update copyright dates
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #include "elf/x86-64.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table[] =
41 {
42 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
43 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
44 FALSE),
45 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
46 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
47 FALSE),
48 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
50 TRUE),
51 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
53 FALSE),
54 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
55 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
56 TRUE),
57 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
59 FALSE),
60 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
62 MINUS_ONE, FALSE),
63 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
65 MINUS_ONE, FALSE),
66 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
68 MINUS_ONE, FALSE),
69 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
71 0xffffffff, TRUE),
72 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
73 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
76 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
77 FALSE),
78 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
80 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
82 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
84 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
86 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
88 MINUS_ONE, FALSE),
89 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
91 MINUS_ONE, FALSE),
92 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
94 MINUS_ONE, FALSE),
95 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
97 0xffffffff, TRUE),
98 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
99 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
100 0xffffffff, TRUE),
101 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
103 0xffffffff, FALSE),
104 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
106 0xffffffff, TRUE),
107 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
109 0xffffffff, FALSE),
110 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
112 TRUE),
113 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
115 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
116 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
118 FALSE, 0xffffffff, 0xffffffff, TRUE),
119 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
121 FALSE),
122 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
124 MINUS_ONE, TRUE),
125 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
127 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
128 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
130 MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
133 MINUS_ONE, FALSE),
134 EMPTY_HOWTO (32),
135 EMPTY_HOWTO (33),
136 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
137 complain_overflow_bitfield, bfd_elf_generic_reloc,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE, 0xffffffff, 0xffffffff, TRUE),
140 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
141 complain_overflow_dont, bfd_elf_generic_reloc,
142 "R_X86_64_TLSDESC_CALL",
143 FALSE, 0, 0, FALSE),
144 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
145 complain_overflow_bitfield, bfd_elf_generic_reloc,
146 "R_X86_64_TLSDESC",
147 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
149 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
158
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
161 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
162
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
165 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
166 FALSE)
167 };
168
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
174
175 /* Map BFD relocs to the x86_64 elf relocs. */
176 struct elf_reloc_map
177 {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180 };
181
182 static const struct elf_reloc_map x86_64_reloc_map[] =
183 {
184 { BFD_RELOC_NONE, R_X86_64_NONE, },
185 { BFD_RELOC_64, R_X86_64_64, },
186 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
187 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
188 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
189 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
190 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
191 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
192 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
193 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
194 { BFD_RELOC_32, R_X86_64_32, },
195 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
196 { BFD_RELOC_16, R_X86_64_16, },
197 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
198 { BFD_RELOC_8, R_X86_64_8, },
199 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
200 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
201 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
202 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
203 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
204 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
205 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
206 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
207 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
208 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
209 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
210 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
211 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
212 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
213 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
214 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
215 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
218 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
219 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
220 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
221 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
222 };
223
224 static reloc_howto_type *
225 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
226 {
227 unsigned i;
228
229 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type >= (unsigned int) R_X86_64_max)
231 {
232 if (r_type >= (unsigned int) R_X86_64_standard)
233 {
234 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
235 abfd, (int) r_type);
236 r_type = R_X86_64_NONE;
237 }
238 i = r_type;
239 }
240 else
241 i = r_type - (unsigned int) R_X86_64_vt_offset;
242 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
243 return &x86_64_elf_howto_table[i];
244 }
245
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type *
248 elf64_x86_64_reloc_type_lookup (bfd *abfd,
249 bfd_reloc_code_real_type code)
250 {
251 unsigned int i;
252
253 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
254 i++)
255 {
256 if (x86_64_reloc_map[i].bfd_reloc_val == code)
257 return elf64_x86_64_rtype_to_howto (abfd,
258 x86_64_reloc_map[i].elf_reloc_val);
259 }
260 return 0;
261 }
262
263 static reloc_howto_type *
264 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
265 const char *r_name)
266 {
267 unsigned int i;
268
269 for (i = 0;
270 i < (sizeof (x86_64_elf_howto_table)
271 / sizeof (x86_64_elf_howto_table[0]));
272 i++)
273 if (x86_64_elf_howto_table[i].name != NULL
274 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
275 return &x86_64_elf_howto_table[i];
276
277 return NULL;
278 }
279
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
281
282 static void
283 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
284 Elf_Internal_Rela *dst)
285 {
286 unsigned r_type;
287
288 r_type = ELF64_R_TYPE (dst->r_info);
289 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
290 BFD_ASSERT (r_type == cache_ptr->howto->type);
291 }
292 \f
293 /* Support for core dump NOTE sections. */
294 static bfd_boolean
295 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
296 {
297 int offset;
298 size_t size;
299
300 switch (note->descsz)
301 {
302 default:
303 return FALSE;
304
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
306 /* pr_cursig */
307 elf_tdata (abfd)->core_signal
308 = bfd_get_16 (abfd, note->descdata + 12);
309
310 /* pr_pid */
311 elf_tdata (abfd)->core_pid
312 = bfd_get_32 (abfd, note->descdata + 32);
313
314 /* pr_reg */
315 offset = 112;
316 size = 216;
317
318 break;
319 }
320
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
323 size, note->descpos + offset);
324 }
325
326 static bfd_boolean
327 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
328 {
329 switch (note->descsz)
330 {
331 default:
332 return FALSE;
333
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd)->core_program
336 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
337 elf_tdata (abfd)->core_command
338 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
339 }
340
341 /* Note that for some reason, a spurious space is tacked
342 onto the end of the args in some (at least one anyway)
343 implementations, so strip it off if it exists. */
344
345 {
346 char *command = elf_tdata (abfd)->core_command;
347 int n = strlen (command);
348
349 if (0 < n && command[n - 1] == ' ')
350 command[n - 1] = '\0';
351 }
352
353 return TRUE;
354 }
355 \f
356 /* Functions for the x86-64 ELF linker. */
357
358 /* The name of the dynamic interpreter. This is put in the .interp
359 section. */
360
361 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
362
363 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
364 copying dynamic variables from a shared lib into an app's dynbss
365 section, and instead use a dynamic relocation to point into the
366 shared lib. */
367 #define ELIMINATE_COPY_RELOCS 1
368
369 /* The size in bytes of an entry in the global offset table. */
370
371 #define GOT_ENTRY_SIZE 8
372
373 /* The size in bytes of an entry in the procedure linkage table. */
374
375 #define PLT_ENTRY_SIZE 16
376
377 /* The first entry in a procedure linkage table looks like this. See the
378 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
379
380 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
381 {
382 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
383 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
384 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
385 };
386
387 /* Subsequent entries in a procedure linkage table look like this. */
388
389 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
390 {
391 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
392 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
393 0x68, /* pushq immediate */
394 0, 0, 0, 0, /* replaced with index into relocation table. */
395 0xe9, /* jmp relative */
396 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
397 };
398
399 /* x86-64 ELF linker hash entry. */
400
401 struct elf64_x86_64_link_hash_entry
402 {
403 struct elf_link_hash_entry elf;
404
405 /* Track dynamic relocs copied for this symbol. */
406 struct elf_dyn_relocs *dyn_relocs;
407
408 #define GOT_UNKNOWN 0
409 #define GOT_NORMAL 1
410 #define GOT_TLS_GD 2
411 #define GOT_TLS_IE 3
412 #define GOT_TLS_GDESC 4
413 #define GOT_TLS_GD_BOTH_P(type) \
414 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
415 #define GOT_TLS_GD_P(type) \
416 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
417 #define GOT_TLS_GDESC_P(type) \
418 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
419 #define GOT_TLS_GD_ANY_P(type) \
420 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
421 unsigned char tls_type;
422
423 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
424 starting at the end of the jump table. */
425 bfd_vma tlsdesc_got;
426 };
427
428 #define elf64_x86_64_hash_entry(ent) \
429 ((struct elf64_x86_64_link_hash_entry *)(ent))
430
431 struct elf64_x86_64_obj_tdata
432 {
433 struct elf_obj_tdata root;
434
435 /* tls_type for each local got entry. */
436 char *local_got_tls_type;
437
438 /* GOTPLT entries for TLS descriptors. */
439 bfd_vma *local_tlsdesc_gotent;
440 };
441
442 #define elf64_x86_64_tdata(abfd) \
443 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
444
445 #define elf64_x86_64_local_got_tls_type(abfd) \
446 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
447
448 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
449 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
450
451 #define is_x86_64_elf(bfd) \
452 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
453 && elf_tdata (bfd) != NULL \
454 && elf_object_id (bfd) == X86_64_ELF_TDATA)
455
456 static bfd_boolean
457 elf64_x86_64_mkobject (bfd *abfd)
458 {
459 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
460 X86_64_ELF_TDATA);
461 }
462
463 /* x86-64 ELF linker hash table. */
464
465 struct elf64_x86_64_link_hash_table
466 {
467 struct elf_link_hash_table elf;
468
469 /* Short-cuts to get to dynamic linker sections. */
470 asection *sdynbss;
471 asection *srelbss;
472
473 /* The offset into splt of the PLT entry for the TLS descriptor
474 resolver. Special values are 0, if not necessary (or not found
475 to be necessary yet), and -1 if needed but not determined
476 yet. */
477 bfd_vma tlsdesc_plt;
478 /* The offset into sgot of the GOT entry used by the PLT entry
479 above. */
480 bfd_vma tlsdesc_got;
481
482 union {
483 bfd_signed_vma refcount;
484 bfd_vma offset;
485 } tls_ld_got;
486
487 /* The amount of space used by the jump slots in the GOT. */
488 bfd_vma sgotplt_jump_table_size;
489
490 /* Small local sym cache. */
491 struct sym_cache sym_cache;
492
493 /* _TLS_MODULE_BASE_ symbol. */
494 struct bfd_link_hash_entry *tls_module_base;
495
496 /* Used by local STT_GNU_IFUNC symbols. */
497 htab_t loc_hash_table;
498 void *loc_hash_memory;
499 };
500
501 /* Get the x86-64 ELF linker hash table from a link_info structure. */
502
503 #define elf64_x86_64_hash_table(p) \
504 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
505
506 #define elf64_x86_64_compute_jump_table_size(htab) \
507 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
508
509 /* Create an entry in an x86-64 ELF linker hash table. */
510
511 static struct bfd_hash_entry *
512 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
513 struct bfd_hash_table *table,
514 const char *string)
515 {
516 /* Allocate the structure if it has not already been allocated by a
517 subclass. */
518 if (entry == NULL)
519 {
520 entry = bfd_hash_allocate (table,
521 sizeof (struct elf64_x86_64_link_hash_entry));
522 if (entry == NULL)
523 return entry;
524 }
525
526 /* Call the allocation method of the superclass. */
527 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
528 if (entry != NULL)
529 {
530 struct elf64_x86_64_link_hash_entry *eh;
531
532 eh = (struct elf64_x86_64_link_hash_entry *) entry;
533 eh->dyn_relocs = NULL;
534 eh->tls_type = GOT_UNKNOWN;
535 eh->tlsdesc_got = (bfd_vma) -1;
536 }
537
538 return entry;
539 }
540
541 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
542 for local symbol so that we can handle local STT_GNU_IFUNC symbols
543 as global symbol. We reuse indx and dynstr_index for local symbol
544 hash since they aren't used by global symbols in this backend. */
545
546 static hashval_t
547 elf64_x86_64_local_htab_hash (const void *ptr)
548 {
549 struct elf_link_hash_entry *h
550 = (struct elf_link_hash_entry *) ptr;
551 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
552 }
553
554 /* Compare local hash entries. */
555
556 static int
557 elf64_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
558 {
559 struct elf_link_hash_entry *h1
560 = (struct elf_link_hash_entry *) ptr1;
561 struct elf_link_hash_entry *h2
562 = (struct elf_link_hash_entry *) ptr2;
563
564 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
565 }
566
567 /* Find and/or create a hash entry for local symbol. */
568
569 static struct elf_link_hash_entry *
570 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table *htab,
571 bfd *abfd, const Elf_Internal_Rela *rel,
572 bfd_boolean create)
573 {
574 struct elf64_x86_64_link_hash_entry e, *ret;
575 asection *sec = abfd->sections;
576 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
577 ELF64_R_SYM (rel->r_info));
578 void **slot;
579
580 e.elf.indx = sec->id;
581 e.elf.dynstr_index = ELF64_R_SYM (rel->r_info);
582 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
583 create ? INSERT : NO_INSERT);
584
585 if (!slot)
586 return NULL;
587
588 if (*slot)
589 {
590 ret = (struct elf64_x86_64_link_hash_entry *) *slot;
591 return &ret->elf;
592 }
593
594 ret = (struct elf64_x86_64_link_hash_entry *)
595 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
596 sizeof (struct elf64_x86_64_link_hash_entry));
597 if (ret)
598 {
599 memset (ret, 0, sizeof (*ret));
600 ret->elf.indx = sec->id;
601 ret->elf.dynstr_index = ELF64_R_SYM (rel->r_info);
602 ret->elf.dynindx = -1;
603 ret->elf.plt.offset = (bfd_vma) -1;
604 ret->elf.got.offset = (bfd_vma) -1;
605 *slot = ret;
606 }
607 return &ret->elf;
608 }
609
610 /* Create an X86-64 ELF linker hash table. */
611
612 static struct bfd_link_hash_table *
613 elf64_x86_64_link_hash_table_create (bfd *abfd)
614 {
615 struct elf64_x86_64_link_hash_table *ret;
616 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
617
618 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
619 if (ret == NULL)
620 return NULL;
621
622 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
623 elf64_x86_64_link_hash_newfunc,
624 sizeof (struct elf64_x86_64_link_hash_entry)))
625 {
626 free (ret);
627 return NULL;
628 }
629
630 ret->sdynbss = NULL;
631 ret->srelbss = NULL;
632 ret->sym_cache.abfd = NULL;
633 ret->tlsdesc_plt = 0;
634 ret->tlsdesc_got = 0;
635 ret->tls_ld_got.refcount = 0;
636 ret->sgotplt_jump_table_size = 0;
637 ret->tls_module_base = NULL;
638
639 ret->loc_hash_table = htab_try_create (1024,
640 elf64_x86_64_local_htab_hash,
641 elf64_x86_64_local_htab_eq,
642 NULL);
643 ret->loc_hash_memory = objalloc_create ();
644 if (!ret->loc_hash_table || !ret->loc_hash_memory)
645 {
646 free (ret);
647 return NULL;
648 }
649
650 return &ret->elf.root;
651 }
652
653 /* Destroy an X86-64 ELF linker hash table. */
654
655 static void
656 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
657 {
658 struct elf64_x86_64_link_hash_table *htab
659 = (struct elf64_x86_64_link_hash_table *) hash;
660
661 if (htab->loc_hash_table)
662 htab_delete (htab->loc_hash_table);
663 if (htab->loc_hash_memory)
664 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
665 _bfd_generic_link_hash_table_free (hash);
666 }
667
668 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
669 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
670 hash table. */
671
672 static bfd_boolean
673 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
674 {
675 struct elf64_x86_64_link_hash_table *htab;
676
677 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
678 return FALSE;
679
680 htab = elf64_x86_64_hash_table (info);
681 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
682 if (!info->shared)
683 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
684
685 if (!htab->sdynbss
686 || (!info->shared && !htab->srelbss))
687 abort ();
688
689 return TRUE;
690 }
691
692 /* Copy the extra info we tack onto an elf_link_hash_entry. */
693
694 static void
695 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
696 struct elf_link_hash_entry *dir,
697 struct elf_link_hash_entry *ind)
698 {
699 struct elf64_x86_64_link_hash_entry *edir, *eind;
700
701 edir = (struct elf64_x86_64_link_hash_entry *) dir;
702 eind = (struct elf64_x86_64_link_hash_entry *) ind;
703
704 if (eind->dyn_relocs != NULL)
705 {
706 if (edir->dyn_relocs != NULL)
707 {
708 struct elf_dyn_relocs **pp;
709 struct elf_dyn_relocs *p;
710
711 /* Add reloc counts against the indirect sym to the direct sym
712 list. Merge any entries against the same section. */
