Stop the plugin handler from ignoring unknown symbol types when conanicalizing weak...
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #ifdef HAVE_LIMITS_H
36 #include <limits.h>
37 #endif
38 #ifndef CHAR_BIT
39 #define CHAR_BIT 8
40 #endif
41
42 /* This struct is used to pass information to routines called via
43 elf_link_hash_traverse which must return failure. */
44
45 struct elf_info_failed
46 {
47 struct bfd_link_info *info;
48 bfd_boolean failed;
49 };
50
51 /* This structure is used to pass information to
52 _bfd_elf_link_find_version_dependencies. */
53
54 struct elf_find_verdep_info
55 {
56 /* General link information. */
57 struct bfd_link_info *info;
58 /* The number of dependencies. */
59 unsigned int vers;
60 /* Whether we had a failure. */
61 bfd_boolean failed;
62 };
63
64 static bfd_boolean _bfd_elf_fix_symbol_flags
65 (struct elf_link_hash_entry *, struct elf_info_failed *);
66
67 asection *
68 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
69 unsigned long r_symndx,
70 bfd_boolean discard)
71 {
72 if (r_symndx >= cookie->locsymcount
73 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
74 {
75 struct elf_link_hash_entry *h;
76
77 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
78
79 while (h->root.type == bfd_link_hash_indirect
80 || h->root.type == bfd_link_hash_warning)
81 h = (struct elf_link_hash_entry *) h->root.u.i.link;
82
83 if ((h->root.type == bfd_link_hash_defined
84 || h->root.type == bfd_link_hash_defweak)
85 && discarded_section (h->root.u.def.section))
86 return h->root.u.def.section;
87 else
88 return NULL;
89 }
90 else
91 {
92 /* It's not a relocation against a global symbol,
93 but it could be a relocation against a local
94 symbol for a discarded section. */
95 asection *isec;
96 Elf_Internal_Sym *isym;
97
98 /* Need to: get the symbol; get the section. */
99 isym = &cookie->locsyms[r_symndx];
100 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
101 if (isec != NULL
102 && discard ? discarded_section (isec) : 1)
103 return isec;
104 }
105 return NULL;
106 }
107
108 /* Define a symbol in a dynamic linkage section. */
109
110 struct elf_link_hash_entry *
111 _bfd_elf_define_linkage_sym (bfd *abfd,
112 struct bfd_link_info *info,
113 asection *sec,
114 const char *name)
115 {
116 struct elf_link_hash_entry *h;
117 struct bfd_link_hash_entry *bh;
118 const struct elf_backend_data *bed;
119
120 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
121 if (h != NULL)
122 {
123 /* Zap symbol defined in an as-needed lib that wasn't linked.
124 This is a symptom of a larger problem: Absolute symbols
125 defined in shared libraries can't be overridden, because we
126 lose the link to the bfd which is via the symbol section. */
127 h->root.type = bfd_link_hash_new;
128 bh = &h->root;
129 }
130 else
131 bh = NULL;
132
133 bed = get_elf_backend_data (abfd);
134 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
135 sec, 0, NULL, FALSE, bed->collect,
136 &bh))
137 return NULL;
138 h = (struct elf_link_hash_entry *) bh;
139 BFD_ASSERT (h != NULL);
140 h->def_regular = 1;
141 h->non_elf = 0;
142 h->root.linker_def = 1;
143 h->type = STT_OBJECT;
144 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
145 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
146
147 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
148 return h;
149 }
150
151 bfd_boolean
152 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
153 {
154 flagword flags;
155 asection *s;
156 struct elf_link_hash_entry *h;
157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
158 struct elf_link_hash_table *htab = elf_hash_table (info);
159
160 /* This function may be called more than once. */
161 if (htab->sgot != NULL)
162 return TRUE;
163
164 flags = bed->dynamic_sec_flags;
165
166 s = bfd_make_section_anyway_with_flags (abfd,
167 (bed->rela_plts_and_copies_p
168 ? ".rela.got" : ".rel.got"),
169 (bed->dynamic_sec_flags
170 | SEC_READONLY));
171 if (s == NULL
172 || !bfd_set_section_alignment (s, bed->s->log_file_align))
173 return FALSE;
174 htab->srelgot = s;
175
176 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
177 if (s == NULL
178 || !bfd_set_section_alignment (s, bed->s->log_file_align))
179 return FALSE;
180 htab->sgot = s;
181
182 if (bed->want_got_plt)
183 {
184 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
185 if (s == NULL
186 || !bfd_set_section_alignment (s, bed->s->log_file_align))
187 return FALSE;
188 htab->sgotplt = s;
189 }
190
191 /* The first bit of the global offset table is the header. */
192 s->size += bed->got_header_size;
193
194 if (bed->want_got_sym)
195 {
196 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
197 (or .got.plt) section. We don't do this in the linker script
198 because we don't want to define the symbol if we are not creating
199 a global offset table. */
200 h = _bfd_elf_define_linkage_sym (abfd, info, s,
201 "_GLOBAL_OFFSET_TABLE_");
202 elf_hash_table (info)->hgot = h;
203 if (h == NULL)
204 return FALSE;
205 }
206
207 return TRUE;
208 }
209 \f
210 /* Create a strtab to hold the dynamic symbol names. */
211 static bfd_boolean
212 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
213 {
214 struct elf_link_hash_table *hash_table;
215
216 hash_table = elf_hash_table (info);
217 if (hash_table->dynobj == NULL)
218 {
219 /* We may not set dynobj, an input file holding linker created
220 dynamic sections to abfd, which may be a dynamic object with
221 its own dynamic sections. We need to find a normal input file
222 to hold linker created sections if possible. */
223 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
224 {
225 bfd *ibfd;
226 asection *s;
227 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
228 if ((ibfd->flags
229 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
230 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
231 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
232 && !((s = ibfd->sections) != NULL
233 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
234 {
235 abfd = ibfd;
236 break;
237 }
238 }
239 hash_table->dynobj = abfd;
240 }
241
242 if (hash_table->dynstr == NULL)
243 {
244 hash_table->dynstr = _bfd_elf_strtab_init ();
245 if (hash_table->dynstr == NULL)
246 return FALSE;
247 }
248 return TRUE;
249 }
250
251 /* Create some sections which will be filled in with dynamic linking
252 information. ABFD is an input file which requires dynamic sections
253 to be created. The dynamic sections take up virtual memory space
254 when the final executable is run, so we need to create them before
255 addresses are assigned to the output sections. We work out the
256 actual contents and size of these sections later. */
257
258 bfd_boolean
259 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
260 {
261 flagword flags;
262 asection *s;
263 const struct elf_backend_data *bed;
264 struct elf_link_hash_entry *h;
265
266 if (! is_elf_hash_table (info->hash))
267 return FALSE;
268
269 if (elf_hash_table (info)->dynamic_sections_created)
270 return TRUE;
271
272 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
273 return FALSE;
274
275 abfd = elf_hash_table (info)->dynobj;
276 bed = get_elf_backend_data (abfd);
277
278 flags = bed->dynamic_sec_flags;
279
280 /* A dynamically linked executable has a .interp section, but a
281 shared library does not. */
282 if (bfd_link_executable (info) && !info->nointerp)
283 {
284 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288 }
289
290 /* Create sections to hold version informations. These are removed
291 if they are not needed. */
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || !bfd_set_section_alignment (s, bed->s->log_file_align))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || !bfd_set_section_alignment (s, 1))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || !bfd_set_section_alignment (s, bed->s->log_file_align))
308 return FALSE;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
311 flags | SEC_READONLY);
312 if (s == NULL
313 || !bfd_set_section_alignment (s, bed->s->log_file_align))
314 return FALSE;
315 elf_hash_table (info)->dynsym = s;
316
317 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
318 flags | SEC_READONLY);
319 if (s == NULL)
320 return FALSE;
321
322 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
323 if (s == NULL
324 || !bfd_set_section_alignment (s, bed->s->log_file_align))
325 return FALSE;
326
327 /* The special symbol _DYNAMIC is always set to the start of the
328 .dynamic section. We could set _DYNAMIC in a linker script, but we
329 only want to define it if we are, in fact, creating a .dynamic
330 section. We don't want to define it if there is no .dynamic
331 section, since on some ELF platforms the start up code examines it
332 to decide how to initialize the process. */
333 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
334 elf_hash_table (info)->hdynamic = h;
335 if (h == NULL)
336 return FALSE;
337
338 if (info->emit_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || !bfd_set_section_alignment (s, bed->s->log_file_align))
344 return FALSE;
345 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
346 }
347
348 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
349 {
350 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
351 flags | SEC_READONLY);
352 if (s == NULL
353 || !bfd_set_section_alignment (s, bed->s->log_file_align))
354 return FALSE;
355 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
356 4 32-bit words followed by variable count of 64-bit words, then
357 variable count of 32-bit words. */
358 if (bed->s->arch_size == 64)
359 elf_section_data (s)->this_hdr.sh_entsize = 0;
360 else
361 elf_section_data (s)->this_hdr.sh_entsize = 4;
362 }
363
364 /* Let the backend create the rest of the sections. This lets the
365 backend set the right flags. The backend will normally create
366 the .got and .plt sections. */
367 if (bed->elf_backend_create_dynamic_sections == NULL
368 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
369 return FALSE;
370
371 elf_hash_table (info)->dynamic_sections_created = TRUE;
372
373 return TRUE;
374 }
375
376 /* Create dynamic sections when linking against a dynamic object. */
377
378 bfd_boolean
379 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
380 {
381 flagword flags, pltflags;
382 struct elf_link_hash_entry *h;
383 asection *s;
384 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
385 struct elf_link_hash_table *htab = elf_hash_table (info);
386
387 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
388 .rel[a].bss sections. */
389 flags = bed->dynamic_sec_flags;
390
391 pltflags = flags;
392 if (bed->plt_not_loaded)
393 /* We do not clear SEC_ALLOC here because we still want the OS to
394 allocate space for the section; it's just that there's nothing
395 to read in from the object file. */
396 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
397 else
398 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
399 if (bed->plt_readonly)
400 pltflags |= SEC_READONLY;
401
402 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
403 if (s == NULL
404 || !bfd_set_section_alignment (s, bed->plt_alignment))
405 return FALSE;
406 htab->splt = s;
407
408 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
409 .plt section. */
410 if (bed->want_plt_sym)
411 {
412 h = _bfd_elf_define_linkage_sym (abfd, info, s,
413 "_PROCEDURE_LINKAGE_TABLE_");
414 elf_hash_table (info)->hplt = h;
415 if (h == NULL)
416 return FALSE;
417 }
418
419 s = bfd_make_section_anyway_with_flags (abfd,
420 (bed->rela_plts_and_copies_p
421 ? ".rela.plt" : ".rel.plt"),
422 flags | SEC_READONLY);
423 if (s == NULL
424 || !bfd_set_section_alignment (s, bed->s->log_file_align))
425 return FALSE;
426 htab->srelplt = s;
427
428 if (! _bfd_elf_create_got_section (abfd, info))
429 return FALSE;
430
431 if (bed->want_dynbss)
432 {
433 /* The .dynbss section is a place to put symbols which are defined
434 by dynamic objects, are referenced by regular objects, and are
435 not functions. We must allocate space for them in the process
436 image and use a R_*_COPY reloc to tell the dynamic linker to
437 initialize them at run time. The linker script puts the .dynbss
438 section into the .bss section of the final image. */
439 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
440 SEC_ALLOC | SEC_LINKER_CREATED);
441 if (s == NULL)
442 return FALSE;
443 htab->sdynbss = s;
444
445 if (bed->want_dynrelro)
446 {
447 /* Similarly, but for symbols that were originally in read-only
448 sections. This section doesn't really need to have contents,
449 but make it like other .data.rel.ro sections. */
450 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 flags);
452 if (s == NULL)
453 return FALSE;
454 htab->sdynrelro = s;
455 }
456
457 /* The .rel[a].bss section holds copy relocs. This section is not
458 normally needed. We need to create it here, though, so that the
459 linker will map it to an output section. We can't just create it
460 only if we need it, because we will not know whether we need it
461 until we have seen all the input files, and the first time the
462 main linker code calls BFD after examining all the input files
463 (size_dynamic_sections) the input sections have already been
464 mapped to the output sections. If the section turns out not to
465 be needed, we can discard it later. We will never need this
466 section when generating a shared object, since they do not use
467 copy relocs. */
468 if (bfd_link_executable (info))
469 {
470 s = bfd_make_section_anyway_with_flags (abfd,
471 (bed->rela_plts_and_copies_p
472 ? ".rela.bss" : ".rel.bss"),
473 flags | SEC_READONLY);
474 if (s == NULL
475 || !bfd_set_section_alignment (s, bed->s->log_file_align))
476 return FALSE;
477 htab->srelbss = s;
478
479 if (bed->want_dynrelro)
480 {
481 s = (bfd_make_section_anyway_with_flags
482 (abfd, (bed->rela_plts_and_copies_p
483 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
484 flags | SEC_READONLY));
485 if (s == NULL
486 || !bfd_set_section_alignment (s, bed->s->log_file_align))
487 return FALSE;
488 htab->sreldynrelro = s;
489 }
490 }
491 }
492
493 return TRUE;
494 }
495 \f
496 /* Record a new dynamic symbol. We record the dynamic symbols as we
497 read the input files, since we need to have a list of all of them
498 before we can determine the final sizes of the output sections.
499 Note that we may actually call this function even though we are not
500 going to output any dynamic symbols; in some cases we know that a
501 symbol should be in the dynamic symbol table, but only if there is
502 one. */
503
504 bfd_boolean
505 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
506 struct elf_link_hash_entry *h)
507 {
508 if (h->dynindx == -1)
509 {
510 struct elf_strtab_hash *dynstr;
511 char *p;
512 const char *name;
513 size_t indx;
514
515 if (h->root.type == bfd_link_hash_defined
516 || h->root.type == bfd_link_hash_defweak)
517 {
518 /* An IR symbol should not be made dynamic. */
519 if (h->root.u.def.section != NULL
520 && h->root.u.def.section->owner != NULL
521 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
522 return TRUE;
523 }
524
525 /* XXX: The ABI draft says the linker must turn hidden and
526 internal symbols into STB_LOCAL symbols when producing the
527 DSO. However, if ld.so honors st_other in the dynamic table,
528 this would not be necessary. */
529 switch (ELF_ST_VISIBILITY (h->other))
530 {
531 case STV_INTERNAL:
532 case STV_HIDDEN:
533 if (h->root.type != bfd_link_hash_undefined
534 && h->root.type != bfd_link_hash_undefweak)
535 {
536 h->forced_local = 1;
537 if (!elf_hash_table (info)->is_relocatable_executable)
538 return TRUE;
539 }
540
541 default:
542 break;
543 }
544
545 h->dynindx = elf_hash_table (info)->dynsymcount;
546 ++elf_hash_table (info)->dynsymcount;
547
548 dynstr = elf_hash_table (info)->dynstr;
549 if (dynstr == NULL)
550 {
551 /* Create a strtab to hold the dynamic symbol names. */
552 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
553 if (dynstr == NULL)
554 return FALSE;
555 }
556
557 /* We don't put any version information in the dynamic string
558 table. */
559 name = h->root.root.string;
560 p = strchr (name, ELF_VER_CHR);
561 if (p != NULL)
562 /* We know that the p points into writable memory. In fact,
563 there are only a few symbols that have read-only names, being
564 those like _GLOBAL_OFFSET_TABLE_ that are created specially
565 by the backends. Most symbols will have names pointing into
566 an ELF string table read from a file, or to objalloc memory. */
567 *p = 0;
568
569 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
570
571 if (p != NULL)
572 *p = ELF_VER_CHR;
573
574 if (indx == (size_t) -1)
575 return FALSE;
576 h->dynstr_index = indx;
577 }
578
579 return TRUE;
580 }
581 \f
582 /* Mark a symbol dynamic. */
583
584 static void
585 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
586 struct elf_link_hash_entry *h,
587 Elf_Internal_Sym *sym)
588 {
589 struct bfd_elf_dynamic_list *d = info->dynamic_list;
590
591 /* It may be called more than once on the same H. */
592 if(h->dynamic || bfd_link_relocatable (info))
593 return;
594
595 if ((info->dynamic_data
596 && (h->type == STT_OBJECT
597 || h->type == STT_COMMON
598 || (sym != NULL
599 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
600 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
601 || (d != NULL
602 && h->non_elf
603 && (*d->match) (&d->head, NULL, h->root.root.string)))
604 {
605 h->dynamic = 1;
606 /* NB: If a symbol is made dynamic by --dynamic-list, it has
607 non-IR reference. */
608 h->root.non_ir_ref_dynamic = 1;
609 }
610 }
611
612 /* Record an assignment to a symbol made by a linker script. We need
613 this in case some dynamic object refers to this symbol. */
614
615 bfd_boolean
616 bfd_elf_record_link_assignment (bfd *output_bfd,
617 struct bfd_link_info *info,
618 const char *name,
619 bfd_boolean provide,
620 bfd_boolean hidden)
621 {
622 struct elf_link_hash_entry *h, *hv;
623 struct elf_link_hash_table *htab;
624 const struct elf_backend_data *bed;
625
626 if (!is_elf_hash_table (info->hash))
627 return TRUE;
628
629 htab = elf_hash_table (info);
630 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
631 if (h == NULL)
632 return provide;
633
634 if (h->root.type == bfd_link_hash_warning)
635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
636
637 if (h->versioned == unknown)
638 {
639 /* Set versioned if symbol version is unknown. */
640 char *version = strrchr (name, ELF_VER_CHR);
641 if (version)
642 {
643 if (version > name && version[-1] != ELF_VER_CHR)
644 h->versioned = versioned_hidden;
645 else
646 h->versioned = versioned;
647 }
648 }
649
650 /* Symbols defined in a linker script but not referenced anywhere
651 else will have non_elf set. */
652 if (h->non_elf)
653 {
654 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
655 h->non_elf = 0;
656 }
657
658 switch (h->root.type)
659 {
660 case bfd_link_hash_defined:
661 case bfd_link_hash_defweak:
662 case bfd_link_hash_common:
663 break;
664 case bfd_link_hash_undefweak:
665 case bfd_link_hash_undefined:
666 /* Since we're defining the symbol, don't let it seem to have not
667 been defined. record_dynamic_symbol and size_dynamic_sections
668 may depend on this. */
669 h->root.type = bfd_link_hash_new;
670 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
671 bfd_link_repair_undef_list (&htab->root);
672 break;
673 case bfd_link_hash_new:
674 break;
675 case bfd_link_hash_indirect:
676 /* We had a versioned symbol in a dynamic library. We make the
677 the versioned symbol point to this one. */
678 bed = get_elf_backend_data (output_bfd);
679 hv = h;
680 while (hv->root.type == bfd_link_hash_indirect
681 || hv->root.type == bfd_link_hash_warning)
682 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
683 /* We don't need to update h->root.u since linker will set them
684 later. */
685 h->root.type = bfd_link_hash_undefined;
686 hv->root.type = bfd_link_hash_indirect;
687 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
688 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
689 break;
690 default:
691 BFD_FAIL ();
692 return FALSE;
693 }
694
695 /* If this symbol is being provided by the linker script, and it is
696 currently defined by a dynamic object, but not by a regular
697 object, then mark it as undefined so that the generic linker will
698 force the correct value. */
699 if (provide
700 && h->def_dynamic
701 && !h->def_regular)
702 h->root.type = bfd_link_hash_undefined;
703
704 /* If this symbol is currently defined by a dynamic object, but not
705 by a regular object, then clear out any version information because
706 the symbol will not be associated with the dynamic object any
707 more. */
708 if (h->def_dynamic && !h->def_regular)
709 h->verinfo.verdef = NULL;
710
711 /* Make sure this symbol is not garbage collected. */
712 h->mark = 1;
713
714 h->def_regular = 1;
715
716 if (hidden)
717 {
718 bed = get_elf_backend_data (output_bfd);
719 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
720 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
721 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
722 }
723
724 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
725 and executables. */
726 if (!bfd_link_relocatable (info)
727 && h->dynindx != -1
728 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
729 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
730 h->forced_local = 1;
731
732 if ((h->def_dynamic
733 || h->ref_dynamic
734 || bfd_link_dll (info)
735 || elf_hash_table (info)->is_relocatable_executable)
736 && !h->forced_local
737 && h->dynindx == -1)
738 {
739 if (! bfd_elf_link_record_dynamic_symbol (info, h))
740 return FALSE;
741
742 /* If this is a weak defined symbol, and we know a corresponding
743 real symbol from the same dynamic object, make sure the real
744 symbol is also made into a dynamic symbol. */
745 if (h->is_weakalias)
746 {
747 struct elf_link_hash_entry *def = weakdef (h);
748
749 if (def->dynindx == -1
750 && !bfd_elf_link_record_dynamic_symbol (info, def))
751 return FALSE;
752 }
753 }
754
755 return TRUE;
756 }
757
758 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
759 success, and 2 on a failure caused by attempting to record a symbol
760 in a discarded section, eg. a discarded link-once section symbol. */
761
762 int
763 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
764 bfd *input_bfd,
765 long input_indx)
766 {
767 size_t amt;
768 struct elf_link_local_dynamic_entry *entry;
769 struct elf_link_hash_table *eht;
770 struct elf_strtab_hash *dynstr;
771 size_t dynstr_index;
772 char *name;
773 Elf_External_Sym_Shndx eshndx;
774 char esym[sizeof (Elf64_External_Sym)];
775
776 if (! is_elf_hash_table (info->hash))
777 return 0;
778
779 /* See if the entry exists already. */
780 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
781 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
782 return 1;
783
784 amt = sizeof (*entry);
785 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
786 if (entry == NULL)
787 return 0;
788
789 /* Go find the symbol, so that we can find it's name. */
790 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
791 1, input_indx, &entry->isym, esym, &eshndx))
792 {
793 bfd_release (input_bfd, entry);
794 return 0;
795 }
796
797 if (entry->isym.st_shndx != SHN_UNDEF
798 && entry->isym.st_shndx < SHN_LORESERVE)
799 {
800 asection *s;
801
802 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
803 if (s == NULL || bfd_is_abs_section (s->output_section))
804 {
805 /* We can still bfd_release here as nothing has done another
806 bfd_alloc. We can't do this later in this function. */
807 bfd_release (input_bfd, entry);
808 return 2;
809 }
810 }
811
812 name = (bfd_elf_string_from_elf_section
813 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
814 entry->isym.st_name));
815
816 dynstr = elf_hash_table (info)->dynstr;
817 if (dynstr == NULL)
818 {
819 /* Create a strtab to hold the dynamic symbol names. */
820 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
821 if (dynstr == NULL)
822 return 0;
823 }
824
825 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
826 if (dynstr_index == (size_t) -1)
827 return 0;
828 entry->isym.st_name = dynstr_index;
829
830 eht = elf_hash_table (info);
831
832 entry->next = eht->dynlocal;
833 eht->dynlocal = entry;
834 entry->input_bfd = input_bfd;
835 entry->input_indx = input_indx;
836 eht->dynsymcount++;
837
838 /* Whatever binding the symbol had before, it's now local. */
839 entry->isym.st_info
840 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
841
842 /* The dynindx will be set at the end of size_dynamic_sections. */
843
844 return 1;
845 }
846
847 /* Return the dynindex of a local dynamic symbol. */
848
849 long
850 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
851 bfd *input_bfd,
852 long input_indx)
853 {
854 struct elf_link_local_dynamic_entry *e;
855
856 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
857 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
858 return e->dynindx;
859 return -1;
860 }
861
862 /* This function is used to renumber the dynamic symbols, if some of
863 them are removed because they are marked as local. This is called
864 via elf_link_hash_traverse. */
865
866 static bfd_boolean
867 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
868 void *data)
869 {
870 size_t *count = (size_t *) data;
871
872 if (h->forced_local)
873 return TRUE;
874
875 if (h->dynindx != -1)
876 h->dynindx = ++(*count);
877
878 return TRUE;
879 }
880
881
882 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
883 STB_LOCAL binding. */
884
885 static bfd_boolean
886 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
887 void *data)
888 {
889 size_t *count = (size_t *) data;
890
891 if (!h->forced_local)
892 return TRUE;
893
894 if (h->dynindx != -1)
895 h->dynindx = ++(*count);
896
897 return TRUE;
898 }
899
900 /* Return true if the dynamic symbol for a given section should be
901 omitted when creating a shared library. */
902 bfd_boolean
903 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
904 struct bfd_link_info *info,
905 asection *p)
906 {
907 struct elf_link_hash_table *htab;
908 asection *ip;
909
910 switch (elf_section_data (p)->this_hdr.sh_type)
911 {
912 case SHT_PROGBITS:
913 case SHT_NOBITS:
914 /* If sh_type is yet undecided, assume it could be
915 SHT_PROGBITS/SHT_NOBITS. */
916 case SHT_NULL:
917 htab = elf_hash_table (info);
918 if (htab->text_index_section != NULL)
919 return p != htab->text_index_section && p != htab->data_index_section;
920
921 return (htab->dynobj != NULL
922 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
923 && ip->output_section == p);
924
925 /* There shouldn't be section relative relocations
926 against any other section. */
927 default:
928 return TRUE;
929 }
930 }
931
932 bfd_boolean
933 _bfd_elf_omit_section_dynsym_all
934 (bfd *output_bfd ATTRIBUTE_UNUSED,
935 struct bfd_link_info *info ATTRIBUTE_UNUSED,
936 asection *p ATTRIBUTE_UNUSED)
937 {
938 return TRUE;
939 }
940
941 /* Assign dynsym indices. In a shared library we generate a section
942 symbol for each output section, which come first. Next come symbols
943 which have been forced to local binding. Then all of the back-end
944 allocated local dynamic syms, followed by the rest of the global
945 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
946 (This prevents the early call before elf_backend_init_index_section
947 and strip_excluded_output_sections setting dynindx for sections
948 that are stripped.) */
949
950 static unsigned long
951 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
952 struct bfd_link_info *info,
953 unsigned long *section_sym_count)
954 {
955 unsigned long dynsymcount = 0;
956 bfd_boolean do_sec = section_sym_count != NULL;
957
958 if (bfd_link_pic (info)
959 || elf_hash_table (info)->is_relocatable_executable)
960 {
961 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
962 asection *p;
963 for (p = output_bfd->sections; p ; p = p->next)
964 if ((p->flags & SEC_EXCLUDE) == 0
965 && (p->flags & SEC_ALLOC) != 0
966 && elf_hash_table (info)->dynamic_relocs
967 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
968 {
969 ++dynsymcount;
970 if (do_sec)
971 elf_section_data (p)->dynindx = dynsymcount;
972 }
973 else if (do_sec)
974 elf_section_data (p)->dynindx = 0;
975 }
976 if (do_sec)
977 *section_sym_count = dynsymcount;
978
979 elf_link_hash_traverse (elf_hash_table (info),
980 elf_link_renumber_local_hash_table_dynsyms,
981 &dynsymcount);
982
983 if (elf_hash_table (info)->dynlocal)
984 {
985 struct elf_link_local_dynamic_entry *p;
986 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
987 p->dynindx = ++dynsymcount;
988 }
989 elf_hash_table (info)->local_dynsymcount = dynsymcount;
990
991 elf_link_hash_traverse (elf_hash_table (info),
992 elf_link_renumber_hash_table_dynsyms,
993 &dynsymcount);
994
995 /* There is an unused NULL entry at the head of the table which we
996 must account for in our count even if the table is empty since it
997 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
998 .dynamic section. */
999 dynsymcount++;
1000
1001 elf_hash_table (info)->dynsymcount = dynsymcount;
1002 return dynsymcount;
1003 }
1004
1005 /* Merge st_other field. */
1006
1007 static void
1008 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1009 const Elf_Internal_Sym *isym, asection *sec,
1010 bfd_boolean definition, bfd_boolean dynamic)
1011 {
1012 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1013
1014 /* If st_other has a processor-specific meaning, specific
1015 code might be needed here. */
1016 if (bed->elf_backend_merge_symbol_attribute)
1017 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1018 dynamic);
1019
1020 if (!dynamic)
1021 {
1022 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1023 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1024
1025 /* Keep the most constraining visibility. Leave the remainder
1026 of the st_other field to elf_backend_merge_symbol_attribute. */
1027 if (symvis - 1 < hvis - 1)
1028 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1029 }
1030 else if (definition
1031 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1032 && (sec->flags & SEC_READONLY) == 0)
1033 h->protected_def = 1;
1034 }
1035
1036 /* This function is called when we want to merge a new symbol with an
1037 existing symbol. It handles the various cases which arise when we
1038 find a definition in a dynamic object, or when there is already a
1039 definition in a dynamic object. The new symbol is described by
1040 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1041 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1042 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1043 of an old common symbol. We set OVERRIDE if the old symbol is
1044 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1045 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1046 to change. By OK to change, we mean that we shouldn't warn if the
1047 type or size does change. */
1048
1049 static bfd_boolean
1050 _bfd_elf_merge_symbol (bfd *abfd,
1051 struct bfd_link_info *info,
1052 const char *name,
1053 Elf_Internal_Sym *sym,
1054 asection **psec,
1055 bfd_vma *pvalue,
1056 struct elf_link_hash_entry **sym_hash,
1057 bfd **poldbfd,
1058 bfd_boolean *pold_weak,
1059 unsigned int *pold_alignment,
1060 bfd_boolean *skip,
1061 bfd_boolean *override,
1062 bfd_boolean *type_change_ok,
1063 bfd_boolean *size_change_ok,
1064 bfd_boolean *matched)
1065 {
1066 asection *sec, *oldsec;
1067 struct elf_link_hash_entry *h;
1068 struct elf_link_hash_entry *hi;
1069 struct elf_link_hash_entry *flip;
1070 int bind;
1071 bfd *oldbfd;
1072 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1073 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1074 const struct elf_backend_data *bed;
1075 char *new_version;
1076 bfd_boolean default_sym = *matched;
1077
1078 *skip = FALSE;
1079 *override = FALSE;
1080
1081 sec = *psec;
1082 bind = ELF_ST_BIND (sym->st_info);
1083
1084 if (! bfd_is_und_section (sec))
1085 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1086 else
1087 h = ((struct elf_link_hash_entry *)
1088 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1089 if (h == NULL)
1090 return FALSE;
1091 *sym_hash = h;
1092
1093 bed = get_elf_backend_data (abfd);
1094
1095 /* NEW_VERSION is the symbol version of the new symbol. */
1096 if (h->versioned != unversioned)
1097 {
1098 /* Symbol version is unknown or versioned. */
1099 new_version = strrchr (name, ELF_VER_CHR);
1100 if (new_version)
1101 {
1102 if (h->versioned == unknown)
1103 {
1104 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1105 h->versioned = versioned_hidden;
1106 else
1107 h->versioned = versioned;
1108 }
1109 new_version += 1;
1110 if (new_version[0] == '\0')
1111 new_version = NULL;
1112 }
1113 else
1114 h->versioned = unversioned;
1115 }
1116 else
1117 new_version = NULL;
1118
1119 /* For merging, we only care about real symbols. But we need to make
1120 sure that indirect symbol dynamic flags are updated. */
1121 hi = h;
1122 while (h->root.type == bfd_link_hash_indirect
1123 || h->root.type == bfd_link_hash_warning)
1124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1125
1126 if (!*matched)
1127 {
1128 if (hi == h || h->root.type == bfd_link_hash_new)
1129 *matched = TRUE;
1130 else
1131 {
1132 /* OLD_HIDDEN is true if the existing symbol is only visible
1133 to the symbol with the same symbol version. NEW_HIDDEN is
1134 true if the new symbol is only visible to the symbol with
1135 the same symbol version. */
1136 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1137 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1138 if (!old_hidden && !new_hidden)
1139 /* The new symbol matches the existing symbol if both
1140 aren't hidden. */
1141 *matched = TRUE;
1142 else
1143 {
1144 /* OLD_VERSION is the symbol version of the existing
1145 symbol. */
1146 char *old_version;
1147
1148 if (h->versioned >= versioned)
1149 old_version = strrchr (h->root.root.string,
1150 ELF_VER_CHR) + 1;
1151 else
1152 old_version = NULL;
1153
1154 /* The new symbol matches the existing symbol if they
1155 have the same symbol version. */
1156 *matched = (old_version == new_version
1157 || (old_version != NULL
1158 && new_version != NULL
1159 && strcmp (old_version, new_version) == 0));
1160 }
1161 }
1162 }
1163
1164 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1165 existing symbol. */
1166
1167 oldbfd = NULL;
1168 oldsec = NULL;
1169 switch (h->root.type)
1170 {
1171 default:
1172 break;
1173
1174 case bfd_link_hash_undefined:
1175 case bfd_link_hash_undefweak:
1176 oldbfd = h->root.u.undef.abfd;
1177 break;
1178
1179 case bfd_link_hash_defined:
1180 case bfd_link_hash_defweak:
1181 oldbfd = h->root.u.def.section->owner;
1182 oldsec = h->root.u.def.section;
1183 break;
1184
1185 case bfd_link_hash_common:
1186 oldbfd = h->root.u.c.p->section->owner;
1187 oldsec = h->root.u.c.p->section;
1188 if (pold_alignment)
1189 *pold_alignment = h->root.u.c.p->alignment_power;
1190 break;
1191 }
1192 if (poldbfd && *poldbfd == NULL)
1193 *poldbfd = oldbfd;
1194
1195 /* Differentiate strong and weak symbols. */
1196 newweak = bind == STB_WEAK;
1197 oldweak = (h->root.type == bfd_link_hash_defweak
1198 || h->root.type == bfd_link_hash_undefweak);
1199 if (pold_weak)
1200 *pold_weak = oldweak;
1201
1202 /* We have to check it for every instance since the first few may be
1203 references and not all compilers emit symbol type for undefined
1204 symbols. */
1205 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1206
1207 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1208 respectively, is from a dynamic object. */
1209
1210 newdyn = (abfd->flags & DYNAMIC) != 0;
1211
1212 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1213 syms and defined syms in dynamic libraries respectively.
1214 ref_dynamic on the other hand can be set for a symbol defined in
1215 a dynamic library, and def_dynamic may not be set; When the
1216 definition in a dynamic lib is overridden by a definition in the
1217 executable use of the symbol in the dynamic lib becomes a
1218 reference to the executable symbol. */
1219 if (newdyn)
1220 {
1221 if (bfd_is_und_section (sec))
1222 {
1223 if (bind != STB_WEAK)
1224 {
1225 h->ref_dynamic_nonweak = 1;
1226 hi->ref_dynamic_nonweak = 1;
1227 }
1228 }
1229 else
1230 {
1231 /* Update the existing symbol only if they match. */
1232 if (*matched)
1233 h->dynamic_def = 1;
1234 hi->dynamic_def = 1;
1235 }
1236 }
1237
1238 /* If we just created the symbol, mark it as being an ELF symbol.
1239 Other than that, there is nothing to do--there is no merge issue
1240 with a newly defined symbol--so we just return. */
1241
1242 if (h->root.type == bfd_link_hash_new)
1243 {
1244 h->non_elf = 0;
1245 return TRUE;
1246 }
1247
1248 /* In cases involving weak versioned symbols, we may wind up trying
1249 to merge a symbol with itself. Catch that here, to avoid the
1250 confusion that results if we try to override a symbol with
1251 itself. The additional tests catch cases like
1252 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1253 dynamic object, which we do want to handle here. */
1254 if (abfd == oldbfd
1255 && (newweak || oldweak)
1256 && ((abfd->flags & DYNAMIC) == 0
1257 || !h->def_regular))
1258 return TRUE;
1259
1260 olddyn = FALSE;
1261 if (oldbfd != NULL)
1262 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1263 else if (oldsec != NULL)
1264 {
1265 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1266 indices used by MIPS ELF. */
1267 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1268 }
1269
1270 /* Handle a case where plugin_notice won't be called and thus won't
1271 set the non_ir_ref flags on the first pass over symbols. */
1272 if (oldbfd != NULL
1273 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1274 && newdyn != olddyn)
1275 {
1276 h->root.non_ir_ref_dynamic = TRUE;
1277 hi->root.non_ir_ref_dynamic = TRUE;
1278 }
1279
1280 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1281 respectively, appear to be a definition rather than reference. */
1282
1283 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1284
1285 olddef = (h->root.type != bfd_link_hash_undefined
1286 && h->root.type != bfd_link_hash_undefweak
1287 && h->root.type != bfd_link_hash_common);
1288
1289 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1290 respectively, appear to be a function. */
1291
1292 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1293 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1294
1295 oldfunc = (h->type != STT_NOTYPE
1296 && bed->is_function_type (h->type));
1297
1298 if (!(newfunc && oldfunc)
1299 && ELF_ST_TYPE (sym->st_info) != h->type
1300 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1301 && h->type != STT_NOTYPE
1302 && (newdef || bfd_is_com_section (sec))
1303 && (olddef || h->root.type == bfd_link_hash_common))
1304 {
1305 /* If creating a default indirect symbol ("foo" or "foo@") from
1306 a dynamic versioned definition ("foo@@") skip doing so if
1307 there is an existing regular definition with a different
1308 type. We don't want, for example, a "time" variable in the
1309 executable overriding a "time" function in a shared library. */
1310 if (newdyn
1311 && !olddyn)
1312 {
1313 *skip = TRUE;
1314 return TRUE;
1315 }
1316
1317 /* When adding a symbol from a regular object file after we have
1318 created indirect symbols, undo the indirection and any
1319 dynamic state. */
1320 if (hi != h
1321 && !newdyn
1322 && olddyn)
1323 {
1324 h = hi;
1325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1326 h->forced_local = 0;
1327 h->ref_dynamic = 0;
1328 h->def_dynamic = 0;
1329 h->dynamic_def = 0;
1330 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1331 {
1332 h->root.type = bfd_link_hash_undefined;
1333 h->root.u.undef.abfd = abfd;
1334 }
1335 else
1336 {
1337 h->root.type = bfd_link_hash_new;
1338 h->root.u.undef.abfd = NULL;
1339 }
1340 return TRUE;
1341 }
1342 }
1343
1344 /* Check TLS symbols. We don't check undefined symbols introduced
1345 by "ld -u" which have no type (and oldbfd NULL), and we don't
1346 check symbols from plugins because they also have no type. */
1347 if (oldbfd != NULL
1348 && (oldbfd->flags & BFD_PLUGIN) == 0
1349 && (abfd->flags & BFD_PLUGIN) == 0
1350 && ELF_ST_TYPE (sym->st_info) != h->type
1351 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1352 {
1353 bfd *ntbfd, *tbfd;
1354 bfd_boolean ntdef, tdef;
1355 asection *ntsec, *tsec;
1356
1357 if (h->type == STT_TLS)
1358 {
1359 ntbfd = abfd;
1360 ntsec = sec;
1361 ntdef = newdef;
1362 tbfd = oldbfd;
1363 tsec = oldsec;
1364 tdef = olddef;
1365 }
1366 else
1367 {
1368 ntbfd = oldbfd;
1369 ntsec = oldsec;
1370 ntdef = olddef;
1371 tbfd = abfd;
1372 tsec = sec;
1373 tdef = newdef;
1374 }
1375
1376 if (tdef && ntdef)
1377 _bfd_error_handler
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS definition in %pB section %pA"),
1381 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1382 else if (!tdef && !ntdef)
1383 _bfd_error_handler
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS reference in %pB"),
1387 h->root.root.string, tbfd, ntbfd);
1388 else if (tdef)
1389 _bfd_error_handler
1390 /* xgettext:c-format */
1391 (_("%s: TLS definition in %pB section %pA "
1392 "mismatches non-TLS reference in %pB"),
1393 h->root.root.string, tbfd, tsec, ntbfd);
1394 else
1395 _bfd_error_handler
1396 /* xgettext:c-format */
1397 (_("%s: TLS reference in %pB "
1398 "mismatches non-TLS definition in %pB section %pA"),
1399 h->root.root.string, tbfd, ntbfd, ntsec);
1400
1401 bfd_set_error (bfd_error_bad_value);
1402 return FALSE;
1403 }
1404
1405 /* If the old symbol has non-default visibility, we ignore the new
1406 definition from a dynamic object. */
1407 if (newdyn
1408 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1409 && !bfd_is_und_section (sec))
1410 {
1411 *skip = TRUE;
1412 /* Make sure this symbol is dynamic. */
1413 h->ref_dynamic = 1;
1414 hi->ref_dynamic = 1;
1415 /* A protected symbol has external availability. Make sure it is
1416 recorded as dynamic.
1417
1418 FIXME: Should we check type and size for protected symbol? */
1419 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1420 return bfd_elf_link_record_dynamic_symbol (info, h);
1421 else
1422 return TRUE;
1423 }
1424 else if (!newdyn
1425 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1426 && h->def_dynamic)
1427 {
1428 /* If the new symbol with non-default visibility comes from a
1429 relocatable file and the old definition comes from a dynamic
1430 object, we remove the old definition. */
1431 if (hi->root.type == bfd_link_hash_indirect)
1432 {
1433 /* Handle the case where the old dynamic definition is
1434 default versioned. We need to copy the symbol info from
1435 the symbol with default version to the normal one if it
1436 was referenced before. */
1437 if (h->ref_regular)
1438 {
1439 hi->root.type = h->root.type;
1440 h->root.type = bfd_link_hash_indirect;
1441 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1442
1443 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1444 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1445 {
1446 /* If the new symbol is hidden or internal, completely undo
1447 any dynamic link state. */
1448 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1449 h->forced_local = 0;
1450 h->ref_dynamic = 0;
1451 }
1452 else
1453 h->ref_dynamic = 1;
1454
1455 h->def_dynamic = 0;
1456 /* FIXME: Should we check type and size for protected symbol? */
1457 h->size = 0;
1458 h->type = 0;
1459
1460 h = hi;
1461 }
1462 else
1463 h = hi;
1464 }
1465
1466 /* If the old symbol was undefined before, then it will still be
1467 on the undefs list. If the new symbol is undefined or
1468 common, we can't make it bfd_link_hash_new here, because new
1469 undefined or common symbols will be added to the undefs list
1470 by _bfd_generic_link_add_one_symbol. Symbols may not be
1471 added twice to the undefs list. Also, if the new symbol is
1472 undefweak then we don't want to lose the strong undef. */
1473 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1474 {
1475 h->root.type = bfd_link_hash_undefined;
1476 h->root.u.undef.abfd = abfd;
1477 }
1478 else
1479 {
1480 h->root.type = bfd_link_hash_new;
1481 h->root.u.undef.abfd = NULL;
1482 }
1483
1484 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1485 {
1486 /* If the new symbol is hidden or internal, completely undo
1487 any dynamic link state. */
1488 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1489 h->forced_local = 0;
1490 h->ref_dynamic = 0;
1491 }
1492 else
1493 h->ref_dynamic = 1;
1494 h->def_dynamic = 0;
1495 /* FIXME: Should we check type and size for protected symbol? */
1496 h->size = 0;
1497 h->type = 0;
1498 return TRUE;
1499 }
1500
1501 /* If a new weak symbol definition comes from a regular file and the
1502 old symbol comes from a dynamic library, we treat the new one as
1503 strong. Similarly, an old weak symbol definition from a regular
1504 file is treated as strong when the new symbol comes from a dynamic
1505 library. Further, an old weak symbol from a dynamic library is
1506 treated as strong if the new symbol is from a dynamic library.
1507 This reflects the way glibc's ld.so works.
1508
1509 Also allow a weak symbol to override a linker script symbol
1510 defined by an early pass over the script. This is done so the
1511 linker knows the symbol is defined in an object file, for the
1512 DEFINED script function.
1513
1514 Do this before setting *type_change_ok or *size_change_ok so that
1515 we warn properly when dynamic library symbols are overridden. */
1516
1517 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1518 newweak = FALSE;
1519 if (olddef && newdyn)
1520 oldweak = FALSE;
1521
1522 /* Allow changes between different types of function symbol. */
1523 if (newfunc && oldfunc)
1524 *type_change_ok = TRUE;
1525
1526 /* It's OK to change the type if either the existing symbol or the
1527 new symbol is weak. A type change is also OK if the old symbol
1528 is undefined and the new symbol is defined. */
1529
1530 if (oldweak
1531 || newweak
1532 || (newdef
1533 && h->root.type == bfd_link_hash_undefined))
1534 *type_change_ok = TRUE;
1535
1536 /* It's OK to change the size if either the existing symbol or the
1537 new symbol is weak, or if the old symbol is undefined. */
1538
1539 if (*type_change_ok
1540 || h->root.type == bfd_link_hash_undefined)
1541 *size_change_ok = TRUE;
1542
1543 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1544 symbol, respectively, appears to be a common symbol in a dynamic
1545 object. If a symbol appears in an uninitialized section, and is
1546 not weak, and is not a function, then it may be a common symbol
1547 which was resolved when the dynamic object was created. We want
1548 to treat such symbols specially, because they raise special
1549 considerations when setting the symbol size: if the symbol
1550 appears as a common symbol in a regular object, and the size in
1551 the regular object is larger, we must make sure that we use the
1552 larger size. This problematic case can always be avoided in C,
1553 but it must be handled correctly when using Fortran shared
1554 libraries.
1555
1556 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1557 likewise for OLDDYNCOMMON and OLDDEF.
1558
1559 Note that this test is just a heuristic, and that it is quite
1560 possible to have an uninitialized symbol in a shared object which
1561 is really a definition, rather than a common symbol. This could
1562 lead to some minor confusion when the symbol really is a common
1563 symbol in some regular object. However, I think it will be
1564 harmless. */
1565
1566 if (newdyn
1567 && newdef
1568 && !newweak
1569 && (sec->flags & SEC_ALLOC) != 0
1570 && (sec->flags & SEC_LOAD) == 0
1571 && sym->st_size > 0
1572 && !newfunc)
1573 newdyncommon = TRUE;
1574 else
1575 newdyncommon = FALSE;
1576
1577 if (olddyn
1578 && olddef
1579 && h->root.type == bfd_link_hash_defined
1580 && h->def_dynamic
1581 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1582 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1583 && h->size > 0
1584 && !oldfunc)
1585 olddyncommon = TRUE;
1586 else
1587 olddyncommon = FALSE;
1588
1589 /* We now know everything about the old and new symbols. We ask the
1590 backend to check if we can merge them. */
1591 if (bed->merge_symbol != NULL)
1592 {
1593 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1594 return FALSE;
1595 sec = *psec;
1596 }
1597
1598 /* There are multiple definitions of a normal symbol. Skip the
1599 default symbol as well as definition from an IR object. */
1600 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1601 && !default_sym && h->def_regular
1602 && !(oldbfd != NULL
1603 && (oldbfd->flags & BFD_PLUGIN) != 0
1604 && (abfd->flags & BFD_PLUGIN) == 0))
1605 {
1606 /* Handle a multiple definition. */
1607 (*info->callbacks->multiple_definition) (info, &h->root,
1608 abfd, sec, *pvalue);
1609 *skip = TRUE;
1610 return TRUE;
1611 }
1612
1613 /* If both the old and the new symbols look like common symbols in a
1614 dynamic object, set the size of the symbol to the larger of the
1615 two. */
1616
1617 if (olddyncommon
1618 && newdyncommon
1619 && sym->st_size != h->size)
1620 {
1621 /* Since we think we have two common symbols, issue a multiple
1622 common warning if desired. Note that we only warn if the
1623 size is different. If the size is the same, we simply let
1624 the old symbol override the new one as normally happens with
1625 symbols defined in dynamic objects. */
1626
1627 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1628 bfd_link_hash_common, sym->st_size);
1629 if (sym->st_size > h->size)
1630 h->size = sym->st_size;
1631
1632 *size_change_ok = TRUE;
1633 }
1634
1635 /* If we are looking at a dynamic object, and we have found a
1636 definition, we need to see if the symbol was already defined by
1637 some other object. If so, we want to use the existing
1638 definition, and we do not want to report a multiple symbol
1639 definition error; we do this by clobbering *PSEC to be
1640 bfd_und_section_ptr.
1641
1642 We treat a common symbol as a definition if the symbol in the
1643 shared library is a function, since common symbols always
1644 represent variables; this can cause confusion in principle, but
1645 any such confusion would seem to indicate an erroneous program or
1646 shared library. We also permit a common symbol in a regular
1647 object to override a weak symbol in a shared object. */
1648
1649 if (newdyn
1650 && newdef
1651 && (olddef
1652 || (h->root.type == bfd_link_hash_common
1653 && (newweak || newfunc))))
1654 {
1655 *override = TRUE;
1656 newdef = FALSE;
1657 newdyncommon = FALSE;
1658
1659 *psec = sec = bfd_und_section_ptr;
1660 *size_change_ok = TRUE;
1661
1662 /* If we get here when the old symbol is a common symbol, then
1663 we are explicitly letting it override a weak symbol or
1664 function in a dynamic object, and we don't want to warn about
1665 a type change. If the old symbol is a defined symbol, a type
1666 change warning may still be appropriate. */
1667
1668 if (h->root.type == bfd_link_hash_common)
1669 *type_change_ok = TRUE;
1670 }
1671
1672 /* Handle the special case of an old common symbol merging with a
1673 new symbol which looks like a common symbol in a shared object.
1674 We change *PSEC and *PVALUE to make the new symbol look like a
1675 common symbol, and let _bfd_generic_link_add_one_symbol do the
1676 right thing. */
1677
1678 if (newdyncommon
1679 && h->root.type == bfd_link_hash_common)
1680 {
1681 *override = TRUE;
1682 newdef = FALSE;
1683 newdyncommon = FALSE;
1684 *pvalue = sym->st_size;
1685 *psec = sec = bed->common_section (oldsec);
1686 *size_change_ok = TRUE;
1687 }
1688
1689 /* Skip weak definitions of symbols that are already defined. */
1690 if (newdef && olddef && newweak)
1691 {
1692 /* Don't skip new non-IR weak syms. */
1693 if (!(oldbfd != NULL
1694 && (oldbfd->flags & BFD_PLUGIN) != 0
1695 && (abfd->flags & BFD_PLUGIN) == 0))
1696 {
1697 newdef = FALSE;
1698 *skip = TRUE;
1699 }
1700
1701 /* Merge st_other. If the symbol already has a dynamic index,
1702 but visibility says it should not be visible, turn it into a
1703 local symbol. */
1704 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1705 if (h->dynindx != -1)
1706 switch (ELF_ST_VISIBILITY (h->other))
1707 {
1708 case STV_INTERNAL:
1709 case STV_HIDDEN:
1710 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1711 break;
1712 }
1713 }
1714
1715 /* If the old symbol is from a dynamic object, and the new symbol is
1716 a definition which is not from a dynamic object, then the new
1717 symbol overrides the old symbol. Symbols from regular files
1718 always take precedence over symbols from dynamic objects, even if
1719 they are defined after the dynamic object in the link.
1720
1721 As above, we again permit a common symbol in a regular object to
1722 override a definition in a shared object if the shared object
1723 symbol is a function or is weak. */
1724
1725 flip = NULL;
1726 if (!newdyn
1727 && (newdef
1728 || (bfd_is_com_section (sec)
1729 && (oldweak || oldfunc)))
1730 && olddyn
1731 && olddef
1732 && h->def_dynamic)
1733 {
1734 /* Change the hash table entry to undefined, and let
1735 _bfd_generic_link_add_one_symbol do the right thing with the
1736 new definition. */
1737
1738 h->root.type = bfd_link_hash_undefined;
1739 h->root.u.undef.abfd = h->root.u.def.section->owner;
1740 *size_change_ok = TRUE;
1741
1742 olddef = FALSE;
1743 olddyncommon = FALSE;
1744
1745 /* We again permit a type change when a common symbol may be
1746 overriding a function. */
1747
1748 if (bfd_is_com_section (sec))
1749 {
1750 if (oldfunc)
1751 {
1752 /* If a common symbol overrides a function, make sure
1753 that it isn't defined dynamically nor has type
1754 function. */
1755 h->def_dynamic = 0;
1756 h->type = STT_NOTYPE;
1757 }
1758 *type_change_ok = TRUE;
1759 }
1760
1761 if (hi->root.type == bfd_link_hash_indirect)
1762 flip = hi;
1763 else
1764 /* This union may have been set to be non-NULL when this symbol
1765 was seen in a dynamic object. We must force the union to be
1766 NULL, so that it is correct for a regular symbol. */
1767 h->verinfo.vertree = NULL;
1768 }
1769
1770 /* Handle the special case of a new common symbol merging with an
1771 old symbol that looks like it might be a common symbol defined in
1772 a shared object. Note that we have already handled the case in
1773 which a new common symbol should simply override the definition
1774 in the shared library. */
1775
1776 if (! newdyn
1777 && bfd_is_com_section (sec)
1778 && olddyncommon)
1779 {
1780 /* It would be best if we could set the hash table entry to a
1781 common symbol, but we don't know what to use for the section
1782 or the alignment. */
1783 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1784 bfd_link_hash_common, sym->st_size);
1785
1786 /* If the presumed common symbol in the dynamic object is
1787 larger, pretend that the new symbol has its size. */
1788
1789 if (h->size > *pvalue)
1790 *pvalue = h->size;
1791
1792 /* We need to remember the alignment required by the symbol
1793 in the dynamic object. */
1794 BFD_ASSERT (pold_alignment);
1795 *pold_alignment = h->root.u.def.section->alignment_power;
1796
1797 olddef = FALSE;
1798 olddyncommon = FALSE;
1799
1800 h->root.type = bfd_link_hash_undefined;
1801 h->root.u.undef.abfd = h->root.u.def.section->owner;
1802
1803 *size_change_ok = TRUE;
1804 *type_change_ok = TRUE;
1805
1806 if (hi->root.type == bfd_link_hash_indirect)
1807 flip = hi;
1808 else
1809 h->verinfo.vertree = NULL;
1810 }
1811
1812 if (flip != NULL)
1813 {
1814 /* Handle the case where we had a versioned symbol in a dynamic
1815 library and now find a definition in a normal object. In this
1816 case, we make the versioned symbol point to the normal one. */
1817 flip->root.type = h->root.type;
1818 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1819 h->root.type = bfd_link_hash_indirect;
1820 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1821 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1822 if (h->def_dynamic)
1823 {
1824 h->def_dynamic = 0;
1825 flip->ref_dynamic = 1;
1826 }
1827 }
1828
1829 return TRUE;
1830 }
1831
1832 /* This function is called to create an indirect symbol from the
1833 default for the symbol with the default version if needed. The
1834 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1835 set DYNSYM if the new indirect symbol is dynamic. */
1836
1837 static bfd_boolean
1838 _bfd_elf_add_default_symbol (bfd *abfd,
1839 struct bfd_link_info *info,
1840 struct elf_link_hash_entry *h,
1841 const char *name,
1842 Elf_Internal_Sym *sym,
1843 asection *sec,
1844 bfd_vma value,
1845 bfd **poldbfd,
1846 bfd_boolean *dynsym)
1847 {
1848 bfd_boolean type_change_ok;
1849 bfd_boolean size_change_ok;
1850 bfd_boolean skip;
1851 char *shortname;
1852 struct elf_link_hash_entry *hi;
1853 struct bfd_link_hash_entry *bh;
1854 const struct elf_backend_data *bed;
1855 bfd_boolean collect;
1856 bfd_boolean dynamic;
1857 bfd_boolean override;
1858 char *p;
1859 size_t len, shortlen;
1860 asection *tmp_sec;
1861 bfd_boolean matched;
1862
1863 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1864 return TRUE;
1865
1866 /* If this symbol has a version, and it is the default version, we
1867 create an indirect symbol from the default name to the fully
1868 decorated name. This will cause external references which do not
1869 specify a version to be bound to this version of the symbol. */
1870 p = strchr (name, ELF_VER_CHR);
1871 if (h->versioned == unknown)
1872 {
1873 if (p == NULL)
1874 {
1875 h->versioned = unversioned;
1876 return TRUE;
1877 }
1878 else
1879 {
1880 if (p[1] != ELF_VER_CHR)
1881 {
1882 h->versioned = versioned_hidden;
1883 return TRUE;
1884 }
1885 else
1886 h->versioned = versioned;
1887 }
1888 }
1889 else
1890 {
1891 /* PR ld/19073: We may see an unversioned definition after the
1892 default version. */
1893 if (p == NULL)
1894 return TRUE;
1895 }
1896
1897 bed = get_elf_backend_data (abfd);
1898 collect = bed->collect;
1899 dynamic = (abfd->flags & DYNAMIC) != 0;
1900
1901 shortlen = p - name;
1902 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1903 if (shortname == NULL)
1904 return FALSE;
1905 memcpy (shortname, name, shortlen);
1906 shortname[shortlen] = '\0';
1907
1908 /* We are going to create a new symbol. Merge it with any existing
1909 symbol with this name. For the purposes of the merge, act as
1910 though we were defining the symbol we just defined, although we
1911 actually going to define an indirect symbol. */
1912 type_change_ok = FALSE;
1913 size_change_ok = FALSE;
1914 matched = TRUE;
1915 tmp_sec = sec;
1916 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1917 &hi, poldbfd, NULL, NULL, &skip, &override,
1918 &type_change_ok, &size_change_ok, &matched))
1919 return FALSE;
1920
1921 if (skip)
1922 goto nondefault;
1923
1924 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1925 {
1926 /* If the undecorated symbol will have a version added by a
1927 script different to H, then don't indirect to/from the
1928 undecorated symbol. This isn't ideal because we may not yet
1929 have seen symbol versions, if given by a script on the
1930 command line rather than via --version-script. */
1931 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1932 {
1933 bfd_boolean hide;
1934
1935 hi->verinfo.vertree
1936 = bfd_find_version_for_sym (info->version_info,
1937 hi->root.root.string, &hide);
1938 if (hi->verinfo.vertree != NULL && hide)
1939 {
1940 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1941 goto nondefault;
1942 }
1943 }
1944 if (hi->verinfo.vertree != NULL
1945 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1946 goto nondefault;
1947 }
1948
1949 if (! override)
1950 {
1951 /* Add the default symbol if not performing a relocatable link. */
1952 if (! bfd_link_relocatable (info))
1953 {
1954 bh = &hi->root;
1955 if (bh->type == bfd_link_hash_defined
1956 && bh->u.def.section->owner != NULL
1957 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1958 {
1959 /* Mark the previous definition from IR object as
1960 undefined so that the generic linker will override
1961 it. */
1962 bh->type = bfd_link_hash_undefined;
1963 bh->u.undef.abfd = bh->u.def.section->owner;
1964 }
1965 if (! (_bfd_generic_link_add_one_symbol
1966 (info, abfd, shortname, BSF_INDIRECT,
1967 bfd_ind_section_ptr,
1968 0, name, FALSE, collect, &bh)))
1969 return FALSE;
1970 hi = (struct elf_link_hash_entry *) bh;
1971 }
1972 }
1973 else
1974 {
1975 /* In this case the symbol named SHORTNAME is overriding the
1976 indirect symbol we want to add. We were planning on making
1977 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1978 is the name without a version. NAME is the fully versioned
1979 name, and it is the default version.
