2009-06-13 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #include "elf/x86-64.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table[] =
41 {
42 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
43 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
44 FALSE),
45 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
46 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
47 FALSE),
48 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
50 TRUE),
51 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
53 FALSE),
54 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
55 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
56 TRUE),
57 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
59 FALSE),
60 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
62 MINUS_ONE, FALSE),
63 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
65 MINUS_ONE, FALSE),
66 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
68 MINUS_ONE, FALSE),
69 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
71 0xffffffff, TRUE),
72 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
73 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
76 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
77 FALSE),
78 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
80 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
82 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
84 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
86 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
88 MINUS_ONE, FALSE),
89 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
91 MINUS_ONE, FALSE),
92 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
94 MINUS_ONE, FALSE),
95 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
97 0xffffffff, TRUE),
98 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
99 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
100 0xffffffff, TRUE),
101 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
103 0xffffffff, FALSE),
104 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
106 0xffffffff, TRUE),
107 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
109 0xffffffff, FALSE),
110 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
112 TRUE),
113 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
115 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
116 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
118 FALSE, 0xffffffff, 0xffffffff, TRUE),
119 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
121 FALSE),
122 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
124 MINUS_ONE, TRUE),
125 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
127 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
128 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
130 MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
133 MINUS_ONE, FALSE),
134 EMPTY_HOWTO (32),
135 EMPTY_HOWTO (33),
136 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
137 complain_overflow_bitfield, bfd_elf_generic_reloc,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE, 0xffffffff, 0xffffffff, TRUE),
140 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
141 complain_overflow_dont, bfd_elf_generic_reloc,
142 "R_X86_64_TLSDESC_CALL",
143 FALSE, 0, 0, FALSE),
144 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
145 complain_overflow_bitfield, bfd_elf_generic_reloc,
146 "R_X86_64_TLSDESC",
147 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
149 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
158
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
161 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
162
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
165 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
166 FALSE)
167 };
168
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
174
175 /* Map BFD relocs to the x86_64 elf relocs. */
176 struct elf_reloc_map
177 {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180 };
181
182 static const struct elf_reloc_map x86_64_reloc_map[] =
183 {
184 { BFD_RELOC_NONE, R_X86_64_NONE, },
185 { BFD_RELOC_64, R_X86_64_64, },
186 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
187 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
188 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
189 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
190 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
191 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
192 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
193 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
194 { BFD_RELOC_32, R_X86_64_32, },
195 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
196 { BFD_RELOC_16, R_X86_64_16, },
197 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
198 { BFD_RELOC_8, R_X86_64_8, },
199 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
200 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
201 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
202 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
203 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
204 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
205 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
206 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
207 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
208 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
209 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
210 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
211 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
212 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
213 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
214 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
215 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
218 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
219 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
220 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
221 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
222 };
223
224 static reloc_howto_type *
225 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
226 {
227 unsigned i;
228
229 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type >= (unsigned int) R_X86_64_max)
231 {
232 if (r_type >= (unsigned int) R_X86_64_standard)
233 {
234 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
235 abfd, (int) r_type);
236 r_type = R_X86_64_NONE;
237 }
238 i = r_type;
239 }
240 else
241 i = r_type - (unsigned int) R_X86_64_vt_offset;
242 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
243 return &x86_64_elf_howto_table[i];
244 }
245
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type *
248 elf64_x86_64_reloc_type_lookup (bfd *abfd,
249 bfd_reloc_code_real_type code)
250 {
251 unsigned int i;
252
253 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
254 i++)
255 {
256 if (x86_64_reloc_map[i].bfd_reloc_val == code)
257 return elf64_x86_64_rtype_to_howto (abfd,
258 x86_64_reloc_map[i].elf_reloc_val);
259 }
260 return 0;
261 }
262
263 static reloc_howto_type *
264 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
265 const char *r_name)
266 {
267 unsigned int i;
268
269 for (i = 0;
270 i < (sizeof (x86_64_elf_howto_table)
271 / sizeof (x86_64_elf_howto_table[0]));
272 i++)
273 if (x86_64_elf_howto_table[i].name != NULL
274 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
275 return &x86_64_elf_howto_table[i];
276
277 return NULL;
278 }
279
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
281
282 static void
283 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
284 Elf_Internal_Rela *dst)
285 {
286 unsigned r_type;
287
288 r_type = ELF64_R_TYPE (dst->r_info);
289 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
290 BFD_ASSERT (r_type == cache_ptr->howto->type);
291 }
292 \f
293 /* Support for core dump NOTE sections. */
294 static bfd_boolean
295 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
296 {
297 int offset;
298 size_t size;
299
300 switch (note->descsz)
301 {
302 default:
303 return FALSE;
304
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
306 /* pr_cursig */
307 elf_tdata (abfd)->core_signal
308 = bfd_get_16 (abfd, note->descdata + 12);
309
310 /* pr_pid */
311 elf_tdata (abfd)->core_pid
312 = bfd_get_32 (abfd, note->descdata + 32);
313
314 /* pr_reg */
315 offset = 112;
316 size = 216;
317
318 break;
319 }
320
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
323 size, note->descpos + offset);
324 }
325
326 static bfd_boolean
327 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
328 {
329 switch (note->descsz)
330 {
331 default:
332 return FALSE;
333
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd)->core_program
336 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
337 elf_tdata (abfd)->core_command
338 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
339 }
340
341 /* Note that for some reason, a spurious space is tacked
342 onto the end of the args in some (at least one anyway)
343 implementations, so strip it off if it exists. */
344
345 {
346 char *command = elf_tdata (abfd)->core_command;
347 int n = strlen (command);
348
349 if (0 < n && command[n - 1] == ' ')
350 command[n - 1] = '\0';
351 }
352
353 return TRUE;
354 }
355 \f
356 /* Functions for the x86-64 ELF linker. */
357
358 /* The name of the dynamic interpreter. This is put in the .interp
359 section. */
360
361 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
362
363 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
364 copying dynamic variables from a shared lib into an app's dynbss
365 section, and instead use a dynamic relocation to point into the
366 shared lib. */
367 #define ELIMINATE_COPY_RELOCS 1
368
369 /* The size in bytes of an entry in the global offset table. */
370
371 #define GOT_ENTRY_SIZE 8
372
373 /* The size in bytes of an entry in the procedure linkage table. */
374
375 #define PLT_ENTRY_SIZE 16
376
377 /* The first entry in a procedure linkage table looks like this. See the
378 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
379
380 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
381 {
382 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
383 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
384 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
385 };
386
387 /* Subsequent entries in a procedure linkage table look like this. */
388
389 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
390 {
391 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
392 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
393 0x68, /* pushq immediate */
394 0, 0, 0, 0, /* replaced with index into relocation table. */
395 0xe9, /* jmp relative */
396 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
397 };
398
399 /* The x86-64 linker needs to keep track of the number of relocs that
400 it decides to copy as dynamic relocs in check_relocs for each symbol.
401 This is so that it can later discard them if they are found to be
402 unnecessary. We store the information in a field extending the
403 regular ELF linker hash table. */
404
405 struct elf64_x86_64_dyn_relocs
406 {
407 /* Next section. */
408 struct elf64_x86_64_dyn_relocs *next;
409
410 /* The input section of the reloc. */
411 asection *sec;
412
413 /* Total number of relocs copied for the input section. */
414 bfd_size_type count;
415
416 /* Number of pc-relative relocs copied for the input section. */
417 bfd_size_type pc_count;
418 };
419
420 /* x86-64 ELF linker hash entry. */
421
422 struct elf64_x86_64_link_hash_entry
423 {
424 struct elf_link_hash_entry elf;
425
426 /* Track dynamic relocs copied for this symbol. */
427 struct elf64_x86_64_dyn_relocs *dyn_relocs;
428
429 #define GOT_UNKNOWN 0
430 #define GOT_NORMAL 1
431 #define GOT_TLS_GD 2
432 #define GOT_TLS_IE 3
433 #define GOT_TLS_GDESC 4
434 #define GOT_TLS_GD_BOTH_P(type) \
435 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
436 #define GOT_TLS_GD_P(type) \
437 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
438 #define GOT_TLS_GDESC_P(type) \
439 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
440 #define GOT_TLS_GD_ANY_P(type) \
441 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
442 unsigned char tls_type;
443
444 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
445 starting at the end of the jump table. */
446 bfd_vma tlsdesc_got;
447 };
448
449 #define elf64_x86_64_hash_entry(ent) \
450 ((struct elf64_x86_64_link_hash_entry *)(ent))
451
452 struct elf64_x86_64_obj_tdata
453 {
454 struct elf_obj_tdata root;
455
456 /* tls_type for each local got entry. */
457 char *local_got_tls_type;
458
459 /* GOTPLT entries for TLS descriptors. */
460 bfd_vma *local_tlsdesc_gotent;
461 };
462
463 #define elf64_x86_64_tdata(abfd) \
464 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
465
466 #define elf64_x86_64_local_got_tls_type(abfd) \
467 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
468
469 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
470 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
471
472 #define is_x86_64_elf(bfd) \
473 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
474 && elf_tdata (bfd) != NULL \
475 && elf_object_id (bfd) == X86_64_ELF_TDATA)
476
477 static bfd_boolean
478 elf64_x86_64_mkobject (bfd *abfd)
479 {
480 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
481 X86_64_ELF_TDATA);
482 }
483
484 /* x86-64 ELF linker hash table. */
485
486 struct elf64_x86_64_link_hash_table
487 {
488 struct elf_link_hash_table elf;
489
490 /* Short-cuts to get to dynamic linker sections. */
491 asection *sgot;
492 asection *sgotplt;
493 asection *srelgot;
494 asection *splt;
495 asection *srelplt;
496 asection *sdynbss;
497 asection *srelbss;
498 asection *igotplt;
499 asection *iplt;
500 asection *irelplt;
501 asection *irelifunc;
502
503 /* The offset into splt of the PLT entry for the TLS descriptor
504 resolver. Special values are 0, if not necessary (or not found
505 to be necessary yet), and -1 if needed but not determined
506 yet. */
507 bfd_vma tlsdesc_plt;
508 /* The offset into sgot of the GOT entry used by the PLT entry
509 above. */
510 bfd_vma tlsdesc_got;
511
512 union {
513 bfd_signed_vma refcount;
514 bfd_vma offset;
515 } tls_ld_got;
516
517 /* The amount of space used by the jump slots in the GOT. */
518 bfd_vma sgotplt_jump_table_size;
519
520 /* Small local sym to section mapping cache. */
521 struct sym_sec_cache sym_sec;
522
523 /* _TLS_MODULE_BASE_ symbol. */
524 struct bfd_link_hash_entry *tls_module_base;
525
526 /* Used by local STT_GNU_IFUNC symbols. */
527 htab_t loc_hash_table;
528 void *loc_hash_memory;
529 };
530
531 /* Get the x86-64 ELF linker hash table from a link_info structure. */
532
533 #define elf64_x86_64_hash_table(p) \
534 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
535
536 #define elf64_x86_64_compute_jump_table_size(htab) \
537 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
538
539 /* Create an entry in an x86-64 ELF linker hash table. */
540
541 static struct bfd_hash_entry *
542 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
543 struct bfd_hash_table *table,
544 const char *string)
545 {
546 /* Allocate the structure if it has not already been allocated by a
547 subclass. */
548 if (entry == NULL)
549 {
550 entry = bfd_hash_allocate (table,
551 sizeof (struct elf64_x86_64_link_hash_entry));
552 if (entry == NULL)
553 return entry;
554 }
555
556 /* Call the allocation method of the superclass. */
557 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
558 if (entry != NULL)
559 {
560 struct elf64_x86_64_link_hash_entry *eh;
561
562 eh = (struct elf64_x86_64_link_hash_entry *) entry;
563 eh->dyn_relocs = NULL;
564 eh->tls_type = GOT_UNKNOWN;
565 eh->tlsdesc_got = (bfd_vma) -1;
566 }
567
568 return entry;
569 }
570
571 static hashval_t
572 elf64_x86_64_local_hash (int id, int r_sym)
573 {
574 return ((((id & 0xff) << 24) | ((id & 0xff00) << 8))
575 ^ r_sym ^ (id >> 16));
576 }
577
578 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
579 for local symbol so that we can handle local STT_GNU_IFUNC symbols
580 as global symbol. We reuse indx and dynstr_index for local symbol
581 hash since they aren't used by global symbols in this backend. */
582
583 static hashval_t
584 elf64_x86_64_local_htab_hash (const void *ptr)
585 {
586 struct elf_link_hash_entry *h
587 = (struct elf_link_hash_entry *) ptr;
588 return elf64_x86_64_local_hash (h->indx, h->dynstr_index);
589 }
590
591 /* Compare local hash entries. */
592
593 static int
594 elf64_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
595 {
596 struct elf_link_hash_entry *h1
597 = (struct elf_link_hash_entry *) ptr1;
598 struct elf_link_hash_entry *h2
599 = (struct elf_link_hash_entry *) ptr2;
600
601 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
602 }
603
604 /* Find and/or create a hash entry for local symbol. */
605
606 static struct elf_link_hash_entry *
607 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table *htab,
608 bfd *abfd, const Elf_Internal_Rela *rel,
609 bfd_boolean create)
610 {
611 struct elf64_x86_64_link_hash_entry e, *ret;
612 asection *sec = abfd->sections;
613 hashval_t h = elf64_x86_64_local_hash (sec->id,
614 ELF64_R_SYM (rel->r_info));
615 void **slot;
616
617 e.elf.indx = sec->id;
618 e.elf.dynstr_index = ELF64_R_SYM (rel->r_info);
619 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
620 create ? INSERT : NO_INSERT);
621
622 if (!slot)
623 return NULL;
624
625 if (*slot)
626 {
627 ret = (struct elf64_x86_64_link_hash_entry *) *slot;
628 return &ret->elf;
629 }
630
631 ret = (struct elf64_x86_64_link_hash_entry *)
632 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
633 sizeof (struct elf64_x86_64_link_hash_entry));
634 if (ret)
635 {
