Always create PLT eh_frame section for i386/x86-64
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 EMPTY_HOWTO (32),
152 EMPTY_HOWTO (33),
153 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
154 complain_overflow_bitfield, bfd_elf_generic_reloc,
155 "R_X86_64_GOTPC32_TLSDESC",
156 FALSE, 0xffffffff, 0xffffffff, TRUE),
157 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
158 complain_overflow_dont, bfd_elf_generic_reloc,
159 "R_X86_64_TLSDESC_CALL",
160 FALSE, 0, 0, FALSE),
161 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
162 complain_overflow_bitfield, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC",
164 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
165 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
166 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
167 MINUS_ONE, FALSE),
168 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
170 MINUS_ONE, FALSE),
171
172 /* We have a gap in the reloc numbers here.
173 R_X86_64_standard counts the number up to this point, and
174 R_X86_64_vt_offset is the value to subtract from a reloc type of
175 R_X86_64_GNU_VT* to form an index into this table. */
176 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
177 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
178
179 /* GNU extension to record C++ vtable hierarchy. */
180 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
181 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
182
183 /* GNU extension to record C++ vtable member usage. */
184 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
186 FALSE),
187
188 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
189 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
191 FALSE)
192 };
193
194 #define IS_X86_64_PCREL_TYPE(TYPE) \
195 ( ((TYPE) == R_X86_64_PC8) \
196 || ((TYPE) == R_X86_64_PC16) \
197 || ((TYPE) == R_X86_64_PC32) \
198 || ((TYPE) == R_X86_64_PC64))
199
200 /* Map BFD relocs to the x86_64 elf relocs. */
201 struct elf_reloc_map
202 {
203 bfd_reloc_code_real_type bfd_reloc_val;
204 unsigned char elf_reloc_val;
205 };
206
207 static const struct elf_reloc_map x86_64_reloc_map[] =
208 {
209 { BFD_RELOC_NONE, R_X86_64_NONE, },
210 { BFD_RELOC_64, R_X86_64_64, },
211 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
212 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
213 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
214 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
215 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
216 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
217 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
218 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
219 { BFD_RELOC_32, R_X86_64_32, },
220 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
221 { BFD_RELOC_16, R_X86_64_16, },
222 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
223 { BFD_RELOC_8, R_X86_64_8, },
224 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
225 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
226 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
227 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
228 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
229 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
230 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
231 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
232 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
233 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
234 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
235 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
236 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
237 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
238 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
239 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
240 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
241 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
242 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
243 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
244 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
245 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
246 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
247 };
248
249 static reloc_howto_type *
250 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
251 {
252 unsigned i;
253
254 if (r_type == (unsigned int) R_X86_64_32)
255 {
256 if (ABI_64_P (abfd))
257 i = r_type;
258 else
259 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
260 }
261 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
262 || r_type >= (unsigned int) R_X86_64_max)
263 {
264 if (r_type >= (unsigned int) R_X86_64_standard)
265 {
266 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
267 abfd, (int) r_type);
268 r_type = R_X86_64_NONE;
269 }
270 i = r_type;
271 }
272 else
273 i = r_type - (unsigned int) R_X86_64_vt_offset;
274 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
275 return &x86_64_elf_howto_table[i];
276 }
277
278 /* Given a BFD reloc type, return a HOWTO structure. */
279 static reloc_howto_type *
280 elf_x86_64_reloc_type_lookup (bfd *abfd,
281 bfd_reloc_code_real_type code)
282 {
283 unsigned int i;
284
285 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
286 i++)
287 {
288 if (x86_64_reloc_map[i].bfd_reloc_val == code)
289 return elf_x86_64_rtype_to_howto (abfd,
290 x86_64_reloc_map[i].elf_reloc_val);
291 }
292 return 0;
293 }
294
295 static reloc_howto_type *
296 elf_x86_64_reloc_name_lookup (bfd *abfd,
297 const char *r_name)
298 {
299 unsigned int i;
300
301 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
302 {
303 /* Get x32 R_X86_64_32. */
304 reloc_howto_type *reloc
305 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
306 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
307 return reloc;
308 }
309
310 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
311 if (x86_64_elf_howto_table[i].name != NULL
312 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
313 return &x86_64_elf_howto_table[i];
314
315 return NULL;
316 }
317
318 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
319
320 static void
321 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
322 Elf_Internal_Rela *dst)
323 {
324 unsigned r_type;
325
326 r_type = ELF32_R_TYPE (dst->r_info);
327 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
328 BFD_ASSERT (r_type == cache_ptr->howto->type);
329 }
330 \f
331 /* Support for core dump NOTE sections. */
332 static bfd_boolean
333 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
334 {
335 int offset;
336 size_t size;
337
338 switch (note->descsz)
339 {
340 default:
341 return FALSE;
342
343 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
344 /* pr_cursig */
345 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
346
347 /* pr_pid */
348 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
349
350 /* pr_reg */
351 offset = 72;
352 size = 216;
353
354 break;
355
356 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core_signal
359 = bfd_get_16 (abfd, note->descdata + 12);
360
361 /* pr_pid */
362 elf_tdata (abfd)->core_lwpid
363 = bfd_get_32 (abfd, note->descdata + 32);
364
365 /* pr_reg */
366 offset = 112;
367 size = 216;
368
369 break;
370 }
371
372 /* Make a ".reg/999" section. */
373 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
374 size, note->descpos + offset);
375 }
376
377 static bfd_boolean
378 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
379 {
380 switch (note->descsz)
381 {
382 default:
383 return FALSE;
384
385 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
386 elf_tdata (abfd)->core_pid
387 = bfd_get_32 (abfd, note->descdata + 12);
388 elf_tdata (abfd)->core_program
389 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
390 elf_tdata (abfd)->core_command
391 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
392 break;
393
394 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
395 elf_tdata (abfd)->core_pid
396 = bfd_get_32 (abfd, note->descdata + 24);
397 elf_tdata (abfd)->core_program
398 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
399 elf_tdata (abfd)->core_command
400 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
401 }
402
403 /* Note that for some reason, a spurious space is tacked
404 onto the end of the args in some (at least one anyway)
405 implementations, so strip it off if it exists. */
406
407 {
408 char *command = elf_tdata (abfd)->core_command;
409 int n = strlen (command);
410
411 if (0 < n && command[n - 1] == ' ')
412 command[n - 1] = '\0';
413 }
414
415 return TRUE;
416 }
417
418 #ifdef CORE_HEADER
419 static char *
420 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
421 int note_type, ...)
422 {
423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
424 va_list ap;
425 const char *fname, *psargs;
426 long pid;
427 int cursig;
428 const void *gregs;
429
430 switch (note_type)
431 {
432 default:
433 return NULL;
434
435 case NT_PRPSINFO:
436 va_start (ap, note_type);
437 fname = va_arg (ap, const char *);
438 psargs = va_arg (ap, const char *);
439 va_end (ap);
440
441 if (bed->s->elfclass == ELFCLASS32)
442 {
443 prpsinfo32_t data;
444 memset (&data, 0, sizeof (data));
445 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
446 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
447 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
448 &data, sizeof (data));
449 }
450 else
451 {
452 prpsinfo_t data;
453 memset (&data, 0, sizeof (data));
454 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
455 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
456 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
457 &data, sizeof (data));
458 }
459 /* NOTREACHED */
460
461 case NT_PRSTATUS:
462 va_start (ap, note_type);
463 pid = va_arg (ap, long);
464 cursig = va_arg (ap, int);
465 gregs = va_arg (ap, const void *);
466 va_end (ap);
467
468 if (bed->s->elfclass == ELFCLASS32)
469 {
470 if (bed->elf_machine_code == EM_X86_64)
471 {
472 prstatusx32_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
478 &prstat, sizeof (prstat));
479 }
480 else
481 {
482 prstatus32_t prstat;
483 memset (&prstat, 0, sizeof (prstat));
484 prstat.pr_pid = pid;
485 prstat.pr_cursig = cursig;
486 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
487 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
488 &prstat, sizeof (prstat));
489 }
490 }
491 else
492 {
493 prstatus_t prstat;
494 memset (&prstat, 0, sizeof (prstat));
495 prstat.pr_pid = pid;
496 prstat.pr_cursig = cursig;
497 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
498 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
499 &prstat, sizeof (prstat));
500 }
501 }
502 /* NOTREACHED */
503 }
504 #endif
505 \f
506 /* Functions for the x86-64 ELF linker. */
507
508 /* The name of the dynamic interpreter. This is put in the .interp
509 section. */
510
511 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
512 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
513
514 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
515 copying dynamic variables from a shared lib into an app's dynbss
516 section, and instead use a dynamic relocation to point into the
517 shared lib. */
518 #define ELIMINATE_COPY_RELOCS 1
519
520 /* The size in bytes of an entry in the global offset table. */
521
522 #define GOT_ENTRY_SIZE 8
523
524 /* The size in bytes of an entry in the procedure linkage table. */
525
526 #define PLT_ENTRY_SIZE 16
527
528 /* The first entry in a procedure linkage table looks like this. See the
529 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
530
531 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
532 {
533 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
534 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
535 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
536 };
537
538 /* Subsequent entries in a procedure linkage table look like this. */
539
540 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
541 {
542 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
543 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
544 0x68, /* pushq immediate */
545 0, 0, 0, 0, /* replaced with index into relocation table. */
546 0xe9, /* jmp relative */
547 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
548 };
549
550 /* .eh_frame covering the .plt section. */
551
552 static const bfd_byte elf_x86_64_eh_frame_plt[] =
553 {
554 #define PLT_CIE_LENGTH 20
555 #define PLT_FDE_LENGTH 36
556 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
557 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
558 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
559 0, 0, 0, 0, /* CIE ID */
560 1, /* CIE version */
561 'z', 'R', 0, /* Augmentation string */
562 1, /* Code alignment factor */
563 0x78, /* Data alignment factor */
564 16, /* Return address column */
565 1, /* Augmentation size */
566 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
567 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
568 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
569 DW_CFA_nop, DW_CFA_nop,
570
571 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
572 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
573 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
574 0, 0, 0, 0, /* .plt size goes here */
575 0, /* Augmentation size */
576 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
577 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
578 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
579 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
580 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
581 11, /* Block length */
582 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
583 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
584 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
585 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
586 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
587 };
588
589 /* Architecture-specific backend data for x86-64. */
590
591 struct elf_x86_64_backend_data
592 {
593 /* Templates for the initial PLT entry and for subsequent entries. */
594 const bfd_byte *plt0_entry;
595 const bfd_byte *plt_entry;
596 unsigned int plt_entry_size; /* Size of each PLT entry. */
597
598 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
599 unsigned int plt0_got1_offset;
600 unsigned int plt0_got2_offset;
601
602 /* Offset of the end of the PC-relative instruction containing
603 plt0_got2_offset. */
604 unsigned int plt0_got2_insn_end;
605
606 /* Offsets into plt_entry that are to be replaced with... */
607 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
608 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
609 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
610
611 /* Length of the PC-relative instruction containing plt_got_offset. */
612 unsigned int plt_got_insn_size;
613
614 /* Offset of the end of the PC-relative jump to plt0_entry. */
615 unsigned int plt_plt_insn_end;
616
617 /* Offset into plt_entry where the initial value of the GOT entry points. */
618 unsigned int plt_lazy_offset;
619
620 /* .eh_frame covering the .plt section. */
621 const bfd_byte *eh_frame_plt;
622 unsigned int eh_frame_plt_size;
623 };
624
625 #define get_elf_x86_64_backend_data(abfd) \
626 ((const struct elf_x86_64_backend_data *) \
627 get_elf_backend_data (abfd)->arch_data)
628
629 #define GET_PLT_ENTRY_SIZE(abfd) \
630 get_elf_x86_64_backend_data (abfd)->plt_entry_size
631
632 /* These are the standard parameters. */
633 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
634 {
635 elf_x86_64_plt0_entry, /* plt0_entry */
636 elf_x86_64_plt_entry, /* plt_entry */
637 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
638 2, /* plt0_got1_offset */
639 8, /* plt0_got2_offset */
640 12, /* plt0_got2_insn_end */
641 2, /* plt_got_offset */
642 7, /* plt_reloc_offset */
643 12, /* plt_plt_offset */
644 6, /* plt_got_insn_size */
645 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
646 6, /* plt_lazy_offset */
647 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
648 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
649 };
650
651 #define elf_backend_arch_data &elf_x86_64_arch_bed
652
653 /* x86-64 ELF linker hash entry. */
654
655 struct elf_x86_64_link_hash_entry
656 {
657 struct elf_link_hash_entry elf;
658
659 /* Track dynamic relocs copied for this symbol. */
660 struct elf_dyn_relocs *dyn_relocs;
661
662 #define GOT_UNKNOWN 0
663 #define GOT_NORMAL 1
664 #define GOT_TLS_GD 2
665 #define GOT_TLS_IE 3
666 #define GOT_TLS_GDESC 4
667 #define GOT_TLS_GD_BOTH_P(type) \
668 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
669 #define GOT_TLS_GD_P(type) \
670 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
671 #define GOT_TLS_GDESC_P(type) \
672 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
673 #define GOT_TLS_GD_ANY_P(type) \
674 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
675 unsigned char tls_type;
676
677 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
678 starting at the end of the jump table. */
679 bfd_vma tlsdesc_got;
680 };
681
682 #define elf_x86_64_hash_entry(ent) \
683 ((struct elf_x86_64_link_hash_entry *)(ent))
684
685 struct elf_x86_64_obj_tdata
686 {
687 struct elf_obj_tdata root;
688
689 /* tls_type for each local got entry. */
690 char *local_got_tls_type;
691
692 /* GOTPLT entries for TLS descriptors. */
693 bfd_vma *local_tlsdesc_gotent;
694 };
695
696 #define elf_x86_64_tdata(abfd) \
697 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
698
699 #define elf_x86_64_local_got_tls_type(abfd) \
700 (elf_x86_64_tdata (abfd)->local_got_tls_type)
701
702 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
703 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
704
705 #define is_x86_64_elf(bfd) \
706 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
707 && elf_tdata (bfd) != NULL \
708 && elf_object_id (bfd) == X86_64_ELF_DATA)
709
710 static bfd_boolean
711 elf_x86_64_mkobject (bfd *abfd)
712 {
713 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
714 X86_64_ELF_DATA);
715 }
716
717 /* x86-64 ELF linker hash table. */
718
719 struct elf_x86_64_link_hash_table
720 {
721 struct elf_link_hash_table elf;
722
723 /* Short-cuts to get to dynamic linker sections. */
724 asection *sdynbss;
725 asection *srelbss;
726 asection *plt_eh_frame;
727
728 union
729 {
730 bfd_signed_vma refcount;
731 bfd_vma offset;
732 } tls_ld_got;
733
734 /* The amount of space used by the jump slots in the GOT. */
735 bfd_vma sgotplt_jump_table_size;
736
737 /* Small local sym cache. */
738 struct sym_cache sym_cache;
739
740 bfd_vma (*r_info) (bfd_vma, bfd_vma);
741 bfd_vma (*r_sym) (bfd_vma);
742 unsigned int pointer_r_type;
743 const char *dynamic_interpreter;
744 int dynamic_interpreter_size;
745
746 /* _TLS_MODULE_BASE_ symbol. */
747 struct bfd_link_hash_entry *tls_module_base;
748
749 /* Used by local STT_GNU_IFUNC symbols. */
750 htab_t loc_hash_table;
751 void * loc_hash_memory;
752
753 /* The offset into splt of the PLT entry for the TLS descriptor
754 resolver. Special values are 0, if not necessary (or not found
755 to be necessary yet), and -1 if needed but not determined
756 yet. */
757 bfd_vma tlsdesc_plt;
758 /* The offset into sgot of the GOT entry used by the PLT entry
759 above. */
760 bfd_vma tlsdesc_got;
761
762 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
763 bfd_vma next_jump_slot_index;
764 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
765 bfd_vma next_irelative_index;
766 };
767
768 /* Get the x86-64 ELF linker hash table from a link_info structure. */
769
770 #define elf_x86_64_hash_table(p) \
771 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
772 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
773
774 #define elf_x86_64_compute_jump_table_size(htab) \
775 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
776
777 /* Create an entry in an x86-64 ELF linker hash table. */
778
779 static struct bfd_hash_entry *
780 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
781 struct bfd_hash_table *table,
782 const char *string)
783 {