1980
1981 Overriding means that we already saw a definition for the
1982 symbol SHORTNAME in a regular object, and it is overriding
1983 the symbol defined in the dynamic object.
1984
1985 When this happens, we actually want to change NAME, the
1986 symbol we just added, to refer to SHORTNAME. This will cause
1987 references to NAME in the shared object to become references
1988 to SHORTNAME in the regular object. This is what we expect
1989 when we override a function in a shared object: that the
1990 references in the shared object will be mapped to the
1991 definition in the regular object. */
1992
1993 while (hi->root.type == bfd_link_hash_indirect
1994 || hi->root.type == bfd_link_hash_warning)
1995 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1996
1997 h->root.type = bfd_link_hash_indirect;
1998 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1999 if (h->def_dynamic)
2000 {
2001 h->def_dynamic = 0;
2002 hi->ref_dynamic = 1;
2003 if (hi->ref_regular
2004 || hi->def_regular)
2005 {
2006 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2007 return FALSE;
2008 }
2009 }
2010
2011 /* Now set HI to H, so that the following code will set the
2012 other fields correctly. */
2013 hi = h;
2014 }
2015
2016 /* Check if HI is a warning symbol. */
2017 if (hi->root.type == bfd_link_hash_warning)
2018 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2019
2020 /* If there is a duplicate definition somewhere, then HI may not
2021 point to an indirect symbol. We will have reported an error to
2022 the user in that case. */
2023
2024 if (hi->root.type == bfd_link_hash_indirect)
2025 {
2026 struct elf_link_hash_entry *ht;
2027
2028 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2029 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2030
2031 /* A reference to the SHORTNAME symbol from a dynamic library
2032 will be satisfied by the versioned symbol at runtime. In
2033 effect, we have a reference to the versioned symbol. */
2034 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2035 hi->dynamic_def |= ht->dynamic_def;
2036
2037 /* See if the new flags lead us to realize that the symbol must
2038 be dynamic. */
2039 if (! *dynsym)
2040 {
2041 if (! dynamic)
2042 {
2043 if (! bfd_link_executable (info)
2044 || hi->def_dynamic
2045 || hi->ref_dynamic)
2046 *dynsym = TRUE;
2047 }
2048 else
2049 {
2050 if (hi->ref_regular)
2051 *dynsym = TRUE;
2052 }
2053 }
2054 }
2055
2056 /* We also need to define an indirection from the nondefault version
2057 of the symbol. */
2058
2059 nondefault:
2060 len = strlen (name);
2061 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2062 if (shortname == NULL)
2063 return FALSE;
2064 memcpy (shortname, name, shortlen);
2065 memcpy (shortname + shortlen, p + 1, len - shortlen);
2066
2067 /* Once again, merge with any existing symbol. */
2068 type_change_ok = FALSE;
2069 size_change_ok = FALSE;
2070 tmp_sec = sec;
2071 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2072 &hi, poldbfd, NULL, NULL, &skip, &override,
2073 &type_change_ok, &size_change_ok, &matched))
2074 return FALSE;
2075
2076 if (skip)
2077 return TRUE;
2078
2079 if (override)
2080 {
2081 /* Here SHORTNAME is a versioned name, so we don't expect to see
2082 the type of override we do in the case above unless it is
2083 overridden by a versioned definition. */
2084 if (hi->root.type != bfd_link_hash_defined
2085 && hi->root.type != bfd_link_hash_defweak)
2086 _bfd_error_handler
2087 /* xgettext:c-format */
2088 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2089 abfd, shortname);
2090 }
2091 else
2092 {
2093 bh = &hi->root;
2094 if (! (_bfd_generic_link_add_one_symbol
2095 (info, abfd, shortname, BSF_INDIRECT,
2096 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2097 return FALSE;
2098 hi = (struct elf_link_hash_entry *) bh;
2099
2100 /* If there is a duplicate definition somewhere, then HI may not
2101 point to an indirect symbol. We will have reported an error
2102 to the user in that case. */
2103
2104 if (hi->root.type == bfd_link_hash_indirect)
2105 {
2106 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2107 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2108 hi->dynamic_def |= h->dynamic_def;
2109
2110 /* See if the new flags lead us to realize that the symbol
2111 must be dynamic. */
2112 if (! *dynsym)
2113 {
2114 if (! dynamic)
2115 {
2116 if (! bfd_link_executable (info)
2117 || hi->ref_dynamic)
2118 *dynsym = TRUE;
2119 }
2120 else
2121 {
2122 if (hi->ref_regular)
2123 *dynsym = TRUE;
2124 }
2125 }
2126 }
2127 }
2128
2129 return TRUE;
2130 }
2131 \f
2132 /* This routine is used to export all defined symbols into the dynamic
2133 symbol table. It is called via elf_link_hash_traverse. */
2134
2135 static bfd_boolean
2136 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2137 {
2138 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2139
2140 /* Ignore indirect symbols. These are added by the versioning code. */
2141 if (h->root.type == bfd_link_hash_indirect)
2142 return TRUE;
2143
2144 /* Ignore this if we won't export it. */
2145 if (!eif->info->export_dynamic && !h->dynamic)
2146 return TRUE;
2147
2148 if (h->dynindx == -1
2149 && (h->def_regular || h->ref_regular)
2150 && ! bfd_hide_sym_by_version (eif->info->version_info,
2151 h->root.root.string))
2152 {
2153 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2154 {
2155 eif->failed = TRUE;
2156 return FALSE;
2157 }
2158 }
2159
2160 return TRUE;
2161 }
2162 \f
2163 /* Look through the symbols which are defined in other shared
2164 libraries and referenced here. Update the list of version
2165 dependencies. This will be put into the .gnu.version_r section.
2166 This function is called via elf_link_hash_traverse. */
2167
2168 static bfd_boolean
2169 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2170 void *data)
2171 {
2172 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2173 Elf_Internal_Verneed *t;
2174 Elf_Internal_Vernaux *a;
2175 size_t amt;
2176
2177 /* We only care about symbols defined in shared objects with version
2178 information. */
2179 if (!h->def_dynamic
2180 || h->def_regular
2181 || h->dynindx == -1
2182 || h->verinfo.verdef == NULL
2183 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2184 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2185 return TRUE;
2186
2187 /* See if we already know about this version. */
2188 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2189 t != NULL;
2190 t = t->vn_nextref)
2191 {
2192 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2193 continue;
2194
2195 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2196 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2197 return TRUE;
2198
2199 break;
2200 }
2201
2202 /* This is a new version. Add it to tree we are building. */
2203
2204 if (t == NULL)
2205 {
2206 amt = sizeof *t;
2207 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2208 if (t == NULL)
2209 {
2210 rinfo->failed = TRUE;
2211 return FALSE;
2212 }
2213
2214 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2215 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2216 elf_tdata (rinfo->info->output_bfd)->verref = t;
2217 }
2218
2219 amt = sizeof *a;
2220 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2221 if (a == NULL)
2222 {
2223 rinfo->failed = TRUE;
2224 return FALSE;
2225 }
2226
2227 /* Note that we are copying a string pointer here, and testing it
2228 above. If bfd_elf_string_from_elf_section is ever changed to
2229 discard the string data when low in memory, this will have to be
2230 fixed. */
2231 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2232
2233 a->vna_flags = h->verinfo.verdef->vd_flags;
2234 a->vna_nextptr = t->vn_auxptr;
2235
2236 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2237 ++rinfo->vers;
2238
2239 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2240
2241 t->vn_auxptr = a;
2242
2243 return TRUE;
2244 }
2245
2246 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2247 hidden. Set *T_P to NULL if there is no match. */
2248
2249 static bfd_boolean
2250 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2251 struct elf_link_hash_entry *h,
2252 const char *version_p,
2253 struct bfd_elf_version_tree **t_p,
2254 bfd_boolean *hide)
2255 {
2256 struct bfd_elf_version_tree *t;
2257
2258 /* Look for the version. If we find it, it is no longer weak. */
2259 for (t = info->version_info; t != NULL; t = t->next)
2260 {
2261 if (strcmp (t->name, version_p) == 0)
2262 {
2263 size_t len;
2264 char *alc;
2265 struct bfd_elf_version_expr *d;
2266
2267 len = version_p - h->root.root.string;
2268 alc = (char *) bfd_malloc (len);
2269 if (alc == NULL)
2270 return FALSE;
2271 memcpy (alc, h->root.root.string, len - 1);
2272 alc[len - 1] = '\0';
2273 if (alc[len - 2] == ELF_VER_CHR)
2274 alc[len - 2] = '\0';
2275
2276 h->verinfo.vertree = t;
2277 t->used = TRUE;
2278 d = NULL;
2279
2280 if (t->globals.list != NULL)
2281 d = (*t->match) (&t->globals, NULL, alc);
2282
2283 /* See if there is anything to force this symbol to
2284 local scope. */
2285 if (d == NULL && t->locals.list != NULL)
2286 {
2287 d = (*t->match) (&t->locals, NULL, alc);
2288 if (d != NULL
2289 && h->dynindx != -1
2290 && ! info->export_dynamic)
2291 *hide = TRUE;
2292 }
2293
2294 free (alc);
2295 break;
2296 }
2297 }
2298
2299 *t_p = t;
2300
2301 return TRUE;
2302 }
2303
2304 /* Return TRUE if the symbol H is hidden by version script. */
2305
2306 bfd_boolean
2307 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2308 struct elf_link_hash_entry *h)
2309 {
2310 const char *p;
2311 bfd_boolean hide = FALSE;
2312 const struct elf_backend_data *bed
2313 = get_elf_backend_data (info->output_bfd);
2314
2315 /* Version script only hides symbols defined in regular objects. */
2316 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2317 return TRUE;
2318
2319 p = strchr (h->root.root.string, ELF_VER_CHR);
2320 if (p != NULL && h->verinfo.vertree == NULL)
2321 {
2322 struct bfd_elf_version_tree *t;
2323
2324 ++p;
2325 if (*p == ELF_VER_CHR)
2326 ++p;
2327
2328 if (*p != '\0'
2329 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2330 && hide)
2331 {
2332 if (hide)
2333 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2334 return TRUE;
2335 }
2336 }
2337
2338 /* If we don't have a version for this symbol, see if we can find
2339 something. */
2340 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2341 {
2342 h->verinfo.vertree
2343 = bfd_find_version_for_sym (info->version_info,
2344 h->root.root.string, &hide);
2345 if (h->verinfo.vertree != NULL && hide)
2346 {
2347 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2348 return TRUE;
2349 }
2350 }
2351
2352 return FALSE;
2353 }
2354
2355 /* Figure out appropriate versions for all the symbols. We may not
2356 have the version number script until we have read all of the input
2357 files, so until that point we don't know which symbols should be
2358 local. This function is called via elf_link_hash_traverse. */
2359
2360 static bfd_boolean
2361 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2362 {
2363 struct elf_info_failed *sinfo;
2364 struct bfd_link_info *info;
2365 const struct elf_backend_data *bed;
2366 struct elf_info_failed eif;
2367 char *p;
2368 bfd_boolean hide;
2369
2370 sinfo = (struct elf_info_failed *) data;
2371 info = sinfo->info;
2372
2373 /* Fix the symbol flags. */
2374 eif.failed = FALSE;
2375 eif.info = info;
2376 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2377 {
2378 if (eif.failed)
2379 sinfo->failed = TRUE;
2380 return FALSE;
2381 }
2382
2383 bed = get_elf_backend_data (info->output_bfd);
2384
2385 /* We only need version numbers for symbols defined in regular
2386 objects. */
2387 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2388 {
2389 /* Hide symbols defined in discarded input sections. */
2390 if ((h->root.type == bfd_link_hash_defined
2391 || h->root.type == bfd_link_hash_defweak)
2392 && discarded_section (h->root.u.def.section))
2393 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2394 return TRUE;
2395 }
2396
2397 hide = FALSE;
2398 p = strchr (h->root.root.string, ELF_VER_CHR);
2399 if (p != NULL && h->verinfo.vertree == NULL)
2400 {
2401 struct bfd_elf_version_tree *t;
2402
2403 ++p;
2404 if (*p == ELF_VER_CHR)
2405 ++p;
2406
2407 /* If there is no version string, we can just return out. */
2408 if (*p == '\0')
2409 return TRUE;
2410
2411 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2412 {
2413 sinfo->failed = TRUE;
2414 return FALSE;
2415 }
2416
2417 if (hide)
2418 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2419
2420 /* If we are building an application, we need to create a
2421 version node for this version. */
2422 if (t == NULL && bfd_link_executable (info))
2423 {
2424 struct bfd_elf_version_tree **pp;
2425 int version_index;
2426
2427 /* If we aren't going to export this symbol, we don't need
2428 to worry about it. */
2429 if (h->dynindx == -1)
2430 return TRUE;
2431
2432 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2433 sizeof *t);
2434 if (t == NULL)
2435 {
2436 sinfo->failed = TRUE;
2437 return FALSE;
2438 }
2439
2440 t->name = p;
2441 t->name_indx = (unsigned int) -1;
2442 t->used = TRUE;
2443
2444 version_index = 1;
2445 /* Don't count anonymous version tag. */
2446 if (sinfo->info->version_info != NULL
2447 && sinfo->info->version_info->vernum == 0)
2448 version_index = 0;
2449 for (pp = &sinfo->info->version_info;
2450 *pp != NULL;
2451 pp = &(*pp)->next)
2452 ++version_index;
2453 t->vernum = version_index;
2454
2455 *pp = t;
2456
2457 h->verinfo.vertree = t;
2458 }
2459 else if (t == NULL)
2460 {
2461 /* We could not find the version for a symbol when
2462 generating a shared archive. Return an error. */
2463 _bfd_error_handler
2464 /* xgettext:c-format */
2465 (_("%pB: version node not found for symbol %s"),
2466 info->output_bfd, h->root.root.string);
2467 bfd_set_error (bfd_error_bad_value);
2468 sinfo->failed = TRUE;
2469 return FALSE;
2470 }
2471 }
2472
2473 /* If we don't have a version for this symbol, see if we can find
2474 something. */
2475 if (!hide
2476 && h->verinfo.vertree == NULL
2477 && sinfo->info->version_info != NULL)
2478 {
2479 h->verinfo.vertree
2480 = bfd_find_version_for_sym (sinfo->info->version_info,
2481 h->root.root.string, &hide);
2482 if (h->verinfo.vertree != NULL && hide)
2483 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2484 }
2485
2486 return TRUE;
2487 }
2488 \f
2489 /* Read and swap the relocs from the section indicated by SHDR. This
2490 may be either a REL or a RELA section. The relocations are
2491 translated into RELA relocations and stored in INTERNAL_RELOCS,
2492 which should have already been allocated to contain enough space.
2493 The EXTERNAL_RELOCS are a buffer where the external form of the
2494 relocations should be stored.
2495
2496 Returns FALSE if something goes wrong. */
2497
2498 static bfd_boolean
2499 elf_link_read_relocs_from_section (bfd *abfd,
2500 asection *sec,
2501 Elf_Internal_Shdr *shdr,
2502 void *external_relocs,
2503 Elf_Internal_Rela *internal_relocs)
2504 {
2505 const struct elf_backend_data *bed;
2506 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2507 const bfd_byte *erela;
2508 const bfd_byte *erelaend;
2509 Elf_Internal_Rela *irela;
2510 Elf_Internal_Shdr *symtab_hdr;
2511 size_t nsyms;
2512
2513 /* Position ourselves at the start of the section. */
2514 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2515 return FALSE;
2516
2517 /* Read the relocations. */
2518 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2519 return FALSE;
2520
2521 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2522 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2523
2524 bed = get_elf_backend_data (abfd);
2525
2526 /* Convert the external relocations to the internal format. */
2527 if (shdr->sh_entsize == bed->s->sizeof_rel)
2528 swap_in = bed->s->swap_reloc_in;
2529 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2530 swap_in = bed->s->swap_reloca_in;
2531 else
2532 {
2533 bfd_set_error (bfd_error_wrong_format);
2534 return FALSE;
2535 }
2536
2537 erela = (const bfd_byte *) external_relocs;
2538 /* Setting erelaend like this and comparing with <= handles case of
2539 a fuzzed object with sh_size not a multiple of sh_entsize. */
2540 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2541 irela = internal_relocs;
2542 while (erela <= erelaend)
2543 {
2544 bfd_vma r_symndx;
2545
2546 (*swap_in) (abfd, erela, irela);
2547 r_symndx = ELF32_R_SYM (irela->r_info);
2548 if (bed->s->arch_size == 64)
2549 r_symndx >>= 24;
2550 if (nsyms > 0)
2551 {
2552 if ((size_t) r_symndx >= nsyms)
2553 {
2554 _bfd_error_handler
2555 /* xgettext:c-format */
2556 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2557 " for offset %#" PRIx64 " in section `%pA'"),
2558 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2559 (uint64_t) irela->r_offset, sec);
2560 bfd_set_error (bfd_error_bad_value);
2561 return FALSE;
2562 }
2563 }
2564 else if (r_symndx != STN_UNDEF)
2565 {
2566 _bfd_error_handler
2567 /* xgettext:c-format */
2568 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2569 " for offset %#" PRIx64 " in section `%pA'"
2570 " when the object file has no symbol table"),
2571 abfd, (uint64_t) r_symndx,
2572 (uint64_t) irela->r_offset, sec);
2573 bfd_set_error (bfd_error_bad_value);
2574 return FALSE;
2575 }
2576 irela += bed->s->int_rels_per_ext_rel;
2577 erela += shdr->sh_entsize;
2578 }
2579
2580 return TRUE;
2581 }
2582
2583 /* Read and swap the relocs for a section O. They may have been
2584 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2585 not NULL, they are used as buffers to read into. They are known to
2586 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2587 the return value is allocated using either malloc or bfd_alloc,
2588 according to the KEEP_MEMORY argument. If O has two relocation
2589 sections (both REL and RELA relocations), then the REL_HDR
2590 relocations will appear first in INTERNAL_RELOCS, followed by the
2591 RELA_HDR relocations. */
2592
2593 Elf_Internal_Rela *
2594 _bfd_elf_link_read_relocs (bfd *abfd,
2595 asection *o,
2596 void *external_relocs,
2597 Elf_Internal_Rela *internal_relocs,
2598 bfd_boolean keep_memory)
2599 {
2600 void *alloc1 = NULL;
2601 Elf_Internal_Rela *alloc2 = NULL;
2602 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2603 struct bfd_elf_section_data *esdo = elf_section_data (o);
2604 Elf_Internal_Rela *internal_rela_relocs;
2605
2606 if (esdo->relocs != NULL)
2607 return esdo->relocs;
2608
2609 if (o->reloc_count == 0)
2610 return NULL;
2611
2612 if (internal_relocs == NULL)
2613 {
2614 bfd_size_type size;
2615
2616 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2617 if (keep_memory)
2618 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2619 else
2620 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2621 if (internal_relocs == NULL)
2622 goto error_return;
2623 }
2624
2625 if (external_relocs == NULL)
2626 {
2627 bfd_size_type size = 0;
2628
2629 if (esdo->rel.hdr)
2630 size += esdo->rel.hdr->sh_size;
2631 if (esdo->rela.hdr)
2632 size += esdo->rela.hdr->sh_size;
2633
2634 alloc1 = bfd_malloc (size);
2635 if (alloc1 == NULL)
2636 goto error_return;
2637 external_relocs = alloc1;
2638 }
2639
2640 internal_rela_relocs = internal_relocs;
2641 if (esdo->rel.hdr)
2642 {
2643 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2644 external_relocs,
2645 internal_relocs))
2646 goto error_return;
2647 external_relocs = (((bfd_byte *) external_relocs)
2648 + esdo->rel.hdr->sh_size);
2649 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2650 * bed->s->int_rels_per_ext_rel);
2651 }
2652
2653 if (esdo->rela.hdr
2654 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2655 external_relocs,
2656 internal_rela_relocs)))
2657 goto error_return;
2658
2659 /* Cache the results for next time, if we can. */
2660 if (keep_memory)
2661 esdo->relocs = internal_relocs;
2662
2663 free (alloc1);
2664
2665 /* Don't free alloc2, since if it was allocated we are passing it
2666 back (under the name of internal_relocs). */
2667
2668 return internal_relocs;
2669
2670 error_return:
2671 free (alloc1);
2672 if (alloc2 != NULL)
2673 {
2674 if (keep_memory)
2675 bfd_release (abfd, alloc2);
2676 else
2677 free (alloc2);
2678 }
2679 return NULL;
2680 }
2681
2682 /* Compute the size of, and allocate space for, REL_HDR which is the
2683 section header for a section containing relocations for O. */
2684
2685 static bfd_boolean
2686 _bfd_elf_link_size_reloc_section (bfd *abfd,
2687 struct bfd_elf_section_reloc_data *reldata)
2688 {
2689 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2690
2691 /* That allows us to calculate the size of the section. */
2692 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2693
2694 /* The contents field must last into write_object_contents, so we
2695 allocate it with bfd_alloc rather than malloc. Also since we
2696 cannot be sure that the contents will actually be filled in,
2697 we zero the allocated space. */
2698 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2699 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2700 return FALSE;
2701
2702 if (reldata->hashes == NULL && reldata->count)
2703 {
2704 struct elf_link_hash_entry **p;
2705
2706 p = ((struct elf_link_hash_entry **)
2707 bfd_zmalloc (reldata->count * sizeof (*p)));
2708 if (p == NULL)
2709 return FALSE;
2710
2711 reldata->hashes = p;
2712 }
2713
2714 return TRUE;
2715 }
2716
2717 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2718 originated from the section given by INPUT_REL_HDR) to the
2719 OUTPUT_BFD. */
2720
2721 bfd_boolean
2722 _bfd_elf_link_output_relocs (bfd *output_bfd,
2723 asection *input_section,
2724 Elf_Internal_Shdr *input_rel_hdr,
2725 Elf_Internal_Rela *internal_relocs,
2726 struct elf_link_hash_entry **rel_hash
2727 ATTRIBUTE_UNUSED)
2728 {
2729 Elf_Internal_Rela *irela;
2730 Elf_Internal_Rela *irelaend;
2731 bfd_byte *erel;
2732 struct bfd_elf_section_reloc_data *output_reldata;
2733 asection *output_section;
2734 const struct elf_backend_data *bed;
2735 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2736 struct bfd_elf_section_data *esdo;
2737
2738 output_section = input_section->output_section;
2739
2740 bed = get_elf_backend_data (output_bfd);
2741 esdo = elf_section_data (output_section);
2742 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2743 {
2744 output_reldata = &esdo->rel;
2745 swap_out = bed->s->swap_reloc_out;
2746 }
2747 else if (esdo->rela.hdr
2748 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2749 {
2750 output_reldata = &esdo->rela;
2751 swap_out = bed->s->swap_reloca_out;
2752 }
2753 else
2754 {
2755 _bfd_error_handler
2756 /* xgettext:c-format */
2757 (_("%pB: relocation size mismatch in %pB section %pA"),
2758 output_bfd, input_section->owner, input_section);
2759 bfd_set_error (bfd_error_wrong_format);
2760 return FALSE;
2761 }
2762
2763 erel = output_reldata->hdr->contents;
2764 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2765 irela = internal_relocs;
2766 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2767 * bed->s->int_rels_per_ext_rel);
2768 while (irela < irelaend)
2769 {
2770 (*swap_out) (output_bfd, irela, erel);
2771 irela += bed->s->int_rels_per_ext_rel;
2772 erel += input_rel_hdr->sh_entsize;
2773 }
2774
2775 /* Bump the counter, so that we know where to add the next set of
2776 relocations. */
2777 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2778
2779 return TRUE;
2780 }
2781 \f
2782 /* Make weak undefined symbols in PIE dynamic. */
2783
2784 bfd_boolean
2785 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2786 struct elf_link_hash_entry *h)
2787 {
2788 if (bfd_link_pie (info)
2789 && h->dynindx == -1
2790 && h->root.type == bfd_link_hash_undefweak)
2791 return bfd_elf_link_record_dynamic_symbol (info, h);
2792
2793 return TRUE;
2794 }
2795
2796 /* Fix up the flags for a symbol. This handles various cases which
2797 can only be fixed after all the input files are seen. This is
2798 currently called by both adjust_dynamic_symbol and
2799 assign_sym_version, which is unnecessary but perhaps more robust in
2800 the face of future changes. */
2801
2802 static bfd_boolean
2803 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2804 struct elf_info_failed *eif)
2805 {
2806 const struct elf_backend_data *bed;
2807
2808 /* If this symbol was mentioned in a non-ELF file, try to set
2809 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2810 permit a non-ELF file to correctly refer to a symbol defined in
2811 an ELF dynamic object. */
2812 if (h->non_elf)
2813 {
2814 while (h->root.type == bfd_link_hash_indirect)
2815 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2816
2817 if (h->root.type != bfd_link_hash_defined
2818 && h->root.type != bfd_link_hash_defweak)
2819 {
2820 h->ref_regular = 1;
2821 h->ref_regular_nonweak = 1;
2822 }
2823 else
2824 {
2825 if (h->root.u.def.section->owner != NULL
2826 && (bfd_get_flavour (h->root.u.def.section->owner)
2827 == bfd_target_elf_flavour))
2828 {
2829 h->ref_regular = 1;
2830 h->ref_regular_nonweak = 1;
2831 }
2832 else
2833 h->def_regular = 1;
2834 }
2835
2836 if (h->dynindx == -1
2837 && (h->def_dynamic
2838 || h->ref_dynamic))
2839 {
2840 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2841 {
2842 eif->failed = TRUE;
2843 return FALSE;
2844 }
2845 }
2846 }
2847 else
2848 {
2849 /* Unfortunately, NON_ELF is only correct if the symbol
2850 was first seen in a non-ELF file. Fortunately, if the symbol
2851 was first seen in an ELF file, we're probably OK unless the
2852 symbol was defined in a non-ELF file. Catch that case here.
2853 FIXME: We're still in trouble if the symbol was first seen in
2854 a dynamic object, and then later in a non-ELF regular object. */
2855 if ((h->root.type == bfd_link_hash_defined
2856 || h->root.type == bfd_link_hash_defweak)
2857 && !h->def_regular
2858 && (h->root.u.def.section->owner != NULL
2859 ? (bfd_get_flavour (h->root.u.def.section->owner)
2860 != bfd_target_elf_flavour)
2861 : (bfd_is_abs_section (h->root.u.def.section)
2862 && !h->def_dynamic)))
2863 h->def_regular = 1;
2864 }
2865
2866 /* Backend specific symbol fixup. */
2867 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2868 if (bed->elf_backend_fixup_symbol
2869 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2870 return FALSE;
2871
2872 /* If this is a final link, and the symbol was defined as a common
2873 symbol in a regular object file, and there was no definition in
2874 any dynamic object, then the linker will have allocated space for
2875 the symbol in a common section but the DEF_REGULAR
2876 flag will not have been set. */
2877 if (h->root.type == bfd_link_hash_defined
2878 && !h->def_regular
2879 && h->ref_regular
2880 && !h->def_dynamic
2881 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2882 h->def_regular = 1;
2883
2884 /* Symbols defined in discarded sections shouldn't be dynamic. */
2885 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2886 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2887
2888 /* If a weak undefined symbol has non-default visibility, we also
2889 hide it from the dynamic linker. */
2890 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2891 && h->root.type == bfd_link_hash_undefweak)
2892 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2893
2894 /* A hidden versioned symbol in executable should be forced local if
2895 it is is locally defined, not referenced by shared library and not
2896 exported. */
2897 else if (bfd_link_executable (eif->info)
2898 && h->versioned == versioned_hidden
2899 && !eif->info->export_dynamic
2900 && !h->dynamic
2901 && !h->ref_dynamic
2902 && h->def_regular)
2903 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2904
2905 /* If -Bsymbolic was used (which means to bind references to global
2906 symbols to the definition within the shared object), and this
2907 symbol was defined in a regular object, then it actually doesn't
2908 need a PLT entry. Likewise, if the symbol has non-default
2909 visibility. If the symbol has hidden or internal visibility, we
2910 will force it local. */
2911 else if (h->needs_plt
2912 && bfd_link_pic (eif->info)
2913 && is_elf_hash_table (eif->info->hash)
2914 && (SYMBOLIC_BIND (eif->info, h)
2915 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2916 && h->def_regular)
2917 {
2918 bfd_boolean force_local;
2919
2920 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2921 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2922 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2923 }
2924
2925 /* If this is a weak defined symbol in a dynamic object, and we know
2926 the real definition in the dynamic object, copy interesting flags
2927 over to the real definition. */
2928 if (h->is_weakalias)
2929 {
2930 struct elf_link_hash_entry *def = weakdef (h);
2931
2932 /* If the real definition is defined by a regular object file,
2933 don't do anything special. See the longer description in
2934 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2935 bfd_link_hash_defined as it was when put on the alias list
2936 then it must have originally been a versioned symbol (for
2937 which a non-versioned indirect symbol is created) and later
2938 a definition for the non-versioned symbol is found. In that
2939 case the indirection is flipped with the versioned symbol
2940 becoming an indirect pointing at the non-versioned symbol.
2941 Thus, not an alias any more. */
2942 if (def->def_regular
2943 || def->root.type != bfd_link_hash_defined)
2944 {
2945 h = def;
2946 while ((h = h->u.alias) != def)
2947 h->is_weakalias = 0;
2948 }
2949 else
2950 {
2951 while (h->root.type == bfd_link_hash_indirect)
2952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2953 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2954 || h->root.type == bfd_link_hash_defweak);
2955 BFD_ASSERT (def->def_dynamic);
2956 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2957 }
2958 }
2959
2960 return TRUE;
2961 }
2962
2963 /* Make the backend pick a good value for a dynamic symbol. This is
2964 called via elf_link_hash_traverse, and also calls itself
2965 recursively. */
2966
2967 static bfd_boolean
2968 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2969 {
2970 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2971 struct elf_link_hash_table *htab;
2972 const struct elf_backend_data *bed;
2973
2974 if (! is_elf_hash_table (eif->info->hash))
2975 return FALSE;
2976
2977 /* Ignore indirect symbols. These are added by the versioning code. */
2978 if (h->root.type == bfd_link_hash_indirect)
2979 return TRUE;
2980
2981 /* Fix the symbol flags. */
2982 if (! _bfd_elf_fix_symbol_flags (h, eif))
2983 return FALSE;
2984
2985 htab = elf_hash_table (eif->info);
2986 bed = get_elf_backend_data (htab->dynobj);
2987
2988 if (h->root.type == bfd_link_hash_undefweak)
2989 {
2990 if (eif->info->dynamic_undefined_weak == 0)
2991 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2992 else if (eif->info->dynamic_undefined_weak > 0
2993 && h->ref_regular
2994 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2995 && !bfd_hide_sym_by_version (eif->info->version_info,
2996 h->root.root.string))
2997 {
2998 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2999 {
3000 eif->failed = TRUE;
3001 return FALSE;
3002 }
3003 }
3004 }
3005
3006 /* If this symbol does not require a PLT entry, and it is not
3007 defined by a dynamic object, or is not referenced by a regular
3008 object, ignore it. We do have to handle a weak defined symbol,
3009 even if no regular object refers to it, if we decided to add it
3010 to the dynamic symbol table. FIXME: Do we normally need to worry
3011 about symbols which are defined by one dynamic object and
3012 referenced by another one? */
3013 if (!h->needs_plt
3014 && h->type != STT_GNU_IFUNC
3015 && (h->def_regular
3016 || !h->def_dynamic
3017 || (!h->ref_regular
3018 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3019 {
3020 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3021 return TRUE;
3022 }
3023
3024 /* If we've already adjusted this symbol, don't do it again. This
3025 can happen via a recursive call. */
3026 if (h->dynamic_adjusted)
3027 return TRUE;
3028
3029 /* Don't look at this symbol again. Note that we must set this
3030 after checking the above conditions, because we may look at a
3031 symbol once, decide not to do anything, and then get called
3032 recursively later after REF_REGULAR is set below. */
3033 h->dynamic_adjusted = 1;
3034
3035 /* If this is a weak definition, and we know a real definition, and
3036 the real symbol is not itself defined by a regular object file,
3037 then get a good value for the real definition. We handle the
3038 real symbol first, for the convenience of the backend routine.
3039
3040 Note that there is a confusing case here. If the real definition
3041 is defined by a regular object file, we don't get the real symbol
3042 from the dynamic object, but we do get the weak symbol. If the
3043 processor backend uses a COPY reloc, then if some routine in the
3044 dynamic object changes the real symbol, we will not see that
3045 change in the corresponding weak symbol. This is the way other
3046 ELF linkers work as well, and seems to be a result of the shared
3047 library model.
3048
3049 I will clarify this issue. Most SVR4 shared libraries define the
3050 variable _timezone and define timezone as a weak synonym. The
3051 tzset call changes _timezone. If you write
3052 extern int timezone;
3053 int _timezone = 5;
3054 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3055 you might expect that, since timezone is a synonym for _timezone,
3056 the same number will print both times. However, if the processor
3057 backend uses a COPY reloc, then actually timezone will be copied
3058 into your process image, and, since you define _timezone
3059 yourself, _timezone will not. Thus timezone and _timezone will
3060 wind up at different memory locations. The tzset call will set
3061 _timezone, leaving timezone unchanged. */
3062
3063 if (h->is_weakalias)
3064 {
3065 struct elf_link_hash_entry *def = weakdef (h);
3066
3067 /* If we get to this point, there is an implicit reference to
3068 the alias by a regular object file via the weak symbol H. */
3069 def->ref_regular = 1;
3070
3071 /* Ensure that the backend adjust_dynamic_symbol function sees
3072 the strong alias before H by recursively calling ourselves. */
3073 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3074 return FALSE;
3075 }
3076
3077 /* If a symbol has no type and no size and does not require a PLT
3078 entry, then we are probably about to do the wrong thing here: we
3079 are probably going to create a COPY reloc for an empty object.
3080 This case can arise when a shared object is built with assembly
3081 code, and the assembly code fails to set the symbol type. */
3082 if (h->size == 0
3083 && h->type == STT_NOTYPE
3084 && !h->needs_plt)
3085 _bfd_error_handler
3086 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3087 h->root.root.string);
3088
3089 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3090 {
3091 eif->failed = TRUE;
3092 return FALSE;
3093 }
3094
3095 return TRUE;
3096 }
3097
3098 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3099 DYNBSS. */
3100
3101 bfd_boolean
3102 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3103 struct elf_link_hash_entry *h,
3104 asection *dynbss)
3105 {
3106 unsigned int power_of_two;
3107 bfd_vma mask;
3108 asection *sec = h->root.u.def.section;
3109
3110 /* The section alignment of the definition is the maximum alignment
3111 requirement of symbols defined in the section. Since we don't
3112 know the symbol alignment requirement, we start with the
3113 maximum alignment and check low bits of the symbol address
3114 for the minimum alignment. */
3115 power_of_two = bfd_section_alignment (sec);
3116 mask = ((bfd_vma) 1 << power_of_two) - 1;
3117 while ((h->root.u.def.value & mask) != 0)
3118 {
3119 mask >>= 1;
3120 --power_of_two;
3121 }
3122
3123 if (power_of_two > bfd_section_alignment (dynbss))
3124 {
3125 /* Adjust the section alignment if needed. */
3126 if (!bfd_set_section_alignment (dynbss, power_of_two))
3127 return FALSE;
3128 }
3129
3130 /* We make sure that the symbol will be aligned properly. */
3131 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3132
3133 /* Define the symbol as being at this point in DYNBSS. */
3134 h->root.u.def.section = dynbss;
3135 h->root.u.def.value = dynbss->size;
3136
3137 /* Increment the size of DYNBSS to make room for the symbol. */
3138 dynbss->size += h->size;
3139
3140 /* No error if extern_protected_data is true. */
3141 if (h->protected_def
3142 && (!info->extern_protected_data
3143 || (info->extern_protected_data < 0
3144 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3145 info->callbacks->einfo
3146 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3147 h->root.root.string);
3148
3149 return TRUE;
3150 }
3151
3152 /* Adjust all external symbols pointing into SEC_MERGE sections
3153 to reflect the object merging within the sections. */
3154
3155 static bfd_boolean
3156 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3157 {
3158 asection *sec;
3159
3160 if ((h->root.type == bfd_link_hash_defined
3161 || h->root.type == bfd_link_hash_defweak)
3162 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3163 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3164 {
3165 bfd *output_bfd = (bfd *) data;
3166
3167 h->root.u.def.value =
3168 _bfd_merged_section_offset (output_bfd,
3169 &h->root.u.def.section,
3170 elf_section_data (sec)->sec_info,
3171 h->root.u.def.value);
3172 }
3173
3174 return TRUE;
3175 }
3176
3177 /* Returns false if the symbol referred to by H should be considered
3178 to resolve local to the current module, and true if it should be
3179 considered to bind dynamically. */
3180
3181 bfd_boolean
3182 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3183 struct bfd_link_info *info,
3184 bfd_boolean not_local_protected)
3185 {
3186 bfd_boolean binding_stays_local_p;
3187 const struct elf_backend_data *bed;
3188 struct elf_link_hash_table *hash_table;
3189
3190 if (h == NULL)
3191 return FALSE;
3192
3193 while (h->root.type == bfd_link_hash_indirect
3194 || h->root.type == bfd_link_hash_warning)
3195 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3196
3197 /* If it was forced local, then clearly it's not dynamic. */
3198 if (h->dynindx == -1)
3199 return FALSE;
3200 if (h->forced_local)
3201 return FALSE;
3202
3203 /* Identify the cases where name binding rules say that a
3204 visible symbol resolves locally. */
3205 binding_stays_local_p = (bfd_link_executable (info)
3206 || SYMBOLIC_BIND (info, h));
3207
3208 switch (ELF_ST_VISIBILITY (h->other))
3209 {
3210 case STV_INTERNAL:
3211 case STV_HIDDEN:
3212 return FALSE;
3213
3214 case STV_PROTECTED:
3215 hash_table = elf_hash_table (info);
3216 if (!is_elf_hash_table (hash_table))
3217 return FALSE;
3218
3219 bed = get_elf_backend_data (hash_table->dynobj);
3220
3221 /* Proper resolution for function pointer equality may require
3222 that these symbols perhaps be resolved dynamically, even though
3223 we should be resolving them to the current module. */
3224 if (!not_local_protected || !bed->is_function_type (h->type))
3225 binding_stays_local_p = TRUE;
3226 break;
3227
3228 default:
3229 break;
3230 }
3231
3232 /* If it isn't defined locally, then clearly it's dynamic. */
3233 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3234 return TRUE;
3235
3236 /* Otherwise, the symbol is dynamic if binding rules don't tell
3237 us that it remains local. */
3238 return !binding_stays_local_p;
3239 }
3240
3241 /* Return true if the symbol referred to by H should be considered
3242 to resolve local to the current module, and false otherwise. Differs
3243 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3244 undefined symbols. The two functions are virtually identical except
3245 for the place where dynindx == -1 is tested. If that test is true,
3246 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3247 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3248 defined symbols.
3249 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3250 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3251 treatment of undefined weak symbols. For those that do not make
3252 undefined weak symbols dynamic, both functions may return false. */
3253
3254 bfd_boolean
3255 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3256 struct bfd_link_info *info,
3257 bfd_boolean local_protected)
3258 {
3259 const struct elf_backend_data *bed;
3260 struct elf_link_hash_table *hash_table;
3261
3262 /* If it's a local sym, of course we resolve locally. */
3263 if (h == NULL)
3264 return TRUE;
3265
3266 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3267 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3268 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3269 return TRUE;
3270
3271 /* Forced local symbols resolve locally. */
3272 if (h->forced_local)
3273 return TRUE;
3274
3275 /* Common symbols that become definitions don't get the DEF_REGULAR
3276 flag set, so test it first, and don't bail out. */
3277 if (ELF_COMMON_DEF_P (h))
3278 /* Do nothing. */;
3279 /* If we don't have a definition in a regular file, then we can't
3280 resolve locally. The sym is either undefined or dynamic. */
3281 else if (!h->def_regular)
3282 return FALSE;
3283
3284 /* Non-dynamic symbols resolve locally. */
3285 if (h->dynindx == -1)
3286 return TRUE;
3287
3288 /* At this point, we know the symbol is defined and dynamic. In an
3289 executable it must resolve locally, likewise when building symbolic
3290 shared libraries. */
3291 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3292 return TRUE;
3293
3294 /* Now deal with defined dynamic symbols in shared libraries. Ones
3295 with default visibility might not resolve locally. */
3296 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3297 return FALSE;
3298
3299 hash_table = elf_hash_table (info);
3300 if (!is_elf_hash_table (hash_table))
3301 return TRUE;
3302
3303 bed = get_elf_backend_data (hash_table->dynobj);
3304
3305 /* If extern_protected_data is false, STV_PROTECTED non-function
3306 symbols are local. */
3307 if ((!info->extern_protected_data
3308 || (info->extern_protected_data < 0
3309 && !bed->extern_protected_data))
3310 && !bed->is_function_type (h->type))
3311 return TRUE;
3312
3313 /* Function pointer equality tests may require that STV_PROTECTED
3314 symbols be treated as dynamic symbols. If the address of a
3315 function not defined in an executable is set to that function's
3316 plt entry in the executable, then the address of the function in
3317 a shared library must also be the plt entry in the executable. */
3318 return local_protected;
3319 }
3320
3321 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3322 aligned. Returns the first TLS output section. */
3323
3324 struct bfd_section *
3325 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3326 {
3327 struct bfd_section *sec, *tls;
3328 unsigned int align = 0;
3329
3330 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3331 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3332 break;
3333 tls = sec;
3334
3335 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3336 if (sec->alignment_power > align)
3337 align = sec->alignment_power;
3338
3339 elf_hash_table (info)->tls_sec = tls;
3340
3341 /* Ensure the alignment of the first section (usually .tdata) is the largest
3342 alignment, so that the tls segment starts aligned. */
3343 if (tls != NULL)
3344 tls->alignment_power = align;
3345
3346 return tls;
3347 }
3348
3349 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3350 static bfd_boolean
3351 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3352 Elf_Internal_Sym *sym)
3353 {
3354 const struct elf_backend_data *bed;
3355
3356 /* Local symbols do not count, but target specific ones might. */
3357 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3358 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3359 return FALSE;
3360
3361 bed = get_elf_backend_data (abfd);
3362 /* Function symbols do not count. */
3363 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3364 return FALSE;
3365
3366 /* If the section is undefined, then so is the symbol. */
3367 if (sym->st_shndx == SHN_UNDEF)
3368 return FALSE;
3369
3370 /* If the symbol is defined in the common section, then
3371 it is a common definition and so does not count. */
3372 if (bed->common_definition (sym))
3373 return FALSE;
3374
3375 /* If the symbol is in a target specific section then we
3376 must rely upon the backend to tell us what it is. */
3377 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3378 /* FIXME - this function is not coded yet:
3379
3380 return _bfd_is_global_symbol_definition (abfd, sym);
3381
3382 Instead for now assume that the definition is not global,
3383 Even if this is wrong, at least the linker will behave
3384 in the same way that it used to do. */
3385 return FALSE;
3386
3387 return TRUE;
3388 }
3389
3390 /* Search the symbol table of the archive element of the archive ABFD
3391 whose archive map contains a mention of SYMDEF, and determine if
3392 the symbol is defined in this element. */
3393 static bfd_boolean
3394 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3395 {
3396 Elf_Internal_Shdr * hdr;
3397 size_t symcount;
3398 size_t extsymcount;
3399 size_t extsymoff;
3400 Elf_Internal_Sym *isymbuf;
3401 Elf_Internal_Sym *isym;
3402 Elf_Internal_Sym *isymend;
3403 bfd_boolean result;
3404
3405 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3406 if (abfd == NULL)
3407 return FALSE;
3408
3409 if (! bfd_check_format (abfd, bfd_object))
3410 return FALSE;
3411
3412 /* Select the appropriate symbol table. If we don't know if the
3413 object file is an IR object, give linker LTO plugin a chance to
3414 get the correct symbol table. */
3415 if (abfd->plugin_format == bfd_plugin_yes
3416 #if BFD_SUPPORTS_PLUGINS
3417 || (abfd->plugin_format == bfd_plugin_unknown
3418 && bfd_link_plugin_object_p (abfd))
3419 #endif
3420 )
3421 {
3422 /* Use the IR symbol table if the object has been claimed by
3423 plugin. */
3424 abfd = abfd->plugin_dummy_bfd;
3425 hdr = &elf_tdata (abfd)->symtab_hdr;
3426 }
3427 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3428 hdr = &elf_tdata (abfd)->symtab_hdr;
3429 else
3430 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3431
3432 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3433
3434 /* The sh_info field of the symtab header tells us where the
3435 external symbols start. We don't care about the local symbols. */
3436 if (elf_bad_symtab (abfd))
3437 {
3438 extsymcount = symcount;
3439 extsymoff = 0;
3440 }
3441 else
3442 {
3443 extsymcount = symcount - hdr->sh_info;
3444 extsymoff = hdr->sh_info;
3445 }
3446
3447 if (extsymcount == 0)
3448 return FALSE;
3449
3450 /* Read in the symbol table. */
3451 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3452 NULL, NULL, NULL);
3453 if (isymbuf == NULL)
3454 return FALSE;
3455
3456 /* Scan the symbol table looking for SYMDEF. */
3457 result = FALSE;
3458 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3459 {
3460 const char *name;
3461
3462 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3463 isym->st_name);
3464 if (name == NULL)
3465 break;
3466
3467 if (strcmp (name, symdef->name) == 0)
3468 {
3469 result = is_global_data_symbol_definition (abfd, isym);
3470 break;
3471 }
3472 }
3473
3474 free (isymbuf);
3475
3476 return result;
3477 }
3478 \f
3479 /* Add an entry to the .dynamic table. */
3480
3481 bfd_boolean
3482 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3483 bfd_vma tag,
3484 bfd_vma val)
3485 {
3486 struct elf_link_hash_table *hash_table;
3487 const struct elf_backend_data *bed;
3488 asection *s;
3489 bfd_size_type newsize;
3490 bfd_byte *newcontents;
3491 Elf_Internal_Dyn dyn;
3492
3493 hash_table = elf_hash_table (info);
3494 if (! is_elf_hash_table (hash_table))
3495 return FALSE;
3496
3497 if (tag == DT_RELA || tag == DT_REL)
3498 hash_table->dynamic_relocs = TRUE;
3499
3500 bed = get_elf_backend_data (hash_table->dynobj);
3501 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3502 BFD_ASSERT (s != NULL);
3503
3504 newsize = s->size + bed->s->sizeof_dyn;
3505 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3506 if (newcontents == NULL)
3507 return FALSE;
3508
3509 dyn.d_tag = tag;
3510 dyn.d_un.d_val = val;
3511 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3512
3513 s->size = newsize;
3514 s->contents = newcontents;
3515
3516 return TRUE;
3517 }
3518
3519 /* Strip zero-sized dynamic sections. */
3520
3521 bfd_boolean
3522 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3523 {
3524 struct elf_link_hash_table *hash_table;
3525 const struct elf_backend_data *bed;
3526 asection *s, *sdynamic, **pp;
3527 asection *rela_dyn, *rel_dyn;
3528 Elf_Internal_Dyn dyn;
3529 bfd_byte *extdyn, *next;
3530 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3531 bfd_boolean strip_zero_sized;
3532 bfd_boolean strip_zero_sized_plt;
3533
3534 if (bfd_link_relocatable (info))
3535 return TRUE;
3536
3537 hash_table = elf_hash_table (info);
3538 if (!is_elf_hash_table (hash_table))
3539 return FALSE;
3540
3541 if (!hash_table->dynobj)
3542 return TRUE;
3543
3544 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3545 if (!sdynamic)
3546 return TRUE;
3547
3548 bed = get_elf_backend_data (hash_table->dynobj);
3549 swap_dyn_in = bed->s->swap_dyn_in;
3550
3551 strip_zero_sized = FALSE;
3552 strip_zero_sized_plt = FALSE;
3553
3554 /* Strip zero-sized dynamic sections. */
3555 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3556 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3557 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3558 if (s->size == 0
3559 && (s == rela_dyn
3560 || s == rel_dyn
3561 || s == hash_table->srelplt->output_section
3562 || s == hash_table->splt->output_section))
3563 {
3564 *pp = s->next;
3565 info->output_bfd->section_count--;
3566 strip_zero_sized = TRUE;
3567 if (s == rela_dyn)
3568 s = rela_dyn;
3569 if (s == rel_dyn)
3570 s = rel_dyn;
3571 else if (s == hash_table->splt->output_section)
3572 {
3573 s = hash_table->splt;
3574 strip_zero_sized_plt = TRUE;
3575 }
3576 else
3577 s = hash_table->srelplt;
3578 s->flags |= SEC_EXCLUDE;
3579 s->output_section = bfd_abs_section_ptr;
3580 }
3581 else
3582 pp = &s->next;
3583
3584 if (strip_zero_sized_plt)
3585 for (extdyn = sdynamic->contents;
3586 extdyn < sdynamic->contents + sdynamic->size;
3587 extdyn = next)
3588 {
3589 next = extdyn + bed->s->sizeof_dyn;
3590 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3591 switch (dyn.d_tag)
3592 {
3593 default:
3594 break;
3595 case DT_JMPREL:
3596 case DT_PLTRELSZ:
3597 case DT_PLTREL:
3598 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3599 the procedure linkage table (the .plt section) has been
3600 removed. */
3601 memmove (extdyn, next,
3602 sdynamic->size - (next - sdynamic->contents));
3603 next = extdyn;
3604 }
3605 }
3606
3607 if (strip_zero_sized)
3608 {
3609 /* Regenerate program headers. */
3610 elf_seg_map (info->output_bfd) = NULL;
3611 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3612 }
3613
3614 return TRUE;
3615 }
3616
3617 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3618 1 if a DT_NEEDED tag already exists, and 0 on success. */
3619
3620 int
3621 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3622 {
3623 struct elf_link_hash_table *hash_table;
3624 size_t strindex;
3625 const char *soname;
3626
3627 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3628 return -1;
3629
3630 hash_table = elf_hash_table (info);
3631 soname = elf_dt_name (abfd);
3632 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3633 if (strindex == (size_t) -1)
3634 return -1;
3635
3636 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3637 {
3638 asection *sdyn;
3639 const struct elf_backend_data *bed;
3640 bfd_byte *extdyn;
3641
3642 bed = get_elf_backend_data (hash_table->dynobj);
3643 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3644 if (sdyn != NULL)
3645 for (extdyn = sdyn->contents;
3646 extdyn < sdyn->contents + sdyn->size;
3647 extdyn += bed->s->sizeof_dyn)
3648 {
3649 Elf_Internal_Dyn dyn;
3650
3651 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3652 if (dyn.d_tag == DT_NEEDED
3653 && dyn.d_un.d_val == strindex)
3654 {
3655 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3656 return 1;
3657 }
3658 }
3659 }
3660
3661 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3662 return -1;
3663
3664 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3665 return -1;
3666
3667 return 0;
3668 }
3669
3670 /* Return true if SONAME is on the needed list between NEEDED and STOP
3671 (or the end of list if STOP is NULL), and needed by a library that
3672 will be loaded. */
3673
3674 static bfd_boolean
3675 on_needed_list (const char *soname,
3676 struct bfd_link_needed_list *needed,
3677 struct bfd_link_needed_list *stop)
3678 {
3679 struct bfd_link_needed_list *look;
3680 for (look = needed; look != stop; look = look->next)
3681 if (strcmp (soname, look->name) == 0
3682 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3683 /* If needed by a library that itself is not directly
3684 needed, recursively check whether that library is
3685 indirectly needed. Since we add DT_NEEDED entries to
3686 the end of the list, library dependencies appear after
3687 the library. Therefore search prior to the current
3688 LOOK, preventing possible infinite recursion. */
3689 || on_needed_list (elf_dt_name (look->by), needed, look)))
3690 return TRUE;
3691
3692 return FALSE;
3693 }
3694
3695 /* Sort symbol by value, section, size, and type. */
3696 static int
3697 elf_sort_symbol (const void *arg1, const void *arg2)
3698 {
3699 const struct elf_link_hash_entry *h1;
3700 const struct elf_link_hash_entry *h2;
3701 bfd_signed_vma vdiff;
3702 int sdiff;
3703 const char *n1;
3704 const char *n2;
3705
3706 h1 = *(const struct elf_link_hash_entry **) arg1;
3707 h2 = *(const struct elf_link_hash_entry **) arg2;
3708 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3709 if (vdiff != 0)
3710 return vdiff > 0 ? 1 : -1;
3711
3712 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3713 if (sdiff != 0)
3714 return sdiff;
3715
3716 /* Sort so that sized symbols are selected over zero size symbols. */
3717 vdiff = h1->size - h2->size;
3718 if (vdiff != 0)
3719 return vdiff > 0 ? 1 : -1;
3720
3721 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3722 if (h1->type != h2->type)
3723 return h1->type - h2->type;
3724
3725 /* If symbols are properly sized and typed, and multiple strong
3726 aliases are not defined in a shared library by the user we
3727 shouldn't get here. Unfortunately linker script symbols like
3728 __bss_start sometimes match a user symbol defined at the start of
3729 .bss without proper size and type. We'd like to preference the
3730 user symbol over reserved system symbols. Sort on leading
3731 underscores. */
3732 n1 = h1->root.root.string;
3733 n2 = h2->root.root.string;
3734 while (*n1 == *n2)
3735 {
3736 if (*n1 == 0)
3737 break;
3738 ++n1;
3739 ++n2;
3740 }
3741 if (*n1 == '_')
3742 return -1;
3743 if (*n2 == '_')
3744 return 1;
3745
3746 /* Final sort on name selects user symbols like '_u' over reserved
3747 system symbols like '_Z' and also will avoid qsort instability. */
3748 return *n1 - *n2;
3749 }
3750
3751 /* This function is used to adjust offsets into .dynstr for
3752 dynamic symbols. This is called via elf_link_hash_traverse. */
3753
3754 static bfd_boolean
3755 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3756 {
3757 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3758
3759 if (h->dynindx != -1)
3760 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3761 return TRUE;
3762 }
3763
3764 /* Assign string offsets in .dynstr, update all structures referencing
3765 them. */
3766
3767 static bfd_boolean
3768 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3769 {
3770 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3771 struct elf_link_local_dynamic_entry *entry;
3772 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3773 bfd *dynobj = hash_table->dynobj;
3774 asection *sdyn;
3775 bfd_size_type size;
3776 const struct elf_backend_data *bed;
3777 bfd_byte *extdyn;
3778
3779 _bfd_elf_strtab_finalize (dynstr);
3780 size = _bfd_elf_strtab_size (dynstr);
3781
3782 bed = get_elf_backend_data (dynobj);
3783 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3784 BFD_ASSERT (sdyn != NULL);
3785
3786 /* Update all .dynamic entries referencing .dynstr strings. */
3787 for (extdyn = sdyn->contents;
3788 extdyn < sdyn->contents + sdyn->size;
3789 extdyn += bed->s->sizeof_dyn)
3790 {
3791 Elf_Internal_Dyn dyn;
3792
3793 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3794 switch (dyn.d_tag)
3795 {
3796 case DT_STRSZ:
3797 dyn.d_un.d_val = size;
3798 break;
3799 case DT_NEEDED:
3800 case DT_SONAME:
3801 case DT_RPATH:
3802 case DT_RUNPATH:
3803 case DT_FILTER:
3804 case DT_AUXILIARY:
3805 case DT_AUDIT:
3806 case DT_DEPAUDIT:
3807 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3808 break;
3809 default:
3810 continue;
3811 }
3812 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3813 }
3814
3815 /* Now update local dynamic symbols. */
3816 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3817 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3818 entry->isym.st_name);
3819
3820 /* And the rest of dynamic symbols. */
3821 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3822
3823 /* Adjust version definitions. */
3824 if (elf_tdata (output_bfd)->cverdefs)
3825 {
3826 asection *s;
3827 bfd_byte *p;
3828 size_t i;
3829 Elf_Internal_Verdef def;
3830 Elf_Internal_Verdaux defaux;
3831
3832 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3833 p = s->contents;
3834 do
3835 {
3836 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3837 &def);
3838 p += sizeof (Elf_External_Verdef);
3839 if (def.vd_aux != sizeof (Elf_External_Verdef))
3840 continue;
3841 for (i = 0; i < def.vd_cnt; ++i)
3842 {
3843 _bfd_elf_swap_verdaux_in (output_bfd,
3844 (Elf_External_Verdaux *) p, &defaux);
3845 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3846 defaux.vda_name);
3847 _bfd_elf_swap_verdaux_out (output_bfd,
3848 &defaux, (Elf_External_Verdaux *) p);
3849 p += sizeof (Elf_External_Verdaux);
3850 }
3851 }
3852 while (def.vd_next);
3853 }
3854
3855 /* Adjust version references. */
3856 if (elf_tdata (output_bfd)->verref)
3857 {
3858 asection *s;
3859 bfd_byte *p;
3860 size_t i;
3861 Elf_Internal_Verneed need;
3862 Elf_Internal_Vernaux needaux;
3863
3864 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3865 p = s->contents;
3866 do
3867 {
3868 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3869 &need);
3870 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3871 _bfd_elf_swap_verneed_out (output_bfd, &need,
3872 (Elf_External_Verneed *) p);
3873 p += sizeof (Elf_External_Verneed);
3874 for (i = 0; i < need.vn_cnt; ++i)
3875 {
3876 _bfd_elf_swap_vernaux_in (output_bfd,
3877 (Elf_External_Vernaux *) p, &needaux);
3878 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3879 needaux.vna_name);
3880 _bfd_elf_swap_vernaux_out (output_bfd,
3881 &needaux,
3882 (Elf_External_Vernaux *) p);
3883 p += sizeof (Elf_External_Vernaux);
3884 }
3885 }
3886 while (need.vn_next);
3887 }
3888
3889 return TRUE;
3890 }
3891 \f
3892 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3893 The default is to only match when the INPUT and OUTPUT are exactly
3894 the same target. */
3895
3896 bfd_boolean
3897 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3898 const bfd_target *output)
3899 {
3900 return input == output;
3901 }
3902
3903 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3904 This version is used when different targets for the same architecture
3905 are virtually identical. */
3906
3907 bfd_boolean
3908 _bfd_elf_relocs_compatible (const bfd_target *input,
3909 const bfd_target *output)
3910 {
3911 const struct elf_backend_data *obed, *ibed;
3912
3913 if (input == output)
3914 return TRUE;
3915
3916 ibed = xvec_get_elf_backend_data (input);
3917 obed = xvec_get_elf_backend_data (output);
3918
3919 if (ibed->arch != obed->arch)
3920 return FALSE;
3921
3922 /* If both backends are using this function, deem them compatible. */
3923 return ibed->relocs_compatible == obed->relocs_compatible;
3924 }
3925
3926 /* Make a special call to the linker "notice" function to tell it that
3927 we are about to handle an as-needed lib, or have finished
3928 processing the lib. */
3929
3930 bfd_boolean
3931 _bfd_elf_notice_as_needed (bfd *ibfd,
3932 struct bfd_link_info *info,
3933 enum notice_asneeded_action act)
3934 {
3935 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3936 }
3937
3938 /* Check relocations an ELF object file. */
3939
3940 bfd_boolean
3941 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3942 {
3943 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3944 struct elf_link_hash_table *htab = elf_hash_table (info);
3945
3946 /* If this object is the same format as the output object, and it is
3947 not a shared library, then let the backend look through the
3948 relocs.