636 memset (ret, 0, sizeof (*ret));
637 ret->elf.indx = sec->id;
638 ret->elf.dynstr_index = ELF64_R_SYM (rel->r_info);
639 ret->elf.dynindx = -1;
640 ret->elf.plt.offset = (bfd_vma) -1;
641 ret->elf.got.offset = (bfd_vma) -1;
642 *slot = ret;
643 }
644 return &ret->elf;
645 }
646
647 /* Create an X86-64 ELF linker hash table. */
648
649 static struct bfd_link_hash_table *
650 elf64_x86_64_link_hash_table_create (bfd *abfd)
651 {
652 struct elf64_x86_64_link_hash_table *ret;
653 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
654
655 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
656 if (ret == NULL)
657 return NULL;
658
659 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
660 elf64_x86_64_link_hash_newfunc,
661 sizeof (struct elf64_x86_64_link_hash_entry)))
662 {
663 free (ret);
664 return NULL;
665 }
666
667 ret->sgot = NULL;
668 ret->sgotplt = NULL;
669 ret->srelgot = NULL;
670 ret->splt = NULL;
671 ret->srelplt = NULL;
672 ret->sdynbss = NULL;
673 ret->srelbss = NULL;
674 ret->igotplt= NULL;
675 ret->iplt = NULL;
676 ret->irelplt= NULL;
677 ret->irelifunc = NULL;
678 ret->sym_sec.abfd = NULL;
679 ret->tlsdesc_plt = 0;
680 ret->tlsdesc_got = 0;
681 ret->tls_ld_got.refcount = 0;
682 ret->sgotplt_jump_table_size = 0;
683 ret->tls_module_base = NULL;
684
685 ret->loc_hash_table = htab_try_create (1024,
686 elf64_x86_64_local_htab_hash,
687 elf64_x86_64_local_htab_eq,
688 NULL);
689 ret->loc_hash_memory = objalloc_create ();
690 if (!ret->loc_hash_table || !ret->loc_hash_memory)
691 {
692 free (ret);
693 return NULL;
694 }
695
696 return &ret->elf.root;
697 }
698
699 /* Destroy an X86-64 ELF linker hash table. */
700
701 static void
702 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
703 {
704 struct elf64_x86_64_link_hash_table *htab
705 = (struct elf64_x86_64_link_hash_table *) hash;
706
707 if (htab->loc_hash_table)
708 htab_delete (htab->loc_hash_table);
709 if (htab->loc_hash_memory)
710 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
711 _bfd_generic_link_hash_table_free (hash);
712 }
713
714 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
715 shortcuts to them in our hash table. */
716
717 static bfd_boolean
718 elf64_x86_64_create_got_section (bfd *dynobj, struct bfd_link_info *info)
719 {
720 struct elf64_x86_64_link_hash_table *htab;
721
722 if (! _bfd_elf_create_got_section (dynobj, info))
723 return FALSE;
724
725 htab = elf64_x86_64_hash_table (info);
726 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
727 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
728 if (!htab->sgot || !htab->sgotplt)
729 abort ();
730
731 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
732 (SEC_ALLOC | SEC_LOAD
733 | SEC_HAS_CONTENTS
734 | SEC_IN_MEMORY
735 | SEC_LINKER_CREATED
736 | SEC_READONLY));
737 if (htab->srelgot == NULL
738 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
739 return FALSE;
740 return TRUE;
741 }
742
743 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
744 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
745 hash table. */
746
747 static bfd_boolean
748 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
749 {
750 struct elf64_x86_64_link_hash_table *htab;
751
752 htab = elf64_x86_64_hash_table (info);
753 if (!htab->sgot && !elf64_x86_64_create_got_section (dynobj, info))
754 return FALSE;
755
756 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
757 return FALSE;
758
759 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
760 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
761 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
762 if (!info->shared)
763 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
764
765 if (!htab->splt || !htab->srelplt || !htab->sdynbss
766 || (!info->shared && !htab->srelbss))
767 abort ();
768
769 return TRUE;
770 }
771
772 /* Copy the extra info we tack onto an elf_link_hash_entry. */
773
774 static void
775 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
776 struct elf_link_hash_entry *dir,
777 struct elf_link_hash_entry *ind)
778 {
779 struct elf64_x86_64_link_hash_entry *edir, *eind;
780
781 edir = (struct elf64_x86_64_link_hash_entry *) dir;
782 eind = (struct elf64_x86_64_link_hash_entry *) ind;
783
784 if (eind->dyn_relocs != NULL)
785 {
786 if (edir->dyn_relocs != NULL)
787 {
788 struct elf64_x86_64_dyn_relocs **pp;
789 struct elf64_x86_64_dyn_relocs *p;
790
791 /* Add reloc counts against the indirect sym to the direct sym
792 list. Merge any entries against the same section. */
793 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
794 {
795 struct elf64_x86_64_dyn_relocs *q;
796
797 for (q = edir->dyn_relocs; q != NULL; q = q->next)
798 if (q->sec == p->sec)
799 {
800 q->pc_count += p->pc_count;
801 q->count += p->count;
802 *pp = p->next;
803 break;
804 }
805 if (q == NULL)
806 pp = &p->next;
807 }
808 *pp = edir->dyn_relocs;
809 }
810
811 edir->dyn_relocs = eind->dyn_relocs;
812 eind->dyn_relocs = NULL;
813 }
814
815 if (ind->root.type == bfd_link_hash_indirect
816 && dir->got.refcount <= 0)
817 {
818 edir->tls_type = eind->tls_type;
819 eind->tls_type = GOT_UNKNOWN;
820 }
821
822 if (ELIMINATE_COPY_RELOCS
823 && ind->root.type != bfd_link_hash_indirect
824 && dir->dynamic_adjusted)
825 {
826 /* If called to transfer flags for a weakdef during processing
827 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
828 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
829 dir->ref_dynamic |= ind->ref_dynamic;
830 dir->ref_regular |= ind->ref_regular;
831 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
832 dir->needs_plt |= ind->needs_plt;
833 dir->pointer_equality_needed |= ind->pointer_equality_needed;
834 }
835 else
836 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
837 }
838
839 static bfd_boolean
840 elf64_x86_64_elf_object_p (bfd *abfd)
841 {
842 /* Set the right machine number for an x86-64 elf64 file. */
843 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
844 return TRUE;
845 }
846
847 typedef union
848 {
849 unsigned char c[2];
850 uint16_t i;
851 }
852 x86_64_opcode16;
853
854 typedef union
855 {
856 unsigned char c[4];
857 uint32_t i;
858 }
859 x86_64_opcode32;
860
861 /* Return TRUE if the TLS access code sequence support transition
862 from R_TYPE. */
863
864 static bfd_boolean
865 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
866 bfd_byte *contents,
867 Elf_Internal_Shdr *symtab_hdr,
868 struct elf_link_hash_entry **sym_hashes,
869 unsigned int r_type,
870 const Elf_Internal_Rela *rel,
871 const Elf_Internal_Rela *relend)
872 {
873 unsigned int val;
874 unsigned long r_symndx;
875 struct elf_link_hash_entry *h;
876 bfd_vma offset;
877
878 /* Get the section contents. */
879 if (contents == NULL)
880 {
881 if (elf_section_data (sec)->this_hdr.contents != NULL)
882 contents = elf_section_data (sec)->this_hdr.contents;
883 else
884 {
885 /* FIXME: How to better handle error condition? */
886 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
887 return FALSE;
888
889 /* Cache the section contents for elf_link_input_bfd. */
890 elf_section_data (sec)->this_hdr.contents = contents;
891 }
892 }
893
894 offset = rel->r_offset;
895 switch (r_type)
896 {
897 case R_X86_64_TLSGD:
898 case R_X86_64_TLSLD:
899 if ((rel + 1) >= relend)
900 return FALSE;
901
902 if (r_type == R_X86_64_TLSGD)
903 {
904 /* Check transition from GD access model. Only
905 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
906 .word 0x6666; rex64; call __tls_get_addr
907 can transit to different access model. */
908
909 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
910 call = { { 0x66, 0x66, 0x48, 0xe8 } };
911 if (offset < 4
912 || (offset + 12) > sec->size
913 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
914 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
915 return FALSE;
916 }
917 else
918 {
919 /* Check transition from LD access model. Only
920 leaq foo@tlsld(%rip), %rdi;
921 call __tls_get_addr
922 can transit to different access model. */
923
924 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
925 x86_64_opcode32 op;
926
927 if (offset < 3 || (offset + 9) > sec->size)
928 return FALSE;
929
930 op.i = bfd_get_32 (abfd, contents + offset - 3);
931 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
932 if (op.i != ld.i)
933 return FALSE;
934 }
935
936 r_symndx = ELF64_R_SYM (rel[1].r_info);
937 if (r_symndx < symtab_hdr->sh_info)
938 return FALSE;
939
940 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
941 /* Use strncmp to check __tls_get_addr since __tls_get_addr
942 may be versioned. */
943 return (h != NULL
944 && h->root.root.string != NULL
945 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
946 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
947 && (strncmp (h->root.root.string,
948 "__tls_get_addr", 14) == 0));
949
950 case R_X86_64_GOTTPOFF:
951 /* Check transition from IE access model:
952 movq foo@gottpoff(%rip), %reg
953 addq foo@gottpoff(%rip), %reg
954 */
955
956 if (offset < 3 || (offset + 4) > sec->size)
957 return FALSE;
958
959 val = bfd_get_8 (abfd, contents + offset - 3);
960 if (val != 0x48 && val != 0x4c)
961 return FALSE;
962
963 val = bfd_get_8 (abfd, contents + offset - 2);
964 if (val != 0x8b && val != 0x03)
965 return FALSE;
966
967 val = bfd_get_8 (abfd, contents + offset - 1);
968 return (val & 0xc7) == 5;
969
970 case R_X86_64_GOTPC32_TLSDESC:
971 /* Check transition from GDesc access model:
972 leaq x@tlsdesc(%rip), %rax
973
974 Make sure it's a leaq adding rip to a 32-bit offset
975 into any register, although it's probably almost always
976 going to be rax. */
977
978 if (offset < 3 || (offset + 4) > sec->size)
979 return FALSE;
980
981 val = bfd_get_8 (abfd, contents + offset - 3);
982 if ((val & 0xfb) != 0x48)
983 return FALSE;
984
985 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
986 return FALSE;
987
988 val = bfd_get_8 (abfd, contents + offset - 1);
989 return (val & 0xc7) == 0x05;
990
991 case R_X86_64_TLSDESC_CALL:
992 /* Check transition from GDesc access model:
993 call *x@tlsdesc(%rax)
994 */
995 if (offset + 2 <= sec->size)
996 {
997 /* Make sure that it's a call *x@tlsdesc(%rax). */
998 static x86_64_opcode16 call = { { 0xff, 0x10 } };
999 return bfd_get_16 (abfd, contents + offset) == call.i;
1000 }
1001
1002 return FALSE;
1003
1004 default:
1005 abort ();
1006 }
1007 }
1008
1009 /* Return TRUE if the TLS access transition is OK or no transition
1010 will be performed. Update R_TYPE if there is a transition. */
1011
1012 static bfd_boolean
1013 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1014 asection *sec, bfd_byte *contents,
1015 Elf_Internal_Shdr *symtab_hdr,
1016 struct elf_link_hash_entry **sym_hashes,
1017 unsigned int *r_type, int tls_type,
1018 const Elf_Internal_Rela *rel,
1019 const Elf_Internal_Rela *relend,
1020 struct elf_link_hash_entry *h)
1021 {
1022 unsigned int from_type = *r_type;
1023 unsigned int to_type = from_type;
1024 bfd_boolean check = TRUE;
1025
1026 switch (from_type)
1027 {
1028 case R_X86_64_TLSGD:
1029 case R_X86_64_GOTPC32_TLSDESC:
1030 case R_X86_64_TLSDESC_CALL:
1031 case R_X86_64_GOTTPOFF:
1032 if (!info->shared)
1033 {
1034 if (h == NULL)
1035 to_type = R_X86_64_TPOFF32;
1036 else
1037 to_type = R_X86_64_GOTTPOFF;
1038 }
1039
1040 /* When we are called from elf64_x86_64_relocate_section,
1041 CONTENTS isn't NULL and there may be additional transitions
1042 based on TLS_TYPE. */
1043 if (contents != NULL)
1044 {
1045 unsigned int new_to_type = to_type;
1046
1047 if (!info->shared
1048 && h != NULL
1049 && h->dynindx == -1
1050 && tls_type == GOT_TLS_IE)
1051 new_to_type = R_X86_64_TPOFF32;
1052
1053 if (to_type == R_X86_64_TLSGD
1054 || to_type == R_X86_64_GOTPC32_TLSDESC
1055 || to_type == R_X86_64_TLSDESC_CALL)
1056 {
1057 if (tls_type == GOT_TLS_IE)
1058 new_to_type = R_X86_64_GOTTPOFF;
1059 }
1060
1061 /* We checked the transition before when we were called from
1062 elf64_x86_64_check_relocs. We only want to check the new
1063 transition which hasn't been checked before. */
1064 check = new_to_type != to_type && from_type == to_type;
1065 to_type = new_to_type;
1066 }
1067
1068 break;
1069
1070 case R_X86_64_TLSLD:
1071 if (!info->shared)
1072 to_type = R_X86_64_TPOFF32;
1073 break;
1074
1075 default:
1076 return TRUE;
1077 }
1078
1079 /* Return TRUE if there is no transition. */
1080 if (from_type == to_type)
1081 return TRUE;
1082
1083 /* Check if the transition can be performed. */
1084 if (check
1085 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
1086 symtab_hdr, sym_hashes,
1087 from_type, rel, relend))
1088 {
1089 reloc_howto_type *from, *to;
1090
1091 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
1092 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
1093
1094 (*_bfd_error_handler)
1095 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1096 "in section `%A' failed"),
1097 abfd, sec, from->name, to->name,
1098 h ? h->root.root.string : "a local symbol",
1099 (unsigned long) rel->r_offset);
1100 bfd_set_error (bfd_error_bad_value);
1101 return FALSE;
1102 }
1103
1104 *r_type = to_type;
1105 return TRUE;
1106 }
1107
1108 /* Look through the relocs for a section during the first phase, and
1109 calculate needed space in the global offset table, procedure
1110 linkage table, and dynamic reloc sections. */
1111
1112 static bfd_boolean
1113 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1114 asection *sec,
1115 const Elf_Internal_Rela *relocs)
1116 {
1117 struct elf64_x86_64_link_hash_table *htab;
1118 Elf_Internal_Shdr *symtab_hdr;
1119 struct elf_link_hash_entry **sym_hashes;
1120 const Elf_Internal_Rela *rel;
1121 const Elf_Internal_Rela *rel_end;
1122 asection *sreloc;
1123 Elf_Internal_Sym *isymbuf;
1124
1125 if (info->relocatable)
1126 return TRUE;
1127
1128 BFD_ASSERT (is_x86_64_elf (abfd));
1129
1130 htab = elf64_x86_64_hash_table (info);
1131 symtab_hdr = &elf_symtab_hdr (abfd);
1132 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1133 sym_hashes = elf_sym_hashes (abfd);
1134
1135 sreloc = NULL;
1136
1137 rel_end = relocs + sec->reloc_count;
1138 for (rel = relocs; rel < rel_end; rel++)
1139 {
1140 unsigned int r_type;
1141 unsigned long r_symndx;
1142 struct elf_link_hash_entry *h;
1143
1144 r_symndx = ELF64_R_SYM (rel->r_info);
1145 r_type = ELF64_R_TYPE (rel->r_info);
1146
1147 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1148 {
1149 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1150 abfd, r_symndx);
1151 return FALSE;
1152 }
1153
1154 if (r_symndx < symtab_hdr->sh_info)
1155 {
1156 /* A local symbol. */
1157 Elf_Internal_Sym *isym;
1158
1159 /* Read this BFD's local symbols. */
1160 if (isymbuf == NULL)
1161 {
1162 if (isymbuf == NULL)
1163 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1164 symtab_hdr->sh_info, 0,
1165 NULL, NULL, NULL);
1166 if (isymbuf == NULL)
1167 return FALSE;
1168 }
1169
1170 /* Check relocation against local STT_GNU_IFUNC symbol. */
1171 isym = isymbuf + r_symndx;
1172 if (ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1173 {
1174 h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1175 TRUE);
1176 if (h == NULL)
1177 return FALSE;
1178
1179 /* Fake a STT_GNU_IFUNC symbol. */
1180 h->type = STT_GNU_IFUNC;
1181 h->def_regular = 1;
1182 h->ref_regular = 1;
1183 h->forced_local = 1;
1184 h->root.type = bfd_link_hash_defined;
1185 }
1186 else
1187 h = NULL;
1188 }
1189 else
1190 {
1191 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1192 while (h->root.type == bfd_link_hash_indirect
1193 || h->root.type == bfd_link_hash_warning)
1194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1195 }
1196
1197 if (h != NULL)
1198 {
1199 /* Create the ifunc sections for static executables. If we
1200 never see an indirect function symbol nor we are building
1201 a static executable, those sections will be empty and
1202 won't appear in output. */
1203 switch (r_type)
1204 {
1205 default:
1206 break;
1207
1208 case R_X86_64_32S:
1209 case R_X86_64_32:
1210 case R_X86_64_64:
1211 case R_X86_64_PC32:
1212 case R_X86_64_PC64:
1213 case R_X86_64_PLT32:
1214 case R_X86_64_GOTPCREL:
1215 case R_X86_64_GOTPCREL64:
1216 if (htab->irelifunc == NULL && htab->iplt == NULL)
1217 {
1218 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1219 return FALSE;
1220
1221 if (info->shared)
1222 {
1223 htab->irelifunc = bfd_get_section_by_name (abfd,
1224 ".rela.ifunc");
1225 if (!htab->irelifunc)
1226 abort ();
1227 }
1228 else
1229 {
1230 htab->iplt = bfd_get_section_by_name (abfd, ".iplt");
1231 htab->irelplt = bfd_get_section_by_name (abfd,
1232 ".rela.iplt");
1233 htab->igotplt = bfd_get_section_by_name (abfd,
1234 ".igot.plt");
1235 if (!htab->iplt
1236 || !htab->irelplt
1237 || !htab->igotplt)
1238 abort ();
1239 }
1240 }
1241 break;
1242 }
1243
1244 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1245 it here if it is defined in a non-shared object. */
1246 if (h->type == STT_GNU_IFUNC
1247 && h->def_regular)
1248 {
1249 /* It is referenced by a non-shared object. */
1250 h->ref_regular = 1;
1251
1252 /* STT_GNU_IFUNC symbol must go through PLT. */
1253 h->plt.refcount += 1;
1254
1255 /* STT_GNU_IFUNC needs dynamic sections. */
1256 if (htab->elf.dynobj == NULL)
1257 htab->elf.dynobj = abfd;
1258
1259 switch (r_type)
1260 {
1261 default:
1262 (*_bfd_error_handler)
1263 (_("%B: relocation %s against STT_GNU_IFUNC "
1264 "symbol `%s' isn't handled by %s"), abfd,
1265 x86_64_elf_howto_table[r_type].name,
1266 (h->root.root.string
1267 ? h->root.root.string : "a local symbol"),
1268 __FUNCTION__);
1269 bfd_set_error (bfd_error_bad_value);
1270 return FALSE;
1271
1272 case R_X86_64_64:
1273 h->non_got_ref = 1;
1274 h->pointer_equality_needed = 1;
1275 if (info->shared)
1276 {
1277 struct elf64_x86_64_dyn_relocs *p;