784 /* Allocate the structure if it has not already been allocated by a
785 subclass. */
786 if (entry == NULL)
787 {
788 entry = (struct bfd_hash_entry *)
789 bfd_hash_allocate (table,
790 sizeof (struct elf_x86_64_link_hash_entry));
791 if (entry == NULL)
792 return entry;
793 }
794
795 /* Call the allocation method of the superclass. */
796 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
797 if (entry != NULL)
798 {
799 struct elf_x86_64_link_hash_entry *eh;
800
801 eh = (struct elf_x86_64_link_hash_entry *) entry;
802 eh->dyn_relocs = NULL;
803 eh->tls_type = GOT_UNKNOWN;
804 eh->tlsdesc_got = (bfd_vma) -1;
805 }
806
807 return entry;
808 }
809
810 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
811 for local symbol so that we can handle local STT_GNU_IFUNC symbols
812 as global symbol. We reuse indx and dynstr_index for local symbol
813 hash since they aren't used by global symbols in this backend. */
814
815 static hashval_t
816 elf_x86_64_local_htab_hash (const void *ptr)
817 {
818 struct elf_link_hash_entry *h
819 = (struct elf_link_hash_entry *) ptr;
820 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
821 }
822
823 /* Compare local hash entries. */
824
825 static int
826 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
827 {
828 struct elf_link_hash_entry *h1
829 = (struct elf_link_hash_entry *) ptr1;
830 struct elf_link_hash_entry *h2
831 = (struct elf_link_hash_entry *) ptr2;
832
833 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
834 }
835
836 /* Find and/or create a hash entry for local symbol. */
837
838 static struct elf_link_hash_entry *
839 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
840 bfd *abfd, const Elf_Internal_Rela *rel,
841 bfd_boolean create)
842 {
843 struct elf_x86_64_link_hash_entry e, *ret;
844 asection *sec = abfd->sections;
845 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
846 htab->r_sym (rel->r_info));
847 void **slot;
848
849 e.elf.indx = sec->id;
850 e.elf.dynstr_index = htab->r_sym (rel->r_info);
851 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
852 create ? INSERT : NO_INSERT);
853
854 if (!slot)
855 return NULL;
856
857 if (*slot)
858 {
859 ret = (struct elf_x86_64_link_hash_entry *) *slot;
860 return &ret->elf;
861 }
862
863 ret = (struct elf_x86_64_link_hash_entry *)
864 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
865 sizeof (struct elf_x86_64_link_hash_entry));
866 if (ret)
867 {
868 memset (ret, 0, sizeof (*ret));
869 ret->elf.indx = sec->id;
870 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
871 ret->elf.dynindx = -1;
872 *slot = ret;
873 }
874 return &ret->elf;
875 }
876
877 /* Create an X86-64 ELF linker hash table. */
878
879 static struct bfd_link_hash_table *
880 elf_x86_64_link_hash_table_create (bfd *abfd)
881 {
882 struct elf_x86_64_link_hash_table *ret;
883 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
884
885 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
886 if (ret == NULL)
887 return NULL;
888
889 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
890 elf_x86_64_link_hash_newfunc,
891 sizeof (struct elf_x86_64_link_hash_entry),
892 X86_64_ELF_DATA))
893 {
894 free (ret);
895 return NULL;
896 }
897
898 ret->sdynbss = NULL;
899 ret->srelbss = NULL;
900 ret->plt_eh_frame = NULL;
901 ret->sym_cache.abfd = NULL;
902 ret->tlsdesc_plt = 0;
903 ret->tlsdesc_got = 0;
904 ret->tls_ld_got.refcount = 0;
905 ret->sgotplt_jump_table_size = 0;
906 ret->tls_module_base = NULL;
907 ret->next_jump_slot_index = 0;
908 ret->next_irelative_index = 0;
909
910 if (ABI_64_P (abfd))
911 {
912 ret->r_info = elf64_r_info;
913 ret->r_sym = elf64_r_sym;
914 ret->pointer_r_type = R_X86_64_64;
915 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
916 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
917 }
918 else
919 {
920 ret->r_info = elf32_r_info;
921 ret->r_sym = elf32_r_sym;
922 ret->pointer_r_type = R_X86_64_32;
923 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
924 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
925 }
926
927 ret->loc_hash_table = htab_try_create (1024,
928 elf_x86_64_local_htab_hash,
929 elf_x86_64_local_htab_eq,
930 NULL);
931 ret->loc_hash_memory = objalloc_create ();
932 if (!ret->loc_hash_table || !ret->loc_hash_memory)
933 {
934 free (ret);
935 return NULL;
936 }
937
938 return &ret->elf.root;
939 }
940
941 /* Destroy an X86-64 ELF linker hash table. */
942
943 static void
944 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
945 {
946 struct elf_x86_64_link_hash_table *htab
947 = (struct elf_x86_64_link_hash_table *) hash;
948
949 if (htab->loc_hash_table)
950 htab_delete (htab->loc_hash_table);
951 if (htab->loc_hash_memory)
952 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
953 _bfd_generic_link_hash_table_free (hash);
954 }
955
956 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
957 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
958 hash table. */
959
960 static bfd_boolean
961 elf_x86_64_create_dynamic_sections (bfd *dynobj,
962 struct bfd_link_info *info)
963 {
964 struct elf_x86_64_link_hash_table *htab;
965
966 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
967 return FALSE;
968
969 htab = elf_x86_64_hash_table (info);
970 if (htab == NULL)
971 return FALSE;
972
973 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
974 if (!info->shared)
975 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
976
977 if (!htab->sdynbss
978 || (!info->shared && !htab->srelbss))
979 abort ();
980
981 if (!info->no_ld_generated_unwind_info
982 && htab->plt_eh_frame == NULL
983 && htab->elf.splt != NULL)
984 {
985 const struct elf_x86_64_backend_data *const abed
986 = get_elf_x86_64_backend_data (dynobj);
987 flagword flags = get_elf_backend_data (dynobj)->dynamic_sec_flags;
988 htab->plt_eh_frame
989 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame",
990 (flags
991 | SEC_LINKER_CREATED
992 | SEC_READONLY));
993 if (htab->plt_eh_frame == NULL
994 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
995 return FALSE;
996
997 htab->plt_eh_frame->size = abed->eh_frame_plt_size;
998 htab->plt_eh_frame->contents
999 = bfd_alloc (dynobj, htab->plt_eh_frame->size);
1000 memcpy (htab->plt_eh_frame->contents,
1001 abed->eh_frame_plt, abed->eh_frame_plt_size);
1002 }
1003 return TRUE;
1004 }
1005
1006 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1007
1008 static void
1009 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1010 struct elf_link_hash_entry *dir,
1011 struct elf_link_hash_entry *ind)
1012 {
1013 struct elf_x86_64_link_hash_entry *edir, *eind;
1014
1015 edir = (struct elf_x86_64_link_hash_entry *) dir;
1016 eind = (struct elf_x86_64_link_hash_entry *) ind;
1017
1018 if (eind->dyn_relocs != NULL)
1019 {
1020 if (edir->dyn_relocs != NULL)
1021 {
1022 struct elf_dyn_relocs **pp;
1023 struct elf_dyn_relocs *p;
1024
1025 /* Add reloc counts against the indirect sym to the direct sym
1026 list. Merge any entries against the same section. */
1027 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1028 {
1029 struct elf_dyn_relocs *q;
1030
1031 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1032 if (q->sec == p->sec)
1033 {
1034 q->pc_count += p->pc_count;
1035 q->count += p->count;
1036 *pp = p->next;
1037 break;
1038 }
1039 if (q == NULL)
1040 pp = &p->next;
1041 }
1042 *pp = edir->dyn_relocs;
1043 }
1044
1045 edir->dyn_relocs = eind->dyn_relocs;
1046 eind->dyn_relocs = NULL;
1047 }
1048
1049 if (ind->root.type == bfd_link_hash_indirect
1050 && dir->got.refcount <= 0)
1051 {
1052 edir->tls_type = eind->tls_type;
1053 eind->tls_type = GOT_UNKNOWN;
1054 }
1055
1056 if (ELIMINATE_COPY_RELOCS
1057 && ind->root.type != bfd_link_hash_indirect
1058 && dir->dynamic_adjusted)
1059 {
1060 /* If called to transfer flags for a weakdef during processing
1061 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1062 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1063 dir->ref_dynamic |= ind->ref_dynamic;
1064 dir->ref_regular |= ind->ref_regular;
1065 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1066 dir->needs_plt |= ind->needs_plt;
1067 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1068 }
1069 else
1070 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1071 }
1072
1073 static bfd_boolean
1074 elf64_x86_64_elf_object_p (bfd *abfd)
1075 {
1076 /* Set the right machine number for an x86-64 elf64 file. */
1077 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1078 return TRUE;
1079 }
1080
1081 static bfd_boolean
1082 elf32_x86_64_elf_object_p (bfd *abfd)
1083 {
1084 /* Set the right machine number for an x86-64 elf32 file. */
1085 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1086 return TRUE;
1087 }
1088
1089 /* Return TRUE if the TLS access code sequence support transition
1090 from R_TYPE. */
1091
1092 static bfd_boolean
1093 elf_x86_64_check_tls_transition (bfd *abfd,
1094 struct bfd_link_info *info,
1095 asection *sec,
1096 bfd_byte *contents,
1097 Elf_Internal_Shdr *symtab_hdr,
1098 struct elf_link_hash_entry **sym_hashes,
1099 unsigned int r_type,
1100 const Elf_Internal_Rela *rel,
1101 const Elf_Internal_Rela *relend)
1102 {
1103 unsigned int val;
1104 unsigned long r_symndx;
1105 struct elf_link_hash_entry *h;
1106 bfd_vma offset;
1107 struct elf_x86_64_link_hash_table *htab;
1108
1109 /* Get the section contents. */
1110 if (contents == NULL)
1111 {
1112 if (elf_section_data (sec)->this_hdr.contents != NULL)
1113 contents = elf_section_data (sec)->this_hdr.contents;
1114 else
1115 {
1116 /* FIXME: How to better handle error condition? */
1117 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1118 return FALSE;
1119
1120 /* Cache the section contents for elf_link_input_bfd. */
1121 elf_section_data (sec)->this_hdr.contents = contents;
1122 }
1123 }
1124
1125 htab = elf_x86_64_hash_table (info);
1126 offset = rel->r_offset;
1127 switch (r_type)
1128 {
1129 case R_X86_64_TLSGD:
1130 case R_X86_64_TLSLD:
1131 if ((rel + 1) >= relend)
1132 return FALSE;
1133
1134 if (r_type == R_X86_64_TLSGD)
1135 {
1136 /* Check transition from GD access model. For 64bit, only
1137 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1138 .word 0x6666; rex64; call __tls_get_addr
1139 can transit to different access model. For 32bit, only
1140 leaq foo@tlsgd(%rip), %rdi
1141 .word 0x6666; rex64; call __tls_get_addr
1142 can transit to different access model. */
1143
1144 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1145 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1146
1147 if ((offset + 12) > sec->size
1148 || memcmp (contents + offset + 4, call, 4) != 0)
1149 return FALSE;
1150
1151 if (ABI_64_P (abfd))
1152 {
1153 if (offset < 4
1154 || memcmp (contents + offset - 4, leaq, 4) != 0)
1155 return FALSE;
1156 }
1157 else
1158 {
1159 if (offset < 3
1160 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1161 return FALSE;
1162 }
1163 }
1164 else
1165 {
1166 /* Check transition from LD access model. Only
1167 leaq foo@tlsld(%rip), %rdi;
1168 call __tls_get_addr
1169 can transit to different access model. */
1170
1171 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1172
1173 if (offset < 3 || (offset + 9) > sec->size)
1174 return FALSE;
1175
1176 if (memcmp (contents + offset - 3, lea, 3) != 0
1177 || 0xe8 != *(contents + offset + 4))
1178 return FALSE;
1179 }
1180
1181 r_symndx = htab->r_sym (rel[1].r_info);
1182 if (r_symndx < symtab_hdr->sh_info)
1183 return FALSE;
1184
1185 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1186 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1187 may be versioned. */
1188 return (h != NULL
1189 && h->root.root.string != NULL
1190 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1191 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1192 && (strncmp (h->root.root.string,
1193 "__tls_get_addr", 14) == 0));
1194
1195 case R_X86_64_GOTTPOFF:
1196 /* Check transition from IE access model:
1197 mov foo@gottpoff(%rip), %reg
1198 add foo@gottpoff(%rip), %reg
1199 */
1200
1201 /* Check REX prefix first. */
1202 if (offset >= 3 && (offset + 4) <= sec->size)
1203 {
1204 val = bfd_get_8 (abfd, contents + offset - 3);
1205 if (val != 0x48 && val != 0x4c)
1206 {
1207 /* X32 may have 0x44 REX prefix or no REX prefix. */
1208 if (ABI_64_P (abfd))
1209 return FALSE;
1210 }
1211 }
1212 else
1213 {
1214 /* X32 may not have any REX prefix. */
1215 if (ABI_64_P (abfd))
1216 return FALSE;
1217 if (offset < 2 || (offset + 3) > sec->size)
1218 return FALSE;
1219 }
1220
1221 val = bfd_get_8 (abfd, contents + offset - 2);
1222 if (val != 0x8b && val != 0x03)
1223 return FALSE;
1224
1225 val = bfd_get_8 (abfd, contents + offset - 1);
1226 return (val & 0xc7) == 5;
1227
1228 case R_X86_64_GOTPC32_TLSDESC:
1229 /* Check transition from GDesc access model:
1230 leaq x@tlsdesc(%rip), %rax
1231
1232 Make sure it's a leaq adding rip to a 32-bit offset
1233 into any register, although it's probably almost always
1234 going to be rax. */
1235
1236 if (offset < 3 || (offset + 4) > sec->size)
1237 return FALSE;
1238
1239 val = bfd_get_8 (abfd, contents + offset - 3);
1240 if ((val & 0xfb) != 0x48)
1241 return FALSE;
1242
1243 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1244 return FALSE;
1245
1246 val = bfd_get_8 (abfd, contents + offset - 1);
1247 return (val & 0xc7) == 0x05;
1248
1249 case R_X86_64_TLSDESC_CALL:
1250 /* Check transition from GDesc access model:
1251 call *x@tlsdesc(%rax)
1252 */
1253 if (offset + 2 <= sec->size)
1254 {
1255 /* Make sure that it's a call *x@tlsdesc(%rax). */
1256 static const unsigned char call[] = { 0xff, 0x10 };
1257 return memcmp (contents + offset, call, 2) == 0;
1258 }
1259
1260 return FALSE;
1261
1262 default:
1263 abort ();
1264 }
1265 }
1266
1267 /* Return TRUE if the TLS access transition is OK or no transition
1268 will be performed. Update R_TYPE if there is a transition. */
1269
1270 static bfd_boolean
1271 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1272 asection *sec, bfd_byte *contents,
1273 Elf_Internal_Shdr *symtab_hdr,
1274 struct elf_link_hash_entry **sym_hashes,
1275 unsigned int *r_type, int tls_type,
1276 const Elf_Internal_Rela *rel,
1277 const Elf_Internal_Rela *relend,
1278 struct elf_link_hash_entry *h,
1279 unsigned long r_symndx)
1280 {
1281 unsigned int from_type = *r_type;
1282 unsigned int to_type = from_type;
1283 bfd_boolean check = TRUE;
1284
1285 /* Skip TLS transition for functions. */
1286 if (h != NULL
1287 && (h->type == STT_FUNC
1288 || h->type == STT_GNU_IFUNC))
1289 return TRUE;
1290
1291 switch (from_type)
1292 {
1293 case R_X86_64_TLSGD:
1294 case R_X86_64_GOTPC32_TLSDESC:
1295 case R_X86_64_TLSDESC_CALL:
1296 case R_X86_64_GOTTPOFF:
1297 if (info->executable)
1298 {
1299 if (h == NULL)
1300 to_type = R_X86_64_TPOFF32;
1301 else
1302 to_type = R_X86_64_GOTTPOFF;
1303 }
1304
1305 /* When we are called from elf_x86_64_relocate_section,
1306 CONTENTS isn't NULL and there may be additional transitions
1307 based on TLS_TYPE. */
1308 if (contents != NULL)
1309 {
1310 unsigned int new_to_type = to_type;
1311
1312 if (info->executable
1313 && h != NULL
1314 && h->dynindx == -1
1315 && tls_type == GOT_TLS_IE)
1316 new_to_type = R_X86_64_TPOFF32;
1317
1318 if (to_type == R_X86_64_TLSGD
1319 || to_type == R_X86_64_GOTPC32_TLSDESC
1320 || to_type == R_X86_64_TLSDESC_CALL)
1321 {
1322 if (tls_type == GOT_TLS_IE)
1323 new_to_type = R_X86_64_GOTTPOFF;
1324 }
1325
1326 /* We checked the transition before when we were called from
1327 elf_x86_64_check_relocs. We only want to check the new
1328 transition which hasn't been checked before. */
1329 check = new_to_type != to_type && from_type == to_type;
1330 to_type = new_to_type;
1331 }
1332
1333 break;
1334
1335 case R_X86_64_TLSLD:
1336 if (info->executable)
1337 to_type = R_X86_64_TPOFF32;
1338 break;
1339
1340 default:
1341 return TRUE;
1342 }
1343
1344 /* Return TRUE if there is no transition. */
1345 if (from_type == to_type)
1346 return TRUE;
1347
1348 /* Check if the transition can be performed. */
1349 if (check
1350 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1351 symtab_hdr, sym_hashes,
1352 from_type, rel, relend))
1353 {
1354 reloc_howto_type *from, *to;
1355 const char *name;
1356
1357 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1358 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1359
1360 if (h)
1361 name = h->root.root.string;
1362 else
1363 {
1364 struct elf_x86_64_link_hash_table *htab;
1365
1366 htab = elf_x86_64_hash_table (info);
1367 if (htab == NULL)
1368 name = "*unknown*";
1369 else
1370 {
1371 Elf_Internal_Sym *isym;
1372
1373 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1374 abfd, r_symndx);
1375 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1376 }
1377 }
1378
1379 (*_bfd_error_handler)
1380 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1381 "in section `%A' failed"),
1382 abfd, sec, from->name, to->name, name,
1383 (unsigned long) rel->r_offset);
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 *r_type = to_type;
1389 return TRUE;
1390 }
1391
1392 /* Look through the relocs for a section during the first phase, and
1393 calculate needed space in the global offset table, procedure
1394 linkage table, and dynamic reloc sections. */
1395
1396 static bfd_boolean
1397 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1398 asection *sec,
1399 const Elf_Internal_Rela *relocs)
1400 {
1401 struct elf_x86_64_link_hash_table *htab;
1402 Elf_Internal_Shdr *symtab_hdr;
1403 struct elf_link_hash_entry **sym_hashes;
1404 const Elf_Internal_Rela *rel;
1405 const Elf_Internal_Rela *rel_end;
1406 asection *sreloc;
1407
1408 if (info->relocatable)
1409 return TRUE;
1410
1411 BFD_ASSERT (is_x86_64_elf (abfd));
1412
1413 htab = elf_x86_64_hash_table (info);
1414 if (htab == NULL)
1415 return FALSE;
1416
1417 symtab_hdr = &elf_symtab_hdr (abfd);
1418 sym_hashes = elf_sym_hashes (abfd);
1419
1420 sreloc = NULL;
1421
1422 rel_end = relocs + sec->reloc_count;
1423 for (rel = relocs; rel < rel_end; rel++)
1424 {
1425 unsigned int r_type;
1426 unsigned long r_symndx;
1427 struct elf_link_hash_entry *h;
1428 Elf_Internal_Sym *isym;
1429 const char *name;
1430
1431 r_symndx = htab->r_sym (rel->r_info);
1432 r_type = ELF32_R_TYPE (rel->r_info);
1433
1434 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1435 {
1436 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1437 abfd, r_symndx);
1438 return FALSE;
1439 }
1440
1441 if (r_symndx < symtab_hdr->sh_info)
1442 {
1443 /* A local symbol. */
1444 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1445 abfd, r_symndx);
1446 if (isym == NULL)
1447 return FALSE;
1448
1449 /* Check relocation against local STT_GNU_IFUNC symbol. */
1450 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1451 {
1452 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1453 TRUE);
1454 if (h == NULL)
1455 return FALSE;
1456
1457 /* Fake a STT_GNU_IFUNC symbol. */
1458 h->type = STT_GNU_IFUNC;
1459 h->def_regular = 1;
1460 h->ref_regular = 1;
1461 h->forced_local = 1;
1462 h->root.type = bfd_link_hash_defined;
1463 }
1464 else
1465 h = NULL;
1466 }
1467 else
1468 {
1469 isym = NULL;
1470 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1471 while (h->root.type == bfd_link_hash_indirect
1472 || h->root.type == bfd_link_hash_warning)
1473 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1474 }
1475
1476 /* Check invalid x32 relocations. */
1477 if (!ABI_64_P (abfd))
1478 switch (r_type)
1479 {
1480 default:
1481 break;
1482
1483 case R_X86_64_DTPOFF64:
1484 case R_X86_64_TPOFF64:
1485 case R_X86_64_PC64:
1486 case R_X86_64_GOTOFF64:
1487 case R_X86_64_GOT64:
1488 case R_X86_64_GOTPCREL64:
1489 case R_X86_64_GOTPC64:
1490 case R_X86_64_GOTPLT64:
1491 case R_X86_64_PLTOFF64:
1492 {
1493 if (h)
1494 name = h->root.root.string;
1495 else
1496 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1497 NULL);
1498 (*_bfd_error_handler)
1499 (_("%B: relocation %s against symbol `%s' isn't "
1500 "supported in x32 mode"), abfd,
1501 x86_64_elf_howto_table[r_type].name, name);
1502 bfd_set_error (bfd_error_bad_value);
1503 return FALSE;
1504 }
1505 break;
1506 }
1507
1508 if (h != NULL)
1509 {
