0cc5f871db914f0c66b16f93ad6db68e7c7eac7d
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 h->dynamic = 1;
590 }
591
592 /* Record an assignment to a symbol made by a linker script. We need
593 this in case some dynamic object refers to this symbol. */
594
595 bfd_boolean
596 bfd_elf_record_link_assignment (bfd *output_bfd,
597 struct bfd_link_info *info,
598 const char *name,
599 bfd_boolean provide,
600 bfd_boolean hidden)
601 {
602 struct elf_link_hash_entry *h, *hv;
603 struct elf_link_hash_table *htab;
604 const struct elf_backend_data *bed;
605
606 if (!is_elf_hash_table (info->hash))
607 return TRUE;
608
609 htab = elf_hash_table (info);
610 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
611 if (h == NULL)
612 return provide;
613
614 if (h->root.type == bfd_link_hash_warning)
615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
616
617 if (h->versioned == unknown)
618 {
619 /* Set versioned if symbol version is unknown. */
620 char *version = strrchr (name, ELF_VER_CHR);
621 if (version)
622 {
623 if (version > name && version[-1] != ELF_VER_CHR)
624 h->versioned = versioned_hidden;
625 else
626 h->versioned = versioned;
627 }
628 }
629
630 /* Symbols defined in a linker script but not referenced anywhere
631 else will have non_elf set. */
632 if (h->non_elf)
633 {
634 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
635 h->non_elf = 0;
636 }
637
638 switch (h->root.type)
639 {
640 case bfd_link_hash_defined:
641 case bfd_link_hash_defweak:
642 case bfd_link_hash_common:
643 break;
644 case bfd_link_hash_undefweak:
645 case bfd_link_hash_undefined:
646 /* Since we're defining the symbol, don't let it seem to have not
647 been defined. record_dynamic_symbol and size_dynamic_sections
648 may depend on this. */
649 h->root.type = bfd_link_hash_new;
650 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
651 bfd_link_repair_undef_list (&htab->root);
652 break;
653 case bfd_link_hash_new:
654 break;
655 case bfd_link_hash_indirect:
656 /* We had a versioned symbol in a dynamic library. We make the
657 the versioned symbol point to this one. */
658 bed = get_elf_backend_data (output_bfd);
659 hv = h;
660 while (hv->root.type == bfd_link_hash_indirect
661 || hv->root.type == bfd_link_hash_warning)
662 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
663 /* We don't need to update h->root.u since linker will set them
664 later. */
665 h->root.type = bfd_link_hash_undefined;
666 hv->root.type = bfd_link_hash_indirect;
667 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
668 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
669 break;
670 default:
671 BFD_FAIL ();
672 return FALSE;
673 }
674
675 /* If this symbol is being provided by the linker script, and it is
676 currently defined by a dynamic object, but not by a regular
677 object, then mark it as undefined so that the generic linker will
678 force the correct value. */
679 if (provide
680 && h->def_dynamic
681 && !h->def_regular)
682 h->root.type = bfd_link_hash_undefined;
683
684 /* If this symbol is not being provided by the linker script, and it is
685 currently defined by a dynamic object, but not by a regular object,
686 then clear out any version information because the symbol will not be
687 associated with the dynamic object any more. */
688 if (!provide
689 && h->def_dynamic
690 && !h->def_regular)
691 h->verinfo.verdef = NULL;
692
693 /* Make sure this symbol is not garbage collected. */
694 h->mark = 1;
695
696 h->def_regular = 1;
697
698 if (hidden)
699 {
700 bed = get_elf_backend_data (output_bfd);
701 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
702 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
703 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
704 }
705
706 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
707 and executables. */
708 if (!bfd_link_relocatable (info)
709 && h->dynindx != -1
710 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
711 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
712 h->forced_local = 1;
713
714 if ((h->def_dynamic
715 || h->ref_dynamic
716 || bfd_link_dll (info)
717 || elf_hash_table (info)->is_relocatable_executable)
718 && h->dynindx == -1)
719 {
720 if (! bfd_elf_link_record_dynamic_symbol (info, h))
721 return FALSE;
722
723 /* If this is a weak defined symbol, and we know a corresponding
724 real symbol from the same dynamic object, make sure the real
725 symbol is also made into a dynamic symbol. */
726 if (h->u.weakdef != NULL
727 && h->u.weakdef->dynindx == -1)
728 {
729 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
730 return FALSE;
731 }
732 }
733
734 return TRUE;
735 }
736
737 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
738 success, and 2 on a failure caused by attempting to record a symbol
739 in a discarded section, eg. a discarded link-once section symbol. */
740
741 int
742 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
743 bfd *input_bfd,
744 long input_indx)
745 {
746 bfd_size_type amt;
747 struct elf_link_local_dynamic_entry *entry;
748 struct elf_link_hash_table *eht;
749 struct elf_strtab_hash *dynstr;
750 size_t dynstr_index;
751 char *name;
752 Elf_External_Sym_Shndx eshndx;
753 char esym[sizeof (Elf64_External_Sym)];
754
755 if (! is_elf_hash_table (info->hash))
756 return 0;
757
758 /* See if the entry exists already. */
759 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
760 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
761 return 1;
762
763 amt = sizeof (*entry);
764 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
765 if (entry == NULL)
766 return 0;
767
768 /* Go find the symbol, so that we can find it's name. */
769 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
770 1, input_indx, &entry->isym, esym, &eshndx))
771 {
772 bfd_release (input_bfd, entry);
773 return 0;
774 }
775
776 if (entry->isym.st_shndx != SHN_UNDEF
777 && entry->isym.st_shndx < SHN_LORESERVE)
778 {
779 asection *s;
780
781 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
782 if (s == NULL || bfd_is_abs_section (s->output_section))
783 {
784 /* We can still bfd_release here as nothing has done another
785 bfd_alloc. We can't do this later in this function. */
786 bfd_release (input_bfd, entry);
787 return 2;
788 }
789 }
790
791 name = (bfd_elf_string_from_elf_section
792 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
793 entry->isym.st_name));
794
795 dynstr = elf_hash_table (info)->dynstr;
796 if (dynstr == NULL)
797 {
798 /* Create a strtab to hold the dynamic symbol names. */
799 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
800 if (dynstr == NULL)
801 return 0;
802 }
803
804 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
805 if (dynstr_index == (size_t) -1)
806 return 0;
807 entry->isym.st_name = dynstr_index;
808
809 eht = elf_hash_table (info);
810
811 entry->next = eht->dynlocal;
812 eht->dynlocal = entry;
813 entry->input_bfd = input_bfd;
814 entry->input_indx = input_indx;
815 eht->dynsymcount++;
816
817 /* Whatever binding the symbol had before, it's now local. */
818 entry->isym.st_info
819 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
820
821 /* The dynindx will be set at the end of size_dynamic_sections. */
822
823 return 1;
824 }
825
826 /* Return the dynindex of a local dynamic symbol. */
827
828 long
829 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
830 bfd *input_bfd,
831 long input_indx)
832 {
833 struct elf_link_local_dynamic_entry *e;
834
835 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
836 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
837 return e->dynindx;
838 return -1;
839 }
840
841 /* This function is used to renumber the dynamic symbols, if some of
842 them are removed because they are marked as local. This is called
843 via elf_link_hash_traverse. */
844
845 static bfd_boolean
846 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
847 void *data)
848 {
849 size_t *count = (size_t *) data;
850
851 if (h->forced_local)
852 return TRUE;
853
854 if (h->dynindx != -1)
855 h->dynindx = ++(*count);
856
857 return TRUE;
858 }
859
860
861 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
862 STB_LOCAL binding. */
863
864 static bfd_boolean
865 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
866 void *data)
867 {
868 size_t *count = (size_t *) data;
869
870 if (!h->forced_local)
871 return TRUE;
872
873 if (h->dynindx != -1)
874 h->dynindx = ++(*count);
875
876 return TRUE;
877 }
878
879 /* Return true if the dynamic symbol for a given section should be
880 omitted when creating a shared library. */
881 bfd_boolean
882 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
883 struct bfd_link_info *info,
884 asection *p)
885 {
886 struct elf_link_hash_table *htab;
887 asection *ip;
888
889 switch (elf_section_data (p)->this_hdr.sh_type)
890 {
891 case SHT_PROGBITS:
892 case SHT_NOBITS:
893 /* If sh_type is yet undecided, assume it could be
894 SHT_PROGBITS/SHT_NOBITS. */
895 case SHT_NULL:
896 htab = elf_hash_table (info);
897 if (p == htab->tls_sec)
898 return FALSE;
899
900 if (htab->text_index_section != NULL)
901 return p != htab->text_index_section && p != htab->data_index_section;
902
903 return (htab->dynobj != NULL
904 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
905 && ip->output_section == p);
906
907 /* There shouldn't be section relative relocations
908 against any other section. */
909 default:
910 return TRUE;
911 }
912 }
913
914 /* Assign dynsym indices. In a shared library we generate a section
915 symbol for each output section, which come first. Next come symbols
916 which have been forced to local binding. Then all of the back-end
917 allocated local dynamic syms, followed by the rest of the global
918 symbols. */
919
920 static unsigned long
921 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
922 struct bfd_link_info *info,
923 unsigned long *section_sym_count)
924 {
925 unsigned long dynsymcount = 0;
926
927 if (bfd_link_pic (info)
928 || elf_hash_table (info)->is_relocatable_executable)
929 {
930 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
931 asection *p;
932 for (p = output_bfd->sections; p ; p = p->next)
933 if ((p->flags & SEC_EXCLUDE) == 0
934 && (p->flags & SEC_ALLOC) != 0
935 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
936 elf_section_data (p)->dynindx = ++dynsymcount;
937 else
938 elf_section_data (p)->dynindx = 0;
939 }
940 *section_sym_count = dynsymcount;
941
942 elf_link_hash_traverse (elf_hash_table (info),
943 elf_link_renumber_local_hash_table_dynsyms,
944 &dynsymcount);
945
946 if (elf_hash_table (info)->dynlocal)
947 {
948 struct elf_link_local_dynamic_entry *p;
949 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
950 p->dynindx = ++dynsymcount;
951 }
952 elf_hash_table (info)->local_dynsymcount = dynsymcount;
953
954 elf_link_hash_traverse (elf_hash_table (info),
955 elf_link_renumber_hash_table_dynsyms,
956 &dynsymcount);
957
958 /* There is an unused NULL entry at the head of the table which we
959 must account for in our count even if the table is empty since it
960 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
961 .dynamic section. */
962 dynsymcount++;
963
964 elf_hash_table (info)->dynsymcount = dynsymcount;
965 return dynsymcount;
966 }
967
968 /* Merge st_other field. */
969
970 static void
971 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
972 const Elf_Internal_Sym *isym, asection *sec,
973 bfd_boolean definition, bfd_boolean dynamic)
974 {
975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
976
977 /* If st_other has a processor-specific meaning, specific
978 code might be needed here. */
979 if (bed->elf_backend_merge_symbol_attribute)
980 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
981 dynamic);
982
983 if (!dynamic)
984 {
985 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
986 unsigned hvis = ELF_ST_VISIBILITY (h->other);
987
988 /* Keep the most constraining visibility. Leave the remainder
989 of the st_other field to elf_backend_merge_symbol_attribute. */
990 if (symvis - 1 < hvis - 1)
991 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
992 }
993 else if (definition
994 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
995 && (sec->flags & SEC_READONLY) == 0)
996 h->protected_def = 1;
997 }
998
999 /* This function is called when we want to merge a new symbol with an
1000 existing symbol. It handles the various cases which arise when we
1001 find a definition in a dynamic object, or when there is already a
1002 definition in a dynamic object. The new symbol is described by
1003 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1004 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1005 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1006 of an old common symbol. We set OVERRIDE if the old symbol is
1007 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1008 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1009 to change. By OK to change, we mean that we shouldn't warn if the
1010 type or size does change. */
1011
1012 static bfd_boolean
1013 _bfd_elf_merge_symbol (bfd *abfd,
1014 struct bfd_link_info *info,
1015 const char *name,
1016 Elf_Internal_Sym *sym,
1017 asection **psec,
1018 bfd_vma *pvalue,
1019 struct elf_link_hash_entry **sym_hash,
1020 bfd **poldbfd,
1021 bfd_boolean *pold_weak,
1022 unsigned int *pold_alignment,
1023 bfd_boolean *skip,
1024 bfd_boolean *override,
1025 bfd_boolean *type_change_ok,
1026 bfd_boolean *size_change_ok,
1027 bfd_boolean *matched)
1028 {
1029 asection *sec, *oldsec;
1030 struct elf_link_hash_entry *h;
1031 struct elf_link_hash_entry *hi;
1032 struct elf_link_hash_entry *flip;
1033 int bind;
1034 bfd *oldbfd;
1035 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1036 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1037 const struct elf_backend_data *bed;
1038 char *new_version;
1039
1040 *skip = FALSE;
1041 *override = FALSE;
1042
1043 sec = *psec;
1044 bind = ELF_ST_BIND (sym->st_info);
1045
1046 if (! bfd_is_und_section (sec))
1047 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1048 else
1049 h = ((struct elf_link_hash_entry *)
1050 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1051 if (h == NULL)
1052 return FALSE;
1053 *sym_hash = h;
1054
1055 bed = get_elf_backend_data (abfd);
1056
1057 /* NEW_VERSION is the symbol version of the new symbol. */
1058 if (h->versioned != unversioned)
1059 {
1060 /* Symbol version is unknown or versioned. */
1061 new_version = strrchr (name, ELF_VER_CHR);
1062 if (new_version)
1063 {
1064 if (h->versioned == unknown)
1065 {
1066 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1067 h->versioned = versioned_hidden;
1068 else
1069 h->versioned = versioned;
1070 }
1071 new_version += 1;
1072 if (new_version[0] == '\0')
1073 new_version = NULL;
1074 }
1075 else
1076 h->versioned = unversioned;
1077 }
1078 else
1079 new_version = NULL;
1080
1081 /* For merging, we only care about real symbols. But we need to make
1082 sure that indirect symbol dynamic flags are updated. */
1083 hi = h;
1084 while (h->root.type == bfd_link_hash_indirect
1085 || h->root.type == bfd_link_hash_warning)
1086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1087
1088 if (!*matched)
1089 {
1090 if (hi == h || h->root.type == bfd_link_hash_new)
1091 *matched = TRUE;
1092 else
1093 {
1094 /* OLD_HIDDEN is true if the existing symbol is only visible
1095 to the symbol with the same symbol version. NEW_HIDDEN is
1096 true if the new symbol is only visible to the symbol with
1097 the same symbol version. */
1098 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1099 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1100 if (!old_hidden && !new_hidden)
1101 /* The new symbol matches the existing symbol if both
1102 aren't hidden. */
1103 *matched = TRUE;
1104 else
1105 {
1106 /* OLD_VERSION is the symbol version of the existing
1107 symbol. */
1108 char *old_version;
1109
1110 if (h->versioned >= versioned)
1111 old_version = strrchr (h->root.root.string,
1112 ELF_VER_CHR) + 1;
1113 else
1114 old_version = NULL;
1115
1116 /* The new symbol matches the existing symbol if they
1117 have the same symbol version. */
1118 *matched = (old_version == new_version
1119 || (old_version != NULL
1120 && new_version != NULL
1121 && strcmp (old_version, new_version) == 0));
1122 }
1123 }
1124 }
1125
1126 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1127 existing symbol. */
1128
1129 oldbfd = NULL;
1130 oldsec = NULL;
1131 switch (h->root.type)
1132 {
1133 default:
1134 break;
1135
1136 case bfd_link_hash_undefined:
1137 case bfd_link_hash_undefweak:
1138 oldbfd = h->root.u.undef.abfd;
1139 break;
1140
1141 case bfd_link_hash_defined:
1142 case bfd_link_hash_defweak:
1143 oldbfd = h->root.u.def.section->owner;
1144 oldsec = h->root.u.def.section;
1145 break;
1146
1147 case bfd_link_hash_common:
1148 oldbfd = h->root.u.c.p->section->owner;
1149 oldsec = h->root.u.c.p->section;
1150 if (pold_alignment)
1151 *pold_alignment = h->root.u.c.p->alignment_power;
1152 break;
1153 }
1154 if (poldbfd && *poldbfd == NULL)
1155 *poldbfd = oldbfd;
1156
1157 /* Differentiate strong and weak symbols. */
1158 newweak = bind == STB_WEAK;
1159 oldweak = (h->root.type == bfd_link_hash_defweak
1160 || h->root.type == bfd_link_hash_undefweak);
1161 if (pold_weak)
1162 *pold_weak = oldweak;
1163
1164 /* This code is for coping with dynamic objects, and is only useful
1165 if we are doing an ELF link. */
1166 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1167 return TRUE;
1168
1169 /* We have to check it for every instance since the first few may be
1170 references and not all compilers emit symbol type for undefined
1171 symbols. */
1172 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1173
1174 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1175 respectively, is from a dynamic object. */
1176
1177 newdyn = (abfd->flags & DYNAMIC) != 0;
1178
1179 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1180 syms and defined syms in dynamic libraries respectively.
1181 ref_dynamic on the other hand can be set for a symbol defined in
1182 a dynamic library, and def_dynamic may not be set; When the
1183 definition in a dynamic lib is overridden by a definition in the
1184 executable use of the symbol in the dynamic lib becomes a
1185 reference to the executable symbol. */
1186 if (newdyn)
1187 {
1188 if (bfd_is_und_section (sec))
1189 {
1190 if (bind != STB_WEAK)
1191 {
1192 h->ref_dynamic_nonweak = 1;
1193 hi->ref_dynamic_nonweak = 1;
1194 }
1195 }
1196 else
1197 {
1198 /* Update the existing symbol only if they match. */
1199 if (*matched)
1200 h->dynamic_def = 1;
1201 hi->dynamic_def = 1;
1202 }
1203 }
1204
1205 /* If we just created the symbol, mark it as being an ELF symbol.
1206 Other than that, there is nothing to do--there is no merge issue
1207 with a newly defined symbol--so we just return. */
1208
1209 if (h->root.type == bfd_link_hash_new)
1210 {
1211 h->non_elf = 0;
1212 return TRUE;
1213 }
1214
1215 /* In cases involving weak versioned symbols, we may wind up trying
1216 to merge a symbol with itself. Catch that here, to avoid the
1217 confusion that results if we try to override a symbol with
1218 itself. The additional tests catch cases like
1219 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1220 dynamic object, which we do want to handle here. */
1221 if (abfd == oldbfd
1222 && (newweak || oldweak)
1223 && ((abfd->flags & DYNAMIC) == 0
1224 || !h->def_regular))
1225 return TRUE;
1226
1227 olddyn = FALSE;
1228 if (oldbfd != NULL)
1229 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1230 else if (oldsec != NULL)
1231 {
1232 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1233 indices used by MIPS ELF. */
1234 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1235 }
1236
1237 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1238 respectively, appear to be a definition rather than reference. */
1239
1240 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1241
1242 olddef = (h->root.type != bfd_link_hash_undefined
1243 && h->root.type != bfd_link_hash_undefweak
1244 && h->root.type != bfd_link_hash_common);
1245
1246 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1247 respectively, appear to be a function. */
1248
1249 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1250 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1251
1252 oldfunc = (h->type != STT_NOTYPE
1253 && bed->is_function_type (h->type));
1254
1255 if (!(newfunc && oldfunc)
1256 && ELF_ST_TYPE (sym->st_info) != h->type
1257 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1258 && h->type != STT_NOTYPE
1259 && (newdef || bfd_is_com_section (sec))
1260 && (olddef || h->root.type == bfd_link_hash_common))
1261 {
1262 /* If creating a default indirect symbol ("foo" or "foo@") from
1263 a dynamic versioned definition ("foo@@") skip doing so if
1264 there is an existing regular definition with a different
1265 type. We don't want, for example, a "time" variable in the
1266 executable overriding a "time" function in a shared library. */
1267 if (newdyn
1268 && !olddyn)
1269 {
1270 *skip = TRUE;
1271 return TRUE;
1272 }
1273
1274 /* When adding a symbol from a regular object file after we have
1275 created indirect symbols, undo the indirection and any
1276 dynamic state. */
1277 if (hi != h
1278 && !newdyn
1279 && olddyn)
1280 {
1281 h = hi;
1282 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1283 h->forced_local = 0;
1284 h->ref_dynamic = 0;
1285 h->def_dynamic = 0;
1286 h->dynamic_def = 0;
1287 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1288 {
1289 h->root.type = bfd_link_hash_undefined;
1290 h->root.u.undef.abfd = abfd;
1291 }
1292 else
1293 {
1294 h->root.type = bfd_link_hash_new;
1295 h->root.u.undef.abfd = NULL;
1296 }
1297 return TRUE;
1298 }
1299 }
1300
1301 /* Check TLS symbols. We don't check undefined symbols introduced
1302 by "ld -u" which have no type (and oldbfd NULL), and we don't
1303 check symbols from plugins because they also have no type. */
1304 if (oldbfd != NULL
1305 && (oldbfd->flags & BFD_PLUGIN) == 0
1306 && (abfd->flags & BFD_PLUGIN) == 0
1307 && ELF_ST_TYPE (sym->st_info) != h->type
1308 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1309 {
1310 bfd *ntbfd, *tbfd;
1311 bfd_boolean ntdef, tdef;
1312 asection *ntsec, *tsec;
1313
1314 if (h->type == STT_TLS)
1315 {
1316 ntbfd = abfd;
1317 ntsec = sec;
1318 ntdef = newdef;
1319 tbfd = oldbfd;
1320 tsec = oldsec;
1321 tdef = olddef;
1322 }
1323 else
1324 {
1325 ntbfd = oldbfd;
1326 ntsec = oldsec;
1327 ntdef = olddef;
1328 tbfd = abfd;
1329 tsec = sec;
1330 tdef = newdef;
1331 }
1332
1333 if (tdef && ntdef)
1334 _bfd_error_handler
1335 /* xgettext:c-format */
1336 (_("%s: TLS definition in %B section %A "
1337 "mismatches non-TLS definition in %B section %A"),
1338 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1339 else if (!tdef && !ntdef)
1340 _bfd_error_handler
1341 /* xgettext:c-format */
1342 (_("%s: TLS reference in %B "
1343 "mismatches non-TLS reference in %B"),
1344 h->root.root.string, tbfd, ntbfd);
1345 else if (tdef)
1346 _bfd_error_handler
1347 /* xgettext:c-format */
1348 (_("%s: TLS definition in %B section %A "
1349 "mismatches non-TLS reference in %B"),
1350 h->root.root.string, tbfd, tsec, ntbfd);
1351 else
1352 _bfd_error_handler
1353 /* xgettext:c-format */
1354 (_("%s: TLS reference in %B "
1355 "mismatches non-TLS definition in %B section %A"),
1356 h->root.root.string, tbfd, ntbfd, ntsec);
1357
1358 bfd_set_error (bfd_error_bad_value);
1359 return FALSE;
1360 }
1361
1362 /* If the old symbol has non-default visibility, we ignore the new
1363 definition from a dynamic object. */
1364 if (newdyn
1365 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1366 && !bfd_is_und_section (sec))
1367 {
1368 *skip = TRUE;
1369 /* Make sure this symbol is dynamic. */
1370 h->ref_dynamic = 1;
1371 hi->ref_dynamic = 1;
1372 /* A protected symbol has external availability. Make sure it is
1373 recorded as dynamic.
1374
1375 FIXME: Should we check type and size for protected symbol? */
1376 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1377 return bfd_elf_link_record_dynamic_symbol (info, h);
1378 else
1379 return TRUE;
1380 }
1381 else if (!newdyn
1382 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1383 && h->def_dynamic)
1384 {
1385 /* If the new symbol with non-default visibility comes from a
1386 relocatable file and the old definition comes from a dynamic
1387 object, we remove the old definition. */
1388 if (hi->root.type == bfd_link_hash_indirect)
1389 {
1390 /* Handle the case where the old dynamic definition is
1391 default versioned. We need to copy the symbol info from
1392 the symbol with default version to the normal one if it
1393 was referenced before. */
1394 if (h->ref_regular)
1395 {
1396 hi->root.type = h->root.type;
1397 h->root.type = bfd_link_hash_indirect;
1398 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1399
1400 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1401 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1402 {
1403 /* If the new symbol is hidden or internal, completely undo
1404 any dynamic link state. */
1405 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1406 h->forced_local = 0;
1407 h->ref_dynamic = 0;
1408 }
1409 else
1410 h->ref_dynamic = 1;
1411
1412 h->def_dynamic = 0;
1413 /* FIXME: Should we check type and size for protected symbol? */
1414 h->size = 0;
1415 h->type = 0;
1416
1417 h = hi;
1418 }
1419 else
1420 h = hi;
1421 }
1422
1423 /* If the old symbol was undefined before, then it will still be
1424 on the undefs list. If the new symbol is undefined or
1425 common, we can't make it bfd_link_hash_new here, because new
1426 undefined or common symbols will be added to the undefs list
1427 by _bfd_generic_link_add_one_symbol. Symbols may not be
1428 added twice to the undefs list. Also, if the new symbol is
1429 undefweak then we don't want to lose the strong undef. */
1430 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1431 {
1432 h->root.type = bfd_link_hash_undefined;
1433 h->root.u.undef.abfd = abfd;
1434 }
1435 else
1436 {
1437 h->root.type = bfd_link_hash_new;
1438 h->root.u.undef.abfd = NULL;
1439 }
1440
1441 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1442 {
1443 /* If the new symbol is hidden or internal, completely undo
1444 any dynamic link state. */
1445 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1446 h->forced_local = 0;
1447 h->ref_dynamic = 0;
1448 }
1449 else
1450 h->ref_dynamic = 1;
1451 h->def_dynamic = 0;
1452 /* FIXME: Should we check type and size for protected symbol? */
1453 h->size = 0;
1454 h->type = 0;
1455 return TRUE;
1456 }
1457
1458 /* If a new weak symbol definition comes from a regular file and the
1459 old symbol comes from a dynamic library, we treat the new one as
1460 strong. Similarly, an old weak symbol definition from a regular
1461 file is treated as strong when the new symbol comes from a dynamic
1462 library. Further, an old weak symbol from a dynamic library is
1463 treated as strong if the new symbol is from a dynamic library.
1464 This reflects the way glibc's ld.so works.
1465
1466 Do this before setting *type_change_ok or *size_change_ok so that
1467 we warn properly when dynamic library symbols are overridden. */
1468
1469 if (newdef && !newdyn && olddyn)
1470 newweak = FALSE;
1471 if (olddef && newdyn)
1472 oldweak = FALSE;
1473
1474 /* Allow changes between different types of function symbol. */
1475 if (newfunc && oldfunc)
1476 *type_change_ok = TRUE;
1477
1478 /* It's OK to change the type if either the existing symbol or the
1479 new symbol is weak. A type change is also OK if the old symbol
1480 is undefined and the new symbol is defined. */
1481
1482 if (oldweak
1483 || newweak
1484 || (newdef
1485 && h->root.type == bfd_link_hash_undefined))
1486 *type_change_ok = TRUE;
1487
1488 /* It's OK to change the size if either the existing symbol or the
1489 new symbol is weak, or if the old symbol is undefined. */
1490
1491 if (*type_change_ok
1492 || h->root.type == bfd_link_hash_undefined)
1493 *size_change_ok = TRUE;
1494
1495 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1496 symbol, respectively, appears to be a common symbol in a dynamic
1497 object. If a symbol appears in an uninitialized section, and is
1498 not weak, and is not a function, then it may be a common symbol
1499 which was resolved when the dynamic object was created. We want
1500 to treat such symbols specially, because they raise special
1501 considerations when setting the symbol size: if the symbol
1502 appears as a common symbol in a regular object, and the size in
1503 the regular object is larger, we must make sure that we use the
1504 larger size. This problematic case can always be avoided in C,
1505 but it must be handled correctly when using Fortran shared
1506 libraries.
1507
1508 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1509 likewise for OLDDYNCOMMON and OLDDEF.
1510
1511 Note that this test is just a heuristic, and that it is quite
1512 possible to have an uninitialized symbol in a shared object which
1513 is really a definition, rather than a common symbol. This could
1514 lead to some minor confusion when the symbol really is a common
1515 symbol in some regular object. However, I think it will be
1516 harmless. */
1517
1518 if (newdyn
1519 && newdef
1520 && !newweak
1521 && (sec->flags & SEC_ALLOC) != 0
1522 && (sec->flags & SEC_LOAD) == 0
1523 && sym->st_size > 0
1524 && !newfunc)
1525 newdyncommon = TRUE;
1526 else
1527 newdyncommon = FALSE;
1528
1529 if (olddyn
1530 && olddef
1531 && h->root.type == bfd_link_hash_defined
1532 && h->def_dynamic
1533 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1534 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1535 && h->size > 0
1536 && !oldfunc)
1537 olddyncommon = TRUE;
1538 else
1539 olddyncommon = FALSE;
1540
1541 /* We now know everything about the old and new symbols. We ask the
1542 backend to check if we can merge them. */
1543 if (bed->merge_symbol != NULL)
1544 {
1545 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1546 return FALSE;
1547 sec = *psec;
1548 }
1549
1550 /* If both the old and the new symbols look like common symbols in a
1551 dynamic object, set the size of the symbol to the larger of the
1552 two. */
1553
1554 if (olddyncommon
1555 && newdyncommon
1556 && sym->st_size != h->size)
1557 {
1558 /* Since we think we have two common symbols, issue a multiple
1559 common warning if desired. Note that we only warn if the
1560 size is different. If the size is the same, we simply let
1561 the old symbol override the new one as normally happens with
1562 symbols defined in dynamic objects. */
1563
1564 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1565 bfd_link_hash_common, sym->st_size);
1566 if (sym->st_size > h->size)
1567 h->size = sym->st_size;
1568
1569 *size_change_ok = TRUE;
1570 }
1571
1572 /* If we are looking at a dynamic object, and we have found a
1573 definition, we need to see if the symbol was already defined by
1574 some other object. If so, we want to use the existing
1575 definition, and we do not want to report a multiple symbol
1576 definition error; we do this by clobbering *PSEC to be
1577 bfd_und_section_ptr.
1578
1579 We treat a common symbol as a definition if the symbol in the
1580 shared library is a function, since common symbols always
1581 represent variables; this can cause confusion in principle, but
1582 any such confusion would seem to indicate an erroneous program or
1583 shared library. We also permit a common symbol in a regular
1584 object to override a weak symbol in a shared object. */
1585
1586 if (newdyn
1587 && newdef
1588 && (olddef
1589 || (h->root.type == bfd_link_hash_common
1590 && (newweak || newfunc))))
1591 {
1592 *override = TRUE;
1593 newdef = FALSE;
1594 newdyncommon = FALSE;
1595
1596 *psec = sec = bfd_und_section_ptr;
1597 *size_change_ok = TRUE;
1598
1599 /* If we get here when the old symbol is a common symbol, then
1600 we are explicitly letting it override a weak symbol or
1601 function in a dynamic object, and we don't want to warn about
1602 a type change. If the old symbol is a defined symbol, a type
1603 change warning may still be appropriate. */
1604
1605 if (h->root.type == bfd_link_hash_common)
1606 *type_change_ok = TRUE;
1607 }
1608
1609 /* Handle the special case of an old common symbol merging with a
1610 new symbol which looks like a common symbol in a shared object.
1611 We change *PSEC and *PVALUE to make the new symbol look like a
1612 common symbol, and let _bfd_generic_link_add_one_symbol do the
1613 right thing. */
1614
1615 if (newdyncommon
1616 && h->root.type == bfd_link_hash_common)
1617 {
1618 *override = TRUE;
1619 newdef = FALSE;
1620 newdyncommon = FALSE;
1621 *pvalue = sym->st_size;
1622 *psec = sec = bed->common_section (oldsec);
1623 *size_change_ok = TRUE;
1624 }
1625
1626 /* Skip weak definitions of symbols that are already defined. */
1627 if (newdef && olddef && newweak)
1628 {
1629 /* Don't skip new non-IR weak syms. */
1630 if (!(oldbfd != NULL
1631 && (oldbfd->flags & BFD_PLUGIN) != 0
1632 && (abfd->flags & BFD_PLUGIN) == 0))
1633 {
1634 newdef = FALSE;
1635 *skip = TRUE;
1636 }
1637
1638 /* Merge st_other. If the symbol already has a dynamic index,
1639 but visibility says it should not be visible, turn it into a
1640 local symbol. */
1641 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1642 if (h->dynindx != -1)
1643 switch (ELF_ST_VISIBILITY (h->other))
1644 {
1645 case STV_INTERNAL:
1646 case STV_HIDDEN:
1647 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1648 break;
1649 }
1650 }
1651
1652 /* If the old symbol is from a dynamic object, and the new symbol is
1653 a definition which is not from a dynamic object, then the new
1654 symbol overrides the old symbol. Symbols from regular files
1655 always take precedence over symbols from dynamic objects, even if
1656 they are defined after the dynamic object in the link.
1657
1658 As above, we again permit a common symbol in a regular object to
1659 override a definition in a shared object if the shared object
1660 symbol is a function or is weak. */
1661
1662 flip = NULL;
1663 if (!newdyn
1664 && (newdef
1665 || (bfd_is_com_section (sec)
1666 && (oldweak || oldfunc)))
1667 && olddyn
1668 && olddef
1669 && h->def_dynamic)
1670 {
1671 /* Change the hash table entry to undefined, and let
1672 _bfd_generic_link_add_one_symbol do the right thing with the
1673 new definition. */
1674
1675 h->root.type = bfd_link_hash_undefined;
1676 h->root.u.undef.abfd = h->root.u.def.section->owner;
1677 *size_change_ok = TRUE;
1678
1679 olddef = FALSE;
1680 olddyncommon = FALSE;
1681
1682 /* We again permit a type change when a common symbol may be
1683 overriding a function. */
1684
1685 if (bfd_is_com_section (sec))
1686 {
1687 if (oldfunc)
1688 {
1689 /* If a common symbol overrides a function, make sure
1690 that it isn't defined dynamically nor has type
1691 function. */
1692 h->def_dynamic = 0;
1693 h->type = STT_NOTYPE;
1694 }
1695 *type_change_ok = TRUE;
1696 }
1697
1698 if (hi->root.type == bfd_link_hash_indirect)
1699 flip = hi;
1700 else
1701 /* This union may have been set to be non-NULL when this symbol
1702 was seen in a dynamic object. We must force the union to be
1703 NULL, so that it is correct for a regular symbol. */
1704 h->verinfo.vertree = NULL;
1705 }
1706
1707 /* Handle the special case of a new common symbol merging with an
1708 old symbol that looks like it might be a common symbol defined in
1709 a shared object. Note that we have already handled the case in
1710 which a new common symbol should simply override the definition
1711 in the shared library. */
1712
1713 if (! newdyn
1714 && bfd_is_com_section (sec)
1715 && olddyncommon)
1716 {
1717 /* It would be best if we could set the hash table entry to a
1718 common symbol, but we don't know what to use for the section
1719 or the alignment. */
1720 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1721 bfd_link_hash_common, sym->st_size);
1722
1723 /* If the presumed common symbol in the dynamic object is
1724 larger, pretend that the new symbol has its size. */
1725
1726 if (h->size > *pvalue)
1727 *pvalue = h->size;
1728
1729 /* We need to remember the alignment required by the symbol
1730 in the dynamic object. */
1731 BFD_ASSERT (pold_alignment);
1732 *pold_alignment = h->root.u.def.section->alignment_power;
1733
1734 olddef = FALSE;
1735 olddyncommon = FALSE;
1736
1737 h->root.type = bfd_link_hash_undefined;
1738 h->root.u.undef.abfd = h->root.u.def.section->owner;
1739
1740 *size_change_ok = TRUE;
1741 *type_change_ok = TRUE;
1742
1743 if (hi->root.type == bfd_link_hash_indirect)
1744 flip = hi;
1745 else
1746 h->verinfo.vertree = NULL;
1747 }
1748
1749 if (flip != NULL)
1750 {
1751 /* Handle the case where we had a versioned symbol in a dynamic
1752 library and now find a definition in a normal object. In this
1753 case, we make the versioned symbol point to the normal one. */
1754 flip->root.type = h->root.type;
1755 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1756 h->root.type = bfd_link_hash_indirect;
1757 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1758 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1759 if (h->def_dynamic)
1760 {
1761 h->def_dynamic = 0;
1762 flip->ref_dynamic = 1;
1763 }
1764 }
1765
1766 return TRUE;
1767 }
1768
1769 /* This function is called to create an indirect symbol from the
1770 default for the symbol with the default version if needed. The
1771 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1772 set DYNSYM if the new indirect symbol is dynamic. */
1773
1774 static bfd_boolean
1775 _bfd_elf_add_default_symbol (bfd *abfd,
1776 struct bfd_link_info *info,
1777 struct elf_link_hash_entry *h,
1778 const char *name,
1779 Elf_Internal_Sym *sym,
1780 asection *sec,
1781 bfd_vma value,
1782 bfd **poldbfd,
1783 bfd_boolean *dynsym)
1784 {
1785 bfd_boolean type_change_ok;
1786 bfd_boolean size_change_ok;
1787 bfd_boolean skip;
1788 char *shortname;
1789 struct elf_link_hash_entry *hi;
1790 struct bfd_link_hash_entry *bh;
1791 const struct elf_backend_data *bed;
1792 bfd_boolean collect;
1793 bfd_boolean dynamic;
1794 bfd_boolean override;
1795 char *p;
1796 size_t len, shortlen;
1797 asection *tmp_sec;
1798 bfd_boolean matched;
1799
1800 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1801 return TRUE;
1802
1803 /* If this symbol has a version, and it is the default version, we
1804 create an indirect symbol from the default name to the fully
1805 decorated name. This will cause external references which do not
1806 specify a version to be bound to this version of the symbol. */
1807 p = strchr (name, ELF_VER_CHR);
1808 if (h->versioned == unknown)
1809 {
1810 if (p == NULL)
1811 {
1812 h->versioned = unversioned;
1813 return TRUE;
1814 }
1815 else
1816 {
1817 if (p[1] != ELF_VER_CHR)
1818 {
1819 h->versioned = versioned_hidden;
1820 return TRUE;
1821 }
1822 else
1823 h->versioned = versioned;
1824 }
1825 }
1826 else
1827 {
1828 /* PR ld/19073: We may see an unversioned definition after the
1829 default version. */
1830 if (p == NULL)
1831 return TRUE;
1832 }
1833
1834 bed = get_elf_backend_data (abfd);
1835 collect = bed->collect;
1836 dynamic = (abfd->flags & DYNAMIC) != 0;
1837
1838 shortlen = p - name;
1839 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1840 if (shortname == NULL)
1841 return FALSE;
1842 memcpy (shortname, name, shortlen);
1843 shortname[shortlen] = '\0';
1844
1845 /* We are going to create a new symbol. Merge it with any existing
1846 symbol with this name. For the purposes of the merge, act as
1847 though we were defining the symbol we just defined, although we
1848 actually going to define an indirect symbol. */
1849 type_change_ok = FALSE;
1850 size_change_ok = FALSE;
1851 matched = TRUE;
1852 tmp_sec = sec;
1853 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1854 &hi, poldbfd, NULL, NULL, &skip, &override,
1855 &type_change_ok, &size_change_ok, &matched))
1856 return FALSE;
1857
1858 if (skip)
1859 goto nondefault;
1860
1861 if (hi->def_regular)
1862 {
1863 /* If the undecorated symbol will have a version added by a
1864 script different to H, then don't indirect to/from the
1865 undecorated symbol. This isn't ideal because we may not yet
1866 have seen symbol versions, if given by a script on the
1867 command line rather than via --version-script. */
1868 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1869 {
1870 bfd_boolean hide;
1871
1872 hi->verinfo.vertree
1873 = bfd_find_version_for_sym (info->version_info,
1874 hi->root.root.string, &hide);
1875 if (hi->verinfo.vertree != NULL && hide)
1876 {
1877 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1878 goto nondefault;
1879 }
1880 }
1881 if (hi->verinfo.vertree != NULL
1882 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1883 goto nondefault;
1884 }
1885
1886 if (! override)
1887 {
1888 /* Add the default symbol if not performing a relocatable link. */
1889 if (! bfd_link_relocatable (info))
1890 {
1891 bh = &hi->root;
1892 if (! (_bfd_generic_link_add_one_symbol
1893 (info, abfd, shortname, BSF_INDIRECT,
1894 bfd_ind_section_ptr,
1895 0, name, FALSE, collect, &bh)))
1896 return FALSE;
1897 hi = (struct elf_link_hash_entry *) bh;
1898 }
1899 }
1900 else
1901 {
1902 /* In this case the symbol named SHORTNAME is overriding the
1903 indirect symbol we want to add. We were planning on making
1904 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1905 is the name without a version. NAME is the fully versioned
1906 name, and it is the default version.
1907
1908 Overriding means that we already saw a definition for the
1909 symbol SHORTNAME in a regular object, and it is overriding
1910 the symbol defined in the dynamic object.
1911
1912 When this happens, we actually want to change NAME, the
1913 symbol we just added, to refer to SHORTNAME. This will cause
1914 references to NAME in the shared object to become references
1915 to SHORTNAME in the regular object. This is what we expect
1916 when we override a function in a shared object: that the
1917 references in the shared object will be mapped to the
1918 definition in the regular object. */
1919
1920 while (hi->root.type == bfd_link_hash_indirect
1921 || hi->root.type == bfd_link_hash_warning)
1922 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1923
1924 h->root.type = bfd_link_hash_indirect;
1925 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1926 if (h->def_dynamic)
1927 {
1928 h->def_dynamic = 0;
1929 hi->ref_dynamic = 1;
1930 if (hi->ref_regular
1931 || hi->def_regular)
1932 {
1933 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1934 return FALSE;
1935 }
1936 }
1937
1938 /* Now set HI to H, so that the following code will set the
1939 other fields correctly. */
1940 hi = h;
1941 }
1942
1943 /* Check if HI is a warning symbol. */
1944 if (hi->root.type == bfd_link_hash_warning)
1945 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946
1947 /* If there is a duplicate definition somewhere, then HI may not
1948 point to an indirect symbol. We will have reported an error to
1949 the user in that case. */
1950
1951 if (hi->root.type == bfd_link_hash_indirect)
1952 {
1953 struct elf_link_hash_entry *ht;
1954
1955 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1956 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1957
1958 /* A reference to the SHORTNAME symbol from a dynamic library
1959 will be satisfied by the versioned symbol at runtime. In
1960 effect, we have a reference to the versioned symbol. */
1961 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1962 hi->dynamic_def |= ht->dynamic_def;
1963
1964 /* See if the new flags lead us to realize that the symbol must
1965 be dynamic. */
1966 if (! *dynsym)
1967 {
1968 if (! dynamic)
1969 {
1970 if (! bfd_link_executable (info)
1971 || hi->def_dynamic
1972 || hi->ref_dynamic)
1973 *dynsym = TRUE;
1974 }
1975 else
1976 {
1977 if (hi->ref_regular)
1978 *dynsym = TRUE;
1979 }
1980 }
1981 }
1982
1983 /* We also need to define an indirection from the nondefault version
1984 of the symbol. */
1985
1986 nondefault:
1987 len = strlen (name);
1988 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1989 if (shortname == NULL)
1990 return FALSE;
1991 memcpy (shortname, name, shortlen);
1992 memcpy (shortname + shortlen, p + 1, len - shortlen);
1993
1994 /* Once again, merge with any existing symbol. */
1995 type_change_ok = FALSE;
1996 size_change_ok = FALSE;
1997 tmp_sec = sec;
1998 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1999 &hi, poldbfd, NULL, NULL, &skip, &override,
2000 &type_change_ok, &size_change_ok, &matched))
2001 return FALSE;
2002
2003 if (skip)
2004 return TRUE;
2005
2006 if (override)
2007 {
2008 /* Here SHORTNAME is a versioned name, so we don't expect to see
2009 the type of override we do in the case above unless it is
2010 overridden by a versioned definition. */
2011 if (hi->root.type != bfd_link_hash_defined
2012 && hi->root.type != bfd_link_hash_defweak)
2013 _bfd_error_handler
2014 /* xgettext:c-format */
2015 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2016 abfd, shortname);
2017 }
2018 else
2019 {
2020 bh = &hi->root;
2021 if (! (_bfd_generic_link_add_one_symbol
2022 (info, abfd, shortname, BSF_INDIRECT,
2023 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2024 return FALSE;
2025 hi = (struct elf_link_hash_entry *) bh;
2026
2027 /* If there is a duplicate definition somewhere, then HI may not
2028 point to an indirect symbol. We will have reported an error
2029 to the user in that case. */
2030
2031 if (hi->root.type == bfd_link_hash_indirect)
2032 {
2033 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2034 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2035 hi->dynamic_def |= h->dynamic_def;
2036
2037 /* See if the new flags lead us to realize that the symbol
2038 must be dynamic. */
2039 if (! *dynsym)
2040 {
2041 if (! dynamic)
2042 {
2043 if (! bfd_link_executable (info)
2044 || hi->ref_dynamic)
2045 *dynsym = TRUE;
2046 }
2047 else
2048 {
2049 if (hi->ref_regular)
2050 *dynsym = TRUE;
2051 }
2052 }
2053 }
2054 }
2055
2056 return TRUE;
2057 }
2058 \f
2059 /* This routine is used to export all defined symbols into the dynamic
2060 symbol table. It is called via elf_link_hash_traverse. */
2061
2062 static bfd_boolean
2063 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2064 {
2065 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2066
2067 /* Ignore indirect symbols. These are added by the versioning code. */
2068 if (h->root.type == bfd_link_hash_indirect)
2069 return TRUE;
2070
2071 /* Ignore this if we won't export it. */
2072 if (!eif->info->export_dynamic && !h->dynamic)
2073 return TRUE;
2074
2075 if (h->dynindx == -1
2076 && (h->def_regular || h->ref_regular)
2077 && ! bfd_hide_sym_by_version (eif->info->version_info,
2078 h->root.root.string))
2079 {
2080 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2081 {
2082 eif->failed = TRUE;
2083 return FALSE;
2084 }
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Look through the symbols which are defined in other shared
2091 libraries and referenced here. Update the list of version
2092 dependencies. This will be put into the .gnu.version_r section.
2093 This function is called via elf_link_hash_traverse. */
2094
2095 static bfd_boolean
2096 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2097 void *data)
2098 {
2099 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2100 Elf_Internal_Verneed *t;
2101 Elf_Internal_Vernaux *a;
2102 bfd_size_type amt;
2103
2104 /* We only care about symbols defined in shared objects with version
2105 information. */
2106 if (!h->def_dynamic
2107 || h->def_regular
2108 || h->dynindx == -1
2109 || h->verinfo.verdef == NULL
2110 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2111 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2112 return TRUE;
2113
2114 /* See if we already know about this version. */
2115 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2116 t != NULL;
2117 t = t->vn_nextref)
2118 {
2119 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2120 continue;
2121
2122 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2123 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2124 return TRUE;
2125
2126 break;
2127 }
2128
2129 /* This is a new version. Add it to tree we are building. */
2130
2131 if (t == NULL)
2132 {
2133 amt = sizeof *t;
2134 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2135 if (t == NULL)
2136 {
2137 rinfo->failed = TRUE;
2138 return FALSE;
2139 }
2140
2141 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2142 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2143 elf_tdata (rinfo->info->output_bfd)->verref = t;
2144 }
2145
2146 amt = sizeof *a;
2147 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2148 if (a == NULL)
2149 {
2150 rinfo->failed = TRUE;
2151 return FALSE;
2152 }
2153
2154 /* Note that we are copying a string pointer here, and testing it
2155 above. If bfd_elf_string_from_elf_section is ever changed to
2156 discard the string data when low in memory, this will have to be
2157 fixed. */
2158 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2159
2160 a->vna_flags = h->verinfo.verdef->vd_flags;
2161 a->vna_nextptr = t->vn_auxptr;
2162
2163 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2164 ++rinfo->vers;
2165
2166 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2167
2168 t->vn_auxptr = a;
2169
2170 return TRUE;
2171 }
2172
2173 /* Figure out appropriate versions for all the symbols. We may not
2174 have the version number script until we have read all of the input
2175 files, so until that point we don't know which symbols should be
2176 local. This function is called via elf_link_hash_traverse. */
2177
2178 static bfd_boolean
2179 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2180 {
2181 struct elf_info_failed *sinfo;
2182 struct bfd_link_info *info;
2183 const struct elf_backend_data *bed;
2184 struct elf_info_failed eif;
2185 char *p;
2186
2187 sinfo = (struct elf_info_failed *) data;
2188 info = sinfo->info;
2189
2190 /* Fix the symbol flags. */
2191 eif.failed = FALSE;
2192 eif.info = info;
2193 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2194 {
2195 if (eif.failed)
2196 sinfo->failed = TRUE;
2197 return FALSE;
2198 }
2199
2200 /* We only need version numbers for symbols defined in regular
2201 objects. */
2202 if (!h->def_regular)
2203 return TRUE;
2204
2205 bed = get_elf_backend_data (info->output_bfd);
2206 p = strchr (h->root.root.string, ELF_VER_CHR);
2207 if (p != NULL && h->verinfo.vertree == NULL)
2208 {
2209 struct bfd_elf_version_tree *t;
2210
2211 ++p;
2212 if (*p == ELF_VER_CHR)
2213 ++p;
2214
2215 /* If there is no version string, we can just return out. */
2216 if (*p == '\0')
2217 return TRUE;
2218
2219 /* Look for the version. If we find it, it is no longer weak. */
2220 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2221 {
2222 if (strcmp (t->name, p) == 0)
2223 {
2224 size_t len;
2225 char *alc;
2226 struct bfd_elf_version_expr *d;
2227
2228 len = p - h->root.root.string;
2229 alc = (char *) bfd_malloc (len);
2230 if (alc == NULL)
2231 {
2232 sinfo->failed = TRUE;
2233 return FALSE;
2234 }
2235 memcpy (alc, h->root.root.string, len - 1);
2236 alc[len - 1] = '\0';
2237 if (alc[len - 2] == ELF_VER_CHR)
2238 alc[len - 2] = '\0';
2239
2240 h->verinfo.vertree = t;
2241 t->used = TRUE;
2242 d = NULL;
2243
2244 if (t->globals.list != NULL)
2245 d = (*t->match) (&t->globals, NULL, alc);
2246
2247 /* See if there is anything to force this symbol to
2248 local scope. */
2249 if (d == NULL && t->locals.list != NULL)
2250 {
2251 d = (*t->match) (&t->locals, NULL, alc);
2252 if (d != NULL
2253 && h->dynindx != -1
2254 && ! info->export_dynamic)
2255 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2256 }
2257
2258 free (alc);
2259 break;
2260 }
2261 }
2262
2263 /* If we are building an application, we need to create a
2264 version node for this version. */
2265 if (t == NULL && bfd_link_executable (info))
2266 {
2267 struct bfd_elf_version_tree **pp;
2268 int version_index;
2269
2270 /* If we aren't going to export this symbol, we don't need
2271 to worry about it. */
2272 if (h->dynindx == -1)
2273 return TRUE;
2274
2275 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2276 sizeof *t);
2277 if (t == NULL)
2278 {
2279 sinfo->failed = TRUE;
2280 return FALSE;
2281 }
2282
2283 t->name = p;
2284 t->name_indx = (unsigned int) -1;
2285 t->used = TRUE;
2286
2287 version_index = 1;
2288 /* Don't count anonymous version tag. */
2289 if (sinfo->info->version_info != NULL
2290 && sinfo->info->version_info->vernum == 0)
2291 version_index = 0;
2292 for (pp = &sinfo->info->version_info;
2293 *pp != NULL;
2294 pp = &(*pp)->next)
2295 ++version_index;
2296 t->vernum = version_index;
2297
2298 *pp = t;
2299
2300 h->verinfo.vertree = t;
2301 }
2302 else if (t == NULL)
2303 {
2304 /* We could not find the version for a symbol when
2305 generating a shared archive. Return an error. */
2306 _bfd_error_handler
2307 /* xgettext:c-format */
2308 (_("%B: version node not found for symbol %s"),
2309 info->output_bfd, h->root.root.string);
2310 bfd_set_error (bfd_error_bad_value);
2311 sinfo->failed = TRUE;
2312 return FALSE;
2313 }
2314 }
2315
2316 /* If we don't have a version for this symbol, see if we can find
2317 something. */
2318 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2319 {
2320 bfd_boolean hide;
2321
2322 h->verinfo.vertree
2323 = bfd_find_version_for_sym (sinfo->info->version_info,
2324 h->root.root.string, &hide);
2325 if (h->verinfo.vertree != NULL && hide)
2326 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2327 }
2328
2329 return TRUE;
2330 }
2331 \f
2332 /* Read and swap the relocs from the section indicated by SHDR. This
2333 may be either a REL or a RELA section. The relocations are
2334 translated into RELA relocations and stored in INTERNAL_RELOCS,
2335 which should have already been allocated to contain enough space.