1278 struct elf64_x86_64_dyn_relocs **head;
1279
1280 /* We must copy these reloc types into the output
1281 file. Create a reloc section in dynobj and
1282 make room for this reloc. */
1283 if (sreloc == NULL)
1284 {
1285 if (htab->elf.dynobj == NULL)
1286 htab->elf.dynobj = abfd;
1287
1288 sreloc = _bfd_elf_make_dynamic_reloc_section
1289 (sec, htab->elf.dynobj, 3, abfd, TRUE);
1290
1291 if (sreloc == NULL)
1292 return FALSE;
1293 }
1294
1295 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1296 p = *head;
1297 if (p == NULL || p->sec != sec)
1298 {
1299 bfd_size_type amt = sizeof *p;
1300
1301 p = ((struct elf64_x86_64_dyn_relocs *)
1302 bfd_alloc (htab->elf.dynobj, amt));
1303 if (p == NULL)
1304 return FALSE;
1305 p->next = *head;
1306 *head = p;
1307 p->sec = sec;
1308 p->count = 0;
1309 p->pc_count = 0;
1310 }
1311 p->count += 1;
1312 }
1313 break;
1314
1315 case R_X86_64_32S:
1316 case R_X86_64_32:
1317 case R_X86_64_PC32:
1318 case R_X86_64_PC64:
1319 h->non_got_ref = 1;
1320 if (r_type != R_X86_64_PC32
1321 && r_type != R_X86_64_PC64)
1322 h->pointer_equality_needed = 1;
1323 break;
1324
1325 case R_X86_64_PLT32:
1326 break;
1327
1328 case R_X86_64_GOTPCREL:
1329 case R_X86_64_GOTPCREL64:
1330 h->got.refcount += 1;
1331 if (htab->sgot == NULL
1332 && !elf64_x86_64_create_got_section (htab->elf.dynobj,
1333 info))
1334 return FALSE;
1335 break;
1336 }
1337
1338 continue;
1339 }
1340 }
1341
1342 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1343 symtab_hdr, sym_hashes,
1344 &r_type, GOT_UNKNOWN,
1345 rel, rel_end, h))
1346 return FALSE;
1347
1348 switch (r_type)
1349 {
1350 case R_X86_64_TLSLD:
1351 htab->tls_ld_got.refcount += 1;
1352 goto create_got;
1353
1354 case R_X86_64_TPOFF32:
1355 if (info->shared)
1356 {
1357 (*_bfd_error_handler)
1358 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1359 abfd,
1360 x86_64_elf_howto_table[r_type].name,
1361 (h) ? h->root.root.string : "a local symbol");
1362 bfd_set_error (bfd_error_bad_value);
1363 return FALSE;
1364 }
1365 break;
1366
1367 case R_X86_64_GOTTPOFF:
1368 if (info->shared)
1369 info->flags |= DF_STATIC_TLS;
1370 /* Fall through */
1371
1372 case R_X86_64_GOT32:
1373 case R_X86_64_GOTPCREL:
1374 case R_X86_64_TLSGD:
1375 case R_X86_64_GOT64:
1376 case R_X86_64_GOTPCREL64:
1377 case R_X86_64_GOTPLT64:
1378 case R_X86_64_GOTPC32_TLSDESC:
1379 case R_X86_64_TLSDESC_CALL:
1380 /* This symbol requires a global offset table entry. */
1381 {
1382 int tls_type, old_tls_type;
1383
1384 switch (r_type)
1385 {
1386 default: tls_type = GOT_NORMAL; break;
1387 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1388 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1389 case R_X86_64_GOTPC32_TLSDESC:
1390 case R_X86_64_TLSDESC_CALL:
1391 tls_type = GOT_TLS_GDESC; break;
1392 }
1393
1394 if (h != NULL)
1395 {
1396 if (r_type == R_X86_64_GOTPLT64)
1397 {
1398 /* This relocation indicates that we also need
1399 a PLT entry, as this is a function. We don't need
1400 a PLT entry for local symbols. */
1401 h->needs_plt = 1;
1402 h->plt.refcount += 1;
1403 }
1404 h->got.refcount += 1;
1405 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1406 }
1407 else
1408 {
1409 bfd_signed_vma *local_got_refcounts;
1410
1411 /* This is a global offset table entry for a local symbol. */
1412 local_got_refcounts = elf_local_got_refcounts (abfd);
1413 if (local_got_refcounts == NULL)
1414 {
1415 bfd_size_type size;
1416
1417 size = symtab_hdr->sh_info;
1418 size *= sizeof (bfd_signed_vma)
1419 + sizeof (bfd_vma) + sizeof (char);
1420 local_got_refcounts = ((bfd_signed_vma *)
1421 bfd_zalloc (abfd, size));
1422 if (local_got_refcounts == NULL)
1423 return FALSE;
1424 elf_local_got_refcounts (abfd) = local_got_refcounts;
1425 elf64_x86_64_local_tlsdesc_gotent (abfd)
1426 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1427 elf64_x86_64_local_got_tls_type (abfd)
1428 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1429 }
1430 local_got_refcounts[r_symndx] += 1;
1431 old_tls_type
1432 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1433 }
1434
1435 /* If a TLS symbol is accessed using IE at least once,
1436 there is no point to use dynamic model for it. */
1437 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1438 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1439 || tls_type != GOT_TLS_IE))
1440 {
1441 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1442 tls_type = old_tls_type;
1443 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1444 && GOT_TLS_GD_ANY_P (tls_type))
1445 tls_type |= old_tls_type;
1446 else
1447 {
1448 (*_bfd_error_handler)
1449 (_("%B: '%s' accessed both as normal and thread local symbol"),
1450 abfd, h ? h->root.root.string : "<local>");
1451 return FALSE;
1452 }
1453 }
1454
1455 if (old_tls_type != tls_type)
1456 {
1457 if (h != NULL)
1458 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1459 else
1460 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1461 }
1462 }
1463 /* Fall through */
1464
1465 case R_X86_64_GOTOFF64:
1466 case R_X86_64_GOTPC32:
1467 case R_X86_64_GOTPC64:
1468 create_got:
1469 if (htab->sgot == NULL)
1470 {
1471 if (htab->elf.dynobj == NULL)
1472 htab->elf.dynobj = abfd;
1473 if (!elf64_x86_64_create_got_section (htab->elf.dynobj,
1474 info))
1475 return FALSE;
1476 }
1477 break;
1478
1479 case R_X86_64_PLT32:
1480 /* This symbol requires a procedure linkage table entry. We
1481 actually build the entry in adjust_dynamic_symbol,
1482 because this might be a case of linking PIC code which is
1483 never referenced by a dynamic object, in which case we
1484 don't need to generate a procedure linkage table entry
1485 after all. */
1486
1487 /* If this is a local symbol, we resolve it directly without
1488 creating a procedure linkage table entry. */
1489 if (h == NULL)
1490 continue;
1491
1492 h->needs_plt = 1;
1493 h->plt.refcount += 1;
1494 break;
1495
1496 case R_X86_64_PLTOFF64:
1497 /* This tries to form the 'address' of a function relative
1498 to GOT. For global symbols we need a PLT entry. */
1499 if (h != NULL)
1500 {
1501 h->needs_plt = 1;
1502 h->plt.refcount += 1;
1503 }
1504 goto create_got;
1505
1506 case R_X86_64_8:
1507 case R_X86_64_16:
1508 case R_X86_64_32:
1509 case R_X86_64_32S:
1510 /* Let's help debug shared library creation. These relocs
1511 cannot be used in shared libs. Don't error out for
1512 sections we don't care about, such as debug sections or
1513 non-constant sections. */
1514 if (info->shared
1515 && (sec->flags & SEC_ALLOC) != 0
1516 && (sec->flags & SEC_READONLY) != 0)
1517 {
1518 (*_bfd_error_handler)
1519 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1520 abfd,
1521 x86_64_elf_howto_table[r_type].name,
1522 (h) ? h->root.root.string : "a local symbol");
1523 bfd_set_error (bfd_error_bad_value);
1524 return FALSE;
1525 }
1526 /* Fall through. */
1527
1528 case R_X86_64_PC8:
1529 case R_X86_64_PC16:
1530 case R_X86_64_PC32:
1531 case R_X86_64_PC64:
1532 case R_X86_64_64:
1533 if (h != NULL && info->executable)
1534 {
1535 /* If this reloc is in a read-only section, we might
1536 need a copy reloc. We can't check reliably at this
1537 stage whether the section is read-only, as input
1538 sections have not yet been mapped to output sections.
1539 Tentatively set the flag for now, and correct in
1540 adjust_dynamic_symbol. */
1541 h->non_got_ref = 1;
1542
1543 /* We may need a .plt entry if the function this reloc
1544 refers to is in a shared lib. */
1545 h->plt.refcount += 1;
1546 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1547 h->pointer_equality_needed = 1;
1548 }
1549
1550 /* If we are creating a shared library, and this is a reloc
1551 against a global symbol, or a non PC relative reloc
1552 against a local symbol, then we need to copy the reloc
1553 into the shared library. However, if we are linking with
1554 -Bsymbolic, we do not need to copy a reloc against a
1555 global symbol which is defined in an object we are
1556 including in the link (i.e., DEF_REGULAR is set). At
1557 this point we have not seen all the input files, so it is
1558 possible that DEF_REGULAR is not set now but will be set
1559 later (it is never cleared). In case of a weak definition,
1560 DEF_REGULAR may be cleared later by a strong definition in
1561 a shared library. We account for that possibility below by
1562 storing information in the relocs_copied field of the hash
1563 table entry. A similar situation occurs when creating
1564 shared libraries and symbol visibility changes render the
1565 symbol local.
1566
1567 If on the other hand, we are creating an executable, we
1568 may need to keep relocations for symbols satisfied by a
1569 dynamic library if we manage to avoid copy relocs for the
1570 symbol. */
1571 if ((info->shared
1572 && (sec->flags & SEC_ALLOC) != 0
1573 && (! IS_X86_64_PCREL_TYPE (r_type)
1574 || (h != NULL
1575 && (! SYMBOLIC_BIND (info, h)
1576 || h->root.type == bfd_link_hash_defweak
1577 || !h->def_regular))))
1578 || (ELIMINATE_COPY_RELOCS
1579 && !info->shared
1580 && (sec->flags & SEC_ALLOC) != 0
1581 && h != NULL
1582 && (h->root.type == bfd_link_hash_defweak
1583 || !h->def_regular)))
1584 {
1585 struct elf64_x86_64_dyn_relocs *p;
1586 struct elf64_x86_64_dyn_relocs **head;
1587
1588 /* We must copy these reloc types into the output file.
1589 Create a reloc section in dynobj and make room for
1590 this reloc. */
1591 if (sreloc == NULL)
1592 {
1593 if (htab->elf.dynobj == NULL)
1594 htab->elf.dynobj = abfd;
1595
1596 sreloc = _bfd_elf_make_dynamic_reloc_section
1597 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1598
1599 if (sreloc == NULL)
1600 return FALSE;
1601 }
1602
1603 /* If this is a global symbol, we count the number of
1604 relocations we need for this symbol. */
1605 if (h != NULL)
1606 {
1607 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1608 }
1609 else
1610 {
1611 void **vpp;
1612 /* Track dynamic relocs needed for local syms too.
1613 We really need local syms available to do this
1614 easily. Oh well. */
1615
1616 asection *s;
1617 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1618 sec, r_symndx);
1619 if (s == NULL)
1620 return FALSE;
1621
1622 /* Beware of type punned pointers vs strict aliasing
1623 rules. */
1624 vpp = &(elf_section_data (s)->local_dynrel);
1625 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1626 }
1627
1628 p = *head;
1629 if (p == NULL || p->sec != sec)
1630 {
1631 bfd_size_type amt = sizeof *p;
1632
1633 p = ((struct elf64_x86_64_dyn_relocs *)
1634 bfd_alloc (htab->elf.dynobj, amt));
1635 if (p == NULL)
1636 return FALSE;
1637 p->next = *head;
1638 *head = p;
1639 p->sec = sec;
1640 p->count = 0;
1641 p->pc_count = 0;
1642 }
1643
1644 p->count += 1;
1645 if (IS_X86_64_PCREL_TYPE (r_type))
1646 p->pc_count += 1;
1647 }
1648 break;
1649
1650 /* This relocation describes the C++ object vtable hierarchy.
1651 Reconstruct it for later use during GC. */
1652 case R_X86_64_GNU_VTINHERIT:
1653 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1654 return FALSE;
1655 break;
1656
1657 /* This relocation describes which C++ vtable entries are actually
1658 used. Record for later use during GC. */
1659 case R_X86_64_GNU_VTENTRY:
1660 BFD_ASSERT (h != NULL);
1661 if (h != NULL
1662 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1663 return FALSE;
1664 break;
1665
1666 default:
1667 break;
1668 }
1669 }
1670
1671 return TRUE;
1672 }
1673
1674 /* Return the section that should be marked against GC for a given
1675 relocation. */
1676
1677 static asection *
1678 elf64_x86_64_gc_mark_hook (asection *sec,
1679 struct bfd_link_info *info,
1680 Elf_Internal_Rela *rel,
1681 struct elf_link_hash_entry *h,
1682 Elf_Internal_Sym *sym)
1683 {
1684 if (h != NULL)
1685 switch (ELF64_R_TYPE (rel->r_info))
1686 {
1687 case R_X86_64_GNU_VTINHERIT:
1688 case R_X86_64_GNU_VTENTRY:
1689 return NULL;
1690 }
1691
1692 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1693 }
1694
1695 /* Update the got entry reference counts for the section being removed. */
1696
1697 static bfd_boolean
1698 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1699 asection *sec,
1700 const Elf_Internal_Rela *relocs)
1701 {
1702 Elf_Internal_Shdr *symtab_hdr;
1703 struct elf_link_hash_entry **sym_hashes;
1704 bfd_signed_vma *local_got_refcounts;
1705 const Elf_Internal_Rela *rel, *relend;
1706
1707 if (info->relocatable)
1708 return TRUE;
1709
1710 elf_section_data (sec)->local_dynrel = NULL;
1711
1712 symtab_hdr = &elf_symtab_hdr (abfd);
1713 sym_hashes = elf_sym_hashes (abfd);
1714 local_got_refcounts = elf_local_got_refcounts (abfd);
1715
1716 relend = relocs + sec->reloc_count;
1717 for (rel = relocs; rel < relend; rel++)
1718 {
1719 unsigned long r_symndx;
1720 unsigned int r_type;
1721 struct elf_link_hash_entry *h = NULL;
1722
1723 r_symndx = ELF64_R_SYM (rel->r_info);
1724 if (r_symndx >= symtab_hdr->sh_info)
1725 {
1726 struct elf64_x86_64_link_hash_entry *eh;
1727 struct elf64_x86_64_dyn_relocs **pp;
1728 struct elf64_x86_64_dyn_relocs *p;
1729
1730 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1731 while (h->root.type == bfd_link_hash_indirect
1732 || h->root.type == bfd_link_hash_warning)
1733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1734 eh = (struct elf64_x86_64_link_hash_entry *) h;
1735
1736 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1737 if (p->sec == sec)
1738 {
1739 /* Everything must go for SEC. */
1740 *pp = p->next;
1741 break;
1742 }
1743 }
1744
1745 r_type = ELF64_R_TYPE (rel->r_info);
1746 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1747 symtab_hdr, sym_hashes,
1748 &r_type, GOT_UNKNOWN,
1749 rel, relend, h))
1750 return FALSE;
1751
1752 switch (r_type)
1753 {
1754 case R_X86_64_TLSLD:
1755 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1756 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1757 break;
1758
1759 case R_X86_64_TLSGD:
1760 case R_X86_64_GOTPC32_TLSDESC:
1761 case R_X86_64_TLSDESC_CALL:
1762 case R_X86_64_GOTTPOFF:
1763 case R_X86_64_GOT32:
1764 case R_X86_64_GOTPCREL:
1765 case R_X86_64_GOT64:
1766 case R_X86_64_GOTPCREL64:
1767 case R_X86_64_GOTPLT64:
1768 if (h != NULL)
1769 {
1770 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1771 h->plt.refcount -= 1;
1772 if (h->got.refcount > 0)
1773 h->got.refcount -= 1;
1774 }
1775 else if (local_got_refcounts != NULL)
1776 {
1777 if (local_got_refcounts[r_symndx] > 0)
1778 local_got_refcounts[r_symndx] -= 1;
1779 }
1780 break;
1781
1782 case R_X86_64_8:
1783 case R_X86_64_16:
1784 case R_X86_64_32:
1785 case R_X86_64_64:
1786 case R_X86_64_32S:
1787 case R_X86_64_PC8:
1788 case R_X86_64_PC16:
1789 case R_X86_64_PC32:
1790 case R_X86_64_PC64:
1791 if (info->shared)
1792 break;
1793 /* Fall thru */
1794
1795 case R_X86_64_PLT32:
1796 case R_X86_64_PLTOFF64:
1797 if (h != NULL)
1798 {
1799 if (h->plt.refcount > 0)
1800 h->plt.refcount -= 1;
1801 }
1802 break;
1803
1804 default:
1805 break;
1806 }
1807 }
1808
1809 return TRUE;
1810 }
1811
1812 /* Adjust a symbol defined by a dynamic object and referenced by a
1813 regular object. The current definition is in some section of the
1814 dynamic object, but we're not including those sections. We have to
1815 change the definition to something the rest of the link can
1816 understand. */
1817
1818 static bfd_boolean
1819 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1820 struct elf_link_hash_entry *h)
1821 {
1822 struct elf64_x86_64_link_hash_table *htab;
1823 asection *s;
1824
1825 /* STT_GNU_IFUNC symbol must go through PLT. */
1826 if (h->type == STT_GNU_IFUNC)
1827 {
1828 if (h->plt.refcount <= 0)
1829 {
1830 h->plt.offset = (bfd_vma) -1;
1831 h->needs_plt = 0;
1832 }
1833 return TRUE;
1834 }
1835
1836 /* If this is a function, put it in the procedure linkage table. We
1837 will fill in the contents of the procedure linkage table later,
1838 when we know the address of the .got section. */
1839 if (h->type == STT_FUNC
1840 || h->needs_plt)
1841 {
1842 if (h->plt.refcount <= 0
1843 || SYMBOL_CALLS_LOCAL (info, h)
1844 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1845 && h->root.type == bfd_link_hash_undefweak))
1846 {
1847 /* This case can occur if we saw a PLT32 reloc in an input
1848 file, but the symbol was never referred to by a dynamic
1849 object, or if all references were garbage collected. In
1850 such a case, we don't actually need to build a procedure
1851 linkage table, and we can just do a PC32 reloc instead. */
1852 h->plt.offset = (bfd_vma) -1;
1853 h->needs_plt = 0;
1854 }
1855
1856 return TRUE;
1857 }
1858 else
1859 /* It's possible that we incorrectly decided a .plt reloc was
1860 needed for an R_X86_64_PC32 reloc to a non-function sym in
1861 check_relocs. We can't decide accurately between function and
1862 non-function syms in check-relocs; Objects loaded later in
1863 the link may change h->type. So fix it now. */
1864 h->plt.offset = (bfd_vma) -1;
1865
1866 /* If this is a weak symbol, and there is a real definition, the
1867 processor independent code will have arranged for us to see the
1868 real definition first, and we can just use the same value. */
1869 if (h->u.weakdef != NULL)
1870 {
1871 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1872 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1873 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1874 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1875 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1876 h->non_got_ref = h->u.weakdef->non_got_ref;
1877 return TRUE;
1878 }
1879
1880 /* This is a reference to a symbol defined by a dynamic object which
1881 is not a function. */
1882
1883 /* If we are creating a shared library, we must presume that the
1884 only references to the symbol are via the global offset table.