713 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
714 {
715 struct elf_dyn_relocs *q;
716
717 for (q = edir->dyn_relocs; q != NULL; q = q->next)
718 if (q->sec == p->sec)
719 {
720 q->pc_count += p->pc_count;
721 q->count += p->count;
722 *pp = p->next;
723 break;
724 }
725 if (q == NULL)
726 pp = &p->next;
727 }
728 *pp = edir->dyn_relocs;
729 }
730
731 edir->dyn_relocs = eind->dyn_relocs;
732 eind->dyn_relocs = NULL;
733 }
734
735 if (ind->root.type == bfd_link_hash_indirect
736 && dir->got.refcount <= 0)
737 {
738 edir->tls_type = eind->tls_type;
739 eind->tls_type = GOT_UNKNOWN;
740 }
741
742 if (ELIMINATE_COPY_RELOCS
743 && ind->root.type != bfd_link_hash_indirect
744 && dir->dynamic_adjusted)
745 {
746 /* If called to transfer flags for a weakdef during processing
747 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
748 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
749 dir->ref_dynamic |= ind->ref_dynamic;
750 dir->ref_regular |= ind->ref_regular;
751 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
752 dir->needs_plt |= ind->needs_plt;
753 dir->pointer_equality_needed |= ind->pointer_equality_needed;
754 }
755 else
756 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
757 }
758
759 static bfd_boolean
760 elf64_x86_64_elf_object_p (bfd *abfd)
761 {
762 /* Set the right machine number for an x86-64 elf64 file. */
763 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
764 return TRUE;
765 }
766
767 typedef union
768 {
769 unsigned char c[2];
770 uint16_t i;
771 }
772 x86_64_opcode16;
773
774 typedef union
775 {
776 unsigned char c[4];
777 uint32_t i;
778 }
779 x86_64_opcode32;
780
781 /* Return TRUE if the TLS access code sequence support transition
782 from R_TYPE. */
783
784 static bfd_boolean
785 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
786 bfd_byte *contents,
787 Elf_Internal_Shdr *symtab_hdr,
788 struct elf_link_hash_entry **sym_hashes,
789 unsigned int r_type,
790 const Elf_Internal_Rela *rel,
791 const Elf_Internal_Rela *relend)
792 {
793 unsigned int val;
794 unsigned long r_symndx;
795 struct elf_link_hash_entry *h;
796 bfd_vma offset;
797
798 /* Get the section contents. */
799 if (contents == NULL)
800 {
801 if (elf_section_data (sec)->this_hdr.contents != NULL)
802 contents = elf_section_data (sec)->this_hdr.contents;
803 else
804 {
805 /* FIXME: How to better handle error condition? */
806 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
807 return FALSE;
808
809 /* Cache the section contents for elf_link_input_bfd. */
810 elf_section_data (sec)->this_hdr.contents = contents;
811 }
812 }
813
814 offset = rel->r_offset;
815 switch (r_type)
816 {
817 case R_X86_64_TLSGD:
818 case R_X86_64_TLSLD:
819 if ((rel + 1) >= relend)
820 return FALSE;
821
822 if (r_type == R_X86_64_TLSGD)
823 {
824 /* Check transition from GD access model. Only
825 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
826 .word 0x6666; rex64; call __tls_get_addr
827 can transit to different access model. */
828
829 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
830 call = { { 0x66, 0x66, 0x48, 0xe8 } };
831 if (offset < 4
832 || (offset + 12) > sec->size
833 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
834 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
835 return FALSE;
836 }
837 else
838 {
839 /* Check transition from LD access model. Only
840 leaq foo@tlsld(%rip), %rdi;
841 call __tls_get_addr
842 can transit to different access model. */
843
844 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
845 x86_64_opcode32 op;
846
847 if (offset < 3 || (offset + 9) > sec->size)
848 return FALSE;
849
850 op.i = bfd_get_32 (abfd, contents + offset - 3);
851 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
852 if (op.i != ld.i)
853 return FALSE;
854 }
855
856 r_symndx = ELF64_R_SYM (rel[1].r_info);
857 if (r_symndx < symtab_hdr->sh_info)
858 return FALSE;
859
860 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
861 /* Use strncmp to check __tls_get_addr since __tls_get_addr
862 may be versioned. */
863 return (h != NULL
864 && h->root.root.string != NULL
865 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
866 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
867 && (strncmp (h->root.root.string,
868 "__tls_get_addr", 14) == 0));
869
870 case R_X86_64_GOTTPOFF:
871 /* Check transition from IE access model:
872 movq foo@gottpoff(%rip), %reg
873 addq foo@gottpoff(%rip), %reg
874 */
875
876 if (offset < 3 || (offset + 4) > sec->size)
877 return FALSE;
878
879 val = bfd_get_8 (abfd, contents + offset - 3);
880 if (val != 0x48 && val != 0x4c)
881 return FALSE;
882
883 val = bfd_get_8 (abfd, contents + offset - 2);
884 if (val != 0x8b && val != 0x03)
885 return FALSE;
886
887 val = bfd_get_8 (abfd, contents + offset - 1);
888 return (val & 0xc7) == 5;
889
890 case R_X86_64_GOTPC32_TLSDESC:
891 /* Check transition from GDesc access model:
892 leaq x@tlsdesc(%rip), %rax
893
894 Make sure it's a leaq adding rip to a 32-bit offset
895 into any register, although it's probably almost always
896 going to be rax. */
897
898 if (offset < 3 || (offset + 4) > sec->size)
899 return FALSE;
900
901 val = bfd_get_8 (abfd, contents + offset - 3);
902 if ((val & 0xfb) != 0x48)
903 return FALSE;
904
905 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
906 return FALSE;
907
908 val = bfd_get_8 (abfd, contents + offset - 1);
909 return (val & 0xc7) == 0x05;
910
911 case R_X86_64_TLSDESC_CALL:
912 /* Check transition from GDesc access model:
913 call *x@tlsdesc(%rax)
914 */
915 if (offset + 2 <= sec->size)
916 {
917 /* Make sure that it's a call *x@tlsdesc(%rax). */
918 static x86_64_opcode16 call = { { 0xff, 0x10 } };
919 return bfd_get_16 (abfd, contents + offset) == call.i;
920 }
921
922 return FALSE;
923
924 default:
925 abort ();
926 }
927 }
928
929 /* Return TRUE if the TLS access transition is OK or no transition
930 will be performed. Update R_TYPE if there is a transition. */
931
932 static bfd_boolean
933 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
934 asection *sec, bfd_byte *contents,
935 Elf_Internal_Shdr *symtab_hdr,
936 struct elf_link_hash_entry **sym_hashes,
937 unsigned int *r_type, int tls_type,
938 const Elf_Internal_Rela *rel,
939 const Elf_Internal_Rela *relend,
940 struct elf_link_hash_entry *h,
941 unsigned long r_symndx)
942 {
943 unsigned int from_type = *r_type;
944 unsigned int to_type = from_type;
945 bfd_boolean check = TRUE;
946
947 switch (from_type)
948 {
949 case R_X86_64_TLSGD:
950 case R_X86_64_GOTPC32_TLSDESC:
951 case R_X86_64_TLSDESC_CALL:
952 case R_X86_64_GOTTPOFF:
953 if (info->executable)
954 {
955 if (h == NULL)
956 to_type = R_X86_64_TPOFF32;
957 else
958 to_type = R_X86_64_GOTTPOFF;
959 }
960
961 /* When we are called from elf64_x86_64_relocate_section,
962 CONTENTS isn't NULL and there may be additional transitions
963 based on TLS_TYPE. */
964 if (contents != NULL)
965 {
966 unsigned int new_to_type = to_type;
967
968 if (info->executable
969 && h != NULL
970 && h->dynindx == -1
971 && tls_type == GOT_TLS_IE)
972 new_to_type = R_X86_64_TPOFF32;
973
974 if (to_type == R_X86_64_TLSGD
975 || to_type == R_X86_64_GOTPC32_TLSDESC
976 || to_type == R_X86_64_TLSDESC_CALL)
977 {
978 if (tls_type == GOT_TLS_IE)
979 new_to_type = R_X86_64_GOTTPOFF;
980 }
981
982 /* We checked the transition before when we were called from
983 elf64_x86_64_check_relocs. We only want to check the new
984 transition which hasn't been checked before. */
985 check = new_to_type != to_type && from_type == to_type;
986 to_type = new_to_type;
987 }
988
989 break;
990
991 case R_X86_64_TLSLD:
992 if (info->executable)
993 to_type = R_X86_64_TPOFF32;
994 break;
995
996 default:
997 return TRUE;
998 }
999
1000 /* Return TRUE if there is no transition. */
1001 if (from_type == to_type)
1002 return TRUE;
1003
1004 /* Check if the transition can be performed. */
1005 if (check
1006 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
1007 symtab_hdr, sym_hashes,
1008 from_type, rel, relend))
1009 {
1010 reloc_howto_type *from, *to;
1011 const char *name;
1012
1013 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
1014 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
1015
1016 if (h)
1017 name = h->root.root.string;
1018 else
1019 {
1020 Elf_Internal_Sym *isym;
1021 struct elf64_x86_64_link_hash_table *htab;
1022 htab = elf64_x86_64_hash_table (info);
1023 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1024 abfd, r_symndx);
1025 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1026 }
1027
1028 (*_bfd_error_handler)
1029 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1030 "in section `%A' failed"),
1031 abfd, sec, from->name, to->name, name,
1032 (unsigned long) rel->r_offset);
1033 bfd_set_error (bfd_error_bad_value);
1034 return FALSE;
1035 }
1036
1037 *r_type = to_type;
1038 return TRUE;
1039 }
1040
1041 /* Look through the relocs for a section during the first phase, and
1042 calculate needed space in the global offset table, procedure
1043 linkage table, and dynamic reloc sections. */
1044
1045 static bfd_boolean
1046 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1047 asection *sec,
1048 const Elf_Internal_Rela *relocs)
1049 {
1050 struct elf64_x86_64_link_hash_table *htab;
1051 Elf_Internal_Shdr *symtab_hdr;
1052 struct elf_link_hash_entry **sym_hashes;
1053 const Elf_Internal_Rela *rel;
1054 const Elf_Internal_Rela *rel_end;
1055 asection *sreloc;
1056
1057 if (info->relocatable)
1058 return TRUE;
1059
1060 BFD_ASSERT (is_x86_64_elf (abfd));
1061
1062 htab = elf64_x86_64_hash_table (info);
1063 symtab_hdr = &elf_symtab_hdr (abfd);
1064 sym_hashes = elf_sym_hashes (abfd);
1065
1066 sreloc = NULL;
1067
1068 rel_end = relocs + sec->reloc_count;
1069 for (rel = relocs; rel < rel_end; rel++)
1070 {
1071 unsigned int r_type;
1072 unsigned long r_symndx;
1073 struct elf_link_hash_entry *h;
1074 Elf_Internal_Sym *isym;
1075 const char *name;
1076
1077 r_symndx = ELF64_R_SYM (rel->r_info);
1078 r_type = ELF64_R_TYPE (rel->r_info);
1079
1080 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1081 {
1082 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1083 abfd, r_symndx);
1084 return FALSE;
1085 }
1086
1087 if (r_symndx < symtab_hdr->sh_info)
1088 {
1089 /* A local symbol. */
1090 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1091 abfd, r_symndx);
1092 if (isym == NULL)
1093 return FALSE;
1094
1095 /* Check relocation against local STT_GNU_IFUNC symbol. */
1096 if (ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1097 {
1098 h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1099 TRUE);
1100 if (h == NULL)
1101 return FALSE;
1102
1103 /* Fake a STT_GNU_IFUNC symbol. */
1104 h->type = STT_GNU_IFUNC;
1105 h->def_regular = 1;
1106 h->ref_regular = 1;
1107 h->forced_local = 1;
1108 h->root.type = bfd_link_hash_defined;
1109 }
1110 else
1111 h = NULL;
1112 }
1113 else
1114 {
1115 isym = NULL;
1116 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1117 while (h->root.type == bfd_link_hash_indirect
1118 || h->root.type == bfd_link_hash_warning)
1119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1120 }
1121
1122 if (h != NULL)
1123 {
1124 /* Create the ifunc sections for static executables. If we
1125 never see an indirect function symbol nor we are building
1126 a static executable, those sections will be empty and
1127 won't appear in output. */
1128 switch (r_type)
1129 {
1130 default:
1131 break;
1132
1133 case R_X86_64_32S:
1134 case R_X86_64_32:
1135 case R_X86_64_64:
1136 case R_X86_64_PC32:
1137 case R_X86_64_PC64:
1138 case R_X86_64_PLT32:
1139 case R_X86_64_GOTPCREL:
1140 case R_X86_64_GOTPCREL64:
1141 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1142 return FALSE;
1143 break;
1144 }
1145
1146 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1147 it here if it is defined in a non-shared object. */
1148 if (h->type == STT_GNU_IFUNC
1149 && h->def_regular)
1150 {
1151 /* It is referenced by a non-shared object. */
1152 h->ref_regular = 1;
1153 h->needs_plt = 1;
1154
1155 /* STT_GNU_IFUNC symbol must go through PLT. */
1156 h->plt.refcount += 1;
1157
1158 /* STT_GNU_IFUNC needs dynamic sections. */
1159 if (htab->elf.dynobj == NULL)
1160 htab->elf.dynobj = abfd;
1161
1162 switch (r_type)
1163 {
1164 default:
1165 if (h->root.root.string)
1166 name = h->root.root.string;
1167 else
1168 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1169 NULL);
1170 (*_bfd_error_handler)
1171 (_("%B: relocation %s against STT_GNU_IFUNC "
1172 "symbol `%s' isn't handled by %s"), abfd,
1173 x86_64_elf_howto_table[r_type].name,
1174 name, __FUNCTION__);
1175 bfd_set_error (bfd_error_bad_value);
1176 return FALSE;
1177
1178 case R_X86_64_64:
1179 h->non_got_ref = 1;
1180 h->pointer_equality_needed = 1;
1181 if (info->shared)
1182 {
1183 /* We must copy these reloc types into the output
1184 file. Create a reloc section in dynobj and
1185 make room for this reloc. */
1186 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1187 (abfd, info, sec, sreloc,
1188 &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs);
1189 if (sreloc == NULL)
1190 return FALSE;
1191 }
1192 break;
1193
1194 case R_X86_64_32S:
1195 case R_X86_64_32:
1196 case R_X86_64_PC32:
1197 case R_X86_64_PC64:
1198 h->non_got_ref = 1;
1199 if (r_type != R_X86_64_PC32
1200 && r_type != R_X86_64_PC64)
1201 h->pointer_equality_needed = 1;
1202 break;
1203
1204 case R_X86_64_PLT32:
1205 break;
1206
1207 case R_X86_64_GOTPCREL:
1208 case R_X86_64_GOTPCREL64:
1209 h->got.refcount += 1;
1210 if (htab->elf.sgot == NULL
1211 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1212 info))
1213 return FALSE;
1214 break;
1215 }
1216
1217 continue;
1218 }
1219 }
1220
1221 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1222 symtab_hdr, sym_hashes,
1223 &r_type, GOT_UNKNOWN,
1224 rel, rel_end, h, r_symndx))
1225 return FALSE;
1226
1227 switch (r_type)
1228 {
1229 case R_X86_64_TLSLD:
1230 htab->tls_ld_got.refcount += 1;
1231 goto create_got;
1232
1233 case R_X86_64_TPOFF32:
1234 if (!info->executable)
1235 {
1236 if (h)
1237 name = h->root.root.string;
1238 else
1239 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1240 NULL);
1241 (*_bfd_error_handler)
1242 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1243 abfd,
1244 x86_64_elf_howto_table[r_type].name, name);
1245 bfd_set_error (bfd_error_bad_value);
1246 return FALSE;
1247 }
1248 break;
1249
1250 case R_X86_64_GOTTPOFF:
1251 if (!info->executable)
1252 info->flags |= DF_STATIC_TLS;
1253 /* Fall through */
1254
1255 case R_X86_64_GOT32:
1256 case R_X86_64_GOTPCREL:
1257 case R_X86_64_TLSGD:
1258 case R_X86_64_GOT64:
1259 case R_X86_64_GOTPCREL64:
1260 case R_X86_64_GOTPLT64:
1261 case R_X86_64_GOTPC32_TLSDESC:
1262 case R_X86_64_TLSDESC_CALL:
1263 /* This symbol requires a global offset table entry. */
1264 {
1265 int tls_type, old_tls_type;
1266
1267 switch (r_type)
1268 {
1269 default: tls_type = GOT_NORMAL; break;
1270 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1271 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1272 case R_X86_64_GOTPC32_TLSDESC:
1273 case R_X86_64_TLSDESC_CALL:
1274 tls_type = GOT_TLS_GDESC; break;
1275 }
1276
1277 if (h != NULL)
1278 {
1279 if (r_type == R_X86_64_GOTPLT64)
1280 {
1281 /* This relocation indicates that we also need
1282 a PLT entry, as this is a function. We don't need
1283 a PLT entry for local symbols. */
1284 h->needs_plt = 1;
1285 h->plt.refcount += 1;
1286 }
1287 h->got.refcount += 1;
1288 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1289 }
1290 else
1291 {
1292 bfd_signed_vma *local_got_refcounts;
1293
1294 /* This is a global offset table entry for a local symbol. */
1295 local_got_refcounts = elf_local_got_refcounts (abfd);
1296 if (local_got_refcounts == NULL)
1297 {
1298 bfd_size_type size;
1299
1300 size = symtab_hdr->sh_info;
1301 size *= sizeof (bfd_signed_vma)
1302 + sizeof (bfd_vma) + sizeof (char);
1303 local_got_refcounts = ((bfd_signed_vma *)
1304 bfd_zalloc (abfd, size));
1305 if (local_got_refcounts == NULL)
1306 return FALSE;
1307 elf_local_got_refcounts (abfd) = local_got_refcounts;
1308 elf64_x86_64_local_tlsdesc_gotent (abfd)
1309 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1310 elf64_x86_64_local_got_tls_type (abfd)
1311 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1312 }
1313 local_got_refcounts[r_symndx] += 1;
1314 old_tls_type
1315 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1316 }
1317
1318 /* If a TLS symbol is accessed using IE at least once,
1319 there is no point to use dynamic model for it. */
1320 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1321 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1322 || tls_type != GOT_TLS_IE))
1323 {
1324 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1325 tls_type = old_tls_type;
1326 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1327 && GOT_TLS_GD_ANY_P (tls_type))
1328 tls_type |= old_tls_type;
1329 else
1330 {
1331 if (h)
1332 name = h->root.root.string;
1333 else
1334 name = bfd_elf_sym_name (abfd, symtab_hdr,
1335 isym, NULL);
1336 (*_bfd_error_handler)
1337 (_("%B: '%s' accessed both as normal and thread local symbol"),
1338 abfd, name);
1339 return FALSE;
1340 }
1341 }
1342
1343 if (old_tls_type != tls_type)
1344 {
1345 if (h != NULL)
1346 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1347 else
1348 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1349 }
1350 }
1351 /* Fall through */
1352
1353 case R_X86_64_GOTOFF64:
1354 case R_X86_64_GOTPC32:
1355 case R_X86_64_GOTPC64:
1356 create_got:
1357 if (htab->elf.sgot == NULL)
1358 {
1359 if (htab->elf.dynobj == NULL)
1360 htab->elf.dynobj = abfd;
1361 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1362 info))
1363 return FALSE;
1364 }
1365 break;
1366
1367 case R_X86_64_PLT32:
1368 /* This symbol requires a procedure linkage table entry. We
1369 actually build the entry in adjust_dynamic_symbol,
1370 because this might be a case of linking PIC code which is
1371 never referenced by a dynamic object, in which case we
1372 don't need to generate a procedure linkage table entry
1373 after all. */
1374
1375 /* If this is a local symbol, we resolve it directly without
1376 creating a procedure linkage table entry. */
1377 if (h == NULL)
1378 continue;
1379
1380 h->needs_plt = 1;
1381 h->plt.refcount += 1;
1382 break;
1383
1384 case R_X86_64_PLTOFF64:
1385 /* This tries to form the 'address' of a function relative
1386 to GOT. For global symbols we need a PLT entry. */
1387 if (h != NULL)
1388 {
1389 h->needs_plt = 1;
1390 h->plt.refcount += 1;
1391 }
1392 goto create_got;
1393
1394 case R_X86_64_8:
1395 case R_X86_64_16:
1396 case R_X86_64_32:
1397 case R_X86_64_32S:
1398 /* Let's help debug shared library creation. These relocs
1399 cannot be used in shared libs. Don't error out for
1400 sections we don't care about, such as debug sections or
1401 non-constant sections. */
1402 if (info->shared
1403 && (sec->flags & SEC_ALLOC) != 0
1404 && (sec->flags & SEC_READONLY) != 0)
1405 {
1406 if (h)
1407 name = h->root.root.string;
1408 else
1409 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1410 (*_bfd_error_handler)
1411 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1412 abfd, x86_64_elf_howto_table[r_type].name, name);
1413 bfd_set_error (bfd_error_bad_value);
1414 return FALSE;
1415 }
1416 /* Fall through. */
1417
1418 case R_X86_64_PC8:
1419 case R_X86_64_PC16:
1420 case R_X86_64_PC32:
1421 case R_X86_64_PC64:
1422 case R_X86_64_64:
1423 if (h != NULL && info->executable)
1424 {
1425 /* If this reloc is in a read-only section, we might
1426 need a copy reloc. We can't check reliably at this
1427 stage whether the section is read-only, as input
1428 sections have not yet been mapped to output sections.