1510 /* Create the ifunc sections for static executables. If we
1511 never see an indirect function symbol nor we are building
1512 a static executable, those sections will be empty and
1513 won't appear in output. */
1514 switch (r_type)
1515 {
1516 default:
1517 break;
1518
1519 case R_X86_64_32S:
1520 case R_X86_64_32:
1521 case R_X86_64_64:
1522 case R_X86_64_PC32:
1523 case R_X86_64_PC64:
1524 case R_X86_64_PLT32:
1525 case R_X86_64_GOTPCREL:
1526 case R_X86_64_GOTPCREL64:
1527 if (htab->elf.dynobj == NULL)
1528 htab->elf.dynobj = abfd;
1529 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1530 return FALSE;
1531 break;
1532 }
1533
1534 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1535 it here if it is defined in a non-shared object. */
1536 if (h->type == STT_GNU_IFUNC
1537 && h->def_regular)
1538 {
1539 /* It is referenced by a non-shared object. */
1540 h->ref_regular = 1;
1541 h->needs_plt = 1;
1542
1543 /* STT_GNU_IFUNC symbol must go through PLT. */
1544 h->plt.refcount += 1;
1545
1546 /* STT_GNU_IFUNC needs dynamic sections. */
1547 if (htab->elf.dynobj == NULL)
1548 htab->elf.dynobj = abfd;
1549
1550 switch (r_type)
1551 {
1552 default:
1553 if (h->root.root.string)
1554 name = h->root.root.string;
1555 else
1556 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1557 NULL);
1558 (*_bfd_error_handler)
1559 (_("%B: relocation %s against STT_GNU_IFUNC "
1560 "symbol `%s' isn't handled by %s"), abfd,
1561 x86_64_elf_howto_table[r_type].name,
1562 name, __FUNCTION__);
1563 bfd_set_error (bfd_error_bad_value);
1564 return FALSE;
1565
1566 case R_X86_64_32:
1567 if (ABI_64_P (abfd))
1568 goto not_pointer;
1569 case R_X86_64_64:
1570 h->non_got_ref = 1;
1571 h->pointer_equality_needed = 1;
1572 if (info->shared)
1573 {
1574 /* We must copy these reloc types into the output
1575 file. Create a reloc section in dynobj and
1576 make room for this reloc. */
1577 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1578 (abfd, info, sec, sreloc,
1579 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1580 if (sreloc == NULL)
1581 return FALSE;
1582 }
1583 break;
1584
1585 case R_X86_64_32S:
1586 case R_X86_64_PC32:
1587 case R_X86_64_PC64:
1588 not_pointer:
1589 h->non_got_ref = 1;
1590 if (r_type != R_X86_64_PC32
1591 && r_type != R_X86_64_PC64)
1592 h->pointer_equality_needed = 1;
1593 break;
1594
1595 case R_X86_64_PLT32:
1596 break;
1597
1598 case R_X86_64_GOTPCREL:
1599 case R_X86_64_GOTPCREL64:
1600 h->got.refcount += 1;
1601 if (htab->elf.sgot == NULL
1602 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1603 info))
1604 return FALSE;
1605 break;
1606 }
1607
1608 continue;
1609 }
1610 }
1611
1612 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1613 symtab_hdr, sym_hashes,
1614 &r_type, GOT_UNKNOWN,
1615 rel, rel_end, h, r_symndx))
1616 return FALSE;
1617
1618 switch (r_type)
1619 {
1620 case R_X86_64_TLSLD:
1621 htab->tls_ld_got.refcount += 1;
1622 goto create_got;
1623
1624 case R_X86_64_TPOFF32:
1625 if (!info->executable && ABI_64_P (abfd))
1626 {
1627 if (h)
1628 name = h->root.root.string;
1629 else
1630 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1631 NULL);
1632 (*_bfd_error_handler)
1633 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1634 abfd,
1635 x86_64_elf_howto_table[r_type].name, name);
1636 bfd_set_error (bfd_error_bad_value);
1637 return FALSE;
1638 }
1639 break;
1640
1641 case R_X86_64_GOTTPOFF:
1642 if (!info->executable)
1643 info->flags |= DF_STATIC_TLS;
1644 /* Fall through */
1645
1646 case R_X86_64_GOT32:
1647 case R_X86_64_GOTPCREL:
1648 case R_X86_64_TLSGD:
1649 case R_X86_64_GOT64:
1650 case R_X86_64_GOTPCREL64:
1651 case R_X86_64_GOTPLT64:
1652 case R_X86_64_GOTPC32_TLSDESC:
1653 case R_X86_64_TLSDESC_CALL:
1654 /* This symbol requires a global offset table entry. */
1655 {
1656 int tls_type, old_tls_type;
1657
1658 switch (r_type)
1659 {
1660 default: tls_type = GOT_NORMAL; break;
1661 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1662 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1663 case R_X86_64_GOTPC32_TLSDESC:
1664 case R_X86_64_TLSDESC_CALL:
1665 tls_type = GOT_TLS_GDESC; break;
1666 }
1667
1668 if (h != NULL)
1669 {
1670 if (r_type == R_X86_64_GOTPLT64)
1671 {
1672 /* This relocation indicates that we also need
1673 a PLT entry, as this is a function. We don't need
1674 a PLT entry for local symbols. */
1675 h->needs_plt = 1;
1676 h->plt.refcount += 1;
1677 }
1678 h->got.refcount += 1;
1679 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1680 }
1681 else
1682 {
1683 bfd_signed_vma *local_got_refcounts;
1684
1685 /* This is a global offset table entry for a local symbol. */
1686 local_got_refcounts = elf_local_got_refcounts (abfd);
1687 if (local_got_refcounts == NULL)
1688 {
1689 bfd_size_type size;
1690
1691 size = symtab_hdr->sh_info;
1692 size *= sizeof (bfd_signed_vma)
1693 + sizeof (bfd_vma) + sizeof (char);
1694 local_got_refcounts = ((bfd_signed_vma *)
1695 bfd_zalloc (abfd, size));
1696 if (local_got_refcounts == NULL)
1697 return FALSE;
1698 elf_local_got_refcounts (abfd) = local_got_refcounts;
1699 elf_x86_64_local_tlsdesc_gotent (abfd)
1700 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1701 elf_x86_64_local_got_tls_type (abfd)
1702 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1703 }
1704 local_got_refcounts[r_symndx] += 1;
1705 old_tls_type
1706 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1707 }
1708
1709 /* If a TLS symbol is accessed using IE at least once,
1710 there is no point to use dynamic model for it. */
1711 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1712 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1713 || tls_type != GOT_TLS_IE))
1714 {
1715 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1716 tls_type = old_tls_type;
1717 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1718 && GOT_TLS_GD_ANY_P (tls_type))
1719 tls_type |= old_tls_type;
1720 else
1721 {
1722 if (h)
1723 name = h->root.root.string;
1724 else
1725 name = bfd_elf_sym_name (abfd, symtab_hdr,
1726 isym, NULL);
1727 (*_bfd_error_handler)
1728 (_("%B: '%s' accessed both as normal and thread local symbol"),
1729 abfd, name);
1730 return FALSE;
1731 }
1732 }
1733
1734 if (old_tls_type != tls_type)
1735 {
1736 if (h != NULL)
1737 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1738 else
1739 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1740 }
1741 }
1742 /* Fall through */
1743
1744 case R_X86_64_GOTOFF64:
1745 case R_X86_64_GOTPC32:
1746 case R_X86_64_GOTPC64:
1747 create_got:
1748 if (htab->elf.sgot == NULL)
1749 {
1750 if (htab->elf.dynobj == NULL)
1751 htab->elf.dynobj = abfd;
1752 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1753 info))
1754 return FALSE;
1755 }
1756 break;
1757
1758 case R_X86_64_PLT32:
1759 /* This symbol requires a procedure linkage table entry. We
1760 actually build the entry in adjust_dynamic_symbol,
1761 because this might be a case of linking PIC code which is
1762 never referenced by a dynamic object, in which case we
1763 don't need to generate a procedure linkage table entry
1764 after all. */
1765
1766 /* If this is a local symbol, we resolve it directly without
1767 creating a procedure linkage table entry. */
1768 if (h == NULL)
1769 continue;
1770
1771 h->needs_plt = 1;
1772 h->plt.refcount += 1;
1773 break;
1774
1775 case R_X86_64_PLTOFF64:
1776 /* This tries to form the 'address' of a function relative
1777 to GOT. For global symbols we need a PLT entry. */
1778 if (h != NULL)
1779 {
1780 h->needs_plt = 1;
1781 h->plt.refcount += 1;
1782 }
1783 goto create_got;
1784
1785 case R_X86_64_32:
1786 if (!ABI_64_P (abfd))
1787 goto pointer;
1788 case R_X86_64_8:
1789 case R_X86_64_16:
1790 case R_X86_64_32S:
1791 /* Let's help debug shared library creation. These relocs
1792 cannot be used in shared libs. Don't error out for
1793 sections we don't care about, such as debug sections or
1794 non-constant sections. */
1795 if (info->shared
1796 && (sec->flags & SEC_ALLOC) != 0
1797 && (sec->flags & SEC_READONLY) != 0)
1798 {
1799 if (h)
1800 name = h->root.root.string;
1801 else
1802 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1803 (*_bfd_error_handler)
1804 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1805 abfd, x86_64_elf_howto_table[r_type].name, name);
1806 bfd_set_error (bfd_error_bad_value);
1807 return FALSE;
1808 }
1809 /* Fall through. */
1810
1811 case R_X86_64_PC8:
1812 case R_X86_64_PC16:
1813 case R_X86_64_PC32:
1814 case R_X86_64_PC64:
1815 case R_X86_64_64:
1816 pointer:
1817 if (h != NULL && info->executable)
1818 {
1819 /* If this reloc is in a read-only section, we might
1820 need a copy reloc. We can't check reliably at this
1821 stage whether the section is read-only, as input
1822 sections have not yet been mapped to output sections.
1823 Tentatively set the flag for now, and correct in
1824 adjust_dynamic_symbol. */
1825 h->non_got_ref = 1;
1826
1827 /* We may need a .plt entry if the function this reloc
1828 refers to is in a shared lib. */
1829 h->plt.refcount += 1;
1830 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1831 h->pointer_equality_needed = 1;
1832 }
1833
1834 /* If we are creating a shared library, and this is a reloc
1835 against a global symbol, or a non PC relative reloc
1836 against a local symbol, then we need to copy the reloc
1837 into the shared library. However, if we are linking with
1838 -Bsymbolic, we do not need to copy a reloc against a
1839 global symbol which is defined in an object we are
1840 including in the link (i.e., DEF_REGULAR is set). At
1841 this point we have not seen all the input files, so it is
1842 possible that DEF_REGULAR is not set now but will be set
1843 later (it is never cleared). In case of a weak definition,
1844 DEF_REGULAR may be cleared later by a strong definition in
1845 a shared library. We account for that possibility below by
1846 storing information in the relocs_copied field of the hash
1847 table entry. A similar situation occurs when creating
1848 shared libraries and symbol visibility changes render the
1849 symbol local.
1850
1851 If on the other hand, we are creating an executable, we
1852 may need to keep relocations for symbols satisfied by a
1853 dynamic library if we manage to avoid copy relocs for the
1854 symbol. */
1855 if ((info->shared
1856 && (sec->flags & SEC_ALLOC) != 0
1857 && (! IS_X86_64_PCREL_TYPE (r_type)
1858 || (h != NULL
1859 && (! SYMBOLIC_BIND (info, h)
1860 || h->root.type == bfd_link_hash_defweak
1861 || !h->def_regular))))
1862 || (ELIMINATE_COPY_RELOCS
1863 && !info->shared
1864 && (sec->flags & SEC_ALLOC) != 0
1865 && h != NULL
1866 && (h->root.type == bfd_link_hash_defweak
1867 || !h->def_regular)))
1868 {
1869 struct elf_dyn_relocs *p;
1870 struct elf_dyn_relocs **head;
1871
1872 /* We must copy these reloc types into the output file.
1873 Create a reloc section in dynobj and make room for
1874 this reloc. */
1875 if (sreloc == NULL)
1876 {
1877 if (htab->elf.dynobj == NULL)
1878 htab->elf.dynobj = abfd;
1879
1880 sreloc = _bfd_elf_make_dynamic_reloc_section
1881 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1882 abfd, /*rela?*/ TRUE);
1883
1884 if (sreloc == NULL)
1885 return FALSE;
1886 }
1887
1888 /* If this is a global symbol, we count the number of
1889 relocations we need for this symbol. */
1890 if (h != NULL)
1891 {
1892 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1893 }
1894 else
1895 {
1896 /* Track dynamic relocs needed for local syms too.
1897 We really need local syms available to do this
1898 easily. Oh well. */
1899 asection *s;
1900 void **vpp;
1901
1902 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1903 abfd, r_symndx);
1904 if (isym == NULL)
1905 return FALSE;
1906
1907 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1908 if (s == NULL)
1909 s = sec;
1910
1911 /* Beware of type punned pointers vs strict aliasing
1912 rules. */
1913 vpp = &(elf_section_data (s)->local_dynrel);
1914 head = (struct elf_dyn_relocs **)vpp;
1915 }
1916
1917 p = *head;
1918 if (p == NULL || p->sec != sec)
1919 {
1920 bfd_size_type amt = sizeof *p;
1921
1922 p = ((struct elf_dyn_relocs *)
1923 bfd_alloc (htab->elf.dynobj, amt));
1924 if (p == NULL)
1925 return FALSE;
1926 p->next = *head;
1927 *head = p;
1928 p->sec = sec;
1929 p->count = 0;
1930 p->pc_count = 0;
1931 }
1932
1933 p->count += 1;
1934 if (IS_X86_64_PCREL_TYPE (r_type))
1935 p->pc_count += 1;
1936 }
1937 break;
1938
1939 /* This relocation describes the C++ object vtable hierarchy.
1940 Reconstruct it for later use during GC. */
1941 case R_X86_64_GNU_VTINHERIT:
1942 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1943 return FALSE;
1944 break;
1945
1946 /* This relocation describes which C++ vtable entries are actually
1947 used. Record for later use during GC. */
1948 case R_X86_64_GNU_VTENTRY:
1949 BFD_ASSERT (h != NULL);
1950 if (h != NULL
1951 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1952 return FALSE;
1953 break;
1954
1955 default:
1956 break;
1957 }
1958 }
1959
1960 return TRUE;
1961 }
1962
1963 /* Return the section that should be marked against GC for a given
1964 relocation. */
1965
1966 static asection *
1967 elf_x86_64_gc_mark_hook (asection *sec,
1968 struct bfd_link_info *info,
1969 Elf_Internal_Rela *rel,
1970 struct elf_link_hash_entry *h,
1971 Elf_Internal_Sym *sym)
1972 {
1973 if (h != NULL)
1974 switch (ELF32_R_TYPE (rel->r_info))
1975 {
1976 case R_X86_64_GNU_VTINHERIT:
1977 case R_X86_64_GNU_VTENTRY:
1978 return NULL;
1979 }
1980
1981 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1982 }
1983
1984 /* Update the got entry reference counts for the section being removed. */
1985
1986 static bfd_boolean
1987 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1988 asection *sec,
1989 const Elf_Internal_Rela *relocs)
1990 {
1991 struct elf_x86_64_link_hash_table *htab;
1992 Elf_Internal_Shdr *symtab_hdr;
1993 struct elf_link_hash_entry **sym_hashes;
1994 bfd_signed_vma *local_got_refcounts;
1995 const Elf_Internal_Rela *rel, *relend;
1996
1997 if (info->relocatable)
1998 return TRUE;
1999
2000 htab = elf_x86_64_hash_table (info);
2001 if (htab == NULL)
2002 return FALSE;
2003
2004 elf_section_data (sec)->local_dynrel = NULL;
2005
2006 symtab_hdr = &elf_symtab_hdr (abfd);
2007 sym_hashes = elf_sym_hashes (abfd);
2008 local_got_refcounts = elf_local_got_refcounts (abfd);
2009
2010 htab = elf_x86_64_hash_table (info);
2011 relend = relocs + sec->reloc_count;
2012 for (rel = relocs; rel < relend; rel++)
2013 {
2014 unsigned long r_symndx;
2015 unsigned int r_type;
2016 struct elf_link_hash_entry *h = NULL;
2017
2018 r_symndx = htab->r_sym (rel->r_info);
2019 if (r_symndx >= symtab_hdr->sh_info)
2020 {
2021 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2022 while (h->root.type == bfd_link_hash_indirect
2023 || h->root.type == bfd_link_hash_warning)
2024 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2025 }
2026 else
2027 {
2028 /* A local symbol. */
2029 Elf_Internal_Sym *isym;
2030
2031 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2032 abfd, r_symndx);
2033
2034 /* Check relocation against local STT_GNU_IFUNC symbol. */
2035 if (isym != NULL
2036 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2037 {
2038 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2039 if (h == NULL)
2040 abort ();
2041 }
2042 }
2043
2044 if (h)
2045 {
2046 struct elf_x86_64_link_hash_entry *eh;
2047 struct elf_dyn_relocs **pp;
2048 struct elf_dyn_relocs *p;
2049
2050 eh = (struct elf_x86_64_link_hash_entry *) h;
2051
2052 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2053 if (p->sec == sec)
2054 {
2055 /* Everything must go for SEC. */
2056 *pp = p->next;
2057 break;
2058 }
2059 }
2060
2061 r_type = ELF32_R_TYPE (rel->r_info);
2062 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2063 symtab_hdr, sym_hashes,
2064 &r_type, GOT_UNKNOWN,
2065 rel, relend, h, r_symndx))
2066 return FALSE;
2067
2068 switch (r_type)
2069 {
2070 case R_X86_64_TLSLD:
2071 if (htab->tls_ld_got.refcount > 0)
2072 htab->tls_ld_got.refcount -= 1;
2073 break;
2074
2075 case R_X86_64_TLSGD:
2076 case R_X86_64_GOTPC32_TLSDESC:
2077 case R_X86_64_TLSDESC_CALL:
2078 case R_X86_64_GOTTPOFF:
2079 case R_X86_64_GOT32:
2080 case R_X86_64_GOTPCREL:
2081 case R_X86_64_GOT64:
2082 case R_X86_64_GOTPCREL64:
2083 case R_X86_64_GOTPLT64:
2084 if (h != NULL)
2085 {
2086 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2087 h->plt.refcount -= 1;
2088 if (h->got.refcount > 0)
2089 h->got.refcount -= 1;
2090 if (h->type == STT_GNU_IFUNC)
2091 {
2092 if (h->plt.refcount > 0)
2093 h->plt.refcount -= 1;
2094 }
2095 }
2096 else if (local_got_refcounts != NULL)
2097 {
2098 if (local_got_refcounts[r_symndx] > 0)
2099 local_got_refcounts[r_symndx] -= 1;
2100 }
2101 break;
2102
2103 case R_X86_64_8:
2104 case R_X86_64_16:
2105 case R_X86_64_32:
2106 case R_X86_64_64:
2107 case R_X86_64_32S:
2108 case R_X86_64_PC8:
2109 case R_X86_64_PC16:
2110 case R_X86_64_PC32:
2111 case R_X86_64_PC64:
2112 if (info->shared
2113 && (h == NULL || h->type != STT_GNU_IFUNC))
2114 break;
2115 /* Fall thru */
2116
2117 case R_X86_64_PLT32:
2118 case R_X86_64_PLTOFF64:
2119 if (h != NULL)
2120 {
2121 if (h->plt.refcount > 0)
2122 h->plt.refcount -= 1;
2123 }
2124 break;
2125
2126 default:
2127 break;
2128 }
2129 }
2130
2131 return TRUE;
2132 }
2133
2134 /* Adjust a symbol defined by a dynamic object and referenced by a
2135 regular object. The current definition is in some section of the
2136 dynamic object, but we're not including those sections. We have to
2137 change the definition to something the rest of the link can
2138 understand. */
2139
2140 static bfd_boolean
2141 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2142 struct elf_link_hash_entry *h)
2143 {
2144 struct elf_x86_64_link_hash_table *htab;
2145 asection *s;
2146
2147 /* STT_GNU_IFUNC symbol must go through PLT. */
2148 if (h->type == STT_GNU_IFUNC)
2149 {
2150 if (h->plt.refcount <= 0)
2151 {
2152 h->plt.offset = (bfd_vma) -1;
2153 h->needs_plt = 0;
2154 }
2155 return TRUE;
2156 }
2157
2158 /* If this is a function, put it in the procedure linkage table. We
2159 will fill in the contents of the procedure linkage table later,
2160 when we know the address of the .got section. */
2161 if (h->type == STT_FUNC
2162 || h->needs_plt)
2163 {
2164 if (h->plt.refcount <= 0
2165 || SYMBOL_CALLS_LOCAL (info, h)
2166 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2167 && h->root.type == bfd_link_hash_undefweak))
2168 {
2169 /* This case can occur if we saw a PLT32 reloc in an input
2170 file, but the symbol was never referred to by a dynamic
2171 object, or if all references were garbage collected. In
2172 such a case, we don't actually need to build a procedure
2173 linkage table, and we can just do a PC32 reloc instead. */
2174 h->plt.offset = (bfd_vma) -1;
2175 h->needs_plt = 0;
2176 }
2177
2178 return TRUE;
2179 }
2180 else
2181 /* It's possible that we incorrectly decided a .plt reloc was
2182 needed for an R_X86_64_PC32 reloc to a non-function sym in
2183 check_relocs. We can't decide accurately between function and
2184 non-function syms in check-relocs; Objects loaded later in
2185 the link may change h->type. So fix it now. */
2186 h->plt.offset = (bfd_vma) -1;
2187
2188 /* If this is a weak symbol, and there is a real definition, the
2189 processor independent code will have arranged for us to see the
2190 real definition first, and we can just use the same value. */
2191 if (h->u.weakdef != NULL)
2192 {
2193 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2194 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2195 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2196 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2197 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2198 h->non_got_ref = h->u.weakdef->non_got_ref;
2199 return TRUE;
2200 }
2201
2202 /* This is a reference to a symbol defined by a dynamic object which
2203 is not a function. */
2204
2205 /* If we are creating a shared library, we must presume that the
2206 only references to the symbol are via the global offset table.