1885 For such cases we need not do anything here; the relocations will
1886 be handled correctly by relocate_section. */
1887 if (info->shared)
1888 return TRUE;
1889
1890 /* If there are no references to this symbol that do not use the
1891 GOT, we don't need to generate a copy reloc. */
1892 if (!h->non_got_ref)
1893 return TRUE;
1894
1895 /* If -z nocopyreloc was given, we won't generate them either. */
1896 if (info->nocopyreloc)
1897 {
1898 h->non_got_ref = 0;
1899 return TRUE;
1900 }
1901
1902 if (ELIMINATE_COPY_RELOCS)
1903 {
1904 struct elf64_x86_64_link_hash_entry * eh;
1905 struct elf64_x86_64_dyn_relocs *p;
1906
1907 eh = (struct elf64_x86_64_link_hash_entry *) h;
1908 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1909 {
1910 s = p->sec->output_section;
1911 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1912 break;
1913 }
1914
1915 /* If we didn't find any dynamic relocs in read-only sections, then
1916 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1917 if (p == NULL)
1918 {
1919 h->non_got_ref = 0;
1920 return TRUE;
1921 }
1922 }
1923
1924 if (h->size == 0)
1925 {
1926 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1927 h->root.root.string);
1928 return TRUE;
1929 }
1930
1931 /* We must allocate the symbol in our .dynbss section, which will
1932 become part of the .bss section of the executable. There will be
1933 an entry for this symbol in the .dynsym section. The dynamic
1934 object will contain position independent code, so all references
1935 from the dynamic object to this symbol will go through the global
1936 offset table. The dynamic linker will use the .dynsym entry to
1937 determine the address it must put in the global offset table, so
1938 both the dynamic object and the regular object will refer to the
1939 same memory location for the variable. */
1940
1941 htab = elf64_x86_64_hash_table (info);
1942
1943 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1944 to copy the initial value out of the dynamic object and into the
1945 runtime process image. */
1946 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1947 {
1948 htab->srelbss->size += sizeof (Elf64_External_Rela);
1949 h->needs_copy = 1;
1950 }
1951
1952 s = htab->sdynbss;
1953
1954 return _bfd_elf_adjust_dynamic_copy (h, s);
1955 }
1956
1957 /* Allocate space in .plt, .got and associated reloc sections for
1958 dynamic relocs. */
1959
1960 static bfd_boolean
1961 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1962 {
1963 struct bfd_link_info *info;
1964 struct elf64_x86_64_link_hash_table *htab;
1965 struct elf64_x86_64_link_hash_entry *eh;
1966 struct elf64_x86_64_dyn_relocs *p;
1967
1968 if (h->root.type == bfd_link_hash_indirect)
1969 return TRUE;
1970
1971 if (h->root.type == bfd_link_hash_warning)
1972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1973 eh = (struct elf64_x86_64_link_hash_entry *) h;
1974
1975 info = (struct bfd_link_info *) inf;
1976 htab = elf64_x86_64_hash_table (info);
1977
1978 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1979 here if it is defined and referenced in a non-shared object. */
1980 if (h->type == STT_GNU_IFUNC
1981 && h->def_regular)
1982 {
1983 asection *plt, *gotplt, *relplt;
1984
1985 /* Return and discard space for dynamic relocations against it if
1986 it is never referenced in a non-shared object. */
1987 if (!h->ref_regular)
1988 {
1989 if (h->plt.refcount > 0
1990 || h->got.refcount > 0)
1991 abort ();
1992 h->got.offset = (bfd_vma) -1;
1993 eh->dyn_relocs = NULL;
1994 return TRUE;
1995 }
1996
1997 /* When building a static executable, use .iplt, .igot.plt and
1998 .rela.iplt sections for STT_GNU_IFUNC symbols. */
1999 if (htab->splt != NULL)
2000 {
2001 plt = htab->splt;
2002 gotplt = htab->sgotplt;
2003 relplt = htab->srelplt;
2004
2005 /* If this is the first .plt entry, make room for the special
2006 first entry. */
2007 if (plt->size == 0)
2008 plt->size += PLT_ENTRY_SIZE;
2009 }
2010 else
2011 {
2012 plt = htab->iplt;
2013 gotplt = htab->igotplt;
2014 relplt = htab->irelplt;
2015 }
2016
2017 /* Don't update value of STT_GNU_IFUNC symbol to PLT. We need
2018 the original value for R_X86_64_IRELATIVE. */
2019 h->plt.offset = plt->size;
2020
2021 /* Make room for this entry in the .plt/.iplt section. */
2022 plt->size += PLT_ENTRY_SIZE;
2023
2024 /* We also need to make an entry in the .got.plt/.got.iplt
2025 section, which will be placed in the .got section by the
2026 linker script. */
2027 gotplt->size += GOT_ENTRY_SIZE;
2028
2029 /* We also need to make an entry in the .rela.plt/.rela.iplt
2030 section. */
2031 relplt->size += sizeof (Elf64_External_Rela);
2032 relplt->reloc_count++;
2033
2034 /* We need dynamic relocation for STT_GNU_IFUNC symbol only
2035 when there is a non-GOT reference in a shared object. */
2036 if (!info->shared
2037 || !h->non_got_ref)
2038 eh->dyn_relocs = NULL;
2039
2040 /* Finally, allocate space. */
2041 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2042 htab->irelifunc->size += p->count * sizeof (Elf64_External_Rela);
2043
2044 /* For STT_GNU_IFUNC symbol, .got.plt has the real function
2045 addres and .got has the PLT entry adddress. We will load
2046 the GOT entry with the PLT entry in finish_dynamic_symbol if
2047 it is used. For branch, it uses .got.plt. For symbol value,
2048 1. Use .got.plt in a shared object if it is forced local or
2049 not dynamic.
2050 2. Use .got.plt in a non-shared object if pointer equality
2051 isn't needed.
2052 3. Use .got.plt if .got isn't used.
2053 4. Otherwise use .got so that it can be shared among different
2054 objects at run-time.
2055 We only need to relocate .got entry in shared object. */
2056 if ((info->shared
2057 && (h->dynindx == -1
2058 || h->forced_local))
2059 || (!info->shared
2060 && !h->pointer_equality_needed)
2061 || htab->sgot == NULL)
2062 {
2063 /* Use .got.plt. */
2064 h->got.offset = (bfd_vma) -1;
2065 }
2066 else
2067 {
2068 h->got.offset = htab->sgot->size;
2069 htab->sgot->size += GOT_ENTRY_SIZE;
2070 if (info->shared)
2071 htab->srelgot->size += sizeof (Elf64_External_Rela);
2072 }
2073
2074 return TRUE;
2075 }
2076 else if (htab->elf.dynamic_sections_created
2077 && h->plt.refcount > 0)
2078 {
2079 /* Make sure this symbol is output as a dynamic symbol.
2080 Undefined weak syms won't yet be marked as dynamic. */
2081 if (h->dynindx == -1
2082 && !h->forced_local)
2083 {
2084 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2085 return FALSE;
2086 }
2087
2088 if (info->shared
2089 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2090 {
2091 asection *s = htab->splt;
2092
2093 /* If this is the first .plt entry, make room for the special
2094 first entry. */
2095 if (s->size == 0)
2096 s->size += PLT_ENTRY_SIZE;
2097
2098 h->plt.offset = s->size;
2099
2100 /* If this symbol is not defined in a regular file, and we are
2101 not generating a shared library, then set the symbol to this
2102 location in the .plt. This is required to make function
2103 pointers compare as equal between the normal executable and
2104 the shared library. */
2105 if (! info->shared
2106 && !h->def_regular)
2107 {
2108 h->root.u.def.section = s;
2109 h->root.u.def.value = h->plt.offset;
2110 }
2111
2112 /* Make room for this entry. */
2113 s->size += PLT_ENTRY_SIZE;
2114
2115 /* We also need to make an entry in the .got.plt section, which
2116 will be placed in the .got section by the linker script. */
2117 htab->sgotplt->size += GOT_ENTRY_SIZE;
2118
2119 /* We also need to make an entry in the .rela.plt section. */
2120 htab->srelplt->size += sizeof (Elf64_External_Rela);
2121 htab->srelplt->reloc_count++;
2122 }
2123 else
2124 {
2125 h->plt.offset = (bfd_vma) -1;
2126 h->needs_plt = 0;
2127 }
2128 }
2129 else
2130 {
2131 h->plt.offset = (bfd_vma) -1;
2132 h->needs_plt = 0;
2133 }
2134
2135 eh->tlsdesc_got = (bfd_vma) -1;
2136
2137 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2138 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2139 if (h->got.refcount > 0
2140 && !info->shared
2141 && h->dynindx == -1
2142 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2143 {
2144 h->got.offset = (bfd_vma) -1;
2145 }
2146 else if (h->got.refcount > 0)
2147 {
2148 asection *s;
2149 bfd_boolean dyn;
2150 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2151
2152 /* Make sure this symbol is output as a dynamic symbol.
2153 Undefined weak syms won't yet be marked as dynamic. */
2154 if (h->dynindx == -1
2155 && !h->forced_local)
2156 {
2157 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2158 return FALSE;
2159 }
2160
2161 if (GOT_TLS_GDESC_P (tls_type))
2162 {
2163 eh->tlsdesc_got = htab->sgotplt->size
2164 - elf64_x86_64_compute_jump_table_size (htab);
2165 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2166 h->got.offset = (bfd_vma) -2;
2167 }
2168 if (! GOT_TLS_GDESC_P (tls_type)
2169 || GOT_TLS_GD_P (tls_type))
2170 {
2171 s = htab->sgot;
2172 h->got.offset = s->size;
2173 s->size += GOT_ENTRY_SIZE;
2174 if (GOT_TLS_GD_P (tls_type))
2175 s->size += GOT_ENTRY_SIZE;
2176 }
2177 dyn = htab->elf.dynamic_sections_created;
2178 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2179 and two if global.
2180 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2181 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2182 || tls_type == GOT_TLS_IE)
2183 htab->srelgot->size += sizeof (Elf64_External_Rela);
2184 else if (GOT_TLS_GD_P (tls_type))
2185 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
2186 else if (! GOT_TLS_GDESC_P (tls_type)
2187 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2188 || h->root.type != bfd_link_hash_undefweak)
2189 && (info->shared
2190 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2191 htab->srelgot->size += sizeof (Elf64_External_Rela);
2192 if (GOT_TLS_GDESC_P (tls_type))
2193 {
2194 htab->srelplt->size += sizeof (Elf64_External_Rela);
2195 htab->tlsdesc_plt = (bfd_vma) -1;
2196 }
2197 }
2198 else
2199 h->got.offset = (bfd_vma) -1;
2200
2201 if (eh->dyn_relocs == NULL)
2202 return TRUE;
2203
2204 /* In the shared -Bsymbolic case, discard space allocated for
2205 dynamic pc-relative relocs against symbols which turn out to be
2206 defined in regular objects. For the normal shared case, discard
2207 space for pc-relative relocs that have become local due to symbol
2208 visibility changes. */
2209
2210 if (info->shared)
2211 {
2212 /* Relocs that use pc_count are those that appear on a call
2213 insn, or certain REL relocs that can generated via assembly.
2214 We want calls to protected symbols to resolve directly to the
2215 function rather than going via the plt. If people want
2216 function pointer comparisons to work as expected then they
2217 should avoid writing weird assembly. */
2218 if (SYMBOL_CALLS_LOCAL (info, h))
2219 {
2220 struct elf64_x86_64_dyn_relocs **pp;
2221
2222 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2223 {
2224 p->count -= p->pc_count;
2225 p->pc_count = 0;
2226 if (p->count == 0)
2227 *pp = p->next;
2228 else
2229 pp = &p->next;
2230 }
2231 }
2232
2233 /* Also discard relocs on undefined weak syms with non-default
2234 visibility. */
2235 if (eh->dyn_relocs != NULL
2236 && h->root.type == bfd_link_hash_undefweak)
2237 {
2238 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2239 eh->dyn_relocs = NULL;
2240
2241 /* Make sure undefined weak symbols are output as a dynamic
2242 symbol in PIEs. */
2243 else if (h->dynindx == -1
2244 && ! h->forced_local
2245 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2246 return FALSE;
2247 }
2248
2249 }
2250 else if (ELIMINATE_COPY_RELOCS)
2251 {
2252 /* For the non-shared case, discard space for relocs against
2253 symbols which turn out to need copy relocs or are not
2254 dynamic. */
2255
2256 if (!h->non_got_ref
2257 && ((h->def_dynamic
2258 && !h->def_regular)
2259 || (htab->elf.dynamic_sections_created
2260 && (h->root.type == bfd_link_hash_undefweak
2261 || h->root.type == bfd_link_hash_undefined))))
2262 {
2263 /* Make sure this symbol is output as a dynamic symbol.
2264 Undefined weak syms won't yet be marked as dynamic. */
2265 if (h->dynindx == -1
2266 && ! h->forced_local
2267 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2268 return FALSE;
2269
2270 /* If that succeeded, we know we'll be keeping all the
2271 relocs. */
2272 if (h->dynindx != -1)
2273 goto keep;
2274 }
2275
2276 eh->dyn_relocs = NULL;
2277
2278 keep: ;
2279 }
2280
2281 /* Finally, allocate space. */
2282 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2283 {
2284 asection * sreloc;
2285
2286 sreloc = elf_section_data (p->sec)->sreloc;
2287
2288 BFD_ASSERT (sreloc != NULL);
2289
2290 sreloc->size += p->count * sizeof (Elf64_External_Rela);
2291 }
2292
2293 return TRUE;
2294 }
2295
2296 /* Allocate space in .plt, .got and associated reloc sections for
2297 local dynamic relocs. */
2298
2299 static bfd_boolean
2300 elf64_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2301 {
2302 struct elf_link_hash_entry *h
2303 = (struct elf_link_hash_entry *) *slot;
2304
2305 if (h->type != STT_GNU_IFUNC
2306 || !h->def_regular
2307 || !h->ref_regular
2308 || !h->forced_local
2309 || h->root.type != bfd_link_hash_defined)
2310 abort ();
2311
2312 return elf64_x86_64_allocate_dynrelocs (h, inf);
2313 }
2314
2315 /* Find any dynamic relocs that apply to read-only sections. */
2316
2317 static bfd_boolean
2318 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2319 {
2320 struct elf64_x86_64_link_hash_entry *eh;
2321 struct elf64_x86_64_dyn_relocs *p;
2322
2323 if (h->root.type == bfd_link_hash_warning)
2324 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2325
2326 eh = (struct elf64_x86_64_link_hash_entry *) h;
2327 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2328 {
2329 asection *s = p->sec->output_section;
2330
2331 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2332 {
2333 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2334
2335 info->flags |= DF_TEXTREL;
2336
2337 /* Not an error, just cut short the traversal. */
2338 return FALSE;
2339 }
2340 }
2341 return TRUE;
2342 }
2343
2344 /* Set the sizes of the dynamic sections. */
2345
2346 static bfd_boolean
2347 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2348 struct bfd_link_info *info)
2349 {
2350 struct elf64_x86_64_link_hash_table *htab;
2351 bfd *dynobj;
2352 asection *s;
2353 bfd_boolean relocs;
2354 bfd *ibfd;
2355
2356 htab = elf64_x86_64_hash_table (info);
2357 dynobj = htab->elf.dynobj;
2358 if (dynobj == NULL)
2359 abort ();
2360
2361 if (htab->elf.dynamic_sections_created)
2362 {
2363 /* Set the contents of the .interp section to the interpreter. */
2364 if (info->executable)
2365 {
2366 s = bfd_get_section_by_name (dynobj, ".interp");
2367 if (s == NULL)
2368 abort ();
2369 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2370 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2371 }
2372 }
2373
2374 /* Set up .got offsets for local syms, and space for local dynamic
2375 relocs. */
2376 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2377 {
2378 bfd_signed_vma *local_got;
2379 bfd_signed_vma *end_local_got;
2380 char *local_tls_type;
2381 bfd_vma *local_tlsdesc_gotent;
2382 bfd_size_type locsymcount;
2383 Elf_Internal_Shdr *symtab_hdr;
2384 asection *srel;
2385
2386 if (! is_x86_64_elf (ibfd))
2387 continue;
2388
2389 for (s = ibfd->sections; s != NULL; s = s->next)
2390 {
2391 struct elf64_x86_64_dyn_relocs *p;
2392
2393 for (p = (struct elf64_x86_64_dyn_relocs *)
2394 (elf_section_data (s)->local_dynrel);
2395 p != NULL;
2396 p = p->next)
2397 {
2398 if (!bfd_is_abs_section (p->sec)
2399 && bfd_is_abs_section (p->sec->output_section))
2400 {
2401 /* Input section has been discarded, either because
2402 it is a copy of a linkonce section or due to
2403 linker script /DISCARD/, so we'll be discarding
2404 the relocs too. */
2405 }
2406 else if (p->count != 0)
2407 {
2408 srel = elf_section_data (p->sec)->sreloc;
2409 srel->size += p->count * sizeof (Elf64_External_Rela);
2410 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2411 info->flags |= DF_TEXTREL;
2412 }
2413 }
2414 }
2415
2416 local_got = elf_local_got_refcounts (ibfd);
2417 if (!local_got)
2418 continue;
2419
2420 symtab_hdr = &elf_symtab_hdr (ibfd);
2421 locsymcount = symtab_hdr->sh_info;
2422 end_local_got = local_got + locsymcount;
2423 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2424 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2425 s = htab->sgot;
2426 srel = htab->srelgot;
2427 for (; local_got < end_local_got;
2428 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2429 {
2430 *local_tlsdesc_gotent = (bfd_vma) -1;
2431 if (*local_got > 0)
2432 {
2433 if (GOT_TLS_GDESC_P (*local_tls_type))
2434 {
2435 *local_tlsdesc_gotent = htab->sgotplt->size
2436 - elf64_x86_64_compute_jump_table_size (htab);
2437 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2438 *local_got = (bfd_vma) -2;
2439 }
2440 if (! GOT_TLS_GDESC_P (*local_tls_type)
2441 || GOT_TLS_GD_P (*local_tls_type))
2442 {
2443 *local_got = s->size;
2444 s->size += GOT_ENTRY_SIZE;
2445 if (GOT_TLS_GD_P (*local_tls_type))
2446 s->size += GOT_ENTRY_SIZE;
2447 }
2448 if (info->shared
2449 || GOT_TLS_GD_ANY_P (*local_tls_type)
2450 || *local_tls_type == GOT_TLS_IE)
2451 {
2452 if (GOT_TLS_GDESC_P (*local_tls_type))
2453 {
2454 htab->srelplt->size += sizeof (Elf64_External_Rela);
2455 htab->tlsdesc_plt = (bfd_vma) -1;
2456 }
2457 if (! GOT_TLS_GDESC_P (*local_tls_type)
2458 || GOT_TLS_GD_P (*local_tls_type))
2459 srel->size += sizeof (Elf64_External_Rela);
2460 }
2461 }
2462 else
2463 *local_got = (bfd_vma) -1;
2464 }
2465 }
2466
2467 if (htab->tls_ld_got.refcount > 0)
2468 {
2469 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2470 relocs. */
2471 htab->tls_ld_got.offset = htab->sgot->size;
2472 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
2473 htab->srelgot->size += sizeof (Elf64_External_Rela);
2474 }
2475 else
2476 htab->tls_ld_got.offset = -1;
2477
2478 /* Allocate global sym .plt and .got entries, and space for global
2479 sym dynamic relocs. */
2480 elf_link_hash_traverse (&htab->elf, elf64_x86_64_allocate_dynrelocs,
2481 info);
2482
2483 /* Allocate .plt and .got entries, and space for local symbols. */
2484 htab_traverse (htab->loc_hash_table,
2485 elf64_x86_64_allocate_local_dynrelocs,
2486 info);
2487
2488 /* For every jump slot reserved in the sgotplt, reloc_count is
2489 incremented. However, when we reserve space for TLS descriptors,
2490 it's not incremented, so in order to compute the space reserved
2491 for them, it suffices to multiply the reloc count by the jump
2492 slot size. */
2493 if (htab->srelplt)
2494 htab->sgotplt_jump_table_size
2495 = elf64_x86_64_compute_jump_table_size (htab);
2496
2497 if (htab->tlsdesc_plt)
2498 {
2499 /* If we're not using lazy TLS relocations, don't generate the
2500 PLT and GOT entries they require. */
2501 if ((info->flags & DF_BIND_NOW))
2502 htab->tlsdesc_plt = 0;
2503 else
2504 {
2505 htab->tlsdesc_got = htab->sgot->size;
2506 htab->sgot->size += GOT_ENTRY_SIZE;
2507 /* Reserve room for the initial entry.
