1569e93c5b8f9b0c64d8c4b436e79a3ed4536e83
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 {
208 /* We may not set dynobj, an input file holding linker created
209 dynamic sections to abfd, which may be a dynamic object with
210 its own dynamic sections. We need to find a normal input file
211 to hold linker created sections if possible. */
212 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
213 {
214 bfd *ibfd;
215 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
216 if ((ibfd->flags
217 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
218 {
219 abfd = ibfd;
220 break;
221 }
222 }
223 hash_table->dynobj = abfd;
224 }
225
226 if (hash_table->dynstr == NULL)
227 {
228 hash_table->dynstr = _bfd_elf_strtab_init ();
229 if (hash_table->dynstr == NULL)
230 return FALSE;
231 }
232 return TRUE;
233 }
234
235 /* Create some sections which will be filled in with dynamic linking
236 information. ABFD is an input file which requires dynamic sections
237 to be created. The dynamic sections take up virtual memory space
238 when the final executable is run, so we need to create them before
239 addresses are assigned to the output sections. We work out the
240 actual contents and size of these sections later. */
241
242 bfd_boolean
243 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
244 {
245 flagword flags;
246 asection *s;
247 const struct elf_backend_data *bed;
248 struct elf_link_hash_entry *h;
249
250 if (! is_elf_hash_table (info->hash))
251 return FALSE;
252
253 if (elf_hash_table (info)->dynamic_sections_created)
254 return TRUE;
255
256 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
257 return FALSE;
258
259 abfd = elf_hash_table (info)->dynobj;
260 bed = get_elf_backend_data (abfd);
261
262 flags = bed->dynamic_sec_flags;
263
264 /* A dynamically linked executable has a .interp section, but a
265 shared library does not. */
266 if (bfd_link_executable (info) && !info->nointerp)
267 {
268 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
269 flags | SEC_READONLY);
270 if (s == NULL)
271 return FALSE;
272 }
273
274 /* Create sections to hold version informations. These are removed
275 if they are not needed. */
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, 1))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299 elf_hash_table (info)->dynsym = s;
300
301 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
302 flags | SEC_READONLY);
303 if (s == NULL)
304 return FALSE;
305
306 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
307 if (s == NULL
308 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 return FALSE;
310
311 /* The special symbol _DYNAMIC is always set to the start of the
312 .dynamic section. We could set _DYNAMIC in a linker script, but we
313 only want to define it if we are, in fact, creating a .dynamic
314 section. We don't want to define it if there is no .dynamic
315 section, since on some ELF platforms the start up code examines it
316 to decide how to initialize the process. */
317 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
318 elf_hash_table (info)->hdynamic = h;
319 if (h == NULL)
320 return FALSE;
321
322 if (info->emit_hash)
323 {
324 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
325 flags | SEC_READONLY);
326 if (s == NULL
327 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
328 return FALSE;
329 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
330 }
331
332 if (info->emit_gnu_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
340 4 32-bit words followed by variable count of 64-bit words, then
341 variable count of 32-bit words. */
342 if (bed->s->arch_size == 64)
343 elf_section_data (s)->this_hdr.sh_entsize = 0;
344 else
345 elf_section_data (s)->this_hdr.sh_entsize = 4;
346 }
347
348 /* Let the backend create the rest of the sections. This lets the
349 backend set the right flags. The backend will normally create
350 the .got and .plt sections. */
351 if (bed->elf_backend_create_dynamic_sections == NULL
352 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
353 return FALSE;
354
355 elf_hash_table (info)->dynamic_sections_created = TRUE;
356
357 return TRUE;
358 }
359
360 /* Create dynamic sections when linking against a dynamic object. */
361
362 bfd_boolean
363 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
364 {
365 flagword flags, pltflags;
366 struct elf_link_hash_entry *h;
367 asection *s;
368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
369 struct elf_link_hash_table *htab = elf_hash_table (info);
370
371 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
372 .rel[a].bss sections. */
373 flags = bed->dynamic_sec_flags;
374
375 pltflags = flags;
376 if (bed->plt_not_loaded)
377 /* We do not clear SEC_ALLOC here because we still want the OS to
378 allocate space for the section; it's just that there's nothing
379 to read in from the object file. */
380 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
381 else
382 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
383 if (bed->plt_readonly)
384 pltflags |= SEC_READONLY;
385
386 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
389 return FALSE;
390 htab->splt = s;
391
392 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
393 .plt section. */
394 if (bed->want_plt_sym)
395 {
396 h = _bfd_elf_define_linkage_sym (abfd, info, s,
397 "_PROCEDURE_LINKAGE_TABLE_");
398 elf_hash_table (info)->hplt = h;
399 if (h == NULL)
400 return FALSE;
401 }
402
403 s = bfd_make_section_anyway_with_flags (abfd,
404 (bed->rela_plts_and_copies_p
405 ? ".rela.plt" : ".rel.plt"),
406 flags | SEC_READONLY);
407 if (s == NULL
408 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
409 return FALSE;
410 htab->srelplt = s;
411
412 if (! _bfd_elf_create_got_section (abfd, info))
413 return FALSE;
414
415 if (bed->want_dynbss)
416 {
417 /* The .dynbss section is a place to put symbols which are defined
418 by dynamic objects, are referenced by regular objects, and are
419 not functions. We must allocate space for them in the process
420 image and use a R_*_COPY reloc to tell the dynamic linker to
421 initialize them at run time. The linker script puts the .dynbss
422 section into the .bss section of the final image. */
423 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
424 (SEC_ALLOC | SEC_LINKER_CREATED));
425 if (s == NULL)
426 return FALSE;
427
428 /* The .rel[a].bss section holds copy relocs. This section is not
429 normally needed. We need to create it here, though, so that the
430 linker will map it to an output section. We can't just create it
431 only if we need it, because we will not know whether we need it
432 until we have seen all the input files, and the first time the
433 main linker code calls BFD after examining all the input files
434 (size_dynamic_sections) the input sections have already been
435 mapped to the output sections. If the section turns out not to
436 be needed, we can discard it later. We will never need this
437 section when generating a shared object, since they do not use
438 copy relocs. */
439 if (! bfd_link_pic (info))
440 {
441 s = bfd_make_section_anyway_with_flags (abfd,
442 (bed->rela_plts_and_copies_p
443 ? ".rela.bss" : ".rel.bss"),
444 flags | SEC_READONLY);
445 if (s == NULL
446 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
447 return FALSE;
448 }
449 }
450
451 return TRUE;
452 }
453 \f
454 /* Record a new dynamic symbol. We record the dynamic symbols as we
455 read the input files, since we need to have a list of all of them
456 before we can determine the final sizes of the output sections.
457 Note that we may actually call this function even though we are not
458 going to output any dynamic symbols; in some cases we know that a
459 symbol should be in the dynamic symbol table, but only if there is
460 one. */
461
462 bfd_boolean
463 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
464 struct elf_link_hash_entry *h)
465 {
466 if (h->dynindx == -1)
467 {
468 struct elf_strtab_hash *dynstr;
469 char *p;
470 const char *name;
471 bfd_size_type indx;
472
473 /* XXX: The ABI draft says the linker must turn hidden and
474 internal symbols into STB_LOCAL symbols when producing the
475 DSO. However, if ld.so honors st_other in the dynamic table,
476 this would not be necessary. */
477 switch (ELF_ST_VISIBILITY (h->other))
478 {
479 case STV_INTERNAL:
480 case STV_HIDDEN:
481 if (h->root.type != bfd_link_hash_undefined
482 && h->root.type != bfd_link_hash_undefweak)
483 {
484 h->forced_local = 1;
485 if (!elf_hash_table (info)->is_relocatable_executable)
486 return TRUE;
487 }
488
489 default:
490 break;
491 }
492
493 h->dynindx = elf_hash_table (info)->dynsymcount;
494 ++elf_hash_table (info)->dynsymcount;
495
496 dynstr = elf_hash_table (info)->dynstr;
497 if (dynstr == NULL)
498 {
499 /* Create a strtab to hold the dynamic symbol names. */
500 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
501 if (dynstr == NULL)
502 return FALSE;
503 }
504
505 /* We don't put any version information in the dynamic string
506 table. */
507 name = h->root.root.string;
508 p = strchr (name, ELF_VER_CHR);
509 if (p != NULL)
510 /* We know that the p points into writable memory. In fact,
511 there are only a few symbols that have read-only names, being
512 those like _GLOBAL_OFFSET_TABLE_ that are created specially
513 by the backends. Most symbols will have names pointing into
514 an ELF string table read from a file, or to objalloc memory. */
515 *p = 0;
516
517 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
518
519 if (p != NULL)
520 *p = ELF_VER_CHR;
521
522 if (indx == (bfd_size_type) -1)
523 return FALSE;
524 h->dynstr_index = indx;
525 }
526
527 return TRUE;
528 }
529 \f
530 /* Mark a symbol dynamic. */
531
532 static void
533 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
534 struct elf_link_hash_entry *h,
535 Elf_Internal_Sym *sym)
536 {
537 struct bfd_elf_dynamic_list *d = info->dynamic_list;
538
539 /* It may be called more than once on the same H. */
540 if(h->dynamic || bfd_link_relocatable (info))
541 return;
542
543 if ((info->dynamic_data
544 && (h->type == STT_OBJECT
545 || h->type == STT_COMMON
546 || (sym != NULL
547 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
548 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
549 || (d != NULL
550 && h->root.type == bfd_link_hash_new
551 && (*d->match) (&d->head, NULL, h->root.root.string)))
552 h->dynamic = 1;
553 }
554
555 /* Record an assignment to a symbol made by a linker script. We need
556 this in case some dynamic object refers to this symbol. */
557
558 bfd_boolean
559 bfd_elf_record_link_assignment (bfd *output_bfd,
560 struct bfd_link_info *info,
561 const char *name,
562 bfd_boolean provide,
563 bfd_boolean hidden)
564 {
565 struct elf_link_hash_entry *h, *hv;
566 struct elf_link_hash_table *htab;
567 const struct elf_backend_data *bed;
568
569 if (!is_elf_hash_table (info->hash))
570 return TRUE;
571
572 htab = elf_hash_table (info);
573 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
574 if (h == NULL)
575 return provide;
576
577 if (h->versioned == unknown)
578 {
579 /* Set versioned if symbol version is unknown. */
580 char *version = strrchr (name, ELF_VER_CHR);
581 if (version)
582 {
583 if (version > name && version[-1] != ELF_VER_CHR)
584 h->versioned = versioned_hidden;
585 else
586 h->versioned = versioned;
587 }
588 }
589
590 switch (h->root.type)
591 {
592 case bfd_link_hash_defined:
593 case bfd_link_hash_defweak:
594 case bfd_link_hash_common:
595 break;
596 case bfd_link_hash_undefweak:
597 case bfd_link_hash_undefined:
598 /* Since we're defining the symbol, don't let it seem to have not
599 been defined. record_dynamic_symbol and size_dynamic_sections
600 may depend on this. */
601 h->root.type = bfd_link_hash_new;
602 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
603 bfd_link_repair_undef_list (&htab->root);
604 break;
605 case bfd_link_hash_new:
606 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
607 h->non_elf = 0;
608 break;
609 case bfd_link_hash_indirect:
610 /* We had a versioned symbol in a dynamic library. We make the
611 the versioned symbol point to this one. */
612 bed = get_elf_backend_data (output_bfd);
613 hv = h;
614 while (hv->root.type == bfd_link_hash_indirect
615 || hv->root.type == bfd_link_hash_warning)
616 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
617 /* We don't need to update h->root.u since linker will set them
618 later. */
619 h->root.type = bfd_link_hash_undefined;
620 hv->root.type = bfd_link_hash_indirect;
621 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
622 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
623 break;
624 case bfd_link_hash_warning:
625 abort ();
626 break;
627 }
628
629 /* If this symbol is being provided by the linker script, and it is
630 currently defined by a dynamic object, but not by a regular
631 object, then mark it as undefined so that the generic linker will
632 force the correct value. */
633 if (provide
634 && h->def_dynamic
635 && !h->def_regular)
636 h->root.type = bfd_link_hash_undefined;
637
638 /* If this symbol is not being provided by the linker script, and it is
639 currently defined by a dynamic object, but not by a regular object,
640 then clear out any version information because the symbol will not be
641 associated with the dynamic object any more. */
642 if (!provide
643 && h->def_dynamic
644 && !h->def_regular)
645 h->verinfo.verdef = NULL;
646
647 h->def_regular = 1;
648
649 if (hidden)
650 {
651 bed = get_elf_backend_data (output_bfd);
652 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
653 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
654 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
655 }
656
657 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
658 and executables. */
659 if (!bfd_link_relocatable (info)
660 && h->dynindx != -1
661 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
662 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
663 h->forced_local = 1;
664
665 if ((h->def_dynamic
666 || h->ref_dynamic
667 || bfd_link_dll (info)
668 || elf_hash_table (info)->is_relocatable_executable)
669 && h->dynindx == -1)
670 {
671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
672 return FALSE;
673
674 /* If this is a weak defined symbol, and we know a corresponding
675 real symbol from the same dynamic object, make sure the real
676 symbol is also made into a dynamic symbol. */
677 if (h->u.weakdef != NULL
678 && h->u.weakdef->dynindx == -1)
679 {
680 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
681 return FALSE;
682 }
683 }
684
685 return TRUE;
686 }
687
688 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
689 success, and 2 on a failure caused by attempting to record a symbol
690 in a discarded section, eg. a discarded link-once section symbol. */
691
692 int
693 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
694 bfd *input_bfd,
695 long input_indx)
696 {
697 bfd_size_type amt;
698 struct elf_link_local_dynamic_entry *entry;
699 struct elf_link_hash_table *eht;
700 struct elf_strtab_hash *dynstr;
701 unsigned long dynstr_index;
702 char *name;
703 Elf_External_Sym_Shndx eshndx;
704 char esym[sizeof (Elf64_External_Sym)];
705
706 if (! is_elf_hash_table (info->hash))
707 return 0;
708
709 /* See if the entry exists already. */
710 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
711 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
712 return 1;
713
714 amt = sizeof (*entry);
715 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
716 if (entry == NULL)
717 return 0;
718
719 /* Go find the symbol, so that we can find it's name. */
720 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
721 1, input_indx, &entry->isym, esym, &eshndx))
722 {
723 bfd_release (input_bfd, entry);
724 return 0;
725 }
726
727 if (entry->isym.st_shndx != SHN_UNDEF
728 && entry->isym.st_shndx < SHN_LORESERVE)
729 {
730 asection *s;
731
732 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
733 if (s == NULL || bfd_is_abs_section (s->output_section))
734 {
735 /* We can still bfd_release here as nothing has done another
736 bfd_alloc. We can't do this later in this function. */
737 bfd_release (input_bfd, entry);
738 return 2;
739 }
740 }
741
742 name = (bfd_elf_string_from_elf_section
743 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
744 entry->isym.st_name));
745
746 dynstr = elf_hash_table (info)->dynstr;
747 if (dynstr == NULL)
748 {
749 /* Create a strtab to hold the dynamic symbol names. */
750 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
751 if (dynstr == NULL)
752 return 0;
753 }
754
755 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
756 if (dynstr_index == (unsigned long) -1)
757 return 0;
758 entry->isym.st_name = dynstr_index;
759
760 eht = elf_hash_table (info);
761
762 entry->next = eht->dynlocal;
763 eht->dynlocal = entry;
764 entry->input_bfd = input_bfd;
765 entry->input_indx = input_indx;
766 eht->dynsymcount++;
767
768 /* Whatever binding the symbol had before, it's now local. */
769 entry->isym.st_info
770 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
771
772 /* The dynindx will be set at the end of size_dynamic_sections. */
773
774 return 1;
775 }
776
777 /* Return the dynindex of a local dynamic symbol. */
778
779 long
780 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
781 bfd *input_bfd,
782 long input_indx)
783 {
784 struct elf_link_local_dynamic_entry *e;
785
786 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
787 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
788 return e->dynindx;
789 return -1;
790 }
791
792 /* This function is used to renumber the dynamic symbols, if some of
793 them are removed because they are marked as local. This is called
794 via elf_link_hash_traverse. */
795
796 static bfd_boolean
797 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
798 void *data)
799 {
800 size_t *count = (size_t *) data;
801
802 if (h->forced_local)
803 return TRUE;
804
805 if (h->dynindx != -1)
806 h->dynindx = ++(*count);
807
808 return TRUE;
809 }
810
811
812 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
813 STB_LOCAL binding. */
814
815 static bfd_boolean
816 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
817 void *data)
818 {
819 size_t *count = (size_t *) data;
820
821 if (!h->forced_local)
822 return TRUE;
823
824 if (h->dynindx != -1)
825 h->dynindx = ++(*count);
826
827 return TRUE;
828 }
829
830 /* Return true if the dynamic symbol for a given section should be
831 omitted when creating a shared library. */
832 bfd_boolean
833 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
834 struct bfd_link_info *info,
835 asection *p)
836 {
837 struct elf_link_hash_table *htab;
838 asection *ip;
839
840 switch (elf_section_data (p)->this_hdr.sh_type)
841 {
842 case SHT_PROGBITS:
843 case SHT_NOBITS:
844 /* If sh_type is yet undecided, assume it could be
845 SHT_PROGBITS/SHT_NOBITS. */
846 case SHT_NULL:
847 htab = elf_hash_table (info);
848 if (p == htab->tls_sec)
849 return FALSE;
850
851 if (htab->text_index_section != NULL)
852 return p != htab->text_index_section && p != htab->data_index_section;
853
854 return (htab->dynobj != NULL
855 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
856 && ip->output_section == p);
857
858 /* There shouldn't be section relative relocations
859 against any other section. */
860 default:
861 return TRUE;
862 }
863 }
864
865 /* Assign dynsym indices. In a shared library we generate a section
866 symbol for each output section, which come first. Next come symbols
867 which have been forced to local binding. Then all of the back-end
868 allocated local dynamic syms, followed by the rest of the global
869 symbols. */
870
871 static unsigned long
872 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
873 struct bfd_link_info *info,
874 unsigned long *section_sym_count)
875 {
876 unsigned long dynsymcount = 0;
877
878 if (bfd_link_pic (info)
879 || elf_hash_table (info)->is_relocatable_executable)
880 {
881 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
882 asection *p;
883 for (p = output_bfd->sections; p ; p = p->next)
884 if ((p->flags & SEC_EXCLUDE) == 0
885 && (p->flags & SEC_ALLOC) != 0
886 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
887 elf_section_data (p)->dynindx = ++dynsymcount;
888 else
889 elf_section_data (p)->dynindx = 0;
890 }
891 *section_sym_count = dynsymcount;
892
893 elf_link_hash_traverse (elf_hash_table (info),
894 elf_link_renumber_local_hash_table_dynsyms,
895 &dynsymcount);
896
897 if (elf_hash_table (info)->dynlocal)
898 {
899 struct elf_link_local_dynamic_entry *p;
900 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
901 p->dynindx = ++dynsymcount;
902 }
903
904 elf_link_hash_traverse (elf_hash_table (info),
905 elf_link_renumber_hash_table_dynsyms,
906 &dynsymcount);
907
908 /* There is an unused NULL entry at the head of the table which we
909 must account for in our count even if the table is empty since it
910 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
911 .dynamic section. */
912 dynsymcount++;
913
914 elf_hash_table (info)->dynsymcount = dynsymcount;
915 return dynsymcount;
916 }
917
918 /* Merge st_other field. */
919
920 static void
921 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
922 const Elf_Internal_Sym *isym, asection *sec,
923 bfd_boolean definition, bfd_boolean dynamic)
924 {
925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
926
927 /* If st_other has a processor-specific meaning, specific
928 code might be needed here. */
929 if (bed->elf_backend_merge_symbol_attribute)
930 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
931 dynamic);
932
933 if (!dynamic)
934 {
935 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
936 unsigned hvis = ELF_ST_VISIBILITY (h->other);
937
938 /* Keep the most constraining visibility. Leave the remainder
939 of the st_other field to elf_backend_merge_symbol_attribute. */
940 if (symvis - 1 < hvis - 1)
941 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
942 }
943 else if (definition
944 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
945 && (sec->flags & SEC_READONLY) == 0)
946 h->protected_def = 1;
947 }
948
949 /* This function is called when we want to merge a new symbol with an
950 existing symbol. It handles the various cases which arise when we
951 find a definition in a dynamic object, or when there is already a
952 definition in a dynamic object. The new symbol is described by
953 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
954 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
955 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
956 of an old common symbol. We set OVERRIDE if the old symbol is
957 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
958 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
959 to change. By OK to change, we mean that we shouldn't warn if the
960 type or size does change. */
961
962 static bfd_boolean
963 _bfd_elf_merge_symbol (bfd *abfd,
964 struct bfd_link_info *info,
965 const char *name,
966 Elf_Internal_Sym *sym,
967 asection **psec,
968 bfd_vma *pvalue,
969 struct elf_link_hash_entry **sym_hash,
970 bfd **poldbfd,
971 bfd_boolean *pold_weak,
972 unsigned int *pold_alignment,
973 bfd_boolean *skip,
974 bfd_boolean *override,
975 bfd_boolean *type_change_ok,
976 bfd_boolean *size_change_ok,
977 bfd_boolean *matched)
978 {
979 asection *sec, *oldsec;
980 struct elf_link_hash_entry *h;
981 struct elf_link_hash_entry *hi;
982 struct elf_link_hash_entry *flip;
983 int bind;
984 bfd *oldbfd;
985 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
986 bfd_boolean newweak, oldweak, newfunc, oldfunc;
987 const struct elf_backend_data *bed;
988 char *new_version;
989
990 *skip = FALSE;
991 *override = FALSE;
992
993 sec = *psec;
994 bind = ELF_ST_BIND (sym->st_info);
995
996 if (! bfd_is_und_section (sec))
997 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
998 else
999 h = ((struct elf_link_hash_entry *)
1000 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1001 if (h == NULL)
1002 return FALSE;
1003 *sym_hash = h;
1004
1005 bed = get_elf_backend_data (abfd);
1006
1007 /* NEW_VERSION is the symbol version of the new symbol. */
1008 if (h->versioned != unversioned)
1009 {
1010 /* Symbol version is unknown or versioned. */
1011 new_version = strrchr (name, ELF_VER_CHR);
1012 if (new_version)
1013 {
1014 if (h->versioned == unknown)
1015 {
1016 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1017 h->versioned = versioned_hidden;
1018 else
1019 h->versioned = versioned;
1020 }
1021 new_version += 1;
1022 if (new_version[0] == '\0')
1023 new_version = NULL;
1024 }
1025 else
1026 h->versioned = unversioned;
1027 }
1028 else
1029 new_version = NULL;
1030
1031 /* For merging, we only care about real symbols. But we need to make
1032 sure that indirect symbol dynamic flags are updated. */
1033 hi = h;
1034 while (h->root.type == bfd_link_hash_indirect
1035 || h->root.type == bfd_link_hash_warning)
1036 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1037
1038 if (!*matched)
1039 {
1040 if (hi == h || h->root.type == bfd_link_hash_new)
1041 *matched = TRUE;
1042 else
1043 {
1044 /* OLD_HIDDEN is true if the existing symbol is only visible
1045 to the symbol with the same symbol version. NEW_HIDDEN is
1046 true if the new symbol is only visible to the symbol with
1047 the same symbol version. */
1048 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1049 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1050 if (!old_hidden && !new_hidden)
1051 /* The new symbol matches the existing symbol if both
1052 aren't hidden. */
1053 *matched = TRUE;
1054 else
1055 {
1056 /* OLD_VERSION is the symbol version of the existing
1057 symbol. */
1058 char *old_version;
1059
1060 if (h->versioned >= versioned)
1061 old_version = strrchr (h->root.root.string,
1062 ELF_VER_CHR) + 1;
1063 else
1064 old_version = NULL;
1065
1066 /* The new symbol matches the existing symbol if they
1067 have the same symbol version. */
1068 *matched = (old_version == new_version
1069 || (old_version != NULL
1070 && new_version != NULL
1071 && strcmp (old_version, new_version) == 0));
1072 }
1073 }
1074 }
1075
1076 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1077 existing symbol. */
1078
1079 oldbfd = NULL;
1080 oldsec = NULL;
1081 switch (h->root.type)
1082 {
1083 default:
1084 break;
1085
1086 case bfd_link_hash_undefined:
1087 case bfd_link_hash_undefweak:
1088 oldbfd = h->root.u.undef.abfd;
1089 break;
1090
1091 case bfd_link_hash_defined:
1092 case bfd_link_hash_defweak:
1093 oldbfd = h->root.u.def.section->owner;
1094 oldsec = h->root.u.def.section;
1095 break;
1096
1097 case bfd_link_hash_common:
1098 oldbfd = h->root.u.c.p->section->owner;
1099 oldsec = h->root.u.c.p->section;
1100 if (pold_alignment)
1101 *pold_alignment = h->root.u.c.p->alignment_power;
1102 break;
1103 }
1104 if (poldbfd && *poldbfd == NULL)
1105 *poldbfd = oldbfd;
1106
1107 /* Differentiate strong and weak symbols. */
1108 newweak = bind == STB_WEAK;
1109 oldweak = (h->root.type == bfd_link_hash_defweak
1110 || h->root.type == bfd_link_hash_undefweak);
1111 if (pold_weak)
1112 *pold_weak = oldweak;
1113
1114 /* This code is for coping with dynamic objects, and is only useful
1115 if we are doing an ELF link. */
1116 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1117 return TRUE;
1118
1119 /* We have to check it for every instance since the first few may be
1120 references and not all compilers emit symbol type for undefined
1121 symbols. */
1122 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1123
1124 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1125 respectively, is from a dynamic object. */
1126
1127 newdyn = (abfd->flags & DYNAMIC) != 0;
1128
1129 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1130 syms and defined syms in dynamic libraries respectively.
1131 ref_dynamic on the other hand can be set for a symbol defined in
1132 a dynamic library, and def_dynamic may not be set; When the
1133 definition in a dynamic lib is overridden by a definition in the
1134 executable use of the symbol in the dynamic lib becomes a
1135 reference to the executable symbol. */
1136 if (newdyn)
1137 {
1138 if (bfd_is_und_section (sec))
1139 {
1140 if (bind != STB_WEAK)
1141 {
1142 h->ref_dynamic_nonweak = 1;
1143 hi->ref_dynamic_nonweak = 1;
1144 }
1145 }
1146 else
1147 {
1148 /* Update the existing symbol only if they match. */
1149 if (*matched)
1150 h->dynamic_def = 1;
1151 hi->dynamic_def = 1;
1152 }
1153 }
1154
1155 /* If we just created the symbol, mark it as being an ELF symbol.
1156 Other than that, there is nothing to do--there is no merge issue
1157 with a newly defined symbol--so we just return. */
1158
1159 if (h->root.type == bfd_link_hash_new)
1160 {
1161 h->non_elf = 0;
1162 return TRUE;
1163 }
1164
1165 /* In cases involving weak versioned symbols, we may wind up trying
1166 to merge a symbol with itself. Catch that here, to avoid the
1167 confusion that results if we try to override a symbol with
1168 itself. The additional tests catch cases like
1169 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1170 dynamic object, which we do want to handle here. */
1171 if (abfd == oldbfd
1172 && (newweak || oldweak)
1173 && ((abfd->flags & DYNAMIC) == 0
1174 || !h->def_regular))
1175 return TRUE;
1176
1177 olddyn = FALSE;
1178 if (oldbfd != NULL)
1179 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1180 else if (oldsec != NULL)
1181 {
1182 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1183 indices used by MIPS ELF. */
1184 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1185 }
1186
1187 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1188 respectively, appear to be a definition rather than reference. */
1189
1190 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1191
1192 olddef = (h->root.type != bfd_link_hash_undefined
1193 && h->root.type != bfd_link_hash_undefweak
1194 && h->root.type != bfd_link_hash_common);
1195
1196 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1197 respectively, appear to be a function. */
1198
1199 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1200 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1201
1202 oldfunc = (h->type != STT_NOTYPE
1203 && bed->is_function_type (h->type));
1204
1205 /* When we try to create a default indirect symbol from the dynamic
1206 definition with the default version, we skip it if its type and
1207 the type of existing regular definition mismatch. */
1208 if (pold_alignment == NULL
1209 && newdyn
1210 && newdef
1211 && !olddyn
1212 && (((olddef || h->root.type == bfd_link_hash_common)
1213 && ELF_ST_TYPE (sym->st_info) != h->type
1214 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1215 && h->type != STT_NOTYPE
1216 && !(newfunc && oldfunc))
1217 || (olddef
1218 && ((h->type == STT_GNU_IFUNC)
1219 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1220 {
1221 *skip = TRUE;
1222 return TRUE;
1223 }
1224
1225 /* Check TLS symbols. We don't check undefined symbols introduced
1226 by "ld -u" which have no type (and oldbfd NULL), and we don't
1227 check symbols from plugins because they also have no type. */
1228 if (oldbfd != NULL
1229 && (oldbfd->flags & BFD_PLUGIN) == 0
1230 && (abfd->flags & BFD_PLUGIN) == 0
1231 && ELF_ST_TYPE (sym->st_info) != h->type
1232 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1233 {
1234 bfd *ntbfd, *tbfd;
1235 bfd_boolean ntdef, tdef;
1236 asection *ntsec, *tsec;
1237
1238 if (h->type == STT_TLS)
1239 {
1240 ntbfd = abfd;
1241 ntsec = sec;
1242 ntdef = newdef;
1243 tbfd = oldbfd;
1244 tsec = oldsec;
1245 tdef = olddef;
1246 }
1247 else
1248 {
1249 ntbfd = oldbfd;
1250 ntsec = oldsec;
1251 ntdef = olddef;
1252 tbfd = abfd;
1253 tsec = sec;
1254 tdef = newdef;
1255 }
1256
1257 if (tdef && ntdef)
1258 (*_bfd_error_handler)
1259 (_("%s: TLS definition in %B section %A "
1260 "mismatches non-TLS definition in %B section %A"),
1261 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1262 else if (!tdef && !ntdef)
1263 (*_bfd_error_handler)
1264 (_("%s: TLS reference in %B "
1265 "mismatches non-TLS reference in %B"),
1266 tbfd, ntbfd, h->root.root.string);
1267 else if (tdef)
1268 (*_bfd_error_handler)
1269 (_("%s: TLS definition in %B section %A "
1270 "mismatches non-TLS reference in %B"),
1271 tbfd, tsec, ntbfd, h->root.root.string);
1272 else
1273 (*_bfd_error_handler)
1274 (_("%s: TLS reference in %B "
1275 "mismatches non-TLS definition in %B section %A"),
1276 tbfd, ntbfd, ntsec, h->root.root.string);
1277
1278 bfd_set_error (bfd_error_bad_value);
1279 return FALSE;
1280 }
1281
1282 /* If the old symbol has non-default visibility, we ignore the new
1283 definition from a dynamic object. */
1284 if (newdyn
1285 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1286 && !bfd_is_und_section (sec))
1287 {
1288 *skip = TRUE;
1289 /* Make sure this symbol is dynamic. */
1290 h->ref_dynamic = 1;
1291 hi->ref_dynamic = 1;
1292 /* A protected symbol has external availability. Make sure it is
1293 recorded as dynamic.
1294
1295 FIXME: Should we check type and size for protected symbol? */
1296 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1297 return bfd_elf_link_record_dynamic_symbol (info, h);
1298 else
1299 return TRUE;
1300 }
1301 else if (!newdyn
1302 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1303 && h->def_dynamic)
1304 {
1305 /* If the new symbol with non-default visibility comes from a
1306 relocatable file and the old definition comes from a dynamic
1307 object, we remove the old definition. */
1308 if (hi->root.type == bfd_link_hash_indirect)
1309 {
1310 /* Handle the case where the old dynamic definition is
1311 default versioned. We need to copy the symbol info from
1312 the symbol with default version to the normal one if it
1313 was referenced before. */
1314 if (h->ref_regular)
1315 {
1316 hi->root.type = h->root.type;
1317 h->root.type = bfd_link_hash_indirect;
1318 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1319
1320 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1321 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1322 {
1323 /* If the new symbol is hidden or internal, completely undo
1324 any dynamic link state. */
1325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1326 h->forced_local = 0;
1327 h->ref_dynamic = 0;
1328 }
1329 else
1330 h->ref_dynamic = 1;
1331
1332 h->def_dynamic = 0;
1333 /* FIXME: Should we check type and size for protected symbol? */
1334 h->size = 0;
1335 h->type = 0;
1336
1337 h = hi;
1338 }
1339 else
1340 h = hi;
1341 }
1342
1343 /* If the old symbol was undefined before, then it will still be
1344 on the undefs list. If the new symbol is undefined or
1345 common, we can't make it bfd_link_hash_new here, because new
1346 undefined or common symbols will be added to the undefs list
1347 by _bfd_generic_link_add_one_symbol. Symbols may not be
1348 added twice to the undefs list. Also, if the new symbol is
1349 undefweak then we don't want to lose the strong undef. */
1350 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1351 {
1352 h->root.type = bfd_link_hash_undefined;
1353 h->root.u.undef.abfd = abfd;
1354 }
1355 else
1356 {
1357 h->root.type = bfd_link_hash_new;
1358 h->root.u.undef.abfd = NULL;
1359 }
1360
1361 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1362 {
1363 /* If the new symbol is hidden or internal, completely undo
1364 any dynamic link state. */
1365 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1366 h->forced_local = 0;
1367 h->ref_dynamic = 0;
1368 }
1369 else
1370 h->ref_dynamic = 1;
1371 h->def_dynamic = 0;
1372 /* FIXME: Should we check type and size for protected symbol? */
1373 h->size = 0;
1374 h->type = 0;
1375 return TRUE;
1376 }
1377
1378 /* If a new weak symbol definition comes from a regular file and the
1379 old symbol comes from a dynamic library, we treat the new one as
1380 strong. Similarly, an old weak symbol definition from a regular
1381 file is treated as strong when the new symbol comes from a dynamic
1382 library. Further, an old weak symbol from a dynamic library is
1383 treated as strong if the new symbol is from a dynamic library.
1384 This reflects the way glibc's ld.so works.
1385
1386 Do this before setting *type_change_ok or *size_change_ok so that
1387 we warn properly when dynamic library symbols are overridden. */
1388
1389 if (newdef && !newdyn && olddyn)
1390 newweak = FALSE;
1391 if (olddef && newdyn)
1392 oldweak = FALSE;
1393
1394 /* Allow changes between different types of function symbol. */
1395 if (newfunc && oldfunc)
1396 *type_change_ok = TRUE;
1397
1398 /* It's OK to change the type if either the existing symbol or the
1399 new symbol is weak. A type change is also OK if the old symbol
1400 is undefined and the new symbol is defined. */
1401
1402 if (oldweak
1403 || newweak
1404 || (newdef
1405 && h->root.type == bfd_link_hash_undefined))
1406 *type_change_ok = TRUE;
1407
1408 /* It's OK to change the size if either the existing symbol or the
1409 new symbol is weak, or if the old symbol is undefined. */
1410
1411 if (*type_change_ok
1412 || h->root.type == bfd_link_hash_undefined)
1413 *size_change_ok = TRUE;
1414
1415 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1416 symbol, respectively, appears to be a common symbol in a dynamic
1417 object. If a symbol appears in an uninitialized section, and is
1418 not weak, and is not a function, then it may be a common symbol
1419 which was resolved when the dynamic object was created. We want
1420 to treat such symbols specially, because they raise special
1421 considerations when setting the symbol size: if the symbol
1422 appears as a common symbol in a regular object, and the size in
1423 the regular object is larger, we must make sure that we use the
1424 larger size. This problematic case can always be avoided in C,
1425 but it must be handled correctly when using Fortran shared
1426 libraries.
1427
1428 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1429 likewise for OLDDYNCOMMON and OLDDEF.
1430
1431 Note that this test is just a heuristic, and that it is quite
1432 possible to have an uninitialized symbol in a shared object which
1433 is really a definition, rather than a common symbol. This could
1434 lead to some minor confusion when the symbol really is a common
1435 symbol in some regular object. However, I think it will be
1436 harmless. */
1437
1438 if (newdyn
1439 && newdef
1440 && !newweak
1441 && (sec->flags & SEC_ALLOC) != 0
1442 && (sec->flags & SEC_LOAD) == 0
1443 && sym->st_size > 0
1444 && !newfunc)
1445 newdyncommon = TRUE;
1446 else
1447 newdyncommon = FALSE;
1448
1449 if (olddyn
1450 && olddef
1451 && h->root.type == bfd_link_hash_defined
1452 && h->def_dynamic
1453 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1454 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1455 && h->size > 0
1456 && !oldfunc)
1457 olddyncommon = TRUE;
1458 else
1459 olddyncommon = FALSE;
1460
1461 /* We now know everything about the old and new symbols. We ask the
1462 backend to check if we can merge them. */
1463 if (bed->merge_symbol != NULL)
1464 {
1465 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1466 return FALSE;
1467 sec = *psec;
1468 }
1469
1470 /* If both the old and the new symbols look like common symbols in a
1471 dynamic object, set the size of the symbol to the larger of the
1472 two. */
1473
1474 if (olddyncommon
1475 && newdyncommon
1476 && sym->st_size != h->size)
1477 {
1478 /* Since we think we have two common symbols, issue a multiple
1479 common warning if desired. Note that we only warn if the
1480 size is different. If the size is the same, we simply let
1481 the old symbol override the new one as normally happens with
1482 symbols defined in dynamic objects. */
1483
1484 if (! ((*info->callbacks->multiple_common)
1485 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1486 return FALSE;
1487
1488 if (sym->st_size > h->size)
1489 h->size = sym->st_size;
1490
1491 *size_change_ok = TRUE;
1492 }
1493
1494 /* If we are looking at a dynamic object, and we have found a
1495 definition, we need to see if the symbol was already defined by
1496 some other object. If so, we want to use the existing
1497 definition, and we do not want to report a multiple symbol
1498 definition error; we do this by clobbering *PSEC to be
1499 bfd_und_section_ptr.
1500
1501 We treat a common symbol as a definition if the symbol in the
1502 shared library is a function, since common symbols always
1503 represent variables; this can cause confusion in principle, but
1504 any such confusion would seem to indicate an erroneous program or
1505 shared library. We also permit a common symbol in a regular
1506 object to override a weak symbol in a shared object. A common
1507 symbol in executable also overrides a symbol in a shared object. */
1508
1509 if (newdyn
1510 && newdef
1511 && (olddef
1512 || (h->root.type == bfd_link_hash_common
1513 && (newweak
1514 || newfunc
1515 || (!olddyn && bfd_link_executable (info))))))
1516 {
1517 *override = TRUE;
1518 newdef = FALSE;
1519 newdyncommon = FALSE;
1520
1521 *psec = sec = bfd_und_section_ptr;
1522 *size_change_ok = TRUE;
1523
1524 /* If we get here when the old symbol is a common symbol, then
1525 we are explicitly letting it override a weak symbol or
1526 function in a dynamic object, and we don't want to warn about
1527 a type change. If the old symbol is a defined symbol, a type
1528 change warning may still be appropriate. */
1529
1530 if (h->root.type == bfd_link_hash_common)
1531 *type_change_ok = TRUE;
1532 }
1533
1534 /* Handle the special case of an old common symbol merging with a
1535 new symbol which looks like a common symbol in a shared object.
1536 We change *PSEC and *PVALUE to make the new symbol look like a
1537 common symbol, and let _bfd_generic_link_add_one_symbol do the
1538 right thing. */
1539
1540 if (newdyncommon
1541 && h->root.type == bfd_link_hash_common)
1542 {
1543 *override = TRUE;
1544 newdef = FALSE;
1545 newdyncommon = FALSE;
1546 *pvalue = sym->st_size;
1547 *psec = sec = bed->common_section (oldsec);
1548 *size_change_ok = TRUE;
1549 }
1550
1551 /* Skip weak definitions of symbols that are already defined. */
1552 if (newdef && olddef && newweak)
1553 {
1554 /* Don't skip new non-IR weak syms. */
1555 if (!(oldbfd != NULL
1556 && (oldbfd->flags & BFD_PLUGIN) != 0
1557 && (abfd->flags & BFD_PLUGIN) == 0))
1558 {
1559 newdef = FALSE;
1560 *skip = TRUE;
1561 }
1562
1563 /* Merge st_other. If the symbol already has a dynamic index,
1564 but visibility says it should not be visible, turn it into a
1565 local symbol. */
1566 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1567 if (h->dynindx != -1)
1568 switch (ELF_ST_VISIBILITY (h->other))
1569 {
1570 case STV_INTERNAL:
1571 case STV_HIDDEN:
1572 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1573 break;
1574 }
1575 }
1576
1577 /* If the old symbol is from a dynamic object, and the new symbol is
1578 a definition which is not from a dynamic object, then the new
1579 symbol overrides the old symbol. Symbols from regular files
1580 always take precedence over symbols from dynamic objects, even if
1581 they are defined after the dynamic object in the link.