3949
3950 This is required to build global offset table entries and to
3951 arrange for dynamic relocs. It is not required for the
3952 particular common case of linking non PIC code, even when linking
3953 against shared libraries, but unfortunately there is no way of
3954 knowing whether an object file has been compiled PIC or not.
3955 Looking through the relocs is not particularly time consuming.
3956 The problem is that we must either (1) keep the relocs in memory,
3957 which causes the linker to require additional runtime memory or
3958 (2) read the relocs twice from the input file, which wastes time.
3959 This would be a good case for using mmap.
3960
3961 I have no idea how to handle linking PIC code into a file of a
3962 different format. It probably can't be done. */
3963 if ((abfd->flags & DYNAMIC) == 0
3964 && is_elf_hash_table (htab)
3965 && bed->check_relocs != NULL
3966 && elf_object_id (abfd) == elf_hash_table_id (htab)
3967 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3968 {
3969 asection *o;
3970
3971 for (o = abfd->sections; o != NULL; o = o->next)
3972 {
3973 Elf_Internal_Rela *internal_relocs;
3974 bfd_boolean ok;
3975
3976 /* Don't check relocations in excluded sections. Don't do
3977 anything special with non-loaded, non-alloced sections.
3978 In particular, any relocs in such sections should not
3979 affect GOT and PLT reference counting (ie. we don't
3980 allow them to create GOT or PLT entries), there's no
3981 possibility or desire to optimize TLS relocs, and
3982 there's not much point in propagating relocs to shared
3983 libs that the dynamic linker won't relocate. */
3984 if ((o->flags & SEC_ALLOC) == 0
3985 || (o->flags & SEC_RELOC) == 0
3986 || (o->flags & SEC_EXCLUDE) != 0
3987 || o->reloc_count == 0
3988 || ((info->strip == strip_all || info->strip == strip_debugger)
3989 && (o->flags & SEC_DEBUGGING) != 0)
3990 || bfd_is_abs_section (o->output_section))
3991 continue;
3992
3993 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3994 info->keep_memory);
3995 if (internal_relocs == NULL)
3996 return FALSE;
3997
3998 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3999
4000 if (elf_section_data (o)->relocs != internal_relocs)
4001 free (internal_relocs);
4002
4003 if (! ok)
4004 return FALSE;
4005 }
4006 }
4007
4008 return TRUE;
4009 }
4010
4011 /* Add symbols from an ELF object file to the linker hash table. */
4012
4013 static bfd_boolean
4014 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4015 {
4016 Elf_Internal_Ehdr *ehdr;
4017 Elf_Internal_Shdr *hdr;
4018 size_t symcount;
4019 size_t extsymcount;
4020 size_t extsymoff;
4021 struct elf_link_hash_entry **sym_hash;
4022 bfd_boolean dynamic;
4023 Elf_External_Versym *extversym = NULL;
4024 Elf_External_Versym *extversym_end = NULL;
4025 Elf_External_Versym *ever;
4026 struct elf_link_hash_entry *weaks;
4027 struct elf_link_hash_entry **nondeflt_vers = NULL;
4028 size_t nondeflt_vers_cnt = 0;
4029 Elf_Internal_Sym *isymbuf = NULL;
4030 Elf_Internal_Sym *isym;
4031 Elf_Internal_Sym *isymend;
4032 const struct elf_backend_data *bed;
4033 bfd_boolean add_needed;
4034 struct elf_link_hash_table *htab;
4035 void *alloc_mark = NULL;
4036 struct bfd_hash_entry **old_table = NULL;
4037 unsigned int old_size = 0;
4038 unsigned int old_count = 0;
4039 void *old_tab = NULL;
4040 void *old_ent;
4041 struct bfd_link_hash_entry *old_undefs = NULL;
4042 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4043 void *old_strtab = NULL;
4044 size_t tabsize = 0;
4045 asection *s;
4046 bfd_boolean just_syms;
4047
4048 htab = elf_hash_table (info);
4049 bed = get_elf_backend_data (abfd);
4050
4051 if ((abfd->flags & DYNAMIC) == 0)
4052 dynamic = FALSE;
4053 else
4054 {
4055 dynamic = TRUE;
4056
4057 /* You can't use -r against a dynamic object. Also, there's no
4058 hope of using a dynamic object which does not exactly match
4059 the format of the output file. */
4060 if (bfd_link_relocatable (info)
4061 || !is_elf_hash_table (htab)
4062 || info->output_bfd->xvec != abfd->xvec)
4063 {
4064 if (bfd_link_relocatable (info))
4065 bfd_set_error (bfd_error_invalid_operation);
4066 else
4067 bfd_set_error (bfd_error_wrong_format);
4068 goto error_return;
4069 }
4070 }
4071
4072 ehdr = elf_elfheader (abfd);
4073 if (info->warn_alternate_em
4074 && bed->elf_machine_code != ehdr->e_machine
4075 && ((bed->elf_machine_alt1 != 0
4076 && ehdr->e_machine == bed->elf_machine_alt1)
4077 || (bed->elf_machine_alt2 != 0
4078 && ehdr->e_machine == bed->elf_machine_alt2)))
4079 _bfd_error_handler
4080 /* xgettext:c-format */
4081 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4082 ehdr->e_machine, abfd, bed->elf_machine_code);
4083
4084 /* As a GNU extension, any input sections which are named
4085 .gnu.warning.SYMBOL are treated as warning symbols for the given
4086 symbol. This differs from .gnu.warning sections, which generate
4087 warnings when they are included in an output file. */
4088 /* PR 12761: Also generate this warning when building shared libraries. */
4089 for (s = abfd->sections; s != NULL; s = s->next)
4090 {
4091 const char *name;
4092
4093 name = bfd_section_name (s);
4094 if (CONST_STRNEQ (name, ".gnu.warning."))
4095 {
4096 char *msg;
4097 bfd_size_type sz;
4098
4099 name += sizeof ".gnu.warning." - 1;
4100
4101 /* If this is a shared object, then look up the symbol
4102 in the hash table. If it is there, and it is already
4103 been defined, then we will not be using the entry
4104 from this shared object, so we don't need to warn.
4105 FIXME: If we see the definition in a regular object
4106 later on, we will warn, but we shouldn't. The only
4107 fix is to keep track of what warnings we are supposed
4108 to emit, and then handle them all at the end of the
4109 link. */
4110 if (dynamic)
4111 {
4112 struct elf_link_hash_entry *h;
4113
4114 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4115
4116 /* FIXME: What about bfd_link_hash_common? */
4117 if (h != NULL
4118 && (h->root.type == bfd_link_hash_defined
4119 || h->root.type == bfd_link_hash_defweak))
4120 continue;
4121 }
4122
4123 sz = s->size;
4124 msg = (char *) bfd_alloc (abfd, sz + 1);
4125 if (msg == NULL)
4126 goto error_return;
4127
4128 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4129 goto error_return;
4130
4131 msg[sz] = '\0';
4132
4133 if (! (_bfd_generic_link_add_one_symbol
4134 (info, abfd, name, BSF_WARNING, s, 0, msg,
4135 FALSE, bed->collect, NULL)))
4136 goto error_return;
4137
4138 if (bfd_link_executable (info))
4139 {
4140 /* Clobber the section size so that the warning does
4141 not get copied into the output file. */
4142 s->size = 0;
4143
4144 /* Also set SEC_EXCLUDE, so that symbols defined in
4145 the warning section don't get copied to the output. */
4146 s->flags |= SEC_EXCLUDE;
4147 }
4148 }
4149 }
4150
4151 just_syms = ((s = abfd->sections) != NULL
4152 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4153
4154 add_needed = TRUE;
4155 if (! dynamic)
4156 {
4157 /* If we are creating a shared library, create all the dynamic
4158 sections immediately. We need to attach them to something,
4159 so we attach them to this BFD, provided it is the right
4160 format and is not from ld --just-symbols. Always create the
4161 dynamic sections for -E/--dynamic-list. FIXME: If there
4162 are no input BFD's of the same format as the output, we can't
4163 make a shared library. */
4164 if (!just_syms
4165 && (bfd_link_pic (info)
4166 || (!bfd_link_relocatable (info)
4167 && info->nointerp
4168 && (info->export_dynamic || info->dynamic)))
4169 && is_elf_hash_table (htab)
4170 && info->output_bfd->xvec == abfd->xvec
4171 && !htab->dynamic_sections_created)
4172 {
4173 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4174 goto error_return;
4175 }
4176 }
4177 else if (!is_elf_hash_table (htab))
4178 goto error_return;
4179 else
4180 {
4181 const char *soname = NULL;
4182 char *audit = NULL;
4183 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4184 const Elf_Internal_Phdr *phdr;
4185 struct elf_link_loaded_list *loaded_lib;
4186
4187 /* ld --just-symbols and dynamic objects don't mix very well.
4188 ld shouldn't allow it. */
4189 if (just_syms)
4190 abort ();
4191
4192 /* If this dynamic lib was specified on the command line with
4193 --as-needed in effect, then we don't want to add a DT_NEEDED
4194 tag unless the lib is actually used. Similary for libs brought
4195 in by another lib's DT_NEEDED. When --no-add-needed is used
4196 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4197 any dynamic library in DT_NEEDED tags in the dynamic lib at
4198 all. */
4199 add_needed = (elf_dyn_lib_class (abfd)
4200 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4201 | DYN_NO_NEEDED)) == 0;
4202
4203 s = bfd_get_section_by_name (abfd, ".dynamic");
4204 if (s != NULL)
4205 {
4206 bfd_byte *dynbuf;
4207 bfd_byte *extdyn;
4208 unsigned int elfsec;
4209 unsigned long shlink;
4210
4211 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4212 {
4213 error_free_dyn:
4214 free (dynbuf);
4215 goto error_return;
4216 }
4217
4218 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4219 if (elfsec == SHN_BAD)
4220 goto error_free_dyn;
4221 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4222
4223 for (extdyn = dynbuf;
4224 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4225 extdyn += bed->s->sizeof_dyn)
4226 {
4227 Elf_Internal_Dyn dyn;
4228
4229 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4230 if (dyn.d_tag == DT_SONAME)
4231 {
4232 unsigned int tagv = dyn.d_un.d_val;
4233 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4234 if (soname == NULL)
4235 goto error_free_dyn;
4236 }
4237 if (dyn.d_tag == DT_NEEDED)
4238 {
4239 struct bfd_link_needed_list *n, **pn;
4240 char *fnm, *anm;
4241 unsigned int tagv = dyn.d_un.d_val;
4242 size_t amt = sizeof (struct bfd_link_needed_list);
4243
4244 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4245 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4246 if (n == NULL || fnm == NULL)
4247 goto error_free_dyn;
4248 amt = strlen (fnm) + 1;
4249 anm = (char *) bfd_alloc (abfd, amt);
4250 if (anm == NULL)
4251 goto error_free_dyn;
4252 memcpy (anm, fnm, amt);
4253 n->name = anm;
4254 n->by = abfd;
4255 n->next = NULL;
4256 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4257 ;
4258 *pn = n;
4259 }
4260 if (dyn.d_tag == DT_RUNPATH)
4261 {
4262 struct bfd_link_needed_list *n, **pn;
4263 char *fnm, *anm;
4264 unsigned int tagv = dyn.d_un.d_val;
4265 size_t amt = sizeof (struct bfd_link_needed_list);
4266
4267 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4268 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4269 if (n == NULL || fnm == NULL)
4270 goto error_free_dyn;
4271 amt = strlen (fnm) + 1;
4272 anm = (char *) bfd_alloc (abfd, amt);
4273 if (anm == NULL)
4274 goto error_free_dyn;
4275 memcpy (anm, fnm, amt);
4276 n->name = anm;
4277 n->by = abfd;
4278 n->next = NULL;
4279 for (pn = & runpath;
4280 *pn != NULL;
4281 pn = &(*pn)->next)
4282 ;
4283 *pn = n;
4284 }
4285 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4286 if (!runpath && dyn.d_tag == DT_RPATH)
4287 {
4288 struct bfd_link_needed_list *n, **pn;
4289 char *fnm, *anm;
4290 unsigned int tagv = dyn.d_un.d_val;
4291 size_t amt = sizeof (struct bfd_link_needed_list);
4292
4293 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4294 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4295 if (n == NULL || fnm == NULL)
4296 goto error_free_dyn;
4297 amt = strlen (fnm) + 1;
4298 anm = (char *) bfd_alloc (abfd, amt);
4299 if (anm == NULL)
4300 goto error_free_dyn;
4301 memcpy (anm, fnm, amt);
4302 n->name = anm;
4303 n->by = abfd;
4304 n->next = NULL;
4305 for (pn = & rpath;
4306 *pn != NULL;
4307 pn = &(*pn)->next)
4308 ;
4309 *pn = n;
4310 }
4311 if (dyn.d_tag == DT_AUDIT)
4312 {
4313 unsigned int tagv = dyn.d_un.d_val;
4314 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4315 }
4316 }
4317
4318 free (dynbuf);
4319 }
4320
4321 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4322 frees all more recently bfd_alloc'd blocks as well. */
4323 if (runpath)
4324 rpath = runpath;
4325
4326 if (rpath)
4327 {
4328 struct bfd_link_needed_list **pn;
4329 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4330 ;
4331 *pn = rpath;
4332 }
4333
4334 /* If we have a PT_GNU_RELRO program header, mark as read-only
4335 all sections contained fully therein. This makes relro
4336 shared library sections appear as they will at run-time. */
4337 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4338 while (phdr-- > elf_tdata (abfd)->phdr)
4339 if (phdr->p_type == PT_GNU_RELRO)
4340 {
4341 for (s = abfd->sections; s != NULL; s = s->next)
4342 {
4343 unsigned int opb = bfd_octets_per_byte (abfd, s);
4344
4345 if ((s->flags & SEC_ALLOC) != 0
4346 && s->vma * opb >= phdr->p_vaddr
4347 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4348 s->flags |= SEC_READONLY;
4349 }
4350 break;
4351 }
4352
4353 /* We do not want to include any of the sections in a dynamic
4354 object in the output file. We hack by simply clobbering the
4355 list of sections in the BFD. This could be handled more
4356 cleanly by, say, a new section flag; the existing
4357 SEC_NEVER_LOAD flag is not the one we want, because that one
4358 still implies that the section takes up space in the output
4359 file. */
4360 bfd_section_list_clear (abfd);
4361
4362 /* Find the name to use in a DT_NEEDED entry that refers to this
4363 object. If the object has a DT_SONAME entry, we use it.
4364 Otherwise, if the generic linker stuck something in
4365 elf_dt_name, we use that. Otherwise, we just use the file
4366 name. */
4367 if (soname == NULL || *soname == '\0')
4368 {
4369 soname = elf_dt_name (abfd);
4370 if (soname == NULL || *soname == '\0')
4371 soname = bfd_get_filename (abfd);
4372 }
4373
4374 /* Save the SONAME because sometimes the linker emulation code
4375 will need to know it. */
4376 elf_dt_name (abfd) = soname;
4377
4378 /* If we have already included this dynamic object in the
4379 link, just ignore it. There is no reason to include a
4380 particular dynamic object more than once. */
4381 for (loaded_lib = htab->dyn_loaded;
4382 loaded_lib != NULL;
4383 loaded_lib = loaded_lib->next)
4384 {
4385 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4386 return TRUE;
4387 }
4388
4389 /* Create dynamic sections for backends that require that be done
4390 before setup_gnu_properties. */
4391 if (add_needed
4392 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4393 return FALSE;
4394
4395 /* Save the DT_AUDIT entry for the linker emulation code. */
4396 elf_dt_audit (abfd) = audit;
4397 }
4398
4399 /* If this is a dynamic object, we always link against the .dynsym
4400 symbol table, not the .symtab symbol table. The dynamic linker
4401 will only see the .dynsym symbol table, so there is no reason to
4402 look at .symtab for a dynamic object. */
4403
4404 if (! dynamic || elf_dynsymtab (abfd) == 0)
4405 hdr = &elf_tdata (abfd)->symtab_hdr;
4406 else
4407 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4408
4409 symcount = hdr->sh_size / bed->s->sizeof_sym;
4410
4411 /* The sh_info field of the symtab header tells us where the
4412 external symbols start. We don't care about the local symbols at
4413 this point. */
4414 if (elf_bad_symtab (abfd))
4415 {
4416 extsymcount = symcount;
4417 extsymoff = 0;
4418 }
4419 else
4420 {
4421 extsymcount = symcount - hdr->sh_info;
4422 extsymoff = hdr->sh_info;
4423 }
4424
4425 sym_hash = elf_sym_hashes (abfd);
4426 if (extsymcount != 0)
4427 {
4428 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4429 NULL, NULL, NULL);
4430 if (isymbuf == NULL)
4431 goto error_return;
4432
4433 if (sym_hash == NULL)
4434 {
4435 /* We store a pointer to the hash table entry for each
4436 external symbol. */
4437 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4438 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4439 if (sym_hash == NULL)
4440 goto error_free_sym;
4441 elf_sym_hashes (abfd) = sym_hash;
4442 }
4443 }
4444
4445 if (dynamic)
4446 {
4447 /* Read in any version definitions. */
4448 if (!_bfd_elf_slurp_version_tables (abfd,
4449 info->default_imported_symver))
4450 goto error_free_sym;
4451
4452 /* Read in the symbol versions, but don't bother to convert them
4453 to internal format. */
4454 if (elf_dynversym (abfd) != 0)
4455 {
4456 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4457 bfd_size_type amt = versymhdr->sh_size;
4458
4459 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4460 goto error_free_sym;
4461 extversym = (Elf_External_Versym *)
4462 _bfd_malloc_and_read (abfd, amt, amt);
4463 if (extversym == NULL)
4464 goto error_free_sym;
4465 extversym_end = extversym + amt / sizeof (*extversym);
4466 }
4467 }
4468
4469 /* If we are loading an as-needed shared lib, save the symbol table
4470 state before we start adding symbols. If the lib turns out
4471 to be unneeded, restore the state. */
4472 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4473 {
4474 unsigned int i;
4475 size_t entsize;
4476
4477 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4478 {
4479 struct bfd_hash_entry *p;
4480 struct elf_link_hash_entry *h;
4481
4482 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4483 {
4484 h = (struct elf_link_hash_entry *) p;
4485 entsize += htab->root.table.entsize;
4486 if (h->root.type == bfd_link_hash_warning)
4487 entsize += htab->root.table.entsize;
4488 }
4489 }
4490
4491 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4492 old_tab = bfd_malloc (tabsize + entsize);
4493 if (old_tab == NULL)
4494 goto error_free_vers;
4495
4496 /* Remember the current objalloc pointer, so that all mem for
4497 symbols added can later be reclaimed. */
4498 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4499 if (alloc_mark == NULL)
4500 goto error_free_vers;
4501
4502 /* Make a special call to the linker "notice" function to
4503 tell it that we are about to handle an as-needed lib. */
4504 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4505 goto error_free_vers;
4506
4507 /* Clone the symbol table. Remember some pointers into the
4508 symbol table, and dynamic symbol count. */
4509 old_ent = (char *) old_tab + tabsize;
4510 memcpy (old_tab, htab->root.table.table, tabsize);
4511 old_undefs = htab->root.undefs;
4512 old_undefs_tail = htab->root.undefs_tail;
4513 old_table = htab->root.table.table;
4514 old_size = htab->root.table.size;
4515 old_count = htab->root.table.count;
4516 old_strtab = NULL;
4517 if (htab->dynstr != NULL)
4518 {
4519 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4520 if (old_strtab == NULL)
4521 goto error_free_vers;
4522 }
4523
4524 for (i = 0; i < htab->root.table.size; i++)
4525 {
4526 struct bfd_hash_entry *p;
4527 struct elf_link_hash_entry *h;
4528
4529 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4530 {
4531 memcpy (old_ent, p, htab->root.table.entsize);
4532 old_ent = (char *) old_ent + htab->root.table.entsize;
4533 h = (struct elf_link_hash_entry *) p;
4534 if (h->root.type == bfd_link_hash_warning)
4535 {
4536 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4537 old_ent = (char *) old_ent + htab->root.table.entsize;
4538 }
4539 }
4540 }
4541 }
4542
4543 weaks = NULL;
4544 if (extversym == NULL)
4545 ever = NULL;
4546 else if (extversym + extsymoff < extversym_end)
4547 ever = extversym + extsymoff;
4548 else
4549 {
4550 /* xgettext:c-format */
4551 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4552 abfd, (long) extsymoff,
4553 (long) (extversym_end - extversym) / sizeof (* extversym));
4554 bfd_set_error (bfd_error_bad_value);
4555 goto error_free_vers;
4556 }
4557
4558 if (!bfd_link_relocatable (info)
4559 && abfd->lto_slim_object)
4560 {
4561 _bfd_error_handler
4562 (_("%pB: plugin needed to handle lto object"), abfd);
4563 }
4564
4565 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4566 isym < isymend;
4567 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4568 {
4569 int bind;
4570 bfd_vma value;
4571 asection *sec, *new_sec;
4572 flagword flags;
4573 const char *name;
4574 struct elf_link_hash_entry *h;
4575 struct elf_link_hash_entry *hi;
4576 bfd_boolean definition;
4577 bfd_boolean size_change_ok;
4578 bfd_boolean type_change_ok;
4579 bfd_boolean new_weak;
4580 bfd_boolean old_weak;
4581 bfd_boolean override;
4582 bfd_boolean common;
4583 bfd_boolean discarded;
4584 unsigned int old_alignment;
4585 unsigned int shindex;
4586 bfd *old_bfd;
4587 bfd_boolean matched;
4588
4589 override = FALSE;
4590
4591 flags = BSF_NO_FLAGS;
4592 sec = NULL;
4593 value = isym->st_value;
4594 common = bed->common_definition (isym);
4595 if (common && info->inhibit_common_definition)
4596 {
4597 /* Treat common symbol as undefined for --no-define-common. */
4598 isym->st_shndx = SHN_UNDEF;
4599 common = FALSE;
4600 }
4601 discarded = FALSE;
4602
4603 bind = ELF_ST_BIND (isym->st_info);
4604 switch (bind)
4605 {
4606 case STB_LOCAL:
4607 /* This should be impossible, since ELF requires that all
4608 global symbols follow all local symbols, and that sh_info
4609 point to the first global symbol. Unfortunately, Irix 5
4610 screws this up. */
4611 if (elf_bad_symtab (abfd))
4612 continue;
4613
4614 /* If we aren't prepared to handle locals within the globals
4615 then we'll likely segfault on a NULL symbol hash if the
4616 symbol is ever referenced in relocations. */
4617 shindex = elf_elfheader (abfd)->e_shstrndx;
4618 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4619 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4620 " (>= sh_info of %lu)"),
4621 abfd, name, (long) (isym - isymbuf + extsymoff),
4622 (long) extsymoff);
4623
4624 /* Dynamic object relocations are not processed by ld, so
4625 ld won't run into the problem mentioned above. */
4626 if (dynamic)
4627 continue;
4628 bfd_set_error (bfd_error_bad_value);
4629 goto error_free_vers;
4630
4631 case STB_GLOBAL:
4632 if (isym->st_shndx != SHN_UNDEF && !common)
4633 flags = BSF_GLOBAL;
4634 break;
4635
4636 case STB_WEAK:
4637 flags = BSF_WEAK;
4638 break;
4639
4640 case STB_GNU_UNIQUE:
4641 flags = BSF_GNU_UNIQUE;
4642 break;
4643
4644 default:
4645 /* Leave it up to the processor backend. */
4646 break;
4647 }
4648
4649 if (isym->st_shndx == SHN_UNDEF)
4650 sec = bfd_und_section_ptr;
4651 else if (isym->st_shndx == SHN_ABS)
4652 sec = bfd_abs_section_ptr;
4653 else if (isym->st_shndx == SHN_COMMON)
4654 {
4655 sec = bfd_com_section_ptr;
4656 /* What ELF calls the size we call the value. What ELF
4657 calls the value we call the alignment. */
4658 value = isym->st_size;
4659 }
4660 else
4661 {
4662 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4663 if (sec == NULL)
4664 sec = bfd_abs_section_ptr;
4665 else if (discarded_section (sec))
4666 {
4667 /* Symbols from discarded section are undefined. We keep
4668 its visibility. */
4669 sec = bfd_und_section_ptr;
4670 discarded = TRUE;
4671 isym->st_shndx = SHN_UNDEF;
4672 }
4673 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4674 value -= sec->vma;
4675 }
4676
4677 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4678 isym->st_name);
4679 if (name == NULL)
4680 goto error_free_vers;
4681
4682 if (isym->st_shndx == SHN_COMMON
4683 && (abfd->flags & BFD_PLUGIN) != 0)
4684 {
4685 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4686
4687 if (xc == NULL)
4688 {
4689 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4690 | SEC_EXCLUDE);
4691 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4692 if (xc == NULL)
4693 goto error_free_vers;
4694 }
4695 sec = xc;
4696 }
4697 else if (isym->st_shndx == SHN_COMMON
4698 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4699 && !bfd_link_relocatable (info))
4700 {
4701 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4702
4703 if (tcomm == NULL)
4704 {
4705 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4706 | SEC_LINKER_CREATED);
4707 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4708 if (tcomm == NULL)
4709 goto error_free_vers;
4710 }
4711 sec = tcomm;
4712 }
4713 else if (bed->elf_add_symbol_hook)
4714 {
4715 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4716 &sec, &value))
4717 goto error_free_vers;
4718
4719 /* The hook function sets the name to NULL if this symbol
4720 should be skipped for some reason. */
4721 if (name == NULL)
4722 continue;
4723 }
4724
4725 /* Sanity check that all possibilities were handled. */
4726 if (sec == NULL)
4727 abort ();
4728
4729 /* Silently discard TLS symbols from --just-syms. There's
4730 no way to combine a static TLS block with a new TLS block
4731 for this executable. */
4732 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4733 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4734 continue;
4735
4736 if (bfd_is_und_section (sec)
4737 || bfd_is_com_section (sec))
4738 definition = FALSE;
4739 else
4740 definition = TRUE;
4741
4742 size_change_ok = FALSE;
4743 type_change_ok = bed->type_change_ok;
4744 old_weak = FALSE;
4745 matched = FALSE;
4746 old_alignment = 0;
4747 old_bfd = NULL;
4748 new_sec = sec;
4749
4750 if (is_elf_hash_table (htab))
4751 {
4752 Elf_Internal_Versym iver;
4753 unsigned int vernum = 0;
4754 bfd_boolean skip;
4755
4756 if (ever == NULL)
4757 {
4758 if (info->default_imported_symver)
4759 /* Use the default symbol version created earlier. */
4760 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4761 else
4762 iver.vs_vers = 0;
4763 }
4764 else if (ever >= extversym_end)
4765 {
4766 /* xgettext:c-format */
4767 _bfd_error_handler (_("%pB: not enough version information"),
4768 abfd);
4769 bfd_set_error (bfd_error_bad_value);
4770 goto error_free_vers;
4771 }
4772 else
4773 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4774
4775 vernum = iver.vs_vers & VERSYM_VERSION;
4776
4777 /* If this is a hidden symbol, or if it is not version
4778 1, we append the version name to the symbol name.
4779 However, we do not modify a non-hidden absolute symbol
4780 if it is not a function, because it might be the version
4781 symbol itself. FIXME: What if it isn't? */
4782 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4783 || (vernum > 1
4784 && (!bfd_is_abs_section (sec)
4785 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4786 {
4787 const char *verstr;
4788 size_t namelen, verlen, newlen;
4789 char *newname, *p;
4790
4791 if (isym->st_shndx != SHN_UNDEF)
4792 {
4793 if (vernum > elf_tdata (abfd)->cverdefs)
4794 verstr = NULL;
4795 else if (vernum > 1)
4796 verstr =
4797 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4798 else
4799 verstr = "";
4800
4801 if (verstr == NULL)
4802 {
4803 _bfd_error_handler
4804 /* xgettext:c-format */
4805 (_("%pB: %s: invalid version %u (max %d)"),
4806 abfd, name, vernum,
4807 elf_tdata (abfd)->cverdefs);
4808 bfd_set_error (bfd_error_bad_value);
4809 goto error_free_vers;
4810 }
4811 }
4812 else
4813 {
4814 /* We cannot simply test for the number of
4815 entries in the VERNEED section since the
4816 numbers for the needed versions do not start
4817 at 0. */
4818 Elf_Internal_Verneed *t;
4819
4820 verstr = NULL;
4821 for (t = elf_tdata (abfd)->verref;
4822 t != NULL;
4823 t = t->vn_nextref)
4824 {
4825 Elf_Internal_Vernaux *a;
4826
4827 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4828 {
4829 if (a->vna_other == vernum)
4830 {
4831 verstr = a->vna_nodename;
4832 break;
4833 }
4834 }
4835 if (a != NULL)
4836 break;
4837 }
4838 if (verstr == NULL)
4839 {
4840 _bfd_error_handler
4841 /* xgettext:c-format */
4842 (_("%pB: %s: invalid needed version %d"),
4843 abfd, name, vernum);
4844 bfd_set_error (bfd_error_bad_value);
4845 goto error_free_vers;
4846 }
4847 }
4848
4849 namelen = strlen (name);
4850 verlen = strlen (verstr);
4851 newlen = namelen + verlen + 2;
4852 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4853 && isym->st_shndx != SHN_UNDEF)
4854 ++newlen;
4855
4856 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4857 if (newname == NULL)
4858 goto error_free_vers;
4859 memcpy (newname, name, namelen);
4860 p = newname + namelen;
4861 *p++ = ELF_VER_CHR;
4862 /* If this is a defined non-hidden version symbol,
4863 we add another @ to the name. This indicates the
4864 default version of the symbol. */
4865 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4866 && isym->st_shndx != SHN_UNDEF)
4867 *p++ = ELF_VER_CHR;
4868 memcpy (p, verstr, verlen + 1);
4869
4870 name = newname;
4871 }
4872
4873 /* If this symbol has default visibility and the user has
4874 requested we not re-export it, then mark it as hidden. */
4875 if (!bfd_is_und_section (sec)
4876 && !dynamic
4877 && abfd->no_export
4878 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4879 isym->st_other = (STV_HIDDEN
4880 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4881
4882 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4883 sym_hash, &old_bfd, &old_weak,
4884 &old_alignment, &skip, &override,
4885 &type_change_ok, &size_change_ok,
4886 &matched))
4887 goto error_free_vers;
4888
4889 if (skip)
4890 continue;
4891
4892 /* Override a definition only if the new symbol matches the
4893 existing one. */
4894 if (override && matched)
4895 definition = FALSE;
4896
4897 h = *sym_hash;
4898 while (h->root.type == bfd_link_hash_indirect
4899 || h->root.type == bfd_link_hash_warning)
4900 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4901
4902 if (elf_tdata (abfd)->verdef != NULL
4903 && vernum > 1
4904 && definition)
4905 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4906 }
4907
4908 if (! (_bfd_generic_link_add_one_symbol
4909 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4910 (struct bfd_link_hash_entry **) sym_hash)))
4911 goto error_free_vers;
4912
4913 h = *sym_hash;
4914 /* We need to make sure that indirect symbol dynamic flags are
4915 updated. */
4916 hi = h;
4917 while (h->root.type == bfd_link_hash_indirect
4918 || h->root.type == bfd_link_hash_warning)
4919 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4920
4921 /* Setting the index to -3 tells elf_link_output_extsym that
4922 this symbol is defined in a discarded section. */
4923 if (discarded)
4924 h->indx = -3;
4925
4926 *sym_hash = h;
4927
4928 new_weak = (flags & BSF_WEAK) != 0;
4929 if (dynamic
4930 && definition
4931 && new_weak
4932 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4933 && is_elf_hash_table (htab)
4934 && h->u.alias == NULL)
4935 {
4936 /* Keep a list of all weak defined non function symbols from
4937 a dynamic object, using the alias field. Later in this
4938 function we will set the alias field to the correct
4939 value. We only put non-function symbols from dynamic
4940 objects on this list, because that happens to be the only
4941 time we need to know the normal symbol corresponding to a
4942 weak symbol, and the information is time consuming to
4943 figure out. If the alias field is not already NULL,
4944 then this symbol was already defined by some previous
4945 dynamic object, and we will be using that previous
4946 definition anyhow. */
4947
4948 h->u.alias = weaks;
4949 weaks = h;
4950 }
4951
4952 /* Set the alignment of a common symbol. */
4953 if ((common || bfd_is_com_section (sec))
4954 && h->root.type == bfd_link_hash_common)
4955 {
4956 unsigned int align;
4957
4958 if (common)
4959 align = bfd_log2 (isym->st_value);
4960 else
4961 {
4962 /* The new symbol is a common symbol in a shared object.
4963 We need to get the alignment from the section. */
4964 align = new_sec->alignment_power;
4965 }
4966 if (align > old_alignment)
4967 h->root.u.c.p->alignment_power = align;
4968 else
4969 h->root.u.c.p->alignment_power = old_alignment;
4970 }
4971
4972 if (is_elf_hash_table (htab))
4973 {
4974 /* Set a flag in the hash table entry indicating the type of
4975 reference or definition we just found. A dynamic symbol
4976 is one which is referenced or defined by both a regular
4977 object and a shared object. */
4978 bfd_boolean dynsym = FALSE;
4979
4980 if (! dynamic)
4981 {
4982 if (! definition)
4983 {
4984 h->ref_regular = 1;
4985 if (bind != STB_WEAK)
4986 h->ref_regular_nonweak = 1;
4987 }
4988 else
4989 {
4990 h->def_regular = 1;
4991 if (h->def_dynamic)
4992 {
4993 h->def_dynamic = 0;
4994 h->ref_dynamic = 1;
4995 }
4996 }
4997
4998 /* If the indirect symbol has been forced local, don't
4999 make the real symbol dynamic. */
5000 if ((h == hi || !hi->forced_local)
5001 && (bfd_link_dll (info)
5002 || h->def_dynamic
5003 || h->ref_dynamic))
5004 dynsym = TRUE;
5005 }
5006 else
5007 {
5008 if (! definition)
5009 {
5010 h->ref_dynamic = 1;
5011 hi->ref_dynamic = 1;
5012 }
5013 else
5014 {
5015 h->def_dynamic = 1;
5016 hi->def_dynamic = 1;
5017 }
5018
5019 /* If the indirect symbol has been forced local, don't
5020 make the real symbol dynamic. */
5021 if ((h == hi || !hi->forced_local)
5022 && (h->def_regular
5023 || h->ref_regular
5024 || (h->is_weakalias
5025 && weakdef (h)->dynindx != -1)))
5026 dynsym = TRUE;
5027 }
5028
5029 /* Check to see if we need to add an indirect symbol for
5030 the default name. */
5031 if (definition
5032 || (!override && h->root.type == bfd_link_hash_common))
5033 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5034 sec, value, &old_bfd, &dynsym))
5035 goto error_free_vers;
5036
5037 /* Check the alignment when a common symbol is involved. This
5038 can change when a common symbol is overridden by a normal
5039 definition or a common symbol is ignored due to the old
5040 normal definition. We need to make sure the maximum
5041 alignment is maintained. */
5042 if ((old_alignment || common)
5043 && h->root.type != bfd_link_hash_common)
5044 {
5045 unsigned int common_align;
5046 unsigned int normal_align;
5047 unsigned int symbol_align;
5048 bfd *normal_bfd;
5049 bfd *common_bfd;
5050
5051 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5052 || h->root.type == bfd_link_hash_defweak);
5053
5054 symbol_align = ffs (h->root.u.def.value) - 1;
5055 if (h->root.u.def.section->owner != NULL
5056 && (h->root.u.def.section->owner->flags
5057 & (DYNAMIC | BFD_PLUGIN)) == 0)
5058 {
5059 normal_align = h->root.u.def.section->alignment_power;
5060 if (normal_align > symbol_align)
5061 normal_align = symbol_align;
5062 }
5063 else
5064 normal_align = symbol_align;
5065
5066 if (old_alignment)
5067 {
5068 common_align = old_alignment;
5069 common_bfd = old_bfd;
5070 normal_bfd = abfd;
5071 }
5072 else
5073 {
5074 common_align = bfd_log2 (isym->st_value);
5075 common_bfd = abfd;
5076 normal_bfd = old_bfd;
5077 }
5078
5079 if (normal_align < common_align)
5080 {
5081 /* PR binutils/2735 */
5082 if (normal_bfd == NULL)
5083 _bfd_error_handler
5084 /* xgettext:c-format */
5085 (_("warning: alignment %u of common symbol `%s' in %pB is"
5086 " greater than the alignment (%u) of its section %pA"),
5087 1 << common_align, name, common_bfd,
5088 1 << normal_align, h->root.u.def.section);
5089 else
5090 _bfd_error_handler
5091 /* xgettext:c-format */
5092 (_("warning: alignment %u of symbol `%s' in %pB"
5093 " is smaller than %u in %pB"),
5094 1 << normal_align, name, normal_bfd,
5095 1 << common_align, common_bfd);
5096 }
5097 }
5098
5099 /* Remember the symbol size if it isn't undefined. */
5100 if (isym->st_size != 0
5101 && isym->st_shndx != SHN_UNDEF
5102 && (definition || h->size == 0))
5103 {
5104 if (h->size != 0
5105 && h->size != isym->st_size
5106 && ! size_change_ok)
5107 _bfd_error_handler
5108 /* xgettext:c-format */
5109 (_("warning: size of symbol `%s' changed"
5110 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5111 name, (uint64_t) h->size, old_bfd,
5112 (uint64_t) isym->st_size, abfd);
5113
5114 h->size = isym->st_size;
5115 }
5116
5117 /* If this is a common symbol, then we always want H->SIZE
5118 to be the size of the common symbol. The code just above
5119 won't fix the size if a common symbol becomes larger. We
5120 don't warn about a size change here, because that is
5121 covered by --warn-common. Allow changes between different
5122 function types. */
5123 if (h->root.type == bfd_link_hash_common)
5124 h->size = h->root.u.c.size;
5125
5126 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5127 && ((definition && !new_weak)
5128 || (old_weak && h->root.type == bfd_link_hash_common)
5129 || h->type == STT_NOTYPE))
5130 {
5131 unsigned int type = ELF_ST_TYPE (isym->st_info);
5132
5133 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5134 symbol. */
5135 if (type == STT_GNU_IFUNC
5136 && (abfd->flags & DYNAMIC) != 0)
5137 type = STT_FUNC;
5138
5139 if (h->type != type)
5140 {
5141 if (h->type != STT_NOTYPE && ! type_change_ok)
5142 /* xgettext:c-format */
5143 _bfd_error_handler
5144 (_("warning: type of symbol `%s' changed"
5145 " from %d to %d in %pB"),
5146 name, h->type, type, abfd);
5147
5148 h->type = type;
5149 }
5150 }
5151
5152 /* Merge st_other field. */
5153 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5154
5155 /* We don't want to make debug symbol dynamic. */
5156 if (definition
5157 && (sec->flags & SEC_DEBUGGING)
5158 && !bfd_link_relocatable (info))
5159 dynsym = FALSE;
5160
5161 if (definition)
5162 {
5163 h->target_internal = isym->st_target_internal;
5164 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5165 }
5166
5167 if (definition && !dynamic)
5168 {
5169 char *p = strchr (name, ELF_VER_CHR);
5170 if (p != NULL && p[1] != ELF_VER_CHR)
5171 {
5172 /* Queue non-default versions so that .symver x, x@FOO
5173 aliases can be checked. */
5174 if (!nondeflt_vers)
5175 {
5176 size_t amt = ((isymend - isym + 1)
5177 * sizeof (struct elf_link_hash_entry *));
5178 nondeflt_vers
5179 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5180 if (!nondeflt_vers)
5181 goto error_free_vers;
5182 }
5183 nondeflt_vers[nondeflt_vers_cnt++] = h;
5184 }
5185 }
5186
5187 if (dynsym && (abfd->flags & BFD_PLUGIN) == 0 && h->dynindx == -1)
5188 {
5189 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5190 goto error_free_vers;
5191 if (h->is_weakalias
5192 && weakdef (h)->dynindx == -1)
5193 {
5194 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5195 goto error_free_vers;
5196 }
5197 }
5198 else if (h->dynindx != -1)
5199 /* If the symbol already has a dynamic index, but
5200 visibility says it should not be visible, turn it into
5201 a local symbol. */
5202 switch (ELF_ST_VISIBILITY (h->other))
5203 {
5204 case STV_INTERNAL:
5205 case STV_HIDDEN:
5206 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5207 dynsym = FALSE;
5208 break;
5209 }
5210
5211 if (!add_needed
5212 && matched
5213 && definition
5214 && ((dynsym
5215 && h->ref_regular_nonweak)
5216 || (h->ref_dynamic_nonweak
5217 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5218 && !on_needed_list (elf_dt_name (abfd),
5219 htab->needed, NULL))))
5220 {
5221 const char *soname = elf_dt_name (abfd);
5222
5223 info->callbacks->minfo ("%!", soname, old_bfd,
5224 h->root.root.string);
5225
5226 /* A symbol from a library loaded via DT_NEEDED of some
5227 other library is referenced by a regular object.
5228 Add a DT_NEEDED entry for it. Issue an error if
5229 --no-add-needed is used and the reference was not
5230 a weak one. */
5231 if (old_bfd != NULL
5232 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5233 {
5234 _bfd_error_handler
5235 /* xgettext:c-format */
5236 (_("%pB: undefined reference to symbol '%s'"),
5237 old_bfd, name);
5238 bfd_set_error (bfd_error_missing_dso);
5239 goto error_free_vers;
5240 }
5241
5242 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5243 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5244
5245 /* Create dynamic sections for backends that require
5246 that be done before setup_gnu_properties. */
5247 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5248 return FALSE;
5249 add_needed = TRUE;
5250 }
5251 }
5252 }
5253
5254 if (info->lto_plugin_active
5255 && !bfd_link_relocatable (info)
5256 && (abfd->flags & BFD_PLUGIN) == 0
5257 && !just_syms
5258 && extsymcount)
5259 {
5260 int r_sym_shift;
5261
5262 if (bed->s->arch_size == 32)
5263 r_sym_shift = 8;
5264 else
5265 r_sym_shift = 32;
5266
5267 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5268 referenced in regular objects so that linker plugin will get
5269 the correct symbol resolution. */
5270
5271 sym_hash = elf_sym_hashes (abfd);
5272 for (s = abfd->sections; s != NULL; s = s->next)
5273 {
5274 Elf_Internal_Rela *internal_relocs;
5275 Elf_Internal_Rela *rel, *relend;
5276
5277 /* Don't check relocations in excluded sections. */
5278 if ((s->flags & SEC_RELOC) == 0
5279 || s->reloc_count == 0
5280 || (s->flags & SEC_EXCLUDE) != 0
5281 || ((info->strip == strip_all
5282 || info->strip == strip_debugger)
5283 && (s->flags & SEC_DEBUGGING) != 0))
5284 continue;
5285
5286 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5287 NULL,
5288 info->keep_memory);
5289 if (internal_relocs == NULL)
5290 goto error_free_vers;
5291
5292 rel = internal_relocs;
5293 relend = rel + s->reloc_count;
5294 for ( ; rel < relend; rel++)
5295 {
5296 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5297 struct elf_link_hash_entry *h;
5298
5299 /* Skip local symbols. */
5300 if (r_symndx < extsymoff)
5301 continue;
5302
5303 h = sym_hash[r_symndx - extsymoff];
5304 if (h != NULL)
5305 h->root.non_ir_ref_regular = 1;
5306 }
5307
5308 if (elf_section_data (s)->relocs != internal_relocs)
5309 free (internal_relocs);
5310 }
5311 }
5312
5313 free (extversym);
5314 extversym = NULL;
5315 free (isymbuf);
5316 isymbuf = NULL;
5317
5318 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5319 {
5320 unsigned int i;
5321
5322 /* Restore the symbol table. */
5323 old_ent = (char *) old_tab + tabsize;
5324 memset (elf_sym_hashes (abfd), 0,
5325 extsymcount * sizeof (struct elf_link_hash_entry *));
5326 htab->root.table.table = old_table;
5327 htab->root.table.size = old_size;
5328 htab->root.table.count = old_count;
5329 memcpy (htab->root.table.table, old_tab, tabsize);
5330 htab->root.undefs = old_undefs;
5331 htab->root.undefs_tail = old_undefs_tail;
5332 if (htab->dynstr != NULL)
5333 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5334 free (old_strtab);
5335 old_strtab = NULL;
5336 for (i = 0; i < htab->root.table.size; i++)
5337 {
5338 struct bfd_hash_entry *p;
5339 struct elf_link_hash_entry *h;
5340 bfd_size_type size;
5341 unsigned int alignment_power;
5342 unsigned int non_ir_ref_dynamic;
5343
5344 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5345 {
5346 h = (struct elf_link_hash_entry *) p;
5347 if (h->root.type == bfd_link_hash_warning)
5348 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5349
5350 /* Preserve the maximum alignment and size for common
5351 symbols even if this dynamic lib isn't on DT_NEEDED
5352 since it can still be loaded at run time by another
5353 dynamic lib. */
5354 if (h->root.type == bfd_link_hash_common)
5355 {
5356 size = h->root.u.c.size;
5357 alignment_power = h->root.u.c.p->alignment_power;
5358 }
5359 else
5360 {
5361 size = 0;
5362 alignment_power = 0;
5363 }
5364 /* Preserve non_ir_ref_dynamic so that this symbol
5365 will be exported when the dynamic lib becomes needed
5366 in the second pass. */
5367 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5368 memcpy (p, old_ent, htab->root.table.entsize);
5369 old_ent = (char *) old_ent + htab->root.table.entsize;
5370 h = (struct elf_link_hash_entry *) p;
5371 if (h->root.type == bfd_link_hash_warning)
5372 {
5373 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5374 old_ent = (char *) old_ent + htab->root.table.entsize;
5375 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5376 }
5377 if (h->root.type == bfd_link_hash_common)
5378 {
5379 if (size > h->root.u.c.size)
5380 h->root.u.c.size = size;
5381 if (alignment_power > h->root.u.c.p->alignment_power)
5382 h->root.u.c.p->alignment_power = alignment_power;
5383 }
5384 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5385 }
5386 }
5387
5388 /* Make a special call to the linker "notice" function to
5389 tell it that symbols added for crefs may need to be removed. */
5390 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5391 goto error_free_vers;
5392
5393 free (old_tab);
5394 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5395 alloc_mark);
5396 free (nondeflt_vers);
5397 return TRUE;
5398 }
5399
5400 if (old_tab != NULL)
5401 {
5402 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5403 goto error_free_vers;
5404 free (old_tab);
5405 old_tab = NULL;
5406 }
5407
5408 /* Now that all the symbols from this input file are created, if
5409 not performing a relocatable link, handle .symver foo, foo@BAR
5410 such that any relocs against foo become foo@BAR. */
5411 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5412 {
5413 size_t cnt, symidx;
5414
5415 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5416 {
5417 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5418 char *shortname, *p;
5419 size_t amt;
5420
5421 p = strchr (h->root.root.string, ELF_VER_CHR);
5422 if (p == NULL
5423 || (h->root.type != bfd_link_hash_defined
5424 && h->root.type != bfd_link_hash_defweak))
5425 continue;
5426
5427 amt = p - h->root.root.string;
5428 shortname = (char *) bfd_malloc (amt + 1);
5429 if (!shortname)
5430 goto error_free_vers;
5431 memcpy (shortname, h->root.root.string, amt);
5432 shortname[amt] = '\0';
5433
5434 hi = (struct elf_link_hash_entry *)
5435 bfd_link_hash_lookup (&htab->root, shortname,
5436 FALSE, FALSE, FALSE);
5437 if (hi != NULL
5438 && hi->root.type == h->root.type
5439 && hi->root.u.def.value == h->root.u.def.value
5440 && hi->root.u.def.section == h->root.u.def.section)
5441 {
5442 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5443 hi->root.type = bfd_link_hash_indirect;
5444 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5445 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5446 sym_hash = elf_sym_hashes (abfd);
5447 if (sym_hash)
5448 for (symidx = 0; symidx < extsymcount; ++symidx)
5449 if (sym_hash[symidx] == hi)
5450 {
5451 sym_hash[symidx] = h;
5452 break;
5453 }
5454 }
5455 free (shortname);
5456 }
5457 free (nondeflt_vers);
5458 nondeflt_vers = NULL;
5459 }
5460
5461 /* Now set the alias field correctly for all the weak defined
5462 symbols we found. The only way to do this is to search all the
5463 symbols. Since we only need the information for non functions in
5464 dynamic objects, that's the only time we actually put anything on
5465 the list WEAKS. We need this information so that if a regular
5466 object refers to a symbol defined weakly in a dynamic object, the
5467 real symbol in the dynamic object is also put in the dynamic
5468 symbols; we also must arrange for both symbols to point to the
5469 same memory location. We could handle the general case of symbol
5470 aliasing, but a general symbol alias can only be generated in
5471 assembler code, handling it correctly would be very time
5472 consuming, and other ELF linkers don't handle general aliasing
5473 either. */
5474 if (weaks != NULL)
5475 {
5476 struct elf_link_hash_entry **hpp;
5477 struct elf_link_hash_entry **hppend;
5478 struct elf_link_hash_entry **sorted_sym_hash;
5479 struct elf_link_hash_entry *h;
5480 size_t sym_count, amt;
5481
5482 /* Since we have to search the whole symbol list for each weak
5483 defined symbol, search time for N weak defined symbols will be
5484 O(N^2). Binary search will cut it down to O(NlogN). */
5485 amt = extsymcount * sizeof (*sorted_sym_hash);
5486 sorted_sym_hash = bfd_malloc (amt);
5487 if (sorted_sym_hash == NULL)
5488 goto error_return;
5489 sym_hash = sorted_sym_hash;
5490 hpp = elf_sym_hashes (abfd);
5491 hppend = hpp + extsymcount;
5492 sym_count = 0;
5493 for (; hpp < hppend; hpp++)
5494 {
5495 h = *hpp;
5496 if (h != NULL
5497 && h->root.type == bfd_link_hash_defined
5498 && !bed->is_function_type (h->type))
5499 {
5500 *sym_hash = h;
5501 sym_hash++;
5502 sym_count++;
5503 }
5504 }
5505
5506 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5507 elf_sort_symbol);
5508
5509 while (weaks != NULL)
5510 {
5511 struct elf_link_hash_entry *hlook;
5512 asection *slook;
5513 bfd_vma vlook;
5514 size_t i, j, idx = 0;
5515
5516 hlook = weaks;
5517 weaks = hlook->u.alias;
5518 hlook->u.alias = NULL;
5519
5520 if (hlook->root.type != bfd_link_hash_defined
5521 && hlook->root.type != bfd_link_hash_defweak)
5522 continue;
5523
5524 slook = hlook->root.u.def.section;
5525 vlook = hlook->root.u.def.value;
5526
5527 i = 0;
5528 j = sym_count;
5529 while (i != j)
5530 {
5531 bfd_signed_vma vdiff;
5532 idx = (i + j) / 2;
5533 h = sorted_sym_hash[idx];
5534 vdiff = vlook - h->root.u.def.value;
5535 if (vdiff < 0)
5536 j = idx;
5537 else if (vdiff > 0)
5538 i = idx + 1;
5539 else
5540 {
5541 int sdiff = slook->id - h->root.u.def.section->id;
5542 if (sdiff < 0)
5543 j = idx;
5544 else if (sdiff > 0)
5545 i = idx + 1;
5546 else
5547 break;
5548 }
5549 }
5550
5551 /* We didn't find a value/section match. */
5552 if (i == j)
5553 continue;
5554
5555 /* With multiple aliases, or when the weak symbol is already
5556 strongly defined, we have multiple matching symbols and
5557 the binary search above may land on any of them. Step
5558 one past the matching symbol(s). */
5559 while (++idx != j)
5560 {
5561 h = sorted_sym_hash[idx];
5562 if (h->root.u.def.section != slook
5563 || h->root.u.def.value != vlook)
5564 break;
5565 }
5566
5567 /* Now look back over the aliases. Since we sorted by size
5568 as well as value and section, we'll choose the one with
5569 the largest size. */
5570 while (idx-- != i)
5571 {
5572 h = sorted_sym_hash[idx];
5573
5574 /* Stop if value or section doesn't match. */
5575 if (h->root.u.def.section != slook
5576 || h->root.u.def.value != vlook)
5577 break;
5578 else if (h != hlook)
5579 {
5580 struct elf_link_hash_entry *t;
5581
5582 hlook->u.alias = h;
5583 hlook->is_weakalias = 1;
5584 t = h;
5585 if (t->u.alias != NULL)
5586 while (t->u.alias != h)
5587 t = t->u.alias;
5588 t->u.alias = hlook;
5589
5590 /* If the weak definition is in the list of dynamic
5591 symbols, make sure the real definition is put
5592 there as well. */
5593 if (hlook->dynindx != -1 && h->dynindx == -1)
5594 {
5595 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5596 {
5597 err_free_sym_hash:
5598 free (sorted_sym_hash);
5599 goto error_return;
5600 }
5601 }
5602
5603 /* If the real definition is in the list of dynamic
5604 symbols, make sure the weak definition is put
5605 there as well. If we don't do this, then the
5606 dynamic loader might not merge the entries for the
5607 real definition and the weak definition. */
5608 if (h->dynindx != -1 && hlook->dynindx == -1)
5609 {
5610 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5611 goto err_free_sym_hash;
5612 }
5613 break;
5614 }
5615 }
5616 }
5617
5618 free (sorted_sym_hash);
5619 }
5620
5621 if (bed->check_directives
5622 && !(*bed->check_directives) (abfd, info))
5623 return FALSE;
5624
5625 /* If this is a non-traditional link, try to optimize the handling
5626 of the .stab/.stabstr sections. */
5627 if (! dynamic
5628 && ! info->traditional_format
5629 && is_elf_hash_table (htab)
5630 && (info->strip != strip_all && info->strip != strip_debugger))
5631 {
5632 asection *stabstr;
5633
5634 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5635 if (stabstr != NULL)
5636 {
5637 bfd_size_type string_offset = 0;
5638 asection *stab;
5639
5640 for (stab = abfd->sections; stab; stab = stab->next)
5641 if (CONST_STRNEQ (stab->name, ".stab")
5642 && (!stab->name[5] ||
5643 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5644 && (stab->flags & SEC_MERGE) == 0
5645 && !bfd_is_abs_section (stab->output_section))
5646 {
5647 struct bfd_elf_section_data *secdata;
5648
5649 secdata = elf_section_data (stab);
5650 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5651 stabstr, &secdata->sec_info,
5652 &string_offset))
5653 goto error_return;
5654 if (secdata->sec_info)
5655 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5656 }
5657 }
5658 }
5659
5660 if (dynamic && add_needed)
5661 {
5662 /* Add this bfd to the loaded list. */
5663 struct elf_link_loaded_list *n;
5664
5665 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5666 if (n == NULL)
5667 goto error_return;
5668 n->abfd = abfd;
5669 n->next = htab->dyn_loaded;
5670 htab->dyn_loaded = n;
5671 }
5672 if (dynamic && !add_needed
5673 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5674 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5675
5676 return TRUE;
5677
5678 error_free_vers:
5679 free (old_tab);
5680 free (old_strtab);
5681 free (nondeflt_vers);
5682 free (extversym);
5683 error_free_sym:
5684 free (isymbuf);
5685 error_return:
5686 return FALSE;
5687 }
5688
5689 /* Return the linker hash table entry of a symbol that might be
5690 satisfied by an archive symbol. Return -1 on error. */
5691
5692 struct elf_link_hash_entry *
5693 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5694 struct bfd_link_info *info,
5695 const char *name)
5696 {
5697 struct elf_link_hash_entry *h;
5698 char *p, *copy;
5699 size_t len, first;
5700
5701 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5702 if (h != NULL)
5703 return h;
5704
5705 /* If this is a default version (the name contains @@), look up the
5706 symbol again with only one `@' as well as without the version.