2508 FIXME: we could probably do away with it in this case. */
2509 if (htab->splt->size == 0)
2510 htab->splt->size += PLT_ENTRY_SIZE;
2511 htab->tlsdesc_plt = htab->splt->size;
2512 htab->splt->size += PLT_ENTRY_SIZE;
2513 }
2514 }
2515
2516 /* We now have determined the sizes of the various dynamic sections.
2517 Allocate memory for them. */
2518 relocs = FALSE;
2519 for (s = dynobj->sections; s != NULL; s = s->next)
2520 {
2521 if ((s->flags & SEC_LINKER_CREATED) == 0)
2522 continue;
2523
2524 if (s == htab->splt
2525 || s == htab->sgot
2526 || s == htab->sgotplt
2527 || s == htab->iplt
2528 || s == htab->igotplt
2529 || s == htab->sdynbss)
2530 {
2531 /* Strip this section if we don't need it; see the
2532 comment below. */
2533 }
2534 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2535 {
2536 if (s->size != 0 && s != htab->srelplt)
2537 relocs = TRUE;
2538
2539 /* We use the reloc_count field as a counter if we need
2540 to copy relocs into the output file. */
2541 if (s != htab->srelplt)
2542 s->reloc_count = 0;
2543 }
2544 else
2545 {
2546 /* It's not one of our sections, so don't allocate space. */
2547 continue;
2548 }
2549
2550 if (s->size == 0)
2551 {
2552 /* If we don't need this section, strip it from the
2553 output file. This is mostly to handle .rela.bss and
2554 .rela.plt. We must create both sections in
2555 create_dynamic_sections, because they must be created
2556 before the linker maps input sections to output
2557 sections. The linker does that before
2558 adjust_dynamic_symbol is called, and it is that
2559 function which decides whether anything needs to go
2560 into these sections. */
2561
2562 s->flags |= SEC_EXCLUDE;
2563 continue;
2564 }
2565
2566 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2567 continue;
2568
2569 /* Allocate memory for the section contents. We use bfd_zalloc
2570 here in case unused entries are not reclaimed before the
2571 section's contents are written out. This should not happen,
2572 but this way if it does, we get a R_X86_64_NONE reloc instead
2573 of garbage. */
2574 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2575 if (s->contents == NULL)
2576 return FALSE;
2577 }
2578
2579 if (htab->elf.dynamic_sections_created)
2580 {
2581 /* Add some entries to the .dynamic section. We fill in the
2582 values later, in elf64_x86_64_finish_dynamic_sections, but we
2583 must add the entries now so that we get the correct size for
2584 the .dynamic section. The DT_DEBUG entry is filled in by the
2585 dynamic linker and used by the debugger. */
2586 #define add_dynamic_entry(TAG, VAL) \
2587 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2588
2589 if (info->executable)
2590 {
2591 if (!add_dynamic_entry (DT_DEBUG, 0))
2592 return FALSE;
2593 }
2594
2595 if (htab->splt->size != 0)
2596 {
2597 if (!add_dynamic_entry (DT_PLTGOT, 0)
2598 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2599 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2600 || !add_dynamic_entry (DT_JMPREL, 0))
2601 return FALSE;
2602
2603 if (htab->tlsdesc_plt
2604 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2605 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2606 return FALSE;
2607 }
2608
2609 if (relocs)
2610 {
2611 if (!add_dynamic_entry (DT_RELA, 0)
2612 || !add_dynamic_entry (DT_RELASZ, 0)
2613 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2614 return FALSE;
2615
2616 /* If any dynamic relocs apply to a read-only section,
2617 then we need a DT_TEXTREL entry. */
2618 if ((info->flags & DF_TEXTREL) == 0)
2619 elf_link_hash_traverse (&htab->elf,
2620 elf64_x86_64_readonly_dynrelocs,
2621 info);
2622
2623 if ((info->flags & DF_TEXTREL) != 0)
2624 {
2625 if (!add_dynamic_entry (DT_TEXTREL, 0))
2626 return FALSE;
2627 }
2628 }
2629 }
2630 #undef add_dynamic_entry
2631
2632 return TRUE;
2633 }
2634
2635 static bfd_boolean
2636 elf64_x86_64_always_size_sections (bfd *output_bfd,
2637 struct bfd_link_info *info)
2638 {
2639 asection *tls_sec = elf_hash_table (info)->tls_sec;
2640
2641 if (tls_sec)
2642 {
2643 struct elf_link_hash_entry *tlsbase;
2644
2645 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2646 "_TLS_MODULE_BASE_",
2647 FALSE, FALSE, FALSE);
2648
2649 if (tlsbase && tlsbase->type == STT_TLS)
2650 {
2651 struct bfd_link_hash_entry *bh = NULL;
2652 const struct elf_backend_data *bed
2653 = get_elf_backend_data (output_bfd);
2654
2655 if (!(_bfd_generic_link_add_one_symbol
2656 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2657 tls_sec, 0, NULL, FALSE,
2658 bed->collect, &bh)))
2659 return FALSE;
2660
2661 elf64_x86_64_hash_table (info)->tls_module_base = bh;
2662
2663 tlsbase = (struct elf_link_hash_entry *)bh;
2664 tlsbase->def_regular = 1;
2665 tlsbase->other = STV_HIDDEN;
2666 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2667 }
2668 }
2669
2670 return TRUE;
2671 }
2672
2673 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2674 executables. Rather than setting it to the beginning of the TLS
2675 section, we have to set it to the end. This function may be called
2676 multiple times, it is idempotent. */
2677
2678 static void
2679 elf64_x86_64_set_tls_module_base (struct bfd_link_info *info)
2680 {
2681 struct bfd_link_hash_entry *base;
2682
2683 if (!info->executable)
2684 return;
2685
2686 base = elf64_x86_64_hash_table (info)->tls_module_base;
2687
2688 if (!base)
2689 return;
2690
2691 base->u.def.value = elf_hash_table (info)->tls_size;
2692 }
2693
2694 /* Return the base VMA address which should be subtracted from real addresses
2695 when resolving @dtpoff relocation.
2696 This is PT_TLS segment p_vaddr. */
2697
2698 static bfd_vma
2699 elf64_x86_64_dtpoff_base (struct bfd_link_info *info)
2700 {
2701 /* If tls_sec is NULL, we should have signalled an error already. */
2702 if (elf_hash_table (info)->tls_sec == NULL)
2703 return 0;
2704 return elf_hash_table (info)->tls_sec->vma;
2705 }
2706
2707 /* Return the relocation value for @tpoff relocation
2708 if STT_TLS virtual address is ADDRESS. */
2709
2710 static bfd_vma
2711 elf64_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2712 {
2713 struct elf_link_hash_table *htab = elf_hash_table (info);
2714
2715 /* If tls_segment is NULL, we should have signalled an error already. */
2716 if (htab->tls_sec == NULL)
2717 return 0;
2718 return address - htab->tls_size - htab->tls_sec->vma;
2719 }
2720
2721 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2722 branch? */
2723
2724 static bfd_boolean
2725 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2726 {
2727 /* Opcode Instruction
2728 0xe8 call
2729 0xe9 jump
2730 0x0f 0x8x conditional jump */
2731 return ((offset > 0
2732 && (contents [offset - 1] == 0xe8
2733 || contents [offset - 1] == 0xe9))
2734 || (offset > 1
2735 && contents [offset - 2] == 0x0f
2736 && (contents [offset - 1] & 0xf0) == 0x80));
2737 }
2738
2739 /* Relocate an x86_64 ELF section. */
2740
2741 static bfd_boolean
2742 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2743 bfd *input_bfd, asection *input_section,
2744 bfd_byte *contents, Elf_Internal_Rela *relocs,
2745 Elf_Internal_Sym *local_syms,
2746 asection **local_sections)
2747 {
2748 struct elf64_x86_64_link_hash_table *htab;
2749 Elf_Internal_Shdr *symtab_hdr;
2750 struct elf_link_hash_entry **sym_hashes;
2751 bfd_vma *local_got_offsets;
2752 bfd_vma *local_tlsdesc_gotents;
2753 Elf_Internal_Rela *rel;
2754 Elf_Internal_Rela *relend;
2755
2756 BFD_ASSERT (is_x86_64_elf (input_bfd));
2757
2758 htab = elf64_x86_64_hash_table (info);
2759 symtab_hdr = &elf_symtab_hdr (input_bfd);
2760 sym_hashes = elf_sym_hashes (input_bfd);
2761 local_got_offsets = elf_local_got_offsets (input_bfd);
2762 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2763
2764 elf64_x86_64_set_tls_module_base (info);
2765
2766 rel = relocs;
2767 relend = relocs + input_section->reloc_count;
2768 for (; rel < relend; rel++)
2769 {
2770 unsigned int r_type;
2771 reloc_howto_type *howto;
2772 unsigned long r_symndx;
2773 struct elf_link_hash_entry *h;
2774 Elf_Internal_Sym *sym;
2775 asection *sec;
2776 bfd_vma off, offplt;
2777 bfd_vma relocation;
2778 bfd_boolean unresolved_reloc;
2779 bfd_reloc_status_type r;
2780 int tls_type;
2781 asection *base_got;
2782
2783 r_type = ELF64_R_TYPE (rel->r_info);
2784 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2785 || r_type == (int) R_X86_64_GNU_VTENTRY)
2786 continue;
2787
2788 if (r_type >= R_X86_64_max)
2789 {
2790 bfd_set_error (bfd_error_bad_value);
2791 return FALSE;
2792 }
2793
2794 howto = x86_64_elf_howto_table + r_type;
2795 r_symndx = ELF64_R_SYM (rel->r_info);
2796 h = NULL;
2797 sym = NULL;
2798 sec = NULL;
2799 unresolved_reloc = FALSE;
2800 if (r_symndx < symtab_hdr->sh_info)
2801 {
2802 sym = local_syms + r_symndx;
2803 sec = local_sections[r_symndx];
2804
2805 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2806 &sec, rel);
2807
2808 /* Relocate against local STT_GNU_IFUNC symbol. */
2809 if (ELF64_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2810 {
2811 h = elf64_x86_64_get_local_sym_hash (htab, input_bfd,
2812 rel, FALSE);
2813 if (h == NULL)
2814 abort ();
2815
2816 /* Set STT_GNU_IFUNC symbol value. */
2817 h->root.u.def.value = sym->st_value;
2818 h->root.u.def.section = sec;
2819 }
2820 }
2821 else
2822 {
2823 bfd_boolean warned;
2824
2825 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2826 r_symndx, symtab_hdr, sym_hashes,
2827 h, sec, relocation,
2828 unresolved_reloc, warned);
2829 }
2830
2831 if (sec != NULL && elf_discarded_section (sec))
2832 {
2833 /* For relocs against symbols from removed linkonce sections,
2834 or sections discarded by a linker script, we just want the
2835 section contents zeroed. Avoid any special processing. */
2836 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2837 rel->r_info = 0;
2838 rel->r_addend = 0;
2839 continue;
2840 }
2841
2842 if (info->relocatable)
2843 continue;
2844
2845 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2846 it here if it is defined in a non-shared object. */
2847 if (h != NULL
2848 && h->type == STT_GNU_IFUNC
2849 && h->def_regular)
2850 {
2851 asection *plt;
2852 bfd_vma plt_index;
2853
2854 if ((input_section->flags & SEC_ALLOC) == 0
2855 || h->plt.offset == (bfd_vma) -1)
2856 abort ();
2857
2858 /* STT_GNU_IFUNC symbol must go through PLT. */
2859 plt = htab->splt ? htab->splt : htab->iplt;
2860 relocation = (plt->output_section->vma
2861 + plt->output_offset + h->plt.offset);
2862
2863 switch (r_type)
2864 {
2865 default:
2866 (*_bfd_error_handler)
2867 (_("%B: relocation %s against STT_GNU_IFUNC "
2868 "symbol `%s' isn't handled by %s"), input_bfd,
2869 x86_64_elf_howto_table[r_type].name,
2870 (h->root.root.string
2871 ? h->root.root.string : "a local symbol"),
2872 __FUNCTION__);
2873 bfd_set_error (bfd_error_bad_value);
2874 return FALSE;
2875
2876 case R_X86_64_32S:
2877 if (info->shared)
2878 abort ();
2879 goto do_relocation;
2880
2881 case R_X86_64_64:
2882 if (rel->r_addend != 0)
2883 {
2884 (*_bfd_error_handler)
2885 (_("%B: relocation %s against STT_GNU_IFUNC "
2886 "symbol `%s' has non-zero addend: %d"),
2887 input_bfd, x86_64_elf_howto_table[r_type].name,
2888 (h->root.root.string
2889 ? h->root.root.string : "a local symbol"),
2890 rel->r_addend);
2891 bfd_set_error (bfd_error_bad_value);
2892 return FALSE;
2893 }
2894
2895 /* Generate dynamic relcoation only when there is a
2896 non-GOF reference in a shared object. */
2897 if (info->shared && h->non_got_ref)
2898 {
2899 Elf_Internal_Rela outrel;
2900 bfd_byte *loc;
2901 asection *sreloc;
2902
2903 /* Need a dynamic relocation to get the real function
2904 address. */
2905 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2906 info,
2907 input_section,
2908 rel->r_offset);
2909 if (outrel.r_offset == (bfd_vma) -1
2910 || outrel.r_offset == (bfd_vma) -2)
2911 abort ();
2912
2913 outrel.r_offset += (input_section->output_section->vma
2914 + input_section->output_offset);
2915
2916 if (h->dynindx == -1
2917 || h->forced_local)
2918 {
2919 /* This symbol is resolved locally. */
2920 outrel.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
2921 outrel.r_addend = (h->root.u.def.value
2922 + h->root.u.def.section->output_section->vma
2923 + h->root.u.def.section->output_offset);
2924 }
2925 else
2926 {
2927 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2928 outrel.r_addend = 0;
2929 }
2930
2931 sreloc = htab->irelifunc;
2932 loc = sreloc->contents;
2933 loc += (sreloc->reloc_count++
2934 * sizeof (Elf64_External_Rela));
2935 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2936
2937 /* If this reloc is against an external symbol, we
2938 do not want to fiddle with the addend. Otherwise,
2939 we need to include the symbol value so that it
2940 becomes an addend for the dynamic reloc. For an
2941 internal symbol, we have updated addend. */
2942 continue;
2943 }
2944
2945 case R_X86_64_32:
2946 case R_X86_64_PC32:
2947 case R_X86_64_PC64:
2948 case R_X86_64_PLT32:
2949 goto do_relocation;
2950
2951 case R_X86_64_GOTPCREL:
2952 case R_X86_64_GOTPCREL64:
2953 base_got = htab->sgot;
2954 off = h->got.offset;
2955
2956 if (base_got == NULL)
2957 abort ();
2958
2959 if (off == (bfd_vma) -1)
2960 {
2961 /* We can't use h->got.offset here to save state, or
2962 even just remember the offset, as finish_dynamic_symbol
2963 would use that as offset into .got. */
2964
2965 if (htab->splt != NULL)
2966 {
2967 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2968 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2969 base_got = htab->sgotplt;
2970 }
2971 else
2972 {
2973 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2974 off = plt_index * GOT_ENTRY_SIZE;
2975 base_got = htab->igotplt;
2976 }
2977
2978 if (h->dynindx == -1
2979 || h->forced_local
2980 || info->symbolic)
2981 {
2982 /* This references the local defitionion. We must
2983 initialize this entry in the global offset table.