2207 For such cases we need not do anything here; the relocations will
2208 be handled correctly by relocate_section. */
2209 if (info->shared)
2210 return TRUE;
2211
2212 /* If there are no references to this symbol that do not use the
2213 GOT, we don't need to generate a copy reloc. */
2214 if (!h->non_got_ref)
2215 return TRUE;
2216
2217 /* If -z nocopyreloc was given, we won't generate them either. */
2218 if (info->nocopyreloc)
2219 {
2220 h->non_got_ref = 0;
2221 return TRUE;
2222 }
2223
2224 if (ELIMINATE_COPY_RELOCS)
2225 {
2226 struct elf_x86_64_link_hash_entry * eh;
2227 struct elf_dyn_relocs *p;
2228
2229 eh = (struct elf_x86_64_link_hash_entry *) h;
2230 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2231 {
2232 s = p->sec->output_section;
2233 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2234 break;
2235 }
2236
2237 /* If we didn't find any dynamic relocs in read-only sections, then
2238 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2239 if (p == NULL)
2240 {
2241 h->non_got_ref = 0;
2242 return TRUE;
2243 }
2244 }
2245
2246 /* We must allocate the symbol in our .dynbss section, which will
2247 become part of the .bss section of the executable. There will be
2248 an entry for this symbol in the .dynsym section. The dynamic
2249 object will contain position independent code, so all references
2250 from the dynamic object to this symbol will go through the global
2251 offset table. The dynamic linker will use the .dynsym entry to
2252 determine the address it must put in the global offset table, so
2253 both the dynamic object and the regular object will refer to the
2254 same memory location for the variable. */
2255
2256 htab = elf_x86_64_hash_table (info);
2257 if (htab == NULL)
2258 return FALSE;
2259
2260 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2261 to copy the initial value out of the dynamic object and into the
2262 runtime process image. */
2263 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2264 {
2265 const struct elf_backend_data *bed;
2266 bed = get_elf_backend_data (info->output_bfd);
2267 htab->srelbss->size += bed->s->sizeof_rela;
2268 h->needs_copy = 1;
2269 }
2270
2271 s = htab->sdynbss;
2272
2273 return _bfd_elf_adjust_dynamic_copy (h, s);
2274 }
2275
2276 /* Allocate space in .plt, .got and associated reloc sections for
2277 dynamic relocs. */
2278
2279 static bfd_boolean
2280 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2281 {
2282 struct bfd_link_info *info;
2283 struct elf_x86_64_link_hash_table *htab;
2284 struct elf_x86_64_link_hash_entry *eh;
2285 struct elf_dyn_relocs *p;
2286 const struct elf_backend_data *bed;
2287 unsigned int plt_entry_size;
2288
2289 if (h->root.type == bfd_link_hash_indirect)
2290 return TRUE;
2291
2292 eh = (struct elf_x86_64_link_hash_entry *) h;
2293
2294 info = (struct bfd_link_info *) inf;
2295 htab = elf_x86_64_hash_table (info);
2296 if (htab == NULL)
2297 return FALSE;
2298 bed = get_elf_backend_data (info->output_bfd);
2299 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2300
2301 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2302 here if it is defined and referenced in a non-shared object. */
2303 if (h->type == STT_GNU_IFUNC
2304 && h->def_regular)
2305 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2306 &eh->dyn_relocs,
2307 plt_entry_size,
2308 GOT_ENTRY_SIZE);
2309 else if (htab->elf.dynamic_sections_created
2310 && h->plt.refcount > 0)
2311 {
2312 /* Make sure this symbol is output as a dynamic symbol.
2313 Undefined weak syms won't yet be marked as dynamic. */
2314 if (h->dynindx == -1
2315 && !h->forced_local)
2316 {
2317 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2318 return FALSE;
2319 }
2320
2321 if (info->shared
2322 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2323 {
2324 asection *s = htab->elf.splt;
2325
2326 /* If this is the first .plt entry, make room for the special
2327 first entry. */
2328 if (s->size == 0)
2329 s->size += plt_entry_size;
2330
2331 h->plt.offset = s->size;
2332
2333 /* If this symbol is not defined in a regular file, and we are
2334 not generating a shared library, then set the symbol to this
2335 location in the .plt. This is required to make function
2336 pointers compare as equal between the normal executable and
2337 the shared library. */
2338 if (! info->shared
2339 && !h->def_regular)
2340 {
2341 h->root.u.def.section = s;
2342 h->root.u.def.value = h->plt.offset;
2343 }
2344
2345 /* Make room for this entry. */
2346 s->size += plt_entry_size;
2347
2348 /* We also need to make an entry in the .got.plt section, which
2349 will be placed in the .got section by the linker script. */
2350 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2351
2352 /* We also need to make an entry in the .rela.plt section. */
2353 htab->elf.srelplt->size += bed->s->sizeof_rela;
2354 htab->elf.srelplt->reloc_count++;
2355 }
2356 else
2357 {
2358 h->plt.offset = (bfd_vma) -1;
2359 h->needs_plt = 0;
2360 }
2361 }
2362 else
2363 {
2364 h->plt.offset = (bfd_vma) -1;
2365 h->needs_plt = 0;
2366 }
2367
2368 eh->tlsdesc_got = (bfd_vma) -1;
2369
2370 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2371 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2372 if (h->got.refcount > 0
2373 && info->executable
2374 && h->dynindx == -1
2375 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2376 {
2377 h->got.offset = (bfd_vma) -1;
2378 }
2379 else if (h->got.refcount > 0)
2380 {
2381 asection *s;
2382 bfd_boolean dyn;
2383 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2384
2385 /* Make sure this symbol is output as a dynamic symbol.
2386 Undefined weak syms won't yet be marked as dynamic. */
2387 if (h->dynindx == -1
2388 && !h->forced_local)
2389 {
2390 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2391 return FALSE;
2392 }
2393
2394 if (GOT_TLS_GDESC_P (tls_type))
2395 {
2396 eh->tlsdesc_got = htab->elf.sgotplt->size
2397 - elf_x86_64_compute_jump_table_size (htab);
2398 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2399 h->got.offset = (bfd_vma) -2;
2400 }
2401 if (! GOT_TLS_GDESC_P (tls_type)
2402 || GOT_TLS_GD_P (tls_type))
2403 {
2404 s = htab->elf.sgot;
2405 h->got.offset = s->size;
2406 s->size += GOT_ENTRY_SIZE;
2407 if (GOT_TLS_GD_P (tls_type))
2408 s->size += GOT_ENTRY_SIZE;
2409 }
2410 dyn = htab->elf.dynamic_sections_created;
2411 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2412 and two if global.
2413 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2414 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2415 || tls_type == GOT_TLS_IE)
2416 htab->elf.srelgot->size += bed->s->sizeof_rela;
2417 else if (GOT_TLS_GD_P (tls_type))
2418 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2419 else if (! GOT_TLS_GDESC_P (tls_type)
2420 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2421 || h->root.type != bfd_link_hash_undefweak)
2422 && (info->shared
2423 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2424 htab->elf.srelgot->size += bed->s->sizeof_rela;
2425 if (GOT_TLS_GDESC_P (tls_type))
2426 {
2427 htab->elf.srelplt->size += bed->s->sizeof_rela;
2428 htab->tlsdesc_plt = (bfd_vma) -1;
2429 }
2430 }
2431 else
2432 h->got.offset = (bfd_vma) -1;
2433
2434 if (eh->dyn_relocs == NULL)
2435 return TRUE;
2436
2437 /* In the shared -Bsymbolic case, discard space allocated for
2438 dynamic pc-relative relocs against symbols which turn out to be
2439 defined in regular objects. For the normal shared case, discard
2440 space for pc-relative relocs that have become local due to symbol
2441 visibility changes. */
2442
2443 if (info->shared)
2444 {
2445 /* Relocs that use pc_count are those that appear on a call
2446 insn, or certain REL relocs that can generated via assembly.
2447 We want calls to protected symbols to resolve directly to the
2448 function rather than going via the plt. If people want
2449 function pointer comparisons to work as expected then they
2450 should avoid writing weird assembly. */
2451 if (SYMBOL_CALLS_LOCAL (info, h))
2452 {
2453 struct elf_dyn_relocs **pp;
2454
2455 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2456 {
2457 p->count -= p->pc_count;
2458 p->pc_count = 0;
2459 if (p->count == 0)
2460 *pp = p->next;
2461 else
2462 pp = &p->next;
2463 }
2464 }
2465
2466 /* Also discard relocs on undefined weak syms with non-default
2467 visibility. */
2468 if (eh->dyn_relocs != NULL
2469 && h->root.type == bfd_link_hash_undefweak)
2470 {
2471 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2472 eh->dyn_relocs = NULL;
2473
2474 /* Make sure undefined weak symbols are output as a dynamic
2475 symbol in PIEs. */
2476 else if (h->dynindx == -1
2477 && ! h->forced_local
2478 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2479 return FALSE;
2480 }
2481
2482 }
2483 else if (ELIMINATE_COPY_RELOCS)
2484 {
2485 /* For the non-shared case, discard space for relocs against
2486 symbols which turn out to need copy relocs or are not
2487 dynamic. */
2488
2489 if (!h->non_got_ref
2490 && ((h->def_dynamic
2491 && !h->def_regular)
2492 || (htab->elf.dynamic_sections_created
2493 && (h->root.type == bfd_link_hash_undefweak
2494 || h->root.type == bfd_link_hash_undefined))))
2495 {
2496 /* Make sure this symbol is output as a dynamic symbol.
2497 Undefined weak syms won't yet be marked as dynamic. */
2498 if (h->dynindx == -1
2499 && ! h->forced_local
2500 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2501 return FALSE;
2502
2503 /* If that succeeded, we know we'll be keeping all the
2504 relocs. */
2505 if (h->dynindx != -1)
2506 goto keep;
2507 }
2508
2509 eh->dyn_relocs = NULL;
2510
2511 keep: ;
2512 }
2513
2514 /* Finally, allocate space. */
2515 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2516 {
2517 asection * sreloc;
2518
2519 sreloc = elf_section_data (p->sec)->sreloc;
2520
2521 BFD_ASSERT (sreloc != NULL);
2522
2523 sreloc->size += p->count * bed->s->sizeof_rela;
2524 }
2525
2526 return TRUE;
2527 }
2528
2529 /* Allocate space in .plt, .got and associated reloc sections for
2530 local dynamic relocs. */
2531
2532 static bfd_boolean
2533 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2534 {
2535 struct elf_link_hash_entry *h
2536 = (struct elf_link_hash_entry *) *slot;
2537
2538 if (h->type != STT_GNU_IFUNC
2539 || !h->def_regular
2540 || !h->ref_regular
2541 || !h->forced_local
2542 || h->root.type != bfd_link_hash_defined)
2543 abort ();
2544
2545 return elf_x86_64_allocate_dynrelocs (h, inf);
2546 }
2547
2548 /* Find any dynamic relocs that apply to read-only sections. */
2549
2550 static bfd_boolean
2551 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2552 void * inf)
2553 {
2554 struct elf_x86_64_link_hash_entry *eh;
2555 struct elf_dyn_relocs *p;
2556
2557 /* Skip local IFUNC symbols. */
2558 if (h->forced_local && h->type == STT_GNU_IFUNC)
2559 return TRUE;
2560
2561 eh = (struct elf_x86_64_link_hash_entry *) h;
2562 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2563 {
2564 asection *s = p->sec->output_section;
2565
2566 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2567 {
2568 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2569
2570 info->flags |= DF_TEXTREL;
2571
2572 if (info->warn_shared_textrel && info->shared)
2573 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2574 p->sec->owner, h->root.root.string,
2575 p->sec);
2576
2577 /* Not an error, just cut short the traversal. */
2578 return FALSE;
2579 }
2580 }
2581 return TRUE;
2582 }
2583
2584 /* Set the sizes of the dynamic sections. */
2585
2586 static bfd_boolean
2587 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2588 struct bfd_link_info *info)
2589 {
2590 struct elf_x86_64_link_hash_table *htab;
2591 bfd *dynobj;
2592 asection *s;
2593 bfd_boolean relocs;
2594 bfd *ibfd;
2595 const struct elf_backend_data *bed;
2596
2597 htab = elf_x86_64_hash_table (info);
2598 if (htab == NULL)
2599 return FALSE;
2600 bed = get_elf_backend_data (output_bfd);
2601
2602 dynobj = htab->elf.dynobj;
2603 if (dynobj == NULL)
2604 abort ();
2605
2606 if (htab->elf.dynamic_sections_created)
2607 {
2608 /* Set the contents of the .interp section to the interpreter. */
2609 if (info->executable)
2610 {
2611 s = bfd_get_section_by_name (dynobj, ".interp");
2612 if (s == NULL)
2613 abort ();
2614 s->size = htab->dynamic_interpreter_size;
2615 s->contents = (unsigned char *) htab->dynamic_interpreter;
2616 }
2617 }
2618
2619 /* Set up .got offsets for local syms, and space for local dynamic
2620 relocs. */
2621 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2622 {
2623 bfd_signed_vma *local_got;
2624 bfd_signed_vma *end_local_got;
2625 char *local_tls_type;
2626 bfd_vma *local_tlsdesc_gotent;
2627 bfd_size_type locsymcount;
2628 Elf_Internal_Shdr *symtab_hdr;
2629 asection *srel;
2630
2631 if (! is_x86_64_elf (ibfd))
2632 continue;
2633
2634 for (s = ibfd->sections; s != NULL; s = s->next)
2635 {
2636 struct elf_dyn_relocs *p;
2637
2638 for (p = (struct elf_dyn_relocs *)
2639 (elf_section_data (s)->local_dynrel);
2640 p != NULL;
2641 p = p->next)
2642 {
2643 if (!bfd_is_abs_section (p->sec)
2644 && bfd_is_abs_section (p->sec->output_section))
2645 {
2646 /* Input section has been discarded, either because
2647 it is a copy of a linkonce section or due to
2648 linker script /DISCARD/, so we'll be discarding
2649 the relocs too. */
2650 }
2651 else if (p->count != 0)
2652 {
2653 srel = elf_section_data (p->sec)->sreloc;
2654 srel->size += p->count * bed->s->sizeof_rela;
2655 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2656 && (info->flags & DF_TEXTREL) == 0)
2657 {
2658 info->flags |= DF_TEXTREL;
2659 if (info->warn_shared_textrel && info->shared)
2660 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2661 p->sec->owner, p->sec);
2662 }
2663 }
2664 }
2665 }
2666
2667 local_got = elf_local_got_refcounts (ibfd);
2668 if (!local_got)
2669 continue;
2670
2671 symtab_hdr = &elf_symtab_hdr (ibfd);
2672 locsymcount = symtab_hdr->sh_info;
2673 end_local_got = local_got + locsymcount;
2674 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2675 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2676 s = htab->elf.sgot;
2677 srel = htab->elf.srelgot;
2678 for (; local_got < end_local_got;
2679 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2680 {
2681 *local_tlsdesc_gotent = (bfd_vma) -1;
2682 if (*local_got > 0)
2683 {
2684 if (GOT_TLS_GDESC_P (*local_tls_type))
2685 {
2686 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2687 - elf_x86_64_compute_jump_table_size (htab);
2688 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2689 *local_got = (bfd_vma) -2;
2690 }
2691 if (! GOT_TLS_GDESC_P (*local_tls_type)
2692 || GOT_TLS_GD_P (*local_tls_type))
2693 {
2694 *local_got = s->size;
2695 s->size += GOT_ENTRY_SIZE;
2696 if (GOT_TLS_GD_P (*local_tls_type))
2697 s->size += GOT_ENTRY_SIZE;
2698 }
2699 if (info->shared
2700 || GOT_TLS_GD_ANY_P (*local_tls_type)
2701 || *local_tls_type == GOT_TLS_IE)
2702 {
2703 if (GOT_TLS_GDESC_P (*local_tls_type))
2704 {
2705 htab->elf.srelplt->size
2706 += bed->s->sizeof_rela;
2707 htab->tlsdesc_plt = (bfd_vma) -1;
2708 }
2709 if (! GOT_TLS_GDESC_P (*local_tls_type)
2710 || GOT_TLS_GD_P (*local_tls_type))
2711 srel->size += bed->s->sizeof_rela;
2712 }
2713 }
2714 else
2715 *local_got = (bfd_vma) -1;
2716 }
2717 }
2718
2719 if (htab->tls_ld_got.refcount > 0)
2720 {
2721 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2722 relocs. */
2723 htab->tls_ld_got.offset = htab->elf.sgot->size;
2724 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2725 htab->elf.srelgot->size += bed->s->sizeof_rela;
2726 }
2727 else
2728 htab->tls_ld_got.offset = -1;
2729
2730 /* Allocate global sym .plt and .got entries, and space for global
2731 sym dynamic relocs. */
2732 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2733 info);
2734
2735 /* Allocate .plt and .got entries, and space for local symbols. */
2736 htab_traverse (htab->loc_hash_table,
2737 elf_x86_64_allocate_local_dynrelocs,
2738 info);
2739
2740 /* For every jump slot reserved in the sgotplt, reloc_count is
2741 incremented. However, when we reserve space for TLS descriptors,
2742 it's not incremented, so in order to compute the space reserved
2743 for them, it suffices to multiply the reloc count by the jump
2744 slot size.
2745
2746 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2747 so that R_X86_64_IRELATIVE entries come last. */
2748 if (htab->elf.srelplt)
2749 {
2750 htab->sgotplt_jump_table_size
2751 = elf_x86_64_compute_jump_table_size (htab);
2752 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2753 }
2754 else if (htab->elf.irelplt)
2755 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2756
2757 if (htab->tlsdesc_plt)
2758 {
2759 /* If we're not using lazy TLS relocations, don't generate the
2760 PLT and GOT entries they require. */
2761 if ((info->flags & DF_BIND_NOW))
2762 htab->tlsdesc_plt = 0;
2763 else
2764 {
2765 htab->tlsdesc_got = htab->elf.sgot->size;
2766 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2767 /* Reserve room for the initial entry.
2768 FIXME: we could probably do away with it in this case. */
2769 if (htab->elf.splt->size == 0)
2770 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2771 htab->tlsdesc_plt = htab->elf.splt->size;
2772 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2773 }
2774 }
2775
2776 if (htab->elf.sgotplt)
2777 {
2778 struct elf_link_hash_entry *got;
2779 got = elf_link_hash_lookup (elf_hash_table (info),
2780 "_GLOBAL_OFFSET_TABLE_",
2781 FALSE, FALSE, FALSE);
2782
2783 /* Don't allocate .got.plt section if there are no GOT nor PLT
2784 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2785 if ((got == NULL
2786 || !got->ref_regular_nonweak)
2787 && (htab->elf.sgotplt->size
2788 == get_elf_backend_data (output_bfd)->got_header_size)
2789 && (htab->elf.splt == NULL
2790 || htab->elf.splt->size == 0)
2791 && (htab->elf.sgot == NULL
2792 || htab->elf.sgot->size == 0)
2793 && (htab->elf.iplt == NULL
2794 || htab->elf.iplt->size == 0)
2795 && (htab->elf.igotplt == NULL
2796 || htab->elf.igotplt->size == 0))
2797 htab->elf.sgotplt->size = 0;
2798 }
2799
2800 /* We now have determined the sizes of the various dynamic sections.