2336 The EXTERNAL_RELOCS are a buffer where the external form of the
2337 relocations should be stored.
2338
2339 Returns FALSE if something goes wrong. */
2340
2341 static bfd_boolean
2342 elf_link_read_relocs_from_section (bfd *abfd,
2343 asection *sec,
2344 Elf_Internal_Shdr *shdr,
2345 void *external_relocs,
2346 Elf_Internal_Rela *internal_relocs)
2347 {
2348 const struct elf_backend_data *bed;
2349 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2350 const bfd_byte *erela;
2351 const bfd_byte *erelaend;
2352 Elf_Internal_Rela *irela;
2353 Elf_Internal_Shdr *symtab_hdr;
2354 size_t nsyms;
2355
2356 /* Position ourselves at the start of the section. */
2357 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2358 return FALSE;
2359
2360 /* Read the relocations. */
2361 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2362 return FALSE;
2363
2364 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2365 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2366
2367 bed = get_elf_backend_data (abfd);
2368
2369 /* Convert the external relocations to the internal format. */
2370 if (shdr->sh_entsize == bed->s->sizeof_rel)
2371 swap_in = bed->s->swap_reloc_in;
2372 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2373 swap_in = bed->s->swap_reloca_in;
2374 else
2375 {
2376 bfd_set_error (bfd_error_wrong_format);
2377 return FALSE;
2378 }
2379
2380 erela = (const bfd_byte *) external_relocs;
2381 erelaend = erela + shdr->sh_size;
2382 irela = internal_relocs;
2383 while (erela < erelaend)
2384 {
2385 bfd_vma r_symndx;
2386
2387 (*swap_in) (abfd, erela, irela);
2388 r_symndx = ELF32_R_SYM (irela->r_info);
2389 if (bed->s->arch_size == 64)
2390 r_symndx >>= 24;
2391 if (nsyms > 0)
2392 {
2393 if ((size_t) r_symndx >= nsyms)
2394 {
2395 _bfd_error_handler
2396 /* xgettext:c-format */
2397 (_("%B: bad reloc symbol index (%#Lx >= %#lx)"
2398 " for offset %#Lx in section `%A'"),
2399 abfd, r_symndx, (unsigned long) nsyms,
2400 irela->r_offset, sec);
2401 bfd_set_error (bfd_error_bad_value);
2402 return FALSE;
2403 }
2404 }
2405 else if (r_symndx != STN_UNDEF)
2406 {
2407 _bfd_error_handler
2408 /* xgettext:c-format */
2409 (_("%B: non-zero symbol index (%#Lx)"
2410 " for offset %#Lx in section `%A'"
2411 " when the object file has no symbol table"),
2412 abfd, r_symndx,
2413 irela->r_offset, sec);
2414 bfd_set_error (bfd_error_bad_value);
2415 return FALSE;
2416 }
2417 irela += bed->s->int_rels_per_ext_rel;
2418 erela += shdr->sh_entsize;
2419 }
2420
2421 return TRUE;
2422 }
2423
2424 /* Read and swap the relocs for a section O. They may have been
2425 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2426 not NULL, they are used as buffers to read into. They are known to
2427 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2428 the return value is allocated using either malloc or bfd_alloc,
2429 according to the KEEP_MEMORY argument. If O has two relocation
2430 sections (both REL and RELA relocations), then the REL_HDR
2431 relocations will appear first in INTERNAL_RELOCS, followed by the
2432 RELA_HDR relocations. */
2433
2434 Elf_Internal_Rela *
2435 _bfd_elf_link_read_relocs (bfd *abfd,
2436 asection *o,
2437 void *external_relocs,
2438 Elf_Internal_Rela *internal_relocs,
2439 bfd_boolean keep_memory)
2440 {
2441 void *alloc1 = NULL;
2442 Elf_Internal_Rela *alloc2 = NULL;
2443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2444 struct bfd_elf_section_data *esdo = elf_section_data (o);
2445 Elf_Internal_Rela *internal_rela_relocs;
2446
2447 if (esdo->relocs != NULL)
2448 return esdo->relocs;
2449
2450 if (o->reloc_count == 0)
2451 return NULL;
2452
2453 if (internal_relocs == NULL)
2454 {
2455 bfd_size_type size;
2456
2457 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2458 if (keep_memory)
2459 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2460 else
2461 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2462 if (internal_relocs == NULL)
2463 goto error_return;
2464 }
2465
2466 if (external_relocs == NULL)
2467 {
2468 bfd_size_type size = 0;
2469
2470 if (esdo->rel.hdr)
2471 size += esdo->rel.hdr->sh_size;
2472 if (esdo->rela.hdr)
2473 size += esdo->rela.hdr->sh_size;
2474
2475 alloc1 = bfd_malloc (size);
2476 if (alloc1 == NULL)
2477 goto error_return;
2478 external_relocs = alloc1;
2479 }
2480
2481 internal_rela_relocs = internal_relocs;
2482 if (esdo->rel.hdr)
2483 {
2484 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2485 external_relocs,
2486 internal_relocs))
2487 goto error_return;
2488 external_relocs = (((bfd_byte *) external_relocs)
2489 + esdo->rel.hdr->sh_size);
2490 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2491 * bed->s->int_rels_per_ext_rel);
2492 }
2493
2494 if (esdo->rela.hdr
2495 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2496 external_relocs,
2497 internal_rela_relocs)))
2498 goto error_return;
2499
2500 /* Cache the results for next time, if we can. */
2501 if (keep_memory)
2502 esdo->relocs = internal_relocs;
2503
2504 if (alloc1 != NULL)
2505 free (alloc1);
2506
2507 /* Don't free alloc2, since if it was allocated we are passing it
2508 back (under the name of internal_relocs). */
2509
2510 return internal_relocs;
2511
2512 error_return:
2513 if (alloc1 != NULL)
2514 free (alloc1);
2515 if (alloc2 != NULL)
2516 {
2517 if (keep_memory)
2518 bfd_release (abfd, alloc2);
2519 else
2520 free (alloc2);
2521 }
2522 return NULL;
2523 }
2524
2525 /* Compute the size of, and allocate space for, REL_HDR which is the
2526 section header for a section containing relocations for O. */
2527
2528 static bfd_boolean
2529 _bfd_elf_link_size_reloc_section (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata)
2531 {
2532 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2533
2534 /* That allows us to calculate the size of the section. */
2535 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2536
2537 /* The contents field must last into write_object_contents, so we
2538 allocate it with bfd_alloc rather than malloc. Also since we
2539 cannot be sure that the contents will actually be filled in,
2540 we zero the allocated space. */
2541 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2542 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2543 return FALSE;
2544
2545 if (reldata->hashes == NULL && reldata->count)
2546 {
2547 struct elf_link_hash_entry **p;
2548
2549 p = ((struct elf_link_hash_entry **)
2550 bfd_zmalloc (reldata->count * sizeof (*p)));
2551 if (p == NULL)
2552 return FALSE;
2553
2554 reldata->hashes = p;
2555 }
2556
2557 return TRUE;
2558 }
2559
2560 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2561 originated from the section given by INPUT_REL_HDR) to the
2562 OUTPUT_BFD. */
2563
2564 bfd_boolean
2565 _bfd_elf_link_output_relocs (bfd *output_bfd,
2566 asection *input_section,
2567 Elf_Internal_Shdr *input_rel_hdr,
2568 Elf_Internal_Rela *internal_relocs,
2569 struct elf_link_hash_entry **rel_hash
2570 ATTRIBUTE_UNUSED)
2571 {
2572 Elf_Internal_Rela *irela;
2573 Elf_Internal_Rela *irelaend;
2574 bfd_byte *erel;
2575 struct bfd_elf_section_reloc_data *output_reldata;
2576 asection *output_section;
2577 const struct elf_backend_data *bed;
2578 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2579 struct bfd_elf_section_data *esdo;
2580
2581 output_section = input_section->output_section;
2582
2583 bed = get_elf_backend_data (output_bfd);
2584 esdo = elf_section_data (output_section);
2585 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2586 {
2587 output_reldata = &esdo->rel;
2588 swap_out = bed->s->swap_reloc_out;
2589 }
2590 else if (esdo->rela.hdr
2591 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2592 {
2593 output_reldata = &esdo->rela;
2594 swap_out = bed->s->swap_reloca_out;
2595 }
2596 else
2597 {
2598 _bfd_error_handler
2599 /* xgettext:c-format */
2600 (_("%B: relocation size mismatch in %B section %A"),
2601 output_bfd, input_section->owner, input_section);
2602 bfd_set_error (bfd_error_wrong_format);
2603 return FALSE;
2604 }
2605
2606 erel = output_reldata->hdr->contents;
2607 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2608 irela = internal_relocs;
2609 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2610 * bed->s->int_rels_per_ext_rel);
2611 while (irela < irelaend)
2612 {
2613 (*swap_out) (output_bfd, irela, erel);
2614 irela += bed->s->int_rels_per_ext_rel;
2615 erel += input_rel_hdr->sh_entsize;
2616 }
2617
2618 /* Bump the counter, so that we know where to add the next set of
2619 relocations. */
2620 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2621
2622 return TRUE;
2623 }
2624 \f
2625 /* Make weak undefined symbols in PIE dynamic. */
2626
2627 bfd_boolean
2628 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2629 struct elf_link_hash_entry *h)
2630 {
2631 if (bfd_link_pie (info)
2632 && h->dynindx == -1
2633 && h->root.type == bfd_link_hash_undefweak)
2634 return bfd_elf_link_record_dynamic_symbol (info, h);
2635
2636 return TRUE;
2637 }
2638
2639 /* Fix up the flags for a symbol. This handles various cases which
2640 can only be fixed after all the input files are seen. This is
2641 currently called by both adjust_dynamic_symbol and
2642 assign_sym_version, which is unnecessary but perhaps more robust in
2643 the face of future changes. */
2644
2645 static bfd_boolean
2646 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2647 struct elf_info_failed *eif)
2648 {
2649 const struct elf_backend_data *bed;
2650
2651 /* If this symbol was mentioned in a non-ELF file, try to set
2652 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2653 permit a non-ELF file to correctly refer to a symbol defined in
2654 an ELF dynamic object. */
2655 if (h->non_elf)
2656 {
2657 while (h->root.type == bfd_link_hash_indirect)
2658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2659
2660 if (h->root.type != bfd_link_hash_defined
2661 && h->root.type != bfd_link_hash_defweak)
2662 {
2663 h->ref_regular = 1;
2664 h->ref_regular_nonweak = 1;
2665 }
2666 else
2667 {
2668 if (h->root.u.def.section->owner != NULL
2669 && (bfd_get_flavour (h->root.u.def.section->owner)
2670 == bfd_target_elf_flavour))
2671 {
2672 h->ref_regular = 1;
2673 h->ref_regular_nonweak = 1;
2674 }
2675 else
2676 h->def_regular = 1;
2677 }
2678
2679 if (h->dynindx == -1
2680 && (h->def_dynamic
2681 || h->ref_dynamic))
2682 {
2683 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2684 {
2685 eif->failed = TRUE;
2686 return FALSE;
2687 }
2688 }
2689 }
2690 else
2691 {
2692 /* Unfortunately, NON_ELF is only correct if the symbol
2693 was first seen in a non-ELF file. Fortunately, if the symbol
2694 was first seen in an ELF file, we're probably OK unless the
2695 symbol was defined in a non-ELF file. Catch that case here.
2696 FIXME: We're still in trouble if the symbol was first seen in
2697 a dynamic object, and then later in a non-ELF regular object. */
2698 if ((h->root.type == bfd_link_hash_defined
2699 || h->root.type == bfd_link_hash_defweak)
2700 && !h->def_regular
2701 && (h->root.u.def.section->owner != NULL
2702 ? (bfd_get_flavour (h->root.u.def.section->owner)
2703 != bfd_target_elf_flavour)
2704 : (bfd_is_abs_section (h->root.u.def.section)
2705 && !h->def_dynamic)))
2706 h->def_regular = 1;
2707 }
2708
2709 /* Backend specific symbol fixup. */
2710 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2711 if (bed->elf_backend_fixup_symbol
2712 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2713 return FALSE;
2714
2715 /* If this is a final link, and the symbol was defined as a common
2716 symbol in a regular object file, and there was no definition in
2717 any dynamic object, then the linker will have allocated space for
2718 the symbol in a common section but the DEF_REGULAR
2719 flag will not have been set. */
2720 if (h->root.type == bfd_link_hash_defined
2721 && !h->def_regular
2722 && h->ref_regular
2723 && !h->def_dynamic
2724 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2725 h->def_regular = 1;
2726
2727 /* If a weak undefined symbol has non-default visibility, we also
2728 hide it from the dynamic linker. */
2729 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2730 && h->root.type == bfd_link_hash_undefweak)
2731 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2732
2733 /* A hidden versioned symbol in executable should be forced local if
2734 it is is locally defined, not referenced by shared library and not
2735 exported. */
2736 else if (bfd_link_executable (eif->info)
2737 && h->versioned == versioned_hidden
2738 && !eif->info->export_dynamic
2739 && !h->dynamic
2740 && !h->ref_dynamic
2741 && h->def_regular)
2742 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2743
2744 /* If -Bsymbolic was used (which means to bind references to global
2745 symbols to the definition within the shared object), and this
2746 symbol was defined in a regular object, then it actually doesn't
2747 need a PLT entry. Likewise, if the symbol has non-default
2748 visibility. If the symbol has hidden or internal visibility, we
2749 will force it local. */
2750 else if (h->needs_plt
2751 && bfd_link_pic (eif->info)
2752 && is_elf_hash_table (eif->info->hash)
2753 && (SYMBOLIC_BIND (eif->info, h)
2754 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2755 && h->def_regular)
2756 {
2757 bfd_boolean force_local;
2758
2759 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2760 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2761 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2762 }
2763
2764 /* If this is a weak defined symbol in a dynamic object, and we know
2765 the real definition in the dynamic object, copy interesting flags
2766 over to the real definition. */
2767 if (h->u.weakdef != NULL)
2768 {
2769 /* If the real definition is defined by a regular object file,
2770 don't do anything special. See the longer description in
2771 _bfd_elf_adjust_dynamic_symbol, below. */
2772 if (h->u.weakdef->def_regular)
2773 h->u.weakdef = NULL;
2774 else
2775 {
2776 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2777
2778 while (h->root.type == bfd_link_hash_indirect)
2779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2780
2781 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2782 || h->root.type == bfd_link_hash_defweak);
2783 BFD_ASSERT (weakdef->def_dynamic);
2784 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2785 || weakdef->root.type == bfd_link_hash_defweak);
2786 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2787 }
2788 }
2789
2790 return TRUE;
2791 }
2792
2793 /* Make the backend pick a good value for a dynamic symbol. This is
2794 called via elf_link_hash_traverse, and also calls itself
2795 recursively. */
2796
2797 static bfd_boolean
2798 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2799 {
2800 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2801 bfd *dynobj;
2802 const struct elf_backend_data *bed;
2803
2804 if (! is_elf_hash_table (eif->info->hash))
2805 return FALSE;
2806
2807 /* Ignore indirect symbols. These are added by the versioning code. */
2808 if (h->root.type == bfd_link_hash_indirect)
2809 return TRUE;
2810
2811 /* Fix the symbol flags. */
2812 if (! _bfd_elf_fix_symbol_flags (h, eif))
2813 return FALSE;
2814
2815 if (h->root.type == bfd_link_hash_undefweak)
2816 {
2817 if (eif->info->dynamic_undefined_weak == 0)
2818 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2819 else if (eif->info->dynamic_undefined_weak > 0
2820 && h->ref_regular
2821 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2822 && !bfd_hide_sym_by_version (eif->info->version_info,
2823 h->root.root.string))
2824 {
2825 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832
2833 /* If this symbol does not require a PLT entry, and it is not
2834 defined by a dynamic object, or is not referenced by a regular
2835 object, ignore it. We do have to handle a weak defined symbol,
2836 even if no regular object refers to it, if we decided to add it
2837 to the dynamic symbol table. FIXME: Do we normally need to worry
2838 about symbols which are defined by one dynamic object and
2839 referenced by another one? */
2840 if (!h->needs_plt
2841 && h->type != STT_GNU_IFUNC
2842 && (h->def_regular
2843 || !h->def_dynamic
2844 || (!h->ref_regular
2845 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2846 {
2847 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2848 return TRUE;
2849 }
2850
2851 /* If we've already adjusted this symbol, don't do it again. This
2852 can happen via a recursive call. */
2853 if (h->dynamic_adjusted)
2854 return TRUE;
2855
2856 /* Don't look at this symbol again. Note that we must set this
2857 after checking the above conditions, because we may look at a
2858 symbol once, decide not to do anything, and then get called
2859 recursively later after REF_REGULAR is set below. */
2860 h->dynamic_adjusted = 1;
2861
2862 /* If this is a weak definition, and we know a real definition, and
2863 the real symbol is not itself defined by a regular object file,
2864 then get a good value for the real definition. We handle the
2865 real symbol first, for the convenience of the backend routine.
2866
2867 Note that there is a confusing case here. If the real definition
2868 is defined by a regular object file, we don't get the real symbol
2869 from the dynamic object, but we do get the weak symbol. If the
2870 processor backend uses a COPY reloc, then if some routine in the
2871 dynamic object changes the real symbol, we will not see that
2872 change in the corresponding weak symbol. This is the way other
2873 ELF linkers work as well, and seems to be a result of the shared
2874 library model.
2875
2876 I will clarify this issue. Most SVR4 shared libraries define the
2877 variable _timezone and define timezone as a weak synonym. The
2878 tzset call changes _timezone. If you write
2879 extern int timezone;
2880 int _timezone = 5;
2881 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2882 you might expect that, since timezone is a synonym for _timezone,
2883 the same number will print both times. However, if the processor
2884 backend uses a COPY reloc, then actually timezone will be copied
2885 into your process image, and, since you define _timezone
2886 yourself, _timezone will not. Thus timezone and _timezone will
2887 wind up at different memory locations. The tzset call will set
2888 _timezone, leaving timezone unchanged. */
2889
2890 if (h->u.weakdef != NULL)
2891 {
2892 /* If we get to this point, there is an implicit reference to
2893 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2894 h->u.weakdef->ref_regular = 1;
2895
2896 /* Ensure that the backend adjust_dynamic_symbol function sees
2897 H->U.WEAKDEF before H by recursively calling ourselves. */
2898 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2899 return FALSE;
2900 }
2901
2902 /* If a symbol has no type and no size and does not require a PLT
2903 entry, then we are probably about to do the wrong thing here: we
2904 are probably going to create a COPY reloc for an empty object.
2905 This case can arise when a shared object is built with assembly
2906 code, and the assembly code fails to set the symbol type. */
2907 if (h->size == 0
2908 && h->type == STT_NOTYPE
2909 && !h->needs_plt)
2910 _bfd_error_handler
2911 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2912 h->root.root.string);
2913
2914 dynobj = elf_hash_table (eif->info)->dynobj;
2915 bed = get_elf_backend_data (dynobj);
2916
2917 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2918 {
2919 eif->failed = TRUE;
2920 return FALSE;
2921 }
2922
2923 return TRUE;
2924 }
2925
2926 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2927 DYNBSS. */
2928
2929 bfd_boolean
2930 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2931 struct elf_link_hash_entry *h,
2932 asection *dynbss)
2933 {
2934 unsigned int power_of_two;
2935 bfd_vma mask;
2936 asection *sec = h->root.u.def.section;
2937
2938 /* The section alignment of the definition is the maximum alignment
2939 requirement of symbols defined in the section. Since we don't
2940 know the symbol alignment requirement, we start with the
2941 maximum alignment and check low bits of the symbol address
2942 for the minimum alignment. */
2943 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2944 mask = ((bfd_vma) 1 << power_of_two) - 1;
2945 while ((h->root.u.def.value & mask) != 0)
2946 {
2947 mask >>= 1;
2948 --power_of_two;
2949 }
2950
2951 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2952 dynbss))
2953 {
2954 /* Adjust the section alignment if needed. */
2955 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2956 power_of_two))
2957 return FALSE;
2958 }
2959
2960 /* We make sure that the symbol will be aligned properly. */
2961 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2962
2963 /* Define the symbol as being at this point in DYNBSS. */
2964 h->root.u.def.section = dynbss;
2965 h->root.u.def.value = dynbss->size;
2966
2967 /* Increment the size of DYNBSS to make room for the symbol. */
2968 dynbss->size += h->size;
2969
2970 /* No error if extern_protected_data is true. */
2971 if (h->protected_def
2972 && (!info->extern_protected_data
2973 || (info->extern_protected_data < 0
2974 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2975 info->callbacks->einfo
2976 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2977 h->root.root.string);
2978
2979 return TRUE;
2980 }
2981
2982 /* Adjust all external symbols pointing into SEC_MERGE sections
2983 to reflect the object merging within the sections. */
2984
2985 static bfd_boolean
2986 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2987 {
2988 asection *sec;
2989
2990 if ((h->root.type == bfd_link_hash_defined
2991 || h->root.type == bfd_link_hash_defweak)
2992 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2993 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2994 {
2995 bfd *output_bfd = (bfd *) data;
2996
2997 h->root.u.def.value =
2998 _bfd_merged_section_offset (output_bfd,
2999 &h->root.u.def.section,
3000 elf_section_data (sec)->sec_info,
3001 h->root.u.def.value);
3002 }
3003
3004 return TRUE;
3005 }
3006
3007 /* Returns false if the symbol referred to by H should be considered
3008 to resolve local to the current module, and true if it should be
3009 considered to bind dynamically. */
3010
3011 bfd_boolean
3012 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3013 struct bfd_link_info *info,
3014 bfd_boolean not_local_protected)
3015 {
3016 bfd_boolean binding_stays_local_p;
3017 const struct elf_backend_data *bed;
3018 struct elf_link_hash_table *hash_table;
3019
3020 if (h == NULL)
3021 return FALSE;
3022
3023 while (h->root.type == bfd_link_hash_indirect
3024 || h->root.type == bfd_link_hash_warning)
3025 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3026
3027 /* If it was forced local, then clearly it's not dynamic. */
3028 if (h->dynindx == -1)
3029 return FALSE;
3030 if (h->forced_local)
3031 return FALSE;
3032
3033 /* Identify the cases where name binding rules say that a
3034 visible symbol resolves locally. */
3035 binding_stays_local_p = (bfd_link_executable (info)
3036 || SYMBOLIC_BIND (info, h));
3037
3038 switch (ELF_ST_VISIBILITY (h->other))
3039 {
3040 case STV_INTERNAL:
3041 case STV_HIDDEN:
3042 return FALSE;
3043
3044 case STV_PROTECTED:
3045 hash_table = elf_hash_table (info);
3046 if (!is_elf_hash_table (hash_table))
3047 return FALSE;
3048
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050
3051 /* Proper resolution for function pointer equality may require
3052 that these symbols perhaps be resolved dynamically, even though
3053 we should be resolving them to the current module. */
3054 if (!not_local_protected || !bed->is_function_type (h->type))
3055 binding_stays_local_p = TRUE;
3056 break;
3057
3058 default:
3059 break;
3060 }
3061
3062 /* If it isn't defined locally, then clearly it's dynamic. */
3063 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3064 return TRUE;
3065
3066 /* Otherwise, the symbol is dynamic if binding rules don't tell
3067 us that it remains local. */
3068 return !binding_stays_local_p;
3069 }
3070
3071 /* Return true if the symbol referred to by H should be considered
3072 to resolve local to the current module, and false otherwise. Differs
3073 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3074 undefined symbols. The two functions are virtually identical except
3075 for the place where dynindx == -1 is tested. If that test is true,
3076 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3077 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3078 defined symbols.
3079 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3080 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3081 treatment of undefined weak symbols. For those that do not make
3082 undefined weak symbols dynamic, both functions may return false. */
3083
3084 bfd_boolean
3085 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3086 struct bfd_link_info *info,
3087 bfd_boolean local_protected)
3088 {
3089 const struct elf_backend_data *bed;
3090 struct elf_link_hash_table *hash_table;
3091
3092 /* If it's a local sym, of course we resolve locally. */
3093 if (h == NULL)
3094 return TRUE;
3095
3096 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3097 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3098 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3099 return TRUE;
3100
3101 /* Forced local symbols resolve locally. */
3102 if (h->forced_local)
3103 return TRUE;
3104
3105 /* Common symbols that become definitions don't get the DEF_REGULAR
3106 flag set, so test it first, and don't bail out. */
3107 if (ELF_COMMON_DEF_P (h))
3108 /* Do nothing. */;
3109 /* If we don't have a definition in a regular file, then we can't
3110 resolve locally. The sym is either undefined or dynamic. */
3111 else if (!h->def_regular)
3112 return FALSE;
3113
3114 /* Non-dynamic symbols resolve locally. */
3115 if (h->dynindx == -1)
3116 return TRUE;
3117
3118 /* At this point, we know the symbol is defined and dynamic. In an
3119 executable it must resolve locally, likewise when building symbolic
3120 shared libraries. */
3121 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3122 return TRUE;
3123
3124 /* Now deal with defined dynamic symbols in shared libraries. Ones
3125 with default visibility might not resolve locally. */
3126 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3127 return FALSE;
3128
3129 hash_table = elf_hash_table (info);
3130 if (!is_elf_hash_table (hash_table))
3131 return TRUE;
3132
3133 bed = get_elf_backend_data (hash_table->dynobj);
3134
3135 /* If extern_protected_data is false, STV_PROTECTED non-function
3136 symbols are local. */
3137 if ((!info->extern_protected_data
3138 || (info->extern_protected_data < 0
3139 && !bed->extern_protected_data))
3140 && !bed->is_function_type (h->type))
3141 return TRUE;
3142
3143 /* Function pointer equality tests may require that STV_PROTECTED
3144 symbols be treated as dynamic symbols. If the address of a
3145 function not defined in an executable is set to that function's
3146 plt entry in the executable, then the address of the function in
3147 a shared library must also be the plt entry in the executable. */
3148 return local_protected;
3149 }
3150
3151 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3152 aligned. Returns the first TLS output section. */
3153
3154 struct bfd_section *
3155 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3156 {
3157 struct bfd_section *sec, *tls;
3158 unsigned int align = 0;
3159
3160 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3161 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3162 break;
3163 tls = sec;
3164
3165 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3166 if (sec->alignment_power > align)
3167 align = sec->alignment_power;
3168
3169 elf_hash_table (info)->tls_sec = tls;
3170
3171 /* Ensure the alignment of the first section is the largest alignment,
3172 so that the tls segment starts aligned. */
3173 if (tls != NULL)
3174 tls->alignment_power = align;
3175
3176 return tls;
3177 }
3178
3179 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3180 static bfd_boolean
3181 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3182 Elf_Internal_Sym *sym)
3183 {
3184 const struct elf_backend_data *bed;
3185
3186 /* Local symbols do not count, but target specific ones might. */
3187 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3188 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3189 return FALSE;
3190
3191 bed = get_elf_backend_data (abfd);
3192 /* Function symbols do not count. */
3193 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3194 return FALSE;
3195
3196 /* If the section is undefined, then so is the symbol. */
3197 if (sym->st_shndx == SHN_UNDEF)
3198 return FALSE;
3199
3200 /* If the symbol is defined in the common section, then
3201 it is a common definition and so does not count. */
3202 if (bed->common_definition (sym))
3203 return FALSE;
3204
3205 /* If the symbol is in a target specific section then we
3206 must rely upon the backend to tell us what it is. */
3207 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3208 /* FIXME - this function is not coded yet:
3209
3210 return _bfd_is_global_symbol_definition (abfd, sym);
3211
3212 Instead for now assume that the definition is not global,
3213 Even if this is wrong, at least the linker will behave
3214 in the same way that it used to do. */
3215 return FALSE;
3216
3217 return TRUE;
3218 }
3219
3220 /* Search the symbol table of the archive element of the archive ABFD
3221 whose archive map contains a mention of SYMDEF, and determine if
3222 the symbol is defined in this element. */
3223 static bfd_boolean
3224 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3225 {
3226 Elf_Internal_Shdr * hdr;
3227 size_t symcount;
3228 size_t extsymcount;
3229 size_t extsymoff;
3230 Elf_Internal_Sym *isymbuf;
3231 Elf_Internal_Sym *isym;
3232 Elf_Internal_Sym *isymend;
3233 bfd_boolean result;
3234
3235 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3236 if (abfd == NULL)
3237 return FALSE;
3238
3239 if (! bfd_check_format (abfd, bfd_object))
3240 return FALSE;
3241
3242 /* Select the appropriate symbol table. If we don't know if the
3243 object file is an IR object, give linker LTO plugin a chance to
3244 get the correct symbol table. */
3245 if (abfd->plugin_format == bfd_plugin_yes
3246 #if BFD_SUPPORTS_PLUGINS
3247 || (abfd->plugin_format == bfd_plugin_unknown
3248 && bfd_link_plugin_object_p (abfd))
3249 #endif
3250 )
3251 {
3252 /* Use the IR symbol table if the object has been claimed by
3253 plugin. */
3254 abfd = abfd->plugin_dummy_bfd;
3255 hdr = &elf_tdata (abfd)->symtab_hdr;
3256 }
3257 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3258 hdr = &elf_tdata (abfd)->symtab_hdr;
3259 else
3260 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3261
3262 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3263
3264 /* The sh_info field of the symtab header tells us where the
3265 external symbols start. We don't care about the local symbols. */
3266 if (elf_bad_symtab (abfd))
3267 {
3268 extsymcount = symcount;
3269 extsymoff = 0;
3270 }
3271 else
3272 {
3273 extsymcount = symcount - hdr->sh_info;
3274 extsymoff = hdr->sh_info;
3275 }
3276
3277 if (extsymcount == 0)
3278 return FALSE;
3279
3280 /* Read in the symbol table. */
3281 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3282 NULL, NULL, NULL);
3283 if (isymbuf == NULL)
3284 return FALSE;
3285
3286 /* Scan the symbol table looking for SYMDEF. */
3287 result = FALSE;
3288 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3289 {
3290 const char *name;
3291
3292 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3293 isym->st_name);
3294 if (name == NULL)
3295 break;
3296
3297 if (strcmp (name, symdef->name) == 0)
3298 {
3299 result = is_global_data_symbol_definition (abfd, isym);
3300 break;
3301 }
3302 }
3303
3304 free (isymbuf);
3305
3306 return result;
3307 }
3308 \f
3309 /* Add an entry to the .dynamic table. */
3310
3311 bfd_boolean
3312 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3313 bfd_vma tag,
3314 bfd_vma val)
3315 {
3316 struct elf_link_hash_table *hash_table;
3317 const struct elf_backend_data *bed;
3318 asection *s;
3319 bfd_size_type newsize;
3320 bfd_byte *newcontents;
3321 Elf_Internal_Dyn dyn;
3322
3323 hash_table = elf_hash_table (info);
3324 if (! is_elf_hash_table (hash_table))
3325 return FALSE;
3326
3327 bed = get_elf_backend_data (hash_table->dynobj);
3328 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3329 BFD_ASSERT (s != NULL);
3330
3331 newsize = s->size + bed->s->sizeof_dyn;
3332 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3333 if (newcontents == NULL)
3334 return FALSE;
3335
3336 dyn.d_tag = tag;
3337 dyn.d_un.d_val = val;
3338 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3339
3340 s->size = newsize;
3341 s->contents = newcontents;
3342
3343 return TRUE;
3344 }
3345
3346 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3347 otherwise just check whether one already exists. Returns -1 on error,
3348 1 if a DT_NEEDED tag already exists, and 0 on success. */
3349
3350 static int
3351 elf_add_dt_needed_tag (bfd *abfd,
3352 struct bfd_link_info *info,
3353 const char *soname,
3354 bfd_boolean do_it)
3355 {
3356 struct elf_link_hash_table *hash_table;
3357 size_t strindex;
3358
3359 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3360 return -1;
3361
3362 hash_table = elf_hash_table (info);
3363 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3364 if (strindex == (size_t) -1)
3365 return -1;
3366
3367 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3368 {
3369 asection *sdyn;
3370 const struct elf_backend_data *bed;
3371 bfd_byte *extdyn;
3372
3373 bed = get_elf_backend_data (hash_table->dynobj);
3374 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3375 if (sdyn != NULL)
3376 for (extdyn = sdyn->contents;
3377 extdyn < sdyn->contents + sdyn->size;
3378 extdyn += bed->s->sizeof_dyn)
3379 {
3380 Elf_Internal_Dyn dyn;
3381
3382 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3383 if (dyn.d_tag == DT_NEEDED
3384 && dyn.d_un.d_val == strindex)
3385 {
3386 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3387 return 1;
3388 }
3389 }
3390 }
3391
3392 if (do_it)
3393 {
3394 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3395 return -1;
3396
3397 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3398 return -1;
3399 }
3400 else
3401 /* We were just checking for existence of the tag. */
3402 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3403
3404 return 0;
3405 }
3406
3407 /* Return true if SONAME is on the needed list between NEEDED and STOP
3408 (or the end of list if STOP is NULL), and needed by a library that
3409 will be loaded. */
3410
3411 static bfd_boolean
3412 on_needed_list (const char *soname,
3413 struct bfd_link_needed_list *needed,
3414 struct bfd_link_needed_list *stop)
3415 {
3416 struct bfd_link_needed_list *look;
3417 for (look = needed; look != stop; look = look->next)
3418 if (strcmp (soname, look->name) == 0
3419 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3420 /* If needed by a library that itself is not directly
3421 needed, recursively check whether that library is
3422 indirectly needed. Since we add DT_NEEDED entries to
3423 the end of the list, library dependencies appear after
3424 the library. Therefore search prior to the current
3425 LOOK, preventing possible infinite recursion. */
3426 || on_needed_list (elf_dt_name (look->by), needed, look)))
3427 return TRUE;
3428
3429 return FALSE;
3430 }
3431
3432 /* Sort symbol by value, section, and size. */
3433 static int
3434 elf_sort_symbol (const void *arg1, const void *arg2)
3435 {
3436 const struct elf_link_hash_entry *h1;
3437 const struct elf_link_hash_entry *h2;
3438 bfd_signed_vma vdiff;
3439
3440 h1 = *(const struct elf_link_hash_entry **) arg1;
3441 h2 = *(const struct elf_link_hash_entry **) arg2;
3442 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3443 if (vdiff != 0)
3444 return vdiff > 0 ? 1 : -1;
3445 else
3446 {
3447 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3448 if (sdiff != 0)
3449 return sdiff > 0 ? 1 : -1;
3450 }
3451 vdiff = h1->size - h2->size;
3452 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3453 }
3454
3455 /* This function is used to adjust offsets into .dynstr for
3456 dynamic symbols. This is called via elf_link_hash_traverse. */
3457
3458 static bfd_boolean
3459 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3460 {
3461 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3462
3463 if (h->dynindx != -1)
3464 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3465 return TRUE;
3466 }
3467
3468 /* Assign string offsets in .dynstr, update all structures referencing
3469 them. */
3470
3471 static bfd_boolean
3472 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3473 {
3474 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3475 struct elf_link_local_dynamic_entry *entry;
3476 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3477 bfd *dynobj = hash_table->dynobj;
3478 asection *sdyn;
3479 bfd_size_type size;
3480 const struct elf_backend_data *bed;
3481 bfd_byte *extdyn;
3482
3483 _bfd_elf_strtab_finalize (dynstr);
3484 size = _bfd_elf_strtab_size (dynstr);
3485
3486 bed = get_elf_backend_data (dynobj);
3487 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3488 BFD_ASSERT (sdyn != NULL);
3489
3490 /* Update all .dynamic entries referencing .dynstr strings. */
3491 for (extdyn = sdyn->contents;
3492 extdyn < sdyn->contents + sdyn->size;
3493 extdyn += bed->s->sizeof_dyn)
3494 {
3495 Elf_Internal_Dyn dyn;
3496
3497 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3498 switch (dyn.d_tag)
3499 {
3500 case DT_STRSZ:
3501 dyn.d_un.d_val = size;
3502 break;
3503 case DT_NEEDED:
3504 case DT_SONAME:
3505 case DT_RPATH:
3506 case DT_RUNPATH:
3507 case DT_FILTER:
3508 case DT_AUXILIARY:
3509 case DT_AUDIT:
3510 case DT_DEPAUDIT:
3511 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3512 break;
3513 default:
3514 continue;
3515 }
3516 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3517 }
3518
3519 /* Now update local dynamic symbols. */
3520 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3521 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3522 entry->isym.st_name);
3523
3524 /* And the rest of dynamic symbols. */
3525 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3526
3527 /* Adjust version definitions. */
3528 if (elf_tdata (output_bfd)->cverdefs)
3529 {
3530 asection *s;
3531 bfd_byte *p;
3532 size_t i;
3533 Elf_Internal_Verdef def;
3534 Elf_Internal_Verdaux defaux;
3535
3536 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3537 p = s->contents;
3538 do
3539 {
3540 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3541 &def);
3542 p += sizeof (Elf_External_Verdef);
3543 if (def.vd_aux != sizeof (Elf_External_Verdef))
3544 continue;
3545 for (i = 0; i < def.vd_cnt; ++i)
3546 {
3547 _bfd_elf_swap_verdaux_in (output_bfd,
3548 (Elf_External_Verdaux *) p, &defaux);
3549 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3550 defaux.vda_name);
3551 _bfd_elf_swap_verdaux_out (output_bfd,
3552 &defaux, (Elf_External_Verdaux *) p);
3553 p += sizeof (Elf_External_Verdaux);
3554 }
3555 }
3556 while (def.vd_next);
3557 }
3558
3559 /* Adjust version references. */
3560 if (elf_tdata (output_bfd)->verref)
3561 {
3562 asection *s;
3563 bfd_byte *p;
3564 size_t i;
3565 Elf_Internal_Verneed need;
3566 Elf_Internal_Vernaux needaux;
3567
3568 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3569 p = s->contents;
3570 do
3571 {
3572 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3573 &need);
3574 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3575 _bfd_elf_swap_verneed_out (output_bfd, &need,
3576 (Elf_External_Verneed *) p);
3577 p += sizeof (Elf_External_Verneed);
3578 for (i = 0; i < need.vn_cnt; ++i)
3579 {
3580 _bfd_elf_swap_vernaux_in (output_bfd,
3581 (Elf_External_Vernaux *) p, &needaux);
3582 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3583 needaux.vna_name);
3584 _bfd_elf_swap_vernaux_out (output_bfd,
3585 &needaux,
3586 (Elf_External_Vernaux *) p);
3587 p += sizeof (Elf_External_Vernaux);
3588 }
3589 }
3590 while (need.vn_next);
3591 }
3592
3593 return TRUE;
3594 }
3595 \f
3596 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3597 The default is to only match when the INPUT and OUTPUT are exactly
3598 the same target. */
3599
3600 bfd_boolean
3601 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3602 const bfd_target *output)
3603 {
3604 return input == output;
3605 }
3606
3607 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3608 This version is used when different targets for the same architecture
3609 are virtually identical. */
3610
3611 bfd_boolean
3612 _bfd_elf_relocs_compatible (const bfd_target *input,
3613 const bfd_target *output)
3614 {
3615 const struct elf_backend_data *obed, *ibed;
3616
3617 if (input == output)
3618 return TRUE;
3619
3620 ibed = xvec_get_elf_backend_data (input);
3621 obed = xvec_get_elf_backend_data (output);
3622
3623 if (ibed->arch != obed->arch)
3624 return FALSE;
3625
3626 /* If both backends are using this function, deem them compatible. */
3627 return ibed->relocs_compatible == obed->relocs_compatible;
3628 }
3629
3630 /* Make a special call to the linker "notice" function to tell it that
3631 we are about to handle an as-needed lib, or have finished
3632 processing the lib. */
3633
3634 bfd_boolean
3635 _bfd_elf_notice_as_needed (bfd *ibfd,
3636 struct bfd_link_info *info,
3637 enum notice_asneeded_action act)
3638 {
3639 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3640 }
3641
3642 /* Check relocations an ELF object file. */
3643
3644 bfd_boolean
3645 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3646 {
3647 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3648 struct elf_link_hash_table *htab = elf_hash_table (info);
3649
3650 /* If this object is the same format as the output object, and it is
3651 not a shared library, then let the backend look through the
3652 relocs.
3653
3654 This is required to build global offset table entries and to
3655 arrange for dynamic relocs. It is not required for the
3656 particular common case of linking non PIC code, even when linking
3657 against shared libraries, but unfortunately there is no way of
3658 knowing whether an object file has been compiled PIC or not.
3659 Looking through the relocs is not particularly time consuming.
3660 The problem is that we must either (1) keep the relocs in memory,
3661 which causes the linker to require additional runtime memory or
3662 (2) read the relocs twice from the input file, which wastes time.
3663 This would be a good case for using mmap.
3664
3665 I have no idea how to handle linking PIC code into a file of a
3666 different format. It probably can't be done. */
3667 if ((abfd->flags & DYNAMIC) == 0
3668 && is_elf_hash_table (htab)
3669 && bed->check_relocs != NULL
3670 && elf_object_id (abfd) == elf_hash_table_id (htab)
3671 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3672 {
3673 asection *o;
3674
3675 for (o = abfd->sections; o != NULL; o = o->next)
3676 {
3677 Elf_Internal_Rela *internal_relocs;
3678 bfd_boolean ok;
3679
3680 /* Don't check relocations in excluded sections. */
3681 if ((o->flags & SEC_RELOC) == 0
3682 || (o->flags & SEC_EXCLUDE) != 0
3683 || o->reloc_count == 0
3684 || ((info->strip == strip_all || info->strip == strip_debugger)
3685 && (o->flags & SEC_DEBUGGING) != 0)
3686 || bfd_is_abs_section (o->output_section))
3687 continue;
3688
3689 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3690 info->keep_memory);
3691 if (internal_relocs == NULL)
3692 return FALSE;
3693
3694 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3695
3696 if (elf_section_data (o)->relocs != internal_relocs)
3697 free (internal_relocs);
3698
3699 if (! ok)
3700 return FALSE;
3701 }
3702 }
3703
3704 return TRUE;
3705 }
3706
3707 /* Add symbols from an ELF object file to the linker hash table. */
3708
3709 static bfd_boolean
3710 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3711 {
3712 Elf_Internal_Ehdr *ehdr;
3713 Elf_Internal_Shdr *hdr;
3714 size_t symcount;
3715 size_t extsymcount;
3716 size_t extsymoff;
3717 struct elf_link_hash_entry **sym_hash;
3718 bfd_boolean dynamic;
3719 Elf_External_Versym *extversym = NULL;
3720 Elf_External_Versym *ever;
3721 struct elf_link_hash_entry *weaks;
3722 struct elf_link_hash_entry **nondeflt_vers = NULL;
3723 size_t nondeflt_vers_cnt = 0;
3724 Elf_Internal_Sym *isymbuf = NULL;
3725 Elf_Internal_Sym *isym;
3726 Elf_Internal_Sym *isymend;
3727 const struct elf_backend_data *bed;
3728 bfd_boolean add_needed;
3729 struct elf_link_hash_table *htab;
3730 bfd_size_type amt;
3731 void *alloc_mark = NULL;
3732 struct bfd_hash_entry **old_table = NULL;
3733 unsigned int old_size = 0;
3734 unsigned int old_count = 0;
3735 void *old_tab = NULL;
3736 void *old_ent;
3737 struct bfd_link_hash_entry *old_undefs = NULL;
3738 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3739 void *old_strtab = NULL;
3740 size_t tabsize = 0;
3741 asection *s;
3742 bfd_boolean just_syms;
3743
3744 htab = elf_hash_table (info);
3745 bed = get_elf_backend_data (abfd);
3746
3747 if ((abfd->flags & DYNAMIC) == 0)
3748 dynamic = FALSE;
3749 else
3750 {
3751 dynamic = TRUE;
3752
3753 /* You can't use -r against a dynamic object. Also, there's no
3754 hope of using a dynamic object which does not exactly match
3755 the format of the output file. */
3756 if (bfd_link_relocatable (info)
3757 || !is_elf_hash_table (htab)
3758 || info->output_bfd->xvec != abfd->xvec)
3759 {
3760 if (bfd_link_relocatable (info))
3761 bfd_set_error (bfd_error_invalid_operation);
3762 else
3763 bfd_set_error (bfd_error_wrong_format);
3764 goto error_return;
3765 }
3766 }
3767
3768 ehdr = elf_elfheader (abfd);
3769 if (info->warn_alternate_em
3770 && bed->elf_machine_code != ehdr->e_machine
3771 && ((bed->elf_machine_alt1 != 0
3772 && ehdr->e_machine == bed->elf_machine_alt1)
3773 || (bed->elf_machine_alt2 != 0
3774 && ehdr->e_machine == bed->elf_machine_alt2)))
3775 info->callbacks->einfo
3776 /* xgettext:c-format */
3777 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3778 ehdr->e_machine, abfd, bed->elf_machine_code);
3779
3780 /* As a GNU extension, any input sections which are named
3781 .gnu.warning.SYMBOL are treated as warning symbols for the given
3782 symbol. This differs from .gnu.warning sections, which generate
3783 warnings when they are included in an output file. */
3784 /* PR 12761: Also generate this warning when building shared libraries. */
3785 for (s = abfd->sections; s != NULL; s = s->next)
3786 {
3787 const char *name;
3788
3789 name = bfd_get_section_name (abfd, s);
3790 if (CONST_STRNEQ (name, ".gnu.warning."))
3791 {
3792 char *msg;
3793 bfd_size_type sz;
3794
3795 name += sizeof ".gnu.warning." - 1;
3796
3797 /* If this is a shared object, then look up the symbol
3798 in the hash table. If it is there, and it is already
3799 been defined, then we will not be using the entry
3800 from this shared object, so we don't need to warn.
3801 FIXME: If we see the definition in a regular object
3802 later on, we will warn, but we shouldn't. The only
3803 fix is to keep track of what warnings we are supposed
3804 to emit, and then handle them all at the end of the
3805 link. */
3806 if (dynamic)
3807 {
3808 struct elf_link_hash_entry *h;
3809
3810 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3811
3812 /* FIXME: What about bfd_link_hash_common? */
3813 if (h != NULL
3814 && (h->root.type == bfd_link_hash_defined
3815 || h->root.type == bfd_link_hash_defweak))
3816 continue;
3817 }
3818
3819 sz = s->size;
3820 msg = (char *) bfd_alloc (abfd, sz + 1);
3821 if (msg == NULL)
3822 goto error_return;
3823
3824 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3825 goto error_return;
3826
3827 msg[sz] = '\0';
3828
3829 if (! (_bfd_generic_link_add_one_symbol
3830 (info, abfd, name, BSF_WARNING, s, 0, msg,
3831 FALSE, bed->collect, NULL)))
3832 goto error_return;
3833
3834 if (bfd_link_executable (info))
3835 {
3836 /* Clobber the section size so that the warning does
3837 not get copied into the output file. */
3838 s->size = 0;
3839
3840 /* Also set SEC_EXCLUDE, so that symbols defined in
3841 the warning section don't get copied to the output. */
3842 s->flags |= SEC_EXCLUDE;
3843 }
3844 }
3845 }
3846
3847 just_syms = ((s = abfd->sections) != NULL
3848 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3849
3850 add_needed = TRUE;
3851 if (! dynamic)
3852 {
3853 /* If we are creating a shared library, create all the dynamic
3854 sections immediately. We need to attach them to something,
3855 so we attach them to this BFD, provided it is the right
3856 format and is not from ld --just-symbols. Always create the
3857 dynamic sections for -E/--dynamic-list. FIXME: If there
3858 are no input BFD's of the same format as the output, we can't
3859 make a shared library. */
3860 if (!just_syms
3861 && (bfd_link_pic (info)
3862 || (!bfd_link_relocatable (info)
3863 && info->nointerp
3864 && (info->export_dynamic || info->dynamic)))
3865 && is_elf_hash_table (htab)
3866 && info->output_bfd->xvec == abfd->xvec
3867 && !htab->dynamic_sections_created)
3868 {
3869 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3870 goto error_return;
3871 }
3872 }
3873 else if (!is_elf_hash_table (htab))
3874 goto error_return;
3875 else
3876 {
3877 const char *soname = NULL;
3878 char *audit = NULL;
3879 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3880 const Elf_Internal_Phdr *phdr;
3881 int ret;
3882
3883 /* ld --just-symbols and dynamic objects don't mix very well.