1429 Tentatively set the flag for now, and correct in
1430 adjust_dynamic_symbol. */
1431 h->non_got_ref = 1;
1432
1433 /* We may need a .plt entry if the function this reloc
1434 refers to is in a shared lib. */
1435 h->plt.refcount += 1;
1436 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1437 h->pointer_equality_needed = 1;
1438 }
1439
1440 /* If we are creating a shared library, and this is a reloc
1441 against a global symbol, or a non PC relative reloc
1442 against a local symbol, then we need to copy the reloc
1443 into the shared library. However, if we are linking with
1444 -Bsymbolic, we do not need to copy a reloc against a
1445 global symbol which is defined in an object we are
1446 including in the link (i.e., DEF_REGULAR is set). At
1447 this point we have not seen all the input files, so it is
1448 possible that DEF_REGULAR is not set now but will be set
1449 later (it is never cleared). In case of a weak definition,
1450 DEF_REGULAR may be cleared later by a strong definition in
1451 a shared library. We account for that possibility below by
1452 storing information in the relocs_copied field of the hash
1453 table entry. A similar situation occurs when creating
1454 shared libraries and symbol visibility changes render the
1455 symbol local.
1456
1457 If on the other hand, we are creating an executable, we
1458 may need to keep relocations for symbols satisfied by a
1459 dynamic library if we manage to avoid copy relocs for the
1460 symbol. */
1461 if ((info->shared
1462 && (sec->flags & SEC_ALLOC) != 0
1463 && (! IS_X86_64_PCREL_TYPE (r_type)
1464 || (h != NULL
1465 && (! SYMBOLIC_BIND (info, h)
1466 || h->root.type == bfd_link_hash_defweak
1467 || !h->def_regular))))
1468 || (ELIMINATE_COPY_RELOCS
1469 && !info->shared
1470 && (sec->flags & SEC_ALLOC) != 0
1471 && h != NULL
1472 && (h->root.type == bfd_link_hash_defweak
1473 || !h->def_regular)))
1474 {
1475 struct elf_dyn_relocs *p;
1476 struct elf_dyn_relocs **head;
1477
1478 /* We must copy these reloc types into the output file.
1479 Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 if (htab->elf.dynobj == NULL)
1484 htab->elf.dynobj = abfd;
1485
1486 sreloc = _bfd_elf_make_dynamic_reloc_section
1487 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1488
1489 if (sreloc == NULL)
1490 return FALSE;
1491 }
1492
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1495 if (h != NULL)
1496 {
1497 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1498 }
1499 else
1500 {
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1503 easily. Oh well. */
1504 asection *s;
1505 void **vpp;
1506 Elf_Internal_Sym *isym;
1507
1508 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1509 abfd, r_symndx);
1510 if (isym == NULL)
1511 return FALSE;
1512
1513 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1514 if (s == NULL)
1515 s = sec;
1516
1517 /* Beware of type punned pointers vs strict aliasing
1518 rules. */
1519 vpp = &(elf_section_data (s)->local_dynrel);
1520 head = (struct elf_dyn_relocs **)vpp;
1521 }
1522
1523 p = *head;
1524 if (p == NULL || p->sec != sec)
1525 {
1526 bfd_size_type amt = sizeof *p;
1527
1528 p = ((struct elf_dyn_relocs *)
1529 bfd_alloc (htab->elf.dynobj, amt));
1530 if (p == NULL)
1531 return FALSE;
1532 p->next = *head;
1533 *head = p;
1534 p->sec = sec;
1535 p->count = 0;
1536 p->pc_count = 0;
1537 }
1538
1539 p->count += 1;
1540 if (IS_X86_64_PCREL_TYPE (r_type))
1541 p->pc_count += 1;
1542 }
1543 break;
1544
1545 /* This relocation describes the C++ object vtable hierarchy.
1546 Reconstruct it for later use during GC. */
1547 case R_X86_64_GNU_VTINHERIT:
1548 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1549 return FALSE;
1550 break;
1551
1552 /* This relocation describes which C++ vtable entries are actually
1553 used. Record for later use during GC. */
1554 case R_X86_64_GNU_VTENTRY:
1555 BFD_ASSERT (h != NULL);
1556 if (h != NULL
1557 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1558 return FALSE;
1559 break;
1560
1561 default:
1562 break;
1563 }
1564 }
1565
1566 return TRUE;
1567 }
1568
1569 /* Return the section that should be marked against GC for a given
1570 relocation. */
1571
1572 static asection *
1573 elf64_x86_64_gc_mark_hook (asection *sec,
1574 struct bfd_link_info *info,
1575 Elf_Internal_Rela *rel,
1576 struct elf_link_hash_entry *h,
1577 Elf_Internal_Sym *sym)
1578 {
1579 if (h != NULL)
1580 switch (ELF64_R_TYPE (rel->r_info))
1581 {
1582 case R_X86_64_GNU_VTINHERIT:
1583 case R_X86_64_GNU_VTENTRY:
1584 return NULL;
1585 }
1586
1587 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1588 }
1589
1590 /* Update the got entry reference counts for the section being removed. */
1591
1592 static bfd_boolean
1593 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1594 asection *sec,
1595 const Elf_Internal_Rela *relocs)
1596 {
1597 Elf_Internal_Shdr *symtab_hdr;
1598 struct elf_link_hash_entry **sym_hashes;
1599 bfd_signed_vma *local_got_refcounts;
1600 const Elf_Internal_Rela *rel, *relend;
1601
1602 if (info->relocatable)
1603 return TRUE;
1604
1605 elf_section_data (sec)->local_dynrel = NULL;
1606
1607 symtab_hdr = &elf_symtab_hdr (abfd);
1608 sym_hashes = elf_sym_hashes (abfd);
1609 local_got_refcounts = elf_local_got_refcounts (abfd);
1610
1611 relend = relocs + sec->reloc_count;
1612 for (rel = relocs; rel < relend; rel++)
1613 {
1614 unsigned long r_symndx;
1615 unsigned int r_type;
1616 struct elf_link_hash_entry *h = NULL;
1617
1618 r_symndx = ELF64_R_SYM (rel->r_info);
1619 if (r_symndx >= symtab_hdr->sh_info)
1620 {
1621 struct elf64_x86_64_link_hash_entry *eh;
1622 struct elf_dyn_relocs **pp;
1623 struct elf_dyn_relocs *p;
1624
1625 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1626 while (h->root.type == bfd_link_hash_indirect
1627 || h->root.type == bfd_link_hash_warning)
1628 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1629 eh = (struct elf64_x86_64_link_hash_entry *) h;
1630
1631 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1632 if (p->sec == sec)
1633 {
1634 /* Everything must go for SEC. */
1635 *pp = p->next;
1636 break;
1637 }
1638 }
1639
1640 r_type = ELF64_R_TYPE (rel->r_info);
1641 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1642 symtab_hdr, sym_hashes,
1643 &r_type, GOT_UNKNOWN,
1644 rel, relend, h, r_symndx))
1645 return FALSE;
1646
1647 switch (r_type)
1648 {
1649 case R_X86_64_TLSLD:
1650 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1651 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1652 break;
1653
1654 case R_X86_64_TLSGD:
1655 case R_X86_64_GOTPC32_TLSDESC:
1656 case R_X86_64_TLSDESC_CALL:
1657 case R_X86_64_GOTTPOFF:
1658 case R_X86_64_GOT32:
1659 case R_X86_64_GOTPCREL:
1660 case R_X86_64_GOT64:
1661 case R_X86_64_GOTPCREL64:
1662 case R_X86_64_GOTPLT64:
1663 if (h != NULL)
1664 {
1665 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1666 h->plt.refcount -= 1;
1667 if (h->got.refcount > 0)
1668 h->got.refcount -= 1;
1669 }
1670 else if (local_got_refcounts != NULL)
1671 {
1672 if (local_got_refcounts[r_symndx] > 0)
1673 local_got_refcounts[r_symndx] -= 1;
1674 }
1675 break;
1676
1677 case R_X86_64_8:
1678 case R_X86_64_16:
1679 case R_X86_64_32:
1680 case R_X86_64_64:
1681 case R_X86_64_32S:
1682 case R_X86_64_PC8:
1683 case R_X86_64_PC16:
1684 case R_X86_64_PC32:
1685 case R_X86_64_PC64:
1686 if (info->shared)
1687 break;
1688 /* Fall thru */
1689
1690 case R_X86_64_PLT32:
1691 case R_X86_64_PLTOFF64:
1692 if (h != NULL)
1693 {
1694 if (h->plt.refcount > 0)
1695 h->plt.refcount -= 1;
1696 }
1697 break;
1698
1699 default:
1700 break;
1701 }
1702 }
1703
1704 return TRUE;
1705 }
1706
1707 /* Adjust a symbol defined by a dynamic object and referenced by a
1708 regular object. The current definition is in some section of the
1709 dynamic object, but we're not including those sections. We have to
1710 change the definition to something the rest of the link can
1711 understand. */
1712
1713 static bfd_boolean
1714 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1715 struct elf_link_hash_entry *h)
1716 {
1717 struct elf64_x86_64_link_hash_table *htab;
1718 asection *s;
1719
1720 /* STT_GNU_IFUNC symbol must go through PLT. */
1721 if (h->type == STT_GNU_IFUNC)
1722 {
1723 if (h->plt.refcount <= 0)
1724 {
1725 h->plt.offset = (bfd_vma) -1;
1726 h->needs_plt = 0;
1727 }
1728 return TRUE;
1729 }
1730
1731 /* If this is a function, put it in the procedure linkage table. We
1732 will fill in the contents of the procedure linkage table later,
1733 when we know the address of the .got section. */
1734 if (h->type == STT_FUNC
1735 || h->needs_plt)
1736 {
1737 if (h->plt.refcount <= 0
1738 || SYMBOL_CALLS_LOCAL (info, h)
1739 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1740 && h->root.type == bfd_link_hash_undefweak))
1741 {
1742 /* This case can occur if we saw a PLT32 reloc in an input
1743 file, but the symbol was never referred to by a dynamic
1744 object, or if all references were garbage collected. In
1745 such a case, we don't actually need to build a procedure
1746 linkage table, and we can just do a PC32 reloc instead. */
1747 h->plt.offset = (bfd_vma) -1;
1748 h->needs_plt = 0;
1749 }
1750
1751 return TRUE;
1752 }
1753 else
1754 /* It's possible that we incorrectly decided a .plt reloc was
1755 needed for an R_X86_64_PC32 reloc to a non-function sym in
1756 check_relocs. We can't decide accurately between function and
1757 non-function syms in check-relocs; Objects loaded later in
1758 the link may change h->type. So fix it now. */
1759 h->plt.offset = (bfd_vma) -1;
1760
1761 /* If this is a weak symbol, and there is a real definition, the
1762 processor independent code will have arranged for us to see the
1763 real definition first, and we can just use the same value. */
1764 if (h->u.weakdef != NULL)
1765 {
1766 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1767 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1768 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1769 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1770 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1771 h->non_got_ref = h->u.weakdef->non_got_ref;
1772 return TRUE;
1773 }
1774
1775 /* This is a reference to a symbol defined by a dynamic object which
1776 is not a function. */
1777
1778 /* If we are creating a shared library, we must presume that the
1779 only references to the symbol are via the global offset table.
1780 For such cases we need not do anything here; the relocations will
1781 be handled correctly by relocate_section. */
1782 if (info->shared)
1783 return TRUE;
1784
1785 /* If there are no references to this symbol that do not use the
1786 GOT, we don't need to generate a copy reloc. */
1787 if (!h->non_got_ref)
1788 return TRUE;
1789
1790 /* If -z nocopyreloc was given, we won't generate them either. */
1791 if (info->nocopyreloc)
1792 {
1793 h->non_got_ref = 0;
1794 return TRUE;
1795 }
1796
1797 if (ELIMINATE_COPY_RELOCS)
1798 {
1799 struct elf64_x86_64_link_hash_entry * eh;
1800 struct elf_dyn_relocs *p;
1801
1802 eh = (struct elf64_x86_64_link_hash_entry *) h;
1803 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1804 {
1805 s = p->sec->output_section;
1806 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1807 break;
1808 }
1809
1810 /* If we didn't find any dynamic relocs in read-only sections, then
1811 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1812 if (p == NULL)
1813 {
1814 h->non_got_ref = 0;
1815 return TRUE;
1816 }
1817 }
1818
1819 if (h->size == 0)
1820 {
1821 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1822 h->root.root.string);
1823 return TRUE;
1824 }
1825
1826 /* We must allocate the symbol in our .dynbss section, which will
1827 become part of the .bss section of the executable. There will be
1828 an entry for this symbol in the .dynsym section. The dynamic
1829 object will contain position independent code, so all references
1830 from the dynamic object to this symbol will go through the global
1831 offset table. The dynamic linker will use the .dynsym entry to
1832 determine the address it must put in the global offset table, so
1833 both the dynamic object and the regular object will refer to the
1834 same memory location for the variable. */
1835
1836 htab = elf64_x86_64_hash_table (info);
1837
1838 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1839 to copy the initial value out of the dynamic object and into the
1840 runtime process image. */
1841 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1842 {
1843 htab->srelbss->size += sizeof (Elf64_External_Rela);
1844 h->needs_copy = 1;
1845 }
1846
1847 s = htab->sdynbss;
1848
1849 return _bfd_elf_adjust_dynamic_copy (h, s);
1850 }
1851
1852 /* Allocate space in .plt, .got and associated reloc sections for
1853 dynamic relocs. */
1854
1855 static bfd_boolean
1856 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1857 {
1858 struct bfd_link_info *info;
1859 struct elf64_x86_64_link_hash_table *htab;
1860 struct elf64_x86_64_link_hash_entry *eh;
1861 struct elf_dyn_relocs *p;
1862
1863 if (h->root.type == bfd_link_hash_indirect)
1864 return TRUE;
1865
1866 if (h->root.type == bfd_link_hash_warning)
1867 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1868 eh = (struct elf64_x86_64_link_hash_entry *) h;
1869
1870 info = (struct bfd_link_info *) inf;
1871 htab = elf64_x86_64_hash_table (info);
1872
1873 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1874 here if it is defined and referenced in a non-shared object. */
1875 if (h->type == STT_GNU_IFUNC
1876 && h->def_regular)
1877 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
1878 &eh->dyn_relocs,
1879 PLT_ENTRY_SIZE,
1880 GOT_ENTRY_SIZE);
1881 else if (htab->elf.dynamic_sections_created
1882 && h->plt.refcount > 0)
1883 {
1884 /* Make sure this symbol is output as a dynamic symbol.