5707 The effect is that references to the symbol with and without the
5708 version will be matched by the default symbol in the archive. */
5709
5710 p = strchr (name, ELF_VER_CHR);
5711 if (p == NULL || p[1] != ELF_VER_CHR)
5712 return h;
5713
5714 /* First check with only one `@'. */
5715 len = strlen (name);
5716 copy = (char *) bfd_alloc (abfd, len);
5717 if (copy == NULL)
5718 return (struct elf_link_hash_entry *) -1;
5719
5720 first = p - name + 1;
5721 memcpy (copy, name, first);
5722 memcpy (copy + first, name + first + 1, len - first);
5723
5724 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5725 if (h == NULL)
5726 {
5727 /* We also need to check references to the symbol without the
5728 version. */
5729 copy[first - 1] = '\0';
5730 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5731 FALSE, FALSE, TRUE);
5732 }
5733
5734 bfd_release (abfd, copy);
5735 return h;
5736 }
5737
5738 /* Add symbols from an ELF archive file to the linker hash table. We
5739 don't use _bfd_generic_link_add_archive_symbols because we need to
5740 handle versioned symbols.
5741
5742 Fortunately, ELF archive handling is simpler than that done by
5743 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5744 oddities. In ELF, if we find a symbol in the archive map, and the
5745 symbol is currently undefined, we know that we must pull in that
5746 object file.
5747
5748 Unfortunately, we do have to make multiple passes over the symbol
5749 table until nothing further is resolved. */
5750
5751 static bfd_boolean
5752 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5753 {
5754 symindex c;
5755 unsigned char *included = NULL;
5756 carsym *symdefs;
5757 bfd_boolean loop;
5758 size_t amt;
5759 const struct elf_backend_data *bed;
5760 struct elf_link_hash_entry * (*archive_symbol_lookup)
5761 (bfd *, struct bfd_link_info *, const char *);
5762
5763 if (! bfd_has_map (abfd))
5764 {
5765 /* An empty archive is a special case. */
5766 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5767 return TRUE;
5768 bfd_set_error (bfd_error_no_armap);
5769 return FALSE;
5770 }
5771
5772 /* Keep track of all symbols we know to be already defined, and all
5773 files we know to be already included. This is to speed up the
5774 second and subsequent passes. */
5775 c = bfd_ardata (abfd)->symdef_count;
5776 if (c == 0)
5777 return TRUE;
5778 amt = c * sizeof (*included);
5779 included = (unsigned char *) bfd_zmalloc (amt);
5780 if (included == NULL)
5781 return FALSE;
5782
5783 symdefs = bfd_ardata (abfd)->symdefs;
5784 bed = get_elf_backend_data (abfd);
5785 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5786
5787 do
5788 {
5789 file_ptr last;
5790 symindex i;
5791 carsym *symdef;
5792 carsym *symdefend;
5793
5794 loop = FALSE;
5795 last = -1;
5796
5797 symdef = symdefs;
5798 symdefend = symdef + c;
5799 for (i = 0; symdef < symdefend; symdef++, i++)
5800 {
5801 struct elf_link_hash_entry *h;
5802 bfd *element;
5803 struct bfd_link_hash_entry *undefs_tail;
5804 symindex mark;
5805
5806 if (included[i])
5807 continue;
5808 if (symdef->file_offset == last)
5809 {
5810 included[i] = TRUE;
5811 continue;
5812 }
5813
5814 h = archive_symbol_lookup (abfd, info, symdef->name);
5815 if (h == (struct elf_link_hash_entry *) -1)
5816 goto error_return;
5817
5818 if (h == NULL)
5819 continue;
5820
5821 if (h->root.type == bfd_link_hash_undefined)
5822 {
5823 /* If the archive element has already been loaded then one
5824 of the symbols defined by that element might have been
5825 made undefined due to being in a discarded section. */
5826 if (h->indx == -3)
5827 continue;
5828 }
5829 else if (h->root.type == bfd_link_hash_common)
5830 {
5831 /* We currently have a common symbol. The archive map contains
5832 a reference to this symbol, so we may want to include it. We
5833 only want to include it however, if this archive element
5834 contains a definition of the symbol, not just another common
5835 declaration of it.
5836
5837 Unfortunately some archivers (including GNU ar) will put
5838 declarations of common symbols into their archive maps, as
5839 well as real definitions, so we cannot just go by the archive
5840 map alone. Instead we must read in the element's symbol
5841 table and check that to see what kind of symbol definition
5842 this is. */
5843 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5844 continue;
5845 }
5846 else
5847 {
5848 if (h->root.type != bfd_link_hash_undefweak)
5849 /* Symbol must be defined. Don't check it again. */
5850 included[i] = TRUE;
5851 continue;
5852 }
5853
5854 /* We need to include this archive member. */
5855 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5856 if (element == NULL)
5857 goto error_return;
5858
5859 if (! bfd_check_format (element, bfd_object))
5860 goto error_return;
5861
5862 undefs_tail = info->hash->undefs_tail;
5863
5864 if (!(*info->callbacks
5865 ->add_archive_element) (info, element, symdef->name, &element))
5866 continue;
5867 if (!bfd_link_add_symbols (element, info))
5868 goto error_return;
5869
5870 /* If there are any new undefined symbols, we need to make
5871 another pass through the archive in order to see whether
5872 they can be defined. FIXME: This isn't perfect, because
5873 common symbols wind up on undefs_tail and because an
5874 undefined symbol which is defined later on in this pass
5875 does not require another pass. This isn't a bug, but it
5876 does make the code less efficient than it could be. */
5877 if (undefs_tail != info->hash->undefs_tail)
5878 loop = TRUE;
5879
5880 /* Look backward to mark all symbols from this object file
5881 which we have already seen in this pass. */
5882 mark = i;
5883 do
5884 {
5885 included[mark] = TRUE;
5886 if (mark == 0)
5887 break;
5888 --mark;
5889 }
5890 while (symdefs[mark].file_offset == symdef->file_offset);
5891
5892 /* We mark subsequent symbols from this object file as we go
5893 on through the loop. */
5894 last = symdef->file_offset;
5895 }
5896 }
5897 while (loop);
5898
5899 free (included);
5900 return TRUE;
5901
5902 error_return:
5903 free (included);
5904 return FALSE;
5905 }
5906
5907 /* Given an ELF BFD, add symbols to the global hash table as
5908 appropriate. */
5909
5910 bfd_boolean
5911 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5912 {
5913 switch (bfd_get_format (abfd))
5914 {
5915 case bfd_object:
5916 return elf_link_add_object_symbols (abfd, info);
5917 case bfd_archive:
5918 return elf_link_add_archive_symbols (abfd, info);
5919 default:
5920 bfd_set_error (bfd_error_wrong_format);
5921 return FALSE;
5922 }
5923 }
5924 \f
5925 struct hash_codes_info
5926 {
5927 unsigned long *hashcodes;
5928 bfd_boolean error;
5929 };
5930
5931 /* This function will be called though elf_link_hash_traverse to store
5932 all hash value of the exported symbols in an array. */
5933
5934 static bfd_boolean
5935 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5936 {
5937 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5938 const char *name;
5939 unsigned long ha;
5940 char *alc = NULL;
5941
5942 /* Ignore indirect symbols. These are added by the versioning code. */
5943 if (h->dynindx == -1)
5944 return TRUE;
5945
5946 name = h->root.root.string;
5947 if (h->versioned >= versioned)
5948 {
5949 char *p = strchr (name, ELF_VER_CHR);
5950 if (p != NULL)
5951 {
5952 alc = (char *) bfd_malloc (p - name + 1);
5953 if (alc == NULL)
5954 {
5955 inf->error = TRUE;
5956 return FALSE;
5957 }
5958 memcpy (alc, name, p - name);
5959 alc[p - name] = '\0';
5960 name = alc;
5961 }
5962 }
5963
5964 /* Compute the hash value. */
5965 ha = bfd_elf_hash (name);
5966
5967 /* Store the found hash value in the array given as the argument. */
5968 *(inf->hashcodes)++ = ha;
5969
5970 /* And store it in the struct so that we can put it in the hash table
5971 later. */
5972 h->u.elf_hash_value = ha;
5973
5974 free (alc);
5975 return TRUE;
5976 }
5977
5978 struct collect_gnu_hash_codes
5979 {
5980 bfd *output_bfd;
5981 const struct elf_backend_data *bed;
5982 unsigned long int nsyms;
5983 unsigned long int maskbits;
5984 unsigned long int *hashcodes;
5985 unsigned long int *hashval;
5986 unsigned long int *indx;
5987 unsigned long int *counts;
5988 bfd_vma *bitmask;
5989 bfd_byte *contents;
5990 bfd_size_type xlat;
5991 long int min_dynindx;
5992 unsigned long int bucketcount;
5993 unsigned long int symindx;
5994 long int local_indx;
5995 long int shift1, shift2;
5996 unsigned long int mask;
5997 bfd_boolean error;
5998 };
5999
6000 /* This function will be called though elf_link_hash_traverse to store
6001 all hash value of the exported symbols in an array. */
6002
6003 static bfd_boolean
6004 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6005 {
6006 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6007 const char *name;
6008 unsigned long ha;
6009 char *alc = NULL;
6010
6011 /* Ignore indirect symbols. These are added by the versioning code. */
6012 if (h->dynindx == -1)
6013 return TRUE;
6014
6015 /* Ignore also local symbols and undefined symbols. */
6016 if (! (*s->bed->elf_hash_symbol) (h))
6017 return TRUE;
6018
6019 name = h->root.root.string;
6020 if (h->versioned >= versioned)
6021 {
6022 char *p = strchr (name, ELF_VER_CHR);
6023 if (p != NULL)
6024 {
6025 alc = (char *) bfd_malloc (p - name + 1);
6026 if (alc == NULL)
6027 {
6028 s->error = TRUE;
6029 return FALSE;
6030 }
6031 memcpy (alc, name, p - name);
6032 alc[p - name] = '\0';
6033 name = alc;
6034 }
6035 }
6036
6037 /* Compute the hash value. */
6038 ha = bfd_elf_gnu_hash (name);
6039
6040 /* Store the found hash value in the array for compute_bucket_count,
6041 and also for .dynsym reordering purposes. */
6042 s->hashcodes[s->nsyms] = ha;
6043 s->hashval[h->dynindx] = ha;
6044 ++s->nsyms;
6045 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6046 s->min_dynindx = h->dynindx;
6047
6048 free (alc);
6049 return TRUE;
6050 }
6051
6052 /* This function will be called though elf_link_hash_traverse to do
6053 final dynamic symbol renumbering in case of .gnu.hash.
6054 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6055 to the translation table. */
6056
6057 static bfd_boolean
6058 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6059 {
6060 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6061 unsigned long int bucket;
6062 unsigned long int val;
6063
6064 /* Ignore indirect symbols. */
6065 if (h->dynindx == -1)
6066 return TRUE;
6067
6068 /* Ignore also local symbols and undefined symbols. */
6069 if (! (*s->bed->elf_hash_symbol) (h))
6070 {
6071 if (h->dynindx >= s->min_dynindx)
6072 {
6073 if (s->bed->record_xhash_symbol != NULL)
6074 {
6075 (*s->bed->record_xhash_symbol) (h, 0);
6076 s->local_indx++;
6077 }
6078 else
6079 h->dynindx = s->local_indx++;
6080 }
6081 return TRUE;
6082 }
6083
6084 bucket = s->hashval[h->dynindx] % s->bucketcount;
6085 val = (s->hashval[h->dynindx] >> s->shift1)
6086 & ((s->maskbits >> s->shift1) - 1);
6087 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6088 s->bitmask[val]
6089 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6090 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6091 if (s->counts[bucket] == 1)
6092 /* Last element terminates the chain. */
6093 val |= 1;
6094 bfd_put_32 (s->output_bfd, val,
6095 s->contents + (s->indx[bucket] - s->symindx) * 4);
6096 --s->counts[bucket];
6097 if (s->bed->record_xhash_symbol != NULL)
6098 {
6099 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6100
6101 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6102 }
6103 else
6104 h->dynindx = s->indx[bucket]++;
6105 return TRUE;
6106 }
6107
6108 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6109
6110 bfd_boolean
6111 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6112 {
6113 return !(h->forced_local
6114 || h->root.type == bfd_link_hash_undefined
6115 || h->root.type == bfd_link_hash_undefweak
6116 || ((h->root.type == bfd_link_hash_defined
6117 || h->root.type == bfd_link_hash_defweak)
6118 && h->root.u.def.section->output_section == NULL));
6119 }
6120
6121 /* Array used to determine the number of hash table buckets to use
6122 based on the number of symbols there are. If there are fewer than
6123 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6124 fewer than 37 we use 17 buckets, and so forth. We never use more
6125 than 32771 buckets. */
6126
6127 static const size_t elf_buckets[] =
6128 {
6129 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6130 16411, 32771, 0
6131 };
6132
6133 /* Compute bucket count for hashing table. We do not use a static set
6134 of possible tables sizes anymore. Instead we determine for all
6135 possible reasonable sizes of the table the outcome (i.e., the
6136 number of collisions etc) and choose the best solution. The
6137 weighting functions are not too simple to allow the table to grow
6138 without bounds. Instead one of the weighting factors is the size.
6139 Therefore the result is always a good payoff between few collisions
6140 (= short chain lengths) and table size. */
6141 static size_t
6142 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6143 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6144 unsigned long int nsyms,
6145 int gnu_hash)
6146 {
6147 size_t best_size = 0;
6148 unsigned long int i;
6149
6150 /* We have a problem here. The following code to optimize the table
6151 size requires an integer type with more the 32 bits. If
6152 BFD_HOST_U_64_BIT is set we know about such a type. */
6153 #ifdef BFD_HOST_U_64_BIT
6154 if (info->optimize)
6155 {
6156 size_t minsize;
6157 size_t maxsize;
6158 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6159 bfd *dynobj = elf_hash_table (info)->dynobj;
6160 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6161 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6162 unsigned long int *counts;
6163 bfd_size_type amt;
6164 unsigned int no_improvement_count = 0;
6165
6166 /* Possible optimization parameters: if we have NSYMS symbols we say
6167 that the hashing table must at least have NSYMS/4 and at most
6168 2*NSYMS buckets. */
6169 minsize = nsyms / 4;
6170 if (minsize == 0)
6171 minsize = 1;
6172 best_size = maxsize = nsyms * 2;
6173 if (gnu_hash)
6174 {
6175 if (minsize < 2)
6176 minsize = 2;
6177 if ((best_size & 31) == 0)
6178 ++best_size;
6179 }
6180
6181 /* Create array where we count the collisions in. We must use bfd_malloc
6182 since the size could be large. */
6183 amt = maxsize;
6184 amt *= sizeof (unsigned long int);
6185 counts = (unsigned long int *) bfd_malloc (amt);
6186 if (counts == NULL)
6187 return 0;
6188
6189 /* Compute the "optimal" size for the hash table. The criteria is a
6190 minimal chain length. The minor criteria is (of course) the size
6191 of the table. */
6192 for (i = minsize; i < maxsize; ++i)
6193 {
6194 /* Walk through the array of hashcodes and count the collisions. */
6195 BFD_HOST_U_64_BIT max;
6196 unsigned long int j;
6197 unsigned long int fact;
6198
6199 if (gnu_hash && (i & 31) == 0)
6200 continue;
6201
6202 memset (counts, '\0', i * sizeof (unsigned long int));
6203
6204 /* Determine how often each hash bucket is used. */
6205 for (j = 0; j < nsyms; ++j)
6206 ++counts[hashcodes[j] % i];
6207
6208 /* For the weight function we need some information about the
6209 pagesize on the target. This is information need not be 100%
6210 accurate. Since this information is not available (so far) we
6211 define it here to a reasonable default value. If it is crucial
6212 to have a better value some day simply define this value. */
6213 # ifndef BFD_TARGET_PAGESIZE
6214 # define BFD_TARGET_PAGESIZE (4096)
6215 # endif
6216
6217 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6218 and the chains. */
6219 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6220
6221 # if 1
6222 /* Variant 1: optimize for short chains. We add the squares
6223 of all the chain lengths (which favors many small chain
6224 over a few long chains). */
6225 for (j = 0; j < i; ++j)
6226 max += counts[j] * counts[j];
6227
6228 /* This adds penalties for the overall size of the table. */
6229 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6230 max *= fact * fact;
6231 # else
6232 /* Variant 2: Optimize a lot more for small table. Here we
6233 also add squares of the size but we also add penalties for
6234 empty slots (the +1 term). */
6235 for (j = 0; j < i; ++j)
6236 max += (1 + counts[j]) * (1 + counts[j]);
6237
6238 /* The overall size of the table is considered, but not as
6239 strong as in variant 1, where it is squared. */
6240 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6241 max *= fact;
6242 # endif
6243
6244 /* Compare with current best results. */
6245 if (max < best_chlen)
6246 {
6247 best_chlen = max;
6248 best_size = i;
6249 no_improvement_count = 0;
6250 }
6251 /* PR 11843: Avoid futile long searches for the best bucket size
6252 when there are a large number of symbols. */
6253 else if (++no_improvement_count == 100)
6254 break;
6255 }
6256
6257 free (counts);
6258 }
6259 else
6260 #endif /* defined (BFD_HOST_U_64_BIT) */
6261 {
6262 /* This is the fallback solution if no 64bit type is available or if we
6263 are not supposed to spend much time on optimizations. We select the
6264 bucket count using a fixed set of numbers. */
6265 for (i = 0; elf_buckets[i] != 0; i++)
6266 {
6267 best_size = elf_buckets[i];
6268 if (nsyms < elf_buckets[i + 1])
6269 break;
6270 }
6271 if (gnu_hash && best_size < 2)
6272 best_size = 2;
6273 }
6274
6275 return best_size;
6276 }
6277
6278 /* Size any SHT_GROUP section for ld -r. */
6279
6280 bfd_boolean
6281 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6282 {
6283 bfd *ibfd;
6284 asection *s;
6285
6286 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6287 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6288 && (s = ibfd->sections) != NULL
6289 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6290 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6291 return FALSE;
6292 return TRUE;
6293 }
6294
6295 /* Set a default stack segment size. The value in INFO wins. If it
6296 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6297 undefined it is initialized. */
6298
6299 bfd_boolean
6300 bfd_elf_stack_segment_size (bfd *output_bfd,
6301 struct bfd_link_info *info,
6302 const char *legacy_symbol,
6303 bfd_vma default_size)
6304 {
6305 struct elf_link_hash_entry *h = NULL;
6306
6307 /* Look for legacy symbol. */
6308 if (legacy_symbol)
6309 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6310 FALSE, FALSE, FALSE);
6311 if (h && (h->root.type == bfd_link_hash_defined
6312 || h->root.type == bfd_link_hash_defweak)
6313 && h->def_regular
6314 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6315 {
6316 /* The symbol has no type if specified on the command line. */
6317 h->type = STT_OBJECT;
6318 if (info->stacksize)
6319 /* xgettext:c-format */
6320 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6321 output_bfd, legacy_symbol);
6322 else if (h->root.u.def.section != bfd_abs_section_ptr)
6323 /* xgettext:c-format */
6324 _bfd_error_handler (_("%pB: %s not absolute"),
6325 output_bfd, legacy_symbol);
6326 else
6327 info->stacksize = h->root.u.def.value;
6328 }
6329
6330 if (!info->stacksize)
6331 /* If the user didn't set a size, or explicitly inhibit the
6332 size, set it now. */
6333 info->stacksize = default_size;
6334
6335 /* Provide the legacy symbol, if it is referenced. */
6336 if (h && (h->root.type == bfd_link_hash_undefined
6337 || h->root.type == bfd_link_hash_undefweak))
6338 {
6339 struct bfd_link_hash_entry *bh = NULL;
6340
6341 if (!(_bfd_generic_link_add_one_symbol
6342 (info, output_bfd, legacy_symbol,
6343 BSF_GLOBAL, bfd_abs_section_ptr,
6344 info->stacksize >= 0 ? info->stacksize : 0,
6345 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6346 return FALSE;
6347
6348 h = (struct elf_link_hash_entry *) bh;
6349 h->def_regular = 1;
6350 h->type = STT_OBJECT;
6351 }
6352
6353 return TRUE;
6354 }
6355
6356 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6357
6358 struct elf_gc_sweep_symbol_info
6359 {
6360 struct bfd_link_info *info;
6361 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6362 bfd_boolean);
6363 };
6364
6365 static bfd_boolean
6366 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6367 {
6368 if (!h->mark
6369 && (((h->root.type == bfd_link_hash_defined
6370 || h->root.type == bfd_link_hash_defweak)
6371 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6372 && h->root.u.def.section->gc_mark))
6373 || h->root.type == bfd_link_hash_undefined
6374 || h->root.type == bfd_link_hash_undefweak))
6375 {
6376 struct elf_gc_sweep_symbol_info *inf;
6377
6378 inf = (struct elf_gc_sweep_symbol_info *) data;
6379 (*inf->hide_symbol) (inf->info, h, TRUE);
6380 h->def_regular = 0;
6381 h->ref_regular = 0;
6382 h->ref_regular_nonweak = 0;
6383 }
6384
6385 return TRUE;
6386 }
6387
6388 /* Set up the sizes and contents of the ELF dynamic sections. This is
6389 called by the ELF linker emulation before_allocation routine. We
6390 must set the sizes of the sections before the linker sets the
6391 addresses of the various sections. */
6392
6393 bfd_boolean
6394 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6395 const char *soname,
6396 const char *rpath,
6397 const char *filter_shlib,
6398 const char *audit,
6399 const char *depaudit,
6400 const char * const *auxiliary_filters,
6401 struct bfd_link_info *info,
6402 asection **sinterpptr)
6403 {
6404 bfd *dynobj;
6405 const struct elf_backend_data *bed;
6406
6407 *sinterpptr = NULL;
6408
6409 if (!is_elf_hash_table (info->hash))
6410 return TRUE;
6411
6412 dynobj = elf_hash_table (info)->dynobj;
6413
6414 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6415 {
6416 struct bfd_elf_version_tree *verdefs;
6417 struct elf_info_failed asvinfo;
6418 struct bfd_elf_version_tree *t;
6419 struct bfd_elf_version_expr *d;
6420 asection *s;
6421 size_t soname_indx;
6422
6423 /* If we are supposed to export all symbols into the dynamic symbol
6424 table (this is not the normal case), then do so. */
6425 if (info->export_dynamic
6426 || (bfd_link_executable (info) && info->dynamic))
6427 {
6428 struct elf_info_failed eif;
6429
6430 eif.info = info;
6431 eif.failed = FALSE;
6432 elf_link_hash_traverse (elf_hash_table (info),
6433 _bfd_elf_export_symbol,
6434 &eif);
6435 if (eif.failed)
6436 return FALSE;
6437 }
6438
6439 if (soname != NULL)
6440 {
6441 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6442 soname, TRUE);
6443 if (soname_indx == (size_t) -1
6444 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6445 return FALSE;
6446 }
6447 else
6448 soname_indx = (size_t) -1;
6449
6450 /* Make all global versions with definition. */
6451 for (t = info->version_info; t != NULL; t = t->next)
6452 for (d = t->globals.list; d != NULL; d = d->next)
6453 if (!d->symver && d->literal)
6454 {
6455 const char *verstr, *name;
6456 size_t namelen, verlen, newlen;
6457 char *newname, *p, leading_char;
6458 struct elf_link_hash_entry *newh;
6459
6460 leading_char = bfd_get_symbol_leading_char (output_bfd);
6461 name = d->pattern;
6462 namelen = strlen (name) + (leading_char != '\0');
6463 verstr = t->name;
6464 verlen = strlen (verstr);
6465 newlen = namelen + verlen + 3;
6466
6467 newname = (char *) bfd_malloc (newlen);
6468 if (newname == NULL)
6469 return FALSE;
6470 newname[0] = leading_char;
6471 memcpy (newname + (leading_char != '\0'), name, namelen);
6472
6473 /* Check the hidden versioned definition. */
6474 p = newname + namelen;
6475 *p++ = ELF_VER_CHR;
6476 memcpy (p, verstr, verlen + 1);
6477 newh = elf_link_hash_lookup (elf_hash_table (info),
6478 newname, FALSE, FALSE,
6479 FALSE);
6480 if (newh == NULL
6481 || (newh->root.type != bfd_link_hash_defined
6482 && newh->root.type != bfd_link_hash_defweak))
6483 {
6484 /* Check the default versioned definition. */
6485 *p++ = ELF_VER_CHR;
6486 memcpy (p, verstr, verlen + 1);
6487 newh = elf_link_hash_lookup (elf_hash_table (info),
6488 newname, FALSE, FALSE,
6489 FALSE);
6490 }
6491 free (newname);
6492
6493 /* Mark this version if there is a definition and it is
6494 not defined in a shared object. */
6495 if (newh != NULL
6496 && !newh->def_dynamic
6497 && (newh->root.type == bfd_link_hash_defined
6498 || newh->root.type == bfd_link_hash_defweak))
6499 d->symver = 1;
6500 }
6501
6502 /* Attach all the symbols to their version information. */
6503 asvinfo.info = info;
6504 asvinfo.failed = FALSE;
6505
6506 elf_link_hash_traverse (elf_hash_table (info),
6507 _bfd_elf_link_assign_sym_version,
6508 &asvinfo);
6509 if (asvinfo.failed)
6510 return FALSE;
6511
6512 if (!info->allow_undefined_version)
6513 {
6514 /* Check if all global versions have a definition. */
6515 bfd_boolean all_defined = TRUE;
6516 for (t = info->version_info; t != NULL; t = t->next)
6517 for (d = t->globals.list; d != NULL; d = d->next)
6518 if (d->literal && !d->symver && !d->script)
6519 {
6520 _bfd_error_handler
6521 (_("%s: undefined version: %s"),
6522 d->pattern, t->name);
6523 all_defined = FALSE;
6524 }
6525
6526 if (!all_defined)
6527 {
6528 bfd_set_error (bfd_error_bad_value);
6529 return FALSE;
6530 }
6531 }
6532
6533 /* Set up the version definition section. */
6534 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6535 BFD_ASSERT (s != NULL);
6536
6537 /* We may have created additional version definitions if we are
6538 just linking a regular application. */
6539 verdefs = info->version_info;
6540
6541 /* Skip anonymous version tag. */
6542 if (verdefs != NULL && verdefs->vernum == 0)
6543 verdefs = verdefs->next;
6544
6545 if (verdefs == NULL && !info->create_default_symver)
6546 s->flags |= SEC_EXCLUDE;
6547 else
6548 {
6549 unsigned int cdefs;
6550 bfd_size_type size;
6551 bfd_byte *p;
6552 Elf_Internal_Verdef def;
6553 Elf_Internal_Verdaux defaux;
6554 struct bfd_link_hash_entry *bh;
6555 struct elf_link_hash_entry *h;
6556 const char *name;
6557
6558 cdefs = 0;
6559 size = 0;
6560
6561 /* Make space for the base version. */
6562 size += sizeof (Elf_External_Verdef);
6563 size += sizeof (Elf_External_Verdaux);
6564 ++cdefs;
6565
6566 /* Make space for the default version. */
6567 if (info->create_default_symver)
6568 {
6569 size += sizeof (Elf_External_Verdef);
6570 ++cdefs;
6571 }
6572
6573 for (t = verdefs; t != NULL; t = t->next)
6574 {
6575 struct bfd_elf_version_deps *n;
6576
6577 /* Don't emit base version twice. */
6578 if (t->vernum == 0)
6579 continue;
6580
6581 size += sizeof (Elf_External_Verdef);
6582 size += sizeof (Elf_External_Verdaux);
6583 ++cdefs;
6584
6585 for (n = t->deps; n != NULL; n = n->next)
6586 size += sizeof (Elf_External_Verdaux);
6587 }
6588
6589 s->size = size;
6590 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6591 if (s->contents == NULL && s->size != 0)
6592 return FALSE;
6593
6594 /* Fill in the version definition section. */
6595
6596 p = s->contents;
6597
6598 def.vd_version = VER_DEF_CURRENT;
6599 def.vd_flags = VER_FLG_BASE;
6600 def.vd_ndx = 1;
6601 def.vd_cnt = 1;
6602 if (info->create_default_symver)
6603 {
6604 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6605 def.vd_next = sizeof (Elf_External_Verdef);
6606 }
6607 else
6608 {
6609 def.vd_aux = sizeof (Elf_External_Verdef);
6610 def.vd_next = (sizeof (Elf_External_Verdef)
6611 + sizeof (Elf_External_Verdaux));
6612 }
6613
6614 if (soname_indx != (size_t) -1)
6615 {
6616 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6617 soname_indx);
6618 def.vd_hash = bfd_elf_hash (soname);
6619 defaux.vda_name = soname_indx;
6620 name = soname;
6621 }
6622 else
6623 {
6624 size_t indx;
6625
6626 name = lbasename (bfd_get_filename (output_bfd));
6627 def.vd_hash = bfd_elf_hash (name);
6628 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6629 name, FALSE);
6630 if (indx == (size_t) -1)
6631 return FALSE;
6632 defaux.vda_name = indx;
6633 }
6634 defaux.vda_next = 0;
6635
6636 _bfd_elf_swap_verdef_out (output_bfd, &def,
6637 (Elf_External_Verdef *) p);
6638 p += sizeof (Elf_External_Verdef);
6639 if (info->create_default_symver)
6640 {
6641 /* Add a symbol representing this version. */
6642 bh = NULL;
6643 if (! (_bfd_generic_link_add_one_symbol
6644 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6645 0, NULL, FALSE,
6646 get_elf_backend_data (dynobj)->collect, &bh)))
6647 return FALSE;
6648 h = (struct elf_link_hash_entry *) bh;
6649 h->non_elf = 0;
6650 h->def_regular = 1;
6651 h->type = STT_OBJECT;
6652 h->verinfo.vertree = NULL;
6653
6654 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6655 return FALSE;
6656
6657 /* Create a duplicate of the base version with the same
6658 aux block, but different flags. */
6659 def.vd_flags = 0;
6660 def.vd_ndx = 2;
6661 def.vd_aux = sizeof (Elf_External_Verdef);
6662 if (verdefs)
6663 def.vd_next = (sizeof (Elf_External_Verdef)
6664 + sizeof (Elf_External_Verdaux));
6665 else
6666 def.vd_next = 0;
6667 _bfd_elf_swap_verdef_out (output_bfd, &def,
6668 (Elf_External_Verdef *) p);
6669 p += sizeof (Elf_External_Verdef);
6670 }
6671 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6672 (Elf_External_Verdaux *) p);
6673 p += sizeof (Elf_External_Verdaux);
6674
6675 for (t = verdefs; t != NULL; t = t->next)
6676 {
6677 unsigned int cdeps;
6678 struct bfd_elf_version_deps *n;
6679
6680 /* Don't emit the base version twice. */
6681 if (t->vernum == 0)
6682 continue;
6683
6684 cdeps = 0;
6685 for (n = t->deps; n != NULL; n = n->next)
6686 ++cdeps;
6687
6688 /* Add a symbol representing this version. */
6689 bh = NULL;
6690 if (! (_bfd_generic_link_add_one_symbol
6691 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6692 0, NULL, FALSE,
6693 get_elf_backend_data (dynobj)->collect, &bh)))
6694 return FALSE;
6695 h = (struct elf_link_hash_entry *) bh;
6696 h->non_elf = 0;
6697 h->def_regular = 1;
6698 h->type = STT_OBJECT;
6699 h->verinfo.vertree = t;
6700
6701 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6702 return FALSE;
6703
6704 def.vd_version = VER_DEF_CURRENT;
6705 def.vd_flags = 0;
6706 if (t->globals.list == NULL
6707 && t->locals.list == NULL
6708 && ! t->used)
6709 def.vd_flags |= VER_FLG_WEAK;
6710 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6711 def.vd_cnt = cdeps + 1;
6712 def.vd_hash = bfd_elf_hash (t->name);
6713 def.vd_aux = sizeof (Elf_External_Verdef);
6714 def.vd_next = 0;
6715
6716 /* If a basever node is next, it *must* be the last node in
6717 the chain, otherwise Verdef construction breaks. */
6718 if (t->next != NULL && t->next->vernum == 0)
6719 BFD_ASSERT (t->next->next == NULL);
6720
6721 if (t->next != NULL && t->next->vernum != 0)
6722 def.vd_next = (sizeof (Elf_External_Verdef)
6723 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6724
6725 _bfd_elf_swap_verdef_out (output_bfd, &def,
6726 (Elf_External_Verdef *) p);
6727 p += sizeof (Elf_External_Verdef);
6728
6729 defaux.vda_name = h->dynstr_index;
6730 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6731 h->dynstr_index);
6732 defaux.vda_next = 0;
6733 if (t->deps != NULL)
6734 defaux.vda_next = sizeof (Elf_External_Verdaux);
6735 t->name_indx = defaux.vda_name;
6736
6737 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6738 (Elf_External_Verdaux *) p);
6739 p += sizeof (Elf_External_Verdaux);
6740
6741 for (n = t->deps; n != NULL; n = n->next)
6742 {
6743 if (n->version_needed == NULL)
6744 {
6745 /* This can happen if there was an error in the
6746 version script. */
6747 defaux.vda_name = 0;
6748 }
6749 else
6750 {
6751 defaux.vda_name = n->version_needed->name_indx;
6752 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6753 defaux.vda_name);
6754 }
6755 if (n->next == NULL)
6756 defaux.vda_next = 0;
6757 else
6758 defaux.vda_next = sizeof (Elf_External_Verdaux);
6759
6760 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6761 (Elf_External_Verdaux *) p);
6762 p += sizeof (Elf_External_Verdaux);
6763 }
6764 }
6765
6766 elf_tdata (output_bfd)->cverdefs = cdefs;
6767 }
6768 }
6769
6770 bed = get_elf_backend_data (output_bfd);
6771
6772 if (info->gc_sections && bed->can_gc_sections)
6773 {
6774 struct elf_gc_sweep_symbol_info sweep_info;
6775
6776 /* Remove the symbols that were in the swept sections from the
6777 dynamic symbol table. */
6778 sweep_info.info = info;
6779 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6780 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6781 &sweep_info);
6782 }
6783
6784 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6785 {
6786 asection *s;
6787 struct elf_find_verdep_info sinfo;
6788
6789 /* Work out the size of the version reference section. */
6790
6791 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6792 BFD_ASSERT (s != NULL);
6793
6794 sinfo.info = info;
6795 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6796 if (sinfo.vers == 0)
6797 sinfo.vers = 1;
6798 sinfo.failed = FALSE;
6799
6800 elf_link_hash_traverse (elf_hash_table (info),
6801 _bfd_elf_link_find_version_dependencies,
6802 &sinfo);
6803 if (sinfo.failed)
6804 return FALSE;
6805
6806 if (elf_tdata (output_bfd)->verref == NULL)
6807 s->flags |= SEC_EXCLUDE;
6808 else
6809 {
6810 Elf_Internal_Verneed *vn;
6811 unsigned int size;
6812 unsigned int crefs;
6813 bfd_byte *p;
6814
6815 /* Build the version dependency section. */
6816 size = 0;
6817 crefs = 0;
6818 for (vn = elf_tdata (output_bfd)->verref;
6819 vn != NULL;
6820 vn = vn->vn_nextref)
6821 {
6822 Elf_Internal_Vernaux *a;
6823
6824 size += sizeof (Elf_External_Verneed);
6825 ++crefs;
6826 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6827 size += sizeof (Elf_External_Vernaux);
6828 }
6829
6830 s->size = size;
6831 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6832 if (s->contents == NULL)
6833 return FALSE;
6834
6835 p = s->contents;
6836 for (vn = elf_tdata (output_bfd)->verref;
6837 vn != NULL;
6838 vn = vn->vn_nextref)
6839 {
6840 unsigned int caux;
6841 Elf_Internal_Vernaux *a;
6842 size_t indx;
6843
6844 caux = 0;
6845 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6846 ++caux;
6847
6848 vn->vn_version = VER_NEED_CURRENT;
6849 vn->vn_cnt = caux;
6850 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6851 elf_dt_name (vn->vn_bfd) != NULL
6852 ? elf_dt_name (vn->vn_bfd)
6853 : lbasename (bfd_get_filename
6854 (vn->vn_bfd)),
6855 FALSE);
6856 if (indx == (size_t) -1)
6857 return FALSE;
6858 vn->vn_file = indx;
6859 vn->vn_aux = sizeof (Elf_External_Verneed);
6860 if (vn->vn_nextref == NULL)
6861 vn->vn_next = 0;
6862 else
6863 vn->vn_next = (sizeof (Elf_External_Verneed)
6864 + caux * sizeof (Elf_External_Vernaux));
6865
6866 _bfd_elf_swap_verneed_out (output_bfd, vn,
6867 (Elf_External_Verneed *) p);
6868 p += sizeof (Elf_External_Verneed);
6869
6870 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6871 {
6872 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6873 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6874 a->vna_nodename, FALSE);
6875 if (indx == (size_t) -1)
6876 return FALSE;
6877 a->vna_name = indx;
6878 if (a->vna_nextptr == NULL)
6879 a->vna_next = 0;
6880 else
6881 a->vna_next = sizeof (Elf_External_Vernaux);
6882
6883 _bfd_elf_swap_vernaux_out (output_bfd, a,
6884 (Elf_External_Vernaux *) p);
6885 p += sizeof (Elf_External_Vernaux);
6886 }
6887 }
6888
6889 elf_tdata (output_bfd)->cverrefs = crefs;
6890 }
6891 }
6892
6893 /* Any syms created from now on start with -1 in
6894 got.refcount/offset and plt.refcount/offset. */
6895 elf_hash_table (info)->init_got_refcount
6896 = elf_hash_table (info)->init_got_offset;
6897 elf_hash_table (info)->init_plt_refcount
6898 = elf_hash_table (info)->init_plt_offset;
6899
6900 if (bfd_link_relocatable (info)
6901 && !_bfd_elf_size_group_sections (info))
6902 return FALSE;
6903
6904 /* The backend may have to create some sections regardless of whether
6905 we're dynamic or not. */
6906 if (bed->elf_backend_always_size_sections
6907 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6908 return FALSE;
6909
6910 /* Determine any GNU_STACK segment requirements, after the backend
6911 has had a chance to set a default segment size. */
6912 if (info->execstack)
6913 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6914 else if (info->noexecstack)
6915 elf_stack_flags (output_bfd) = PF_R | PF_W;
6916 else
6917 {
6918 bfd *inputobj;
6919 asection *notesec = NULL;
6920 int exec = 0;
6921
6922 for (inputobj = info->input_bfds;
6923 inputobj;
6924 inputobj = inputobj->link.next)
6925 {
6926 asection *s;
6927
6928 if (inputobj->flags
6929 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6930 continue;
6931 s = inputobj->sections;
6932 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6933 continue;
6934
6935 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6936 if (s)
6937 {
6938 if (s->flags & SEC_CODE)
6939 exec = PF_X;
6940 notesec = s;
6941 }
6942 else if (bed->default_execstack)
6943 exec = PF_X;
6944 }
6945 if (notesec || info->stacksize > 0)
6946 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6947 if (notesec && exec && bfd_link_relocatable (info)
6948 && notesec->output_section != bfd_abs_section_ptr)
6949 notesec->output_section->flags |= SEC_CODE;
6950 }
6951
6952 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6953 {
6954 struct elf_info_failed eif;
6955 struct elf_link_hash_entry *h;
6956 asection *dynstr;
6957 asection *s;
6958
6959 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6960 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6961
6962 if (info->symbolic)
6963 {
6964 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6965 return FALSE;
6966 info->flags |= DF_SYMBOLIC;
6967 }
6968
6969 if (rpath != NULL)
6970 {
6971 size_t indx;
6972 bfd_vma tag;
6973
6974 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6975 TRUE);
6976 if (indx == (size_t) -1)
6977 return FALSE;
6978
6979 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6980 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6981 return FALSE;
6982 }
6983
6984 if (filter_shlib != NULL)
6985 {
6986 size_t indx;
6987
6988 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6989 filter_shlib, TRUE);
6990 if (indx == (size_t) -1
6991 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6992 return FALSE;
6993 }
6994
6995 if (auxiliary_filters != NULL)
6996 {
6997 const char * const *p;
6998
6999 for (p = auxiliary_filters; *p != NULL; p++)
7000 {
7001 size_t indx;
7002
7003 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7004 *p, TRUE);
7005 if (indx == (size_t) -1
7006 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7007 return FALSE;
7008 }
7009 }
7010
7011 if (audit != NULL)
7012 {
7013 size_t indx;
7014
7015 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7016 TRUE);
7017 if (indx == (size_t) -1
7018 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7019 return FALSE;
7020 }
7021
7022 if (depaudit != NULL)
7023 {
7024 size_t indx;
7025
7026 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7027 TRUE);
7028 if (indx == (size_t) -1
7029 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7030 return FALSE;
7031 }
7032
7033 eif.info = info;
7034 eif.failed = FALSE;
7035
7036 /* Find all symbols which were defined in a dynamic object and make
7037 the backend pick a reasonable value for them. */
7038 elf_link_hash_traverse (elf_hash_table (info),
7039 _bfd_elf_adjust_dynamic_symbol,
7040 &eif);
7041 if (eif.failed)
7042 return FALSE;
7043
7044 /* Add some entries to the .dynamic section. We fill in some of the
7045 values later, in bfd_elf_final_link, but we must add the entries
7046 now so that we know the final size of the .dynamic section. */
7047
7048 /* If there are initialization and/or finalization functions to
7049 call then add the corresponding DT_INIT/DT_FINI entries. */
7050 h = (info->init_function
7051 ? elf_link_hash_lookup (elf_hash_table (info),
7052 info->init_function, FALSE,
7053 FALSE, FALSE)
7054 : NULL);
7055 if (h != NULL
7056 && (h->ref_regular
7057 || h->def_regular))
7058 {
7059 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7060 return FALSE;
7061 }
7062 h = (info->fini_function
7063 ? elf_link_hash_lookup (elf_hash_table (info),
7064 info->fini_function, FALSE,
7065 FALSE, FALSE)
7066 : NULL);
7067 if (h != NULL
7068 && (h->ref_regular
7069 || h->def_regular))
7070 {
7071 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7072 return FALSE;
7073 }
7074
7075 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7076 if (s != NULL && s->linker_has_input)
7077 {
7078 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7079 if (! bfd_link_executable (info))
7080 {
7081 bfd *sub;
7082 asection *o;
7083
7084 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7085 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7086 && (o = sub->sections) != NULL
7087 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7088 for (o = sub->sections; o != NULL; o = o->next)
7089 if (elf_section_data (o)->this_hdr.sh_type
7090 == SHT_PREINIT_ARRAY)
7091 {
7092 _bfd_error_handler
7093 (_("%pB: .preinit_array section is not allowed in DSO"),
7094 sub);
7095 break;
7096 }
7097
7098 bfd_set_error (bfd_error_nonrepresentable_section);
7099 return FALSE;
7100 }
7101
7102 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7103 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7104 return FALSE;
7105 }
7106 s = bfd_get_section_by_name (output_bfd, ".init_array");
7107 if (s != NULL && s->linker_has_input)
7108 {
7109 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7110 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7111 return FALSE;
7112 }
7113 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7114 if (s != NULL && s->linker_has_input)
7115 {
7116 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7117 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7118 return FALSE;
7119 }
7120
7121 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7122 /* If .dynstr is excluded from the link, we don't want any of
7123 these tags. Strictly, we should be checking each section
7124 individually; This quick check covers for the case where
7125 someone does a /DISCARD/ : { *(*) }. */
7126 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7127 {
7128 bfd_size_type strsize;
7129
7130 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7131 if ((info->emit_hash
7132 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7133 || (info->emit_gnu_hash
7134 && (bed->record_xhash_symbol == NULL
7135 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7136 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7137 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7138 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7139 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7140 bed->s->sizeof_sym))
7141 return FALSE;
7142 }
7143 }
7144
7145 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7146 return FALSE;
7147
7148 /* The backend must work out the sizes of all the other dynamic
7149 sections. */
7150 if (dynobj != NULL
7151 && bed->elf_backend_size_dynamic_sections != NULL
7152 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7153 return FALSE;
7154
7155 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7156 {
7157 if (elf_tdata (output_bfd)->cverdefs)
7158 {
7159 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7160
7161 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7162 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7163 return FALSE;
7164 }
7165
7166 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7167 {
7168 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7169 return FALSE;
7170 }
7171 else if (info->flags & DF_BIND_NOW)
7172 {
7173 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7174 return FALSE;
7175 }
7176
7177 if (info->flags_1)
7178 {
7179 if (bfd_link_executable (info))
7180 info->flags_1 &= ~ (DF_1_INITFIRST
7181 | DF_1_NODELETE
7182 | DF_1_NOOPEN);
7183 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7184 return FALSE;
7185 }
7186
7187 if (elf_tdata (output_bfd)->cverrefs)
7188 {
7189 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7190
7191 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7192 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7193 return FALSE;
7194 }
7195
7196 if ((elf_tdata (output_bfd)->cverrefs == 0
7197 && elf_tdata (output_bfd)->cverdefs == 0)
7198 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7199 {
7200 asection *s;
7201
7202 s = bfd_get_linker_section (dynobj, ".gnu.version");
7203 s->flags |= SEC_EXCLUDE;
7204 }
7205 }
7206 return TRUE;
7207 }
7208
7209 /* Find the first non-excluded output section. We'll use its
7210 section symbol for some emitted relocs. */
7211 void
7212 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7213 {
7214 asection *s;
7215 asection *found = NULL;
7216
7217 for (s = output_bfd->sections; s != NULL; s = s->next)
7218 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7219 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7220 {
7221 found = s;
7222 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7223 break;
7224 }
7225 elf_hash_table (info)->text_index_section = found;
7226 }
7227
7228 /* Find two non-excluded output sections, one for code, one for data.
7229 We'll use their section symbols for some emitted relocs. */
7230 void
7231 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7232 {
7233 asection *s;
7234 asection *found = NULL;
7235
7236 /* Data first, since setting text_index_section changes
7237 _bfd_elf_omit_section_dynsym_default. */
7238 for (s = output_bfd->sections; s != NULL; s = s->next)
7239 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7240 && !(s->flags & SEC_READONLY)
7241 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7242 {
7243 found = s;
7244 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7245 break;
7246 }
7247 elf_hash_table (info)->data_index_section = found;
7248
7249 for (s = output_bfd->sections; s != NULL; s = s->next)
7250 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7251 && (s->flags & SEC_READONLY)
7252 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7253 {
7254 found = s;
7255 break;
7256 }
7257 elf_hash_table (info)->text_index_section = found;
7258 }
7259
7260 #define GNU_HASH_SECTION_NAME(bed) \
7261 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7262
7263 bfd_boolean
7264 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7265 {
7266 const struct elf_backend_data *bed;
7267 unsigned long section_sym_count;
7268 bfd_size_type dynsymcount = 0;
7269
7270 if (!is_elf_hash_table (info->hash))
7271 return TRUE;
7272
7273 bed = get_elf_backend_data (output_bfd);
7274 (*bed->elf_backend_init_index_section) (output_bfd, info);
7275
7276 /* Assign dynsym indices. In a shared library we generate a section
7277 symbol for each output section, which come first. Next come all
7278 of the back-end allocated local dynamic syms, followed by the rest
7279 of the global symbols.
7280
7281 This is usually not needed for static binaries, however backends
7282 can request to always do it, e.g. the MIPS backend uses dynamic
7283 symbol counts to lay out GOT, which will be produced in the
7284 presence of GOT relocations even in static binaries (holding fixed
7285 data in that case, to satisfy those relocations). */
7286
7287 if (elf_hash_table (info)->dynamic_sections_created
7288 || bed->always_renumber_dynsyms)
7289 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7290 &section_sym_count);
7291
7292 if (elf_hash_table (info)->dynamic_sections_created)
7293 {
7294 bfd *dynobj;
7295 asection *s;
7296 unsigned int dtagcount;
7297
7298 dynobj = elf_hash_table (info)->dynobj;
7299
7300 /* Work out the size of the symbol version section. */
7301 s = bfd_get_linker_section (dynobj, ".gnu.version");
7302 BFD_ASSERT (s != NULL);
7303 if ((s->flags & SEC_EXCLUDE) == 0)
7304 {
7305 s->size = dynsymcount * sizeof (Elf_External_Versym);
7306 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7307 if (s->contents == NULL)
7308 return FALSE;
7309
7310 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7311 return FALSE;
7312 }
7313
7314 /* Set the size of the .dynsym and .hash sections. We counted
7315 the number of dynamic symbols in elf_link_add_object_symbols.
7316 We will build the contents of .dynsym and .hash when we build
7317 the final symbol table, because until then we do not know the
7318 correct value to give the symbols. We built the .dynstr
7319 section as we went along in elf_link_add_object_symbols. */
7320 s = elf_hash_table (info)->dynsym;
7321 BFD_ASSERT (s != NULL);
7322 s->size = dynsymcount * bed->s->sizeof_sym;
7323
7324 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7325 if (s->contents == NULL)
7326 return FALSE;
7327
7328 /* The first entry in .dynsym is a dummy symbol. Clear all the
7329 section syms, in case we don't output them all. */
7330 ++section_sym_count;
7331 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7332
7333 elf_hash_table (info)->bucketcount = 0;
7334
7335 /* Compute the size of the hashing table. As a side effect this
7336 computes the hash values for all the names we export. */
7337 if (info->emit_hash)
7338 {
7339 unsigned long int *hashcodes;
7340 struct hash_codes_info hashinf;
7341 bfd_size_type amt;
7342 unsigned long int nsyms;
7343 size_t bucketcount;
7344 size_t hash_entry_size;
7345
7346 /* Compute the hash values for all exported symbols. At the same
7347 time store the values in an array so that we could use them for
7348 optimizations. */
7349 amt = dynsymcount * sizeof (unsigned long int);
7350 hashcodes = (unsigned long int *) bfd_malloc (amt);
7351 if (hashcodes == NULL)
7352 return FALSE;
7353 hashinf.hashcodes = hashcodes;
7354 hashinf.error = FALSE;
7355
7356 /* Put all hash values in HASHCODES. */
7357 elf_link_hash_traverse (elf_hash_table (info),
7358 elf_collect_hash_codes, &hashinf);
7359 if (hashinf.error)
7360 {
7361 free (hashcodes);
7362 return FALSE;
7363 }
7364
7365 nsyms = hashinf.hashcodes - hashcodes;
7366 bucketcount
7367 = compute_bucket_count (info, hashcodes, nsyms, 0);
7368 free (hashcodes);
7369
7370 if (bucketcount == 0 && nsyms > 0)
7371 return FALSE;
7372
7373 elf_hash_table (info)->bucketcount = bucketcount;
7374
7375 s = bfd_get_linker_section (dynobj, ".hash");
7376 BFD_ASSERT (s != NULL);
7377 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7378 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7379 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7380 if (s->contents == NULL)
7381 return FALSE;
7382
7383 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7384 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7385 s->contents + hash_entry_size);
7386 }
7387
7388 if (info->emit_gnu_hash)
7389 {
7390 size_t i, cnt;
7391 unsigned char *contents;
7392 struct collect_gnu_hash_codes cinfo;
7393 bfd_size_type amt;
7394 size_t bucketcount;
7395
7396 memset (&cinfo, 0, sizeof (cinfo));
7397
7398 /* Compute the hash values for all exported symbols. At the same
7399 time store the values in an array so that we could use them for
7400 optimizations. */
7401 amt = dynsymcount * 2 * sizeof (unsigned long int);
7402 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7403 if (cinfo.hashcodes == NULL)
7404 return FALSE;
7405
7406 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7407 cinfo.min_dynindx = -1;
7408 cinfo.output_bfd = output_bfd;
7409 cinfo.bed = bed;
7410
7411 /* Put all hash values in HASHCODES. */
7412 elf_link_hash_traverse (elf_hash_table (info),
7413 elf_collect_gnu_hash_codes, &cinfo);
7414 if (cinfo.error)
7415 {
7416 free (cinfo.hashcodes);
7417 return FALSE;
7418 }
7419
7420 bucketcount
7421 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7422
7423 if (bucketcount == 0)
7424 {
7425 free (cinfo.hashcodes);
7426 return FALSE;
7427 }
7428
7429 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7430 BFD_ASSERT (s != NULL);
7431
7432 if (cinfo.nsyms == 0)
7433 {
7434 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7435 BFD_ASSERT (cinfo.min_dynindx == -1);
7436 free (cinfo.hashcodes);
7437 s->size = 5 * 4 + bed->s->arch_size / 8;
7438 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7439 if (contents == NULL)
7440 return FALSE;
7441 s->contents = contents;
7442 /* 1 empty bucket. */
7443 bfd_put_32 (output_bfd, 1, contents);
7444 /* SYMIDX above the special symbol 0. */
7445 bfd_put_32 (output_bfd, 1, contents + 4);
7446 /* Just one word for bitmask. */
7447 bfd_put_32 (output_bfd, 1, contents + 8);
7448 /* Only hash fn bloom filter. */
7449 bfd_put_32 (output_bfd, 0, contents + 12);
7450 /* No hashes are valid - empty bitmask. */
7451 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7452 /* No hashes in the only bucket. */
7453 bfd_put_32 (output_bfd, 0,
7454 contents + 16 + bed->s->arch_size / 8);
7455 }
7456 else
7457 {
7458 unsigned long int maskwords, maskbitslog2, x;
7459 BFD_ASSERT (cinfo.min_dynindx != -1);
7460
7461 x = cinfo.nsyms;
7462 maskbitslog2 = 1;
7463 while ((x >>= 1) != 0)
7464 ++maskbitslog2;
7465 if (maskbitslog2 < 3)
7466 maskbitslog2 = 5;
7467 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7468 maskbitslog2 = maskbitslog2 + 3;
7469 else
7470 maskbitslog2 = maskbitslog2 + 2;
7471 if (bed->s->arch_size == 64)
7472 {
7473 if (maskbitslog2 == 5)
7474 maskbitslog2 = 6;
7475 cinfo.shift1 = 6;
7476 }
7477 else
7478 cinfo.shift1 = 5;
7479 cinfo.mask = (1 << cinfo.shift1) - 1;
7480 cinfo.shift2 = maskbitslog2;
7481 cinfo.maskbits = 1 << maskbitslog2;
7482 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7483 amt = bucketcount * sizeof (unsigned long int) * 2;
7484 amt += maskwords * sizeof (bfd_vma);
7485 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7486 if (cinfo.bitmask == NULL)
7487 {
7488 free (cinfo.hashcodes);
7489 return FALSE;
7490 }
7491
7492 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7493 cinfo.indx = cinfo.counts + bucketcount;
7494 cinfo.symindx = dynsymcount - cinfo.nsyms;
7495 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7496
7497 /* Determine how often each hash bucket is used. */
7498 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7499 for (i = 0; i < cinfo.nsyms; ++i)
7500 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7501
7502 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7503 if (cinfo.counts[i] != 0)
7504 {
7505 cinfo.indx[i] = cnt;
7506 cnt += cinfo.counts[i];
7507 }
7508 BFD_ASSERT (cnt == dynsymcount);
7509 cinfo.bucketcount = bucketcount;
7510 cinfo.local_indx = cinfo.min_dynindx;
7511
7512 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7513 s->size += cinfo.maskbits / 8;
7514 if (bed->record_xhash_symbol != NULL)
7515 s->size += cinfo.nsyms * 4;
7516 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7517 if (contents == NULL)
7518 {
7519 free (cinfo.bitmask);
7520 free (cinfo.hashcodes);
7521 return FALSE;
7522 }
7523
7524 s->contents = contents;
7525 bfd_put_32 (output_bfd, bucketcount, contents);
7526 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7527 bfd_put_32 (output_bfd, maskwords, contents + 8);
7528 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7529 contents += 16 + cinfo.maskbits / 8;
7530
7531 for (i = 0; i < bucketcount; ++i)
7532 {
7533 if (cinfo.counts[i] == 0)
7534 bfd_put_32 (output_bfd, 0, contents);
7535 else
7536 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7537 contents += 4;
7538 }
7539
7540 cinfo.contents = contents;
7541
7542 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7543 /* Renumber dynamic symbols, if populating .gnu.hash section.