3884 ld shouldn't allow it. */
3885 if (just_syms)
3886 abort ();
3887
3888 /* If this dynamic lib was specified on the command line with
3889 --as-needed in effect, then we don't want to add a DT_NEEDED
3890 tag unless the lib is actually used. Similary for libs brought
3891 in by another lib's DT_NEEDED. When --no-add-needed is used
3892 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3893 any dynamic library in DT_NEEDED tags in the dynamic lib at
3894 all. */
3895 add_needed = (elf_dyn_lib_class (abfd)
3896 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3897 | DYN_NO_NEEDED)) == 0;
3898
3899 s = bfd_get_section_by_name (abfd, ".dynamic");
3900 if (s != NULL)
3901 {
3902 bfd_byte *dynbuf;
3903 bfd_byte *extdyn;
3904 unsigned int elfsec;
3905 unsigned long shlink;
3906
3907 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3908 {
3909 error_free_dyn:
3910 free (dynbuf);
3911 goto error_return;
3912 }
3913
3914 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3915 if (elfsec == SHN_BAD)
3916 goto error_free_dyn;
3917 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3918
3919 for (extdyn = dynbuf;
3920 extdyn < dynbuf + s->size;
3921 extdyn += bed->s->sizeof_dyn)
3922 {
3923 Elf_Internal_Dyn dyn;
3924
3925 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3926 if (dyn.d_tag == DT_SONAME)
3927 {
3928 unsigned int tagv = dyn.d_un.d_val;
3929 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3930 if (soname == NULL)
3931 goto error_free_dyn;
3932 }
3933 if (dyn.d_tag == DT_NEEDED)
3934 {
3935 struct bfd_link_needed_list *n, **pn;
3936 char *fnm, *anm;
3937 unsigned int tagv = dyn.d_un.d_val;
3938
3939 amt = sizeof (struct bfd_link_needed_list);
3940 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3941 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3942 if (n == NULL || fnm == NULL)
3943 goto error_free_dyn;
3944 amt = strlen (fnm) + 1;
3945 anm = (char *) bfd_alloc (abfd, amt);
3946 if (anm == NULL)
3947 goto error_free_dyn;
3948 memcpy (anm, fnm, amt);
3949 n->name = anm;
3950 n->by = abfd;
3951 n->next = NULL;
3952 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3953 ;
3954 *pn = n;
3955 }
3956 if (dyn.d_tag == DT_RUNPATH)
3957 {
3958 struct bfd_link_needed_list *n, **pn;
3959 char *fnm, *anm;
3960 unsigned int tagv = dyn.d_un.d_val;
3961
3962 amt = sizeof (struct bfd_link_needed_list);
3963 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3964 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3965 if (n == NULL || fnm == NULL)
3966 goto error_free_dyn;
3967 amt = strlen (fnm) + 1;
3968 anm = (char *) bfd_alloc (abfd, amt);
3969 if (anm == NULL)
3970 goto error_free_dyn;
3971 memcpy (anm, fnm, amt);
3972 n->name = anm;
3973 n->by = abfd;
3974 n->next = NULL;
3975 for (pn = & runpath;
3976 *pn != NULL;
3977 pn = &(*pn)->next)
3978 ;
3979 *pn = n;
3980 }
3981 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3982 if (!runpath && dyn.d_tag == DT_RPATH)
3983 {
3984 struct bfd_link_needed_list *n, **pn;
3985 char *fnm, *anm;
3986 unsigned int tagv = dyn.d_un.d_val;
3987
3988 amt = sizeof (struct bfd_link_needed_list);
3989 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3990 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3991 if (n == NULL || fnm == NULL)
3992 goto error_free_dyn;
3993 amt = strlen (fnm) + 1;
3994 anm = (char *) bfd_alloc (abfd, amt);
3995 if (anm == NULL)
3996 goto error_free_dyn;
3997 memcpy (anm, fnm, amt);
3998 n->name = anm;
3999 n->by = abfd;
4000 n->next = NULL;
4001 for (pn = & rpath;
4002 *pn != NULL;
4003 pn = &(*pn)->next)
4004 ;
4005 *pn = n;
4006 }
4007 if (dyn.d_tag == DT_AUDIT)
4008 {
4009 unsigned int tagv = dyn.d_un.d_val;
4010 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4011 }
4012 }
4013
4014 free (dynbuf);
4015 }
4016
4017 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4018 frees all more recently bfd_alloc'd blocks as well. */
4019 if (runpath)
4020 rpath = runpath;
4021
4022 if (rpath)
4023 {
4024 struct bfd_link_needed_list **pn;
4025 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4026 ;
4027 *pn = rpath;
4028 }
4029
4030 /* If we have a PT_GNU_RELRO program header, mark as read-only
4031 all sections contained fully therein. This makes relro
4032 shared library sections appear as they will at run-time. */
4033 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4034 while (--phdr >= elf_tdata (abfd)->phdr)
4035 if (phdr->p_type == PT_GNU_RELRO)
4036 {
4037 for (s = abfd->sections; s != NULL; s = s->next)
4038 if ((s->flags & SEC_ALLOC) != 0
4039 && s->vma >= phdr->p_vaddr
4040 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4041 s->flags |= SEC_READONLY;
4042 break;
4043 }
4044
4045 /* We do not want to include any of the sections in a dynamic
4046 object in the output file. We hack by simply clobbering the
4047 list of sections in the BFD. This could be handled more
4048 cleanly by, say, a new section flag; the existing
4049 SEC_NEVER_LOAD flag is not the one we want, because that one
4050 still implies that the section takes up space in the output
4051 file. */
4052 bfd_section_list_clear (abfd);
4053
4054 /* Find the name to use in a DT_NEEDED entry that refers to this
4055 object. If the object has a DT_SONAME entry, we use it.
4056 Otherwise, if the generic linker stuck something in
4057 elf_dt_name, we use that. Otherwise, we just use the file
4058 name. */
4059 if (soname == NULL || *soname == '\0')
4060 {
4061 soname = elf_dt_name (abfd);
4062 if (soname == NULL || *soname == '\0')
4063 soname = bfd_get_filename (abfd);
4064 }
4065
4066 /* Save the SONAME because sometimes the linker emulation code
4067 will need to know it. */
4068 elf_dt_name (abfd) = soname;
4069
4070 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4071 if (ret < 0)
4072 goto error_return;
4073
4074 /* If we have already included this dynamic object in the
4075 link, just ignore it. There is no reason to include a
4076 particular dynamic object more than once. */
4077 if (ret > 0)
4078 return TRUE;
4079
4080 /* Save the DT_AUDIT entry for the linker emulation code. */
4081 elf_dt_audit (abfd) = audit;
4082 }
4083
4084 /* If this is a dynamic object, we always link against the .dynsym
4085 symbol table, not the .symtab symbol table. The dynamic linker
4086 will only see the .dynsym symbol table, so there is no reason to
4087 look at .symtab for a dynamic object. */
4088
4089 if (! dynamic || elf_dynsymtab (abfd) == 0)
4090 hdr = &elf_tdata (abfd)->symtab_hdr;
4091 else
4092 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4093
4094 symcount = hdr->sh_size / bed->s->sizeof_sym;
4095
4096 /* The sh_info field of the symtab header tells us where the
4097 external symbols start. We don't care about the local symbols at
4098 this point. */
4099 if (elf_bad_symtab (abfd))
4100 {
4101 extsymcount = symcount;
4102 extsymoff = 0;
4103 }
4104 else
4105 {
4106 extsymcount = symcount - hdr->sh_info;
4107 extsymoff = hdr->sh_info;
4108 }
4109
4110 sym_hash = elf_sym_hashes (abfd);
4111 if (extsymcount != 0)
4112 {
4113 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4114 NULL, NULL, NULL);
4115 if (isymbuf == NULL)
4116 goto error_return;
4117
4118 if (sym_hash == NULL)
4119 {
4120 /* We store a pointer to the hash table entry for each
4121 external symbol. */
4122 amt = extsymcount;
4123 amt *= sizeof (struct elf_link_hash_entry *);
4124 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4125 if (sym_hash == NULL)
4126 goto error_free_sym;
4127 elf_sym_hashes (abfd) = sym_hash;
4128 }
4129 }
4130
4131 if (dynamic)
4132 {
4133 /* Read in any version definitions. */
4134 if (!_bfd_elf_slurp_version_tables (abfd,
4135 info->default_imported_symver))
4136 goto error_free_sym;
4137
4138 /* Read in the symbol versions, but don't bother to convert them
4139 to internal format. */
4140 if (elf_dynversym (abfd) != 0)
4141 {
4142 Elf_Internal_Shdr *versymhdr;
4143
4144 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4145 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4146 if (extversym == NULL)
4147 goto error_free_sym;
4148 amt = versymhdr->sh_size;
4149 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4150 || bfd_bread (extversym, amt, abfd) != amt)
4151 goto error_free_vers;
4152 }
4153 }
4154
4155 /* If we are loading an as-needed shared lib, save the symbol table
4156 state before we start adding symbols. If the lib turns out
4157 to be unneeded, restore the state. */
4158 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4159 {
4160 unsigned int i;
4161 size_t entsize;
4162
4163 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4164 {
4165 struct bfd_hash_entry *p;
4166 struct elf_link_hash_entry *h;
4167
4168 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4169 {
4170 h = (struct elf_link_hash_entry *) p;
4171 entsize += htab->root.table.entsize;
4172 if (h->root.type == bfd_link_hash_warning)
4173 entsize += htab->root.table.entsize;
4174 }
4175 }
4176
4177 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4178 old_tab = bfd_malloc (tabsize + entsize);
4179 if (old_tab == NULL)
4180 goto error_free_vers;
4181
4182 /* Remember the current objalloc pointer, so that all mem for
4183 symbols added can later be reclaimed. */
4184 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4185 if (alloc_mark == NULL)
4186 goto error_free_vers;
4187
4188 /* Make a special call to the linker "notice" function to
4189 tell it that we are about to handle an as-needed lib. */
4190 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4191 goto error_free_vers;
4192
4193 /* Clone the symbol table. Remember some pointers into the
4194 symbol table, and dynamic symbol count. */
4195 old_ent = (char *) old_tab + tabsize;
4196 memcpy (old_tab, htab->root.table.table, tabsize);
4197 old_undefs = htab->root.undefs;
4198 old_undefs_tail = htab->root.undefs_tail;
4199 old_table = htab->root.table.table;
4200 old_size = htab->root.table.size;
4201 old_count = htab->root.table.count;
4202 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4203 if (old_strtab == NULL)
4204 goto error_free_vers;
4205
4206 for (i = 0; i < htab->root.table.size; i++)
4207 {
4208 struct bfd_hash_entry *p;
4209 struct elf_link_hash_entry *h;
4210
4211 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4212 {
4213 memcpy (old_ent, p, htab->root.table.entsize);
4214 old_ent = (char *) old_ent + htab->root.table.entsize;
4215 h = (struct elf_link_hash_entry *) p;
4216 if (h->root.type == bfd_link_hash_warning)
4217 {
4218 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4219 old_ent = (char *) old_ent + htab->root.table.entsize;
4220 }
4221 }
4222 }
4223 }
4224
4225 weaks = NULL;
4226 ever = extversym != NULL ? extversym + extsymoff : NULL;
4227 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4228 isym < isymend;
4229 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4230 {
4231 int bind;
4232 bfd_vma value;
4233 asection *sec, *new_sec;
4234 flagword flags;
4235 const char *name;
4236 struct elf_link_hash_entry *h;
4237 struct elf_link_hash_entry *hi;
4238 bfd_boolean definition;
4239 bfd_boolean size_change_ok;
4240 bfd_boolean type_change_ok;
4241 bfd_boolean new_weakdef;
4242 bfd_boolean new_weak;
4243 bfd_boolean old_weak;
4244 bfd_boolean override;
4245 bfd_boolean common;
4246 bfd_boolean discarded;
4247 unsigned int old_alignment;
4248 bfd *old_bfd;
4249 bfd_boolean matched;
4250
4251 override = FALSE;
4252
4253 /* Treat common symbol as undefined for --no-define-common. */
4254 if (isym->st_shndx == SHN_COMMON
4255 && info->inhibit_common_definition)
4256 isym->st_shndx = SHN_UNDEF;
4257
4258 flags = BSF_NO_FLAGS;
4259 sec = NULL;
4260 value = isym->st_value;
4261 common = bed->common_definition (isym);
4262 discarded = FALSE;
4263
4264 bind = ELF_ST_BIND (isym->st_info);
4265 switch (bind)
4266 {
4267 case STB_LOCAL:
4268 /* This should be impossible, since ELF requires that all
4269 global symbols follow all local symbols, and that sh_info
4270 point to the first global symbol. Unfortunately, Irix 5
4271 screws this up. */
4272 continue;
4273
4274 case STB_GLOBAL:
4275 if (isym->st_shndx != SHN_UNDEF && !common)
4276 flags = BSF_GLOBAL;
4277 break;
4278
4279 case STB_WEAK:
4280 flags = BSF_WEAK;
4281 break;
4282
4283 case STB_GNU_UNIQUE:
4284 flags = BSF_GNU_UNIQUE;
4285 break;
4286
4287 default:
4288 /* Leave it up to the processor backend. */
4289 break;
4290 }
4291
4292 if (isym->st_shndx == SHN_UNDEF)
4293 sec = bfd_und_section_ptr;
4294 else if (isym->st_shndx == SHN_ABS)
4295 sec = bfd_abs_section_ptr;
4296 else if (isym->st_shndx == SHN_COMMON)
4297 {
4298 sec = bfd_com_section_ptr;
4299 /* What ELF calls the size we call the value. What ELF
4300 calls the value we call the alignment. */
4301 value = isym->st_size;
4302 }
4303 else
4304 {
4305 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4306 if (sec == NULL)
4307 sec = bfd_abs_section_ptr;
4308 else if (discarded_section (sec))
4309 {
4310 /* Symbols from discarded section are undefined. We keep
4311 its visibility. */
4312 sec = bfd_und_section_ptr;
4313 discarded = TRUE;
4314 isym->st_shndx = SHN_UNDEF;
4315 }
4316 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4317 value -= sec->vma;
4318 }
4319
4320 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4321 isym->st_name);
4322 if (name == NULL)
4323 goto error_free_vers;
4324
4325 if (isym->st_shndx == SHN_COMMON
4326 && (abfd->flags & BFD_PLUGIN) != 0)
4327 {
4328 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4329
4330 if (xc == NULL)
4331 {
4332 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4333 | SEC_EXCLUDE);
4334 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4335 if (xc == NULL)
4336 goto error_free_vers;
4337 }
4338 sec = xc;
4339 }
4340 else if (isym->st_shndx == SHN_COMMON
4341 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4342 && !bfd_link_relocatable (info))
4343 {
4344 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4345
4346 if (tcomm == NULL)
4347 {
4348 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4349 | SEC_LINKER_CREATED);
4350 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4351 if (tcomm == NULL)
4352 goto error_free_vers;
4353 }
4354 sec = tcomm;
4355 }
4356 else if (bed->elf_add_symbol_hook)
4357 {
4358 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4359 &sec, &value))
4360 goto error_free_vers;
4361
4362 /* The hook function sets the name to NULL if this symbol
4363 should be skipped for some reason. */
4364 if (name == NULL)
4365 continue;
4366 }
4367
4368 /* Sanity check that all possibilities were handled. */
4369 if (sec == NULL)
4370 {
4371 bfd_set_error (bfd_error_bad_value);
4372 goto error_free_vers;
4373 }
4374
4375 /* Silently discard TLS symbols from --just-syms. There's
4376 no way to combine a static TLS block with a new TLS block
4377 for this executable. */
4378 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4379 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4380 continue;
4381
4382 if (bfd_is_und_section (sec)
4383 || bfd_is_com_section (sec))
4384 definition = FALSE;
4385 else
4386 definition = TRUE;
4387
4388 size_change_ok = FALSE;
4389 type_change_ok = bed->type_change_ok;
4390 old_weak = FALSE;
4391 matched = FALSE;
4392 old_alignment = 0;
4393 old_bfd = NULL;
4394 new_sec = sec;
4395
4396 if (is_elf_hash_table (htab))
4397 {
4398 Elf_Internal_Versym iver;
4399 unsigned int vernum = 0;
4400 bfd_boolean skip;
4401
4402 if (ever == NULL)
4403 {
4404 if (info->default_imported_symver)
4405 /* Use the default symbol version created earlier. */
4406 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4407 else
4408 iver.vs_vers = 0;
4409 }
4410 else
4411 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4412
4413 vernum = iver.vs_vers & VERSYM_VERSION;
4414
4415 /* If this is a hidden symbol, or if it is not version
4416 1, we append the version name to the symbol name.
4417 However, we do not modify a non-hidden absolute symbol
4418 if it is not a function, because it might be the version
4419 symbol itself. FIXME: What if it isn't? */
4420 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4421 || (vernum > 1
4422 && (!bfd_is_abs_section (sec)
4423 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4424 {
4425 const char *verstr;
4426 size_t namelen, verlen, newlen;
4427 char *newname, *p;
4428
4429 if (isym->st_shndx != SHN_UNDEF)
4430 {
4431 if (vernum > elf_tdata (abfd)->cverdefs)
4432 verstr = NULL;
4433 else if (vernum > 1)
4434 verstr =
4435 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4436 else
4437 verstr = "";
4438
4439 if (verstr == NULL)
4440 {
4441 _bfd_error_handler
4442 /* xgettext:c-format */
4443 (_("%B: %s: invalid version %u (max %d)"),
4444 abfd, name, vernum,
4445 elf_tdata (abfd)->cverdefs);
4446 bfd_set_error (bfd_error_bad_value);
4447 goto error_free_vers;
4448 }
4449 }
4450 else
4451 {
4452 /* We cannot simply test for the number of
4453 entries in the VERNEED section since the
4454 numbers for the needed versions do not start
4455 at 0. */
4456 Elf_Internal_Verneed *t;
4457
4458 verstr = NULL;
4459 for (t = elf_tdata (abfd)->verref;
4460 t != NULL;
4461 t = t->vn_nextref)
4462 {
4463 Elf_Internal_Vernaux *a;
4464
4465 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4466 {
4467 if (a->vna_other == vernum)
4468 {
4469 verstr = a->vna_nodename;
4470 break;
4471 }
4472 }
4473 if (a != NULL)
4474 break;
4475 }
4476 if (verstr == NULL)
4477 {
4478 _bfd_error_handler
4479 /* xgettext:c-format */
4480 (_("%B: %s: invalid needed version %d"),
4481 abfd, name, vernum);
4482 bfd_set_error (bfd_error_bad_value);
4483 goto error_free_vers;
4484 }
4485 }
4486
4487 namelen = strlen (name);
4488 verlen = strlen (verstr);
4489 newlen = namelen + verlen + 2;
4490 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4491 && isym->st_shndx != SHN_UNDEF)
4492 ++newlen;
4493
4494 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4495 if (newname == NULL)
4496 goto error_free_vers;
4497 memcpy (newname, name, namelen);
4498 p = newname + namelen;
4499 *p++ = ELF_VER_CHR;
4500 /* If this is a defined non-hidden version symbol,
4501 we add another @ to the name. This indicates the
4502 default version of the symbol. */
4503 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4504 && isym->st_shndx != SHN_UNDEF)
4505 *p++ = ELF_VER_CHR;
4506 memcpy (p, verstr, verlen + 1);
4507
4508 name = newname;
4509 }
4510
4511 /* If this symbol has default visibility and the user has
4512 requested we not re-export it, then mark it as hidden. */
4513 if (!bfd_is_und_section (sec)
4514 && !dynamic
4515 && abfd->no_export
4516 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4517 isym->st_other = (STV_HIDDEN
4518 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4519
4520 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4521 sym_hash, &old_bfd, &old_weak,
4522 &old_alignment, &skip, &override,
4523 &type_change_ok, &size_change_ok,
4524 &matched))
4525 goto error_free_vers;
4526
4527 if (skip)
4528 continue;
4529
4530 /* Override a definition only if the new symbol matches the
4531 existing one. */
4532 if (override && matched)
4533 definition = FALSE;
4534
4535 h = *sym_hash;
4536 while (h->root.type == bfd_link_hash_indirect
4537 || h->root.type == bfd_link_hash_warning)
4538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4539
4540 if (elf_tdata (abfd)->verdef != NULL
4541 && vernum > 1
4542 && definition)
4543 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4544 }
4545
4546 if (! (_bfd_generic_link_add_one_symbol
4547 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4548 (struct bfd_link_hash_entry **) sym_hash)))
4549 goto error_free_vers;
4550
4551 if ((flags & BSF_GNU_UNIQUE)
4552 && (abfd->flags & DYNAMIC) == 0
4553 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4554 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4555
4556 h = *sym_hash;
4557 /* We need to make sure that indirect symbol dynamic flags are
4558 updated. */
4559 hi = h;
4560 while (h->root.type == bfd_link_hash_indirect
4561 || h->root.type == bfd_link_hash_warning)
4562 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4563
4564 /* Setting the index to -3 tells elf_link_output_extsym that
4565 this symbol is defined in a discarded section. */
4566 if (discarded)
4567 h->indx = -3;
4568
4569 *sym_hash = h;
4570
4571 new_weak = (flags & BSF_WEAK) != 0;
4572 new_weakdef = FALSE;
4573 if (dynamic
4574 && definition
4575 && new_weak
4576 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4577 && is_elf_hash_table (htab)
4578 && h->u.weakdef == NULL)
4579 {
4580 /* Keep a list of all weak defined non function symbols from
4581 a dynamic object, using the weakdef field. Later in this
4582 function we will set the weakdef field to the correct
4583 value. We only put non-function symbols from dynamic
4584 objects on this list, because that happens to be the only
4585 time we need to know the normal symbol corresponding to a
4586 weak symbol, and the information is time consuming to
4587 figure out. If the weakdef field is not already NULL,
4588 then this symbol was already defined by some previous
4589 dynamic object, and we will be using that previous
4590 definition anyhow. */
4591
4592 h->u.weakdef = weaks;
4593 weaks = h;
4594 new_weakdef = TRUE;
4595 }
4596
4597 /* Set the alignment of a common symbol. */
4598 if ((common || bfd_is_com_section (sec))
4599 && h->root.type == bfd_link_hash_common)
4600 {
4601 unsigned int align;
4602
4603 if (common)
4604 align = bfd_log2 (isym->st_value);
4605 else
4606 {
4607 /* The new symbol is a common symbol in a shared object.
4608 We need to get the alignment from the section. */
4609 align = new_sec->alignment_power;
4610 }
4611 if (align > old_alignment)
4612 h->root.u.c.p->alignment_power = align;
4613 else
4614 h->root.u.c.p->alignment_power = old_alignment;
4615 }
4616
4617 if (is_elf_hash_table (htab))
4618 {
4619 /* Set a flag in the hash table entry indicating the type of
4620 reference or definition we just found. A dynamic symbol
4621 is one which is referenced or defined by both a regular
4622 object and a shared object. */
4623 bfd_boolean dynsym = FALSE;
4624
4625 /* Plugin symbols aren't normal. Don't set def_regular or
4626 ref_regular for them, or make them dynamic. */
4627 if ((abfd->flags & BFD_PLUGIN) != 0)
4628 ;
4629 else if (! dynamic)
4630 {
4631 if (! definition)
4632 {
4633 h->ref_regular = 1;
4634 if (bind != STB_WEAK)
4635 h->ref_regular_nonweak = 1;
4636 }
4637 else
4638 {
4639 h->def_regular = 1;
4640 if (h->def_dynamic)
4641 {
4642 h->def_dynamic = 0;
4643 h->ref_dynamic = 1;
4644 }
4645 }
4646
4647 /* If the indirect symbol has been forced local, don't
4648 make the real symbol dynamic. */
4649 if ((h == hi || !hi->forced_local)
4650 && (bfd_link_dll (info)
4651 || h->def_dynamic
4652 || h->ref_dynamic))
4653 dynsym = TRUE;
4654 }
4655 else
4656 {
4657 if (! definition)
4658 {
4659 h->ref_dynamic = 1;
4660 hi->ref_dynamic = 1;
4661 }
4662 else
4663 {
4664 h->def_dynamic = 1;
4665 hi->def_dynamic = 1;
4666 }
4667
4668 /* If the indirect symbol has been forced local, don't
4669 make the real symbol dynamic. */
4670 if ((h == hi || !hi->forced_local)
4671 && (h->def_regular
4672 || h->ref_regular
4673 || (h->u.weakdef != NULL
4674 && ! new_weakdef
4675 && h->u.weakdef->dynindx != -1)))
4676 dynsym = TRUE;
4677 }
4678
4679 /* Check to see if we need to add an indirect symbol for
4680 the default name. */
4681 if (definition
4682 || (!override && h->root.type == bfd_link_hash_common))
4683 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4684 sec, value, &old_bfd, &dynsym))
4685 goto error_free_vers;
4686
4687 /* Check the alignment when a common symbol is involved. This
4688 can change when a common symbol is overridden by a normal
4689 definition or a common symbol is ignored due to the old
4690 normal definition. We need to make sure the maximum
4691 alignment is maintained. */
4692 if ((old_alignment || common)
4693 && h->root.type != bfd_link_hash_common)
4694 {
4695 unsigned int common_align;
4696 unsigned int normal_align;
4697 unsigned int symbol_align;
4698 bfd *normal_bfd;
4699 bfd *common_bfd;
4700
4701 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4702 || h->root.type == bfd_link_hash_defweak);
4703
4704 symbol_align = ffs (h->root.u.def.value) - 1;
4705 if (h->root.u.def.section->owner != NULL
4706 && (h->root.u.def.section->owner->flags
4707 & (DYNAMIC | BFD_PLUGIN)) == 0)
4708 {
4709 normal_align = h->root.u.def.section->alignment_power;
4710 if (normal_align > symbol_align)
4711 normal_align = symbol_align;
4712 }
4713 else
4714 normal_align = symbol_align;
4715
4716 if (old_alignment)
4717 {
4718 common_align = old_alignment;
4719 common_bfd = old_bfd;
4720 normal_bfd = abfd;
4721 }
4722 else
4723 {
4724 common_align = bfd_log2 (isym->st_value);
4725 common_bfd = abfd;
4726 normal_bfd = old_bfd;
4727 }
4728
4729 if (normal_align < common_align)
4730 {
4731 /* PR binutils/2735 */
4732 if (normal_bfd == NULL)
4733 _bfd_error_handler
4734 /* xgettext:c-format */
4735 (_("Warning: alignment %u of common symbol `%s' in %B is"
4736 " greater than the alignment (%u) of its section %A"),
4737 1 << common_align, name, common_bfd,
4738 1 << normal_align, h->root.u.def.section);
4739 else
4740 _bfd_error_handler
4741 /* xgettext:c-format */
4742 (_("Warning: alignment %u of symbol `%s' in %B"
4743 " is smaller than %u in %B"),
4744 1 << normal_align, name, normal_bfd,
4745 1 << common_align, common_bfd);
4746 }
4747 }
4748
4749 /* Remember the symbol size if it isn't undefined. */
4750 if (isym->st_size != 0
4751 && isym->st_shndx != SHN_UNDEF
4752 && (definition || h->size == 0))
4753 {
4754 if (h->size != 0
4755 && h->size != isym->st_size
4756 && ! size_change_ok)
4757 _bfd_error_handler
4758 /* xgettext:c-format */
4759 (_("Warning: size of symbol `%s' changed"
4760 " from %Lu in %B to %Lu in %B"),
4761 name, h->size, old_bfd, isym->st_size, abfd);
4762
4763 h->size = isym->st_size;
4764 }
4765
4766 /* If this is a common symbol, then we always want H->SIZE
4767 to be the size of the common symbol. The code just above
4768 won't fix the size if a common symbol becomes larger. We
4769 don't warn about a size change here, because that is
4770 covered by --warn-common. Allow changes between different
4771 function types. */
4772 if (h->root.type == bfd_link_hash_common)
4773 h->size = h->root.u.c.size;
4774
4775 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4776 && ((definition && !new_weak)
4777 || (old_weak && h->root.type == bfd_link_hash_common)
4778 || h->type == STT_NOTYPE))
4779 {
4780 unsigned int type = ELF_ST_TYPE (isym->st_info);
4781
4782 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4783 symbol. */
4784 if (type == STT_GNU_IFUNC
4785 && (abfd->flags & DYNAMIC) != 0)
4786 type = STT_FUNC;
4787
4788 if (h->type != type)
4789 {
4790 if (h->type != STT_NOTYPE && ! type_change_ok)
4791 /* xgettext:c-format */
4792 _bfd_error_handler
4793 (_("Warning: type of symbol `%s' changed"
4794 " from %d to %d in %B"),
4795 name, h->type, type, abfd);
4796
4797 h->type = type;
4798 }
4799 }
4800
4801 /* Merge st_other field. */
4802 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4803
4804 /* We don't want to make debug symbol dynamic. */
4805 if (definition
4806 && (sec->flags & SEC_DEBUGGING)
4807 && !bfd_link_relocatable (info))
4808 dynsym = FALSE;
4809
4810 /* Nor should we make plugin symbols dynamic. */
4811 if ((abfd->flags & BFD_PLUGIN) != 0)
4812 dynsym = FALSE;
4813
4814 if (definition)
4815 {
4816 h->target_internal = isym->st_target_internal;
4817 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4818 }
4819
4820 if (definition && !dynamic)
4821 {
4822 char *p = strchr (name, ELF_VER_CHR);
4823 if (p != NULL && p[1] != ELF_VER_CHR)
4824 {
4825 /* Queue non-default versions so that .symver x, x@FOO
4826 aliases can be checked. */
4827 if (!nondeflt_vers)
4828 {
4829 amt = ((isymend - isym + 1)
4830 * sizeof (struct elf_link_hash_entry *));
4831 nondeflt_vers
4832 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4833 if (!nondeflt_vers)
4834 goto error_free_vers;
4835 }
4836 nondeflt_vers[nondeflt_vers_cnt++] = h;
4837 }
4838 }
4839
4840 if (dynsym && h->dynindx == -1)
4841 {
4842 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4843 goto error_free_vers;
4844 if (h->u.weakdef != NULL
4845 && ! new_weakdef
4846 && h->u.weakdef->dynindx == -1)
4847 {
4848 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4849 goto error_free_vers;
4850 }
4851 }
4852 else if (h->dynindx != -1)
4853 /* If the symbol already has a dynamic index, but
4854 visibility says it should not be visible, turn it into
4855 a local symbol. */
4856 switch (ELF_ST_VISIBILITY (h->other))
4857 {
4858 case STV_INTERNAL:
4859 case STV_HIDDEN:
4860 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4861 dynsym = FALSE;
4862 break;
4863 }
4864
4865 /* Don't add DT_NEEDED for references from the dummy bfd nor
4866 for unmatched symbol. */
4867 if (!add_needed
4868 && matched
4869 && definition
4870 && ((dynsym
4871 && h->ref_regular_nonweak
4872 && (old_bfd == NULL
4873 || (old_bfd->flags & BFD_PLUGIN) == 0))
4874 || (h->ref_dynamic_nonweak
4875 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4876 && !on_needed_list (elf_dt_name (abfd),
4877 htab->needed, NULL))))
4878 {
4879 int ret;
4880 const char *soname = elf_dt_name (abfd);
4881
4882 info->callbacks->minfo ("%!", soname, old_bfd,
4883 h->root.root.string);
4884
4885 /* A symbol from a library loaded via DT_NEEDED of some
4886 other library is referenced by a regular object.
4887 Add a DT_NEEDED entry for it. Issue an error if
4888 --no-add-needed is used and the reference was not
4889 a weak one. */
4890 if (old_bfd != NULL
4891 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4892 {
4893 _bfd_error_handler
4894 /* xgettext:c-format */
4895 (_("%B: undefined reference to symbol '%s'"),
4896 old_bfd, name);
4897 bfd_set_error (bfd_error_missing_dso);
4898 goto error_free_vers;
4899 }
4900
4901 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4902 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4903
4904 add_needed = TRUE;
4905 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4906 if (ret < 0)
4907 goto error_free_vers;
4908
4909 BFD_ASSERT (ret == 0);
4910 }
4911 }
4912 }
4913
4914 if (extversym != NULL)
4915 {
4916 free (extversym);
4917 extversym = NULL;
4918 }
4919
4920 if (isymbuf != NULL)
4921 {
4922 free (isymbuf);
4923 isymbuf = NULL;
4924 }
4925
4926 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4927 {
4928 unsigned int i;
4929
4930 /* Restore the symbol table. */
4931 old_ent = (char *) old_tab + tabsize;
4932 memset (elf_sym_hashes (abfd), 0,
4933 extsymcount * sizeof (struct elf_link_hash_entry *));
4934 htab->root.table.table = old_table;
4935 htab->root.table.size = old_size;
4936 htab->root.table.count = old_count;
4937 memcpy (htab->root.table.table, old_tab, tabsize);
4938 htab->root.undefs = old_undefs;
4939 htab->root.undefs_tail = old_undefs_tail;
4940 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4941 free (old_strtab);
4942 old_strtab = NULL;
4943 for (i = 0; i < htab->root.table.size; i++)
4944 {
4945 struct bfd_hash_entry *p;
4946 struct elf_link_hash_entry *h;
4947 bfd_size_type size;
4948 unsigned int alignment_power;
4949 unsigned int non_ir_ref_dynamic;
4950
4951 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4952 {
4953 h = (struct elf_link_hash_entry *) p;
4954 if (h->root.type == bfd_link_hash_warning)
4955 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4956
4957 /* Preserve the maximum alignment and size for common
4958 symbols even if this dynamic lib isn't on DT_NEEDED
4959 since it can still be loaded at run time by another
4960 dynamic lib. */
4961 if (h->root.type == bfd_link_hash_common)
4962 {
4963 size = h->root.u.c.size;
4964 alignment_power = h->root.u.c.p->alignment_power;
4965 }
4966 else
4967 {
4968 size = 0;
4969 alignment_power = 0;
4970 }
4971 /* Preserve non_ir_ref_dynamic so that this symbol
4972 will be exported when the dynamic lib becomes needed
4973 in the second pass. */
4974 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
4975 memcpy (p, old_ent, htab->root.table.entsize);
4976 old_ent = (char *) old_ent + htab->root.table.entsize;
4977 h = (struct elf_link_hash_entry *) p;
4978 if (h->root.type == bfd_link_hash_warning)
4979 {
4980 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4981 old_ent = (char *) old_ent + htab->root.table.entsize;
4982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4983 }
4984 if (h->root.type == bfd_link_hash_common)
4985 {
4986 if (size > h->root.u.c.size)
4987 h->root.u.c.size = size;
4988 if (alignment_power > h->root.u.c.p->alignment_power)
4989 h->root.u.c.p->alignment_power = alignment_power;
4990 }
4991 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
4992 }
4993 }
4994
4995 /* Make a special call to the linker "notice" function to
4996 tell it that symbols added for crefs may need to be removed. */
4997 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4998 goto error_free_vers;
4999
5000 free (old_tab);
5001 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5002 alloc_mark);
5003 if (nondeflt_vers != NULL)
5004 free (nondeflt_vers);
5005 return TRUE;
5006 }
5007
5008 if (old_tab != NULL)
5009 {
5010 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5011 goto error_free_vers;
5012 free (old_tab);
5013 old_tab = NULL;
5014 }
5015
5016 /* Now that all the symbols from this input file are created, if
5017 not performing a relocatable link, handle .symver foo, foo@BAR
5018 such that any relocs against foo become foo@BAR. */
5019 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5020 {
5021 size_t cnt, symidx;
5022
5023 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5024 {
5025 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5026 char *shortname, *p;
5027
5028 p = strchr (h->root.root.string, ELF_VER_CHR);
5029 if (p == NULL
5030 || (h->root.type != bfd_link_hash_defined
5031 && h->root.type != bfd_link_hash_defweak))
5032 continue;
5033
5034 amt = p - h->root.root.string;
5035 shortname = (char *) bfd_malloc (amt + 1);
5036 if (!shortname)
5037 goto error_free_vers;
5038 memcpy (shortname, h->root.root.string, amt);
5039 shortname[amt] = '\0';
5040
5041 hi = (struct elf_link_hash_entry *)
5042 bfd_link_hash_lookup (&htab->root, shortname,
5043 FALSE, FALSE, FALSE);
5044 if (hi != NULL
5045 && hi->root.type == h->root.type
5046 && hi->root.u.def.value == h->root.u.def.value
5047 && hi->root.u.def.section == h->root.u.def.section)
5048 {
5049 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5050 hi->root.type = bfd_link_hash_indirect;
5051 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5052 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5053 sym_hash = elf_sym_hashes (abfd);
5054 if (sym_hash)
5055 for (symidx = 0; symidx < extsymcount; ++symidx)
5056 if (sym_hash[symidx] == hi)
5057 {
5058 sym_hash[symidx] = h;
5059 break;
5060 }
5061 }
5062 free (shortname);
5063 }
5064 free (nondeflt_vers);
5065 nondeflt_vers = NULL;
5066 }
5067
5068 /* Now set the weakdefs field correctly for all the weak defined
5069 symbols we found. The only way to do this is to search all the
5070 symbols. Since we only need the information for non functions in
5071 dynamic objects, that's the only time we actually put anything on
5072 the list WEAKS. We need this information so that if a regular
5073 object refers to a symbol defined weakly in a dynamic object, the
5074 real symbol in the dynamic object is also put in the dynamic
5075 symbols; we also must arrange for both symbols to point to the
5076 same memory location. We could handle the general case of symbol
5077 aliasing, but a general symbol alias can only be generated in
5078 assembler code, handling it correctly would be very time
5079 consuming, and other ELF linkers don't handle general aliasing
5080 either. */
5081 if (weaks != NULL)
5082 {
5083 struct elf_link_hash_entry **hpp;
5084 struct elf_link_hash_entry **hppend;
5085 struct elf_link_hash_entry **sorted_sym_hash;
5086 struct elf_link_hash_entry *h;
5087 size_t sym_count;
5088
5089 /* Since we have to search the whole symbol list for each weak
5090 defined symbol, search time for N weak defined symbols will be
5091 O(N^2). Binary search will cut it down to O(NlogN). */
5092 amt = extsymcount;
5093 amt *= sizeof (struct elf_link_hash_entry *);
5094 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5095 if (sorted_sym_hash == NULL)
5096 goto error_return;
5097 sym_hash = sorted_sym_hash;
5098 hpp = elf_sym_hashes (abfd);
5099 hppend = hpp + extsymcount;
5100 sym_count = 0;
5101 for (; hpp < hppend; hpp++)
5102 {
5103 h = *hpp;
5104 if (h != NULL
5105 && h->root.type == bfd_link_hash_defined
5106 && !bed->is_function_type (h->type))
5107 {
5108 *sym_hash = h;
5109 sym_hash++;
5110 sym_count++;
5111 }
5112 }
5113
5114 qsort (sorted_sym_hash, sym_count,
5115 sizeof (struct elf_link_hash_entry *),
5116 elf_sort_symbol);
5117
5118 while (weaks != NULL)
5119 {
5120 struct elf_link_hash_entry *hlook;
5121 asection *slook;
5122 bfd_vma vlook;
5123 size_t i, j, idx = 0;
5124
5125 hlook = weaks;
5126 weaks = hlook->u.weakdef;
5127 hlook->u.weakdef = NULL;
5128
5129 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5130 || hlook->root.type == bfd_link_hash_defweak
5131 || hlook->root.type == bfd_link_hash_common
5132 || hlook->root.type == bfd_link_hash_indirect);
5133 slook = hlook->root.u.def.section;
5134 vlook = hlook->root.u.def.value;
5135
5136 i = 0;
5137 j = sym_count;
5138 while (i != j)
5139 {
5140 bfd_signed_vma vdiff;
5141 idx = (i + j) / 2;
5142 h = sorted_sym_hash[idx];
5143 vdiff = vlook - h->root.u.def.value;
5144 if (vdiff < 0)
5145 j = idx;
5146 else if (vdiff > 0)
5147 i = idx + 1;
5148 else
5149 {
5150 int sdiff = slook->id - h->root.u.def.section->id;
5151 if (sdiff < 0)
5152 j = idx;
5153 else if (sdiff > 0)
5154 i = idx + 1;
5155 else
5156 break;
5157 }
5158 }
5159
5160 /* We didn't find a value/section match. */
5161 if (i == j)
5162 continue;
5163
5164 /* With multiple aliases, or when the weak symbol is already
5165 strongly defined, we have multiple matching symbols and
5166 the binary search above may land on any of them. Step
5167 one past the matching symbol(s). */
5168 while (++idx != j)
5169 {
5170 h = sorted_sym_hash[idx];
5171 if (h->root.u.def.section != slook
5172 || h->root.u.def.value != vlook)
5173 break;
5174 }
5175
5176 /* Now look back over the aliases. Since we sorted by size
5177 as well as value and section, we'll choose the one with
5178 the largest size. */
5179 while (idx-- != i)
5180 {
5181 h = sorted_sym_hash[idx];
5182
5183 /* Stop if value or section doesn't match. */
5184 if (h->root.u.def.section != slook
5185 || h->root.u.def.value != vlook)
5186 break;
5187 else if (h != hlook)
5188 {
5189 hlook->u.weakdef = h;
5190
5191 /* If the weak definition is in the list of dynamic
5192 symbols, make sure the real definition is put
5193 there as well. */
5194 if (hlook->dynindx != -1 && h->dynindx == -1)
5195 {
5196 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5197 {
5198 err_free_sym_hash:
5199 free (sorted_sym_hash);
5200 goto error_return;
5201 }
5202 }
5203
5204 /* If the real definition is in the list of dynamic
5205 symbols, make sure the weak definition is put
5206 there as well. If we don't do this, then the
5207 dynamic loader might not merge the entries for the
5208 real definition and the weak definition. */
5209 if (h->dynindx != -1 && hlook->dynindx == -1)
5210 {
5211 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5212 goto err_free_sym_hash;
5213 }
5214 break;
5215 }
5216 }
5217 }
5218
5219 free (sorted_sym_hash);
5220 }
5221
5222 if (bed->check_directives
5223 && !(*bed->check_directives) (abfd, info))
5224 return FALSE;
5225
5226 if (!info->check_relocs_after_open_input
5227 && !_bfd_elf_link_check_relocs (abfd, info))
5228 return FALSE;
5229
5230 /* If this is a non-traditional link, try to optimize the handling
5231 of the .stab/.stabstr sections. */
5232 if (! dynamic
5233 && ! info->traditional_format
5234 && is_elf_hash_table (htab)
5235 && (info->strip != strip_all && info->strip != strip_debugger))
5236 {
5237 asection *stabstr;
5238
5239 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5240 if (stabstr != NULL)
5241 {
5242 bfd_size_type string_offset = 0;
5243 asection *stab;
5244
5245 for (stab = abfd->sections; stab; stab = stab->next)
5246 if (CONST_STRNEQ (stab->name, ".stab")
5247 && (!stab->name[5] ||
5248 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5249 && (stab->flags & SEC_MERGE) == 0
5250 && !bfd_is_abs_section (stab->output_section))
5251 {
5252 struct bfd_elf_section_data *secdata;
5253
5254 secdata = elf_section_data (stab);
5255 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5256 stabstr, &secdata->sec_info,
5257 &string_offset))
5258 goto error_return;
5259 if (secdata->sec_info)
5260 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5261 }
5262 }
5263 }
5264
5265 if (is_elf_hash_table (htab) && add_needed)
5266 {
5267 /* Add this bfd to the loaded list. */
5268 struct elf_link_loaded_list *n;
5269
5270 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5271 if (n == NULL)
5272 goto error_return;
5273 n->abfd = abfd;
5274 n->next = htab->loaded;
5275 htab->loaded = n;
5276 }
5277
5278 return TRUE;
5279
5280 error_free_vers:
5281 if (old_tab != NULL)
5282 free (old_tab);
5283 if (old_strtab != NULL)
5284 free (old_strtab);
5285 if (nondeflt_vers != NULL)
5286 free (nondeflt_vers);
5287 if (extversym != NULL)
5288 free (extversym);
5289 error_free_sym:
5290 if (isymbuf != NULL)
5291 free (isymbuf);
5292 error_return:
5293 return FALSE;
5294 }
5295
5296 /* Return the linker hash table entry of a symbol that might be
5297 satisfied by an archive symbol. Return -1 on error. */
5298
5299 struct elf_link_hash_entry *
5300 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5301 struct bfd_link_info *info,
5302 const char *name)
5303 {
5304 struct elf_link_hash_entry *h;
5305 char *p, *copy;
5306 size_t len, first;
5307
5308 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5309 if (h != NULL)
5310 return h;
5311
5312 /* If this is a default version (the name contains @@), look up the
5313 symbol again with only one `@' as well as without the version.
5314 The effect is that references to the symbol with and without the
5315 version will be matched by the default symbol in the archive. */
5316
5317 p = strchr (name, ELF_VER_CHR);
5318 if (p == NULL || p[1] != ELF_VER_CHR)
5319 return h;
5320
5321 /* First check with only one `@'. */
5322 len = strlen (name);
5323 copy = (char *) bfd_alloc (abfd, len);
5324 if (copy == NULL)
5325 return (struct elf_link_hash_entry *) 0 - 1;
5326
5327 first = p - name + 1;
5328 memcpy (copy, name, first);
5329 memcpy (copy + first, name + first + 1, len - first);
5330
5331 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5332 if (h == NULL)
5333 {
5334 /* We also need to check references to the symbol without the
5335 version. */
5336 copy[first - 1] = '\0';
5337 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5338 FALSE, FALSE, TRUE);
5339 }
5340
5341 bfd_release (abfd, copy);
5342 return h;
5343 }
5344
5345 /* Add symbols from an ELF archive file to the linker hash table. We
5346 don't use _bfd_generic_link_add_archive_symbols because we need to
5347 handle versioned symbols.
5348
5349 Fortunately, ELF archive handling is simpler than that done by
5350 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5351 oddities. In ELF, if we find a symbol in the archive map, and the
5352 symbol is currently undefined, we know that we must pull in that
5353 object file.
5354
5355 Unfortunately, we do have to make multiple passes over the symbol
5356 table until nothing further is resolved. */
5357
5358 static bfd_boolean
5359 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5360 {
5361 symindex c;
5362 unsigned char *included = NULL;
5363 carsym *symdefs;
5364 bfd_boolean loop;
5365 bfd_size_type amt;
5366 const struct elf_backend_data *bed;
5367 struct elf_link_hash_entry * (*archive_symbol_lookup)
5368 (bfd *, struct bfd_link_info *, const char *);
5369
5370 if (! bfd_has_map (abfd))
5371 {
5372 /* An empty archive is a special case. */
5373 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5374 return TRUE;
5375 bfd_set_error (bfd_error_no_armap);
5376 return FALSE;
5377 }
5378
5379 /* Keep track of all symbols we know to be already defined, and all
5380 files we know to be already included. This is to speed up the
5381 second and subsequent passes. */
5382 c = bfd_ardata (abfd)->symdef_count;
5383 if (c == 0)
5384 return TRUE;
5385 amt = c;
5386 amt *= sizeof (*included);
5387 included = (unsigned char *) bfd_zmalloc (amt);
5388 if (included == NULL)
5389 return FALSE;
5390
5391 symdefs = bfd_ardata (abfd)->symdefs;
5392 bed = get_elf_backend_data (abfd);
5393 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5394
5395 do
5396 {
5397 file_ptr last;
5398 symindex i;
5399 carsym *symdef;
5400 carsym *symdefend;
5401
5402 loop = FALSE;
5403 last = -1;
5404
5405 symdef = symdefs;
5406 symdefend = symdef + c;
5407 for (i = 0; symdef < symdefend; symdef++, i++)
5408 {
5409 struct elf_link_hash_entry *h;
5410 bfd *element;
5411 struct bfd_link_hash_entry *undefs_tail;
5412 symindex mark;
5413
5414 if (included[i])
5415 continue;
5416 if (symdef->file_offset == last)
5417 {
5418 included[i] = TRUE;
5419 continue;
5420 }
5421
5422 h = archive_symbol_lookup (abfd, info, symdef->name);
5423 if (h == (struct elf_link_hash_entry *) 0 - 1)
5424 goto error_return;
5425
5426 if (h == NULL)
5427 continue;
5428
5429 if (h->root.type == bfd_link_hash_common)
5430 {
5431 /* We currently have a common symbol. The archive map contains
5432 a reference to this symbol, so we may want to include it. We
5433 only want to include it however, if this archive element
5434 contains a definition of the symbol, not just another common
5435 declaration of it.
5436
5437 Unfortunately some archivers (including GNU ar) will put
5438 declarations of common symbols into their archive maps, as
5439 well as real definitions, so we cannot just go by the archive
5440 map alone. Instead we must read in the element's symbol
5441 table and check that to see what kind of symbol definition
5442 this is. */
5443 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5444 continue;
5445 }
5446 else if (h->root.type != bfd_link_hash_undefined)
5447 {
5448 if (h->root.type != bfd_link_hash_undefweak)
5449 /* Symbol must be defined. Don't check it again. */
5450 included[i] = TRUE;
5451 continue;
5452 }
5453
5454 /* We need to include this archive member. */
5455 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5456 if (element == NULL)
5457 goto error_return;
5458
5459 if (! bfd_check_format (element, bfd_object))
5460 goto error_return;
5461
5462 undefs_tail = info->hash->undefs_tail;
5463
5464 if (!(*info->callbacks
5465 ->add_archive_element) (info, element, symdef->name, &element))
5466 continue;
5467 if (!bfd_link_add_symbols (element, info))
5468 goto error_return;
5469
5470 /* If there are any new undefined symbols, we need to make
5471 another pass through the archive in order to see whether
5472 they can be defined. FIXME: This isn't perfect, because
5473 common symbols wind up on undefs_tail and because an
5474 undefined symbol which is defined later on in this pass
5475 does not require another pass. This isn't a bug, but it
5476 does make the code less efficient than it could be. */
5477 if (undefs_tail != info->hash->undefs_tail)
5478 loop = TRUE;
5479
5480 /* Look backward to mark all symbols from this object file
5481 which we have already seen in this pass. */
5482 mark = i;
5483 do
5484 {
5485 included[mark] = TRUE;
5486 if (mark == 0)
5487 break;
5488 --mark;
5489 }
5490 while (symdefs[mark].file_offset == symdef->file_offset);
5491
5492 /* We mark subsequent symbols from this object file as we go
5493 on through the loop. */
5494 last = symdef->file_offset;
5495 }
5496 }
5497 while (loop);
5498
5499 free (included);
5500
5501 return TRUE;
5502
5503 error_return:
5504 if (included != NULL)
5505 free (included);
5506 return FALSE;
5507 }
5508
5509 /* Given an ELF BFD, add symbols to the global hash table as
5510 appropriate. */
5511
5512 bfd_boolean
5513 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5514 {
5515 switch (bfd_get_format (abfd))
5516 {
5517 case bfd_object:
5518 return elf_link_add_object_symbols (abfd, info);
5519 case bfd_archive:
5520 return elf_link_add_archive_symbols (abfd, info);
5521 default:
5522 bfd_set_error (bfd_error_wrong_format);
5523 return FALSE;
5524 }
5525 }
5526 \f
5527 struct hash_codes_info
5528 {
5529 unsigned long *hashcodes;
5530 bfd_boolean error;
5531 };
5532
5533 /* This function will be called though elf_link_hash_traverse to store
5534 all hash value of the exported symbols in an array. */
5535
5536 static bfd_boolean
5537 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5538 {
5539 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5540 const char *name;
5541 unsigned long ha;
5542 char *alc = NULL;
5543
5544 /* Ignore indirect symbols. These are added by the versioning code. */
5545 if (h->dynindx == -1)
5546 return TRUE;
5547
5548 name = h->root.root.string;
5549 if (h->versioned >= versioned)
5550 {
5551 char *p = strchr (name, ELF_VER_CHR);
5552 if (p != NULL)
5553 {
5554 alc = (char *) bfd_malloc (p - name + 1);
5555 if (alc == NULL)
5556 {
5557 inf->error = TRUE;
5558 return FALSE;
5559 }
5560 memcpy (alc, name, p - name);
5561 alc[p - name] = '\0';
5562 name = alc;
5563 }
5564 }
5565
5566 /* Compute the hash value. */
5567 ha = bfd_elf_hash (name);
5568
5569 /* Store the found hash value in the array given as the argument. */
5570 *(inf->hashcodes)++ = ha;
5571
5572 /* And store it in the struct so that we can put it in the hash table
5573 later. */
5574 h->u.elf_hash_value = ha;
5575
5576 if (alc != NULL)
5577 free (alc);
5578
5579 return TRUE;
5580 }
5581
5582 struct collect_gnu_hash_codes
5583 {
5584 bfd *output_bfd;
5585 const struct elf_backend_data *bed;
5586 unsigned long int nsyms;
5587 unsigned long int maskbits;
5588 unsigned long int *hashcodes;
5589 unsigned long int *hashval;
5590 unsigned long int *indx;
5591 unsigned long int *counts;
5592 bfd_vma *bitmask;
5593 bfd_byte *contents;
5594 long int min_dynindx;
5595 unsigned long int bucketcount;
5596 unsigned long int symindx;
5597 long int local_indx;
5598 long int shift1, shift2;
5599 unsigned long int mask;
5600 bfd_boolean error;
5601 };
5602
5603 /* This function will be called though elf_link_hash_traverse to store
5604 all hash value of the exported symbols in an array. */
5605
5606 static bfd_boolean
5607 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5608 {
5609 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5610 const char *name;
5611 unsigned long ha;
5612 char *alc = NULL;
5613
5614 /* Ignore indirect symbols. These are added by the versioning code. */
5615 if (h->dynindx == -1)
5616 return TRUE;
5617
5618 /* Ignore also local symbols and undefined symbols. */
5619 if (! (*s->bed->elf_hash_symbol) (h))
5620 return TRUE;
5621
5622 name = h->root.root.string;
5623 if (h->versioned >= versioned)
5624 {
5625 char *p = strchr (name, ELF_VER_CHR);
5626 if (p != NULL)
5627 {
5628 alc = (char *) bfd_malloc (p - name + 1);
5629 if (alc == NULL)
5630 {
5631 s->error = TRUE;
5632 return FALSE;
5633 }
5634 memcpy (alc, name, p - name);
5635 alc[p - name] = '\0';
5636 name = alc;
5637 }
5638 }
5639
5640 /* Compute the hash value. */
5641 ha = bfd_elf_gnu_hash (name);
5642
5643 /* Store the found hash value in the array for compute_bucket_count,
5644 and also for .dynsym reordering purposes. */
5645 s->hashcodes[s->nsyms] = ha;
5646 s->hashval[h->dynindx] = ha;
5647 ++s->nsyms;
5648 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5649 s->min_dynindx = h->dynindx;
5650
5651 if (alc != NULL)
5652 free (alc);
5653
5654 return TRUE;
5655 }
5656
5657 /* This function will be called though elf_link_hash_traverse to do
5658 final dynaminc symbol renumbering. */
5659
5660 static bfd_boolean
5661 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5662 {
5663 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5664 unsigned long int bucket;
5665 unsigned long int val;
5666
5667 /* Ignore indirect symbols. */
5668 if (h->dynindx == -1)
5669 return TRUE;
5670
5671 /* Ignore also local symbols and undefined symbols. */
5672 if (! (*s->bed->elf_hash_symbol) (h))
5673 {
5674 if (h->dynindx >= s->min_dynindx)
5675 h->dynindx = s->local_indx++;
5676 return TRUE;
5677 }
5678
5679 bucket = s->hashval[h->dynindx] % s->bucketcount;
5680 val = (s->hashval[h->dynindx] >> s->shift1)
5681 & ((s->maskbits >> s->shift1) - 1);
5682 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5683 s->bitmask[val]
5684 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5685 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5686 if (s->counts[bucket] == 1)
5687 /* Last element terminates the chain. */
5688 val |= 1;
5689 bfd_put_32 (s->output_bfd, val,
5690 s->contents + (s->indx[bucket] - s->symindx) * 4);
5691 --s->counts[bucket];
5692 h->dynindx = s->indx[bucket]++;
5693 return TRUE;
5694 }
5695
5696 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5697
5698 bfd_boolean
5699 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5700 {
5701 return !(h->forced_local
5702 || h->root.type == bfd_link_hash_undefined
5703 || h->root.type == bfd_link_hash_undefweak
5704 || ((h->root.type == bfd_link_hash_defined
5705 || h->root.type == bfd_link_hash_defweak)
5706 && h->root.u.def.section->output_section == NULL));
5707 }
5708
5709 /* Array used to determine the number of hash table buckets to use
5710 based on the number of symbols there are. If there are fewer than
5711 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5712 fewer than 37 we use 17 buckets, and so forth. We never use more
5713 than 32771 buckets. */
5714
5715 static const size_t elf_buckets[] =
5716 {
5717 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5718 16411, 32771, 0
5719 };
5720
5721 /* Compute bucket count for hashing table. We do not use a static set
5722 of possible tables sizes anymore. Instead we determine for all
5723 possible reasonable sizes of the table the outcome (i.e., the
5724 number of collisions etc) and choose the best solution. The
5725 weighting functions are not too simple to allow the table to grow
5726 without bounds. Instead one of the weighting factors is the size.