1885 Undefined weak syms won't yet be marked as dynamic. */
1886 if (h->dynindx == -1
1887 && !h->forced_local)
1888 {
1889 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1890 return FALSE;
1891 }
1892
1893 if (info->shared
1894 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1895 {
1896 asection *s = htab->elf.splt;
1897
1898 /* If this is the first .plt entry, make room for the special
1899 first entry. */
1900 if (s->size == 0)
1901 s->size += PLT_ENTRY_SIZE;
1902
1903 h->plt.offset = s->size;
1904
1905 /* If this symbol is not defined in a regular file, and we are
1906 not generating a shared library, then set the symbol to this
1907 location in the .plt. This is required to make function
1908 pointers compare as equal between the normal executable and
1909 the shared library. */
1910 if (! info->shared
1911 && !h->def_regular)
1912 {
1913 h->root.u.def.section = s;
1914 h->root.u.def.value = h->plt.offset;
1915 }
1916
1917 /* Make room for this entry. */
1918 s->size += PLT_ENTRY_SIZE;
1919
1920 /* We also need to make an entry in the .got.plt section, which
1921 will be placed in the .got section by the linker script. */
1922 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1923
1924 /* We also need to make an entry in the .rela.plt section. */
1925 htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
1926 htab->elf.srelplt->reloc_count++;
1927 }
1928 else
1929 {
1930 h->plt.offset = (bfd_vma) -1;
1931 h->needs_plt = 0;
1932 }
1933 }
1934 else
1935 {
1936 h->plt.offset = (bfd_vma) -1;
1937 h->needs_plt = 0;
1938 }
1939
1940 eh->tlsdesc_got = (bfd_vma) -1;
1941
1942 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1943 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1944 if (h->got.refcount > 0
1945 && info->executable
1946 && h->dynindx == -1
1947 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1948 {
1949 h->got.offset = (bfd_vma) -1;
1950 }
1951 else if (h->got.refcount > 0)
1952 {
1953 asection *s;
1954 bfd_boolean dyn;
1955 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1956
1957 /* Make sure this symbol is output as a dynamic symbol.
1958 Undefined weak syms won't yet be marked as dynamic. */
1959 if (h->dynindx == -1
1960 && !h->forced_local)
1961 {
1962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1963 return FALSE;
1964 }
1965
1966 if (GOT_TLS_GDESC_P (tls_type))
1967 {
1968 eh->tlsdesc_got = htab->elf.sgotplt->size
1969 - elf64_x86_64_compute_jump_table_size (htab);
1970 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
1971 h->got.offset = (bfd_vma) -2;
1972 }
1973 if (! GOT_TLS_GDESC_P (tls_type)
1974 || GOT_TLS_GD_P (tls_type))
1975 {
1976 s = htab->elf.sgot;
1977 h->got.offset = s->size;
1978 s->size += GOT_ENTRY_SIZE;
1979 if (GOT_TLS_GD_P (tls_type))
1980 s->size += GOT_ENTRY_SIZE;
1981 }
1982 dyn = htab->elf.dynamic_sections_created;
1983 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1984 and two if global.
1985 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1986 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1987 || tls_type == GOT_TLS_IE)
1988 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
1989 else if (GOT_TLS_GD_P (tls_type))
1990 htab->elf.srelgot->size += 2 * sizeof (Elf64_External_Rela);
1991 else if (! GOT_TLS_GDESC_P (tls_type)
1992 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1993 || h->root.type != bfd_link_hash_undefweak)
1994 && (info->shared
1995 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1996 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
1997 if (GOT_TLS_GDESC_P (tls_type))
1998 {
1999 htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
2000 htab->tlsdesc_plt = (bfd_vma) -1;
2001 }
2002 }
2003 else
2004 h->got.offset = (bfd_vma) -1;
2005
2006 if (eh->dyn_relocs == NULL)
2007 return TRUE;
2008
2009 /* In the shared -Bsymbolic case, discard space allocated for
2010 dynamic pc-relative relocs against symbols which turn out to be
2011 defined in regular objects. For the normal shared case, discard
2012 space for pc-relative relocs that have become local due to symbol
2013 visibility changes. */
2014
2015 if (info->shared)
2016 {
2017 /* Relocs that use pc_count are those that appear on a call
2018 insn, or certain REL relocs that can generated via assembly.
2019 We want calls to protected symbols to resolve directly to the
2020 function rather than going via the plt. If people want
2021 function pointer comparisons to work as expected then they
2022 should avoid writing weird assembly. */
2023 if (SYMBOL_CALLS_LOCAL (info, h))
2024 {
2025 struct elf_dyn_relocs **pp;
2026
2027 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2028 {
2029 p->count -= p->pc_count;
2030 p->pc_count = 0;
2031 if (p->count == 0)
2032 *pp = p->next;
2033 else
2034 pp = &p->next;
2035 }
2036 }
2037
2038 /* Also discard relocs on undefined weak syms with non-default
2039 visibility. */
2040 if (eh->dyn_relocs != NULL
2041 && h->root.type == bfd_link_hash_undefweak)
2042 {
2043 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2044 eh->dyn_relocs = NULL;
2045
2046 /* Make sure undefined weak symbols are output as a dynamic
2047 symbol in PIEs. */
2048 else if (h->dynindx == -1
2049 && ! h->forced_local
2050 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2051 return FALSE;
2052 }
2053
2054 }
2055 else if (ELIMINATE_COPY_RELOCS)
2056 {
2057 /* For the non-shared case, discard space for relocs against
2058 symbols which turn out to need copy relocs or are not
2059 dynamic. */
2060
2061 if (!h->non_got_ref
2062 && ((h->def_dynamic
2063 && !h->def_regular)
2064 || (htab->elf.dynamic_sections_created
2065 && (h->root.type == bfd_link_hash_undefweak
2066 || h->root.type == bfd_link_hash_undefined))))
2067 {
2068 /* Make sure this symbol is output as a dynamic symbol.
2069 Undefined weak syms won't yet be marked as dynamic. */
2070 if (h->dynindx == -1
2071 && ! h->forced_local
2072 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2073 return FALSE;
2074
2075 /* If that succeeded, we know we'll be keeping all the
2076 relocs. */
2077 if (h->dynindx != -1)
2078 goto keep;
2079 }
2080
2081 eh->dyn_relocs = NULL;
2082
2083 keep: ;
2084 }
2085
2086 /* Finally, allocate space. */
2087 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2088 {
2089 asection * sreloc;
2090
2091 sreloc = elf_section_data (p->sec)->sreloc;
2092
2093 BFD_ASSERT (sreloc != NULL);
2094
2095 sreloc->size += p->count * sizeof (Elf64_External_Rela);
2096 }
2097
2098 return TRUE;
2099 }
2100
2101 /* Allocate space in .plt, .got and associated reloc sections for
2102 local dynamic relocs. */
2103
2104 static bfd_boolean
2105 elf64_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2106 {
2107 struct elf_link_hash_entry *h
2108 = (struct elf_link_hash_entry *) *slot;
2109
2110 if (h->type != STT_GNU_IFUNC
2111 || !h->def_regular
2112 || !h->ref_regular
2113 || !h->forced_local
2114 || h->root.type != bfd_link_hash_defined)
2115 abort ();
2116
2117 return elf64_x86_64_allocate_dynrelocs (h, inf);
2118 }
2119
2120 /* Find any dynamic relocs that apply to read-only sections. */
2121
2122 static bfd_boolean
2123 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2124 {
2125 struct elf64_x86_64_link_hash_entry *eh;
2126 struct elf_dyn_relocs *p;
2127
2128 if (h->root.type == bfd_link_hash_warning)
2129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2130
2131 eh = (struct elf64_x86_64_link_hash_entry *) h;
2132 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2133 {
2134 asection *s = p->sec->output_section;
2135
2136 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2137 {
2138 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2139
2140 info->flags |= DF_TEXTREL;
2141
2142 /* Not an error, just cut short the traversal. */
2143 return FALSE;
2144 }
2145 }
2146 return TRUE;
2147 }
2148
2149 /* Set the sizes of the dynamic sections. */
2150
2151 static bfd_boolean
2152 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2153 struct bfd_link_info *info)
2154 {
2155 struct elf64_x86_64_link_hash_table *htab;
2156 bfd *dynobj;
2157 asection *s;
2158 bfd_boolean relocs;
2159 bfd *ibfd;
2160
2161 htab = elf64_x86_64_hash_table (info);
2162 dynobj = htab->elf.dynobj;
2163 if (dynobj == NULL)
2164 abort ();
2165
2166 if (htab->elf.dynamic_sections_created)
2167 {
2168 /* Set the contents of the .interp section to the interpreter. */
2169 if (info->executable)
2170 {
2171 s = bfd_get_section_by_name (dynobj, ".interp");
2172 if (s == NULL)
2173 abort ();
2174 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2175 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2176 }
2177 }
2178
2179 /* Set up .got offsets for local syms, and space for local dynamic
2180 relocs. */
2181 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2182 {
2183 bfd_signed_vma *local_got;
2184 bfd_signed_vma *end_local_got;
2185 char *local_tls_type;
2186 bfd_vma *local_tlsdesc_gotent;
2187 bfd_size_type locsymcount;
2188 Elf_Internal_Shdr *symtab_hdr;
2189 asection *srel;
2190
2191 if (! is_x86_64_elf (ibfd))
2192 continue;
2193
2194 for (s = ibfd->sections; s != NULL; s = s->next)
2195 {
2196 struct elf_dyn_relocs *p;
2197
2198 for (p = (struct elf_dyn_relocs *)
2199 (elf_section_data (s)->local_dynrel);
2200 p != NULL;
2201 p = p->next)
2202 {
2203 if (!bfd_is_abs_section (p->sec)
2204 && bfd_is_abs_section (p->sec->output_section))
2205 {
2206 /* Input section has been discarded, either because
2207 it is a copy of a linkonce section or due to
2208 linker script /DISCARD/, so we'll be discarding
2209 the relocs too. */
2210 }
2211 else if (p->count != 0)
2212 {
2213 srel = elf_section_data (p->sec)->sreloc;
2214 srel->size += p->count * sizeof (Elf64_External_Rela);
2215 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2216 info->flags |= DF_TEXTREL;
2217 }
2218 }
2219 }
2220
2221 local_got = elf_local_got_refcounts (ibfd);
2222 if (!local_got)
2223 continue;
2224
2225 symtab_hdr = &elf_symtab_hdr (ibfd);
2226 locsymcount = symtab_hdr->sh_info;
2227 end_local_got = local_got + locsymcount;
2228 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2229 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2230 s = htab->elf.sgot;
2231 srel = htab->elf.srelgot;
2232 for (; local_got < end_local_got;
2233 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2234 {
2235 *local_tlsdesc_gotent = (bfd_vma) -1;
2236 if (*local_got > 0)
2237 {
2238 if (GOT_TLS_GDESC_P (*local_tls_type))
2239 {
2240 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2241 - elf64_x86_64_compute_jump_table_size (htab);
2242 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2243 *local_got = (bfd_vma) -2;
2244 }
2245 if (! GOT_TLS_GDESC_P (*local_tls_type)
2246 || GOT_TLS_GD_P (*local_tls_type))
2247 {
2248 *local_got = s->size;
2249 s->size += GOT_ENTRY_SIZE;
2250 if (GOT_TLS_GD_P (*local_tls_type))
2251 s->size += GOT_ENTRY_SIZE;
2252 }
2253 if (info->shared
2254 || GOT_TLS_GD_ANY_P (*local_tls_type)
2255 || *local_tls_type == GOT_TLS_IE)
2256 {
2257 if (GOT_TLS_GDESC_P (*local_tls_type))
2258 {
2259 htab->elf.srelplt->size
2260 += sizeof (Elf64_External_Rela);
2261 htab->tlsdesc_plt = (bfd_vma) -1;
2262 }
2263 if (! GOT_TLS_GDESC_P (*local_tls_type)
2264 || GOT_TLS_GD_P (*local_tls_type))
2265 srel->size += sizeof (Elf64_External_Rela);
2266 }
2267 }
2268 else
2269 *local_got = (bfd_vma) -1;
2270 }
2271 }
2272
2273 if (htab->tls_ld_got.refcount > 0)
2274 {
2275 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2276 relocs. */
2277 htab->tls_ld_got.offset = htab->elf.sgot->size;
2278 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2279 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2280 }
2281 else
2282 htab->tls_ld_got.offset = -1;
2283
2284 /* Allocate global sym .plt and .got entries, and space for global
2285 sym dynamic relocs. */
2286 elf_link_hash_traverse (&htab->elf, elf64_x86_64_allocate_dynrelocs,
2287 info);
2288
2289 /* Allocate .plt and .got entries, and space for local symbols. */
2290 htab_traverse (htab->loc_hash_table,
2291 elf64_x86_64_allocate_local_dynrelocs,
2292 info);
2293
2294 /* For every jump slot reserved in the sgotplt, reloc_count is
2295 incremented. However, when we reserve space for TLS descriptors,
2296 it's not incremented, so in order to compute the space reserved
2297 for them, it suffices to multiply the reloc count by the jump
2298 slot size. */
2299 if (htab->elf.srelplt)
2300 htab->sgotplt_jump_table_size
2301 = elf64_x86_64_compute_jump_table_size (htab);
2302
2303 if (htab->tlsdesc_plt)
2304 {
2305 /* If we're not using lazy TLS relocations, don't generate the
2306 PLT and GOT entries they require. */
2307 if ((info->flags & DF_BIND_NOW))
2308 htab->tlsdesc_plt = 0;
2309 else
2310 {
2311 htab->tlsdesc_got = htab->elf.sgot->size;
2312 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2313 /* Reserve room for the initial entry.
2314 FIXME: we could probably do away with it in this case. */
2315 if (htab->elf.splt->size == 0)
2316 htab->elf.splt->size += PLT_ENTRY_SIZE;
2317 htab->tlsdesc_plt = htab->elf.splt->size;
2318 htab->elf.splt->size += PLT_ENTRY_SIZE;
2319 }
2320 }
2321
2322 /* We now have determined the sizes of the various dynamic sections.