2801 Allocate memory for them. */
2802 relocs = FALSE;
2803 for (s = dynobj->sections; s != NULL; s = s->next)
2804 {
2805 if ((s->flags & SEC_LINKER_CREATED) == 0)
2806 continue;
2807
2808 if (s == htab->elf.splt
2809 || s == htab->elf.sgot
2810 || s == htab->elf.sgotplt
2811 || s == htab->elf.iplt
2812 || s == htab->elf.igotplt
2813 || s == htab->sdynbss)
2814 {
2815 /* Strip this section if we don't need it; see the
2816 comment below. */
2817 }
2818 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2819 {
2820 if (s->size != 0 && s != htab->elf.srelplt)
2821 relocs = TRUE;
2822
2823 /* We use the reloc_count field as a counter if we need
2824 to copy relocs into the output file. */
2825 if (s != htab->elf.srelplt)
2826 s->reloc_count = 0;
2827 }
2828 else
2829 {
2830 /* It's not one of our sections, so don't allocate space. */
2831 continue;
2832 }
2833
2834 if (s->size == 0)
2835 {
2836 /* If we don't need this section, strip it from the
2837 output file. This is mostly to handle .rela.bss and
2838 .rela.plt. We must create both sections in
2839 create_dynamic_sections, because they must be created
2840 before the linker maps input sections to output
2841 sections. The linker does that before
2842 adjust_dynamic_symbol is called, and it is that
2843 function which decides whether anything needs to go
2844 into these sections. */
2845
2846 s->flags |= SEC_EXCLUDE;
2847 continue;
2848 }
2849
2850 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2851 continue;
2852
2853 /* Allocate memory for the section contents. We use bfd_zalloc
2854 here in case unused entries are not reclaimed before the
2855 section's contents are written out. This should not happen,
2856 but this way if it does, we get a R_X86_64_NONE reloc instead
2857 of garbage. */
2858 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2859 if (s->contents == NULL)
2860 return FALSE;
2861 }
2862
2863 if (htab->plt_eh_frame != NULL
2864 && htab->elf.splt != NULL
2865 && htab->elf.splt->size != 0
2866 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0)
2867 bfd_put_32 (dynobj, htab->elf.splt->size,
2868 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2869
2870 if (htab->elf.dynamic_sections_created)
2871 {
2872 /* Add some entries to the .dynamic section. We fill in the
2873 values later, in elf_x86_64_finish_dynamic_sections, but we
2874 must add the entries now so that we get the correct size for
2875 the .dynamic section. The DT_DEBUG entry is filled in by the
2876 dynamic linker and used by the debugger. */
2877 #define add_dynamic_entry(TAG, VAL) \
2878 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2879
2880 if (info->executable)
2881 {
2882 if (!add_dynamic_entry (DT_DEBUG, 0))
2883 return FALSE;
2884 }
2885
2886 if (htab->elf.splt->size != 0)
2887 {
2888 if (!add_dynamic_entry (DT_PLTGOT, 0)
2889 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2890 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2891 || !add_dynamic_entry (DT_JMPREL, 0))
2892 return FALSE;
2893
2894 if (htab->tlsdesc_plt
2895 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2896 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2897 return FALSE;
2898 }
2899
2900 if (relocs)
2901 {
2902 if (!add_dynamic_entry (DT_RELA, 0)
2903 || !add_dynamic_entry (DT_RELASZ, 0)
2904 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2905 return FALSE;
2906
2907 /* If any dynamic relocs apply to a read-only section,
2908 then we need a DT_TEXTREL entry. */
2909 if ((info->flags & DF_TEXTREL) == 0)
2910 elf_link_hash_traverse (&htab->elf,
2911 elf_x86_64_readonly_dynrelocs,
2912 info);
2913
2914 if ((info->flags & DF_TEXTREL) != 0)
2915 {
2916 if (!add_dynamic_entry (DT_TEXTREL, 0))
2917 return FALSE;
2918 }
2919 }
2920 }
2921 #undef add_dynamic_entry
2922
2923 return TRUE;
2924 }
2925
2926 static bfd_boolean
2927 elf_x86_64_always_size_sections (bfd *output_bfd,
2928 struct bfd_link_info *info)
2929 {
2930 asection *tls_sec = elf_hash_table (info)->tls_sec;
2931
2932 if (tls_sec)
2933 {
2934 struct elf_link_hash_entry *tlsbase;
2935
2936 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2937 "_TLS_MODULE_BASE_",
2938 FALSE, FALSE, FALSE);
2939
2940 if (tlsbase && tlsbase->type == STT_TLS)
2941 {
2942 struct elf_x86_64_link_hash_table *htab;
2943 struct bfd_link_hash_entry *bh = NULL;
2944 const struct elf_backend_data *bed
2945 = get_elf_backend_data (output_bfd);
2946
2947 htab = elf_x86_64_hash_table (info);
2948 if (htab == NULL)
2949 return FALSE;
2950
2951 if (!(_bfd_generic_link_add_one_symbol
2952 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2953 tls_sec, 0, NULL, FALSE,
2954 bed->collect, &bh)))
2955 return FALSE;
2956
2957 htab->tls_module_base = bh;
2958
2959 tlsbase = (struct elf_link_hash_entry *)bh;
2960 tlsbase->def_regular = 1;
2961 tlsbase->other = STV_HIDDEN;
2962 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2963 }
2964 }
2965
2966 return TRUE;
2967 }
2968
2969 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2970 executables. Rather than setting it to the beginning of the TLS
2971 section, we have to set it to the end. This function may be called
2972 multiple times, it is idempotent. */
2973
2974 static void
2975 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2976 {
2977 struct elf_x86_64_link_hash_table *htab;
2978 struct bfd_link_hash_entry *base;
2979
2980 if (!info->executable)
2981 return;
2982
2983 htab = elf_x86_64_hash_table (info);
2984 if (htab == NULL)
2985 return;
2986
2987 base = htab->tls_module_base;
2988 if (base == NULL)
2989 return;
2990
2991 base->u.def.value = htab->elf.tls_size;
2992 }
2993
2994 /* Return the base VMA address which should be subtracted from real addresses
2995 when resolving @dtpoff relocation.
2996 This is PT_TLS segment p_vaddr. */
2997
2998 static bfd_vma
2999 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3000 {
3001 /* If tls_sec is NULL, we should have signalled an error already. */
3002 if (elf_hash_table (info)->tls_sec == NULL)
3003 return 0;
3004 return elf_hash_table (info)->tls_sec->vma;
3005 }
3006
3007 /* Return the relocation value for @tpoff relocation
3008 if STT_TLS virtual address is ADDRESS. */
3009
3010 static bfd_vma
3011 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3012 {
3013 struct elf_link_hash_table *htab = elf_hash_table (info);
3014 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3015 bfd_vma static_tls_size;
3016
3017 /* If tls_segment is NULL, we should have signalled an error already. */
3018 if (htab->tls_sec == NULL)
3019 return 0;
3020
3021 /* Consider special static TLS alignment requirements. */
3022 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3023 return address - static_tls_size - htab->tls_sec->vma;
3024 }
3025
3026 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3027 branch? */
3028
3029 static bfd_boolean
3030 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3031 {
3032 /* Opcode Instruction
3033 0xe8 call
3034 0xe9 jump
3035 0x0f 0x8x conditional jump */
3036 return ((offset > 0
3037 && (contents [offset - 1] == 0xe8
3038 || contents [offset - 1] == 0xe9))
3039 || (offset > 1
3040 && contents [offset - 2] == 0x0f
3041 && (contents [offset - 1] & 0xf0) == 0x80));
3042 }
3043
3044 /* Relocate an x86_64 ELF section. */
3045
3046 static bfd_boolean
3047 elf_x86_64_relocate_section (bfd *output_bfd,
3048 struct bfd_link_info *info,
3049 bfd *input_bfd,
3050 asection *input_section,
3051 bfd_byte *contents,
3052 Elf_Internal_Rela *relocs,
3053 Elf_Internal_Sym *local_syms,
3054 asection **local_sections)
3055 {
3056 struct elf_x86_64_link_hash_table *htab;
3057 Elf_Internal_Shdr *symtab_hdr;
3058 struct elf_link_hash_entry **sym_hashes;
3059 bfd_vma *local_got_offsets;
3060 bfd_vma *local_tlsdesc_gotents;
3061 Elf_Internal_Rela *rel;
3062 Elf_Internal_Rela *relend;
3063 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3064
3065 BFD_ASSERT (is_x86_64_elf (input_bfd));
3066
3067 htab = elf_x86_64_hash_table (info);
3068 if (htab == NULL)
3069 return FALSE;
3070 symtab_hdr = &elf_symtab_hdr (input_bfd);
3071 sym_hashes = elf_sym_hashes (input_bfd);
3072 local_got_offsets = elf_local_got_offsets (input_bfd);
3073 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3074
3075 elf_x86_64_set_tls_module_base (info);
3076
3077 rel = relocs;
3078 relend = relocs + input_section->reloc_count;
3079 for (; rel < relend; rel++)
3080 {
3081 unsigned int r_type;
3082 reloc_howto_type *howto;
3083 unsigned long r_symndx;
3084 struct elf_link_hash_entry *h;
3085 Elf_Internal_Sym *sym;
3086 asection *sec;
3087 bfd_vma off, offplt;
3088 bfd_vma relocation;
3089 bfd_boolean unresolved_reloc;
3090 bfd_reloc_status_type r;
3091 int tls_type;
3092 asection *base_got;
3093
3094 r_type = ELF32_R_TYPE (rel->r_info);
3095 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3096 || r_type == (int) R_X86_64_GNU_VTENTRY)
3097 continue;
3098
3099 if (r_type >= R_X86_64_max)
3100 {
3101 bfd_set_error (bfd_error_bad_value);
3102 return FALSE;
3103 }
3104
3105 if (r_type != (int) R_X86_64_32
3106 || ABI_64_P (output_bfd))
3107 howto = x86_64_elf_howto_table + r_type;
3108 else
3109 howto = (x86_64_elf_howto_table
3110 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3111 r_symndx = htab->r_sym (rel->r_info);
3112 h = NULL;
3113 sym = NULL;
3114 sec = NULL;
3115 unresolved_reloc = FALSE;
3116 if (r_symndx < symtab_hdr->sh_info)
3117 {
3118 sym = local_syms + r_symndx;
3119 sec = local_sections[r_symndx];
3120
3121 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3122 &sec, rel);
3123
3124 /* Relocate against local STT_GNU_IFUNC symbol. */
3125 if (!info->relocatable
3126 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3127 {
3128 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3129 rel, FALSE);
3130 if (h == NULL)
3131 abort ();
3132
3133 /* Set STT_GNU_IFUNC symbol value. */
3134 h->root.u.def.value = sym->st_value;
3135 h->root.u.def.section = sec;
3136 }
3137 }
3138 else
3139 {
3140 bfd_boolean warned ATTRIBUTE_UNUSED;
3141
3142 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3143 r_symndx, symtab_hdr, sym_hashes,
3144 h, sec, relocation,
3145 unresolved_reloc, warned);
3146 }
3147
3148 if (sec != NULL && discarded_section (sec))
3149 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3150 rel, 1, relend, howto, 0, contents);
3151
3152 if (info->relocatable)
3153 continue;
3154
3155 if (rel->r_addend == 0
3156 && r_type == R_X86_64_64
3157 && !ABI_64_P (output_bfd))
3158 {
3159 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3160 it to 64bit if addend is zero. */
3161 r_type = R_X86_64_32;
3162 memset (contents + rel->r_offset + 4, 0, 4);
3163 }
3164
3165 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3166 it here if it is defined in a non-shared object. */
3167 if (h != NULL
3168 && h->type == STT_GNU_IFUNC
3169 && h->def_regular)
3170 {
3171 asection *plt;
3172 bfd_vma plt_index;
3173 const char *name;
3174
3175 if ((input_section->flags & SEC_ALLOC) == 0
3176 || h->plt.offset == (bfd_vma) -1)
3177 abort ();
3178
3179 /* STT_GNU_IFUNC symbol must go through PLT. */
3180 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3181 relocation = (plt->output_section->vma
3182 + plt->output_offset + h->plt.offset);
3183
3184 switch (r_type)
3185 {
3186 default:
3187 if (h->root.root.string)
3188 name = h->root.root.string;
3189 else
3190 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3191 NULL);
3192 (*_bfd_error_handler)
3193 (_("%B: relocation %s against STT_GNU_IFUNC "
3194 "symbol `%s' isn't handled by %s"), input_bfd,
3195 x86_64_elf_howto_table[r_type].name,
3196 name, __FUNCTION__);
3197 bfd_set_error (bfd_error_bad_value);
3198 return FALSE;
3199
3200 case R_X86_64_32S:
3201 if (info->shared)
3202 abort ();
3203 goto do_relocation;
3204
3205 case R_X86_64_32:
3206 if (ABI_64_P (output_bfd))
3207 goto do_relocation;
3208 /* FALLTHROUGH */
3209 case R_X86_64_64:
3210 if (rel->r_addend != 0)
3211 {
3212 if (h->root.root.string)
3213 name = h->root.root.string;
3214 else
3215 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3216 sym, NULL);
3217 (*_bfd_error_handler)
3218 (_("%B: relocation %s against STT_GNU_IFUNC "
3219 "symbol `%s' has non-zero addend: %d"),
3220 input_bfd, x86_64_elf_howto_table[r_type].name,
3221 name, rel->r_addend);
3222 bfd_set_error (bfd_error_bad_value);
3223 return FALSE;
3224 }
3225
3226 /* Generate dynamic relcoation only when there is a
3227 non-GOT reference in a shared object. */
3228 if (info->shared && h->non_got_ref)
3229 {
3230 Elf_Internal_Rela outrel;
3231 asection *sreloc;
3232
3233 /* Need a dynamic relocation to get the real function
3234 address. */
3235 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3236 info,
3237 input_section,
3238 rel->r_offset);
3239 if (outrel.r_offset == (bfd_vma) -1
3240 || outrel.r_offset == (bfd_vma) -2)
3241 abort ();
3242
3243 outrel.r_offset += (input_section->output_section->vma
3244 + input_section->output_offset);
3245
3246 if (h->dynindx == -1
3247 || h->forced_local
3248 || info->executable)
3249 {
3250 /* This symbol is resolved locally. */
3251 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3252 outrel.r_addend = (h->root.u.def.value
3253 + h->root.u.def.section->output_section->vma
3254 + h->root.u.def.section->output_offset);
3255 }
3256 else
3257 {
3258 outrel.r_info = htab->r_info (h->dynindx, r_type);
3259 outrel.r_addend = 0;
3260 }
3261
3262 sreloc = htab->elf.irelifunc;
3263 elf_append_rela (output_bfd, sreloc, &outrel);
3264
3265 /* If this reloc is against an external symbol, we
3266 do not want to fiddle with the addend. Otherwise,
3267 we need to include the symbol value so that it
3268 becomes an addend for the dynamic reloc. For an
3269 internal symbol, we have updated addend. */
3270 continue;
3271 }
3272 /* FALLTHROUGH */
3273 case R_X86_64_PC32:
3274 case R_X86_64_PC64:
3275 case R_X86_64_PLT32:
3276 goto do_relocation;
3277
3278 case R_X86_64_GOTPCREL:
3279 case R_X86_64_GOTPCREL64:
3280 base_got = htab->elf.sgot;
3281 off = h->got.offset;
3282
3283 if (base_got == NULL)
3284 abort ();
3285
3286 if (off == (bfd_vma) -1)
3287 {
3288 /* We can't use h->got.offset here to save state, or
3289 even just remember the offset, as finish_dynamic_symbol
3290 would use that as offset into .got. */
3291
3292 if (htab->elf.splt != NULL)
3293 {
3294 plt_index = h->plt.offset / plt_entry_size - 1;
3295 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3296 base_got = htab->elf.sgotplt;
3297 }
3298 else
3299 {
3300 plt_index = h->plt.offset / plt_entry_size;
3301 off = plt_index * GOT_ENTRY_SIZE;
3302 base_got = htab->elf.igotplt;
3303 }
3304
3305 if (h->dynindx == -1
3306 || h->forced_local
3307 || info->symbolic)
3308 {
3309 /* This references the local defitionion. We must
3310 initialize this entry in the global offset table.
3311 Since the offset must always be a multiple of 8,
3312 we use the least significant bit to record
3313 whether we have initialized it already.
3314
3315 When doing a dynamic link, we create a .rela.got
3316 relocation entry to initialize the value. This
3317 is done in the finish_dynamic_symbol routine. */
3318 if ((off & 1) != 0)
3319 off &= ~1;
3320 else
3321 {
3322 bfd_put_64 (output_bfd, relocation,
3323 base_got->contents + off);
3324 /* Note that this is harmless for the GOTPLT64
3325 case, as -1 | 1 still is -1. */
3326 h->got.offset |= 1;
3327 }
3328 }
3329 }
3330
3331 relocation = (base_got->output_section->vma
3332 + base_got->output_offset + off);
3333
3334 goto do_relocation;
3335 }
3336 }
3337
3338 /* When generating a shared object, the relocations handled here are
3339 copied into the output file to be resolved at run time. */
3340 switch (r_type)
3341 {
3342 case R_X86_64_GOT32:
3343 case R_X86_64_GOT64:
3344 /* Relocation is to the entry for this symbol in the global
3345 offset table. */
3346 case R_X86_64_GOTPCREL:
3347 case R_X86_64_GOTPCREL64:
3348 /* Use global offset table entry as symbol value. */
3349 case R_X86_64_GOTPLT64:
3350 /* This is the same as GOT64 for relocation purposes, but
3351 indicates the existence of a PLT entry. The difficulty is,
3352 that we must calculate the GOT slot offset from the PLT
3353 offset, if this symbol got a PLT entry (it was global).
3354 Additionally if it's computed from the PLT entry, then that
3355 GOT offset is relative to .got.plt, not to .got. */
3356 base_got = htab->elf.sgot;
3357
3358 if (htab->elf.sgot == NULL)
3359 abort ();
3360
3361 if (h != NULL)
3362 {
3363 bfd_boolean dyn;
3364
3365 off = h->got.offset;
3366 if (h->needs_plt
3367 && h->plt.offset != (bfd_vma)-1
3368 && off == (bfd_vma)-1)
3369 {
3370 /* We can't use h->got.offset here to save
3371 state, or even just remember the offset, as
3372 finish_dynamic_symbol would use that as offset into
3373 .got. */
3374 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3375 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3376 base_got = htab->elf.sgotplt;
3377 }
3378
3379 dyn = htab->elf.dynamic_sections_created;
3380
3381 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3382 || (info->shared
3383 && SYMBOL_REFERENCES_LOCAL (info, h))
3384 || (ELF_ST_VISIBILITY (h->other)
3385 && h->root.type == bfd_link_hash_undefweak))
3386 {
3387 /* This is actually a static link, or it is a -Bsymbolic
3388 link and the symbol is defined locally, or the symbol
3389 was forced to be local because of a version file. We
3390 must initialize this entry in the global offset table.
3391 Since the offset must always be a multiple of 8, we
3392 use the least significant bit to record whether we
3393 have initialized it already.