7544 If using .MIPS.xhash, populate the translation table. */
7545 elf_link_hash_traverse (elf_hash_table (info),
7546 elf_gnu_hash_process_symidx, &cinfo);
7547
7548 contents = s->contents + 16;
7549 for (i = 0; i < maskwords; ++i)
7550 {
7551 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7552 contents);
7553 contents += bed->s->arch_size / 8;
7554 }
7555
7556 free (cinfo.bitmask);
7557 free (cinfo.hashcodes);
7558 }
7559 }
7560
7561 s = bfd_get_linker_section (dynobj, ".dynstr");
7562 BFD_ASSERT (s != NULL);
7563
7564 elf_finalize_dynstr (output_bfd, info);
7565
7566 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7567
7568 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7569 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7570 return FALSE;
7571 }
7572
7573 return TRUE;
7574 }
7575 \f
7576 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7577
7578 static void
7579 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7580 asection *sec)
7581 {
7582 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7583 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7584 }
7585
7586 /* Finish SHF_MERGE section merging. */
7587
7588 bfd_boolean
7589 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7590 {
7591 bfd *ibfd;
7592 asection *sec;
7593
7594 if (!is_elf_hash_table (info->hash))
7595 return FALSE;
7596
7597 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7598 if ((ibfd->flags & DYNAMIC) == 0
7599 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7600 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7601 == get_elf_backend_data (obfd)->s->elfclass))
7602 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7603 if ((sec->flags & SEC_MERGE) != 0
7604 && !bfd_is_abs_section (sec->output_section))
7605 {
7606 struct bfd_elf_section_data *secdata;
7607
7608 secdata = elf_section_data (sec);
7609 if (! _bfd_add_merge_section (obfd,
7610 &elf_hash_table (info)->merge_info,
7611 sec, &secdata->sec_info))
7612 return FALSE;
7613 else if (secdata->sec_info)
7614 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7615 }
7616
7617 if (elf_hash_table (info)->merge_info != NULL)
7618 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7619 merge_sections_remove_hook);
7620 return TRUE;
7621 }
7622
7623 /* Create an entry in an ELF linker hash table. */
7624
7625 struct bfd_hash_entry *
7626 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7627 struct bfd_hash_table *table,
7628 const char *string)
7629 {
7630 /* Allocate the structure if it has not already been allocated by a
7631 subclass. */
7632 if (entry == NULL)
7633 {
7634 entry = (struct bfd_hash_entry *)
7635 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7636 if (entry == NULL)
7637 return entry;
7638 }
7639
7640 /* Call the allocation method of the superclass. */
7641 entry = _bfd_link_hash_newfunc (entry, table, string);
7642 if (entry != NULL)
7643 {
7644 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7645 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7646
7647 /* Set local fields. */
7648 ret->indx = -1;
7649 ret->dynindx = -1;
7650 ret->got = htab->init_got_refcount;
7651 ret->plt = htab->init_plt_refcount;
7652 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7653 - offsetof (struct elf_link_hash_entry, size)));
7654 /* Assume that we have been called by a non-ELF symbol reader.
7655 This flag is then reset by the code which reads an ELF input
7656 file. This ensures that a symbol created by a non-ELF symbol
7657 reader will have the flag set correctly. */
7658 ret->non_elf = 1;
7659 }
7660
7661 return entry;
7662 }
7663
7664 /* Copy data from an indirect symbol to its direct symbol, hiding the
7665 old indirect symbol. Also used for copying flags to a weakdef. */
7666
7667 void
7668 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7669 struct elf_link_hash_entry *dir,
7670 struct elf_link_hash_entry *ind)
7671 {
7672 struct elf_link_hash_table *htab;
7673
7674 if (ind->dyn_relocs != NULL)
7675 {
7676 if (dir->dyn_relocs != NULL)
7677 {
7678 struct elf_dyn_relocs **pp;
7679 struct elf_dyn_relocs *p;
7680
7681 /* Add reloc counts against the indirect sym to the direct sym
7682 list. Merge any entries against the same section. */
7683 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7684 {
7685 struct elf_dyn_relocs *q;
7686
7687 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7688 if (q->sec == p->sec)
7689 {
7690 q->pc_count += p->pc_count;
7691 q->count += p->count;
7692 *pp = p->next;
7693 break;
7694 }
7695 if (q == NULL)
7696 pp = &p->next;
7697 }
7698 *pp = dir->dyn_relocs;
7699 }
7700
7701 dir->dyn_relocs = ind->dyn_relocs;
7702 ind->dyn_relocs = NULL;
7703 }
7704
7705 /* Copy down any references that we may have already seen to the
7706 symbol which just became indirect. */
7707
7708 if (dir->versioned != versioned_hidden)
7709 dir->ref_dynamic |= ind->ref_dynamic;
7710 dir->ref_regular |= ind->ref_regular;
7711 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7712 dir->non_got_ref |= ind->non_got_ref;
7713 dir->needs_plt |= ind->needs_plt;
7714 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7715
7716 if (ind->root.type != bfd_link_hash_indirect)
7717 return;
7718
7719 /* Copy over the global and procedure linkage table refcount entries.
7720 These may have been already set up by a check_relocs routine. */
7721 htab = elf_hash_table (info);
7722 if (ind->got.refcount > htab->init_got_refcount.refcount)
7723 {
7724 if (dir->got.refcount < 0)
7725 dir->got.refcount = 0;
7726 dir->got.refcount += ind->got.refcount;
7727 ind->got.refcount = htab->init_got_refcount.refcount;
7728 }
7729
7730 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7731 {
7732 if (dir->plt.refcount < 0)
7733 dir->plt.refcount = 0;
7734 dir->plt.refcount += ind->plt.refcount;
7735 ind->plt.refcount = htab->init_plt_refcount.refcount;
7736 }
7737
7738 if (ind->dynindx != -1)
7739 {
7740 if (dir->dynindx != -1)
7741 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7742 dir->dynindx = ind->dynindx;
7743 dir->dynstr_index = ind->dynstr_index;
7744 ind->dynindx = -1;
7745 ind->dynstr_index = 0;
7746 }
7747 }
7748
7749 void
7750 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7751 struct elf_link_hash_entry *h,
7752 bfd_boolean force_local)
7753 {
7754 /* STT_GNU_IFUNC symbol must go through PLT. */
7755 if (h->type != STT_GNU_IFUNC)
7756 {
7757 h->plt = elf_hash_table (info)->init_plt_offset;
7758 h->needs_plt = 0;
7759 }
7760 if (force_local)
7761 {
7762 h->forced_local = 1;
7763 if (h->dynindx != -1)
7764 {
7765 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7766 h->dynstr_index);
7767 h->dynindx = -1;
7768 h->dynstr_index = 0;
7769 }
7770 }
7771 }
7772
7773 /* Hide a symbol. */
7774
7775 void
7776 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7777 struct bfd_link_info *info,
7778 struct bfd_link_hash_entry *h)
7779 {
7780 if (is_elf_hash_table (info->hash))
7781 {
7782 const struct elf_backend_data *bed
7783 = get_elf_backend_data (output_bfd);
7784 struct elf_link_hash_entry *eh
7785 = (struct elf_link_hash_entry *) h;
7786 bed->elf_backend_hide_symbol (info, eh, TRUE);
7787 eh->def_dynamic = 0;
7788 eh->ref_dynamic = 0;
7789 eh->dynamic_def = 0;
7790 }
7791 }
7792
7793 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7794 caller. */
7795
7796 bfd_boolean
7797 _bfd_elf_link_hash_table_init
7798 (struct elf_link_hash_table *table,
7799 bfd *abfd,
7800 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7801 struct bfd_hash_table *,
7802 const char *),
7803 unsigned int entsize,
7804 enum elf_target_id target_id)
7805 {
7806 bfd_boolean ret;
7807 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7808
7809 table->init_got_refcount.refcount = can_refcount - 1;
7810 table->init_plt_refcount.refcount = can_refcount - 1;
7811 table->init_got_offset.offset = -(bfd_vma) 1;
7812 table->init_plt_offset.offset = -(bfd_vma) 1;
7813 /* The first dynamic symbol is a dummy. */
7814 table->dynsymcount = 1;
7815
7816 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7817
7818 table->root.type = bfd_link_elf_hash_table;
7819 table->hash_table_id = target_id;
7820 table->target_os = get_elf_backend_data (abfd)->target_os;
7821
7822 return ret;
7823 }
7824
7825 /* Create an ELF linker hash table. */
7826
7827 struct bfd_link_hash_table *
7828 _bfd_elf_link_hash_table_create (bfd *abfd)
7829 {
7830 struct elf_link_hash_table *ret;
7831 size_t amt = sizeof (struct elf_link_hash_table);
7832
7833 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7834 if (ret == NULL)
7835 return NULL;
7836
7837 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7838 sizeof (struct elf_link_hash_entry),
7839 GENERIC_ELF_DATA))
7840 {
7841 free (ret);
7842 return NULL;
7843 }
7844 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7845
7846 return &ret->root;
7847 }
7848
7849 /* Destroy an ELF linker hash table. */
7850
7851 void
7852 _bfd_elf_link_hash_table_free (bfd *obfd)
7853 {
7854 struct elf_link_hash_table *htab;
7855
7856 htab = (struct elf_link_hash_table *) obfd->link.hash;
7857 if (htab->dynstr != NULL)
7858 _bfd_elf_strtab_free (htab->dynstr);
7859 _bfd_merge_sections_free (htab->merge_info);
7860 _bfd_generic_link_hash_table_free (obfd);
7861 }
7862
7863 /* This is a hook for the ELF emulation code in the generic linker to
7864 tell the backend linker what file name to use for the DT_NEEDED
7865 entry for a dynamic object. */
7866
7867 void
7868 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7869 {
7870 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7871 && bfd_get_format (abfd) == bfd_object)
7872 elf_dt_name (abfd) = name;
7873 }
7874
7875 int
7876 bfd_elf_get_dyn_lib_class (bfd *abfd)
7877 {
7878 int lib_class;
7879 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7880 && bfd_get_format (abfd) == bfd_object)
7881 lib_class = elf_dyn_lib_class (abfd);
7882 else
7883 lib_class = 0;
7884 return lib_class;
7885 }
7886
7887 void
7888 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7889 {
7890 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7891 && bfd_get_format (abfd) == bfd_object)
7892 elf_dyn_lib_class (abfd) = lib_class;
7893 }
7894
7895 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7896 the linker ELF emulation code. */
7897
7898 struct bfd_link_needed_list *
7899 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7900 struct bfd_link_info *info)
7901 {
7902 if (! is_elf_hash_table (info->hash))
7903 return NULL;
7904 return elf_hash_table (info)->needed;
7905 }
7906
7907 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7908 hook for the linker ELF emulation code. */
7909
7910 struct bfd_link_needed_list *
7911 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7912 struct bfd_link_info *info)
7913 {
7914 if (! is_elf_hash_table (info->hash))
7915 return NULL;
7916 return elf_hash_table (info)->runpath;
7917 }
7918
7919 /* Get the name actually used for a dynamic object for a link. This
7920 is the SONAME entry if there is one. Otherwise, it is the string
7921 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7922
7923 const char *
7924 bfd_elf_get_dt_soname (bfd *abfd)
7925 {
7926 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7927 && bfd_get_format (abfd) == bfd_object)
7928 return elf_dt_name (abfd);
7929 return NULL;
7930 }
7931
7932 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7933 the ELF linker emulation code. */
7934
7935 bfd_boolean
7936 bfd_elf_get_bfd_needed_list (bfd *abfd,
7937 struct bfd_link_needed_list **pneeded)
7938 {
7939 asection *s;
7940 bfd_byte *dynbuf = NULL;
7941 unsigned int elfsec;
7942 unsigned long shlink;
7943 bfd_byte *extdyn, *extdynend;
7944 size_t extdynsize;
7945 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7946
7947 *pneeded = NULL;
7948
7949 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7950 || bfd_get_format (abfd) != bfd_object)
7951 return TRUE;
7952
7953 s = bfd_get_section_by_name (abfd, ".dynamic");
7954 if (s == NULL || s->size == 0)
7955 return TRUE;
7956
7957 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7958 goto error_return;
7959
7960 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7961 if (elfsec == SHN_BAD)
7962 goto error_return;
7963
7964 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7965
7966 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7967 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7968
7969 extdyn = dynbuf;
7970 extdynend = extdyn + s->size;
7971 for (; extdyn < extdynend; extdyn += extdynsize)
7972 {
7973 Elf_Internal_Dyn dyn;
7974
7975 (*swap_dyn_in) (abfd, extdyn, &dyn);
7976
7977 if (dyn.d_tag == DT_NULL)
7978 break;
7979
7980 if (dyn.d_tag == DT_NEEDED)
7981 {
7982 const char *string;
7983 struct bfd_link_needed_list *l;
7984 unsigned int tagv = dyn.d_un.d_val;
7985 size_t amt;
7986
7987 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7988 if (string == NULL)
7989 goto error_return;
7990
7991 amt = sizeof *l;
7992 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7993 if (l == NULL)
7994 goto error_return;
7995
7996 l->by = abfd;
7997 l->name = string;
7998 l->next = *pneeded;
7999 *pneeded = l;
8000 }
8001 }
8002
8003 free (dynbuf);
8004
8005 return TRUE;
8006
8007 error_return:
8008 free (dynbuf);
8009 return FALSE;
8010 }
8011
8012 struct elf_symbuf_symbol
8013 {
8014 unsigned long st_name; /* Symbol name, index in string tbl */
8015 unsigned char st_info; /* Type and binding attributes */
8016 unsigned char st_other; /* Visibilty, and target specific */
8017 };
8018
8019 struct elf_symbuf_head
8020 {
8021 struct elf_symbuf_symbol *ssym;
8022 size_t count;
8023 unsigned int st_shndx;
8024 };
8025
8026 struct elf_symbol
8027 {
8028 union
8029 {
8030 Elf_Internal_Sym *isym;
8031 struct elf_symbuf_symbol *ssym;
8032 void *p;
8033 } u;
8034 const char *name;
8035 };
8036
8037 /* Sort references to symbols by ascending section number. */
8038
8039 static int
8040 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8041 {
8042 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8043 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8044
8045 if (s1->st_shndx != s2->st_shndx)
8046 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8047 /* Final sort by the address of the sym in the symbuf ensures
8048 a stable sort. */
8049 if (s1 != s2)
8050 return s1 > s2 ? 1 : -1;
8051 return 0;
8052 }
8053
8054 static int
8055 elf_sym_name_compare (const void *arg1, const void *arg2)
8056 {
8057 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8058 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8059 int ret = strcmp (s1->name, s2->name);
8060 if (ret != 0)
8061 return ret;
8062 if (s1->u.p != s2->u.p)
8063 return s1->u.p > s2->u.p ? 1 : -1;
8064 return 0;
8065 }
8066
8067 static struct elf_symbuf_head *
8068 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8069 {
8070 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8071 struct elf_symbuf_symbol *ssym;
8072 struct elf_symbuf_head *ssymbuf, *ssymhead;
8073 size_t i, shndx_count, total_size, amt;
8074
8075 amt = symcount * sizeof (*indbuf);
8076 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8077 if (indbuf == NULL)
8078 return NULL;
8079
8080 for (ind = indbuf, i = 0; i < symcount; i++)
8081 if (isymbuf[i].st_shndx != SHN_UNDEF)
8082 *ind++ = &isymbuf[i];
8083 indbufend = ind;
8084
8085 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8086 elf_sort_elf_symbol);
8087
8088 shndx_count = 0;
8089 if (indbufend > indbuf)
8090 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8091 if (ind[0]->st_shndx != ind[1]->st_shndx)
8092 shndx_count++;
8093
8094 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8095 + (indbufend - indbuf) * sizeof (*ssym));
8096 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8097 if (ssymbuf == NULL)
8098 {
8099 free (indbuf);
8100 return NULL;
8101 }
8102
8103 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8104 ssymbuf->ssym = NULL;
8105 ssymbuf->count = shndx_count;
8106 ssymbuf->st_shndx = 0;
8107 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8108 {
8109 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8110 {
8111 ssymhead++;
8112 ssymhead->ssym = ssym;
8113 ssymhead->count = 0;
8114 ssymhead->st_shndx = (*ind)->st_shndx;
8115 }
8116 ssym->st_name = (*ind)->st_name;
8117 ssym->st_info = (*ind)->st_info;
8118 ssym->st_other = (*ind)->st_other;
8119 ssymhead->count++;
8120 }
8121 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8122 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8123 == total_size));
8124
8125 free (indbuf);
8126 return ssymbuf;
8127 }
8128
8129 /* Check if 2 sections define the same set of local and global
8130 symbols. */
8131
8132 static bfd_boolean
8133 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8134 struct bfd_link_info *info)
8135 {
8136 bfd *bfd1, *bfd2;
8137 const struct elf_backend_data *bed1, *bed2;
8138 Elf_Internal_Shdr *hdr1, *hdr2;
8139 size_t symcount1, symcount2;
8140 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8141 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8142 Elf_Internal_Sym *isym, *isymend;
8143 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8144 size_t count1, count2, i;
8145 unsigned int shndx1, shndx2;
8146 bfd_boolean result;
8147
8148 bfd1 = sec1->owner;
8149 bfd2 = sec2->owner;
8150
8151 /* Both sections have to be in ELF. */
8152 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8153 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8154 return FALSE;
8155
8156 if (elf_section_type (sec1) != elf_section_type (sec2))
8157 return FALSE;
8158
8159 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8160 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8161 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8162 return FALSE;
8163
8164 bed1 = get_elf_backend_data (bfd1);
8165 bed2 = get_elf_backend_data (bfd2);
8166 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8167 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8168 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8169 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8170
8171 if (symcount1 == 0 || symcount2 == 0)
8172 return FALSE;
8173
8174 result = FALSE;
8175 isymbuf1 = NULL;
8176 isymbuf2 = NULL;
8177 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8178 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8179
8180 if (ssymbuf1 == NULL)
8181 {
8182 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8183 NULL, NULL, NULL);
8184 if (isymbuf1 == NULL)
8185 goto done;
8186
8187 if (info != NULL && !info->reduce_memory_overheads)
8188 {
8189 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8190 elf_tdata (bfd1)->symbuf = ssymbuf1;
8191 }
8192 }
8193
8194 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8195 {
8196 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8197 NULL, NULL, NULL);
8198 if (isymbuf2 == NULL)
8199 goto done;
8200
8201 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8202 {
8203 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8204 elf_tdata (bfd2)->symbuf = ssymbuf2;
8205 }
8206 }
8207
8208 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8209 {
8210 /* Optimized faster version. */
8211 size_t lo, hi, mid;
8212 struct elf_symbol *symp;
8213 struct elf_symbuf_symbol *ssym, *ssymend;
8214
8215 lo = 0;
8216 hi = ssymbuf1->count;
8217 ssymbuf1++;
8218 count1 = 0;
8219 while (lo < hi)
8220 {
8221 mid = (lo + hi) / 2;
8222 if (shndx1 < ssymbuf1[mid].st_shndx)
8223 hi = mid;
8224 else if (shndx1 > ssymbuf1[mid].st_shndx)
8225 lo = mid + 1;
8226 else
8227 {
8228 count1 = ssymbuf1[mid].count;
8229 ssymbuf1 += mid;
8230 break;
8231 }
8232 }
8233
8234 lo = 0;
8235 hi = ssymbuf2->count;
8236 ssymbuf2++;
8237 count2 = 0;
8238 while (lo < hi)
8239 {
8240 mid = (lo + hi) / 2;
8241 if (shndx2 < ssymbuf2[mid].st_shndx)
8242 hi = mid;
8243 else if (shndx2 > ssymbuf2[mid].st_shndx)
8244 lo = mid + 1;
8245 else
8246 {
8247 count2 = ssymbuf2[mid].count;
8248 ssymbuf2 += mid;
8249 break;
8250 }
8251 }
8252
8253 if (count1 == 0 || count2 == 0 || count1 != count2)
8254 goto done;
8255
8256 symtable1
8257 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8258 symtable2
8259 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8260 if (symtable1 == NULL || symtable2 == NULL)
8261 goto done;
8262
8263 symp = symtable1;
8264 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8265 ssym < ssymend; ssym++, symp++)
8266 {
8267 symp->u.ssym = ssym;
8268 symp->name = bfd_elf_string_from_elf_section (bfd1,
8269 hdr1->sh_link,
8270 ssym->st_name);
8271 }
8272
8273 symp = symtable2;
8274 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8275 ssym < ssymend; ssym++, symp++)
8276 {
8277 symp->u.ssym = ssym;
8278 symp->name = bfd_elf_string_from_elf_section (bfd2,
8279 hdr2->sh_link,
8280 ssym->st_name);
8281 }
8282
8283 /* Sort symbol by name. */
8284 qsort (symtable1, count1, sizeof (struct elf_symbol),
8285 elf_sym_name_compare);
8286 qsort (symtable2, count1, sizeof (struct elf_symbol),
8287 elf_sym_name_compare);
8288
8289 for (i = 0; i < count1; i++)
8290 /* Two symbols must have the same binding, type and name. */
8291 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8292 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8293 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8294 goto done;
8295
8296 result = TRUE;
8297 goto done;
8298 }
8299
8300 symtable1 = (struct elf_symbol *)
8301 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8302 symtable2 = (struct elf_symbol *)
8303 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8304 if (symtable1 == NULL || symtable2 == NULL)
8305 goto done;
8306
8307 /* Count definitions in the section. */
8308 count1 = 0;
8309 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8310 if (isym->st_shndx == shndx1)
8311 symtable1[count1++].u.isym = isym;
8312
8313 count2 = 0;
8314 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8315 if (isym->st_shndx == shndx2)
8316 symtable2[count2++].u.isym = isym;
8317
8318 if (count1 == 0 || count2 == 0 || count1 != count2)
8319 goto done;
8320
8321 for (i = 0; i < count1; i++)
8322 symtable1[i].name
8323 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8324 symtable1[i].u.isym->st_name);
8325
8326 for (i = 0; i < count2; i++)
8327 symtable2[i].name
8328 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8329 symtable2[i].u.isym->st_name);
8330
8331 /* Sort symbol by name. */
8332 qsort (symtable1, count1, sizeof (struct elf_symbol),
8333 elf_sym_name_compare);
8334 qsort (symtable2, count1, sizeof (struct elf_symbol),
8335 elf_sym_name_compare);
8336
8337 for (i = 0; i < count1; i++)
8338 /* Two symbols must have the same binding, type and name. */
8339 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8340 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8341 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8342 goto done;
8343
8344 result = TRUE;
8345
8346 done:
8347 free (symtable1);
8348 free (symtable2);
8349 free (isymbuf1);
8350 free (isymbuf2);
8351
8352 return result;
8353 }
8354
8355 /* Return TRUE if 2 section types are compatible. */
8356
8357 bfd_boolean
8358 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8359 bfd *bbfd, const asection *bsec)
8360 {
8361 if (asec == NULL
8362 || bsec == NULL
8363 || abfd->xvec->flavour != bfd_target_elf_flavour
8364 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8365 return TRUE;
8366
8367 return elf_section_type (asec) == elf_section_type (bsec);
8368 }
8369 \f
8370 /* Final phase of ELF linker. */
8371
8372 /* A structure we use to avoid passing large numbers of arguments. */
8373
8374 struct elf_final_link_info
8375 {
8376 /* General link information. */
8377 struct bfd_link_info *info;
8378 /* Output BFD. */
8379 bfd *output_bfd;
8380 /* Symbol string table. */
8381 struct elf_strtab_hash *symstrtab;
8382 /* .hash section. */
8383 asection *hash_sec;
8384 /* symbol version section (.gnu.version). */
8385 asection *symver_sec;
8386 /* Buffer large enough to hold contents of any section. */
8387 bfd_byte *contents;
8388 /* Buffer large enough to hold external relocs of any section. */
8389 void *external_relocs;
8390 /* Buffer large enough to hold internal relocs of any section. */
8391 Elf_Internal_Rela *internal_relocs;
8392 /* Buffer large enough to hold external local symbols of any input
8393 BFD. */
8394 bfd_byte *external_syms;
8395 /* And a buffer for symbol section indices. */
8396 Elf_External_Sym_Shndx *locsym_shndx;
8397 /* Buffer large enough to hold internal local symbols of any input
8398 BFD. */
8399 Elf_Internal_Sym *internal_syms;
8400 /* Array large enough to hold a symbol index for each local symbol
8401 of any input BFD. */
8402 long *indices;
8403 /* Array large enough to hold a section pointer for each local
8404 symbol of any input BFD. */
8405 asection **sections;
8406 /* Buffer for SHT_SYMTAB_SHNDX section. */
8407 Elf_External_Sym_Shndx *symshndxbuf;
8408 /* Number of STT_FILE syms seen. */
8409 size_t filesym_count;
8410 };
8411
8412 /* This struct is used to pass information to elf_link_output_extsym. */
8413
8414 struct elf_outext_info
8415 {
8416 bfd_boolean failed;
8417 bfd_boolean localsyms;
8418 bfd_boolean file_sym_done;
8419 struct elf_final_link_info *flinfo;
8420 };
8421
8422
8423 /* Support for evaluating a complex relocation.
8424
8425 Complex relocations are generalized, self-describing relocations. The
8426 implementation of them consists of two parts: complex symbols, and the
8427 relocations themselves.
8428
8429 The relocations use a reserved elf-wide relocation type code (R_RELC
8430 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8431 information (start bit, end bit, word width, etc) into the addend. This
8432 information is extracted from CGEN-generated operand tables within gas.
8433
8434 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8435 internal) representing prefix-notation expressions, including but not
8436 limited to those sorts of expressions normally encoded as addends in the
8437 addend field. The symbol mangling format is:
8438
8439 <node> := <literal>
8440 | <unary-operator> ':' <node>
8441 | <binary-operator> ':' <node> ':' <node>
8442 ;
8443
8444 <literal> := 's' <digits=N> ':' <N character symbol name>
8445 | 'S' <digits=N> ':' <N character section name>
8446 | '#' <hexdigits>
8447 ;
8448
8449 <binary-operator> := as in C
8450 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8451
8452 static void
8453 set_symbol_value (bfd *bfd_with_globals,
8454 Elf_Internal_Sym *isymbuf,
8455 size_t locsymcount,
8456 size_t symidx,
8457 bfd_vma val)
8458 {
8459 struct elf_link_hash_entry **sym_hashes;
8460 struct elf_link_hash_entry *h;
8461 size_t extsymoff = locsymcount;
8462
8463 if (symidx < locsymcount)
8464 {
8465 Elf_Internal_Sym *sym;
8466
8467 sym = isymbuf + symidx;
8468 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8469 {
8470 /* It is a local symbol: move it to the
8471 "absolute" section and give it a value. */
8472 sym->st_shndx = SHN_ABS;
8473 sym->st_value = val;
8474 return;
8475 }
8476 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8477 extsymoff = 0;
8478 }
8479
8480 /* It is a global symbol: set its link type
8481 to "defined" and give it a value. */
8482
8483 sym_hashes = elf_sym_hashes (bfd_with_globals);
8484 h = sym_hashes [symidx - extsymoff];
8485 while (h->root.type == bfd_link_hash_indirect
8486 || h->root.type == bfd_link_hash_warning)
8487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8488 h->root.type = bfd_link_hash_defined;
8489 h->root.u.def.value = val;
8490 h->root.u.def.section = bfd_abs_section_ptr;
8491 }
8492
8493 static bfd_boolean
8494 resolve_symbol (const char *name,
8495 bfd *input_bfd,
8496 struct elf_final_link_info *flinfo,
8497 bfd_vma *result,
8498 Elf_Internal_Sym *isymbuf,
8499 size_t locsymcount)
8500 {
8501 Elf_Internal_Sym *sym;
8502 struct bfd_link_hash_entry *global_entry;
8503 const char *candidate = NULL;
8504 Elf_Internal_Shdr *symtab_hdr;
8505 size_t i;
8506
8507 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8508
8509 for (i = 0; i < locsymcount; ++ i)
8510 {
8511 sym = isymbuf + i;
8512
8513 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8514 continue;
8515
8516 candidate = bfd_elf_string_from_elf_section (input_bfd,
8517 symtab_hdr->sh_link,
8518 sym->st_name);
8519 #ifdef DEBUG
8520 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8521 name, candidate, (unsigned long) sym->st_value);
8522 #endif
8523 if (candidate && strcmp (candidate, name) == 0)
8524 {
8525 asection *sec = flinfo->sections [i];
8526
8527 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8528 *result += sec->output_offset + sec->output_section->vma;
8529 #ifdef DEBUG
8530 printf ("Found symbol with value %8.8lx\n",
8531 (unsigned long) *result);
8532 #endif
8533 return TRUE;
8534 }
8535 }
8536
8537 /* Hmm, haven't found it yet. perhaps it is a global. */
8538 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8539 FALSE, FALSE, TRUE);
8540 if (!global_entry)
8541 return FALSE;
8542
8543 if (global_entry->type == bfd_link_hash_defined
8544 || global_entry->type == bfd_link_hash_defweak)
8545 {
8546 *result = (global_entry->u.def.value
8547 + global_entry->u.def.section->output_section->vma
8548 + global_entry->u.def.section->output_offset);
8549 #ifdef DEBUG
8550 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8551 global_entry->root.string, (unsigned long) *result);
8552 #endif
8553 return TRUE;
8554 }
8555
8556 return FALSE;
8557 }
8558
8559 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8560 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8561 names like "foo.end" which is the end address of section "foo". */
8562
8563 static bfd_boolean
8564 resolve_section (const char *name,
8565 asection *sections,
8566 bfd_vma *result,
8567 bfd * abfd)
8568 {
8569 asection *curr;
8570 unsigned int len;
8571
8572 for (curr = sections; curr; curr = curr->next)
8573 if (strcmp (curr->name, name) == 0)
8574 {
8575 *result = curr->vma;
8576 return TRUE;
8577 }
8578
8579 /* Hmm. still haven't found it. try pseudo-section names. */
8580 /* FIXME: This could be coded more efficiently... */
8581 for (curr = sections; curr; curr = curr->next)
8582 {
8583 len = strlen (curr->name);
8584 if (len > strlen (name))
8585 continue;
8586
8587 if (strncmp (curr->name, name, len) == 0)
8588 {
8589 if (strncmp (".end", name + len, 4) == 0)
8590 {
8591 *result = (curr->vma
8592 + curr->size / bfd_octets_per_byte (abfd, curr));
8593 return TRUE;
8594 }
8595
8596 /* Insert more pseudo-section names here, if you like. */
8597 }
8598 }
8599
8600 return FALSE;
8601 }
8602
8603 static void
8604 undefined_reference (const char *reftype, const char *name)
8605 {
8606 /* xgettext:c-format */
8607 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8608 reftype, name);
8609 bfd_set_error (bfd_error_bad_value);
8610 }
8611
8612 static bfd_boolean
8613 eval_symbol (bfd_vma *result,
8614 const char **symp,
8615 bfd *input_bfd,
8616 struct elf_final_link_info *flinfo,
8617 bfd_vma dot,
8618 Elf_Internal_Sym *isymbuf,
8619 size_t locsymcount,
8620 int signed_p)
8621 {
8622 size_t len;
8623 size_t symlen;
8624 bfd_vma a;
8625 bfd_vma b;
8626 char symbuf[4096];
8627 const char *sym = *symp;
8628 const char *symend;
8629 bfd_boolean symbol_is_section = FALSE;
8630
8631 len = strlen (sym);
8632 symend = sym + len;
8633
8634 if (len < 1 || len > sizeof (symbuf))
8635 {
8636 bfd_set_error (bfd_error_invalid_operation);
8637 return FALSE;
8638 }
8639
8640 switch (* sym)
8641 {
8642 case '.':
8643 *result = dot;
8644 *symp = sym + 1;
8645 return TRUE;
8646
8647 case '#':
8648 ++sym;
8649 *result = strtoul (sym, (char **) symp, 16);
8650 return TRUE;
8651
8652 case 'S':
8653 symbol_is_section = TRUE;
8654 /* Fall through. */
8655 case 's':
8656 ++sym;
8657 symlen = strtol (sym, (char **) symp, 10);
8658 sym = *symp + 1; /* Skip the trailing ':'. */
8659
8660 if (symend < sym || symlen + 1 > sizeof (symbuf))
8661 {
8662 bfd_set_error (bfd_error_invalid_operation);
8663 return FALSE;
8664 }
8665
8666 memcpy (symbuf, sym, symlen);
8667 symbuf[symlen] = '\0';
8668 *symp = sym + symlen;
8669
8670 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8671 the symbol as a section, or vice-versa. so we're pretty liberal in our
8672 interpretation here; section means "try section first", not "must be a
8673 section", and likewise with symbol. */
8674
8675 if (symbol_is_section)
8676 {
8677 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8678 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8679 isymbuf, locsymcount))
8680 {
8681 undefined_reference ("section", symbuf);
8682 return FALSE;
8683 }
8684 }
8685 else
8686 {
8687 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8688 isymbuf, locsymcount)
8689 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8690 result, input_bfd))
8691 {
8692 undefined_reference ("symbol", symbuf);
8693 return FALSE;
8694 }
8695 }
8696
8697 return TRUE;
8698
8699 /* All that remains are operators. */
8700
8701 #define UNARY_OP(op) \
8702 if (strncmp (sym, #op, strlen (#op)) == 0) \
8703 { \
8704 sym += strlen (#op); \
8705 if (*sym == ':') \
8706 ++sym; \
8707 *symp = sym; \
8708 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8709 isymbuf, locsymcount, signed_p)) \
8710 return FALSE; \
8711 if (signed_p) \
8712 *result = op ((bfd_signed_vma) a); \
8713 else \
8714 *result = op a; \
8715 return TRUE; \
8716 }
8717
8718 #define BINARY_OP_HEAD(op) \
8719 if (strncmp (sym, #op, strlen (#op)) == 0) \
8720 { \
8721 sym += strlen (#op); \
8722 if (*sym == ':') \
8723 ++sym; \
8724 *symp = sym; \
8725 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8726 isymbuf, locsymcount, signed_p)) \
8727 return FALSE; \
8728 ++*symp; \
8729 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8730 isymbuf, locsymcount, signed_p)) \
8731 return FALSE;
8732 #define BINARY_OP_TAIL(op) \
8733 if (signed_p) \
8734 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8735 else \
8736 *result = a op b; \
8737 return TRUE; \
8738 }
8739 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
8740
8741 default:
8742 UNARY_OP (0-);
8743 BINARY_OP_HEAD (<<);
8744 if (b >= sizeof (a) * CHAR_BIT)
8745 {
8746 *result = 0;
8747 return TRUE;
8748 }
8749 signed_p = 0;
8750 BINARY_OP_TAIL (<<);
8751 BINARY_OP_HEAD (>>);
8752 if (b >= sizeof (a) * CHAR_BIT)
8753 {
8754 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
8755 return TRUE;
8756 }
8757 BINARY_OP_TAIL (>>);
8758 BINARY_OP (==);
8759 BINARY_OP (!=);
8760 BINARY_OP (<=);
8761 BINARY_OP (>=);
8762 BINARY_OP (&&);
8763 BINARY_OP (||);
8764 UNARY_OP (~);
8765 UNARY_OP (!);
8766 BINARY_OP (*);
8767 BINARY_OP_HEAD (/);
8768 if (b == 0)
8769 {
8770 _bfd_error_handler (_("division by zero"));
8771 bfd_set_error (bfd_error_bad_value);
8772 return FALSE;
8773 }
8774 BINARY_OP_TAIL (/);
8775 BINARY_OP_HEAD (%);
8776 if (b == 0)
8777 {
8778 _bfd_error_handler (_("division by zero"));
8779 bfd_set_error (bfd_error_bad_value);
8780 return FALSE;
8781 }
8782 BINARY_OP_TAIL (%);
8783 BINARY_OP (^);
8784 BINARY_OP (|);
8785 BINARY_OP (&);
8786 BINARY_OP (+);
8787 BINARY_OP (-);
8788 BINARY_OP (<);
8789 BINARY_OP (>);
8790 #undef UNARY_OP
8791 #undef BINARY_OP
8792 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8793 bfd_set_error (bfd_error_invalid_operation);
8794 return FALSE;
8795 }
8796 }
8797
8798 static void
8799 put_value (bfd_vma size,
8800 unsigned long chunksz,
8801 bfd *input_bfd,
8802 bfd_vma x,
8803 bfd_byte *location)
8804 {
8805 location += (size - chunksz);
8806
8807 for (; size; size -= chunksz, location -= chunksz)
8808 {
8809 switch (chunksz)
8810 {
8811 case 1:
8812 bfd_put_8 (input_bfd, x, location);
8813 x >>= 8;
8814 break;
8815 case 2:
8816 bfd_put_16 (input_bfd, x, location);
8817 x >>= 16;
8818 break;
8819 case 4:
8820 bfd_put_32 (input_bfd, x, location);
8821 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8822 x >>= 16;
8823 x >>= 16;
8824 break;
8825 #ifdef BFD64
8826 case 8:
8827 bfd_put_64 (input_bfd, x, location);
8828 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8829 x >>= 32;
8830 x >>= 32;
8831 break;
8832 #endif
8833 default:
8834 abort ();
8835 break;
8836 }
8837 }
8838 }
8839
8840 static bfd_vma
8841 get_value (bfd_vma size,
8842 unsigned long chunksz,
8843 bfd *input_bfd,
8844 bfd_byte *location)
8845 {
8846 int shift;
8847 bfd_vma x = 0;
8848
8849 /* Sanity checks. */
8850 BFD_ASSERT (chunksz <= sizeof (x)
8851 && size >= chunksz
8852 && chunksz != 0
8853 && (size % chunksz) == 0
8854 && input_bfd != NULL
8855 && location != NULL);
8856
8857 if (chunksz == sizeof (x))
8858 {
8859 BFD_ASSERT (size == chunksz);
8860
8861 /* Make sure that we do not perform an undefined shift operation.
8862 We know that size == chunksz so there will only be one iteration
8863 of the loop below. */
8864 shift = 0;
8865 }
8866 else
8867 shift = 8 * chunksz;
8868
8869 for (; size; size -= chunksz, location += chunksz)
8870 {
8871 switch (chunksz)
8872 {
8873 case 1:
8874 x = (x << shift) | bfd_get_8 (input_bfd, location);
8875 break;
8876 case 2:
8877 x = (x << shift) | bfd_get_16 (input_bfd, location);
8878 break;
8879 case 4:
8880 x = (x << shift) | bfd_get_32 (input_bfd, location);
8881 break;
8882 #ifdef BFD64
8883 case 8:
8884 x = (x << shift) | bfd_get_64 (input_bfd, location);
8885 break;
8886 #endif
8887 default:
8888 abort ();
8889 }
8890 }
8891 return x;
8892 }
8893
8894 static void
8895 decode_complex_addend (unsigned long *start, /* in bits */
8896 unsigned long *oplen, /* in bits */
8897 unsigned long *len, /* in bits */
8898 unsigned long *wordsz, /* in bytes */
8899 unsigned long *chunksz, /* in bytes */
8900 unsigned long *lsb0_p,
8901 unsigned long *signed_p,
8902 unsigned long *trunc_p,
8903 unsigned long encoded)
8904 {
8905 * start = encoded & 0x3F;
8906 * len = (encoded >> 6) & 0x3F;
8907 * oplen = (encoded >> 12) & 0x3F;
8908 * wordsz = (encoded >> 18) & 0xF;
8909 * chunksz = (encoded >> 22) & 0xF;
8910 * lsb0_p = (encoded >> 27) & 1;
8911 * signed_p = (encoded >> 28) & 1;
8912 * trunc_p = (encoded >> 29) & 1;
8913 }
8914
8915 bfd_reloc_status_type
8916 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8917 asection *input_section,
8918 bfd_byte *contents,
8919 Elf_Internal_Rela *rel,
8920 bfd_vma relocation)
8921 {
8922 bfd_vma shift, x, mask;
8923 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8924 bfd_reloc_status_type r;
8925 bfd_size_type octets;
8926
8927 /* Perform this reloc, since it is complex.
8928 (this is not to say that it necessarily refers to a complex
8929 symbol; merely that it is a self-describing CGEN based reloc.
8930 i.e. the addend has the complete reloc information (bit start, end,
8931 word size, etc) encoded within it.). */
8932
8933 decode_complex_addend (&start, &oplen, &len, &wordsz,
8934 &chunksz, &lsb0_p, &signed_p,
8935 &trunc_p, rel->r_addend);
8936
8937 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8938
8939 if (lsb0_p)
8940 shift = (start + 1) - len;
8941 else
8942 shift = (8 * wordsz) - (start + len);
8943
8944 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8945 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8946
8947 #ifdef DEBUG
8948 printf ("Doing complex reloc: "
8949 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8950 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8951 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8952 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8953 oplen, (unsigned long) x, (unsigned long) mask,
8954 (unsigned long) relocation);
8955 #endif
8956
8957 r = bfd_reloc_ok;
8958 if (! trunc_p)
8959 /* Now do an overflow check. */
8960 r = bfd_check_overflow ((signed_p
8961 ? complain_overflow_signed
8962 : complain_overflow_unsigned),
8963 len, 0, (8 * wordsz),
8964 relocation);
8965
8966 /* Do the deed. */
8967 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8968
8969 #ifdef DEBUG
8970 printf (" relocation: %8.8lx\n"
8971 " shifted mask: %8.8lx\n"
8972 " shifted/masked reloc: %8.8lx\n"
8973 " result: %8.8lx\n",
8974 (unsigned long) relocation, (unsigned long) (mask << shift),
8975 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8976 #endif
8977 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8978 return r;
8979 }
8980
8981 /* Functions to read r_offset from external (target order) reloc
8982 entry. Faster than bfd_getl32 et al, because we let the compiler
8983 know the value is aligned. */
8984
8985 static bfd_vma
8986 ext32l_r_offset (const void *p)
8987 {
8988 union aligned32
8989 {
8990 uint32_t v;
8991 unsigned char c[4];
8992 };
8993 const union aligned32 *a
8994 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8995
8996 uint32_t aval = ( (uint32_t) a->c[0]
8997 | (uint32_t) a->c[1] << 8
8998 | (uint32_t) a->c[2] << 16
8999 | (uint32_t) a->c[3] << 24);
9000 return aval;
9001 }
9002
9003 static bfd_vma
9004 ext32b_r_offset (const void *p)
9005 {
9006 union aligned32
9007 {
9008 uint32_t v;
9009 unsigned char c[4];
9010 };
9011 const union aligned32 *a
9012 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9013
9014 uint32_t aval = ( (uint32_t) a->c[0] << 24
9015 | (uint32_t) a->c[1] << 16
9016 | (uint32_t) a->c[2] << 8
9017 | (uint32_t) a->c[3]);
9018 return aval;
9019 }
9020
9021 #ifdef BFD_HOST_64_BIT
9022 static bfd_vma
9023 ext64l_r_offset (const void *p)
9024 {
9025 union aligned64
9026 {
9027 uint64_t v;
9028 unsigned char c[8];
9029 };
9030 const union aligned64 *a
9031 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9032
9033 uint64_t aval = ( (uint64_t) a->c[0]
9034 | (uint64_t) a->c[1] << 8
9035 | (uint64_t) a->c[2] << 16
9036 | (uint64_t) a->c[3] << 24
9037 | (uint64_t) a->c[4] << 32
9038 | (uint64_t) a->c[5] << 40
9039 | (uint64_t) a->c[6] << 48
9040 | (uint64_t) a->c[7] << 56);
9041 return aval;
9042 }
9043
9044 static bfd_vma
9045 ext64b_r_offset (const void *p)
9046 {
9047 union aligned64
9048 {
9049 uint64_t v;
9050 unsigned char c[8];
9051 };
9052 const union aligned64 *a
9053 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9054
9055 uint64_t aval = ( (uint64_t) a->c[0] << 56
9056 | (uint64_t) a->c[1] << 48
9057 | (uint64_t) a->c[2] << 40
9058 | (uint64_t) a->c[3] << 32
9059 | (uint64_t) a->c[4] << 24
9060 | (uint64_t) a->c[5] << 16
9061 | (uint64_t) a->c[6] << 8
9062 | (uint64_t) a->c[7]);
9063 return aval;
9064 }
9065 #endif
9066
9067 /* When performing a relocatable link, the input relocations are
9068 preserved. But, if they reference global symbols, the indices
9069 referenced must be updated. Update all the relocations found in
9070 RELDATA. */
9071
9072 static bfd_boolean
9073 elf_link_adjust_relocs (bfd *abfd,
9074 asection *sec,
9075 struct bfd_elf_section_reloc_data *reldata,
9076 bfd_boolean sort,
9077 struct bfd_link_info *info)
9078 {
9079 unsigned int i;
9080 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9081 bfd_byte *erela;
9082 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9083 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9084 bfd_vma r_type_mask;
9085 int r_sym_shift;
9086 unsigned int count = reldata->count;
9087 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9088
9089 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9090 {
9091 swap_in = bed->s->swap_reloc_in;
9092 swap_out = bed->s->swap_reloc_out;
9093 }
9094 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9095 {
9096 swap_in = bed->s->swap_reloca_in;
9097 swap_out = bed->s->swap_reloca_out;
9098 }
9099 else
9100 abort ();
9101
9102 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9103 abort ();
9104
9105 if (bed->s->arch_size == 32)
9106 {
9107 r_type_mask = 0xff;
9108 r_sym_shift = 8;
9109 }
9110 else
9111 {
9112 r_type_mask = 0xffffffff;
9113 r_sym_shift = 32;
9114 }
9115
9116 erela = reldata->hdr->contents;
9117 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9118 {
9119 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9120 unsigned int j;
9121
9122 if (*rel_hash == NULL)
9123 continue;
9124
9125 if ((*rel_hash)->indx == -2
9126 && info->gc_sections
9127 && ! info->gc_keep_exported)
9128 {
9129 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9130 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9131 abfd, sec,
9132 (*rel_hash)->root.root.string);
9133 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9134 abfd, sec);
9135 bfd_set_error (bfd_error_invalid_operation);
9136 return FALSE;
9137 }
9138 BFD_ASSERT ((*rel_hash)->indx >= 0);
9139
9140 (*swap_in) (abfd, erela, irela);
9141 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9142 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9143 | (irela[j].r_info & r_type_mask));
9144 (*swap_out) (abfd, irela, erela);
9145 }
9146
9147 if (bed->elf_backend_update_relocs)
9148 (*bed->elf_backend_update_relocs) (sec, reldata);
9149
9150 if (sort && count != 0)
9151 {
9152 bfd_vma (*ext_r_off) (const void *);
9153 bfd_vma r_off;
9154 size_t elt_size;
9155 bfd_byte *base, *end, *p, *loc;
9156 bfd_byte *buf = NULL;
9157
9158 if (bed->s->arch_size == 32)
9159 {
9160 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9161 ext_r_off = ext32l_r_offset;
9162 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9163 ext_r_off = ext32b_r_offset;
9164 else
9165 abort ();
9166 }
9167 else
9168 {
9169 #ifdef BFD_HOST_64_BIT
9170 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9171 ext_r_off = ext64l_r_offset;
9172 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9173 ext_r_off = ext64b_r_offset;
9174 else
9175 #endif
9176 abort ();
9177 }
9178
9179 /* Must use a stable sort here. A modified insertion sort,
9180 since the relocs are mostly sorted already. */
9181 elt_size = reldata->hdr->sh_entsize;
9182 base = reldata->hdr->contents;
9183 end = base + count * elt_size;
9184 if (elt_size > sizeof (Elf64_External_Rela))
9185 abort ();
9186
9187 /* Ensure the first element is lowest. This acts as a sentinel,
9188 speeding the main loop below. */
9189 r_off = (*ext_r_off) (base);
9190 for (p = loc = base; (p += elt_size) < end; )
9191 {
9192 bfd_vma r_off2 = (*ext_r_off) (p);
9193 if (r_off > r_off2)
9194 {
9195 r_off = r_off2;
9196 loc = p;
9197 }
9198 }
9199 if (loc != base)
9200 {
9201 /* Don't just swap *base and *loc as that changes the order
9202 of the original base[0] and base[1] if they happen to
9203 have the same r_offset. */
9204 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9205 memcpy (onebuf, loc, elt_size);
9206 memmove (base + elt_size, base, loc - base);
9207 memcpy (base, onebuf, elt_size);
9208 }
9209
9210 for (p = base + elt_size; (p += elt_size) < end; )
9211 {
9212 /* base to p is sorted, *p is next to insert. */
9213 r_off = (*ext_r_off) (p);
9214 /* Search the sorted region for location to insert. */
9215 loc = p - elt_size;
9216 while (r_off < (*ext_r_off) (loc))
9217 loc -= elt_size;
9218 loc += elt_size;
9219 if (loc != p)
9220 {
9221 /* Chances are there is a run of relocs to insert here,
9222 from one of more input files. Files are not always
9223 linked in order due to the way elf_link_input_bfd is
9224 called. See pr17666. */
9225 size_t sortlen = p - loc;
9226 bfd_vma r_off2 = (*ext_r_off) (loc);
9227 size_t runlen = elt_size;
9228 size_t buf_size = 96 * 1024;
9229 while (p + runlen < end
9230 && (sortlen <= buf_size
9231 || runlen + elt_size <= buf_size)
9232 && r_off2 > (*ext_r_off) (p + runlen))
9233 runlen += elt_size;
9234 if (buf == NULL)
9235 {
9236 buf = bfd_malloc (buf_size);
9237 if (buf == NULL)
9238 return FALSE;
9239 }
9240 if (runlen < sortlen)
9241 {
9242 memcpy (buf, p, runlen);
9243 memmove (loc + runlen, loc, sortlen);
9244 memcpy (loc, buf, runlen);
9245 }
9246 else
9247 {
9248 memcpy (buf, loc, sortlen);
9249 memmove (loc, p, runlen);
9250 memcpy (loc + runlen, buf, sortlen);
9251 }
9252 p += runlen - elt_size;
9253 }
9254 }
9255 /* Hashes are no longer valid. */
9256 free (reldata->hashes);
9257 reldata->hashes = NULL;
9258 free (buf);
9259 }
9260 return TRUE;
9261 }
9262
9263 struct elf_link_sort_rela
9264 {
9265 union {
9266 bfd_vma offset;
9267 bfd_vma sym_mask;
9268 } u;
9269 enum elf_reloc_type_class type;
9270 /* We use this as an array of size int_rels_per_ext_rel. */
9271 Elf_Internal_Rela rela[1];
9272 };
9273
9274 /* qsort stability here and for cmp2 is only an issue if multiple
9275 dynamic relocations are emitted at the same address. But targets
9276 that apply a series of dynamic relocations each operating on the
9277 result of the prior relocation can't use -z combreloc as
9278 implemented anyway. Such schemes tend to be broken by sorting on
9279 symbol index. That leaves dynamic NONE relocs as the only other
9280 case where ld might emit multiple relocs at the same address, and
9281 those are only emitted due to target bugs. */
9282
9283 static int
9284 elf_link_sort_cmp1 (const void *A, const void *B)
9285 {
9286 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9287 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9288 int relativea, relativeb;
9289
9290 relativea = a->type == reloc_class_relative;
9291 relativeb = b->type == reloc_class_relative;
9292
9293 if (relativea < relativeb)
9294 return 1;
9295 if (relativea > relativeb)
9296 return -1;
9297 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9298 return -1;
9299 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9300 return 1;
9301 if (a->rela->r_offset < b->rela->r_offset)
9302 return -1;
9303 if (a->rela->r_offset > b->rela->r_offset)
9304 return 1;
9305 return 0;
9306 }
9307
9308 static int
9309 elf_link_sort_cmp2 (const void *A, const void *B)
9310 {
9311 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9312 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9313
9314 if (a->type < b->type)
9315 return -1;
9316 if (a->type > b->type)
9317 return 1;
9318 if (a->u.offset < b->u.offset)
9319 return -1;
9320 if (a->u.offset > b->u.offset)
9321 return 1;
9322 if (a->rela->r_offset < b->rela->r_offset)
9323 return -1;
9324 if (a->rela->r_offset > b->rela->r_offset)
9325 return 1;
9326 return 0;
9327 }
9328
9329 static size_t
9330 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9331 {
9332 asection *dynamic_relocs;
9333 asection *rela_dyn;
9334 asection *rel_dyn;
9335 bfd_size_type count, size;
9336 size_t i, ret, sort_elt, ext_size;
9337 bfd_byte *sort, *s_non_relative, *p;
9338 struct elf_link_sort_rela *sq;
9339 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9340 int i2e = bed->s->int_rels_per_ext_rel;
9341 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9342 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9343 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9344 struct bfd_link_order *lo;
9345 bfd_vma r_sym_mask;
9346 bfd_boolean use_rela;
9347
9348 /* Find a dynamic reloc section. */
9349 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9350 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9351 if (rela_dyn != NULL && rela_dyn->size > 0
9352 && rel_dyn != NULL && rel_dyn->size > 0)
9353 {
9354 bfd_boolean use_rela_initialised = FALSE;
9355
9356 /* This is just here to stop gcc from complaining.
9357 Its initialization checking code is not perfect. */
9358 use_rela = TRUE;
9359
9360 /* Both sections are present. Examine the sizes
9361 of the indirect sections to help us choose. */
9362 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9363 if (lo->type == bfd_indirect_link_order)
9364 {
9365 asection *o = lo->u.indirect.section;
9366
9367 if ((o->size % bed->s->sizeof_rela) == 0)
9368 {
9369 if ((o->size % bed->s->sizeof_rel) == 0)
9370 /* Section size is divisible by both rel and rela sizes.