2323 Allocate memory for them. */
2324 relocs = FALSE;
2325 for (s = dynobj->sections; s != NULL; s = s->next)
2326 {
2327 if ((s->flags & SEC_LINKER_CREATED) == 0)
2328 continue;
2329
2330 if (s == htab->elf.splt
2331 || s == htab->elf.sgot
2332 || s == htab->elf.sgotplt
2333 || s == htab->elf.iplt
2334 || s == htab->elf.igotplt
2335 || s == htab->sdynbss)
2336 {
2337 /* Strip this section if we don't need it; see the
2338 comment below. */
2339 }
2340 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2341 {
2342 if (s->size != 0 && s != htab->elf.srelplt)
2343 relocs = TRUE;
2344
2345 /* We use the reloc_count field as a counter if we need
2346 to copy relocs into the output file. */
2347 if (s != htab->elf.srelplt)
2348 s->reloc_count = 0;
2349 }
2350 else
2351 {
2352 /* It's not one of our sections, so don't allocate space. */
2353 continue;
2354 }
2355
2356 if (s->size == 0)
2357 {
2358 /* If we don't need this section, strip it from the
2359 output file. This is mostly to handle .rela.bss and
2360 .rela.plt. We must create both sections in
2361 create_dynamic_sections, because they must be created
2362 before the linker maps input sections to output
2363 sections. The linker does that before
2364 adjust_dynamic_symbol is called, and it is that
2365 function which decides whether anything needs to go
2366 into these sections. */
2367
2368 s->flags |= SEC_EXCLUDE;
2369 continue;
2370 }
2371
2372 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2373 continue;
2374
2375 /* Allocate memory for the section contents. We use bfd_zalloc
2376 here in case unused entries are not reclaimed before the
2377 section's contents are written out. This should not happen,
2378 but this way if it does, we get a R_X86_64_NONE reloc instead
2379 of garbage. */
2380 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2381 if (s->contents == NULL)
2382 return FALSE;
2383 }
2384
2385 if (htab->elf.dynamic_sections_created)
2386 {
2387 /* Add some entries to the .dynamic section. We fill in the
2388 values later, in elf64_x86_64_finish_dynamic_sections, but we
2389 must add the entries now so that we get the correct size for
2390 the .dynamic section. The DT_DEBUG entry is filled in by the
2391 dynamic linker and used by the debugger. */
2392 #define add_dynamic_entry(TAG, VAL) \
2393 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2394
2395 if (info->executable)
2396 {
2397 if (!add_dynamic_entry (DT_DEBUG, 0))
2398 return FALSE;
2399 }
2400
2401 if (htab->elf.splt->size != 0)
2402 {
2403 if (!add_dynamic_entry (DT_PLTGOT, 0)
2404 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2405 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2406 || !add_dynamic_entry (DT_JMPREL, 0))
2407 return FALSE;
2408
2409 if (htab->tlsdesc_plt
2410 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2411 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2412 return FALSE;
2413 }
2414
2415 if (relocs)
2416 {
2417 if (!add_dynamic_entry (DT_RELA, 0)
2418 || !add_dynamic_entry (DT_RELASZ, 0)
2419 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2420 return FALSE;
2421
2422 /* If any dynamic relocs apply to a read-only section,
2423 then we need a DT_TEXTREL entry. */
2424 if ((info->flags & DF_TEXTREL) == 0)
2425 elf_link_hash_traverse (&htab->elf,
2426 elf64_x86_64_readonly_dynrelocs,
2427 info);
2428
2429 if ((info->flags & DF_TEXTREL) != 0)
2430 {
2431 if (!add_dynamic_entry (DT_TEXTREL, 0))
2432 return FALSE;
2433 }
2434 }
2435 }
2436 #undef add_dynamic_entry
2437
2438 return TRUE;
2439 }
2440
2441 static bfd_boolean
2442 elf64_x86_64_always_size_sections (bfd *output_bfd,
2443 struct bfd_link_info *info)
2444 {
2445 asection *tls_sec = elf_hash_table (info)->tls_sec;
2446
2447 if (tls_sec)
2448 {
2449 struct elf_link_hash_entry *tlsbase;
2450
2451 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2452 "_TLS_MODULE_BASE_",
2453 FALSE, FALSE, FALSE);
2454
2455 if (tlsbase && tlsbase->type == STT_TLS)
2456 {
2457 struct bfd_link_hash_entry *bh = NULL;
2458 const struct elf_backend_data *bed
2459 = get_elf_backend_data (output_bfd);
2460
2461 if (!(_bfd_generic_link_add_one_symbol
2462 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2463 tls_sec, 0, NULL, FALSE,
2464 bed->collect, &bh)))
2465 return FALSE;
2466
2467 elf64_x86_64_hash_table (info)->tls_module_base = bh;
2468
2469 tlsbase = (struct elf_link_hash_entry *)bh;
2470 tlsbase->def_regular = 1;
2471 tlsbase->other = STV_HIDDEN;
2472 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2473 }
2474 }
2475
2476 return TRUE;
2477 }
2478
2479 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2480 executables. Rather than setting it to the beginning of the TLS
2481 section, we have to set it to the end. This function may be called
2482 multiple times, it is idempotent. */
2483
2484 static void
2485 elf64_x86_64_set_tls_module_base (struct bfd_link_info *info)
2486 {
2487 struct bfd_link_hash_entry *base;
2488
2489 if (!info->executable)
2490 return;
2491
2492 base = elf64_x86_64_hash_table (info)->tls_module_base;
2493
2494 if (!base)
2495 return;
2496
2497 base->u.def.value = elf_hash_table (info)->tls_size;
2498 }
2499
2500 /* Return the base VMA address which should be subtracted from real addresses
2501 when resolving @dtpoff relocation.
2502 This is PT_TLS segment p_vaddr. */
2503
2504 static bfd_vma
2505 elf64_x86_64_dtpoff_base (struct bfd_link_info *info)
2506 {
2507 /* If tls_sec is NULL, we should have signalled an error already. */
2508 if (elf_hash_table (info)->tls_sec == NULL)
2509 return 0;
2510 return elf_hash_table (info)->tls_sec->vma;
2511 }
2512
2513 /* Return the relocation value for @tpoff relocation
2514 if STT_TLS virtual address is ADDRESS. */
2515
2516 static bfd_vma
2517 elf64_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2518 {
2519 struct elf_link_hash_table *htab = elf_hash_table (info);
2520
2521 /* If tls_segment is NULL, we should have signalled an error already. */
2522 if (htab->tls_sec == NULL)
2523 return 0;
2524 return address - htab->tls_size - htab->tls_sec->vma;
2525 }
2526
2527 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2528 branch? */
2529
2530 static bfd_boolean
2531 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2532 {
2533 /* Opcode Instruction
2534 0xe8 call
2535 0xe9 jump
2536 0x0f 0x8x conditional jump */
2537 return ((offset > 0
2538 && (contents [offset - 1] == 0xe8
2539 || contents [offset - 1] == 0xe9))
2540 || (offset > 1
2541 && contents [offset - 2] == 0x0f
2542 && (contents [offset - 1] & 0xf0) == 0x80));
2543 }
2544
2545 /* Relocate an x86_64 ELF section. */
2546
2547 static bfd_boolean
2548 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2549 bfd *input_bfd, asection *input_section,
2550 bfd_byte *contents, Elf_Internal_Rela *relocs,
2551 Elf_Internal_Sym *local_syms,
2552 asection **local_sections)
2553 {
2554 struct elf64_x86_64_link_hash_table *htab;
2555 Elf_Internal_Shdr *symtab_hdr;
2556 struct elf_link_hash_entry **sym_hashes;
2557 bfd_vma *local_got_offsets;
2558 bfd_vma *local_tlsdesc_gotents;
2559 Elf_Internal_Rela *rel;
2560 Elf_Internal_Rela *relend;
2561
2562 BFD_ASSERT (is_x86_64_elf (input_bfd));
2563
2564 htab = elf64_x86_64_hash_table (info);
2565 symtab_hdr = &elf_symtab_hdr (input_bfd);
2566 sym_hashes = elf_sym_hashes (input_bfd);
2567 local_got_offsets = elf_local_got_offsets (input_bfd);
2568 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2569
2570 elf64_x86_64_set_tls_module_base (info);
2571
2572 rel = relocs;
2573 relend = relocs + input_section->reloc_count;
2574 for (; rel < relend; rel++)
2575 {
2576 unsigned int r_type;
2577 reloc_howto_type *howto;
2578 unsigned long r_symndx;
2579 struct elf_link_hash_entry *h;
2580 Elf_Internal_Sym *sym;
2581 asection *sec;
2582 bfd_vma off, offplt;
2583 bfd_vma relocation;
2584 bfd_boolean unresolved_reloc;
2585 bfd_reloc_status_type r;
2586 int tls_type;
2587 asection *base_got;
2588
2589 r_type = ELF64_R_TYPE (rel->r_info);
2590 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2591 || r_type == (int) R_X86_64_GNU_VTENTRY)
2592 continue;
2593
2594 if (r_type >= R_X86_64_max)
2595 {
2596 bfd_set_error (bfd_error_bad_value);
2597 return FALSE;
2598 }
2599
2600 howto = x86_64_elf_howto_table + r_type;
2601 r_symndx = ELF64_R_SYM (rel->r_info);
2602 h = NULL;
2603 sym = NULL;
2604 sec = NULL;
2605 unresolved_reloc = FALSE;
2606 if (r_symndx < symtab_hdr->sh_info)
2607 {
2608 sym = local_syms + r_symndx;
2609 sec = local_sections[r_symndx];
2610
2611 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2612 &sec, rel);
2613
2614 /* Relocate against local STT_GNU_IFUNC symbol. */
2615 if (!info->relocatable
2616 && ELF64_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2617 {
2618 h = elf64_x86_64_get_local_sym_hash (htab, input_bfd,
2619 rel, FALSE);
2620 if (h == NULL)
2621 abort ();
2622
2623 /* Set STT_GNU_IFUNC symbol value. */
2624 h->root.u.def.value = sym->st_value;
2625 h->root.u.def.section = sec;
2626 }
2627 }
2628 else
2629 {
2630 bfd_boolean warned;
2631
2632 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2633 r_symndx, symtab_hdr, sym_hashes,
2634 h, sec, relocation,
2635 unresolved_reloc, warned);
2636 }
2637
2638 if (sec != NULL && elf_discarded_section (sec))
2639 {
2640 /* For relocs against symbols from removed linkonce sections,
2641 or sections discarded by a linker script, we just want the
2642 section contents zeroed. Avoid any special processing. */
2643 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2644 rel->r_info = 0;
2645 rel->r_addend = 0;
2646 continue;
2647 }
2648
2649 if (info->relocatable)
2650 continue;
2651
2652 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2653 it here if it is defined in a non-shared object. */
2654 if (h != NULL
2655 && h->type == STT_GNU_IFUNC
2656 && h->def_regular)
2657 {
2658 asection *plt;
2659 bfd_vma plt_index;
2660 const char *name;
2661
2662 if ((input_section->flags & SEC_ALLOC) == 0
2663 || h->plt.offset == (bfd_vma) -1)
2664 abort ();
2665
2666 /* STT_GNU_IFUNC symbol must go through PLT. */
2667 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2668 relocation = (plt->output_section->vma
2669 + plt->output_offset + h->plt.offset);
2670
2671 switch (r_type)
2672 {
2673 default:
2674 if (h->root.root.string)
2675 name = h->root.root.string;
2676 else
2677 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
2678 NULL);
2679 (*_bfd_error_handler)
2680 (_("%B: relocation %s against STT_GNU_IFUNC "
2681 "symbol `%s' isn't handled by %s"), input_bfd,
2682 x86_64_elf_howto_table[r_type].name,
2683 name, __FUNCTION__);
2684 bfd_set_error (bfd_error_bad_value);
2685 return FALSE;
2686
2687 case R_X86_64_32S:
2688 if (info->shared)
2689 abort ();
2690 goto do_relocation;
2691
2692 case R_X86_64_64:
2693 if (rel->r_addend != 0)
2694 {
2695 if (h->root.root.string)
2696 name = h->root.root.string;
2697 else
2698 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
2699 sym, NULL);
2700 (*_bfd_error_handler)
2701 (_("%B: relocation %s against STT_GNU_IFUNC "
2702 "symbol `%s' has non-zero addend: %d"),
2703 input_bfd, x86_64_elf_howto_table[r_type].name,
2704 name, rel->r_addend);
2705 bfd_set_error (bfd_error_bad_value);
2706 return FALSE;
2707 }
2708
2709 /* Generate dynamic relcoation only when there is a
2710 non-GOF reference in a shared object. */
2711 if (info->shared && h->non_got_ref)
2712 {
2713 Elf_Internal_Rela outrel;
2714 bfd_byte *loc;
2715 asection *sreloc;
2716
2717 /* Need a dynamic relocation to get the real function
2718 address. */
2719 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2720 info,
2721 input_section,
2722 rel->r_offset);
2723 if (outrel.r_offset == (bfd_vma) -1
2724 || outrel.r_offset == (bfd_vma) -2)
2725 abort ();
2726
2727 outrel.r_offset += (input_section->output_section->vma
2728 + input_section->output_offset);
2729
2730 if (h->dynindx == -1
2731 || h->forced_local
2732 || info->executable)
2733 {
2734 /* This symbol is resolved locally. */
2735 outrel.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
2736 outrel.r_addend = (h->root.u.def.value
2737 + h->root.u.def.section->output_section->vma
2738 + h->root.u.def.section->output_offset);
2739 }
2740 else
2741 {
2742 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2743 outrel.r_addend = 0;
2744 }
2745
2746 sreloc = htab->elf.irelifunc;
2747 loc = sreloc->contents;
2748 loc += (sreloc->reloc_count++
2749 * sizeof (Elf64_External_Rela));
2750 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2751
2752 /* If this reloc is against an external symbol, we
2753 do not want to fiddle with the addend. Otherwise,
2754 we need to include the symbol value so that it
2755 becomes an addend for the dynamic reloc. For an
2756 internal symbol, we have updated addend. */
2757 continue;
2758 }
2759
2760 case R_X86_64_32:
2761 case R_X86_64_PC32:
2762 case R_X86_64_PC64:
2763 case R_X86_64_PLT32:
2764 goto do_relocation;
2765
2766 case R_X86_64_GOTPCREL:
2767 case R_X86_64_GOTPCREL64:
2768 base_got = htab->elf.sgot;
2769 off = h->got.offset;
2770
2771 if (base_got == NULL)
2772 abort ();
2773
2774 if (off == (bfd_vma) -1)
2775 {
2776 /* We can't use h->got.offset here to save state, or
2777 even just remember the offset, as finish_dynamic_symbol
2778 would use that as offset into .got. */
2779
2780 if (htab->elf.splt != NULL)
2781 {
2782 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2783 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2784 base_got = htab->elf.sgotplt;
2785 }
2786 else
2787 {
2788 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2789 off = plt_index * GOT_ENTRY_SIZE;
2790 base_got = htab->elf.igotplt;
2791 }
2792
2793 if (h->dynindx == -1
2794 || h->forced_local
2795 || info->symbolic)
2796 {
2797 /* This references the local defitionion. We must
2798 initialize this entry in the global offset table.
2799 Since the offset must always be a multiple of 8,
2800 we use the least significant bit to record
2801 whether we have initialized it already.
2802
2803 When doing a dynamic link, we create a .rela.got
2804 relocation entry to initialize the value. This
2805 is done in the finish_dynamic_symbol routine. */
2806 if ((off & 1) != 0)
2807 off &= ~1;
2808 else
2809 {
2810 bfd_put_64 (output_bfd, relocation,
2811 base_got->contents + off);
2812 /* Note that this is harmless for the GOTPLT64
2813 case, as -1 | 1 still is -1. */
2814 h->got.offset |= 1;
2815 }
2816 }
2817 }
2818
2819 relocation = (base_got->output_section->vma
2820 + base_got->output_offset + off);
2821
2822 if (r_type != R_X86_64_GOTPCREL
2823 && r_type != R_X86_64_GOTPCREL64)
2824 {
2825 asection *gotplt;
2826 if (htab->elf.splt != NULL)
2827 gotplt = htab->elf.sgotplt;
2828 else
2829 gotplt = htab->elf.igotplt;
2830 relocation -= (gotplt->output_section->vma
2831 - gotplt->output_offset);
2832 }
2833
2834 goto do_relocation;
2835 }
2836 }
2837
2838 /* When generating a shared object, the relocations handled here are
2839 copied into the output file to be resolved at run time. */
2840 switch (r_type)
2841 {
2842 case R_X86_64_GOT32:
2843 case R_X86_64_GOT64:
2844 /* Relocation is to the entry for this symbol in the global
2845 offset table. */
2846 case R_X86_64_GOTPCREL:
2847 case R_X86_64_GOTPCREL64:
2848 /* Use global offset table entry as symbol value. */
2849 case R_X86_64_GOTPLT64:
2850 /* This is the same as GOT64 for relocation purposes, but
2851 indicates the existence of a PLT entry. The difficulty is,
2852 that we must calculate the GOT slot offset from the PLT
2853 offset, if this symbol got a PLT entry (it was global).
2854 Additionally if it's computed from the PLT entry, then that
2855 GOT offset is relative to .got.plt, not to .got. */
2856 base_got = htab->elf.sgot;
2857
2858 if (htab->elf.sgot == NULL)
2859 abort ();
2860
2861 if (h != NULL)
2862 {
2863 bfd_boolean dyn;
2864
2865 off = h->got.offset;
2866 if (h->needs_plt
2867 && h->plt.offset != (bfd_vma)-1
2868 && off == (bfd_vma)-1)
2869 {
2870 /* We can't use h->got.offset here to save
2871 state, or even just remember the offset, as
2872 finish_dynamic_symbol would use that as offset into
2873 .got. */
2874 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2875 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2876 base_got = htab->elf.sgotplt;
2877 }
2878
2879 dyn = htab->elf.dynamic_sections_created;
2880
2881 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2882 || (info->shared
2883 && SYMBOL_REFERENCES_LOCAL (info, h))
2884 || (ELF_ST_VISIBILITY (h->other)
2885 && h->root.type == bfd_link_hash_undefweak))
2886 {
2887 /* This is actually a static link, or it is a -Bsymbolic
2888 link and the symbol is defined locally, or the symbol
2889 was forced to be local because of a version file. We
2890 must initialize this entry in the global offset table.