1582
1583 As above, we again permit a common symbol in a regular object to
1584 override a definition in a shared object if the shared object
1585 symbol is a function or is weak. */
1586
1587 flip = NULL;
1588 if (!newdyn
1589 && (newdef
1590 || (bfd_is_com_section (sec)
1591 && (oldweak || oldfunc)))
1592 && olddyn
1593 && olddef
1594 && h->def_dynamic)
1595 {
1596 /* Change the hash table entry to undefined, and let
1597 _bfd_generic_link_add_one_symbol do the right thing with the
1598 new definition. */
1599
1600 h->root.type = bfd_link_hash_undefined;
1601 h->root.u.undef.abfd = h->root.u.def.section->owner;
1602 *size_change_ok = TRUE;
1603
1604 olddef = FALSE;
1605 olddyncommon = FALSE;
1606
1607 /* We again permit a type change when a common symbol may be
1608 overriding a function. */
1609
1610 if (bfd_is_com_section (sec))
1611 {
1612 if (oldfunc)
1613 {
1614 /* If a common symbol overrides a function, make sure
1615 that it isn't defined dynamically nor has type
1616 function. */
1617 h->def_dynamic = 0;
1618 h->type = STT_NOTYPE;
1619 }
1620 *type_change_ok = TRUE;
1621 }
1622
1623 if (hi->root.type == bfd_link_hash_indirect)
1624 flip = hi;
1625 else
1626 /* This union may have been set to be non-NULL when this symbol
1627 was seen in a dynamic object. We must force the union to be
1628 NULL, so that it is correct for a regular symbol. */
1629 h->verinfo.vertree = NULL;
1630 }
1631
1632 /* Handle the special case of a new common symbol merging with an
1633 old symbol that looks like it might be a common symbol defined in
1634 a shared object. Note that we have already handled the case in
1635 which a new common symbol should simply override the definition
1636 in the shared library. */
1637
1638 if (! newdyn
1639 && bfd_is_com_section (sec)
1640 && olddyncommon)
1641 {
1642 /* It would be best if we could set the hash table entry to a
1643 common symbol, but we don't know what to use for the section
1644 or the alignment. */
1645 if (! ((*info->callbacks->multiple_common)
1646 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1647 return FALSE;
1648
1649 /* If the presumed common symbol in the dynamic object is
1650 larger, pretend that the new symbol has its size. */
1651
1652 if (h->size > *pvalue)
1653 *pvalue = h->size;
1654
1655 /* We need to remember the alignment required by the symbol
1656 in the dynamic object. */
1657 BFD_ASSERT (pold_alignment);
1658 *pold_alignment = h->root.u.def.section->alignment_power;
1659
1660 olddef = FALSE;
1661 olddyncommon = FALSE;
1662
1663 h->root.type = bfd_link_hash_undefined;
1664 h->root.u.undef.abfd = h->root.u.def.section->owner;
1665
1666 *size_change_ok = TRUE;
1667 *type_change_ok = TRUE;
1668
1669 if (hi->root.type == bfd_link_hash_indirect)
1670 flip = hi;
1671 else
1672 h->verinfo.vertree = NULL;
1673 }
1674
1675 if (flip != NULL)
1676 {
1677 /* Handle the case where we had a versioned symbol in a dynamic
1678 library and now find a definition in a normal object. In this
1679 case, we make the versioned symbol point to the normal one. */
1680 flip->root.type = h->root.type;
1681 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1682 h->root.type = bfd_link_hash_indirect;
1683 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1684 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1685 if (h->def_dynamic)
1686 {
1687 h->def_dynamic = 0;
1688 flip->ref_dynamic = 1;
1689 }
1690 }
1691
1692 return TRUE;
1693 }
1694
1695 /* This function is called to create an indirect symbol from the
1696 default for the symbol with the default version if needed. The
1697 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1698 set DYNSYM if the new indirect symbol is dynamic. */
1699
1700 static bfd_boolean
1701 _bfd_elf_add_default_symbol (bfd *abfd,
1702 struct bfd_link_info *info,
1703 struct elf_link_hash_entry *h,
1704 const char *name,
1705 Elf_Internal_Sym *sym,
1706 asection *sec,
1707 bfd_vma value,
1708 bfd **poldbfd,
1709 bfd_boolean *dynsym)
1710 {
1711 bfd_boolean type_change_ok;
1712 bfd_boolean size_change_ok;
1713 bfd_boolean skip;
1714 char *shortname;
1715 struct elf_link_hash_entry *hi;
1716 struct bfd_link_hash_entry *bh;
1717 const struct elf_backend_data *bed;
1718 bfd_boolean collect;
1719 bfd_boolean dynamic;
1720 bfd_boolean override;
1721 char *p;
1722 size_t len, shortlen;
1723 asection *tmp_sec;
1724 bfd_boolean matched;
1725
1726 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1727 return TRUE;
1728
1729 /* If this symbol has a version, and it is the default version, we
1730 create an indirect symbol from the default name to the fully
1731 decorated name. This will cause external references which do not
1732 specify a version to be bound to this version of the symbol. */
1733 p = strchr (name, ELF_VER_CHR);
1734 if (h->versioned == unknown)
1735 {
1736 if (p == NULL)
1737 {
1738 h->versioned = unversioned;
1739 return TRUE;
1740 }
1741 else
1742 {
1743 if (p[1] != ELF_VER_CHR)
1744 {
1745 h->versioned = versioned_hidden;
1746 return TRUE;
1747 }
1748 else
1749 h->versioned = versioned;
1750 }
1751 }
1752 else
1753 {
1754 /* PR ld/19073: We may see an unversioned definition after the
1755 default version. */
1756 if (p == NULL)
1757 return TRUE;
1758 }
1759
1760 bed = get_elf_backend_data (abfd);
1761 collect = bed->collect;
1762 dynamic = (abfd->flags & DYNAMIC) != 0;
1763
1764 shortlen = p - name;
1765 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1766 if (shortname == NULL)
1767 return FALSE;
1768 memcpy (shortname, name, shortlen);
1769 shortname[shortlen] = '\0';
1770
1771 /* We are going to create a new symbol. Merge it with any existing
1772 symbol with this name. For the purposes of the merge, act as
1773 though we were defining the symbol we just defined, although we
1774 actually going to define an indirect symbol. */
1775 type_change_ok = FALSE;
1776 size_change_ok = FALSE;
1777 matched = TRUE;
1778 tmp_sec = sec;
1779 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1780 &hi, poldbfd, NULL, NULL, &skip, &override,
1781 &type_change_ok, &size_change_ok, &matched))
1782 return FALSE;
1783
1784 if (skip)
1785 goto nondefault;
1786
1787 if (! override)
1788 {
1789 /* Add the default symbol if not performing a relocatable link. */
1790 if (! bfd_link_relocatable (info))
1791 {
1792 bh = &hi->root;
1793 if (! (_bfd_generic_link_add_one_symbol
1794 (info, abfd, shortname, BSF_INDIRECT,
1795 bfd_ind_section_ptr,
1796 0, name, FALSE, collect, &bh)))
1797 return FALSE;
1798 hi = (struct elf_link_hash_entry *) bh;
1799 }
1800 }
1801 else
1802 {
1803 /* In this case the symbol named SHORTNAME is overriding the
1804 indirect symbol we want to add. We were planning on making
1805 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1806 is the name without a version. NAME is the fully versioned
1807 name, and it is the default version.
1808
1809 Overriding means that we already saw a definition for the
1810 symbol SHORTNAME in a regular object, and it is overriding
1811 the symbol defined in the dynamic object.
1812
1813 When this happens, we actually want to change NAME, the
1814 symbol we just added, to refer to SHORTNAME. This will cause
1815 references to NAME in the shared object to become references
1816 to SHORTNAME in the regular object. This is what we expect
1817 when we override a function in a shared object: that the
1818 references in the shared object will be mapped to the
1819 definition in the regular object. */
1820
1821 while (hi->root.type == bfd_link_hash_indirect
1822 || hi->root.type == bfd_link_hash_warning)
1823 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1824
1825 h->root.type = bfd_link_hash_indirect;
1826 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1827 if (h->def_dynamic)
1828 {
1829 h->def_dynamic = 0;
1830 hi->ref_dynamic = 1;
1831 if (hi->ref_regular
1832 || hi->def_regular)
1833 {
1834 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1835 return FALSE;
1836 }
1837 }
1838
1839 /* Now set HI to H, so that the following code will set the
1840 other fields correctly. */
1841 hi = h;
1842 }
1843
1844 /* Check if HI is a warning symbol. */
1845 if (hi->root.type == bfd_link_hash_warning)
1846 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1847
1848 /* If there is a duplicate definition somewhere, then HI may not
1849 point to an indirect symbol. We will have reported an error to
1850 the user in that case. */
1851
1852 if (hi->root.type == bfd_link_hash_indirect)
1853 {
1854 struct elf_link_hash_entry *ht;
1855
1856 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1857 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1858
1859 /* A reference to the SHORTNAME symbol from a dynamic library
1860 will be satisfied by the versioned symbol at runtime. In
1861 effect, we have a reference to the versioned symbol. */
1862 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1863 hi->dynamic_def |= ht->dynamic_def;
1864
1865 /* See if the new flags lead us to realize that the symbol must
1866 be dynamic. */
1867 if (! *dynsym)
1868 {
1869 if (! dynamic)
1870 {
1871 if (! bfd_link_executable (info)
1872 || hi->def_dynamic
1873 || hi->ref_dynamic)
1874 *dynsym = TRUE;
1875 }
1876 else
1877 {
1878 if (hi->ref_regular)
1879 *dynsym = TRUE;
1880 }
1881 }
1882 }
1883
1884 /* We also need to define an indirection from the nondefault version
1885 of the symbol. */
1886
1887 nondefault:
1888 len = strlen (name);
1889 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1890 if (shortname == NULL)
1891 return FALSE;
1892 memcpy (shortname, name, shortlen);
1893 memcpy (shortname + shortlen, p + 1, len - shortlen);
1894
1895 /* Once again, merge with any existing symbol. */
1896 type_change_ok = FALSE;
1897 size_change_ok = FALSE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 return TRUE;
1906
1907 if (override)
1908 {
1909 /* Here SHORTNAME is a versioned name, so we don't expect to see
1910 the type of override we do in the case above unless it is
1911 overridden by a versioned definition. */
1912 if (hi->root.type != bfd_link_hash_defined
1913 && hi->root.type != bfd_link_hash_defweak)
1914 (*_bfd_error_handler)
1915 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1916 abfd, shortname);
1917 }
1918 else
1919 {
1920 bh = &hi->root;
1921 if (! (_bfd_generic_link_add_one_symbol
1922 (info, abfd, shortname, BSF_INDIRECT,
1923 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1924 return FALSE;
1925 hi = (struct elf_link_hash_entry *) bh;
1926
1927 /* If there is a duplicate definition somewhere, then HI may not
1928 point to an indirect symbol. We will have reported an error
1929 to the user in that case. */
1930
1931 if (hi->root.type == bfd_link_hash_indirect)
1932 {
1933 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1934 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1935 hi->dynamic_def |= h->dynamic_def;
1936
1937 /* See if the new flags lead us to realize that the symbol
1938 must be dynamic. */
1939 if (! *dynsym)
1940 {
1941 if (! dynamic)
1942 {
1943 if (! bfd_link_executable (info)
1944 || hi->ref_dynamic)
1945 *dynsym = TRUE;
1946 }
1947 else
1948 {
1949 if (hi->ref_regular)
1950 *dynsym = TRUE;
1951 }
1952 }
1953 }
1954 }
1955
1956 return TRUE;
1957 }
1958 \f
1959 /* This routine is used to export all defined symbols into the dynamic
1960 symbol table. It is called via elf_link_hash_traverse. */
1961
1962 static bfd_boolean
1963 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1964 {
1965 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1966
1967 /* Ignore indirect symbols. These are added by the versioning code. */
1968 if (h->root.type == bfd_link_hash_indirect)
1969 return TRUE;
1970
1971 /* Ignore this if we won't export it. */
1972 if (!eif->info->export_dynamic && !h->dynamic)
1973 return TRUE;
1974
1975 if (h->dynindx == -1
1976 && (h->def_regular || h->ref_regular)
1977 && ! bfd_hide_sym_by_version (eif->info->version_info,
1978 h->root.root.string))
1979 {
1980 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1981 {
1982 eif->failed = TRUE;
1983 return FALSE;
1984 }
1985 }
1986
1987 return TRUE;
1988 }
1989 \f
1990 /* Look through the symbols which are defined in other shared
1991 libraries and referenced here. Update the list of version
1992 dependencies. This will be put into the .gnu.version_r section.
1993 This function is called via elf_link_hash_traverse. */
1994
1995 static bfd_boolean
1996 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1997 void *data)
1998 {
1999 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2000 Elf_Internal_Verneed *t;
2001 Elf_Internal_Vernaux *a;
2002 bfd_size_type amt;
2003
2004 /* We only care about symbols defined in shared objects with version
2005 information. */
2006 if (!h->def_dynamic
2007 || h->def_regular
2008 || h->dynindx == -1
2009 || h->verinfo.verdef == NULL
2010 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2011 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2012 return TRUE;
2013
2014 /* See if we already know about this version. */
2015 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2016 t != NULL;
2017 t = t->vn_nextref)
2018 {
2019 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2020 continue;
2021
2022 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2023 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2024 return TRUE;
2025
2026 break;
2027 }
2028
2029 /* This is a new version. Add it to tree we are building. */
2030
2031 if (t == NULL)
2032 {
2033 amt = sizeof *t;
2034 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2035 if (t == NULL)
2036 {
2037 rinfo->failed = TRUE;
2038 return FALSE;
2039 }
2040
2041 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2042 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2043 elf_tdata (rinfo->info->output_bfd)->verref = t;
2044 }
2045
2046 amt = sizeof *a;
2047 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2048 if (a == NULL)
2049 {
2050 rinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
2054 /* Note that we are copying a string pointer here, and testing it
2055 above. If bfd_elf_string_from_elf_section is ever changed to
2056 discard the string data when low in memory, this will have to be
2057 fixed. */
2058 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2059
2060 a->vna_flags = h->verinfo.verdef->vd_flags;
2061 a->vna_nextptr = t->vn_auxptr;
2062
2063 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2064 ++rinfo->vers;
2065
2066 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2067
2068 t->vn_auxptr = a;
2069
2070 return TRUE;
2071 }
2072
2073 /* Figure out appropriate versions for all the symbols. We may not
2074 have the version number script until we have read all of the input
2075 files, so until that point we don't know which symbols should be
2076 local. This function is called via elf_link_hash_traverse. */
2077
2078 static bfd_boolean
2079 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2080 {
2081 struct elf_info_failed *sinfo;
2082 struct bfd_link_info *info;
2083 const struct elf_backend_data *bed;
2084 struct elf_info_failed eif;
2085 char *p;
2086 bfd_size_type amt;
2087
2088 sinfo = (struct elf_info_failed *) data;
2089 info = sinfo->info;
2090
2091 /* Fix the symbol flags. */
2092 eif.failed = FALSE;
2093 eif.info = info;
2094 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2095 {
2096 if (eif.failed)
2097 sinfo->failed = TRUE;
2098 return FALSE;
2099 }
2100
2101 /* We only need version numbers for symbols defined in regular
2102 objects. */
2103 if (!h->def_regular)
2104 return TRUE;
2105
2106 bed = get_elf_backend_data (info->output_bfd);
2107 p = strchr (h->root.root.string, ELF_VER_CHR);
2108 if (p != NULL && h->verinfo.vertree == NULL)
2109 {
2110 struct bfd_elf_version_tree *t;
2111
2112 ++p;
2113 if (*p == ELF_VER_CHR)
2114 ++p;
2115
2116 /* If there is no version string, we can just return out. */
2117 if (*p == '\0')
2118 return TRUE;
2119
2120 /* Look for the version. If we find it, it is no longer weak. */
2121 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2122 {
2123 if (strcmp (t->name, p) == 0)
2124 {
2125 size_t len;
2126 char *alc;
2127 struct bfd_elf_version_expr *d;
2128
2129 len = p - h->root.root.string;
2130 alc = (char *) bfd_malloc (len);
2131 if (alc == NULL)
2132 {
2133 sinfo->failed = TRUE;
2134 return FALSE;
2135 }
2136 memcpy (alc, h->root.root.string, len - 1);
2137 alc[len - 1] = '\0';
2138 if (alc[len - 2] == ELF_VER_CHR)
2139 alc[len - 2] = '\0';
2140
2141 h->verinfo.vertree = t;
2142 t->used = TRUE;
2143 d = NULL;
2144
2145 if (t->globals.list != NULL)
2146 d = (*t->match) (&t->globals, NULL, alc);
2147
2148 /* See if there is anything to force this symbol to
2149 local scope. */
2150 if (d == NULL && t->locals.list != NULL)
2151 {
2152 d = (*t->match) (&t->locals, NULL, alc);
2153 if (d != NULL
2154 && h->dynindx != -1
2155 && ! info->export_dynamic)
2156 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2157 }
2158
2159 free (alc);
2160 break;
2161 }
2162 }
2163
2164 /* If we are building an application, we need to create a
2165 version node for this version. */
2166 if (t == NULL && bfd_link_executable (info))
2167 {
2168 struct bfd_elf_version_tree **pp;
2169 int version_index;
2170
2171 /* If we aren't going to export this symbol, we don't need
2172 to worry about it. */
2173 if (h->dynindx == -1)
2174 return TRUE;
2175
2176 amt = sizeof *t;
2177 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2178 if (t == NULL)
2179 {
2180 sinfo->failed = TRUE;
2181 return FALSE;
2182 }
2183
2184 t->name = p;
2185 t->name_indx = (unsigned int) -1;
2186 t->used = TRUE;
2187
2188 version_index = 1;
2189 /* Don't count anonymous version tag. */
2190 if (sinfo->info->version_info != NULL
2191 && sinfo->info->version_info->vernum == 0)
2192 version_index = 0;
2193 for (pp = &sinfo->info->version_info;
2194 *pp != NULL;
2195 pp = &(*pp)->next)
2196 ++version_index;
2197 t->vernum = version_index;
2198
2199 *pp = t;
2200
2201 h->verinfo.vertree = t;
2202 }
2203 else if (t == NULL)
2204 {
2205 /* We could not find the version for a symbol when
2206 generating a shared archive. Return an error. */
2207 (*_bfd_error_handler)
2208 (_("%B: version node not found for symbol %s"),
2209 info->output_bfd, h->root.root.string);
2210 bfd_set_error (bfd_error_bad_value);
2211 sinfo->failed = TRUE;
2212 return FALSE;
2213 }
2214 }
2215
2216 /* If we don't have a version for this symbol, see if we can find
2217 something. */
2218 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2219 {
2220 bfd_boolean hide;
2221
2222 h->verinfo.vertree
2223 = bfd_find_version_for_sym (sinfo->info->version_info,
2224 h->root.root.string, &hide);
2225 if (h->verinfo.vertree != NULL && hide)
2226 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2227 }
2228
2229 return TRUE;
2230 }
2231 \f
2232 /* Read and swap the relocs from the section indicated by SHDR. This
2233 may be either a REL or a RELA section. The relocations are
2234 translated into RELA relocations and stored in INTERNAL_RELOCS,
2235 which should have already been allocated to contain enough space.
2236 The EXTERNAL_RELOCS are a buffer where the external form of the
2237 relocations should be stored.
2238
2239 Returns FALSE if something goes wrong. */
2240
2241 static bfd_boolean
2242 elf_link_read_relocs_from_section (bfd *abfd,
2243 asection *sec,
2244 Elf_Internal_Shdr *shdr,
2245 void *external_relocs,
2246 Elf_Internal_Rela *internal_relocs)
2247 {
2248 const struct elf_backend_data *bed;
2249 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2250 const bfd_byte *erela;
2251 const bfd_byte *erelaend;
2252 Elf_Internal_Rela *irela;
2253 Elf_Internal_Shdr *symtab_hdr;
2254 size_t nsyms;
2255
2256 /* Position ourselves at the start of the section. */
2257 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2258 return FALSE;
2259
2260 /* Read the relocations. */
2261 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2262 return FALSE;
2263
2264 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2265 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2266
2267 bed = get_elf_backend_data (abfd);
2268
2269 /* Convert the external relocations to the internal format. */
2270 if (shdr->sh_entsize == bed->s->sizeof_rel)
2271 swap_in = bed->s->swap_reloc_in;
2272 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2273 swap_in = bed->s->swap_reloca_in;
2274 else
2275 {
2276 bfd_set_error (bfd_error_wrong_format);
2277 return FALSE;
2278 }
2279
2280 erela = (const bfd_byte *) external_relocs;
2281 erelaend = erela + shdr->sh_size;
2282 irela = internal_relocs;
2283 while (erela < erelaend)
2284 {
2285 bfd_vma r_symndx;
2286
2287 (*swap_in) (abfd, erela, irela);
2288 r_symndx = ELF32_R_SYM (irela->r_info);
2289 if (bed->s->arch_size == 64)
2290 r_symndx >>= 24;
2291 if (nsyms > 0)
2292 {
2293 if ((size_t) r_symndx >= nsyms)
2294 {
2295 (*_bfd_error_handler)
2296 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2297 " for offset 0x%lx in section `%A'"),
2298 abfd, sec,
2299 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2300 bfd_set_error (bfd_error_bad_value);
2301 return FALSE;
2302 }
2303 }
2304 else if (r_symndx != STN_UNDEF)
2305 {
2306 (*_bfd_error_handler)
2307 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2308 " when the object file has no symbol table"),
2309 abfd, sec,
2310 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2311 bfd_set_error (bfd_error_bad_value);
2312 return FALSE;
2313 }
2314 irela += bed->s->int_rels_per_ext_rel;
2315 erela += shdr->sh_entsize;
2316 }
2317
2318 return TRUE;
2319 }
2320
2321 /* Read and swap the relocs for a section O. They may have been
2322 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2323 not NULL, they are used as buffers to read into. They are known to
2324 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2325 the return value is allocated using either malloc or bfd_alloc,
2326 according to the KEEP_MEMORY argument. If O has two relocation
2327 sections (both REL and RELA relocations), then the REL_HDR
2328 relocations will appear first in INTERNAL_RELOCS, followed by the
2329 RELA_HDR relocations. */
2330
2331 Elf_Internal_Rela *
2332 _bfd_elf_link_read_relocs (bfd *abfd,
2333 asection *o,
2334 void *external_relocs,
2335 Elf_Internal_Rela *internal_relocs,
2336 bfd_boolean keep_memory)
2337 {
2338 void *alloc1 = NULL;
2339 Elf_Internal_Rela *alloc2 = NULL;
2340 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2341 struct bfd_elf_section_data *esdo = elf_section_data (o);
2342 Elf_Internal_Rela *internal_rela_relocs;
2343
2344 if (esdo->relocs != NULL)
2345 return esdo->relocs;
2346
2347 if (o->reloc_count == 0)
2348 return NULL;
2349
2350 if (internal_relocs == NULL)
2351 {
2352 bfd_size_type size;
2353
2354 size = o->reloc_count;
2355 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2356 if (keep_memory)
2357 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2358 else
2359 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2360 if (internal_relocs == NULL)
2361 goto error_return;
2362 }
2363
2364 if (external_relocs == NULL)
2365 {
2366 bfd_size_type size = 0;
2367
2368 if (esdo->rel.hdr)
2369 size += esdo->rel.hdr->sh_size;
2370 if (esdo->rela.hdr)
2371 size += esdo->rela.hdr->sh_size;
2372
2373 alloc1 = bfd_malloc (size);
2374 if (alloc1 == NULL)
2375 goto error_return;
2376 external_relocs = alloc1;
2377 }
2378
2379 internal_rela_relocs = internal_relocs;
2380 if (esdo->rel.hdr)
2381 {
2382 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2383 external_relocs,
2384 internal_relocs))
2385 goto error_return;
2386 external_relocs = (((bfd_byte *) external_relocs)
2387 + esdo->rel.hdr->sh_size);
2388 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2389 * bed->s->int_rels_per_ext_rel);
2390 }
2391
2392 if (esdo->rela.hdr
2393 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2394 external_relocs,
2395 internal_rela_relocs)))
2396 goto error_return;
2397
2398 /* Cache the results for next time, if we can. */
2399 if (keep_memory)
2400 esdo->relocs = internal_relocs;
2401
2402 if (alloc1 != NULL)
2403 free (alloc1);
2404
2405 /* Don't free alloc2, since if it was allocated we are passing it
2406 back (under the name of internal_relocs). */
2407
2408 return internal_relocs;
2409
2410 error_return:
2411 if (alloc1 != NULL)
2412 free (alloc1);
2413 if (alloc2 != NULL)
2414 {
2415 if (keep_memory)
2416 bfd_release (abfd, alloc2);
2417 else
2418 free (alloc2);
2419 }
2420 return NULL;
2421 }
2422
2423 /* Compute the size of, and allocate space for, REL_HDR which is the
2424 section header for a section containing relocations for O. */
2425
2426 static bfd_boolean
2427 _bfd_elf_link_size_reloc_section (bfd *abfd,
2428 struct bfd_elf_section_reloc_data *reldata)
2429 {
2430 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2431
2432 /* That allows us to calculate the size of the section. */
2433 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2434
2435 /* The contents field must last into write_object_contents, so we
2436 allocate it with bfd_alloc rather than malloc. Also since we
2437 cannot be sure that the contents will actually be filled in,
2438 we zero the allocated space. */
2439 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2440 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2441 return FALSE;
2442
2443 if (reldata->hashes == NULL && reldata->count)
2444 {
2445 struct elf_link_hash_entry **p;
2446
2447 p = ((struct elf_link_hash_entry **)
2448 bfd_zmalloc (reldata->count * sizeof (*p)));
2449 if (p == NULL)
2450 return FALSE;
2451
2452 reldata->hashes = p;
2453 }
2454
2455 return TRUE;
2456 }
2457
2458 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2459 originated from the section given by INPUT_REL_HDR) to the
2460 OUTPUT_BFD. */
2461
2462 bfd_boolean
2463 _bfd_elf_link_output_relocs (bfd *output_bfd,
2464 asection *input_section,
2465 Elf_Internal_Shdr *input_rel_hdr,
2466 Elf_Internal_Rela *internal_relocs,
2467 struct elf_link_hash_entry **rel_hash
2468 ATTRIBUTE_UNUSED)
2469 {
2470 Elf_Internal_Rela *irela;
2471 Elf_Internal_Rela *irelaend;
2472 bfd_byte *erel;
2473 struct bfd_elf_section_reloc_data *output_reldata;
2474 asection *output_section;
2475 const struct elf_backend_data *bed;
2476 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2477 struct bfd_elf_section_data *esdo;
2478
2479 output_section = input_section->output_section;
2480
2481 bed = get_elf_backend_data (output_bfd);
2482 esdo = elf_section_data (output_section);
2483 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2484 {
2485 output_reldata = &esdo->rel;
2486 swap_out = bed->s->swap_reloc_out;
2487 }
2488 else if (esdo->rela.hdr
2489 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2490 {
2491 output_reldata = &esdo->rela;
2492 swap_out = bed->s->swap_reloca_out;
2493 }
2494 else
2495 {
2496 (*_bfd_error_handler)
2497 (_("%B: relocation size mismatch in %B section %A"),
2498 output_bfd, input_section->owner, input_section);
2499 bfd_set_error (bfd_error_wrong_format);
2500 return FALSE;
2501 }
2502
2503 erel = output_reldata->hdr->contents;
2504 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2505 irela = internal_relocs;
2506 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2507 * bed->s->int_rels_per_ext_rel);
2508 while (irela < irelaend)
2509 {
2510 (*swap_out) (output_bfd, irela, erel);
2511 irela += bed->s->int_rels_per_ext_rel;
2512 erel += input_rel_hdr->sh_entsize;
2513 }
2514
2515 /* Bump the counter, so that we know where to add the next set of
2516 relocations. */
2517 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2518
2519 return TRUE;
2520 }
2521 \f
2522 /* Make weak undefined symbols in PIE dynamic. */
2523
2524 bfd_boolean
2525 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2526 struct elf_link_hash_entry *h)
2527 {
2528 if (bfd_link_pie (info)
2529 && h->dynindx == -1
2530 && h->root.type == bfd_link_hash_undefweak)
2531 return bfd_elf_link_record_dynamic_symbol (info, h);
2532
2533 return TRUE;
2534 }
2535
2536 /* Fix up the flags for a symbol. This handles various cases which
2537 can only be fixed after all the input files are seen. This is
2538 currently called by both adjust_dynamic_symbol and
2539 assign_sym_version, which is unnecessary but perhaps more robust in
2540 the face of future changes. */
2541
2542 static bfd_boolean
2543 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2544 struct elf_info_failed *eif)
2545 {
2546 const struct elf_backend_data *bed;
2547
2548 /* If this symbol was mentioned in a non-ELF file, try to set
2549 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2550 permit a non-ELF file to correctly refer to a symbol defined in
2551 an ELF dynamic object. */
2552 if (h->non_elf)
2553 {
2554 while (h->root.type == bfd_link_hash_indirect)
2555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2556
2557 if (h->root.type != bfd_link_hash_defined
2558 && h->root.type != bfd_link_hash_defweak)
2559 {
2560 h->ref_regular = 1;
2561 h->ref_regular_nonweak = 1;
2562 }
2563 else
2564 {
2565 if (h->root.u.def.section->owner != NULL
2566 && (bfd_get_flavour (h->root.u.def.section->owner)
2567 == bfd_target_elf_flavour))
2568 {
2569 h->ref_regular = 1;
2570 h->ref_regular_nonweak = 1;
2571 }
2572 else
2573 h->def_regular = 1;
2574 }
2575
2576 if (h->dynindx == -1
2577 && (h->def_dynamic
2578 || h->ref_dynamic))
2579 {
2580 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2581 {
2582 eif->failed = TRUE;
2583 return FALSE;
2584 }
2585 }
2586 }
2587 else
2588 {
2589 /* Unfortunately, NON_ELF is only correct if the symbol
2590 was first seen in a non-ELF file. Fortunately, if the symbol
2591 was first seen in an ELF file, we're probably OK unless the
2592 symbol was defined in a non-ELF file. Catch that case here.
2593 FIXME: We're still in trouble if the symbol was first seen in
2594 a dynamic object, and then later in a non-ELF regular object. */
2595 if ((h->root.type == bfd_link_hash_defined
2596 || h->root.type == bfd_link_hash_defweak)
2597 && !h->def_regular
2598 && (h->root.u.def.section->owner != NULL
2599 ? (bfd_get_flavour (h->root.u.def.section->owner)
2600 != bfd_target_elf_flavour)
2601 : (bfd_is_abs_section (h->root.u.def.section)
2602 && !h->def_dynamic)))
2603 h->def_regular = 1;
2604 }
2605
2606 /* Backend specific symbol fixup. */
2607 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2608 if (bed->elf_backend_fixup_symbol
2609 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2610 return FALSE;
2611
2612 /* If this is a final link, and the symbol was defined as a common
2613 symbol in a regular object file, and there was no definition in
2614 any dynamic object, then the linker will have allocated space for
2615 the symbol in a common section but the DEF_REGULAR
2616 flag will not have been set. */
2617 if (h->root.type == bfd_link_hash_defined
2618 && !h->def_regular
2619 && h->ref_regular
2620 && !h->def_dynamic
2621 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2622 h->def_regular = 1;
2623
2624 /* If -Bsymbolic was used (which means to bind references to global
2625 symbols to the definition within the shared object), and this
2626 symbol was defined in a regular object, then it actually doesn't
2627 need a PLT entry. Likewise, if the symbol has non-default
2628 visibility. If the symbol has hidden or internal visibility, we
2629 will force it local. */
2630 if (h->needs_plt
2631 && bfd_link_pic (eif->info)
2632 && is_elf_hash_table (eif->info->hash)
2633 && (SYMBOLIC_BIND (eif->info, h)
2634 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2635 && h->def_regular)
2636 {
2637 bfd_boolean force_local;
2638
2639 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2640 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2641 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2642 }
2643
2644 /* If a weak undefined symbol has non-default visibility, we also
2645 hide it from the dynamic linker. */
2646 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2647 && h->root.type == bfd_link_hash_undefweak)
2648 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2649
2650 /* If this is a weak defined symbol in a dynamic object, and we know
2651 the real definition in the dynamic object, copy interesting flags
2652 over to the real definition. */
2653 if (h->u.weakdef != NULL)
2654 {
2655 /* If the real definition is defined by a regular object file,
2656 don't do anything special. See the longer description in
2657 _bfd_elf_adjust_dynamic_symbol, below. */
2658 if (h->u.weakdef->def_regular)
2659 h->u.weakdef = NULL;
2660 else
2661 {
2662 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2663
2664 while (h->root.type == bfd_link_hash_indirect)
2665 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2666
2667 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2668 || h->root.type == bfd_link_hash_defweak);
2669 BFD_ASSERT (weakdef->def_dynamic);
2670 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2671 || weakdef->root.type == bfd_link_hash_defweak);
2672 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2673 }
2674 }
2675
2676 return TRUE;
2677 }
2678
2679 /* Make the backend pick a good value for a dynamic symbol. This is
2680 called via elf_link_hash_traverse, and also calls itself
2681 recursively. */
2682
2683 static bfd_boolean
2684 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2685 {
2686 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2687 bfd *dynobj;
2688 const struct elf_backend_data *bed;
2689
2690 if (! is_elf_hash_table (eif->info->hash))
2691 return FALSE;
2692
2693 /* Ignore indirect symbols. These are added by the versioning code. */
2694 if (h->root.type == bfd_link_hash_indirect)
2695 return TRUE;
2696
2697 /* Fix the symbol flags. */
2698 if (! _bfd_elf_fix_symbol_flags (h, eif))
2699 return FALSE;
2700
2701 /* If this symbol does not require a PLT entry, and it is not
2702 defined by a dynamic object, or is not referenced by a regular
2703 object, ignore it. We do have to handle a weak defined symbol,
2704 even if no regular object refers to it, if we decided to add it
2705 to the dynamic symbol table. FIXME: Do we normally need to worry
2706 about symbols which are defined by one dynamic object and
2707 referenced by another one? */
2708 if (!h->needs_plt
2709 && h->type != STT_GNU_IFUNC
2710 && (h->def_regular
2711 || !h->def_dynamic
2712 || (!h->ref_regular
2713 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2714 {
2715 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2716 return TRUE;
2717 }
2718
2719 /* If we've already adjusted this symbol, don't do it again. This
2720 can happen via a recursive call. */
2721 if (h->dynamic_adjusted)
2722 return TRUE;
2723
2724 /* Don't look at this symbol again. Note that we must set this
2725 after checking the above conditions, because we may look at a
2726 symbol once, decide not to do anything, and then get called
2727 recursively later after REF_REGULAR is set below. */
2728 h->dynamic_adjusted = 1;
2729
2730 /* If this is a weak definition, and we know a real definition, and
2731 the real symbol is not itself defined by a regular object file,
2732 then get a good value for the real definition. We handle the
2733 real symbol first, for the convenience of the backend routine.
2734
2735 Note that there is a confusing case here. If the real definition
2736 is defined by a regular object file, we don't get the real symbol
2737 from the dynamic object, but we do get the weak symbol. If the
2738 processor backend uses a COPY reloc, then if some routine in the
2739 dynamic object changes the real symbol, we will not see that
2740 change in the corresponding weak symbol. This is the way other
2741 ELF linkers work as well, and seems to be a result of the shared
2742 library model.
2743
2744 I will clarify this issue. Most SVR4 shared libraries define the
2745 variable _timezone and define timezone as a weak synonym. The
2746 tzset call changes _timezone. If you write
2747 extern int timezone;
2748 int _timezone = 5;
2749 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2750 you might expect that, since timezone is a synonym for _timezone,
2751 the same number will print both times. However, if the processor
2752 backend uses a COPY reloc, then actually timezone will be copied
2753 into your process image, and, since you define _timezone
2754 yourself, _timezone will not. Thus timezone and _timezone will
2755 wind up at different memory locations. The tzset call will set
2756 _timezone, leaving timezone unchanged. */
2757
2758 if (h->u.weakdef != NULL)
2759 {
2760 /* If we get to this point, there is an implicit reference to
2761 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2762 h->u.weakdef->ref_regular = 1;
2763
2764 /* Ensure that the backend adjust_dynamic_symbol function sees
2765 H->U.WEAKDEF before H by recursively calling ourselves. */
2766 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2767 return FALSE;
2768 }
2769
2770 /* If a symbol has no type and no size and does not require a PLT
2771 entry, then we are probably about to do the wrong thing here: we
2772 are probably going to create a COPY reloc for an empty object.
2773 This case can arise when a shared object is built with assembly
2774 code, and the assembly code fails to set the symbol type. */
2775 if (h->size == 0
2776 && h->type == STT_NOTYPE
2777 && !h->needs_plt)
2778 (*_bfd_error_handler)
2779 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2780 h->root.root.string);
2781
2782 dynobj = elf_hash_table (eif->info)->dynobj;
2783 bed = get_elf_backend_data (dynobj);
2784
2785 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2786 {
2787 eif->failed = TRUE;
2788 return FALSE;
2789 }
2790
2791 return TRUE;
2792 }
2793
2794 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2795 DYNBSS. */
2796
2797 bfd_boolean
2798 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2799 struct elf_link_hash_entry *h,
2800 asection *dynbss)
2801 {
2802 unsigned int power_of_two;
2803 bfd_vma mask;
2804 asection *sec = h->root.u.def.section;
2805
2806 /* The section aligment of definition is the maximum alignment
2807 requirement of symbols defined in the section. Since we don't
2808 know the symbol alignment requirement, we start with the
2809 maximum alignment and check low bits of the symbol address
2810 for the minimum alignment. */
2811 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2812 mask = ((bfd_vma) 1 << power_of_two) - 1;
2813 while ((h->root.u.def.value & mask) != 0)
2814 {
2815 mask >>= 1;
2816 --power_of_two;
2817 }
2818
2819 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2820 dynbss))
2821 {
2822 /* Adjust the section alignment if needed. */
2823 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2824 power_of_two))
2825 return FALSE;
2826 }
2827
2828 /* We make sure that the symbol will be aligned properly. */
2829 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2830
2831 /* Define the symbol as being at this point in DYNBSS. */
2832 h->root.u.def.section = dynbss;
2833 h->root.u.def.value = dynbss->size;
2834
2835 /* Increment the size of DYNBSS to make room for the symbol. */
2836 dynbss->size += h->size;
2837
2838 /* No error if extern_protected_data is true. */
2839 if (h->protected_def
2840 && (!info->extern_protected_data
2841 || (info->extern_protected_data < 0
2842 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2843 info->callbacks->einfo
2844 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2845 h->root.root.string);
2846
2847 return TRUE;
2848 }
2849
2850 /* Adjust all external symbols pointing into SEC_MERGE sections
2851 to reflect the object merging within the sections. */
2852
2853 static bfd_boolean
2854 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2855 {
2856 asection *sec;
2857
2858 if ((h->root.type == bfd_link_hash_defined
2859 || h->root.type == bfd_link_hash_defweak)
2860 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2861 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2862 {
2863 bfd *output_bfd = (bfd *) data;
2864
2865 h->root.u.def.value =
2866 _bfd_merged_section_offset (output_bfd,
2867 &h->root.u.def.section,
2868 elf_section_data (sec)->sec_info,
2869 h->root.u.def.value);
2870 }
2871
2872 return TRUE;
2873 }
2874
2875 /* Returns false if the symbol referred to by H should be considered
2876 to resolve local to the current module, and true if it should be
2877 considered to bind dynamically. */
2878
2879 bfd_boolean
2880 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2881 struct bfd_link_info *info,
2882 bfd_boolean not_local_protected)
2883 {
2884 bfd_boolean binding_stays_local_p;
2885 const struct elf_backend_data *bed;
2886 struct elf_link_hash_table *hash_table;
2887
2888 if (h == NULL)
2889 return FALSE;
2890
2891 while (h->root.type == bfd_link_hash_indirect
2892 || h->root.type == bfd_link_hash_warning)
2893 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2894
2895 /* If it was forced local, then clearly it's not dynamic. */
2896 if (h->dynindx == -1)
2897 return FALSE;
2898 if (h->forced_local)
2899 return FALSE;
2900
2901 /* Identify the cases where name binding rules say that a
2902 visible symbol resolves locally. */
2903 binding_stays_local_p = (bfd_link_executable (info)
2904 || SYMBOLIC_BIND (info, h));
2905
2906 switch (ELF_ST_VISIBILITY (h->other))
2907 {
2908 case STV_INTERNAL:
2909 case STV_HIDDEN:
2910 return FALSE;
2911
2912 case STV_PROTECTED:
2913 hash_table = elf_hash_table (info);
2914 if (!is_elf_hash_table (hash_table))
2915 return FALSE;
2916
2917 bed = get_elf_backend_data (hash_table->dynobj);
2918
2919 /* Proper resolution for function pointer equality may require
2920 that these symbols perhaps be resolved dynamically, even though
2921 we should be resolving them to the current module. */
2922 if (!not_local_protected || !bed->is_function_type (h->type))
2923 binding_stays_local_p = TRUE;
2924 break;
2925
2926 default:
2927 break;
2928 }
2929
2930 /* If it isn't defined locally, then clearly it's dynamic. */
2931 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2932 return TRUE;
2933
2934 /* Otherwise, the symbol is dynamic if binding rules don't tell
2935 us that it remains local. */
2936 return !binding_stays_local_p;
2937 }
2938
2939 /* Return true if the symbol referred to by H should be considered
2940 to resolve local to the current module, and false otherwise. Differs
2941 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2942 undefined symbols. The two functions are virtually identical except
2943 for the place where forced_local and dynindx == -1 are tested. If
2944 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2945 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2946 the symbol is local only for defined symbols.
