGET_LITTLE_SYM
5291 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5292 #undef TARGET_LITTLE_NAME
5293 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5294 #undef elf64_bed
5295 #define elf64_bed elf64_x86_64_nacl_bed
5296
5297 #undef ELF_MAXPAGESIZE
5298 #undef ELF_MINPAGESIZE
5299 #undef ELF_COMMONPAGESIZE
5300 #define ELF_MAXPAGESIZE 0x10000
5301 #define ELF_MINPAGESIZE 0x10000
5302 #define ELF_COMMONPAGESIZE 0x10000
5303
5304 /* Restore defaults. */
5305 #undef ELF_OSABI
5306 #undef elf_backend_static_tls_alignment
5307 #undef elf_backend_want_plt_sym
5308 #define elf_backend_want_plt_sym 0
5309
5310 /* NaCl uses substantially different PLT entries for the same effects. */
5311
5312 #undef elf_backend_plt_alignment
5313 #define elf_backend_plt_alignment 5
5314 #define NACL_PLT_ENTRY_SIZE 64
5315 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5316
5317 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5318 {
5319 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5320 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5321 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5322 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5323 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5324
5325 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5326 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
5327
5328 /* 32 bytes of nop to pad out to the standard size. */
5329 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5330 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5331 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5332 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5333 0x66, /* excess data32 prefix */
5334 0x90 /* nop */
5335 };
5336
5337 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5338 {
5339 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5340 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5341 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5342 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5343
5344 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5345 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5346 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5347
5348 /* Lazy GOT entries point here (32-byte aligned). */
5349 0x68, /* pushq immediate */
5350 0, 0, 0, 0, /* replaced with index into relocation table. */
5351 0xe9, /* jmp relative */
5352 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5353
5354 /* 22 bytes of nop to pad out to the standard size. */
5355 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5356 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5357 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5358 };
5359
5360 /* .eh_frame covering the .plt section. */
5361
5362 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5363 {
5364 #if (PLT_CIE_LENGTH != 20 \
5365 || PLT_FDE_LENGTH != 36 \
5366 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5367 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5368 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5369 #endif
5370 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5371 0, 0, 0, 0, /* CIE ID */
5372 1, /* CIE version */
5373 'z', 'R', 0, /* Augmentation string */
5374 1, /* Code alignment factor */
5375 0x78, /* Data alignment factor */
5376 16, /* Return address column */
5377 1, /* Augmentation size */
5378 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5379 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5380 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5381 DW_CFA_nop, DW_CFA_nop,
5382
5383 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5384 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5385 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5386 0, 0, 0, 0, /* .plt size goes here */
5387 0, /* Augmentation size */
5388 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5389 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5390 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5391 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5392 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5393 13, /* Block length */
5394 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5395 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5396 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5397 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5398 DW_CFA_nop, DW_CFA_nop
5399 };
5400
5401 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5402 {
5403 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5404 elf_x86_64_nacl_plt_entry, /* plt_entry */
5405 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5406 2, /* plt0_got1_offset */
5407 9, /* plt0_got2_offset */
5408 13, /* plt0_got2_insn_end */
5409 3, /* plt_got_offset */
5410 33, /* plt_reloc_offset */
5411 38, /* plt_plt_offset */
5412 7, /* plt_got_insn_size */
5413 42, /* plt_plt_insn_end */
5414 32, /* plt_lazy_offset */
5415 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5416 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5417 };
5418
5419 #undef elf_backend_arch_data
5420 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5421
5422 #undef elf_backend_modify_segment_map
5423 #define elf_backend_modify_segment_map nacl_modify_segment_map