9371 It is of no help to us. */
9372 ;
9373 else
9374 {
9375 /* Section size is only divisible by rela. */
9376 if (use_rela_initialised && !use_rela)
9377 {
9378 _bfd_error_handler (_("%pB: unable to sort relocs - "
9379 "they are in more than one size"),
9380 abfd);
9381 bfd_set_error (bfd_error_invalid_operation);
9382 return 0;
9383 }
9384 else
9385 {
9386 use_rela = TRUE;
9387 use_rela_initialised = TRUE;
9388 }
9389 }
9390 }
9391 else if ((o->size % bed->s->sizeof_rel) == 0)
9392 {
9393 /* Section size is only divisible by rel. */
9394 if (use_rela_initialised && use_rela)
9395 {
9396 _bfd_error_handler (_("%pB: unable to sort relocs - "
9397 "they are in more than one size"),
9398 abfd);
9399 bfd_set_error (bfd_error_invalid_operation);
9400 return 0;
9401 }
9402 else
9403 {
9404 use_rela = FALSE;
9405 use_rela_initialised = TRUE;
9406 }
9407 }
9408 else
9409 {
9410 /* The section size is not divisible by either -
9411 something is wrong. */
9412 _bfd_error_handler (_("%pB: unable to sort relocs - "
9413 "they are of an unknown size"), abfd);
9414 bfd_set_error (bfd_error_invalid_operation);
9415 return 0;
9416 }
9417 }
9418
9419 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9420 if (lo->type == bfd_indirect_link_order)
9421 {
9422 asection *o = lo->u.indirect.section;
9423
9424 if ((o->size % bed->s->sizeof_rela) == 0)
9425 {
9426 if ((o->size % bed->s->sizeof_rel) == 0)
9427 /* Section size is divisible by both rel and rela sizes.
9428 It is of no help to us. */
9429 ;
9430 else
9431 {
9432 /* Section size is only divisible by rela. */
9433 if (use_rela_initialised && !use_rela)
9434 {
9435 _bfd_error_handler (_("%pB: unable to sort relocs - "
9436 "they are in more than one size"),
9437 abfd);
9438 bfd_set_error (bfd_error_invalid_operation);
9439 return 0;
9440 }
9441 else
9442 {
9443 use_rela = TRUE;
9444 use_rela_initialised = TRUE;
9445 }
9446 }
9447 }
9448 else if ((o->size % bed->s->sizeof_rel) == 0)
9449 {
9450 /* Section size is only divisible by rel. */
9451 if (use_rela_initialised && use_rela)
9452 {
9453 _bfd_error_handler (_("%pB: unable to sort relocs - "
9454 "they are in more than one size"),
9455 abfd);
9456 bfd_set_error (bfd_error_invalid_operation);
9457 return 0;
9458 }
9459 else
9460 {
9461 use_rela = FALSE;
9462 use_rela_initialised = TRUE;
9463 }
9464 }
9465 else
9466 {
9467 /* The section size is not divisible by either -
9468 something is wrong. */
9469 _bfd_error_handler (_("%pB: unable to sort relocs - "
9470 "they are of an unknown size"), abfd);
9471 bfd_set_error (bfd_error_invalid_operation);
9472 return 0;
9473 }
9474 }
9475
9476 if (! use_rela_initialised)
9477 /* Make a guess. */
9478 use_rela = TRUE;
9479 }
9480 else if (rela_dyn != NULL && rela_dyn->size > 0)
9481 use_rela = TRUE;
9482 else if (rel_dyn != NULL && rel_dyn->size > 0)
9483 use_rela = FALSE;
9484 else
9485 return 0;
9486
9487 if (use_rela)
9488 {
9489 dynamic_relocs = rela_dyn;
9490 ext_size = bed->s->sizeof_rela;
9491 swap_in = bed->s->swap_reloca_in;
9492 swap_out = bed->s->swap_reloca_out;
9493 }
9494 else
9495 {
9496 dynamic_relocs = rel_dyn;
9497 ext_size = bed->s->sizeof_rel;
9498 swap_in = bed->s->swap_reloc_in;
9499 swap_out = bed->s->swap_reloc_out;
9500 }
9501
9502 size = 0;
9503 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9504 if (lo->type == bfd_indirect_link_order)
9505 size += lo->u.indirect.section->size;
9506
9507 if (size != dynamic_relocs->size)
9508 return 0;
9509
9510 sort_elt = (sizeof (struct elf_link_sort_rela)
9511 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9512
9513 count = dynamic_relocs->size / ext_size;
9514 if (count == 0)
9515 return 0;
9516 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9517
9518 if (sort == NULL)
9519 {
9520 (*info->callbacks->warning)
9521 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9522 return 0;
9523 }
9524
9525 if (bed->s->arch_size == 32)
9526 r_sym_mask = ~(bfd_vma) 0xff;
9527 else
9528 r_sym_mask = ~(bfd_vma) 0xffffffff;
9529
9530 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9531 if (lo->type == bfd_indirect_link_order)
9532 {
9533 bfd_byte *erel, *erelend;
9534 asection *o = lo->u.indirect.section;
9535
9536 if (o->contents == NULL && o->size != 0)
9537 {
9538 /* This is a reloc section that is being handled as a normal
9539 section. See bfd_section_from_shdr. We can't combine
9540 relocs in this case. */
9541 free (sort);
9542 return 0;
9543 }
9544 erel = o->contents;
9545 erelend = o->contents + o->size;
9546 p = sort + o->output_offset * opb / ext_size * sort_elt;
9547
9548 while (erel < erelend)
9549 {
9550 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9551
9552 (*swap_in) (abfd, erel, s->rela);
9553 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9554 s->u.sym_mask = r_sym_mask;
9555 p += sort_elt;
9556 erel += ext_size;
9557 }
9558 }
9559
9560 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9561
9562 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9563 {
9564 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9565 if (s->type != reloc_class_relative)
9566 break;
9567 }
9568 ret = i;
9569 s_non_relative = p;
9570
9571 sq = (struct elf_link_sort_rela *) s_non_relative;
9572 for (; i < count; i++, p += sort_elt)
9573 {
9574 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9575 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9576 sq = sp;
9577 sp->u.offset = sq->rela->r_offset;
9578 }
9579
9580 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9581
9582 struct elf_link_hash_table *htab = elf_hash_table (info);
9583 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9584 {
9585 /* We have plt relocs in .rela.dyn. */
9586 sq = (struct elf_link_sort_rela *) sort;
9587 for (i = 0; i < count; i++)
9588 if (sq[count - i - 1].type != reloc_class_plt)
9589 break;
9590 if (i != 0 && htab->srelplt->size == i * ext_size)
9591 {
9592 struct bfd_link_order **plo;
9593 /* Put srelplt link_order last. This is so the output_offset
9594 set in the next loop is correct for DT_JMPREL. */
9595 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9596 if ((*plo)->type == bfd_indirect_link_order
9597 && (*plo)->u.indirect.section == htab->srelplt)
9598 {
9599 lo = *plo;
9600 *plo = lo->next;
9601 }
9602 else
9603 plo = &(*plo)->next;
9604 *plo = lo;
9605 lo->next = NULL;
9606 dynamic_relocs->map_tail.link_order = lo;
9607 }
9608 }
9609
9610 p = sort;
9611 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9612 if (lo->type == bfd_indirect_link_order)
9613 {
9614 bfd_byte *erel, *erelend;
9615 asection *o = lo->u.indirect.section;
9616
9617 erel = o->contents;
9618 erelend = o->contents + o->size;
9619 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9620 while (erel < erelend)
9621 {
9622 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9623 (*swap_out) (abfd, s->rela, erel);
9624 p += sort_elt;
9625 erel += ext_size;
9626 }
9627 }
9628
9629 free (sort);
9630 *psec = dynamic_relocs;
9631 return ret;
9632 }
9633
9634 /* Add a symbol to the output symbol string table. */
9635
9636 static int
9637 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9638 const char *name,
9639 Elf_Internal_Sym *elfsym,
9640 asection *input_sec,
9641 struct elf_link_hash_entry *h)
9642 {
9643 int (*output_symbol_hook)
9644 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9645 struct elf_link_hash_entry *);
9646 struct elf_link_hash_table *hash_table;
9647 const struct elf_backend_data *bed;
9648 bfd_size_type strtabsize;
9649
9650 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9651
9652 bed = get_elf_backend_data (flinfo->output_bfd);
9653 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9654 if (output_symbol_hook != NULL)
9655 {
9656 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9657 if (ret != 1)
9658 return ret;
9659 }
9660
9661 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9662 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9663 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9664 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9665
9666 if (name == NULL
9667 || *name == '\0'
9668 || (input_sec->flags & SEC_EXCLUDE))
9669 elfsym->st_name = (unsigned long) -1;
9670 else
9671 {
9672 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9673 to get the final offset for st_name. */
9674 char *versioned_name = (char *) name;
9675 if (h != NULL && h->versioned == versioned && h->def_dynamic)
9676 {
9677 /* Keep only one '@' for versioned symbols defined in shared
9678 objects. */
9679 char *version = strrchr (name, ELF_VER_CHR);
9680 char *base_end = strchr (name, ELF_VER_CHR);
9681 if (version != base_end)
9682 {
9683 size_t base_len;
9684 size_t len = strlen (name);
9685 versioned_name = bfd_alloc (flinfo->output_bfd, len);
9686 if (versioned_name == NULL)
9687 return 0;
9688 base_len = base_end - name;
9689 memcpy (versioned_name, name, base_len);
9690 memcpy (versioned_name + base_len, version,
9691 len - base_len);
9692 }
9693 }
9694 elfsym->st_name
9695 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9696 versioned_name, FALSE);
9697 if (elfsym->st_name == (unsigned long) -1)
9698 return 0;
9699 }
9700
9701 hash_table = elf_hash_table (flinfo->info);
9702 strtabsize = hash_table->strtabsize;
9703 if (strtabsize <= hash_table->strtabcount)
9704 {
9705 strtabsize += strtabsize;
9706 hash_table->strtabsize = strtabsize;
9707 strtabsize *= sizeof (*hash_table->strtab);
9708 hash_table->strtab
9709 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9710 strtabsize);
9711 if (hash_table->strtab == NULL)
9712 return 0;
9713 }
9714 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9715 hash_table->strtab[hash_table->strtabcount].dest_index
9716 = hash_table->strtabcount;
9717 hash_table->strtab[hash_table->strtabcount].destshndx_index
9718 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9719
9720 flinfo->output_bfd->symcount += 1;
9721 hash_table->strtabcount += 1;
9722
9723 return 1;
9724 }
9725
9726 /* Swap symbols out to the symbol table and flush the output symbols to
9727 the file. */
9728
9729 static bfd_boolean
9730 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9731 {
9732 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9733 size_t amt;
9734 size_t i;
9735 const struct elf_backend_data *bed;
9736 bfd_byte *symbuf;
9737 Elf_Internal_Shdr *hdr;
9738 file_ptr pos;
9739 bfd_boolean ret;
9740
9741 if (!hash_table->strtabcount)
9742 return TRUE;
9743
9744 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9745
9746 bed = get_elf_backend_data (flinfo->output_bfd);
9747
9748 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9749 symbuf = (bfd_byte *) bfd_malloc (amt);
9750 if (symbuf == NULL)
9751 return FALSE;
9752
9753 if (flinfo->symshndxbuf)
9754 {
9755 amt = sizeof (Elf_External_Sym_Shndx);
9756 amt *= bfd_get_symcount (flinfo->output_bfd);
9757 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9758 if (flinfo->symshndxbuf == NULL)
9759 {
9760 free (symbuf);
9761 return FALSE;
9762 }
9763 }
9764
9765 for (i = 0; i < hash_table->strtabcount; i++)
9766 {
9767 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9768 if (elfsym->sym.st_name == (unsigned long) -1)
9769 elfsym->sym.st_name = 0;
9770 else
9771 elfsym->sym.st_name
9772 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9773 elfsym->sym.st_name);
9774 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9775 ((bfd_byte *) symbuf
9776 + (elfsym->dest_index
9777 * bed->s->sizeof_sym)),
9778 (flinfo->symshndxbuf
9779 + elfsym->destshndx_index));
9780 }
9781
9782 /* Allow the linker to examine the strtab and symtab now they are
9783 populated. */
9784
9785 if (flinfo->info->callbacks->examine_strtab)
9786 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9787 hash_table->strtabcount,
9788 flinfo->symstrtab);
9789
9790 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9791 pos = hdr->sh_offset + hdr->sh_size;
9792 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9793 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9794 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9795 {
9796 hdr->sh_size += amt;
9797 ret = TRUE;
9798 }
9799 else
9800 ret = FALSE;
9801
9802 free (symbuf);
9803
9804 free (hash_table->strtab);
9805 hash_table->strtab = NULL;
9806
9807 return ret;
9808 }
9809
9810 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9811
9812 static bfd_boolean
9813 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9814 {
9815 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9816 && sym->st_shndx < SHN_LORESERVE)
9817 {
9818 /* The gABI doesn't support dynamic symbols in output sections
9819 beyond 64k. */
9820 _bfd_error_handler
9821 /* xgettext:c-format */
9822 (_("%pB: too many sections: %d (>= %d)"),
9823 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9824 bfd_set_error (bfd_error_nonrepresentable_section);
9825 return FALSE;
9826 }
9827 return TRUE;
9828 }
9829
9830 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9831 allowing an unsatisfied unversioned symbol in the DSO to match a
9832 versioned symbol that would normally require an explicit version.
9833 We also handle the case that a DSO references a hidden symbol
9834 which may be satisfied by a versioned symbol in another DSO. */
9835
9836 static bfd_boolean
9837 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9838 const struct elf_backend_data *bed,
9839 struct elf_link_hash_entry *h)
9840 {
9841 bfd *abfd;
9842 struct elf_link_loaded_list *loaded;
9843
9844 if (!is_elf_hash_table (info->hash))
9845 return FALSE;
9846
9847 /* Check indirect symbol. */
9848 while (h->root.type == bfd_link_hash_indirect)
9849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9850
9851 switch (h->root.type)
9852 {
9853 default:
9854 abfd = NULL;
9855 break;
9856
9857 case bfd_link_hash_undefined:
9858 case bfd_link_hash_undefweak:
9859 abfd = h->root.u.undef.abfd;
9860 if (abfd == NULL
9861 || (abfd->flags & DYNAMIC) == 0
9862 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9863 return FALSE;
9864 break;
9865
9866 case bfd_link_hash_defined:
9867 case bfd_link_hash_defweak:
9868 abfd = h->root.u.def.section->owner;
9869 break;
9870
9871 case bfd_link_hash_common:
9872 abfd = h->root.u.c.p->section->owner;
9873 break;
9874 }
9875 BFD_ASSERT (abfd != NULL);
9876
9877 for (loaded = elf_hash_table (info)->dyn_loaded;
9878 loaded != NULL;
9879 loaded = loaded->next)
9880 {
9881 bfd *input;
9882 Elf_Internal_Shdr *hdr;
9883 size_t symcount;
9884 size_t extsymcount;
9885 size_t extsymoff;
9886 Elf_Internal_Shdr *versymhdr;
9887 Elf_Internal_Sym *isym;
9888 Elf_Internal_Sym *isymend;
9889 Elf_Internal_Sym *isymbuf;
9890 Elf_External_Versym *ever;
9891 Elf_External_Versym *extversym;
9892
9893 input = loaded->abfd;
9894
9895 /* We check each DSO for a possible hidden versioned definition. */
9896 if (input == abfd
9897 || elf_dynversym (input) == 0)
9898 continue;
9899
9900 hdr = &elf_tdata (input)->dynsymtab_hdr;
9901
9902 symcount = hdr->sh_size / bed->s->sizeof_sym;
9903 if (elf_bad_symtab (input))
9904 {
9905 extsymcount = symcount;
9906 extsymoff = 0;
9907 }
9908 else
9909 {
9910 extsymcount = symcount - hdr->sh_info;
9911 extsymoff = hdr->sh_info;
9912 }
9913
9914 if (extsymcount == 0)
9915 continue;
9916
9917 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9918 NULL, NULL, NULL);
9919 if (isymbuf == NULL)
9920 return FALSE;
9921
9922 /* Read in any version definitions. */
9923 versymhdr = &elf_tdata (input)->dynversym_hdr;
9924 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9925 || (extversym = (Elf_External_Versym *)
9926 _bfd_malloc_and_read (input, versymhdr->sh_size,
9927 versymhdr->sh_size)) == NULL)
9928 {
9929 free (isymbuf);
9930 return FALSE;
9931 }
9932
9933 ever = extversym + extsymoff;
9934 isymend = isymbuf + extsymcount;
9935 for (isym = isymbuf; isym < isymend; isym++, ever++)
9936 {
9937 const char *name;
9938 Elf_Internal_Versym iver;
9939 unsigned short version_index;
9940
9941 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9942 || isym->st_shndx == SHN_UNDEF)
9943 continue;
9944
9945 name = bfd_elf_string_from_elf_section (input,
9946 hdr->sh_link,
9947 isym->st_name);
9948 if (strcmp (name, h->root.root.string) != 0)
9949 continue;
9950
9951 _bfd_elf_swap_versym_in (input, ever, &iver);
9952
9953 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9954 && !(h->def_regular
9955 && h->forced_local))
9956 {
9957 /* If we have a non-hidden versioned sym, then it should
9958 have provided a definition for the undefined sym unless
9959 it is defined in a non-shared object and forced local.
9960 */
9961 abort ();
9962 }
9963
9964 version_index = iver.vs_vers & VERSYM_VERSION;
9965 if (version_index == 1 || version_index == 2)
9966 {
9967 /* This is the base or first version. We can use it. */
9968 free (extversym);
9969 free (isymbuf);
9970 return TRUE;
9971 }
9972 }
9973
9974 free (extversym);
9975 free (isymbuf);
9976 }
9977
9978 return FALSE;
9979 }
9980
9981 /* Convert ELF common symbol TYPE. */
9982
9983 static int
9984 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9985 {
9986 /* Commom symbol can only appear in relocatable link. */
9987 if (!bfd_link_relocatable (info))
9988 abort ();
9989 switch (info->elf_stt_common)
9990 {
9991 case unchanged:
9992 break;
9993 case elf_stt_common:
9994 type = STT_COMMON;
9995 break;
9996 case no_elf_stt_common:
9997 type = STT_OBJECT;
9998 break;
9999 }
10000 return type;
10001 }
10002
10003 /* Add an external symbol to the symbol table. This is called from
10004 the hash table traversal routine. When generating a shared object,
10005 we go through the symbol table twice. The first time we output
10006 anything that might have been forced to local scope in a version
10007 script. The second time we output the symbols that are still
10008 global symbols. */
10009
10010 static bfd_boolean
10011 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10012 {
10013 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10014 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10015 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10016 bfd_boolean strip;
10017 Elf_Internal_Sym sym;
10018 asection *input_sec;
10019 const struct elf_backend_data *bed;
10020 long indx;
10021 int ret;
10022 unsigned int type;
10023
10024 if (h->root.type == bfd_link_hash_warning)
10025 {
10026 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10027 if (h->root.type == bfd_link_hash_new)
10028 return TRUE;
10029 }
10030
10031 /* Decide whether to output this symbol in this pass. */
10032 if (eoinfo->localsyms)
10033 {
10034 if (!h->forced_local)
10035 return TRUE;
10036 }
10037 else
10038 {
10039 if (h->forced_local)
10040 return TRUE;
10041 }
10042
10043 bed = get_elf_backend_data (flinfo->output_bfd);
10044
10045 if (h->root.type == bfd_link_hash_undefined)
10046 {
10047 /* If we have an undefined symbol reference here then it must have
10048 come from a shared library that is being linked in. (Undefined
10049 references in regular files have already been handled unless
10050 they are in unreferenced sections which are removed by garbage
10051 collection). */
10052 bfd_boolean ignore_undef = FALSE;
10053
10054 /* Some symbols may be special in that the fact that they're
10055 undefined can be safely ignored - let backend determine that. */
10056 if (bed->elf_backend_ignore_undef_symbol)
10057 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10058
10059 /* If we are reporting errors for this situation then do so now. */
10060 if (!ignore_undef
10061 && h->ref_dynamic_nonweak
10062 && (!h->ref_regular || flinfo->info->gc_sections)
10063 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10064 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10065 {
10066 flinfo->info->callbacks->undefined_symbol
10067 (flinfo->info, h->root.root.string,
10068 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10069 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10070 && !flinfo->info->warn_unresolved_syms);
10071 }
10072
10073 /* Strip a global symbol defined in a discarded section. */
10074 if (h->indx == -3)
10075 return TRUE;
10076 }
10077
10078 /* We should also warn if a forced local symbol is referenced from
10079 shared libraries. */
10080 if (bfd_link_executable (flinfo->info)
10081 && h->forced_local
10082 && h->ref_dynamic
10083 && h->def_regular
10084 && !h->dynamic_def
10085 && h->ref_dynamic_nonweak
10086 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10087 {
10088 bfd *def_bfd;
10089 const char *msg;
10090 struct elf_link_hash_entry *hi = h;
10091
10092 /* Check indirect symbol. */
10093 while (hi->root.type == bfd_link_hash_indirect)
10094 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10095
10096 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10097 /* xgettext:c-format */
10098 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10099 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10100 /* xgettext:c-format */
10101 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10102 else
10103 /* xgettext:c-format */
10104 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10105 def_bfd = flinfo->output_bfd;
10106 if (hi->root.u.def.section != bfd_abs_section_ptr)
10107 def_bfd = hi->root.u.def.section->owner;
10108 _bfd_error_handler (msg, flinfo->output_bfd,
10109 h->root.root.string, def_bfd);
10110 bfd_set_error (bfd_error_bad_value);
10111 eoinfo->failed = TRUE;
10112 return FALSE;
10113 }
10114
10115 /* We don't want to output symbols that have never been mentioned by
10116 a regular file, or that we have been told to strip. However, if
10117 h->indx is set to -2, the symbol is used by a reloc and we must
10118 output it. */
10119 strip = FALSE;
10120 if (h->indx == -2)
10121 ;
10122 else if ((h->def_dynamic
10123 || h->ref_dynamic
10124 || h->root.type == bfd_link_hash_new)
10125 && !h->def_regular
10126 && !h->ref_regular)
10127 strip = TRUE;
10128 else if (flinfo->info->strip == strip_all)
10129 strip = TRUE;
10130 else if (flinfo->info->strip == strip_some
10131 && bfd_hash_lookup (flinfo->info->keep_hash,
10132 h->root.root.string, FALSE, FALSE) == NULL)
10133 strip = TRUE;
10134 else if ((h->root.type == bfd_link_hash_defined
10135 || h->root.type == bfd_link_hash_defweak)
10136 && ((flinfo->info->strip_discarded
10137 && discarded_section (h->root.u.def.section))
10138 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10139 && h->root.u.def.section->owner != NULL
10140 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10141 strip = TRUE;
10142 else if ((h->root.type == bfd_link_hash_undefined
10143 || h->root.type == bfd_link_hash_undefweak)
10144 && h->root.u.undef.abfd != NULL
10145 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10146 strip = TRUE;
10147
10148 type = h->type;
10149
10150 /* If we're stripping it, and it's not a dynamic symbol, there's
10151 nothing else to do. However, if it is a forced local symbol or
10152 an ifunc symbol we need to give the backend finish_dynamic_symbol
10153 function a chance to make it dynamic. */
10154 if (strip
10155 && h->dynindx == -1
10156 && type != STT_GNU_IFUNC
10157 && !h->forced_local)
10158 return TRUE;
10159
10160 sym.st_value = 0;
10161 sym.st_size = h->size;
10162 sym.st_other = h->other;
10163 switch (h->root.type)
10164 {
10165 default:
10166 case bfd_link_hash_new:
10167 case bfd_link_hash_warning:
10168 abort ();
10169 return FALSE;
10170
10171 case bfd_link_hash_undefined:
10172 case bfd_link_hash_undefweak:
10173 input_sec = bfd_und_section_ptr;
10174 sym.st_shndx = SHN_UNDEF;
10175 break;
10176
10177 case bfd_link_hash_defined:
10178 case bfd_link_hash_defweak:
10179 {
10180 input_sec = h->root.u.def.section;
10181 if (input_sec->output_section != NULL)
10182 {
10183 sym.st_shndx =
10184 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10185 input_sec->output_section);
10186 if (sym.st_shndx == SHN_BAD)
10187 {
10188 _bfd_error_handler
10189 /* xgettext:c-format */
10190 (_("%pB: could not find output section %pA for input section %pA"),
10191 flinfo->output_bfd, input_sec->output_section, input_sec);
10192 bfd_set_error (bfd_error_nonrepresentable_section);
10193 eoinfo->failed = TRUE;
10194 return FALSE;
10195 }
10196
10197 /* ELF symbols in relocatable files are section relative,
10198 but in nonrelocatable files they are virtual
10199 addresses. */
10200 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10201 if (!bfd_link_relocatable (flinfo->info))
10202 {
10203 sym.st_value += input_sec->output_section->vma;
10204 if (h->type == STT_TLS)
10205 {
10206 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10207 if (tls_sec != NULL)
10208 sym.st_value -= tls_sec->vma;
10209 }
10210 }
10211 }
10212 else
10213 {
10214 BFD_ASSERT (input_sec->owner == NULL
10215 || (input_sec->owner->flags & DYNAMIC) != 0);
10216 sym.st_shndx = SHN_UNDEF;
10217 input_sec = bfd_und_section_ptr;
10218 }
10219 }
10220 break;
10221
10222 case bfd_link_hash_common:
10223 input_sec = h->root.u.c.p->section;
10224 sym.st_shndx = bed->common_section_index (input_sec);
10225 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10226 break;
10227
10228 case bfd_link_hash_indirect:
10229 /* These symbols are created by symbol versioning. They point
10230 to the decorated version of the name. For example, if the
10231 symbol foo@@GNU_1.2 is the default, which should be used when
10232 foo is used with no version, then we add an indirect symbol
10233 foo which points to foo@@GNU_1.2. We ignore these symbols,
10234 since the indirected symbol is already in the hash table. */
10235 return TRUE;
10236 }
10237
10238 if (type == STT_COMMON || type == STT_OBJECT)
10239 switch (h->root.type)
10240 {
10241 case bfd_link_hash_common:
10242 type = elf_link_convert_common_type (flinfo->info, type);
10243 break;
10244 case bfd_link_hash_defined:
10245 case bfd_link_hash_defweak:
10246 if (bed->common_definition (&sym))
10247 type = elf_link_convert_common_type (flinfo->info, type);
10248 else
10249 type = STT_OBJECT;
10250 break;
10251 case bfd_link_hash_undefined:
10252 case bfd_link_hash_undefweak:
10253 break;
10254 default:
10255 abort ();
10256 }
10257
10258 if (h->forced_local)
10259 {
10260 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10261 /* Turn off visibility on local symbol. */
10262 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10263 }
10264 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10265 else if (h->unique_global && h->def_regular)
10266 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10267 else if (h->root.type == bfd_link_hash_undefweak
10268 || h->root.type == bfd_link_hash_defweak)
10269 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10270 else
10271 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10272 sym.st_target_internal = h->target_internal;
10273
10274 /* Give the processor backend a chance to tweak the symbol value,
10275 and also to finish up anything that needs to be done for this
10276 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10277 forced local syms when non-shared is due to a historical quirk.
10278 STT_GNU_IFUNC symbol must go through PLT. */
10279 if ((h->type == STT_GNU_IFUNC
10280 && h->def_regular
10281 && !bfd_link_relocatable (flinfo->info))
10282 || ((h->dynindx != -1
10283 || h->forced_local)
10284 && ((bfd_link_pic (flinfo->info)
10285 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10286 || h->root.type != bfd_link_hash_undefweak))
10287 || !h->forced_local)
10288 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10289 {
10290 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10291 (flinfo->output_bfd, flinfo->info, h, &sym)))
10292 {
10293 eoinfo->failed = TRUE;
10294 return FALSE;
10295 }
10296 }
10297
10298 /* If we are marking the symbol as undefined, and there are no
10299 non-weak references to this symbol from a regular object, then
10300 mark the symbol as weak undefined; if there are non-weak
10301 references, mark the symbol as strong. We can't do this earlier,
10302 because it might not be marked as undefined until the
10303 finish_dynamic_symbol routine gets through with it. */
10304 if (sym.st_shndx == SHN_UNDEF
10305 && h->ref_regular
10306 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10307 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10308 {
10309 int bindtype;
10310 type = ELF_ST_TYPE (sym.st_info);
10311
10312 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10313 if (type == STT_GNU_IFUNC)
10314 type = STT_FUNC;
10315
10316 if (h->ref_regular_nonweak)
10317 bindtype = STB_GLOBAL;
10318 else
10319 bindtype = STB_WEAK;
10320 sym.st_info = ELF_ST_INFO (bindtype, type);
10321 }
10322
10323 /* If this is a symbol defined in a dynamic library, don't use the
10324 symbol size from the dynamic library. Relinking an executable
10325 against a new library may introduce gratuitous changes in the
10326 executable's symbols if we keep the size. */
10327 if (sym.st_shndx == SHN_UNDEF
10328 && !h->def_regular
10329 && h->def_dynamic)
10330 sym.st_size = 0;
10331
10332 /* If a non-weak symbol with non-default visibility is not defined
10333 locally, it is a fatal error. */
10334 if (!bfd_link_relocatable (flinfo->info)
10335 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10336 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10337 && h->root.type == bfd_link_hash_undefined
10338 && !h->def_regular)
10339 {
10340 const char *msg;
10341
10342 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10343 /* xgettext:c-format */
10344 msg = _("%pB: protected symbol `%s' isn't defined");
10345 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10346 /* xgettext:c-format */
10347 msg = _("%pB: internal symbol `%s' isn't defined");
10348 else
10349 /* xgettext:c-format */
10350 msg = _("%pB: hidden symbol `%s' isn't defined");
10351 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10352 bfd_set_error (bfd_error_bad_value);
10353 eoinfo->failed = TRUE;
10354 return FALSE;
10355 }
10356
10357 /* If this symbol should be put in the .dynsym section, then put it
10358 there now. We already know the symbol index. We also fill in
10359 the entry in the .hash section. */
10360 if (h->dynindx != -1
10361 && elf_hash_table (flinfo->info)->dynamic_sections_created
10362 && elf_hash_table (flinfo->info)->dynsym != NULL
10363 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10364 {
10365 bfd_byte *esym;
10366
10367 /* Since there is no version information in the dynamic string,
10368 if there is no version info in symbol version section, we will
10369 have a run-time problem if not linking executable, referenced
10370 by shared library, or not bound locally. */
10371 if (h->verinfo.verdef == NULL
10372 && (!bfd_link_executable (flinfo->info)
10373 || h->ref_dynamic
10374 || !h->def_regular))
10375 {
10376 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10377
10378 if (p && p [1] != '\0')
10379 {
10380 _bfd_error_handler
10381 /* xgettext:c-format */
10382 (_("%pB: no symbol version section for versioned symbol `%s'"),
10383 flinfo->output_bfd, h->root.root.string);
10384 eoinfo->failed = TRUE;
10385 return FALSE;
10386 }
10387 }
10388
10389 sym.st_name = h->dynstr_index;
10390 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10391 + h->dynindx * bed->s->sizeof_sym);
10392 if (!check_dynsym (flinfo->output_bfd, &sym))
10393 {
10394 eoinfo->failed = TRUE;
10395 return FALSE;
10396 }
10397 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10398
10399 if (flinfo->hash_sec != NULL)
10400 {
10401 size_t hash_entry_size;
10402 bfd_byte *bucketpos;
10403 bfd_vma chain;
10404 size_t bucketcount;
10405 size_t bucket;
10406
10407 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10408 bucket = h->u.elf_hash_value % bucketcount;
10409
10410 hash_entry_size
10411 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10412 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10413 + (bucket + 2) * hash_entry_size);
10414 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10415 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10416 bucketpos);
10417 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10418 ((bfd_byte *) flinfo->hash_sec->contents
10419 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10420 }
10421
10422 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10423 {
10424 Elf_Internal_Versym iversym;
10425 Elf_External_Versym *eversym;
10426
10427 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10428 {
10429 if (h->verinfo.verdef == NULL
10430 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10431 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10432 iversym.vs_vers = 0;
10433 else
10434 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10435 }
10436 else
10437 {
10438 if (h->verinfo.vertree == NULL)
10439 iversym.vs_vers = 1;
10440 else
10441 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10442 if (flinfo->info->create_default_symver)
10443 iversym.vs_vers++;
10444 }
10445
10446 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10447 defined locally. */
10448 if (h->versioned == versioned_hidden && h->def_regular)
10449 iversym.vs_vers |= VERSYM_HIDDEN;
10450
10451 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10452 eversym += h->dynindx;
10453 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10454 }
10455 }
10456
10457 /* If the symbol is undefined, and we didn't output it to .dynsym,
10458 strip it from .symtab too. Obviously we can't do this for
10459 relocatable output or when needed for --emit-relocs. */
10460 else if (input_sec == bfd_und_section_ptr
10461 && h->indx != -2
10462 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10463 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10464 && !bfd_link_relocatable (flinfo->info))
10465 return TRUE;
10466
10467 /* Also strip others that we couldn't earlier due to dynamic symbol
10468 processing. */
10469 if (strip)
10470 return TRUE;
10471 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10472 return TRUE;
10473
10474 /* Output a FILE symbol so that following locals are not associated
10475 with the wrong input file. We need one for forced local symbols
10476 if we've seen more than one FILE symbol or when we have exactly
10477 one FILE symbol but global symbols are present in a file other
10478 than the one with the FILE symbol. We also need one if linker
10479 defined symbols are present. In practice these conditions are
10480 always met, so just emit the FILE symbol unconditionally. */
10481 if (eoinfo->localsyms
10482 && !eoinfo->file_sym_done
10483 && eoinfo->flinfo->filesym_count != 0)
10484 {
10485 Elf_Internal_Sym fsym;
10486
10487 memset (&fsym, 0, sizeof (fsym));
10488 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10489 fsym.st_shndx = SHN_ABS;
10490 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10491 bfd_und_section_ptr, NULL))
10492 return FALSE;
10493
10494 eoinfo->file_sym_done = TRUE;
10495 }
10496
10497 indx = bfd_get_symcount (flinfo->output_bfd);
10498 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10499 input_sec, h);
10500 if (ret == 0)
10501 {
10502 eoinfo->failed = TRUE;
10503 return FALSE;
10504 }
10505 else if (ret == 1)
10506 h->indx = indx;
10507 else if (h->indx == -2)
10508 abort();
10509
10510 return TRUE;
10511 }
10512
10513 /* Return TRUE if special handling is done for relocs in SEC against
10514 symbols defined in discarded sections. */
10515
10516 static bfd_boolean
10517 elf_section_ignore_discarded_relocs (asection *sec)
10518 {
10519 const struct elf_backend_data *bed;
10520
10521 switch (sec->sec_info_type)
10522 {
10523 case SEC_INFO_TYPE_STABS:
10524 case SEC_INFO_TYPE_EH_FRAME:
10525 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10526 return TRUE;
10527 default:
10528 break;
10529 }
10530
10531 bed = get_elf_backend_data (sec->owner);
10532 if (bed->elf_backend_ignore_discarded_relocs != NULL
10533 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10534 return TRUE;
10535
10536 return FALSE;
10537 }
10538
10539 /* Return a mask saying how ld should treat relocations in SEC against
10540 symbols defined in discarded sections. If this function returns
10541 COMPLAIN set, ld will issue a warning message. If this function
10542 returns PRETEND set, and the discarded section was link-once and the
10543 same size as the kept link-once section, ld will pretend that the
10544 symbol was actually defined in the kept section. Otherwise ld will
10545 zero the reloc (at least that is the intent, but some cooperation by
10546 the target dependent code is needed, particularly for REL targets). */
10547
10548 unsigned int
10549 _bfd_elf_default_action_discarded (asection *sec)
10550 {
10551 if (sec->flags & SEC_DEBUGGING)
10552 return PRETEND;
10553
10554 if (strcmp (".eh_frame", sec->name) == 0)
10555 return 0;
10556
10557 if (strcmp (".gcc_except_table", sec->name) == 0)
10558 return 0;
10559
10560 return COMPLAIN | PRETEND;
10561 }
10562
10563 /* Find a match between a section and a member of a section group. */
10564
10565 static asection *
10566 match_group_member (asection *sec, asection *group,
10567 struct bfd_link_info *info)
10568 {
10569 asection *first = elf_next_in_group (group);
10570 asection *s = first;
10571
10572 while (s != NULL)
10573 {
10574 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10575 return s;
10576
10577 s = elf_next_in_group (s);
10578 if (s == first)
10579 break;
10580 }
10581
10582 return NULL;
10583 }
10584
10585 /* Check if the kept section of a discarded section SEC can be used
10586 to replace it. Return the replacement if it is OK. Otherwise return
10587 NULL. */
10588
10589 asection *
10590 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10591 {
10592 asection *kept;
10593
10594 kept = sec->kept_section;
10595 if (kept != NULL)
10596 {
10597 if ((kept->flags & SEC_GROUP) != 0)
10598 kept = match_group_member (sec, kept, info);
10599 if (kept != NULL
10600 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10601 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10602 kept = NULL;
10603 sec->kept_section = kept;
10604 }
10605 return kept;
10606 }
10607
10608 /* Link an input file into the linker output file. This function
10609 handles all the sections and relocations of the input file at once.
10610 This is so that we only have to read the local symbols once, and
10611 don't have to keep them in memory. */
10612
10613 static bfd_boolean
10614 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10615 {
10616 int (*relocate_section)
10617 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10618 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10619 bfd *output_bfd;
10620 Elf_Internal_Shdr *symtab_hdr;
10621 size_t locsymcount;
10622 size_t extsymoff;
10623 Elf_Internal_Sym *isymbuf;
10624 Elf_Internal_Sym *isym;
10625 Elf_Internal_Sym *isymend;
10626 long *pindex;
10627 asection **ppsection;
10628 asection *o;
10629 const struct elf_backend_data *bed;
10630 struct elf_link_hash_entry **sym_hashes;
10631 bfd_size_type address_size;
10632 bfd_vma r_type_mask;
10633 int r_sym_shift;
10634 bfd_boolean have_file_sym = FALSE;
10635
10636 output_bfd = flinfo->output_bfd;
10637 bed = get_elf_backend_data (output_bfd);
10638 relocate_section = bed->elf_backend_relocate_section;
10639
10640 /* If this is a dynamic object, we don't want to do anything here:
10641 we don't want the local symbols, and we don't want the section
10642 contents. */
10643 if ((input_bfd->flags & DYNAMIC) != 0)
10644 return TRUE;
10645
10646 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10647 if (elf_bad_symtab (input_bfd))
10648 {
10649 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10650 extsymoff = 0;
10651 }
10652 else
10653 {
10654 locsymcount = symtab_hdr->sh_info;
10655 extsymoff = symtab_hdr->sh_info;
10656 }
10657
10658 /* Read the local symbols. */
10659 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10660 if (isymbuf == NULL && locsymcount != 0)
10661 {
10662 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10663 flinfo->internal_syms,
10664 flinfo->external_syms,
10665 flinfo->locsym_shndx);
10666 if (isymbuf == NULL)
10667 return FALSE;
10668 }
10669
10670 /* Find local symbol sections and adjust values of symbols in
10671 SEC_MERGE sections. Write out those local symbols we know are
10672 going into the output file. */
10673 isymend = isymbuf + locsymcount;
10674 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10675 isym < isymend;
10676 isym++, pindex++, ppsection++)
10677 {
10678 asection *isec;
10679 const char *name;
10680 Elf_Internal_Sym osym;
10681 long indx;
10682 int ret;
10683
10684 *pindex = -1;
10685
10686 if (elf_bad_symtab (input_bfd))
10687 {
10688 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10689 {
10690 *ppsection = NULL;
10691 continue;
10692 }
10693 }
10694
10695 if (isym->st_shndx == SHN_UNDEF)
10696 isec = bfd_und_section_ptr;
10697 else if (isym->st_shndx == SHN_ABS)
10698 isec = bfd_abs_section_ptr;
10699 else if (isym->st_shndx == SHN_COMMON)
10700 isec = bfd_com_section_ptr;
10701 else
10702 {
10703 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10704 if (isec == NULL)
10705 {
10706 /* Don't attempt to output symbols with st_shnx in the
10707 reserved range other than SHN_ABS and SHN_COMMON. */
10708 isec = bfd_und_section_ptr;
10709 }
10710 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10711 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10712 isym->st_value =
10713 _bfd_merged_section_offset (output_bfd, &isec,
10714 elf_section_data (isec)->sec_info,
10715 isym->st_value);
10716 }
10717
10718 *ppsection = isec;
10719
10720 /* Don't output the first, undefined, symbol. In fact, don't
10721 output any undefined local symbol. */
10722 if (isec == bfd_und_section_ptr)
10723 continue;
10724
10725 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10726 {
10727 /* We never output section symbols. Instead, we use the
10728 section symbol of the corresponding section in the output
10729 file. */
10730 continue;
10731 }
10732
10733 /* If we are stripping all symbols, we don't want to output this
10734 one. */
10735 if (flinfo->info->strip == strip_all)
10736 continue;
10737
10738 /* If we are discarding all local symbols, we don't want to
10739 output this one. If we are generating a relocatable output
10740 file, then some of the local symbols may be required by
10741 relocs; we output them below as we discover that they are
10742 needed. */
10743 if (flinfo->info->discard == discard_all)
10744 continue;
10745
10746 /* If this symbol is defined in a section which we are
10747 discarding, we don't need to keep it. */
10748 if (isym->st_shndx != SHN_UNDEF
10749 && isym->st_shndx < SHN_LORESERVE
10750 && isec->output_section == NULL
10751 && flinfo->info->non_contiguous_regions
10752 && flinfo->info->non_contiguous_regions_warnings)
10753 {
10754 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10755 "discards section `%s' from '%s'\n"),
10756 isec->name, bfd_get_filename (isec->owner));
10757 continue;
10758 }
10759
10760 if (isym->st_shndx != SHN_UNDEF
10761 && isym->st_shndx < SHN_LORESERVE
10762 && bfd_section_removed_from_list (output_bfd,
10763 isec->output_section))
10764 continue;
10765
10766 /* Get the name of the symbol. */
10767 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10768 isym->st_name);
10769 if (name == NULL)
10770 return FALSE;
10771
10772 /* See if we are discarding symbols with this name. */
10773 if ((flinfo->info->strip == strip_some
10774 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10775 == NULL))
10776 || (((flinfo->info->discard == discard_sec_merge
10777 && (isec->flags & SEC_MERGE)
10778 && !bfd_link_relocatable (flinfo->info))
10779 || flinfo->info->discard == discard_l)
10780 && bfd_is_local_label_name (input_bfd, name)))
10781 continue;
10782
10783 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10784 {
10785 if (input_bfd->lto_output)
10786 /* -flto puts a temp file name here. This means builds
10787 are not reproducible. Discard the symbol. */
10788 continue;
10789 have_file_sym = TRUE;
10790 flinfo->filesym_count += 1;
10791 }
10792 if (!have_file_sym)
10793 {
10794 /* In the absence of debug info, bfd_find_nearest_line uses
10795 FILE symbols to determine the source file for local
10796 function symbols. Provide a FILE symbol here if input
10797 files lack such, so that their symbols won't be
10798 associated with a previous input file. It's not the
10799 source file, but the best we can do. */
10800 have_file_sym = TRUE;
10801 flinfo->filesym_count += 1;
10802 memset (&osym, 0, sizeof (osym));
10803 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10804 osym.st_shndx = SHN_ABS;
10805 if (!elf_link_output_symstrtab (flinfo,
10806 (input_bfd->lto_output ? NULL
10807 : bfd_get_filename (input_bfd)),
10808 &osym, bfd_abs_section_ptr,
10809 NULL))
10810 return FALSE;
10811 }
10812
10813 osym = *isym;
10814
10815 /* Adjust the section index for the output file. */
10816 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10817 isec->output_section);
10818 if (osym.st_shndx == SHN_BAD)
10819 return FALSE;
10820
10821 /* ELF symbols in relocatable files are section relative, but
10822 in executable files they are virtual addresses. Note that
10823 this code assumes that all ELF sections have an associated
10824 BFD section with a reasonable value for output_offset; below
10825 we assume that they also have a reasonable value for
10826 output_section. Any special sections must be set up to meet
10827 these requirements. */
10828 osym.st_value += isec->output_offset;
10829 if (!bfd_link_relocatable (flinfo->info))
10830 {
10831 osym.st_value += isec->output_section->vma;
10832 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10833 {
10834 /* STT_TLS symbols are relative to PT_TLS segment base. */
10835 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10836 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10837 else
10838 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10839 STT_NOTYPE);
10840 }
10841 }
10842
10843 indx = bfd_get_symcount (output_bfd);
10844 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10845 if (ret == 0)
10846 return FALSE;
10847 else if (ret == 1)
10848 *pindex = indx;
10849 }
10850
10851 if (bed->s->arch_size == 32)
10852 {
10853 r_type_mask = 0xff;
10854 r_sym_shift = 8;
10855 address_size = 4;
10856 }
10857 else
10858 {
10859 r_type_mask = 0xffffffff;
10860 r_sym_shift = 32;
10861 address_size = 8;
10862 }
10863
10864 /* Relocate the contents of each section. */
10865 sym_hashes = elf_sym_hashes (input_bfd);
10866 for (o = input_bfd->sections; o != NULL; o = o->next)
10867 {
10868 bfd_byte *contents;
10869
10870 if (! o->linker_mark)
10871 {
10872 /* This section was omitted from the link. */
10873 continue;
10874 }
10875
10876 if (!flinfo->info->resolve_section_groups
10877 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10878 {
10879 /* Deal with the group signature symbol. */
10880 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10881 unsigned long symndx = sec_data->this_hdr.sh_info;
10882 asection *osec = o->output_section;
10883
10884 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10885 if (symndx >= locsymcount
10886 || (elf_bad_symtab (input_bfd)
10887 && flinfo->sections[symndx] == NULL))
10888 {
10889 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10890 while (h->root.type == bfd_link_hash_indirect
10891 || h->root.type == bfd_link_hash_warning)
10892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10893 /* Arrange for symbol to be output. */
10894 h->indx = -2;
10895 elf_section_data (osec)->this_hdr.sh_info = -2;
10896 }
10897 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10898 {
10899 /* We'll use the output section target_index. */
10900 asection *sec = flinfo->sections[symndx]->output_section;
10901 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10902 }
10903 else
10904 {
10905 if (flinfo->indices[symndx] == -1)
10906 {
10907 /* Otherwise output the local symbol now. */
10908 Elf_Internal_Sym sym = isymbuf[symndx];
10909 asection *sec = flinfo->sections[symndx]->output_section;
10910 const char *name;
10911 long indx;
10912 int ret;
10913
10914 name = bfd_elf_string_from_elf_section (input_bfd,
10915 symtab_hdr->sh_link,
10916 sym.st_name);
10917 if (name == NULL)
10918 return FALSE;
10919
10920 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10921 sec);
10922 if (sym.st_shndx == SHN_BAD)
10923 return FALSE;
10924
10925 sym.st_value += o->output_offset;
10926
10927 indx = bfd_get_symcount (output_bfd);
10928 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10929 NULL);
10930 if (ret == 0)
10931 return FALSE;
10932 else if (ret == 1)
10933 flinfo->indices[symndx] = indx;
10934 else
10935 abort ();
10936 }
10937 elf_section_data (osec)->this_hdr.sh_info
10938 = flinfo->indices[symndx];
10939 }
10940 }
10941
10942 if ((o->flags & SEC_HAS_CONTENTS) == 0
10943 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10944 continue;
10945
10946 if ((o->flags & SEC_LINKER_CREATED) != 0)
10947 {
10948 /* Section was created by _bfd_elf_link_create_dynamic_sections
10949 or somesuch. */
10950 continue;
10951 }
10952
10953 /* Get the contents of the section. They have been cached by a
10954 relaxation routine. Note that o is a section in an input
10955 file, so the contents field will not have been set by any of
10956 the routines which work on output files. */
10957 if (elf_section_data (o)->this_hdr.contents != NULL)
10958 {
10959 contents = elf_section_data (o)->this_hdr.contents;
10960 if (bed->caches_rawsize
10961 && o->rawsize != 0
10962 && o->rawsize < o->size)
10963 {
10964 memcpy (flinfo->contents, contents, o->rawsize);
10965 contents = flinfo->contents;
10966 }
10967 }
10968 else
10969 {
10970 contents = flinfo->contents;
10971 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10972 return FALSE;
10973 }
10974
10975 if ((o->flags & SEC_RELOC) != 0)
10976 {
10977 Elf_Internal_Rela *internal_relocs;
10978 Elf_Internal_Rela *rel, *relend;
10979 int action_discarded;
10980 int ret;
10981
10982 /* Get the swapped relocs. */
10983 internal_relocs
10984 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10985 flinfo->internal_relocs, FALSE);
10986 if (internal_relocs == NULL
10987 && o->reloc_count > 0)
10988 return FALSE;
10989
10990 /* We need to reverse-copy input .ctors/.dtors sections if
10991 they are placed in .init_array/.finit_array for output. */
10992 if (o->size > address_size
10993 && ((strncmp (o->name, ".ctors", 6) == 0
10994 && strcmp (o->output_section->name,
10995 ".init_array") == 0)
10996 || (strncmp (o->name, ".dtors", 6) == 0
10997 && strcmp (o->output_section->name,
10998 ".fini_array") == 0))
10999 && (o->name[6] == 0 || o->name[6] == '.'))
11000 {
11001 if (o->size * bed->s->int_rels_per_ext_rel
11002 != o->reloc_count * address_size)
11003 {
11004 _bfd_error_handler
11005 /* xgettext:c-format */
11006 (_("error: %pB: size of section %pA is not "
11007 "multiple of address size"),
11008 input_bfd, o);
11009 bfd_set_error (bfd_error_bad_value);
11010 return FALSE;
11011 }
11012 o->flags |= SEC_ELF_REVERSE_COPY;
11013 }
11014
11015 action_discarded = -1;
11016 if (!elf_section_ignore_discarded_relocs (o))
11017 action_discarded = (*bed->action_discarded) (o);
11018
11019 /* Run through the relocs evaluating complex reloc symbols and
11020 looking for relocs against symbols from discarded sections
11021 or section symbols from removed link-once sections.
11022 Complain about relocs against discarded sections. Zero
11023 relocs against removed link-once sections. */
11024
11025 rel = internal_relocs;
11026 relend = rel + o->reloc_count;
11027 for ( ; rel < relend; rel++)
11028 {
11029 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11030 unsigned int s_type;
11031 asection **ps, *sec;
11032 struct elf_link_hash_entry *h = NULL;
11033 const char *sym_name;
11034
11035 if (r_symndx == STN_UNDEF)
11036 continue;
11037
11038 if (r_symndx >= locsymcount
11039 || (elf_bad_symtab (input_bfd)
11040 && flinfo->sections[r_symndx] == NULL))
11041 {
11042 h = sym_hashes[r_symndx - extsymoff];
11043
11044 /* Badly formatted input files can contain relocs that
11045 reference non-existant symbols. Check here so that
11046 we do not seg fault. */
11047 if (h == NULL)
11048 {
11049 _bfd_error_handler
11050 /* xgettext:c-format */
11051 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11052 "that references a non-existent global symbol"),
11053 input_bfd, (uint64_t) rel->r_info, o);
11054 bfd_set_error (bfd_error_bad_value);
11055 return FALSE;
11056 }
11057
11058 while (h->root.type == bfd_link_hash_indirect
11059 || h->root.type == bfd_link_hash_warning)
11060 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11061
11062 s_type = h->type;
11063
11064 /* If a plugin symbol is referenced from a non-IR file,
11065 mark the symbol as undefined. Note that the
11066 linker may attach linker created dynamic sections
11067 to the plugin bfd. Symbols defined in linker
11068 created sections are not plugin symbols. */
11069 if ((h->root.non_ir_ref_regular
11070 || h->root.non_ir_ref_dynamic)
11071 && (h->root.type == bfd_link_hash_defined
11072 || h->root.type == bfd_link_hash_defweak)
11073 && (h->root.u.def.section->flags
11074 & SEC_LINKER_CREATED) == 0
11075 && h->root.u.def.section->owner != NULL
11076 && (h->root.u.def.section->owner->flags
11077 & BFD_PLUGIN) != 0)
11078 {
11079 h->root.type = bfd_link_hash_undefined;
11080 h->root.u.undef.abfd = h->root.u.def.section->owner;
11081 }
11082
11083 ps = NULL;
11084 if (h->root.type == bfd_link_hash_defined
11085 || h->root.type == bfd_link_hash_defweak)
11086 ps = &h->root.u.def.section;
11087
11088 sym_name = h->root.root.string;
11089 }
11090 else
11091 {
11092 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11093
11094 s_type = ELF_ST_TYPE (sym->st_info);
11095 ps = &flinfo->sections[r_symndx];
11096 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11097 sym, *ps);
11098 }
11099
11100 if ((s_type == STT_RELC || s_type == STT_SRELC)
11101 && !bfd_link_relocatable (flinfo->info))
11102 {
11103 bfd_vma val;
11104 bfd_vma dot = (rel->r_offset
11105 + o->output_offset + o->output_section->vma);
11106 #ifdef DEBUG
11107 printf ("Encountered a complex symbol!");
11108 printf (" (input_bfd %s, section %s, reloc %ld\n",
11109 bfd_get_filename (input_bfd), o->name,
11110 (long) (rel - internal_relocs));
11111 printf (" symbol: idx %8.8lx, name %s\n",
11112 r_symndx, sym_name);
11113 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11114 (unsigned long) rel->r_info,
11115 (unsigned long) rel->r_offset);
11116 #endif
11117 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11118 isymbuf, locsymcount, s_type == STT_SRELC))
11119 return FALSE;
11120
11121 /* Symbol evaluated OK. Update to absolute value. */
11122 set_symbol_value (input_bfd, isymbuf, locsymcount,
11123 r_symndx, val);
11124 continue;
11125 }
11126
11127 if (action_discarded != -1 && ps != NULL)
11128 {
11129 /* Complain if the definition comes from a
11130 discarded section. */
11131 if ((sec = *ps) != NULL && discarded_section (sec))
11132 {
11133 BFD_ASSERT (r_symndx != STN_UNDEF);
11134 if (action_discarded & COMPLAIN)
11135 (*flinfo->info->callbacks->einfo)
11136 /* xgettext:c-format */
11137 (_("%X`%s' referenced in section `%pA' of %pB: "
11138 "defined in discarded section `%pA' of %pB\n"),
11139 sym_name, o, input_bfd, sec, sec->owner);
11140
11141 /* Try to do the best we can to support buggy old
11142 versions of gcc. Pretend that the symbol is
11143 really defined in the kept linkonce section.
11144 FIXME: This is quite broken. Modifying the
11145 symbol here means we will be changing all later
11146 uses of the symbol, not just in this section. */
11147 if (action_discarded & PRETEND)
11148 {
11149 asection *kept;
11150
11151 kept = _bfd_elf_check_kept_section (sec,
11152 flinfo->info);
11153 if (kept != NULL)
11154 {
11155 *ps = kept;
11156 continue;
11157 }
11158 }
11159 }
11160 }
11161 }
11162
11163 /* Relocate the section by invoking a back end routine.
11164
11165 The back end routine is responsible for adjusting the
11166 section contents as necessary, and (if using Rela relocs
11167 and generating a relocatable output file) adjusting the
11168 reloc addend as necessary.
11169
11170 The back end routine does not have to worry about setting
11171 the reloc address or the reloc symbol index.
11172
11173 The back end routine is given a pointer to the swapped in
11174 internal symbols, and can access the hash table entries
11175 for the external symbols via elf_sym_hashes (input_bfd).
11176
11177 When generating relocatable output, the back end routine
11178 must handle STB_LOCAL/STT_SECTION symbols specially. The
11179 output symbol is going to be a section symbol
11180 corresponding to the output section, which will require
11181 the addend to be adjusted. */
11182
11183 ret = (*relocate_section) (output_bfd, flinfo->info,
11184 input_bfd, o, contents,
11185 internal_relocs,
11186 isymbuf,
11187 flinfo->sections);
11188 if (!ret)
11189 return FALSE;
11190
11191 if (ret == 2
11192 || bfd_link_relocatable (flinfo->info)
11193 || flinfo->info->emitrelocations)
11194 {
11195 Elf_Internal_Rela *irela;
11196 Elf_Internal_Rela *irelaend, *irelamid;
11197 bfd_vma last_offset;
11198 struct elf_link_hash_entry **rel_hash;
11199 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11200 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11201 unsigned int next_erel;
11202 bfd_boolean rela_normal;
11203 struct bfd_elf_section_data *esdi, *esdo;
11204
11205 esdi = elf_section_data (o);
11206 esdo = elf_section_data (o->output_section);
11207 rela_normal = FALSE;
11208
11209 /* Adjust the reloc addresses and symbol indices. */
11210
11211 irela = internal_relocs;
11212 irelaend = irela + o->reloc_count;
11213 rel_hash = esdo->rel.hashes + esdo->rel.count;
11214 /* We start processing the REL relocs, if any. When we reach
11215 IRELAMID in the loop, we switch to the RELA relocs. */
11216 irelamid = irela;
11217 if (esdi->rel.hdr != NULL)
11218 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11219 * bed->s->int_rels_per_ext_rel);
11220 rel_hash_list = rel_hash;
11221 rela_hash_list = NULL;
11222 last_offset = o->output_offset;
11223 if (!bfd_link_relocatable (flinfo->info))
11224 last_offset += o->output_section->vma;
11225 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11226 {
11227 unsigned long r_symndx;
11228 asection *sec;
11229 Elf_Internal_Sym sym;
11230
11231 if (next_erel == bed->s->int_rels_per_ext_rel)
11232 {
11233 rel_hash++;
11234 next_erel = 0;
11235 }
11236
11237 if (irela == irelamid)
11238 {
11239 rel_hash = esdo->rela.hashes + esdo->rela.count;
11240 rela_hash_list = rel_hash;
11241 rela_normal = bed->rela_normal;
11242 }
11243
11244 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11245 flinfo->info, o,
11246 irela->r_offset);
11247 if (irela->r_offset >= (bfd_vma) -2)
11248 {
11249 /* This is a reloc for a deleted entry or somesuch.