5727 Therefore the result is always a good payoff between few collisions
5728 (= short chain lengths) and table size. */
5729 static size_t
5730 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5731 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5732 unsigned long int nsyms,
5733 int gnu_hash)
5734 {
5735 size_t best_size = 0;
5736 unsigned long int i;
5737
5738 /* We have a problem here. The following code to optimize the table
5739 size requires an integer type with more the 32 bits. If
5740 BFD_HOST_U_64_BIT is set we know about such a type. */
5741 #ifdef BFD_HOST_U_64_BIT
5742 if (info->optimize)
5743 {
5744 size_t minsize;
5745 size_t maxsize;
5746 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5747 bfd *dynobj = elf_hash_table (info)->dynobj;
5748 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5749 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5750 unsigned long int *counts;
5751 bfd_size_type amt;
5752 unsigned int no_improvement_count = 0;
5753
5754 /* Possible optimization parameters: if we have NSYMS symbols we say
5755 that the hashing table must at least have NSYMS/4 and at most
5756 2*NSYMS buckets. */
5757 minsize = nsyms / 4;
5758 if (minsize == 0)
5759 minsize = 1;
5760 best_size = maxsize = nsyms * 2;
5761 if (gnu_hash)
5762 {
5763 if (minsize < 2)
5764 minsize = 2;
5765 if ((best_size & 31) == 0)
5766 ++best_size;
5767 }
5768
5769 /* Create array where we count the collisions in. We must use bfd_malloc
5770 since the size could be large. */
5771 amt = maxsize;
5772 amt *= sizeof (unsigned long int);
5773 counts = (unsigned long int *) bfd_malloc (amt);
5774 if (counts == NULL)
5775 return 0;
5776
5777 /* Compute the "optimal" size for the hash table. The criteria is a
5778 minimal chain length. The minor criteria is (of course) the size
5779 of the table. */
5780 for (i = minsize; i < maxsize; ++i)
5781 {
5782 /* Walk through the array of hashcodes and count the collisions. */
5783 BFD_HOST_U_64_BIT max;
5784 unsigned long int j;
5785 unsigned long int fact;
5786
5787 if (gnu_hash && (i & 31) == 0)
5788 continue;
5789
5790 memset (counts, '\0', i * sizeof (unsigned long int));
5791
5792 /* Determine how often each hash bucket is used. */
5793 for (j = 0; j < nsyms; ++j)
5794 ++counts[hashcodes[j] % i];
5795
5796 /* For the weight function we need some information about the
5797 pagesize on the target. This is information need not be 100%
5798 accurate. Since this information is not available (so far) we
5799 define it here to a reasonable default value. If it is crucial
5800 to have a better value some day simply define this value. */
5801 # ifndef BFD_TARGET_PAGESIZE
5802 # define BFD_TARGET_PAGESIZE (4096)
5803 # endif
5804
5805 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5806 and the chains. */
5807 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5808
5809 # if 1
5810 /* Variant 1: optimize for short chains. We add the squares
5811 of all the chain lengths (which favors many small chain
5812 over a few long chains). */
5813 for (j = 0; j < i; ++j)
5814 max += counts[j] * counts[j];
5815
5816 /* This adds penalties for the overall size of the table. */
5817 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5818 max *= fact * fact;
5819 # else
5820 /* Variant 2: Optimize a lot more for small table. Here we
5821 also add squares of the size but we also add penalties for
5822 empty slots (the +1 term). */
5823 for (j = 0; j < i; ++j)
5824 max += (1 + counts[j]) * (1 + counts[j]);
5825
5826 /* The overall size of the table is considered, but not as
5827 strong as in variant 1, where it is squared. */
5828 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5829 max *= fact;
5830 # endif
5831
5832 /* Compare with current best results. */
5833 if (max < best_chlen)
5834 {
5835 best_chlen = max;
5836 best_size = i;
5837 no_improvement_count = 0;
5838 }
5839 /* PR 11843: Avoid futile long searches for the best bucket size
5840 when there are a large number of symbols. */
5841 else if (++no_improvement_count == 100)
5842 break;
5843 }
5844
5845 free (counts);
5846 }
5847 else
5848 #endif /* defined (BFD_HOST_U_64_BIT) */
5849 {
5850 /* This is the fallback solution if no 64bit type is available or if we
5851 are not supposed to spend much time on optimizations. We select the
5852 bucket count using a fixed set of numbers. */
5853 for (i = 0; elf_buckets[i] != 0; i++)
5854 {
5855 best_size = elf_buckets[i];
5856 if (nsyms < elf_buckets[i + 1])
5857 break;
5858 }
5859 if (gnu_hash && best_size < 2)
5860 best_size = 2;
5861 }
5862
5863 return best_size;
5864 }
5865
5866 /* Size any SHT_GROUP section for ld -r. */
5867
5868 bfd_boolean
5869 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5870 {
5871 bfd *ibfd;
5872 asection *s;
5873
5874 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5875 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5876 && (s = ibfd->sections) != NULL
5877 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5878 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5879 return FALSE;
5880 return TRUE;
5881 }
5882
5883 /* Set a default stack segment size. The value in INFO wins. If it
5884 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5885 undefined it is initialized. */
5886
5887 bfd_boolean
5888 bfd_elf_stack_segment_size (bfd *output_bfd,
5889 struct bfd_link_info *info,
5890 const char *legacy_symbol,
5891 bfd_vma default_size)
5892 {
5893 struct elf_link_hash_entry *h = NULL;
5894
5895 /* Look for legacy symbol. */
5896 if (legacy_symbol)
5897 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5898 FALSE, FALSE, FALSE);
5899 if (h && (h->root.type == bfd_link_hash_defined
5900 || h->root.type == bfd_link_hash_defweak)
5901 && h->def_regular
5902 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5903 {
5904 /* The symbol has no type if specified on the command line. */
5905 h->type = STT_OBJECT;
5906 if (info->stacksize)
5907 /* xgettext:c-format */
5908 _bfd_error_handler (_("%B: stack size specified and %s set"),
5909 output_bfd, legacy_symbol);
5910 else if (h->root.u.def.section != bfd_abs_section_ptr)
5911 /* xgettext:c-format */
5912 _bfd_error_handler (_("%B: %s not absolute"),
5913 output_bfd, legacy_symbol);
5914 else
5915 info->stacksize = h->root.u.def.value;
5916 }
5917
5918 if (!info->stacksize)
5919 /* If the user didn't set a size, or explicitly inhibit the
5920 size, set it now. */
5921 info->stacksize = default_size;
5922
5923 /* Provide the legacy symbol, if it is referenced. */
5924 if (h && (h->root.type == bfd_link_hash_undefined
5925 || h->root.type == bfd_link_hash_undefweak))
5926 {
5927 struct bfd_link_hash_entry *bh = NULL;
5928
5929 if (!(_bfd_generic_link_add_one_symbol
5930 (info, output_bfd, legacy_symbol,
5931 BSF_GLOBAL, bfd_abs_section_ptr,
5932 info->stacksize >= 0 ? info->stacksize : 0,
5933 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5934 return FALSE;
5935
5936 h = (struct elf_link_hash_entry *) bh;
5937 h->def_regular = 1;
5938 h->type = STT_OBJECT;
5939 }
5940
5941 return TRUE;
5942 }
5943
5944 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5945
5946 struct elf_gc_sweep_symbol_info
5947 {
5948 struct bfd_link_info *info;
5949 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5950 bfd_boolean);
5951 };
5952
5953 static bfd_boolean
5954 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5955 {
5956 if (!h->mark
5957 && (((h->root.type == bfd_link_hash_defined
5958 || h->root.type == bfd_link_hash_defweak)
5959 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5960 && h->root.u.def.section->gc_mark))
5961 || h->root.type == bfd_link_hash_undefined
5962 || h->root.type == bfd_link_hash_undefweak))
5963 {
5964 struct elf_gc_sweep_symbol_info *inf;
5965
5966 inf = (struct elf_gc_sweep_symbol_info *) data;
5967 (*inf->hide_symbol) (inf->info, h, TRUE);
5968 h->def_regular = 0;
5969 h->ref_regular = 0;
5970 h->ref_regular_nonweak = 0;
5971 }
5972
5973 return TRUE;
5974 }
5975
5976 /* Set up the sizes and contents of the ELF dynamic sections. This is
5977 called by the ELF linker emulation before_allocation routine. We
5978 must set the sizes of the sections before the linker sets the
5979 addresses of the various sections. */
5980
5981 bfd_boolean
5982 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5983 const char *soname,
5984 const char *rpath,
5985 const char *filter_shlib,
5986 const char *audit,
5987 const char *depaudit,
5988 const char * const *auxiliary_filters,
5989 struct bfd_link_info *info,
5990 asection **sinterpptr)
5991 {
5992 bfd *dynobj;
5993 const struct elf_backend_data *bed;
5994
5995 *sinterpptr = NULL;
5996
5997 if (!is_elf_hash_table (info->hash))
5998 return TRUE;
5999
6000 dynobj = elf_hash_table (info)->dynobj;
6001
6002 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6003 {
6004 struct bfd_elf_version_tree *verdefs;
6005 struct elf_info_failed asvinfo;
6006 struct bfd_elf_version_tree *t;
6007 struct bfd_elf_version_expr *d;
6008 struct elf_info_failed eif;
6009 bfd_boolean all_defined;
6010 asection *s;
6011 size_t soname_indx;
6012
6013 eif.info = info;
6014 eif.failed = FALSE;
6015
6016 /* If we are supposed to export all symbols into the dynamic symbol
6017 table (this is not the normal case), then do so. */
6018 if (info->export_dynamic
6019 || (bfd_link_executable (info) && info->dynamic))
6020 {
6021 elf_link_hash_traverse (elf_hash_table (info),
6022 _bfd_elf_export_symbol,
6023 &eif);
6024 if (eif.failed)
6025 return FALSE;
6026 }
6027
6028 if (soname != NULL)
6029 {
6030 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6031 soname, TRUE);
6032 if (soname_indx == (size_t) -1
6033 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6034 return FALSE;
6035 }
6036 else
6037 soname_indx = (size_t) -1;
6038
6039 /* Make all global versions with definition. */
6040 for (t = info->version_info; t != NULL; t = t->next)
6041 for (d = t->globals.list; d != NULL; d = d->next)
6042 if (!d->symver && d->literal)
6043 {
6044 const char *verstr, *name;
6045 size_t namelen, verlen, newlen;
6046 char *newname, *p, leading_char;
6047 struct elf_link_hash_entry *newh;
6048
6049 leading_char = bfd_get_symbol_leading_char (output_bfd);
6050 name = d->pattern;
6051 namelen = strlen (name) + (leading_char != '\0');
6052 verstr = t->name;
6053 verlen = strlen (verstr);
6054 newlen = namelen + verlen + 3;
6055
6056 newname = (char *) bfd_malloc (newlen);
6057 if (newname == NULL)
6058 return FALSE;
6059 newname[0] = leading_char;
6060 memcpy (newname + (leading_char != '\0'), name, namelen);
6061
6062 /* Check the hidden versioned definition. */
6063 p = newname + namelen;
6064 *p++ = ELF_VER_CHR;
6065 memcpy (p, verstr, verlen + 1);
6066 newh = elf_link_hash_lookup (elf_hash_table (info),
6067 newname, FALSE, FALSE,
6068 FALSE);
6069 if (newh == NULL
6070 || (newh->root.type != bfd_link_hash_defined
6071 && newh->root.type != bfd_link_hash_defweak))
6072 {
6073 /* Check the default versioned definition. */
6074 *p++ = ELF_VER_CHR;
6075 memcpy (p, verstr, verlen + 1);
6076 newh = elf_link_hash_lookup (elf_hash_table (info),
6077 newname, FALSE, FALSE,
6078 FALSE);
6079 }
6080 free (newname);
6081
6082 /* Mark this version if there is a definition and it is
6083 not defined in a shared object. */
6084 if (newh != NULL
6085 && !newh->def_dynamic
6086 && (newh->root.type == bfd_link_hash_defined
6087 || newh->root.type == bfd_link_hash_defweak))
6088 d->symver = 1;
6089 }
6090
6091 /* Attach all the symbols to their version information. */
6092 asvinfo.info = info;
6093 asvinfo.failed = FALSE;
6094
6095 elf_link_hash_traverse (elf_hash_table (info),
6096 _bfd_elf_link_assign_sym_version,
6097 &asvinfo);
6098 if (asvinfo.failed)
6099 return FALSE;
6100
6101 if (!info->allow_undefined_version)
6102 {
6103 /* Check if all global versions have a definition. */
6104 all_defined = TRUE;
6105 for (t = info->version_info; t != NULL; t = t->next)
6106 for (d = t->globals.list; d != NULL; d = d->next)
6107 if (d->literal && !d->symver && !d->script)
6108 {
6109 _bfd_error_handler
6110 (_("%s: undefined version: %s"),
6111 d->pattern, t->name);
6112 all_defined = FALSE;
6113 }
6114
6115 if (!all_defined)
6116 {
6117 bfd_set_error (bfd_error_bad_value);
6118 return FALSE;
6119 }
6120 }
6121
6122 /* Set up the version definition section. */
6123 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6124 BFD_ASSERT (s != NULL);
6125
6126 /* We may have created additional version definitions if we are
6127 just linking a regular application. */
6128 verdefs = info->version_info;
6129
6130 /* Skip anonymous version tag. */
6131 if (verdefs != NULL && verdefs->vernum == 0)
6132 verdefs = verdefs->next;
6133
6134 if (verdefs == NULL && !info->create_default_symver)
6135 s->flags |= SEC_EXCLUDE;
6136 else
6137 {
6138 unsigned int cdefs;
6139 bfd_size_type size;
6140 bfd_byte *p;
6141 Elf_Internal_Verdef def;
6142 Elf_Internal_Verdaux defaux;
6143 struct bfd_link_hash_entry *bh;
6144 struct elf_link_hash_entry *h;
6145 const char *name;
6146
6147 cdefs = 0;
6148 size = 0;
6149
6150 /* Make space for the base version. */
6151 size += sizeof (Elf_External_Verdef);
6152 size += sizeof (Elf_External_Verdaux);
6153 ++cdefs;
6154
6155 /* Make space for the default version. */
6156 if (info->create_default_symver)
6157 {
6158 size += sizeof (Elf_External_Verdef);
6159 ++cdefs;
6160 }
6161
6162 for (t = verdefs; t != NULL; t = t->next)
6163 {
6164 struct bfd_elf_version_deps *n;
6165
6166 /* Don't emit base version twice. */
6167 if (t->vernum == 0)
6168 continue;
6169
6170 size += sizeof (Elf_External_Verdef);
6171 size += sizeof (Elf_External_Verdaux);
6172 ++cdefs;
6173
6174 for (n = t->deps; n != NULL; n = n->next)
6175 size += sizeof (Elf_External_Verdaux);
6176 }
6177
6178 s->size = size;
6179 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6180 if (s->contents == NULL && s->size != 0)
6181 return FALSE;
6182
6183 /* Fill in the version definition section. */
6184
6185 p = s->contents;
6186
6187 def.vd_version = VER_DEF_CURRENT;
6188 def.vd_flags = VER_FLG_BASE;
6189 def.vd_ndx = 1;
6190 def.vd_cnt = 1;
6191 if (info->create_default_symver)
6192 {
6193 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6194 def.vd_next = sizeof (Elf_External_Verdef);
6195 }
6196 else
6197 {
6198 def.vd_aux = sizeof (Elf_External_Verdef);
6199 def.vd_next = (sizeof (Elf_External_Verdef)
6200 + sizeof (Elf_External_Verdaux));
6201 }
6202
6203 if (soname_indx != (size_t) -1)
6204 {
6205 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6206 soname_indx);
6207 def.vd_hash = bfd_elf_hash (soname);
6208 defaux.vda_name = soname_indx;
6209 name = soname;
6210 }
6211 else
6212 {
6213 size_t indx;
6214
6215 name = lbasename (output_bfd->filename);
6216 def.vd_hash = bfd_elf_hash (name);
6217 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6218 name, FALSE);
6219 if (indx == (size_t) -1)
6220 return FALSE;
6221 defaux.vda_name = indx;
6222 }
6223 defaux.vda_next = 0;
6224
6225 _bfd_elf_swap_verdef_out (output_bfd, &def,
6226 (Elf_External_Verdef *) p);
6227 p += sizeof (Elf_External_Verdef);
6228 if (info->create_default_symver)
6229 {
6230 /* Add a symbol representing this version. */
6231 bh = NULL;
6232 if (! (_bfd_generic_link_add_one_symbol
6233 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6234 0, NULL, FALSE,
6235 get_elf_backend_data (dynobj)->collect, &bh)))
6236 return FALSE;
6237 h = (struct elf_link_hash_entry *) bh;
6238 h->non_elf = 0;
6239 h->def_regular = 1;
6240 h->type = STT_OBJECT;
6241 h->verinfo.vertree = NULL;
6242
6243 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6244 return FALSE;
6245
6246 /* Create a duplicate of the base version with the same
6247 aux block, but different flags. */
6248 def.vd_flags = 0;
6249 def.vd_ndx = 2;
6250 def.vd_aux = sizeof (Elf_External_Verdef);
6251 if (verdefs)
6252 def.vd_next = (sizeof (Elf_External_Verdef)
6253 + sizeof (Elf_External_Verdaux));
6254 else
6255 def.vd_next = 0;
6256 _bfd_elf_swap_verdef_out (output_bfd, &def,
6257 (Elf_External_Verdef *) p);
6258 p += sizeof (Elf_External_Verdef);
6259 }
6260 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6261 (Elf_External_Verdaux *) p);
6262 p += sizeof (Elf_External_Verdaux);
6263
6264 for (t = verdefs; t != NULL; t = t->next)
6265 {
6266 unsigned int cdeps;
6267 struct bfd_elf_version_deps *n;
6268
6269 /* Don't emit the base version twice. */
6270 if (t->vernum == 0)
6271 continue;
6272
6273 cdeps = 0;
6274 for (n = t->deps; n != NULL; n = n->next)
6275 ++cdeps;
6276
6277 /* Add a symbol representing this version. */
6278 bh = NULL;
6279 if (! (_bfd_generic_link_add_one_symbol
6280 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6281 0, NULL, FALSE,
6282 get_elf_backend_data (dynobj)->collect, &bh)))
6283 return FALSE;
6284 h = (struct elf_link_hash_entry *) bh;
6285 h->non_elf = 0;
6286 h->def_regular = 1;
6287 h->type = STT_OBJECT;
6288 h->verinfo.vertree = t;
6289
6290 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6291 return FALSE;
6292
6293 def.vd_version = VER_DEF_CURRENT;
6294 def.vd_flags = 0;
6295 if (t->globals.list == NULL
6296 && t->locals.list == NULL
6297 && ! t->used)
6298 def.vd_flags |= VER_FLG_WEAK;
6299 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6300 def.vd_cnt = cdeps + 1;
6301 def.vd_hash = bfd_elf_hash (t->name);
6302 def.vd_aux = sizeof (Elf_External_Verdef);
6303 def.vd_next = 0;
6304
6305 /* If a basever node is next, it *must* be the last node in
6306 the chain, otherwise Verdef construction breaks. */
6307 if (t->next != NULL && t->next->vernum == 0)
6308 BFD_ASSERT (t->next->next == NULL);
6309
6310 if (t->next != NULL && t->next->vernum != 0)
6311 def.vd_next = (sizeof (Elf_External_Verdef)
6312 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6313
6314 _bfd_elf_swap_verdef_out (output_bfd, &def,
6315 (Elf_External_Verdef *) p);
6316 p += sizeof (Elf_External_Verdef);
6317
6318 defaux.vda_name = h->dynstr_index;
6319 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6320 h->dynstr_index);
6321 defaux.vda_next = 0;
6322 if (t->deps != NULL)
6323 defaux.vda_next = sizeof (Elf_External_Verdaux);
6324 t->name_indx = defaux.vda_name;
6325
6326 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6327 (Elf_External_Verdaux *) p);
6328 p += sizeof (Elf_External_Verdaux);
6329
6330 for (n = t->deps; n != NULL; n = n->next)
6331 {
6332 if (n->version_needed == NULL)
6333 {
6334 /* This can happen if there was an error in the
6335 version script. */
6336 defaux.vda_name = 0;
6337 }
6338 else
6339 {
6340 defaux.vda_name = n->version_needed->name_indx;
6341 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6342 defaux.vda_name);
6343 }
6344 if (n->next == NULL)
6345 defaux.vda_next = 0;
6346 else
6347 defaux.vda_next = sizeof (Elf_External_Verdaux);
6348
6349 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6350 (Elf_External_Verdaux *) p);
6351 p += sizeof (Elf_External_Verdaux);
6352 }
6353 }
6354
6355 elf_tdata (output_bfd)->cverdefs = cdefs;
6356 }
6357
6358 /* Work out the size of the version reference section. */
6359
6360 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6361 BFD_ASSERT (s != NULL);
6362 {
6363 struct elf_find_verdep_info sinfo;
6364
6365 sinfo.info = info;
6366 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6367 if (sinfo.vers == 0)
6368 sinfo.vers = 1;
6369 sinfo.failed = FALSE;
6370
6371 elf_link_hash_traverse (elf_hash_table (info),
6372 _bfd_elf_link_find_version_dependencies,
6373 &sinfo);
6374 if (sinfo.failed)
6375 return FALSE;
6376
6377 if (elf_tdata (output_bfd)->verref == NULL)
6378 s->flags |= SEC_EXCLUDE;
6379 else
6380 {
6381 Elf_Internal_Verneed *vn;
6382 unsigned int size;
6383 unsigned int crefs;
6384 bfd_byte *p;
6385
6386 /* Build the version dependency section. */
6387 size = 0;
6388 crefs = 0;
6389 for (vn = elf_tdata (output_bfd)->verref;
6390 vn != NULL;
6391 vn = vn->vn_nextref)
6392 {
6393 Elf_Internal_Vernaux *a;
6394
6395 size += sizeof (Elf_External_Verneed);
6396 ++crefs;
6397 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6398 size += sizeof (Elf_External_Vernaux);
6399 }
6400
6401 s->size = size;
6402 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6403 if (s->contents == NULL)
6404 return FALSE;
6405
6406 p = s->contents;
6407 for (vn = elf_tdata (output_bfd)->verref;
6408 vn != NULL;
6409 vn = vn->vn_nextref)
6410 {
6411 unsigned int caux;
6412 Elf_Internal_Vernaux *a;
6413 size_t indx;
6414
6415 caux = 0;
6416 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6417 ++caux;
6418
6419 vn->vn_version = VER_NEED_CURRENT;
6420 vn->vn_cnt = caux;
6421 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6422 elf_dt_name (vn->vn_bfd) != NULL
6423 ? elf_dt_name (vn->vn_bfd)
6424 : lbasename (vn->vn_bfd->filename),
6425 FALSE);
6426 if (indx == (size_t) -1)
6427 return FALSE;
6428 vn->vn_file = indx;
6429 vn->vn_aux = sizeof (Elf_External_Verneed);
6430 if (vn->vn_nextref == NULL)
6431 vn->vn_next = 0;
6432 else
6433 vn->vn_next = (sizeof (Elf_External_Verneed)
6434 + caux * sizeof (Elf_External_Vernaux));
6435
6436 _bfd_elf_swap_verneed_out (output_bfd, vn,
6437 (Elf_External_Verneed *) p);
6438 p += sizeof (Elf_External_Verneed);
6439
6440 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6441 {
6442 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6443 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6444 a->vna_nodename, FALSE);
6445 if (indx == (size_t) -1)
6446 return FALSE;
6447 a->vna_name = indx;
6448 if (a->vna_nextptr == NULL)
6449 a->vna_next = 0;
6450 else
6451 a->vna_next = sizeof (Elf_External_Vernaux);
6452
6453 _bfd_elf_swap_vernaux_out (output_bfd, a,
6454 (Elf_External_Vernaux *) p);
6455 p += sizeof (Elf_External_Vernaux);
6456 }
6457 }
6458
6459 elf_tdata (output_bfd)->cverrefs = crefs;
6460 }
6461 }
6462 }
6463
6464 bed = get_elf_backend_data (output_bfd);
6465
6466 if (info->gc_sections && bed->can_gc_sections)
6467 {
6468 struct elf_gc_sweep_symbol_info sweep_info;
6469 unsigned long section_sym_count;
6470
6471 /* Remove the symbols that were in the swept sections from the
6472 dynamic symbol table. GCFIXME: Anyone know how to get them
6473 out of the static symbol table as well? */
6474 sweep_info.info = info;
6475 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6476 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6477 &sweep_info);
6478
6479 /* We need to reassign dynsym indices now that symbols may have
6480 been removed. See the call in `bfd_elf_size_dynsym_hash_dynstr'
6481 for the details of the conditions used here. */
6482 if (elf_hash_table (info)->dynamic_sections_created
6483 || bed->always_renumber_dynsyms)
6484 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6485 }
6486
6487 /* Any syms created from now on start with -1 in
6488 got.refcount/offset and plt.refcount/offset. */
6489 elf_hash_table (info)->init_got_refcount
6490 = elf_hash_table (info)->init_got_offset;
6491 elf_hash_table (info)->init_plt_refcount
6492 = elf_hash_table (info)->init_plt_offset;
6493
6494 if (bfd_link_relocatable (info)
6495 && !_bfd_elf_size_group_sections (info))
6496 return FALSE;
6497
6498 /* The backend may have to create some sections regardless of whether
6499 we're dynamic or not. */
6500 if (bed->elf_backend_always_size_sections
6501 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6502 return FALSE;
6503
6504 /* Determine any GNU_STACK segment requirements, after the backend
6505 has had a chance to set a default segment size. */
6506 if (info->execstack)
6507 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6508 else if (info->noexecstack)
6509 elf_stack_flags (output_bfd) = PF_R | PF_W;
6510 else
6511 {
6512 bfd *inputobj;
6513 asection *notesec = NULL;
6514 int exec = 0;
6515
6516 for (inputobj = info->input_bfds;
6517 inputobj;
6518 inputobj = inputobj->link.next)
6519 {
6520 asection *s;
6521
6522 if (inputobj->flags
6523 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6524 continue;
6525 s = inputobj->sections;
6526 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6527 continue;
6528
6529 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6530 if (s)
6531 {
6532 if (s->flags & SEC_CODE)
6533 exec = PF_X;
6534 notesec = s;
6535 }
6536 else if (bed->default_execstack)
6537 exec = PF_X;
6538 }
6539 if (notesec || info->stacksize > 0)
6540 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6541 if (notesec && exec && bfd_link_relocatable (info)
6542 && notesec->output_section != bfd_abs_section_ptr)
6543 notesec->output_section->flags |= SEC_CODE;
6544 }
6545
6546 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6547 {
6548 struct elf_info_failed eif;
6549 struct elf_link_hash_entry *h;
6550 asection *dynstr;
6551 asection *s;
6552
6553 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6554 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6555
6556 if (info->symbolic)
6557 {
6558 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6559 return FALSE;
6560 info->flags |= DF_SYMBOLIC;
6561 }
6562
6563 if (rpath != NULL)
6564 {
6565 size_t indx;
6566 bfd_vma tag;
6567
6568 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6569 TRUE);
6570 if (indx == (size_t) -1)
6571 return FALSE;
6572
6573 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6574 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6575 return FALSE;
6576 }
6577
6578 if (filter_shlib != NULL)
6579 {
6580 size_t indx;
6581
6582 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6583 filter_shlib, TRUE);
6584 if (indx == (size_t) -1
6585 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6586 return FALSE;
6587 }
6588
6589 if (auxiliary_filters != NULL)
6590 {
6591 const char * const *p;
6592
6593 for (p = auxiliary_filters; *p != NULL; p++)
6594 {
6595 size_t indx;
6596
6597 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6598 *p, TRUE);
6599 if (indx == (size_t) -1
6600 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6601 return FALSE;
6602 }
6603 }
6604
6605 if (audit != NULL)
6606 {
6607 size_t indx;
6608
6609 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6610 TRUE);
6611 if (indx == (size_t) -1
6612 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6613 return FALSE;
6614 }
6615
6616 if (depaudit != NULL)
6617 {
6618 size_t indx;
6619
6620 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6621 TRUE);
6622 if (indx == (size_t) -1
6623 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6624 return FALSE;
6625 }
6626
6627 eif.info = info;
6628 eif.failed = FALSE;
6629
6630 /* Find all symbols which were defined in a dynamic object and make
6631 the backend pick a reasonable value for them. */
6632 elf_link_hash_traverse (elf_hash_table (info),
6633 _bfd_elf_adjust_dynamic_symbol,
6634 &eif);
6635 if (eif.failed)
6636 return FALSE;
6637
6638 /* Add some entries to the .dynamic section. We fill in some of the
6639 values later, in bfd_elf_final_link, but we must add the entries
6640 now so that we know the final size of the .dynamic section. */
6641
6642 /* If there are initialization and/or finalization functions to
6643 call then add the corresponding DT_INIT/DT_FINI entries. */
6644 h = (info->init_function
6645 ? elf_link_hash_lookup (elf_hash_table (info),
6646 info->init_function, FALSE,
6647 FALSE, FALSE)
6648 : NULL);
6649 if (h != NULL
6650 && (h->ref_regular
6651 || h->def_regular))
6652 {
6653 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6654 return FALSE;
6655 }
6656 h = (info->fini_function
6657 ? elf_link_hash_lookup (elf_hash_table (info),
6658 info->fini_function, FALSE,
6659 FALSE, FALSE)
6660 : NULL);
6661 if (h != NULL
6662 && (h->ref_regular
6663 || h->def_regular))
6664 {
6665 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6666 return FALSE;
6667 }
6668
6669 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6670 if (s != NULL && s->linker_has_input)
6671 {
6672 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6673 if (! bfd_link_executable (info))
6674 {
6675 bfd *sub;
6676 asection *o;
6677
6678 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6679 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6680 && (o = sub->sections) != NULL
6681 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6682 for (o = sub->sections; o != NULL; o = o->next)
6683 if (elf_section_data (o)->this_hdr.sh_type
6684 == SHT_PREINIT_ARRAY)
6685 {
6686 _bfd_error_handler
6687 (_("%B: .preinit_array section is not allowed in DSO"),
6688 sub);
6689 break;
6690 }
6691
6692 bfd_set_error (bfd_error_nonrepresentable_section);
6693 return FALSE;
6694 }
6695
6696 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6697 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6698 return FALSE;
6699 }
6700 s = bfd_get_section_by_name (output_bfd, ".init_array");
6701 if (s != NULL && s->linker_has_input)
6702 {
6703 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6704 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6705 return FALSE;
6706 }
6707 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6708 if (s != NULL && s->linker_has_input)
6709 {
6710 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6711 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6712 return FALSE;
6713 }
6714
6715 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6716 /* If .dynstr is excluded from the link, we don't want any of
6717 these tags. Strictly, we should be checking each section
6718 individually; This quick check covers for the case where
6719 someone does a /DISCARD/ : { *(*) }. */
6720 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6721 {
6722 bfd_size_type strsize;
6723
6724 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6725 if ((info->emit_hash
6726 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6727 || (info->emit_gnu_hash
6728 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6729 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6730 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6731 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6732 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6733 bed->s->sizeof_sym))
6734 return FALSE;
6735 }
6736 }
6737
6738 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6739 return FALSE;
6740
6741 /* The backend must work out the sizes of all the other dynamic
6742 sections. */
6743 if (dynobj != NULL
6744 && bed->elf_backend_size_dynamic_sections != NULL
6745 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6746 return FALSE;
6747
6748 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6749 {
6750 unsigned long section_sym_count;
6751
6752 if (elf_tdata (output_bfd)->cverdefs)
6753 {
6754 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6755
6756 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6757 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6758 return FALSE;
6759 }
6760
6761 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6762 {
6763 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6764 return FALSE;
6765 }
6766 else if (info->flags & DF_BIND_NOW)
6767 {
6768 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6769 return FALSE;
6770 }
6771
6772 if (info->flags_1)
6773 {
6774 if (bfd_link_executable (info))
6775 info->flags_1 &= ~ (DF_1_INITFIRST
6776 | DF_1_NODELETE
6777 | DF_1_NOOPEN);
6778 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6779 return FALSE;
6780 }
6781
6782 if (elf_tdata (output_bfd)->cverrefs)
6783 {
6784 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6785
6786 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6787 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6788 return FALSE;
6789 }
6790
6791 if ((elf_tdata (output_bfd)->cverrefs == 0
6792 && elf_tdata (output_bfd)->cverdefs == 0)
6793 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6794 &section_sym_count) == 0)
6795 {
6796 asection *s;
6797
6798 s = bfd_get_linker_section (dynobj, ".gnu.version");
6799 s->flags |= SEC_EXCLUDE;
6800 }
6801 }
6802 return TRUE;
6803 }
6804
6805 /* Find the first non-excluded output section. We'll use its
6806 section symbol for some emitted relocs. */
6807 void
6808 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6809 {
6810 asection *s;
6811
6812 for (s = output_bfd->sections; s != NULL; s = s->next)
6813 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6814 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6815 {
6816 elf_hash_table (info)->text_index_section = s;
6817 break;
6818 }
6819 }
6820
6821 /* Find two non-excluded output sections, one for code, one for data.
6822 We'll use their section symbols for some emitted relocs. */
6823 void
6824 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6825 {
6826 asection *s;
6827
6828 /* Data first, since setting text_index_section changes
6829 _bfd_elf_link_omit_section_dynsym. */
6830 for (s = output_bfd->sections; s != NULL; s = s->next)
6831 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6832 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6833 {
6834 elf_hash_table (info)->data_index_section = s;
6835 break;
6836 }
6837
6838 for (s = output_bfd->sections; s != NULL; s = s->next)
6839 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6840 == (SEC_ALLOC | SEC_READONLY))
6841 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6842 {
6843 elf_hash_table (info)->text_index_section = s;
6844 break;
6845 }
6846
6847 if (elf_hash_table (info)->text_index_section == NULL)
6848 elf_hash_table (info)->text_index_section
6849 = elf_hash_table (info)->data_index_section;
6850 }
6851
6852 bfd_boolean
6853 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6854 {
6855 const struct elf_backend_data *bed;
6856 unsigned long section_sym_count;
6857 bfd_size_type dynsymcount;
6858
6859 if (!is_elf_hash_table (info->hash))
6860 return TRUE;
6861
6862 bed = get_elf_backend_data (output_bfd);
6863 (*bed->elf_backend_init_index_section) (output_bfd, info);
6864
6865 /* Assign dynsym indices. In a shared library we generate a section
6866 symbol for each output section, which come first. Next come all
6867 of the back-end allocated local dynamic syms, followed by the rest
6868 of the global symbols.
6869
6870 This is usually not needed for static binaries, however backends
6871 can request to always do it, e.g. the MIPS backend uses dynamic
6872 symbol counts to lay out GOT, which will be produced in the
6873 presence of GOT relocations even in static binaries (holding fixed
6874 data in that case, to satisfy those relocations). */
6875
6876 if (elf_hash_table (info)->dynamic_sections_created
6877 || bed->always_renumber_dynsyms)
6878 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6879 &section_sym_count);
6880
6881 if (elf_hash_table (info)->dynamic_sections_created)
6882 {
6883 bfd *dynobj;
6884 asection *s;
6885 unsigned int dtagcount;
6886
6887 dynobj = elf_hash_table (info)->dynobj;
6888
6889 /* Work out the size of the symbol version section. */
6890 s = bfd_get_linker_section (dynobj, ".gnu.version");
6891 BFD_ASSERT (s != NULL);
6892 if ((s->flags & SEC_EXCLUDE) == 0)
6893 {
6894 s->size = dynsymcount * sizeof (Elf_External_Versym);
6895 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6896 if (s->contents == NULL)
6897 return FALSE;
6898
6899 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6900 return FALSE;
6901 }
6902
6903 /* Set the size of the .dynsym and .hash sections. We counted
6904 the number of dynamic symbols in elf_link_add_object_symbols.
6905 We will build the contents of .dynsym and .hash when we build
6906 the final symbol table, because until then we do not know the
6907 correct value to give the symbols. We built the .dynstr
6908 section as we went along in elf_link_add_object_symbols. */
6909 s = elf_hash_table (info)->dynsym;
6910 BFD_ASSERT (s != NULL);
6911 s->size = dynsymcount * bed->s->sizeof_sym;
6912
6913 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6914 if (s->contents == NULL)
6915 return FALSE;
6916
6917 /* The first entry in .dynsym is a dummy symbol. Clear all the
6918 section syms, in case we don't output them all. */
6919 ++section_sym_count;
6920 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6921
6922 elf_hash_table (info)->bucketcount = 0;
6923
6924 /* Compute the size of the hashing table. As a side effect this
6925 computes the hash values for all the names we export. */
6926 if (info->emit_hash)
6927 {
6928 unsigned long int *hashcodes;
6929 struct hash_codes_info hashinf;
6930 bfd_size_type amt;
6931 unsigned long int nsyms;
6932 size_t bucketcount;
6933 size_t hash_entry_size;
6934
6935 /* Compute the hash values for all exported symbols. At the same
6936 time store the values in an array so that we could use them for
6937 optimizations. */
6938 amt = dynsymcount * sizeof (unsigned long int);
6939 hashcodes = (unsigned long int *) bfd_malloc (amt);
6940 if (hashcodes == NULL)
6941 return FALSE;
6942 hashinf.hashcodes = hashcodes;
6943 hashinf.error = FALSE;
6944
6945 /* Put all hash values in HASHCODES. */
6946 elf_link_hash_traverse (elf_hash_table (info),
6947 elf_collect_hash_codes, &hashinf);
6948 if (hashinf.error)
6949 {
6950 free (hashcodes);
6951 return FALSE;
6952 }
6953
6954 nsyms = hashinf.hashcodes - hashcodes;
6955 bucketcount
6956 = compute_bucket_count (info, hashcodes, nsyms, 0);
6957 free (hashcodes);
6958
6959 if (bucketcount == 0 && nsyms > 0)
6960 return FALSE;
6961
6962 elf_hash_table (info)->bucketcount = bucketcount;
6963
6964 s = bfd_get_linker_section (dynobj, ".hash");
6965 BFD_ASSERT (s != NULL);
6966 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6967 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6968 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6969 if (s->contents == NULL)
6970 return FALSE;
6971
6972 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6973 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6974 s->contents + hash_entry_size);
6975 }
6976
6977 if (info->emit_gnu_hash)
6978 {
6979 size_t i, cnt;
6980 unsigned char *contents;
6981 struct collect_gnu_hash_codes cinfo;
6982 bfd_size_type amt;
6983 size_t bucketcount;
6984
6985 memset (&cinfo, 0, sizeof (cinfo));
6986
6987 /* Compute the hash values for all exported symbols. At the same
6988 time store the values in an array so that we could use them for
6989 optimizations. */
6990 amt = dynsymcount * 2 * sizeof (unsigned long int);
6991 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6992 if (cinfo.hashcodes == NULL)
6993 return FALSE;
6994
6995 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6996 cinfo.min_dynindx = -1;
6997 cinfo.output_bfd = output_bfd;
6998 cinfo.bed = bed;
6999
7000 /* Put all hash values in HASHCODES. */
7001 elf_link_hash_traverse (elf_hash_table (info),
7002 elf_collect_gnu_hash_codes, &cinfo);
7003 if (cinfo.error)
7004 {
7005 free (cinfo.hashcodes);
7006 return FALSE;
7007 }
7008
7009 bucketcount
7010 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7011
7012 if (bucketcount == 0)
7013 {
7014 free (cinfo.hashcodes);
7015 return FALSE;
7016 }
7017
7018 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7019 BFD_ASSERT (s != NULL);
7020
7021 if (cinfo.nsyms == 0)
7022 {
7023 /* Empty .gnu.hash section is special. */
7024 BFD_ASSERT (cinfo.min_dynindx == -1);
7025 free (cinfo.hashcodes);
7026 s->size = 5 * 4 + bed->s->arch_size / 8;
7027 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7028 if (contents == NULL)
7029 return FALSE;
7030 s->contents = contents;
7031 /* 1 empty bucket. */
7032 bfd_put_32 (output_bfd, 1, contents);
7033 /* SYMIDX above the special symbol 0. */
7034 bfd_put_32 (output_bfd, 1, contents + 4);
7035 /* Just one word for bitmask. */
7036 bfd_put_32 (output_bfd, 1, contents + 8);
7037 /* Only hash fn bloom filter. */
7038 bfd_put_32 (output_bfd, 0, contents + 12);
7039 /* No hashes are valid - empty bitmask. */
7040 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7041 /* No hashes in the only bucket. */
7042 bfd_put_32 (output_bfd, 0,
7043 contents + 16 + bed->s->arch_size / 8);
7044 }
7045 else
7046 {
7047 unsigned long int maskwords, maskbitslog2, x;
7048 BFD_ASSERT (cinfo.min_dynindx != -1);
7049
7050 x = cinfo.nsyms;
7051 maskbitslog2 = 1;
7052 while ((x >>= 1) != 0)
7053 ++maskbitslog2;
7054 if (maskbitslog2 < 3)
7055 maskbitslog2 = 5;
7056 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7057 maskbitslog2 = maskbitslog2 + 3;
7058 else
7059 maskbitslog2 = maskbitslog2 + 2;
7060 if (bed->s->arch_size == 64)
7061 {
7062 if (maskbitslog2 == 5)
7063 maskbitslog2 = 6;
7064 cinfo.shift1 = 6;
7065 }
7066 else
7067 cinfo.shift1 = 5;
7068 cinfo.mask = (1 << cinfo.shift1) - 1;
7069 cinfo.shift2 = maskbitslog2;
7070 cinfo.maskbits = 1 << maskbitslog2;
7071 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7072 amt = bucketcount * sizeof (unsigned long int) * 2;
7073 amt += maskwords * sizeof (bfd_vma);
7074 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7075 if (cinfo.bitmask == NULL)
7076 {
7077 free (cinfo.hashcodes);
7078 return FALSE;
7079 }
7080
7081 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7082 cinfo.indx = cinfo.counts + bucketcount;
7083 cinfo.symindx = dynsymcount - cinfo.nsyms;
7084 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7085
7086 /* Determine how often each hash bucket is used. */
7087 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7088 for (i = 0; i < cinfo.nsyms; ++i)
7089 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7090
7091 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7092 if (cinfo.counts[i] != 0)
7093 {
7094 cinfo.indx[i] = cnt;
7095 cnt += cinfo.counts[i];
7096 }
7097 BFD_ASSERT (cnt == dynsymcount);
7098 cinfo.bucketcount = bucketcount;
7099 cinfo.local_indx = cinfo.min_dynindx;
7100
7101 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7102 s->size += cinfo.maskbits / 8;
7103 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7104 if (contents == NULL)
7105 {
7106 free (cinfo.bitmask);
7107 free (cinfo.hashcodes);
7108 return FALSE;
7109 }
7110
7111 s->contents = contents;
7112 bfd_put_32 (output_bfd, bucketcount, contents);
7113 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7114 bfd_put_32 (output_bfd, maskwords, contents + 8);
7115 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7116 contents += 16 + cinfo.maskbits / 8;
7117
7118 for (i = 0; i < bucketcount; ++i)
7119 {
7120 if (cinfo.counts[i] == 0)
7121 bfd_put_32 (output_bfd, 0, contents);
7122 else
7123 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7124 contents += 4;
7125 }
7126
7127 cinfo.contents = contents;
7128
7129 /* Renumber dynamic symbols, populate .gnu.hash section. */
7130 elf_link_hash_traverse (elf_hash_table (info),
7131 elf_renumber_gnu_hash_syms, &cinfo);
7132
7133 contents = s->contents + 16;
7134 for (i = 0; i < maskwords; ++i)
7135 {
7136 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7137 contents);
7138 contents += bed->s->arch_size / 8;
7139 }
7140
7141 free (cinfo.bitmask);
7142 free (cinfo.hashcodes);
7143 }
7144 }
7145
7146 s = bfd_get_linker_section (dynobj, ".dynstr");
7147 BFD_ASSERT (s != NULL);
7148
7149 elf_finalize_dynstr (output_bfd, info);
7150
7151 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7152
7153 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7154 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7155 return FALSE;
7156 }
7157
7158 return TRUE;
7159 }
7160 \f
7161 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7162
7163 static void
7164 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7165 asection *sec)
7166 {
7167 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7168 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7169 }
7170
7171 /* Finish SHF_MERGE section merging. */
7172
7173 bfd_boolean
7174 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7175 {
7176 bfd *ibfd;
7177 asection *sec;
7178
7179 if (!is_elf_hash_table (info->hash))
7180 return FALSE;
7181
7182 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7183 if ((ibfd->flags & DYNAMIC) == 0
7184 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7185 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7186 == get_elf_backend_data (obfd)->s->elfclass))
7187 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7188 if ((sec->flags & SEC_MERGE) != 0
7189 && !bfd_is_abs_section (sec->output_section))
7190 {
7191 struct bfd_elf_section_data *secdata;
7192
7193 secdata = elf_section_data (sec);
7194 if (! _bfd_add_merge_section (obfd,
7195 &elf_hash_table (info)->merge_info,
7196 sec, &secdata->sec_info))
7197 return FALSE;
7198 else if (secdata->sec_info)
7199 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7200 }
7201
7202 if (elf_hash_table (info)->merge_info != NULL)
7203 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7204 merge_sections_remove_hook);
7205 return TRUE;
7206 }
7207
7208 /* Create an entry in an ELF linker hash table. */
7209
7210 struct bfd_hash_entry *
7211 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7212 struct bfd_hash_table *table,
7213 const char *string)
7214 {
7215 /* Allocate the structure if it has not already been allocated by a
7216 subclass. */
7217 if (entry == NULL)
7218 {
7219 entry = (struct bfd_hash_entry *)
7220 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7221 if (entry == NULL)
7222 return entry;
7223 }
7224
7225 /* Call the allocation method of the superclass. */
7226 entry = _bfd_link_hash_newfunc (entry, table, string);
7227 if (entry != NULL)
7228 {
7229 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7230 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7231
7232 /* Set local fields. */
7233 ret->indx = -1;
7234 ret->dynindx = -1;
7235 ret->got = htab->init_got_refcount;
7236 ret->plt = htab->init_plt_refcount;
7237 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7238 - offsetof (struct elf_link_hash_entry, size)));
7239 /* Assume that we have been called by a non-ELF symbol reader.
7240 This flag is then reset by the code which reads an ELF input
7241 file. This ensures that a symbol created by a non-ELF symbol
7242 reader will have the flag set correctly. */
7243 ret->non_elf = 1;
7244 }
7245
7246 return entry;
7247 }
7248
7249 /* Copy data from an indirect symbol to its direct symbol, hiding the
7250 old indirect symbol. Also used for copying flags to a weakdef. */
7251
7252 void
7253 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7254 struct elf_link_hash_entry *dir,
7255 struct elf_link_hash_entry *ind)
7256 {
7257 struct elf_link_hash_table *htab;
7258
7259 /* Copy down any references that we may have already seen to the
7260 symbol which just became indirect. */
7261
7262 if (dir->versioned != versioned_hidden)
7263 dir->ref_dynamic |= ind->ref_dynamic;
7264 dir->ref_regular |= ind->ref_regular;
7265 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7266 dir->non_got_ref |= ind->non_got_ref;
7267 dir->needs_plt |= ind->needs_plt;
7268 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7269
7270 if (ind->root.type != bfd_link_hash_indirect)
7271 return;
7272
7273 /* Copy over the global and procedure linkage table refcount entries.