3394
3395 When doing a dynamic link, we create a .rela.got
3396 relocation entry to initialize the value. This is
3397 done in the finish_dynamic_symbol routine. */
3398 if ((off & 1) != 0)
3399 off &= ~1;
3400 else
3401 {
3402 bfd_put_64 (output_bfd, relocation,
3403 base_got->contents + off);
3404 /* Note that this is harmless for the GOTPLT64 case,
3405 as -1 | 1 still is -1. */
3406 h->got.offset |= 1;
3407 }
3408 }
3409 else
3410 unresolved_reloc = FALSE;
3411 }
3412 else
3413 {
3414 if (local_got_offsets == NULL)
3415 abort ();
3416
3417 off = local_got_offsets[r_symndx];
3418
3419 /* The offset must always be a multiple of 8. We use
3420 the least significant bit to record whether we have
3421 already generated the necessary reloc. */
3422 if ((off & 1) != 0)
3423 off &= ~1;
3424 else
3425 {
3426 bfd_put_64 (output_bfd, relocation,
3427 base_got->contents + off);
3428
3429 if (info->shared)
3430 {
3431 asection *s;
3432 Elf_Internal_Rela outrel;
3433
3434 /* We need to generate a R_X86_64_RELATIVE reloc
3435 for the dynamic linker. */
3436 s = htab->elf.srelgot;
3437 if (s == NULL)
3438 abort ();
3439
3440 outrel.r_offset = (base_got->output_section->vma
3441 + base_got->output_offset
3442 + off);
3443 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3444 outrel.r_addend = relocation;
3445 elf_append_rela (output_bfd, s, &outrel);
3446 }
3447
3448 local_got_offsets[r_symndx] |= 1;
3449 }
3450 }
3451
3452 if (off >= (bfd_vma) -2)
3453 abort ();
3454
3455 relocation = base_got->output_section->vma
3456 + base_got->output_offset + off;
3457 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3458 relocation -= htab->elf.sgotplt->output_section->vma
3459 - htab->elf.sgotplt->output_offset;
3460
3461 break;
3462
3463 case R_X86_64_GOTOFF64:
3464 /* Relocation is relative to the start of the global offset
3465 table. */
3466
3467 /* Check to make sure it isn't a protected function symbol
3468 for shared library since it may not be local when used
3469 as function address. */
3470 if (!info->executable
3471 && h
3472 && !SYMBOLIC_BIND (info, h)
3473 && h->def_regular
3474 && h->type == STT_FUNC
3475 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3476 {
3477 (*_bfd_error_handler)
3478 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3479 input_bfd, h->root.root.string);
3480 bfd_set_error (bfd_error_bad_value);
3481 return FALSE;
3482 }
3483
3484 /* Note that sgot is not involved in this
3485 calculation. We always want the start of .got.plt. If we
3486 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3487 permitted by the ABI, we might have to change this
3488 calculation. */
3489 relocation -= htab->elf.sgotplt->output_section->vma
3490 + htab->elf.sgotplt->output_offset;
3491 break;
3492
3493 case R_X86_64_GOTPC32:
3494 case R_X86_64_GOTPC64:
3495 /* Use global offset table as symbol value. */
3496 relocation = htab->elf.sgotplt->output_section->vma
3497 + htab->elf.sgotplt->output_offset;
3498 unresolved_reloc = FALSE;
3499 break;
3500
3501 case R_X86_64_PLTOFF64:
3502 /* Relocation is PLT entry relative to GOT. For local
3503 symbols it's the symbol itself relative to GOT. */
3504 if (h != NULL
3505 /* See PLT32 handling. */
3506 && h->plt.offset != (bfd_vma) -1
3507 && htab->elf.splt != NULL)
3508 {
3509 relocation = (htab->elf.splt->output_section->vma
3510 + htab->elf.splt->output_offset
3511 + h->plt.offset);
3512 unresolved_reloc = FALSE;
3513 }
3514
3515 relocation -= htab->elf.sgotplt->output_section->vma
3516 + htab->elf.sgotplt->output_offset;
3517 break;
3518
3519 case R_X86_64_PLT32:
3520 /* Relocation is to the entry for this symbol in the
3521 procedure linkage table. */
3522
3523 /* Resolve a PLT32 reloc against a local symbol directly,
3524 without using the procedure linkage table. */
3525 if (h == NULL)
3526 break;
3527
3528 if (h->plt.offset == (bfd_vma) -1
3529 || htab->elf.splt == NULL)
3530 {
3531 /* We didn't make a PLT entry for this symbol. This
3532 happens when statically linking PIC code, or when
3533 using -Bsymbolic. */
3534 break;
3535 }
3536
3537 relocation = (htab->elf.splt->output_section->vma
3538 + htab->elf.splt->output_offset
3539 + h->plt.offset);
3540 unresolved_reloc = FALSE;
3541 break;
3542
3543 case R_X86_64_PC8:
3544 case R_X86_64_PC16:
3545 case R_X86_64_PC32:
3546 if (info->shared
3547 && (input_section->flags & SEC_ALLOC) != 0
3548 && (input_section->flags & SEC_READONLY) != 0
3549 && h != NULL)
3550 {
3551 bfd_boolean fail = FALSE;
3552 bfd_boolean branch
3553 = (r_type == R_X86_64_PC32
3554 && is_32bit_relative_branch (contents, rel->r_offset));
3555
3556 if (SYMBOL_REFERENCES_LOCAL (info, h))
3557 {
3558 /* Symbol is referenced locally. Make sure it is
3559 defined locally or for a branch. */
3560 fail = !h->def_regular && !branch;
3561 }
3562 else
3563 {
3564 /* Symbol isn't referenced locally. We only allow
3565 branch to symbol with non-default visibility. */
3566 fail = (!branch
3567 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3568 }
3569
3570 if (fail)
3571 {
3572 const char *fmt;
3573 const char *v;
3574 const char *pic = "";
3575
3576 switch (ELF_ST_VISIBILITY (h->other))
3577 {
3578 case STV_HIDDEN:
3579 v = _("hidden symbol");
3580 break;
3581 case STV_INTERNAL:
3582 v = _("internal symbol");
3583 break;
3584 case STV_PROTECTED:
3585 v = _("protected symbol");
3586 break;
3587 default:
3588 v = _("symbol");
3589 pic = _("; recompile with -fPIC");
3590 break;
3591 }
3592
3593 if (h->def_regular)
3594 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3595 else
3596 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3597
3598 (*_bfd_error_handler) (fmt, input_bfd,
3599 x86_64_elf_howto_table[r_type].name,
3600 v, h->root.root.string, pic);
3601 bfd_set_error (bfd_error_bad_value);
3602 return FALSE;
3603 }
3604 }
3605 /* Fall through. */
3606
3607 case R_X86_64_8:
3608 case R_X86_64_16:
3609 case R_X86_64_32:
3610 case R_X86_64_PC64:
3611 case R_X86_64_64:
3612 /* FIXME: The ABI says the linker should make sure the value is
3613 the same when it's zeroextended to 64 bit. */
3614
3615 if ((input_section->flags & SEC_ALLOC) == 0)
3616 break;
3617
3618 if ((info->shared
3619 && (h == NULL
3620 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3621 || h->root.type != bfd_link_hash_undefweak)
3622 && (! IS_X86_64_PCREL_TYPE (r_type)
3623 || ! SYMBOL_CALLS_LOCAL (info, h)))
3624 || (ELIMINATE_COPY_RELOCS
3625 && !info->shared
3626 && h != NULL
3627 && h->dynindx != -1
3628 && !h->non_got_ref
3629 && ((h->def_dynamic
3630 && !h->def_regular)
3631 || h->root.type == bfd_link_hash_undefweak
3632 || h->root.type == bfd_link_hash_undefined)))
3633 {
3634 Elf_Internal_Rela outrel;
3635 bfd_boolean skip, relocate;
3636 asection *sreloc;
3637
3638 /* When generating a shared object, these relocations
3639 are copied into the output file to be resolved at run
3640 time. */
3641 skip = FALSE;
3642 relocate = FALSE;
3643
3644 outrel.r_offset =
3645 _bfd_elf_section_offset (output_bfd, info, input_section,
3646 rel->r_offset);
3647 if (outrel.r_offset == (bfd_vma) -1)
3648 skip = TRUE;
3649 else if (outrel.r_offset == (bfd_vma) -2)
3650 skip = TRUE, relocate = TRUE;
3651
3652 outrel.r_offset += (input_section->output_section->vma
3653 + input_section->output_offset);
3654
3655 if (skip)
3656 memset (&outrel, 0, sizeof outrel);
3657
3658 /* h->dynindx may be -1 if this symbol was marked to
3659 become local. */
3660 else if (h != NULL
3661 && h->dynindx != -1
3662 && (IS_X86_64_PCREL_TYPE (r_type)
3663 || ! info->shared
3664 || ! SYMBOLIC_BIND (info, h)
3665 || ! h->def_regular))
3666 {
3667 outrel.r_info = htab->r_info (h->dynindx, r_type);
3668 outrel.r_addend = rel->r_addend;
3669 }
3670 else
3671 {
3672 /* This symbol is local, or marked to become local. */
3673 if (r_type == htab->pointer_r_type)
3674 {
3675 relocate = TRUE;
3676 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3677 outrel.r_addend = relocation + rel->r_addend;
3678 }
3679 else if (r_type == R_X86_64_64
3680 && !ABI_64_P (output_bfd))
3681 {
3682 relocate = TRUE;
3683 outrel.r_info = htab->r_info (0,
3684 R_X86_64_RELATIVE64);
3685 outrel.r_addend = relocation + rel->r_addend;
3686 /* Check addend overflow. */
3687 if ((outrel.r_addend & 0x80000000)
3688 != (rel->r_addend & 0x80000000))
3689 {
3690 const char *name;
3691 int addend = rel->r_addend;
3692 if (h && h->root.root.string)
3693 name = h->root.root.string;
3694 else
3695 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3696 sym, NULL);
3697 if (addend < 0)
3698 (*_bfd_error_handler)
3699 (_("%B: addend -0x%x in relocation %s against "
3700 "symbol `%s' at 0x%lx in section `%A' is "
3701 "out of range"),
3702 input_bfd, input_section, addend,
3703 x86_64_elf_howto_table[r_type].name,
3704 name, (unsigned long) rel->r_offset);
3705 else
3706 (*_bfd_error_handler)
3707 (_("%B: addend 0x%x in relocation %s against "
3708 "symbol `%s' at 0x%lx in section `%A' is "
3709 "out of range"),
3710 input_bfd, input_section, addend,
3711 x86_64_elf_howto_table[r_type].name,
3712 name, (unsigned long) rel->r_offset);
3713 bfd_set_error (bfd_error_bad_value);
3714 return FALSE;
3715 }
3716 }
3717 else
3718 {
3719 long sindx;
3720
3721 if (bfd_is_abs_section (sec))
3722 sindx = 0;
3723 else if (sec == NULL || sec->owner == NULL)
3724 {
3725 bfd_set_error (bfd_error_bad_value);
3726 return FALSE;
3727 }
3728 else
3729 {
3730 asection *osec;
3731
3732 /* We are turning this relocation into one
3733 against a section symbol. It would be
3734 proper to subtract the symbol's value,
3735 osec->vma, from the emitted reloc addend,
3736 but ld.so expects buggy relocs. */
3737 osec = sec->output_section;
3738 sindx = elf_section_data (osec)->dynindx;
3739 if (sindx == 0)
3740 {
3741 asection *oi = htab->elf.text_index_section;
3742 sindx = elf_section_data (oi)->dynindx;
3743 }
3744 BFD_ASSERT (sindx != 0);
3745 }
3746
3747 outrel.r_info = htab->r_info (sindx, r_type);
3748 outrel.r_addend = relocation + rel->r_addend;
3749 }
3750 }
3751
3752 sreloc = elf_section_data (input_section)->sreloc;
3753
3754 if (sreloc == NULL || sreloc->contents == NULL)
3755 {
3756 r = bfd_reloc_notsupported;
3757 goto check_relocation_error;
3758 }
3759
3760 elf_append_rela (output_bfd, sreloc, &outrel);
3761
3762 /* If this reloc is against an external symbol, we do
3763 not want to fiddle with the addend. Otherwise, we
3764 need to include the symbol value so that it becomes
3765 an addend for the dynamic reloc. */
3766 if (! relocate)
3767 continue;
3768 }
3769
3770 break;
3771
3772 case R_X86_64_TLSGD:
3773 case R_X86_64_GOTPC32_TLSDESC:
3774 case R_X86_64_TLSDESC_CALL:
3775 case R_X86_64_GOTTPOFF:
3776 tls_type = GOT_UNKNOWN;
3777 if (h == NULL && local_got_offsets)
3778 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3779 else if (h != NULL)
3780 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3781
3782 if (! elf_x86_64_tls_transition (info, input_bfd,
3783 input_section, contents,
3784 symtab_hdr, sym_hashes,
3785 &r_type, tls_type, rel,
3786 relend, h, r_symndx))
3787 return FALSE;
3788
3789 if (r_type == R_X86_64_TPOFF32)
3790 {
3791 bfd_vma roff = rel->r_offset;
3792
3793 BFD_ASSERT (! unresolved_reloc);
3794
3795 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3796 {
3797 /* GD->LE transition. For 64bit, change
3798 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3799 .word 0x6666; rex64; call __tls_get_addr
3800 into:
3801 movq %fs:0, %rax
3802 leaq foo@tpoff(%rax), %rax
3803 For 32bit, change
3804 leaq foo@tlsgd(%rip), %rdi
3805 .word 0x6666; rex64; call __tls_get_addr
3806 into:
3807 movl %fs:0, %eax
3808 leaq foo@tpoff(%rax), %rax */
3809 if (ABI_64_P (output_bfd))
3810 memcpy (contents + roff - 4,
3811 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3812 16);
3813 else
3814 memcpy (contents + roff - 3,
3815 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3816 15);
3817 bfd_put_32 (output_bfd,
3818 elf_x86_64_tpoff (info, relocation),
3819 contents + roff + 8);
3820 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3821 rel++;
3822 continue;
3823 }
3824 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3825 {
3826 /* GDesc -> LE transition.
3827 It's originally something like:
3828 leaq x@tlsdesc(%rip), %rax
3829
3830 Change it to:
3831 movl $x@tpoff, %rax. */
3832
3833 unsigned int val, type;
3834
3835 type = bfd_get_8 (input_bfd, contents + roff - 3);
3836 val = bfd_get_8 (input_bfd, contents + roff - 1);
3837 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3838 contents + roff - 3);
3839 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3840 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3841 contents + roff - 1);
3842 bfd_put_32 (output_bfd,
3843 elf_x86_64_tpoff (info, relocation),
3844 contents + roff);
3845 continue;
3846 }
3847 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3848 {
3849 /* GDesc -> LE transition.
3850 It's originally:
3851 call *(%rax)
3852 Turn it into:
3853 xchg %ax,%ax. */
3854 bfd_put_8 (output_bfd, 0x66, contents + roff);
3855 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3856 continue;
3857 }
3858 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3859 {
3860 /* IE->LE transition:
3861 Originally it can be one of:
3862 movq foo@gottpoff(%rip), %reg
3863 addq foo@gottpoff(%rip), %reg
3864 We change it into:
3865 movq $foo, %reg
3866 leaq foo(%reg), %reg
3867 addq $foo, %reg. */
3868
3869 unsigned int val, type, reg;
3870
3871 val = bfd_get_8 (input_bfd, contents + roff - 3);
3872 type = bfd_get_8 (input_bfd, contents + roff - 2);
3873 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3874 reg >>= 3;
3875 if (type == 0x8b)
3876 {
3877 /* movq */
3878 if (val == 0x4c)
3879 bfd_put_8 (output_bfd, 0x49,
3880 contents + roff - 3);
3881 else if (!ABI_64_P (output_bfd) && val == 0x44)
3882 bfd_put_8 (output_bfd, 0x41,
3883 contents + roff - 3);
3884 bfd_put_8 (output_bfd, 0xc7,
3885 contents + roff - 2);
3886 bfd_put_8 (output_bfd, 0xc0 | reg,
3887 contents + roff - 1);
3888 }
3889 else if (reg == 4)
3890 {
3891 /* addq -> addq - addressing with %rsp/%r12 is
3892 special */
3893 if (val == 0x4c)
3894 bfd_put_8 (output_bfd, 0x49,
3895 contents + roff - 3);
3896 else if (!ABI_64_P (output_bfd) && val == 0x44)
3897 bfd_put_8 (output_bfd, 0x41,
3898 contents + roff - 3);
3899 bfd_put_8 (output_bfd, 0x81,
3900 contents + roff - 2);
3901 bfd_put_8 (output_bfd, 0xc0 | reg,
3902 contents + roff - 1);
3903 }
3904 else
3905 {
3906 /* addq -> leaq */
3907 if (val == 0x4c)
3908 bfd_put_8 (output_bfd, 0x4d,
3909 contents + roff - 3);
3910 else if (!ABI_64_P (output_bfd) && val == 0x44)
3911 bfd_put_8 (output_bfd, 0x45,
3912 contents + roff - 3);
3913 bfd_put_8 (output_bfd, 0x8d,
3914 contents + roff - 2);
3915 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3916 contents + roff - 1);
3917 }
3918 bfd_put_32 (output_bfd,
3919 elf_x86_64_tpoff (info, relocation),
3920 contents + roff);
3921 continue;
3922 }
3923 else
3924 BFD_ASSERT (FALSE);
3925 }
3926
3927 if (htab->elf.sgot == NULL)
3928 abort ();
3929
3930 if (h != NULL)
3931 {
3932 off = h->got.offset;
3933 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3934 }
3935 else
3936 {
3937 if (local_got_offsets == NULL)
3938 abort ();
3939
3940 off = local_got_offsets[r_symndx];
3941 offplt = local_tlsdesc_gotents[r_symndx];
3942 }
3943
3944 if ((off & 1) != 0)
3945 off &= ~1;
3946 else
3947 {
3948 Elf_Internal_Rela outrel;
3949 int dr_type, indx;
3950 asection *sreloc;
3951
3952 if (htab->elf.srelgot == NULL)
3953 abort ();
3954
3955 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3956
3957 if (GOT_TLS_GDESC_P (tls_type))
3958 {
3959 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3960 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3961 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3962 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3963 + htab->elf.sgotplt->output_offset
3964 + offplt
3965 + htab->sgotplt_jump_table_size);
3966 sreloc = htab->elf.srelplt;
3967 if (indx == 0)
3968 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3969 else
3970 outrel.r_addend = 0;
3971 elf_append_rela (output_bfd, sreloc, &outrel);
3972 }
3973
3974 sreloc = htab->elf.srelgot;
3975
3976 outrel.r_offset = (htab->elf.sgot->output_section->vma
3977 + htab->elf.sgot->output_offset + off);
3978
3979 if (GOT_TLS_GD_P (tls_type))
3980 dr_type = R_X86_64_DTPMOD64;
3981 else if (GOT_TLS_GDESC_P (tls_type))
3982 goto dr_done;
3983 else
3984 dr_type = R_X86_64_TPOFF64;
3985
3986 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3987 outrel.r_addend = 0;
3988 if ((dr_type == R_X86_64_TPOFF64
3989 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3990 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3991 outrel.r_info = htab->r_info (indx, dr_type);
3992
3993 elf_append_rela (output_bfd, sreloc, &outrel);
3994
3995 if (GOT_TLS_GD_P (tls_type))
3996 {
3997 if (indx == 0)
3998 {
3999 BFD_ASSERT (! unresolved_reloc);
4000 bfd_put_64 (output_bfd,
4001 relocation - elf_x86_64_dtpoff_base (info),
4002 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4003 }
4004 else
4005 {
4006 bfd_put_64 (output_bfd, 0,
4007 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4008 outrel.r_info = htab->r_info (indx,
4009 R_X86_64_DTPOFF64);
4010 outrel.r_offset += GOT_ENTRY_SIZE;
4011 elf_append_rela (output_bfd, sreloc,
4012 &outrel);
4013 }
4014 }
4015
4016 dr_done:
4017 if (h != NULL)
4018 h->got.offset |= 1;
4019 else
4020 local_got_offsets[r_symndx] |= 1;
4021 }
4022
4023 if (off >= (bfd_vma) -2
4024 && ! GOT_TLS_GDESC_P (tls_type))
4025 abort ();
4026 if (r_type == ELF32_R_TYPE (rel->r_info))
4027 {
4028 if (r_type == R_X86_64_GOTPC32_TLSDESC
4029 || r_type == R_X86_64_TLSDESC_CALL)
4030 relocation = htab->elf.sgotplt->output_section->vma
4031 + htab->elf.sgotplt->output_offset
4032 + offplt + htab->sgotplt_jump_table_size;
4033 else
4034 relocation = htab->elf.sgot->output_section->vma
4035 + htab->elf.sgot->output_offset + off;
4036 unresolved_reloc = FALSE;
4037 }
4038 else
4039 {
4040 bfd_vma roff = rel->r_offset;
4041
4042 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4043 {
4044 /* GD->IE transition. For 64bit, change
4045 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4046 .word 0x6666; rex64; call __tls_get_addr@plt
4047 into:
4048 movq %fs:0, %rax
4049 addq foo@gottpoff(%rip), %rax
4050 For 32bit, change
4051 leaq foo@tlsgd(%rip), %rdi
4052 .word 0x6666; rex64; call __tls_get_addr@plt
4053 into:
4054 movl %fs:0, %eax
4055 addq foo@gottpoff(%rip), %rax */
4056 if (ABI_64_P (output_bfd))
4057 memcpy (contents + roff - 4,
4058 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4059 16);
4060 else
4061 memcpy (contents + roff - 3,
4062 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4063 15);
4064
4065 relocation = (htab->elf.sgot->output_section->vma
4066 + htab->elf.sgot->output_offset + off
4067 - roff
4068 - input_section->output_section->vma
4069 - input_section->output_offset
4070 - 12);
4071 bfd_put_32 (output_bfd, relocation,
4072 contents + roff + 8);
4073 /* Skip R_X86_64_PLT32. */
4074 rel++;
4075 continue;
4076 }
4077 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4078 {
4079 /* GDesc -> IE transition.
4080 It's originally something like:
4081 leaq x@tlsdesc(%rip), %rax
4082
4083 Change it to:
4084 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4085
4086 /* Now modify the instruction as appropriate. To
4087 turn a leaq into a movq in the form we use it, it
4088 suffices to change the second byte from 0x8d to
4089 0x8b. */
4090 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4091
4092 bfd_put_32 (output_bfd,
4093 htab->elf.sgot->output_section->vma
4094 + htab->elf.sgot->output_offset + off
4095 - rel->r_offset
4096 - input_section->output_section->vma
4097 - input_section->output_offset
4098 - 4,
4099 contents + roff);
4100 continue;
4101 }
4102 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4103 {
4104 /* GDesc -> IE transition.