2947 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2948 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2949 treatment of undefined weak symbols. For those that do not make
2950 undefined weak symbols dynamic, both functions may return false. */
2951
2952 bfd_boolean
2953 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2954 struct bfd_link_info *info,
2955 bfd_boolean local_protected)
2956 {
2957 const struct elf_backend_data *bed;
2958 struct elf_link_hash_table *hash_table;
2959
2960 /* If it's a local sym, of course we resolve locally. */
2961 if (h == NULL)
2962 return TRUE;
2963
2964 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2965 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2966 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2967 return TRUE;
2968
2969 /* Common symbols that become definitions don't get the DEF_REGULAR
2970 flag set, so test it first, and don't bail out. */
2971 if (ELF_COMMON_DEF_P (h))
2972 /* Do nothing. */;
2973 /* If we don't have a definition in a regular file, then we can't
2974 resolve locally. The sym is either undefined or dynamic. */
2975 else if (!h->def_regular)
2976 return FALSE;
2977
2978 /* Forced local symbols resolve locally. */
2979 if (h->forced_local)
2980 return TRUE;
2981
2982 /* As do non-dynamic symbols. */
2983 if (h->dynindx == -1)
2984 return TRUE;
2985
2986 /* At this point, we know the symbol is defined and dynamic. In an
2987 executable it must resolve locally, likewise when building symbolic
2988 shared libraries. */
2989 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2990 return TRUE;
2991
2992 /* Now deal with defined dynamic symbols in shared libraries. Ones
2993 with default visibility might not resolve locally. */
2994 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2995 return FALSE;
2996
2997 hash_table = elf_hash_table (info);
2998 if (!is_elf_hash_table (hash_table))
2999 return TRUE;
3000
3001 bed = get_elf_backend_data (hash_table->dynobj);
3002
3003 /* If extern_protected_data is false, STV_PROTECTED non-function
3004 symbols are local. */
3005 if ((!info->extern_protected_data
3006 || (info->extern_protected_data < 0
3007 && !bed->extern_protected_data))
3008 && !bed->is_function_type (h->type))
3009 return TRUE;
3010
3011 /* Function pointer equality tests may require that STV_PROTECTED
3012 symbols be treated as dynamic symbols. If the address of a
3013 function not defined in an executable is set to that function's
3014 plt entry in the executable, then the address of the function in
3015 a shared library must also be the plt entry in the executable. */
3016 return local_protected;
3017 }
3018
3019 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3020 aligned. Returns the first TLS output section. */
3021
3022 struct bfd_section *
3023 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3024 {
3025 struct bfd_section *sec, *tls;
3026 unsigned int align = 0;
3027
3028 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3029 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3030 break;
3031 tls = sec;
3032
3033 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3034 if (sec->alignment_power > align)
3035 align = sec->alignment_power;
3036
3037 elf_hash_table (info)->tls_sec = tls;
3038
3039 /* Ensure the alignment of the first section is the largest alignment,
3040 so that the tls segment starts aligned. */
3041 if (tls != NULL)
3042 tls->alignment_power = align;
3043
3044 return tls;
3045 }
3046
3047 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3048 static bfd_boolean
3049 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3050 Elf_Internal_Sym *sym)
3051 {
3052 const struct elf_backend_data *bed;
3053
3054 /* Local symbols do not count, but target specific ones might. */
3055 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3056 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3057 return FALSE;
3058
3059 bed = get_elf_backend_data (abfd);
3060 /* Function symbols do not count. */
3061 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3062 return FALSE;
3063
3064 /* If the section is undefined, then so is the symbol. */
3065 if (sym->st_shndx == SHN_UNDEF)
3066 return FALSE;
3067
3068 /* If the symbol is defined in the common section, then
3069 it is a common definition and so does not count. */
3070 if (bed->common_definition (sym))
3071 return FALSE;
3072
3073 /* If the symbol is in a target specific section then we
3074 must rely upon the backend to tell us what it is. */
3075 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3076 /* FIXME - this function is not coded yet:
3077
3078 return _bfd_is_global_symbol_definition (abfd, sym);
3079
3080 Instead for now assume that the definition is not global,
3081 Even if this is wrong, at least the linker will behave
3082 in the same way that it used to do. */
3083 return FALSE;
3084
3085 return TRUE;
3086 }
3087
3088 /* Search the symbol table of the archive element of the archive ABFD
3089 whose archive map contains a mention of SYMDEF, and determine if
3090 the symbol is defined in this element. */
3091 static bfd_boolean
3092 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3093 {
3094 Elf_Internal_Shdr * hdr;
3095 bfd_size_type symcount;
3096 bfd_size_type extsymcount;
3097 bfd_size_type extsymoff;
3098 Elf_Internal_Sym *isymbuf;
3099 Elf_Internal_Sym *isym;
3100 Elf_Internal_Sym *isymend;
3101 bfd_boolean result;
3102
3103 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3104 if (abfd == NULL)
3105 return FALSE;
3106
3107 /* Return FALSE if the object has been claimed by plugin. */
3108 if (abfd->plugin_format == bfd_plugin_yes)
3109 return FALSE;
3110
3111 if (! bfd_check_format (abfd, bfd_object))
3112 return FALSE;
3113
3114 /* Select the appropriate symbol table. */
3115 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3116 hdr = &elf_tdata (abfd)->symtab_hdr;
3117 else
3118 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3119
3120 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3121
3122 /* The sh_info field of the symtab header tells us where the
3123 external symbols start. We don't care about the local symbols. */
3124 if (elf_bad_symtab (abfd))
3125 {
3126 extsymcount = symcount;
3127 extsymoff = 0;
3128 }
3129 else
3130 {
3131 extsymcount = symcount - hdr->sh_info;
3132 extsymoff = hdr->sh_info;
3133 }
3134
3135 if (extsymcount == 0)
3136 return FALSE;
3137
3138 /* Read in the symbol table. */
3139 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3140 NULL, NULL, NULL);
3141 if (isymbuf == NULL)
3142 return FALSE;
3143
3144 /* Scan the symbol table looking for SYMDEF. */
3145 result = FALSE;
3146 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3147 {
3148 const char *name;
3149
3150 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3151 isym->st_name);
3152 if (name == NULL)
3153 break;
3154
3155 if (strcmp (name, symdef->name) == 0)
3156 {
3157 result = is_global_data_symbol_definition (abfd, isym);
3158 break;
3159 }
3160 }
3161
3162 free (isymbuf);
3163
3164 return result;
3165 }
3166 \f
3167 /* Add an entry to the .dynamic table. */
3168
3169 bfd_boolean
3170 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3171 bfd_vma tag,
3172 bfd_vma val)
3173 {
3174 struct elf_link_hash_table *hash_table;
3175 const struct elf_backend_data *bed;
3176 asection *s;
3177 bfd_size_type newsize;
3178 bfd_byte *newcontents;
3179 Elf_Internal_Dyn dyn;
3180
3181 hash_table = elf_hash_table (info);
3182 if (! is_elf_hash_table (hash_table))
3183 return FALSE;
3184
3185 bed = get_elf_backend_data (hash_table->dynobj);
3186 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3187 BFD_ASSERT (s != NULL);
3188
3189 newsize = s->size + bed->s->sizeof_dyn;
3190 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3191 if (newcontents == NULL)
3192 return FALSE;
3193
3194 dyn.d_tag = tag;
3195 dyn.d_un.d_val = val;
3196 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3197
3198 s->size = newsize;
3199 s->contents = newcontents;
3200
3201 return TRUE;
3202 }
3203
3204 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3205 otherwise just check whether one already exists. Returns -1 on error,
3206 1 if a DT_NEEDED tag already exists, and 0 on success. */
3207
3208 static int
3209 elf_add_dt_needed_tag (bfd *abfd,
3210 struct bfd_link_info *info,
3211 const char *soname,
3212 bfd_boolean do_it)
3213 {
3214 struct elf_link_hash_table *hash_table;
3215 bfd_size_type strindex;
3216
3217 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3218 return -1;
3219
3220 hash_table = elf_hash_table (info);
3221 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3222 if (strindex == (bfd_size_type) -1)
3223 return -1;
3224
3225 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3226 {
3227 asection *sdyn;
3228 const struct elf_backend_data *bed;
3229 bfd_byte *extdyn;
3230
3231 bed = get_elf_backend_data (hash_table->dynobj);
3232 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3233 if (sdyn != NULL)
3234 for (extdyn = sdyn->contents;
3235 extdyn < sdyn->contents + sdyn->size;
3236 extdyn += bed->s->sizeof_dyn)
3237 {
3238 Elf_Internal_Dyn dyn;
3239
3240 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3241 if (dyn.d_tag == DT_NEEDED
3242 && dyn.d_un.d_val == strindex)
3243 {
3244 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3245 return 1;
3246 }
3247 }
3248 }
3249
3250 if (do_it)
3251 {
3252 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3253 return -1;
3254
3255 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3256 return -1;
3257 }
3258 else
3259 /* We were just checking for existence of the tag. */
3260 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3261
3262 return 0;
3263 }
3264
3265 /* Return true if SONAME is on the needed list between NEEDED and STOP
3266 (or the end of list if STOP is NULL), and needed by a library that
3267 will be loaded. */
3268
3269 static bfd_boolean
3270 on_needed_list (const char *soname,
3271 struct bfd_link_needed_list *needed,
3272 struct bfd_link_needed_list *stop)
3273 {
3274 struct bfd_link_needed_list *look;
3275 for (look = needed; look != stop; look = look->next)
3276 if (strcmp (soname, look->name) == 0
3277 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3278 /* If needed by a library that itself is not directly
3279 needed, recursively check whether that library is
3280 indirectly needed. Since we add DT_NEEDED entries to
3281 the end of the list, library dependencies appear after
3282 the library. Therefore search prior to the current
3283 LOOK, preventing possible infinite recursion. */
3284 || on_needed_list (elf_dt_name (look->by), needed, look)))
3285 return TRUE;
3286
3287 return FALSE;
3288 }
3289
3290 /* Sort symbol by value, section, and size. */
3291 static int
3292 elf_sort_symbol (const void *arg1, const void *arg2)
3293 {
3294 const struct elf_link_hash_entry *h1;
3295 const struct elf_link_hash_entry *h2;
3296 bfd_signed_vma vdiff;
3297
3298 h1 = *(const struct elf_link_hash_entry **) arg1;
3299 h2 = *(const struct elf_link_hash_entry **) arg2;
3300 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3301 if (vdiff != 0)
3302 return vdiff > 0 ? 1 : -1;
3303 else
3304 {
3305 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3306 if (sdiff != 0)
3307 return sdiff > 0 ? 1 : -1;
3308 }
3309 vdiff = h1->size - h2->size;
3310 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3311 }
3312
3313 /* This function is used to adjust offsets into .dynstr for
3314 dynamic symbols. This is called via elf_link_hash_traverse. */
3315
3316 static bfd_boolean
3317 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3318 {
3319 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3320
3321 if (h->dynindx != -1)
3322 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3323 return TRUE;
3324 }
3325
3326 /* Assign string offsets in .dynstr, update all structures referencing
3327 them. */
3328
3329 static bfd_boolean
3330 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3331 {
3332 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3333 struct elf_link_local_dynamic_entry *entry;
3334 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3335 bfd *dynobj = hash_table->dynobj;
3336 asection *sdyn;
3337 bfd_size_type size;
3338 const struct elf_backend_data *bed;
3339 bfd_byte *extdyn;
3340
3341 _bfd_elf_strtab_finalize (dynstr);
3342 size = _bfd_elf_strtab_size (dynstr);
3343
3344 bed = get_elf_backend_data (dynobj);
3345 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3346 BFD_ASSERT (sdyn != NULL);
3347
3348 /* Update all .dynamic entries referencing .dynstr strings. */
3349 for (extdyn = sdyn->contents;
3350 extdyn < sdyn->contents + sdyn->size;
3351 extdyn += bed->s->sizeof_dyn)
3352 {
3353 Elf_Internal_Dyn dyn;
3354
3355 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3356 switch (dyn.d_tag)
3357 {
3358 case DT_STRSZ:
3359 dyn.d_un.d_val = size;
3360 break;
3361 case DT_NEEDED:
3362 case DT_SONAME:
3363 case DT_RPATH:
3364 case DT_RUNPATH:
3365 case DT_FILTER:
3366 case DT_AUXILIARY:
3367 case DT_AUDIT:
3368 case DT_DEPAUDIT:
3369 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3370 break;
3371 default:
3372 continue;
3373 }
3374 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3375 }
3376
3377 /* Now update local dynamic symbols. */
3378 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3379 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3380 entry->isym.st_name);
3381
3382 /* And the rest of dynamic symbols. */
3383 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3384
3385 /* Adjust version definitions. */
3386 if (elf_tdata (output_bfd)->cverdefs)
3387 {
3388 asection *s;
3389 bfd_byte *p;
3390 bfd_size_type i;
3391 Elf_Internal_Verdef def;
3392 Elf_Internal_Verdaux defaux;
3393
3394 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3395 p = s->contents;
3396 do
3397 {
3398 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3399 &def);
3400 p += sizeof (Elf_External_Verdef);
3401 if (def.vd_aux != sizeof (Elf_External_Verdef))
3402 continue;
3403 for (i = 0; i < def.vd_cnt; ++i)
3404 {
3405 _bfd_elf_swap_verdaux_in (output_bfd,
3406 (Elf_External_Verdaux *) p, &defaux);
3407 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3408 defaux.vda_name);
3409 _bfd_elf_swap_verdaux_out (output_bfd,
3410 &defaux, (Elf_External_Verdaux *) p);
3411 p += sizeof (Elf_External_Verdaux);
3412 }
3413 }
3414 while (def.vd_next);
3415 }
3416
3417 /* Adjust version references. */
3418 if (elf_tdata (output_bfd)->verref)
3419 {
3420 asection *s;
3421 bfd_byte *p;
3422 bfd_size_type i;
3423 Elf_Internal_Verneed need;
3424 Elf_Internal_Vernaux needaux;
3425
3426 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3427 p = s->contents;
3428 do
3429 {
3430 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3431 &need);
3432 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3433 _bfd_elf_swap_verneed_out (output_bfd, &need,
3434 (Elf_External_Verneed *) p);
3435 p += sizeof (Elf_External_Verneed);
3436 for (i = 0; i < need.vn_cnt; ++i)
3437 {
3438 _bfd_elf_swap_vernaux_in (output_bfd,
3439 (Elf_External_Vernaux *) p, &needaux);
3440 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3441 needaux.vna_name);
3442 _bfd_elf_swap_vernaux_out (output_bfd,
3443 &needaux,
3444 (Elf_External_Vernaux *) p);
3445 p += sizeof (Elf_External_Vernaux);
3446 }
3447 }
3448 while (need.vn_next);
3449 }
3450
3451 return TRUE;
3452 }
3453 \f
3454 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3455 The default is to only match when the INPUT and OUTPUT are exactly
3456 the same target. */
3457
3458 bfd_boolean
3459 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3460 const bfd_target *output)
3461 {
3462 return input == output;
3463 }
3464
3465 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3466 This version is used when different targets for the same architecture
3467 are virtually identical. */
3468
3469 bfd_boolean
3470 _bfd_elf_relocs_compatible (const bfd_target *input,
3471 const bfd_target *output)
3472 {
3473 const struct elf_backend_data *obed, *ibed;
3474
3475 if (input == output)
3476 return TRUE;
3477
3478 ibed = xvec_get_elf_backend_data (input);
3479 obed = xvec_get_elf_backend_data (output);
3480
3481 if (ibed->arch != obed->arch)
3482 return FALSE;
3483
3484 /* If both backends are using this function, deem them compatible. */
3485 return ibed->relocs_compatible == obed->relocs_compatible;
3486 }
3487
3488 /* Make a special call to the linker "notice" function to tell it that
3489 we are about to handle an as-needed lib, or have finished
3490 processing the lib. */
3491
3492 bfd_boolean
3493 _bfd_elf_notice_as_needed (bfd *ibfd,
3494 struct bfd_link_info *info,
3495 enum notice_asneeded_action act)
3496 {
3497 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3498 }
3499
3500 /* Check relocations an ELF object file. */
3501
3502 bfd_boolean
3503 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3504 {
3505 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3506 struct elf_link_hash_table *htab = elf_hash_table (info);
3507
3508 /* If this object is the same format as the output object, and it is
3509 not a shared library, then let the backend look through the
3510 relocs.
3511
3512 This is required to build global offset table entries and to
3513 arrange for dynamic relocs. It is not required for the
3514 particular common case of linking non PIC code, even when linking
3515 against shared libraries, but unfortunately there is no way of
3516 knowing whether an object file has been compiled PIC or not.
3517 Looking through the relocs is not particularly time consuming.
3518 The problem is that we must either (1) keep the relocs in memory,
3519 which causes the linker to require additional runtime memory or
3520 (2) read the relocs twice from the input file, which wastes time.
3521 This would be a good case for using mmap.
3522
3523 I have no idea how to handle linking PIC code into a file of a
3524 different format. It probably can't be done. */
3525 if ((abfd->flags & DYNAMIC) == 0
3526 && is_elf_hash_table (htab)
3527 && bed->check_relocs != NULL
3528 && elf_object_id (abfd) == elf_hash_table_id (htab)
3529 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3530 {
3531 asection *o;
3532
3533 for (o = abfd->sections; o != NULL; o = o->next)
3534 {
3535 Elf_Internal_Rela *internal_relocs;
3536 bfd_boolean ok;
3537
3538 /* Don't check relocations in excluded sections. */
3539 if ((o->flags & SEC_RELOC) == 0
3540 || (o->flags & SEC_EXCLUDE) != 0
3541 || o->reloc_count == 0
3542 || ((info->strip == strip_all || info->strip == strip_debugger)
3543 && (o->flags & SEC_DEBUGGING) != 0)
3544 || bfd_is_abs_section (o->output_section))
3545 continue;
3546
3547 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3548 info->keep_memory);
3549 if (internal_relocs == NULL)
3550 return FALSE;
3551
3552 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3553
3554 if (elf_section_data (o)->relocs != internal_relocs)
3555 free (internal_relocs);
3556
3557 if (! ok)
3558 return FALSE;
3559 }
3560 }
3561
3562 return TRUE;
3563 }
3564
3565 /* Add symbols from an ELF object file to the linker hash table. */
3566
3567 static bfd_boolean
3568 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3569 {
3570 Elf_Internal_Ehdr *ehdr;
3571 Elf_Internal_Shdr *hdr;
3572 bfd_size_type symcount;
3573 bfd_size_type extsymcount;
3574 bfd_size_type extsymoff;
3575 struct elf_link_hash_entry **sym_hash;
3576 bfd_boolean dynamic;
3577 Elf_External_Versym *extversym = NULL;
3578 Elf_External_Versym *ever;
3579 struct elf_link_hash_entry *weaks;
3580 struct elf_link_hash_entry **nondeflt_vers = NULL;
3581 bfd_size_type nondeflt_vers_cnt = 0;
3582 Elf_Internal_Sym *isymbuf = NULL;
3583 Elf_Internal_Sym *isym;
3584 Elf_Internal_Sym *isymend;
3585 const struct elf_backend_data *bed;
3586 bfd_boolean add_needed;
3587 struct elf_link_hash_table *htab;
3588 bfd_size_type amt;
3589 void *alloc_mark = NULL;
3590 struct bfd_hash_entry **old_table = NULL;
3591 unsigned int old_size = 0;
3592 unsigned int old_count = 0;
3593 void *old_tab = NULL;
3594 void *old_ent;
3595 struct bfd_link_hash_entry *old_undefs = NULL;
3596 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3597 long old_dynsymcount = 0;
3598 bfd_size_type old_dynstr_size = 0;
3599 size_t tabsize = 0;
3600 asection *s;
3601 bfd_boolean just_syms;
3602
3603 htab = elf_hash_table (info);
3604 bed = get_elf_backend_data (abfd);
3605
3606 if ((abfd->flags & DYNAMIC) == 0)
3607 dynamic = FALSE;
3608 else
3609 {
3610 dynamic = TRUE;
3611
3612 /* You can't use -r against a dynamic object. Also, there's no
3613 hope of using a dynamic object which does not exactly match
3614 the format of the output file. */
3615 if (bfd_link_relocatable (info)
3616 || !is_elf_hash_table (htab)
3617 || info->output_bfd->xvec != abfd->xvec)
3618 {
3619 if (bfd_link_relocatable (info))
3620 bfd_set_error (bfd_error_invalid_operation);
3621 else
3622 bfd_set_error (bfd_error_wrong_format);
3623 goto error_return;
3624 }
3625 }
3626
3627 ehdr = elf_elfheader (abfd);
3628 if (info->warn_alternate_em
3629 && bed->elf_machine_code != ehdr->e_machine
3630 && ((bed->elf_machine_alt1 != 0
3631 && ehdr->e_machine == bed->elf_machine_alt1)
3632 || (bed->elf_machine_alt2 != 0
3633 && ehdr->e_machine == bed->elf_machine_alt2)))
3634 info->callbacks->einfo
3635 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3636 ehdr->e_machine, abfd, bed->elf_machine_code);
3637
3638 /* As a GNU extension, any input sections which are named
3639 .gnu.warning.SYMBOL are treated as warning symbols for the given
3640 symbol. This differs from .gnu.warning sections, which generate
3641 warnings when they are included in an output file. */
3642 /* PR 12761: Also generate this warning when building shared libraries. */
3643 for (s = abfd->sections; s != NULL; s = s->next)
3644 {
3645 const char *name;
3646
3647 name = bfd_get_section_name (abfd, s);
3648 if (CONST_STRNEQ (name, ".gnu.warning."))
3649 {
3650 char *msg;
3651 bfd_size_type sz;
3652
3653 name += sizeof ".gnu.warning." - 1;
3654
3655 /* If this is a shared object, then look up the symbol
3656 in the hash table. If it is there, and it is already
3657 been defined, then we will not be using the entry
3658 from this shared object, so we don't need to warn.
3659 FIXME: If we see the definition in a regular object
3660 later on, we will warn, but we shouldn't. The only
3661 fix is to keep track of what warnings we are supposed
3662 to emit, and then handle them all at the end of the
3663 link. */
3664 if (dynamic)
3665 {
3666 struct elf_link_hash_entry *h;
3667
3668 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3669
3670 /* FIXME: What about bfd_link_hash_common? */
3671 if (h != NULL
3672 && (h->root.type == bfd_link_hash_defined
3673 || h->root.type == bfd_link_hash_defweak))
3674 continue;
3675 }
3676
3677 sz = s->size;
3678 msg = (char *) bfd_alloc (abfd, sz + 1);
3679 if (msg == NULL)
3680 goto error_return;
3681
3682 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3683 goto error_return;
3684
3685 msg[sz] = '\0';
3686
3687 if (! (_bfd_generic_link_add_one_symbol
3688 (info, abfd, name, BSF_WARNING, s, 0, msg,
3689 FALSE, bed->collect, NULL)))
3690 goto error_return;
3691
3692 if (bfd_link_executable (info))
3693 {
3694 /* Clobber the section size so that the warning does
3695 not get copied into the output file. */
3696 s->size = 0;
3697
3698 /* Also set SEC_EXCLUDE, so that symbols defined in
3699 the warning section don't get copied to the output. */
3700 s->flags |= SEC_EXCLUDE;
3701 }
3702 }
3703 }
3704
3705 just_syms = ((s = abfd->sections) != NULL
3706 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3707
3708 add_needed = TRUE;
3709 if (! dynamic)
3710 {
3711 /* If we are creating a shared library, create all the dynamic
3712 sections immediately. We need to attach them to something,
3713 so we attach them to this BFD, provided it is the right
3714 format and is not from ld --just-symbols. Always create the
3715 dynamic sections for -E/--dynamic-list. FIXME: If there
3716 are no input BFD's of the same format as the output, we can't
3717 make a shared library. */
3718 if (!just_syms
3719 && (bfd_link_pic (info)
3720 || (!bfd_link_relocatable (info)
3721 && (info->export_dynamic || info->dynamic)))
3722 && is_elf_hash_table (htab)
3723 && info->output_bfd->xvec == abfd->xvec
3724 && !htab->dynamic_sections_created)
3725 {
3726 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3727 goto error_return;
3728 }
3729 }
3730 else if (!is_elf_hash_table (htab))
3731 goto error_return;
3732 else
3733 {
3734 const char *soname = NULL;
3735 char *audit = NULL;
3736 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3737 int ret;
3738
3739 /* ld --just-symbols and dynamic objects don't mix very well.
3740 ld shouldn't allow it. */
3741 if (just_syms)
3742 abort ();
3743
3744 /* If this dynamic lib was specified on the command line with
3745 --as-needed in effect, then we don't want to add a DT_NEEDED
3746 tag unless the lib is actually used. Similary for libs brought
3747 in by another lib's DT_NEEDED. When --no-add-needed is used
3748 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3749 any dynamic library in DT_NEEDED tags in the dynamic lib at
3750 all. */
3751 add_needed = (elf_dyn_lib_class (abfd)
3752 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3753 | DYN_NO_NEEDED)) == 0;
3754
3755 s = bfd_get_section_by_name (abfd, ".dynamic");
3756 if (s != NULL)
3757 {
3758 bfd_byte *dynbuf;
3759 bfd_byte *extdyn;
3760 unsigned int elfsec;
3761 unsigned long shlink;
3762
3763 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3764 {
3765 error_free_dyn:
3766 free (dynbuf);
3767 goto error_return;
3768 }
3769
3770 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3771 if (elfsec == SHN_BAD)
3772 goto error_free_dyn;
3773 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3774
3775 for (extdyn = dynbuf;
3776 extdyn < dynbuf + s->size;
3777 extdyn += bed->s->sizeof_dyn)
3778 {
3779 Elf_Internal_Dyn dyn;
3780
3781 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3782 if (dyn.d_tag == DT_SONAME)
3783 {
3784 unsigned int tagv = dyn.d_un.d_val;
3785 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3786 if (soname == NULL)
3787 goto error_free_dyn;
3788 }
3789 if (dyn.d_tag == DT_NEEDED)
3790 {
3791 struct bfd_link_needed_list *n, **pn;
3792 char *fnm, *anm;
3793 unsigned int tagv = dyn.d_un.d_val;
3794
3795 amt = sizeof (struct bfd_link_needed_list);
3796 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3797 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3798 if (n == NULL || fnm == NULL)
3799 goto error_free_dyn;
3800 amt = strlen (fnm) + 1;
3801 anm = (char *) bfd_alloc (abfd, amt);
3802 if (anm == NULL)
3803 goto error_free_dyn;
3804 memcpy (anm, fnm, amt);
3805 n->name = anm;
3806 n->by = abfd;
3807 n->next = NULL;
3808 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3809 ;
3810 *pn = n;
3811 }
3812 if (dyn.d_tag == DT_RUNPATH)
3813 {
3814 struct bfd_link_needed_list *n, **pn;
3815 char *fnm, *anm;
3816 unsigned int tagv = dyn.d_un.d_val;
3817
3818 amt = sizeof (struct bfd_link_needed_list);
3819 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3820 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3821 if (n == NULL || fnm == NULL)
3822 goto error_free_dyn;
3823 amt = strlen (fnm) + 1;
3824 anm = (char *) bfd_alloc (abfd, amt);
3825 if (anm == NULL)
3826 goto error_free_dyn;
3827 memcpy (anm, fnm, amt);
3828 n->name = anm;
3829 n->by = abfd;
3830 n->next = NULL;
3831 for (pn = & runpath;
3832 *pn != NULL;
3833 pn = &(*pn)->next)
3834 ;
3835 *pn = n;
3836 }
3837 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3838 if (!runpath && dyn.d_tag == DT_RPATH)
3839 {
3840 struct bfd_link_needed_list *n, **pn;
3841 char *fnm, *anm;
3842 unsigned int tagv = dyn.d_un.d_val;
3843
3844 amt = sizeof (struct bfd_link_needed_list);
3845 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3846 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3847 if (n == NULL || fnm == NULL)
3848 goto error_free_dyn;
3849 amt = strlen (fnm) + 1;
3850 anm = (char *) bfd_alloc (abfd, amt);
3851 if (anm == NULL)
3852 goto error_free_dyn;
3853 memcpy (anm, fnm, amt);
3854 n->name = anm;
3855 n->by = abfd;
3856 n->next = NULL;
3857 for (pn = & rpath;
3858 *pn != NULL;
3859 pn = &(*pn)->next)
3860 ;
3861 *pn = n;
3862 }
3863 if (dyn.d_tag == DT_AUDIT)
3864 {
3865 unsigned int tagv = dyn.d_un.d_val;
3866 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3867 }
3868 }
3869
3870 free (dynbuf);
3871 }
3872
3873 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3874 frees all more recently bfd_alloc'd blocks as well. */
3875 if (runpath)
3876 rpath = runpath;
3877
3878 if (rpath)
3879 {
3880 struct bfd_link_needed_list **pn;
3881 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3882 ;
3883 *pn = rpath;
3884 }
3885
3886 /* We do not want to include any of the sections in a dynamic
3887 object in the output file. We hack by simply clobbering the
3888 list of sections in the BFD. This could be handled more
3889 cleanly by, say, a new section flag; the existing
3890 SEC_NEVER_LOAD flag is not the one we want, because that one
3891 still implies that the section takes up space in the output
3892 file. */
3893 bfd_section_list_clear (abfd);
3894
3895 /* Find the name to use in a DT_NEEDED entry that refers to this
3896 object. If the object has a DT_SONAME entry, we use it.
3897 Otherwise, if the generic linker stuck something in
3898 elf_dt_name, we use that. Otherwise, we just use the file
3899 name. */
3900 if (soname == NULL || *soname == '\0')
3901 {
3902 soname = elf_dt_name (abfd);
3903 if (soname == NULL || *soname == '\0')
3904 soname = bfd_get_filename (abfd);
3905 }
3906
3907 /* Save the SONAME because sometimes the linker emulation code
3908 will need to know it. */
3909 elf_dt_name (abfd) = soname;
3910
3911 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3912 if (ret < 0)
3913 goto error_return;
3914
3915 /* If we have already included this dynamic object in the
3916 link, just ignore it. There is no reason to include a
3917 particular dynamic object more than once. */
3918 if (ret > 0)
3919 return TRUE;
3920
3921 /* Save the DT_AUDIT entry for the linker emulation code. */
3922 elf_dt_audit (abfd) = audit;
3923 }
3924
3925 /* If this is a dynamic object, we always link against the .dynsym
3926 symbol table, not the .symtab symbol table. The dynamic linker
3927 will only see the .dynsym symbol table, so there is no reason to
3928 look at .symtab for a dynamic object. */
3929
3930 if (! dynamic || elf_dynsymtab (abfd) == 0)
3931 hdr = &elf_tdata (abfd)->symtab_hdr;
3932 else
3933 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3934
3935 symcount = hdr->sh_size / bed->s->sizeof_sym;
3936
3937 /* The sh_info field of the symtab header tells us where the
3938 external symbols start. We don't care about the local symbols at
3939 this point. */
3940 if (elf_bad_symtab (abfd))
3941 {
3942 extsymcount = symcount;
3943 extsymoff = 0;
3944 }
3945 else
3946 {
3947 extsymcount = symcount - hdr->sh_info;
3948 extsymoff = hdr->sh_info;
3949 }
3950
3951 sym_hash = elf_sym_hashes (abfd);
3952 if (extsymcount != 0)
3953 {
3954 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3955 NULL, NULL, NULL);
3956 if (isymbuf == NULL)
3957 goto error_return;
3958
3959 if (sym_hash == NULL)
3960 {
3961 /* We store a pointer to the hash table entry for each
3962 external symbol. */
3963 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3964 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3965 if (sym_hash == NULL)
3966 goto error_free_sym;
3967 elf_sym_hashes (abfd) = sym_hash;
3968 }
3969 }
3970
3971 if (dynamic)
3972 {
3973 /* Read in any version definitions. */
3974 if (!_bfd_elf_slurp_version_tables (abfd,
3975 info->default_imported_symver))
3976 goto error_free_sym;
3977
3978 /* Read in the symbol versions, but don't bother to convert them
3979 to internal format. */
3980 if (elf_dynversym (abfd) != 0)
3981 {
3982 Elf_Internal_Shdr *versymhdr;
3983
3984 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3985 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3986 if (extversym == NULL)
3987 goto error_free_sym;
3988 amt = versymhdr->sh_size;
3989 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3990 || bfd_bread (extversym, amt, abfd) != amt)
3991 goto error_free_vers;
3992 }
3993 }
3994
3995 /* If we are loading an as-needed shared lib, save the symbol table
3996 state before we start adding symbols. If the lib turns out
3997 to be unneeded, restore the state. */
3998 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3999 {
4000 unsigned int i;
4001 size_t entsize;
4002
4003 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4004 {
4005 struct bfd_hash_entry *p;
4006 struct elf_link_hash_entry *h;
4007
4008 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4009 {
4010 h = (struct elf_link_hash_entry *) p;
4011 entsize += htab->root.table.entsize;
4012 if (h->root.type == bfd_link_hash_warning)
4013 entsize += htab->root.table.entsize;
4014 }
4015 }
4016
4017 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4018 old_tab = bfd_malloc (tabsize + entsize);
4019 if (old_tab == NULL)
4020 goto error_free_vers;
4021
4022 /* Remember the current objalloc pointer, so that all mem for
4023 symbols added can later be reclaimed. */
4024 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4025 if (alloc_mark == NULL)
4026 goto error_free_vers;
4027
4028 /* Make a special call to the linker "notice" function to
4029 tell it that we are about to handle an as-needed lib. */
4030 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4031 goto error_free_vers;
4032
4033 /* Clone the symbol table. Remember some pointers into the
4034 symbol table, and dynamic symbol count. */
4035 old_ent = (char *) old_tab + tabsize;
4036 memcpy (old_tab, htab->root.table.table, tabsize);
4037 old_undefs = htab->root.undefs;
4038 old_undefs_tail = htab->root.undefs_tail;
4039 old_table = htab->root.table.table;
4040 old_size = htab->root.table.size;
4041 old_count = htab->root.table.count;
4042 old_dynsymcount = htab->dynsymcount;
4043 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
4044
4045 for (i = 0; i < htab->root.table.size; i++)
4046 {
4047 struct bfd_hash_entry *p;
4048 struct elf_link_hash_entry *h;
4049
4050 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4051 {
4052 memcpy (old_ent, p, htab->root.table.entsize);
4053 old_ent = (char *) old_ent + htab->root.table.entsize;
4054 h = (struct elf_link_hash_entry *) p;
4055 if (h->root.type == bfd_link_hash_warning)
4056 {
4057 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4058 old_ent = (char *) old_ent + htab->root.table.entsize;
4059 }
4060 }
4061 }
4062 }
4063
4064 weaks = NULL;
4065 ever = extversym != NULL ? extversym + extsymoff : NULL;
4066 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4067 isym < isymend;
4068 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4069 {
4070 int bind;
4071 bfd_vma value;
4072 asection *sec, *new_sec;
4073 flagword flags;
4074 const char *name;
4075 struct elf_link_hash_entry *h;
4076 struct elf_link_hash_entry *hi;
4077 bfd_boolean definition;
4078 bfd_boolean size_change_ok;
4079 bfd_boolean type_change_ok;
4080 bfd_boolean new_weakdef;
4081 bfd_boolean new_weak;
4082 bfd_boolean old_weak;
4083 bfd_boolean override;
4084 bfd_boolean common;
4085 bfd_boolean discarded;
4086 unsigned int old_alignment;
4087 bfd *old_bfd;
4088 bfd_boolean matched;
4089
4090 override = FALSE;
4091
4092 flags = BSF_NO_FLAGS;
4093 sec = NULL;
4094 value = isym->st_value;
4095 common = bed->common_definition (isym);
4096 discarded = FALSE;
4097
4098 bind = ELF_ST_BIND (isym->st_info);
4099 switch (bind)
4100 {
4101 case STB_LOCAL:
4102 /* This should be impossible, since ELF requires that all
4103 global symbols follow all local symbols, and that sh_info
4104 point to the first global symbol. Unfortunately, Irix 5
4105 screws this up. */
4106 continue;
4107
4108 case STB_GLOBAL:
4109 if (isym->st_shndx != SHN_UNDEF && !common)
4110 flags = BSF_GLOBAL;
4111 break;
4112
4113 case STB_WEAK:
4114 flags = BSF_WEAK;
4115 break;
4116
4117 case STB_GNU_UNIQUE:
4118 flags = BSF_GNU_UNIQUE;
4119 break;
4120
4121 default:
4122 /* Leave it up to the processor backend. */
4123 break;
4124 }
4125
4126 if (isym->st_shndx == SHN_UNDEF)
4127 sec = bfd_und_section_ptr;
4128 else if (isym->st_shndx == SHN_ABS)
4129 sec = bfd_abs_section_ptr;
4130 else if (isym->st_shndx == SHN_COMMON)
4131 {
4132 sec = bfd_com_section_ptr;
4133 /* What ELF calls the size we call the value. What ELF
4134 calls the value we call the alignment. */
4135 value = isym->st_size;
4136 }
4137 else
4138 {
4139 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4140 if (sec == NULL)
4141 sec = bfd_abs_section_ptr;
4142 else if (discarded_section (sec))
4143 {
4144 /* Symbols from discarded section are undefined. We keep
4145 its visibility. */
4146 sec = bfd_und_section_ptr;
4147 discarded = TRUE;
4148 isym->st_shndx = SHN_UNDEF;
4149 }
4150 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4151 value -= sec->vma;
4152 }
4153
4154 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4155 isym->st_name);
4156 if (name == NULL)
4157 goto error_free_vers;
4158
4159 if (isym->st_shndx == SHN_COMMON
4160 && (abfd->flags & BFD_PLUGIN) != 0)
4161 {
4162 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4163
4164 if (xc == NULL)
4165 {
4166 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4167 | SEC_EXCLUDE);
4168 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4169 if (xc == NULL)
4170 goto error_free_vers;
4171 }
4172 sec = xc;
4173 }
4174 else if (isym->st_shndx == SHN_COMMON
4175 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4176 && !bfd_link_relocatable (info))
4177 {
4178 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4179
4180 if (tcomm == NULL)
4181 {
4182 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4183 | SEC_LINKER_CREATED);
4184 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4185 if (tcomm == NULL)
4186 goto error_free_vers;
4187 }
4188 sec = tcomm;
4189 }
4190 else if (bed->elf_add_symbol_hook)
4191 {
4192 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4193 &sec, &value))
4194 goto error_free_vers;
4195
4196 /* The hook function sets the name to NULL if this symbol
4197 should be skipped for some reason. */
4198 if (name == NULL)
4199 continue;
4200 }
4201
4202 /* Sanity check that all possibilities were handled. */
4203 if (sec == NULL)
4204 {
4205 bfd_set_error (bfd_error_bad_value);
4206 goto error_free_vers;
4207 }
4208
4209 /* Silently discard TLS symbols from --just-syms. There's
4210 no way to combine a static TLS block with a new TLS block
4211 for this executable. */
4212 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4213 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4214 continue;
4215
4216 if (bfd_is_und_section (sec)
4217 || bfd_is_com_section (sec))
4218 definition = FALSE;
4219 else
4220 definition = TRUE;
4221
4222 size_change_ok = FALSE;
4223 type_change_ok = bed->type_change_ok;
4224 old_weak = FALSE;
4225 matched = FALSE;
4226 old_alignment = 0;
4227 old_bfd = NULL;
4228 new_sec = sec;
4229
4230 if (is_elf_hash_table (htab))
4231 {
4232 Elf_Internal_Versym iver;
4233 unsigned int vernum = 0;
4234 bfd_boolean skip;
4235
4236 if (ever == NULL)
4237 {
4238 if (info->default_imported_symver)
4239 /* Use the default symbol version created earlier. */
4240 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4241 else
4242 iver.vs_vers = 0;
4243 }
4244 else
4245 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4246
4247 vernum = iver.vs_vers & VERSYM_VERSION;
4248
4249 /* If this is a hidden symbol, or if it is not version
4250 1, we append the version name to the symbol name.
4251 However, we do not modify a non-hidden absolute symbol
4252 if it is not a function, because it might be the version
4253 symbol itself. FIXME: What if it isn't? */
4254 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4255 || (vernum > 1
4256 && (!bfd_is_abs_section (sec)
4257 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4258 {
4259 const char *verstr;
4260 size_t namelen, verlen, newlen;
4261 char *newname, *p;
4262
4263 if (isym->st_shndx != SHN_UNDEF)
4264 {
4265 if (vernum > elf_tdata (abfd)->cverdefs)
4266 verstr = NULL;
4267 else if (vernum > 1)
4268 verstr =
4269 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4270 else
4271 verstr = "";
4272
4273 if (verstr == NULL)
4274 {
4275 (*_bfd_error_handler)
4276 (_("%B: %s: invalid version %u (max %d)"),
4277 abfd, name, vernum,
4278 elf_tdata (abfd)->cverdefs);
4279 bfd_set_error (bfd_error_bad_value);
4280 goto error_free_vers;
4281 }
4282 }
4283 else
4284 {
4285 /* We cannot simply test for the number of
4286 entries in the VERNEED section since the
4287 numbers for the needed versions do not start
4288 at 0. */
4289 Elf_Internal_Verneed *t;
4290
4291 verstr = NULL;
4292 for (t = elf_tdata (abfd)->verref;
4293 t != NULL;
4294 t = t->vn_nextref)
4295 {
4296 Elf_Internal_Vernaux *a;
4297
4298 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4299 {
4300 if (a->vna_other == vernum)
4301 {
4302 verstr = a->vna_nodename;
4303 break;
4304 }
4305 }
4306 if (a != NULL)
4307 break;
4308 }
4309 if (verstr == NULL)
4310 {
4311 (*_bfd_error_handler)
4312 (_("%B: %s: invalid needed version %d"),
4313 abfd, name, vernum);
4314 bfd_set_error (bfd_error_bad_value);
4315 goto error_free_vers;
4316 }
4317 }
4318
4319 namelen = strlen (name);
4320 verlen = strlen (verstr);
4321 newlen = namelen + verlen + 2;
4322 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4323 && isym->st_shndx != SHN_UNDEF)
4324 ++newlen;
4325
4326 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4327 if (newname == NULL)
4328 goto error_free_vers;
4329 memcpy (newname, name, namelen);
4330 p = newname + namelen;
4331 *p++ = ELF_VER_CHR;
4332 /* If this is a defined non-hidden version symbol,
4333 we add another @ to the name. This indicates the
4334 default version of the symbol. */
4335 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4336 && isym->st_shndx != SHN_UNDEF)
4337 *p++ = ELF_VER_CHR;
4338 memcpy (p, verstr, verlen + 1);
4339
4340 name = newname;
4341 }
4342
4343 /* If this symbol has default visibility and the user has
4344 requested we not re-export it, then mark it as hidden. */
4345 if (!bfd_is_und_section (sec)
4346 && !dynamic
4347 && abfd->no_export
4348 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4349 isym->st_other = (STV_HIDDEN
4350 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4351
4352 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4353 sym_hash, &old_bfd, &old_weak,
4354 &old_alignment, &skip, &override,
4355 &type_change_ok, &size_change_ok,
4356 &matched))
4357 goto error_free_vers;
4358
4359 if (skip)
4360 continue;
4361
4362 /* Override a definition only if the new symbol matches the
4363 existing one. */
4364 if (override && matched)
4365 definition = FALSE;
4366
4367 h = *sym_hash;
4368 while (h->root.type == bfd_link_hash_indirect
4369 || h->root.type == bfd_link_hash_warning)
4370 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4371
4372 if (elf_tdata (abfd)->verdef != NULL
4373 && vernum > 1
4374 && definition)
4375 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4376 }
4377
4378 if (! (_bfd_generic_link_add_one_symbol
4379 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4380 (struct bfd_link_hash_entry **) sym_hash)))
4381 goto error_free_vers;
4382
4383 if ((flags & BSF_GNU_UNIQUE)
4384 && (abfd->flags & DYNAMIC) == 0
4385 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4386 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4387
4388 h = *sym_hash;
4389 /* We need to make sure that indirect symbol dynamic flags are
4390 updated. */
4391 hi = h;
4392 while (h->root.type == bfd_link_hash_indirect
4393 || h->root.type == bfd_link_hash_warning)
4394 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4395
4396 /* Setting the index to -3 tells elf_link_output_extsym that
4397 this symbol is defined in a discarded section. */
4398 if (discarded)
4399 h->indx = -3;
4400
4401 *sym_hash = h;
4402
4403 new_weak = (flags & BSF_WEAK) != 0;
4404 new_weakdef = FALSE;
4405 if (dynamic
4406 && definition
4407 && new_weak
4408 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4409 && is_elf_hash_table (htab)
4410 && h->u.weakdef == NULL)
4411 {
4412 /* Keep a list of all weak defined non function symbols from
4413 a dynamic object, using the weakdef field. Later in this
4414 function we will set the weakdef field to the correct
4415 value. We only put non-function symbols from dynamic
4416 objects on this list, because that happens to be the only
4417 time we need to know the normal symbol corresponding to a
4418 weak symbol, and the information is time consuming to
4419 figure out. If the weakdef field is not already NULL,
4420 then this symbol was already defined by some previous
4421 dynamic object, and we will be using that previous
4422 definition anyhow. */
4423
4424 h->u.weakdef = weaks;
4425 weaks = h;
4426 new_weakdef = TRUE;
4427 }
4428
4429 /* Set the alignment of a common symbol. */
4430 if ((common || bfd_is_com_section (sec))
4431 && h->root.type == bfd_link_hash_common)
4432 {
4433 unsigned int align;
4434
4435 if (common)
4436 align = bfd_log2 (isym->st_value);
4437 else
4438 {
4439 /* The new symbol is a common symbol in a shared object.