7274 These may have been already set up by a check_relocs routine. */
7275 htab = elf_hash_table (info);
7276 if (ind->got.refcount > htab->init_got_refcount.refcount)
7277 {
7278 if (dir->got.refcount < 0)
7279 dir->got.refcount = 0;
7280 dir->got.refcount += ind->got.refcount;
7281 ind->got.refcount = htab->init_got_refcount.refcount;
7282 }
7283
7284 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7285 {
7286 if (dir->plt.refcount < 0)
7287 dir->plt.refcount = 0;
7288 dir->plt.refcount += ind->plt.refcount;
7289 ind->plt.refcount = htab->init_plt_refcount.refcount;
7290 }
7291
7292 if (ind->dynindx != -1)
7293 {
7294 if (dir->dynindx != -1)
7295 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7296 dir->dynindx = ind->dynindx;
7297 dir->dynstr_index = ind->dynstr_index;
7298 ind->dynindx = -1;
7299 ind->dynstr_index = 0;
7300 }
7301 }
7302
7303 void
7304 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7305 struct elf_link_hash_entry *h,
7306 bfd_boolean force_local)
7307 {
7308 /* STT_GNU_IFUNC symbol must go through PLT. */
7309 if (h->type != STT_GNU_IFUNC)
7310 {
7311 h->plt = elf_hash_table (info)->init_plt_offset;
7312 h->needs_plt = 0;
7313 }
7314 if (force_local)
7315 {
7316 h->forced_local = 1;
7317 if (h->dynindx != -1)
7318 {
7319 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7320 h->dynstr_index);
7321 h->dynindx = -1;
7322 h->dynstr_index = 0;
7323 }
7324 }
7325 }
7326
7327 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7328 caller. */
7329
7330 bfd_boolean
7331 _bfd_elf_link_hash_table_init
7332 (struct elf_link_hash_table *table,
7333 bfd *abfd,
7334 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7335 struct bfd_hash_table *,
7336 const char *),
7337 unsigned int entsize,
7338 enum elf_target_id target_id)
7339 {
7340 bfd_boolean ret;
7341 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7342
7343 table->init_got_refcount.refcount = can_refcount - 1;
7344 table->init_plt_refcount.refcount = can_refcount - 1;
7345 table->init_got_offset.offset = -(bfd_vma) 1;
7346 table->init_plt_offset.offset = -(bfd_vma) 1;
7347 /* The first dynamic symbol is a dummy. */
7348 table->dynsymcount = 1;
7349
7350 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7351
7352 table->root.type = bfd_link_elf_hash_table;
7353 table->hash_table_id = target_id;
7354
7355 return ret;
7356 }
7357
7358 /* Create an ELF linker hash table. */
7359
7360 struct bfd_link_hash_table *
7361 _bfd_elf_link_hash_table_create (bfd *abfd)
7362 {
7363 struct elf_link_hash_table *ret;
7364 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7365
7366 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7367 if (ret == NULL)
7368 return NULL;
7369
7370 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7371 sizeof (struct elf_link_hash_entry),
7372 GENERIC_ELF_DATA))
7373 {
7374 free (ret);
7375 return NULL;
7376 }
7377 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7378
7379 return &ret->root;
7380 }
7381
7382 /* Destroy an ELF linker hash table. */
7383
7384 void
7385 _bfd_elf_link_hash_table_free (bfd *obfd)
7386 {
7387 struct elf_link_hash_table *htab;
7388
7389 htab = (struct elf_link_hash_table *) obfd->link.hash;
7390 if (htab->dynstr != NULL)
7391 _bfd_elf_strtab_free (htab->dynstr);
7392 _bfd_merge_sections_free (htab->merge_info);
7393 _bfd_generic_link_hash_table_free (obfd);
7394 }
7395
7396 /* This is a hook for the ELF emulation code in the generic linker to
7397 tell the backend linker what file name to use for the DT_NEEDED
7398 entry for a dynamic object. */
7399
7400 void
7401 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7402 {
7403 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7404 && bfd_get_format (abfd) == bfd_object)
7405 elf_dt_name (abfd) = name;
7406 }
7407
7408 int
7409 bfd_elf_get_dyn_lib_class (bfd *abfd)
7410 {
7411 int lib_class;
7412 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7413 && bfd_get_format (abfd) == bfd_object)
7414 lib_class = elf_dyn_lib_class (abfd);
7415 else
7416 lib_class = 0;
7417 return lib_class;
7418 }
7419
7420 void
7421 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7422 {
7423 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7424 && bfd_get_format (abfd) == bfd_object)
7425 elf_dyn_lib_class (abfd) = lib_class;
7426 }
7427
7428 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7429 the linker ELF emulation code. */
7430
7431 struct bfd_link_needed_list *
7432 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7433 struct bfd_link_info *info)
7434 {
7435 if (! is_elf_hash_table (info->hash))
7436 return NULL;
7437 return elf_hash_table (info)->needed;
7438 }
7439
7440 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7441 hook for the linker ELF emulation code. */
7442
7443 struct bfd_link_needed_list *
7444 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7445 struct bfd_link_info *info)
7446 {
7447 if (! is_elf_hash_table (info->hash))
7448 return NULL;
7449 return elf_hash_table (info)->runpath;
7450 }
7451
7452 /* Get the name actually used for a dynamic object for a link. This
7453 is the SONAME entry if there is one. Otherwise, it is the string
7454 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7455
7456 const char *
7457 bfd_elf_get_dt_soname (bfd *abfd)
7458 {
7459 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7460 && bfd_get_format (abfd) == bfd_object)
7461 return elf_dt_name (abfd);
7462 return NULL;
7463 }
7464
7465 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7466 the ELF linker emulation code. */
7467
7468 bfd_boolean
7469 bfd_elf_get_bfd_needed_list (bfd *abfd,
7470 struct bfd_link_needed_list **pneeded)
7471 {
7472 asection *s;
7473 bfd_byte *dynbuf = NULL;
7474 unsigned int elfsec;
7475 unsigned long shlink;
7476 bfd_byte *extdyn, *extdynend;
7477 size_t extdynsize;
7478 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7479
7480 *pneeded = NULL;
7481
7482 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7483 || bfd_get_format (abfd) != bfd_object)
7484 return TRUE;
7485
7486 s = bfd_get_section_by_name (abfd, ".dynamic");
7487 if (s == NULL || s->size == 0)
7488 return TRUE;
7489
7490 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7491 goto error_return;
7492
7493 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7494 if (elfsec == SHN_BAD)
7495 goto error_return;
7496
7497 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7498
7499 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7500 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7501
7502 extdyn = dynbuf;
7503 extdynend = extdyn + s->size;
7504 for (; extdyn < extdynend; extdyn += extdynsize)
7505 {
7506 Elf_Internal_Dyn dyn;
7507
7508 (*swap_dyn_in) (abfd, extdyn, &dyn);
7509
7510 if (dyn.d_tag == DT_NULL)
7511 break;
7512
7513 if (dyn.d_tag == DT_NEEDED)
7514 {
7515 const char *string;
7516 struct bfd_link_needed_list *l;
7517 unsigned int tagv = dyn.d_un.d_val;
7518 bfd_size_type amt;
7519
7520 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7521 if (string == NULL)
7522 goto error_return;
7523
7524 amt = sizeof *l;
7525 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7526 if (l == NULL)
7527 goto error_return;
7528
7529 l->by = abfd;
7530 l->name = string;
7531 l->next = *pneeded;
7532 *pneeded = l;
7533 }
7534 }
7535
7536 free (dynbuf);
7537
7538 return TRUE;
7539
7540 error_return:
7541 if (dynbuf != NULL)
7542 free (dynbuf);
7543 return FALSE;
7544 }
7545
7546 struct elf_symbuf_symbol
7547 {
7548 unsigned long st_name; /* Symbol name, index in string tbl */
7549 unsigned char st_info; /* Type and binding attributes */
7550 unsigned char st_other; /* Visibilty, and target specific */
7551 };
7552
7553 struct elf_symbuf_head
7554 {
7555 struct elf_symbuf_symbol *ssym;
7556 size_t count;
7557 unsigned int st_shndx;
7558 };
7559
7560 struct elf_symbol
7561 {
7562 union
7563 {
7564 Elf_Internal_Sym *isym;
7565 struct elf_symbuf_symbol *ssym;
7566 } u;
7567 const char *name;
7568 };
7569
7570 /* Sort references to symbols by ascending section number. */
7571
7572 static int
7573 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7574 {
7575 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7576 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7577
7578 return s1->st_shndx - s2->st_shndx;
7579 }
7580
7581 static int
7582 elf_sym_name_compare (const void *arg1, const void *arg2)
7583 {
7584 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7585 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7586 return strcmp (s1->name, s2->name);
7587 }
7588
7589 static struct elf_symbuf_head *
7590 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7591 {
7592 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7593 struct elf_symbuf_symbol *ssym;
7594 struct elf_symbuf_head *ssymbuf, *ssymhead;
7595 size_t i, shndx_count, total_size;
7596
7597 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7598 if (indbuf == NULL)
7599 return NULL;
7600
7601 for (ind = indbuf, i = 0; i < symcount; i++)
7602 if (isymbuf[i].st_shndx != SHN_UNDEF)
7603 *ind++ = &isymbuf[i];
7604 indbufend = ind;
7605
7606 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7607 elf_sort_elf_symbol);
7608
7609 shndx_count = 0;
7610 if (indbufend > indbuf)
7611 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7612 if (ind[0]->st_shndx != ind[1]->st_shndx)
7613 shndx_count++;
7614
7615 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7616 + (indbufend - indbuf) * sizeof (*ssym));
7617 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7618 if (ssymbuf == NULL)
7619 {
7620 free (indbuf);
7621 return NULL;
7622 }
7623
7624 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7625 ssymbuf->ssym = NULL;
7626 ssymbuf->count = shndx_count;
7627 ssymbuf->st_shndx = 0;
7628 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7629 {
7630 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7631 {
7632 ssymhead++;
7633 ssymhead->ssym = ssym;
7634 ssymhead->count = 0;
7635 ssymhead->st_shndx = (*ind)->st_shndx;
7636 }
7637 ssym->st_name = (*ind)->st_name;
7638 ssym->st_info = (*ind)->st_info;
7639 ssym->st_other = (*ind)->st_other;
7640 ssymhead->count++;
7641 }
7642 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7643 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7644 == total_size));
7645
7646 free (indbuf);
7647 return ssymbuf;
7648 }
7649
7650 /* Check if 2 sections define the same set of local and global
7651 symbols. */
7652
7653 static bfd_boolean
7654 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7655 struct bfd_link_info *info)
7656 {
7657 bfd *bfd1, *bfd2;
7658 const struct elf_backend_data *bed1, *bed2;
7659 Elf_Internal_Shdr *hdr1, *hdr2;
7660 size_t symcount1, symcount2;
7661 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7662 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7663 Elf_Internal_Sym *isym, *isymend;
7664 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7665 size_t count1, count2, i;
7666 unsigned int shndx1, shndx2;
7667 bfd_boolean result;
7668
7669 bfd1 = sec1->owner;
7670 bfd2 = sec2->owner;
7671
7672 /* Both sections have to be in ELF. */
7673 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7674 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7675 return FALSE;
7676
7677 if (elf_section_type (sec1) != elf_section_type (sec2))
7678 return FALSE;
7679
7680 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7681 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7682 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7683 return FALSE;
7684
7685 bed1 = get_elf_backend_data (bfd1);
7686 bed2 = get_elf_backend_data (bfd2);
7687 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7688 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7689 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7690 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7691
7692 if (symcount1 == 0 || symcount2 == 0)
7693 return FALSE;
7694
7695 result = FALSE;
7696 isymbuf1 = NULL;
7697 isymbuf2 = NULL;
7698 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7699 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7700
7701 if (ssymbuf1 == NULL)
7702 {
7703 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7704 NULL, NULL, NULL);
7705 if (isymbuf1 == NULL)
7706 goto done;
7707
7708 if (!info->reduce_memory_overheads)
7709 elf_tdata (bfd1)->symbuf = ssymbuf1
7710 = elf_create_symbuf (symcount1, isymbuf1);
7711 }
7712
7713 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7714 {
7715 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7716 NULL, NULL, NULL);
7717 if (isymbuf2 == NULL)
7718 goto done;
7719
7720 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7721 elf_tdata (bfd2)->symbuf = ssymbuf2
7722 = elf_create_symbuf (symcount2, isymbuf2);
7723 }
7724
7725 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7726 {
7727 /* Optimized faster version. */
7728 size_t lo, hi, mid;
7729 struct elf_symbol *symp;
7730 struct elf_symbuf_symbol *ssym, *ssymend;
7731
7732 lo = 0;
7733 hi = ssymbuf1->count;
7734 ssymbuf1++;
7735 count1 = 0;
7736 while (lo < hi)
7737 {
7738 mid = (lo + hi) / 2;
7739 if (shndx1 < ssymbuf1[mid].st_shndx)
7740 hi = mid;
7741 else if (shndx1 > ssymbuf1[mid].st_shndx)
7742 lo = mid + 1;
7743 else
7744 {
7745 count1 = ssymbuf1[mid].count;
7746 ssymbuf1 += mid;
7747 break;
7748 }
7749 }
7750
7751 lo = 0;
7752 hi = ssymbuf2->count;
7753 ssymbuf2++;
7754 count2 = 0;
7755 while (lo < hi)
7756 {
7757 mid = (lo + hi) / 2;
7758 if (shndx2 < ssymbuf2[mid].st_shndx)
7759 hi = mid;
7760 else if (shndx2 > ssymbuf2[mid].st_shndx)
7761 lo = mid + 1;
7762 else
7763 {
7764 count2 = ssymbuf2[mid].count;
7765 ssymbuf2 += mid;
7766 break;
7767 }
7768 }
7769
7770 if (count1 == 0 || count2 == 0 || count1 != count2)
7771 goto done;
7772
7773 symtable1
7774 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7775 symtable2
7776 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7777 if (symtable1 == NULL || symtable2 == NULL)
7778 goto done;
7779
7780 symp = symtable1;
7781 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7782 ssym < ssymend; ssym++, symp++)
7783 {
7784 symp->u.ssym = ssym;
7785 symp->name = bfd_elf_string_from_elf_section (bfd1,
7786 hdr1->sh_link,
7787 ssym->st_name);
7788 }
7789
7790 symp = symtable2;
7791 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7792 ssym < ssymend; ssym++, symp++)
7793 {
7794 symp->u.ssym = ssym;
7795 symp->name = bfd_elf_string_from_elf_section (bfd2,
7796 hdr2->sh_link,
7797 ssym->st_name);
7798 }
7799
7800 /* Sort symbol by name. */
7801 qsort (symtable1, count1, sizeof (struct elf_symbol),
7802 elf_sym_name_compare);
7803 qsort (symtable2, count1, sizeof (struct elf_symbol),
7804 elf_sym_name_compare);
7805
7806 for (i = 0; i < count1; i++)
7807 /* Two symbols must have the same binding, type and name. */
7808 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7809 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7810 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7811 goto done;
7812
7813 result = TRUE;
7814 goto done;
7815 }
7816
7817 symtable1 = (struct elf_symbol *)
7818 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7819 symtable2 = (struct elf_symbol *)
7820 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7821 if (symtable1 == NULL || symtable2 == NULL)
7822 goto done;
7823
7824 /* Count definitions in the section. */
7825 count1 = 0;
7826 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7827 if (isym->st_shndx == shndx1)
7828 symtable1[count1++].u.isym = isym;
7829
7830 count2 = 0;
7831 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7832 if (isym->st_shndx == shndx2)
7833 symtable2[count2++].u.isym = isym;
7834
7835 if (count1 == 0 || count2 == 0 || count1 != count2)
7836 goto done;
7837
7838 for (i = 0; i < count1; i++)
7839 symtable1[i].name
7840 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7841 symtable1[i].u.isym->st_name);
7842
7843 for (i = 0; i < count2; i++)
7844 symtable2[i].name
7845 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7846 symtable2[i].u.isym->st_name);
7847
7848 /* Sort symbol by name. */
7849 qsort (symtable1, count1, sizeof (struct elf_symbol),
7850 elf_sym_name_compare);
7851 qsort (symtable2, count1, sizeof (struct elf_symbol),
7852 elf_sym_name_compare);
7853
7854 for (i = 0; i < count1; i++)
7855 /* Two symbols must have the same binding, type and name. */
7856 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7857 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7858 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7859 goto done;
7860
7861 result = TRUE;
7862
7863 done:
7864 if (symtable1)
7865 free (symtable1);
7866 if (symtable2)
7867 free (symtable2);
7868 if (isymbuf1)
7869 free (isymbuf1);
7870 if (isymbuf2)
7871 free (isymbuf2);
7872
7873 return result;
7874 }
7875
7876 /* Return TRUE if 2 section types are compatible. */
7877
7878 bfd_boolean
7879 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7880 bfd *bbfd, const asection *bsec)
7881 {
7882 if (asec == NULL
7883 || bsec == NULL
7884 || abfd->xvec->flavour != bfd_target_elf_flavour
7885 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7886 return TRUE;
7887
7888 return elf_section_type (asec) == elf_section_type (bsec);
7889 }
7890 \f
7891 /* Final phase of ELF linker. */
7892
7893 /* A structure we use to avoid passing large numbers of arguments. */
7894
7895 struct elf_final_link_info
7896 {
7897 /* General link information. */
7898 struct bfd_link_info *info;
7899 /* Output BFD. */
7900 bfd *output_bfd;
7901 /* Symbol string table. */
7902 struct elf_strtab_hash *symstrtab;
7903 /* .hash section. */
7904 asection *hash_sec;
7905 /* symbol version section (.gnu.version). */
7906 asection *symver_sec;
7907 /* Buffer large enough to hold contents of any section. */
7908 bfd_byte *contents;
7909 /* Buffer large enough to hold external relocs of any section. */
7910 void *external_relocs;
7911 /* Buffer large enough to hold internal relocs of any section. */
7912 Elf_Internal_Rela *internal_relocs;
7913 /* Buffer large enough to hold external local symbols of any input
7914 BFD. */
7915 bfd_byte *external_syms;
7916 /* And a buffer for symbol section indices. */
7917 Elf_External_Sym_Shndx *locsym_shndx;
7918 /* Buffer large enough to hold internal local symbols of any input
7919 BFD. */
7920 Elf_Internal_Sym *internal_syms;
7921 /* Array large enough to hold a symbol index for each local symbol
7922 of any input BFD. */
7923 long *indices;
7924 /* Array large enough to hold a section pointer for each local
7925 symbol of any input BFD. */
7926 asection **sections;
7927 /* Buffer for SHT_SYMTAB_SHNDX section. */
7928 Elf_External_Sym_Shndx *symshndxbuf;
7929 /* Number of STT_FILE syms seen. */
7930 size_t filesym_count;
7931 };
7932
7933 /* This struct is used to pass information to elf_link_output_extsym. */
7934
7935 struct elf_outext_info
7936 {
7937 bfd_boolean failed;
7938 bfd_boolean localsyms;
7939 bfd_boolean file_sym_done;
7940 struct elf_final_link_info *flinfo;
7941 };
7942
7943
7944 /* Support for evaluating a complex relocation.
7945
7946 Complex relocations are generalized, self-describing relocations. The
7947 implementation of them consists of two parts: complex symbols, and the
7948 relocations themselves.
7949
7950 The relocations are use a reserved elf-wide relocation type code (R_RELC
7951 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7952 information (start bit, end bit, word width, etc) into the addend. This
7953 information is extracted from CGEN-generated operand tables within gas.
7954
7955 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7956 internal) representing prefix-notation expressions, including but not
7957 limited to those sorts of expressions normally encoded as addends in the
7958 addend field. The symbol mangling format is:
7959
7960 <node> := <literal>
7961 | <unary-operator> ':' <node>
7962 | <binary-operator> ':' <node> ':' <node>
7963 ;
7964
7965 <literal> := 's' <digits=N> ':' <N character symbol name>
7966 | 'S' <digits=N> ':' <N character section name>
7967 | '#' <hexdigits>
7968 ;
7969
7970 <binary-operator> := as in C
7971 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7972
7973 static void
7974 set_symbol_value (bfd *bfd_with_globals,
7975 Elf_Internal_Sym *isymbuf,
7976 size_t locsymcount,
7977 size_t symidx,
7978 bfd_vma val)
7979 {
7980 struct elf_link_hash_entry **sym_hashes;
7981 struct elf_link_hash_entry *h;
7982 size_t extsymoff = locsymcount;
7983
7984 if (symidx < locsymcount)
7985 {
7986 Elf_Internal_Sym *sym;
7987
7988 sym = isymbuf + symidx;
7989 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7990 {
7991 /* It is a local symbol: move it to the
7992 "absolute" section and give it a value. */
7993 sym->st_shndx = SHN_ABS;
7994 sym->st_value = val;
7995 return;
7996 }
7997 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7998 extsymoff = 0;
7999 }
8000
8001 /* It is a global symbol: set its link type
8002 to "defined" and give it a value. */
8003
8004 sym_hashes = elf_sym_hashes (bfd_with_globals);
8005 h = sym_hashes [symidx - extsymoff];
8006 while (h->root.type == bfd_link_hash_indirect
8007 || h->root.type == bfd_link_hash_warning)
8008 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8009 h->root.type = bfd_link_hash_defined;
8010 h->root.u.def.value = val;
8011 h->root.u.def.section = bfd_abs_section_ptr;
8012 }
8013
8014 static bfd_boolean
8015 resolve_symbol (const char *name,
8016 bfd *input_bfd,
8017 struct elf_final_link_info *flinfo,
8018 bfd_vma *result,
8019 Elf_Internal_Sym *isymbuf,
8020 size_t locsymcount)
8021 {
8022 Elf_Internal_Sym *sym;
8023 struct bfd_link_hash_entry *global_entry;
8024 const char *candidate = NULL;
8025 Elf_Internal_Shdr *symtab_hdr;
8026 size_t i;
8027
8028 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8029
8030 for (i = 0; i < locsymcount; ++ i)
8031 {
8032 sym = isymbuf + i;
8033
8034 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8035 continue;
8036
8037 candidate = bfd_elf_string_from_elf_section (input_bfd,
8038 symtab_hdr->sh_link,
8039 sym->st_name);
8040 #ifdef DEBUG
8041 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8042 name, candidate, (unsigned long) sym->st_value);
8043 #endif
8044 if (candidate && strcmp (candidate, name) == 0)
8045 {
8046 asection *sec = flinfo->sections [i];
8047
8048 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8049 *result += sec->output_offset + sec->output_section->vma;
8050 #ifdef DEBUG
8051 printf ("Found symbol with value %8.8lx\n",
8052 (unsigned long) *result);
8053 #endif
8054 return TRUE;
8055 }
8056 }
8057
8058 /* Hmm, haven't found it yet. perhaps it is a global. */
8059 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8060 FALSE, FALSE, TRUE);
8061 if (!global_entry)
8062 return FALSE;
8063
8064 if (global_entry->type == bfd_link_hash_defined
8065 || global_entry->type == bfd_link_hash_defweak)
8066 {
8067 *result = (global_entry->u.def.value
8068 + global_entry->u.def.section->output_section->vma
8069 + global_entry->u.def.section->output_offset);
8070 #ifdef DEBUG
8071 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8072 global_entry->root.string, (unsigned long) *result);
8073 #endif
8074 return TRUE;
8075 }
8076
8077 return FALSE;
8078 }
8079
8080 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8081 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8082 names like "foo.end" which is the end address of section "foo". */
8083
8084 static bfd_boolean
8085 resolve_section (const char *name,
8086 asection *sections,
8087 bfd_vma *result,
8088 bfd * abfd)
8089 {
8090 asection *curr;
8091 unsigned int len;
8092
8093 for (curr = sections; curr; curr = curr->next)
8094 if (strcmp (curr->name, name) == 0)
8095 {
8096 *result = curr->vma;
8097 return TRUE;
8098 }
8099
8100 /* Hmm. still haven't found it. try pseudo-section names. */
8101 /* FIXME: This could be coded more efficiently... */
8102 for (curr = sections; curr; curr = curr->next)
8103 {
8104 len = strlen (curr->name);
8105 if (len > strlen (name))
8106 continue;
8107
8108 if (strncmp (curr->name, name, len) == 0)
8109 {
8110 if (strncmp (".end", name + len, 4) == 0)
8111 {
8112 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8113 return TRUE;
8114 }
8115
8116 /* Insert more pseudo-section names here, if you like. */
8117 }
8118 }
8119
8120 return FALSE;
8121 }
8122
8123 static void
8124 undefined_reference (const char *reftype, const char *name)
8125 {
8126 /* xgettext:c-format */
8127 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8128 reftype, name);
8129 }
8130
8131 static bfd_boolean
8132 eval_symbol (bfd_vma *result,
8133 const char **symp,
8134 bfd *input_bfd,
8135 struct elf_final_link_info *flinfo,
8136 bfd_vma dot,
8137 Elf_Internal_Sym *isymbuf,
8138 size_t locsymcount,
8139 int signed_p)
8140 {
8141 size_t len;
8142 size_t symlen;
8143 bfd_vma a;
8144 bfd_vma b;
8145 char symbuf[4096];
8146 const char *sym = *symp;
8147 const char *symend;
8148 bfd_boolean symbol_is_section = FALSE;
8149
8150 len = strlen (sym);
8151 symend = sym + len;
8152
8153 if (len < 1 || len > sizeof (symbuf))
8154 {
8155 bfd_set_error (bfd_error_invalid_operation);
8156 return FALSE;
8157 }
8158
8159 switch (* sym)
8160 {
8161 case '.':
8162 *result = dot;
8163 *symp = sym + 1;
8164 return TRUE;
8165
8166 case '#':
8167 ++sym;
8168 *result = strtoul (sym, (char **) symp, 16);
8169 return TRUE;
8170
8171 case 'S':
8172 symbol_is_section = TRUE;
8173 /* Fall through. */
8174 case 's':
8175 ++sym;
8176 symlen = strtol (sym, (char **) symp, 10);
8177 sym = *symp + 1; /* Skip the trailing ':'. */
8178
8179 if (symend < sym || symlen + 1 > sizeof (symbuf))
8180 {
8181 bfd_set_error (bfd_error_invalid_operation);
8182 return FALSE;
8183 }
8184
8185 memcpy (symbuf, sym, symlen);
8186 symbuf[symlen] = '\0';
8187 *symp = sym + symlen;
8188
8189 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8190 the symbol as a section, or vice-versa. so we're pretty liberal in our
8191 interpretation here; section means "try section first", not "must be a
8192 section", and likewise with symbol. */
8193
8194 if (symbol_is_section)
8195 {
8196 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8197 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8198 isymbuf, locsymcount))
8199 {
8200 undefined_reference ("section", symbuf);
8201 return FALSE;
8202 }
8203 }
8204 else
8205 {
8206 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8207 isymbuf, locsymcount)
8208 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8209 result, input_bfd))
8210 {
8211 undefined_reference ("symbol", symbuf);
8212 return FALSE;
8213 }
8214 }
8215
8216 return TRUE;
8217
8218 /* All that remains are operators. */
8219
8220 #define UNARY_OP(op) \
8221 if (strncmp (sym, #op, strlen (#op)) == 0) \
8222 { \
8223 sym += strlen (#op); \
8224 if (*sym == ':') \
8225 ++sym; \
8226 *symp = sym; \
8227 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8228 isymbuf, locsymcount, signed_p)) \
8229 return FALSE; \
8230 if (signed_p) \
8231 *result = op ((bfd_signed_vma) a); \
8232 else \
8233 *result = op a; \
8234 return TRUE; \
8235 }
8236
8237 #define BINARY_OP(op) \
8238 if (strncmp (sym, #op, strlen (#op)) == 0) \
8239 { \
8240 sym += strlen (#op); \
8241 if (*sym == ':') \
8242 ++sym; \
8243 *symp = sym; \
8244 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8245 isymbuf, locsymcount, signed_p)) \
8246 return FALSE; \
8247 ++*symp; \
8248 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8249 isymbuf, locsymcount, signed_p)) \
8250 return FALSE; \
8251 if (signed_p) \
8252 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8253 else \
8254 *result = a op b; \
8255 return TRUE; \
8256 }
8257
8258 default:
8259 UNARY_OP (0-);
8260 BINARY_OP (<<);
8261 BINARY_OP (>>);
8262 BINARY_OP (==);
8263 BINARY_OP (!=);
8264 BINARY_OP (<=);
8265 BINARY_OP (>=);
8266 BINARY_OP (&&);
8267 BINARY_OP (||);
8268 UNARY_OP (~);
8269 UNARY_OP (!);
8270 BINARY_OP (*);
8271 BINARY_OP (/);
8272 BINARY_OP (%);
8273 BINARY_OP (^);
8274 BINARY_OP (|);
8275 BINARY_OP (&);
8276 BINARY_OP (+);
8277 BINARY_OP (-);
8278 BINARY_OP (<);
8279 BINARY_OP (>);
8280 #undef UNARY_OP
8281 #undef BINARY_OP
8282 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8283 bfd_set_error (bfd_error_invalid_operation);
8284 return FALSE;
8285 }
8286 }
8287
8288 static void
8289 put_value (bfd_vma size,
8290 unsigned long chunksz,
8291 bfd *input_bfd,
8292 bfd_vma x,
8293 bfd_byte *location)
8294 {
8295 location += (size - chunksz);
8296
8297 for (; size; size -= chunksz, location -= chunksz)
8298 {
8299 switch (chunksz)
8300 {
8301 case 1:
8302 bfd_put_8 (input_bfd, x, location);
8303 x >>= 8;
8304 break;
8305 case 2:
8306 bfd_put_16 (input_bfd, x, location);
8307 x >>= 16;
8308 break;
8309 case 4:
8310 bfd_put_32 (input_bfd, x, location);
8311 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8312 x >>= 16;
8313 x >>= 16;
8314 break;
8315 #ifdef BFD64
8316 case 8:
8317 bfd_put_64 (input_bfd, x, location);
8318 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8319 x >>= 32;
8320 x >>= 32;
8321 break;
8322 #endif
8323 default:
8324 abort ();
8325 break;
8326 }
8327 }
8328 }
8329
8330 static bfd_vma
8331 get_value (bfd_vma size,
8332 unsigned long chunksz,
8333 bfd *input_bfd,
8334 bfd_byte *location)
8335 {
8336 int shift;
8337 bfd_vma x = 0;
8338
8339 /* Sanity checks. */
8340 BFD_ASSERT (chunksz <= sizeof (x)
8341 && size >= chunksz
8342 && chunksz != 0
8343 && (size % chunksz) == 0
8344 && input_bfd != NULL
8345 && location != NULL);
8346
8347 if (chunksz == sizeof (x))
8348 {
8349 BFD_ASSERT (size == chunksz);
8350
8351 /* Make sure that we do not perform an undefined shift operation.
8352 We know that size == chunksz so there will only be one iteration
8353 of the loop below. */
8354 shift = 0;
8355 }
8356 else
8357 shift = 8 * chunksz;
8358
8359 for (; size; size -= chunksz, location += chunksz)
8360 {
8361 switch (chunksz)
8362 {
8363 case 1:
8364 x = (x << shift) | bfd_get_8 (input_bfd, location);
8365 break;
8366 case 2:
8367 x = (x << shift) | bfd_get_16 (input_bfd, location);
8368 break;
8369 case 4:
8370 x = (x << shift) | bfd_get_32 (input_bfd, location);
8371 break;
8372 #ifdef BFD64
8373 case 8:
8374 x = (x << shift) | bfd_get_64 (input_bfd, location);
8375 break;
8376 #endif
8377 default:
8378 abort ();
8379 }
8380 }
8381 return x;
8382 }
8383
8384 static void
8385 decode_complex_addend (unsigned long *start, /* in bits */
8386 unsigned long *oplen, /* in bits */
8387 unsigned long *len, /* in bits */
8388 unsigned long *wordsz, /* in bytes */
8389 unsigned long *chunksz, /* in bytes */
8390 unsigned long *lsb0_p,
8391 unsigned long *signed_p,
8392 unsigned long *trunc_p,
8393 unsigned long encoded)
8394 {
8395 * start = encoded & 0x3F;
8396 * len = (encoded >> 6) & 0x3F;
8397 * oplen = (encoded >> 12) & 0x3F;
8398 * wordsz = (encoded >> 18) & 0xF;
8399 * chunksz = (encoded >> 22) & 0xF;
8400 * lsb0_p = (encoded >> 27) & 1;
8401 * signed_p = (encoded >> 28) & 1;
8402 * trunc_p = (encoded >> 29) & 1;
8403 }
8404
8405 bfd_reloc_status_type
8406 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8407 asection *input_section ATTRIBUTE_UNUSED,
8408 bfd_byte *contents,
8409 Elf_Internal_Rela *rel,
8410 bfd_vma relocation)
8411 {
8412 bfd_vma shift, x, mask;
8413 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8414 bfd_reloc_status_type r;
8415
8416 /* Perform this reloc, since it is complex.
8417 (this is not to say that it necessarily refers to a complex
8418 symbol; merely that it is a self-describing CGEN based reloc.
8419 i.e. the addend has the complete reloc information (bit start, end,
8420 word size, etc) encoded within it.). */
8421
8422 decode_complex_addend (&start, &oplen, &len, &wordsz,
8423 &chunksz, &lsb0_p, &signed_p,
8424 &trunc_p, rel->r_addend);
8425
8426 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8427
8428 if (lsb0_p)
8429 shift = (start + 1) - len;
8430 else
8431 shift = (8 * wordsz) - (start + len);
8432
8433 x = get_value (wordsz, chunksz, input_bfd,
8434 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8435
8436 #ifdef DEBUG
8437 printf ("Doing complex reloc: "
8438 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8439 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8440 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8441 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8442 oplen, (unsigned long) x, (unsigned long) mask,
8443 (unsigned long) relocation);
8444 #endif
8445
8446 r = bfd_reloc_ok;
8447 if (! trunc_p)
8448 /* Now do an overflow check. */
8449 r = bfd_check_overflow ((signed_p
8450 ? complain_overflow_signed
8451 : complain_overflow_unsigned),
8452 len, 0, (8 * wordsz),
8453 relocation);
8454
8455 /* Do the deed. */
8456 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8457
8458 #ifdef DEBUG
8459 printf (" relocation: %8.8lx\n"
8460 " shifted mask: %8.8lx\n"
8461 " shifted/masked reloc: %8.8lx\n"
8462 " result: %8.8lx\n",
8463 (unsigned long) relocation, (unsigned long) (mask << shift),
8464 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8465 #endif
8466 put_value (wordsz, chunksz, input_bfd, x,
8467 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8468 return r;
8469 }
8470
8471 /* Functions to read r_offset from external (target order) reloc
8472 entry. Faster than bfd_getl32 et al, because we let the compiler
8473 know the value is aligned. */
8474
8475 static bfd_vma
8476 ext32l_r_offset (const void *p)
8477 {
8478 union aligned32
8479 {
8480 uint32_t v;
8481 unsigned char c[4];
8482 };
8483 const union aligned32 *a
8484 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8485
8486 uint32_t aval = ( (uint32_t) a->c[0]
8487 | (uint32_t) a->c[1] << 8
8488 | (uint32_t) a->c[2] << 16
8489 | (uint32_t) a->c[3] << 24);
8490 return aval;
8491 }
8492
8493 static bfd_vma
8494 ext32b_r_offset (const void *p)
8495 {
8496 union aligned32
8497 {
8498 uint32_t v;
8499 unsigned char c[4];
8500 };
8501 const union aligned32 *a
8502 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8503
8504 uint32_t aval = ( (uint32_t) a->c[0] << 24
8505 | (uint32_t) a->c[1] << 16
8506 | (uint32_t) a->c[2] << 8
8507 | (uint32_t) a->c[3]);
8508 return aval;
8509 }
8510
8511 #ifdef BFD_HOST_64_BIT
8512 static bfd_vma
8513 ext64l_r_offset (const void *p)
8514 {
8515 union aligned64
8516 {
8517 uint64_t v;
8518 unsigned char c[8];
8519 };
8520 const union aligned64 *a
8521 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8522
8523 uint64_t aval = ( (uint64_t) a->c[0]
8524 | (uint64_t) a->c[1] << 8
8525 | (uint64_t) a->c[2] << 16
8526 | (uint64_t) a->c[3] << 24
8527 | (uint64_t) a->c[4] << 32
8528 | (uint64_t) a->c[5] << 40
8529 | (uint64_t) a->c[6] << 48
8530 | (uint64_t) a->c[7] << 56);
8531 return aval;
8532 }
8533
8534 static bfd_vma
8535 ext64b_r_offset (const void *p)
8536 {
8537 union aligned64
8538 {
8539 uint64_t v;
8540 unsigned char c[8];
8541 };
8542 const union aligned64 *a
8543 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8544
8545 uint64_t aval = ( (uint64_t) a->c[0] << 56
8546 | (uint64_t) a->c[1] << 48
8547 | (uint64_t) a->c[2] << 40
8548 | (uint64_t) a->c[3] << 32
8549 | (uint64_t) a->c[4] << 24
8550 | (uint64_t) a->c[5] << 16
8551 | (uint64_t) a->c[6] << 8
8552 | (uint64_t) a->c[7]);
8553 return aval;
8554 }
8555 #endif
8556
8557 /* When performing a relocatable link, the input relocations are
8558 preserved. But, if they reference global symbols, the indices
8559 referenced must be updated. Update all the relocations found in
8560 RELDATA. */
8561
8562 static bfd_boolean
8563 elf_link_adjust_relocs (bfd *abfd,
8564 asection *sec,
8565 struct bfd_elf_section_reloc_data *reldata,
8566 bfd_boolean sort,
8567 struct bfd_link_info *info)
8568 {
8569 unsigned int i;
8570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8571 bfd_byte *erela;
8572 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8573 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8574 bfd_vma r_type_mask;
8575 int r_sym_shift;
8576 unsigned int count = reldata->count;
8577 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8578
8579 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8580 {
8581 swap_in = bed->s->swap_reloc_in;
8582 swap_out = bed->s->swap_reloc_out;
8583 }
8584 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8585 {
8586 swap_in = bed->s->swap_reloca_in;
8587 swap_out = bed->s->swap_reloca_out;
8588 }
8589 else
8590 abort ();
8591
8592 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8593 abort ();
8594
8595 if (bed->s->arch_size == 32)
8596 {
8597 r_type_mask = 0xff;
8598 r_sym_shift = 8;
8599 }
8600 else
8601 {
8602 r_type_mask = 0xffffffff;
8603 r_sym_shift = 32;
8604 }
8605
8606 erela = reldata->hdr->contents;
8607 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8608 {
8609 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8610 unsigned int j;
8611
8612 if (*rel_hash == NULL)
8613 continue;
8614
8615 if ((*rel_hash)->indx == -2
8616 && info->gc_sections
8617 && ! info->gc_keep_exported)
8618 {
8619 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8620 _bfd_error_handler (_("%B:%A: error: relocation references symbol %s which was removed by garbage collection."),
8621 abfd, sec,
8622 (*rel_hash)->root.root.string);
8623 _bfd_error_handler (_("%B:%A: error: try relinking with --gc-keep-exported enabled."),
8624 abfd, sec);
8625 bfd_set_error (bfd_error_invalid_operation);
8626 return FALSE;
8627 }
8628 BFD_ASSERT ((*rel_hash)->indx >= 0);
8629
8630 (*swap_in) (abfd, erela, irela);
8631 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8632 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8633 | (irela[j].r_info & r_type_mask));
8634 (*swap_out) (abfd, irela, erela);
8635 }
8636
8637 if (bed->elf_backend_update_relocs)
8638 (*bed->elf_backend_update_relocs) (sec, reldata);
8639
8640 if (sort && count != 0)
8641 {
8642 bfd_vma (*ext_r_off) (const void *);
8643 bfd_vma r_off;
8644 size_t elt_size;
8645 bfd_byte *base, *end, *p, *loc;
8646 bfd_byte *buf = NULL;
8647
8648 if (bed->s->arch_size == 32)
8649 {
8650 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8651 ext_r_off = ext32l_r_offset;
8652 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8653 ext_r_off = ext32b_r_offset;
8654 else
8655 abort ();
8656 }
8657 else
8658 {
8659 #ifdef BFD_HOST_64_BIT
8660 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8661 ext_r_off = ext64l_r_offset;
8662 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8663 ext_r_off = ext64b_r_offset;
8664 else
8665 #endif
8666 abort ();
8667 }
8668
8669 /* Must use a stable sort here. A modified insertion sort,
8670 since the relocs are mostly sorted already. */
8671 elt_size = reldata->hdr->sh_entsize;
8672 base = reldata->hdr->contents;
8673 end = base + count * elt_size;
8674 if (elt_size > sizeof (Elf64_External_Rela))
8675 abort ();
8676
8677 /* Ensure the first element is lowest. This acts as a sentinel,
8678 speeding the main loop below. */
8679 r_off = (*ext_r_off) (base);
8680 for (p = loc = base; (p += elt_size) < end; )
8681 {
8682 bfd_vma r_off2 = (*ext_r_off) (p);
8683 if (r_off > r_off2)
8684 {
8685 r_off = r_off2;
8686 loc = p;
8687 }
8688 }
8689 if (loc != base)
8690 {
8691 /* Don't just swap *base and *loc as that changes the order
8692 of the original base[0] and base[1] if they happen to
8693 have the same r_offset. */
8694 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8695 memcpy (onebuf, loc, elt_size);
8696 memmove (base + elt_size, base, loc - base);
8697 memcpy (base, onebuf, elt_size);
8698 }
8699
8700 for (p = base + elt_size; (p += elt_size) < end; )
8701 {
8702 /* base to p is sorted, *p is next to insert. */
8703 r_off = (*ext_r_off) (p);
8704 /* Search the sorted region for location to insert. */
8705 loc = p - elt_size;
8706 while (r_off < (*ext_r_off) (loc))
8707 loc -= elt_size;
8708 loc += elt_size;
8709 if (loc != p)
8710 {
8711 /* Chances are there is a run of relocs to insert here,
8712 from one of more input files. Files are not always
8713 linked in order due to the way elf_link_input_bfd is
8714 called. See pr17666. */
8715 size_t sortlen = p - loc;
8716 bfd_vma r_off2 = (*ext_r_off) (loc);
8717 size_t runlen = elt_size;
8718 size_t buf_size = 96 * 1024;
8719 while (p + runlen < end
8720 && (sortlen <= buf_size
8721 || runlen + elt_size <= buf_size)
8722 && r_off2 > (*ext_r_off) (p + runlen))
8723 runlen += elt_size;
8724 if (buf == NULL)
8725 {
8726 buf = bfd_malloc (buf_size);
8727 if (buf == NULL)
8728 return FALSE;
8729 }
8730 if (runlen < sortlen)
8731 {
8732 memcpy (buf, p, runlen);
8733 memmove (loc + runlen, loc, sortlen);
8734 memcpy (loc, buf, runlen);
8735 }
8736 else
8737 {
8738 memcpy (buf, loc, sortlen);
8739 memmove (loc, p, runlen);
8740 memcpy (loc + runlen, buf, sortlen);
8741 }
8742 p += runlen - elt_size;
8743 }
8744 }
8745 /* Hashes are no longer valid. */
8746 free (reldata->hashes);
8747 reldata->hashes = NULL;
8748 free (buf);
8749 }
8750 return TRUE;
8751 }
8752
8753 struct elf_link_sort_rela
8754 {
8755 union {
8756 bfd_vma offset;
8757 bfd_vma sym_mask;
8758 } u;
8759 enum elf_reloc_type_class type;
8760 /* We use this as an array of size int_rels_per_ext_rel. */
8761 Elf_Internal_Rela rela[1];
8762 };
8763
8764 static int
8765 elf_link_sort_cmp1 (const void *A, const void *B)
8766 {
8767 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8768 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8769 int relativea, relativeb;
8770
8771 relativea = a->type == reloc_class_relative;
8772 relativeb = b->type == reloc_class_relative;
8773
8774 if (relativea < relativeb)
8775 return 1;
8776 if (relativea > relativeb)
8777 return -1;
8778 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8779 return -1;
8780 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8781 return 1;
8782 if (a->rela->r_offset < b->rela->r_offset)
8783 return -1;
8784 if (a->rela->r_offset > b->rela->r_offset)
8785 return 1;
8786 return 0;
8787 }
8788
8789 static int
8790 elf_link_sort_cmp2 (const void *A, const void *B)
8791 {
8792 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8793 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8794
8795 if (a->type < b->type)
8796 return -1;
8797 if (a->type > b->type)
8798 return 1;
8799 if (a->u.offset < b->u.offset)
8800 return -1;
8801 if (a->u.offset > b->u.offset)
8802 return 1;
8803 if (a->rela->r_offset < b->rela->r_offset)
8804 return -1;
8805 if (a->rela->r_offset > b->rela->r_offset)
8806 return 1;
8807 return 0;
8808 }
8809
8810 static size_t
8811 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8812 {
8813 asection *dynamic_relocs;
8814 asection *rela_dyn;
8815 asection *rel_dyn;
8816 bfd_size_type count, size;
8817 size_t i, ret, sort_elt, ext_size;
8818 bfd_byte *sort, *s_non_relative, *p;
8819 struct elf_link_sort_rela *sq;
8820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8821 int i2e = bed->s->int_rels_per_ext_rel;
8822 unsigned int opb = bfd_octets_per_byte (abfd);
8823 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8824 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8825 struct bfd_link_order *lo;
8826 bfd_vma r_sym_mask;
8827 bfd_boolean use_rela;
8828
8829 /* Find a dynamic reloc section. */
8830 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8831 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8832 if (rela_dyn != NULL && rela_dyn->size > 0
8833 && rel_dyn != NULL && rel_dyn->size > 0)
8834 {
8835 bfd_boolean use_rela_initialised = FALSE;
8836
8837 /* This is just here to stop gcc from complaining.
8838 Its initialization checking code is not perfect. */
8839 use_rela = TRUE;
8840
8841 /* Both sections are present. Examine the sizes
8842 of the indirect sections to help us choose. */
8843 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8844 if (lo->type == bfd_indirect_link_order)
8845 {
8846 asection *o = lo->u.indirect.section;
8847
8848 if ((o->size % bed->s->sizeof_rela) == 0)
8849 {
8850 if ((o->size % bed->s->sizeof_rel) == 0)
8851 /* Section size is divisible by both rel and rela sizes.
8852 It is of no help to us. */
8853 ;
8854 else
8855 {
8856 /* Section size is only divisible by rela. */
8857 if (use_rela_initialised && !use_rela)
8858 {
8859 _bfd_error_handler (_("%B: Unable to sort relocs - "
8860 "they are in more than one size"),
8861 abfd);
8862 bfd_set_error (bfd_error_invalid_operation);
8863 return 0;
8864 }
8865 else
8866 {
8867 use_rela = TRUE;
8868 use_rela_initialised = TRUE;
8869 }
8870 }
8871 }
8872 else if ((o->size % bed->s->sizeof_rel) == 0)
8873 {
8874 /* Section size is only divisible by rel. */
8875 if (use_rela_initialised && use_rela)
8876 {
8877 _bfd_error_handler (_("%B: Unable to sort relocs - "
8878 "they are in more than one size"),
8879 abfd);
8880 bfd_set_error (bfd_error_invalid_operation);
8881 return 0;
8882 }
8883 else
8884 {
8885 use_rela = FALSE;
8886 use_rela_initialised = TRUE;
8887 }
8888 }
8889 else
8890 {
8891 /* The section size is not divisible by either -
8892 something is wrong. */
8893 _bfd_error_handler (_("%B: Unable to sort relocs - "
8894 "they are of an unknown size"), abfd);
8895 bfd_set_error (bfd_error_invalid_operation);
8896 return 0;
8897 }
8898 }
8899
8900 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8901 if (lo->type == bfd_indirect_link_order)
8902 {
8903 asection *o = lo->u.indirect.section;
8904
8905 if ((o->size % bed->s->sizeof_rela) == 0)
8906 {
8907 if ((o->size % bed->s->sizeof_rel) == 0)
8908 /* Section size is divisible by both rel and rela sizes.