11250 Turn it into an R_*_NONE reloc, at the same
11251 offset as the last reloc. elf_eh_frame.c and
11252 bfd_elf_discard_info rely on reloc offsets
11253 being ordered. */
11254 irela->r_offset = last_offset;
11255 irela->r_info = 0;
11256 irela->r_addend = 0;
11257 continue;
11258 }
11259
11260 irela->r_offset += o->output_offset;
11261
11262 /* Relocs in an executable have to be virtual addresses. */
11263 if (!bfd_link_relocatable (flinfo->info))
11264 irela->r_offset += o->output_section->vma;
11265
11266 last_offset = irela->r_offset;
11267
11268 r_symndx = irela->r_info >> r_sym_shift;
11269 if (r_symndx == STN_UNDEF)
11270 continue;
11271
11272 if (r_symndx >= locsymcount
11273 || (elf_bad_symtab (input_bfd)
11274 && flinfo->sections[r_symndx] == NULL))
11275 {
11276 struct elf_link_hash_entry *rh;
11277 unsigned long indx;
11278
11279 /* This is a reloc against a global symbol. We
11280 have not yet output all the local symbols, so
11281 we do not know the symbol index of any global
11282 symbol. We set the rel_hash entry for this
11283 reloc to point to the global hash table entry
11284 for this symbol. The symbol index is then
11285 set at the end of bfd_elf_final_link. */
11286 indx = r_symndx - extsymoff;
11287 rh = elf_sym_hashes (input_bfd)[indx];
11288 while (rh->root.type == bfd_link_hash_indirect
11289 || rh->root.type == bfd_link_hash_warning)
11290 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11291
11292 /* Setting the index to -2 tells
11293 elf_link_output_extsym that this symbol is
11294 used by a reloc. */
11295 BFD_ASSERT (rh->indx < 0);
11296 rh->indx = -2;
11297 *rel_hash = rh;
11298
11299 continue;
11300 }
11301
11302 /* This is a reloc against a local symbol. */
11303
11304 *rel_hash = NULL;
11305 sym = isymbuf[r_symndx];
11306 sec = flinfo->sections[r_symndx];
11307 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11308 {
11309 /* I suppose the backend ought to fill in the
11310 section of any STT_SECTION symbol against a
11311 processor specific section. */
11312 r_symndx = STN_UNDEF;
11313 if (bfd_is_abs_section (sec))
11314 ;
11315 else if (sec == NULL || sec->owner == NULL)
11316 {
11317 bfd_set_error (bfd_error_bad_value);
11318 return FALSE;
11319 }
11320 else
11321 {
11322 asection *osec = sec->output_section;
11323
11324 /* If we have discarded a section, the output
11325 section will be the absolute section. In
11326 case of discarded SEC_MERGE sections, use
11327 the kept section. relocate_section should
11328 have already handled discarded linkonce
11329 sections. */
11330 if (bfd_is_abs_section (osec)
11331 && sec->kept_section != NULL
11332 && sec->kept_section->output_section != NULL)
11333 {
11334 osec = sec->kept_section->output_section;
11335 irela->r_addend -= osec->vma;
11336 }
11337
11338 if (!bfd_is_abs_section (osec))
11339 {
11340 r_symndx = osec->target_index;
11341 if (r_symndx == STN_UNDEF)
11342 {
11343 irela->r_addend += osec->vma;
11344 osec = _bfd_nearby_section (output_bfd, osec,
11345 osec->vma);
11346 irela->r_addend -= osec->vma;
11347 r_symndx = osec->target_index;
11348 }
11349 }
11350 }
11351
11352 /* Adjust the addend according to where the
11353 section winds up in the output section. */
11354 if (rela_normal)
11355 irela->r_addend += sec->output_offset;
11356 }
11357 else
11358 {
11359 if (flinfo->indices[r_symndx] == -1)
11360 {
11361 unsigned long shlink;
11362 const char *name;
11363 asection *osec;
11364 long indx;
11365
11366 if (flinfo->info->strip == strip_all)
11367 {
11368 /* You can't do ld -r -s. */
11369 bfd_set_error (bfd_error_invalid_operation);
11370 return FALSE;
11371 }
11372
11373 /* This symbol was skipped earlier, but
11374 since it is needed by a reloc, we
11375 must output it now. */
11376 shlink = symtab_hdr->sh_link;
11377 name = (bfd_elf_string_from_elf_section
11378 (input_bfd, shlink, sym.st_name));
11379 if (name == NULL)
11380 return FALSE;
11381
11382 osec = sec->output_section;
11383 sym.st_shndx =
11384 _bfd_elf_section_from_bfd_section (output_bfd,
11385 osec);
11386 if (sym.st_shndx == SHN_BAD)
11387 return FALSE;
11388
11389 sym.st_value += sec->output_offset;
11390 if (!bfd_link_relocatable (flinfo->info))
11391 {
11392 sym.st_value += osec->vma;
11393 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11394 {
11395 struct elf_link_hash_table *htab
11396 = elf_hash_table (flinfo->info);
11397
11398 /* STT_TLS symbols are relative to PT_TLS
11399 segment base. */
11400 if (htab->tls_sec != NULL)
11401 sym.st_value -= htab->tls_sec->vma;
11402 else
11403 sym.st_info
11404 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11405 STT_NOTYPE);
11406 }
11407 }
11408
11409 indx = bfd_get_symcount (output_bfd);
11410 ret = elf_link_output_symstrtab (flinfo, name,
11411 &sym, sec,
11412 NULL);
11413 if (ret == 0)
11414 return FALSE;
11415 else if (ret == 1)
11416 flinfo->indices[r_symndx] = indx;
11417 else
11418 abort ();
11419 }
11420
11421 r_symndx = flinfo->indices[r_symndx];
11422 }
11423
11424 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11425 | (irela->r_info & r_type_mask));
11426 }
11427
11428 /* Swap out the relocs. */
11429 input_rel_hdr = esdi->rel.hdr;
11430 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11431 {
11432 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11433 input_rel_hdr,
11434 internal_relocs,
11435 rel_hash_list))
11436 return FALSE;
11437 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11438 * bed->s->int_rels_per_ext_rel);
11439 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11440 }
11441
11442 input_rela_hdr = esdi->rela.hdr;
11443 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11444 {
11445 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11446 input_rela_hdr,
11447 internal_relocs,
11448 rela_hash_list))
11449 return FALSE;
11450 }
11451 }
11452 }
11453
11454 /* Write out the modified section contents. */
11455 if (bed->elf_backend_write_section
11456 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11457 contents))
11458 {
11459 /* Section written out. */
11460 }
11461 else switch (o->sec_info_type)
11462 {
11463 case SEC_INFO_TYPE_STABS:
11464 if (! (_bfd_write_section_stabs
11465 (output_bfd,
11466 &elf_hash_table (flinfo->info)->stab_info,
11467 o, &elf_section_data (o)->sec_info, contents)))
11468 return FALSE;
11469 break;
11470 case SEC_INFO_TYPE_MERGE:
11471 if (! _bfd_write_merged_section (output_bfd, o,
11472 elf_section_data (o)->sec_info))
11473 return FALSE;
11474 break;
11475 case SEC_INFO_TYPE_EH_FRAME:
11476 {
11477 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11478 o, contents))
11479 return FALSE;
11480 }
11481 break;
11482 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11483 {
11484 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11485 flinfo->info,
11486 o, contents))
11487 return FALSE;
11488 }
11489 break;
11490 default:
11491 {
11492 if (! (o->flags & SEC_EXCLUDE))
11493 {
11494 file_ptr offset = (file_ptr) o->output_offset;
11495 bfd_size_type todo = o->size;
11496
11497 offset *= bfd_octets_per_byte (output_bfd, o);
11498
11499 if ((o->flags & SEC_ELF_REVERSE_COPY))
11500 {
11501 /* Reverse-copy input section to output. */
11502 do
11503 {
11504 todo -= address_size;
11505 if (! bfd_set_section_contents (output_bfd,
11506 o->output_section,
11507 contents + todo,
11508 offset,
11509 address_size))
11510 return FALSE;
11511 if (todo == 0)
11512 break;
11513 offset += address_size;
11514 }
11515 while (1);
11516 }
11517 else if (! bfd_set_section_contents (output_bfd,
11518 o->output_section,
11519 contents,
11520 offset, todo))
11521 return FALSE;
11522 }
11523 }
11524 break;
11525 }
11526 }
11527
11528 return TRUE;
11529 }
11530
11531 /* Generate a reloc when linking an ELF file. This is a reloc
11532 requested by the linker, and does not come from any input file. This
11533 is used to build constructor and destructor tables when linking
11534 with -Ur. */
11535
11536 static bfd_boolean
11537 elf_reloc_link_order (bfd *output_bfd,
11538 struct bfd_link_info *info,
11539 asection *output_section,
11540 struct bfd_link_order *link_order)
11541 {
11542 reloc_howto_type *howto;
11543 long indx;
11544 bfd_vma offset;
11545 bfd_vma addend;
11546 struct bfd_elf_section_reloc_data *reldata;
11547 struct elf_link_hash_entry **rel_hash_ptr;
11548 Elf_Internal_Shdr *rel_hdr;
11549 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11550 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11551 bfd_byte *erel;
11552 unsigned int i;
11553 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11554
11555 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11556 if (howto == NULL)
11557 {
11558 bfd_set_error (bfd_error_bad_value);
11559 return FALSE;
11560 }
11561
11562 addend = link_order->u.reloc.p->addend;
11563
11564 if (esdo->rel.hdr)
11565 reldata = &esdo->rel;
11566 else if (esdo->rela.hdr)
11567 reldata = &esdo->rela;
11568 else
11569 {
11570 reldata = NULL;
11571 BFD_ASSERT (0);
11572 }
11573
11574 /* Figure out the symbol index. */
11575 rel_hash_ptr = reldata->hashes + reldata->count;
11576 if (link_order->type == bfd_section_reloc_link_order)
11577 {
11578 indx = link_order->u.reloc.p->u.section->target_index;
11579 BFD_ASSERT (indx != 0);
11580 *rel_hash_ptr = NULL;
11581 }
11582 else
11583 {
11584 struct elf_link_hash_entry *h;
11585
11586 /* Treat a reloc against a defined symbol as though it were
11587 actually against the section. */
11588 h = ((struct elf_link_hash_entry *)
11589 bfd_wrapped_link_hash_lookup (output_bfd, info,
11590 link_order->u.reloc.p->u.name,
11591 FALSE, FALSE, TRUE));
11592 if (h != NULL
11593 && (h->root.type == bfd_link_hash_defined
11594 || h->root.type == bfd_link_hash_defweak))
11595 {
11596 asection *section;
11597
11598 section = h->root.u.def.section;
11599 indx = section->output_section->target_index;
11600 *rel_hash_ptr = NULL;
11601 /* It seems that we ought to add the symbol value to the
11602 addend here, but in practice it has already been added
11603 because it was passed to constructor_callback. */
11604 addend += section->output_section->vma + section->output_offset;
11605 }
11606 else if (h != NULL)
11607 {
11608 /* Setting the index to -2 tells elf_link_output_extsym that
11609 this symbol is used by a reloc. */
11610 h->indx = -2;
11611 *rel_hash_ptr = h;
11612 indx = 0;
11613 }
11614 else
11615 {
11616 (*info->callbacks->unattached_reloc)
11617 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11618 indx = 0;
11619 }
11620 }
11621
11622 /* If this is an inplace reloc, we must write the addend into the
11623 object file. */
11624 if (howto->partial_inplace && addend != 0)
11625 {
11626 bfd_size_type size;
11627 bfd_reloc_status_type rstat;
11628 bfd_byte *buf;
11629 bfd_boolean ok;
11630 const char *sym_name;
11631 bfd_size_type octets;
11632
11633 size = (bfd_size_type) bfd_get_reloc_size (howto);
11634 buf = (bfd_byte *) bfd_zmalloc (size);
11635 if (buf == NULL && size != 0)
11636 return FALSE;
11637 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11638 switch (rstat)
11639 {
11640 case bfd_reloc_ok:
11641 break;
11642
11643 default:
11644 case bfd_reloc_outofrange:
11645 abort ();
11646
11647 case bfd_reloc_overflow:
11648 if (link_order->type == bfd_section_reloc_link_order)
11649 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11650 else
11651 sym_name = link_order->u.reloc.p->u.name;
11652 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11653 howto->name, addend, NULL, NULL,
11654 (bfd_vma) 0);
11655 break;
11656 }
11657
11658 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11659 output_section);
11660 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11661 octets, size);
11662 free (buf);
11663 if (! ok)
11664 return FALSE;
11665 }
11666
11667 /* The address of a reloc is relative to the section in a
11668 relocatable file, and is a virtual address in an executable
11669 file. */
11670 offset = link_order->offset;
11671 if (! bfd_link_relocatable (info))
11672 offset += output_section->vma;
11673
11674 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11675 {
11676 irel[i].r_offset = offset;
11677 irel[i].r_info = 0;
11678 irel[i].r_addend = 0;
11679 }
11680 if (bed->s->arch_size == 32)
11681 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11682 else
11683 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11684
11685 rel_hdr = reldata->hdr;
11686 erel = rel_hdr->contents;
11687 if (rel_hdr->sh_type == SHT_REL)
11688 {
11689 erel += reldata->count * bed->s->sizeof_rel;
11690 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11691 }
11692 else
11693 {
11694 irel[0].r_addend = addend;
11695 erel += reldata->count * bed->s->sizeof_rela;
11696 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11697 }
11698
11699 ++reldata->count;
11700
11701 return TRUE;
11702 }
11703
11704
11705 /* Compare two sections based on the locations of the sections they are
11706 linked to. Used by elf_fixup_link_order. */
11707
11708 static int
11709 compare_link_order (const void *a, const void *b)
11710 {
11711 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11712 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11713 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11714 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11715 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11716 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11717
11718 if (apos < bpos)
11719 return -1;
11720 if (apos > bpos)
11721 return 1;
11722
11723 /* The only way we should get matching LMAs is when the first of two
11724 sections has zero size. */
11725 if (asec->size < bsec->size)
11726 return -1;
11727 if (asec->size > bsec->size)
11728 return 1;
11729
11730 /* If they are both zero size then they almost certainly have the same
11731 VMA and thus are not ordered with respect to each other. Test VMA
11732 anyway, and fall back to id to make the result reproducible across
11733 qsort implementations. */
11734 apos = asec->output_section->vma + asec->output_offset;
11735 bpos = bsec->output_section->vma + bsec->output_offset;
11736 if (apos < bpos)
11737 return -1;
11738 if (apos > bpos)
11739 return 1;
11740
11741 return asec->id - bsec->id;
11742 }
11743
11744
11745 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11746 order as their linked sections. Returns false if this could not be done
11747 because an output section includes both ordered and unordered
11748 sections. Ideally we'd do this in the linker proper. */
11749
11750 static bfd_boolean
11751 elf_fixup_link_order (bfd *abfd, asection *o)
11752 {
11753 size_t seen_linkorder;
11754 size_t seen_other;
11755 size_t n;
11756 struct bfd_link_order *p;
11757 bfd *sub;
11758 struct bfd_link_order **sections;
11759 asection *other_sec, *linkorder_sec;
11760 bfd_vma offset; /* Octets. */
11761
11762 other_sec = NULL;
11763 linkorder_sec = NULL;
11764 seen_other = 0;
11765 seen_linkorder = 0;
11766 for (p = o->map_head.link_order; p != NULL; p = p->next)
11767 {
11768 if (p->type == bfd_indirect_link_order)
11769 {
11770 asection *s = p->u.indirect.section;
11771 sub = s->owner;
11772 if ((s->flags & SEC_LINKER_CREATED) == 0
11773 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11774 && elf_section_data (s) != NULL
11775 && elf_linked_to_section (s) != NULL)
11776 {
11777 seen_linkorder++;
11778 linkorder_sec = s;
11779 }
11780 else
11781 {
11782 seen_other++;
11783 other_sec = s;
11784 }
11785 }
11786 else
11787 seen_other++;
11788
11789 if (seen_other && seen_linkorder)
11790 {
11791 if (other_sec && linkorder_sec)
11792 _bfd_error_handler
11793 /* xgettext:c-format */
11794 (_("%pA has both ordered [`%pA' in %pB] "
11795 "and unordered [`%pA' in %pB] sections"),
11796 o, linkorder_sec, linkorder_sec->owner,
11797 other_sec, other_sec->owner);
11798 else
11799 _bfd_error_handler
11800 (_("%pA has both ordered and unordered sections"), o);
11801 bfd_set_error (bfd_error_bad_value);
11802 return FALSE;
11803 }
11804 }
11805
11806 if (!seen_linkorder)
11807 return TRUE;
11808
11809 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11810 if (sections == NULL)
11811 return FALSE;
11812
11813 seen_linkorder = 0;
11814 for (p = o->map_head.link_order; p != NULL; p = p->next)
11815 sections[seen_linkorder++] = p;
11816
11817 /* Sort the input sections in the order of their linked section. */
11818 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11819
11820 /* Change the offsets of the sections. */
11821 offset = 0;
11822 for (n = 0; n < seen_linkorder; n++)
11823 {
11824 bfd_vma mask;
11825 asection *s = sections[n]->u.indirect.section;
11826 unsigned int opb = bfd_octets_per_byte (abfd, s);
11827
11828 mask = ~(bfd_vma) 0 << s->alignment_power * opb;
11829 offset = (offset + ~mask) & mask;
11830 sections[n]->offset = s->output_offset = offset / opb;
11831 offset += sections[n]->size;
11832 }
11833
11834 free (sections);
11835 return TRUE;
11836 }
11837
11838 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11839 Returns TRUE upon success, FALSE otherwise. */
11840
11841 static bfd_boolean
11842 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11843 {
11844 bfd_boolean ret = FALSE;
11845 bfd *implib_bfd;
11846 const struct elf_backend_data *bed;
11847 flagword flags;
11848 enum bfd_architecture arch;
11849 unsigned int mach;
11850 asymbol **sympp = NULL;
11851 long symsize;
11852 long symcount;
11853 long src_count;
11854 elf_symbol_type *osymbuf;
11855 size_t amt;
11856
11857 implib_bfd = info->out_implib_bfd;
11858 bed = get_elf_backend_data (abfd);
11859
11860 if (!bfd_set_format (implib_bfd, bfd_object))
11861 return FALSE;
11862
11863 /* Use flag from executable but make it a relocatable object. */
11864 flags = bfd_get_file_flags (abfd);
11865 flags &= ~HAS_RELOC;
11866 if (!bfd_set_start_address (implib_bfd, 0)
11867 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11868 return FALSE;
11869
11870 /* Copy architecture of output file to import library file. */
11871 arch = bfd_get_arch (abfd);
11872 mach = bfd_get_mach (abfd);
11873 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11874 && (abfd->target_defaulted
11875 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11876 return FALSE;
11877
11878 /* Get symbol table size. */
11879 symsize = bfd_get_symtab_upper_bound (abfd);
11880 if (symsize < 0)
11881 return FALSE;
11882
11883 /* Read in the symbol table. */
11884 sympp = (asymbol **) bfd_malloc (symsize);
11885 if (sympp == NULL)
11886 return FALSE;
11887
11888 symcount = bfd_canonicalize_symtab (abfd, sympp);
11889 if (symcount < 0)
11890 goto free_sym_buf;
11891
11892 /* Allow the BFD backend to copy any private header data it
11893 understands from the output BFD to the import library BFD. */
11894 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11895 goto free_sym_buf;
11896
11897 /* Filter symbols to appear in the import library. */
11898 if (bed->elf_backend_filter_implib_symbols)
11899 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11900 symcount);
11901 else
11902 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11903 if (symcount == 0)
11904 {
11905 bfd_set_error (bfd_error_no_symbols);
11906 _bfd_error_handler (_("%pB: no symbol found for import library"),
11907 implib_bfd);
11908 goto free_sym_buf;
11909 }
11910
11911
11912 /* Make symbols absolute. */
11913 amt = symcount * sizeof (*osymbuf);
11914 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11915 if (osymbuf == NULL)
11916 goto free_sym_buf;
11917
11918 for (src_count = 0; src_count < symcount; src_count++)
11919 {
11920 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11921 sizeof (*osymbuf));
11922 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11923 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11924 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11925 osymbuf[src_count].internal_elf_sym.st_value =
11926 osymbuf[src_count].symbol.value;
11927 sympp[src_count] = &osymbuf[src_count].symbol;
11928 }
11929
11930 bfd_set_symtab (implib_bfd, sympp, symcount);
11931
11932 /* Allow the BFD backend to copy any private data it understands
11933 from the output BFD to the import library BFD. This is done last
11934 to permit the routine to look at the filtered symbol table. */
11935 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11936 goto free_sym_buf;
11937
11938 if (!bfd_close (implib_bfd))
11939 goto free_sym_buf;
11940
11941 ret = TRUE;
11942
11943 free_sym_buf:
11944 free (sympp);
11945 return ret;
11946 }
11947
11948 static void
11949 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11950 {
11951 asection *o;
11952
11953 if (flinfo->symstrtab != NULL)
11954 _bfd_elf_strtab_free (flinfo->symstrtab);
11955 free (flinfo->contents);
11956 free (flinfo->external_relocs);
11957 free (flinfo->internal_relocs);
11958 free (flinfo->external_syms);
11959 free (flinfo->locsym_shndx);
11960 free (flinfo->internal_syms);
11961 free (flinfo->indices);
11962 free (flinfo->sections);
11963 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11964 free (flinfo->symshndxbuf);
11965 for (o = obfd->sections; o != NULL; o = o->next)
11966 {
11967 struct bfd_elf_section_data *esdo = elf_section_data (o);
11968 free (esdo->rel.hashes);
11969 free (esdo->rela.hashes);
11970 }
11971 }
11972
11973 /* Do the final step of an ELF link. */
11974
11975 bfd_boolean
11976 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11977 {
11978 bfd_boolean dynamic;
11979 bfd_boolean emit_relocs;
11980 bfd *dynobj;
11981 struct elf_final_link_info flinfo;
11982 asection *o;
11983 struct bfd_link_order *p;
11984 bfd *sub;
11985 bfd_size_type max_contents_size;
11986 bfd_size_type max_external_reloc_size;
11987 bfd_size_type max_internal_reloc_count;
11988 bfd_size_type max_sym_count;
11989 bfd_size_type max_sym_shndx_count;
11990 Elf_Internal_Sym elfsym;
11991 unsigned int i;
11992 Elf_Internal_Shdr *symtab_hdr;
11993 Elf_Internal_Shdr *symtab_shndx_hdr;
11994 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11995 struct elf_outext_info eoinfo;
11996 bfd_boolean merged;
11997 size_t relativecount = 0;
11998 asection *reldyn = 0;
11999 bfd_size_type amt;
12000 asection *attr_section = NULL;
12001 bfd_vma attr_size = 0;
12002 const char *std_attrs_section;
12003 struct elf_link_hash_table *htab = elf_hash_table (info);
12004 bfd_boolean sections_removed;
12005
12006 if (!is_elf_hash_table (htab))
12007 return FALSE;
12008
12009 if (bfd_link_pic (info))
12010 abfd->flags |= DYNAMIC;
12011
12012 dynamic = htab->dynamic_sections_created;
12013 dynobj = htab->dynobj;
12014
12015 emit_relocs = (bfd_link_relocatable (info)
12016 || info->emitrelocations);
12017
12018 flinfo.info = info;
12019 flinfo.output_bfd = abfd;
12020 flinfo.symstrtab = _bfd_elf_strtab_init ();
12021 if (flinfo.symstrtab == NULL)
12022 return FALSE;
12023
12024 if (! dynamic)
12025 {
12026 flinfo.hash_sec = NULL;
12027 flinfo.symver_sec = NULL;
12028 }
12029 else
12030 {
12031 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12032 /* Note that dynsym_sec can be NULL (on VMS). */
12033 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12034 /* Note that it is OK if symver_sec is NULL. */
12035 }
12036
12037 flinfo.contents = NULL;
12038 flinfo.external_relocs = NULL;
12039 flinfo.internal_relocs = NULL;
12040 flinfo.external_syms = NULL;
12041 flinfo.locsym_shndx = NULL;
12042 flinfo.internal_syms = NULL;
12043 flinfo.indices = NULL;
12044 flinfo.sections = NULL;
12045 flinfo.symshndxbuf = NULL;
12046 flinfo.filesym_count = 0;
12047
12048 /* The object attributes have been merged. Remove the input
12049 sections from the link, and set the contents of the output
12050 section. */
12051 sections_removed = FALSE;
12052 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12053 for (o = abfd->sections; o != NULL; o = o->next)
12054 {
12055 bfd_boolean remove_section = FALSE;
12056
12057 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12058 || strcmp (o->name, ".gnu.attributes") == 0)
12059 {
12060 for (p = o->map_head.link_order; p != NULL; p = p->next)
12061 {
12062 asection *input_section;
12063
12064 if (p->type != bfd_indirect_link_order)
12065 continue;
12066 input_section = p->u.indirect.section;
12067 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12068 elf_link_input_bfd ignores this section. */
12069 input_section->flags &= ~SEC_HAS_CONTENTS;
12070 }
12071
12072 attr_size = bfd_elf_obj_attr_size (abfd);
12073 bfd_set_section_size (o, attr_size);
12074 /* Skip this section later on. */
12075 o->map_head.link_order = NULL;
12076 if (attr_size)
12077 attr_section = o;
12078 else
12079 remove_section = TRUE;
12080 }
12081 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12082 {
12083 /* Remove empty group section from linker output. */
12084 remove_section = TRUE;
12085 }
12086 if (remove_section)
12087 {
12088 o->flags |= SEC_EXCLUDE;
12089 bfd_section_list_remove (abfd, o);
12090 abfd->section_count--;
12091 sections_removed = TRUE;
12092 }
12093 }
12094 if (sections_removed)
12095 _bfd_fix_excluded_sec_syms (abfd, info);
12096
12097 /* Count up the number of relocations we will output for each output
12098 section, so that we know the sizes of the reloc sections. We
12099 also figure out some maximum sizes. */
12100 max_contents_size = 0;
12101 max_external_reloc_size = 0;
12102 max_internal_reloc_count = 0;
12103 max_sym_count = 0;
12104 max_sym_shndx_count = 0;
12105 merged = FALSE;
12106 for (o = abfd->sections; o != NULL; o = o->next)
12107 {
12108 struct bfd_elf_section_data *esdo = elf_section_data (o);
12109 o->reloc_count = 0;
12110
12111 for (p = o->map_head.link_order; p != NULL; p = p->next)
12112 {
12113 unsigned int reloc_count = 0;
12114 unsigned int additional_reloc_count = 0;
12115 struct bfd_elf_section_data *esdi = NULL;
12116
12117 if (p->type == bfd_section_reloc_link_order
12118 || p->type == bfd_symbol_reloc_link_order)
12119 reloc_count = 1;
12120 else if (p->type == bfd_indirect_link_order)
12121 {
12122 asection *sec;
12123
12124 sec = p->u.indirect.section;
12125
12126 /* Mark all sections which are to be included in the
12127 link. This will normally be every section. We need
12128 to do this so that we can identify any sections which
12129 the linker has decided to not include. */
12130 sec->linker_mark = TRUE;
12131
12132 if (sec->flags & SEC_MERGE)
12133 merged = TRUE;
12134
12135 if (sec->rawsize > max_contents_size)
12136 max_contents_size = sec->rawsize;
12137 if (sec->size > max_contents_size)
12138 max_contents_size = sec->size;
12139
12140 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12141 && (sec->owner->flags & DYNAMIC) == 0)
12142 {
12143 size_t sym_count;
12144
12145 /* We are interested in just local symbols, not all
12146 symbols. */
12147 if (elf_bad_symtab (sec->owner))
12148 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12149 / bed->s->sizeof_sym);
12150 else
12151 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12152
12153 if (sym_count > max_sym_count)
12154 max_sym_count = sym_count;
12155
12156 if (sym_count > max_sym_shndx_count
12157 && elf_symtab_shndx_list (sec->owner) != NULL)
12158 max_sym_shndx_count = sym_count;
12159
12160 if (esdo->this_hdr.sh_type == SHT_REL
12161 || esdo->this_hdr.sh_type == SHT_RELA)
12162 /* Some backends use reloc_count in relocation sections
12163 to count particular types of relocs. Of course,
12164 reloc sections themselves can't have relocations. */
12165 ;
12166 else if (emit_relocs)
12167 {
12168 reloc_count = sec->reloc_count;
12169 if (bed->elf_backend_count_additional_relocs)
12170 {
12171 int c;
12172 c = (*bed->elf_backend_count_additional_relocs) (sec);
12173 additional_reloc_count += c;
12174 }
12175 }
12176 else if (bed->elf_backend_count_relocs)
12177 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12178
12179 esdi = elf_section_data (sec);
12180
12181 if ((sec->flags & SEC_RELOC) != 0)
12182 {
12183 size_t ext_size = 0;
12184
12185 if (esdi->rel.hdr != NULL)
12186 ext_size = esdi->rel.hdr->sh_size;
12187 if (esdi->rela.hdr != NULL)
12188 ext_size += esdi->rela.hdr->sh_size;
12189
12190 if (ext_size > max_external_reloc_size)
12191 max_external_reloc_size = ext_size;
12192 if (sec->reloc_count > max_internal_reloc_count)
12193 max_internal_reloc_count = sec->reloc_count;
12194 }
12195 }
12196 }
12197
12198 if (reloc_count == 0)
12199 continue;
12200
12201 reloc_count += additional_reloc_count;
12202 o->reloc_count += reloc_count;
12203
12204 if (p->type == bfd_indirect_link_order && emit_relocs)
12205 {
12206 if (esdi->rel.hdr)
12207 {
12208 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12209 esdo->rel.count += additional_reloc_count;
12210 }
12211 if (esdi->rela.hdr)
12212 {
12213 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12214 esdo->rela.count += additional_reloc_count;
12215 }
12216 }
12217 else
12218 {
12219 if (o->use_rela_p)
12220 esdo->rela.count += reloc_count;
12221 else
12222 esdo->rel.count += reloc_count;
12223 }
12224 }
12225
12226 if (o->reloc_count > 0)
12227 o->flags |= SEC_RELOC;
12228 else
12229 {
12230 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12231 set it (this is probably a bug) and if it is set
12232 assign_section_numbers will create a reloc section. */
12233 o->flags &=~ SEC_RELOC;
12234 }
12235
12236 /* If the SEC_ALLOC flag is not set, force the section VMA to
12237 zero. This is done in elf_fake_sections as well, but forcing
12238 the VMA to 0 here will ensure that relocs against these
12239 sections are handled correctly. */
12240 if ((o->flags & SEC_ALLOC) == 0
12241 && ! o->user_set_vma)
12242 o->vma = 0;
12243 }
12244
12245 if (! bfd_link_relocatable (info) && merged)
12246 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12247
12248 /* Figure out the file positions for everything but the symbol table
12249 and the relocs. We set symcount to force assign_section_numbers
12250 to create a symbol table. */
12251 abfd->symcount = info->strip != strip_all || emit_relocs;
12252 BFD_ASSERT (! abfd->output_has_begun);
12253 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12254 goto error_return;
12255
12256 /* Set sizes, and assign file positions for reloc sections. */
12257 for (o = abfd->sections; o != NULL; o = o->next)
12258 {
12259 struct bfd_elf_section_data *esdo = elf_section_data (o);
12260 if ((o->flags & SEC_RELOC) != 0)
12261 {
12262 if (esdo->rel.hdr
12263 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12264 goto error_return;
12265
12266 if (esdo->rela.hdr
12267 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12268 goto error_return;
12269 }
12270
12271 /* _bfd_elf_compute_section_file_positions makes temporary use
12272 of target_index. Reset it. */
12273 o->target_index = 0;
12274
12275 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12276 to count upwards while actually outputting the relocations. */
12277 esdo->rel.count = 0;
12278 esdo->rela.count = 0;
12279
12280 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12281 && !bfd_section_is_ctf (o))
12282 {
12283 /* Cache the section contents so that they can be compressed
12284 later. Use bfd_malloc since it will be freed by
12285 bfd_compress_section_contents. */
12286 unsigned char *contents = esdo->this_hdr.contents;
12287 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12288 abort ();
12289 contents
12290 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12291 if (contents == NULL)
12292 goto error_return;
12293 esdo->this_hdr.contents = contents;
12294 }
12295 }
12296
12297 /* We have now assigned file positions for all the sections except .symtab,
12298 .strtab, and non-loaded reloc and compressed debugging sections. We start
12299 the .symtab section at the current file position, and write directly to it.
12300 We build the .strtab section in memory. */
12301 abfd->symcount = 0;
12302 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12303 /* sh_name is set in prep_headers. */
12304 symtab_hdr->sh_type = SHT_SYMTAB;
12305 /* sh_flags, sh_addr and sh_size all start off zero. */
12306 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12307 /* sh_link is set in assign_section_numbers. */
12308 /* sh_info is set below. */
12309 /* sh_offset is set just below. */
12310 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12311
12312 if (max_sym_count < 20)
12313 max_sym_count = 20;
12314 htab->strtabsize = max_sym_count;
12315 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12316 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12317 if (htab->strtab == NULL)
12318 goto error_return;
12319 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12320 flinfo.symshndxbuf
12321 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12322 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12323
12324 if (info->strip != strip_all || emit_relocs)
12325 {
12326 bfd_boolean name_local_sections;
12327 const char *name;
12328
12329 file_ptr off = elf_next_file_pos (abfd);
12330
12331 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12332
12333 /* Note that at this point elf_next_file_pos (abfd) is
12334 incorrect. We do not yet know the size of the .symtab section.
12335 We correct next_file_pos below, after we do know the size. */
12336
12337 /* Start writing out the symbol table. The first symbol is always a
12338 dummy symbol. */
12339 elfsym.st_value = 0;
12340 elfsym.st_size = 0;
12341 elfsym.st_info = 0;
12342 elfsym.st_other = 0;
12343 elfsym.st_shndx = SHN_UNDEF;
12344 elfsym.st_target_internal = 0;
12345 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12346 bfd_und_section_ptr, NULL) != 1)
12347 goto error_return;
12348
12349 /* Output a symbol for each section. We output these even if we are
12350 discarding local symbols, since they are used for relocs. These
12351 symbols usually have no names. We store the index of each one in
12352 the index field of the section, so that we can find it again when
12353 outputting relocs. */
12354
12355 name_local_sections
12356 = (bed->elf_backend_name_local_section_symbols
12357 && bed->elf_backend_name_local_section_symbols (abfd));
12358
12359 name = NULL;
12360 elfsym.st_size = 0;
12361 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12362 elfsym.st_other = 0;
12363 elfsym.st_value = 0;
12364 elfsym.st_target_internal = 0;
12365 for (i = 1; i < elf_numsections (abfd); i++)
12366 {
12367 o = bfd_section_from_elf_index (abfd, i);
12368 if (o != NULL)
12369 {
12370 o->target_index = bfd_get_symcount (abfd);
12371 elfsym.st_shndx = i;
12372 if (!bfd_link_relocatable (info))
12373 elfsym.st_value = o->vma;
12374 if (name_local_sections)
12375 name = o->name;
12376 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12377 NULL) != 1)
12378 goto error_return;
12379 }
12380 }
12381 }
12382
12383 /* On some targets like Irix 5 the symbol split between local and global
12384 ones recorded in the sh_info field needs to be done between section
12385 and all other symbols. */
12386 if (bed->elf_backend_elfsym_local_is_section
12387 && bed->elf_backend_elfsym_local_is_section (abfd))
12388 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12389
12390 /* Allocate some memory to hold information read in from the input
12391 files. */
12392 if (max_contents_size != 0)
12393 {
12394 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12395 if (flinfo.contents == NULL)
12396 goto error_return;
12397 }
12398
12399 if (max_external_reloc_size != 0)
12400 {
12401 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12402 if (flinfo.external_relocs == NULL)
12403 goto error_return;
12404 }
12405
12406 if (max_internal_reloc_count != 0)
12407 {
12408 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12409 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12410 if (flinfo.internal_relocs == NULL)
12411 goto error_return;
12412 }
12413
12414 if (max_sym_count != 0)
12415 {
12416 amt = max_sym_count * bed->s->sizeof_sym;
12417 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12418 if (flinfo.external_syms == NULL)
12419 goto error_return;
12420
12421 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12422 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12423 if (flinfo.internal_syms == NULL)
12424 goto error_return;
12425
12426 amt = max_sym_count * sizeof (long);
12427 flinfo.indices = (long int *) bfd_malloc (amt);
12428 if (flinfo.indices == NULL)
12429 goto error_return;
12430
12431 amt = max_sym_count * sizeof (asection *);
12432 flinfo.sections = (asection **) bfd_malloc (amt);
12433 if (flinfo.sections == NULL)
12434 goto error_return;
12435 }
12436
12437 if (max_sym_shndx_count != 0)
12438 {
12439 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12440 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12441 if (flinfo.locsym_shndx == NULL)
12442 goto error_return;
12443 }
12444
12445 if (htab->tls_sec)
12446 {
12447 bfd_vma base, end = 0; /* Both bytes. */
12448 asection *sec;
12449
12450 for (sec = htab->tls_sec;
12451 sec && (sec->flags & SEC_THREAD_LOCAL);
12452 sec = sec->next)
12453 {
12454 bfd_size_type size = sec->size;
12455 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12456
12457 if (size == 0
12458 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12459 {
12460 struct bfd_link_order *ord = sec->map_tail.link_order;
12461
12462 if (ord != NULL)
12463 size = ord->offset * opb + ord->size;
12464 }
12465 end = sec->vma + size / opb;
12466 }
12467 base = htab->tls_sec->vma;
12468 /* Only align end of TLS section if static TLS doesn't have special
12469 alignment requirements. */
12470 if (bed->static_tls_alignment == 1)
12471 end = align_power (end, htab->tls_sec->alignment_power);
12472 htab->tls_size = end - base;
12473 }
12474
12475 /* Reorder SHF_LINK_ORDER sections. */
12476 for (o = abfd->sections; o != NULL; o = o->next)
12477 {
12478 if (!elf_fixup_link_order (abfd, o))
12479 return FALSE;
12480 }
12481
12482 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12483 return FALSE;
12484
12485 /* Since ELF permits relocations to be against local symbols, we
12486 must have the local symbols available when we do the relocations.
12487 Since we would rather only read the local symbols once, and we
12488 would rather not keep them in memory, we handle all the
12489 relocations for a single input file at the same time.
12490
12491 Unfortunately, there is no way to know the total number of local
12492 symbols until we have seen all of them, and the local symbol
12493 indices precede the global symbol indices. This means that when
12494 we are generating relocatable output, and we see a reloc against
12495 a global symbol, we can not know the symbol index until we have
12496 finished examining all the local symbols to see which ones we are
12497 going to output. To deal with this, we keep the relocations in
12498 memory, and don't output them until the end of the link. This is
12499 an unfortunate waste of memory, but I don't see a good way around
12500 it. Fortunately, it only happens when performing a relocatable
12501 link, which is not the common case. FIXME: If keep_memory is set
12502 we could write the relocs out and then read them again; I don't
12503 know how bad the memory loss will be. */
12504
12505 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12506 sub->output_has_begun = FALSE;
12507 for (o = abfd->sections; o != NULL; o = o->next)
12508 {
12509 for (p = o->map_head.link_order; p != NULL; p = p->next)
12510 {
12511 if (p->type == bfd_indirect_link_order
12512 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12513 == bfd_target_elf_flavour)
12514 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12515 {
12516 if (! sub->output_has_begun)
12517 {
12518 if (! elf_link_input_bfd (&flinfo, sub))
12519 goto error_return;
12520 sub->output_has_begun = TRUE;
12521 }
12522 }
12523 else if (p->type == bfd_section_reloc_link_order
12524 || p->type == bfd_symbol_reloc_link_order)
12525 {
12526 if (! elf_reloc_link_order (abfd, info, o, p))
12527 goto error_return;
12528 }
12529 else
12530 {
12531 if (! _bfd_default_link_order (abfd, info, o, p))
12532 {
12533 if (p->type == bfd_indirect_link_order
12534 && (bfd_get_flavour (sub)
12535 == bfd_target_elf_flavour)
12536 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12537 != bed->s->elfclass))
12538 {
12539 const char *iclass, *oclass;
12540
12541 switch (bed->s->elfclass)
12542 {
12543 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12544 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12545 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12546 default: abort ();
12547 }
12548
12549 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12550 {
12551 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12552 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12553 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12554 default: abort ();
12555 }
12556
12557 bfd_set_error (bfd_error_wrong_format);
12558 _bfd_error_handler
12559 /* xgettext:c-format */
12560 (_("%pB: file class %s incompatible with %s"),
12561 sub, iclass, oclass);
12562 }
12563
12564 goto error_return;
12565 }
12566 }
12567 }
12568 }
12569
12570 /* Free symbol buffer if needed. */
12571 if (!info->reduce_memory_overheads)
12572 {
12573 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12574 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12575 {
12576 free (elf_tdata (sub)->symbuf);
12577 elf_tdata (sub)->symbuf = NULL;
12578 }
12579 }
12580
12581 /* Output any global symbols that got converted to local in a
12582 version script or due to symbol visibility. We do this in a
12583 separate step since ELF requires all local symbols to appear
12584 prior to any global symbols. FIXME: We should only do this if
12585 some global symbols were, in fact, converted to become local.
12586 FIXME: Will this work correctly with the Irix 5 linker? */
12587 eoinfo.failed = FALSE;
12588 eoinfo.flinfo = &flinfo;
12589 eoinfo.localsyms = TRUE;
12590 eoinfo.file_sym_done = FALSE;
12591 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12592 if (eoinfo.failed)
12593 return FALSE;
12594
12595 /* If backend needs to output some local symbols not present in the hash
12596 table, do it now. */
12597 if (bed->elf_backend_output_arch_local_syms
12598 && (info->strip != strip_all || emit_relocs))
12599 {
12600 typedef int (*out_sym_func)
12601 (void *, const char *, Elf_Internal_Sym *, asection *,
12602 struct elf_link_hash_entry *);
12603
12604 if (! ((*bed->elf_backend_output_arch_local_syms)
12605 (abfd, info, &flinfo,
12606 (out_sym_func) elf_link_output_symstrtab)))
12607 return FALSE;
12608 }
12609
12610 /* That wrote out all the local symbols. Finish up the symbol table
12611 with the global symbols. Even if we want to strip everything we
12612 can, we still need to deal with those global symbols that got
12613 converted to local in a version script. */
12614
12615 /* The sh_info field records the index of the first non local symbol. */
12616 if (!symtab_hdr->sh_info)
12617 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12618
12619 if (dynamic
12620 && htab->dynsym != NULL
12621 && htab->dynsym->output_section != bfd_abs_section_ptr)
12622 {
12623 Elf_Internal_Sym sym;
12624 bfd_byte *dynsym = htab->dynsym->contents;
12625
12626 o = htab->dynsym->output_section;
12627 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12628
12629 /* Write out the section symbols for the output sections. */
12630 if (bfd_link_pic (info)
12631 || htab->is_relocatable_executable)
12632 {
12633 asection *s;
12634
12635 sym.st_size = 0;
12636 sym.st_name = 0;
12637 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12638 sym.st_other = 0;
12639 sym.st_target_internal = 0;
12640
12641 for (s = abfd->sections; s != NULL; s = s->next)
12642 {
12643 int indx;
12644 bfd_byte *dest;
12645 long dynindx;
12646
12647 dynindx = elf_section_data (s)->dynindx;
12648 if (dynindx <= 0)
12649 continue;
12650 indx = elf_section_data (s)->this_idx;
12651 BFD_ASSERT (indx > 0);
12652 sym.st_shndx = indx;
12653 if (! check_dynsym (abfd, &sym))
12654 return FALSE;
12655 sym.st_value = s->vma;
12656 dest = dynsym + dynindx * bed->s->sizeof_sym;
12657 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12658 }
12659 }
12660
12661 /* Write out the local dynsyms. */
12662 if (htab->dynlocal)
12663 {
12664 struct elf_link_local_dynamic_entry *e;
12665 for (e = htab->dynlocal; e ; e = e->next)
12666 {
12667 asection *s;
12668 bfd_byte *dest;
12669
12670 /* Copy the internal symbol and turn off visibility.
12671 Note that we saved a word of storage and overwrote
12672 the original st_name with the dynstr_index. */
12673 sym = e->isym;
12674 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12675 sym.st_shndx = SHN_UNDEF;
12676
12677 s = bfd_section_from_elf_index (e->input_bfd,
12678 e->isym.st_shndx);
12679 if (s != NULL
12680 && s->output_section != NULL
12681 && elf_section_data (s->output_section) != NULL)
12682 {
12683 sym.st_shndx =
12684 elf_section_data (s->output_section)->this_idx;
12685 if (! check_dynsym (abfd, &sym))
12686 return FALSE;
12687 sym.st_value = (s->output_section->vma
12688 + s->output_offset
12689 + e->isym.st_value);
12690 }
12691
12692 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12693 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12694 }
12695 }
12696 }
12697
12698 /* We get the global symbols from the hash table. */
12699 eoinfo.failed = FALSE;
12700 eoinfo.localsyms = FALSE;
12701 eoinfo.flinfo = &flinfo;
12702 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12703 if (eoinfo.failed)
12704 return FALSE;
12705
12706 /* If backend needs to output some symbols not present in the hash
12707 table, do it now. */
12708 if (bed->elf_backend_output_arch_syms
12709 && (info->strip != strip_all || emit_relocs))
12710 {
12711 typedef int (*out_sym_func)
12712 (void *, const char *, Elf_Internal_Sym *, asection *,
12713 struct elf_link_hash_entry *);
12714
12715 if (! ((*bed->elf_backend_output_arch_syms)
12716 (abfd, info, &flinfo,
12717 (out_sym_func) elf_link_output_symstrtab)))
12718 return FALSE;
12719 }
12720
12721 /* Finalize the .strtab section. */
12722 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12723
12724 /* Swap out the .strtab section. */
12725 if (!elf_link_swap_symbols_out (&flinfo))
12726 return FALSE;
12727
12728 /* Now we know the size of the symtab section. */
12729 if (bfd_get_symcount (abfd) > 0)
12730 {
12731 /* Finish up and write out the symbol string table (.strtab)
12732 section. */
12733 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12734 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12735
12736 if (elf_symtab_shndx_list (abfd))
12737 {
12738 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12739
12740 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12741 {
12742 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12743 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12744 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12745 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12746 symtab_shndx_hdr->sh_size = amt;
12747
12748 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12749 off, TRUE);
12750
12751 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12752 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12753 return FALSE;
12754 }
12755 }
12756
12757 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12758 /* sh_name was set in prep_headers. */
12759 symstrtab_hdr->sh_type = SHT_STRTAB;
12760 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12761 symstrtab_hdr->sh_addr = 0;
12762 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12763 symstrtab_hdr->sh_entsize = 0;
12764 symstrtab_hdr->sh_link = 0;
12765 symstrtab_hdr->sh_info = 0;
12766 /* sh_offset is set just below. */
12767 symstrtab_hdr->sh_addralign = 1;
12768
12769 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12770 off, TRUE);
12771 elf_next_file_pos (abfd) = off;
12772
12773 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12774 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12775 return FALSE;
12776 }
12777
12778 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12779 {
12780 _bfd_error_handler (_("%pB: failed to generate import library"),
12781 info->out_implib_bfd);
12782 return FALSE;
12783 }
12784
12785 /* Adjust the relocs to have the correct symbol indices. */
12786 for (o = abfd->sections; o != NULL; o = o->next)
12787 {
12788 struct bfd_elf_section_data *esdo = elf_section_data (o);
12789 bfd_boolean sort;
12790
12791 if ((o->flags & SEC_RELOC) == 0)
12792 continue;
12793
12794 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12795 if (esdo->rel.hdr != NULL
12796 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12797 return FALSE;
12798 if (esdo->rela.hdr != NULL
12799 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12800 return FALSE;
12801
12802 /* Set the reloc_count field to 0 to prevent write_relocs from
12803 trying to swap the relocs out itself. */
12804 o->reloc_count = 0;
12805 }
12806
12807 if (dynamic && info->combreloc && dynobj != NULL)
12808 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12809
12810 /* If we are linking against a dynamic object, or generating a
12811 shared library, finish up the dynamic linking information. */
12812 if (dynamic)
12813 {
12814 bfd_byte *dyncon, *dynconend;
12815
12816 /* Fix up .dynamic entries. */
12817 o = bfd_get_linker_section (dynobj, ".dynamic");
12818 BFD_ASSERT (o != NULL);
12819
12820 dyncon = o->contents;
12821 dynconend = o->contents + o->size;
12822 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12823 {
12824 Elf_Internal_Dyn dyn;
12825 const char *name;
12826 unsigned int type;
12827 bfd_size_type sh_size;
12828 bfd_vma sh_addr;
12829
12830 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12831
12832 switch (dyn.d_tag)
12833 {
12834 default:
12835 continue;
12836 case DT_NULL:
12837 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12838 {
12839 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12840 {
12841 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12842 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12843 default: continue;
12844 }
12845 dyn.d_un.d_val = relativecount;
12846 relativecount = 0;
12847 break;
12848 }
12849 continue;
12850
12851 case DT_INIT:
12852 name = info->init_function;
12853 goto get_sym;
12854 case DT_FINI:
12855 name = info->fini_function;
12856 get_sym:
12857 {
12858 struct elf_link_hash_entry *h;
12859
12860 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12861 if (h != NULL
12862 && (h->root.type == bfd_link_hash_defined
12863 || h->root.type == bfd_link_hash_defweak))
12864 {
12865 dyn.d_un.d_ptr = h->root.u.def.value;
12866 o = h->root.u.def.section;
12867 if (o->output_section != NULL)
12868 dyn.d_un.d_ptr += (o->output_section->vma
12869 + o->output_offset);
12870 else
12871 {
12872 /* The symbol is imported from another shared
12873 library and does not apply to this one. */
12874 dyn.d_un.d_ptr = 0;
12875 }
12876 break;
12877 }
12878 }
12879 continue;
12880
12881 case DT_PREINIT_ARRAYSZ:
12882 name = ".preinit_array";
12883 goto get_out_size;
12884 case DT_INIT_ARRAYSZ:
12885 name = ".init_array";
12886 goto get_out_size;
12887 case DT_FINI_ARRAYSZ:
12888 name = ".fini_array";
12889 get_out_size:
12890 o = bfd_get_section_by_name (abfd, name);
12891 if (o == NULL)
12892 {
12893 _bfd_error_handler
12894 (_("could not find section %s"), name);
12895 goto error_return;
12896 }
12897 if (o->size == 0)
12898 _bfd_error_handler
12899 (_("warning: %s section has zero size"), name);
12900 dyn.d_un.d_val = o->size;
12901 break;
12902
12903 case DT_PREINIT_ARRAY:
12904 name = ".preinit_array";
12905 goto get_out_vma;
12906 case DT_INIT_ARRAY:
12907 name = ".init_array";
12908 goto get_out_vma;
12909 case DT_FINI_ARRAY:
12910 name = ".fini_array";
12911 get_out_vma:
12912 o = bfd_get_section_by_name (abfd, name);
12913 goto do_vma;
12914
12915 case DT_HASH:
12916 name = ".hash";
12917 goto get_vma;
12918 case DT_GNU_HASH:
12919 name = ".gnu.hash";
12920 goto get_vma;
12921 case DT_STRTAB:
12922 name = ".dynstr";
12923 goto get_vma;
12924 case DT_SYMTAB:
12925 name = ".dynsym";
12926 goto get_vma;
12927 case DT_VERDEF:
12928 name = ".gnu.version_d";
12929 goto get_vma;
12930 case DT_VERNEED:
12931 name = ".gnu.version_r";
12932 goto get_vma;
12933 case DT_VERSYM:
12934 name = ".gnu.version";
12935 get_vma:
12936 o = bfd_get_linker_section (dynobj, name);
12937 do_vma:
12938 if (o == NULL || bfd_is_abs_section (o->output_section))
12939 {
12940 _bfd_error_handler
12941 (_("could not find section %s"), name);
12942 goto error_return;
12943 }
12944 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12945 {
12946 _bfd_error_handler
12947 (_("warning: section '%s' is being made into a note"), name);
12948 bfd_set_error (bfd_error_nonrepresentable_section);
12949 goto error_return;
12950 }
12951 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12952 break;
12953
12954 case DT_REL:
12955 case DT_RELA:
12956 case DT_RELSZ:
12957 case DT_RELASZ:
12958 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12959 type = SHT_REL;
12960 else
12961 type = SHT_RELA;
12962 sh_size = 0;
12963 sh_addr = 0;
12964 for (i = 1; i < elf_numsections (abfd); i++)
12965 {
12966 Elf_Internal_Shdr *hdr;
12967
12968 hdr = elf_elfsections (abfd)[i];
12969 if (hdr->sh_type == type
12970 && (hdr->sh_flags & SHF_ALLOC) != 0)
12971 {
12972 sh_size += hdr->sh_size;
12973 if (sh_addr == 0
12974 || sh_addr > hdr->sh_addr)
12975 sh_addr = hdr->sh_addr;
12976 }
12977 }
12978
12979 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12980 {
12981 unsigned int opb = bfd_octets_per_byte (abfd, o);
12982
12983 /* Don't count procedure linkage table relocs in the
12984 overall reloc count. */
12985 sh_size -= htab->srelplt->size;
12986 if (sh_size == 0)
12987 /* If the size is zero, make the address zero too.