4440 We need to get the alignment from the section. */
4441 align = new_sec->alignment_power;
4442 }
4443 if (align > old_alignment)
4444 h->root.u.c.p->alignment_power = align;
4445 else
4446 h->root.u.c.p->alignment_power = old_alignment;
4447 }
4448
4449 if (is_elf_hash_table (htab))
4450 {
4451 /* Set a flag in the hash table entry indicating the type of
4452 reference or definition we just found. A dynamic symbol
4453 is one which is referenced or defined by both a regular
4454 object and a shared object. */
4455 bfd_boolean dynsym = FALSE;
4456
4457 /* Plugin symbols aren't normal. Don't set def_regular or
4458 ref_regular for them, or make them dynamic. */
4459 if ((abfd->flags & BFD_PLUGIN) != 0)
4460 ;
4461 else if (! dynamic)
4462 {
4463 if (! definition)
4464 {
4465 h->ref_regular = 1;
4466 if (bind != STB_WEAK)
4467 h->ref_regular_nonweak = 1;
4468 }
4469 else
4470 {
4471 h->def_regular = 1;
4472 if (h->def_dynamic)
4473 {
4474 h->def_dynamic = 0;
4475 h->ref_dynamic = 1;
4476 }
4477 }
4478
4479 /* If the indirect symbol has been forced local, don't
4480 make the real symbol dynamic. */
4481 if ((h == hi || !hi->forced_local)
4482 && (bfd_link_dll (info)
4483 || h->def_dynamic
4484 || h->ref_dynamic))
4485 dynsym = TRUE;
4486 }
4487 else
4488 {
4489 if (! definition)
4490 {
4491 h->ref_dynamic = 1;
4492 hi->ref_dynamic = 1;
4493 }
4494 else
4495 {
4496 h->def_dynamic = 1;
4497 hi->def_dynamic = 1;
4498 }
4499
4500 /* If the indirect symbol has been forced local, don't
4501 make the real symbol dynamic. */
4502 if ((h == hi || !hi->forced_local)
4503 && (h->def_regular
4504 || h->ref_regular
4505 || (h->u.weakdef != NULL
4506 && ! new_weakdef
4507 && h->u.weakdef->dynindx != -1)))
4508 dynsym = TRUE;
4509 }
4510
4511 /* Check to see if we need to add an indirect symbol for
4512 the default name. */
4513 if (definition
4514 || (!override && h->root.type == bfd_link_hash_common))
4515 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4516 sec, value, &old_bfd, &dynsym))
4517 goto error_free_vers;
4518
4519 /* Check the alignment when a common symbol is involved. This
4520 can change when a common symbol is overridden by a normal
4521 definition or a common symbol is ignored due to the old
4522 normal definition. We need to make sure the maximum
4523 alignment is maintained. */
4524 if ((old_alignment || common)
4525 && h->root.type != bfd_link_hash_common)
4526 {
4527 unsigned int common_align;
4528 unsigned int normal_align;
4529 unsigned int symbol_align;
4530 bfd *normal_bfd;
4531 bfd *common_bfd;
4532
4533 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4534 || h->root.type == bfd_link_hash_defweak);
4535
4536 symbol_align = ffs (h->root.u.def.value) - 1;
4537 if (h->root.u.def.section->owner != NULL
4538 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4539 {
4540 normal_align = h->root.u.def.section->alignment_power;
4541 if (normal_align > symbol_align)
4542 normal_align = symbol_align;
4543 }
4544 else
4545 normal_align = symbol_align;
4546
4547 if (old_alignment)
4548 {
4549 common_align = old_alignment;
4550 common_bfd = old_bfd;
4551 normal_bfd = abfd;
4552 }
4553 else
4554 {
4555 common_align = bfd_log2 (isym->st_value);
4556 common_bfd = abfd;
4557 normal_bfd = old_bfd;
4558 }
4559
4560 if (normal_align < common_align)
4561 {
4562 /* PR binutils/2735 */
4563 if (normal_bfd == NULL)
4564 (*_bfd_error_handler)
4565 (_("Warning: alignment %u of common symbol `%s' in %B is"
4566 " greater than the alignment (%u) of its section %A"),
4567 common_bfd, h->root.u.def.section,
4568 1 << common_align, name, 1 << normal_align);
4569 else
4570 (*_bfd_error_handler)
4571 (_("Warning: alignment %u of symbol `%s' in %B"
4572 " is smaller than %u in %B"),
4573 normal_bfd, common_bfd,
4574 1 << normal_align, name, 1 << common_align);
4575 }
4576 }
4577
4578 /* Remember the symbol size if it isn't undefined. */
4579 if (isym->st_size != 0
4580 && isym->st_shndx != SHN_UNDEF
4581 && (definition || h->size == 0))
4582 {
4583 if (h->size != 0
4584 && h->size != isym->st_size
4585 && ! size_change_ok)
4586 (*_bfd_error_handler)
4587 (_("Warning: size of symbol `%s' changed"
4588 " from %lu in %B to %lu in %B"),
4589 old_bfd, abfd,
4590 name, (unsigned long) h->size,
4591 (unsigned long) isym->st_size);
4592
4593 h->size = isym->st_size;
4594 }
4595
4596 /* If this is a common symbol, then we always want H->SIZE
4597 to be the size of the common symbol. The code just above
4598 won't fix the size if a common symbol becomes larger. We
4599 don't warn about a size change here, because that is
4600 covered by --warn-common. Allow changes between different
4601 function types. */
4602 if (h->root.type == bfd_link_hash_common)
4603 h->size = h->root.u.c.size;
4604
4605 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4606 && ((definition && !new_weak)
4607 || (old_weak && h->root.type == bfd_link_hash_common)
4608 || h->type == STT_NOTYPE))
4609 {
4610 unsigned int type = ELF_ST_TYPE (isym->st_info);
4611
4612 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4613 symbol. */
4614 if (type == STT_GNU_IFUNC
4615 && (abfd->flags & DYNAMIC) != 0)
4616 type = STT_FUNC;
4617
4618 if (h->type != type)
4619 {
4620 if (h->type != STT_NOTYPE && ! type_change_ok)
4621 (*_bfd_error_handler)
4622 (_("Warning: type of symbol `%s' changed"
4623 " from %d to %d in %B"),
4624 abfd, name, h->type, type);
4625
4626 h->type = type;
4627 }
4628 }
4629
4630 /* Merge st_other field. */
4631 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4632
4633 /* We don't want to make debug symbol dynamic. */
4634 if (definition
4635 && (sec->flags & SEC_DEBUGGING)
4636 && !bfd_link_relocatable (info))
4637 dynsym = FALSE;
4638
4639 /* Nor should we make plugin symbols dynamic. */
4640 if ((abfd->flags & BFD_PLUGIN) != 0)
4641 dynsym = FALSE;
4642
4643 if (definition)
4644 {
4645 h->target_internal = isym->st_target_internal;
4646 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4647 }
4648
4649 if (definition && !dynamic)
4650 {
4651 char *p = strchr (name, ELF_VER_CHR);
4652 if (p != NULL && p[1] != ELF_VER_CHR)
4653 {
4654 /* Queue non-default versions so that .symver x, x@FOO
4655 aliases can be checked. */
4656 if (!nondeflt_vers)
4657 {
4658 amt = ((isymend - isym + 1)
4659 * sizeof (struct elf_link_hash_entry *));
4660 nondeflt_vers
4661 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4662 if (!nondeflt_vers)
4663 goto error_free_vers;
4664 }
4665 nondeflt_vers[nondeflt_vers_cnt++] = h;
4666 }
4667 }
4668
4669 if (dynsym && h->dynindx == -1)
4670 {
4671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4672 goto error_free_vers;
4673 if (h->u.weakdef != NULL
4674 && ! new_weakdef
4675 && h->u.weakdef->dynindx == -1)
4676 {
4677 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4678 goto error_free_vers;
4679 }
4680 }
4681 else if (h->dynindx != -1)
4682 /* If the symbol already has a dynamic index, but
4683 visibility says it should not be visible, turn it into
4684 a local symbol. */
4685 switch (ELF_ST_VISIBILITY (h->other))
4686 {
4687 case STV_INTERNAL:
4688 case STV_HIDDEN:
4689 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4690 dynsym = FALSE;
4691 break;
4692 }
4693
4694 /* Don't add DT_NEEDED for references from the dummy bfd nor
4695 for unmatched symbol. */
4696 if (!add_needed
4697 && matched
4698 && definition
4699 && ((dynsym
4700 && h->ref_regular_nonweak
4701 && (old_bfd == NULL
4702 || (old_bfd->flags & BFD_PLUGIN) == 0))
4703 || (h->ref_dynamic_nonweak
4704 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4705 && !on_needed_list (elf_dt_name (abfd),
4706 htab->needed, NULL))))
4707 {
4708 int ret;
4709 const char *soname = elf_dt_name (abfd);
4710
4711 info->callbacks->minfo ("%!", soname, old_bfd,
4712 h->root.root.string);
4713
4714 /* A symbol from a library loaded via DT_NEEDED of some
4715 other library is referenced by a regular object.
4716 Add a DT_NEEDED entry for it. Issue an error if
4717 --no-add-needed is used and the reference was not
4718 a weak one. */
4719 if (old_bfd != NULL
4720 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4721 {
4722 (*_bfd_error_handler)
4723 (_("%B: undefined reference to symbol '%s'"),
4724 old_bfd, name);
4725 bfd_set_error (bfd_error_missing_dso);
4726 goto error_free_vers;
4727 }
4728
4729 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4730 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4731
4732 add_needed = TRUE;
4733 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4734 if (ret < 0)
4735 goto error_free_vers;
4736
4737 BFD_ASSERT (ret == 0);
4738 }
4739 }
4740 }
4741
4742 if (extversym != NULL)
4743 {
4744 free (extversym);
4745 extversym = NULL;
4746 }
4747
4748 if (isymbuf != NULL)
4749 {
4750 free (isymbuf);
4751 isymbuf = NULL;
4752 }
4753
4754 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4755 {
4756 unsigned int i;
4757
4758 /* Restore the symbol table. */
4759 old_ent = (char *) old_tab + tabsize;
4760 memset (elf_sym_hashes (abfd), 0,
4761 extsymcount * sizeof (struct elf_link_hash_entry *));
4762 htab->root.table.table = old_table;
4763 htab->root.table.size = old_size;
4764 htab->root.table.count = old_count;
4765 memcpy (htab->root.table.table, old_tab, tabsize);
4766 htab->root.undefs = old_undefs;
4767 htab->root.undefs_tail = old_undefs_tail;
4768 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4769 for (i = 0; i < htab->root.table.size; i++)
4770 {
4771 struct bfd_hash_entry *p;
4772 struct elf_link_hash_entry *h;
4773 bfd_size_type size;
4774 unsigned int alignment_power;
4775
4776 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4777 {
4778 h = (struct elf_link_hash_entry *) p;
4779 if (h->root.type == bfd_link_hash_warning)
4780 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4781 if (h->dynindx >= old_dynsymcount
4782 && h->dynstr_index < old_dynstr_size)
4783 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4784
4785 /* Preserve the maximum alignment and size for common
4786 symbols even if this dynamic lib isn't on DT_NEEDED
4787 since it can still be loaded at run time by another
4788 dynamic lib. */
4789 if (h->root.type == bfd_link_hash_common)
4790 {
4791 size = h->root.u.c.size;
4792 alignment_power = h->root.u.c.p->alignment_power;
4793 }
4794 else
4795 {
4796 size = 0;
4797 alignment_power = 0;
4798 }
4799 memcpy (p, old_ent, htab->root.table.entsize);
4800 old_ent = (char *) old_ent + htab->root.table.entsize;
4801 h = (struct elf_link_hash_entry *) p;
4802 if (h->root.type == bfd_link_hash_warning)
4803 {
4804 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4805 old_ent = (char *) old_ent + htab->root.table.entsize;
4806 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4807 }
4808 if (h->root.type == bfd_link_hash_common)
4809 {
4810 if (size > h->root.u.c.size)
4811 h->root.u.c.size = size;
4812 if (alignment_power > h->root.u.c.p->alignment_power)
4813 h->root.u.c.p->alignment_power = alignment_power;
4814 }
4815 }
4816 }
4817
4818 /* Make a special call to the linker "notice" function to
4819 tell it that symbols added for crefs may need to be removed. */
4820 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4821 goto error_free_vers;
4822
4823 free (old_tab);
4824 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4825 alloc_mark);
4826 if (nondeflt_vers != NULL)
4827 free (nondeflt_vers);
4828 return TRUE;
4829 }
4830
4831 if (old_tab != NULL)
4832 {
4833 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4834 goto error_free_vers;
4835 free (old_tab);
4836 old_tab = NULL;
4837 }
4838
4839 /* Now that all the symbols from this input file are created, if
4840 not performing a relocatable link, handle .symver foo, foo@BAR
4841 such that any relocs against foo become foo@BAR. */
4842 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4843 {
4844 bfd_size_type cnt, symidx;
4845
4846 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4847 {
4848 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4849 char *shortname, *p;
4850
4851 p = strchr (h->root.root.string, ELF_VER_CHR);
4852 if (p == NULL
4853 || (h->root.type != bfd_link_hash_defined
4854 && h->root.type != bfd_link_hash_defweak))
4855 continue;
4856
4857 amt = p - h->root.root.string;
4858 shortname = (char *) bfd_malloc (amt + 1);
4859 if (!shortname)
4860 goto error_free_vers;
4861 memcpy (shortname, h->root.root.string, amt);
4862 shortname[amt] = '\0';
4863
4864 hi = (struct elf_link_hash_entry *)
4865 bfd_link_hash_lookup (&htab->root, shortname,
4866 FALSE, FALSE, FALSE);
4867 if (hi != NULL
4868 && hi->root.type == h->root.type
4869 && hi->root.u.def.value == h->root.u.def.value
4870 && hi->root.u.def.section == h->root.u.def.section)
4871 {
4872 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4873 hi->root.type = bfd_link_hash_indirect;
4874 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4875 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4876 sym_hash = elf_sym_hashes (abfd);
4877 if (sym_hash)
4878 for (symidx = 0; symidx < extsymcount; ++symidx)
4879 if (sym_hash[symidx] == hi)
4880 {
4881 sym_hash[symidx] = h;
4882 break;
4883 }
4884 }
4885 free (shortname);
4886 }
4887 free (nondeflt_vers);
4888 nondeflt_vers = NULL;
4889 }
4890
4891 /* Now set the weakdefs field correctly for all the weak defined
4892 symbols we found. The only way to do this is to search all the
4893 symbols. Since we only need the information for non functions in
4894 dynamic objects, that's the only time we actually put anything on
4895 the list WEAKS. We need this information so that if a regular
4896 object refers to a symbol defined weakly in a dynamic object, the
4897 real symbol in the dynamic object is also put in the dynamic
4898 symbols; we also must arrange for both symbols to point to the
4899 same memory location. We could handle the general case of symbol
4900 aliasing, but a general symbol alias can only be generated in
4901 assembler code, handling it correctly would be very time
4902 consuming, and other ELF linkers don't handle general aliasing
4903 either. */
4904 if (weaks != NULL)
4905 {
4906 struct elf_link_hash_entry **hpp;
4907 struct elf_link_hash_entry **hppend;
4908 struct elf_link_hash_entry **sorted_sym_hash;
4909 struct elf_link_hash_entry *h;
4910 size_t sym_count;
4911
4912 /* Since we have to search the whole symbol list for each weak
4913 defined symbol, search time for N weak defined symbols will be
4914 O(N^2). Binary search will cut it down to O(NlogN). */
4915 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4916 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4917 if (sorted_sym_hash == NULL)
4918 goto error_return;
4919 sym_hash = sorted_sym_hash;
4920 hpp = elf_sym_hashes (abfd);
4921 hppend = hpp + extsymcount;
4922 sym_count = 0;
4923 for (; hpp < hppend; hpp++)
4924 {
4925 h = *hpp;
4926 if (h != NULL
4927 && h->root.type == bfd_link_hash_defined
4928 && !bed->is_function_type (h->type))
4929 {
4930 *sym_hash = h;
4931 sym_hash++;
4932 sym_count++;
4933 }
4934 }
4935
4936 qsort (sorted_sym_hash, sym_count,
4937 sizeof (struct elf_link_hash_entry *),
4938 elf_sort_symbol);
4939
4940 while (weaks != NULL)
4941 {
4942 struct elf_link_hash_entry *hlook;
4943 asection *slook;
4944 bfd_vma vlook;
4945 size_t i, j, idx = 0;
4946
4947 hlook = weaks;
4948 weaks = hlook->u.weakdef;
4949 hlook->u.weakdef = NULL;
4950
4951 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4952 || hlook->root.type == bfd_link_hash_defweak
4953 || hlook->root.type == bfd_link_hash_common
4954 || hlook->root.type == bfd_link_hash_indirect);
4955 slook = hlook->root.u.def.section;
4956 vlook = hlook->root.u.def.value;
4957
4958 i = 0;
4959 j = sym_count;
4960 while (i != j)
4961 {
4962 bfd_signed_vma vdiff;
4963 idx = (i + j) / 2;
4964 h = sorted_sym_hash[idx];
4965 vdiff = vlook - h->root.u.def.value;
4966 if (vdiff < 0)
4967 j = idx;
4968 else if (vdiff > 0)
4969 i = idx + 1;
4970 else
4971 {
4972 int sdiff = slook->id - h->root.u.def.section->id;
4973 if (sdiff < 0)
4974 j = idx;
4975 else if (sdiff > 0)
4976 i = idx + 1;
4977 else
4978 break;
4979 }
4980 }
4981
4982 /* We didn't find a value/section match. */
4983 if (i == j)
4984 continue;
4985
4986 /* With multiple aliases, or when the weak symbol is already
4987 strongly defined, we have multiple matching symbols and
4988 the binary search above may land on any of them. Step
4989 one past the matching symbol(s). */
4990 while (++idx != j)
4991 {
4992 h = sorted_sym_hash[idx];
4993 if (h->root.u.def.section != slook
4994 || h->root.u.def.value != vlook)
4995 break;
4996 }
4997
4998 /* Now look back over the aliases. Since we sorted by size
4999 as well as value and section, we'll choose the one with
5000 the largest size. */
5001 while (idx-- != i)
5002 {
5003 h = sorted_sym_hash[idx];
5004
5005 /* Stop if value or section doesn't match. */
5006 if (h->root.u.def.section != slook
5007 || h->root.u.def.value != vlook)
5008 break;
5009 else if (h != hlook)
5010 {
5011 hlook->u.weakdef = h;
5012
5013 /* If the weak definition is in the list of dynamic
5014 symbols, make sure the real definition is put
5015 there as well. */
5016 if (hlook->dynindx != -1 && h->dynindx == -1)
5017 {
5018 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5019 {
5020 err_free_sym_hash:
5021 free (sorted_sym_hash);
5022 goto error_return;
5023 }
5024 }
5025
5026 /* If the real definition is in the list of dynamic
5027 symbols, make sure the weak definition is put
5028 there as well. If we don't do this, then the
5029 dynamic loader might not merge the entries for the
5030 real definition and the weak definition. */
5031 if (h->dynindx != -1 && hlook->dynindx == -1)
5032 {
5033 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5034 goto err_free_sym_hash;
5035 }
5036 break;
5037 }
5038 }
5039 }
5040
5041 free (sorted_sym_hash);
5042 }
5043
5044 if (bed->check_directives
5045 && !(*bed->check_directives) (abfd, info))
5046 return FALSE;
5047
5048 if (!info->check_relocs_after_open_input
5049 && !_bfd_elf_link_check_relocs (abfd, info))
5050 return FALSE;
5051
5052 /* If this is a non-traditional link, try to optimize the handling
5053 of the .stab/.stabstr sections. */
5054 if (! dynamic
5055 && ! info->traditional_format
5056 && is_elf_hash_table (htab)
5057 && (info->strip != strip_all && info->strip != strip_debugger))
5058 {
5059 asection *stabstr;
5060
5061 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5062 if (stabstr != NULL)
5063 {
5064 bfd_size_type string_offset = 0;
5065 asection *stab;
5066
5067 for (stab = abfd->sections; stab; stab = stab->next)
5068 if (CONST_STRNEQ (stab->name, ".stab")
5069 && (!stab->name[5] ||
5070 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5071 && (stab->flags & SEC_MERGE) == 0
5072 && !bfd_is_abs_section (stab->output_section))
5073 {
5074 struct bfd_elf_section_data *secdata;
5075
5076 secdata = elf_section_data (stab);
5077 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5078 stabstr, &secdata->sec_info,
5079 &string_offset))
5080 goto error_return;
5081 if (secdata->sec_info)
5082 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5083 }
5084 }
5085 }
5086
5087 if (is_elf_hash_table (htab) && add_needed)
5088 {
5089 /* Add this bfd to the loaded list. */
5090 struct elf_link_loaded_list *n;
5091
5092 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5093 if (n == NULL)
5094 goto error_return;
5095 n->abfd = abfd;
5096 n->next = htab->loaded;
5097 htab->loaded = n;
5098 }
5099
5100 return TRUE;
5101
5102 error_free_vers:
5103 if (old_tab != NULL)
5104 free (old_tab);
5105 if (nondeflt_vers != NULL)
5106 free (nondeflt_vers);
5107 if (extversym != NULL)
5108 free (extversym);
5109 error_free_sym:
5110 if (isymbuf != NULL)
5111 free (isymbuf);
5112 error_return:
5113 return FALSE;
5114 }
5115
5116 /* Return the linker hash table entry of a symbol that might be
5117 satisfied by an archive symbol. Return -1 on error. */
5118
5119 struct elf_link_hash_entry *
5120 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5121 struct bfd_link_info *info,
5122 const char *name)
5123 {
5124 struct elf_link_hash_entry *h;
5125 char *p, *copy;
5126 size_t len, first;
5127
5128 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5129 if (h != NULL)
5130 return h;
5131
5132 /* If this is a default version (the name contains @@), look up the
5133 symbol again with only one `@' as well as without the version.
5134 The effect is that references to the symbol with and without the
5135 version will be matched by the default symbol in the archive. */
5136
5137 p = strchr (name, ELF_VER_CHR);
5138 if (p == NULL || p[1] != ELF_VER_CHR)
5139 return h;
5140
5141 /* First check with only one `@'. */
5142 len = strlen (name);
5143 copy = (char *) bfd_alloc (abfd, len);
5144 if (copy == NULL)
5145 return (struct elf_link_hash_entry *) 0 - 1;
5146
5147 first = p - name + 1;
5148 memcpy (copy, name, first);
5149 memcpy (copy + first, name + first + 1, len - first);
5150
5151 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5152 if (h == NULL)
5153 {
5154 /* We also need to check references to the symbol without the
5155 version. */
5156 copy[first - 1] = '\0';
5157 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5158 FALSE, FALSE, TRUE);
5159 }
5160
5161 bfd_release (abfd, copy);
5162 return h;
5163 }
5164
5165 /* Add symbols from an ELF archive file to the linker hash table. We
5166 don't use _bfd_generic_link_add_archive_symbols because we need to
5167 handle versioned symbols.
5168
5169 Fortunately, ELF archive handling is simpler than that done by
5170 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5171 oddities. In ELF, if we find a symbol in the archive map, and the
5172 symbol is currently undefined, we know that we must pull in that
5173 object file.
5174
5175 Unfortunately, we do have to make multiple passes over the symbol
5176 table until nothing further is resolved. */
5177
5178 static bfd_boolean
5179 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5180 {
5181 symindex c;
5182 unsigned char *included = NULL;
5183 carsym *symdefs;
5184 bfd_boolean loop;
5185 bfd_size_type amt;
5186 const struct elf_backend_data *bed;
5187 struct elf_link_hash_entry * (*archive_symbol_lookup)
5188 (bfd *, struct bfd_link_info *, const char *);
5189
5190 if (! bfd_has_map (abfd))
5191 {
5192 /* An empty archive is a special case. */
5193 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5194 return TRUE;
5195 bfd_set_error (bfd_error_no_armap);
5196 return FALSE;
5197 }
5198
5199 /* Keep track of all symbols we know to be already defined, and all
5200 files we know to be already included. This is to speed up the
5201 second and subsequent passes. */
5202 c = bfd_ardata (abfd)->symdef_count;
5203 if (c == 0)
5204 return TRUE;
5205 amt = c;
5206 amt *= sizeof (*included);
5207 included = (unsigned char *) bfd_zmalloc (amt);
5208 if (included == NULL)
5209 return FALSE;
5210
5211 symdefs = bfd_ardata (abfd)->symdefs;
5212 bed = get_elf_backend_data (abfd);
5213 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5214
5215 do
5216 {
5217 file_ptr last;
5218 symindex i;
5219 carsym *symdef;
5220 carsym *symdefend;
5221
5222 loop = FALSE;
5223 last = -1;
5224
5225 symdef = symdefs;
5226 symdefend = symdef + c;
5227 for (i = 0; symdef < symdefend; symdef++, i++)
5228 {
5229 struct elf_link_hash_entry *h;
5230 bfd *element;
5231 struct bfd_link_hash_entry *undefs_tail;
5232 symindex mark;
5233
5234 if (included[i])
5235 continue;
5236 if (symdef->file_offset == last)
5237 {
5238 included[i] = TRUE;
5239 continue;
5240 }
5241
5242 h = archive_symbol_lookup (abfd, info, symdef->name);
5243 if (h == (struct elf_link_hash_entry *) 0 - 1)
5244 goto error_return;
5245
5246 if (h == NULL)
5247 continue;
5248
5249 if (h->root.type == bfd_link_hash_common)
5250 {
5251 /* We currently have a common symbol. The archive map contains
5252 a reference to this symbol, so we may want to include it. We
5253 only want to include it however, if this archive element
5254 contains a definition of the symbol, not just another common
5255 declaration of it.
5256
5257 Unfortunately some archivers (including GNU ar) will put
5258 declarations of common symbols into their archive maps, as
5259 well as real definitions, so we cannot just go by the archive
5260 map alone. Instead we must read in the element's symbol
5261 table and check that to see what kind of symbol definition
5262 this is. */
5263 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5264 continue;
5265 }
5266 else if (h->root.type != bfd_link_hash_undefined)
5267 {
5268 if (h->root.type != bfd_link_hash_undefweak)
5269 /* Symbol must be defined. Don't check it again. */
5270 included[i] = TRUE;
5271 continue;
5272 }
5273
5274 /* We need to include this archive member. */
5275 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5276 if (element == NULL)
5277 goto error_return;
5278
5279 if (! bfd_check_format (element, bfd_object))
5280 goto error_return;
5281
5282 undefs_tail = info->hash->undefs_tail;
5283
5284 if (!(*info->callbacks
5285 ->add_archive_element) (info, element, symdef->name, &element))
5286 goto error_return;
5287 if (!bfd_link_add_symbols (element, info))
5288 goto error_return;
5289
5290 /* If there are any new undefined symbols, we need to make
5291 another pass through the archive in order to see whether
5292 they can be defined. FIXME: This isn't perfect, because
5293 common symbols wind up on undefs_tail and because an
5294 undefined symbol which is defined later on in this pass
5295 does not require another pass. This isn't a bug, but it
5296 does make the code less efficient than it could be. */
5297 if (undefs_tail != info->hash->undefs_tail)
5298 loop = TRUE;
5299
5300 /* Look backward to mark all symbols from this object file
5301 which we have already seen in this pass. */
5302 mark = i;
5303 do
5304 {
5305 included[mark] = TRUE;
5306 if (mark == 0)
5307 break;
5308 --mark;
5309 }
5310 while (symdefs[mark].file_offset == symdef->file_offset);
5311
5312 /* We mark subsequent symbols from this object file as we go
5313 on through the loop. */
5314 last = symdef->file_offset;
5315 }
5316 }
5317 while (loop);
5318
5319 free (included);
5320
5321 return TRUE;
5322
5323 error_return:
5324 if (included != NULL)
5325 free (included);
5326 return FALSE;
5327 }
5328
5329 /* Given an ELF BFD, add symbols to the global hash table as
5330 appropriate. */
5331
5332 bfd_boolean
5333 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5334 {
5335 switch (bfd_get_format (abfd))
5336 {
5337 case bfd_object:
5338 return elf_link_add_object_symbols (abfd, info);
5339 case bfd_archive:
5340 return elf_link_add_archive_symbols (abfd, info);
5341 default:
5342 bfd_set_error (bfd_error_wrong_format);
5343 return FALSE;
5344 }
5345 }
5346 \f
5347 struct hash_codes_info
5348 {
5349 unsigned long *hashcodes;
5350 bfd_boolean error;
5351 };
5352
5353 /* This function will be called though elf_link_hash_traverse to store
5354 all hash value of the exported symbols in an array. */
5355
5356 static bfd_boolean
5357 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5358 {
5359 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5360 const char *name;
5361 unsigned long ha;
5362 char *alc = NULL;
5363
5364 /* Ignore indirect symbols. These are added by the versioning code. */
5365 if (h->dynindx == -1)
5366 return TRUE;
5367
5368 name = h->root.root.string;
5369 if (h->versioned >= versioned)
5370 {
5371 char *p = strchr (name, ELF_VER_CHR);
5372 if (p != NULL)
5373 {
5374 alc = (char *) bfd_malloc (p - name + 1);
5375 if (alc == NULL)
5376 {
5377 inf->error = TRUE;
5378 return FALSE;
5379 }
5380 memcpy (alc, name, p - name);
5381 alc[p - name] = '\0';
5382 name = alc;
5383 }
5384 }
5385
5386 /* Compute the hash value. */
5387 ha = bfd_elf_hash (name);
5388
5389 /* Store the found hash value in the array given as the argument. */
5390 *(inf->hashcodes)++ = ha;
5391
5392 /* And store it in the struct so that we can put it in the hash table
5393 later. */
5394 h->u.elf_hash_value = ha;
5395
5396 if (alc != NULL)
5397 free (alc);
5398
5399 return TRUE;
5400 }
5401
5402 struct collect_gnu_hash_codes
5403 {
5404 bfd *output_bfd;
5405 const struct elf_backend_data *bed;
5406 unsigned long int nsyms;
5407 unsigned long int maskbits;
5408 unsigned long int *hashcodes;
5409 unsigned long int *hashval;
5410 unsigned long int *indx;
5411 unsigned long int *counts;
5412 bfd_vma *bitmask;
5413 bfd_byte *contents;
5414 long int min_dynindx;
5415 unsigned long int bucketcount;
5416 unsigned long int symindx;
5417 long int local_indx;
5418 long int shift1, shift2;
5419 unsigned long int mask;
5420 bfd_boolean error;
5421 };
5422
5423 /* This function will be called though elf_link_hash_traverse to store
5424 all hash value of the exported symbols in an array. */
5425
5426 static bfd_boolean
5427 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5428 {
5429 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5430 const char *name;
5431 unsigned long ha;
5432 char *alc = NULL;
5433
5434 /* Ignore indirect symbols. These are added by the versioning code. */
5435 if (h->dynindx == -1)
5436 return TRUE;
5437
5438 /* Ignore also local symbols and undefined symbols. */
5439 if (! (*s->bed->elf_hash_symbol) (h))
5440 return TRUE;
5441
5442 name = h->root.root.string;
5443 if (h->versioned >= versioned)
5444 {
5445 char *p = strchr (name, ELF_VER_CHR);
5446 if (p != NULL)
5447 {
5448 alc = (char *) bfd_malloc (p - name + 1);
5449 if (alc == NULL)
5450 {
5451 s->error = TRUE;
5452 return FALSE;
5453 }
5454 memcpy (alc, name, p - name);
5455 alc[p - name] = '\0';
5456 name = alc;
5457 }
5458 }
5459
5460 /* Compute the hash value. */
5461 ha = bfd_elf_gnu_hash (name);
5462
5463 /* Store the found hash value in the array for compute_bucket_count,
5464 and also for .dynsym reordering purposes. */
5465 s->hashcodes[s->nsyms] = ha;
5466 s->hashval[h->dynindx] = ha;
5467 ++s->nsyms;
5468 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5469 s->min_dynindx = h->dynindx;
5470
5471 if (alc != NULL)
5472 free (alc);
5473
5474 return TRUE;
5475 }
5476
5477 /* This function will be called though elf_link_hash_traverse to do
5478 final dynaminc symbol renumbering. */
5479
5480 static bfd_boolean
5481 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5482 {
5483 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5484 unsigned long int bucket;
5485 unsigned long int val;
5486
5487 /* Ignore indirect symbols. */
5488 if (h->dynindx == -1)
5489 return TRUE;
5490
5491 /* Ignore also local symbols and undefined symbols. */
5492 if (! (*s->bed->elf_hash_symbol) (h))
5493 {
5494 if (h->dynindx >= s->min_dynindx)
5495 h->dynindx = s->local_indx++;
5496 return TRUE;
5497 }
5498
5499 bucket = s->hashval[h->dynindx] % s->bucketcount;
5500 val = (s->hashval[h->dynindx] >> s->shift1)
5501 & ((s->maskbits >> s->shift1) - 1);
5502 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5503 s->bitmask[val]
5504 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5505 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5506 if (s->counts[bucket] == 1)
5507 /* Last element terminates the chain. */
5508 val |= 1;
5509 bfd_put_32 (s->output_bfd, val,
5510 s->contents + (s->indx[bucket] - s->symindx) * 4);
5511 --s->counts[bucket];
5512 h->dynindx = s->indx[bucket]++;
5513 return TRUE;
5514 }
5515
5516 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5517
5518 bfd_boolean
5519 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5520 {
5521 return !(h->forced_local
5522 || h->root.type == bfd_link_hash_undefined
5523 || h->root.type == bfd_link_hash_undefweak
5524 || ((h->root.type == bfd_link_hash_defined
5525 || h->root.type == bfd_link_hash_defweak)
5526 && h->root.u.def.section->output_section == NULL));
5527 }
5528
5529 /* Array used to determine the number of hash table buckets to use
5530 based on the number of symbols there are. If there are fewer than
5531 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5532 fewer than 37 we use 17 buckets, and so forth. We never use more
5533 than 32771 buckets. */
5534
5535 static const size_t elf_buckets[] =
5536 {
5537 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5538 16411, 32771, 0
5539 };
5540
5541 /* Compute bucket count for hashing table. We do not use a static set
5542 of possible tables sizes anymore. Instead we determine for all
5543 possible reasonable sizes of the table the outcome (i.e., the
5544 number of collisions etc) and choose the best solution. The
5545 weighting functions are not too simple to allow the table to grow
5546 without bounds. Instead one of the weighting factors is the size.