2891 Since the offset must always be a multiple of 8, we
2892 use the least significant bit to record whether we
2893 have initialized it already.
2894
2895 When doing a dynamic link, we create a .rela.got
2896 relocation entry to initialize the value. This is
2897 done in the finish_dynamic_symbol routine. */
2898 if ((off & 1) != 0)
2899 off &= ~1;
2900 else
2901 {
2902 bfd_put_64 (output_bfd, relocation,
2903 base_got->contents + off);
2904 /* Note that this is harmless for the GOTPLT64 case,
2905 as -1 | 1 still is -1. */
2906 h->got.offset |= 1;
2907 }
2908 }
2909 else
2910 unresolved_reloc = FALSE;
2911 }
2912 else
2913 {
2914 if (local_got_offsets == NULL)
2915 abort ();
2916
2917 off = local_got_offsets[r_symndx];
2918
2919 /* The offset must always be a multiple of 8. We use
2920 the least significant bit to record whether we have
2921 already generated the necessary reloc. */
2922 if ((off & 1) != 0)
2923 off &= ~1;
2924 else
2925 {
2926 bfd_put_64 (output_bfd, relocation,
2927 base_got->contents + off);
2928
2929 if (info->shared)
2930 {
2931 asection *s;
2932 Elf_Internal_Rela outrel;
2933 bfd_byte *loc;
2934
2935 /* We need to generate a R_X86_64_RELATIVE reloc
2936 for the dynamic linker. */
2937 s = htab->elf.srelgot;
2938 if (s == NULL)
2939 abort ();
2940
2941 outrel.r_offset = (base_got->output_section->vma
2942 + base_got->output_offset
2943 + off);
2944 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2945 outrel.r_addend = relocation;
2946 loc = s->contents;
2947 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2948 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2949 }
2950
2951 local_got_offsets[r_symndx] |= 1;
2952 }
2953 }
2954
2955 if (off >= (bfd_vma) -2)
2956 abort ();
2957
2958 relocation = base_got->output_section->vma
2959 + base_got->output_offset + off;
2960 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2961 relocation -= htab->elf.sgotplt->output_section->vma
2962 - htab->elf.sgotplt->output_offset;
2963
2964 break;
2965
2966 case R_X86_64_GOTOFF64:
2967 /* Relocation is relative to the start of the global offset
2968 table. */
2969
2970 /* Check to make sure it isn't a protected function symbol
2971 for shared library since it may not be local when used
2972 as function address. */
2973 if (info->shared
2974 && h
2975 && h->def_regular
2976 && h->type == STT_FUNC
2977 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2978 {
2979 (*_bfd_error_handler)
2980 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2981 input_bfd, h->root.root.string);
2982 bfd_set_error (bfd_error_bad_value);
2983 return FALSE;
2984 }
2985
2986 /* Note that sgot is not involved in this
2987 calculation. We always want the start of .got.plt. If we
2988 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2989 permitted by the ABI, we might have to change this
2990 calculation. */
2991 relocation -= htab->elf.sgotplt->output_section->vma
2992 + htab->elf.sgotplt->output_offset;
2993 break;
2994
2995 case R_X86_64_GOTPC32:
2996 case R_X86_64_GOTPC64:
2997 /* Use global offset table as symbol value. */
2998 relocation = htab->elf.sgotplt->output_section->vma
2999 + htab->elf.sgotplt->output_offset;
3000 unresolved_reloc = FALSE;
3001 break;
3002
3003 case R_X86_64_PLTOFF64:
3004 /* Relocation is PLT entry relative to GOT. For local
3005 symbols it's the symbol itself relative to GOT. */
3006 if (h != NULL
3007 /* See PLT32 handling. */
3008 && h->plt.offset != (bfd_vma) -1
3009 && htab->elf.splt != NULL)
3010 {
3011 relocation = (htab->elf.splt->output_section->vma
3012 + htab->elf.splt->output_offset
3013 + h->plt.offset);
3014 unresolved_reloc = FALSE;
3015 }
3016
3017 relocation -= htab->elf.sgotplt->output_section->vma
3018 + htab->elf.sgotplt->output_offset;
3019 break;
3020
3021 case R_X86_64_PLT32:
3022 /* Relocation is to the entry for this symbol in the
3023 procedure linkage table. */
3024
3025 /* Resolve a PLT32 reloc against a local symbol directly,
3026 without using the procedure linkage table. */
3027 if (h == NULL)
3028 break;
3029
3030 if (h->plt.offset == (bfd_vma) -1
3031 || htab->elf.splt == NULL)
3032 {
3033 /* We didn't make a PLT entry for this symbol. This
3034 happens when statically linking PIC code, or when
3035 using -Bsymbolic. */
3036 break;
3037 }
3038
3039 relocation = (htab->elf.splt->output_section->vma
3040 + htab->elf.splt->output_offset
3041 + h->plt.offset);
3042 unresolved_reloc = FALSE;
3043 break;
3044
3045 case R_X86_64_PC8:
3046 case R_X86_64_PC16:
3047 case R_X86_64_PC32:
3048 if (info->shared
3049 && (input_section->flags & SEC_ALLOC) != 0
3050 && (input_section->flags & SEC_READONLY) != 0
3051 && h != NULL)
3052 {
3053 bfd_boolean fail = FALSE;
3054 bfd_boolean branch
3055 = (r_type == R_X86_64_PC32
3056 && is_32bit_relative_branch (contents, rel->r_offset));
3057
3058 if (SYMBOL_REFERENCES_LOCAL (info, h))
3059 {
3060 /* Symbol is referenced locally. Make sure it is
3061 defined locally or for a branch. */
3062 fail = !h->def_regular && !branch;
3063 }
3064 else
3065 {
3066 /* Symbol isn't referenced locally. We only allow
3067 branch to symbol with non-default visibility. */
3068 fail = (!branch
3069 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3070 }
3071
3072 if (fail)
3073 {
3074 const char *fmt;
3075 const char *v;
3076 const char *pic = "";
3077
3078 switch (ELF_ST_VISIBILITY (h->other))
3079 {
3080 case STV_HIDDEN:
3081 v = _("hidden symbol");
3082 break;
3083 case STV_INTERNAL:
3084 v = _("internal symbol");
3085 break;
3086 case STV_PROTECTED:
3087 v = _("protected symbol");
3088 break;
3089 default:
3090 v = _("symbol");
3091 pic = _("; recompile with -fPIC");
3092 break;
3093 }
3094
3095 if (h->def_regular)
3096 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3097 else
3098 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3099
3100 (*_bfd_error_handler) (fmt, input_bfd,
3101 x86_64_elf_howto_table[r_type].name,
3102 v, h->root.root.string, pic);
3103 bfd_set_error (bfd_error_bad_value);
3104 return FALSE;
3105 }
3106 }
3107 /* Fall through. */
3108
3109 case R_X86_64_8:
3110 case R_X86_64_16:
3111 case R_X86_64_32:
3112 case R_X86_64_PC64:
3113 case R_X86_64_64:
3114 /* FIXME: The ABI says the linker should make sure the value is
3115 the same when it's zeroextended to 64 bit. */
3116
3117 if ((input_section->flags & SEC_ALLOC) == 0)
3118 break;
3119
3120 if ((info->shared
3121 && (h == NULL
3122 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3123 || h->root.type != bfd_link_hash_undefweak)
3124 && (! IS_X86_64_PCREL_TYPE (r_type)
3125 || ! SYMBOL_CALLS_LOCAL (info, h)))
3126 || (ELIMINATE_COPY_RELOCS
3127 && !info->shared
3128 && h != NULL
3129 && h->dynindx != -1
3130 && !h->non_got_ref
3131 && ((h->def_dynamic
3132 && !h->def_regular)
3133 || h->root.type == bfd_link_hash_undefweak
3134 || h->root.type == bfd_link_hash_undefined)))
3135 {
3136 Elf_Internal_Rela outrel;
3137 bfd_byte *loc;
3138 bfd_boolean skip, relocate;
3139 asection *sreloc;
3140
3141 /* When generating a shared object, these relocations
3142 are copied into the output file to be resolved at run
3143 time. */
3144 skip = FALSE;
3145 relocate = FALSE;
3146
3147 outrel.r_offset =
3148 _bfd_elf_section_offset (output_bfd, info, input_section,
3149 rel->r_offset);
3150 if (outrel.r_offset == (bfd_vma) -1)
3151 skip = TRUE;
3152 else if (outrel.r_offset == (bfd_vma) -2)
3153 skip = TRUE, relocate = TRUE;
3154
3155 outrel.r_offset += (input_section->output_section->vma
3156 + input_section->output_offset);
3157
3158 if (skip)
3159 memset (&outrel, 0, sizeof outrel);
3160
3161 /* h->dynindx may be -1 if this symbol was marked to
3162 become local. */
3163 else if (h != NULL
3164 && h->dynindx != -1
3165 && (IS_X86_64_PCREL_TYPE (r_type)
3166 || ! info->shared
3167 || ! SYMBOLIC_BIND (info, h)
3168 || ! h->def_regular))
3169 {
3170 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
3171 outrel.r_addend = rel->r_addend;
3172 }
3173 else
3174 {
3175 /* This symbol is local, or marked to become local. */
3176 if (r_type == R_X86_64_64)
3177 {
3178 relocate = TRUE;
3179 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3180 outrel.r_addend = relocation + rel->r_addend;
3181 }
3182 else
3183 {
3184 long sindx;
3185
3186 if (bfd_is_abs_section (sec))
3187 sindx = 0;
3188 else if (sec == NULL || sec->owner == NULL)
3189 {
3190 bfd_set_error (bfd_error_bad_value);
3191 return FALSE;
3192 }
3193 else
3194 {
3195 asection *osec;
3196
3197 /* We are turning this relocation into one
3198 against a section symbol. It would be
3199 proper to subtract the symbol's value,
3200 osec->vma, from the emitted reloc addend,
3201 but ld.so expects buggy relocs. */
3202 osec = sec->output_section;
3203 sindx = elf_section_data (osec)->dynindx;
3204 if (sindx == 0)
3205 {
3206 asection *oi = htab->elf.text_index_section;
3207 sindx = elf_section_data (oi)->dynindx;
3208 }
3209 BFD_ASSERT (sindx != 0);
3210 }
3211
3212 outrel.r_info = ELF64_R_INFO (sindx, r_type);
3213 outrel.r_addend = relocation + rel->r_addend;
3214 }
3215 }
3216
3217 sreloc = elf_section_data (input_section)->sreloc;
3218
3219 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3220
3221 loc = sreloc->contents;
3222 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3223 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3224
3225 /* If this reloc is against an external symbol, we do
3226 not want to fiddle with the addend. Otherwise, we
3227 need to include the symbol value so that it becomes
3228 an addend for the dynamic reloc. */
3229 if (! relocate)
3230 continue;
3231 }
3232
3233 break;
3234
3235 case R_X86_64_TLSGD:
3236 case R_X86_64_GOTPC32_TLSDESC:
3237 case R_X86_64_TLSDESC_CALL:
3238 case R_X86_64_GOTTPOFF:
3239 tls_type = GOT_UNKNOWN;
3240 if (h == NULL && local_got_offsets)
3241 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3242 else if (h != NULL)
3243 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
3244
3245 if (! elf64_x86_64_tls_transition (info, input_bfd,
3246 input_section, contents,
3247 symtab_hdr, sym_hashes,
3248 &r_type, tls_type, rel,
3249 relend, h, r_symndx))
3250 return FALSE;
3251
3252 if (r_type == R_X86_64_TPOFF32)
3253 {
3254 bfd_vma roff = rel->r_offset;
3255
3256 BFD_ASSERT (! unresolved_reloc);
3257
3258 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3259 {
3260 /* GD->LE transition.
3261 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3262 .word 0x6666; rex64; call __tls_get_addr
3263 Change it into:
3264 movq %fs:0, %rax
3265 leaq foo@tpoff(%rax), %rax */
3266 memcpy (contents + roff - 4,
3267 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3268 16);
3269 bfd_put_32 (output_bfd,
3270 elf64_x86_64_tpoff (info, relocation),
3271 contents + roff + 8);
3272 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3273 rel++;
3274 continue;
3275 }
3276 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3277 {
3278 /* GDesc -> LE transition.
3279 It's originally something like:
3280 leaq x@tlsdesc(%rip), %rax
3281
3282 Change it to:
3283 movl $x@tpoff, %rax
3284 */
3285
3286 unsigned int val, type, type2;
3287
3288 type = bfd_get_8 (input_bfd, contents + roff - 3);
3289 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3290 val = bfd_get_8 (input_bfd, contents + roff - 1);
3291 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3292 contents + roff - 3);
3293 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3294 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3295 contents + roff - 1);
3296 bfd_put_32 (output_bfd,
3297 elf64_x86_64_tpoff (info, relocation),
3298 contents + roff);
3299 continue;
3300 }
3301 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3302 {
3303 /* GDesc -> LE transition.
3304 It's originally:
3305 call *(%rax)
3306 Turn it into:
3307 xchg %ax,%ax. */
3308 bfd_put_8 (output_bfd, 0x66, contents + roff);
3309 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3310 continue;
3311 }
3312 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3313 {
3314 /* IE->LE transition:
3315 Originally it can be one of:
3316 movq foo@gottpoff(%rip), %reg
3317 addq foo@gottpoff(%rip), %reg
3318 We change it into:
3319 movq $foo, %reg
3320 leaq foo(%reg), %reg
3321 addq $foo, %reg. */
3322
3323 unsigned int val, type, reg;
3324
3325 val = bfd_get_8 (input_bfd, contents + roff - 3);
3326 type = bfd_get_8 (input_bfd, contents + roff - 2);
3327 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3328 reg >>= 3;
3329 if (type == 0x8b)
3330 {
3331 /* movq */
3332 if (val == 0x4c)
3333 bfd_put_8 (output_bfd, 0x49,
3334 contents + roff - 3);
3335 bfd_put_8 (output_bfd, 0xc7,
3336 contents + roff - 2);
3337 bfd_put_8 (output_bfd, 0xc0 | reg,
3338 contents + roff - 1);
3339 }
3340 else if (reg == 4)
3341 {
3342 /* addq -> addq - addressing with %rsp/%r12 is
3343 special */
3344 if (val == 0x4c)
3345 bfd_put_8 (output_bfd, 0x49,
3346 contents + roff - 3);
3347 bfd_put_8 (output_bfd, 0x81,
3348 contents + roff - 2);
3349 bfd_put_8 (output_bfd, 0xc0 | reg,
3350 contents + roff - 1);
3351 }
3352 else
3353 {
3354 /* addq -> leaq */
3355 if (val == 0x4c)
3356 bfd_put_8 (output_bfd, 0x4d,
3357 contents + roff - 3);
3358 bfd_put_8 (output_bfd, 0x8d,
3359 contents + roff - 2);
3360 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3361 contents + roff - 1);
3362 }
3363 bfd_put_32 (output_bfd,
3364 elf64_x86_64_tpoff (info, relocation),
3365 contents + roff);
3366 continue;
3367 }
3368 else
3369 BFD_ASSERT (FALSE);
3370 }
3371
3372 if (htab->elf.sgot == NULL)
3373 abort ();
3374
3375 if (h != NULL)
3376 {
3377 off = h->got.offset;
3378 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
3379 }
3380 else
3381 {
3382 if (local_got_offsets == NULL)
3383 abort ();
3384
3385 off = local_got_offsets[r_symndx];
3386 offplt = local_tlsdesc_gotents[r_symndx];
3387 }
3388
3389 if ((off & 1) != 0)
3390 off &= ~1;
3391 else
3392 {
3393 Elf_Internal_Rela outrel;
3394 bfd_byte *loc;
3395 int dr_type, indx;
3396 asection *sreloc;
3397
3398 if (htab->elf.srelgot == NULL)
3399 abort ();
3400
3401 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3402
3403 if (GOT_TLS_GDESC_P (tls_type))
3404 {
3405 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
3406 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3407 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3408 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3409 + htab->elf.sgotplt->output_offset
3410 + offplt
3411 + htab->sgotplt_jump_table_size);
3412 sreloc = htab->elf.srelplt;
3413 loc = sreloc->contents;
3414 loc += sreloc->reloc_count++
3415 * sizeof (Elf64_External_Rela);
3416 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3417 <= sreloc->contents + sreloc->size);
3418 if (indx == 0)
3419 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3420 else
3421 outrel.r_addend = 0;
3422 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3423 }
3424
3425 sreloc = htab->elf.srelgot;
3426
3427 outrel.r_offset = (htab->elf.sgot->output_section->vma
3428 + htab->elf.sgot->output_offset + off);
3429
3430 if (GOT_TLS_GD_P (tls_type))
3431 dr_type = R_X86_64_DTPMOD64;
3432 else if (GOT_TLS_GDESC_P (tls_type))
3433 goto dr_done;
3434 else
3435 dr_type = R_X86_64_TPOFF64;
3436
3437 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3438 outrel.r_addend = 0;
3439 if ((dr_type == R_X86_64_TPOFF64
3440 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3441 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3442 outrel.r_info = ELF64_R_INFO (indx, dr_type);
3443
3444 loc = sreloc->contents;
3445 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3446 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3447 <= sreloc->contents + sreloc->size);
3448 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3449
3450 if (GOT_TLS_GD_P (tls_type))
3451 {
3452 if (indx == 0)
3453 {
3454 BFD_ASSERT (! unresolved_reloc);
3455 bfd_put_64 (output_bfd,
3456 relocation - elf64_x86_64_dtpoff_base (info),
3457 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3458 }
3459 else
3460 {
3461 bfd_put_64 (output_bfd, 0,
3462 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3463 outrel.r_info = ELF64_R_INFO (indx,
3464 R_X86_64_DTPOFF64);
3465 outrel.r_offset += GOT_ENTRY_SIZE;
3466 sreloc->reloc_count++;
3467 loc += sizeof (Elf64_External_Rela);
3468 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3469 <= sreloc->contents + sreloc->size);
3470 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3471 }
3472 }
3473
3474 dr_done:
3475 if (h != NULL)
3476 h->got.offset |= 1;
3477 else
3478 local_got_offsets[r_symndx] |= 1;
3479 }
3480
3481 if (off >= (bfd_vma) -2
3482 && ! GOT_TLS_GDESC_P (tls_type))
3483 abort ();
3484 if (r_type == ELF64_R_TYPE (rel->r_info))
3485 {
3486 if (r_type == R_X86_64_GOTPC32_TLSDESC
3487 || r_type == R_X86_64_TLSDESC_CALL)
3488 relocation = htab->elf.sgotplt->output_section->vma
3489 + htab->elf.sgotplt->output_offset
3490 + offplt + htab->sgotplt_jump_table_size;
3491 else
3492 relocation = htab->elf.sgot->output_section->vma
3493 + htab->elf.sgot->output_offset + off;
3494 unresolved_reloc = FALSE;
3495 }
3496 else
3497 {
3498 bfd_vma roff = rel->r_offset;
3499
3500 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3501 {
3502 /* GD->IE transition.