4105 It's originally:
4106 call *(%rax)
4107
4108 Change it to:
4109 xchg %ax, %ax. */
4110
4111 bfd_put_8 (output_bfd, 0x66, contents + roff);
4112 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4113 continue;
4114 }
4115 else
4116 BFD_ASSERT (FALSE);
4117 }
4118 break;
4119
4120 case R_X86_64_TLSLD:
4121 if (! elf_x86_64_tls_transition (info, input_bfd,
4122 input_section, contents,
4123 symtab_hdr, sym_hashes,
4124 &r_type, GOT_UNKNOWN,
4125 rel, relend, h, r_symndx))
4126 return FALSE;
4127
4128 if (r_type != R_X86_64_TLSLD)
4129 {
4130 /* LD->LE transition:
4131 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4132 For 64bit, we change it into:
4133 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4134 For 32bit, we change it into:
4135 nopl 0x0(%rax); movl %fs:0, %eax. */
4136
4137 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4138 if (ABI_64_P (output_bfd))
4139 memcpy (contents + rel->r_offset - 3,
4140 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4141 else
4142 memcpy (contents + rel->r_offset - 3,
4143 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4144 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4145 rel++;
4146 continue;
4147 }
4148
4149 if (htab->elf.sgot == NULL)
4150 abort ();
4151
4152 off = htab->tls_ld_got.offset;
4153 if (off & 1)
4154 off &= ~1;
4155 else
4156 {
4157 Elf_Internal_Rela outrel;
4158
4159 if (htab->elf.srelgot == NULL)
4160 abort ();
4161
4162 outrel.r_offset = (htab->elf.sgot->output_section->vma
4163 + htab->elf.sgot->output_offset + off);
4164
4165 bfd_put_64 (output_bfd, 0,
4166 htab->elf.sgot->contents + off);
4167 bfd_put_64 (output_bfd, 0,
4168 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4169 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4170 outrel.r_addend = 0;
4171 elf_append_rela (output_bfd, htab->elf.srelgot,
4172 &outrel);
4173 htab->tls_ld_got.offset |= 1;
4174 }
4175 relocation = htab->elf.sgot->output_section->vma
4176 + htab->elf.sgot->output_offset + off;
4177 unresolved_reloc = FALSE;
4178 break;
4179
4180 case R_X86_64_DTPOFF32:
4181 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4182 relocation -= elf_x86_64_dtpoff_base (info);
4183 else
4184 relocation = elf_x86_64_tpoff (info, relocation);
4185 break;
4186
4187 case R_X86_64_TPOFF32:
4188 case R_X86_64_TPOFF64:
4189 BFD_ASSERT (info->executable);
4190 relocation = elf_x86_64_tpoff (info, relocation);
4191 break;
4192
4193 default:
4194 break;
4195 }
4196
4197 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4198 because such sections are not SEC_ALLOC and thus ld.so will
4199 not process them. */
4200 if (unresolved_reloc
4201 && !((input_section->flags & SEC_DEBUGGING) != 0
4202 && h->def_dynamic)
4203 && _bfd_elf_section_offset (output_bfd, info, input_section,
4204 rel->r_offset) != (bfd_vma) -1)
4205 (*_bfd_error_handler)
4206 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4207 input_bfd,
4208 input_section,
4209 (long) rel->r_offset,
4210 howto->name,
4211 h->root.root.string);
4212
4213 do_relocation:
4214 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4215 contents, rel->r_offset,
4216 relocation, rel->r_addend);
4217
4218 check_relocation_error:
4219 if (r != bfd_reloc_ok)
4220 {
4221 const char *name;
4222
4223 if (h != NULL)
4224 name = h->root.root.string;
4225 else
4226 {
4227 name = bfd_elf_string_from_elf_section (input_bfd,
4228 symtab_hdr->sh_link,
4229 sym->st_name);
4230 if (name == NULL)
4231 return FALSE;
4232 if (*name == '\0')
4233 name = bfd_section_name (input_bfd, sec);
4234 }
4235
4236 if (r == bfd_reloc_overflow)
4237 {
4238 if (! ((*info->callbacks->reloc_overflow)
4239 (info, (h ? &h->root : NULL), name, howto->name,
4240 (bfd_vma) 0, input_bfd, input_section,
4241 rel->r_offset)))
4242 return FALSE;
4243 }
4244 else
4245 {
4246 (*_bfd_error_handler)
4247 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4248 input_bfd, input_section,
4249 (long) rel->r_offset, name, (int) r);
4250 return FALSE;
4251 }
4252 }
4253 }
4254
4255 return TRUE;
4256 }
4257
4258 /* Finish up dynamic symbol handling. We set the contents of various
4259 dynamic sections here. */
4260
4261 static bfd_boolean
4262 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4263 struct bfd_link_info *info,
4264 struct elf_link_hash_entry *h,
4265 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4266 {
4267 struct elf_x86_64_link_hash_table *htab;
4268 const struct elf_x86_64_backend_data *const abed
4269 = get_elf_x86_64_backend_data (output_bfd);
4270
4271 htab = elf_x86_64_hash_table (info);
4272 if (htab == NULL)
4273 return FALSE;
4274
4275 if (h->plt.offset != (bfd_vma) -1)
4276 {
4277 bfd_vma plt_index;
4278 bfd_vma got_offset;
4279 Elf_Internal_Rela rela;
4280 bfd_byte *loc;
4281 asection *plt, *gotplt, *relplt;
4282 const struct elf_backend_data *bed;
4283
4284 /* When building a static executable, use .iplt, .igot.plt and
4285 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4286 if (htab->elf.splt != NULL)
4287 {
4288 plt = htab->elf.splt;
4289 gotplt = htab->elf.sgotplt;
4290 relplt = htab->elf.srelplt;
4291 }
4292 else
4293 {
4294 plt = htab->elf.iplt;
4295 gotplt = htab->elf.igotplt;
4296 relplt = htab->elf.irelplt;
4297 }
4298
4299 /* This symbol has an entry in the procedure linkage table. Set
4300 it up. */
4301 if ((h->dynindx == -1
4302 && !((h->forced_local || info->executable)
4303 && h->def_regular
4304 && h->type == STT_GNU_IFUNC))
4305 || plt == NULL
4306 || gotplt == NULL
4307 || relplt == NULL)
4308 return FALSE;
4309
4310 /* Get the index in the procedure linkage table which
4311 corresponds to this symbol. This is the index of this symbol
4312 in all the symbols for which we are making plt entries. The
4313 first entry in the procedure linkage table is reserved.
4314
4315 Get the offset into the .got table of the entry that
4316 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4317 bytes. The first three are reserved for the dynamic linker.
4318
4319 For static executables, we don't reserve anything. */
4320
4321 if (plt == htab->elf.splt)
4322 {
4323 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4324 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4325 }
4326 else
4327 {
4328 got_offset = h->plt.offset / abed->plt_entry_size;
4329 got_offset = got_offset * GOT_ENTRY_SIZE;
4330 }
4331
4332 /* Fill in the entry in the procedure linkage table. */
4333 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4334 abed->plt_entry_size);
4335
4336 /* Insert the relocation positions of the plt section. */
4337
4338 /* Put offset the PC-relative instruction referring to the GOT entry,
4339 subtracting the size of that instruction. */
4340 bfd_put_32 (output_bfd,
4341 (gotplt->output_section->vma
4342 + gotplt->output_offset
4343 + got_offset
4344 - plt->output_section->vma
4345 - plt->output_offset
4346 - h->plt.offset
4347 - abed->plt_got_insn_size),
4348 plt->contents + h->plt.offset + abed->plt_got_offset);
4349
4350 /* Fill in the entry in the global offset table, initially this
4351 points to the second part of the PLT entry. */
4352 bfd_put_64 (output_bfd, (plt->output_section->vma
4353 + plt->output_offset
4354 + h->plt.offset + abed->plt_lazy_offset),
4355 gotplt->contents + got_offset);
4356
4357 /* Fill in the entry in the .rela.plt section. */
4358 rela.r_offset = (gotplt->output_section->vma
4359 + gotplt->output_offset
4360 + got_offset);
4361 if (h->dynindx == -1
4362 || ((info->executable
4363 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4364 && h->def_regular
4365 && h->type == STT_GNU_IFUNC))
4366 {
4367 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4368 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4369 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4370 rela.r_addend = (h->root.u.def.value
4371 + h->root.u.def.section->output_section->vma
4372 + h->root.u.def.section->output_offset);
4373 /* R_X86_64_IRELATIVE comes last. */
4374 plt_index = htab->next_irelative_index--;
4375 }
4376 else
4377 {
4378 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4379 rela.r_addend = 0;
4380 plt_index = htab->next_jump_slot_index++;
4381 }
4382
4383 /* Don't fill PLT entry for static executables. */
4384 if (plt == htab->elf.splt)
4385 {
4386 /* Put relocation index. */
4387 bfd_put_32 (output_bfd, plt_index,
4388 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4389 /* Put offset for jmp .PLT0. */
4390 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4391 plt->contents + h->plt.offset + abed->plt_plt_offset);
4392 }
4393
4394 bed = get_elf_backend_data (output_bfd);
4395 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4396 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4397
4398 if (!h->def_regular)
4399 {
4400 /* Mark the symbol as undefined, rather than as defined in
4401 the .plt section. Leave the value if there were any
4402 relocations where pointer equality matters (this is a clue
4403 for the dynamic linker, to make function pointer
4404 comparisons work between an application and shared
4405 library), otherwise set it to zero. If a function is only
4406 called from a binary, there is no need to slow down
4407 shared libraries because of that. */
4408 sym->st_shndx = SHN_UNDEF;
4409 if (!h->pointer_equality_needed)
4410 sym->st_value = 0;
4411 }
4412 }
4413
4414 if (h->got.offset != (bfd_vma) -1
4415 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4416 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4417 {
4418 Elf_Internal_Rela rela;
4419
4420 /* This symbol has an entry in the global offset table. Set it
4421 up. */
4422 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4423 abort ();
4424
4425 rela.r_offset = (htab->elf.sgot->output_section->vma
4426 + htab->elf.sgot->output_offset
4427 + (h->got.offset &~ (bfd_vma) 1));
4428
4429 /* If this is a static link, or it is a -Bsymbolic link and the
4430 symbol is defined locally or was forced to be local because
4431 of a version file, we just want to emit a RELATIVE reloc.
4432 The entry in the global offset table will already have been
4433 initialized in the relocate_section function. */
4434 if (h->def_regular
4435 && h->type == STT_GNU_IFUNC)
4436 {
4437 if (info->shared)
4438 {
4439 /* Generate R_X86_64_GLOB_DAT. */
4440 goto do_glob_dat;
4441 }
4442 else
4443 {
4444 asection *plt;
4445
4446 if (!h->pointer_equality_needed)
4447 abort ();
4448
4449 /* For non-shared object, we can't use .got.plt, which
4450 contains the real function addres if we need pointer
4451 equality. We load the GOT entry with the PLT entry. */
4452 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4453 bfd_put_64 (output_bfd, (plt->output_section->vma
4454 + plt->output_offset
4455 + h->plt.offset),
4456 htab->elf.sgot->contents + h->got.offset);
4457 return TRUE;
4458 }
4459 }
4460 else if (info->shared
4461 && SYMBOL_REFERENCES_LOCAL (info, h))
4462 {
4463 if (!h->def_regular)
4464 return FALSE;
4465 BFD_ASSERT((h->got.offset & 1) != 0);
4466 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4467 rela.r_addend = (h->root.u.def.value
4468 + h->root.u.def.section->output_section->vma
4469 + h->root.u.def.section->output_offset);
4470 }
4471 else
4472 {
4473 BFD_ASSERT((h->got.offset & 1) == 0);
4474 do_glob_dat:
4475 bfd_put_64 (output_bfd, (bfd_vma) 0,
4476 htab->elf.sgot->contents + h->got.offset);
4477 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4478 rela.r_addend = 0;
4479 }
4480
4481 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4482 }
4483
4484 if (h->needs_copy)
4485 {
4486 Elf_Internal_Rela rela;
4487
4488 /* This symbol needs a copy reloc. Set it up. */
4489
4490 if (h->dynindx == -1
4491 || (h->root.type != bfd_link_hash_defined
4492 && h->root.type != bfd_link_hash_defweak)
4493 || htab->srelbss == NULL)
4494 abort ();
4495
4496 rela.r_offset = (h->root.u.def.value
4497 + h->root.u.def.section->output_section->vma
4498 + h->root.u.def.section->output_offset);
4499 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4500 rela.r_addend = 0;
4501 elf_append_rela (output_bfd, htab->srelbss, &rela);
4502 }
4503
4504 return TRUE;
4505 }
4506
4507 /* Finish up local dynamic symbol handling. We set the contents of
4508 various dynamic sections here. */
4509
4510 static bfd_boolean
4511 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4512 {
4513 struct elf_link_hash_entry *h
4514 = (struct elf_link_hash_entry *) *slot;
4515 struct bfd_link_info *info
4516 = (struct bfd_link_info *) inf;
4517
4518 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4519 info, h, NULL);
4520 }
4521
4522 /* Used to decide how to sort relocs in an optimal manner for the
4523 dynamic linker, before writing them out. */
4524
4525 static enum elf_reloc_type_class
4526 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4527 {
4528 switch ((int) ELF32_R_TYPE (rela->r_info))
4529 {
4530 case R_X86_64_RELATIVE:
4531 case R_X86_64_RELATIVE64:
4532 return reloc_class_relative;
4533 case R_X86_64_JUMP_SLOT:
4534 return reloc_class_plt;
4535 case R_X86_64_COPY:
4536 return reloc_class_copy;
4537 default:
4538 return reloc_class_normal;
4539 }
4540 }
4541
4542 /* Finish up the dynamic sections. */
4543
4544 static bfd_boolean
4545 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4546 struct bfd_link_info *info)
4547 {
4548 struct elf_x86_64_link_hash_table *htab;
4549 bfd *dynobj;
4550 asection *sdyn;
4551 const struct elf_x86_64_backend_data *const abed
4552 = get_elf_x86_64_backend_data (output_bfd);
4553
4554 htab = elf_x86_64_hash_table (info);
4555 if (htab == NULL)
4556 return FALSE;
4557
4558 dynobj = htab->elf.dynobj;
4559 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4560
4561 if (htab->elf.dynamic_sections_created)
4562 {
4563 bfd_byte *dyncon, *dynconend;
4564 const struct elf_backend_data *bed;
4565 bfd_size_type sizeof_dyn;
4566
4567 if (sdyn == NULL || htab->elf.sgot == NULL)
4568 abort ();
4569
4570 bed = get_elf_backend_data (dynobj);
4571 sizeof_dyn = bed->s->sizeof_dyn;
4572 dyncon = sdyn->contents;
4573 dynconend = sdyn->contents + sdyn->size;
4574 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4575 {
4576 Elf_Internal_Dyn dyn;
4577 asection *s;
4578
4579 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4580
4581 switch (dyn.d_tag)
4582 {
4583 default:
4584 continue;
4585
4586 case DT_PLTGOT:
4587 s = htab->elf.sgotplt;
4588 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4589 break;
4590
4591 case DT_JMPREL:
4592 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4593 break;
4594
4595 case DT_PLTRELSZ:
4596 s = htab->elf.srelplt->output_section;
4597 dyn.d_un.d_val = s->size;
4598 break;
4599
4600 case DT_RELASZ:
4601 /* The procedure linkage table relocs (DT_JMPREL) should
4602 not be included in the overall relocs (DT_RELA).