5547 Therefore the result is always a good payoff between few collisions
5548 (= short chain lengths) and table size. */
5549 static size_t
5550 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5551 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5552 unsigned long int nsyms,
5553 int gnu_hash)
5554 {
5555 size_t best_size = 0;
5556 unsigned long int i;
5557
5558 /* We have a problem here. The following code to optimize the table
5559 size requires an integer type with more the 32 bits. If
5560 BFD_HOST_U_64_BIT is set we know about such a type. */
5561 #ifdef BFD_HOST_U_64_BIT
5562 if (info->optimize)
5563 {
5564 size_t minsize;
5565 size_t maxsize;
5566 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5567 bfd *dynobj = elf_hash_table (info)->dynobj;
5568 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5569 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5570 unsigned long int *counts;
5571 bfd_size_type amt;
5572 unsigned int no_improvement_count = 0;
5573
5574 /* Possible optimization parameters: if we have NSYMS symbols we say
5575 that the hashing table must at least have NSYMS/4 and at most
5576 2*NSYMS buckets. */
5577 minsize = nsyms / 4;
5578 if (minsize == 0)
5579 minsize = 1;
5580 best_size = maxsize = nsyms * 2;
5581 if (gnu_hash)
5582 {
5583 if (minsize < 2)
5584 minsize = 2;
5585 if ((best_size & 31) == 0)
5586 ++best_size;
5587 }
5588
5589 /* Create array where we count the collisions in. We must use bfd_malloc
5590 since the size could be large. */
5591 amt = maxsize;
5592 amt *= sizeof (unsigned long int);
5593 counts = (unsigned long int *) bfd_malloc (amt);
5594 if (counts == NULL)
5595 return 0;
5596
5597 /* Compute the "optimal" size for the hash table. The criteria is a
5598 minimal chain length. The minor criteria is (of course) the size
5599 of the table. */
5600 for (i = minsize; i < maxsize; ++i)
5601 {
5602 /* Walk through the array of hashcodes and count the collisions. */
5603 BFD_HOST_U_64_BIT max;
5604 unsigned long int j;
5605 unsigned long int fact;
5606
5607 if (gnu_hash && (i & 31) == 0)
5608 continue;
5609
5610 memset (counts, '\0', i * sizeof (unsigned long int));
5611
5612 /* Determine how often each hash bucket is used. */
5613 for (j = 0; j < nsyms; ++j)
5614 ++counts[hashcodes[j] % i];
5615
5616 /* For the weight function we need some information about the
5617 pagesize on the target. This is information need not be 100%
5618 accurate. Since this information is not available (so far) we
5619 define it here to a reasonable default value. If it is crucial
5620 to have a better value some day simply define this value. */
5621 # ifndef BFD_TARGET_PAGESIZE
5622 # define BFD_TARGET_PAGESIZE (4096)
5623 # endif
5624
5625 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5626 and the chains. */
5627 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5628
5629 # if 1
5630 /* Variant 1: optimize for short chains. We add the squares
5631 of all the chain lengths (which favors many small chain
5632 over a few long chains). */
5633 for (j = 0; j < i; ++j)
5634 max += counts[j] * counts[j];
5635
5636 /* This adds penalties for the overall size of the table. */
5637 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5638 max *= fact * fact;
5639 # else
5640 /* Variant 2: Optimize a lot more for small table. Here we
5641 also add squares of the size but we also add penalties for
5642 empty slots (the +1 term). */
5643 for (j = 0; j < i; ++j)
5644 max += (1 + counts[j]) * (1 + counts[j]);
5645
5646 /* The overall size of the table is considered, but not as
5647 strong as in variant 1, where it is squared. */
5648 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5649 max *= fact;
5650 # endif
5651
5652 /* Compare with current best results. */
5653 if (max < best_chlen)
5654 {
5655 best_chlen = max;
5656 best_size = i;
5657 no_improvement_count = 0;
5658 }
5659 /* PR 11843: Avoid futile long searches for the best bucket size
5660 when there are a large number of symbols. */
5661 else if (++no_improvement_count == 100)
5662 break;
5663 }
5664
5665 free (counts);
5666 }
5667 else
5668 #endif /* defined (BFD_HOST_U_64_BIT) */
5669 {
5670 /* This is the fallback solution if no 64bit type is available or if we
5671 are not supposed to spend much time on optimizations. We select the
5672 bucket count using a fixed set of numbers. */
5673 for (i = 0; elf_buckets[i] != 0; i++)
5674 {
5675 best_size = elf_buckets[i];
5676 if (nsyms < elf_buckets[i + 1])
5677 break;
5678 }
5679 if (gnu_hash && best_size < 2)
5680 best_size = 2;
5681 }
5682
5683 return best_size;
5684 }
5685
5686 /* Size any SHT_GROUP section for ld -r. */
5687
5688 bfd_boolean
5689 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5690 {
5691 bfd *ibfd;
5692
5693 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5694 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5695 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5696 return FALSE;
5697 return TRUE;
5698 }
5699
5700 /* Set a default stack segment size. The value in INFO wins. If it
5701 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5702 undefined it is initialized. */
5703
5704 bfd_boolean
5705 bfd_elf_stack_segment_size (bfd *output_bfd,
5706 struct bfd_link_info *info,
5707 const char *legacy_symbol,
5708 bfd_vma default_size)
5709 {
5710 struct elf_link_hash_entry *h = NULL;
5711
5712 /* Look for legacy symbol. */
5713 if (legacy_symbol)
5714 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5715 FALSE, FALSE, FALSE);
5716 if (h && (h->root.type == bfd_link_hash_defined
5717 || h->root.type == bfd_link_hash_defweak)
5718 && h->def_regular
5719 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5720 {
5721 /* The symbol has no type if specified on the command line. */
5722 h->type = STT_OBJECT;
5723 if (info->stacksize)
5724 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5725 output_bfd, legacy_symbol);
5726 else if (h->root.u.def.section != bfd_abs_section_ptr)
5727 (*_bfd_error_handler) (_("%B: %s not absolute"),
5728 output_bfd, legacy_symbol);
5729 else
5730 info->stacksize = h->root.u.def.value;
5731 }
5732
5733 if (!info->stacksize)
5734 /* If the user didn't set a size, or explicitly inhibit the
5735 size, set it now. */
5736 info->stacksize = default_size;
5737
5738 /* Provide the legacy symbol, if it is referenced. */
5739 if (h && (h->root.type == bfd_link_hash_undefined
5740 || h->root.type == bfd_link_hash_undefweak))
5741 {
5742 struct bfd_link_hash_entry *bh = NULL;
5743
5744 if (!(_bfd_generic_link_add_one_symbol
5745 (info, output_bfd, legacy_symbol,
5746 BSF_GLOBAL, bfd_abs_section_ptr,
5747 info->stacksize >= 0 ? info->stacksize : 0,
5748 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5749 return FALSE;
5750
5751 h = (struct elf_link_hash_entry *) bh;
5752 h->def_regular = 1;
5753 h->type = STT_OBJECT;
5754 }
5755
5756 return TRUE;
5757 }
5758
5759 /* Set up the sizes and contents of the ELF dynamic sections. This is
5760 called by the ELF linker emulation before_allocation routine. We
5761 must set the sizes of the sections before the linker sets the
5762 addresses of the various sections. */
5763
5764 bfd_boolean
5765 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5766 const char *soname,
5767 const char *rpath,
5768 const char *filter_shlib,
5769 const char *audit,
5770 const char *depaudit,
5771 const char * const *auxiliary_filters,
5772 struct bfd_link_info *info,
5773 asection **sinterpptr)
5774 {
5775 bfd_size_type soname_indx;
5776 bfd *dynobj;
5777 const struct elf_backend_data *bed;
5778 struct elf_info_failed asvinfo;
5779
5780 *sinterpptr = NULL;
5781
5782 soname_indx = (bfd_size_type) -1;
5783
5784 if (!is_elf_hash_table (info->hash))
5785 return TRUE;
5786
5787 bed = get_elf_backend_data (output_bfd);
5788
5789 /* Any syms created from now on start with -1 in
5790 got.refcount/offset and plt.refcount/offset. */
5791 elf_hash_table (info)->init_got_refcount
5792 = elf_hash_table (info)->init_got_offset;
5793 elf_hash_table (info)->init_plt_refcount
5794 = elf_hash_table (info)->init_plt_offset;
5795
5796 if (bfd_link_relocatable (info)
5797 && !_bfd_elf_size_group_sections (info))
5798 return FALSE;
5799
5800 /* The backend may have to create some sections regardless of whether
5801 we're dynamic or not. */
5802 if (bed->elf_backend_always_size_sections
5803 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5804 return FALSE;
5805
5806 /* Determine any GNU_STACK segment requirements, after the backend
5807 has had a chance to set a default segment size. */
5808 if (info->execstack)
5809 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5810 else if (info->noexecstack)
5811 elf_stack_flags (output_bfd) = PF_R | PF_W;
5812 else
5813 {
5814 bfd *inputobj;
5815 asection *notesec = NULL;
5816 int exec = 0;
5817
5818 for (inputobj = info->input_bfds;
5819 inputobj;
5820 inputobj = inputobj->link.next)
5821 {
5822 asection *s;
5823
5824 if (inputobj->flags
5825 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5826 continue;
5827 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5828 if (s)
5829 {
5830 if (s->flags & SEC_CODE)
5831 exec = PF_X;
5832 notesec = s;
5833 }
5834 else if (bed->default_execstack)
5835 exec = PF_X;
5836 }
5837 if (notesec || info->stacksize > 0)
5838 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5839 if (notesec && exec && bfd_link_relocatable (info)
5840 && notesec->output_section != bfd_abs_section_ptr)
5841 notesec->output_section->flags |= SEC_CODE;
5842 }
5843
5844 dynobj = elf_hash_table (info)->dynobj;
5845
5846 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5847 {
5848 struct elf_info_failed eif;
5849 struct elf_link_hash_entry *h;
5850 asection *dynstr;
5851 struct bfd_elf_version_tree *t;
5852 struct bfd_elf_version_expr *d;
5853 asection *s;
5854 bfd_boolean all_defined;
5855
5856 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5857 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5858
5859 if (soname != NULL)
5860 {
5861 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5862 soname, TRUE);
5863 if (soname_indx == (bfd_size_type) -1
5864 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5865 return FALSE;
5866 }
5867
5868 if (info->symbolic)
5869 {
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5871 return FALSE;
5872 info->flags |= DF_SYMBOLIC;
5873 }
5874
5875 if (rpath != NULL)
5876 {
5877 bfd_size_type indx;
5878 bfd_vma tag;
5879
5880 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5881 TRUE);
5882 if (indx == (bfd_size_type) -1)
5883 return FALSE;
5884
5885 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5886 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5887 return FALSE;
5888 }
5889
5890 if (filter_shlib != NULL)
5891 {
5892 bfd_size_type indx;
5893
5894 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5895 filter_shlib, TRUE);
5896 if (indx == (bfd_size_type) -1
5897 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5898 return FALSE;
5899 }
5900
5901 if (auxiliary_filters != NULL)
5902 {
5903 const char * const *p;
5904
5905 for (p = auxiliary_filters; *p != NULL; p++)
5906 {
5907 bfd_size_type indx;
5908
5909 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5910 *p, TRUE);
5911 if (indx == (bfd_size_type) -1
5912 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5913 return FALSE;
5914 }
5915 }
5916
5917 if (audit != NULL)
5918 {
5919 bfd_size_type indx;
5920
5921 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5922 TRUE);
5923 if (indx == (bfd_size_type) -1
5924 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5925 return FALSE;
5926 }
5927
5928 if (depaudit != NULL)
5929 {
5930 bfd_size_type indx;
5931
5932 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5933 TRUE);
5934 if (indx == (bfd_size_type) -1
5935 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5936 return FALSE;
5937 }
5938
5939 eif.info = info;
5940 eif.failed = FALSE;
5941
5942 /* If we are supposed to export all symbols into the dynamic symbol
5943 table (this is not the normal case), then do so. */
5944 if (info->export_dynamic
5945 || (bfd_link_executable (info) && info->dynamic))
5946 {
5947 elf_link_hash_traverse (elf_hash_table (info),
5948 _bfd_elf_export_symbol,
5949 &eif);
5950 if (eif.failed)
5951 return FALSE;
5952 }
5953
5954 /* Make all global versions with definition. */
5955 for (t = info->version_info; t != NULL; t = t->next)
5956 for (d = t->globals.list; d != NULL; d = d->next)
5957 if (!d->symver && d->literal)
5958 {
5959 const char *verstr, *name;
5960 size_t namelen, verlen, newlen;
5961 char *newname, *p, leading_char;
5962 struct elf_link_hash_entry *newh;
5963
5964 leading_char = bfd_get_symbol_leading_char (output_bfd);
5965 name = d->pattern;
5966 namelen = strlen (name) + (leading_char != '\0');
5967 verstr = t->name;
5968 verlen = strlen (verstr);
5969 newlen = namelen + verlen + 3;
5970
5971 newname = (char *) bfd_malloc (newlen);
5972 if (newname == NULL)
5973 return FALSE;
5974 newname[0] = leading_char;
5975 memcpy (newname + (leading_char != '\0'), name, namelen);
5976
5977 /* Check the hidden versioned definition. */
5978 p = newname + namelen;
5979 *p++ = ELF_VER_CHR;
5980 memcpy (p, verstr, verlen + 1);
5981 newh = elf_link_hash_lookup (elf_hash_table (info),
5982 newname, FALSE, FALSE,
5983 FALSE);
5984 if (newh == NULL
5985 || (newh->root.type != bfd_link_hash_defined
5986 && newh->root.type != bfd_link_hash_defweak))
5987 {
5988 /* Check the default versioned definition. */
5989 *p++ = ELF_VER_CHR;
5990 memcpy (p, verstr, verlen + 1);
5991 newh = elf_link_hash_lookup (elf_hash_table (info),
5992 newname, FALSE, FALSE,
5993 FALSE);
5994 }
5995 free (newname);
5996
5997 /* Mark this version if there is a definition and it is
5998 not defined in a shared object. */
5999 if (newh != NULL
6000 && !newh->def_dynamic
6001 && (newh->root.type == bfd_link_hash_defined
6002 || newh->root.type == bfd_link_hash_defweak))
6003 d->symver = 1;
6004 }
6005
6006 /* Attach all the symbols to their version information. */
6007 asvinfo.info = info;
6008 asvinfo.failed = FALSE;
6009
6010 elf_link_hash_traverse (elf_hash_table (info),
6011 _bfd_elf_link_assign_sym_version,
6012 &asvinfo);
6013 if (asvinfo.failed)
6014 return FALSE;
6015
6016 if (!info->allow_undefined_version)
6017 {
6018 /* Check if all global versions have a definition. */
6019 all_defined = TRUE;
6020 for (t = info->version_info; t != NULL; t = t->next)
6021 for (d = t->globals.list; d != NULL; d = d->next)
6022 if (d->literal && !d->symver && !d->script)
6023 {
6024 (*_bfd_error_handler)
6025 (_("%s: undefined version: %s"),
6026 d->pattern, t->name);
6027 all_defined = FALSE;
6028 }
6029
6030 if (!all_defined)
6031 {
6032 bfd_set_error (bfd_error_bad_value);
6033 return FALSE;
6034 }
6035 }
6036
6037 /* Find all symbols which were defined in a dynamic object and make
6038 the backend pick a reasonable value for them. */
6039 elf_link_hash_traverse (elf_hash_table (info),
6040 _bfd_elf_adjust_dynamic_symbol,
6041 &eif);
6042 if (eif.failed)
6043 return FALSE;
6044
6045 /* Add some entries to the .dynamic section. We fill in some of the
6046 values later, in bfd_elf_final_link, but we must add the entries
6047 now so that we know the final size of the .dynamic section. */
6048
6049 /* If there are initialization and/or finalization functions to
6050 call then add the corresponding DT_INIT/DT_FINI entries. */
6051 h = (info->init_function
6052 ? elf_link_hash_lookup (elf_hash_table (info),
6053 info->init_function, FALSE,
6054 FALSE, FALSE)
6055 : NULL);
6056 if (h != NULL
6057 && (h->ref_regular
6058 || h->def_regular))
6059 {
6060 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6061 return FALSE;
6062 }
6063 h = (info->fini_function
6064 ? elf_link_hash_lookup (elf_hash_table (info),
6065 info->fini_function, FALSE,
6066 FALSE, FALSE)
6067 : NULL);
6068 if (h != NULL
6069 && (h->ref_regular
6070 || h->def_regular))
6071 {
6072 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6073 return FALSE;
6074 }
6075
6076 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6077 if (s != NULL && s->linker_has_input)
6078 {
6079 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6080 if (! bfd_link_executable (info))
6081 {
6082 bfd *sub;
6083 asection *o;
6084
6085 for (sub = info->input_bfds; sub != NULL;
6086 sub = sub->link.next)
6087 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6088 for (o = sub->sections; o != NULL; o = o->next)
6089 if (elf_section_data (o)->this_hdr.sh_type
6090 == SHT_PREINIT_ARRAY)
6091 {
6092 (*_bfd_error_handler)
6093 (_("%B: .preinit_array section is not allowed in DSO"),
6094 sub);
6095 break;
6096 }
6097
6098 bfd_set_error (bfd_error_nonrepresentable_section);
6099 return FALSE;
6100 }
6101
6102 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6103 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6104 return FALSE;
6105 }
6106 s = bfd_get_section_by_name (output_bfd, ".init_array");
6107 if (s != NULL && s->linker_has_input)
6108 {
6109 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6110 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6111 return FALSE;
6112 }
6113 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6114 if (s != NULL && s->linker_has_input)
6115 {
6116 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6117 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6118 return FALSE;
6119 }
6120
6121 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6122 /* If .dynstr is excluded from the link, we don't want any of
6123 these tags. Strictly, we should be checking each section
6124 individually; This quick check covers for the case where
6125 someone does a /DISCARD/ : { *(*) }. */
6126 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6127 {
6128 bfd_size_type strsize;
6129
6130 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6131 if ((info->emit_hash
6132 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6133 || (info->emit_gnu_hash
6134 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6135 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6136 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6137 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6138 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6139 bed->s->sizeof_sym))
6140 return FALSE;
6141 }
6142 }
6143
6144 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6145 return FALSE;
6146
6147 /* The backend must work out the sizes of all the other dynamic
6148 sections. */
6149 if (dynobj != NULL
6150 && bed->elf_backend_size_dynamic_sections != NULL
6151 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6152 return FALSE;
6153
6154 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6155 {
6156 unsigned long section_sym_count;
6157 struct bfd_elf_version_tree *verdefs;
6158 asection *s;
6159
6160 /* Set up the version definition section. */
6161 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6162 BFD_ASSERT (s != NULL);
6163
6164 /* We may have created additional version definitions if we are
6165 just linking a regular application. */
6166 verdefs = info->version_info;
6167
6168 /* Skip anonymous version tag. */
6169 if (verdefs != NULL && verdefs->vernum == 0)
6170 verdefs = verdefs->next;
6171
6172 if (verdefs == NULL && !info->create_default_symver)
6173 s->flags |= SEC_EXCLUDE;
6174 else
6175 {
6176 unsigned int cdefs;
6177 bfd_size_type size;
6178 struct bfd_elf_version_tree *t;
6179 bfd_byte *p;
6180 Elf_Internal_Verdef def;
6181 Elf_Internal_Verdaux defaux;
6182 struct bfd_link_hash_entry *bh;
6183 struct elf_link_hash_entry *h;
6184 const char *name;
6185
6186 cdefs = 0;
6187 size = 0;
6188
6189 /* Make space for the base version. */
6190 size += sizeof (Elf_External_Verdef);
6191 size += sizeof (Elf_External_Verdaux);
6192 ++cdefs;
6193
6194 /* Make space for the default version. */
6195 if (info->create_default_symver)
6196 {
6197 size += sizeof (Elf_External_Verdef);
6198 ++cdefs;
6199 }
6200
6201 for (t = verdefs; t != NULL; t = t->next)
6202 {
6203 struct bfd_elf_version_deps *n;
6204
6205 /* Don't emit base version twice. */
6206 if (t->vernum == 0)
6207 continue;
6208
6209 size += sizeof (Elf_External_Verdef);
6210 size += sizeof (Elf_External_Verdaux);
6211 ++cdefs;
6212
6213 for (n = t->deps; n != NULL; n = n->next)
6214 size += sizeof (Elf_External_Verdaux);
6215 }
6216
6217 s->size = size;
6218 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6219 if (s->contents == NULL && s->size != 0)
6220 return FALSE;
6221
6222 /* Fill in the version definition section. */
6223
6224 p = s->contents;
6225
6226 def.vd_version = VER_DEF_CURRENT;
6227 def.vd_flags = VER_FLG_BASE;
6228 def.vd_ndx = 1;
6229 def.vd_cnt = 1;
6230 if (info->create_default_symver)
6231 {
6232 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6233 def.vd_next = sizeof (Elf_External_Verdef);
6234 }
6235 else
6236 {
6237 def.vd_aux = sizeof (Elf_External_Verdef);
6238 def.vd_next = (sizeof (Elf_External_Verdef)
6239 + sizeof (Elf_External_Verdaux));
6240 }
6241
6242 if (soname_indx != (bfd_size_type) -1)
6243 {
6244 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6245 soname_indx);
6246 def.vd_hash = bfd_elf_hash (soname);
6247 defaux.vda_name = soname_indx;
6248 name = soname;
6249 }
6250 else
6251 {
6252 bfd_size_type indx;
6253
6254 name = lbasename (output_bfd->filename);
6255 def.vd_hash = bfd_elf_hash (name);
6256 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6257 name, FALSE);
6258 if (indx == (bfd_size_type) -1)
6259 return FALSE;
6260 defaux.vda_name = indx;
6261 }
6262 defaux.vda_next = 0;
6263
6264 _bfd_elf_swap_verdef_out (output_bfd, &def,
6265 (Elf_External_Verdef *) p);
6266 p += sizeof (Elf_External_Verdef);
6267 if (info->create_default_symver)
6268 {
6269 /* Add a symbol representing this version. */
6270 bh = NULL;
6271 if (! (_bfd_generic_link_add_one_symbol
6272 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6273 0, NULL, FALSE,
6274 get_elf_backend_data (dynobj)->collect, &bh)))
6275 return FALSE;
6276 h = (struct elf_link_hash_entry *) bh;
6277 h->non_elf = 0;
6278 h->def_regular = 1;
6279 h->type = STT_OBJECT;
6280 h->verinfo.vertree = NULL;
6281
6282 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6283 return FALSE;
6284
6285 /* Create a duplicate of the base version with the same
6286 aux block, but different flags. */
6287 def.vd_flags = 0;
6288 def.vd_ndx = 2;
6289 def.vd_aux = sizeof (Elf_External_Verdef);
6290 if (verdefs)
6291 def.vd_next = (sizeof (Elf_External_Verdef)
6292 + sizeof (Elf_External_Verdaux));
6293 else
6294 def.vd_next = 0;
6295 _bfd_elf_swap_verdef_out (output_bfd, &def,
6296 (Elf_External_Verdef *) p);
6297 p += sizeof (Elf_External_Verdef);
6298 }
6299 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6300 (Elf_External_Verdaux *) p);
6301 p += sizeof (Elf_External_Verdaux);
6302
6303 for (t = verdefs; t != NULL; t = t->next)
6304 {
6305 unsigned int cdeps;
6306 struct bfd_elf_version_deps *n;
6307
6308 /* Don't emit the base version twice. */
6309 if (t->vernum == 0)
6310 continue;
6311
6312 cdeps = 0;
6313 for (n = t->deps; n != NULL; n = n->next)
6314 ++cdeps;
6315
6316 /* Add a symbol representing this version. */
6317 bh = NULL;
6318 if (! (_bfd_generic_link_add_one_symbol
6319 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6320 0, NULL, FALSE,
6321 get_elf_backend_data (dynobj)->collect, &bh)))
6322 return FALSE;
6323 h = (struct elf_link_hash_entry *) bh;
6324 h->non_elf = 0;
6325 h->def_regular = 1;
6326 h->type = STT_OBJECT;
6327 h->verinfo.vertree = t;
6328
6329 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6330 return FALSE;
6331
6332 def.vd_version = VER_DEF_CURRENT;
6333 def.vd_flags = 0;
6334 if (t->globals.list == NULL
6335 && t->locals.list == NULL
6336 && ! t->used)
6337 def.vd_flags |= VER_FLG_WEAK;
6338 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6339 def.vd_cnt = cdeps + 1;
6340 def.vd_hash = bfd_elf_hash (t->name);
6341 def.vd_aux = sizeof (Elf_External_Verdef);
6342 def.vd_next = 0;
6343
6344 /* If a basever node is next, it *must* be the last node in
6345 the chain, otherwise Verdef construction breaks. */
6346 if (t->next != NULL && t->next->vernum == 0)
6347 BFD_ASSERT (t->next->next == NULL);
6348
6349 if (t->next != NULL && t->next->vernum != 0)
6350 def.vd_next = (sizeof (Elf_External_Verdef)
6351 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6352
6353 _bfd_elf_swap_verdef_out (output_bfd, &def,
6354 (Elf_External_Verdef *) p);
6355 p += sizeof (Elf_External_Verdef);
6356
6357 defaux.vda_name = h->dynstr_index;
6358 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6359 h->dynstr_index);
6360 defaux.vda_next = 0;
6361 if (t->deps != NULL)
6362 defaux.vda_next = sizeof (Elf_External_Verdaux);
6363 t->name_indx = defaux.vda_name;
6364
6365 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6366 (Elf_External_Verdaux *) p);
6367 p += sizeof (Elf_External_Verdaux);
6368
6369 for (n = t->deps; n != NULL; n = n->next)
6370 {
6371 if (n->version_needed == NULL)
6372 {
6373 /* This can happen if there was an error in the
6374 version script. */
6375 defaux.vda_name = 0;
6376 }
6377 else
6378 {
6379 defaux.vda_name = n->version_needed->name_indx;
6380 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6381 defaux.vda_name);
6382 }
6383 if (n->next == NULL)
6384 defaux.vda_next = 0;
6385 else
6386 defaux.vda_next = sizeof (Elf_External_Verdaux);
6387
6388 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6389 (Elf_External_Verdaux *) p);
6390 p += sizeof (Elf_External_Verdaux);
6391 }
6392 }
6393
6394 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6395 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6396 return FALSE;
6397
6398 elf_tdata (output_bfd)->cverdefs = cdefs;
6399 }
6400
6401 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6402 {
6403 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6404 return FALSE;
6405 }
6406 else if (info->flags & DF_BIND_NOW)
6407 {
6408 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6409 return FALSE;
6410 }
6411
6412 if (info->flags_1)
6413 {
6414 if (bfd_link_executable (info))
6415 info->flags_1 &= ~ (DF_1_INITFIRST
6416 | DF_1_NODELETE
6417 | DF_1_NOOPEN);
6418 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6419 return FALSE;
6420 }
6421
6422 /* Work out the size of the version reference section. */
6423
6424 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6425 BFD_ASSERT (s != NULL);
6426 {
6427 struct elf_find_verdep_info sinfo;
6428
6429 sinfo.info = info;
6430 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6431 if (sinfo.vers == 0)
6432 sinfo.vers = 1;
6433 sinfo.failed = FALSE;
6434
6435 elf_link_hash_traverse (elf_hash_table (info),
6436 _bfd_elf_link_find_version_dependencies,
6437 &sinfo);
6438 if (sinfo.failed)
6439 return FALSE;
6440
6441 if (elf_tdata (output_bfd)->verref == NULL)
6442 s->flags |= SEC_EXCLUDE;
6443 else
6444 {
6445 Elf_Internal_Verneed *t;
6446 unsigned int size;
6447 unsigned int crefs;
6448 bfd_byte *p;
6449
6450 /* Build the version dependency section. */
6451 size = 0;
6452 crefs = 0;
6453 for (t = elf_tdata (output_bfd)->verref;
6454 t != NULL;
6455 t = t->vn_nextref)
6456 {
6457 Elf_Internal_Vernaux *a;
6458
6459 size += sizeof (Elf_External_Verneed);
6460 ++crefs;
6461 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6462 size += sizeof (Elf_External_Vernaux);
6463 }
6464
6465 s->size = size;
6466 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6467 if (s->contents == NULL)
6468 return FALSE;
6469
6470 p = s->contents;
6471 for (t = elf_tdata (output_bfd)->verref;
6472 t != NULL;
6473 t = t->vn_nextref)
6474 {
6475 unsigned int caux;
6476 Elf_Internal_Vernaux *a;
6477 bfd_size_type indx;
6478
6479 caux = 0;
6480 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6481 ++caux;
6482
6483 t->vn_version = VER_NEED_CURRENT;
6484 t->vn_cnt = caux;
6485 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6486 elf_dt_name (t->vn_bfd) != NULL
6487 ? elf_dt_name (t->vn_bfd)
6488 : lbasename (t->vn_bfd->filename),
6489 FALSE);
6490 if (indx == (bfd_size_type) -1)
6491 return FALSE;
6492 t->vn_file = indx;
6493 t->vn_aux = sizeof (Elf_External_Verneed);
6494 if (t->vn_nextref == NULL)
6495 t->vn_next = 0;
6496 else
6497 t->vn_next = (sizeof (Elf_External_Verneed)
6498 + caux * sizeof (Elf_External_Vernaux));
6499
6500 _bfd_elf_swap_verneed_out (output_bfd, t,
6501 (Elf_External_Verneed *) p);
6502 p += sizeof (Elf_External_Verneed);
6503
6504 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6505 {
6506 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6507 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6508 a->vna_nodename, FALSE);
6509 if (indx == (bfd_size_type) -1)
6510 return FALSE;
6511 a->vna_name = indx;
6512 if (a->vna_nextptr == NULL)
6513 a->vna_next = 0;
6514 else
6515 a->vna_next = sizeof (Elf_External_Vernaux);
6516
6517 _bfd_elf_swap_vernaux_out (output_bfd, a,
6518 (Elf_External_Vernaux *) p);
6519 p += sizeof (Elf_External_Vernaux);
6520 }
6521 }
6522
6523 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6524 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6525 return FALSE;
6526
6527 elf_tdata (output_bfd)->cverrefs = crefs;
6528 }
6529 }
6530
6531 if ((elf_tdata (output_bfd)->cverrefs == 0
6532 && elf_tdata (output_bfd)->cverdefs == 0)
6533 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6534 &section_sym_count) == 0)
6535 {
6536 s = bfd_get_linker_section (dynobj, ".gnu.version");
6537 s->flags |= SEC_EXCLUDE;
6538 }
6539 }
6540 return TRUE;
6541 }
6542
6543 /* Find the first non-excluded output section. We'll use its
6544 section symbol for some emitted relocs. */
6545 void
6546 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6547 {
6548 asection *s;
6549
6550 for (s = output_bfd->sections; s != NULL; s = s->next)
6551 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6552 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6553 {
6554 elf_hash_table (info)->text_index_section = s;
6555 break;
6556 }
6557 }
6558
6559 /* Find two non-excluded output sections, one for code, one for data.
6560 We'll use their section symbols for some emitted relocs. */
6561 void
6562 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6563 {
6564 asection *s;
6565
6566 /* Data first, since setting text_index_section changes
6567 _bfd_elf_link_omit_section_dynsym. */
6568 for (s = output_bfd->sections; s != NULL; s = s->next)
6569 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6570 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6571 {
6572 elf_hash_table (info)->data_index_section = s;
6573 break;
6574 }
6575
6576 for (s = output_bfd->sections; s != NULL; s = s->next)
6577 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6578 == (SEC_ALLOC | SEC_READONLY))
6579 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6580 {
6581 elf_hash_table (info)->text_index_section = s;
6582 break;
6583 }
6584
6585 if (elf_hash_table (info)->text_index_section == NULL)
6586 elf_hash_table (info)->text_index_section
6587 = elf_hash_table (info)->data_index_section;
6588 }
6589
6590 bfd_boolean
6591 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6592 {
6593 const struct elf_backend_data *bed;
6594
6595 if (!is_elf_hash_table (info->hash))
6596 return TRUE;
6597
6598 bed = get_elf_backend_data (output_bfd);
6599 (*bed->elf_backend_init_index_section) (output_bfd, info);
6600
6601 if (elf_hash_table (info)->dynamic_sections_created)
6602 {
6603 bfd *dynobj;
6604 asection *s;
6605 bfd_size_type dynsymcount;
6606 unsigned long section_sym_count;
6607 unsigned int dtagcount;
6608
6609 dynobj = elf_hash_table (info)->dynobj;
6610
6611 /* Assign dynsym indicies. In a shared library we generate a
6612 section symbol for each output section, which come first.
6613 Next come all of the back-end allocated local dynamic syms,
6614 followed by the rest of the global symbols. */
6615
6616 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6617 &section_sym_count);
6618
6619 /* Work out the size of the symbol version section. */
6620 s = bfd_get_linker_section (dynobj, ".gnu.version");
6621 BFD_ASSERT (s != NULL);
6622 if ((s->flags & SEC_EXCLUDE) == 0)
6623 {
6624 s->size = dynsymcount * sizeof (Elf_External_Versym);
6625 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6626 if (s->contents == NULL)
6627 return FALSE;
6628
6629 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6630 return FALSE;
6631 }
6632
6633 /* Set the size of the .dynsym and .hash sections. We counted
6634 the number of dynamic symbols in elf_link_add_object_symbols.
6635 We will build the contents of .dynsym and .hash when we build
6636 the final symbol table, because until then we do not know the
6637 correct value to give the symbols. We built the .dynstr
6638 section as we went along in elf_link_add_object_symbols. */
6639 s = elf_hash_table (info)->dynsym;
6640 BFD_ASSERT (s != NULL);
6641 s->size = dynsymcount * bed->s->sizeof_sym;
6642
6643 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6644 if (s->contents == NULL)
6645 return FALSE;
6646
6647 /* The first entry in .dynsym is a dummy symbol. Clear all the
6648 section syms, in case we don't output them all. */
6649 ++section_sym_count;
6650 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6651
6652 elf_hash_table (info)->bucketcount = 0;
6653
6654 /* Compute the size of the hashing table. As a side effect this
6655 computes the hash values for all the names we export. */
6656 if (info->emit_hash)
6657 {
6658 unsigned long int *hashcodes;
6659 struct hash_codes_info hashinf;
6660 bfd_size_type amt;
6661 unsigned long int nsyms;
6662 size_t bucketcount;
6663 size_t hash_entry_size;
6664
6665 /* Compute the hash values for all exported symbols. At the same
6666 time store the values in an array so that we could use them for
6667 optimizations. */
6668 amt = dynsymcount * sizeof (unsigned long int);
6669 hashcodes = (unsigned long int *) bfd_malloc (amt);
6670 if (hashcodes == NULL)
6671 return FALSE;
6672 hashinf.hashcodes = hashcodes;
6673 hashinf.error = FALSE;
6674
6675 /* Put all hash values in HASHCODES. */
6676 elf_link_hash_traverse (elf_hash_table (info),
6677 elf_collect_hash_codes, &hashinf);
6678 if (hashinf.error)
6679 {
6680 free (hashcodes);
6681 return FALSE;
6682 }
6683
6684 nsyms = hashinf.hashcodes - hashcodes;
6685 bucketcount
6686 = compute_bucket_count (info, hashcodes, nsyms, 0);
6687 free (hashcodes);
6688
6689 if (bucketcount == 0)
6690 return FALSE;
6691
6692 elf_hash_table (info)->bucketcount = bucketcount;
6693
6694 s = bfd_get_linker_section (dynobj, ".hash");
6695 BFD_ASSERT (s != NULL);
6696 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6697 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6698 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6699 if (s->contents == NULL)
6700 return FALSE;
6701
6702 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6703 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6704 s->contents + hash_entry_size);
6705 }
6706
6707 if (info->emit_gnu_hash)
6708 {
6709 size_t i, cnt;
6710 unsigned char *contents;
6711 struct collect_gnu_hash_codes cinfo;
6712 bfd_size_type amt;
6713 size_t bucketcount;
6714
6715 memset (&cinfo, 0, sizeof (cinfo));
6716
6717 /* Compute the hash values for all exported symbols. At the same
6718 time store the values in an array so that we could use them for
6719 optimizations. */
6720 amt = dynsymcount * 2 * sizeof (unsigned long int);
6721 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6722 if (cinfo.hashcodes == NULL)
6723 return FALSE;
6724
6725 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6726 cinfo.min_dynindx = -1;
6727 cinfo.output_bfd = output_bfd;
6728 cinfo.bed = bed;
6729
6730 /* Put all hash values in HASHCODES. */
6731 elf_link_hash_traverse (elf_hash_table (info),
6732 elf_collect_gnu_hash_codes, &cinfo);
6733 if (cinfo.error)
6734 {
6735 free (cinfo.hashcodes);
6736 return FALSE;
6737 }
6738
6739 bucketcount
6740 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6741
6742 if (bucketcount == 0)
6743 {
6744 free (cinfo.hashcodes);
6745 return FALSE;
6746 }
6747
6748 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6749 BFD_ASSERT (s != NULL);
6750
6751 if (cinfo.nsyms == 0)
6752 {
6753 /* Empty .gnu.hash section is special. */
6754 BFD_ASSERT (cinfo.min_dynindx == -1);
6755 free (cinfo.hashcodes);
6756 s->size = 5 * 4 + bed->s->arch_size / 8;
6757 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6758 if (contents == NULL)
6759 return FALSE;
6760 s->contents = contents;
6761 /* 1 empty bucket. */
6762 bfd_put_32 (output_bfd, 1, contents);
6763 /* SYMIDX above the special symbol 0. */
6764 bfd_put_32 (output_bfd, 1, contents + 4);
6765 /* Just one word for bitmask. */
6766 bfd_put_32 (output_bfd, 1, contents + 8);
6767 /* Only hash fn bloom filter. */
6768 bfd_put_32 (output_bfd, 0, contents + 12);
6769 /* No hashes are valid - empty bitmask. */
6770 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6771 /* No hashes in the only bucket. */
6772 bfd_put_32 (output_bfd, 0,
6773 contents + 16 + bed->s->arch_size / 8);
6774 }
6775 else
6776 {
6777 unsigned long int maskwords, maskbitslog2, x;
6778 BFD_ASSERT (cinfo.min_dynindx != -1);
6779
6780 x = cinfo.nsyms;
6781 maskbitslog2 = 1;
6782 while ((x >>= 1) != 0)
6783 ++maskbitslog2;
6784 if (maskbitslog2 < 3)
6785 maskbitslog2 = 5;
6786 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6787 maskbitslog2 = maskbitslog2 + 3;
6788 else
6789 maskbitslog2 = maskbitslog2 + 2;
6790 if (bed->s->arch_size == 64)
6791 {
6792 if (maskbitslog2 == 5)
6793 maskbitslog2 = 6;
6794 cinfo.shift1 = 6;
6795 }
6796 else
6797 cinfo.shift1 = 5;
6798 cinfo.mask = (1 << cinfo.shift1) - 1;
6799 cinfo.shift2 = maskbitslog2;
6800 cinfo.maskbits = 1 << maskbitslog2;
6801 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6802 amt = bucketcount * sizeof (unsigned long int) * 2;
6803 amt += maskwords * sizeof (bfd_vma);
6804 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6805 if (cinfo.bitmask == NULL)
6806 {
6807 free (cinfo.hashcodes);
6808 return FALSE;
6809 }
6810
6811 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6812 cinfo.indx = cinfo.counts + bucketcount;
6813 cinfo.symindx = dynsymcount - cinfo.nsyms;
6814 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6815
6816 /* Determine how often each hash bucket is used. */
6817 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6818 for (i = 0; i < cinfo.nsyms; ++i)
6819 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6820
6821 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6822 if (cinfo.counts[i] != 0)
6823 {
6824 cinfo.indx[i] = cnt;
6825 cnt += cinfo.counts[i];
6826 }
6827 BFD_ASSERT (cnt == dynsymcount);
6828 cinfo.bucketcount = bucketcount;
6829 cinfo.local_indx = cinfo.min_dynindx;
6830
6831 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6832 s->size += cinfo.maskbits / 8;
6833 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6834 if (contents == NULL)
6835 {
6836 free (cinfo.bitmask);
6837 free (cinfo.hashcodes);
6838 return FALSE;
6839 }
6840
6841 s->contents = contents;
6842 bfd_put_32 (output_bfd, bucketcount, contents);
6843 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6844 bfd_put_32 (output_bfd, maskwords, contents + 8);
6845 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6846 contents += 16 + cinfo.maskbits / 8;
6847
6848 for (i = 0; i < bucketcount; ++i)
6849 {
6850 if (cinfo.counts[i] == 0)
6851 bfd_put_32 (output_bfd, 0, contents);
6852 else
6853 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6854 contents += 4;
6855 }
6856
6857 cinfo.contents = contents;
6858
6859 /* Renumber dynamic symbols, populate .gnu.hash section. */
6860 elf_link_hash_traverse (elf_hash_table (info),
6861 elf_renumber_gnu_hash_syms, &cinfo);
6862
6863 contents = s->contents + 16;
6864 for (i = 0; i < maskwords; ++i)
6865 {
6866 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6867 contents);
6868 contents += bed->s->arch_size / 8;
6869 }
6870
6871 free (cinfo.bitmask);
6872 free (cinfo.hashcodes);
6873 }
6874 }
6875
6876 s = bfd_get_linker_section (dynobj, ".dynstr");
6877 BFD_ASSERT (s != NULL);
6878
6879 elf_finalize_dynstr (output_bfd, info);
6880
6881 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6882
6883 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6884 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6885 return FALSE;
6886 }
6887
6888 return TRUE;
6889 }
6890 \f
6891 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6892
6893 static void
6894 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6895 asection *sec)
6896 {
6897 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6898 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6899 }
6900
6901 /* Finish SHF_MERGE section merging. */
6902
6903 bfd_boolean
6904 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6905 {
6906 bfd *ibfd;
6907 asection *sec;
6908
6909 if (!is_elf_hash_table (info->hash))
6910 return FALSE;
6911
6912 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6913 if ((ibfd->flags & DYNAMIC) == 0
6914 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6915 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6916 == get_elf_backend_data (obfd)->s->elfclass))
6917 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6918 if ((sec->flags & SEC_MERGE) != 0
6919 && !bfd_is_abs_section (sec->output_section))
6920 {
6921 struct bfd_elf_section_data *secdata;
6922
6923 secdata = elf_section_data (sec);
6924 if (! _bfd_add_merge_section (obfd,
6925 &elf_hash_table (info)->merge_info,
6926 sec, &secdata->sec_info))
6927 return FALSE;
6928 else if (secdata->sec_info)
6929 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6930 }
6931
6932 if (elf_hash_table (info)->merge_info != NULL)
6933 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6934 merge_sections_remove_hook);
6935 return TRUE;
6936 }
6937
6938 /* Create an entry in an ELF linker hash table. */
6939
6940 struct bfd_hash_entry *
6941 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6942 struct bfd_hash_table *table,
6943 const char *string)
6944 {
6945 /* Allocate the structure if it has not already been allocated by a
6946 subclass. */
6947 if (entry == NULL)
6948 {
6949 entry = (struct bfd_hash_entry *)
6950 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6951 if (entry == NULL)
6952 return entry;
6953 }
6954
6955 /* Call the allocation method of the superclass. */
6956 entry = _bfd_link_hash_newfunc (entry, table, string);
6957 if (entry != NULL)
6958 {
6959 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6960 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6961
6962 /* Set local fields. */
6963 ret->indx = -1;
6964 ret->dynindx = -1;
6965 ret->got = htab->init_got_refcount;
6966 ret->plt = htab->init_plt_refcount;
6967 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6968 - offsetof (struct elf_link_hash_entry, size)));
6969 /* Assume that we have been called by a non-ELF symbol reader.
6970 This flag is then reset by the code which reads an ELF input
6971 file. This ensures that a symbol created by a non-ELF symbol
6972 reader will have the flag set correctly. */
6973 ret->non_elf = 1;
6974 }
6975
6976 return entry;
6977 }
6978
6979 /* Copy data from an indirect symbol to its direct symbol, hiding the
6980 old indirect symbol. Also used for copying flags to a weakdef. */
6981
6982 void
6983 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6984 struct elf_link_hash_entry *dir,
6985 struct elf_link_hash_entry *ind)
6986 {
6987 struct elf_link_hash_table *htab;
6988
6989 /* Copy down any references that we may have already seen to the
6990 symbol which just became indirect if DIR isn't a hidden versioned
6991 symbol. */
6992
6993 if (dir->versioned != versioned_hidden)
6994 {
6995 dir->ref_dynamic |= ind->ref_dynamic;
6996 dir->ref_regular |= ind->ref_regular;
6997 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6998 dir->non_got_ref |= ind->non_got_ref;
6999 dir->needs_plt |= ind->needs_plt;
7000 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7001 }
7002
7003 if (ind->root.type != bfd_link_hash_indirect)
7004 return;
7005
7006 /* Copy over the global and procedure linkage table refcount entries.