3503 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3504 .word 0x6666; rex64; call __tls_get_addr@plt
3505 Change it into:
3506 movq %fs:0, %rax
3507 addq foo@gottpoff(%rip), %rax */
3508 memcpy (contents + roff - 4,
3509 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3510 16);
3511
3512 relocation = (htab->elf.sgot->output_section->vma
3513 + htab->elf.sgot->output_offset + off
3514 - roff
3515 - input_section->output_section->vma
3516 - input_section->output_offset
3517 - 12);
3518 bfd_put_32 (output_bfd, relocation,
3519 contents + roff + 8);
3520 /* Skip R_X86_64_PLT32. */
3521 rel++;
3522 continue;
3523 }
3524 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3525 {
3526 /* GDesc -> IE transition.
3527 It's originally something like:
3528 leaq x@tlsdesc(%rip), %rax
3529
3530 Change it to:
3531 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3532 */
3533
3534 unsigned int val, type, type2;
3535
3536 type = bfd_get_8 (input_bfd, contents + roff - 3);
3537 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3538 val = bfd_get_8 (input_bfd, contents + roff - 1);
3539
3540 /* Now modify the instruction as appropriate. To
3541 turn a leaq into a movq in the form we use it, it
3542 suffices to change the second byte from 0x8d to
3543 0x8b. */
3544 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3545
3546 bfd_put_32 (output_bfd,
3547 htab->elf.sgot->output_section->vma
3548 + htab->elf.sgot->output_offset + off
3549 - rel->r_offset
3550 - input_section->output_section->vma
3551 - input_section->output_offset
3552 - 4,
3553 contents + roff);
3554 continue;
3555 }
3556 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3557 {
3558 /* GDesc -> IE transition.
3559 It's originally:
3560 call *(%rax)
3561
3562 Change it to:
3563 xchg %ax,%ax. */
3564
3565 unsigned int val, type;
3566
3567 type = bfd_get_8 (input_bfd, contents + roff);
3568 val = bfd_get_8 (input_bfd, contents + roff + 1);
3569 bfd_put_8 (output_bfd, 0x66, contents + roff);
3570 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3571 continue;
3572 }
3573 else
3574 BFD_ASSERT (FALSE);
3575 }
3576 break;
3577
3578 case R_X86_64_TLSLD:
3579 if (! elf64_x86_64_tls_transition (info, input_bfd,
3580 input_section, contents,
3581 symtab_hdr, sym_hashes,
3582 &r_type, GOT_UNKNOWN,
3583 rel, relend, h, r_symndx))
3584 return FALSE;
3585
3586 if (r_type != R_X86_64_TLSLD)
3587 {
3588 /* LD->LE transition:
3589 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3590 We change it into:
3591 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3592
3593 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3594 memcpy (contents + rel->r_offset - 3,
3595 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3596 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3597 rel++;
3598 continue;
3599 }
3600
3601 if (htab->elf.sgot == NULL)
3602 abort ();
3603
3604 off = htab->tls_ld_got.offset;
3605 if (off & 1)
3606 off &= ~1;
3607 else
3608 {
3609 Elf_Internal_Rela outrel;
3610 bfd_byte *loc;
3611
3612 if (htab->elf.srelgot == NULL)
3613 abort ();
3614
3615 outrel.r_offset = (htab->elf.sgot->output_section->vma
3616 + htab->elf.sgot->output_offset + off);
3617
3618 bfd_put_64 (output_bfd, 0,
3619 htab->elf.sgot->contents + off);
3620 bfd_put_64 (output_bfd, 0,
3621 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3622 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3623 outrel.r_addend = 0;
3624 loc = htab->elf.srelgot->contents;
3625 loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3626 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3627 htab->tls_ld_got.offset |= 1;
3628 }
3629 relocation = htab->elf.sgot->output_section->vma
3630 + htab->elf.sgot->output_offset + off;
3631 unresolved_reloc = FALSE;
3632 break;
3633
3634 case R_X86_64_DTPOFF32:
3635 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
3636 relocation -= elf64_x86_64_dtpoff_base (info);
3637 else
3638 relocation = elf64_x86_64_tpoff (info, relocation);
3639 break;
3640
3641 case R_X86_64_TPOFF32:
3642 BFD_ASSERT (info->executable);
3643 relocation = elf64_x86_64_tpoff (info, relocation);
3644 break;
3645
3646 default:
3647 break;
3648 }
3649
3650 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3651 because such sections are not SEC_ALLOC and thus ld.so will
3652 not process them. */
3653 if (unresolved_reloc
3654 && !((input_section->flags & SEC_DEBUGGING) != 0
3655 && h->def_dynamic))
3656 (*_bfd_error_handler)
3657 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3658 input_bfd,
3659 input_section,
3660 (long) rel->r_offset,
3661 howto->name,
3662 h->root.root.string);
3663
3664 do_relocation:
3665 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3666 contents, rel->r_offset,
3667 relocation, rel->r_addend);
3668
3669 if (r != bfd_reloc_ok)
3670 {
3671 const char *name;
3672
3673 if (h != NULL)
3674 name = h->root.root.string;
3675 else
3676 {
3677 name = bfd_elf_string_from_elf_section (input_bfd,
3678 symtab_hdr->sh_link,
3679 sym->st_name);
3680 if (name == NULL)
3681 return FALSE;
3682 if (*name == '\0')
3683 name = bfd_section_name (input_bfd, sec);
3684 }
3685
3686 if (r == bfd_reloc_overflow)
3687 {
3688 if (! ((*info->callbacks->reloc_overflow)
3689 (info, (h ? &h->root : NULL), name, howto->name,
3690 (bfd_vma) 0, input_bfd, input_section,
3691 rel->r_offset)))
3692 return FALSE;
3693 }
3694 else
3695 {
3696 (*_bfd_error_handler)
3697 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3698 input_bfd, input_section,
3699 (long) rel->r_offset, name, (int) r);
3700 return FALSE;
3701 }
3702 }
3703 }
3704
3705 return TRUE;
3706 }
3707
3708 /* Finish up dynamic symbol handling. We set the contents of various
3709 dynamic sections here. */
3710
3711 static bfd_boolean
3712 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3713 struct bfd_link_info *info,
3714 struct elf_link_hash_entry *h,
3715 Elf_Internal_Sym *sym)
3716 {
3717 struct elf64_x86_64_link_hash_table *htab;
3718
3719 htab = elf64_x86_64_hash_table (info);
3720
3721 if (h->plt.offset != (bfd_vma) -1)
3722 {
3723 bfd_vma plt_index;
3724 bfd_vma got_offset;
3725 Elf_Internal_Rela rela;
3726 bfd_byte *loc;
3727 asection *plt, *gotplt, *relplt;
3728
3729 /* When building a static executable, use .iplt, .igot.plt and
3730 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3731 if (htab->elf.splt != NULL)
3732 {
3733 plt = htab->elf.splt;
3734 gotplt = htab->elf.sgotplt;
3735 relplt = htab->elf.srelplt;
3736 }
3737 else
3738 {
3739 plt = htab->elf.iplt;
3740 gotplt = htab->elf.igotplt;
3741 relplt = htab->elf.irelplt;
3742 }
3743
3744 /* This symbol has an entry in the procedure linkage table. Set
3745 it up. */
3746 if ((h->dynindx == -1
3747 && !((h->forced_local || info->executable)
3748 && h->def_regular
3749 && h->type == STT_GNU_IFUNC))
3750 || plt == NULL
3751 || gotplt == NULL
3752 || relplt == NULL)
3753 abort ();
3754
3755 /* Get the index in the procedure linkage table which
3756 corresponds to this symbol. This is the index of this symbol
3757 in all the symbols for which we are making plt entries. The
3758 first entry in the procedure linkage table is reserved.
3759
3760 Get the offset into the .got table of the entry that
3761 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3762 bytes. The first three are reserved for the dynamic linker.
3763
3764 For static executables, we don't reserve anything. */
3765
3766 if (plt == htab->elf.splt)
3767 {
3768 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3769 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3770 }
3771 else
3772 {
3773 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3774 got_offset = plt_index * GOT_ENTRY_SIZE;
3775 }
3776
3777 /* Fill in the entry in the procedure linkage table. */
3778 memcpy (plt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3779 PLT_ENTRY_SIZE);
3780
3781 /* Insert the relocation positions of the plt section. The magic
3782 numbers at the end of the statements are the positions of the
3783 relocations in the plt section. */
3784 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3785 instruction uses 6 bytes, subtract this value. */
3786 bfd_put_32 (output_bfd,
3787 (gotplt->output_section->vma
3788 + gotplt->output_offset
3789 + got_offset
3790 - plt->output_section->vma
3791 - plt->output_offset
3792 - h->plt.offset
3793 - 6),
3794 plt->contents + h->plt.offset + 2);
3795
3796 /* Don't fill PLT entry for static executables. */
3797 if (plt == htab->elf.splt)
3798 {
3799 /* Put relocation index. */
3800 bfd_put_32 (output_bfd, plt_index,
3801 plt->contents + h->plt.offset + 7);
3802 /* Put offset for jmp .PLT0. */
3803 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3804 plt->contents + h->plt.offset + 12);
3805 }
3806
3807 /* Fill in the entry in the global offset table, initially this
3808 points to the pushq instruction in the PLT which is at offset 6. */
3809 bfd_put_64 (output_bfd, (plt->output_section->vma
3810 + plt->output_offset
3811 + h->plt.offset + 6),
3812 gotplt->contents + got_offset);
3813
3814 /* Fill in the entry in the .rela.plt section. */
3815 rela.r_offset = (gotplt->output_section->vma
3816 + gotplt->output_offset
3817 + got_offset);
3818 if (h->dynindx == -1
3819 || ((info->executable
3820 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3821 && h->def_regular
3822 && h->type == STT_GNU_IFUNC))
3823 {
3824 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3825 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3826 rela.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
3827 rela.r_addend = (h->root.u.def.value
3828 + h->root.u.def.section->output_section->vma
3829 + h->root.u.def.section->output_offset);
3830 }
3831 else
3832 {
3833 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3834 rela.r_addend = 0;
3835 }
3836 loc = relplt->contents + plt_index * sizeof (Elf64_External_Rela);
3837 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3838
3839 if (!h->def_regular)
3840 {
3841 /* Mark the symbol as undefined, rather than as defined in
3842 the .plt section. Leave the value if there were any
3843 relocations where pointer equality matters (this is a clue
3844 for the dynamic linker, to make function pointer
3845 comparisons work between an application and shared
3846 library), otherwise set it to zero. If a function is only
3847 called from a binary, there is no need to slow down
3848 shared libraries because of that. */
3849 sym->st_shndx = SHN_UNDEF;
3850 if (!h->pointer_equality_needed)
3851 sym->st_value = 0;
3852 }
3853 }
3854
3855 if (h->got.offset != (bfd_vma) -1
3856 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3857 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3858 {
3859 Elf_Internal_Rela rela;
3860 bfd_byte *loc;
3861
3862 /* This symbol has an entry in the global offset table. Set it
3863 up. */
3864 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
3865 abort ();
3866
3867 rela.r_offset = (htab->elf.sgot->output_section->vma
3868 + htab->elf.sgot->output_offset
3869 + (h->got.offset &~ (bfd_vma) 1));
3870
3871 /* If this is a static link, or it is a -Bsymbolic link and the
3872 symbol is defined locally or was forced to be local because
3873 of a version file, we just want to emit a RELATIVE reloc.
3874 The entry in the global offset table will already have been
3875 initialized in the relocate_section function. */
3876 if (h->def_regular
3877 && h->type == STT_GNU_IFUNC)
3878 {
3879 if (info->shared)
3880 {
3881 /* Generate R_X86_64_GLOB_DAT. */
3882 goto do_glob_dat;
3883 }
3884 else
3885 {
3886 asection *plt;
3887
3888 if (!h->pointer_equality_needed)
3889 abort ();
3890
3891 /* For non-shared object, we can't use .got.plt, which
3892 contains the real function addres if we need pointer
3893 equality. We load the GOT entry with the PLT entry. */
3894 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3895 bfd_put_64 (output_bfd, (plt->output_section->vma
3896 + plt->output_offset
3897 + h->plt.offset),
3898 htab->elf.sgot->contents + h->got.offset);
3899 return TRUE;
3900 }
3901 }
3902 else if (info->shared
3903 && SYMBOL_REFERENCES_LOCAL (info, h))
3904 {
3905 if (!h->def_regular)
3906 return FALSE;
3907 BFD_ASSERT((h->got.offset & 1) != 0);
3908 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3909 rela.r_addend = (h->root.u.def.value
3910 + h->root.u.def.section->output_section->vma
3911 + h->root.u.def.section->output_offset);
3912 }
3913 else
3914 {
3915 BFD_ASSERT((h->got.offset & 1) == 0);
3916 do_glob_dat:
3917 bfd_put_64 (output_bfd, (bfd_vma) 0,
3918 htab->elf.sgot->contents + h->got.offset);
3919 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3920 rela.r_addend = 0;
3921 }
3922
3923 loc = htab->elf.srelgot->contents;
3924 loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3925 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3926 }
3927
3928 if (h->needs_copy)
3929 {
3930 Elf_Internal_Rela rela;
3931 bfd_byte *loc;
3932
3933 /* This symbol needs a copy reloc. Set it up. */
3934
3935 if (h->dynindx == -1
3936 || (h->root.type != bfd_link_hash_defined
3937 && h->root.type != bfd_link_hash_defweak)
3938 || htab->srelbss == NULL)
3939 abort ();
3940
3941 rela.r_offset = (h->root.u.def.value
3942 + h->root.u.def.section->output_section->vma
3943 + h->root.u.def.section->output_offset);
3944 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3945 rela.r_addend = 0;
3946 loc = htab->srelbss->contents;
3947 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3948 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3949 }
3950
3951 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
3952 be NULL for local symbols. */
3953 if (sym != NULL
3954 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3955 || h == htab->elf.hgot))
3956 sym->st_shndx = SHN_ABS;
3957
3958 return TRUE;
3959 }
3960
3961 /* Finish up local dynamic symbol handling. We set the contents of
3962 various dynamic sections here. */
3963
3964 static bfd_boolean
3965 elf64_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
3966 {
3967 struct elf_link_hash_entry *h
3968 = (struct elf_link_hash_entry *) *slot;
3969 struct bfd_link_info *info
3970 = (struct bfd_link_info *) inf;
3971
3972 return elf64_x86_64_finish_dynamic_symbol (info->output_bfd,
3973 info, h, NULL);
3974 }
3975
3976 /* Used to decide how to sort relocs in an optimal manner for the
3977 dynamic linker, before writing them out. */
3978
3979 static enum elf_reloc_type_class
3980 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3981 {
3982 switch ((int) ELF64_R_TYPE (rela->r_info))
3983 {
3984 case R_X86_64_RELATIVE:
3985 return reloc_class_relative;
3986 case R_X86_64_JUMP_SLOT:
3987 return reloc_class_plt;
3988 case R_X86_64_COPY:
3989 return reloc_class_copy;
3990 default:
3991 return reloc_class_normal;
3992 }
3993 }
3994
3995 /* Finish up the dynamic sections. */
3996
3997 static bfd_boolean
3998 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3999 {
4000 struct elf64_x86_64_link_hash_table *htab;
4001 bfd *dynobj;
4002 asection *sdyn;
4003
4004 htab = elf64_x86_64_hash_table (info);
4005 dynobj = htab->elf.dynobj;
4006 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4007
4008 if (htab->elf.dynamic_sections_created)
4009 {
4010 Elf64_External_Dyn *dyncon, *dynconend;
4011
4012 if (sdyn == NULL || htab->elf.sgot == NULL)
4013 abort ();
4014
4015 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4016 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4017 for (; dyncon < dynconend; dyncon++)
4018 {
4019 Elf_Internal_Dyn dyn;
4020 asection *s;
4021
4022 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4023
4024 switch (dyn.d_tag)
4025 {
4026 default:
4027 continue;
4028
4029 case DT_PLTGOT:
4030 s = htab->elf.sgotplt;
4031 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4032 break;
4033
4034 case DT_JMPREL:
4035 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4036 break;
4037
4038 case DT_PLTRELSZ:
4039 s = htab->elf.srelplt->output_section;
4040 dyn.d_un.d_val = s->size;
4041 break;
4042
4043 case DT_RELASZ:
4044 /* The procedure linkage table relocs (DT_JMPREL) should
4045 not be included in the overall relocs (DT_RELA).