2984 Since the offset must always be a multiple of 8,
2985 we use the least significant bit to record
2986 whether we have initialized it already.
2987
2988 When doing a dynamic link, we create a .rela.got
2989 relocation entry to initialize the value. This
2990 is done in the finish_dynamic_symbol routine. */
2991 if ((off & 1) != 0)
2992 off &= ~1;
2993 else
2994 {
2995 bfd_put_64 (output_bfd, relocation,
2996 base_got->contents + off);
2997 /* Note that this is harmless for the GOTPLT64
2998 case, as -1 | 1 still is -1. */
2999 h->got.offset |= 1;
3000 }
3001 }
3002 }
3003
3004 relocation = (base_got->output_section->vma
3005 + base_got->output_offset + off);
3006
3007 if (r_type != R_X86_64_GOTPCREL
3008 && r_type != R_X86_64_GOTPCREL64)
3009 {
3010 asection *gotplt;
3011 if (htab->splt != NULL)
3012 gotplt = htab->sgotplt;
3013 else
3014 gotplt = htab->igotplt;
3015 relocation -= (gotplt->output_section->vma
3016 - gotplt->output_offset);
3017 }
3018
3019 goto do_relocation;
3020 }
3021 }
3022
3023 /* When generating a shared object, the relocations handled here are
3024 copied into the output file to be resolved at run time. */
3025 switch (r_type)
3026 {
3027 case R_X86_64_GOT32:
3028 case R_X86_64_GOT64:
3029 /* Relocation is to the entry for this symbol in the global
3030 offset table. */
3031 case R_X86_64_GOTPCREL:
3032 case R_X86_64_GOTPCREL64:
3033 /* Use global offset table entry as symbol value. */
3034 case R_X86_64_GOTPLT64:
3035 /* This is the same as GOT64 for relocation purposes, but
3036 indicates the existence of a PLT entry. The difficulty is,
3037 that we must calculate the GOT slot offset from the PLT
3038 offset, if this symbol got a PLT entry (it was global).
3039 Additionally if it's computed from the PLT entry, then that
3040 GOT offset is relative to .got.plt, not to .got. */
3041 base_got = htab->sgot;
3042
3043 if (htab->sgot == NULL)
3044 abort ();
3045
3046 if (h != NULL)
3047 {
3048 bfd_boolean dyn;
3049
3050 off = h->got.offset;
3051 if (h->needs_plt
3052 && h->plt.offset != (bfd_vma)-1
3053 && off == (bfd_vma)-1)
3054 {
3055 /* We can't use h->got.offset here to save
3056 state, or even just remember the offset, as
3057 finish_dynamic_symbol would use that as offset into
3058 .got. */
3059 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3060 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3061 base_got = htab->sgotplt;
3062 }
3063
3064 dyn = htab->elf.dynamic_sections_created;
3065
3066 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3067 || (info->shared
3068 && SYMBOL_REFERENCES_LOCAL (info, h))
3069 || (ELF_ST_VISIBILITY (h->other)
3070 && h->root.type == bfd_link_hash_undefweak))
3071 {
3072 /* This is actually a static link, or it is a -Bsymbolic
3073 link and the symbol is defined locally, or the symbol
3074 was forced to be local because of a version file. We
3075 must initialize this entry in the global offset table.
3076 Since the offset must always be a multiple of 8, we
3077 use the least significant bit to record whether we
3078 have initialized it already.
3079
3080 When doing a dynamic link, we create a .rela.got
3081 relocation entry to initialize the value. This is
3082 done in the finish_dynamic_symbol routine. */
3083 if ((off & 1) != 0)
3084 off &= ~1;
3085 else
3086 {
3087 bfd_put_64 (output_bfd, relocation,
3088 base_got->contents + off);
3089 /* Note that this is harmless for the GOTPLT64 case,
3090 as -1 | 1 still is -1. */
3091 h->got.offset |= 1;
3092 }
3093 }
3094 else
3095 unresolved_reloc = FALSE;
3096 }
3097 else
3098 {
3099 if (local_got_offsets == NULL)
3100 abort ();
3101
3102 off = local_got_offsets[r_symndx];
3103
3104 /* The offset must always be a multiple of 8. We use
3105 the least significant bit to record whether we have
3106 already generated the necessary reloc. */
3107 if ((off & 1) != 0)
3108 off &= ~1;
3109 else
3110 {
3111 bfd_put_64 (output_bfd, relocation,
3112 base_got->contents + off);
3113
3114 if (info->shared)
3115 {
3116 asection *s;
3117 Elf_Internal_Rela outrel;
3118 bfd_byte *loc;
3119
3120 /* We need to generate a R_X86_64_RELATIVE reloc
3121 for the dynamic linker. */
3122 s = htab->srelgot;
3123 if (s == NULL)
3124 abort ();
3125
3126 outrel.r_offset = (base_got->output_section->vma
3127 + base_got->output_offset
3128 + off);
3129 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3130 outrel.r_addend = relocation;
3131 loc = s->contents;
3132 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
3133 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3134 }
3135
3136 local_got_offsets[r_symndx] |= 1;
3137 }
3138 }
3139
3140 if (off >= (bfd_vma) -2)
3141 abort ();
3142
3143 relocation = base_got->output_section->vma
3144 + base_got->output_offset + off;
3145 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3146 relocation -= htab->sgotplt->output_section->vma
3147 - htab->sgotplt->output_offset;
3148
3149 break;
3150
3151 case R_X86_64_GOTOFF64:
3152 /* Relocation is relative to the start of the global offset
3153 table. */
3154
3155 /* Check to make sure it isn't a protected function symbol
3156 for shared library since it may not be local when used
3157 as function address. */
3158 if (info->shared
3159 && h
3160 && h->def_regular
3161 && h->type == STT_FUNC
3162 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3163 {
3164 (*_bfd_error_handler)
3165 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3166 input_bfd, h->root.root.string);
3167 bfd_set_error (bfd_error_bad_value);
3168 return FALSE;
3169 }
3170
3171 /* Note that sgot is not involved in this
3172 calculation. We always want the start of .got.plt. If we
3173 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3174 permitted by the ABI, we might have to change this
3175 calculation. */
3176 relocation -= htab->sgotplt->output_section->vma
3177 + htab->sgotplt->output_offset;
3178 break;
3179
3180 case R_X86_64_GOTPC32:
3181 case R_X86_64_GOTPC64:
3182 /* Use global offset table as symbol value. */
3183 relocation = htab->sgotplt->output_section->vma
3184 + htab->sgotplt->output_offset;
3185 unresolved_reloc = FALSE;
3186 break;
3187
3188 case R_X86_64_PLTOFF64:
3189 /* Relocation is PLT entry relative to GOT. For local
3190 symbols it's the symbol itself relative to GOT. */
3191 if (h != NULL
3192 /* See PLT32 handling. */
3193 && h->plt.offset != (bfd_vma) -1
3194 && htab->splt != NULL)
3195 {
3196 relocation = (htab->splt->output_section->vma
3197 + htab->splt->output_offset
3198 + h->plt.offset);
3199 unresolved_reloc = FALSE;
3200 }
3201
3202 relocation -= htab->sgotplt->output_section->vma
3203 + htab->sgotplt->output_offset;
3204 break;
3205
3206 case R_X86_64_PLT32:
3207 /* Relocation is to the entry for this symbol in the
3208 procedure linkage table. */
3209
3210 /* Resolve a PLT32 reloc against a local symbol directly,
3211 without using the procedure linkage table. */
3212 if (h == NULL)
3213 break;
3214
3215 if (h->plt.offset == (bfd_vma) -1
3216 || htab->splt == NULL)
3217 {
3218 /* We didn't make a PLT entry for this symbol. This
3219 happens when statically linking PIC code, or when
3220 using -Bsymbolic. */
3221 break;
3222 }
3223
3224 relocation = (htab->splt->output_section->vma
3225 + htab->splt->output_offset
3226 + h->plt.offset);
3227 unresolved_reloc = FALSE;
3228 break;
3229
3230 case R_X86_64_PC8:
3231 case R_X86_64_PC16:
3232 case R_X86_64_PC32:
3233 if (info->shared
3234 && (input_section->flags & SEC_ALLOC) != 0
3235 && (input_section->flags & SEC_READONLY) != 0
3236 && h != NULL)
3237 {
3238 bfd_boolean fail = FALSE;
3239 bfd_boolean branch
3240 = (r_type == R_X86_64_PC32
3241 && is_32bit_relative_branch (contents, rel->r_offset));
3242
3243 if (SYMBOL_REFERENCES_LOCAL (info, h))
3244 {
3245 /* Symbol is referenced locally. Make sure it is
3246 defined locally or for a branch. */
3247 fail = !h->def_regular && !branch;
3248 }
3249 else
3250 {
3251 /* Symbol isn't referenced locally. We only allow
3252 branch to symbol with non-default visibility. */
3253 fail = (!branch
3254 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3255 }
3256
3257 if (fail)
3258 {
3259 const char *fmt;
3260 const char *v;
3261 const char *pic = "";
3262
3263 switch (ELF_ST_VISIBILITY (h->other))
3264 {
3265 case STV_HIDDEN:
3266 v = _("hidden symbol");
3267 break;
3268 case STV_INTERNAL:
3269 v = _("internal symbol");
3270 break;
3271 case STV_PROTECTED:
3272 v = _("protected symbol");
3273 break;
3274 default:
3275 v = _("symbol");
3276 pic = _("; recompile with -fPIC");
3277 break;
3278 }
3279
3280 if (h->def_regular)
3281 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3282 else
3283 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3284
3285 (*_bfd_error_handler) (fmt, input_bfd,
3286 x86_64_elf_howto_table[r_type].name,
3287 v, h->root.root.string, pic);
3288 bfd_set_error (bfd_error_bad_value);
3289 return FALSE;
3290 }
3291 }
3292 /* Fall through. */
3293
3294 case R_X86_64_8:
3295 case R_X86_64_16:
3296 case R_X86_64_32:
3297 case R_X86_64_PC64:
3298 case R_X86_64_64:
3299 /* FIXME: The ABI says the linker should make sure the value is
3300 the same when it's zeroextended to 64 bit. */
3301
3302 if ((input_section->flags & SEC_ALLOC) == 0)
3303 break;
3304
3305 if ((info->shared
3306 && (h == NULL
3307 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3308 || h->root.type != bfd_link_hash_undefweak)
3309 && (! IS_X86_64_PCREL_TYPE (r_type)
3310 || ! SYMBOL_CALLS_LOCAL (info, h)))
3311 || (ELIMINATE_COPY_RELOCS
3312 && !info->shared
3313 && h != NULL
3314 && h->dynindx != -1
3315 && !h->non_got_ref
3316 && ((h->def_dynamic
3317 && !h->def_regular)
3318 || h->root.type == bfd_link_hash_undefweak
3319 || h->root.type == bfd_link_hash_undefined)))
3320 {
3321 Elf_Internal_Rela outrel;
3322 bfd_byte *loc;
3323 bfd_boolean skip, relocate;
3324 asection *sreloc;
3325
3326 /* When generating a shared object, these relocations
3327 are copied into the output file to be resolved at run
3328 time. */
3329 skip = FALSE;
3330 relocate = FALSE;
3331
3332 outrel.r_offset =
3333 _bfd_elf_section_offset (output_bfd, info, input_section,
3334 rel->r_offset);
3335 if (outrel.r_offset == (bfd_vma) -1)
3336 skip = TRUE;
3337 else if (outrel.r_offset == (bfd_vma) -2)
3338 skip = TRUE, relocate = TRUE;
3339
3340 outrel.r_offset += (input_section->output_section->vma
3341 + input_section->output_offset);
3342
3343 if (skip)
3344 memset (&outrel, 0, sizeof outrel);
3345
3346 /* h->dynindx may be -1 if this symbol was marked to
3347 become local. */
3348 else if (h != NULL
3349 && h->dynindx != -1
3350 && (IS_X86_64_PCREL_TYPE (r_type)
3351 || ! info->shared
3352 || ! SYMBOLIC_BIND (info, h)
3353 || ! h->def_regular))
3354 {
3355 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
3356 outrel.r_addend = rel->r_addend;
3357 }
3358 else
3359 {
3360 /* This symbol is local, or marked to become local. */
3361 if (r_type == R_X86_64_64)
3362 {
3363 relocate = TRUE;
3364 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3365 outrel.r_addend = relocation + rel->r_addend;
3366 }
3367 else
3368 {
3369 long sindx;
3370
3371 if (bfd_is_abs_section (sec))
3372 sindx = 0;
3373 else if (sec == NULL || sec->owner == NULL)
3374 {
3375 bfd_set_error (bfd_error_bad_value);
3376 return FALSE;
3377 }
3378 else
3379 {
3380 asection *osec;
3381
3382 /* We are turning this relocation into one
3383 against a section symbol. It would be
3384 proper to subtract the symbol's value,
3385 osec->vma, from the emitted reloc addend,
3386 but ld.so expects buggy relocs. */
3387 osec = sec->output_section;
3388 sindx = elf_section_data (osec)->dynindx;
3389 if (sindx == 0)
3390 {
3391 asection *oi = htab->elf.text_index_section;
3392 sindx = elf_section_data (oi)->dynindx;
3393 }
3394 BFD_ASSERT (sindx != 0);
3395 }
3396
3397 outrel.r_info = ELF64_R_INFO (sindx, r_type);
3398 outrel.r_addend = relocation + rel->r_addend;
3399 }
3400 }
3401
3402 sreloc = elf_section_data (input_section)->sreloc;
3403
3404 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3405
3406 loc = sreloc->contents;
3407 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3408 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3409
3410 /* If this reloc is against an external symbol, we do
3411 not want to fiddle with the addend. Otherwise, we
3412 need to include the symbol value so that it becomes
3413 an addend for the dynamic reloc. */
3414 if (! relocate)
3415 continue;
3416 }
3417
3418 break;
3419
3420 case R_X86_64_TLSGD:
3421 case R_X86_64_GOTPC32_TLSDESC:
3422 case R_X86_64_TLSDESC_CALL:
3423 case R_X86_64_GOTTPOFF:
3424 tls_type = GOT_UNKNOWN;
3425 if (h == NULL && local_got_offsets)
3426 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3427 else if (h != NULL)
3428 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
3429
3430 if (! elf64_x86_64_tls_transition (info, input_bfd,
3431 input_section, contents,
3432 symtab_hdr, sym_hashes,
3433 &r_type, tls_type, rel,
3434 relend, h))
3435 return FALSE;
3436
3437 if (r_type == R_X86_64_TPOFF32)
3438 {
3439 bfd_vma roff = rel->r_offset;
3440
3441 BFD_ASSERT (! unresolved_reloc);
3442
3443 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3444 {
3445 /* GD->LE transition.
3446 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3447 .word 0x6666; rex64; call __tls_get_addr
3448 Change it into:
3449 movq %fs:0, %rax
3450 leaq foo@tpoff(%rax), %rax */
3451 memcpy (contents + roff - 4,
3452 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3453 16);
3454 bfd_put_32 (output_bfd,
3455 elf64_x86_64_tpoff (info, relocation),
3456 contents + roff + 8);
3457 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3458 rel++;
3459 continue;
3460 }
3461 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3462 {
3463 /* GDesc -> LE transition.
3464 It's originally something like:
3465 leaq x@tlsdesc(%rip), %rax
3466
3467 Change it to:
3468 movl $x@tpoff, %rax
3469 */
3470
3471 unsigned int val, type, type2;
3472
3473 type = bfd_get_8 (input_bfd, contents + roff - 3);
3474 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3475 val = bfd_get_8 (input_bfd, contents + roff - 1);
3476 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3477 contents + roff - 3);
3478 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3479 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3480 contents + roff - 1);
3481 bfd_put_32 (output_bfd,
3482 elf64_x86_64_tpoff (info, relocation),
3483 contents + roff);
3484 continue;
3485 }
3486 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3487 {
3488 /* GDesc -> LE transition.