8909 It is of no help to us. */
8910 ;
8911 else
8912 {
8913 /* Section size is only divisible by rela. */
8914 if (use_rela_initialised && !use_rela)
8915 {
8916 _bfd_error_handler (_("%B: Unable to sort relocs - "
8917 "they are in more than one size"),
8918 abfd);
8919 bfd_set_error (bfd_error_invalid_operation);
8920 return 0;
8921 }
8922 else
8923 {
8924 use_rela = TRUE;
8925 use_rela_initialised = TRUE;
8926 }
8927 }
8928 }
8929 else if ((o->size % bed->s->sizeof_rel) == 0)
8930 {
8931 /* Section size is only divisible by rel. */
8932 if (use_rela_initialised && use_rela)
8933 {
8934 _bfd_error_handler (_("%B: Unable to sort relocs - "
8935 "they are in more than one size"),
8936 abfd);
8937 bfd_set_error (bfd_error_invalid_operation);
8938 return 0;
8939 }
8940 else
8941 {
8942 use_rela = FALSE;
8943 use_rela_initialised = TRUE;
8944 }
8945 }
8946 else
8947 {
8948 /* The section size is not divisible by either -
8949 something is wrong. */
8950 _bfd_error_handler (_("%B: Unable to sort relocs - "
8951 "they are of an unknown size"), abfd);
8952 bfd_set_error (bfd_error_invalid_operation);
8953 return 0;
8954 }
8955 }
8956
8957 if (! use_rela_initialised)
8958 /* Make a guess. */
8959 use_rela = TRUE;
8960 }
8961 else if (rela_dyn != NULL && rela_dyn->size > 0)
8962 use_rela = TRUE;
8963 else if (rel_dyn != NULL && rel_dyn->size > 0)
8964 use_rela = FALSE;
8965 else
8966 return 0;
8967
8968 if (use_rela)
8969 {
8970 dynamic_relocs = rela_dyn;
8971 ext_size = bed->s->sizeof_rela;
8972 swap_in = bed->s->swap_reloca_in;
8973 swap_out = bed->s->swap_reloca_out;
8974 }
8975 else
8976 {
8977 dynamic_relocs = rel_dyn;
8978 ext_size = bed->s->sizeof_rel;
8979 swap_in = bed->s->swap_reloc_in;
8980 swap_out = bed->s->swap_reloc_out;
8981 }
8982
8983 size = 0;
8984 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8985 if (lo->type == bfd_indirect_link_order)
8986 size += lo->u.indirect.section->size;
8987
8988 if (size != dynamic_relocs->size)
8989 return 0;
8990
8991 sort_elt = (sizeof (struct elf_link_sort_rela)
8992 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8993
8994 count = dynamic_relocs->size / ext_size;
8995 if (count == 0)
8996 return 0;
8997 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8998
8999 if (sort == NULL)
9000 {
9001 (*info->callbacks->warning)
9002 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
9003 return 0;
9004 }
9005
9006 if (bed->s->arch_size == 32)
9007 r_sym_mask = ~(bfd_vma) 0xff;
9008 else
9009 r_sym_mask = ~(bfd_vma) 0xffffffff;
9010
9011 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9012 if (lo->type == bfd_indirect_link_order)
9013 {
9014 bfd_byte *erel, *erelend;
9015 asection *o = lo->u.indirect.section;
9016
9017 if (o->contents == NULL && o->size != 0)
9018 {
9019 /* This is a reloc section that is being handled as a normal
9020 section. See bfd_section_from_shdr. We can't combine
9021 relocs in this case. */
9022 free (sort);
9023 return 0;
9024 }
9025 erel = o->contents;
9026 erelend = o->contents + o->size;
9027 p = sort + o->output_offset * opb / ext_size * sort_elt;
9028
9029 while (erel < erelend)
9030 {
9031 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9032
9033 (*swap_in) (abfd, erel, s->rela);
9034 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9035 s->u.sym_mask = r_sym_mask;
9036 p += sort_elt;
9037 erel += ext_size;
9038 }
9039 }
9040
9041 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9042
9043 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9044 {
9045 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9046 if (s->type != reloc_class_relative)
9047 break;
9048 }
9049 ret = i;
9050 s_non_relative = p;
9051
9052 sq = (struct elf_link_sort_rela *) s_non_relative;
9053 for (; i < count; i++, p += sort_elt)
9054 {
9055 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9056 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9057 sq = sp;
9058 sp->u.offset = sq->rela->r_offset;
9059 }
9060
9061 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9062
9063 struct elf_link_hash_table *htab = elf_hash_table (info);
9064 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9065 {
9066 /* We have plt relocs in .rela.dyn. */
9067 sq = (struct elf_link_sort_rela *) sort;
9068 for (i = 0; i < count; i++)
9069 if (sq[count - i - 1].type != reloc_class_plt)
9070 break;
9071 if (i != 0 && htab->srelplt->size == i * ext_size)
9072 {
9073 struct bfd_link_order **plo;
9074 /* Put srelplt link_order last. This is so the output_offset
9075 set in the next loop is correct for DT_JMPREL. */
9076 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9077 if ((*plo)->type == bfd_indirect_link_order
9078 && (*plo)->u.indirect.section == htab->srelplt)
9079 {
9080 lo = *plo;
9081 *plo = lo->next;
9082 }
9083 else
9084 plo = &(*plo)->next;
9085 *plo = lo;
9086 lo->next = NULL;
9087 dynamic_relocs->map_tail.link_order = lo;
9088 }
9089 }
9090
9091 p = sort;
9092 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9093 if (lo->type == bfd_indirect_link_order)
9094 {
9095 bfd_byte *erel, *erelend;
9096 asection *o = lo->u.indirect.section;
9097
9098 erel = o->contents;
9099 erelend = o->contents + o->size;
9100 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9101 while (erel < erelend)
9102 {
9103 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9104 (*swap_out) (abfd, s->rela, erel);
9105 p += sort_elt;
9106 erel += ext_size;
9107 }
9108 }
9109
9110 free (sort);
9111 *psec = dynamic_relocs;
9112 return ret;
9113 }
9114
9115 /* Add a symbol to the output symbol string table. */
9116
9117 static int
9118 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9119 const char *name,
9120 Elf_Internal_Sym *elfsym,
9121 asection *input_sec,
9122 struct elf_link_hash_entry *h)
9123 {
9124 int (*output_symbol_hook)
9125 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9126 struct elf_link_hash_entry *);
9127 struct elf_link_hash_table *hash_table;
9128 const struct elf_backend_data *bed;
9129 bfd_size_type strtabsize;
9130
9131 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9132
9133 bed = get_elf_backend_data (flinfo->output_bfd);
9134 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9135 if (output_symbol_hook != NULL)
9136 {
9137 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9138 if (ret != 1)
9139 return ret;
9140 }
9141
9142 if (name == NULL
9143 || *name == '\0'
9144 || (input_sec->flags & SEC_EXCLUDE))
9145 elfsym->st_name = (unsigned long) -1;
9146 else
9147 {
9148 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9149 to get the final offset for st_name. */
9150 elfsym->st_name
9151 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9152 name, FALSE);
9153 if (elfsym->st_name == (unsigned long) -1)
9154 return 0;
9155 }
9156
9157 hash_table = elf_hash_table (flinfo->info);
9158 strtabsize = hash_table->strtabsize;
9159 if (strtabsize <= hash_table->strtabcount)
9160 {
9161 strtabsize += strtabsize;
9162 hash_table->strtabsize = strtabsize;
9163 strtabsize *= sizeof (*hash_table->strtab);
9164 hash_table->strtab
9165 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9166 strtabsize);
9167 if (hash_table->strtab == NULL)
9168 return 0;
9169 }
9170 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9171 hash_table->strtab[hash_table->strtabcount].dest_index
9172 = hash_table->strtabcount;
9173 hash_table->strtab[hash_table->strtabcount].destshndx_index
9174 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9175
9176 bfd_get_symcount (flinfo->output_bfd) += 1;
9177 hash_table->strtabcount += 1;
9178
9179 return 1;
9180 }
9181
9182 /* Swap symbols out to the symbol table and flush the output symbols to
9183 the file. */
9184
9185 static bfd_boolean
9186 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9187 {
9188 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9189 bfd_size_type amt;
9190 size_t i;
9191 const struct elf_backend_data *bed;
9192 bfd_byte *symbuf;
9193 Elf_Internal_Shdr *hdr;
9194 file_ptr pos;
9195 bfd_boolean ret;
9196
9197 if (!hash_table->strtabcount)
9198 return TRUE;
9199
9200 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9201
9202 bed = get_elf_backend_data (flinfo->output_bfd);
9203
9204 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9205 symbuf = (bfd_byte *) bfd_malloc (amt);
9206 if (symbuf == NULL)
9207 return FALSE;
9208
9209 if (flinfo->symshndxbuf)
9210 {
9211 amt = sizeof (Elf_External_Sym_Shndx);
9212 amt *= bfd_get_symcount (flinfo->output_bfd);
9213 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9214 if (flinfo->symshndxbuf == NULL)
9215 {
9216 free (symbuf);
9217 return FALSE;
9218 }
9219 }
9220
9221 for (i = 0; i < hash_table->strtabcount; i++)
9222 {
9223 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9224 if (elfsym->sym.st_name == (unsigned long) -1)
9225 elfsym->sym.st_name = 0;
9226 else
9227 elfsym->sym.st_name
9228 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9229 elfsym->sym.st_name);
9230 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9231 ((bfd_byte *) symbuf
9232 + (elfsym->dest_index
9233 * bed->s->sizeof_sym)),
9234 (flinfo->symshndxbuf
9235 + elfsym->destshndx_index));
9236 }
9237
9238 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9239 pos = hdr->sh_offset + hdr->sh_size;
9240 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9241 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9242 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9243 {
9244 hdr->sh_size += amt;
9245 ret = TRUE;
9246 }
9247 else
9248 ret = FALSE;
9249
9250 free (symbuf);
9251
9252 free (hash_table->strtab);
9253 hash_table->strtab = NULL;
9254
9255 return ret;
9256 }
9257
9258 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9259
9260 static bfd_boolean
9261 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9262 {
9263 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9264 && sym->st_shndx < SHN_LORESERVE)
9265 {
9266 /* The gABI doesn't support dynamic symbols in output sections
9267 beyond 64k. */
9268 _bfd_error_handler
9269 /* xgettext:c-format */
9270 (_("%B: Too many sections: %d (>= %d)"),
9271 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9272 bfd_set_error (bfd_error_nonrepresentable_section);
9273 return FALSE;
9274 }
9275 return TRUE;
9276 }
9277
9278 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9279 allowing an unsatisfied unversioned symbol in the DSO to match a
9280 versioned symbol that would normally require an explicit version.
9281 We also handle the case that a DSO references a hidden symbol
9282 which may be satisfied by a versioned symbol in another DSO. */
9283
9284 static bfd_boolean
9285 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9286 const struct elf_backend_data *bed,
9287 struct elf_link_hash_entry *h)
9288 {
9289 bfd *abfd;
9290 struct elf_link_loaded_list *loaded;
9291
9292 if (!is_elf_hash_table (info->hash))
9293 return FALSE;
9294
9295 /* Check indirect symbol. */
9296 while (h->root.type == bfd_link_hash_indirect)
9297 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9298
9299 switch (h->root.type)
9300 {
9301 default:
9302 abfd = NULL;
9303 break;
9304
9305 case bfd_link_hash_undefined:
9306 case bfd_link_hash_undefweak:
9307 abfd = h->root.u.undef.abfd;
9308 if (abfd == NULL
9309 || (abfd->flags & DYNAMIC) == 0
9310 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9311 return FALSE;
9312 break;
9313
9314 case bfd_link_hash_defined:
9315 case bfd_link_hash_defweak:
9316 abfd = h->root.u.def.section->owner;
9317 break;
9318
9319 case bfd_link_hash_common:
9320 abfd = h->root.u.c.p->section->owner;
9321 break;
9322 }
9323 BFD_ASSERT (abfd != NULL);
9324
9325 for (loaded = elf_hash_table (info)->loaded;
9326 loaded != NULL;
9327 loaded = loaded->next)
9328 {
9329 bfd *input;
9330 Elf_Internal_Shdr *hdr;
9331 size_t symcount;
9332 size_t extsymcount;
9333 size_t extsymoff;
9334 Elf_Internal_Shdr *versymhdr;
9335 Elf_Internal_Sym *isym;
9336 Elf_Internal_Sym *isymend;
9337 Elf_Internal_Sym *isymbuf;
9338 Elf_External_Versym *ever;
9339 Elf_External_Versym *extversym;
9340
9341 input = loaded->abfd;
9342
9343 /* We check each DSO for a possible hidden versioned definition. */
9344 if (input == abfd
9345 || (input->flags & DYNAMIC) == 0
9346 || elf_dynversym (input) == 0)
9347 continue;
9348
9349 hdr = &elf_tdata (input)->dynsymtab_hdr;
9350
9351 symcount = hdr->sh_size / bed->s->sizeof_sym;
9352 if (elf_bad_symtab (input))
9353 {
9354 extsymcount = symcount;
9355 extsymoff = 0;
9356 }
9357 else
9358 {
9359 extsymcount = symcount - hdr->sh_info;
9360 extsymoff = hdr->sh_info;
9361 }
9362
9363 if (extsymcount == 0)
9364 continue;
9365
9366 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9367 NULL, NULL, NULL);
9368 if (isymbuf == NULL)
9369 return FALSE;
9370
9371 /* Read in any version definitions. */
9372 versymhdr = &elf_tdata (input)->dynversym_hdr;
9373 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9374 if (extversym == NULL)
9375 goto error_ret;
9376
9377 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9378 || (bfd_bread (extversym, versymhdr->sh_size, input)
9379 != versymhdr->sh_size))
9380 {
9381 free (extversym);
9382 error_ret:
9383 free (isymbuf);
9384 return FALSE;
9385 }
9386
9387 ever = extversym + extsymoff;
9388 isymend = isymbuf + extsymcount;
9389 for (isym = isymbuf; isym < isymend; isym++, ever++)
9390 {
9391 const char *name;
9392 Elf_Internal_Versym iver;
9393 unsigned short version_index;
9394
9395 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9396 || isym->st_shndx == SHN_UNDEF)
9397 continue;
9398
9399 name = bfd_elf_string_from_elf_section (input,
9400 hdr->sh_link,
9401 isym->st_name);
9402 if (strcmp (name, h->root.root.string) != 0)
9403 continue;
9404
9405 _bfd_elf_swap_versym_in (input, ever, &iver);
9406
9407 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9408 && !(h->def_regular
9409 && h->forced_local))
9410 {
9411 /* If we have a non-hidden versioned sym, then it should
9412 have provided a definition for the undefined sym unless
9413 it is defined in a non-shared object and forced local.
9414 */
9415 abort ();
9416 }
9417
9418 version_index = iver.vs_vers & VERSYM_VERSION;
9419 if (version_index == 1 || version_index == 2)
9420 {
9421 /* This is the base or first version. We can use it. */
9422 free (extversym);
9423 free (isymbuf);
9424 return TRUE;
9425 }
9426 }
9427
9428 free (extversym);
9429 free (isymbuf);
9430 }
9431
9432 return FALSE;
9433 }
9434
9435 /* Convert ELF common symbol TYPE. */
9436
9437 static int
9438 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9439 {
9440 /* Commom symbol can only appear in relocatable link. */
9441 if (!bfd_link_relocatable (info))
9442 abort ();
9443 switch (info->elf_stt_common)
9444 {
9445 case unchanged:
9446 break;
9447 case elf_stt_common:
9448 type = STT_COMMON;
9449 break;
9450 case no_elf_stt_common:
9451 type = STT_OBJECT;
9452 break;
9453 }
9454 return type;
9455 }
9456
9457 /* Add an external symbol to the symbol table. This is called from
9458 the hash table traversal routine. When generating a shared object,
9459 we go through the symbol table twice. The first time we output
9460 anything that might have been forced to local scope in a version
9461 script. The second time we output the symbols that are still
9462 global symbols. */
9463
9464 static bfd_boolean
9465 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9466 {
9467 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9468 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9469 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9470 bfd_boolean strip;
9471 Elf_Internal_Sym sym;
9472 asection *input_sec;
9473 const struct elf_backend_data *bed;
9474 long indx;
9475 int ret;
9476 unsigned int type;
9477
9478 if (h->root.type == bfd_link_hash_warning)
9479 {
9480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9481 if (h->root.type == bfd_link_hash_new)
9482 return TRUE;
9483 }
9484
9485 /* Decide whether to output this symbol in this pass. */
9486 if (eoinfo->localsyms)
9487 {
9488 if (!h->forced_local)
9489 return TRUE;
9490 }
9491 else
9492 {
9493 if (h->forced_local)
9494 return TRUE;
9495 }
9496
9497 bed = get_elf_backend_data (flinfo->output_bfd);
9498
9499 if (h->root.type == bfd_link_hash_undefined)
9500 {
9501 /* If we have an undefined symbol reference here then it must have
9502 come from a shared library that is being linked in. (Undefined
9503 references in regular files have already been handled unless
9504 they are in unreferenced sections which are removed by garbage
9505 collection). */
9506 bfd_boolean ignore_undef = FALSE;
9507
9508 /* Some symbols may be special in that the fact that they're
9509 undefined can be safely ignored - let backend determine that. */
9510 if (bed->elf_backend_ignore_undef_symbol)
9511 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9512
9513 /* If we are reporting errors for this situation then do so now. */
9514 if (!ignore_undef
9515 && h->ref_dynamic
9516 && (!h->ref_regular || flinfo->info->gc_sections)
9517 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9518 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9519 (*flinfo->info->callbacks->undefined_symbol)
9520 (flinfo->info, h->root.root.string,
9521 h->ref_regular ? NULL : h->root.u.undef.abfd,
9522 NULL, 0,
9523 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9524
9525 /* Strip a global symbol defined in a discarded section. */
9526 if (h->indx == -3)
9527 return TRUE;
9528 }
9529
9530 /* We should also warn if a forced local symbol is referenced from
9531 shared libraries. */
9532 if (bfd_link_executable (flinfo->info)
9533 && h->forced_local
9534 && h->ref_dynamic
9535 && h->def_regular
9536 && !h->dynamic_def
9537 && h->ref_dynamic_nonweak
9538 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9539 {
9540 bfd *def_bfd;
9541 const char *msg;
9542 struct elf_link_hash_entry *hi = h;
9543
9544 /* Check indirect symbol. */
9545 while (hi->root.type == bfd_link_hash_indirect)
9546 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9547
9548 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9549 /* xgettext:c-format */
9550 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9551 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9552 /* xgettext:c-format */
9553 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9554 else
9555 /* xgettext:c-format */
9556 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9557 def_bfd = flinfo->output_bfd;
9558 if (hi->root.u.def.section != bfd_abs_section_ptr)
9559 def_bfd = hi->root.u.def.section->owner;
9560 _bfd_error_handler (msg, flinfo->output_bfd,
9561 h->root.root.string, def_bfd);
9562 bfd_set_error (bfd_error_bad_value);
9563 eoinfo->failed = TRUE;
9564 return FALSE;
9565 }
9566
9567 /* We don't want to output symbols that have never been mentioned by
9568 a regular file, or that we have been told to strip. However, if
9569 h->indx is set to -2, the symbol is used by a reloc and we must
9570 output it. */
9571 strip = FALSE;
9572 if (h->indx == -2)
9573 ;
9574 else if ((h->def_dynamic
9575 || h->ref_dynamic
9576 || h->root.type == bfd_link_hash_new)
9577 && !h->def_regular
9578 && !h->ref_regular)
9579 strip = TRUE;
9580 else if (flinfo->info->strip == strip_all)
9581 strip = TRUE;
9582 else if (flinfo->info->strip == strip_some
9583 && bfd_hash_lookup (flinfo->info->keep_hash,
9584 h->root.root.string, FALSE, FALSE) == NULL)
9585 strip = TRUE;
9586 else if ((h->root.type == bfd_link_hash_defined
9587 || h->root.type == bfd_link_hash_defweak)
9588 && ((flinfo->info->strip_discarded
9589 && discarded_section (h->root.u.def.section))
9590 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9591 && h->root.u.def.section->owner != NULL
9592 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9593 strip = TRUE;
9594 else if ((h->root.type == bfd_link_hash_undefined
9595 || h->root.type == bfd_link_hash_undefweak)
9596 && h->root.u.undef.abfd != NULL
9597 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9598 strip = TRUE;
9599
9600 type = h->type;
9601
9602 /* If we're stripping it, and it's not a dynamic symbol, there's
9603 nothing else to do. However, if it is a forced local symbol or
9604 an ifunc symbol we need to give the backend finish_dynamic_symbol
9605 function a chance to make it dynamic. */
9606 if (strip
9607 && h->dynindx == -1
9608 && type != STT_GNU_IFUNC
9609 && !h->forced_local)
9610 return TRUE;
9611
9612 sym.st_value = 0;
9613 sym.st_size = h->size;
9614 sym.st_other = h->other;
9615 switch (h->root.type)
9616 {
9617 default:
9618 case bfd_link_hash_new:
9619 case bfd_link_hash_warning:
9620 abort ();
9621 return FALSE;
9622
9623 case bfd_link_hash_undefined:
9624 case bfd_link_hash_undefweak:
9625 input_sec = bfd_und_section_ptr;
9626 sym.st_shndx = SHN_UNDEF;
9627 break;
9628
9629 case bfd_link_hash_defined:
9630 case bfd_link_hash_defweak:
9631 {
9632 input_sec = h->root.u.def.section;
9633 if (input_sec->output_section != NULL)
9634 {
9635 sym.st_shndx =
9636 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9637 input_sec->output_section);
9638 if (sym.st_shndx == SHN_BAD)
9639 {
9640 _bfd_error_handler
9641 /* xgettext:c-format */
9642 (_("%B: could not find output section %A for input section %A"),
9643 flinfo->output_bfd, input_sec->output_section, input_sec);
9644 bfd_set_error (bfd_error_nonrepresentable_section);
9645 eoinfo->failed = TRUE;
9646 return FALSE;
9647 }
9648
9649 /* ELF symbols in relocatable files are section relative,
9650 but in nonrelocatable files they are virtual
9651 addresses. */
9652 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9653 if (!bfd_link_relocatable (flinfo->info))
9654 {
9655 sym.st_value += input_sec->output_section->vma;
9656 if (h->type == STT_TLS)
9657 {
9658 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9659 if (tls_sec != NULL)
9660 sym.st_value -= tls_sec->vma;
9661 }
9662 }
9663 }
9664 else
9665 {
9666 BFD_ASSERT (input_sec->owner == NULL
9667 || (input_sec->owner->flags & DYNAMIC) != 0);
9668 sym.st_shndx = SHN_UNDEF;
9669 input_sec = bfd_und_section_ptr;
9670 }
9671 }
9672 break;
9673
9674 case bfd_link_hash_common:
9675 input_sec = h->root.u.c.p->section;
9676 sym.st_shndx = bed->common_section_index (input_sec);
9677 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9678 break;
9679
9680 case bfd_link_hash_indirect:
9681 /* These symbols are created by symbol versioning. They point
9682 to the decorated version of the name. For example, if the
9683 symbol foo@@GNU_1.2 is the default, which should be used when
9684 foo is used with no version, then we add an indirect symbol
9685 foo which points to foo@@GNU_1.2. We ignore these symbols,
9686 since the indirected symbol is already in the hash table. */
9687 return TRUE;
9688 }
9689
9690 if (type == STT_COMMON || type == STT_OBJECT)
9691 switch (h->root.type)
9692 {
9693 case bfd_link_hash_common:
9694 type = elf_link_convert_common_type (flinfo->info, type);
9695 break;
9696 case bfd_link_hash_defined:
9697 case bfd_link_hash_defweak:
9698 if (bed->common_definition (&sym))
9699 type = elf_link_convert_common_type (flinfo->info, type);
9700 else
9701 type = STT_OBJECT;
9702 break;
9703 case bfd_link_hash_undefined:
9704 case bfd_link_hash_undefweak:
9705 break;
9706 default:
9707 abort ();
9708 }
9709
9710 if (h->forced_local)
9711 {
9712 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9713 /* Turn off visibility on local symbol. */
9714 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9715 }
9716 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9717 else if (h->unique_global && h->def_regular)
9718 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9719 else if (h->root.type == bfd_link_hash_undefweak
9720 || h->root.type == bfd_link_hash_defweak)
9721 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9722 else
9723 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9724 sym.st_target_internal = h->target_internal;
9725
9726 /* Give the processor backend a chance to tweak the symbol value,
9727 and also to finish up anything that needs to be done for this
9728 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9729 forced local syms when non-shared is due to a historical quirk.
9730 STT_GNU_IFUNC symbol must go through PLT. */
9731 if ((h->type == STT_GNU_IFUNC
9732 && h->def_regular
9733 && !bfd_link_relocatable (flinfo->info))
9734 || ((h->dynindx != -1
9735 || h->forced_local)
9736 && ((bfd_link_pic (flinfo->info)
9737 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9738 || h->root.type != bfd_link_hash_undefweak))
9739 || !h->forced_local)
9740 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9741 {
9742 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9743 (flinfo->output_bfd, flinfo->info, h, &sym)))
9744 {
9745 eoinfo->failed = TRUE;
9746 return FALSE;
9747 }
9748 }
9749
9750 /* If we are marking the symbol as undefined, and there are no
9751 non-weak references to this symbol from a regular object, then
9752 mark the symbol as weak undefined; if there are non-weak
9753 references, mark the symbol as strong. We can't do this earlier,
9754 because it might not be marked as undefined until the
9755 finish_dynamic_symbol routine gets through with it. */
9756 if (sym.st_shndx == SHN_UNDEF
9757 && h->ref_regular
9758 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9759 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9760 {
9761 int bindtype;
9762 type = ELF_ST_TYPE (sym.st_info);
9763
9764 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9765 if (type == STT_GNU_IFUNC)
9766 type = STT_FUNC;
9767
9768 if (h->ref_regular_nonweak)
9769 bindtype = STB_GLOBAL;
9770 else
9771 bindtype = STB_WEAK;
9772 sym.st_info = ELF_ST_INFO (bindtype, type);
9773 }
9774
9775 /* If this is a symbol defined in a dynamic library, don't use the
9776 symbol size from the dynamic library. Relinking an executable
9777 against a new library may introduce gratuitous changes in the
9778 executable's symbols if we keep the size. */
9779 if (sym.st_shndx == SHN_UNDEF
9780 && !h->def_regular
9781 && h->def_dynamic)
9782 sym.st_size = 0;
9783
9784 /* If a non-weak symbol with non-default visibility is not defined
9785 locally, it is a fatal error. */
9786 if (!bfd_link_relocatable (flinfo->info)
9787 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9788 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9789 && h->root.type == bfd_link_hash_undefined
9790 && !h->def_regular)
9791 {
9792 const char *msg;
9793
9794 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9795 /* xgettext:c-format */
9796 msg = _("%B: protected symbol `%s' isn't defined");
9797 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9798 /* xgettext:c-format */
9799 msg = _("%B: internal symbol `%s' isn't defined");
9800 else
9801 /* xgettext:c-format */
9802 msg = _("%B: hidden symbol `%s' isn't defined");
9803 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9804 bfd_set_error (bfd_error_bad_value);
9805 eoinfo->failed = TRUE;
9806 return FALSE;
9807 }
9808
9809 /* If this symbol should be put in the .dynsym section, then put it
9810 there now. We already know the symbol index. We also fill in
9811 the entry in the .hash section. */
9812 if (elf_hash_table (flinfo->info)->dynsym != NULL
9813 && h->dynindx != -1
9814 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9815 {
9816 bfd_byte *esym;
9817
9818 /* Since there is no version information in the dynamic string,
9819 if there is no version info in symbol version section, we will
9820 have a run-time problem if not linking executable, referenced
9821 by shared library, or not bound locally. */
9822 if (h->verinfo.verdef == NULL
9823 && (!bfd_link_executable (flinfo->info)
9824 || h->ref_dynamic
9825 || !h->def_regular))
9826 {
9827 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9828
9829 if (p && p [1] != '\0')
9830 {
9831 _bfd_error_handler
9832 /* xgettext:c-format */
9833 (_("%B: No symbol version section for versioned symbol `%s'"),
9834 flinfo->output_bfd, h->root.root.string);
9835 eoinfo->failed = TRUE;
9836 return FALSE;
9837 }
9838 }
9839
9840 sym.st_name = h->dynstr_index;
9841 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9842 + h->dynindx * bed->s->sizeof_sym);
9843 if (!check_dynsym (flinfo->output_bfd, &sym))
9844 {
9845 eoinfo->failed = TRUE;
9846 return FALSE;
9847 }
9848 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9849
9850 if (flinfo->hash_sec != NULL)
9851 {
9852 size_t hash_entry_size;
9853 bfd_byte *bucketpos;
9854 bfd_vma chain;
9855 size_t bucketcount;
9856 size_t bucket;
9857
9858 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9859 bucket = h->u.elf_hash_value % bucketcount;
9860
9861 hash_entry_size
9862 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9863 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9864 + (bucket + 2) * hash_entry_size);
9865 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9866 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9867 bucketpos);
9868 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9869 ((bfd_byte *) flinfo->hash_sec->contents
9870 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9871 }
9872
9873 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9874 {
9875 Elf_Internal_Versym iversym;
9876 Elf_External_Versym *eversym;
9877
9878 if (!h->def_regular)
9879 {
9880 if (h->verinfo.verdef == NULL
9881 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9882 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9883 iversym.vs_vers = 0;
9884 else
9885 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9886 }
9887 else
9888 {
9889 if (h->verinfo.vertree == NULL)
9890 iversym.vs_vers = 1;
9891 else
9892 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9893 if (flinfo->info->create_default_symver)
9894 iversym.vs_vers++;
9895 }
9896
9897 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9898 defined locally. */
9899 if (h->versioned == versioned_hidden && h->def_regular)
9900 iversym.vs_vers |= VERSYM_HIDDEN;
9901
9902 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9903 eversym += h->dynindx;
9904 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9905 }
9906 }
9907
9908 /* If the symbol is undefined, and we didn't output it to .dynsym,
9909 strip it from .symtab too. Obviously we can't do this for
9910 relocatable output or when needed for --emit-relocs. */
9911 else if (input_sec == bfd_und_section_ptr
9912 && h->indx != -2
9913 && !bfd_link_relocatable (flinfo->info))
9914 return TRUE;
9915 /* Also strip others that we couldn't earlier due to dynamic symbol
9916 processing. */
9917 if (strip)
9918 return TRUE;
9919 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9920 return TRUE;
9921
9922 /* Output a FILE symbol so that following locals are not associated
9923 with the wrong input file. We need one for forced local symbols
9924 if we've seen more than one FILE symbol or when we have exactly
9925 one FILE symbol but global symbols are present in a file other
9926 than the one with the FILE symbol. We also need one if linker
9927 defined symbols are present. In practice these conditions are
9928 always met, so just emit the FILE symbol unconditionally. */
9929 if (eoinfo->localsyms
9930 && !eoinfo->file_sym_done
9931 && eoinfo->flinfo->filesym_count != 0)
9932 {
9933 Elf_Internal_Sym fsym;
9934
9935 memset (&fsym, 0, sizeof (fsym));
9936 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9937 fsym.st_shndx = SHN_ABS;
9938 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9939 bfd_und_section_ptr, NULL))
9940 return FALSE;
9941
9942 eoinfo->file_sym_done = TRUE;
9943 }
9944
9945 indx = bfd_get_symcount (flinfo->output_bfd);
9946 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9947 input_sec, h);
9948 if (ret == 0)
9949 {
9950 eoinfo->failed = TRUE;
9951 return FALSE;
9952 }
9953 else if (ret == 1)
9954 h->indx = indx;
9955 else if (h->indx == -2)
9956 abort();
9957
9958 return TRUE;
9959 }
9960
9961 /* Return TRUE if special handling is done for relocs in SEC against
9962 symbols defined in discarded sections. */
9963
9964 static bfd_boolean
9965 elf_section_ignore_discarded_relocs (asection *sec)
9966 {
9967 const struct elf_backend_data *bed;
9968
9969 switch (sec->sec_info_type)
9970 {
9971 case SEC_INFO_TYPE_STABS:
9972 case SEC_INFO_TYPE_EH_FRAME:
9973 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9974 return TRUE;
9975 default:
9976 break;
9977 }
9978
9979 bed = get_elf_backend_data (sec->owner);
9980 if (bed->elf_backend_ignore_discarded_relocs != NULL
9981 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9982 return TRUE;
9983
9984 return FALSE;
9985 }
9986
9987 /* Return a mask saying how ld should treat relocations in SEC against
9988 symbols defined in discarded sections. If this function returns
9989 COMPLAIN set, ld will issue a warning message. If this function
9990 returns PRETEND set, and the discarded section was link-once and the
9991 same size as the kept link-once section, ld will pretend that the
9992 symbol was actually defined in the kept section. Otherwise ld will
9993 zero the reloc (at least that is the intent, but some cooperation by
9994 the target dependent code is needed, particularly for REL targets). */
9995
9996 unsigned int
9997 _bfd_elf_default_action_discarded (asection *sec)
9998 {
9999 if (sec->flags & SEC_DEBUGGING)
10000 return PRETEND;
10001
10002 if (strcmp (".eh_frame", sec->name) == 0)
10003 return 0;
10004
10005 if (strcmp (".gcc_except_table", sec->name) == 0)
10006 return 0;
10007
10008 return COMPLAIN | PRETEND;
10009 }
10010
10011 /* Find a match between a section and a member of a section group. */
10012
10013 static asection *
10014 match_group_member (asection *sec, asection *group,
10015 struct bfd_link_info *info)
10016 {
10017 asection *first = elf_next_in_group (group);
10018 asection *s = first;
10019
10020 while (s != NULL)
10021 {
10022 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10023 return s;
10024
10025 s = elf_next_in_group (s);
10026 if (s == first)
10027 break;
10028 }
10029
10030 return NULL;
10031 }
10032
10033 /* Check if the kept section of a discarded section SEC can be used
10034 to replace it. Return the replacement if it is OK. Otherwise return
10035 NULL. */
10036
10037 asection *
10038 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10039 {
10040 asection *kept;
10041
10042 kept = sec->kept_section;
10043 if (kept != NULL)
10044 {
10045 if ((kept->flags & SEC_GROUP) != 0)
10046 kept = match_group_member (sec, kept, info);
10047 if (kept != NULL
10048 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10049 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10050 kept = NULL;
10051 sec->kept_section = kept;
10052 }
10053 return kept;
10054 }
10055
10056 /* Link an input file into the linker output file. This function
10057 handles all the sections and relocations of the input file at once.
10058 This is so that we only have to read the local symbols once, and
10059 don't have to keep them in memory. */
10060
10061 static bfd_boolean
10062 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10063 {
10064 int (*relocate_section)
10065 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10066 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10067 bfd *output_bfd;
10068 Elf_Internal_Shdr *symtab_hdr;
10069 size_t locsymcount;
10070 size_t extsymoff;
10071 Elf_Internal_Sym *isymbuf;
10072 Elf_Internal_Sym *isym;
10073 Elf_Internal_Sym *isymend;
10074 long *pindex;
10075 asection **ppsection;
10076 asection *o;
10077 const struct elf_backend_data *bed;
10078 struct elf_link_hash_entry **sym_hashes;
10079 bfd_size_type address_size;
10080 bfd_vma r_type_mask;
10081 int r_sym_shift;
10082 bfd_boolean have_file_sym = FALSE;
10083
10084 output_bfd = flinfo->output_bfd;
10085 bed = get_elf_backend_data (output_bfd);
10086 relocate_section = bed->elf_backend_relocate_section;
10087
10088 /* If this is a dynamic object, we don't want to do anything here:
10089 we don't want the local symbols, and we don't want the section
10090 contents. */
10091 if ((input_bfd->flags & DYNAMIC) != 0)
10092 return TRUE;
10093
10094 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10095 if (elf_bad_symtab (input_bfd))
10096 {
10097 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10098 extsymoff = 0;
10099 }
10100 else
10101 {
10102 locsymcount = symtab_hdr->sh_info;
10103 extsymoff = symtab_hdr->sh_info;
10104 }
10105
10106 /* Read the local symbols. */
10107 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10108 if (isymbuf == NULL && locsymcount != 0)
10109 {
10110 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10111 flinfo->internal_syms,
10112 flinfo->external_syms,
10113 flinfo->locsym_shndx);
10114 if (isymbuf == NULL)
10115 return FALSE;
10116 }
10117
10118 /* Find local symbol sections and adjust values of symbols in
10119 SEC_MERGE sections. Write out those local symbols we know are
10120 going into the output file. */
10121 isymend = isymbuf + locsymcount;
10122 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10123 isym < isymend;
10124 isym++, pindex++, ppsection++)
10125 {
10126 asection *isec;
10127 const char *name;
10128 Elf_Internal_Sym osym;
10129 long indx;
10130 int ret;
10131
10132 *pindex = -1;
10133
10134 if (elf_bad_symtab (input_bfd))
10135 {
10136 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10137 {
10138 *ppsection = NULL;
10139 continue;
10140 }
10141 }
10142
10143 if (isym->st_shndx == SHN_UNDEF)
10144 isec = bfd_und_section_ptr;
10145 else if (isym->st_shndx == SHN_ABS)
10146 isec = bfd_abs_section_ptr;
10147 else if (isym->st_shndx == SHN_COMMON)
10148 isec = bfd_com_section_ptr;
10149 else
10150 {
10151 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10152 if (isec == NULL)
10153 {
10154 /* Don't attempt to output symbols with st_shnx in the
10155 reserved range other than SHN_ABS and SHN_COMMON. */
10156 *ppsection = NULL;
10157 continue;
10158 }
10159 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10160 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10161 isym->st_value =
10162 _bfd_merged_section_offset (output_bfd, &isec,
10163 elf_section_data (isec)->sec_info,
10164 isym->st_value);
10165 }
10166
10167 *ppsection = isec;
10168
10169 /* Don't output the first, undefined, symbol. In fact, don't
10170 output any undefined local symbol. */
10171 if (isec == bfd_und_section_ptr)
10172 continue;
10173
10174 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10175 {
10176 /* We never output section symbols. Instead, we use the
10177 section symbol of the corresponding section in the output
10178 file. */
10179 continue;
10180 }
10181
10182 /* If we are stripping all symbols, we don't want to output this
10183 one. */
10184 if (flinfo->info->strip == strip_all)
10185 continue;
10186
10187 /* If we are discarding all local symbols, we don't want to
10188 output this one. If we are generating a relocatable output
10189 file, then some of the local symbols may be required by
10190 relocs; we output them below as we discover that they are
10191 needed. */
10192 if (flinfo->info->discard == discard_all)
10193 continue;
10194
10195 /* If this symbol is defined in a section which we are
10196 discarding, we don't need to keep it. */
10197 if (isym->st_shndx != SHN_UNDEF
10198 && isym->st_shndx < SHN_LORESERVE
10199 && bfd_section_removed_from_list (output_bfd,
10200 isec->output_section))
10201 continue;
10202
10203 /* Get the name of the symbol. */
10204 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10205 isym->st_name);
10206 if (name == NULL)
10207 return FALSE;
10208
10209 /* See if we are discarding symbols with this name. */
10210 if ((flinfo->info->strip == strip_some
10211 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10212 == NULL))
10213 || (((flinfo->info->discard == discard_sec_merge
10214 && (isec->flags & SEC_MERGE)
10215 && !bfd_link_relocatable (flinfo->info))
10216 || flinfo->info->discard == discard_l)
10217 && bfd_is_local_label_name (input_bfd, name)))
10218 continue;
10219
10220 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10221 {
10222 if (input_bfd->lto_output)
10223 /* -flto puts a temp file name here. This means builds
10224 are not reproducible. Discard the symbol. */
10225 continue;
10226 have_file_sym = TRUE;
10227 flinfo->filesym_count += 1;
10228 }
10229 if (!have_file_sym)
10230 {
10231 /* In the absence of debug info, bfd_find_nearest_line uses
10232 FILE symbols to determine the source file for local
10233 function symbols. Provide a FILE symbol here if input
10234 files lack such, so that their symbols won't be
10235 associated with a previous input file. It's not the
10236 source file, but the best we can do. */
10237 have_file_sym = TRUE;
10238 flinfo->filesym_count += 1;
10239 memset (&osym, 0, sizeof (osym));
10240 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10241 osym.st_shndx = SHN_ABS;
10242 if (!elf_link_output_symstrtab (flinfo,
10243 (input_bfd->lto_output ? NULL
10244 : input_bfd->filename),
10245 &osym, bfd_abs_section_ptr,
10246 NULL))
10247 return FALSE;
10248 }
10249
10250 osym = *isym;
10251
10252 /* Adjust the section index for the output file. */
10253 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10254 isec->output_section);
10255 if (osym.st_shndx == SHN_BAD)
10256 return FALSE;
10257
10258 /* ELF symbols in relocatable files are section relative, but
10259 in executable files they are virtual addresses. Note that
10260 this code assumes that all ELF sections have an associated
10261 BFD section with a reasonable value for output_offset; below
10262 we assume that they also have a reasonable value for
10263 output_section. Any special sections must be set up to meet
10264 these requirements. */
10265 osym.st_value += isec->output_offset;
10266 if (!bfd_link_relocatable (flinfo->info))
10267 {
10268 osym.st_value += isec->output_section->vma;
10269 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10270 {
10271 /* STT_TLS symbols are relative to PT_TLS segment base. */
10272 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10273 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10274 }
10275 }
10276
10277 indx = bfd_get_symcount (output_bfd);
10278 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10279 if (ret == 0)
10280 return FALSE;
10281 else if (ret == 1)
10282 *pindex = indx;
10283 }
10284
10285 if (bed->s->arch_size == 32)
10286 {
10287 r_type_mask = 0xff;
10288 r_sym_shift = 8;
10289 address_size = 4;
10290 }
10291 else
10292 {
10293 r_type_mask = 0xffffffff;
10294 r_sym_shift = 32;
10295 address_size = 8;
10296 }
10297
10298 /* Relocate the contents of each section. */
10299 sym_hashes = elf_sym_hashes (input_bfd);
10300 for (o = input_bfd->sections; o != NULL; o = o->next)
10301 {
10302 bfd_byte *contents;
10303
10304 if (! o->linker_mark)
10305 {
10306 /* This section was omitted from the link. */
10307 continue;
10308 }
10309
10310 if (!flinfo->info->resolve_section_groups
10311 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10312 {
10313 /* Deal with the group signature symbol. */
10314 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10315 unsigned long symndx = sec_data->this_hdr.sh_info;
10316 asection *osec = o->output_section;
10317
10318 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10319 if (symndx >= locsymcount
10320 || (elf_bad_symtab (input_bfd)
10321 && flinfo->sections[symndx] == NULL))
10322 {
10323 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10324 while (h->root.type == bfd_link_hash_indirect
10325 || h->root.type == bfd_link_hash_warning)
10326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10327 /* Arrange for symbol to be output. */
10328 h->indx = -2;
10329 elf_section_data (osec)->this_hdr.sh_info = -2;
10330 }
10331 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10332 {
10333 /* We'll use the output section target_index. */
10334 asection *sec = flinfo->sections[symndx]->output_section;
10335 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10336 }
10337 else
10338 {
10339 if (flinfo->indices[symndx] == -1)
10340 {
10341 /* Otherwise output the local symbol now. */
10342 Elf_Internal_Sym sym = isymbuf[symndx];
10343 asection *sec = flinfo->sections[symndx]->output_section;
10344 const char *name;
10345 long indx;
10346 int ret;
10347
10348 name = bfd_elf_string_from_elf_section (input_bfd,
10349 symtab_hdr->sh_link,
10350 sym.st_name);
10351 if (name == NULL)
10352 return FALSE;
10353
10354 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10355 sec);
10356 if (sym.st_shndx == SHN_BAD)
10357 return FALSE;
10358
10359 sym.st_value += o->output_offset;
10360
10361 indx = bfd_get_symcount (output_bfd);
10362 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10363 NULL);
10364 if (ret == 0)
10365 return FALSE;
10366 else if (ret == 1)
10367 flinfo->indices[symndx] = indx;
10368 else
10369 abort ();
10370 }
10371 elf_section_data (osec)->this_hdr.sh_info
10372 = flinfo->indices[symndx];
10373 }
10374 }
10375
10376 if ((o->flags & SEC_HAS_CONTENTS) == 0
10377 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10378 continue;
10379
10380 if ((o->flags & SEC_LINKER_CREATED) != 0)
10381 {
10382 /* Section was created by _bfd_elf_link_create_dynamic_sections
10383 or somesuch. */
10384 continue;
10385 }
10386
10387 /* Get the contents of the section. They have been cached by a
10388 relaxation routine. Note that o is a section in an input
10389 file, so the contents field will not have been set by any of
10390 the routines which work on output files. */
10391 if (elf_section_data (o)->this_hdr.contents != NULL)
10392 {
10393 contents = elf_section_data (o)->this_hdr.contents;
10394 if (bed->caches_rawsize
10395 && o->rawsize != 0
10396 && o->rawsize < o->size)
10397 {
10398 memcpy (flinfo->contents, contents, o->rawsize);
10399 contents = flinfo->contents;
10400 }
10401 }
10402 else
10403 {
10404 contents = flinfo->contents;
10405 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10406 return FALSE;
10407 }
10408
10409 if ((o->flags & SEC_RELOC) != 0)
10410 {
10411 Elf_Internal_Rela *internal_relocs;
10412 Elf_Internal_Rela *rel, *relend;
10413 int action_discarded;
10414 int ret;
10415
10416 /* Get the swapped relocs. */
10417 internal_relocs
10418 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10419 flinfo->internal_relocs, FALSE);
10420 if (internal_relocs == NULL
10421 && o->reloc_count > 0)
10422 return FALSE;
10423
10424 /* We need to reverse-copy input .ctors/.dtors sections if
10425 they are placed in .init_array/.finit_array for output. */
10426 if (o->size > address_size
10427 && ((strncmp (o->name, ".ctors", 6) == 0
10428 && strcmp (o->output_section->name,
10429 ".init_array") == 0)
10430 || (strncmp (o->name, ".dtors", 6) == 0
10431 && strcmp (o->output_section->name,
10432 ".fini_array") == 0))
10433 && (o->name[6] == 0 || o->name[6] == '.'))
10434 {
10435 if (o->size * bed->s->int_rels_per_ext_rel
10436 != o->reloc_count * address_size)
10437 {
10438 _bfd_error_handler
10439 /* xgettext:c-format */
10440 (_("error: %B: size of section %A is not "
10441 "multiple of address size"),
10442 input_bfd, o);
10443 bfd_set_error (bfd_error_on_input);
10444 return FALSE;
10445 }
10446 o->flags |= SEC_ELF_REVERSE_COPY;
10447 }
10448
10449 action_discarded = -1;
10450 if (!elf_section_ignore_discarded_relocs (o))
10451 action_discarded = (*bed->action_discarded) (o);
10452
10453 /* Run through the relocs evaluating complex reloc symbols and
10454 looking for relocs against symbols from discarded sections
10455 or section symbols from removed link-once sections.
10456 Complain about relocs against discarded sections. Zero
10457 relocs against removed link-once sections. */
10458
10459 rel = internal_relocs;
10460 relend = rel + o->reloc_count;
10461 for ( ; rel < relend; rel++)
10462 {
10463 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10464 unsigned int s_type;
10465 asection **ps, *sec;
10466 struct elf_link_hash_entry *h = NULL;
10467 const char *sym_name;
10468
10469 if (r_symndx == STN_UNDEF)
10470 continue;
10471
10472 if (r_symndx >= locsymcount
10473 || (elf_bad_symtab (input_bfd)
10474 && flinfo->sections[r_symndx] == NULL))
10475 {
10476 h = sym_hashes[r_symndx - extsymoff];
10477
10478 /* Badly formatted input files can contain relocs that
10479 reference non-existant symbols. Check here so that
10480 we do not seg fault. */
10481 if (h == NULL)
10482 {
10483 _bfd_error_handler
10484 /* xgettext:c-format */
10485 (_("error: %B contains a reloc (%#Lx) for section %A "
10486 "that references a non-existent global symbol"),
10487 input_bfd, rel->r_info, o);
10488 bfd_set_error (bfd_error_bad_value);
10489 return FALSE;
10490 }
10491
10492 while (h->root.type == bfd_link_hash_indirect
10493 || h->root.type == bfd_link_hash_warning)
10494 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10495
10496 s_type = h->type;
10497
10498 /* If a plugin symbol is referenced from a non-IR file,
10499 mark the symbol as undefined. Note that the
10500 linker may attach linker created dynamic sections
10501 to the plugin bfd. Symbols defined in linker
10502 created sections are not plugin symbols. */
10503 if ((h->root.non_ir_ref_regular
10504 || h->root.non_ir_ref_dynamic)
10505 && (h->root.type == bfd_link_hash_defined
10506 || h->root.type == bfd_link_hash_defweak)
10507 && (h->root.u.def.section->flags
10508 & SEC_LINKER_CREATED) == 0
10509 && h->root.u.def.section->owner != NULL
10510 && (h->root.u.def.section->owner->flags
10511 & BFD_PLUGIN) != 0)
10512 {
10513 h->root.type = bfd_link_hash_undefined;
10514 h->root.u.undef.abfd = h->root.u.def.section->owner;
10515 }
10516
10517 ps = NULL;
10518 if (h->root.type == bfd_link_hash_defined
10519 || h->root.type == bfd_link_hash_defweak)
10520 ps = &h->root.u.def.section;
10521
10522 sym_name = h->root.root.string;
10523 }
10524 else
10525 {
10526 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10527
10528 s_type = ELF_ST_TYPE (sym->st_info);
10529 ps = &flinfo->sections[r_symndx];
10530 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10531 sym, *ps);
10532 }
10533
10534 if ((s_type == STT_RELC || s_type == STT_SRELC)
10535 && !bfd_link_relocatable (flinfo->info))
10536 {
10537 bfd_vma val;
10538 bfd_vma dot = (rel->r_offset
10539 + o->output_offset + o->output_section->vma);
10540 #ifdef DEBUG
10541 printf ("Encountered a complex symbol!");
10542 printf (" (input_bfd %s, section %s, reloc %ld\n",
10543 input_bfd->filename, o->name,
10544 (long) (rel - internal_relocs));
10545 printf (" symbol: idx %8.8lx, name %s\n",
10546 r_symndx, sym_name);
10547 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10548 (unsigned long) rel->r_info,
10549 (unsigned long) rel->r_offset);
10550 #endif
10551 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10552 isymbuf, locsymcount, s_type == STT_SRELC))
10553 return FALSE;
10554
10555 /* Symbol evaluated OK. Update to absolute value. */
10556 set_symbol_value (input_bfd, isymbuf, locsymcount,
10557 r_symndx, val);
10558 continue;
10559 }
10560
10561 if (action_discarded != -1 && ps != NULL)
10562 {
10563 /* Complain if the definition comes from a
10564 discarded section. */
10565 if ((sec = *ps) != NULL && discarded_section (sec))
10566 {
10567 BFD_ASSERT (r_symndx != STN_UNDEF);
10568 if (action_discarded & COMPLAIN)
10569 (*flinfo->info->callbacks->einfo)
10570 /* xgettext:c-format */
10571 (_("%X`%s' referenced in section `%A' of %B: "
10572 "defined in discarded section `%A' of %B\n"),
10573 sym_name, o, input_bfd, sec, sec->owner);
10574
10575 /* Try to do the best we can to support buggy old
10576 versions of gcc. Pretend that the symbol is
10577 really defined in the kept linkonce section.
10578 FIXME: This is quite broken. Modifying the
10579 symbol here means we will be changing all later
10580 uses of the symbol, not just in this section. */
10581 if (action_discarded & PRETEND)
10582 {
10583 asection *kept;
10584
10585 kept = _bfd_elf_check_kept_section (sec,
10586 flinfo->info);
10587 if (kept != NULL)
10588 {
10589 *ps = kept;
10590 continue;
10591 }
10592 }
10593 }
10594 }
10595 }
10596
10597 /* Relocate the section by invoking a back end routine.
10598
10599 The back end routine is responsible for adjusting the
10600 section contents as necessary, and (if using Rela relocs
10601 and generating a relocatable output file) adjusting the
10602 reloc addend as necessary.
10603
10604 The back end routine does not have to worry about setting
10605 the reloc address or the reloc symbol index.
10606
10607 The back end routine is given a pointer to the swapped in
10608 internal symbols, and can access the hash table entries
10609 for the external symbols via elf_sym_hashes (input_bfd).
10610
10611 When generating relocatable output, the back end routine
10612 must handle STB_LOCAL/STT_SECTION symbols specially. The
10613 output symbol is going to be a section symbol
10614 corresponding to the output section, which will require
10615 the addend to be adjusted. */
10616
10617 ret = (*relocate_section) (output_bfd, flinfo->info,
10618 input_bfd, o, contents,
10619 internal_relocs,
10620 isymbuf,
10621 flinfo->sections);
10622 if (!ret)
10623 return FALSE;
10624
10625 if (ret == 2
10626 || bfd_link_relocatable (flinfo->info)
10627 || flinfo->info->emitrelocations)
10628 {
10629 Elf_Internal_Rela *irela;
10630 Elf_Internal_Rela *irelaend, *irelamid;
10631 bfd_vma last_offset;
10632 struct elf_link_hash_entry **rel_hash;
10633 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10634 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10635 unsigned int next_erel;
10636 bfd_boolean rela_normal;
10637 struct bfd_elf_section_data *esdi, *esdo;
10638
10639 esdi = elf_section_data (o);
10640 esdo = elf_section_data (o->output_section);
10641 rela_normal = FALSE;
10642
10643 /* Adjust the reloc addresses and symbol indices. */
10644
10645 irela = internal_relocs;
10646 irelaend = irela + o->reloc_count;
10647 rel_hash = esdo->rel.hashes + esdo->rel.count;
10648 /* We start processing the REL relocs, if any. When we reach
10649 IRELAMID in the loop, we switch to the RELA relocs. */
10650 irelamid = irela;
10651 if (esdi->rel.hdr != NULL)
10652 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10653 * bed->s->int_rels_per_ext_rel);
10654 rel_hash_list = rel_hash;
10655 rela_hash_list = NULL;
10656 last_offset = o->output_offset;
10657 if (!bfd_link_relocatable (flinfo->info))
10658 last_offset += o->output_section->vma;
10659 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10660 {
10661 unsigned long r_symndx;
10662 asection *sec;
10663 Elf_Internal_Sym sym;
10664
10665 if (next_erel == bed->s->int_rels_per_ext_rel)
10666 {
10667 rel_hash++;
10668 next_erel = 0;
10669 }
10670
10671 if (irela == irelamid)
10672 {
10673 rel_hash = esdo->rela.hashes + esdo->rela.count;
10674 rela_hash_list = rel_hash;
10675 rela_normal = bed->rela_normal;
10676 }
10677
10678 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10679 flinfo->info, o,
10680 irela->r_offset);
10681 if (irela->r_offset >= (bfd_vma) -2)
10682 {
10683 /* This is a reloc for a deleted entry or somesuch.