7007 These may have been already set up by a check_relocs routine. */
7008 htab = elf_hash_table (info);
7009 if (ind->got.refcount > htab->init_got_refcount.refcount)
7010 {
7011 if (dir->got.refcount < 0)
7012 dir->got.refcount = 0;
7013 dir->got.refcount += ind->got.refcount;
7014 ind->got.refcount = htab->init_got_refcount.refcount;
7015 }
7016
7017 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7018 {
7019 if (dir->plt.refcount < 0)
7020 dir->plt.refcount = 0;
7021 dir->plt.refcount += ind->plt.refcount;
7022 ind->plt.refcount = htab->init_plt_refcount.refcount;
7023 }
7024
7025 if (ind->dynindx != -1)
7026 {
7027 if (dir->dynindx != -1)
7028 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7029 dir->dynindx = ind->dynindx;
7030 dir->dynstr_index = ind->dynstr_index;
7031 ind->dynindx = -1;
7032 ind->dynstr_index = 0;
7033 }
7034 }
7035
7036 void
7037 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7038 struct elf_link_hash_entry *h,
7039 bfd_boolean force_local)
7040 {
7041 /* STT_GNU_IFUNC symbol must go through PLT. */
7042 if (h->type != STT_GNU_IFUNC)
7043 {
7044 h->plt = elf_hash_table (info)->init_plt_offset;
7045 h->needs_plt = 0;
7046 }
7047 if (force_local)
7048 {
7049 h->forced_local = 1;
7050 if (h->dynindx != -1)
7051 {
7052 h->dynindx = -1;
7053 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7054 h->dynstr_index);
7055 }
7056 }
7057 }
7058
7059 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7060 caller. */
7061
7062 bfd_boolean
7063 _bfd_elf_link_hash_table_init
7064 (struct elf_link_hash_table *table,
7065 bfd *abfd,
7066 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7067 struct bfd_hash_table *,
7068 const char *),
7069 unsigned int entsize,
7070 enum elf_target_id target_id)
7071 {
7072 bfd_boolean ret;
7073 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7074
7075 table->init_got_refcount.refcount = can_refcount - 1;
7076 table->init_plt_refcount.refcount = can_refcount - 1;
7077 table->init_got_offset.offset = -(bfd_vma) 1;
7078 table->init_plt_offset.offset = -(bfd_vma) 1;
7079 /* The first dynamic symbol is a dummy. */
7080 table->dynsymcount = 1;
7081
7082 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7083
7084 table->root.type = bfd_link_elf_hash_table;
7085 table->hash_table_id = target_id;
7086
7087 return ret;
7088 }
7089
7090 /* Create an ELF linker hash table. */
7091
7092 struct bfd_link_hash_table *
7093 _bfd_elf_link_hash_table_create (bfd *abfd)
7094 {
7095 struct elf_link_hash_table *ret;
7096 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7097
7098 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7099 if (ret == NULL)
7100 return NULL;
7101
7102 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7103 sizeof (struct elf_link_hash_entry),
7104 GENERIC_ELF_DATA))
7105 {
7106 free (ret);
7107 return NULL;
7108 }
7109 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7110
7111 return &ret->root;
7112 }
7113
7114 /* Destroy an ELF linker hash table. */
7115
7116 void
7117 _bfd_elf_link_hash_table_free (bfd *obfd)
7118 {
7119 struct elf_link_hash_table *htab;
7120
7121 htab = (struct elf_link_hash_table *) obfd->link.hash;
7122 if (htab->dynstr != NULL)
7123 _bfd_elf_strtab_free (htab->dynstr);
7124 _bfd_merge_sections_free (htab->merge_info);
7125 _bfd_generic_link_hash_table_free (obfd);
7126 }
7127
7128 /* This is a hook for the ELF emulation code in the generic linker to
7129 tell the backend linker what file name to use for the DT_NEEDED
7130 entry for a dynamic object. */
7131
7132 void
7133 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7134 {
7135 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7136 && bfd_get_format (abfd) == bfd_object)
7137 elf_dt_name (abfd) = name;
7138 }
7139
7140 int
7141 bfd_elf_get_dyn_lib_class (bfd *abfd)
7142 {
7143 int lib_class;
7144 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7145 && bfd_get_format (abfd) == bfd_object)
7146 lib_class = elf_dyn_lib_class (abfd);
7147 else
7148 lib_class = 0;
7149 return lib_class;
7150 }
7151
7152 void
7153 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7154 {
7155 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7156 && bfd_get_format (abfd) == bfd_object)
7157 elf_dyn_lib_class (abfd) = lib_class;
7158 }
7159
7160 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7161 the linker ELF emulation code. */
7162
7163 struct bfd_link_needed_list *
7164 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7165 struct bfd_link_info *info)
7166 {
7167 if (! is_elf_hash_table (info->hash))
7168 return NULL;
7169 return elf_hash_table (info)->needed;
7170 }
7171
7172 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7173 hook for the linker ELF emulation code. */
7174
7175 struct bfd_link_needed_list *
7176 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7177 struct bfd_link_info *info)
7178 {
7179 if (! is_elf_hash_table (info->hash))
7180 return NULL;
7181 return elf_hash_table (info)->runpath;
7182 }
7183
7184 /* Get the name actually used for a dynamic object for a link. This
7185 is the SONAME entry if there is one. Otherwise, it is the string
7186 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7187
7188 const char *
7189 bfd_elf_get_dt_soname (bfd *abfd)
7190 {
7191 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7192 && bfd_get_format (abfd) == bfd_object)
7193 return elf_dt_name (abfd);
7194 return NULL;
7195 }
7196
7197 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7198 the ELF linker emulation code. */
7199
7200 bfd_boolean
7201 bfd_elf_get_bfd_needed_list (bfd *abfd,
7202 struct bfd_link_needed_list **pneeded)
7203 {
7204 asection *s;
7205 bfd_byte *dynbuf = NULL;
7206 unsigned int elfsec;
7207 unsigned long shlink;
7208 bfd_byte *extdyn, *extdynend;
7209 size_t extdynsize;
7210 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7211
7212 *pneeded = NULL;
7213
7214 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7215 || bfd_get_format (abfd) != bfd_object)
7216 return TRUE;
7217
7218 s = bfd_get_section_by_name (abfd, ".dynamic");
7219 if (s == NULL || s->size == 0)
7220 return TRUE;
7221
7222 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7223 goto error_return;
7224
7225 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7226 if (elfsec == SHN_BAD)
7227 goto error_return;
7228
7229 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7230
7231 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7232 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7233
7234 extdyn = dynbuf;
7235 extdynend = extdyn + s->size;
7236 for (; extdyn < extdynend; extdyn += extdynsize)
7237 {
7238 Elf_Internal_Dyn dyn;
7239
7240 (*swap_dyn_in) (abfd, extdyn, &dyn);
7241
7242 if (dyn.d_tag == DT_NULL)
7243 break;
7244
7245 if (dyn.d_tag == DT_NEEDED)
7246 {
7247 const char *string;
7248 struct bfd_link_needed_list *l;
7249 unsigned int tagv = dyn.d_un.d_val;
7250 bfd_size_type amt;
7251
7252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7253 if (string == NULL)
7254 goto error_return;
7255
7256 amt = sizeof *l;
7257 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7258 if (l == NULL)
7259 goto error_return;
7260
7261 l->by = abfd;
7262 l->name = string;
7263 l->next = *pneeded;
7264 *pneeded = l;
7265 }
7266 }
7267
7268 free (dynbuf);
7269
7270 return TRUE;
7271
7272 error_return:
7273 if (dynbuf != NULL)
7274 free (dynbuf);
7275 return FALSE;
7276 }
7277
7278 struct elf_symbuf_symbol
7279 {
7280 unsigned long st_name; /* Symbol name, index in string tbl */
7281 unsigned char st_info; /* Type and binding attributes */
7282 unsigned char st_other; /* Visibilty, and target specific */
7283 };
7284
7285 struct elf_symbuf_head
7286 {
7287 struct elf_symbuf_symbol *ssym;
7288 bfd_size_type count;
7289 unsigned int st_shndx;
7290 };
7291
7292 struct elf_symbol
7293 {
7294 union
7295 {
7296 Elf_Internal_Sym *isym;
7297 struct elf_symbuf_symbol *ssym;
7298 } u;
7299 const char *name;
7300 };
7301
7302 /* Sort references to symbols by ascending section number. */
7303
7304 static int
7305 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7306 {
7307 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7308 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7309
7310 return s1->st_shndx - s2->st_shndx;
7311 }
7312
7313 static int
7314 elf_sym_name_compare (const void *arg1, const void *arg2)
7315 {
7316 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7317 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7318 return strcmp (s1->name, s2->name);
7319 }
7320
7321 static struct elf_symbuf_head *
7322 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7323 {
7324 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7325 struct elf_symbuf_symbol *ssym;
7326 struct elf_symbuf_head *ssymbuf, *ssymhead;
7327 bfd_size_type i, shndx_count, total_size;
7328
7329 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7330 if (indbuf == NULL)
7331 return NULL;
7332
7333 for (ind = indbuf, i = 0; i < symcount; i++)
7334 if (isymbuf[i].st_shndx != SHN_UNDEF)
7335 *ind++ = &isymbuf[i];
7336 indbufend = ind;
7337
7338 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7339 elf_sort_elf_symbol);
7340
7341 shndx_count = 0;
7342 if (indbufend > indbuf)
7343 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7344 if (ind[0]->st_shndx != ind[1]->st_shndx)
7345 shndx_count++;
7346
7347 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7348 + (indbufend - indbuf) * sizeof (*ssym));
7349 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7350 if (ssymbuf == NULL)
7351 {
7352 free (indbuf);
7353 return NULL;
7354 }
7355
7356 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7357 ssymbuf->ssym = NULL;
7358 ssymbuf->count = shndx_count;
7359 ssymbuf->st_shndx = 0;
7360 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7361 {
7362 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7363 {
7364 ssymhead++;
7365 ssymhead->ssym = ssym;
7366 ssymhead->count = 0;
7367 ssymhead->st_shndx = (*ind)->st_shndx;
7368 }
7369 ssym->st_name = (*ind)->st_name;
7370 ssym->st_info = (*ind)->st_info;
7371 ssym->st_other = (*ind)->st_other;
7372 ssymhead->count++;
7373 }
7374 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7375 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7376 == total_size));
7377
7378 free (indbuf);
7379 return ssymbuf;
7380 }
7381
7382 /* Check if 2 sections define the same set of local and global
7383 symbols. */
7384
7385 static bfd_boolean
7386 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7387 struct bfd_link_info *info)
7388 {
7389 bfd *bfd1, *bfd2;
7390 const struct elf_backend_data *bed1, *bed2;
7391 Elf_Internal_Shdr *hdr1, *hdr2;
7392 bfd_size_type symcount1, symcount2;
7393 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7394 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7395 Elf_Internal_Sym *isym, *isymend;
7396 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7397 bfd_size_type count1, count2, i;
7398 unsigned int shndx1, shndx2;
7399 bfd_boolean result;
7400
7401 bfd1 = sec1->owner;
7402 bfd2 = sec2->owner;
7403
7404 /* Both sections have to be in ELF. */
7405 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7406 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7407 return FALSE;
7408
7409 if (elf_section_type (sec1) != elf_section_type (sec2))
7410 return FALSE;
7411
7412 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7413 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7414 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7415 return FALSE;
7416
7417 bed1 = get_elf_backend_data (bfd1);
7418 bed2 = get_elf_backend_data (bfd2);
7419 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7420 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7421 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7422 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7423
7424 if (symcount1 == 0 || symcount2 == 0)
7425 return FALSE;
7426
7427 result = FALSE;
7428 isymbuf1 = NULL;
7429 isymbuf2 = NULL;
7430 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7431 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7432
7433 if (ssymbuf1 == NULL)
7434 {
7435 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7436 NULL, NULL, NULL);
7437 if (isymbuf1 == NULL)
7438 goto done;
7439
7440 if (!info->reduce_memory_overheads)
7441 elf_tdata (bfd1)->symbuf = ssymbuf1
7442 = elf_create_symbuf (symcount1, isymbuf1);
7443 }
7444
7445 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7446 {
7447 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7448 NULL, NULL, NULL);
7449 if (isymbuf2 == NULL)
7450 goto done;
7451
7452 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7453 elf_tdata (bfd2)->symbuf = ssymbuf2
7454 = elf_create_symbuf (symcount2, isymbuf2);
7455 }
7456
7457 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7458 {
7459 /* Optimized faster version. */
7460 bfd_size_type lo, hi, mid;
7461 struct elf_symbol *symp;
7462 struct elf_symbuf_symbol *ssym, *ssymend;
7463
7464 lo = 0;
7465 hi = ssymbuf1->count;
7466 ssymbuf1++;
7467 count1 = 0;
7468 while (lo < hi)
7469 {
7470 mid = (lo + hi) / 2;
7471 if (shndx1 < ssymbuf1[mid].st_shndx)
7472 hi = mid;
7473 else if (shndx1 > ssymbuf1[mid].st_shndx)
7474 lo = mid + 1;
7475 else
7476 {
7477 count1 = ssymbuf1[mid].count;
7478 ssymbuf1 += mid;
7479 break;
7480 }
7481 }
7482
7483 lo = 0;
7484 hi = ssymbuf2->count;
7485 ssymbuf2++;
7486 count2 = 0;
7487 while (lo < hi)
7488 {
7489 mid = (lo + hi) / 2;
7490 if (shndx2 < ssymbuf2[mid].st_shndx)
7491 hi = mid;
7492 else if (shndx2 > ssymbuf2[mid].st_shndx)
7493 lo = mid + 1;
7494 else
7495 {
7496 count2 = ssymbuf2[mid].count;
7497 ssymbuf2 += mid;
7498 break;
7499 }
7500 }
7501
7502 if (count1 == 0 || count2 == 0 || count1 != count2)
7503 goto done;
7504
7505 symtable1
7506 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7507 symtable2
7508 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7509 if (symtable1 == NULL || symtable2 == NULL)
7510 goto done;
7511
7512 symp = symtable1;
7513 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7514 ssym < ssymend; ssym++, symp++)
7515 {
7516 symp->u.ssym = ssym;
7517 symp->name = bfd_elf_string_from_elf_section (bfd1,
7518 hdr1->sh_link,
7519 ssym->st_name);
7520 }
7521
7522 symp = symtable2;
7523 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7524 ssym < ssymend; ssym++, symp++)
7525 {
7526 symp->u.ssym = ssym;
7527 symp->name = bfd_elf_string_from_elf_section (bfd2,
7528 hdr2->sh_link,
7529 ssym->st_name);
7530 }
7531
7532 /* Sort symbol by name. */
7533 qsort (symtable1, count1, sizeof (struct elf_symbol),
7534 elf_sym_name_compare);
7535 qsort (symtable2, count1, sizeof (struct elf_symbol),
7536 elf_sym_name_compare);
7537
7538 for (i = 0; i < count1; i++)
7539 /* Two symbols must have the same binding, type and name. */
7540 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7541 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7542 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7543 goto done;
7544
7545 result = TRUE;
7546 goto done;
7547 }
7548
7549 symtable1 = (struct elf_symbol *)
7550 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7551 symtable2 = (struct elf_symbol *)
7552 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7553 if (symtable1 == NULL || symtable2 == NULL)
7554 goto done;
7555
7556 /* Count definitions in the section. */
7557 count1 = 0;
7558 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7559 if (isym->st_shndx == shndx1)
7560 symtable1[count1++].u.isym = isym;
7561
7562 count2 = 0;
7563 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7564 if (isym->st_shndx == shndx2)
7565 symtable2[count2++].u.isym = isym;
7566
7567 if (count1 == 0 || count2 == 0 || count1 != count2)
7568 goto done;
7569
7570 for (i = 0; i < count1; i++)
7571 symtable1[i].name
7572 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7573 symtable1[i].u.isym->st_name);
7574
7575 for (i = 0; i < count2; i++)
7576 symtable2[i].name
7577 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7578 symtable2[i].u.isym->st_name);
7579
7580 /* Sort symbol by name. */
7581 qsort (symtable1, count1, sizeof (struct elf_symbol),
7582 elf_sym_name_compare);
7583 qsort (symtable2, count1, sizeof (struct elf_symbol),
7584 elf_sym_name_compare);
7585
7586 for (i = 0; i < count1; i++)
7587 /* Two symbols must have the same binding, type and name. */
7588 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7589 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7590 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7591 goto done;
7592
7593 result = TRUE;
7594
7595 done:
7596 if (symtable1)
7597 free (symtable1);
7598 if (symtable2)
7599 free (symtable2);
7600 if (isymbuf1)
7601 free (isymbuf1);
7602 if (isymbuf2)
7603 free (isymbuf2);
7604
7605 return result;
7606 }
7607
7608 /* Return TRUE if 2 section types are compatible. */
7609
7610 bfd_boolean
7611 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7612 bfd *bbfd, const asection *bsec)
7613 {
7614 if (asec == NULL
7615 || bsec == NULL
7616 || abfd->xvec->flavour != bfd_target_elf_flavour
7617 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7618 return TRUE;
7619
7620 return elf_section_type (asec) == elf_section_type (bsec);
7621 }
7622 \f
7623 /* Final phase of ELF linker. */
7624
7625 /* A structure we use to avoid passing large numbers of arguments. */
7626
7627 struct elf_final_link_info
7628 {
7629 /* General link information. */
7630 struct bfd_link_info *info;
7631 /* Output BFD. */
7632 bfd *output_bfd;
7633 /* Symbol string table. */
7634 struct elf_strtab_hash *symstrtab;
7635 /* .hash section. */
7636 asection *hash_sec;
7637 /* symbol version section (.gnu.version). */
7638 asection *symver_sec;
7639 /* Buffer large enough to hold contents of any section. */
7640 bfd_byte *contents;
7641 /* Buffer large enough to hold external relocs of any section. */
7642 void *external_relocs;
7643 /* Buffer large enough to hold internal relocs of any section. */
7644 Elf_Internal_Rela *internal_relocs;
7645 /* Buffer large enough to hold external local symbols of any input
7646 BFD. */
7647 bfd_byte *external_syms;
7648 /* And a buffer for symbol section indices. */
7649 Elf_External_Sym_Shndx *locsym_shndx;
7650 /* Buffer large enough to hold internal local symbols of any input
7651 BFD. */
7652 Elf_Internal_Sym *internal_syms;
7653 /* Array large enough to hold a symbol index for each local symbol
7654 of any input BFD. */
7655 long *indices;
7656 /* Array large enough to hold a section pointer for each local
7657 symbol of any input BFD. */
7658 asection **sections;
7659 /* Buffer for SHT_SYMTAB_SHNDX section. */
7660 Elf_External_Sym_Shndx *symshndxbuf;
7661 /* Number of STT_FILE syms seen. */
7662 size_t filesym_count;
7663 };
7664
7665 /* This struct is used to pass information to elf_link_output_extsym. */
7666
7667 struct elf_outext_info
7668 {
7669 bfd_boolean failed;
7670 bfd_boolean localsyms;
7671 bfd_boolean file_sym_done;
7672 struct elf_final_link_info *flinfo;
7673 };
7674
7675
7676 /* Support for evaluating a complex relocation.
7677
7678 Complex relocations are generalized, self-describing relocations. The
7679 implementation of them consists of two parts: complex symbols, and the
7680 relocations themselves.
7681
7682 The relocations are use a reserved elf-wide relocation type code (R_RELC
7683 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7684 information (start bit, end bit, word width, etc) into the addend. This
7685 information is extracted from CGEN-generated operand tables within gas.
7686
7687 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7688 internal) representing prefix-notation expressions, including but not
7689 limited to those sorts of expressions normally encoded as addends in the
7690 addend field. The symbol mangling format is:
7691
7692 <node> := <literal>
7693 | <unary-operator> ':' <node>
7694 | <binary-operator> ':' <node> ':' <node>
7695 ;
7696
7697 <literal> := 's' <digits=N> ':' <N character symbol name>
7698 | 'S' <digits=N> ':' <N character section name>
7699 | '#' <hexdigits>
7700 ;
7701
7702 <binary-operator> := as in C
7703 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7704
7705 static void
7706 set_symbol_value (bfd *bfd_with_globals,
7707 Elf_Internal_Sym *isymbuf,
7708 size_t locsymcount,
7709 size_t symidx,
7710 bfd_vma val)
7711 {
7712 struct elf_link_hash_entry **sym_hashes;
7713 struct elf_link_hash_entry *h;
7714 size_t extsymoff = locsymcount;
7715
7716 if (symidx < locsymcount)
7717 {
7718 Elf_Internal_Sym *sym;
7719
7720 sym = isymbuf + symidx;
7721 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7722 {
7723 /* It is a local symbol: move it to the
7724 "absolute" section and give it a value. */
7725 sym->st_shndx = SHN_ABS;
7726 sym->st_value = val;
7727 return;
7728 }
7729 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7730 extsymoff = 0;
7731 }
7732
7733 /* It is a global symbol: set its link type
7734 to "defined" and give it a value. */
7735
7736 sym_hashes = elf_sym_hashes (bfd_with_globals);
7737 h = sym_hashes [symidx - extsymoff];
7738 while (h->root.type == bfd_link_hash_indirect
7739 || h->root.type == bfd_link_hash_warning)
7740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7741 h->root.type = bfd_link_hash_defined;
7742 h->root.u.def.value = val;
7743 h->root.u.def.section = bfd_abs_section_ptr;
7744 }
7745
7746 static bfd_boolean
7747 resolve_symbol (const char *name,
7748 bfd *input_bfd,
7749 struct elf_final_link_info *flinfo,
7750 bfd_vma *result,
7751 Elf_Internal_Sym *isymbuf,
7752 size_t locsymcount)
7753 {
7754 Elf_Internal_Sym *sym;
7755 struct bfd_link_hash_entry *global_entry;
7756 const char *candidate = NULL;
7757 Elf_Internal_Shdr *symtab_hdr;
7758 size_t i;
7759
7760 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7761
7762 for (i = 0; i < locsymcount; ++ i)
7763 {
7764 sym = isymbuf + i;
7765
7766 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7767 continue;
7768
7769 candidate = bfd_elf_string_from_elf_section (input_bfd,
7770 symtab_hdr->sh_link,
7771 sym->st_name);
7772 #ifdef DEBUG
7773 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7774 name, candidate, (unsigned long) sym->st_value);
7775 #endif
7776 if (candidate && strcmp (candidate, name) == 0)
7777 {
7778 asection *sec = flinfo->sections [i];
7779
7780 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7781 *result += sec->output_offset + sec->output_section->vma;
7782 #ifdef DEBUG
7783 printf ("Found symbol with value %8.8lx\n",
7784 (unsigned long) *result);
7785 #endif
7786 return TRUE;
7787 }
7788 }
7789
7790 /* Hmm, haven't found it yet. perhaps it is a global. */
7791 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7792 FALSE, FALSE, TRUE);
7793 if (!global_entry)
7794 return FALSE;
7795
7796 if (global_entry->type == bfd_link_hash_defined
7797 || global_entry->type == bfd_link_hash_defweak)
7798 {
7799 *result = (global_entry->u.def.value
7800 + global_entry->u.def.section->output_section->vma
7801 + global_entry->u.def.section->output_offset);
7802 #ifdef DEBUG
7803 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7804 global_entry->root.string, (unsigned long) *result);
7805 #endif
7806 return TRUE;
7807 }
7808
7809 return FALSE;
7810 }
7811
7812 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7813 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7814 names like "foo.end" which is the end address of section "foo". */
7815
7816 static bfd_boolean
7817 resolve_section (const char *name,
7818 asection *sections,
7819 bfd_vma *result,
7820 bfd * abfd)
7821 {
7822 asection *curr;
7823 unsigned int len;
7824
7825 for (curr = sections; curr; curr = curr->next)
7826 if (strcmp (curr->name, name) == 0)
7827 {
7828 *result = curr->vma;
7829 return TRUE;
7830 }
7831
7832 /* Hmm. still haven't found it. try pseudo-section names. */
7833 /* FIXME: This could be coded more efficiently... */
7834 for (curr = sections; curr; curr = curr->next)
7835 {
7836 len = strlen (curr->name);
7837 if (len > strlen (name))
7838 continue;
7839
7840 if (strncmp (curr->name, name, len) == 0)
7841 {
7842 if (strncmp (".end", name + len, 4) == 0)
7843 {
7844 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7845 return TRUE;
7846 }
7847
7848 /* Insert more pseudo-section names here, if you like. */
7849 }
7850 }
7851
7852 return FALSE;
7853 }
7854
7855 static void
7856 undefined_reference (const char *reftype, const char *name)
7857 {
7858 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7859 reftype, name);
7860 }
7861
7862 static bfd_boolean
7863 eval_symbol (bfd_vma *result,
7864 const char **symp,
7865 bfd *input_bfd,
7866 struct elf_final_link_info *flinfo,
7867 bfd_vma dot,
7868 Elf_Internal_Sym *isymbuf,
7869 size_t locsymcount,
7870 int signed_p)
7871 {
7872 size_t len;
7873 size_t symlen;
7874 bfd_vma a;
7875 bfd_vma b;
7876 char symbuf[4096];
7877 const char *sym = *symp;
7878 const char *symend;
7879 bfd_boolean symbol_is_section = FALSE;
7880
7881 len = strlen (sym);
7882 symend = sym + len;
7883
7884 if (len < 1 || len > sizeof (symbuf))
7885 {
7886 bfd_set_error (bfd_error_invalid_operation);
7887 return FALSE;
7888 }
7889
7890 switch (* sym)
7891 {
7892 case '.':
7893 *result = dot;
7894 *symp = sym + 1;
7895 return TRUE;
7896
7897 case '#':
7898 ++sym;
7899 *result = strtoul (sym, (char **) symp, 16);
7900 return TRUE;
7901
7902 case 'S':
7903 symbol_is_section = TRUE;
7904 case 's':
7905 ++sym;
7906 symlen = strtol (sym, (char **) symp, 10);
7907 sym = *symp + 1; /* Skip the trailing ':'. */
7908
7909 if (symend < sym || symlen + 1 > sizeof (symbuf))
7910 {
7911 bfd_set_error (bfd_error_invalid_operation);
7912 return FALSE;
7913 }
7914
7915 memcpy (symbuf, sym, symlen);
7916 symbuf[symlen] = '\0';
7917 *symp = sym + symlen;
7918
7919 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7920 the symbol as a section, or vice-versa. so we're pretty liberal in our
7921 interpretation here; section means "try section first", not "must be a
7922 section", and likewise with symbol. */
7923
7924 if (symbol_is_section)
7925 {
7926 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7927 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7928 isymbuf, locsymcount))
7929 {
7930 undefined_reference ("section", symbuf);
7931 return FALSE;
7932 }
7933 }
7934 else
7935 {
7936 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7937 isymbuf, locsymcount)
7938 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7939 result, input_bfd))
7940 {
7941 undefined_reference ("symbol", symbuf);
7942 return FALSE;
7943 }
7944 }
7945
7946 return TRUE;
7947
7948 /* All that remains are operators. */
7949
7950 #define UNARY_OP(op) \
7951 if (strncmp (sym, #op, strlen (#op)) == 0) \
7952 { \
7953 sym += strlen (#op); \
7954 if (*sym == ':') \
7955 ++sym; \
7956 *symp = sym; \
7957 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7958 isymbuf, locsymcount, signed_p)) \
7959 return FALSE; \
7960 if (signed_p) \
7961 *result = op ((bfd_signed_vma) a); \
7962 else \
7963 *result = op a; \
7964 return TRUE; \
7965 }
7966
7967 #define BINARY_OP(op) \
7968 if (strncmp (sym, #op, strlen (#op)) == 0) \
7969 { \
7970 sym += strlen (#op); \
7971 if (*sym == ':') \
7972 ++sym; \
7973 *symp = sym; \
7974 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7975 isymbuf, locsymcount, signed_p)) \
7976 return FALSE; \
7977 ++*symp; \
7978 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7979 isymbuf, locsymcount, signed_p)) \
7980 return FALSE; \
7981 if (signed_p) \
7982 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7983 else \
7984 *result = a op b; \
7985 return TRUE; \
7986 }
7987
7988 default:
7989 UNARY_OP (0-);
7990 BINARY_OP (<<);
7991 BINARY_OP (>>);
7992 BINARY_OP (==);
7993 BINARY_OP (!=);
7994 BINARY_OP (<=);
7995 BINARY_OP (>=);
7996 BINARY_OP (&&);
7997 BINARY_OP (||);
7998 UNARY_OP (~);
7999 UNARY_OP (!);
8000 BINARY_OP (*);
8001 BINARY_OP (/);
8002 BINARY_OP (%);
8003 BINARY_OP (^);
8004 BINARY_OP (|);
8005 BINARY_OP (&);
8006 BINARY_OP (+);
8007 BINARY_OP (-);
8008 BINARY_OP (<);
8009 BINARY_OP (>);
8010 #undef UNARY_OP
8011 #undef BINARY_OP
8012 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8013 bfd_set_error (bfd_error_invalid_operation);
8014 return FALSE;
8015 }
8016 }
8017
8018 static void
8019 put_value (bfd_vma size,
8020 unsigned long chunksz,
8021 bfd *input_bfd,
8022 bfd_vma x,
8023 bfd_byte *location)
8024 {
8025 location += (size - chunksz);
8026
8027 for (; size; size -= chunksz, location -= chunksz)
8028 {
8029 switch (chunksz)
8030 {
8031 case 1:
8032 bfd_put_8 (input_bfd, x, location);
8033 x >>= 8;
8034 break;
8035 case 2:
8036 bfd_put_16 (input_bfd, x, location);
8037 x >>= 16;
8038 break;
8039 case 4:
8040 bfd_put_32 (input_bfd, x, location);
8041 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8042 x >>= 16;
8043 x >>= 16;
8044 break;
8045 #ifdef BFD64
8046 case 8:
8047 bfd_put_64 (input_bfd, x, location);
8048 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8049 x >>= 32;
8050 x >>= 32;
8051 break;
8052 #endif
8053 default:
8054 abort ();
8055 break;
8056 }
8057 }
8058 }
8059
8060 static bfd_vma
8061 get_value (bfd_vma size,
8062 unsigned long chunksz,
8063 bfd *input_bfd,
8064 bfd_byte *location)
8065 {
8066 int shift;
8067 bfd_vma x = 0;
8068
8069 /* Sanity checks. */
8070 BFD_ASSERT (chunksz <= sizeof (x)
8071 && size >= chunksz
8072 && chunksz != 0
8073 && (size % chunksz) == 0
8074 && input_bfd != NULL
8075 && location != NULL);
8076
8077 if (chunksz == sizeof (x))
8078 {
8079 BFD_ASSERT (size == chunksz);
8080
8081 /* Make sure that we do not perform an undefined shift operation.
8082 We know that size == chunksz so there will only be one iteration
8083 of the loop below. */
8084 shift = 0;
8085 }
8086 else
8087 shift = 8 * chunksz;
8088
8089 for (; size; size -= chunksz, location += chunksz)
8090 {
8091 switch (chunksz)
8092 {
8093 case 1:
8094 x = (x << shift) | bfd_get_8 (input_bfd, location);
8095 break;
8096 case 2:
8097 x = (x << shift) | bfd_get_16 (input_bfd, location);
8098 break;
8099 case 4:
8100 x = (x << shift) | bfd_get_32 (input_bfd, location);
8101 break;
8102 #ifdef BFD64
8103 case 8:
8104 x = (x << shift) | bfd_get_64 (input_bfd, location);
8105 break;
8106 #endif
8107 default:
8108 abort ();
8109 }
8110 }
8111 return x;
8112 }
8113
8114 static void
8115 decode_complex_addend (unsigned long *start, /* in bits */
8116 unsigned long *oplen, /* in bits */
8117 unsigned long *len, /* in bits */
8118 unsigned long *wordsz, /* in bytes */
8119 unsigned long *chunksz, /* in bytes */
8120 unsigned long *lsb0_p,
8121 unsigned long *signed_p,
8122 unsigned long *trunc_p,
8123 unsigned long encoded)
8124 {
8125 * start = encoded & 0x3F;
8126 * len = (encoded >> 6) & 0x3F;
8127 * oplen = (encoded >> 12) & 0x3F;
8128 * wordsz = (encoded >> 18) & 0xF;
8129 * chunksz = (encoded >> 22) & 0xF;
8130 * lsb0_p = (encoded >> 27) & 1;
8131 * signed_p = (encoded >> 28) & 1;
8132 * trunc_p = (encoded >> 29) & 1;
8133 }
8134
8135 bfd_reloc_status_type
8136 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8137 asection *input_section ATTRIBUTE_UNUSED,
8138 bfd_byte *contents,
8139 Elf_Internal_Rela *rel,
8140 bfd_vma relocation)
8141 {
8142 bfd_vma shift, x, mask;
8143 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8144 bfd_reloc_status_type r;
8145
8146 /* Perform this reloc, since it is complex.
8147 (this is not to say that it necessarily refers to a complex
8148 symbol; merely that it is a self-describing CGEN based reloc.
8149 i.e. the addend has the complete reloc information (bit start, end,
8150 word size, etc) encoded within it.). */
8151
8152 decode_complex_addend (&start, &oplen, &len, &wordsz,
8153 &chunksz, &lsb0_p, &signed_p,
8154 &trunc_p, rel->r_addend);
8155
8156 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8157
8158 if (lsb0_p)
8159 shift = (start + 1) - len;
8160 else
8161 shift = (8 * wordsz) - (start + len);
8162
8163 x = get_value (wordsz, chunksz, input_bfd,
8164 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8165
8166 #ifdef DEBUG
8167 printf ("Doing complex reloc: "
8168 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8169 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8170 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8171 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8172 oplen, (unsigned long) x, (unsigned long) mask,
8173 (unsigned long) relocation);
8174 #endif
8175
8176 r = bfd_reloc_ok;
8177 if (! trunc_p)
8178 /* Now do an overflow check. */
8179 r = bfd_check_overflow ((signed_p
8180 ? complain_overflow_signed
8181 : complain_overflow_unsigned),
8182 len, 0, (8 * wordsz),
8183 relocation);
8184
8185 /* Do the deed. */
8186 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8187
8188 #ifdef DEBUG
8189 printf (" relocation: %8.8lx\n"
8190 " shifted mask: %8.8lx\n"
8191 " shifted/masked reloc: %8.8lx\n"
8192 " result: %8.8lx\n",
8193 (unsigned long) relocation, (unsigned long) (mask << shift),
8194 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8195 #endif
8196 put_value (wordsz, chunksz, input_bfd, x,
8197 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8198 return r;
8199 }
8200
8201 /* Functions to read r_offset from external (target order) reloc
8202 entry. Faster than bfd_getl32 et al, because we let the compiler
8203 know the value is aligned. */
8204
8205 static bfd_vma
8206 ext32l_r_offset (const void *p)
8207 {
8208 union aligned32
8209 {
8210 uint32_t v;
8211 unsigned char c[4];
8212 };
8213 const union aligned32 *a
8214 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8215
8216 uint32_t aval = ( (uint32_t) a->c[0]
8217 | (uint32_t) a->c[1] << 8
8218 | (uint32_t) a->c[2] << 16
8219 | (uint32_t) a->c[3] << 24);
8220 return aval;
8221 }
8222
8223 static bfd_vma
8224 ext32b_r_offset (const void *p)
8225 {
8226 union aligned32
8227 {
8228 uint32_t v;
8229 unsigned char c[4];
8230 };
8231 const union aligned32 *a
8232 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8233
8234 uint32_t aval = ( (uint32_t) a->c[0] << 24
8235 | (uint32_t) a->c[1] << 16
8236 | (uint32_t) a->c[2] << 8
8237 | (uint32_t) a->c[3]);
8238 return aval;
8239 }
8240
8241 #ifdef BFD_HOST_64_BIT
8242 static bfd_vma
8243 ext64l_r_offset (const void *p)
8244 {
8245 union aligned64
8246 {
8247 uint64_t v;
8248 unsigned char c[8];
8249 };
8250 const union aligned64 *a
8251 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8252
8253 uint64_t aval = ( (uint64_t) a->c[0]
8254 | (uint64_t) a->c[1] << 8
8255 | (uint64_t) a->c[2] << 16
8256 | (uint64_t) a->c[3] << 24
8257 | (uint64_t) a->c[4] << 32
8258 | (uint64_t) a->c[5] << 40
8259 | (uint64_t) a->c[6] << 48
8260 | (uint64_t) a->c[7] << 56);
8261 return aval;
8262 }
8263
8264 static bfd_vma
8265 ext64b_r_offset (const void *p)
8266 {
8267 union aligned64
8268 {
8269 uint64_t v;
8270 unsigned char c[8];
8271 };
8272 const union aligned64 *a
8273 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8274
8275 uint64_t aval = ( (uint64_t) a->c[0] << 56
8276 | (uint64_t) a->c[1] << 48
8277 | (uint64_t) a->c[2] << 40
8278 | (uint64_t) a->c[3] << 32
8279 | (uint64_t) a->c[4] << 24
8280 | (uint64_t) a->c[5] << 16
8281 | (uint64_t) a->c[6] << 8
8282 | (uint64_t) a->c[7]);
8283 return aval;
8284 }
8285 #endif
8286
8287 /* When performing a relocatable link, the input relocations are
8288 preserved. But, if they reference global symbols, the indices
8289 referenced must be updated. Update all the relocations found in
8290 RELDATA. */
8291
8292 static bfd_boolean
8293 elf_link_adjust_relocs (bfd *abfd,
8294 struct bfd_elf_section_reloc_data *reldata,
8295 bfd_boolean sort)
8296 {
8297 unsigned int i;
8298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8299 bfd_byte *erela;
8300 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8302 bfd_vma r_type_mask;
8303 int r_sym_shift;
8304 unsigned int count = reldata->count;
8305 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8306
8307 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8308 {
8309 swap_in = bed->s->swap_reloc_in;
8310 swap_out = bed->s->swap_reloc_out;
8311 }
8312 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8313 {
8314 swap_in = bed->s->swap_reloca_in;
8315 swap_out = bed->s->swap_reloca_out;
8316 }
8317 else
8318 abort ();
8319
8320 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8321 abort ();
8322
8323 if (bed->s->arch_size == 32)
8324 {
8325 r_type_mask = 0xff;
8326 r_sym_shift = 8;
8327 }
8328 else
8329 {
8330 r_type_mask = 0xffffffff;
8331 r_sym_shift = 32;
8332 }
8333
8334 erela = reldata->hdr->contents;
8335 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8336 {
8337 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8338 unsigned int j;
8339
8340 if (*rel_hash == NULL)
8341 continue;
8342
8343 BFD_ASSERT ((*rel_hash)->indx >= 0);
8344
8345 (*swap_in) (abfd, erela, irela);
8346 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8347 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8348 | (irela[j].r_info & r_type_mask));
8349 (*swap_out) (abfd, irela, erela);
8350 }
8351
8352 if (sort && count != 0)
8353 {
8354 bfd_vma (*ext_r_off) (const void *);
8355 bfd_vma r_off;
8356 size_t elt_size;
8357 bfd_byte *base, *end, *p, *loc;
8358 bfd_byte *buf = NULL;
8359
8360 if (bed->s->arch_size == 32)
8361 {
8362 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8363 ext_r_off = ext32l_r_offset;
8364 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8365 ext_r_off = ext32b_r_offset;
8366 else
8367 abort ();
8368 }
8369 else
8370 {
8371 #ifdef BFD_HOST_64_BIT
8372 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8373 ext_r_off = ext64l_r_offset;
8374 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8375 ext_r_off = ext64b_r_offset;
8376 else
8377 #endif
8378 abort ();
8379 }
8380
8381 /* Must use a stable sort here. A modified insertion sort,
8382 since the relocs are mostly sorted already. */
8383 elt_size = reldata->hdr->sh_entsize;
8384 base = reldata->hdr->contents;
8385 end = base + count * elt_size;
8386 if (elt_size > sizeof (Elf64_External_Rela))
8387 abort ();
8388
8389 /* Ensure the first element is lowest. This acts as a sentinel,
8390 speeding the main loop below. */
8391 r_off = (*ext_r_off) (base);
8392 for (p = loc = base; (p += elt_size) < end; )
8393 {
8394 bfd_vma r_off2 = (*ext_r_off) (p);
8395 if (r_off > r_off2)
8396 {
8397 r_off = r_off2;
8398 loc = p;
8399 }
8400 }
8401 if (loc != base)
8402 {
8403 /* Don't just swap *base and *loc as that changes the order
8404 of the original base[0] and base[1] if they happen to
8405 have the same r_offset. */
8406 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8407 memcpy (onebuf, loc, elt_size);
8408 memmove (base + elt_size, base, loc - base);
8409 memcpy (base, onebuf, elt_size);
8410 }
8411
8412 for (p = base + elt_size; (p += elt_size) < end; )
8413 {
8414 /* base to p is sorted, *p is next to insert. */
8415 r_off = (*ext_r_off) (p);
8416 /* Search the sorted region for location to insert. */
8417 loc = p - elt_size;
8418 while (r_off < (*ext_r_off) (loc))
8419 loc -= elt_size;
8420 loc += elt_size;
8421 if (loc != p)
8422 {
8423 /* Chances are there is a run of relocs to insert here,
8424 from one of more input files. Files are not always
8425 linked in order due to the way elf_link_input_bfd is
8426 called. See pr17666. */
8427 size_t sortlen = p - loc;
8428 bfd_vma r_off2 = (*ext_r_off) (loc);
8429 size_t runlen = elt_size;
8430 size_t buf_size = 96 * 1024;
8431 while (p + runlen < end
8432 && (sortlen <= buf_size
8433 || runlen + elt_size <= buf_size)
8434 && r_off2 > (*ext_r_off) (p + runlen))
8435 runlen += elt_size;
8436 if (buf == NULL)
8437 {
8438 buf = bfd_malloc (buf_size);
8439 if (buf == NULL)
8440 return FALSE;
8441 }
8442 if (runlen < sortlen)
8443 {
8444 memcpy (buf, p, runlen);
8445 memmove (loc + runlen, loc, sortlen);
8446 memcpy (loc, buf, runlen);
8447 }
8448 else
8449 {
8450 memcpy (buf, loc, sortlen);
8451 memmove (loc, p, runlen);
8452 memcpy (loc + runlen, buf, sortlen);
8453 }
8454 p += runlen - elt_size;
8455 }
8456 }
8457 /* Hashes are no longer valid. */
8458 free (reldata->hashes);
8459 reldata->hashes = NULL;
8460 free (buf);
8461 }
8462 return TRUE;
8463 }
8464
8465 struct elf_link_sort_rela
8466 {
8467 union {
8468 bfd_vma offset;
8469 bfd_vma sym_mask;
8470 } u;
8471 enum elf_reloc_type_class type;
8472 /* We use this as an array of size int_rels_per_ext_rel. */
8473 Elf_Internal_Rela rela[1];
8474 };
8475
8476 static int
8477 elf_link_sort_cmp1 (const void *A, const void *B)
8478 {
8479 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8480 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8481 int relativea, relativeb;
8482
8483 relativea = a->type == reloc_class_relative;
8484 relativeb = b->type == reloc_class_relative;
8485
8486 if (relativea < relativeb)
8487 return 1;
8488 if (relativea > relativeb)
8489 return -1;
8490 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8491 return -1;
8492 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8493 return 1;
8494 if (a->rela->r_offset < b->rela->r_offset)
8495 return -1;
8496 if (a->rela->r_offset > b->rela->r_offset)
8497 return 1;
8498 return 0;
8499 }
8500
8501 static int
8502 elf_link_sort_cmp2 (const void *A, const void *B)
8503 {
8504 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8505 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8506
8507 if (a->type < b->type)
8508 return -1;
8509 if (a->type > b->type)
8510 return 1;
8511 if (a->u.offset < b->u.offset)
8512 return -1;
8513 if (a->u.offset > b->u.offset)
8514 return 1;
8515 if (a->rela->r_offset < b->rela->r_offset)
8516 return -1;
8517 if (a->rela->r_offset > b->rela->r_offset)
8518 return 1;
8519 return 0;
8520 }
8521
8522 static size_t
8523 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8524 {
8525 asection *dynamic_relocs;
8526 asection *rela_dyn;
8527 asection *rel_dyn;
8528 bfd_size_type count, size;
8529 size_t i, ret, sort_elt, ext_size;
8530 bfd_byte *sort, *s_non_relative, *p;
8531 struct elf_link_sort_rela *sq;
8532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8533 int i2e = bed->s->int_rels_per_ext_rel;
8534 unsigned int opb = bfd_octets_per_byte (abfd);
8535 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8536 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8537 struct bfd_link_order *lo;
8538 bfd_vma r_sym_mask;
8539 bfd_boolean use_rela;
8540
8541 /* Find a dynamic reloc section. */
8542 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8543 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8544 if (rela_dyn != NULL && rela_dyn->size > 0
8545 && rel_dyn != NULL && rel_dyn->size > 0)
8546 {
8547 bfd_boolean use_rela_initialised = FALSE;
8548
8549 /* This is just here to stop gcc from complaining.