12988 This is to avoid a glibc bug. If the backend
12989 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12990 zero, then we'll put DT_RELA at the end of
12991 DT_JMPREL. glibc will interpret the end of
12992 DT_RELA matching the end of DT_JMPREL as the
12993 case where DT_RELA includes DT_JMPREL, and for
12994 LD_BIND_NOW will decide that processing DT_RELA
12995 will process the PLT relocs too. Net result:
12996 No PLT relocs applied. */
12997 sh_addr = 0;
12998
12999 /* If .rela.plt is the first .rela section, exclude
13000 it from DT_RELA. */
13001 else if (sh_addr == (htab->srelplt->output_section->vma
13002 + htab->srelplt->output_offset) * opb)
13003 sh_addr += htab->srelplt->size;
13004 }
13005
13006 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13007 dyn.d_un.d_val = sh_size;
13008 else
13009 dyn.d_un.d_ptr = sh_addr;
13010 break;
13011 }
13012 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13013 }
13014 }
13015
13016 /* If we have created any dynamic sections, then output them. */
13017 if (dynobj != NULL)
13018 {
13019 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13020 goto error_return;
13021
13022 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13023 if (bfd_link_textrel_check (info)
13024 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
13025 {
13026 bfd_byte *dyncon, *dynconend;
13027
13028 dyncon = o->contents;
13029 dynconend = o->contents + o->size;
13030 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13031 {
13032 Elf_Internal_Dyn dyn;
13033
13034 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13035
13036 if (dyn.d_tag == DT_TEXTREL)
13037 {
13038 if (info->textrel_check == textrel_check_error)
13039 info->callbacks->einfo
13040 (_("%P%X: read-only segment has dynamic relocations\n"));
13041 else if (bfd_link_dll (info))
13042 info->callbacks->einfo
13043 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13044 else
13045 info->callbacks->einfo
13046 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13047 break;
13048 }
13049 }
13050 }
13051
13052 for (o = dynobj->sections; o != NULL; o = o->next)
13053 {
13054 if ((o->flags & SEC_HAS_CONTENTS) == 0
13055 || o->size == 0
13056 || o->output_section == bfd_abs_section_ptr)
13057 continue;
13058 if ((o->flags & SEC_LINKER_CREATED) == 0)
13059 {
13060 /* At this point, we are only interested in sections
13061 created by _bfd_elf_link_create_dynamic_sections. */
13062 continue;
13063 }
13064 if (htab->stab_info.stabstr == o)
13065 continue;
13066 if (htab->eh_info.hdr_sec == o)
13067 continue;
13068 if (strcmp (o->name, ".dynstr") != 0)
13069 {
13070 bfd_size_type octets = ((file_ptr) o->output_offset
13071 * bfd_octets_per_byte (abfd, o));
13072 if (!bfd_set_section_contents (abfd, o->output_section,
13073 o->contents, octets, o->size))
13074 goto error_return;
13075 }
13076 else
13077 {
13078 /* The contents of the .dynstr section are actually in a
13079 stringtab. */
13080 file_ptr off;
13081
13082 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13083 if (bfd_seek (abfd, off, SEEK_SET) != 0
13084 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13085 goto error_return;
13086 }
13087 }
13088 }
13089
13090 if (!info->resolve_section_groups)
13091 {
13092 bfd_boolean failed = FALSE;
13093
13094 BFD_ASSERT (bfd_link_relocatable (info));
13095 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13096 if (failed)
13097 goto error_return;
13098 }
13099
13100 /* If we have optimized stabs strings, output them. */
13101 if (htab->stab_info.stabstr != NULL)
13102 {
13103 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13104 goto error_return;
13105 }
13106
13107 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13108 goto error_return;
13109
13110 if (info->callbacks->emit_ctf)
13111 info->callbacks->emit_ctf ();
13112
13113 elf_final_link_free (abfd, &flinfo);
13114
13115 if (attr_section)
13116 {
13117 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13118 if (contents == NULL)
13119 return FALSE; /* Bail out and fail. */
13120 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13121 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13122 free (contents);
13123 }
13124
13125 return TRUE;
13126
13127 error_return:
13128 elf_final_link_free (abfd, &flinfo);
13129 return FALSE;
13130 }
13131 \f
13132 /* Initialize COOKIE for input bfd ABFD. */
13133
13134 static bfd_boolean
13135 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13136 struct bfd_link_info *info, bfd *abfd)
13137 {
13138 Elf_Internal_Shdr *symtab_hdr;
13139 const struct elf_backend_data *bed;
13140
13141 bed = get_elf_backend_data (abfd);
13142 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13143
13144 cookie->abfd = abfd;
13145 cookie->sym_hashes = elf_sym_hashes (abfd);
13146 cookie->bad_symtab = elf_bad_symtab (abfd);
13147 if (cookie->bad_symtab)
13148 {
13149 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13150 cookie->extsymoff = 0;
13151 }
13152 else
13153 {
13154 cookie->locsymcount = symtab_hdr->sh_info;
13155 cookie->extsymoff = symtab_hdr->sh_info;
13156 }
13157
13158 if (bed->s->arch_size == 32)
13159 cookie->r_sym_shift = 8;
13160 else
13161 cookie->r_sym_shift = 32;
13162
13163 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13164 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13165 {
13166 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13167 cookie->locsymcount, 0,
13168 NULL, NULL, NULL);
13169 if (cookie->locsyms == NULL)
13170 {
13171 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13172 return FALSE;
13173 }
13174 if (info->keep_memory)
13175 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13176 }
13177 return TRUE;
13178 }
13179
13180 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13181
13182 static void
13183 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13184 {
13185 Elf_Internal_Shdr *symtab_hdr;
13186
13187 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13188 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13189 free (cookie->locsyms);
13190 }
13191
13192 /* Initialize the relocation information in COOKIE for input section SEC
13193 of input bfd ABFD. */
13194
13195 static bfd_boolean
13196 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13197 struct bfd_link_info *info, bfd *abfd,
13198 asection *sec)
13199 {
13200 if (sec->reloc_count == 0)
13201 {
13202 cookie->rels = NULL;
13203 cookie->relend = NULL;
13204 }
13205 else
13206 {
13207 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13208 info->keep_memory);
13209 if (cookie->rels == NULL)
13210 return FALSE;
13211 cookie->rel = cookie->rels;
13212 cookie->relend = cookie->rels + sec->reloc_count;
13213 }
13214 cookie->rel = cookie->rels;
13215 return TRUE;
13216 }
13217
13218 /* Free the memory allocated by init_reloc_cookie_rels,
13219 if appropriate. */
13220
13221 static void
13222 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13223 asection *sec)
13224 {
13225 if (elf_section_data (sec)->relocs != cookie->rels)
13226 free (cookie->rels);
13227 }
13228
13229 /* Initialize the whole of COOKIE for input section SEC. */
13230
13231 static bfd_boolean
13232 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13233 struct bfd_link_info *info,
13234 asection *sec)
13235 {
13236 if (!init_reloc_cookie (cookie, info, sec->owner))
13237 goto error1;
13238 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13239 goto error2;
13240 return TRUE;
13241
13242 error2:
13243 fini_reloc_cookie (cookie, sec->owner);
13244 error1:
13245 return FALSE;
13246 }
13247
13248 /* Free the memory allocated by init_reloc_cookie_for_section,
13249 if appropriate. */
13250
13251 static void
13252 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13253 asection *sec)
13254 {
13255 fini_reloc_cookie_rels (cookie, sec);
13256 fini_reloc_cookie (cookie, sec->owner);
13257 }
13258 \f
13259 /* Garbage collect unused sections. */
13260
13261 /* Default gc_mark_hook. */
13262
13263 asection *
13264 _bfd_elf_gc_mark_hook (asection *sec,
13265 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13266 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13267 struct elf_link_hash_entry *h,
13268 Elf_Internal_Sym *sym)
13269 {
13270 if (h != NULL)
13271 {
13272 switch (h->root.type)
13273 {
13274 case bfd_link_hash_defined:
13275 case bfd_link_hash_defweak:
13276 return h->root.u.def.section;
13277
13278 case bfd_link_hash_common:
13279 return h->root.u.c.p->section;
13280
13281 default:
13282 break;
13283 }
13284 }
13285 else
13286 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13287
13288 return NULL;
13289 }
13290
13291 /* Return the debug definition section. */
13292
13293 static asection *
13294 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13295 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13296 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13297 struct elf_link_hash_entry *h,
13298 Elf_Internal_Sym *sym)
13299 {
13300 if (h != NULL)
13301 {
13302 /* Return the global debug definition section. */
13303 if ((h->root.type == bfd_link_hash_defined
13304 || h->root.type == bfd_link_hash_defweak)
13305 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13306 return h->root.u.def.section;
13307 }
13308 else
13309 {
13310 /* Return the local debug definition section. */
13311 asection *isec = bfd_section_from_elf_index (sec->owner,
13312 sym->st_shndx);
13313 if ((isec->flags & SEC_DEBUGGING) != 0)
13314 return isec;
13315 }
13316
13317 return NULL;
13318 }
13319
13320 /* COOKIE->rel describes a relocation against section SEC, which is
13321 a section we've decided to keep. Return the section that contains
13322 the relocation symbol, or NULL if no section contains it. */
13323
13324 asection *
13325 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13326 elf_gc_mark_hook_fn gc_mark_hook,
13327 struct elf_reloc_cookie *cookie,
13328 bfd_boolean *start_stop)
13329 {
13330 unsigned long r_symndx;
13331 struct elf_link_hash_entry *h, *hw;
13332
13333 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13334 if (r_symndx == STN_UNDEF)
13335 return NULL;
13336
13337 if (r_symndx >= cookie->locsymcount
13338 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13339 {
13340 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13341 if (h == NULL)
13342 {
13343 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13344 sec->owner);
13345 return NULL;
13346 }
13347 while (h->root.type == bfd_link_hash_indirect
13348 || h->root.type == bfd_link_hash_warning)
13349 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13350 h->mark = 1;
13351 /* Keep all aliases of the symbol too. If an object symbol
13352 needs to be copied into .dynbss then all of its aliases
13353 should be present as dynamic symbols, not just the one used
13354 on the copy relocation. */
13355 hw = h;
13356 while (hw->is_weakalias)
13357 {
13358 hw = hw->u.alias;
13359 hw->mark = 1;
13360 }
13361
13362 if (start_stop != NULL)
13363 {
13364 /* To work around a glibc bug, mark XXX input sections
13365 when there is a reference to __start_XXX or __stop_XXX
13366 symbols. */
13367 if (h->start_stop)
13368 {
13369 asection *s = h->u2.start_stop_section;
13370 *start_stop = !s->gc_mark;
13371 return s;
13372 }
13373 }
13374
13375 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13376 }
13377
13378 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13379 &cookie->locsyms[r_symndx]);
13380 }
13381
13382 /* COOKIE->rel describes a relocation against section SEC, which is
13383 a section we've decided to keep. Mark the section that contains
13384 the relocation symbol. */
13385
13386 bfd_boolean
13387 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13388 asection *sec,
13389 elf_gc_mark_hook_fn gc_mark_hook,
13390 struct elf_reloc_cookie *cookie)
13391 {
13392 asection *rsec;
13393 bfd_boolean start_stop = FALSE;
13394
13395 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13396 while (rsec != NULL)
13397 {
13398 if (!rsec->gc_mark)
13399 {
13400 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13401 || (rsec->owner->flags & DYNAMIC) != 0)
13402 rsec->gc_mark = 1;
13403 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13404 return FALSE;
13405 }
13406 if (!start_stop)
13407 break;
13408 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13409 }
13410 return TRUE;
13411 }
13412
13413 /* The mark phase of garbage collection. For a given section, mark
13414 it and any sections in this section's group, and all the sections
13415 which define symbols to which it refers. */
13416
13417 bfd_boolean
13418 _bfd_elf_gc_mark (struct bfd_link_info *info,
13419 asection *sec,
13420 elf_gc_mark_hook_fn gc_mark_hook)
13421 {
13422 bfd_boolean ret;
13423 asection *group_sec, *eh_frame;
13424
13425 sec->gc_mark = 1;
13426
13427 /* Mark all the sections in the group. */
13428 group_sec = elf_section_data (sec)->next_in_group;
13429 if (group_sec && !group_sec->gc_mark)
13430 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13431 return FALSE;
13432
13433 /* Look through the section relocs. */
13434 ret = TRUE;
13435 eh_frame = elf_eh_frame_section (sec->owner);
13436 if ((sec->flags & SEC_RELOC) != 0
13437 && sec->reloc_count > 0
13438 && sec != eh_frame)
13439 {
13440 struct elf_reloc_cookie cookie;
13441
13442 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13443 ret = FALSE;
13444 else
13445 {
13446 for (; cookie.rel < cookie.relend; cookie.rel++)
13447 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13448 {
13449 ret = FALSE;
13450 break;
13451 }
13452 fini_reloc_cookie_for_section (&cookie, sec);
13453 }
13454 }
13455
13456 if (ret && eh_frame && elf_fde_list (sec))
13457 {
13458 struct elf_reloc_cookie cookie;
13459
13460 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13461 ret = FALSE;
13462 else
13463 {
13464 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13465 gc_mark_hook, &cookie))
13466 ret = FALSE;
13467 fini_reloc_cookie_for_section (&cookie, eh_frame);
13468 }
13469 }
13470
13471 eh_frame = elf_section_eh_frame_entry (sec);
13472 if (ret && eh_frame && !eh_frame->gc_mark)
13473 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13474 ret = FALSE;
13475
13476 return ret;
13477 }
13478
13479 /* Scan and mark sections in a special or debug section group. */
13480
13481 static void
13482 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13483 {
13484 /* Point to first section of section group. */
13485 asection *ssec;
13486 /* Used to iterate the section group. */
13487 asection *msec;
13488
13489 bfd_boolean is_special_grp = TRUE;
13490 bfd_boolean is_debug_grp = TRUE;
13491
13492 /* First scan to see if group contains any section other than debug
13493 and special section. */
13494 ssec = msec = elf_next_in_group (grp);
13495 do
13496 {
13497 if ((msec->flags & SEC_DEBUGGING) == 0)
13498 is_debug_grp = FALSE;
13499
13500 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13501 is_special_grp = FALSE;
13502
13503 msec = elf_next_in_group (msec);
13504 }
13505 while (msec != ssec);
13506
13507 /* If this is a pure debug section group or pure special section group,
13508 keep all sections in this group. */
13509 if (is_debug_grp || is_special_grp)
13510 {
13511 do
13512 {
13513 msec->gc_mark = 1;
13514 msec = elf_next_in_group (msec);
13515 }
13516 while (msec != ssec);
13517 }
13518 }
13519
13520 /* Keep debug and special sections. */
13521
13522 bfd_boolean
13523 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13524 elf_gc_mark_hook_fn mark_hook)
13525 {
13526 bfd *ibfd;
13527
13528 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13529 {
13530 asection *isec;
13531 bfd_boolean some_kept;
13532 bfd_boolean debug_frag_seen;
13533 bfd_boolean has_kept_debug_info;
13534
13535 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13536 continue;
13537 isec = ibfd->sections;
13538 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13539 continue;
13540
13541 /* Ensure all linker created sections are kept,
13542 see if any other section is already marked,
13543 and note if we have any fragmented debug sections. */
13544 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13545 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13546 {
13547 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13548 isec->gc_mark = 1;
13549 else if (isec->gc_mark
13550 && (isec->flags & SEC_ALLOC) != 0
13551 && elf_section_type (isec) != SHT_NOTE)
13552 some_kept = TRUE;
13553 else
13554 {
13555 /* Since all sections, except for backend specific ones,
13556 have been garbage collected, call mark_hook on this
13557 section if any of its linked-to sections is marked. */
13558 asection *linked_to_sec = elf_linked_to_section (isec);
13559 for (; linked_to_sec != NULL;
13560 linked_to_sec = elf_linked_to_section (linked_to_sec))
13561 if (linked_to_sec->gc_mark)
13562 {
13563 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13564 return FALSE;
13565 break;
13566 }
13567 }
13568
13569 if (!debug_frag_seen
13570 && (isec->flags & SEC_DEBUGGING)
13571 && CONST_STRNEQ (isec->name, ".debug_line."))
13572 debug_frag_seen = TRUE;
13573 else if (strcmp (bfd_section_name (isec),
13574 "__patchable_function_entries") == 0
13575 && elf_linked_to_section (isec) == NULL)
13576 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13577 "need linked-to section "
13578 "for --gc-sections\n"),
13579 isec->owner, isec);
13580 }
13581
13582 /* If no non-note alloc section in this file will be kept, then
13583 we can toss out the debug and special sections. */
13584 if (!some_kept)
13585 continue;
13586
13587 /* Keep debug and special sections like .comment when they are
13588 not part of a group. Also keep section groups that contain
13589 just debug sections or special sections. NB: Sections with
13590 linked-to section has been handled above. */
13591 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13592 {
13593 if ((isec->flags & SEC_GROUP) != 0)
13594 _bfd_elf_gc_mark_debug_special_section_group (isec);
13595 else if (((isec->flags & SEC_DEBUGGING) != 0
13596 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13597 && elf_next_in_group (isec) == NULL
13598 && elf_linked_to_section (isec) == NULL)
13599 isec->gc_mark = 1;
13600 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13601 has_kept_debug_info = TRUE;
13602 }
13603
13604 /* Look for CODE sections which are going to be discarded,
13605 and find and discard any fragmented debug sections which
13606 are associated with that code section. */
13607 if (debug_frag_seen)
13608 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13609 if ((isec->flags & SEC_CODE) != 0
13610 && isec->gc_mark == 0)
13611 {
13612 unsigned int ilen;
13613 asection *dsec;
13614
13615 ilen = strlen (isec->name);
13616
13617 /* Association is determined by the name of the debug
13618 section containing the name of the code section as
13619 a suffix. For example .debug_line.text.foo is a
13620 debug section associated with .text.foo. */
13621 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13622 {
13623 unsigned int dlen;
13624
13625 if (dsec->gc_mark == 0
13626 || (dsec->flags & SEC_DEBUGGING) == 0)
13627 continue;
13628
13629 dlen = strlen (dsec->name);
13630
13631 if (dlen > ilen
13632 && strncmp (dsec->name + (dlen - ilen),
13633 isec->name, ilen) == 0)
13634 dsec->gc_mark = 0;
13635 }
13636 }
13637
13638 /* Mark debug sections referenced by kept debug sections. */
13639 if (has_kept_debug_info)
13640 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13641 if (isec->gc_mark
13642 && (isec->flags & SEC_DEBUGGING) != 0)
13643 if (!_bfd_elf_gc_mark (info, isec,
13644 elf_gc_mark_debug_section))
13645 return FALSE;
13646 }
13647 return TRUE;
13648 }
13649
13650 static bfd_boolean
13651 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13652 {
13653 bfd *sub;
13654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13655
13656 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13657 {
13658 asection *o;
13659
13660 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13661 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13662 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13663 continue;
13664 o = sub->sections;
13665 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13666 continue;
13667
13668 for (o = sub->sections; o != NULL; o = o->next)
13669 {
13670 /* When any section in a section group is kept, we keep all
13671 sections in the section group. If the first member of
13672 the section group is excluded, we will also exclude the
13673 group section. */
13674 if (o->flags & SEC_GROUP)
13675 {
13676 asection *first = elf_next_in_group (o);
13677 o->gc_mark = first->gc_mark;
13678 }
13679
13680 if (o->gc_mark)
13681 continue;
13682
13683 /* Skip sweeping sections already excluded. */
13684 if (o->flags & SEC_EXCLUDE)
13685 continue;
13686
13687 /* Since this is early in the link process, it is simple
13688 to remove a section from the output. */
13689 o->flags |= SEC_EXCLUDE;
13690
13691 if (info->print_gc_sections && o->size != 0)
13692 /* xgettext:c-format */
13693 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13694 o, sub);
13695 }
13696 }
13697
13698 return TRUE;
13699 }
13700
13701 /* Propagate collected vtable information. This is called through
13702 elf_link_hash_traverse. */
13703
13704 static bfd_boolean
13705 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13706 {
13707 /* Those that are not vtables. */
13708 if (h->start_stop
13709 || h->u2.vtable == NULL
13710 || h->u2.vtable->parent == NULL)
13711 return TRUE;
13712
13713 /* Those vtables that do not have parents, we cannot merge. */
13714 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13715 return TRUE;
13716
13717 /* If we've already been done, exit. */
13718 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13719 return TRUE;
13720
13721 /* Make sure the parent's table is up to date. */
13722 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13723
13724 if (h->u2.vtable->used == NULL)
13725 {
13726 /* None of this table's entries were referenced. Re-use the
13727 parent's table. */
13728 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13729 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13730 }
13731 else
13732 {
13733 size_t n;
13734 bfd_boolean *cu, *pu;
13735
13736 /* Or the parent's entries into ours. */
13737 cu = h->u2.vtable->used;
13738 cu[-1] = TRUE;
13739 pu = h->u2.vtable->parent->u2.vtable->used;
13740 if (pu != NULL)
13741 {
13742 const struct elf_backend_data *bed;
13743 unsigned int log_file_align;
13744
13745 bed = get_elf_backend_data (h->root.u.def.section->owner);
13746 log_file_align = bed->s->log_file_align;
13747 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13748 while (n--)
13749 {
13750 if (*pu)
13751 *cu = TRUE;
13752 pu++;
13753 cu++;
13754 }
13755 }
13756 }
13757
13758 return TRUE;
13759 }
13760
13761 static bfd_boolean
13762 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13763 {
13764 asection *sec;
13765 bfd_vma hstart, hend;
13766 Elf_Internal_Rela *relstart, *relend, *rel;
13767 const struct elf_backend_data *bed;
13768 unsigned int log_file_align;
13769
13770 /* Take care of both those symbols that do not describe vtables as
13771 well as those that are not loaded. */
13772 if (h->start_stop
13773 || h->u2.vtable == NULL
13774 || h->u2.vtable->parent == NULL)
13775 return TRUE;
13776
13777 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13778 || h->root.type == bfd_link_hash_defweak);
13779
13780 sec = h->root.u.def.section;
13781 hstart = h->root.u.def.value;
13782 hend = hstart + h->size;
13783
13784 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13785 if (!relstart)
13786 return *(bfd_boolean *) okp = FALSE;
13787 bed = get_elf_backend_data (sec->owner);
13788 log_file_align = bed->s->log_file_align;
13789
13790 relend = relstart + sec->reloc_count;
13791
13792 for (rel = relstart; rel < relend; ++rel)
13793 if (rel->r_offset >= hstart && rel->r_offset < hend)
13794 {
13795 /* If the entry is in use, do nothing. */
13796 if (h->u2.vtable->used
13797 && (rel->r_offset - hstart) < h->u2.vtable->size)
13798 {
13799 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13800 if (h->u2.vtable->used[entry])
13801 continue;
13802 }
13803 /* Otherwise, kill it. */
13804 rel->r_offset = rel->r_info = rel->r_addend = 0;
13805 }
13806
13807 return TRUE;
13808 }
13809
13810 /* Mark sections containing dynamically referenced symbols. When
13811 building shared libraries, we must assume that any visible symbol is
13812 referenced. */
13813
13814 bfd_boolean
13815 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13816 {
13817 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13818 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13819
13820 if ((h->root.type == bfd_link_hash_defined
13821 || h->root.type == bfd_link_hash_defweak)
13822 && ((h->ref_dynamic && !h->forced_local)
13823 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13824 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13825 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13826 && (!bfd_link_executable (info)
13827 || info->gc_keep_exported
13828 || info->export_dynamic
13829 || (h->dynamic
13830 && d != NULL
13831 && (*d->match) (&d->head, NULL, h->root.root.string)))
13832 && (h->versioned >= versioned
13833 || !bfd_hide_sym_by_version (info->version_info,
13834 h->root.root.string)))))
13835 h->root.u.def.section->flags |= SEC_KEEP;
13836
13837 return TRUE;
13838 }
13839
13840 /* Keep all sections containing symbols undefined on the command-line,
13841 and the section containing the entry symbol. */
13842
13843 void
13844 _bfd_elf_gc_keep (struct bfd_link_info *info)
13845 {
13846 struct bfd_sym_chain *sym;
13847
13848 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13849 {
13850 struct elf_link_hash_entry *h;
13851
13852 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13853 FALSE, FALSE, FALSE);
13854
13855 if (h != NULL
13856 && (h->root.type == bfd_link_hash_defined
13857 || h->root.type == bfd_link_hash_defweak)
13858 && !bfd_is_const_section (h->root.u.def.section))
13859 h->root.u.def.section->flags |= SEC_KEEP;
13860 }
13861 }
13862
13863 bfd_boolean
13864 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13865 struct bfd_link_info *info)
13866 {
13867 bfd *ibfd = info->input_bfds;
13868
13869 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13870 {
13871 asection *sec;
13872 struct elf_reloc_cookie cookie;
13873
13874 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13875 continue;
13876 sec = ibfd->sections;
13877 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13878 continue;
13879
13880 if (!init_reloc_cookie (&cookie, info, ibfd))
13881 return FALSE;
13882
13883 for (sec = ibfd->sections; sec; sec = sec->next)
13884 {
13885 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13886 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13887 {
13888 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13889 fini_reloc_cookie_rels (&cookie, sec);
13890 }
13891 }
13892 }
13893 return TRUE;
13894 }
13895
13896 /* Do mark and sweep of unused sections. */
13897
13898 bfd_boolean
13899 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13900 {
13901 bfd_boolean ok = TRUE;
13902 bfd *sub;
13903 elf_gc_mark_hook_fn gc_mark_hook;
13904 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13905 struct elf_link_hash_table *htab;
13906
13907 if (!bed->can_gc_sections
13908 || !is_elf_hash_table (info->hash))
13909 {
13910 _bfd_error_handler(_("warning: gc-sections option ignored"));
13911 return TRUE;
13912 }
13913
13914 bed->gc_keep (info);
13915 htab = elf_hash_table (info);
13916
13917 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13918 at the .eh_frame section if we can mark the FDEs individually. */
13919 for (sub = info->input_bfds;
13920 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13921 sub = sub->link.next)
13922 {
13923 asection *sec;
13924 struct elf_reloc_cookie cookie;
13925
13926 sec = sub->sections;
13927 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13928 continue;
13929 sec = bfd_get_section_by_name (sub, ".eh_frame");
13930 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13931 {
13932 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13933 if (elf_section_data (sec)->sec_info
13934 && (sec->flags & SEC_LINKER_CREATED) == 0)
13935 elf_eh_frame_section (sub) = sec;
13936 fini_reloc_cookie_for_section (&cookie, sec);
13937 sec = bfd_get_next_section_by_name (NULL, sec);
13938 }
13939 }
13940
13941 /* Apply transitive closure to the vtable entry usage info. */
13942 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13943 if (!ok)
13944 return FALSE;
13945
13946 /* Kill the vtable relocations that were not used. */
13947 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13948 if (!ok)
13949 return FALSE;
13950
13951 /* Mark dynamically referenced symbols. */
13952 if (htab->dynamic_sections_created || info->gc_keep_exported)
13953 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13954
13955 /* Grovel through relocs to find out who stays ... */
13956 gc_mark_hook = bed->gc_mark_hook;
13957 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13958 {
13959 asection *o;
13960
13961 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13962 || elf_object_id (sub) != elf_hash_table_id (htab)
13963 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13964 continue;
13965
13966 o = sub->sections;
13967 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13968 continue;
13969
13970 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13971 Also treat note sections as a root, if the section is not part
13972 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13973 well as FINI_ARRAY sections for ld -r. */
13974 for (o = sub->sections; o != NULL; o = o->next)
13975 if (!o->gc_mark
13976 && (o->flags & SEC_EXCLUDE) == 0
13977 && ((o->flags & SEC_KEEP) != 0
13978 || (bfd_link_relocatable (info)
13979 && ((elf_section_data (o)->this_hdr.sh_type
13980 == SHT_PREINIT_ARRAY)
13981 || (elf_section_data (o)->this_hdr.sh_type
13982 == SHT_INIT_ARRAY)
13983 || (elf_section_data (o)->this_hdr.sh_type
13984 == SHT_FINI_ARRAY)))
13985 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13986 && elf_next_in_group (o) == NULL )))
13987 {
13988 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13989 return FALSE;
13990 }
13991 }
13992
13993 /* Allow the backend to mark additional target specific sections. */
13994 bed->gc_mark_extra_sections (info, gc_mark_hook);
13995
13996 /* ... and mark SEC_EXCLUDE for those that go. */
13997 return elf_gc_sweep (abfd, info);
13998 }
13999 \f
14000 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14001
14002 bfd_boolean
14003 bfd_elf_gc_record_vtinherit (bfd *abfd,
14004 asection *sec,
14005 struct elf_link_hash_entry *h,
14006 bfd_vma offset)
14007 {
14008 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14009 struct elf_link_hash_entry **search, *child;
14010 size_t extsymcount;
14011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14012
14013 /* The sh_info field of the symtab header tells us where the
14014 external symbols start. We don't care about the local symbols at
14015 this point. */
14016 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14017 if (!elf_bad_symtab (abfd))
14018 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14019
14020 sym_hashes = elf_sym_hashes (abfd);
14021 sym_hashes_end = sym_hashes + extsymcount;
14022
14023 /* Hunt down the child symbol, which is in this section at the same
14024 offset as the relocation. */
14025 for (search = sym_hashes; search != sym_hashes_end; ++search)
14026 {
14027 if ((child = *search) != NULL
14028 && (child->root.type == bfd_link_hash_defined
14029 || child->root.type == bfd_link_hash_defweak)
14030 && child->root.u.def.section == sec
14031 && child->root.u.def.value == offset)
14032 goto win;
14033 }
14034
14035 /* xgettext:c-format */
14036 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14037 abfd, sec, (uint64_t) offset);
14038 bfd_set_error (bfd_error_invalid_operation);
14039 return FALSE;
14040
14041 win:
14042 if (!child->u2.vtable)
14043 {
14044 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14045 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14046 if (!child->u2.vtable)
14047 return FALSE;
14048 }
14049 if (!h)
14050 {
14051 /* This *should* only be the absolute section. It could potentially
14052 be that someone has defined a non-global vtable though, which
14053 would be bad. It isn't worth paging in the local symbols to be
14054 sure though; that case should simply be handled by the assembler. */
14055
14056 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14057 }
14058 else
14059 child->u2.vtable->parent = h;
14060
14061 return TRUE;
14062 }
14063
14064 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14065
14066 bfd_boolean
14067 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14068 struct elf_link_hash_entry *h,
14069 bfd_vma addend)
14070 {
14071 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14072 unsigned int log_file_align = bed->s->log_file_align;
14073
14074 if (!h)
14075 {
14076 /* xgettext:c-format */
14077 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14078 abfd, sec);
14079 bfd_set_error (bfd_error_bad_value);
14080 return FALSE;
14081 }
14082
14083 if (!h->u2.vtable)
14084 {
14085 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14086 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14087 if (!h->u2.vtable)
14088 return FALSE;
14089 }
14090
14091 if (addend >= h->u2.vtable->size)
14092 {
14093 size_t size, bytes, file_align;
14094 bfd_boolean *ptr = h->u2.vtable->used;
14095
14096 /* While the symbol is undefined, we have to be prepared to handle
14097 a zero size. */
14098 file_align = 1 << log_file_align;
14099 if (h->root.type == bfd_link_hash_undefined)
14100 size = addend + file_align;
14101 else
14102 {
14103 size = h->size;
14104 if (addend >= size)
14105 {
14106 /* Oops! We've got a reference past the defined end of
14107 the table. This is probably a bug -- shall we warn? */
14108 size = addend + file_align;
14109 }
14110 }
14111 size = (size + file_align - 1) & -file_align;
14112
14113 /* Allocate one extra entry for use as a "done" flag for the
14114 consolidation pass. */
14115 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
14116
14117 if (ptr)
14118 {
14119 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
14120
14121 if (ptr != NULL)
14122 {
14123 size_t oldbytes;
14124
14125 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14126 * sizeof (bfd_boolean));
14127 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14128 }
14129 }
14130 else
14131 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
14132
14133 if (ptr == NULL)
14134 return FALSE;
14135
14136 /* And arrange for that done flag to be at index -1. */
14137 h->u2.vtable->used = ptr + 1;
14138 h->u2.vtable->size = size;
14139 }
14140
14141 h->u2.vtable->used[addend >> log_file_align] = TRUE;
14142
14143 return TRUE;
14144 }
14145
14146 /* Map an ELF section header flag to its corresponding string. */
14147 typedef struct
14148 {
14149 char *flag_name;
14150 flagword flag_value;
14151 } elf_flags_to_name_table;
14152
14153 static elf_flags_to_name_table elf_flags_to_names [] =
14154 {
14155 { "SHF_WRITE", SHF_WRITE },
14156 { "SHF_ALLOC", SHF_ALLOC },
14157 { "SHF_EXECINSTR", SHF_EXECINSTR },
14158 { "SHF_MERGE", SHF_MERGE },
14159 { "SHF_STRINGS", SHF_STRINGS },
14160 { "SHF_INFO_LINK", SHF_INFO_LINK},
14161 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14162 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14163 { "SHF_GROUP", SHF_GROUP },
14164 { "SHF_TLS", SHF_TLS },
14165 { "SHF_MASKOS", SHF_MASKOS },
14166 { "SHF_EXCLUDE", SHF_EXCLUDE },
14167 };
14168
14169 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14170 bfd_boolean
14171 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14172 struct flag_info *flaginfo,
14173 asection *section)
14174 {
14175 const bfd_vma sh_flags = elf_section_flags (section);
14176
14177 if (!flaginfo->flags_initialized)
14178 {
14179 bfd *obfd = info->output_bfd;
14180 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14181 struct flag_info_list *tf = flaginfo->flag_list;
14182 int with_hex = 0;
14183 int without_hex = 0;
14184
14185 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14186 {
14187 unsigned i;
14188 flagword (*lookup) (char *);
14189
14190 lookup = bed->elf_backend_lookup_section_flags_hook;
14191 if (lookup != NULL)
14192 {
14193 flagword hexval = (*lookup) ((char *) tf->name);
14194
14195 if (hexval != 0)
14196 {
14197 if (tf->with == with_flags)
14198 with_hex |= hexval;
14199 else if (tf->with == without_flags)
14200 without_hex |= hexval;
14201 tf->valid = TRUE;
14202 continue;
14203 }
14204 }
14205 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14206 {
14207 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14208 {
14209 if (tf->with == with_flags)
14210 with_hex |= elf_flags_to_names[i].flag_value;
14211 else if (tf->with == without_flags)
14212 without_hex |= elf_flags_to_names[i].flag_value;
14213 tf->valid = TRUE;
14214 break;
14215 }
14216 }
14217 if (!tf->valid)
14218 {
14219 info->callbacks->einfo
14220 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14221 return FALSE;
14222 }
14223 }
14224 flaginfo->flags_initialized = TRUE;
14225 flaginfo->only_with_flags |= with_hex;
14226 flaginfo->not_with_flags |= without_hex;
14227 }
14228
14229 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14230 return FALSE;
14231
14232 if ((flaginfo->not_with_flags & sh_flags) != 0)
14233 return FALSE;
14234
14235 return TRUE;
14236 }
14237
14238 struct alloc_got_off_arg {
14239 bfd_vma gotoff;
14240 struct bfd_link_info *info;
14241 };
14242
14243 /* We need a special top-level link routine to convert got reference counts
14244 to real got offsets. */
14245
14246 static bfd_boolean
14247 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14248 {
14249 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14250 bfd *obfd = gofarg->info->output_bfd;
14251 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14252
14253 if (h->got.refcount > 0)
14254 {
14255 h->got.offset = gofarg->gotoff;
14256 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14257 }
14258 else
14259 h->got.offset = (bfd_vma) -1;
14260
14261 return TRUE;
14262 }
14263
14264 /* And an accompanying bit to work out final got entry offsets once
14265 we're done. Should be called from final_link. */
14266
14267 bfd_boolean
14268 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14269 struct bfd_link_info *info)
14270 {
14271 bfd *i;
14272 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14273 bfd_vma gotoff;
14274 struct alloc_got_off_arg gofarg;
14275
14276 BFD_ASSERT (abfd == info->output_bfd);
14277
14278 if (! is_elf_hash_table (info->hash))
14279 return FALSE;
14280
14281 /* The GOT offset is relative to the .got section, but the GOT header is
14282 put into the .got.plt section, if the backend uses it. */
14283 if (bed->want_got_plt)
14284 gotoff = 0;
14285 else
14286 gotoff = bed->got_header_size;
14287
14288 /* Do the local .got entries first. */
14289 for (i = info->input_bfds; i; i = i->link.next)
14290 {
14291 bfd_signed_vma *local_got;
14292 size_t j, locsymcount;
14293 Elf_Internal_Shdr *symtab_hdr;
14294
14295 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14296 continue;
14297
14298 local_got = elf_local_got_refcounts (i);
14299 if (!local_got)
14300 continue;
14301
14302 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14303 if (elf_bad_symtab (i))
14304 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14305 else
14306 locsymcount = symtab_hdr->sh_info;
14307
14308 for (j = 0; j < locsymcount; ++j)
14309 {
14310 if (local_got[j] > 0)
14311 {
14312 local_got[j] = gotoff;
14313 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14314 }
14315 else
14316 local_got[j] = (bfd_vma) -1;
14317 }
14318 }
14319
14320 /* Then the global .got entries. .plt refcounts are handled by
14321 adjust_dynamic_symbol */
14322 gofarg.gotoff = gotoff;
14323 gofarg.info = info;
14324 elf_link_hash_traverse (elf_hash_table (info),
14325 elf_gc_allocate_got_offsets,
14326 &gofarg);
14327 return TRUE;
14328 }
14329
14330 /* Many folk need no more in the way of final link than this, once
14331 got entry reference counting is enabled. */
14332
14333 bfd_boolean
14334 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14335 {
14336 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14337 return FALSE;
14338
14339 /* Invoke the regular ELF backend linker to do all the work. */
14340 return bfd_elf_final_link (abfd, info);
14341 }
14342
14343 bfd_boolean
14344 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14345 {
14346 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14347
14348 if (rcookie->bad_symtab)
14349 rcookie->rel = rcookie->rels;
14350
14351 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14352 {
14353 unsigned long r_symndx;
14354
14355 if (! rcookie->bad_symtab)
14356 if (rcookie->rel->r_offset > offset)
14357 return FALSE;
14358 if (rcookie->rel->r_offset != offset)
14359 continue;
14360
14361 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14362 if (r_symndx == STN_UNDEF)
14363 return TRUE;
14364
14365 if (r_symndx >= rcookie->locsymcount
14366 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14367 {
14368 struct elf_link_hash_entry *h;
14369
14370 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14371
14372 while (h->root.type == bfd_link_hash_indirect
14373 || h->root.type == bfd_link_hash_warning)
14374 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14375
14376 if ((h->root.type == bfd_link_hash_defined
14377 || h->root.type == bfd_link_hash_defweak)
14378 && (h->root.u.def.section->owner != rcookie->abfd
14379 || h->root.u.def.section->kept_section != NULL
14380 || discarded_section (h->root.u.def.section)))
14381 return TRUE;
14382 }
14383 else
14384 {
14385 /* It's not a relocation against a global symbol,
14386 but it could be a relocation against a local
14387 symbol for a discarded section. */
14388 asection *isec;
14389 Elf_Internal_Sym *isym;
14390
14391 /* Need to: get the symbol; get the section. */
14392 isym = &rcookie->locsyms[r_symndx];
14393 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14394 if (isec != NULL
14395 && (isec->kept_section != NULL
14396 || discarded_section (isec)))
14397 return TRUE;
14398 }
14399 return FALSE;
14400 }
14401 return FALSE;
14402 }
14403
14404 /* Discard unneeded references to discarded sections.
14405 Returns -1 on error, 1 if any section's size was changed, 0 if
14406 nothing changed. This function assumes that the relocations are in
14407 sorted order, which is true for all known assemblers. */
14408
14409 int
14410 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14411 {
14412 struct elf_reloc_cookie cookie;
14413 asection *o;
14414 bfd *abfd;
14415 int changed = 0;
14416
14417 if (info->traditional_format
14418 || !is_elf_hash_table (info->hash))
14419 return 0;
14420
14421 o = bfd_get_section_by_name (output_bfd, ".stab");
14422 if (o != NULL)
14423 {
14424 asection *i;
14425
14426 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14427 {
14428 if (i->size == 0
14429 || i->reloc_count == 0
14430 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14431 continue;
14432
14433 abfd = i->owner;
14434 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14435 continue;
14436
14437 if (!init_reloc_cookie_for_section (&cookie, info, i))
14438 return -1;
14439
14440 if (_bfd_discard_section_stabs (abfd, i,
14441 elf_section_data (i)->sec_info,
14442 bfd_elf_reloc_symbol_deleted_p,
14443 &cookie))
14444 changed = 1;
14445
14446 fini_reloc_cookie_for_section (&cookie, i);
14447 }
14448 }
14449
14450 o = NULL;
14451 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14452 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14453 if (o != NULL)
14454 {
14455 asection *i;
14456 int eh_changed = 0;
14457 unsigned int eh_alignment; /* Octets. */
14458
14459 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14460 {
14461 if (i->size == 0)
14462 continue;
14463
14464 abfd = i->owner;
14465 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14466 continue;
14467
14468 if (!init_reloc_cookie_for_section (&cookie, info, i))
14469 return -1;
14470
14471 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14472 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14473 bfd_elf_reloc_symbol_deleted_p,
14474 &cookie))
14475 {
14476 eh_changed = 1;
14477 if (i->size != i->rawsize)
14478 changed = 1;
14479 }
14480
14481 fini_reloc_cookie_for_section (&cookie, i);
14482 }
14483
14484 eh_alignment = ((1 << o->alignment_power)
14485 * bfd_octets_per_byte (output_bfd, o));
14486 /* Skip over zero terminator, and prevent empty sections from
14487 adding alignment padding at the end. */
14488 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14489 if (i->size == 0)
14490 i->flags |= SEC_EXCLUDE;
14491 else if (i->size > 4)
14492 break;
14493 /* The last non-empty eh_frame section doesn't need padding. */
14494 if (i != NULL)
14495 i = i->map_tail.s;
14496 /* Any prior sections must pad the last FDE out to the output
14497 section alignment. Otherwise we might have zero padding
14498 between sections, which would be seen as a terminator. */
14499 for (; i != NULL; i = i->map_tail.s)
14500 if (i->size == 4)
14501 /* All but the last zero terminator should have been removed. */
14502 BFD_FAIL ();
14503 else
14504 {
14505 bfd_size_type size
14506 = (i->size + eh_alignment - 1) & -eh_alignment;
14507 if (i->size != size)
14508 {
14509 i->size = size;
14510 changed = 1;
14511 eh_changed = 1;
14512 }
14513 }
14514 if (eh_changed)
14515 elf_link_hash_traverse (elf_hash_table (info),
14516 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14517 }
14518
14519 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14520 {
14521 const struct elf_backend_data *bed;
14522 asection *s;
14523
14524 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14525 continue;
14526 s = abfd->sections;
14527 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14528 continue;
14529
14530 bed = get_elf_backend_data (abfd);
14531
14532 if (bed->elf_backend_discard_info != NULL)
14533 {
14534 if (!init_reloc_cookie (&cookie, info, abfd))
14535 return -1;
14536
14537 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14538 changed = 1;
14539
14540 fini_reloc_cookie (&cookie, abfd);
14541 }
14542 }
14543
14544 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14545 _bfd_elf_end_eh_frame_parsing (info);
14546
14547 if (info->eh_frame_hdr_type
14548 && !bfd_link_relocatable (info)
14549 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14550 changed = 1;
14551
14552 return changed;
14553 }
14554
14555 bfd_boolean
14556 _bfd_elf_section_already_linked (bfd *abfd,
14557 asection *sec,
14558 struct bfd_link_info *info)
14559 {
14560 flagword flags;
14561 const char *name, *key;
14562 struct bfd_section_already_linked *l;
14563 struct bfd_section_already_linked_hash_entry *already_linked_list;
14564
14565 if (sec->output_section == bfd_abs_section_ptr)
14566 return FALSE;
14567
14568 flags = sec->flags;
14569
14570 /* Return if it isn't a linkonce section. A comdat group section
14571 also has SEC_LINK_ONCE set. */
14572 if ((flags & SEC_LINK_ONCE) == 0)
14573 return FALSE;
14574
14575 /* Don't put group member sections on our list of already linked
14576 sections. They are handled as a group via their group section. */
14577 if (elf_sec_group (sec) != NULL)
14578 return FALSE;
14579
14580 /* For a SHT_GROUP section, use the group signature as the key. */
14581 name = sec->name;
14582 if ((flags & SEC_GROUP) != 0
14583 && elf_next_in_group (sec) != NULL
14584 && elf_group_name (elf_next_in_group (sec)) != NULL)
14585 key = elf_group_name (elf_next_in_group (sec));
14586 else
14587 {
14588 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14589 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14590 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14591 key++;
14592 else
14593 /* Must be a user linkonce section that doesn't follow gcc's
14594 naming convention. In this case we won't be matching
14595 single member groups. */
14596 key = name;
14597 }
14598
14599 already_linked_list = bfd_section_already_linked_table_lookup (key);
14600
14601 for (l = already_linked_list->entry; l != NULL; l = l->next)
14602 {
14603 /* We may have 2 different types of sections on the list: group
14604 sections with a signature of <key> (<key> is some string),
14605 and linkonce sections named .gnu.linkonce.<type>.<key>.
14606 Match like sections. LTO plugin sections are an exception.
14607 They are always named .gnu.linkonce.t.<key> and match either
14608 type of section. */
14609 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14610 && ((flags & SEC_GROUP) != 0
14611 || strcmp (name, l->sec->name) == 0))
14612 || (l->sec->owner->flags & BFD_PLUGIN) != 0
14613 || (sec->owner->flags & BFD_PLUGIN) != 0)
14614 {
14615 /* The section has already been linked. See if we should
14616 issue a warning. */
14617 if (!_bfd_handle_already_linked (sec, l, info))
14618 return FALSE;
14619
14620 if (flags & SEC_GROUP)
14621 {
14622 asection *first = elf_next_in_group (sec);
14623 asection *s = first;
14624
14625 while (s != NULL)
14626 {
14627 s->output_section = bfd_abs_section_ptr;
14628 /* Record which group discards it. */
14629 s->kept_section = l->sec;
14630 s = elf_next_in_group (s);
14631 /* These lists are circular. */
14632 if (s == first)
14633 break;
14634 }
14635 }
14636
14637 return TRUE;
14638 }
14639 }
14640
14641 /* A single member comdat group section may be discarded by a
14642 linkonce section and vice versa. */
14643 if ((flags & SEC_GROUP) != 0)
14644 {
14645 asection *first = elf_next_in_group (sec);
14646
14647 if (first != NULL && elf_next_in_group (first) == first)
14648 /* Check this single member group against linkonce sections. */
14649 for (l = already_linked_list->entry; l != NULL; l = l->next)
14650 if ((l->sec->flags & SEC_GROUP) == 0
14651 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14652 {
14653 first->output_section = bfd_abs_section_ptr;
14654 first->kept_section = l->sec;
14655 sec->output_section = bfd_abs_section_ptr;
14656 break;
14657 }
14658 }
14659 else
14660 /* Check this linkonce section against single member groups. */
14661 for (l = already_linked_list->entry; l != NULL; l = l->next)
14662 if (l->sec->flags & SEC_GROUP)
14663 {
14664 asection *first = elf_next_in_group (l->sec);
14665
14666 if (first != NULL
14667 && elf_next_in_group (first) == first
14668 && bfd_elf_match_symbols_in_sections (first, sec, info))
14669 {
14670 sec->output_section = bfd_abs_section_ptr;
14671 sec->kept_section = first;
14672 break;
14673 }
14674 }
14675
14676 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14677 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14678 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14679 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14680 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14681 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14682 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14683 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14684 The reverse order cannot happen as there is never a bfd with only the
14685 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14686 matter as here were are looking only for cross-bfd sections. */
14687
14688 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14689 for (l = already_linked_list->entry; l != NULL; l = l->next)
14690 if ((l->sec->flags & SEC_GROUP) == 0
14691 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14692 {
14693 if (abfd != l->sec->owner)
14694 sec->output_section = bfd_abs_section_ptr;
14695 break;
14696 }
14697
14698 /* This is the first section with this name. Record it. */
14699 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14700 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14701 return sec->output_section == bfd_abs_section_ptr;
14702 }
14703
14704 bfd_boolean
14705 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14706 {
14707 return sym->st_shndx == SHN_COMMON;
14708 }
14709
14710 unsigned int
14711 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14712 {
14713 return SHN_COMMON;
14714 }
14715
14716 asection *
14717 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14718 {
14719 return bfd_com_section_ptr;
14720 }
14721
14722 bfd_vma
14723 _bfd_elf_default_got_elt_size (bfd *abfd,
14724 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14725 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14726 bfd *ibfd ATTRIBUTE_UNUSED,
14727 unsigned long symndx ATTRIBUTE_UNUSED)
14728 {
14729 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14730 return bed->s->arch_size / 8;
14731 }
14732
14733 /* Routines to support the creation of dynamic relocs. */
14734
14735 /* Returns the name of the dynamic reloc section associated with SEC. */
14736
14737 static const char *
14738 get_dynamic_reloc_section_name (bfd * abfd,
14739 asection * sec,
14740 bfd_boolean is_rela)
14741 {
14742 char *name;
14743 const char *old_name = bfd_section_name (sec);
14744 const char *prefix = is_rela ? ".rela" : ".rel";
14745
14746 if (old_name == NULL)
14747 return NULL;
14748
14749 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14750 sprintf (name, "%s%s", prefix, old_name);
14751
14752 return name;
14753 }
14754
14755 /* Returns the dynamic reloc section associated with SEC.
14756 If necessary compute the name of the dynamic reloc section based
14757 on SEC's name (looked up in ABFD's string table) and the setting
14758 of IS_RELA. */
14759
14760 asection *
14761 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14762 asection * sec,
14763 bfd_boolean is_rela)
14764 {
14765 asection * reloc_sec = elf_section_data (sec)->sreloc;
14766
14767 if (reloc_sec == NULL)
14768 {
14769 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14770
14771 if (name != NULL)
14772 {
14773 reloc_sec = bfd_get_linker_section (abfd, name);
14774
14775 if (reloc_sec != NULL)
14776 elf_section_data (sec)->sreloc = reloc_sec;
14777 }
14778 }
14779
14780 return reloc_sec;
14781 }
14782
14783 /* Returns the dynamic reloc section associated with SEC. If the
14784 section does not exist it is created and attached to the DYNOBJ
14785 bfd and stored in the SRELOC field of SEC's elf_section_data
14786 structure.
14787
14788 ALIGNMENT is the alignment for the newly created section and
14789 IS_RELA defines whether the name should be .rela.<SEC's name>
14790 or .rel.<SEC's name>. The section name is looked up in the
14791 string table associated with ABFD. */
14792
14793 asection *
14794 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14795 bfd *dynobj,
14796 unsigned int alignment,
14797 bfd *abfd,
14798 bfd_boolean is_rela)
14799 {
14800 asection * reloc_sec = elf_section_data (sec)->sreloc;
14801
14802 if (reloc_sec == NULL)
14803 {
14804 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14805
14806 if (name == NULL)
14807 return NULL;
14808
14809 reloc_sec = bfd_get_linker_section (dynobj, name);
14810
14811 if (reloc_sec == NULL)
14812 {
14813 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14814 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14815 if ((sec->flags & SEC_ALLOC) != 0)
14816 flags |= SEC_ALLOC | SEC_LOAD;
14817
14818 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14819 if (reloc_sec != NULL)
14820 {
14821 /* _bfd_elf_get_sec_type_attr chooses a section type by
14822 name. Override as it may be wrong, eg. for a user
14823 section named "auto" we'll get ".relauto" which is
14824 seen to be a .rela section. */
14825 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14826 if (!bfd_set_section_alignment (reloc_sec, alignment))
14827 reloc_sec = NULL;
14828 }
14829 }
14830
14831 elf_section_data (sec)->sreloc = reloc_sec;
14832 }
14833
14834 return reloc_sec;
14835 }
14836
14837 /* Copy the ELF symbol type and other attributes for a linker script
14838 assignment from HSRC to HDEST. Generally this should be treated as
14839 if we found a strong non-dynamic definition for HDEST (except that
14840 ld ignores multiple definition errors). */
14841 void
14842 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14843 struct bfd_link_hash_entry *hdest,
14844 struct bfd_link_hash_entry *hsrc)
14845 {
14846 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14847 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14848 Elf_Internal_Sym isym;
14849
14850 ehdest->type = ehsrc->type;
14851 ehdest->target_internal = ehsrc->target_internal;
14852
14853 isym.st_other = ehsrc->other;
14854 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14855 }
14856
14857 /* Append a RELA relocation REL to section S in BFD. */
14858
14859 void
14860 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14861 {
14862 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14863 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14864 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14865 bed->s->swap_reloca_out (abfd, rel, loc);
14866 }
14867
14868 /* Append a REL relocation REL to section S in BFD. */
14869
14870 void
14871 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14872 {
14873 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14874 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14875 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14876 bed->s->swap_reloc_out (abfd, rel, loc);
14877 }
14878
14879 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14880
14881 struct bfd_link_hash_entry *
14882 bfd_elf_define_start_stop (struct bfd_link_info *info,
14883 const char *symbol, asection *sec)
14884 {
14885 struct elf_link_hash_entry *h;
14886
14887 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14888 FALSE, FALSE, TRUE);
14889 /* NB: Common symbols will be turned into definition later. */
14890 if (h != NULL
14891 && (h->root.type == bfd_link_hash_undefined
14892 || h->root.type == bfd_link_hash_undefweak
14893 || ((h->ref_regular || h->def_dynamic)
14894 && !h->def_regular
14895 && h->root.type != bfd_link_hash_common)))
14896 {
14897 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14898 h->verinfo.verdef = NULL;
14899 h->root.type = bfd_link_hash_defined;
14900 h->root.u.def.section = sec;
14901 h->root.u.def.value = 0;
14902 h->def_regular = 1;
14903 h->def_dynamic = 0;
14904 h->start_stop = 1;
14905 h->u2.start_stop_section = sec;
14906 if (symbol[0] == '.')
14907 {
14908 /* .startof. and .sizeof. symbols are local. */
14909 const struct elf_backend_data *bed;
14910 bed = get_elf_backend_data (info->output_bfd);
14911 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14912 }
14913 else
14914 {
14915 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14916 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
14917 | info->start_stop_visibility);
14918 if (was_dynamic)
14919 bfd_elf_link_record_dynamic_symbol (info, h);
14920 }
14921 return &h->root;
14922 }
14923 return NULL;
14924 }
14925
14926 /* Find dynamic relocs for H that apply to read-only sections. */
14927
14928 asection *
14929 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
14930 {
14931 struct elf_dyn_relocs *p;
14932
14933 for (p = h->dyn_relocs; p != NULL; p = p->next)
14934 {
14935 asection *s = p->sec->output_section;
14936
14937 if (s != NULL && (s->flags & SEC_READONLY) != 0)
14938 return p->sec;
14939 }
14940 return NULL;
14941 }
14942
14943 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
14944 read-only sections. */
14945
14946 bfd_boolean
14947 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
14948 {
14949 asection *sec;
14950
14951 if (h->root.type == bfd_link_hash_indirect)
14952 return TRUE;
14953
14954 sec = _bfd_elf_readonly_dynrelocs (h);
14955 if (sec != NULL)
14956 {
14957 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14958
14959 info->flags |= DF_TEXTREL;
14960 /* xgettext:c-format */
14961 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
14962 "in read-only section `%pA'\n"),
14963 sec->owner, h->root.root.string, sec);
14964
14965 if (bfd_link_textrel_check (info))
14966 /* xgettext:c-format */
14967 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
14968 "in read-only section `%pA'\n"),
14969 sec->owner, h->root.root.string, sec);
14970
14971 /* Not an error, just cut short the traversal. */
14972 return FALSE;
14973 }
14974 return TRUE;
14975 }
14976
14977 /* Add dynamic tags. */
14978
14979 bfd_boolean
14980 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
14981 bfd_boolean need_dynamic_reloc)
14982 {
14983 struct elf_link_hash_table *htab = elf_hash_table (info);
14984
14985 if (htab->dynamic_sections_created)
14986 {
14987 /* Add some entries to the .dynamic section. We fill in the
14988 values later, in finish_dynamic_sections, but we must add
14989 the entries now so that we get the correct size for the
14990 .dynamic section. The DT_DEBUG entry is filled in by the
14991 dynamic linker and used by the debugger. */
14992 #define add_dynamic_entry(TAG, VAL) \
14993 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
14994
14995 const struct elf_backend_data *bed
14996 = get_elf_backend_data (output_bfd);
14997
14998 if (bfd_link_executable (info))
14999 {
15000 if (!add_dynamic_entry (DT_DEBUG, 0))
15001 return FALSE;
15002 }
15003
15004 if (htab->dt_pltgot_required || htab->splt->size != 0)
15005 {
15006 /* DT_PLTGOT is used by prelink even if there is no PLT
15007 relocation. */
15008 if (!add_dynamic_entry (DT_PLTGOT, 0))
15009 return FALSE;
15010 }
15011
15012 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15013 {
15014 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15015 || !add_dynamic_entry (DT_PLTREL,
15016 (bed->rela_plts_and_copies_p
15017 ? DT_RELA : DT_REL))
15018 || !add_dynamic_entry (DT_JMPREL, 0))
15019 return FALSE;
15020 }
15021
15022 if (htab->tlsdesc_plt
15023 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15024 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15025 return FALSE;
15026
15027 if (need_dynamic_reloc)
15028 {
15029 if (bed->rela_plts_and_copies_p)
15030 {
15031 if (!add_dynamic_entry (DT_RELA, 0)
15032 || !add_dynamic_entry (DT_RELASZ, 0)
15033 || !add_dynamic_entry (DT_RELAENT,
15034 bed->s->sizeof_rela))
15035 return FALSE;
15036 }
15037 else
15038 {
15039 if (!add_dynamic_entry (DT_REL, 0)
15040 || !add_dynamic_entry (DT_RELSZ, 0)
15041 || !add_dynamic_entry (DT_RELENT,
15042 bed->s->sizeof_rel))
15043 return FALSE;
15044 }
15045
15046 /* If any dynamic relocs apply to a read-only section,
15047 then we need a DT_TEXTREL entry. */
15048 if ((info->flags & DF_TEXTREL) == 0)
15049 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15050 info);
15051
15052 if ((info->flags & DF_TEXTREL) != 0)
15053 {
15054 if (htab->ifunc_resolvers)
15055 info->callbacks->einfo
15056 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15057 "may result in a segfault at runtime; recompile with %s\n"),
15058 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15059
15060 if (!add_dynamic_entry (DT_TEXTREL, 0))
15061 return FALSE;
15062 }
15063 }
15064 }
15065 #undef add_dynamic_entry
15066
15067 return TRUE;
15068 }
This page took 0.622782 seconds and 4 git commands to generate.