10684 Turn it into an R_*_NONE reloc, at the same
10685 offset as the last reloc. elf_eh_frame.c and
10686 bfd_elf_discard_info rely on reloc offsets
10687 being ordered. */
10688 irela->r_offset = last_offset;
10689 irela->r_info = 0;
10690 irela->r_addend = 0;
10691 continue;
10692 }
10693
10694 irela->r_offset += o->output_offset;
10695
10696 /* Relocs in an executable have to be virtual addresses. */
10697 if (!bfd_link_relocatable (flinfo->info))
10698 irela->r_offset += o->output_section->vma;
10699
10700 last_offset = irela->r_offset;
10701
10702 r_symndx = irela->r_info >> r_sym_shift;
10703 if (r_symndx == STN_UNDEF)
10704 continue;
10705
10706 if (r_symndx >= locsymcount
10707 || (elf_bad_symtab (input_bfd)
10708 && flinfo->sections[r_symndx] == NULL))
10709 {
10710 struct elf_link_hash_entry *rh;
10711 unsigned long indx;
10712
10713 /* This is a reloc against a global symbol. We
10714 have not yet output all the local symbols, so
10715 we do not know the symbol index of any global
10716 symbol. We set the rel_hash entry for this
10717 reloc to point to the global hash table entry
10718 for this symbol. The symbol index is then
10719 set at the end of bfd_elf_final_link. */
10720 indx = r_symndx - extsymoff;
10721 rh = elf_sym_hashes (input_bfd)[indx];
10722 while (rh->root.type == bfd_link_hash_indirect
10723 || rh->root.type == bfd_link_hash_warning)
10724 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10725
10726 /* Setting the index to -2 tells
10727 elf_link_output_extsym that this symbol is
10728 used by a reloc. */
10729 BFD_ASSERT (rh->indx < 0);
10730 rh->indx = -2;
10731 *rel_hash = rh;
10732
10733 continue;
10734 }
10735
10736 /* This is a reloc against a local symbol. */
10737
10738 *rel_hash = NULL;
10739 sym = isymbuf[r_symndx];
10740 sec = flinfo->sections[r_symndx];
10741 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10742 {
10743 /* I suppose the backend ought to fill in the
10744 section of any STT_SECTION symbol against a
10745 processor specific section. */
10746 r_symndx = STN_UNDEF;
10747 if (bfd_is_abs_section (sec))
10748 ;
10749 else if (sec == NULL || sec->owner == NULL)
10750 {
10751 bfd_set_error (bfd_error_bad_value);
10752 return FALSE;
10753 }
10754 else
10755 {
10756 asection *osec = sec->output_section;
10757
10758 /* If we have discarded a section, the output
10759 section will be the absolute section. In
10760 case of discarded SEC_MERGE sections, use
10761 the kept section. relocate_section should
10762 have already handled discarded linkonce
10763 sections. */
10764 if (bfd_is_abs_section (osec)
10765 && sec->kept_section != NULL
10766 && sec->kept_section->output_section != NULL)
10767 {
10768 osec = sec->kept_section->output_section;
10769 irela->r_addend -= osec->vma;
10770 }
10771
10772 if (!bfd_is_abs_section (osec))
10773 {
10774 r_symndx = osec->target_index;
10775 if (r_symndx == STN_UNDEF)
10776 {
10777 irela->r_addend += osec->vma;
10778 osec = _bfd_nearby_section (output_bfd, osec,
10779 osec->vma);
10780 irela->r_addend -= osec->vma;
10781 r_symndx = osec->target_index;
10782 }
10783 }
10784 }
10785
10786 /* Adjust the addend according to where the
10787 section winds up in the output section. */
10788 if (rela_normal)
10789 irela->r_addend += sec->output_offset;
10790 }
10791 else
10792 {
10793 if (flinfo->indices[r_symndx] == -1)
10794 {
10795 unsigned long shlink;
10796 const char *name;
10797 asection *osec;
10798 long indx;
10799
10800 if (flinfo->info->strip == strip_all)
10801 {
10802 /* You can't do ld -r -s. */
10803 bfd_set_error (bfd_error_invalid_operation);
10804 return FALSE;
10805 }
10806
10807 /* This symbol was skipped earlier, but
10808 since it is needed by a reloc, we
10809 must output it now. */
10810 shlink = symtab_hdr->sh_link;
10811 name = (bfd_elf_string_from_elf_section
10812 (input_bfd, shlink, sym.st_name));
10813 if (name == NULL)
10814 return FALSE;
10815
10816 osec = sec->output_section;
10817 sym.st_shndx =
10818 _bfd_elf_section_from_bfd_section (output_bfd,
10819 osec);
10820 if (sym.st_shndx == SHN_BAD)
10821 return FALSE;
10822
10823 sym.st_value += sec->output_offset;
10824 if (!bfd_link_relocatable (flinfo->info))
10825 {
10826 sym.st_value += osec->vma;
10827 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10828 {
10829 /* STT_TLS symbols are relative to PT_TLS
10830 segment base. */
10831 BFD_ASSERT (elf_hash_table (flinfo->info)
10832 ->tls_sec != NULL);
10833 sym.st_value -= (elf_hash_table (flinfo->info)
10834 ->tls_sec->vma);
10835 }
10836 }
10837
10838 indx = bfd_get_symcount (output_bfd);
10839 ret = elf_link_output_symstrtab (flinfo, name,
10840 &sym, sec,
10841 NULL);
10842 if (ret == 0)
10843 return FALSE;
10844 else if (ret == 1)
10845 flinfo->indices[r_symndx] = indx;
10846 else
10847 abort ();
10848 }
10849
10850 r_symndx = flinfo->indices[r_symndx];
10851 }
10852
10853 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10854 | (irela->r_info & r_type_mask));
10855 }
10856
10857 /* Swap out the relocs. */
10858 input_rel_hdr = esdi->rel.hdr;
10859 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10860 {
10861 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10862 input_rel_hdr,
10863 internal_relocs,
10864 rel_hash_list))
10865 return FALSE;
10866 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10867 * bed->s->int_rels_per_ext_rel);
10868 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10869 }
10870
10871 input_rela_hdr = esdi->rela.hdr;
10872 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10873 {
10874 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10875 input_rela_hdr,
10876 internal_relocs,
10877 rela_hash_list))
10878 return FALSE;
10879 }
10880 }
10881 }
10882
10883 /* Write out the modified section contents. */
10884 if (bed->elf_backend_write_section
10885 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10886 contents))
10887 {
10888 /* Section written out. */
10889 }
10890 else switch (o->sec_info_type)
10891 {
10892 case SEC_INFO_TYPE_STABS:
10893 if (! (_bfd_write_section_stabs
10894 (output_bfd,
10895 &elf_hash_table (flinfo->info)->stab_info,
10896 o, &elf_section_data (o)->sec_info, contents)))
10897 return FALSE;
10898 break;
10899 case SEC_INFO_TYPE_MERGE:
10900 if (! _bfd_write_merged_section (output_bfd, o,
10901 elf_section_data (o)->sec_info))
10902 return FALSE;
10903 break;
10904 case SEC_INFO_TYPE_EH_FRAME:
10905 {
10906 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10907 o, contents))
10908 return FALSE;
10909 }
10910 break;
10911 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10912 {
10913 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10914 flinfo->info,
10915 o, contents))
10916 return FALSE;
10917 }
10918 break;
10919 default:
10920 {
10921 if (! (o->flags & SEC_EXCLUDE))
10922 {
10923 file_ptr offset = (file_ptr) o->output_offset;
10924 bfd_size_type todo = o->size;
10925
10926 offset *= bfd_octets_per_byte (output_bfd);
10927
10928 if ((o->flags & SEC_ELF_REVERSE_COPY))
10929 {
10930 /* Reverse-copy input section to output. */
10931 do
10932 {
10933 todo -= address_size;
10934 if (! bfd_set_section_contents (output_bfd,
10935 o->output_section,
10936 contents + todo,
10937 offset,
10938 address_size))
10939 return FALSE;
10940 if (todo == 0)
10941 break;
10942 offset += address_size;
10943 }
10944 while (1);
10945 }
10946 else if (! bfd_set_section_contents (output_bfd,
10947 o->output_section,
10948 contents,
10949 offset, todo))
10950 return FALSE;
10951 }
10952 }
10953 break;
10954 }
10955 }
10956
10957 return TRUE;
10958 }
10959
10960 /* Generate a reloc when linking an ELF file. This is a reloc
10961 requested by the linker, and does not come from any input file. This
10962 is used to build constructor and destructor tables when linking
10963 with -Ur. */
10964
10965 static bfd_boolean
10966 elf_reloc_link_order (bfd *output_bfd,
10967 struct bfd_link_info *info,
10968 asection *output_section,
10969 struct bfd_link_order *link_order)
10970 {
10971 reloc_howto_type *howto;
10972 long indx;
10973 bfd_vma offset;
10974 bfd_vma addend;
10975 struct bfd_elf_section_reloc_data *reldata;
10976 struct elf_link_hash_entry **rel_hash_ptr;
10977 Elf_Internal_Shdr *rel_hdr;
10978 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10979 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10980 bfd_byte *erel;
10981 unsigned int i;
10982 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10983
10984 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10985 if (howto == NULL)
10986 {
10987 bfd_set_error (bfd_error_bad_value);
10988 return FALSE;
10989 }
10990
10991 addend = link_order->u.reloc.p->addend;
10992
10993 if (esdo->rel.hdr)
10994 reldata = &esdo->rel;
10995 else if (esdo->rela.hdr)
10996 reldata = &esdo->rela;
10997 else
10998 {
10999 reldata = NULL;
11000 BFD_ASSERT (0);
11001 }
11002
11003 /* Figure out the symbol index. */
11004 rel_hash_ptr = reldata->hashes + reldata->count;
11005 if (link_order->type == bfd_section_reloc_link_order)
11006 {
11007 indx = link_order->u.reloc.p->u.section->target_index;
11008 BFD_ASSERT (indx != 0);
11009 *rel_hash_ptr = NULL;
11010 }
11011 else
11012 {
11013 struct elf_link_hash_entry *h;
11014
11015 /* Treat a reloc against a defined symbol as though it were
11016 actually against the section. */
11017 h = ((struct elf_link_hash_entry *)
11018 bfd_wrapped_link_hash_lookup (output_bfd, info,
11019 link_order->u.reloc.p->u.name,
11020 FALSE, FALSE, TRUE));
11021 if (h != NULL
11022 && (h->root.type == bfd_link_hash_defined
11023 || h->root.type == bfd_link_hash_defweak))
11024 {
11025 asection *section;
11026
11027 section = h->root.u.def.section;
11028 indx = section->output_section->target_index;
11029 *rel_hash_ptr = NULL;
11030 /* It seems that we ought to add the symbol value to the
11031 addend here, but in practice it has already been added
11032 because it was passed to constructor_callback. */
11033 addend += section->output_section->vma + section->output_offset;
11034 }
11035 else if (h != NULL)
11036 {
11037 /* Setting the index to -2 tells elf_link_output_extsym that
11038 this symbol is used by a reloc. */
11039 h->indx = -2;
11040 *rel_hash_ptr = h;
11041 indx = 0;
11042 }
11043 else
11044 {
11045 (*info->callbacks->unattached_reloc)
11046 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11047 indx = 0;
11048 }
11049 }
11050
11051 /* If this is an inplace reloc, we must write the addend into the
11052 object file. */
11053 if (howto->partial_inplace && addend != 0)
11054 {
11055 bfd_size_type size;
11056 bfd_reloc_status_type rstat;
11057 bfd_byte *buf;
11058 bfd_boolean ok;
11059 const char *sym_name;
11060
11061 size = (bfd_size_type) bfd_get_reloc_size (howto);
11062 buf = (bfd_byte *) bfd_zmalloc (size);
11063 if (buf == NULL && size != 0)
11064 return FALSE;
11065 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11066 switch (rstat)
11067 {
11068 case bfd_reloc_ok:
11069 break;
11070
11071 default:
11072 case bfd_reloc_outofrange:
11073 abort ();
11074
11075 case bfd_reloc_overflow:
11076 if (link_order->type == bfd_section_reloc_link_order)
11077 sym_name = bfd_section_name (output_bfd,
11078 link_order->u.reloc.p->u.section);
11079 else
11080 sym_name = link_order->u.reloc.p->u.name;
11081 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11082 howto->name, addend, NULL, NULL,
11083 (bfd_vma) 0);
11084 break;
11085 }
11086
11087 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11088 link_order->offset
11089 * bfd_octets_per_byte (output_bfd),
11090 size);
11091 free (buf);
11092 if (! ok)
11093 return FALSE;
11094 }
11095
11096 /* The address of a reloc is relative to the section in a
11097 relocatable file, and is a virtual address in an executable
11098 file. */
11099 offset = link_order->offset;
11100 if (! bfd_link_relocatable (info))
11101 offset += output_section->vma;
11102
11103 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11104 {
11105 irel[i].r_offset = offset;
11106 irel[i].r_info = 0;
11107 irel[i].r_addend = 0;
11108 }
11109 if (bed->s->arch_size == 32)
11110 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11111 else
11112 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11113
11114 rel_hdr = reldata->hdr;
11115 erel = rel_hdr->contents;
11116 if (rel_hdr->sh_type == SHT_REL)
11117 {
11118 erel += reldata->count * bed->s->sizeof_rel;
11119 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11120 }
11121 else
11122 {
11123 irel[0].r_addend = addend;
11124 erel += reldata->count * bed->s->sizeof_rela;
11125 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11126 }
11127
11128 ++reldata->count;
11129
11130 return TRUE;
11131 }
11132
11133
11134 /* Get the output vma of the section pointed to by the sh_link field. */
11135
11136 static bfd_vma
11137 elf_get_linked_section_vma (struct bfd_link_order *p)
11138 {
11139 Elf_Internal_Shdr **elf_shdrp;
11140 asection *s;
11141 int elfsec;
11142
11143 s = p->u.indirect.section;
11144 elf_shdrp = elf_elfsections (s->owner);
11145 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11146 elfsec = elf_shdrp[elfsec]->sh_link;
11147 /* PR 290:
11148 The Intel C compiler generates SHT_IA_64_UNWIND with
11149 SHF_LINK_ORDER. But it doesn't set the sh_link or
11150 sh_info fields. Hence we could get the situation
11151 where elfsec is 0. */
11152 if (elfsec == 0)
11153 {
11154 const struct elf_backend_data *bed
11155 = get_elf_backend_data (s->owner);
11156 if (bed->link_order_error_handler)
11157 bed->link_order_error_handler
11158 /* xgettext:c-format */
11159 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11160 return 0;
11161 }
11162 else
11163 {
11164 s = elf_shdrp[elfsec]->bfd_section;
11165 return s->output_section->vma + s->output_offset;
11166 }
11167 }
11168
11169
11170 /* Compare two sections based on the locations of the sections they are
11171 linked to. Used by elf_fixup_link_order. */
11172
11173 static int
11174 compare_link_order (const void * a, const void * b)
11175 {
11176 bfd_vma apos;
11177 bfd_vma bpos;
11178
11179 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11180 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11181 if (apos < bpos)
11182 return -1;
11183 return apos > bpos;
11184 }
11185
11186
11187 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11188 order as their linked sections. Returns false if this could not be done
11189 because an output section includes both ordered and unordered
11190 sections. Ideally we'd do this in the linker proper. */
11191
11192 static bfd_boolean
11193 elf_fixup_link_order (bfd *abfd, asection *o)
11194 {
11195 int seen_linkorder;
11196 int seen_other;
11197 int n;
11198 struct bfd_link_order *p;
11199 bfd *sub;
11200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11201 unsigned elfsec;
11202 struct bfd_link_order **sections;
11203 asection *s, *other_sec, *linkorder_sec;
11204 bfd_vma offset;
11205
11206 other_sec = NULL;
11207 linkorder_sec = NULL;
11208 seen_other = 0;
11209 seen_linkorder = 0;
11210 for (p = o->map_head.link_order; p != NULL; p = p->next)
11211 {
11212 if (p->type == bfd_indirect_link_order)
11213 {
11214 s = p->u.indirect.section;
11215 sub = s->owner;
11216 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11217 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11218 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11219 && elfsec < elf_numsections (sub)
11220 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11221 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11222 {
11223 seen_linkorder++;
11224 linkorder_sec = s;
11225 }
11226 else
11227 {
11228 seen_other++;
11229 other_sec = s;
11230 }
11231 }
11232 else
11233 seen_other++;
11234
11235 if (seen_other && seen_linkorder)
11236 {
11237 if (other_sec && linkorder_sec)
11238 _bfd_error_handler
11239 /* xgettext:c-format */
11240 (_("%A has both ordered [`%A' in %B] "
11241 "and unordered [`%A' in %B] sections"),
11242 o, linkorder_sec, linkorder_sec->owner,
11243 other_sec, other_sec->owner);
11244 else
11245 _bfd_error_handler
11246 (_("%A has both ordered and unordered sections"), o);
11247 bfd_set_error (bfd_error_bad_value);
11248 return FALSE;
11249 }
11250 }
11251
11252 if (!seen_linkorder)
11253 return TRUE;
11254
11255 sections = (struct bfd_link_order **)
11256 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11257 if (sections == NULL)
11258 return FALSE;
11259 seen_linkorder = 0;
11260
11261 for (p = o->map_head.link_order; p != NULL; p = p->next)
11262 {
11263 sections[seen_linkorder++] = p;
11264 }
11265 /* Sort the input sections in the order of their linked section. */
11266 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11267 compare_link_order);
11268
11269 /* Change the offsets of the sections. */
11270 offset = 0;
11271 for (n = 0; n < seen_linkorder; n++)
11272 {
11273 s = sections[n]->u.indirect.section;
11274 offset &= ~(bfd_vma) 0 << s->alignment_power;
11275 s->output_offset = offset / bfd_octets_per_byte (abfd);
11276 sections[n]->offset = offset;
11277 offset += sections[n]->size;
11278 }
11279
11280 free (sections);
11281 return TRUE;
11282 }
11283
11284 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11285 Returns TRUE upon success, FALSE otherwise. */
11286
11287 static bfd_boolean
11288 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11289 {
11290 bfd_boolean ret = FALSE;
11291 bfd *implib_bfd;
11292 const struct elf_backend_data *bed;
11293 flagword flags;
11294 enum bfd_architecture arch;
11295 unsigned int mach;
11296 asymbol **sympp = NULL;
11297 long symsize;
11298 long symcount;
11299 long src_count;
11300 elf_symbol_type *osymbuf;
11301
11302 implib_bfd = info->out_implib_bfd;
11303 bed = get_elf_backend_data (abfd);
11304
11305 if (!bfd_set_format (implib_bfd, bfd_object))
11306 return FALSE;
11307
11308 /* Use flag from executable but make it a relocatable object. */
11309 flags = bfd_get_file_flags (abfd);
11310 flags &= ~HAS_RELOC;
11311 if (!bfd_set_start_address (implib_bfd, 0)
11312 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11313 return FALSE;
11314
11315 /* Copy architecture of output file to import library file. */
11316 arch = bfd_get_arch (abfd);
11317 mach = bfd_get_mach (abfd);
11318 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11319 && (abfd->target_defaulted
11320 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11321 return FALSE;
11322
11323 /* Get symbol table size. */
11324 symsize = bfd_get_symtab_upper_bound (abfd);
11325 if (symsize < 0)
11326 return FALSE;
11327
11328 /* Read in the symbol table. */
11329 sympp = (asymbol **) xmalloc (symsize);
11330 symcount = bfd_canonicalize_symtab (abfd, sympp);
11331 if (symcount < 0)
11332 goto free_sym_buf;
11333
11334 /* Allow the BFD backend to copy any private header data it
11335 understands from the output BFD to the import library BFD. */
11336 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11337 goto free_sym_buf;
11338
11339 /* Filter symbols to appear in the import library. */
11340 if (bed->elf_backend_filter_implib_symbols)
11341 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11342 symcount);
11343 else
11344 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11345 if (symcount == 0)
11346 {
11347 bfd_set_error (bfd_error_no_symbols);
11348 _bfd_error_handler (_("%B: no symbol found for import library"),
11349 implib_bfd);
11350 goto free_sym_buf;
11351 }
11352
11353
11354 /* Make symbols absolute. */
11355 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11356 sizeof (*osymbuf));
11357 for (src_count = 0; src_count < symcount; src_count++)
11358 {
11359 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11360 sizeof (*osymbuf));
11361 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11362 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11363 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11364 osymbuf[src_count].internal_elf_sym.st_value =
11365 osymbuf[src_count].symbol.value;
11366 sympp[src_count] = &osymbuf[src_count].symbol;
11367 }
11368
11369 bfd_set_symtab (implib_bfd, sympp, symcount);
11370
11371 /* Allow the BFD backend to copy any private data it understands
11372 from the output BFD to the import library BFD. This is done last
11373 to permit the routine to look at the filtered symbol table. */
11374 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11375 goto free_sym_buf;
11376
11377 if (!bfd_close (implib_bfd))
11378 goto free_sym_buf;
11379
11380 ret = TRUE;
11381
11382 free_sym_buf:
11383 free (sympp);
11384 return ret;
11385 }
11386
11387 static void
11388 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11389 {
11390 asection *o;
11391
11392 if (flinfo->symstrtab != NULL)
11393 _bfd_elf_strtab_free (flinfo->symstrtab);
11394 if (flinfo->contents != NULL)
11395 free (flinfo->contents);
11396 if (flinfo->external_relocs != NULL)
11397 free (flinfo->external_relocs);
11398 if (flinfo->internal_relocs != NULL)
11399 free (flinfo->internal_relocs);
11400 if (flinfo->external_syms != NULL)
11401 free (flinfo->external_syms);
11402 if (flinfo->locsym_shndx != NULL)
11403 free (flinfo->locsym_shndx);
11404 if (flinfo->internal_syms != NULL)
11405 free (flinfo->internal_syms);
11406 if (flinfo->indices != NULL)
11407 free (flinfo->indices);
11408 if (flinfo->sections != NULL)
11409 free (flinfo->sections);
11410 if (flinfo->symshndxbuf != NULL)
11411 free (flinfo->symshndxbuf);
11412 for (o = obfd->sections; o != NULL; o = o->next)
11413 {
11414 struct bfd_elf_section_data *esdo = elf_section_data (o);
11415 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11416 free (esdo->rel.hashes);
11417 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11418 free (esdo->rela.hashes);
11419 }
11420 }
11421
11422 /* Do the final step of an ELF link. */
11423
11424 bfd_boolean
11425 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11426 {
11427 bfd_boolean dynamic;
11428 bfd_boolean emit_relocs;
11429 bfd *dynobj;
11430 struct elf_final_link_info flinfo;
11431 asection *o;
11432 struct bfd_link_order *p;
11433 bfd *sub;
11434 bfd_size_type max_contents_size;
11435 bfd_size_type max_external_reloc_size;
11436 bfd_size_type max_internal_reloc_count;
11437 bfd_size_type max_sym_count;
11438 bfd_size_type max_sym_shndx_count;
11439 Elf_Internal_Sym elfsym;
11440 unsigned int i;
11441 Elf_Internal_Shdr *symtab_hdr;
11442 Elf_Internal_Shdr *symtab_shndx_hdr;
11443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11444 struct elf_outext_info eoinfo;
11445 bfd_boolean merged;
11446 size_t relativecount = 0;
11447 asection *reldyn = 0;
11448 bfd_size_type amt;
11449 asection *attr_section = NULL;
11450 bfd_vma attr_size = 0;
11451 const char *std_attrs_section;
11452 struct elf_link_hash_table *htab = elf_hash_table (info);
11453
11454 if (!is_elf_hash_table (htab))
11455 return FALSE;
11456
11457 if (bfd_link_pic (info))
11458 abfd->flags |= DYNAMIC;
11459
11460 dynamic = htab->dynamic_sections_created;
11461 dynobj = htab->dynobj;
11462
11463 emit_relocs = (bfd_link_relocatable (info)
11464 || info->emitrelocations);
11465
11466 flinfo.info = info;
11467 flinfo.output_bfd = abfd;
11468 flinfo.symstrtab = _bfd_elf_strtab_init ();
11469 if (flinfo.symstrtab == NULL)
11470 return FALSE;
11471
11472 if (! dynamic)
11473 {
11474 flinfo.hash_sec = NULL;
11475 flinfo.symver_sec = NULL;
11476 }
11477 else
11478 {
11479 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11480 /* Note that dynsym_sec can be NULL (on VMS). */
11481 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11482 /* Note that it is OK if symver_sec is NULL. */
11483 }
11484
11485 flinfo.contents = NULL;
11486 flinfo.external_relocs = NULL;
11487 flinfo.internal_relocs = NULL;
11488 flinfo.external_syms = NULL;
11489 flinfo.locsym_shndx = NULL;
11490 flinfo.internal_syms = NULL;
11491 flinfo.indices = NULL;
11492 flinfo.sections = NULL;
11493 flinfo.symshndxbuf = NULL;
11494 flinfo.filesym_count = 0;
11495
11496 /* The object attributes have been merged. Remove the input
11497 sections from the link, and set the contents of the output
11498 secton. */
11499 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11500 for (o = abfd->sections; o != NULL; o = o->next)
11501 {
11502 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11503 || strcmp (o->name, ".gnu.attributes") == 0)
11504 {
11505 for (p = o->map_head.link_order; p != NULL; p = p->next)
11506 {
11507 asection *input_section;
11508
11509 if (p->type != bfd_indirect_link_order)
11510 continue;
11511 input_section = p->u.indirect.section;
11512 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11513 elf_link_input_bfd ignores this section. */
11514 input_section->flags &= ~SEC_HAS_CONTENTS;
11515 }
11516
11517 attr_size = bfd_elf_obj_attr_size (abfd);
11518 if (attr_size)
11519 {
11520 bfd_set_section_size (abfd, o, attr_size);
11521 attr_section = o;
11522 /* Skip this section later on. */
11523 o->map_head.link_order = NULL;
11524 }
11525 else
11526 o->flags |= SEC_EXCLUDE;
11527 }
11528 }
11529
11530 /* Count up the number of relocations we will output for each output
11531 section, so that we know the sizes of the reloc sections. We
11532 also figure out some maximum sizes. */
11533 max_contents_size = 0;
11534 max_external_reloc_size = 0;
11535 max_internal_reloc_count = 0;
11536 max_sym_count = 0;
11537 max_sym_shndx_count = 0;
11538 merged = FALSE;
11539 for (o = abfd->sections; o != NULL; o = o->next)
11540 {
11541 struct bfd_elf_section_data *esdo = elf_section_data (o);
11542 o->reloc_count = 0;
11543
11544 for (p = o->map_head.link_order; p != NULL; p = p->next)
11545 {
11546 unsigned int reloc_count = 0;
11547 unsigned int additional_reloc_count = 0;
11548 struct bfd_elf_section_data *esdi = NULL;
11549
11550 if (p->type == bfd_section_reloc_link_order
11551 || p->type == bfd_symbol_reloc_link_order)
11552 reloc_count = 1;
11553 else if (p->type == bfd_indirect_link_order)
11554 {
11555 asection *sec;
11556
11557 sec = p->u.indirect.section;
11558
11559 /* Mark all sections which are to be included in the
11560 link. This will normally be every section. We need
11561 to do this so that we can identify any sections which
11562 the linker has decided to not include. */
11563 sec->linker_mark = TRUE;
11564
11565 if (sec->flags & SEC_MERGE)
11566 merged = TRUE;
11567
11568 if (sec->rawsize > max_contents_size)
11569 max_contents_size = sec->rawsize;
11570 if (sec->size > max_contents_size)
11571 max_contents_size = sec->size;
11572
11573 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11574 && (sec->owner->flags & DYNAMIC) == 0)
11575 {
11576 size_t sym_count;
11577
11578 /* We are interested in just local symbols, not all
11579 symbols. */
11580 if (elf_bad_symtab (sec->owner))
11581 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11582 / bed->s->sizeof_sym);
11583 else
11584 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11585
11586 if (sym_count > max_sym_count)
11587 max_sym_count = sym_count;
11588
11589 if (sym_count > max_sym_shndx_count
11590 && elf_symtab_shndx_list (sec->owner) != NULL)
11591 max_sym_shndx_count = sym_count;
11592
11593 if (esdo->this_hdr.sh_type == SHT_REL
11594 || esdo->this_hdr.sh_type == SHT_RELA)
11595 /* Some backends use reloc_count in relocation sections
11596 to count particular types of relocs. Of course,
11597 reloc sections themselves can't have relocations. */
11598 ;
11599 else if (emit_relocs)
11600 {
11601 reloc_count = sec->reloc_count;
11602 if (bed->elf_backend_count_additional_relocs)
11603 {
11604 int c;
11605 c = (*bed->elf_backend_count_additional_relocs) (sec);
11606 additional_reloc_count += c;
11607 }
11608 }
11609 else if (bed->elf_backend_count_relocs)
11610 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11611
11612 esdi = elf_section_data (sec);
11613
11614 if ((sec->flags & SEC_RELOC) != 0)
11615 {
11616 size_t ext_size = 0;
11617
11618 if (esdi->rel.hdr != NULL)
11619 ext_size = esdi->rel.hdr->sh_size;
11620 if (esdi->rela.hdr != NULL)
11621 ext_size += esdi->rela.hdr->sh_size;
11622
11623 if (ext_size > max_external_reloc_size)
11624 max_external_reloc_size = ext_size;
11625 if (sec->reloc_count > max_internal_reloc_count)
11626 max_internal_reloc_count = sec->reloc_count;
11627 }
11628 }
11629 }
11630
11631 if (reloc_count == 0)
11632 continue;
11633
11634 reloc_count += additional_reloc_count;
11635 o->reloc_count += reloc_count;
11636
11637 if (p->type == bfd_indirect_link_order && emit_relocs)
11638 {
11639 if (esdi->rel.hdr)
11640 {
11641 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11642 esdo->rel.count += additional_reloc_count;
11643 }
11644 if (esdi->rela.hdr)
11645 {
11646 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11647 esdo->rela.count += additional_reloc_count;
11648 }
11649 }
11650 else
11651 {
11652 if (o->use_rela_p)
11653 esdo->rela.count += reloc_count;
11654 else
11655 esdo->rel.count += reloc_count;
11656 }
11657 }
11658
11659 if (o->reloc_count > 0)
11660 o->flags |= SEC_RELOC;
11661 else
11662 {
11663 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11664 set it (this is probably a bug) and if it is set
11665 assign_section_numbers will create a reloc section. */
11666 o->flags &=~ SEC_RELOC;
11667 }
11668
11669 /* If the SEC_ALLOC flag is not set, force the section VMA to
11670 zero. This is done in elf_fake_sections as well, but forcing
11671 the VMA to 0 here will ensure that relocs against these
11672 sections are handled correctly. */
11673 if ((o->flags & SEC_ALLOC) == 0
11674 && ! o->user_set_vma)
11675 o->vma = 0;
11676 }
11677
11678 if (! bfd_link_relocatable (info) && merged)
11679 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11680
11681 /* Figure out the file positions for everything but the symbol table
11682 and the relocs. We set symcount to force assign_section_numbers
11683 to create a symbol table. */
11684 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11685 BFD_ASSERT (! abfd->output_has_begun);
11686 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11687 goto error_return;
11688
11689 /* Set sizes, and assign file positions for reloc sections. */
11690 for (o = abfd->sections; o != NULL; o = o->next)
11691 {
11692 struct bfd_elf_section_data *esdo = elf_section_data (o);
11693 if ((o->flags & SEC_RELOC) != 0)
11694 {
11695 if (esdo->rel.hdr
11696 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11697 goto error_return;
11698
11699 if (esdo->rela.hdr
11700 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11701 goto error_return;
11702 }
11703
11704 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11705 to count upwards while actually outputting the relocations. */
11706 esdo->rel.count = 0;
11707 esdo->rela.count = 0;
11708
11709 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11710 {
11711 /* Cache the section contents so that they can be compressed
11712 later. Use bfd_malloc since it will be freed by
11713 bfd_compress_section_contents. */
11714 unsigned char *contents = esdo->this_hdr.contents;
11715 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11716 abort ();
11717 contents
11718 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11719 if (contents == NULL)
11720 goto error_return;
11721 esdo->this_hdr.contents = contents;
11722 }
11723 }
11724
11725 /* We have now assigned file positions for all the sections except
11726 .symtab, .strtab, and non-loaded reloc sections. We start the
11727 .symtab section at the current file position, and write directly
11728 to it. We build the .strtab section in memory. */
11729 bfd_get_symcount (abfd) = 0;
11730 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11731 /* sh_name is set in prep_headers. */
11732 symtab_hdr->sh_type = SHT_SYMTAB;
11733 /* sh_flags, sh_addr and sh_size all start off zero. */
11734 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11735 /* sh_link is set in assign_section_numbers. */
11736 /* sh_info is set below. */
11737 /* sh_offset is set just below. */
11738 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11739
11740 if (max_sym_count < 20)
11741 max_sym_count = 20;
11742 htab->strtabsize = max_sym_count;
11743 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11744 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11745 if (htab->strtab == NULL)
11746 goto error_return;
11747 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11748 flinfo.symshndxbuf
11749 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11750 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11751
11752 if (info->strip != strip_all || emit_relocs)
11753 {
11754 file_ptr off = elf_next_file_pos (abfd);
11755
11756 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11757
11758 /* Note that at this point elf_next_file_pos (abfd) is
11759 incorrect. We do not yet know the size of the .symtab section.
11760 We correct next_file_pos below, after we do know the size. */
11761
11762 /* Start writing out the symbol table. The first symbol is always a
11763 dummy symbol. */
11764 elfsym.st_value = 0;
11765 elfsym.st_size = 0;
11766 elfsym.st_info = 0;
11767 elfsym.st_other = 0;
11768 elfsym.st_shndx = SHN_UNDEF;
11769 elfsym.st_target_internal = 0;
11770 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11771 bfd_und_section_ptr, NULL) != 1)
11772 goto error_return;
11773
11774 /* Output a symbol for each section. We output these even if we are
11775 discarding local symbols, since they are used for relocs. These
11776 symbols have no names. We store the index of each one in the
11777 index field of the section, so that we can find it again when
11778 outputting relocs. */
11779
11780 elfsym.st_size = 0;
11781 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11782 elfsym.st_other = 0;
11783 elfsym.st_value = 0;
11784 elfsym.st_target_internal = 0;
11785 for (i = 1; i < elf_numsections (abfd); i++)
11786 {
11787 o = bfd_section_from_elf_index (abfd, i);
11788 if (o != NULL)
11789 {
11790 o->target_index = bfd_get_symcount (abfd);
11791 elfsym.st_shndx = i;
11792 if (!bfd_link_relocatable (info))
11793 elfsym.st_value = o->vma;
11794 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11795 NULL) != 1)
11796 goto error_return;
11797 }
11798 }
11799 }
11800
11801 /* Allocate some memory to hold information read in from the input
11802 files. */
11803 if (max_contents_size != 0)
11804 {
11805 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11806 if (flinfo.contents == NULL)
11807 goto error_return;
11808 }
11809
11810 if (max_external_reloc_size != 0)
11811 {
11812 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11813 if (flinfo.external_relocs == NULL)
11814 goto error_return;
11815 }
11816
11817 if (max_internal_reloc_count != 0)
11818 {
11819 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11820 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11821 if (flinfo.internal_relocs == NULL)
11822 goto error_return;
11823 }
11824
11825 if (max_sym_count != 0)
11826 {
11827 amt = max_sym_count * bed->s->sizeof_sym;
11828 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11829 if (flinfo.external_syms == NULL)
11830 goto error_return;
11831
11832 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11833 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11834 if (flinfo.internal_syms == NULL)
11835 goto error_return;
11836
11837 amt = max_sym_count * sizeof (long);
11838 flinfo.indices = (long int *) bfd_malloc (amt);
11839 if (flinfo.indices == NULL)
11840 goto error_return;
11841
11842 amt = max_sym_count * sizeof (asection *);
11843 flinfo.sections = (asection **) bfd_malloc (amt);
11844 if (flinfo.sections == NULL)
11845 goto error_return;
11846 }
11847
11848 if (max_sym_shndx_count != 0)
11849 {
11850 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11851 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11852 if (flinfo.locsym_shndx == NULL)
11853 goto error_return;
11854 }
11855
11856 if (htab->tls_sec)
11857 {
11858 bfd_vma base, end = 0;
11859 asection *sec;
11860
11861 for (sec = htab->tls_sec;
11862 sec && (sec->flags & SEC_THREAD_LOCAL);
11863 sec = sec->next)
11864 {
11865 bfd_size_type size = sec->size;
11866
11867 if (size == 0
11868 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11869 {
11870 struct bfd_link_order *ord = sec->map_tail.link_order;
11871
11872 if (ord != NULL)
11873 size = ord->offset + ord->size;
11874 }
11875 end = sec->vma + size;
11876 }
11877 base = htab->tls_sec->vma;
11878 /* Only align end of TLS section if static TLS doesn't have special
11879 alignment requirements. */
11880 if (bed->static_tls_alignment == 1)
11881 end = align_power (end, htab->tls_sec->alignment_power);
11882 htab->tls_size = end - base;
11883 }
11884
11885 /* Reorder SHF_LINK_ORDER sections. */
11886 for (o = abfd->sections; o != NULL; o = o->next)
11887 {
11888 if (!elf_fixup_link_order (abfd, o))
11889 return FALSE;
11890 }
11891
11892 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11893 return FALSE;
11894
11895 /* Since ELF permits relocations to be against local symbols, we
11896 must have the local symbols available when we do the relocations.
11897 Since we would rather only read the local symbols once, and we
11898 would rather not keep them in memory, we handle all the
11899 relocations for a single input file at the same time.
11900
11901 Unfortunately, there is no way to know the total number of local
11902 symbols until we have seen all of them, and the local symbol
11903 indices precede the global symbol indices. This means that when
11904 we are generating relocatable output, and we see a reloc against
11905 a global symbol, we can not know the symbol index until we have
11906 finished examining all the local symbols to see which ones we are
11907 going to output. To deal with this, we keep the relocations in
11908 memory, and don't output them until the end of the link. This is
11909 an unfortunate waste of memory, but I don't see a good way around
11910 it. Fortunately, it only happens when performing a relocatable
11911 link, which is not the common case. FIXME: If keep_memory is set
11912 we could write the relocs out and then read them again; I don't
11913 know how bad the memory loss will be. */
11914
11915 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11916 sub->output_has_begun = FALSE;
11917 for (o = abfd->sections; o != NULL; o = o->next)
11918 {
11919 for (p = o->map_head.link_order; p != NULL; p = p->next)
11920 {
11921 if (p->type == bfd_indirect_link_order
11922 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11923 == bfd_target_elf_flavour)
11924 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11925 {
11926 if (! sub->output_has_begun)
11927 {
11928 if (! elf_link_input_bfd (&flinfo, sub))
11929 goto error_return;
11930 sub->output_has_begun = TRUE;
11931 }
11932 }
11933 else if (p->type == bfd_section_reloc_link_order
11934 || p->type == bfd_symbol_reloc_link_order)
11935 {
11936 if (! elf_reloc_link_order (abfd, info, o, p))
11937 goto error_return;
11938 }
11939 else
11940 {
11941 if (! _bfd_default_link_order (abfd, info, o, p))
11942 {
11943 if (p->type == bfd_indirect_link_order
11944 && (bfd_get_flavour (sub)
11945 == bfd_target_elf_flavour)
11946 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11947 != bed->s->elfclass))
11948 {
11949 const char *iclass, *oclass;
11950
11951 switch (bed->s->elfclass)
11952 {
11953 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11954 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11955 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11956 default: abort ();
11957 }
11958
11959 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11960 {
11961 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11962 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11963 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11964 default: abort ();
11965 }
11966
11967 bfd_set_error (bfd_error_wrong_format);
11968 _bfd_error_handler
11969 /* xgettext:c-format */
11970 (_("%B: file class %s incompatible with %s"),
11971 sub, iclass, oclass);
11972 }
11973
11974 goto error_return;
11975 }
11976 }
11977 }
11978 }
11979
11980 /* Free symbol buffer if needed. */
11981 if (!info->reduce_memory_overheads)
11982 {
11983 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11984 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11985 && elf_tdata (sub)->symbuf)
11986 {
11987 free (elf_tdata (sub)->symbuf);
11988 elf_tdata (sub)->symbuf = NULL;
11989 }
11990 }
11991
11992 /* Output any global symbols that got converted to local in a
11993 version script or due to symbol visibility. We do this in a
11994 separate step since ELF requires all local symbols to appear
11995 prior to any global symbols. FIXME: We should only do this if
11996 some global symbols were, in fact, converted to become local.
11997 FIXME: Will this work correctly with the Irix 5 linker? */
11998 eoinfo.failed = FALSE;
11999 eoinfo.flinfo = &flinfo;
12000 eoinfo.localsyms = TRUE;
12001 eoinfo.file_sym_done = FALSE;
12002 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12003 if (eoinfo.failed)
12004 return FALSE;
12005
12006 /* If backend needs to output some local symbols not present in the hash
12007 table, do it now. */
12008 if (bed->elf_backend_output_arch_local_syms
12009 && (info->strip != strip_all || emit_relocs))
12010 {
12011 typedef int (*out_sym_func)
12012 (void *, const char *, Elf_Internal_Sym *, asection *,
12013 struct elf_link_hash_entry *);
12014
12015 if (! ((*bed->elf_backend_output_arch_local_syms)
12016 (abfd, info, &flinfo,
12017 (out_sym_func) elf_link_output_symstrtab)))
12018 return FALSE;
12019 }
12020
12021 /* That wrote out all the local symbols. Finish up the symbol table
12022 with the global symbols. Even if we want to strip everything we
12023 can, we still need to deal with those global symbols that got
12024 converted to local in a version script. */
12025
12026 /* The sh_info field records the index of the first non local symbol. */
12027 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12028
12029 if (dynamic
12030 && htab->dynsym != NULL
12031 && htab->dynsym->output_section != bfd_abs_section_ptr)
12032 {
12033 Elf_Internal_Sym sym;
12034 bfd_byte *dynsym = htab->dynsym->contents;
12035
12036 o = htab->dynsym->output_section;
12037 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12038
12039 /* Write out the section symbols for the output sections. */
12040 if (bfd_link_pic (info)
12041 || htab->is_relocatable_executable)
12042 {
12043 asection *s;
12044
12045 sym.st_size = 0;
12046 sym.st_name = 0;
12047 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12048 sym.st_other = 0;
12049 sym.st_target_internal = 0;
12050
12051 for (s = abfd->sections; s != NULL; s = s->next)
12052 {
12053 int indx;
12054 bfd_byte *dest;
12055 long dynindx;
12056
12057 dynindx = elf_section_data (s)->dynindx;
12058 if (dynindx <= 0)
12059 continue;
12060 indx = elf_section_data (s)->this_idx;
12061 BFD_ASSERT (indx > 0);
12062 sym.st_shndx = indx;
12063 if (! check_dynsym (abfd, &sym))
12064 return FALSE;
12065 sym.st_value = s->vma;
12066 dest = dynsym + dynindx * bed->s->sizeof_sym;
12067 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12068 }
12069 }
12070
12071 /* Write out the local dynsyms. */
12072 if (htab->dynlocal)
12073 {
12074 struct elf_link_local_dynamic_entry *e;
12075 for (e = htab->dynlocal; e ; e = e->next)
12076 {
12077 asection *s;
12078 bfd_byte *dest;
12079
12080 /* Copy the internal symbol and turn off visibility.
12081 Note that we saved a word of storage and overwrote
12082 the original st_name with the dynstr_index. */
12083 sym = e->isym;
12084 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12085
12086 s = bfd_section_from_elf_index (e->input_bfd,
12087 e->isym.st_shndx);
12088 if (s != NULL)
12089 {
12090 sym.st_shndx =
12091 elf_section_data (s->output_section)->this_idx;
12092 if (! check_dynsym (abfd, &sym))
12093 return FALSE;
12094 sym.st_value = (s->output_section->vma
12095 + s->output_offset
12096 + e->isym.st_value);
12097 }
12098
12099 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12100 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12101 }
12102 }
12103 }
12104
12105 /* We get the global symbols from the hash table. */
12106 eoinfo.failed = FALSE;
12107 eoinfo.localsyms = FALSE;
12108 eoinfo.flinfo = &flinfo;
12109 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12110 if (eoinfo.failed)
12111 return FALSE;
12112
12113 /* If backend needs to output some symbols not present in the hash
12114 table, do it now. */
12115 if (bed->elf_backend_output_arch_syms
12116 && (info->strip != strip_all || emit_relocs))
12117 {
12118 typedef int (*out_sym_func)
12119 (void *, const char *, Elf_Internal_Sym *, asection *,
12120 struct elf_link_hash_entry *);
12121
12122 if (! ((*bed->elf_backend_output_arch_syms)
12123 (abfd, info, &flinfo,
12124 (out_sym_func) elf_link_output_symstrtab)))
12125 return FALSE;
12126 }
12127
12128 /* Finalize the .strtab section. */
12129 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12130
12131 /* Swap out the .strtab section. */
12132 if (!elf_link_swap_symbols_out (&flinfo))
12133 return FALSE;
12134
12135 /* Now we know the size of the symtab section. */
12136 if (bfd_get_symcount (abfd) > 0)
12137 {
12138 /* Finish up and write out the symbol string table (.strtab)
12139 section. */
12140 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12141 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12142
12143 if (elf_symtab_shndx_list (abfd))
12144 {
12145 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12146
12147 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12148 {
12149 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12150 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12151 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12152 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12153 symtab_shndx_hdr->sh_size = amt;
12154
12155 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12156 off, TRUE);
12157
12158 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12159 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12160 return FALSE;
12161 }
12162 }
12163
12164 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12165 /* sh_name was set in prep_headers. */
12166 symstrtab_hdr->sh_type = SHT_STRTAB;
12167 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12168 symstrtab_hdr->sh_addr = 0;
12169 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12170 symstrtab_hdr->sh_entsize = 0;
12171 symstrtab_hdr->sh_link = 0;
12172 symstrtab_hdr->sh_info = 0;
12173 /* sh_offset is set just below. */
12174 symstrtab_hdr->sh_addralign = 1;
12175
12176 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12177 off, TRUE);
12178 elf_next_file_pos (abfd) = off;
12179
12180 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12181 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12182 return FALSE;
12183 }
12184
12185 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12186 {
12187 _bfd_error_handler (_("%B: failed to generate import library"),
12188 info->out_implib_bfd);
12189 return FALSE;
12190 }
12191
12192 /* Adjust the relocs to have the correct symbol indices. */
12193 for (o = abfd->sections; o != NULL; o = o->next)
12194 {
12195 struct bfd_elf_section_data *esdo = elf_section_data (o);
12196 bfd_boolean sort;
12197
12198 if ((o->flags & SEC_RELOC) == 0)
12199 continue;
12200
12201 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12202 if (esdo->rel.hdr != NULL
12203 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12204 return FALSE;
12205 if (esdo->rela.hdr != NULL
12206 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12207 return FALSE;
12208
12209 /* Set the reloc_count field to 0 to prevent write_relocs from
12210 trying to swap the relocs out itself. */
12211 o->reloc_count = 0;
12212 }
12213
12214 if (dynamic && info->combreloc && dynobj != NULL)
12215 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12216
12217 /* If we are linking against a dynamic object, or generating a
12218 shared library, finish up the dynamic linking information. */
12219 if (dynamic)
12220 {
12221 bfd_byte *dyncon, *dynconend;
12222
12223 /* Fix up .dynamic entries. */
12224 o = bfd_get_linker_section (dynobj, ".dynamic");
12225 BFD_ASSERT (o != NULL);
12226
12227 dyncon = o->contents;
12228 dynconend = o->contents + o->size;
12229 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12230 {
12231 Elf_Internal_Dyn dyn;
12232 const char *name;
12233 unsigned int type;
12234 bfd_size_type sh_size;
12235 bfd_vma sh_addr;
12236
12237 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12238
12239 switch (dyn.d_tag)
12240 {
12241 default:
12242 continue;
12243 case DT_NULL:
12244 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12245 {
12246 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12247 {
12248 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12249 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12250 default: continue;
12251 }
12252 dyn.d_un.d_val = relativecount;
12253 relativecount = 0;
12254 break;
12255 }
12256 continue;
12257
12258 case DT_INIT:
12259 name = info->init_function;
12260 goto get_sym;
12261 case DT_FINI:
12262 name = info->fini_function;
12263 get_sym:
12264 {
12265 struct elf_link_hash_entry *h;
12266
12267 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12268 if (h != NULL
12269 && (h->root.type == bfd_link_hash_defined
12270 || h->root.type == bfd_link_hash_defweak))
12271 {
12272 dyn.d_un.d_ptr = h->root.u.def.value;
12273 o = h->root.u.def.section;
12274 if (o->output_section != NULL)
12275 dyn.d_un.d_ptr += (o->output_section->vma
12276 + o->output_offset);
12277 else
12278 {
12279 /* The symbol is imported from another shared
12280 library and does not apply to this one. */
12281 dyn.d_un.d_ptr = 0;
12282 }
12283 break;
12284 }
12285 }
12286 continue;
12287
12288 case DT_PREINIT_ARRAYSZ:
12289 name = ".preinit_array";
12290 goto get_out_size;
12291 case DT_INIT_ARRAYSZ:
12292 name = ".init_array";
12293 goto get_out_size;
12294 case DT_FINI_ARRAYSZ:
12295 name = ".fini_array";
12296 get_out_size:
12297 o = bfd_get_section_by_name (abfd, name);
12298 if (o == NULL)
12299 {
12300 _bfd_error_handler
12301 (_("could not find section %s"), name);
12302 goto error_return;
12303 }
12304 if (o->size == 0)
12305 _bfd_error_handler
12306 (_("warning: %s section has zero size"), name);
12307 dyn.d_un.d_val = o->size;
12308 break;
12309
12310 case DT_PREINIT_ARRAY:
12311 name = ".preinit_array";
12312 goto get_out_vma;
12313 case DT_INIT_ARRAY:
12314 name = ".init_array";
12315 goto get_out_vma;
12316 case DT_FINI_ARRAY:
12317 name = ".fini_array";
12318 get_out_vma:
12319 o = bfd_get_section_by_name (abfd, name);
12320 goto do_vma;
12321
12322 case DT_HASH:
12323 name = ".hash";
12324 goto get_vma;
12325 case DT_GNU_HASH:
12326 name = ".gnu.hash";
12327 goto get_vma;
12328 case DT_STRTAB:
12329 name = ".dynstr";
12330 goto get_vma;
12331 case DT_SYMTAB:
12332 name = ".dynsym";
12333 goto get_vma;
12334 case DT_VERDEF:
12335 name = ".gnu.version_d";
12336 goto get_vma;
12337 case DT_VERNEED:
12338 name = ".gnu.version_r";
12339 goto get_vma;
12340 case DT_VERSYM:
12341 name = ".gnu.version";
12342 get_vma:
12343 o = bfd_get_linker_section (dynobj, name);
12344 do_vma:
12345 if (o == NULL)
12346 {
12347 _bfd_error_handler
12348 (_("could not find section %s"), name);
12349 goto error_return;
12350 }
12351 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12352 {
12353 _bfd_error_handler
12354 (_("warning: section '%s' is being made into a note"), name);
12355 bfd_set_error (bfd_error_nonrepresentable_section);
12356 goto error_return;
12357 }
12358 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12359 break;
12360
12361 case DT_REL:
12362 case DT_RELA:
12363 case DT_RELSZ:
12364 case DT_RELASZ:
12365 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12366 type = SHT_REL;
12367 else
12368 type = SHT_RELA;
12369 sh_size = 0;
12370 sh_addr = 0;
12371 for (i = 1; i < elf_numsections (abfd); i++)
12372 {
12373 Elf_Internal_Shdr *hdr;
12374
12375 hdr = elf_elfsections (abfd)[i];
12376 if (hdr->sh_type == type
12377 && (hdr->sh_flags & SHF_ALLOC) != 0)
12378 {
12379 sh_size += hdr->sh_size;
12380 if (sh_addr == 0
12381 || sh_addr > hdr->sh_addr)
12382 sh_addr = hdr->sh_addr;
12383 }
12384 }
12385
12386 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12387 {
12388 /* Don't count procedure linkage table relocs in the
12389 overall reloc count. */
12390 sh_size -= htab->srelplt->size;
12391 if (sh_size == 0)
12392 /* If the size is zero, make the address zero too.