5424 #undef elf_backend_modify_program_headers
5425 #define elf_backend_modify_program_headers nacl_modify_program_headers
5426
5427 #include "elf64-target.h"
5428
5429 /* Native Client x32 support. */
5430
5431 #undef TARGET_LITTLE_SYM
5432 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5433 #undef TARGET_LITTLE_NAME
5434 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5435 #undef elf32_bed
5436 #define elf32_bed elf32_x86_64_nacl_bed
5437
5438 #define bfd_elf32_bfd_link_hash_table_create \
5439 elf_x86_64_link_hash_table_create
5440 #define bfd_elf32_bfd_link_hash_table_free \
5441 elf_x86_64_link_hash_table_free
5442 #define bfd_elf32_bfd_reloc_type_lookup \
5443 elf_x86_64_reloc_type_lookup
5444 #define bfd_elf32_bfd_reloc_name_lookup \
5445 elf_x86_64_reloc_name_lookup
5446 #define bfd_elf32_mkobject \
5447 elf_x86_64_mkobject
5448
5449 #undef elf_backend_object_p
5450 #define elf_backend_object_p \
5451 elf32_x86_64_elf_object_p
5452
5453 #undef elf_backend_bfd_from_remote_memory
5454 #define elf_backend_bfd_from_remote_memory \
5455 _bfd_elf32_bfd_from_remote_memory
5456
5457 #undef elf_backend_size_info
5458 #define elf_backend_size_info \
5459 _bfd_elf32_size_info
5460
5461 #include "elf32-target.h"
5462
5463 /* Restore defaults. */
5464 #undef elf_backend_object_p
5465 #define elf_backend_object_p elf64_x86_64_elf_object_p
5466 #undef elf_backend_bfd_from_remote_memory
5467 #undef elf_backend_size_info
5468 #undef elf_backend_modify_segment_map
5469 #undef elf_backend_modify_program_headers
5470
5471 /* Intel L1OM support. */
5472
5473 static bfd_boolean
5474 elf64_l1om_elf_object_p (bfd *abfd)
5475 {
5476 /* Set the right machine number for an L1OM elf64 file. */
5477 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5478 return TRUE;
5479 }
5480
5481 #undef TARGET_LITTLE_SYM
5482 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5483 #undef TARGET_LITTLE_NAME
5484 #define TARGET_LITTLE_NAME "elf64-l1om"
5485 #undef ELF_ARCH
5486 #define ELF_ARCH bfd_arch_l1om
5487
5488 #undef ELF_MACHINE_CODE
5489 #define ELF_MACHINE_CODE EM_L1OM
5490
5491 #undef ELF_OSABI
5492
5493 #undef elf64_bed
5494 #define elf64_bed elf64_l1om_bed
5495
5496 #undef elf_backend_object_p
5497 #define elf_backend_object_p elf64_l1om_elf_object_p
5498
5499 /* Restore defaults. */
5500 #undef ELF_MAXPAGESIZE
5501 #undef ELF_MINPAGESIZE
5502 #undef ELF_COMMONPAGESIZE
5503 #define ELF_MAXPAGESIZE 0x200000
5504 #define ELF_MINPAGESIZE 0x1000
5505 #define ELF_COMMONPAGESIZE 0x1000
5506 #undef elf_backend_plt_alignment
5507 #define elf_backend_plt_alignment 4
5508 #undef elf_backend_arch_data
5509 #define elf_backend_arch_data &elf_x86_64_arch_bed
5510
5511 #include "elf64-target.h"
5512
5513 /* FreeBSD L1OM support. */
5514
5515 #undef TARGET_LITTLE_SYM
5516 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5517 #undef TARGET_LITTLE_NAME
5518 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5519
5520 #undef ELF_OSABI
5521 #define ELF_OSABI ELFOSABI_FREEBSD
5522
5523 #undef elf64_bed
5524 #define elf64_bed elf64_l1om_fbsd_bed
5525
5526 #include "elf64-target.h"
5527
5528 /* Intel K1OM support. */
5529
5530 static bfd_boolean
5531 elf64_k1om_elf_object_p (bfd *abfd)
5532 {
5533 /* Set the right machine number for an K1OM elf64 file. */
5534 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5535 return TRUE;
5536 }
5537
5538 #undef TARGET_LITTLE_SYM
5539 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5540 #undef TARGET_LITTLE_NAME
5541 #define TARGET_LITTLE_NAME "elf64-k1om"
5542 #undef ELF_ARCH
5543 #define ELF_ARCH bfd_arch_k1om
5544
5545 #undef ELF_MACHINE_CODE
5546 #define ELF_MACHINE_CODE EM_K1OM
5547
5548 #undef ELF_OSABI
5549
5550 #undef elf64_bed
5551 #define elf64_bed elf64_k1om_bed
5552
5553 #undef elf_backend_object_p
5554 #define elf_backend_object_p elf64_k1om_elf_object_p
5555
5556 #undef elf_backend_static_tls_alignment
5557
5558 #undef elf_backend_want_plt_sym
5559 #define elf_backend_want_plt_sym 0
5560
5561 #include "elf64-target.h"
5562
5563 /* FreeBSD K1OM support. */
5564
5565 #undef TARGET_LITTLE_SYM
5566 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5567 #undef TARGET_LITTLE_NAME
5568 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5569
5570 #undef ELF_OSABI
5571 #define ELF_OSABI ELFOSABI_FREEBSD
5572
5573 #undef elf64_bed
5574 #define elf64_bed elf64_k1om_fbsd_bed
5575
5576 #include "elf64-target.h"
5577
5578 /* 32bit x86-64 support. */
5579
5580 #undef TARGET_LITTLE_SYM
5581 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5582 #undef TARGET_LITTLE_NAME
5583 #define TARGET_LITTLE_NAME "elf32-x86-64"
5584 #undef elf32_bed
5585
5586 #undef ELF_ARCH
5587 #define ELF_ARCH bfd_arch_i386
5588
5589 #undef ELF_MACHINE_CODE
5590 #define ELF_MACHINE_CODE EM_X86_64
5591
5592 #undef ELF_OSABI
5593
5594 #undef elf_backend_object_p
5595 #define elf_backend_object_p \
5596 elf32_x86_64_elf_object_p
5597
5598 #undef elf_backend_bfd_from_remote_memory
5599 #define elf_backend_bfd_from_remote_memory \
5600 _bfd_elf32_bfd_from_remote_memory
5601
5602 #undef elf_backend_size_info
5603 #define elf_backend_size_info \
5604 _bfd_elf32_size_info
5605
5606 #include "elf32-target.h"
This page took 0.137513 seconds and 5 git commands to generate.