4603 Therefore, we override the DT_RELASZ entry here to
4604 make it not include the JMPREL relocs. Since the
4605 linker script arranges for .rela.plt to follow all
4606 other relocation sections, we don't have to worry
4607 about changing the DT_RELA entry. */
4608 if (htab->elf.srelplt != NULL)
4609 {
4610 s = htab->elf.srelplt->output_section;
4611 dyn.d_un.d_val -= s->size;
4612 }
4613 break;
4614
4615 case DT_TLSDESC_PLT:
4616 s = htab->elf.splt;
4617 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4618 + htab->tlsdesc_plt;
4619 break;
4620
4621 case DT_TLSDESC_GOT:
4622 s = htab->elf.sgot;
4623 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4624 + htab->tlsdesc_got;
4625 break;
4626 }
4627
4628 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4629 }
4630
4631 /* Fill in the special first entry in the procedure linkage table. */
4632 if (htab->elf.splt && htab->elf.splt->size > 0)
4633 {
4634 /* Fill in the first entry in the procedure linkage table. */
4635 memcpy (htab->elf.splt->contents,
4636 abed->plt0_entry, abed->plt_entry_size);
4637 /* Add offset for pushq GOT+8(%rip), since the instruction
4638 uses 6 bytes subtract this value. */
4639 bfd_put_32 (output_bfd,
4640 (htab->elf.sgotplt->output_section->vma
4641 + htab->elf.sgotplt->output_offset
4642 + 8
4643 - htab->elf.splt->output_section->vma
4644 - htab->elf.splt->output_offset
4645 - 6),
4646 htab->elf.splt->contents + abed->plt0_got1_offset);
4647 /* Add offset for the PC-relative instruction accessing GOT+16,
4648 subtracting the offset to the end of that instruction. */
4649 bfd_put_32 (output_bfd,
4650 (htab->elf.sgotplt->output_section->vma
4651 + htab->elf.sgotplt->output_offset
4652 + 16
4653 - htab->elf.splt->output_section->vma
4654 - htab->elf.splt->output_offset
4655 - abed->plt0_got2_insn_end),
4656 htab->elf.splt->contents + abed->plt0_got2_offset);
4657
4658 elf_section_data (htab->elf.splt->output_section)
4659 ->this_hdr.sh_entsize = abed->plt_entry_size;
4660
4661 if (htab->tlsdesc_plt)
4662 {
4663 bfd_put_64 (output_bfd, (bfd_vma) 0,
4664 htab->elf.sgot->contents + htab->tlsdesc_got);
4665
4666 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4667 abed->plt0_entry, abed->plt_entry_size);
4668
4669 /* Add offset for pushq GOT+8(%rip), since the
4670 instruction uses 6 bytes subtract this value. */
4671 bfd_put_32 (output_bfd,
4672 (htab->elf.sgotplt->output_section->vma
4673 + htab->elf.sgotplt->output_offset
4674 + 8
4675 - htab->elf.splt->output_section->vma
4676 - htab->elf.splt->output_offset
4677 - htab->tlsdesc_plt
4678 - 6),
4679 htab->elf.splt->contents
4680 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4681 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4682 where TGD stands for htab->tlsdesc_got, subtracting the offset
4683 to the end of that instruction. */
4684 bfd_put_32 (output_bfd,
4685 (htab->elf.sgot->output_section->vma
4686 + htab->elf.sgot->output_offset
4687 + htab->tlsdesc_got
4688 - htab->elf.splt->output_section->vma
4689 - htab->elf.splt->output_offset
4690 - htab->tlsdesc_plt
4691 - abed->plt0_got2_insn_end),
4692 htab->elf.splt->contents
4693 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4694 }
4695 }
4696 }
4697
4698 if (htab->elf.sgotplt)
4699 {
4700 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4701 {
4702 (*_bfd_error_handler)
4703 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4704 return FALSE;
4705 }
4706
4707 /* Fill in the first three entries in the global offset table. */
4708 if (htab->elf.sgotplt->size > 0)
4709 {
4710 /* Set the first entry in the global offset table to the address of
4711 the dynamic section. */
4712 if (sdyn == NULL)
4713 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4714 else
4715 bfd_put_64 (output_bfd,
4716 sdyn->output_section->vma + sdyn->output_offset,
4717 htab->elf.sgotplt->contents);
4718 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4719 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4720 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4721 }
4722
4723 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4724 GOT_ENTRY_SIZE;
4725 }
4726
4727 /* Adjust .eh_frame for .plt section. */
4728 if (htab->plt_eh_frame != NULL)
4729 {
4730 if (htab->elf.splt != NULL
4731 && htab->elf.splt->size != 0
4732 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4733 && htab->elf.splt->output_section != NULL
4734 && htab->plt_eh_frame->output_section != NULL)
4735 {
4736 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4737 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4738 + htab->plt_eh_frame->output_offset
4739 + PLT_FDE_START_OFFSET;
4740 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4741 htab->plt_eh_frame->contents
4742 + PLT_FDE_START_OFFSET);
4743 }
4744 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4745 {
4746 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4747 htab->plt_eh_frame,
4748 htab->plt_eh_frame->contents))
4749 return FALSE;
4750 }
4751 }
4752
4753 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4754 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4755 = GOT_ENTRY_SIZE;
4756
4757 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4758 htab_traverse (htab->loc_hash_table,
4759 elf_x86_64_finish_local_dynamic_symbol,
4760 info);
4761
4762 return TRUE;
4763 }
4764
4765 /* Return address for Ith PLT stub in section PLT, for relocation REL
4766 or (bfd_vma) -1 if it should not be included. */
4767
4768 static bfd_vma
4769 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4770 const arelent *rel ATTRIBUTE_UNUSED)
4771 {
4772 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
4773 }
4774
4775 /* Handle an x86-64 specific section when reading an object file. This
4776 is called when elfcode.h finds a section with an unknown type. */
4777
4778 static bfd_boolean
4779 elf_x86_64_section_from_shdr (bfd *abfd,
4780 Elf_Internal_Shdr *hdr,
4781 const char *name,
4782 int shindex)
4783 {
4784 if (hdr->sh_type != SHT_X86_64_UNWIND)
4785 return FALSE;
4786
4787 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4788 return FALSE;
4789
4790 return TRUE;
4791 }
4792
4793 /* Hook called by the linker routine which adds symbols from an object
4794 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4795 of .bss. */
4796
4797 static bfd_boolean
4798 elf_x86_64_add_symbol_hook (bfd *abfd,
4799 struct bfd_link_info *info,
4800 Elf_Internal_Sym *sym,
4801 const char **namep ATTRIBUTE_UNUSED,
4802 flagword *flagsp ATTRIBUTE_UNUSED,
4803 asection **secp,
4804 bfd_vma *valp)
4805 {
4806 asection *lcomm;
4807
4808 switch (sym->st_shndx)
4809 {
4810 case SHN_X86_64_LCOMMON:
4811 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4812 if (lcomm == NULL)
4813 {
4814 lcomm = bfd_make_section_with_flags (abfd,
4815 "LARGE_COMMON",
4816 (SEC_ALLOC
4817 | SEC_IS_COMMON
4818 | SEC_LINKER_CREATED));
4819 if (lcomm == NULL)
4820 return FALSE;
4821 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4822 }
4823 *secp = lcomm;
4824 *valp = sym->st_size;
4825 return TRUE;
4826 }
4827
4828 if ((abfd->flags & DYNAMIC) == 0
4829 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4830 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4831 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4832
4833 return TRUE;
4834 }
4835
4836
4837 /* Given a BFD section, try to locate the corresponding ELF section
4838 index. */
4839
4840 static bfd_boolean
4841 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4842 asection *sec, int *index_return)
4843 {
4844 if (sec == &_bfd_elf_large_com_section)
4845 {
4846 *index_return = SHN_X86_64_LCOMMON;
4847 return TRUE;
4848 }
4849 return FALSE;
4850 }
4851
4852 /* Process a symbol. */
4853
4854 static void
4855 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4856 asymbol *asym)
4857 {
4858 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4859
4860 switch (elfsym->internal_elf_sym.st_shndx)
4861 {
4862 case SHN_X86_64_LCOMMON:
4863 asym->section = &_bfd_elf_large_com_section;
4864 asym->value = elfsym->internal_elf_sym.st_size;
4865 /* Common symbol doesn't set BSF_GLOBAL. */
4866 asym->flags &= ~BSF_GLOBAL;
4867 break;
4868 }
4869 }
4870
4871 static bfd_boolean
4872 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4873 {
4874 return (sym->st_shndx == SHN_COMMON
4875 || sym->st_shndx == SHN_X86_64_LCOMMON);
4876 }
4877
4878 static unsigned int
4879 elf_x86_64_common_section_index (asection *sec)
4880 {
4881 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4882 return SHN_COMMON;
4883 else
4884 return SHN_X86_64_LCOMMON;
4885 }
4886
4887 static asection *
4888 elf_x86_64_common_section (asection *sec)
4889 {
4890 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4891 return bfd_com_section_ptr;
4892 else
4893 return &_bfd_elf_large_com_section;
4894 }
4895
4896 static bfd_boolean
4897 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4898 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4899 struct elf_link_hash_entry *h,
4900 Elf_Internal_Sym *sym,
4901 asection **psec,
4902 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4903 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4904 bfd_boolean *skip ATTRIBUTE_UNUSED,
4905 bfd_boolean *override ATTRIBUTE_UNUSED,
4906 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4907 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4908 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4909 bfd_boolean *newdef,
4910 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4911 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4912 bfd *abfd ATTRIBUTE_UNUSED,
4913 asection **sec,
4914 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4915 bfd_boolean *olddef,
4916 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4917 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4918 bfd *oldbfd,
4919 asection **oldsec)
4920 {
4921 /* A normal common symbol and a large common symbol result in a
4922 normal common symbol. We turn the large common symbol into a
4923 normal one. */
4924 if (!*olddef
4925 && h->root.type == bfd_link_hash_common
4926 && !*newdef
4927 && bfd_is_com_section (*sec)
4928 && *oldsec != *sec)
4929 {
4930 if (sym->st_shndx == SHN_COMMON
4931 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4932 {
4933 h->root.u.c.p->section
4934 = bfd_make_section_old_way (oldbfd, "COMMON");
4935 h->root.u.c.p->section->flags = SEC_ALLOC;
4936 }
4937 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4938 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4939 *psec = *sec = bfd_com_section_ptr;
4940 }
4941
4942 return TRUE;
4943 }
4944
4945 static int
4946 elf_x86_64_additional_program_headers (bfd *abfd,
4947 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4948 {
4949 asection *s;
4950 int count = 0;
4951
4952 /* Check to see if we need a large readonly segment. */
4953 s = bfd_get_section_by_name (abfd, ".lrodata");
4954 if (s && (s->flags & SEC_LOAD))
4955 count++;
4956
4957 /* Check to see if we need a large data segment. Since .lbss sections
4958 is placed right after the .bss section, there should be no need for
4959 a large data segment just because of .lbss. */
4960 s = bfd_get_section_by_name (abfd, ".ldata");
4961 if (s && (s->flags & SEC_LOAD))
4962 count++;
4963
4964 return count;
4965 }
4966
4967 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4968
4969 static bfd_boolean
4970 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4971 {
4972 if (h->plt.offset != (bfd_vma) -1
4973 && !h->def_regular
4974 && !h->pointer_equality_needed)
4975 return FALSE;
4976
4977 return _bfd_elf_hash_symbol (h);
4978 }
4979
4980 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4981
4982 static bfd_boolean
4983 elf_x86_64_relocs_compatible (const bfd_target *input,
4984 const bfd_target *output)
4985 {
4986 return ((xvec_get_elf_backend_data (input)->s->elfclass
4987 == xvec_get_elf_backend_data (output)->s->elfclass)
4988 && _bfd_elf_relocs_compatible (input, output));
4989 }
4990
4991 static const struct bfd_elf_special_section
4992 elf_x86_64_special_sections[]=
4993 {
4994 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4995 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4996 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4997 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4998 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4999 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5000 { NULL, 0, 0, 0, 0 }
5001 };
5002
5003 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5004 #define TARGET_LITTLE_NAME "elf64-x86-64"
5005 #define ELF_ARCH bfd_arch_i386
5006 #define ELF_TARGET_ID X86_64_ELF_DATA
5007 #define ELF_MACHINE_CODE EM_X86_64
5008 #define ELF_MAXPAGESIZE 0x200000
5009 #define ELF_MINPAGESIZE 0x1000
5010 #define ELF_COMMONPAGESIZE 0x1000
5011
5012 #define elf_backend_can_gc_sections 1
5013 #define elf_backend_can_refcount 1
5014 #define elf_backend_want_got_plt 1
5015 #define elf_backend_plt_readonly 1
5016 #define elf_backend_want_plt_sym 0
5017 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5018 #define elf_backend_rela_normal 1
5019 #define elf_backend_plt_alignment 4
5020
5021 #define elf_info_to_howto elf_x86_64_info_to_howto
5022
5023 #define bfd_elf64_bfd_link_hash_table_create \
5024 elf_x86_64_link_hash_table_create
5025 #define bfd_elf64_bfd_link_hash_table_free \
5026 elf_x86_64_link_hash_table_free
5027 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5028 #define bfd_elf64_bfd_reloc_name_lookup \
5029 elf_x86_64_reloc_name_lookup
5030
5031 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5032 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5033 #define elf_backend_check_relocs elf_x86_64_check_relocs
5034 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5035 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5036 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5037 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5038 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5039 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5040 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5041 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5042 #ifdef CORE_HEADER
5043 #define elf_backend_write_core_note elf_x86_64_write_core_note
5044 #endif
5045 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5046 #define elf_backend_relocate_section elf_x86_64_relocate_section
5047 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5048 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5049 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5050 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5051 #define elf_backend_object_p elf64_x86_64_elf_object_p
5052 #define bfd_elf64_mkobject elf_x86_64_mkobject
5053
5054 #define elf_backend_section_from_shdr \
5055 elf_x86_64_section_from_shdr
5056
5057 #define elf_backend_section_from_bfd_section \
5058 elf_x86_64_elf_section_from_bfd_section
5059 #define elf_backend_add_symbol_hook \
5060 elf_x86_64_add_symbol_hook
5061 #define elf_backend_symbol_processing \
5062 elf_x86_64_symbol_processing
5063 #define elf_backend_common_section_index \
5064 elf_x86_64_common_section_index
5065 #define elf_backend_common_section \
5066 elf_x86_64_common_section
5067 #define elf_backend_common_definition \
5068 elf_x86_64_common_definition
5069 #define elf_backend_merge_symbol \
5070 elf_x86_64_merge_symbol
5071 #define elf_backend_special_sections \
5072 elf_x86_64_special_sections
5073 #define elf_backend_additional_program_headers \
5074 elf_x86_64_additional_program_headers
5075 #define elf_backend_hash_symbol \
5076 elf_x86_64_hash_symbol
5077
5078 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5079
5080 #include "elf64-target.h"
5081
5082 /* FreeBSD support. */
5083
5084 #undef TARGET_LITTLE_SYM
5085 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5086 #undef TARGET_LITTLE_NAME
5087 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5088
5089 #undef ELF_OSABI
5090 #define ELF_OSABI ELFOSABI_FREEBSD
5091
5092 #undef elf64_bed
5093 #define elf64_bed elf64_x86_64_fbsd_bed
5094
5095 #include "elf64-target.h"
5096
5097 /* Solaris 2 support. */
5098
5099 #undef TARGET_LITTLE_SYM
5100 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5101 #undef TARGET_LITTLE_NAME
5102 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5103
5104 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5105 objects won't be recognized. */
5106 #undef ELF_OSABI
5107
5108 #undef elf64_bed
5109 #define elf64_bed elf64_x86_64_sol2_bed
5110
5111 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5112 boundary. */
5113 #undef elf_backend_static_tls_alignment
5114 #define elf_backend_static_tls_alignment 16
5115
5116 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5117
5118 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5119 File, p.63. */
5120 #undef elf_backend_want_plt_sym
5121 #define elf_backend_want_plt_sym 1
5122
5123 #include "elf64-target.h"
5124
5125 /* Native Client support. */
5126
5127 #undef TARGET_LITTLE_SYM
5128 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5129 #undef TARGET_LITTLE_NAME
5130 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5131 #undef elf64_bed
5132 #define elf64_bed elf64_x86_64_nacl_bed
5133
5134 #undef ELF_MAXPAGESIZE
5135 #undef ELF_MINPAGESIZE
5136 #undef ELF_COMMONPAGESIZE
5137 #define ELF_MAXPAGESIZE 0x10000
5138 #define ELF_MINPAGESIZE 0x10000
5139 #define ELF_COMMONPAGESIZE 0x10000
5140
5141 /* Restore defaults. */
5142 #undef ELF_OSABI
5143 #undef elf_backend_static_tls_alignment
5144 #undef elf_backend_want_plt_sym
5145 #define elf_backend_want_plt_sym 0
5146
5147 /* NaCl uses substantially different PLT entries for the same effects. */
5148
5149 #undef elf_backend_plt_alignment
5150 #define elf_backend_plt_alignment 5
5151 #define NACL_PLT_ENTRY_SIZE 64
5152 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5153
5154 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5155 {
5156 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5157 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5158 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5159 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5160 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5161
5162 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5163 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
5164
5165 /* 32 bytes of nop to pad out to the standard size. */
5166 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5167 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5168 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5169 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5170 0x66, /* excess data32 prefix */
5171 0x90 /* nop */
5172 };
5173
5174 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5175 {
5176 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5177 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5178 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5179 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5180
5181 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5182 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5183 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5184
5185 /* Lazy GOT entries point here (32-byte aligned). */
5186 0x68, /* pushq immediate */
5187 0, 0, 0, 0, /* replaced with index into relocation table. */
5188 0xe9, /* jmp relative */
5189 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5190
5191 /* 22 bytes of nop to pad out to the standard size. */
5192 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5193 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5194 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5195 };
5196
5197 /* .eh_frame covering the .plt section. */
5198
5199 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5200 {
5201 #if (PLT_CIE_LENGTH != 20 \
5202 || PLT_FDE_LENGTH != 36 \
5203 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5204 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5205 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5206 #endif
5207 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5208 0, 0, 0, 0, /* CIE ID */
5209 1, /* CIE version */
5210 'z', 'R', 0, /* Augmentation string */
5211 1, /* Code alignment factor */
5212 0x78, /* Data alignment factor */
5213 16, /* Return address column */
5214 1, /* Augmentation size */
5215 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5216 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5217 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5218 DW_CFA_nop, DW_CFA_nop,
5219
5220 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5221 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5222 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5223 0, 0, 0, 0, /* .plt size goes here */
5224 0, /* Augmentation size */
5225 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5226 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5227 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5228 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5229 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5230 13, /* Block length */
5231 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5232 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5233 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5234 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5235 DW_CFA_nop, DW_CFA_nop
5236 };
5237
5238 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5239 {
5240 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5241 elf_x86_64_nacl_plt_entry, /* plt_entry */
5242 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5243 2, /* plt0_got1_offset */
5244 9, /* plt0_got2_offset */
5245 13, /* plt0_got2_insn_end */
5246 3, /* plt_got_offset */
5247 33, /* plt_reloc_offset */
5248 38, /* plt_plt_offset */
5249 7, /* plt_got_insn_size */
5250 42, /* plt_plt_insn_end */
5251 32, /* plt_lazy_offset */
5252 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5253 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5254 };
5255
5256 #undef elf_backend_arch_data
5257 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5258
5259 #undef elf_backend_modify_segment_map
5260 #define elf_backend_modify_segment_map nacl_modify_segment_map
5261 #undef elf_backend_modify_program_headers
5262 #define elf_backend_modify_program_headers nacl_modify_program_headers
5263
5264 #include "elf64-target.h"
5265
5266 /* Native Client x32 support. */
5267
5268 #undef TARGET_LITTLE_SYM
5269 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5270 #undef TARGET_LITTLE_NAME
5271 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5272 #undef elf32_bed
5273 #define elf32_bed elf32_x86_64_nacl_bed
5274
5275 #define bfd_elf32_bfd_link_hash_table_create \
5276 elf_x86_64_link_hash_table_create
5277 #define bfd_elf32_bfd_link_hash_table_free \
5278 elf_x86_64_link_hash_table_free
5279 #define bfd_elf32_bfd_reloc_type_lookup \
5280 elf_x86_64_reloc_type_lookup
5281 #define bfd_elf32_bfd_reloc_name_lookup \
5282 elf_x86_64_reloc_name_lookup
5283 #define bfd_elf32_mkobject \
5284 elf_x86_64_mkobject
5285
5286 #undef elf_backend_object_p
5287 #define elf_backend_object_p \
5288 elf32_x86_64_elf_object_p
5289
5290 #undef elf_backend_bfd_from_remote_memory
5291 #define elf_backend_bfd_from_remote_memory \
5292 _bfd_elf32_bfd_from_remote_memory
5293
5294 #undef elf_backend_size_info
5295 #define elf_backend_size_info \
5296 _bfd_elf32_size_info
5297
5298 #include "elf32-target.h"
5299
5300 /* Restore defaults. */
5301 #undef elf_backend_object_p
5302 #define elf_backend_object_p elf64_x86_64_elf_object_p
5303 #undef elf_backend_bfd_from_remote_memory
5304 #undef elf_backend_size_info
5305 #undef elf_backend_modify_segment_map
5306 #undef elf_backend_modify_program_headers
5307
5308 /* Intel L1OM support. */
5309
5310 static bfd_boolean
5311 elf64_l1om_elf_object_p (bfd *abfd)
5312 {
5313 /* Set the right machine number for an L1OM elf64 file. */
5314 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5315 return TRUE;
5316 }
5317
5318 #undef TARGET_LITTLE_SYM
5319 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5320 #undef TARGET_LITTLE_NAME
5321 #define TARGET_LITTLE_NAME "elf64-l1om"
5322 #undef ELF_ARCH
5323 #define ELF_ARCH bfd_arch_l1om
5324
5325 #undef ELF_MACHINE_CODE
5326 #define ELF_MACHINE_CODE EM_L1OM
5327
5328 #undef ELF_OSABI
5329
5330 #undef elf64_bed
5331 #define elf64_bed elf64_l1om_bed
5332
5333 #undef elf_backend_object_p
5334 #define elf_backend_object_p elf64_l1om_elf_object_p
5335
5336 /* Restore defaults. */
5337 #undef ELF_MAXPAGESIZE
5338 #undef ELF_MINPAGESIZE
5339 #undef ELF_COMMONPAGESIZE
5340 #define ELF_MAXPAGESIZE 0x200000
5341 #define ELF_MINPAGESIZE 0x1000
5342 #define ELF_COMMONPAGESIZE 0x1000
5343 #undef elf_backend_plt_alignment
5344 #define elf_backend_plt_alignment 4
5345 #undef elf_backend_arch_data
5346 #define elf_backend_arch_data &elf_x86_64_arch_bed
5347
5348 #include "elf64-target.h"
5349
5350 /* FreeBSD L1OM support. */
5351
5352 #undef TARGET_LITTLE_SYM
5353 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5354 #undef TARGET_LITTLE_NAME
5355 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5356
5357 #undef ELF_OSABI
5358 #define ELF_OSABI ELFOSABI_FREEBSD
5359
5360 #undef elf64_bed
5361 #define elf64_bed elf64_l1om_fbsd_bed
5362
5363 #include "elf64-target.h"
5364
5365 /* Intel K1OM support. */
5366
5367 static bfd_boolean
5368 elf64_k1om_elf_object_p (bfd *abfd)
5369 {
5370 /* Set the right machine number for an K1OM elf64 file. */
5371 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5372 return TRUE;
5373 }
5374
5375 #undef TARGET_LITTLE_SYM
5376 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5377 #undef TARGET_LITTLE_NAME
5378 #define TARGET_LITTLE_NAME "elf64-k1om"
5379 #undef ELF_ARCH
5380 #define ELF_ARCH bfd_arch_k1om
5381
5382 #undef ELF_MACHINE_CODE
5383 #define ELF_MACHINE_CODE EM_K1OM
5384
5385 #undef ELF_OSABI
5386
5387 #undef elf64_bed
5388 #define elf64_bed elf64_k1om_bed
5389
5390 #undef elf_backend_object_p
5391 #define elf_backend_object_p elf64_k1om_elf_object_p
5392
5393 #undef elf_backend_static_tls_alignment
5394
5395 #undef elf_backend_want_plt_sym
5396 #define elf_backend_want_plt_sym 0
5397
5398 #include "elf64-target.h"
5399
5400 /* FreeBSD K1OM support. */
5401
5402 #undef TARGET_LITTLE_SYM
5403 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5404 #undef TARGET_LITTLE_NAME
5405 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5406
5407 #undef ELF_OSABI
5408 #define ELF_OSABI ELFOSABI_FREEBSD
5409
5410 #undef elf64_bed
5411 #define elf64_bed elf64_k1om_fbsd_bed
5412
5413 #include "elf64-target.h"
5414
5415 /* 32bit x86-64 support. */
5416
5417 #undef TARGET_LITTLE_SYM
5418 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5419 #undef TARGET_LITTLE_NAME
5420 #define TARGET_LITTLE_NAME "elf32-x86-64"
5421 #undef elf32_bed
5422
5423 #undef ELF_ARCH
5424 #define ELF_ARCH bfd_arch_i386
5425
5426 #undef ELF_MACHINE_CODE
5427 #define ELF_MACHINE_CODE EM_X86_64
5428
5429 #undef ELF_OSABI
5430
5431 #undef elf_backend_object_p
5432 #define elf_backend_object_p \
5433 elf32_x86_64_elf_object_p
5434
5435 #undef elf_backend_bfd_from_remote_memory
5436 #define elf_backend_bfd_from_remote_memory \
5437 _bfd_elf32_bfd_from_remote_memory
5438
5439 #undef elf_backend_size_info
5440 #define elf_backend_size_info \
5441 _bfd_elf32_size_info
5442
5443 #include "elf32-target.h"
This page took 0.136431 seconds and 5 git commands to generate.