3489 It's originally:
3490 call *(%rax)
3491 Turn it into:
3492 xchg %ax,%ax. */
3493 bfd_put_8 (output_bfd, 0x66, contents + roff);
3494 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3495 continue;
3496 }
3497 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3498 {
3499 /* IE->LE transition:
3500 Originally it can be one of:
3501 movq foo@gottpoff(%rip), %reg
3502 addq foo@gottpoff(%rip), %reg
3503 We change it into:
3504 movq $foo, %reg
3505 leaq foo(%reg), %reg
3506 addq $foo, %reg. */
3507
3508 unsigned int val, type, reg;
3509
3510 val = bfd_get_8 (input_bfd, contents + roff - 3);
3511 type = bfd_get_8 (input_bfd, contents + roff - 2);
3512 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3513 reg >>= 3;
3514 if (type == 0x8b)
3515 {
3516 /* movq */
3517 if (val == 0x4c)
3518 bfd_put_8 (output_bfd, 0x49,
3519 contents + roff - 3);
3520 bfd_put_8 (output_bfd, 0xc7,
3521 contents + roff - 2);
3522 bfd_put_8 (output_bfd, 0xc0 | reg,
3523 contents + roff - 1);
3524 }
3525 else if (reg == 4)
3526 {
3527 /* addq -> addq - addressing with %rsp/%r12 is
3528 special */
3529 if (val == 0x4c)
3530 bfd_put_8 (output_bfd, 0x49,
3531 contents + roff - 3);
3532 bfd_put_8 (output_bfd, 0x81,
3533 contents + roff - 2);
3534 bfd_put_8 (output_bfd, 0xc0 | reg,
3535 contents + roff - 1);
3536 }
3537 else
3538 {
3539 /* addq -> leaq */
3540 if (val == 0x4c)
3541 bfd_put_8 (output_bfd, 0x4d,
3542 contents + roff - 3);
3543 bfd_put_8 (output_bfd, 0x8d,
3544 contents + roff - 2);
3545 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3546 contents + roff - 1);
3547 }
3548 bfd_put_32 (output_bfd,
3549 elf64_x86_64_tpoff (info, relocation),
3550 contents + roff);
3551 continue;
3552 }
3553 else
3554 BFD_ASSERT (FALSE);
3555 }
3556
3557 if (htab->sgot == NULL)
3558 abort ();
3559
3560 if (h != NULL)
3561 {
3562 off = h->got.offset;
3563 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
3564 }
3565 else
3566 {
3567 if (local_got_offsets == NULL)
3568 abort ();
3569
3570 off = local_got_offsets[r_symndx];
3571 offplt = local_tlsdesc_gotents[r_symndx];
3572 }
3573
3574 if ((off & 1) != 0)
3575 off &= ~1;
3576 else
3577 {
3578 Elf_Internal_Rela outrel;
3579 bfd_byte *loc;
3580 int dr_type, indx;
3581 asection *sreloc;
3582
3583 if (htab->srelgot == NULL)
3584 abort ();
3585
3586 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3587
3588 if (GOT_TLS_GDESC_P (tls_type))
3589 {
3590 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
3591 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3592 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
3593 outrel.r_offset = (htab->sgotplt->output_section->vma
3594 + htab->sgotplt->output_offset
3595 + offplt
3596 + htab->sgotplt_jump_table_size);
3597 sreloc = htab->srelplt;
3598 loc = sreloc->contents;
3599 loc += sreloc->reloc_count++
3600 * sizeof (Elf64_External_Rela);
3601 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3602 <= sreloc->contents + sreloc->size);
3603 if (indx == 0)
3604 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3605 else
3606 outrel.r_addend = 0;
3607 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3608 }
3609
3610 sreloc = htab->srelgot;
3611
3612 outrel.r_offset = (htab->sgot->output_section->vma
3613 + htab->sgot->output_offset + off);
3614
3615 if (GOT_TLS_GD_P (tls_type))
3616 dr_type = R_X86_64_DTPMOD64;
3617 else if (GOT_TLS_GDESC_P (tls_type))
3618 goto dr_done;
3619 else
3620 dr_type = R_X86_64_TPOFF64;
3621
3622 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
3623 outrel.r_addend = 0;
3624 if ((dr_type == R_X86_64_TPOFF64
3625 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3626 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3627 outrel.r_info = ELF64_R_INFO (indx, dr_type);
3628
3629 loc = sreloc->contents;
3630 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3631 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3632 <= sreloc->contents + sreloc->size);
3633 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3634
3635 if (GOT_TLS_GD_P (tls_type))
3636 {
3637 if (indx == 0)
3638 {
3639 BFD_ASSERT (! unresolved_reloc);
3640 bfd_put_64 (output_bfd,
3641 relocation - elf64_x86_64_dtpoff_base (info),
3642 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3643 }
3644 else
3645 {
3646 bfd_put_64 (output_bfd, 0,
3647 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3648 outrel.r_info = ELF64_R_INFO (indx,
3649 R_X86_64_DTPOFF64);
3650 outrel.r_offset += GOT_ENTRY_SIZE;
3651 sreloc->reloc_count++;
3652 loc += sizeof (Elf64_External_Rela);
3653 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3654 <= sreloc->contents + sreloc->size);
3655 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3656 }
3657 }
3658
3659 dr_done:
3660 if (h != NULL)
3661 h->got.offset |= 1;
3662 else
3663 local_got_offsets[r_symndx] |= 1;
3664 }
3665
3666 if (off >= (bfd_vma) -2
3667 && ! GOT_TLS_GDESC_P (tls_type))
3668 abort ();
3669 if (r_type == ELF64_R_TYPE (rel->r_info))
3670 {
3671 if (r_type == R_X86_64_GOTPC32_TLSDESC
3672 || r_type == R_X86_64_TLSDESC_CALL)
3673 relocation = htab->sgotplt->output_section->vma
3674 + htab->sgotplt->output_offset
3675 + offplt + htab->sgotplt_jump_table_size;
3676 else
3677 relocation = htab->sgot->output_section->vma
3678 + htab->sgot->output_offset + off;
3679 unresolved_reloc = FALSE;
3680 }
3681 else
3682 {
3683 bfd_vma roff = rel->r_offset;
3684
3685 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3686 {
3687 /* GD->IE transition.
3688 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3689 .word 0x6666; rex64; call __tls_get_addr@plt
3690 Change it into:
3691 movq %fs:0, %rax
3692 addq foo@gottpoff(%rip), %rax */
3693 memcpy (contents + roff - 4,
3694 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3695 16);
3696
3697 relocation = (htab->sgot->output_section->vma
3698 + htab->sgot->output_offset + off
3699 - roff
3700 - input_section->output_section->vma
3701 - input_section->output_offset
3702 - 12);
3703 bfd_put_32 (output_bfd, relocation,
3704 contents + roff + 8);
3705 /* Skip R_X86_64_PLT32. */
3706 rel++;
3707 continue;
3708 }
3709 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3710 {
3711 /* GDesc -> IE transition.
3712 It's originally something like:
3713 leaq x@tlsdesc(%rip), %rax
3714
3715 Change it to:
3716 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3717 */
3718
3719 unsigned int val, type, type2;
3720
3721 type = bfd_get_8 (input_bfd, contents + roff - 3);
3722 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3723 val = bfd_get_8 (input_bfd, contents + roff - 1);
3724
3725 /* Now modify the instruction as appropriate. To
3726 turn a leaq into a movq in the form we use it, it
3727 suffices to change the second byte from 0x8d to
3728 0x8b. */
3729 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3730
3731 bfd_put_32 (output_bfd,
3732 htab->sgot->output_section->vma
3733 + htab->sgot->output_offset + off
3734 - rel->r_offset
3735 - input_section->output_section->vma
3736 - input_section->output_offset
3737 - 4,
3738 contents + roff);
3739 continue;
3740 }
3741 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3742 {
3743 /* GDesc -> IE transition.
3744 It's originally:
3745 call *(%rax)
3746
3747 Change it to:
3748 xchg %ax,%ax. */
3749
3750 unsigned int val, type;
3751
3752 type = bfd_get_8 (input_bfd, contents + roff);
3753 val = bfd_get_8 (input_bfd, contents + roff + 1);
3754 bfd_put_8 (output_bfd, 0x66, contents + roff);
3755 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3756 continue;
3757 }
3758 else
3759 BFD_ASSERT (FALSE);
3760 }
3761 break;
3762
3763 case R_X86_64_TLSLD:
3764 if (! elf64_x86_64_tls_transition (info, input_bfd,
3765 input_section, contents,
3766 symtab_hdr, sym_hashes,
3767 &r_type, GOT_UNKNOWN,
3768 rel, relend, h))
3769 return FALSE;
3770
3771 if (r_type != R_X86_64_TLSLD)
3772 {
3773 /* LD->LE transition:
3774 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3775 We change it into:
3776 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3777
3778 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3779 memcpy (contents + rel->r_offset - 3,
3780 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3781 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3782 rel++;
3783 continue;
3784 }
3785
3786 if (htab->sgot == NULL)
3787 abort ();
3788
3789 off = htab->tls_ld_got.offset;
3790 if (off & 1)
3791 off &= ~1;
3792 else
3793 {
3794 Elf_Internal_Rela outrel;
3795 bfd_byte *loc;
3796
3797 if (htab->srelgot == NULL)
3798 abort ();
3799
3800 outrel.r_offset = (htab->sgot->output_section->vma
3801 + htab->sgot->output_offset + off);
3802
3803 bfd_put_64 (output_bfd, 0,
3804 htab->sgot->contents + off);
3805 bfd_put_64 (output_bfd, 0,
3806 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3807 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3808 outrel.r_addend = 0;
3809 loc = htab->srelgot->contents;
3810 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3811 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3812 htab->tls_ld_got.offset |= 1;
3813 }
3814 relocation = htab->sgot->output_section->vma
3815 + htab->sgot->output_offset + off;
3816 unresolved_reloc = FALSE;
3817 break;
3818
3819 case R_X86_64_DTPOFF32:
3820 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3821 relocation -= elf64_x86_64_dtpoff_base (info);
3822 else
3823 relocation = elf64_x86_64_tpoff (info, relocation);
3824 break;
3825
3826 case R_X86_64_TPOFF32:
3827 BFD_ASSERT (! info->shared);
3828 relocation = elf64_x86_64_tpoff (info, relocation);
3829 break;
3830
3831 default:
3832 break;
3833 }
3834
3835 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3836 because such sections are not SEC_ALLOC and thus ld.so will
3837 not process them. */
3838 if (unresolved_reloc
3839 && !((input_section->flags & SEC_DEBUGGING) != 0
3840 && h->def_dynamic))
3841 (*_bfd_error_handler)
3842 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3843 input_bfd,
3844 input_section,
3845 (long) rel->r_offset,
3846 howto->name,
3847 h->root.root.string);
3848
3849 do_relocation:
3850 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3851 contents, rel->r_offset,
3852 relocation, rel->r_addend);
3853
3854 if (r != bfd_reloc_ok)
3855 {
3856 const char *name;
3857
3858 if (h != NULL)
3859 name = h->root.root.string;
3860 else
3861 {
3862 name = bfd_elf_string_from_elf_section (input_bfd,
3863 symtab_hdr->sh_link,
3864 sym->st_name);
3865 if (name == NULL)
3866 return FALSE;
3867 if (*name == '\0')
3868 name = bfd_section_name (input_bfd, sec);
3869 }
3870
3871 if (r == bfd_reloc_overflow)
3872 {
3873 if (! ((*info->callbacks->reloc_overflow)
3874 (info, (h ? &h->root : NULL), name, howto->name,
3875 (bfd_vma) 0, input_bfd, input_section,
3876 rel->r_offset)))
3877 return FALSE;
3878 }
3879 else
3880 {
3881 (*_bfd_error_handler)
3882 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3883 input_bfd, input_section,
3884 (long) rel->r_offset, name, (int) r);
3885 return FALSE;
3886 }
3887 }
3888 }
3889
3890 return TRUE;
3891 }
3892
3893 /* Finish up dynamic symbol handling. We set the contents of various
3894 dynamic sections here. */
3895
3896 static bfd_boolean
3897 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3898 struct bfd_link_info *info,
3899 struct elf_link_hash_entry *h,
3900 Elf_Internal_Sym *sym)
3901 {
3902 struct elf64_x86_64_link_hash_table *htab;
3903
3904 htab = elf64_x86_64_hash_table (info);
3905
3906 if (h->plt.offset != (bfd_vma) -1)
3907 {
3908 bfd_vma plt_index;
3909 bfd_vma got_offset;
3910 Elf_Internal_Rela rela;
3911 bfd_byte *loc;
3912 asection *plt, *gotplt, *relplt;
3913
3914 /* When building a static executable, use .iplt, .igot.plt and
3915 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3916 if (htab->splt != NULL)
3917 {
3918 plt = htab->splt;
3919 gotplt = htab->sgotplt;
3920 relplt = htab->srelplt;
3921 }
3922 else
3923 {
3924 plt = htab->iplt;
3925 gotplt = htab->igotplt;
3926 relplt = htab->irelplt;
3927 }
3928
3929 /* This symbol has an entry in the procedure linkage table. Set
3930 it up. */
3931 if ((h->dynindx == -1
3932 && !((h->forced_local || info->executable)
3933 && h->def_regular
3934 && h->type == STT_GNU_IFUNC))
3935 || plt == NULL
3936 || gotplt == NULL
3937 || relplt == NULL)
3938 abort ();
3939
3940 /* Get the index in the procedure linkage table which
3941 corresponds to this symbol. This is the index of this symbol
3942 in all the symbols for which we are making plt entries. The
3943 first entry in the procedure linkage table is reserved.
3944
3945 Get the offset into the .got table of the entry that
3946 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3947 bytes. The first three are reserved for the dynamic linker.
3948
3949 For static executables, we don't reserve anything. */
3950
3951 if (plt == htab->splt)
3952 {
3953 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3954 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3955 }
3956 else
3957 {
3958 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3959 got_offset = plt_index * GOT_ENTRY_SIZE;
3960 }
3961
3962 /* Fill in the entry in the procedure linkage table. */
3963 memcpy (plt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3964 PLT_ENTRY_SIZE);
3965
3966 /* Insert the relocation positions of the plt section. The magic
3967 numbers at the end of the statements are the positions of the
3968 relocations in the plt section. */
3969 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3970 instruction uses 6 bytes, subtract this value. */
3971 bfd_put_32 (output_bfd,
3972 (gotplt->output_section->vma
3973 + gotplt->output_offset
3974 + got_offset
3975 - plt->output_section->vma
3976 - plt->output_offset
3977 - h->plt.offset
3978 - 6),
3979 plt->contents + h->plt.offset + 2);
3980
3981 /* Don't fill PLT entry for static executables. */
3982 if (plt == htab->splt)
3983 {
3984 /* Put relocation index. */
3985 bfd_put_32 (output_bfd, plt_index,
3986 plt->contents + h->plt.offset + 7);
3987 /* Put offset for jmp .PLT0. */
3988 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3989 plt->contents + h->plt.offset + 12);
3990 }
3991
3992 /* Fill in the entry in the global offset table, initially this
3993 points to the pushq instruction in the PLT which is at offset 6. */
3994 bfd_put_64 (output_bfd, (plt->output_section->vma
3995 + plt->output_offset
3996 + h->plt.offset + 6),
3997 gotplt->contents + got_offset);
3998
3999 /* Fill in the entry in the .rela.plt section. */
4000 rela.r_offset = (gotplt->output_section->vma
4001 + gotplt->output_offset
4002 + got_offset);
4003 if (h->dynindx == -1
4004 || ((info->executable
4005 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4006 && h->def_regular
4007 && h->type == STT_GNU_IFUNC))
4008 {
4009 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4010 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4011 rela.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
4012 rela.r_addend = (h->root.u.def.value
4013 + h->root.u.def.section->output_section->vma
4014 + h->root.u.def.section->output_offset);
4015 }
4016 else
4017 {
4018 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
4019 rela.r_addend = 0;
4020 }
4021 loc = relplt->contents + plt_index * sizeof (Elf64_External_Rela);
4022 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
4023
4024 if (!h->def_regular)
4025 {
4026 /* Mark the symbol as undefined, rather than as defined in
4027 the .plt section. Leave the value if there were any
4028 relocations where pointer equality matters (this is a clue
4029 for the dynamic linker, to make function pointer
4030 comparisons work between an application and shared
4031 library), otherwise set it to zero. If a function is only
4032 called from a binary, there is no need to slow down
4033 shared libraries because of that. */
4034 sym->st_shndx = SHN_UNDEF;
4035 if (!h->pointer_equality_needed)
4036 sym->st_value = 0;
4037 }
4038 }
4039
4040 if (h->got.offset != (bfd_vma) -1
4041 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
4042 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4043 {
4044 Elf_Internal_Rela rela;
4045 bfd_byte *loc;
4046
4047 /* This symbol has an entry in the global offset table. Set it
4048 up. */
4049 if (htab->sgot == NULL || htab->srelgot == NULL)
4050 abort ();
4051
4052 rela.r_offset = (htab->sgot->output_section->vma
4053 + htab->sgot->output_offset
4054 + (h->got.offset &~ (bfd_vma) 1));
4055
4056 /* If this is a static link, or it is a -Bsymbolic link and the
4057 symbol is defined locally or was forced to be local because
4058 of a version file, we just want to emit a RELATIVE reloc.