4046 Therefore, we override the DT_RELASZ entry here to
4047 make it not include the JMPREL relocs. Since the
4048 linker script arranges for .rela.plt to follow all
4049 other relocation sections, we don't have to worry
4050 about changing the DT_RELA entry. */
4051 if (htab->elf.srelplt != NULL)
4052 {
4053 s = htab->elf.srelplt->output_section;
4054 dyn.d_un.d_val -= s->size;
4055 }
4056 break;
4057
4058 case DT_TLSDESC_PLT:
4059 s = htab->elf.splt;
4060 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4061 + htab->tlsdesc_plt;
4062 break;
4063
4064 case DT_TLSDESC_GOT:
4065 s = htab->elf.sgot;
4066 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4067 + htab->tlsdesc_got;
4068 break;
4069 }
4070
4071 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4072 }
4073
4074 /* Fill in the special first entry in the procedure linkage table. */
4075 if (htab->elf.splt && htab->elf.splt->size > 0)
4076 {
4077 /* Fill in the first entry in the procedure linkage table. */
4078 memcpy (htab->elf.splt->contents, elf64_x86_64_plt0_entry,
4079 PLT_ENTRY_SIZE);
4080 /* Add offset for pushq GOT+8(%rip), since the instruction
4081 uses 6 bytes subtract this value. */
4082 bfd_put_32 (output_bfd,
4083 (htab->elf.sgotplt->output_section->vma
4084 + htab->elf.sgotplt->output_offset
4085 + 8
4086 - htab->elf.splt->output_section->vma
4087 - htab->elf.splt->output_offset
4088 - 6),
4089 htab->elf.splt->contents + 2);
4090 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4091 the end of the instruction. */
4092 bfd_put_32 (output_bfd,
4093 (htab->elf.sgotplt->output_section->vma
4094 + htab->elf.sgotplt->output_offset
4095 + 16
4096 - htab->elf.splt->output_section->vma
4097 - htab->elf.splt->output_offset
4098 - 12),
4099 htab->elf.splt->contents + 8);
4100
4101 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4102 PLT_ENTRY_SIZE;
4103
4104 if (htab->tlsdesc_plt)
4105 {
4106 bfd_put_64 (output_bfd, (bfd_vma) 0,
4107 htab->elf.sgot->contents + htab->tlsdesc_got);
4108
4109 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4110 elf64_x86_64_plt0_entry,
4111 PLT_ENTRY_SIZE);
4112
4113 /* Add offset for pushq GOT+8(%rip), since the
4114 instruction uses 6 bytes subtract this value. */
4115 bfd_put_32 (output_bfd,
4116 (htab->elf.sgotplt->output_section->vma
4117 + htab->elf.sgotplt->output_offset
4118 + 8
4119 - htab->elf.splt->output_section->vma
4120 - htab->elf.splt->output_offset
4121 - htab->tlsdesc_plt
4122 - 6),
4123 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4124 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4125 htab->tlsdesc_got. The 12 is the offset to the end of
4126 the instruction. */
4127 bfd_put_32 (output_bfd,
4128 (htab->elf.sgot->output_section->vma
4129 + htab->elf.sgot->output_offset
4130 + htab->tlsdesc_got
4131 - htab->elf.splt->output_section->vma
4132 - htab->elf.splt->output_offset
4133 - htab->tlsdesc_plt
4134 - 12),
4135 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4136 }
4137 }
4138 }
4139
4140 if (htab->elf.sgotplt)
4141 {
4142 /* Fill in the first three entries in the global offset table. */
4143 if (htab->elf.sgotplt->size > 0)
4144 {
4145 /* Set the first entry in the global offset table to the address of
4146 the dynamic section. */
4147 if (sdyn == NULL)
4148 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4149 else
4150 bfd_put_64 (output_bfd,
4151 sdyn->output_section->vma + sdyn->output_offset,
4152 htab->elf.sgotplt->contents);
4153 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4154 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4155 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4156 }
4157
4158 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4159 GOT_ENTRY_SIZE;
4160 }
4161
4162 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4163 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4164 = GOT_ENTRY_SIZE;
4165
4166 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4167 htab_traverse (htab->loc_hash_table,
4168 elf64_x86_64_finish_local_dynamic_symbol,
4169 info);
4170
4171 return TRUE;
4172 }
4173
4174 /* Return address for Ith PLT stub in section PLT, for relocation REL
4175 or (bfd_vma) -1 if it should not be included. */
4176
4177 static bfd_vma
4178 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4179 const arelent *rel ATTRIBUTE_UNUSED)
4180 {
4181 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4182 }
4183
4184 /* Handle an x86-64 specific section when reading an object file. This
4185 is called when elfcode.h finds a section with an unknown type. */
4186
4187 static bfd_boolean
4188 elf64_x86_64_section_from_shdr (bfd *abfd,
4189 Elf_Internal_Shdr *hdr,
4190 const char *name,
4191 int shindex)
4192 {
4193 if (hdr->sh_type != SHT_X86_64_UNWIND)
4194 return FALSE;
4195
4196 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4197 return FALSE;
4198
4199 return TRUE;
4200 }
4201
4202 /* Hook called by the linker routine which adds symbols from an object
4203 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4204 of .bss. */
4205
4206 static bfd_boolean
4207 elf64_x86_64_add_symbol_hook (bfd *abfd,
4208 struct bfd_link_info *info,
4209 Elf_Internal_Sym *sym,
4210 const char **namep ATTRIBUTE_UNUSED,
4211 flagword *flagsp ATTRIBUTE_UNUSED,
4212 asection **secp,
4213 bfd_vma *valp)
4214 {
4215 asection *lcomm;
4216
4217 switch (sym->st_shndx)
4218 {
4219 case SHN_X86_64_LCOMMON:
4220 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4221 if (lcomm == NULL)
4222 {
4223 lcomm = bfd_make_section_with_flags (abfd,
4224 "LARGE_COMMON",
4225 (SEC_ALLOC
4226 | SEC_IS_COMMON
4227 | SEC_LINKER_CREATED));
4228 if (lcomm == NULL)
4229 return FALSE;
4230 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4231 }
4232 *secp = lcomm;
4233 *valp = sym->st_size;
4234 break;
4235 }
4236
4237 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4238 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
4239
4240 return TRUE;
4241 }
4242
4243
4244 /* Given a BFD section, try to locate the corresponding ELF section
4245 index. */
4246
4247 static bfd_boolean
4248 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4249 asection *sec, int *index)
4250 {
4251 if (sec == &_bfd_elf_large_com_section)
4252 {
4253 *index = SHN_X86_64_LCOMMON;
4254 return TRUE;
4255 }
4256 return FALSE;
4257 }
4258
4259 /* Process a symbol. */
4260
4261 static void
4262 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4263 asymbol *asym)
4264 {
4265 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4266
4267 switch (elfsym->internal_elf_sym.st_shndx)
4268 {
4269 case SHN_X86_64_LCOMMON:
4270 asym->section = &_bfd_elf_large_com_section;
4271 asym->value = elfsym->internal_elf_sym.st_size;
4272 /* Common symbol doesn't set BSF_GLOBAL. */
4273 asym->flags &= ~BSF_GLOBAL;
4274 break;
4275 }
4276 }
4277
4278 static bfd_boolean
4279 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
4280 {
4281 return (sym->st_shndx == SHN_COMMON
4282 || sym->st_shndx == SHN_X86_64_LCOMMON);
4283 }
4284
4285 static unsigned int
4286 elf64_x86_64_common_section_index (asection *sec)
4287 {
4288 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4289 return SHN_COMMON;
4290 else
4291 return SHN_X86_64_LCOMMON;
4292 }
4293
4294 static asection *
4295 elf64_x86_64_common_section (asection *sec)
4296 {
4297 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4298 return bfd_com_section_ptr;
4299 else
4300 return &_bfd_elf_large_com_section;
4301 }
4302
4303 static bfd_boolean
4304 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4305 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4306 struct elf_link_hash_entry *h,
4307 Elf_Internal_Sym *sym,
4308 asection **psec,
4309 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4310 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4311 bfd_boolean *skip ATTRIBUTE_UNUSED,
4312 bfd_boolean *override ATTRIBUTE_UNUSED,
4313 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4314 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4315 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4316 bfd_boolean *newdyn,
4317 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4318 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4319 bfd *abfd ATTRIBUTE_UNUSED,
4320 asection **sec,
4321 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4322 bfd_boolean *olddyn,
4323 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4324 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4325 bfd *oldbfd,
4326 asection **oldsec)
4327 {
4328 /* A normal common symbol and a large common symbol result in a
4329 normal common symbol. We turn the large common symbol into a
4330 normal one. */
4331 if (!*olddyn
4332 && h->root.type == bfd_link_hash_common
4333 && !*newdyn
4334 && bfd_is_com_section (*sec)
4335 && *oldsec != *sec)
4336 {
4337 if (sym->st_shndx == SHN_COMMON
4338 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4339 {
4340 h->root.u.c.p->section
4341 = bfd_make_section_old_way (oldbfd, "COMMON");
4342 h->root.u.c.p->section->flags = SEC_ALLOC;
4343 }
4344 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4345 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4346 *psec = *sec = bfd_com_section_ptr;
4347 }
4348
4349 return TRUE;
4350 }
4351
4352 static int
4353 elf64_x86_64_additional_program_headers (bfd *abfd,
4354 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4355 {
4356 asection *s;
4357 int count = 0;
4358
4359 /* Check to see if we need a large readonly segment. */
4360 s = bfd_get_section_by_name (abfd, ".lrodata");
4361 if (s && (s->flags & SEC_LOAD))
4362 count++;
4363
4364 /* Check to see if we need a large data segment. Since .lbss sections
4365 is placed right after the .bss section, there should be no need for
4366 a large data segment just because of .lbss. */
4367 s = bfd_get_section_by_name (abfd, ".ldata");
4368 if (s && (s->flags & SEC_LOAD))
4369 count++;
4370
4371 return count;
4372 }
4373
4374 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4375
4376 static bfd_boolean
4377 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4378 {
4379 if (h->plt.offset != (bfd_vma) -1
4380 && !h->def_regular
4381 && !h->pointer_equality_needed)
4382 return FALSE;
4383
4384 return _bfd_elf_hash_symbol (h);
4385 }
4386
4387 static const struct bfd_elf_special_section
4388 elf64_x86_64_special_sections[]=
4389 {
4390 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4391 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4392 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4393 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4394 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4395 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4396 { NULL, 0, 0, 0, 0 }
4397 };
4398
4399 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4400 #define TARGET_LITTLE_NAME "elf64-x86-64"
4401 #define ELF_ARCH bfd_arch_i386
4402 #define ELF_MACHINE_CODE EM_X86_64
4403 #define ELF_MAXPAGESIZE 0x200000
4404 #define ELF_MINPAGESIZE 0x1000
4405 #define ELF_COMMONPAGESIZE 0x1000
4406
4407 #define elf_backend_can_gc_sections 1
4408 #define elf_backend_can_refcount 1
4409 #define elf_backend_want_got_plt 1
4410 #define elf_backend_plt_readonly 1
4411 #define elf_backend_want_plt_sym 0
4412 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4413 #define elf_backend_rela_normal 1
4414
4415 #define elf_info_to_howto elf64_x86_64_info_to_howto
4416
4417 #define bfd_elf64_bfd_link_hash_table_create \
4418 elf64_x86_64_link_hash_table_create
4419 #define bfd_elf64_bfd_link_hash_table_free \
4420 elf64_x86_64_link_hash_table_free
4421 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4422 #define bfd_elf64_bfd_reloc_name_lookup \
4423 elf64_x86_64_reloc_name_lookup
4424
4425 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4426 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4427 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4428 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4429 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4430 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4431 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4432 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4433 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4434 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4435 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4436 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4437 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4438 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4439 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4440 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4441 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4442 #define elf_backend_object_p elf64_x86_64_elf_object_p
4443 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4444
4445 #define elf_backend_section_from_shdr \
4446 elf64_x86_64_section_from_shdr
4447
4448 #define elf_backend_section_from_bfd_section \
4449 elf64_x86_64_elf_section_from_bfd_section
4450 #define elf_backend_add_symbol_hook \
4451 elf64_x86_64_add_symbol_hook
4452 #define elf_backend_symbol_processing \
4453 elf64_x86_64_symbol_processing
4454 #define elf_backend_common_section_index \
4455 elf64_x86_64_common_section_index
4456 #define elf_backend_common_section \
4457 elf64_x86_64_common_section
4458 #define elf_backend_common_definition \
4459 elf64_x86_64_common_definition
4460 #define elf_backend_merge_symbol \
4461 elf64_x86_64_merge_symbol
4462 #define elf_backend_special_sections \
4463 elf64_x86_64_special_sections
4464 #define elf_backend_additional_program_headers \
4465 elf64_x86_64_additional_program_headers
4466 #define elf_backend_hash_symbol \
4467 elf64_x86_64_hash_symbol
4468
4469 #undef elf_backend_post_process_headers
4470 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4471
4472 #include "elf64-target.h"
4473
4474 /* FreeBSD support. */
4475
4476 #undef TARGET_LITTLE_SYM
4477 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4478 #undef TARGET_LITTLE_NAME
4479 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4480
4481 #undef ELF_OSABI
4482 #define ELF_OSABI ELFOSABI_FREEBSD
4483
4484 #undef elf64_bed
4485 #define elf64_bed elf64_x86_64_fbsd_bed
4486
4487 #include "elf64-target.h"
4488
4489 /* Intel L1OM support. */
4490
4491 static bfd_boolean
4492 elf64_l1om_elf_object_p (bfd *abfd)
4493 {
4494 /* Set the right machine number for an L1OM elf64 file. */
4495 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
4496 return TRUE;
4497 }
4498
4499 #undef TARGET_LITTLE_SYM
4500 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
4501 #undef TARGET_LITTLE_NAME
4502 #define TARGET_LITTLE_NAME "elf64-l1om"
4503 #undef ELF_ARCH
4504 #define ELF_ARCH bfd_arch_l1om
4505
4506 #undef ELF_MACHINE_CODE
4507 #define ELF_MACHINE_CODE EM_L1OM
4508
4509 #undef ELF_OSABI
4510
4511 #undef elf64_bed
4512 #define elf64_bed elf64_l1om_bed
4513
4514 #undef elf_backend_object_p
4515 #define elf_backend_object_p elf64_l1om_elf_object_p
4516
4517 #undef elf_backend_post_process_headers
4518
4519 #include "elf64-target.h"
4520
4521 /* FreeBSD L1OM support. */
4522
4523 #undef TARGET_LITTLE_SYM
4524 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
4525 #undef TARGET_LITTLE_NAME
4526 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
4527
4528 #undef ELF_OSABI
4529 #define ELF_OSABI ELFOSABI_FREEBSD
4530
4531 #undef elf64_bed
4532 #define elf64_bed elf64_l1om_fbsd_bed
4533
4534 #undef elf_backend_post_process_headers
4535 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4536
4537 #include "elf64-target.h"
This page took 0.163831 seconds and 5 git commands to generate.