12393 This is to avoid a glibc bug. If the backend
12394 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12395 zero, then we'll put DT_RELA at the end of
12396 DT_JMPREL. glibc will interpret the end of
12397 DT_RELA matching the end of DT_JMPREL as the
12398 case where DT_RELA includes DT_JMPREL, and for
12399 LD_BIND_NOW will decide that processing DT_RELA
12400 will process the PLT relocs too. Net result:
12401 No PLT relocs applied. */
12402 sh_addr = 0;
12403
12404 /* If .rela.plt is the first .rela section, exclude
12405 it from DT_RELA. */
12406 else if (sh_addr == (htab->srelplt->output_section->vma
12407 + htab->srelplt->output_offset))
12408 sh_addr += htab->srelplt->size;
12409 }
12410
12411 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12412 dyn.d_un.d_val = sh_size;
12413 else
12414 dyn.d_un.d_ptr = sh_addr;
12415 break;
12416 }
12417 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12418 }
12419 }
12420
12421 /* If we have created any dynamic sections, then output them. */
12422 if (dynobj != NULL)
12423 {
12424 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12425 goto error_return;
12426
12427 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12428 if (((info->warn_shared_textrel && bfd_link_pic (info))
12429 || info->error_textrel)
12430 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12431 {
12432 bfd_byte *dyncon, *dynconend;
12433
12434 dyncon = o->contents;
12435 dynconend = o->contents + o->size;
12436 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12437 {
12438 Elf_Internal_Dyn dyn;
12439
12440 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12441
12442 if (dyn.d_tag == DT_TEXTREL)
12443 {
12444 if (info->error_textrel)
12445 info->callbacks->einfo
12446 (_("%P%X: read-only segment has dynamic relocations.\n"));
12447 else
12448 info->callbacks->einfo
12449 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12450 break;
12451 }
12452 }
12453 }
12454
12455 for (o = dynobj->sections; o != NULL; o = o->next)
12456 {
12457 if ((o->flags & SEC_HAS_CONTENTS) == 0
12458 || o->size == 0
12459 || o->output_section == bfd_abs_section_ptr)
12460 continue;
12461 if ((o->flags & SEC_LINKER_CREATED) == 0)
12462 {
12463 /* At this point, we are only interested in sections
12464 created by _bfd_elf_link_create_dynamic_sections. */
12465 continue;
12466 }
12467 if (htab->stab_info.stabstr == o)
12468 continue;
12469 if (htab->eh_info.hdr_sec == o)
12470 continue;
12471 if (strcmp (o->name, ".dynstr") != 0)
12472 {
12473 if (! bfd_set_section_contents (abfd, o->output_section,
12474 o->contents,
12475 (file_ptr) o->output_offset
12476 * bfd_octets_per_byte (abfd),
12477 o->size))
12478 goto error_return;
12479 }
12480 else
12481 {
12482 /* The contents of the .dynstr section are actually in a
12483 stringtab. */
12484 file_ptr off;
12485
12486 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12487 if (bfd_seek (abfd, off, SEEK_SET) != 0
12488 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12489 goto error_return;
12490 }
12491 }
12492 }
12493
12494 if (!info->resolve_section_groups)
12495 {
12496 bfd_boolean failed = FALSE;
12497
12498 BFD_ASSERT (bfd_link_relocatable (info));
12499 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12500 if (failed)
12501 goto error_return;
12502 }
12503
12504 /* If we have optimized stabs strings, output them. */
12505 if (htab->stab_info.stabstr != NULL)
12506 {
12507 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12508 goto error_return;
12509 }
12510
12511 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12512 goto error_return;
12513
12514 elf_final_link_free (abfd, &flinfo);
12515
12516 elf_linker (abfd) = TRUE;
12517
12518 if (attr_section)
12519 {
12520 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12521 if (contents == NULL)
12522 return FALSE; /* Bail out and fail. */
12523 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12524 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12525 free (contents);
12526 }
12527
12528 return TRUE;
12529
12530 error_return:
12531 elf_final_link_free (abfd, &flinfo);
12532 return FALSE;
12533 }
12534 \f
12535 /* Initialize COOKIE for input bfd ABFD. */
12536
12537 static bfd_boolean
12538 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12539 struct bfd_link_info *info, bfd *abfd)
12540 {
12541 Elf_Internal_Shdr *symtab_hdr;
12542 const struct elf_backend_data *bed;
12543
12544 bed = get_elf_backend_data (abfd);
12545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12546
12547 cookie->abfd = abfd;
12548 cookie->sym_hashes = elf_sym_hashes (abfd);
12549 cookie->bad_symtab = elf_bad_symtab (abfd);
12550 if (cookie->bad_symtab)
12551 {
12552 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12553 cookie->extsymoff = 0;
12554 }
12555 else
12556 {
12557 cookie->locsymcount = symtab_hdr->sh_info;
12558 cookie->extsymoff = symtab_hdr->sh_info;
12559 }
12560
12561 if (bed->s->arch_size == 32)
12562 cookie->r_sym_shift = 8;
12563 else
12564 cookie->r_sym_shift = 32;
12565
12566 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12567 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12568 {
12569 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12570 cookie->locsymcount, 0,
12571 NULL, NULL, NULL);
12572 if (cookie->locsyms == NULL)
12573 {
12574 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12575 return FALSE;
12576 }
12577 if (info->keep_memory)
12578 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12579 }
12580 return TRUE;
12581 }
12582
12583 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12584
12585 static void
12586 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12587 {
12588 Elf_Internal_Shdr *symtab_hdr;
12589
12590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12591 if (cookie->locsyms != NULL
12592 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12593 free (cookie->locsyms);
12594 }
12595
12596 /* Initialize the relocation information in COOKIE for input section SEC
12597 of input bfd ABFD. */
12598
12599 static bfd_boolean
12600 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12601 struct bfd_link_info *info, bfd *abfd,
12602 asection *sec)
12603 {
12604 if (sec->reloc_count == 0)
12605 {
12606 cookie->rels = NULL;
12607 cookie->relend = NULL;
12608 }
12609 else
12610 {
12611 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12612 info->keep_memory);
12613 if (cookie->rels == NULL)
12614 return FALSE;
12615 cookie->rel = cookie->rels;
12616 cookie->relend = cookie->rels + sec->reloc_count;
12617 }
12618 cookie->rel = cookie->rels;
12619 return TRUE;
12620 }
12621
12622 /* Free the memory allocated by init_reloc_cookie_rels,
12623 if appropriate. */
12624
12625 static void
12626 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12627 asection *sec)
12628 {
12629 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12630 free (cookie->rels);
12631 }
12632
12633 /* Initialize the whole of COOKIE for input section SEC. */
12634
12635 static bfd_boolean
12636 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12637 struct bfd_link_info *info,
12638 asection *sec)
12639 {
12640 if (!init_reloc_cookie (cookie, info, sec->owner))
12641 goto error1;
12642 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12643 goto error2;
12644 return TRUE;
12645
12646 error2:
12647 fini_reloc_cookie (cookie, sec->owner);
12648 error1:
12649 return FALSE;
12650 }
12651
12652 /* Free the memory allocated by init_reloc_cookie_for_section,
12653 if appropriate. */
12654
12655 static void
12656 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12657 asection *sec)
12658 {
12659 fini_reloc_cookie_rels (cookie, sec);
12660 fini_reloc_cookie (cookie, sec->owner);
12661 }
12662 \f
12663 /* Garbage collect unused sections. */
12664
12665 /* Default gc_mark_hook. */
12666
12667 asection *
12668 _bfd_elf_gc_mark_hook (asection *sec,
12669 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12670 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12671 struct elf_link_hash_entry *h,
12672 Elf_Internal_Sym *sym)
12673 {
12674 if (h != NULL)
12675 {
12676 switch (h->root.type)
12677 {
12678 case bfd_link_hash_defined:
12679 case bfd_link_hash_defweak:
12680 return h->root.u.def.section;
12681
12682 case bfd_link_hash_common:
12683 return h->root.u.c.p->section;
12684
12685 default:
12686 break;
12687 }
12688 }
12689 else
12690 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12691
12692 return NULL;
12693 }
12694
12695 /* Return the global debug definition section. */
12696
12697 static asection *
12698 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12699 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12700 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12701 struct elf_link_hash_entry *h,
12702 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
12703 {
12704 if (h != NULL
12705 && (h->root.type == bfd_link_hash_defined
12706 || h->root.type == bfd_link_hash_defweak)
12707 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12708 return h->root.u.def.section;
12709
12710 return NULL;
12711 }
12712
12713 /* COOKIE->rel describes a relocation against section SEC, which is
12714 a section we've decided to keep. Return the section that contains
12715 the relocation symbol, or NULL if no section contains it. */
12716
12717 asection *
12718 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12719 elf_gc_mark_hook_fn gc_mark_hook,
12720 struct elf_reloc_cookie *cookie,
12721 bfd_boolean *start_stop)
12722 {
12723 unsigned long r_symndx;
12724 struct elf_link_hash_entry *h;
12725
12726 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12727 if (r_symndx == STN_UNDEF)
12728 return NULL;
12729
12730 if (r_symndx >= cookie->locsymcount
12731 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12732 {
12733 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12734 if (h == NULL)
12735 {
12736 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12737 sec->owner);
12738 return NULL;
12739 }
12740 while (h->root.type == bfd_link_hash_indirect
12741 || h->root.type == bfd_link_hash_warning)
12742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12743 h->mark = 1;
12744 /* If this symbol is weak and there is a non-weak definition, we
12745 keep the non-weak definition because many backends put
12746 dynamic reloc info on the non-weak definition for code
12747 handling copy relocs. */
12748 if (h->u.weakdef != NULL)
12749 h->u.weakdef->mark = 1;
12750
12751 if (start_stop != NULL)
12752 {
12753 /* To work around a glibc bug, mark XXX input sections
12754 when there is a reference to __start_XXX or __stop_XXX
12755 symbols. */
12756 if (h->start_stop)
12757 {
12758 asection *s = h->u2.start_stop_section;
12759 *start_stop = !s->gc_mark;
12760 return s;
12761 }
12762 }
12763
12764 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12765 }
12766
12767 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12768 &cookie->locsyms[r_symndx]);
12769 }
12770
12771 /* COOKIE->rel describes a relocation against section SEC, which is
12772 a section we've decided to keep. Mark the section that contains
12773 the relocation symbol. */
12774
12775 bfd_boolean
12776 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12777 asection *sec,
12778 elf_gc_mark_hook_fn gc_mark_hook,
12779 struct elf_reloc_cookie *cookie)
12780 {
12781 asection *rsec;
12782 bfd_boolean start_stop = FALSE;
12783
12784 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12785 while (rsec != NULL)
12786 {
12787 if (!rsec->gc_mark)
12788 {
12789 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12790 || (rsec->owner->flags & DYNAMIC) != 0)
12791 rsec->gc_mark = 1;
12792 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12793 return FALSE;
12794 }
12795 if (!start_stop)
12796 break;
12797 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12798 }
12799 return TRUE;
12800 }
12801
12802 /* The mark phase of garbage collection. For a given section, mark
12803 it and any sections in this section's group, and all the sections
12804 which define symbols to which it refers. */
12805
12806 bfd_boolean
12807 _bfd_elf_gc_mark (struct bfd_link_info *info,
12808 asection *sec,
12809 elf_gc_mark_hook_fn gc_mark_hook)
12810 {
12811 bfd_boolean ret;
12812 asection *group_sec, *eh_frame;
12813
12814 sec->gc_mark = 1;
12815
12816 /* Mark all the sections in the group. */
12817 group_sec = elf_section_data (sec)->next_in_group;
12818 if (group_sec && !group_sec->gc_mark)
12819 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12820 return FALSE;
12821
12822 /* Look through the section relocs. */
12823 ret = TRUE;
12824 eh_frame = elf_eh_frame_section (sec->owner);
12825 if ((sec->flags & SEC_RELOC) != 0
12826 && sec->reloc_count > 0
12827 && sec != eh_frame)
12828 {
12829 struct elf_reloc_cookie cookie;
12830
12831 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12832 ret = FALSE;
12833 else
12834 {
12835 for (; cookie.rel < cookie.relend; cookie.rel++)
12836 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12837 {
12838 ret = FALSE;
12839 break;
12840 }
12841 fini_reloc_cookie_for_section (&cookie, sec);
12842 }
12843 }
12844
12845 if (ret && eh_frame && elf_fde_list (sec))
12846 {
12847 struct elf_reloc_cookie cookie;
12848
12849 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12850 ret = FALSE;
12851 else
12852 {
12853 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12854 gc_mark_hook, &cookie))
12855 ret = FALSE;
12856 fini_reloc_cookie_for_section (&cookie, eh_frame);
12857 }
12858 }
12859
12860 eh_frame = elf_section_eh_frame_entry (sec);
12861 if (ret && eh_frame && !eh_frame->gc_mark)
12862 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12863 ret = FALSE;
12864
12865 return ret;
12866 }
12867
12868 /* Scan and mark sections in a special or debug section group. */
12869
12870 static void
12871 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12872 {
12873 /* Point to first section of section group. */
12874 asection *ssec;
12875 /* Used to iterate the section group. */
12876 asection *msec;
12877
12878 bfd_boolean is_special_grp = TRUE;
12879 bfd_boolean is_debug_grp = TRUE;
12880
12881 /* First scan to see if group contains any section other than debug
12882 and special section. */
12883 ssec = msec = elf_next_in_group (grp);
12884 do
12885 {
12886 if ((msec->flags & SEC_DEBUGGING) == 0)
12887 is_debug_grp = FALSE;
12888
12889 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12890 is_special_grp = FALSE;
12891
12892 msec = elf_next_in_group (msec);
12893 }
12894 while (msec != ssec);
12895
12896 /* If this is a pure debug section group or pure special section group,
12897 keep all sections in this group. */
12898 if (is_debug_grp || is_special_grp)
12899 {
12900 do
12901 {
12902 msec->gc_mark = 1;
12903 msec = elf_next_in_group (msec);
12904 }
12905 while (msec != ssec);
12906 }
12907 }
12908
12909 /* Keep debug and special sections. */
12910
12911 bfd_boolean
12912 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12913 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12914 {
12915 bfd *ibfd;
12916
12917 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12918 {
12919 asection *isec;
12920 bfd_boolean some_kept;
12921 bfd_boolean debug_frag_seen;
12922 bfd_boolean has_kept_debug_info;
12923
12924 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12925 continue;
12926 isec = ibfd->sections;
12927 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
12928 continue;
12929
12930 /* Ensure all linker created sections are kept,
12931 see if any other section is already marked,
12932 and note if we have any fragmented debug sections. */
12933 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
12934 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12935 {
12936 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12937 isec->gc_mark = 1;
12938 else if (isec->gc_mark
12939 && (isec->flags & SEC_ALLOC) != 0
12940 && elf_section_type (isec) != SHT_NOTE)
12941 some_kept = TRUE;
12942
12943 if (!debug_frag_seen
12944 && (isec->flags & SEC_DEBUGGING)
12945 && CONST_STRNEQ (isec->name, ".debug_line."))
12946 debug_frag_seen = TRUE;
12947 }
12948
12949 /* If no non-note alloc section in this file will be kept, then
12950 we can toss out the debug and special sections. */
12951 if (!some_kept)
12952 continue;
12953
12954 /* Keep debug and special sections like .comment when they are
12955 not part of a group. Also keep section groups that contain
12956 just debug sections or special sections. */
12957 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12958 {
12959 if ((isec->flags & SEC_GROUP) != 0)
12960 _bfd_elf_gc_mark_debug_special_section_group (isec);
12961 else if (((isec->flags & SEC_DEBUGGING) != 0
12962 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12963 && elf_next_in_group (isec) == NULL)
12964 isec->gc_mark = 1;
12965 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
12966 has_kept_debug_info = TRUE;
12967 }
12968
12969 /* Look for CODE sections which are going to be discarded,
12970 and find and discard any fragmented debug sections which
12971 are associated with that code section. */
12972 if (debug_frag_seen)
12973 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12974 if ((isec->flags & SEC_CODE) != 0
12975 && isec->gc_mark == 0)
12976 {
12977 unsigned int ilen;
12978 asection *dsec;
12979
12980 ilen = strlen (isec->name);
12981
12982 /* Association is determined by the name of the debug
12983 section containing the name of the code section as
12984 a suffix. For example .debug_line.text.foo is a
12985 debug section associated with .text.foo. */
12986 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12987 {
12988 unsigned int dlen;
12989
12990 if (dsec->gc_mark == 0
12991 || (dsec->flags & SEC_DEBUGGING) == 0)
12992 continue;
12993
12994 dlen = strlen (dsec->name);
12995
12996 if (dlen > ilen
12997 && strncmp (dsec->name + (dlen - ilen),
12998 isec->name, ilen) == 0)
12999 dsec->gc_mark = 0;
13000 }
13001 }
13002
13003 /* Mark debug sections referenced by kept debug sections. */
13004 if (has_kept_debug_info)
13005 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13006 if (isec->gc_mark
13007 && (isec->flags & SEC_DEBUGGING) != 0)
13008 if (!_bfd_elf_gc_mark (info, isec,
13009 elf_gc_mark_debug_section))
13010 return FALSE;
13011 }
13012 return TRUE;
13013 }
13014
13015 /* The sweep phase of garbage collection. Remove all garbage sections. */
13016
13017 typedef bfd_boolean (*gc_sweep_hook_fn)
13018 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
13019
13020 static bfd_boolean
13021 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13022 {
13023 bfd *sub;
13024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13025 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13026
13027 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13028 {
13029 asection *o;
13030
13031 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13032 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13033 continue;
13034 o = sub->sections;
13035 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13036 continue;
13037
13038 for (o = sub->sections; o != NULL; o = o->next)
13039 {
13040 /* When any section in a section group is kept, we keep all
13041 sections in the section group. If the first member of
13042 the section group is excluded, we will also exclude the
13043 group section. */
13044 if (o->flags & SEC_GROUP)
13045 {
13046 asection *first = elf_next_in_group (o);
13047 o->gc_mark = first->gc_mark;
13048 }
13049
13050 if (o->gc_mark)
13051 continue;
13052
13053 /* Skip sweeping sections already excluded. */
13054 if (o->flags & SEC_EXCLUDE)
13055 continue;
13056
13057 /* Since this is early in the link process, it is simple
13058 to remove a section from the output. */
13059 o->flags |= SEC_EXCLUDE;
13060
13061 if (info->print_gc_sections && o->size != 0)
13062 /* xgettext:c-format */
13063 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13064 o, sub);
13065
13066 /* But we also have to update some of the relocation
13067 info we collected before. */
13068 if (gc_sweep_hook
13069 && (o->flags & SEC_RELOC) != 0
13070 && o->reloc_count != 0
13071 && !((info->strip == strip_all || info->strip == strip_debugger)
13072 && (o->flags & SEC_DEBUGGING) != 0)
13073 && !bfd_is_abs_section (o->output_section))
13074 {
13075 Elf_Internal_Rela *internal_relocs;
13076 bfd_boolean r;
13077
13078 internal_relocs
13079 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13080 info->keep_memory);
13081 if (internal_relocs == NULL)
13082 return FALSE;
13083
13084 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13085
13086 if (elf_section_data (o)->relocs != internal_relocs)
13087 free (internal_relocs);
13088
13089 if (!r)
13090 return FALSE;
13091 }
13092 }
13093 }
13094
13095 return TRUE;
13096 }
13097
13098 /* Propagate collected vtable information. This is called through
13099 elf_link_hash_traverse. */
13100
13101 static bfd_boolean
13102 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13103 {
13104 /* Those that are not vtables. */
13105 if (h->start_stop
13106 || h->u2.vtable == NULL
13107 || h->u2.vtable->parent == NULL)
13108 return TRUE;
13109
13110 /* Those vtables that do not have parents, we cannot merge. */
13111 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13112 return TRUE;
13113
13114 /* If we've already been done, exit. */
13115 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13116 return TRUE;
13117
13118 /* Make sure the parent's table is up to date. */
13119 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13120
13121 if (h->u2.vtable->used == NULL)
13122 {
13123 /* None of this table's entries were referenced. Re-use the
13124 parent's table. */
13125 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13126 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13127 }
13128 else
13129 {
13130 size_t n;
13131 bfd_boolean *cu, *pu;
13132
13133 /* Or the parent's entries into ours. */
13134 cu = h->u2.vtable->used;
13135 cu[-1] = TRUE;
13136 pu = h->u2.vtable->parent->u2.vtable->used;
13137 if (pu != NULL)
13138 {
13139 const struct elf_backend_data *bed;
13140 unsigned int log_file_align;
13141
13142 bed = get_elf_backend_data (h->root.u.def.section->owner);
13143 log_file_align = bed->s->log_file_align;
13144 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13145 while (n--)
13146 {
13147 if (*pu)
13148 *cu = TRUE;
13149 pu++;
13150 cu++;
13151 }
13152 }
13153 }
13154
13155 return TRUE;
13156 }
13157
13158 static bfd_boolean
13159 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13160 {
13161 asection *sec;
13162 bfd_vma hstart, hend;
13163 Elf_Internal_Rela *relstart, *relend, *rel;
13164 const struct elf_backend_data *bed;
13165 unsigned int log_file_align;
13166
13167 /* Take care of both those symbols that do not describe vtables as
13168 well as those that are not loaded. */
13169 if (h->start_stop
13170 || h->u2.vtable == NULL
13171 || h->u2.vtable->parent == NULL)
13172 return TRUE;
13173
13174 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13175 || h->root.type == bfd_link_hash_defweak);
13176
13177 sec = h->root.u.def.section;
13178 hstart = h->root.u.def.value;
13179 hend = hstart + h->size;
13180
13181 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13182 if (!relstart)
13183 return *(bfd_boolean *) okp = FALSE;
13184 bed = get_elf_backend_data (sec->owner);
13185 log_file_align = bed->s->log_file_align;
13186
13187 relend = relstart + sec->reloc_count;
13188
13189 for (rel = relstart; rel < relend; ++rel)
13190 if (rel->r_offset >= hstart && rel->r_offset < hend)
13191 {
13192 /* If the entry is in use, do nothing. */
13193 if (h->u2.vtable->used
13194 && (rel->r_offset - hstart) < h->u2.vtable->size)
13195 {
13196 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13197 if (h->u2.vtable->used[entry])
13198 continue;
13199 }
13200 /* Otherwise, kill it. */
13201 rel->r_offset = rel->r_info = rel->r_addend = 0;
13202 }
13203
13204 return TRUE;
13205 }
13206
13207 /* Mark sections containing dynamically referenced symbols. When
13208 building shared libraries, we must assume that any visible symbol is
13209 referenced. */
13210
13211 bfd_boolean
13212 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13213 {
13214 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13215 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13216
13217 if ((h->root.type == bfd_link_hash_defined
13218 || h->root.type == bfd_link_hash_defweak)
13219 && (h->ref_dynamic
13220 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13221 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13222 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13223 && (!bfd_link_executable (info)
13224 || info->gc_keep_exported
13225 || info->export_dynamic
13226 || (h->dynamic
13227 && d != NULL
13228 && (*d->match) (&d->head, NULL, h->root.root.string)))
13229 && (h->versioned >= versioned
13230 || !bfd_hide_sym_by_version (info->version_info,
13231 h->root.root.string)))))
13232 h->root.u.def.section->flags |= SEC_KEEP;
13233
13234 return TRUE;
13235 }
13236
13237 /* Keep all sections containing symbols undefined on the command-line,
13238 and the section containing the entry symbol. */
13239
13240 void
13241 _bfd_elf_gc_keep (struct bfd_link_info *info)
13242 {
13243 struct bfd_sym_chain *sym;
13244
13245 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13246 {
13247 struct elf_link_hash_entry *h;
13248
13249 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13250 FALSE, FALSE, FALSE);
13251
13252 if (h != NULL
13253 && (h->root.type == bfd_link_hash_defined
13254 || h->root.type == bfd_link_hash_defweak)
13255 && !bfd_is_abs_section (h->root.u.def.section)
13256 && !bfd_is_und_section (h->root.u.def.section))
13257 h->root.u.def.section->flags |= SEC_KEEP;
13258 }
13259 }
13260
13261 bfd_boolean
13262 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13263 struct bfd_link_info *info)
13264 {
13265 bfd *ibfd = info->input_bfds;
13266
13267 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13268 {
13269 asection *sec;
13270 struct elf_reloc_cookie cookie;
13271
13272 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13273 continue;
13274 sec = ibfd->sections;
13275 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13276 continue;
13277
13278 if (!init_reloc_cookie (&cookie, info, ibfd))
13279 return FALSE;
13280
13281 for (sec = ibfd->sections; sec; sec = sec->next)
13282 {
13283 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13284 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13285 {
13286 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13287 fini_reloc_cookie_rels (&cookie, sec);
13288 }
13289 }
13290 }
13291 return TRUE;
13292 }
13293
13294 /* Do mark and sweep of unused sections. */
13295
13296 bfd_boolean
13297 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13298 {
13299 bfd_boolean ok = TRUE;
13300 bfd *sub;
13301 elf_gc_mark_hook_fn gc_mark_hook;
13302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13303 struct elf_link_hash_table *htab;
13304
13305 if (!bed->can_gc_sections
13306 || !is_elf_hash_table (info->hash))
13307 {
13308 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13309 return TRUE;
13310 }
13311
13312 bed->gc_keep (info);
13313 htab = elf_hash_table (info);
13314
13315 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13316 at the .eh_frame section if we can mark the FDEs individually. */
13317 for (sub = info->input_bfds;
13318 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13319 sub = sub->link.next)
13320 {
13321 asection *sec;
13322 struct elf_reloc_cookie cookie;
13323
13324 sec = sub->sections;
13325 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13326 continue;
13327 sec = bfd_get_section_by_name (sub, ".eh_frame");
13328 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13329 {
13330 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13331 if (elf_section_data (sec)->sec_info
13332 && (sec->flags & SEC_LINKER_CREATED) == 0)
13333 elf_eh_frame_section (sub) = sec;
13334 fini_reloc_cookie_for_section (&cookie, sec);
13335 sec = bfd_get_next_section_by_name (NULL, sec);
13336 }
13337 }
13338
13339 /* Apply transitive closure to the vtable entry usage info. */
13340 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13341 if (!ok)
13342 return FALSE;
13343
13344 /* Kill the vtable relocations that were not used. */
13345 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13346 if (!ok)
13347 return FALSE;
13348
13349 /* Mark dynamically referenced symbols. */
13350 if (htab->dynamic_sections_created || info->gc_keep_exported)
13351 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13352
13353 /* Grovel through relocs to find out who stays ... */
13354 gc_mark_hook = bed->gc_mark_hook;
13355 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13356 {
13357 asection *o;
13358
13359 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13360 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13361 continue;
13362
13363 o = sub->sections;
13364 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13365 continue;
13366
13367 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13368 Also treat note sections as a root, if the section is not part
13369 of a group. */
13370 for (o = sub->sections; o != NULL; o = o->next)
13371 if (!o->gc_mark
13372 && (o->flags & SEC_EXCLUDE) == 0
13373 && ((o->flags & SEC_KEEP) != 0
13374 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13375 && elf_next_in_group (o) == NULL )))
13376 {
13377 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13378 return FALSE;
13379 }
13380 }
13381
13382 /* Allow the backend to mark additional target specific sections. */
13383 bed->gc_mark_extra_sections (info, gc_mark_hook);
13384
13385 /* ... and mark SEC_EXCLUDE for those that go. */
13386 return elf_gc_sweep (abfd, info);
13387 }
13388 \f
13389 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13390
13391 bfd_boolean
13392 bfd_elf_gc_record_vtinherit (bfd *abfd,
13393 asection *sec,
13394 struct elf_link_hash_entry *h,
13395 bfd_vma offset)
13396 {
13397 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13398 struct elf_link_hash_entry **search, *child;
13399 size_t extsymcount;
13400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13401
13402 /* The sh_info field of the symtab header tells us where the
13403 external symbols start. We don't care about the local symbols at
13404 this point. */
13405 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13406 if (!elf_bad_symtab (abfd))
13407 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13408
13409 sym_hashes = elf_sym_hashes (abfd);
13410 sym_hashes_end = sym_hashes + extsymcount;
13411
13412 /* Hunt down the child symbol, which is in this section at the same
13413 offset as the relocation. */
13414 for (search = sym_hashes; search != sym_hashes_end; ++search)
13415 {
13416 if ((child = *search) != NULL
13417 && (child->root.type == bfd_link_hash_defined
13418 || child->root.type == bfd_link_hash_defweak)
13419 && child->root.u.def.section == sec
13420 && child->root.u.def.value == offset)
13421 goto win;
13422 }
13423
13424 /* xgettext:c-format */
13425 _bfd_error_handler (_("%B: %A+%#Lx: No symbol found for INHERIT"),
13426 abfd, sec, offset);
13427 bfd_set_error (bfd_error_invalid_operation);
13428 return FALSE;
13429
13430 win:
13431 if (!child->u2.vtable)
13432 {
13433 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13434 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13435 if (!child->u2.vtable)
13436 return FALSE;
13437 }
13438 if (!h)
13439 {
13440 /* This *should* only be the absolute section. It could potentially
13441 be that someone has defined a non-global vtable though, which
13442 would be bad. It isn't worth paging in the local symbols to be
13443 sure though; that case should simply be handled by the assembler. */
13444
13445 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13446 }
13447 else
13448 child->u2.vtable->parent = h;
13449
13450 return TRUE;
13451 }
13452
13453 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13454
13455 bfd_boolean
13456 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13457 asection *sec ATTRIBUTE_UNUSED,
13458 struct elf_link_hash_entry *h,
13459 bfd_vma addend)
13460 {
13461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13462 unsigned int log_file_align = bed->s->log_file_align;
13463
13464 if (!h->u2.vtable)
13465 {
13466 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13467 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13468 if (!h->u2.vtable)
13469 return FALSE;
13470 }
13471
13472 if (addend >= h->u2.vtable->size)
13473 {
13474 size_t size, bytes, file_align;
13475 bfd_boolean *ptr = h->u2.vtable->used;
13476
13477 /* While the symbol is undefined, we have to be prepared to handle
13478 a zero size. */
13479 file_align = 1 << log_file_align;
13480 if (h->root.type == bfd_link_hash_undefined)
13481 size = addend + file_align;
13482 else
13483 {
13484 size = h->size;
13485 if (addend >= size)
13486 {
13487 /* Oops! We've got a reference past the defined end of
13488 the table. This is probably a bug -- shall we warn? */
13489 size = addend + file_align;
13490 }
13491 }
13492 size = (size + file_align - 1) & -file_align;
13493
13494 /* Allocate one extra entry for use as a "done" flag for the
13495 consolidation pass. */
13496 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13497
13498 if (ptr)
13499 {
13500 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13501
13502 if (ptr != NULL)
13503 {
13504 size_t oldbytes;
13505
13506 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13507 * sizeof (bfd_boolean));
13508 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13509 }
13510 }
13511 else
13512 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13513
13514 if (ptr == NULL)
13515 return FALSE;
13516
13517 /* And arrange for that done flag to be at index -1. */
13518 h->u2.vtable->used = ptr + 1;
13519 h->u2.vtable->size = size;
13520 }
13521
13522 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13523
13524 return TRUE;
13525 }
13526
13527 /* Map an ELF section header flag to its corresponding string. */
13528 typedef struct
13529 {
13530 char *flag_name;
13531 flagword flag_value;
13532 } elf_flags_to_name_table;
13533
13534 static elf_flags_to_name_table elf_flags_to_names [] =
13535 {
13536 { "SHF_WRITE", SHF_WRITE },
13537 { "SHF_ALLOC", SHF_ALLOC },
13538 { "SHF_EXECINSTR", SHF_EXECINSTR },
13539 { "SHF_MERGE", SHF_MERGE },
13540 { "SHF_STRINGS", SHF_STRINGS },
13541 { "SHF_INFO_LINK", SHF_INFO_LINK},
13542 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13543 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13544 { "SHF_GROUP", SHF_GROUP },
13545 { "SHF_TLS", SHF_TLS },
13546 { "SHF_MASKOS", SHF_MASKOS },
13547 { "SHF_EXCLUDE", SHF_EXCLUDE },
13548 };
13549
13550 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13551 bfd_boolean
13552 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13553 struct flag_info *flaginfo,
13554 asection *section)
13555 {
13556 const bfd_vma sh_flags = elf_section_flags (section);
13557
13558 if (!flaginfo->flags_initialized)
13559 {
13560 bfd *obfd = info->output_bfd;
13561 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13562 struct flag_info_list *tf = flaginfo->flag_list;
13563 int with_hex = 0;
13564 int without_hex = 0;
13565
13566 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13567 {
13568 unsigned i;
13569 flagword (*lookup) (char *);
13570
13571 lookup = bed->elf_backend_lookup_section_flags_hook;
13572 if (lookup != NULL)
13573 {
13574 flagword hexval = (*lookup) ((char *) tf->name);
13575
13576 if (hexval != 0)
13577 {
13578 if (tf->with == with_flags)
13579 with_hex |= hexval;
13580 else if (tf->with == without_flags)
13581 without_hex |= hexval;
13582 tf->valid = TRUE;
13583 continue;
13584 }
13585 }
13586 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13587 {
13588 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13589 {
13590 if (tf->with == with_flags)
13591 with_hex |= elf_flags_to_names[i].flag_value;
13592 else if (tf->with == without_flags)
13593 without_hex |= elf_flags_to_names[i].flag_value;
13594 tf->valid = TRUE;
13595 break;
13596 }
13597 }
13598 if (!tf->valid)
13599 {
13600 info->callbacks->einfo
13601 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13602 return FALSE;
13603 }
13604 }
13605 flaginfo->flags_initialized = TRUE;
13606 flaginfo->only_with_flags |= with_hex;
13607 flaginfo->not_with_flags |= without_hex;
13608 }
13609
13610 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13611 return FALSE;
13612
13613 if ((flaginfo->not_with_flags & sh_flags) != 0)
13614 return FALSE;
13615
13616 return TRUE;
13617 }
13618
13619 struct alloc_got_off_arg {
13620 bfd_vma gotoff;
13621 struct bfd_link_info *info;
13622 };
13623
13624 /* We need a special top-level link routine to convert got reference counts
13625 to real got offsets. */
13626
13627 static bfd_boolean
13628 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13629 {
13630 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13631 bfd *obfd = gofarg->info->output_bfd;
13632 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13633
13634 if (h->got.refcount > 0)
13635 {
13636 h->got.offset = gofarg->gotoff;
13637 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13638 }
13639 else
13640 h->got.offset = (bfd_vma) -1;
13641
13642 return TRUE;
13643 }
13644
13645 /* And an accompanying bit to work out final got entry offsets once
13646 we're done. Should be called from final_link. */
13647
13648 bfd_boolean
13649 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13650 struct bfd_link_info *info)
13651 {
13652 bfd *i;
13653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13654 bfd_vma gotoff;
13655 struct alloc_got_off_arg gofarg;
13656
13657 BFD_ASSERT (abfd == info->output_bfd);
13658
13659 if (! is_elf_hash_table (info->hash))
13660 return FALSE;
13661
13662 /* The GOT offset is relative to the .got section, but the GOT header is
13663 put into the .got.plt section, if the backend uses it. */
13664 if (bed->want_got_plt)
13665 gotoff = 0;
13666 else
13667 gotoff = bed->got_header_size;
13668
13669 /* Do the local .got entries first. */
13670 for (i = info->input_bfds; i; i = i->link.next)
13671 {
13672 bfd_signed_vma *local_got;
13673 size_t j, locsymcount;
13674 Elf_Internal_Shdr *symtab_hdr;
13675
13676 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13677 continue;
13678
13679 local_got = elf_local_got_refcounts (i);
13680 if (!local_got)
13681 continue;
13682
13683 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13684 if (elf_bad_symtab (i))
13685 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13686 else
13687 locsymcount = symtab_hdr->sh_info;
13688
13689 for (j = 0; j < locsymcount; ++j)
13690 {
13691 if (local_got[j] > 0)
13692 {
13693 local_got[j] = gotoff;
13694 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13695 }
13696 else
13697 local_got[j] = (bfd_vma) -1;
13698 }
13699 }
13700
13701 /* Then the global .got entries. .plt refcounts are handled by
13702 adjust_dynamic_symbol */
13703 gofarg.gotoff = gotoff;
13704 gofarg.info = info;
13705 elf_link_hash_traverse (elf_hash_table (info),
13706 elf_gc_allocate_got_offsets,
13707 &gofarg);
13708 return TRUE;
13709 }
13710
13711 /* Many folk need no more in the way of final link than this, once
13712 got entry reference counting is enabled. */
13713
13714 bfd_boolean
13715 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13716 {
13717 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13718 return FALSE;
13719
13720 /* Invoke the regular ELF backend linker to do all the work. */
13721 return bfd_elf_final_link (abfd, info);
13722 }
13723
13724 bfd_boolean
13725 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13726 {
13727 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13728
13729 if (rcookie->bad_symtab)
13730 rcookie->rel = rcookie->rels;
13731
13732 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13733 {
13734 unsigned long r_symndx;
13735
13736 if (! rcookie->bad_symtab)
13737 if (rcookie->rel->r_offset > offset)
13738 return FALSE;
13739 if (rcookie->rel->r_offset != offset)
13740 continue;
13741
13742 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13743 if (r_symndx == STN_UNDEF)
13744 return TRUE;
13745
13746 if (r_symndx >= rcookie->locsymcount
13747 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13748 {
13749 struct elf_link_hash_entry *h;
13750
13751 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13752
13753 while (h->root.type == bfd_link_hash_indirect
13754 || h->root.type == bfd_link_hash_warning)
13755 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13756
13757 if ((h->root.type == bfd_link_hash_defined
13758 || h->root.type == bfd_link_hash_defweak)
13759 && (h->root.u.def.section->owner != rcookie->abfd
13760 || h->root.u.def.section->kept_section != NULL
13761 || discarded_section (h->root.u.def.section)))
13762 return TRUE;
13763 }
13764 else
13765 {
13766 /* It's not a relocation against a global symbol,
13767 but it could be a relocation against a local
13768 symbol for a discarded section. */
13769 asection *isec;
13770 Elf_Internal_Sym *isym;
13771
13772 /* Need to: get the symbol; get the section. */
13773 isym = &rcookie->locsyms[r_symndx];
13774 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13775 if (isec != NULL
13776 && (isec->kept_section != NULL
13777 || discarded_section (isec)))
13778 return TRUE;
13779 }
13780 return FALSE;
13781 }
13782 return FALSE;
13783 }
13784
13785 /* Discard unneeded references to discarded sections.
13786 Returns -1 on error, 1 if any section's size was changed, 0 if
13787 nothing changed. This function assumes that the relocations are in
13788 sorted order, which is true for all known assemblers. */
13789
13790 int
13791 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13792 {
13793 struct elf_reloc_cookie cookie;
13794 asection *o;
13795 bfd *abfd;
13796 int changed = 0;
13797
13798 if (info->traditional_format
13799 || !is_elf_hash_table (info->hash))
13800 return 0;
13801
13802 o = bfd_get_section_by_name (output_bfd, ".stab");
13803 if (o != NULL)
13804 {
13805 asection *i;
13806
13807 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13808 {
13809 if (i->size == 0
13810 || i->reloc_count == 0
13811 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13812 continue;
13813
13814 abfd = i->owner;
13815 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13816 continue;
13817
13818 if (!init_reloc_cookie_for_section (&cookie, info, i))
13819 return -1;
13820
13821 if (_bfd_discard_section_stabs (abfd, i,
13822 elf_section_data (i)->sec_info,
13823 bfd_elf_reloc_symbol_deleted_p,
13824 &cookie))
13825 changed = 1;
13826
13827 fini_reloc_cookie_for_section (&cookie, i);
13828 }
13829 }
13830
13831 o = NULL;
13832 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13833 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13834 if (o != NULL)
13835 {
13836 asection *i;
13837 int eh_changed = 0;
13838
13839 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13840 {
13841 if (i->size == 0)
13842 continue;
13843
13844 abfd = i->owner;
13845 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13846 continue;
13847
13848 if (!init_reloc_cookie_for_section (&cookie, info, i))
13849 return -1;
13850
13851 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13852 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13853 bfd_elf_reloc_symbol_deleted_p,
13854 &cookie))
13855 {
13856 eh_changed = 1;
13857 if (i->size != i->rawsize)
13858 changed = 1;
13859 }
13860
13861 fini_reloc_cookie_for_section (&cookie, i);
13862 }
13863 if (eh_changed)
13864 elf_link_hash_traverse (elf_hash_table (info),
13865 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13866 }
13867
13868 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13869 {
13870 const struct elf_backend_data *bed;
13871 asection *s;
13872
13873 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13874 continue;
13875 s = abfd->sections;
13876 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13877 continue;
13878
13879 bed = get_elf_backend_data (abfd);
13880
13881 if (bed->elf_backend_discard_info != NULL)
13882 {
13883 if (!init_reloc_cookie (&cookie, info, abfd))
13884 return -1;
13885
13886 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13887 changed = 1;
13888
13889 fini_reloc_cookie (&cookie, abfd);
13890 }
13891 }
13892
13893 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13894 _bfd_elf_end_eh_frame_parsing (info);
13895
13896 if (info->eh_frame_hdr_type
13897 && !bfd_link_relocatable (info)
13898 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13899 changed = 1;
13900
13901 return changed;
13902 }
13903
13904 bfd_boolean
13905 _bfd_elf_section_already_linked (bfd *abfd,
13906 asection *sec,
13907 struct bfd_link_info *info)
13908 {
13909 flagword flags;
13910 const char *name, *key;
13911 struct bfd_section_already_linked *l;
13912 struct bfd_section_already_linked_hash_entry *already_linked_list;
13913
13914 if (sec->output_section == bfd_abs_section_ptr)
13915 return FALSE;
13916
13917 flags = sec->flags;
13918
13919 /* Return if it isn't a linkonce section. A comdat group section
13920 also has SEC_LINK_ONCE set. */
13921 if ((flags & SEC_LINK_ONCE) == 0)
13922 return FALSE;
13923
13924 /* Don't put group member sections on our list of already linked
13925 sections. They are handled as a group via their group section. */
13926 if (elf_sec_group (sec) != NULL)
13927 return FALSE;
13928
13929 /* For a SHT_GROUP section, use the group signature as the key. */
13930 name = sec->name;
13931 if ((flags & SEC_GROUP) != 0
13932 && elf_next_in_group (sec) != NULL
13933 && elf_group_name (elf_next_in_group (sec)) != NULL)
13934 key = elf_group_name (elf_next_in_group (sec));
13935 else
13936 {
13937 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13938 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13939 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13940 key++;
13941 else
13942 /* Must be a user linkonce section that doesn't follow gcc's
13943 naming convention. In this case we won't be matching
13944 single member groups. */
13945 key = name;
13946 }
13947
13948 already_linked_list = bfd_section_already_linked_table_lookup (key);
13949
13950 for (l = already_linked_list->entry; l != NULL; l = l->next)
13951 {
13952 /* We may have 2 different types of sections on the list: group
13953 sections with a signature of <key> (<key> is some string),
13954 and linkonce sections named .gnu.linkonce.<type>.<key>.
13955 Match like sections. LTO plugin sections are an exception.
13956 They are always named .gnu.linkonce.t.<key> and match either
13957 type of section. */
13958 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13959 && ((flags & SEC_GROUP) != 0
13960 || strcmp (name, l->sec->name) == 0))
13961 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13962 {
13963 /* The section has already been linked. See if we should
13964 issue a warning. */
13965 if (!_bfd_handle_already_linked (sec, l, info))
13966 return FALSE;
13967
13968 if (flags & SEC_GROUP)
13969 {
13970 asection *first = elf_next_in_group (sec);
13971 asection *s = first;
13972
13973 while (s != NULL)
13974 {
13975 s->output_section = bfd_abs_section_ptr;
13976 /* Record which group discards it. */
13977 s->kept_section = l->sec;
13978 s = elf_next_in_group (s);
13979 /* These lists are circular. */
13980 if (s == first)
13981 break;
13982 }
13983 }
13984
13985 return TRUE;
13986 }
13987 }
13988
13989 /* A single member comdat group section may be discarded by a
13990 linkonce section and vice versa. */
13991 if ((flags & SEC_GROUP) != 0)
13992 {
13993 asection *first = elf_next_in_group (sec);
13994
13995 if (first != NULL && elf_next_in_group (first) == first)
13996 /* Check this single member group against linkonce sections. */
13997 for (l = already_linked_list->entry; l != NULL; l = l->next)
13998 if ((l->sec->flags & SEC_GROUP) == 0
13999 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14000 {
14001 first->output_section = bfd_abs_section_ptr;
14002 first->kept_section = l->sec;
14003 sec->output_section = bfd_abs_section_ptr;
14004 break;
14005 }
14006 }
14007 else
14008 /* Check this linkonce section against single member groups. */
14009 for (l = already_linked_list->entry; l != NULL; l = l->next)
14010 if (l->sec->flags & SEC_GROUP)
14011 {
14012 asection *first = elf_next_in_group (l->sec);
14013
14014 if (first != NULL
14015 && elf_next_in_group (first) == first
14016 && bfd_elf_match_symbols_in_sections (first, sec, info))
14017 {
14018 sec->output_section = bfd_abs_section_ptr;
14019 sec->kept_section = first;
14020 break;
14021 }
14022 }
14023
14024 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14025 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14026 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14027 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14028 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14029 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14030 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14031 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14032 The reverse order cannot happen as there is never a bfd with only the
14033 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14034 matter as here were are looking only for cross-bfd sections. */
14035
14036 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14037 for (l = already_linked_list->entry; l != NULL; l = l->next)
14038 if ((l->sec->flags & SEC_GROUP) == 0
14039 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14040 {
14041 if (abfd != l->sec->owner)
14042 sec->output_section = bfd_abs_section_ptr;
14043 break;
14044 }
14045
14046 /* This is the first section with this name. Record it. */
14047 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14048 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14049 return sec->output_section == bfd_abs_section_ptr;
14050 }
14051
14052 bfd_boolean
14053 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14054 {
14055 return sym->st_shndx == SHN_COMMON;
14056 }
14057
14058 unsigned int
14059 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14060 {
14061 return SHN_COMMON;
14062 }
14063
14064 asection *
14065 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14066 {
14067 return bfd_com_section_ptr;
14068 }
14069
14070 bfd_vma
14071 _bfd_elf_default_got_elt_size (bfd *abfd,
14072 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14073 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14074 bfd *ibfd ATTRIBUTE_UNUSED,
14075 unsigned long symndx ATTRIBUTE_UNUSED)
14076 {
14077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14078 return bed->s->arch_size / 8;
14079 }
14080
14081 /* Routines to support the creation of dynamic relocs. */
14082
14083 /* Returns the name of the dynamic reloc section associated with SEC. */
14084
14085 static const char *
14086 get_dynamic_reloc_section_name (bfd * abfd,
14087 asection * sec,
14088 bfd_boolean is_rela)
14089 {
14090 char *name;
14091 const char *old_name = bfd_get_section_name (NULL, sec);
14092 const char *prefix = is_rela ? ".rela" : ".rel";
14093
14094 if (old_name == NULL)
14095 return NULL;
14096
14097 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14098 sprintf (name, "%s%s", prefix, old_name);
14099
14100 return name;
14101 }
14102
14103 /* Returns the dynamic reloc section associated with SEC.
14104 If necessary compute the name of the dynamic reloc section based
14105 on SEC's name (looked up in ABFD's string table) and the setting
14106 of IS_RELA. */
14107
14108 asection *
14109 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14110 asection * sec,
14111 bfd_boolean is_rela)
14112 {
14113 asection * reloc_sec = elf_section_data (sec)->sreloc;
14114
14115 if (reloc_sec == NULL)
14116 {
14117 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14118
14119 if (name != NULL)
14120 {
14121 reloc_sec = bfd_get_linker_section (abfd, name);
14122
14123 if (reloc_sec != NULL)
14124 elf_section_data (sec)->sreloc = reloc_sec;
14125 }
14126 }
14127
14128 return reloc_sec;
14129 }
14130
14131 /* Returns the dynamic reloc section associated with SEC. If the
14132 section does not exist it is created and attached to the DYNOBJ
14133 bfd and stored in the SRELOC field of SEC's elf_section_data
14134 structure.
14135
14136 ALIGNMENT is the alignment for the newly created section and
14137 IS_RELA defines whether the name should be .rela.<SEC's name>
14138 or .rel.<SEC's name>. The section name is looked up in the
14139 string table associated with ABFD. */
14140
14141 asection *
14142 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14143 bfd *dynobj,
14144 unsigned int alignment,
14145 bfd *abfd,
14146 bfd_boolean is_rela)
14147 {
14148 asection * reloc_sec = elf_section_data (sec)->sreloc;
14149
14150 if (reloc_sec == NULL)
14151 {
14152 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14153
14154 if (name == NULL)
14155 return NULL;
14156
14157 reloc_sec = bfd_get_linker_section (dynobj, name);
14158
14159 if (reloc_sec == NULL)
14160 {
14161 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14162 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14163 if ((sec->flags & SEC_ALLOC) != 0)
14164 flags |= SEC_ALLOC | SEC_LOAD;
14165
14166 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14167 if (reloc_sec != NULL)
14168 {
14169 /* _bfd_elf_get_sec_type_attr chooses a section type by
14170 name. Override as it may be wrong, eg. for a user
14171 section named "auto" we'll get ".relauto" which is
14172 seen to be a .rela section. */
14173 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14174 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14175 reloc_sec = NULL;
14176 }
14177 }
14178
14179 elf_section_data (sec)->sreloc = reloc_sec;
14180 }
14181
14182 return reloc_sec;
14183 }
14184
14185 /* Copy the ELF symbol type and other attributes for a linker script
14186 assignment from HSRC to HDEST. Generally this should be treated as
14187 if we found a strong non-dynamic definition for HDEST (except that
14188 ld ignores multiple definition errors). */
14189 void
14190 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14191 struct bfd_link_hash_entry *hdest,
14192 struct bfd_link_hash_entry *hsrc)
14193 {
14194 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14195 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14196 Elf_Internal_Sym isym;
14197
14198 ehdest->type = ehsrc->type;
14199 ehdest->target_internal = ehsrc->target_internal;
14200
14201 isym.st_other = ehsrc->other;
14202 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14203 }
14204
14205 /* Append a RELA relocation REL to section S in BFD. */
14206
14207 void
14208 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14209 {
14210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14211 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14212 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14213 bed->s->swap_reloca_out (abfd, rel, loc);
14214 }
14215
14216 /* Append a REL relocation REL to section S in BFD. */
14217
14218 void
14219 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14220 {
14221 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14222 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14223 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14224 bed->s->swap_reloc_out (abfd, rel, loc);
14225 }
14226
14227 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14228
14229 struct bfd_link_hash_entry *
14230 bfd_elf_define_start_stop (struct bfd_link_info *info,
14231 const char *symbol, asection *sec)
14232 {
14233 struct bfd_link_hash_entry *h;
14234
14235 h = bfd_generic_define_start_stop (info, symbol, sec);
14236 if (h != NULL)
14237 {
14238 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
14239 eh->start_stop = 1;
14240 eh->u2.start_stop_section = sec;
14241 _bfd_elf_link_hash_hide_symbol (info, eh, TRUE);
14242 if (ELF_ST_VISIBILITY (eh->other) != STV_INTERNAL)
14243 eh->other = ((eh->other & ~ELF_ST_VISIBILITY (-1))
14244 | STV_HIDDEN);
14245 }
14246 return h;
14247 }
This page took 0.342551 seconds and 4 git commands to generate.