8550 Its initialization checking code is not perfect. */
8551 use_rela = TRUE;
8552
8553 /* Both sections are present. Examine the sizes
8554 of the indirect sections to help us choose. */
8555 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8556 if (lo->type == bfd_indirect_link_order)
8557 {
8558 asection *o = lo->u.indirect.section;
8559
8560 if ((o->size % bed->s->sizeof_rela) == 0)
8561 {
8562 if ((o->size % bed->s->sizeof_rel) == 0)
8563 /* Section size is divisible by both rel and rela sizes.
8564 It is of no help to us. */
8565 ;
8566 else
8567 {
8568 /* Section size is only divisible by rela. */
8569 if (use_rela_initialised && (use_rela == FALSE))
8570 {
8571 _bfd_error_handler (_("%B: Unable to sort relocs - "
8572 "they are in more than one size"),
8573 abfd);
8574 bfd_set_error (bfd_error_invalid_operation);
8575 return 0;
8576 }
8577 else
8578 {
8579 use_rela = TRUE;
8580 use_rela_initialised = TRUE;
8581 }
8582 }
8583 }
8584 else if ((o->size % bed->s->sizeof_rel) == 0)
8585 {
8586 /* Section size is only divisible by rel. */
8587 if (use_rela_initialised && (use_rela == TRUE))
8588 {
8589 _bfd_error_handler (_("%B: Unable to sort relocs - "
8590 "they are in more than one size"),
8591 abfd);
8592 bfd_set_error (bfd_error_invalid_operation);
8593 return 0;
8594 }
8595 else
8596 {
8597 use_rela = FALSE;
8598 use_rela_initialised = TRUE;
8599 }
8600 }
8601 else
8602 {
8603 /* The section size is not divisible by either -
8604 something is wrong. */
8605 _bfd_error_handler (_("%B: Unable to sort relocs - "
8606 "they are of an unknown size"), abfd);
8607 bfd_set_error (bfd_error_invalid_operation);
8608 return 0;
8609 }
8610 }
8611
8612 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8613 if (lo->type == bfd_indirect_link_order)
8614 {
8615 asection *o = lo->u.indirect.section;
8616
8617 if ((o->size % bed->s->sizeof_rela) == 0)
8618 {
8619 if ((o->size % bed->s->sizeof_rel) == 0)
8620 /* Section size is divisible by both rel and rela sizes.
8621 It is of no help to us. */
8622 ;
8623 else
8624 {
8625 /* Section size is only divisible by rela. */
8626 if (use_rela_initialised && (use_rela == FALSE))
8627 {
8628 _bfd_error_handler (_("%B: Unable to sort relocs - "
8629 "they are in more than one size"),
8630 abfd);
8631 bfd_set_error (bfd_error_invalid_operation);
8632 return 0;
8633 }
8634 else
8635 {
8636 use_rela = TRUE;
8637 use_rela_initialised = TRUE;
8638 }
8639 }
8640 }
8641 else if ((o->size % bed->s->sizeof_rel) == 0)
8642 {
8643 /* Section size is only divisible by rel. */
8644 if (use_rela_initialised && (use_rela == TRUE))
8645 {
8646 _bfd_error_handler (_("%B: Unable to sort relocs - "
8647 "they are in more than one size"),
8648 abfd);
8649 bfd_set_error (bfd_error_invalid_operation);
8650 return 0;
8651 }
8652 else
8653 {
8654 use_rela = FALSE;
8655 use_rela_initialised = TRUE;
8656 }
8657 }
8658 else
8659 {
8660 /* The section size is not divisible by either -
8661 something is wrong. */
8662 _bfd_error_handler (_("%B: Unable to sort relocs - "
8663 "they are of an unknown size"), abfd);
8664 bfd_set_error (bfd_error_invalid_operation);
8665 return 0;
8666 }
8667 }
8668
8669 if (! use_rela_initialised)
8670 /* Make a guess. */
8671 use_rela = TRUE;
8672 }
8673 else if (rela_dyn != NULL && rela_dyn->size > 0)
8674 use_rela = TRUE;
8675 else if (rel_dyn != NULL && rel_dyn->size > 0)
8676 use_rela = FALSE;
8677 else
8678 return 0;
8679
8680 if (use_rela)
8681 {
8682 dynamic_relocs = rela_dyn;
8683 ext_size = bed->s->sizeof_rela;
8684 swap_in = bed->s->swap_reloca_in;
8685 swap_out = bed->s->swap_reloca_out;
8686 }
8687 else
8688 {
8689 dynamic_relocs = rel_dyn;
8690 ext_size = bed->s->sizeof_rel;
8691 swap_in = bed->s->swap_reloc_in;
8692 swap_out = bed->s->swap_reloc_out;
8693 }
8694
8695 size = 0;
8696 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8697 if (lo->type == bfd_indirect_link_order)
8698 size += lo->u.indirect.section->size;
8699
8700 if (size != dynamic_relocs->size)
8701 return 0;
8702
8703 sort_elt = (sizeof (struct elf_link_sort_rela)
8704 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8705
8706 count = dynamic_relocs->size / ext_size;
8707 if (count == 0)
8708 return 0;
8709 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8710
8711 if (sort == NULL)
8712 {
8713 (*info->callbacks->warning)
8714 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8715 return 0;
8716 }
8717
8718 if (bed->s->arch_size == 32)
8719 r_sym_mask = ~(bfd_vma) 0xff;
8720 else
8721 r_sym_mask = ~(bfd_vma) 0xffffffff;
8722
8723 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8724 if (lo->type == bfd_indirect_link_order)
8725 {
8726 bfd_byte *erel, *erelend;
8727 asection *o = lo->u.indirect.section;
8728
8729 if (o->contents == NULL && o->size != 0)
8730 {
8731 /* This is a reloc section that is being handled as a normal
8732 section. See bfd_section_from_shdr. We can't combine
8733 relocs in this case. */
8734 free (sort);
8735 return 0;
8736 }
8737 erel = o->contents;
8738 erelend = o->contents + o->size;
8739 p = sort + o->output_offset * opb / ext_size * sort_elt;
8740
8741 while (erel < erelend)
8742 {
8743 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8744
8745 (*swap_in) (abfd, erel, s->rela);
8746 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8747 s->u.sym_mask = r_sym_mask;
8748 p += sort_elt;
8749 erel += ext_size;
8750 }
8751 }
8752
8753 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8754
8755 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8756 {
8757 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8758 if (s->type != reloc_class_relative)
8759 break;
8760 }
8761 ret = i;
8762 s_non_relative = p;
8763
8764 sq = (struct elf_link_sort_rela *) s_non_relative;
8765 for (; i < count; i++, p += sort_elt)
8766 {
8767 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8768 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8769 sq = sp;
8770 sp->u.offset = sq->rela->r_offset;
8771 }
8772
8773 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8774
8775 struct elf_link_hash_table *htab = elf_hash_table (info);
8776 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8777 {
8778 /* We have plt relocs in .rela.dyn. */
8779 sq = (struct elf_link_sort_rela *) sort;
8780 for (i = 0; i < count; i++)
8781 if (sq[count - i - 1].type != reloc_class_plt)
8782 break;
8783 if (i != 0 && htab->srelplt->size == i * ext_size)
8784 {
8785 struct bfd_link_order **plo;
8786 /* Put srelplt link_order last. This is so the output_offset
8787 set in the next loop is correct for DT_JMPREL. */
8788 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8789 if ((*plo)->type == bfd_indirect_link_order
8790 && (*plo)->u.indirect.section == htab->srelplt)
8791 {
8792 lo = *plo;
8793 *plo = lo->next;
8794 }
8795 else
8796 plo = &(*plo)->next;
8797 *plo = lo;
8798 lo->next = NULL;
8799 dynamic_relocs->map_tail.link_order = lo;
8800 }
8801 }
8802
8803 p = sort;
8804 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8805 if (lo->type == bfd_indirect_link_order)
8806 {
8807 bfd_byte *erel, *erelend;
8808 asection *o = lo->u.indirect.section;
8809
8810 erel = o->contents;
8811 erelend = o->contents + o->size;
8812 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8813 while (erel < erelend)
8814 {
8815 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8816 (*swap_out) (abfd, s->rela, erel);
8817 p += sort_elt;
8818 erel += ext_size;
8819 }
8820 }
8821
8822 free (sort);
8823 *psec = dynamic_relocs;
8824 return ret;
8825 }
8826
8827 /* Add a symbol to the output symbol string table. */
8828
8829 static int
8830 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8831 const char *name,
8832 Elf_Internal_Sym *elfsym,
8833 asection *input_sec,
8834 struct elf_link_hash_entry *h)
8835 {
8836 int (*output_symbol_hook)
8837 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8838 struct elf_link_hash_entry *);
8839 struct elf_link_hash_table *hash_table;
8840 const struct elf_backend_data *bed;
8841 bfd_size_type strtabsize;
8842
8843 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8844
8845 bed = get_elf_backend_data (flinfo->output_bfd);
8846 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8847 if (output_symbol_hook != NULL)
8848 {
8849 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8850 if (ret != 1)
8851 return ret;
8852 }
8853
8854 if (name == NULL
8855 || *name == '\0'
8856 || (input_sec->flags & SEC_EXCLUDE))
8857 elfsym->st_name = (unsigned long) -1;
8858 else
8859 {
8860 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8861 to get the final offset for st_name. */
8862 elfsym->st_name
8863 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8864 name, FALSE);
8865 if (elfsym->st_name == (unsigned long) -1)
8866 return 0;
8867 }
8868
8869 hash_table = elf_hash_table (flinfo->info);
8870 strtabsize = hash_table->strtabsize;
8871 if (strtabsize <= hash_table->strtabcount)
8872 {
8873 strtabsize += strtabsize;
8874 hash_table->strtabsize = strtabsize;
8875 strtabsize *= sizeof (*hash_table->strtab);
8876 hash_table->strtab
8877 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8878 strtabsize);
8879 if (hash_table->strtab == NULL)
8880 return 0;
8881 }
8882 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8883 hash_table->strtab[hash_table->strtabcount].dest_index
8884 = hash_table->strtabcount;
8885 hash_table->strtab[hash_table->strtabcount].destshndx_index
8886 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8887
8888 bfd_get_symcount (flinfo->output_bfd) += 1;
8889 hash_table->strtabcount += 1;
8890
8891 return 1;
8892 }
8893
8894 /* Swap symbols out to the symbol table and flush the output symbols to
8895 the file. */
8896
8897 static bfd_boolean
8898 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8899 {
8900 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8901 bfd_size_type amt, i;
8902 const struct elf_backend_data *bed;
8903 bfd_byte *symbuf;
8904 Elf_Internal_Shdr *hdr;
8905 file_ptr pos;
8906 bfd_boolean ret;
8907
8908 if (!hash_table->strtabcount)
8909 return TRUE;
8910
8911 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8912
8913 bed = get_elf_backend_data (flinfo->output_bfd);
8914
8915 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8916 symbuf = (bfd_byte *) bfd_malloc (amt);
8917 if (symbuf == NULL)
8918 return FALSE;
8919
8920 if (flinfo->symshndxbuf)
8921 {
8922 amt = (sizeof (Elf_External_Sym_Shndx)
8923 * (bfd_get_symcount (flinfo->output_bfd)));
8924 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8925 if (flinfo->symshndxbuf == NULL)
8926 {
8927 free (symbuf);
8928 return FALSE;
8929 }
8930 }
8931
8932 for (i = 0; i < hash_table->strtabcount; i++)
8933 {
8934 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8935 if (elfsym->sym.st_name == (unsigned long) -1)
8936 elfsym->sym.st_name = 0;
8937 else
8938 elfsym->sym.st_name
8939 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8940 elfsym->sym.st_name);
8941 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8942 ((bfd_byte *) symbuf
8943 + (elfsym->dest_index
8944 * bed->s->sizeof_sym)),
8945 (flinfo->symshndxbuf
8946 + elfsym->destshndx_index));
8947 }
8948
8949 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8950 pos = hdr->sh_offset + hdr->sh_size;
8951 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8952 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8953 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8954 {
8955 hdr->sh_size += amt;
8956 ret = TRUE;
8957 }
8958 else
8959 ret = FALSE;
8960
8961 free (symbuf);
8962
8963 free (hash_table->strtab);
8964 hash_table->strtab = NULL;
8965
8966 return ret;
8967 }
8968
8969 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8970
8971 static bfd_boolean
8972 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8973 {
8974 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8975 && sym->st_shndx < SHN_LORESERVE)
8976 {
8977 /* The gABI doesn't support dynamic symbols in output sections
8978 beyond 64k. */
8979 (*_bfd_error_handler)
8980 (_("%B: Too many sections: %d (>= %d)"),
8981 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8982 bfd_set_error (bfd_error_nonrepresentable_section);
8983 return FALSE;
8984 }
8985 return TRUE;
8986 }
8987
8988 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8989 allowing an unsatisfied unversioned symbol in the DSO to match a
8990 versioned symbol that would normally require an explicit version.
8991 We also handle the case that a DSO references a hidden symbol
8992 which may be satisfied by a versioned symbol in another DSO. */
8993
8994 static bfd_boolean
8995 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8996 const struct elf_backend_data *bed,
8997 struct elf_link_hash_entry *h)
8998 {
8999 bfd *abfd;
9000 struct elf_link_loaded_list *loaded;
9001
9002 if (!is_elf_hash_table (info->hash))
9003 return FALSE;
9004
9005 /* Check indirect symbol. */
9006 while (h->root.type == bfd_link_hash_indirect)
9007 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9008
9009 switch (h->root.type)
9010 {
9011 default:
9012 abfd = NULL;
9013 break;
9014
9015 case bfd_link_hash_undefined:
9016 case bfd_link_hash_undefweak:
9017 abfd = h->root.u.undef.abfd;
9018 if ((abfd->flags & DYNAMIC) == 0
9019 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9020 return FALSE;
9021 break;
9022
9023 case bfd_link_hash_defined:
9024 case bfd_link_hash_defweak:
9025 abfd = h->root.u.def.section->owner;
9026 break;
9027
9028 case bfd_link_hash_common:
9029 abfd = h->root.u.c.p->section->owner;
9030 break;
9031 }
9032 BFD_ASSERT (abfd != NULL);
9033
9034 for (loaded = elf_hash_table (info)->loaded;
9035 loaded != NULL;
9036 loaded = loaded->next)
9037 {
9038 bfd *input;
9039 Elf_Internal_Shdr *hdr;
9040 bfd_size_type symcount;
9041 bfd_size_type extsymcount;
9042 bfd_size_type extsymoff;
9043 Elf_Internal_Shdr *versymhdr;
9044 Elf_Internal_Sym *isym;
9045 Elf_Internal_Sym *isymend;
9046 Elf_Internal_Sym *isymbuf;
9047 Elf_External_Versym *ever;
9048 Elf_External_Versym *extversym;
9049
9050 input = loaded->abfd;
9051
9052 /* We check each DSO for a possible hidden versioned definition. */
9053 if (input == abfd
9054 || (input->flags & DYNAMIC) == 0
9055 || elf_dynversym (input) == 0)
9056 continue;
9057
9058 hdr = &elf_tdata (input)->dynsymtab_hdr;
9059
9060 symcount = hdr->sh_size / bed->s->sizeof_sym;
9061 if (elf_bad_symtab (input))
9062 {
9063 extsymcount = symcount;
9064 extsymoff = 0;
9065 }
9066 else
9067 {
9068 extsymcount = symcount - hdr->sh_info;
9069 extsymoff = hdr->sh_info;
9070 }
9071
9072 if (extsymcount == 0)
9073 continue;
9074
9075 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9076 NULL, NULL, NULL);
9077 if (isymbuf == NULL)
9078 return FALSE;
9079
9080 /* Read in any version definitions. */
9081 versymhdr = &elf_tdata (input)->dynversym_hdr;
9082 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9083 if (extversym == NULL)
9084 goto error_ret;
9085
9086 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9087 || (bfd_bread (extversym, versymhdr->sh_size, input)
9088 != versymhdr->sh_size))
9089 {
9090 free (extversym);
9091 error_ret:
9092 free (isymbuf);
9093 return FALSE;
9094 }
9095
9096 ever = extversym + extsymoff;
9097 isymend = isymbuf + extsymcount;
9098 for (isym = isymbuf; isym < isymend; isym++, ever++)
9099 {
9100 const char *name;
9101 Elf_Internal_Versym iver;
9102 unsigned short version_index;
9103
9104 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9105 || isym->st_shndx == SHN_UNDEF)
9106 continue;
9107
9108 name = bfd_elf_string_from_elf_section (input,
9109 hdr->sh_link,
9110 isym->st_name);
9111 if (strcmp (name, h->root.root.string) != 0)
9112 continue;
9113
9114 _bfd_elf_swap_versym_in (input, ever, &iver);
9115
9116 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9117 && !(h->def_regular
9118 && h->forced_local))
9119 {
9120 /* If we have a non-hidden versioned sym, then it should
9121 have provided a definition for the undefined sym unless
9122 it is defined in a non-shared object and forced local.
9123 */
9124 abort ();
9125 }
9126
9127 version_index = iver.vs_vers & VERSYM_VERSION;
9128 if (version_index == 1 || version_index == 2)
9129 {
9130 /* This is the base or first version. We can use it. */
9131 free (extversym);
9132 free (isymbuf);
9133 return TRUE;
9134 }
9135 }
9136
9137 free (extversym);
9138 free (isymbuf);
9139 }
9140
9141 return FALSE;
9142 }
9143
9144 /* Convert ELF common symbol TYPE. */
9145
9146 static int
9147 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9148 {
9149 /* Commom symbol can only appear in relocatable link. */
9150 if (!bfd_link_relocatable (info))
9151 abort ();
9152 switch (info->elf_stt_common)
9153 {
9154 case unchanged:
9155 break;
9156 case elf_stt_common:
9157 type = STT_COMMON;
9158 break;
9159 case no_elf_stt_common:
9160 type = STT_OBJECT;
9161 break;
9162 }
9163 return type;
9164 }
9165
9166 /* Add an external symbol to the symbol table. This is called from
9167 the hash table traversal routine. When generating a shared object,
9168 we go through the symbol table twice. The first time we output
9169 anything that might have been forced to local scope in a version
9170 script. The second time we output the symbols that are still
9171 global symbols. */
9172
9173 static bfd_boolean
9174 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9175 {
9176 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9177 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9178 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9179 bfd_boolean strip;
9180 Elf_Internal_Sym sym;
9181 asection *input_sec;
9182 const struct elf_backend_data *bed;
9183 long indx;
9184 int ret;
9185 unsigned int type;
9186 /* A symbol is bound locally if it is forced local or it is locally
9187 defined, hidden versioned, not referenced by shared library and
9188 not exported when linking executable. */
9189 bfd_boolean local_bind = (h->forced_local
9190 || (bfd_link_executable (flinfo->info)
9191 && !flinfo->info->export_dynamic
9192 && !h->dynamic
9193 && !h->ref_dynamic
9194 && h->def_regular
9195 && h->versioned == versioned_hidden));
9196
9197 if (h->root.type == bfd_link_hash_warning)
9198 {
9199 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9200 if (h->root.type == bfd_link_hash_new)
9201 return TRUE;
9202 }
9203
9204 /* Decide whether to output this symbol in this pass. */
9205 if (eoinfo->localsyms)
9206 {
9207 if (!local_bind)
9208 return TRUE;
9209 }
9210 else
9211 {
9212 if (local_bind)
9213 return TRUE;
9214 }
9215
9216 bed = get_elf_backend_data (flinfo->output_bfd);
9217
9218 if (h->root.type == bfd_link_hash_undefined)
9219 {
9220 /* If we have an undefined symbol reference here then it must have
9221 come from a shared library that is being linked in. (Undefined
9222 references in regular files have already been handled unless
9223 they are in unreferenced sections which are removed by garbage
9224 collection). */
9225 bfd_boolean ignore_undef = FALSE;
9226
9227 /* Some symbols may be special in that the fact that they're
9228 undefined can be safely ignored - let backend determine that. */
9229 if (bed->elf_backend_ignore_undef_symbol)
9230 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9231
9232 /* If we are reporting errors for this situation then do so now. */
9233 if (!ignore_undef
9234 && h->ref_dynamic
9235 && (!h->ref_regular || flinfo->info->gc_sections)
9236 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9237 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9238 {
9239 if (!(flinfo->info->callbacks->undefined_symbol
9240 (flinfo->info, h->root.root.string,
9241 h->ref_regular ? NULL : h->root.u.undef.abfd,
9242 NULL, 0,
9243 (flinfo->info->unresolved_syms_in_shared_libs
9244 == RM_GENERATE_ERROR))))
9245 {
9246 bfd_set_error (bfd_error_bad_value);
9247 eoinfo->failed = TRUE;
9248 return FALSE;
9249 }
9250 }
9251
9252 /* Strip a global symbol defined in a discarded section. */
9253 if (h->indx == -3)
9254 return TRUE;
9255 }
9256
9257 /* We should also warn if a forced local symbol is referenced from
9258 shared libraries. */
9259 if (bfd_link_executable (flinfo->info)
9260 && h->forced_local
9261 && h->ref_dynamic
9262 && h->def_regular
9263 && !h->dynamic_def
9264 && h->ref_dynamic_nonweak
9265 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9266 {
9267 bfd *def_bfd;
9268 const char *msg;
9269 struct elf_link_hash_entry *hi = h;
9270
9271 /* Check indirect symbol. */
9272 while (hi->root.type == bfd_link_hash_indirect)
9273 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9274
9275 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9276 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9277 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9278 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9279 else
9280 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9281 def_bfd = flinfo->output_bfd;
9282 if (hi->root.u.def.section != bfd_abs_section_ptr)
9283 def_bfd = hi->root.u.def.section->owner;
9284 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9285 h->root.root.string);
9286 bfd_set_error (bfd_error_bad_value);
9287 eoinfo->failed = TRUE;
9288 return FALSE;
9289 }
9290
9291 /* We don't want to output symbols that have never been mentioned by
9292 a regular file, or that we have been told to strip. However, if
9293 h->indx is set to -2, the symbol is used by a reloc and we must
9294 output it. */
9295 strip = FALSE;
9296 if (h->indx == -2)
9297 ;
9298 else if ((h->def_dynamic
9299 || h->ref_dynamic
9300 || h->root.type == bfd_link_hash_new)
9301 && !h->def_regular
9302 && !h->ref_regular)
9303 strip = TRUE;
9304 else if (flinfo->info->strip == strip_all)
9305 strip = TRUE;
9306 else if (flinfo->info->strip == strip_some
9307 && bfd_hash_lookup (flinfo->info->keep_hash,
9308 h->root.root.string, FALSE, FALSE) == NULL)
9309 strip = TRUE;
9310 else if ((h->root.type == bfd_link_hash_defined
9311 || h->root.type == bfd_link_hash_defweak)
9312 && ((flinfo->info->strip_discarded
9313 && discarded_section (h->root.u.def.section))
9314 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9315 && h->root.u.def.section->owner != NULL
9316 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9317 strip = TRUE;
9318 else if ((h->root.type == bfd_link_hash_undefined
9319 || h->root.type == bfd_link_hash_undefweak)
9320 && h->root.u.undef.abfd != NULL
9321 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9322 strip = TRUE;
9323
9324 type = h->type;
9325
9326 /* If we're stripping it, and it's not a dynamic symbol, there's
9327 nothing else to do. However, if it is a forced local symbol or
9328 an ifunc symbol we need to give the backend finish_dynamic_symbol
9329 function a chance to make it dynamic. */
9330 if (strip
9331 && h->dynindx == -1
9332 && type != STT_GNU_IFUNC
9333 && !h->forced_local)
9334 return TRUE;
9335
9336 sym.st_value = 0;
9337 sym.st_size = h->size;
9338 sym.st_other = h->other;
9339 switch (h->root.type)
9340 {
9341 default:
9342 case bfd_link_hash_new:
9343 case bfd_link_hash_warning:
9344 abort ();
9345 return FALSE;
9346
9347 case bfd_link_hash_undefined:
9348 case bfd_link_hash_undefweak:
9349 input_sec = bfd_und_section_ptr;
9350 sym.st_shndx = SHN_UNDEF;
9351 break;
9352
9353 case bfd_link_hash_defined:
9354 case bfd_link_hash_defweak:
9355 {
9356 input_sec = h->root.u.def.section;
9357 if (input_sec->output_section != NULL)
9358 {
9359 sym.st_shndx =
9360 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9361 input_sec->output_section);
9362 if (sym.st_shndx == SHN_BAD)
9363 {
9364 (*_bfd_error_handler)
9365 (_("%B: could not find output section %A for input section %A"),
9366 flinfo->output_bfd, input_sec->output_section, input_sec);
9367 bfd_set_error (bfd_error_nonrepresentable_section);
9368 eoinfo->failed = TRUE;
9369 return FALSE;
9370 }
9371
9372 /* ELF symbols in relocatable files are section relative,
9373 but in nonrelocatable files they are virtual
9374 addresses. */
9375 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9376 if (!bfd_link_relocatable (flinfo->info))
9377 {
9378 sym.st_value += input_sec->output_section->vma;
9379 if (h->type == STT_TLS)
9380 {
9381 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9382 if (tls_sec != NULL)
9383 sym.st_value -= tls_sec->vma;
9384 }
9385 }
9386 }
9387 else
9388 {
9389 BFD_ASSERT (input_sec->owner == NULL
9390 || (input_sec->owner->flags & DYNAMIC) != 0);
9391 sym.st_shndx = SHN_UNDEF;
9392 input_sec = bfd_und_section_ptr;
9393 }
9394 }
9395 break;
9396
9397 case bfd_link_hash_common:
9398 input_sec = h->root.u.c.p->section;
9399 sym.st_shndx = bed->common_section_index (input_sec);
9400 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9401 break;
9402
9403 case bfd_link_hash_indirect:
9404 /* These symbols are created by symbol versioning. They point
9405 to the decorated version of the name. For example, if the
9406 symbol foo@@GNU_1.2 is the default, which should be used when
9407 foo is used with no version, then we add an indirect symbol
9408 foo which points to foo@@GNU_1.2. We ignore these symbols,
9409 since the indirected symbol is already in the hash table. */
9410 return TRUE;
9411 }
9412
9413 if (type == STT_COMMON || type == STT_OBJECT)
9414 switch (h->root.type)
9415 {
9416 case bfd_link_hash_common:
9417 type = elf_link_convert_common_type (flinfo->info, type);
9418 break;
9419 case bfd_link_hash_defined:
9420 case bfd_link_hash_defweak:
9421 if (bed->common_definition (&sym))
9422 type = elf_link_convert_common_type (flinfo->info, type);
9423 else
9424 type = STT_OBJECT;
9425 break;
9426 case bfd_link_hash_undefined:
9427 case bfd_link_hash_undefweak:
9428 break;
9429 default:
9430 abort ();
9431 }
9432
9433 if (local_bind)
9434 {
9435 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9436 /* Turn off visibility on local symbol. */
9437 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9438 }
9439 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9440 else if (h->unique_global && h->def_regular)
9441 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9442 else if (h->root.type == bfd_link_hash_undefweak
9443 || h->root.type == bfd_link_hash_defweak)
9444 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9445 else
9446 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9447 sym.st_target_internal = h->target_internal;
9448
9449 /* Give the processor backend a chance to tweak the symbol value,
9450 and also to finish up anything that needs to be done for this
9451 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9452 forced local syms when non-shared is due to a historical quirk.
9453 STT_GNU_IFUNC symbol must go through PLT. */
9454 if ((h->type == STT_GNU_IFUNC
9455 && h->def_regular
9456 && !bfd_link_relocatable (flinfo->info))
9457 || ((h->dynindx != -1
9458 || h->forced_local)
9459 && ((bfd_link_pic (flinfo->info)
9460 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9461 || h->root.type != bfd_link_hash_undefweak))
9462 || !h->forced_local)
9463 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9464 {
9465 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9466 (flinfo->output_bfd, flinfo->info, h, &sym)))
9467 {
9468 eoinfo->failed = TRUE;
9469 return FALSE;
9470 }
9471 }
9472
9473 /* If we are marking the symbol as undefined, and there are no
9474 non-weak references to this symbol from a regular object, then
9475 mark the symbol as weak undefined; if there are non-weak
9476 references, mark the symbol as strong. We can't do this earlier,
9477 because it might not be marked as undefined until the
9478 finish_dynamic_symbol routine gets through with it. */
9479 if (sym.st_shndx == SHN_UNDEF
9480 && h->ref_regular
9481 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9482 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9483 {
9484 int bindtype;
9485 type = ELF_ST_TYPE (sym.st_info);
9486
9487 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9488 if (type == STT_GNU_IFUNC)
9489 type = STT_FUNC;
9490
9491 if (h->ref_regular_nonweak)
9492 bindtype = STB_GLOBAL;
9493 else
9494 bindtype = STB_WEAK;
9495 sym.st_info = ELF_ST_INFO (bindtype, type);
9496 }
9497
9498 /* If this is a symbol defined in a dynamic library, don't use the
9499 symbol size from the dynamic library. Relinking an executable
9500 against a new library may introduce gratuitous changes in the
9501 executable's symbols if we keep the size. */
9502 if (sym.st_shndx == SHN_UNDEF
9503 && !h->def_regular
9504 && h->def_dynamic)
9505 sym.st_size = 0;
9506
9507 /* If a non-weak symbol with non-default visibility is not defined
9508 locally, it is a fatal error. */
9509 if (!bfd_link_relocatable (flinfo->info)
9510 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9511 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9512 && h->root.type == bfd_link_hash_undefined
9513 && !h->def_regular)
9514 {
9515 const char *msg;
9516
9517 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9518 msg = _("%B: protected symbol `%s' isn't defined");
9519 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9520 msg = _("%B: internal symbol `%s' isn't defined");
9521 else
9522 msg = _("%B: hidden symbol `%s' isn't defined");
9523 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9524 bfd_set_error (bfd_error_bad_value);
9525 eoinfo->failed = TRUE;
9526 return FALSE;
9527 }
9528
9529 /* If this symbol should be put in the .dynsym section, then put it
9530 there now. We already know the symbol index. We also fill in
9531 the entry in the .hash section. */
9532 if (elf_hash_table (flinfo->info)->dynsym != NULL
9533 && h->dynindx != -1
9534 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9535 {
9536 bfd_byte *esym;
9537
9538 /* Since there is no version information in the dynamic string,
9539 if there is no version info in symbol version section, we will
9540 have a run-time problem if not linking executable, referenced
9541 by shared library, not locally defined, or not bound locally.
9542 */
9543 if (h->verinfo.verdef == NULL
9544 && !local_bind
9545 && (!bfd_link_executable (flinfo->info)
9546 || h->ref_dynamic
9547 || !h->def_regular))
9548 {
9549 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9550
9551 if (p && p [1] != '\0')
9552 {
9553 (*_bfd_error_handler)
9554 (_("%B: No symbol version section for versioned symbol `%s'"),
9555 flinfo->output_bfd, h->root.root.string);
9556 eoinfo->failed = TRUE;
9557 return FALSE;
9558 }
9559 }
9560
9561 sym.st_name = h->dynstr_index;
9562 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9563 + h->dynindx * bed->s->sizeof_sym);
9564 if (!check_dynsym (flinfo->output_bfd, &sym))
9565 {
9566 eoinfo->failed = TRUE;
9567 return FALSE;
9568 }
9569 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9570
9571 if (flinfo->hash_sec != NULL)
9572 {
9573 size_t hash_entry_size;
9574 bfd_byte *bucketpos;
9575 bfd_vma chain;
9576 size_t bucketcount;
9577 size_t bucket;
9578
9579 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9580 bucket = h->u.elf_hash_value % bucketcount;
9581
9582 hash_entry_size
9583 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9584 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9585 + (bucket + 2) * hash_entry_size);
9586 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9587 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9588 bucketpos);
9589 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9590 ((bfd_byte *) flinfo->hash_sec->contents
9591 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9592 }
9593
9594 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9595 {
9596 Elf_Internal_Versym iversym;
9597 Elf_External_Versym *eversym;
9598
9599 if (!h->def_regular)
9600 {
9601 if (h->verinfo.verdef == NULL
9602 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9603 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9604 iversym.vs_vers = 0;
9605 else
9606 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9607 }
9608 else
9609 {
9610 if (h->verinfo.vertree == NULL)
9611 iversym.vs_vers = 1;
9612 else
9613 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9614 if (flinfo->info->create_default_symver)
9615 iversym.vs_vers++;
9616 }
9617
9618 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9619 defined locally. */
9620 if (h->versioned == versioned_hidden && h->def_regular)
9621 iversym.vs_vers |= VERSYM_HIDDEN;
9622
9623 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9624 eversym += h->dynindx;
9625 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9626 }
9627 }
9628
9629 /* If the symbol is undefined, and we didn't output it to .dynsym,
9630 strip it from .symtab too. Obviously we can't do this for
9631 relocatable output or when needed for --emit-relocs. */
9632 else if (input_sec == bfd_und_section_ptr
9633 && h->indx != -2
9634 && !bfd_link_relocatable (flinfo->info))
9635 return TRUE;
9636 /* Also strip others that we couldn't earlier due to dynamic symbol
9637 processing. */
9638 if (strip)
9639 return TRUE;
9640 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9641 return TRUE;
9642
9643 /* Output a FILE symbol so that following locals are not associated
9644 with the wrong input file. We need one for forced local symbols
9645 if we've seen more than one FILE symbol or when we have exactly
9646 one FILE symbol but global symbols are present in a file other
9647 than the one with the FILE symbol. We also need one if linker
9648 defined symbols are present. In practice these conditions are
9649 always met, so just emit the FILE symbol unconditionally. */
9650 if (eoinfo->localsyms
9651 && !eoinfo->file_sym_done
9652 && eoinfo->flinfo->filesym_count != 0)
9653 {
9654 Elf_Internal_Sym fsym;
9655
9656 memset (&fsym, 0, sizeof (fsym));
9657 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9658 fsym.st_shndx = SHN_ABS;
9659 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9660 bfd_und_section_ptr, NULL))
9661 return FALSE;
9662
9663 eoinfo->file_sym_done = TRUE;
9664 }
9665
9666 indx = bfd_get_symcount (flinfo->output_bfd);
9667 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9668 input_sec, h);
9669 if (ret == 0)
9670 {
9671 eoinfo->failed = TRUE;
9672 return FALSE;
9673 }
9674 else if (ret == 1)
9675 h->indx = indx;
9676 else if (h->indx == -2)
9677 abort();
9678
9679 return TRUE;
9680 }
9681
9682 /* Return TRUE if special handling is done for relocs in SEC against
9683 symbols defined in discarded sections. */
9684
9685 static bfd_boolean
9686 elf_section_ignore_discarded_relocs (asection *sec)
9687 {
9688 const struct elf_backend_data *bed;
9689
9690 switch (sec->sec_info_type)
9691 {
9692 case SEC_INFO_TYPE_STABS:
9693 case SEC_INFO_TYPE_EH_FRAME:
9694 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9695 return TRUE;
9696 default:
9697 break;
9698 }
9699
9700 bed = get_elf_backend_data (sec->owner);
9701 if (bed->elf_backend_ignore_discarded_relocs != NULL
9702 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9703 return TRUE;
9704
9705 return FALSE;
9706 }
9707
9708 /* Return a mask saying how ld should treat relocations in SEC against
9709 symbols defined in discarded sections. If this function returns
9710 COMPLAIN set, ld will issue a warning message. If this function
9711 returns PRETEND set, and the discarded section was link-once and the
9712 same size as the kept link-once section, ld will pretend that the
9713 symbol was actually defined in the kept section. Otherwise ld will
9714 zero the reloc (at least that is the intent, but some cooperation by
9715 the target dependent code is needed, particularly for REL targets). */
9716
9717 unsigned int
9718 _bfd_elf_default_action_discarded (asection *sec)
9719 {
9720 if (sec->flags & SEC_DEBUGGING)
9721 return PRETEND;
9722
9723 if (strcmp (".eh_frame", sec->name) == 0)
9724 return 0;
9725
9726 if (strcmp (".gcc_except_table", sec->name) == 0)
9727 return 0;
9728
9729 return COMPLAIN | PRETEND;
9730 }
9731
9732 /* Find a match between a section and a member of a section group. */
9733
9734 static asection *
9735 match_group_member (asection *sec, asection *group,
9736 struct bfd_link_info *info)
9737 {
9738 asection *first = elf_next_in_group (group);
9739 asection *s = first;
9740
9741 while (s != NULL)
9742 {
9743 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9744 return s;
9745
9746 s = elf_next_in_group (s);
9747 if (s == first)
9748 break;
9749 }
9750
9751 return NULL;
9752 }
9753
9754 /* Check if the kept section of a discarded section SEC can be used
9755 to replace it. Return the replacement if it is OK. Otherwise return
9756 NULL. */
9757
9758 asection *
9759 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9760 {
9761 asection *kept;
9762
9763 kept = sec->kept_section;
9764 if (kept != NULL)
9765 {
9766 if ((kept->flags & SEC_GROUP) != 0)
9767 kept = match_group_member (sec, kept, info);
9768 if (kept != NULL
9769 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9770 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9771 kept = NULL;
9772 sec->kept_section = kept;
9773 }
9774 return kept;
9775 }
9776
9777 /* Link an input file into the linker output file. This function
9778 handles all the sections and relocations of the input file at once.