4059 The entry in the global offset table will already have been
4060 initialized in the relocate_section function. */
4061 if (h->def_regular
4062 && h->type == STT_GNU_IFUNC)
4063 {
4064 if (info->shared)
4065 {
4066 /* Generate R_X86_64_GLOB_DAT. */
4067 goto do_glob_dat;
4068 }
4069 else
4070 {
4071 if (!h->pointer_equality_needed)
4072 abort ();
4073
4074 /* For non-shared object, we can't use .got.plt, which
4075 contains the real function addres if we need pointer
4076 equality. We load the GOT entry with the PLT entry. */
4077 asection *plt = htab->splt ? htab->splt : htab->iplt;
4078 bfd_put_64 (output_bfd, (plt->output_section->vma
4079 + plt->output_offset
4080 + h->plt.offset),
4081 htab->sgot->contents + h->got.offset);
4082 return TRUE;
4083 }
4084 }
4085 else if (info->shared
4086 && SYMBOL_REFERENCES_LOCAL (info, h))
4087 {
4088 if (!h->def_regular)
4089 return FALSE;
4090 BFD_ASSERT((h->got.offset & 1) != 0);
4091 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
4092 rela.r_addend = (h->root.u.def.value
4093 + h->root.u.def.section->output_section->vma
4094 + h->root.u.def.section->output_offset);
4095 }
4096 else
4097 {
4098 BFD_ASSERT((h->got.offset & 1) == 0);
4099 do_glob_dat:
4100 bfd_put_64 (output_bfd, (bfd_vma) 0,
4101 htab->sgot->contents + h->got.offset);
4102 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
4103 rela.r_addend = 0;
4104 }
4105
4106 loc = htab->srelgot->contents;
4107 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
4108 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
4109 }
4110
4111 if (h->needs_copy)
4112 {
4113 Elf_Internal_Rela rela;
4114 bfd_byte *loc;
4115
4116 /* This symbol needs a copy reloc. Set it up. */
4117
4118 if (h->dynindx == -1
4119 || (h->root.type != bfd_link_hash_defined
4120 && h->root.type != bfd_link_hash_defweak)
4121 || htab->srelbss == NULL)
4122 abort ();
4123
4124 rela.r_offset = (h->root.u.def.value
4125 + h->root.u.def.section->output_section->vma
4126 + h->root.u.def.section->output_offset);
4127 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
4128 rela.r_addend = 0;
4129 loc = htab->srelbss->contents;
4130 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
4131 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
4132 }
4133
4134 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4135 be NULL for local symbols. */
4136 if (sym != NULL
4137 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4138 || h == htab->elf.hgot))
4139 sym->st_shndx = SHN_ABS;
4140
4141 return TRUE;
4142 }
4143
4144 /* Finish up local dynamic symbol handling. We set the contents of
4145 various dynamic sections here. */
4146
4147 static bfd_boolean
4148 elf64_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4149 {
4150 struct elf_link_hash_entry *h
4151 = (struct elf_link_hash_entry *) *slot;
4152 struct bfd_link_info *info
4153 = (struct bfd_link_info *) inf;
4154
4155 return elf64_x86_64_finish_dynamic_symbol (info->output_bfd,
4156 info, h, NULL);
4157 }
4158
4159 /* Used to decide how to sort relocs in an optimal manner for the
4160 dynamic linker, before writing them out. */
4161
4162 static enum elf_reloc_type_class
4163 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4164 {
4165 switch ((int) ELF64_R_TYPE (rela->r_info))
4166 {
4167 case R_X86_64_RELATIVE:
4168 return reloc_class_relative;
4169 case R_X86_64_JUMP_SLOT:
4170 return reloc_class_plt;
4171 case R_X86_64_COPY:
4172 return reloc_class_copy;
4173 default:
4174 return reloc_class_normal;
4175 }
4176 }
4177
4178 /* Finish up the dynamic sections. */
4179
4180 static bfd_boolean
4181 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4182 {
4183 struct elf64_x86_64_link_hash_table *htab;
4184 bfd *dynobj;
4185 asection *sdyn;
4186
4187 htab = elf64_x86_64_hash_table (info);
4188 dynobj = htab->elf.dynobj;
4189 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4190
4191 if (htab->elf.dynamic_sections_created)
4192 {
4193 Elf64_External_Dyn *dyncon, *dynconend;
4194
4195 if (sdyn == NULL || htab->sgot == NULL)
4196 abort ();
4197
4198 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4199 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4200 for (; dyncon < dynconend; dyncon++)
4201 {
4202 Elf_Internal_Dyn dyn;
4203 asection *s;
4204
4205 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4206
4207 switch (dyn.d_tag)
4208 {
4209 default:
4210 continue;
4211
4212 case DT_PLTGOT:
4213 s = htab->sgotplt;
4214 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4215 break;
4216
4217 case DT_JMPREL:
4218 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
4219 break;
4220
4221 case DT_PLTRELSZ:
4222 s = htab->srelplt->output_section;
4223 dyn.d_un.d_val = s->size;
4224 break;
4225
4226 case DT_RELASZ:
4227 /* The procedure linkage table relocs (DT_JMPREL) should
4228 not be included in the overall relocs (DT_RELA).
4229 Therefore, we override the DT_RELASZ entry here to
4230 make it not include the JMPREL relocs. Since the
4231 linker script arranges for .rela.plt to follow all
4232 other relocation sections, we don't have to worry
4233 about changing the DT_RELA entry. */
4234 if (htab->srelplt != NULL)
4235 {
4236 s = htab->srelplt->output_section;
4237 dyn.d_un.d_val -= s->size;
4238 }
4239 break;
4240
4241 case DT_TLSDESC_PLT:
4242 s = htab->splt;
4243 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4244 + htab->tlsdesc_plt;
4245 break;
4246
4247 case DT_TLSDESC_GOT:
4248 s = htab->sgot;
4249 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4250 + htab->tlsdesc_got;
4251 break;
4252 }
4253
4254 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4255 }
4256
4257 /* Fill in the special first entry in the procedure linkage table. */
4258 if (htab->splt && htab->splt->size > 0)
4259 {
4260 /* Fill in the first entry in the procedure linkage table. */
4261 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
4262 PLT_ENTRY_SIZE);
4263 /* Add offset for pushq GOT+8(%rip), since the instruction
4264 uses 6 bytes subtract this value. */
4265 bfd_put_32 (output_bfd,
4266 (htab->sgotplt->output_section->vma
4267 + htab->sgotplt->output_offset
4268 + 8
4269 - htab->splt->output_section->vma
4270 - htab->splt->output_offset
4271 - 6),
4272 htab->splt->contents + 2);
4273 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4274 the end of the instruction. */
4275 bfd_put_32 (output_bfd,
4276 (htab->sgotplt->output_section->vma
4277 + htab->sgotplt->output_offset
4278 + 16
4279 - htab->splt->output_section->vma
4280 - htab->splt->output_offset
4281 - 12),
4282 htab->splt->contents + 8);
4283
4284 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
4285 PLT_ENTRY_SIZE;
4286
4287 if (htab->tlsdesc_plt)
4288 {
4289 bfd_put_64 (output_bfd, (bfd_vma) 0,
4290 htab->sgot->contents + htab->tlsdesc_got);
4291
4292 memcpy (htab->splt->contents + htab->tlsdesc_plt,
4293 elf64_x86_64_plt0_entry,
4294 PLT_ENTRY_SIZE);
4295
4296 /* Add offset for pushq GOT+8(%rip), since the
4297 instruction uses 6 bytes subtract this value. */
4298 bfd_put_32 (output_bfd,
4299 (htab->sgotplt->output_section->vma
4300 + htab->sgotplt->output_offset
4301 + 8
4302 - htab->splt->output_section->vma
4303 - htab->splt->output_offset
4304 - htab->tlsdesc_plt
4305 - 6),
4306 htab->splt->contents + htab->tlsdesc_plt + 2);
4307 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4308 htab->tlsdesc_got. The 12 is the offset to the end of
4309 the instruction. */
4310 bfd_put_32 (output_bfd,
4311 (htab->sgot->output_section->vma
4312 + htab->sgot->output_offset
4313 + htab->tlsdesc_got
4314 - htab->splt->output_section->vma
4315 - htab->splt->output_offset
4316 - htab->tlsdesc_plt
4317 - 12),
4318 htab->splt->contents + htab->tlsdesc_plt + 8);
4319 }
4320 }
4321 }
4322
4323 if (htab->sgotplt)
4324 {
4325 /* Fill in the first three entries in the global offset table. */
4326 if (htab->sgotplt->size > 0)
4327 {
4328 /* Set the first entry in the global offset table to the address of
4329 the dynamic section. */
4330 if (sdyn == NULL)
4331 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
4332 else
4333 bfd_put_64 (output_bfd,
4334 sdyn->output_section->vma + sdyn->output_offset,
4335 htab->sgotplt->contents);
4336 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4337 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
4338 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
4339 }
4340
4341 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
4342 GOT_ENTRY_SIZE;
4343 }
4344
4345 if (htab->sgot && htab->sgot->size > 0)
4346 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
4347 = GOT_ENTRY_SIZE;
4348
4349 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4350 htab_traverse (htab->loc_hash_table,
4351 elf64_x86_64_finish_local_dynamic_symbol,
4352 info);
4353
4354 return TRUE;
4355 }
4356
4357 /* Return address for Ith PLT stub in section PLT, for relocation REL
4358 or (bfd_vma) -1 if it should not be included. */
4359
4360 static bfd_vma
4361 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4362 const arelent *rel ATTRIBUTE_UNUSED)
4363 {
4364 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4365 }
4366
4367 /* Handle an x86-64 specific section when reading an object file. This
4368 is called when elfcode.h finds a section with an unknown type. */
4369
4370 static bfd_boolean
4371 elf64_x86_64_section_from_shdr (bfd *abfd,
4372 Elf_Internal_Shdr *hdr,
4373 const char *name,
4374 int shindex)
4375 {
4376 if (hdr->sh_type != SHT_X86_64_UNWIND)
4377 return FALSE;
4378
4379 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4380 return FALSE;
4381
4382 return TRUE;
4383 }
4384
4385 /* Hook called by the linker routine which adds symbols from an object
4386 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4387 of .bss. */
4388
4389 static bfd_boolean
4390 elf64_x86_64_add_symbol_hook (bfd *abfd,
4391 struct bfd_link_info *info,
4392 Elf_Internal_Sym *sym,
4393 const char **namep ATTRIBUTE_UNUSED,
4394 flagword *flagsp ATTRIBUTE_UNUSED,
4395 asection **secp,
4396 bfd_vma *valp)
4397 {
4398 asection *lcomm;
4399
4400 switch (sym->st_shndx)
4401 {
4402 case SHN_X86_64_LCOMMON:
4403 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4404 if (lcomm == NULL)
4405 {
4406 lcomm = bfd_make_section_with_flags (abfd,
4407 "LARGE_COMMON",
4408 (SEC_ALLOC
4409 | SEC_IS_COMMON
4410 | SEC_LINKER_CREATED));
4411 if (lcomm == NULL)
4412 return FALSE;
4413 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4414 }
4415 *secp = lcomm;
4416 *valp = sym->st_size;
4417 break;
4418 }
4419
4420 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4421 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
4422
4423 return TRUE;
4424 }
4425
4426
4427 /* Given a BFD section, try to locate the corresponding ELF section
4428 index. */
4429
4430 static bfd_boolean
4431 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4432 asection *sec, int *index)
4433 {
4434 if (sec == &_bfd_elf_large_com_section)
4435 {
4436 *index = SHN_X86_64_LCOMMON;
4437 return TRUE;
4438 }
4439 return FALSE;
4440 }
4441
4442 /* Process a symbol. */
4443
4444 static void
4445 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4446 asymbol *asym)
4447 {
4448 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4449
4450 switch (elfsym->internal_elf_sym.st_shndx)
4451 {
4452 case SHN_X86_64_LCOMMON:
4453 asym->section = &_bfd_elf_large_com_section;
4454 asym->value = elfsym->internal_elf_sym.st_size;
4455 /* Common symbol doesn't set BSF_GLOBAL. */
4456 asym->flags &= ~BSF_GLOBAL;
4457 break;
4458 }
4459 }
4460
4461 static bfd_boolean
4462 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
4463 {
4464 return (sym->st_shndx == SHN_COMMON
4465 || sym->st_shndx == SHN_X86_64_LCOMMON);
4466 }
4467
4468 static unsigned int
4469 elf64_x86_64_common_section_index (asection *sec)
4470 {
4471 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4472 return SHN_COMMON;
4473 else
4474 return SHN_X86_64_LCOMMON;
4475 }
4476
4477 static asection *
4478 elf64_x86_64_common_section (asection *sec)
4479 {
4480 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4481 return bfd_com_section_ptr;
4482 else
4483 return &_bfd_elf_large_com_section;
4484 }
4485
4486 static bfd_boolean
4487 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4488 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4489 struct elf_link_hash_entry *h,
4490 Elf_Internal_Sym *sym,
4491 asection **psec,
4492 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4493 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4494 bfd_boolean *skip ATTRIBUTE_UNUSED,
4495 bfd_boolean *override ATTRIBUTE_UNUSED,
4496 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4497 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4498 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4499 bfd_boolean *newdyn,
4500 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4501 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4502 bfd *abfd ATTRIBUTE_UNUSED,
4503 asection **sec,
4504 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4505 bfd_boolean *olddyn,
4506 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4507 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4508 bfd *oldbfd,
4509 asection **oldsec)
4510 {
4511 /* A normal common symbol and a large common symbol result in a
4512 normal common symbol. We turn the large common symbol into a
4513 normal one. */
4514 if (!*olddyn
4515 && h->root.type == bfd_link_hash_common
4516 && !*newdyn
4517 && bfd_is_com_section (*sec)
4518 && *oldsec != *sec)
4519 {
4520 if (sym->st_shndx == SHN_COMMON
4521 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4522 {
4523 h->root.u.c.p->section
4524 = bfd_make_section_old_way (oldbfd, "COMMON");
4525 h->root.u.c.p->section->flags = SEC_ALLOC;
4526 }
4527 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4528 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4529 *psec = *sec = bfd_com_section_ptr;
4530 }
4531
4532 return TRUE;
4533 }
4534
4535 static int
4536 elf64_x86_64_additional_program_headers (bfd *abfd,
4537 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4538 {
4539 asection *s;
4540 int count = 0;
4541
4542 /* Check to see if we need a large readonly segment. */
4543 s = bfd_get_section_by_name (abfd, ".lrodata");
4544 if (s && (s->flags & SEC_LOAD))
4545 count++;
4546
4547 /* Check to see if we need a large data segment. Since .lbss sections
4548 is placed right after the .bss section, there should be no need for
4549 a large data segment just because of .lbss. */
4550 s = bfd_get_section_by_name (abfd, ".ldata");
4551 if (s && (s->flags & SEC_LOAD))
4552 count++;
4553
4554 return count;
4555 }
4556
4557 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4558
4559 static bfd_boolean
4560 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4561 {
4562 if (h->plt.offset != (bfd_vma) -1
4563 && !h->def_regular
4564 && !h->pointer_equality_needed)
4565 return FALSE;
4566
4567 return _bfd_elf_hash_symbol (h);
4568 }
4569
4570 static const struct bfd_elf_special_section
4571 elf64_x86_64_special_sections[]=
4572 {
4573 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4574 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4575 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4576 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4577 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4578 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4579 { NULL, 0, 0, 0, 0 }
4580 };
4581
4582 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4583 #define TARGET_LITTLE_NAME "elf64-x86-64"
4584 #define ELF_ARCH bfd_arch_i386
4585 #define ELF_MACHINE_CODE EM_X86_64
4586 #define ELF_MAXPAGESIZE 0x200000
4587 #define ELF_MINPAGESIZE 0x1000
4588 #define ELF_COMMONPAGESIZE 0x1000
4589
4590 #define elf_backend_can_gc_sections 1
4591 #define elf_backend_can_refcount 1
4592 #define elf_backend_want_got_plt 1
4593 #define elf_backend_plt_readonly 1
4594 #define elf_backend_want_plt_sym 0
4595 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4596 #define elf_backend_rela_normal 1
4597
4598 #define elf_info_to_howto elf64_x86_64_info_to_howto
4599
4600 #define bfd_elf64_bfd_link_hash_table_create \
4601 elf64_x86_64_link_hash_table_create
4602 #define bfd_elf64_bfd_link_hash_table_free \
4603 elf64_x86_64_link_hash_table_free
4604 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4605 #define bfd_elf64_bfd_reloc_name_lookup \
4606 elf64_x86_64_reloc_name_lookup
4607
4608 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4609 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4610 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4611 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4612 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4613 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4614 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4615 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4616 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4617 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4618 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4619 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4620 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4621 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4622 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4623 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4624 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4625 #define elf_backend_object_p elf64_x86_64_elf_object_p
4626 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4627
4628 #define elf_backend_section_from_shdr \
4629 elf64_x86_64_section_from_shdr
4630
4631 #define elf_backend_section_from_bfd_section \
4632 elf64_x86_64_elf_section_from_bfd_section
4633 #define elf_backend_add_symbol_hook \
4634 elf64_x86_64_add_symbol_hook
4635 #define elf_backend_symbol_processing \
4636 elf64_x86_64_symbol_processing
4637 #define elf_backend_common_section_index \
4638 elf64_x86_64_common_section_index
4639 #define elf_backend_common_section \
4640 elf64_x86_64_common_section
4641 #define elf_backend_common_definition \
4642 elf64_x86_64_common_definition
4643 #define elf_backend_merge_symbol \
4644 elf64_x86_64_merge_symbol
4645 #define elf_backend_special_sections \
4646 elf64_x86_64_special_sections
4647 #define elf_backend_additional_program_headers \
4648 elf64_x86_64_additional_program_headers
4649 #define elf_backend_hash_symbol \
4650 elf64_x86_64_hash_symbol
4651
4652 #undef elf_backend_post_process_headers
4653 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4654
4655 #include "elf64-target.h"
4656
4657 /* FreeBSD support. */
4658
4659 #undef TARGET_LITTLE_SYM
4660 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4661 #undef TARGET_LITTLE_NAME
4662 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4663
4664 #undef ELF_OSABI
4665 #define ELF_OSABI ELFOSABI_FREEBSD
4666
4667 #undef elf64_bed
4668 #define elf64_bed elf64_x86_64_fbsd_bed
4669
4670 #include "elf64-target.h"
This page took 0.121851 seconds and 5 git commands to generate.