9779 This is so that we only have to read the local symbols once, and
9780 don't have to keep them in memory. */
9781
9782 static bfd_boolean
9783 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9784 {
9785 int (*relocate_section)
9786 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9787 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9788 bfd *output_bfd;
9789 Elf_Internal_Shdr *symtab_hdr;
9790 size_t locsymcount;
9791 size_t extsymoff;
9792 Elf_Internal_Sym *isymbuf;
9793 Elf_Internal_Sym *isym;
9794 Elf_Internal_Sym *isymend;
9795 long *pindex;
9796 asection **ppsection;
9797 asection *o;
9798 const struct elf_backend_data *bed;
9799 struct elf_link_hash_entry **sym_hashes;
9800 bfd_size_type address_size;
9801 bfd_vma r_type_mask;
9802 int r_sym_shift;
9803 bfd_boolean have_file_sym = FALSE;
9804
9805 output_bfd = flinfo->output_bfd;
9806 bed = get_elf_backend_data (output_bfd);
9807 relocate_section = bed->elf_backend_relocate_section;
9808
9809 /* If this is a dynamic object, we don't want to do anything here:
9810 we don't want the local symbols, and we don't want the section
9811 contents. */
9812 if ((input_bfd->flags & DYNAMIC) != 0)
9813 return TRUE;
9814
9815 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9816 if (elf_bad_symtab (input_bfd))
9817 {
9818 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9819 extsymoff = 0;
9820 }
9821 else
9822 {
9823 locsymcount = symtab_hdr->sh_info;
9824 extsymoff = symtab_hdr->sh_info;
9825 }
9826
9827 /* Read the local symbols. */
9828 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9829 if (isymbuf == NULL && locsymcount != 0)
9830 {
9831 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9832 flinfo->internal_syms,
9833 flinfo->external_syms,
9834 flinfo->locsym_shndx);
9835 if (isymbuf == NULL)
9836 return FALSE;
9837 }
9838
9839 /* Find local symbol sections and adjust values of symbols in
9840 SEC_MERGE sections. Write out those local symbols we know are
9841 going into the output file. */
9842 isymend = isymbuf + locsymcount;
9843 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9844 isym < isymend;
9845 isym++, pindex++, ppsection++)
9846 {
9847 asection *isec;
9848 const char *name;
9849 Elf_Internal_Sym osym;
9850 long indx;
9851 int ret;
9852
9853 *pindex = -1;
9854
9855 if (elf_bad_symtab (input_bfd))
9856 {
9857 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9858 {
9859 *ppsection = NULL;
9860 continue;
9861 }
9862 }
9863
9864 if (isym->st_shndx == SHN_UNDEF)
9865 isec = bfd_und_section_ptr;
9866 else if (isym->st_shndx == SHN_ABS)
9867 isec = bfd_abs_section_ptr;
9868 else if (isym->st_shndx == SHN_COMMON)
9869 isec = bfd_com_section_ptr;
9870 else
9871 {
9872 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9873 if (isec == NULL)
9874 {
9875 /* Don't attempt to output symbols with st_shnx in the
9876 reserved range other than SHN_ABS and SHN_COMMON. */
9877 *ppsection = NULL;
9878 continue;
9879 }
9880 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9881 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9882 isym->st_value =
9883 _bfd_merged_section_offset (output_bfd, &isec,
9884 elf_section_data (isec)->sec_info,
9885 isym->st_value);
9886 }
9887
9888 *ppsection = isec;
9889
9890 /* Don't output the first, undefined, symbol. In fact, don't
9891 output any undefined local symbol. */
9892 if (isec == bfd_und_section_ptr)
9893 continue;
9894
9895 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9896 {
9897 /* We never output section symbols. Instead, we use the
9898 section symbol of the corresponding section in the output
9899 file. */
9900 continue;
9901 }
9902
9903 /* If we are stripping all symbols, we don't want to output this
9904 one. */
9905 if (flinfo->info->strip == strip_all)
9906 continue;
9907
9908 /* If we are discarding all local symbols, we don't want to
9909 output this one. If we are generating a relocatable output
9910 file, then some of the local symbols may be required by
9911 relocs; we output them below as we discover that they are
9912 needed. */
9913 if (flinfo->info->discard == discard_all)
9914 continue;
9915
9916 /* If this symbol is defined in a section which we are
9917 discarding, we don't need to keep it. */
9918 if (isym->st_shndx != SHN_UNDEF
9919 && isym->st_shndx < SHN_LORESERVE
9920 && bfd_section_removed_from_list (output_bfd,
9921 isec->output_section))
9922 continue;
9923
9924 /* Get the name of the symbol. */
9925 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9926 isym->st_name);
9927 if (name == NULL)
9928 return FALSE;
9929
9930 /* See if we are discarding symbols with this name. */
9931 if ((flinfo->info->strip == strip_some
9932 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9933 == NULL))
9934 || (((flinfo->info->discard == discard_sec_merge
9935 && (isec->flags & SEC_MERGE)
9936 && !bfd_link_relocatable (flinfo->info))
9937 || flinfo->info->discard == discard_l)
9938 && bfd_is_local_label_name (input_bfd, name)))
9939 continue;
9940
9941 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9942 {
9943 if (input_bfd->lto_output)
9944 /* -flto puts a temp file name here. This means builds
9945 are not reproducible. Discard the symbol. */
9946 continue;
9947 have_file_sym = TRUE;
9948 flinfo->filesym_count += 1;
9949 }
9950 if (!have_file_sym)
9951 {
9952 /* In the absence of debug info, bfd_find_nearest_line uses
9953 FILE symbols to determine the source file for local
9954 function symbols. Provide a FILE symbol here if input
9955 files lack such, so that their symbols won't be
9956 associated with a previous input file. It's not the
9957 source file, but the best we can do. */
9958 have_file_sym = TRUE;
9959 flinfo->filesym_count += 1;
9960 memset (&osym, 0, sizeof (osym));
9961 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9962 osym.st_shndx = SHN_ABS;
9963 if (!elf_link_output_symstrtab (flinfo,
9964 (input_bfd->lto_output ? NULL
9965 : input_bfd->filename),
9966 &osym, bfd_abs_section_ptr,
9967 NULL))
9968 return FALSE;
9969 }
9970
9971 osym = *isym;
9972
9973 /* Adjust the section index for the output file. */
9974 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9975 isec->output_section);
9976 if (osym.st_shndx == SHN_BAD)
9977 return FALSE;
9978
9979 /* ELF symbols in relocatable files are section relative, but
9980 in executable files they are virtual addresses. Note that
9981 this code assumes that all ELF sections have an associated
9982 BFD section with a reasonable value for output_offset; below
9983 we assume that they also have a reasonable value for
9984 output_section. Any special sections must be set up to meet
9985 these requirements. */
9986 osym.st_value += isec->output_offset;
9987 if (!bfd_link_relocatable (flinfo->info))
9988 {
9989 osym.st_value += isec->output_section->vma;
9990 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9991 {
9992 /* STT_TLS symbols are relative to PT_TLS segment base. */
9993 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9994 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9995 }
9996 }
9997
9998 indx = bfd_get_symcount (output_bfd);
9999 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10000 if (ret == 0)
10001 return FALSE;
10002 else if (ret == 1)
10003 *pindex = indx;
10004 }
10005
10006 if (bed->s->arch_size == 32)
10007 {
10008 r_type_mask = 0xff;
10009 r_sym_shift = 8;
10010 address_size = 4;
10011 }
10012 else
10013 {
10014 r_type_mask = 0xffffffff;
10015 r_sym_shift = 32;
10016 address_size = 8;
10017 }
10018
10019 /* Relocate the contents of each section. */
10020 sym_hashes = elf_sym_hashes (input_bfd);
10021 for (o = input_bfd->sections; o != NULL; o = o->next)
10022 {
10023 bfd_byte *contents;
10024
10025 if (! o->linker_mark)
10026 {
10027 /* This section was omitted from the link. */
10028 continue;
10029 }
10030
10031 if (bfd_link_relocatable (flinfo->info)
10032 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10033 {
10034 /* Deal with the group signature symbol. */
10035 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10036 unsigned long symndx = sec_data->this_hdr.sh_info;
10037 asection *osec = o->output_section;
10038
10039 if (symndx >= locsymcount
10040 || (elf_bad_symtab (input_bfd)
10041 && flinfo->sections[symndx] == NULL))
10042 {
10043 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10044 while (h->root.type == bfd_link_hash_indirect
10045 || h->root.type == bfd_link_hash_warning)
10046 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10047 /* Arrange for symbol to be output. */
10048 h->indx = -2;
10049 elf_section_data (osec)->this_hdr.sh_info = -2;
10050 }
10051 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10052 {
10053 /* We'll use the output section target_index. */
10054 asection *sec = flinfo->sections[symndx]->output_section;
10055 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10056 }
10057 else
10058 {
10059 if (flinfo->indices[symndx] == -1)
10060 {
10061 /* Otherwise output the local symbol now. */
10062 Elf_Internal_Sym sym = isymbuf[symndx];
10063 asection *sec = flinfo->sections[symndx]->output_section;
10064 const char *name;
10065 long indx;
10066 int ret;
10067
10068 name = bfd_elf_string_from_elf_section (input_bfd,
10069 symtab_hdr->sh_link,
10070 sym.st_name);
10071 if (name == NULL)
10072 return FALSE;
10073
10074 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10075 sec);
10076 if (sym.st_shndx == SHN_BAD)
10077 return FALSE;
10078
10079 sym.st_value += o->output_offset;
10080
10081 indx = bfd_get_symcount (output_bfd);
10082 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10083 NULL);
10084 if (ret == 0)
10085 return FALSE;
10086 else if (ret == 1)
10087 flinfo->indices[symndx] = indx;
10088 else
10089 abort ();
10090 }
10091 elf_section_data (osec)->this_hdr.sh_info
10092 = flinfo->indices[symndx];
10093 }
10094 }
10095
10096 if ((o->flags & SEC_HAS_CONTENTS) == 0
10097 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10098 continue;
10099
10100 if ((o->flags & SEC_LINKER_CREATED) != 0)
10101 {
10102 /* Section was created by _bfd_elf_link_create_dynamic_sections
10103 or somesuch. */
10104 continue;
10105 }
10106
10107 /* Get the contents of the section. They have been cached by a
10108 relaxation routine. Note that o is a section in an input
10109 file, so the contents field will not have been set by any of
10110 the routines which work on output files. */
10111 if (elf_section_data (o)->this_hdr.contents != NULL)
10112 {
10113 contents = elf_section_data (o)->this_hdr.contents;
10114 if (bed->caches_rawsize
10115 && o->rawsize != 0
10116 && o->rawsize < o->size)
10117 {
10118 memcpy (flinfo->contents, contents, o->rawsize);
10119 contents = flinfo->contents;
10120 }
10121 }
10122 else
10123 {
10124 contents = flinfo->contents;
10125 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10126 return FALSE;
10127 }
10128
10129 if ((o->flags & SEC_RELOC) != 0)
10130 {
10131 Elf_Internal_Rela *internal_relocs;
10132 Elf_Internal_Rela *rel, *relend;
10133 int action_discarded;
10134 int ret;
10135
10136 /* Get the swapped relocs. */
10137 internal_relocs
10138 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10139 flinfo->internal_relocs, FALSE);
10140 if (internal_relocs == NULL
10141 && o->reloc_count > 0)
10142 return FALSE;
10143
10144 /* We need to reverse-copy input .ctors/.dtors sections if
10145 they are placed in .init_array/.finit_array for output. */
10146 if (o->size > address_size
10147 && ((strncmp (o->name, ".ctors", 6) == 0
10148 && strcmp (o->output_section->name,
10149 ".init_array") == 0)
10150 || (strncmp (o->name, ".dtors", 6) == 0
10151 && strcmp (o->output_section->name,
10152 ".fini_array") == 0))
10153 && (o->name[6] == 0 || o->name[6] == '.'))
10154 {
10155 if (o->size != o->reloc_count * address_size)
10156 {
10157 (*_bfd_error_handler)
10158 (_("error: %B: size of section %A is not "
10159 "multiple of address size"),
10160 input_bfd, o);
10161 bfd_set_error (bfd_error_on_input);
10162 return FALSE;
10163 }
10164 o->flags |= SEC_ELF_REVERSE_COPY;
10165 }
10166
10167 action_discarded = -1;
10168 if (!elf_section_ignore_discarded_relocs (o))
10169 action_discarded = (*bed->action_discarded) (o);
10170
10171 /* Run through the relocs evaluating complex reloc symbols and
10172 looking for relocs against symbols from discarded sections
10173 or section symbols from removed link-once sections.
10174 Complain about relocs against discarded sections. Zero
10175 relocs against removed link-once sections. */
10176
10177 rel = internal_relocs;
10178 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10179 for ( ; rel < relend; rel++)
10180 {
10181 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10182 unsigned int s_type;
10183 asection **ps, *sec;
10184 struct elf_link_hash_entry *h = NULL;
10185 const char *sym_name;
10186
10187 if (r_symndx == STN_UNDEF)
10188 continue;
10189
10190 if (r_symndx >= locsymcount
10191 || (elf_bad_symtab (input_bfd)
10192 && flinfo->sections[r_symndx] == NULL))
10193 {
10194 h = sym_hashes[r_symndx - extsymoff];
10195
10196 /* Badly formatted input files can contain relocs that
10197 reference non-existant symbols. Check here so that
10198 we do not seg fault. */
10199 if (h == NULL)
10200 {
10201 char buffer [32];
10202
10203 sprintf_vma (buffer, rel->r_info);
10204 (*_bfd_error_handler)
10205 (_("error: %B contains a reloc (0x%s) for section %A "
10206 "that references a non-existent global symbol"),
10207 input_bfd, o, buffer);
10208 bfd_set_error (bfd_error_bad_value);
10209 return FALSE;
10210 }
10211
10212 while (h->root.type == bfd_link_hash_indirect
10213 || h->root.type == bfd_link_hash_warning)
10214 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10215
10216 s_type = h->type;
10217
10218 /* If a plugin symbol is referenced from a non-IR file,
10219 mark the symbol as undefined. Note that the
10220 linker may attach linker created dynamic sections
10221 to the plugin bfd. Symbols defined in linker
10222 created sections are not plugin symbols. */
10223 if (h->root.non_ir_ref
10224 && (h->root.type == bfd_link_hash_defined
10225 || h->root.type == bfd_link_hash_defweak)
10226 && (h->root.u.def.section->flags
10227 & SEC_LINKER_CREATED) == 0
10228 && h->root.u.def.section->owner != NULL
10229 && (h->root.u.def.section->owner->flags
10230 & BFD_PLUGIN) != 0)
10231 {
10232 h->root.type = bfd_link_hash_undefined;
10233 h->root.u.undef.abfd = h->root.u.def.section->owner;
10234 }
10235
10236 ps = NULL;
10237 if (h->root.type == bfd_link_hash_defined
10238 || h->root.type == bfd_link_hash_defweak)
10239 ps = &h->root.u.def.section;
10240
10241 sym_name = h->root.root.string;
10242 }
10243 else
10244 {
10245 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10246
10247 s_type = ELF_ST_TYPE (sym->st_info);
10248 ps = &flinfo->sections[r_symndx];
10249 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10250 sym, *ps);
10251 }
10252
10253 if ((s_type == STT_RELC || s_type == STT_SRELC)
10254 && !bfd_link_relocatable (flinfo->info))
10255 {
10256 bfd_vma val;
10257 bfd_vma dot = (rel->r_offset
10258 + o->output_offset + o->output_section->vma);
10259 #ifdef DEBUG
10260 printf ("Encountered a complex symbol!");
10261 printf (" (input_bfd %s, section %s, reloc %ld\n",
10262 input_bfd->filename, o->name,
10263 (long) (rel - internal_relocs));
10264 printf (" symbol: idx %8.8lx, name %s\n",
10265 r_symndx, sym_name);
10266 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10267 (unsigned long) rel->r_info,
10268 (unsigned long) rel->r_offset);
10269 #endif
10270 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10271 isymbuf, locsymcount, s_type == STT_SRELC))
10272 return FALSE;
10273
10274 /* Symbol evaluated OK. Update to absolute value. */
10275 set_symbol_value (input_bfd, isymbuf, locsymcount,
10276 r_symndx, val);
10277 continue;
10278 }
10279
10280 if (action_discarded != -1 && ps != NULL)
10281 {
10282 /* Complain if the definition comes from a
10283 discarded section. */
10284 if ((sec = *ps) != NULL && discarded_section (sec))
10285 {
10286 BFD_ASSERT (r_symndx != STN_UNDEF);
10287 if (action_discarded & COMPLAIN)
10288 (*flinfo->info->callbacks->einfo)
10289 (_("%X`%s' referenced in section `%A' of %B: "
10290 "defined in discarded section `%A' of %B\n"),
10291 sym_name, o, input_bfd, sec, sec->owner);
10292
10293 /* Try to do the best we can to support buggy old
10294 versions of gcc. Pretend that the symbol is
10295 really defined in the kept linkonce section.
10296 FIXME: This is quite broken. Modifying the
10297 symbol here means we will be changing all later
10298 uses of the symbol, not just in this section. */
10299 if (action_discarded & PRETEND)
10300 {
10301 asection *kept;
10302
10303 kept = _bfd_elf_check_kept_section (sec,
10304 flinfo->info);
10305 if (kept != NULL)
10306 {
10307 *ps = kept;
10308 continue;
10309 }
10310 }
10311 }
10312 }
10313 }
10314
10315 /* Relocate the section by invoking a back end routine.
10316
10317 The back end routine is responsible for adjusting the
10318 section contents as necessary, and (if using Rela relocs
10319 and generating a relocatable output file) adjusting the
10320 reloc addend as necessary.
10321
10322 The back end routine does not have to worry about setting
10323 the reloc address or the reloc symbol index.
10324
10325 The back end routine is given a pointer to the swapped in
10326 internal symbols, and can access the hash table entries
10327 for the external symbols via elf_sym_hashes (input_bfd).
10328
10329 When generating relocatable output, the back end routine
10330 must handle STB_LOCAL/STT_SECTION symbols specially. The
10331 output symbol is going to be a section symbol
10332 corresponding to the output section, which will require
10333 the addend to be adjusted. */
10334
10335 ret = (*relocate_section) (output_bfd, flinfo->info,
10336 input_bfd, o, contents,
10337 internal_relocs,
10338 isymbuf,
10339 flinfo->sections);
10340 if (!ret)
10341 return FALSE;
10342
10343 if (ret == 2
10344 || bfd_link_relocatable (flinfo->info)
10345 || flinfo->info->emitrelocations)
10346 {
10347 Elf_Internal_Rela *irela;
10348 Elf_Internal_Rela *irelaend, *irelamid;
10349 bfd_vma last_offset;
10350 struct elf_link_hash_entry **rel_hash;
10351 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10352 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10353 unsigned int next_erel;
10354 bfd_boolean rela_normal;
10355 struct bfd_elf_section_data *esdi, *esdo;
10356
10357 esdi = elf_section_data (o);
10358 esdo = elf_section_data (o->output_section);
10359 rela_normal = FALSE;
10360
10361 /* Adjust the reloc addresses and symbol indices. */
10362
10363 irela = internal_relocs;
10364 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10365 rel_hash = esdo->rel.hashes + esdo->rel.count;
10366 /* We start processing the REL relocs, if any. When we reach
10367 IRELAMID in the loop, we switch to the RELA relocs. */
10368 irelamid = irela;
10369 if (esdi->rel.hdr != NULL)
10370 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10371 * bed->s->int_rels_per_ext_rel);
10372 rel_hash_list = rel_hash;
10373 rela_hash_list = NULL;
10374 last_offset = o->output_offset;
10375 if (!bfd_link_relocatable (flinfo->info))
10376 last_offset += o->output_section->vma;
10377 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10378 {
10379 unsigned long r_symndx;
10380 asection *sec;
10381 Elf_Internal_Sym sym;
10382
10383 if (next_erel == bed->s->int_rels_per_ext_rel)
10384 {
10385 rel_hash++;
10386 next_erel = 0;
10387 }
10388
10389 if (irela == irelamid)
10390 {
10391 rel_hash = esdo->rela.hashes + esdo->rela.count;
10392 rela_hash_list = rel_hash;
10393 rela_normal = bed->rela_normal;
10394 }
10395
10396 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10397 flinfo->info, o,
10398 irela->r_offset);
10399 if (irela->r_offset >= (bfd_vma) -2)
10400 {
10401 /* This is a reloc for a deleted entry or somesuch.
10402 Turn it into an R_*_NONE reloc, at the same
10403 offset as the last reloc. elf_eh_frame.c and
10404 bfd_elf_discard_info rely on reloc offsets
10405 being ordered. */
10406 irela->r_offset = last_offset;
10407 irela->r_info = 0;
10408 irela->r_addend = 0;
10409 continue;
10410 }
10411
10412 irela->r_offset += o->output_offset;
10413
10414 /* Relocs in an executable have to be virtual addresses. */
10415 if (!bfd_link_relocatable (flinfo->info))
10416 irela->r_offset += o->output_section->vma;
10417
10418 last_offset = irela->r_offset;
10419
10420 r_symndx = irela->r_info >> r_sym_shift;
10421 if (r_symndx == STN_UNDEF)
10422 continue;
10423
10424 if (r_symndx >= locsymcount
10425 || (elf_bad_symtab (input_bfd)
10426 && flinfo->sections[r_symndx] == NULL))
10427 {
10428 struct elf_link_hash_entry *rh;
10429 unsigned long indx;
10430
10431 /* This is a reloc against a global symbol. We
10432 have not yet output all the local symbols, so
10433 we do not know the symbol index of any global
10434 symbol. We set the rel_hash entry for this
10435 reloc to point to the global hash table entry
10436 for this symbol. The symbol index is then
10437 set at the end of bfd_elf_final_link. */
10438 indx = r_symndx - extsymoff;
10439 rh = elf_sym_hashes (input_bfd)[indx];
10440 while (rh->root.type == bfd_link_hash_indirect
10441 || rh->root.type == bfd_link_hash_warning)
10442 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10443
10444 /* Setting the index to -2 tells
10445 elf_link_output_extsym that this symbol is
10446 used by a reloc. */
10447 BFD_ASSERT (rh->indx < 0);
10448 rh->indx = -2;
10449
10450 *rel_hash = rh;
10451
10452 continue;
10453 }
10454
10455 /* This is a reloc against a local symbol. */
10456
10457 *rel_hash = NULL;
10458 sym = isymbuf[r_symndx];
10459 sec = flinfo->sections[r_symndx];
10460 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10461 {
10462 /* I suppose the backend ought to fill in the
10463 section of any STT_SECTION symbol against a
10464 processor specific section. */
10465 r_symndx = STN_UNDEF;
10466 if (bfd_is_abs_section (sec))
10467 ;
10468 else if (sec == NULL || sec->owner == NULL)
10469 {
10470 bfd_set_error (bfd_error_bad_value);
10471 return FALSE;
10472 }
10473 else
10474 {
10475 asection *osec = sec->output_section;
10476
10477 /* If we have discarded a section, the output
10478 section will be the absolute section. In
10479 case of discarded SEC_MERGE sections, use
10480 the kept section. relocate_section should
10481 have already handled discarded linkonce
10482 sections. */
10483 if (bfd_is_abs_section (osec)
10484 && sec->kept_section != NULL
10485 && sec->kept_section->output_section != NULL)
10486 {
10487 osec = sec->kept_section->output_section;
10488 irela->r_addend -= osec->vma;
10489 }
10490
10491 if (!bfd_is_abs_section (osec))
10492 {
10493 r_symndx = osec->target_index;
10494 if (r_symndx == STN_UNDEF)
10495 {
10496 irela->r_addend += osec->vma;
10497 osec = _bfd_nearby_section (output_bfd, osec,
10498 osec->vma);
10499 irela->r_addend -= osec->vma;
10500 r_symndx = osec->target_index;
10501 }
10502 }
10503 }
10504
10505 /* Adjust the addend according to where the
10506 section winds up in the output section. */
10507 if (rela_normal)
10508 irela->r_addend += sec->output_offset;
10509 }
10510 else
10511 {
10512 if (flinfo->indices[r_symndx] == -1)
10513 {
10514 unsigned long shlink;
10515 const char *name;
10516 asection *osec;
10517 long indx;
10518
10519 if (flinfo->info->strip == strip_all)
10520 {
10521 /* You can't do ld -r -s. */
10522 bfd_set_error (bfd_error_invalid_operation);
10523 return FALSE;
10524 }
10525
10526 /* This symbol was skipped earlier, but
10527 since it is needed by a reloc, we
10528 must output it now. */
10529 shlink = symtab_hdr->sh_link;
10530 name = (bfd_elf_string_from_elf_section
10531 (input_bfd, shlink, sym.st_name));
10532 if (name == NULL)
10533 return FALSE;
10534
10535 osec = sec->output_section;
10536 sym.st_shndx =
10537 _bfd_elf_section_from_bfd_section (output_bfd,
10538 osec);
10539 if (sym.st_shndx == SHN_BAD)
10540 return FALSE;
10541
10542 sym.st_value += sec->output_offset;
10543 if (!bfd_link_relocatable (flinfo->info))
10544 {
10545 sym.st_value += osec->vma;
10546 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10547 {
10548 /* STT_TLS symbols are relative to PT_TLS
10549 segment base. */
10550 BFD_ASSERT (elf_hash_table (flinfo->info)
10551 ->tls_sec != NULL);
10552 sym.st_value -= (elf_hash_table (flinfo->info)
10553 ->tls_sec->vma);
10554 }
10555 }
10556
10557 indx = bfd_get_symcount (output_bfd);
10558 ret = elf_link_output_symstrtab (flinfo, name,
10559 &sym, sec,
10560 NULL);
10561 if (ret == 0)
10562 return FALSE;
10563 else if (ret == 1)
10564 flinfo->indices[r_symndx] = indx;
10565 else
10566 abort ();
10567 }
10568
10569 r_symndx = flinfo->indices[r_symndx];
10570 }
10571
10572 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10573 | (irela->r_info & r_type_mask));
10574 }
10575
10576 /* Swap out the relocs. */
10577 input_rel_hdr = esdi->rel.hdr;
10578 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10579 {
10580 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10581 input_rel_hdr,
10582 internal_relocs,
10583 rel_hash_list))
10584 return FALSE;
10585 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10586 * bed->s->int_rels_per_ext_rel);
10587 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10588 }
10589
10590 input_rela_hdr = esdi->rela.hdr;
10591 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10592 {
10593 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10594 input_rela_hdr,
10595 internal_relocs,
10596 rela_hash_list))
10597 return FALSE;
10598 }
10599 }
10600 }
10601
10602 /* Write out the modified section contents. */
10603 if (bed->elf_backend_write_section
10604 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10605 contents))
10606 {
10607 /* Section written out. */
10608 }
10609 else switch (o->sec_info_type)
10610 {
10611 case SEC_INFO_TYPE_STABS:
10612 if (! (_bfd_write_section_stabs
10613 (output_bfd,
10614 &elf_hash_table (flinfo->info)->stab_info,
10615 o, &elf_section_data (o)->sec_info, contents)))
10616 return FALSE;
10617 break;
10618 case SEC_INFO_TYPE_MERGE:
10619 if (! _bfd_write_merged_section (output_bfd, o,
10620 elf_section_data (o)->sec_info))
10621 return FALSE;
10622 break;
10623 case SEC_INFO_TYPE_EH_FRAME:
10624 {
10625 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10626 o, contents))
10627 return FALSE;
10628 }
10629 break;
10630 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10631 {
10632 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10633 flinfo->info,
10634 o, contents))
10635 return FALSE;
10636 }
10637 break;
10638 default:
10639 {
10640 if (! (o->flags & SEC_EXCLUDE))
10641 {
10642 file_ptr offset = (file_ptr) o->output_offset;
10643 bfd_size_type todo = o->size;
10644
10645 offset *= bfd_octets_per_byte (output_bfd);
10646
10647 if ((o->flags & SEC_ELF_REVERSE_COPY))
10648 {
10649 /* Reverse-copy input section to output. */
10650 do
10651 {
10652 todo -= address_size;
10653 if (! bfd_set_section_contents (output_bfd,
10654 o->output_section,
10655 contents + todo,
10656 offset,
10657 address_size))
10658 return FALSE;
10659 if (todo == 0)
10660 break;
10661 offset += address_size;
10662 }
10663 while (1);
10664 }
10665 else if (! bfd_set_section_contents (output_bfd,
10666 o->output_section,
10667 contents,
10668 offset, todo))
10669 return FALSE;
10670 }
10671 }
10672 break;
10673 }
10674 }
10675
10676 return TRUE;
10677 }
10678
10679 /* Generate a reloc when linking an ELF file. This is a reloc
10680 requested by the linker, and does not come from any input file. This
10681 is used to build constructor and destructor tables when linking
10682 with -Ur. */
10683
10684 static bfd_boolean
10685 elf_reloc_link_order (bfd *output_bfd,
10686 struct bfd_link_info *info,
10687 asection *output_section,
10688 struct bfd_link_order *link_order)
10689 {
10690 reloc_howto_type *howto;
10691 long indx;
10692 bfd_vma offset;
10693 bfd_vma addend;
10694 struct bfd_elf_section_reloc_data *reldata;
10695 struct elf_link_hash_entry **rel_hash_ptr;
10696 Elf_Internal_Shdr *rel_hdr;
10697 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10698 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10699 bfd_byte *erel;
10700 unsigned int i;
10701 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10702
10703 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10704 if (howto == NULL)
10705 {
10706 bfd_set_error (bfd_error_bad_value);
10707 return FALSE;
10708 }
10709
10710 addend = link_order->u.reloc.p->addend;
10711
10712 if (esdo->rel.hdr)
10713 reldata = &esdo->rel;
10714 else if (esdo->rela.hdr)
10715 reldata = &esdo->rela;
10716 else
10717 {
10718 reldata = NULL;
10719 BFD_ASSERT (0);
10720 }
10721
10722 /* Figure out the symbol index. */
10723 rel_hash_ptr = reldata->hashes + reldata->count;
10724 if (link_order->type == bfd_section_reloc_link_order)
10725 {
10726 indx = link_order->u.reloc.p->u.section->target_index;
10727 BFD_ASSERT (indx != 0);
10728 *rel_hash_ptr = NULL;
10729 }
10730 else
10731 {
10732 struct elf_link_hash_entry *h;
10733
10734 /* Treat a reloc against a defined symbol as though it were
10735 actually against the section. */
10736 h = ((struct elf_link_hash_entry *)
10737 bfd_wrapped_link_hash_lookup (output_bfd, info,
10738 link_order->u.reloc.p->u.name,
10739 FALSE, FALSE, TRUE));
10740 if (h != NULL
10741 && (h->root.type == bfd_link_hash_defined
10742 || h->root.type == bfd_link_hash_defweak))
10743 {
10744 asection *section;
10745
10746 section = h->root.u.def.section;
10747 indx = section->output_section->target_index;
10748 *rel_hash_ptr = NULL;
10749 /* It seems that we ought to add the symbol value to the
10750 addend here, but in practice it has already been added
10751 because it was passed to constructor_callback. */
10752 addend += section->output_section->vma + section->output_offset;
10753 }
10754 else if (h != NULL)
10755 {
10756 /* Setting the index to -2 tells elf_link_output_extsym that
10757 this symbol is used by a reloc. */
10758 h->indx = -2;
10759 *rel_hash_ptr = h;
10760 indx = 0;
10761 }
10762 else
10763 {
10764 if (! ((*info->callbacks->unattached_reloc)
10765 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10766 return FALSE;
10767 indx = 0;
10768 }
10769 }
10770
10771 /* If this is an inplace reloc, we must write the addend into the
10772 object file. */
10773 if (howto->partial_inplace && addend != 0)
10774 {
10775 bfd_size_type size;
10776 bfd_reloc_status_type rstat;
10777 bfd_byte *buf;
10778 bfd_boolean ok;
10779 const char *sym_name;
10780
10781 size = (bfd_size_type) bfd_get_reloc_size (howto);
10782 buf = (bfd_byte *) bfd_zmalloc (size);
10783 if (buf == NULL && size != 0)
10784 return FALSE;
10785 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10786 switch (rstat)
10787 {
10788 case bfd_reloc_ok:
10789 break;
10790
10791 default:
10792 case bfd_reloc_outofrange:
10793 abort ();
10794
10795 case bfd_reloc_overflow:
10796 if (link_order->type == bfd_section_reloc_link_order)
10797 sym_name = bfd_section_name (output_bfd,
10798 link_order->u.reloc.p->u.section);
10799 else
10800 sym_name = link_order->u.reloc.p->u.name;
10801 if (! ((*info->callbacks->reloc_overflow)
10802 (info, NULL, sym_name, howto->name, addend, NULL,
10803 NULL, (bfd_vma) 0)))
10804 {
10805 free (buf);
10806 return FALSE;
10807 }
10808 break;
10809 }
10810
10811 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10812 link_order->offset
10813 * bfd_octets_per_byte (output_bfd),
10814 size);
10815 free (buf);
10816 if (! ok)
10817 return FALSE;
10818 }
10819
10820 /* The address of a reloc is relative to the section in a
10821 relocatable file, and is a virtual address in an executable
10822 file. */
10823 offset = link_order->offset;
10824 if (! bfd_link_relocatable (info))
10825 offset += output_section->vma;
10826
10827 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10828 {
10829 irel[i].r_offset = offset;
10830 irel[i].r_info = 0;
10831 irel[i].r_addend = 0;
10832 }
10833 if (bed->s->arch_size == 32)
10834 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10835 else
10836 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10837
10838 rel_hdr = reldata->hdr;
10839 erel = rel_hdr->contents;
10840 if (rel_hdr->sh_type == SHT_REL)
10841 {
10842 erel += reldata->count * bed->s->sizeof_rel;
10843 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10844 }
10845 else
10846 {
10847 irel[0].r_addend = addend;
10848 erel += reldata->count * bed->s->sizeof_rela;
10849 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10850 }
10851
10852 ++reldata->count;
10853
10854 return TRUE;
10855 }
10856
10857
10858 /* Get the output vma of the section pointed to by the sh_link field. */
10859
10860 static bfd_vma
10861 elf_get_linked_section_vma (struct bfd_link_order *p)
10862 {
10863 Elf_Internal_Shdr **elf_shdrp;
10864 asection *s;
10865 int elfsec;
10866
10867 s = p->u.indirect.section;
10868 elf_shdrp = elf_elfsections (s->owner);
10869 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10870 elfsec = elf_shdrp[elfsec]->sh_link;
10871 /* PR 290:
10872 The Intel C compiler generates SHT_IA_64_UNWIND with
10873 SHF_LINK_ORDER. But it doesn't set the sh_link or
10874 sh_info fields. Hence we could get the situation
10875 where elfsec is 0. */
10876 if (elfsec == 0)
10877 {
10878 const struct elf_backend_data *bed
10879 = get_elf_backend_data (s->owner);
10880 if (bed->link_order_error_handler)
10881 bed->link_order_error_handler
10882 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10883 return 0;
10884 }
10885 else
10886 {
10887 s = elf_shdrp[elfsec]->bfd_section;
10888 return s->output_section->vma + s->output_offset;
10889 }
10890 }
10891
10892
10893 /* Compare two sections based on the locations of the sections they are
10894 linked to. Used by elf_fixup_link_order. */
10895
10896 static int
10897 compare_link_order (const void * a, const void * b)
10898 {
10899 bfd_vma apos;
10900 bfd_vma bpos;
10901
10902 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10903 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10904 if (apos < bpos)
10905 return -1;
10906 return apos > bpos;
10907 }
10908
10909
10910 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10911 order as their linked sections. Returns false if this could not be done
10912 because an output section includes both ordered and unordered
10913 sections. Ideally we'd do this in the linker proper. */
10914
10915 static bfd_boolean
10916 elf_fixup_link_order (bfd *abfd, asection *o)
10917 {
10918 int seen_linkorder;
10919 int seen_other;
10920 int n;
10921 struct bfd_link_order *p;
10922 bfd *sub;
10923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10924 unsigned elfsec;
10925 struct bfd_link_order **sections;
10926 asection *s, *other_sec, *linkorder_sec;
10927 bfd_vma offset;
10928
10929 other_sec = NULL;
10930 linkorder_sec = NULL;
10931 seen_other = 0;
10932 seen_linkorder = 0;
10933 for (p = o->map_head.link_order; p != NULL; p = p->next)
10934 {
10935 if (p->type == bfd_indirect_link_order)
10936 {
10937 s = p->u.indirect.section;
10938 sub = s->owner;
10939 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10940 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10941 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10942 && elfsec < elf_numsections (sub)
10943 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10944 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10945 {
10946 seen_linkorder++;
10947 linkorder_sec = s;
10948 }
10949 else
10950 {
10951 seen_other++;
10952 other_sec = s;
10953 }
10954 }
10955 else
10956 seen_other++;
10957
10958 if (seen_other && seen_linkorder)
10959 {
10960 if (other_sec && linkorder_sec)
10961 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10962 o, linkorder_sec,
10963 linkorder_sec->owner, other_sec,
10964 other_sec->owner);
10965 else
10966 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10967 o);
10968 bfd_set_error (bfd_error_bad_value);
10969 return FALSE;
10970 }
10971 }
10972
10973 if (!seen_linkorder)
10974 return TRUE;
10975
10976 sections = (struct bfd_link_order **)
10977 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10978 if (sections == NULL)
10979 return FALSE;
10980 seen_linkorder = 0;
10981
10982 for (p = o->map_head.link_order; p != NULL; p = p->next)
10983 {
10984 sections[seen_linkorder++] = p;
10985 }
10986 /* Sort the input sections in the order of their linked section. */
10987 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10988 compare_link_order);
10989
10990 /* Change the offsets of the sections. */
10991 offset = 0;
10992 for (n = 0; n < seen_linkorder; n++)
10993 {
10994 s = sections[n]->u.indirect.section;
10995 offset &= ~(bfd_vma) 0 << s->alignment_power;
10996 s->output_offset = offset / bfd_octets_per_byte (abfd);
10997 sections[n]->offset = offset;
10998 offset += sections[n]->size;
10999 }
11000
11001 free (sections);
11002 return TRUE;
11003 }
11004
11005 static void
11006 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11007 {
11008 asection *o;
11009
11010 if (flinfo->symstrtab != NULL)
11011 _bfd_elf_strtab_free (flinfo->symstrtab);
11012 if (flinfo->contents != NULL)
11013 free (flinfo->contents);
11014 if (flinfo->external_relocs != NULL)
11015 free (flinfo->external_relocs);
11016 if (flinfo->internal_relocs != NULL)
11017 free (flinfo->internal_relocs);
11018 if (flinfo->external_syms != NULL)
11019 free (flinfo->external_syms);
11020 if (flinfo->locsym_shndx != NULL)
11021 free (flinfo->locsym_shndx);
11022 if (flinfo->internal_syms != NULL)
11023 free (flinfo->internal_syms);
11024 if (flinfo->indices != NULL)
11025 free (flinfo->indices);
11026 if (flinfo->sections != NULL)
11027 free (flinfo->sections);
11028 if (flinfo->symshndxbuf != NULL)
11029 free (flinfo->symshndxbuf);
11030 for (o = obfd->sections; o != NULL; o = o->next)
11031 {
11032 struct bfd_elf_section_data *esdo = elf_section_data (o);
11033 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11034 free (esdo->rel.hashes);
11035 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11036 free (esdo->rela.hashes);
11037 }
11038 }
11039
11040 /* Do the final step of an ELF link. */
11041
11042 bfd_boolean
11043 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11044 {
11045 bfd_boolean dynamic;
11046 bfd_boolean emit_relocs;
11047 bfd *dynobj;
11048 struct elf_final_link_info flinfo;
11049 asection *o;
11050 struct bfd_link_order *p;
11051 bfd *sub;
11052 bfd_size_type max_contents_size;
11053 bfd_size_type max_external_reloc_size;
11054 bfd_size_type max_internal_reloc_count;
11055 bfd_size_type max_sym_count;
11056 bfd_size_type max_sym_shndx_count;
11057 Elf_Internal_Sym elfsym;
11058 unsigned int i;
11059 Elf_Internal_Shdr *symtab_hdr;
11060 Elf_Internal_Shdr *symtab_shndx_hdr;
11061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11062 struct elf_outext_info eoinfo;
11063 bfd_boolean merged;
11064 size_t relativecount = 0;
11065 asection *reldyn = 0;
11066 bfd_size_type amt;
11067 asection *attr_section = NULL;
11068 bfd_vma attr_size = 0;
11069 const char *std_attrs_section;
11070
11071 if (! is_elf_hash_table (info->hash))
11072 return FALSE;
11073
11074 if (bfd_link_pic (info))
11075 abfd->flags |= DYNAMIC;
11076
11077 dynamic = elf_hash_table (info)->dynamic_sections_created;
11078 dynobj = elf_hash_table (info)->dynobj;
11079
11080 emit_relocs = (bfd_link_relocatable (info)
11081 || info->emitrelocations);
11082
11083 flinfo.info = info;
11084 flinfo.output_bfd = abfd;
11085 flinfo.symstrtab = _bfd_elf_strtab_init ();
11086 if (flinfo.symstrtab == NULL)
11087 return FALSE;
11088
11089 if (! dynamic)
11090 {
11091 flinfo.hash_sec = NULL;
11092 flinfo.symver_sec = NULL;
11093 }
11094 else
11095 {
11096 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11097 /* Note that dynsym_sec can be NULL (on VMS). */
11098 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11099 /* Note that it is OK if symver_sec is NULL. */
11100 }
11101
11102 flinfo.contents = NULL;
11103 flinfo.external_relocs = NULL;
11104 flinfo.internal_relocs = NULL;
11105 flinfo.external_syms = NULL;
11106 flinfo.locsym_shndx = NULL;
11107 flinfo.internal_syms = NULL;
11108 flinfo.indices = NULL;
11109 flinfo.sections = NULL;
11110 flinfo.symshndxbuf = NULL;
11111 flinfo.filesym_count = 0;
11112
11113 /* The object attributes have been merged. Remove the input
11114 sections from the link, and set the contents of the output
11115 secton. */
11116 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11117 for (o = abfd->sections; o != NULL; o = o->next)
11118 {
11119 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11120 || strcmp (o->name, ".gnu.attributes") == 0)
11121 {
11122 for (p = o->map_head.link_order; p != NULL; p = p->next)
11123 {
11124 asection *input_section;
11125
11126 if (p->type != bfd_indirect_link_order)
11127 continue;
11128 input_section = p->u.indirect.section;
11129 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11130 elf_link_input_bfd ignores this section. */
11131 input_section->flags &= ~SEC_HAS_CONTENTS;
11132 }
11133
11134 attr_size = bfd_elf_obj_attr_size (abfd);
11135 if (attr_size)
11136 {
11137 bfd_set_section_size (abfd, o, attr_size);
11138 attr_section = o;
11139 /* Skip this section later on. */
11140 o->map_head.link_order = NULL;
11141 }
11142 else
11143 o->flags |= SEC_EXCLUDE;
11144 }
11145 }
11146
11147 /* Count up the number of relocations we will output for each output
11148 section, so that we know the sizes of the reloc sections. We
11149 also figure out some maximum sizes. */
11150 max_contents_size = 0;
11151 max_external_reloc_size = 0;
11152 max_internal_reloc_count = 0;
11153 max_sym_count = 0;
11154 max_sym_shndx_count = 0;
11155 merged = FALSE;
11156 for (o = abfd->sections; o != NULL; o = o->next)
11157 {
11158 struct bfd_elf_section_data *esdo = elf_section_data (o);
11159 o->reloc_count = 0;
11160
11161 for (p = o->map_head.link_order; p != NULL; p = p->next)
11162 {
11163 unsigned int reloc_count = 0;
11164 unsigned int additional_reloc_count = 0;
11165 struct bfd_elf_section_data *esdi = NULL;
11166
11167 if (p->type == bfd_section_reloc_link_order
11168 || p->type == bfd_symbol_reloc_link_order)
11169 reloc_count = 1;
11170 else if (p->type == bfd_indirect_link_order)
11171 {
11172 asection *sec;
11173
11174 sec = p->u.indirect.section;
11175 esdi = elf_section_data (sec);
11176
11177 /* Mark all sections which are to be included in the
11178 link. This will normally be every section. We need
11179 to do this so that we can identify any sections which
11180 the linker has decided to not include. */
11181 sec->linker_mark = TRUE;
11182
11183 if (sec->flags & SEC_MERGE)
11184 merged = TRUE;
11185
11186 if (esdo->this_hdr.sh_type == SHT_REL
11187 || esdo->this_hdr.sh_type == SHT_RELA)
11188 /* Some backends use reloc_count in relocation sections
11189 to count particular types of relocs. Of course,
11190 reloc sections themselves can't have relocations. */
11191 reloc_count = 0;
11192 else if (emit_relocs)
11193 {
11194 reloc_count = sec->reloc_count;
11195 if (bed->elf_backend_count_additional_relocs)
11196 {
11197 int c;
11198 c = (*bed->elf_backend_count_additional_relocs) (sec);
11199 additional_reloc_count += c;
11200 }
11201 }
11202 else if (bed->elf_backend_count_relocs)
11203 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11204
11205 if (sec->rawsize > max_contents_size)
11206 max_contents_size = sec->rawsize;
11207 if (sec->size > max_contents_size)
11208 max_contents_size = sec->size;
11209
11210 /* We are interested in just local symbols, not all
11211 symbols. */
11212 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11213 && (sec->owner->flags & DYNAMIC) == 0)
11214 {
11215 size_t sym_count;
11216
11217 if (elf_bad_symtab (sec->owner))
11218 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11219 / bed->s->sizeof_sym);
11220 else
11221 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11222
11223 if (sym_count > max_sym_count)
11224 max_sym_count = sym_count;
11225
11226 if (sym_count > max_sym_shndx_count
11227 && elf_symtab_shndx_list (sec->owner) != NULL)
11228 max_sym_shndx_count = sym_count;
11229
11230 if ((sec->flags & SEC_RELOC) != 0)
11231 {
11232 size_t ext_size = 0;
11233
11234 if (esdi->rel.hdr != NULL)
11235 ext_size = esdi->rel.hdr->sh_size;
11236 if (esdi->rela.hdr != NULL)
11237 ext_size += esdi->rela.hdr->sh_size;
11238
11239 if (ext_size > max_external_reloc_size)
11240 max_external_reloc_size = ext_size;
11241 if (sec->reloc_count > max_internal_reloc_count)
11242 max_internal_reloc_count = sec->reloc_count;
11243 }
11244 }
11245 }
11246
11247 if (reloc_count == 0)
11248 continue;
11249
11250 reloc_count += additional_reloc_count;
11251 o->reloc_count += reloc_count;
11252
11253 if (p->type == bfd_indirect_link_order && emit_relocs)
11254 {
11255 if (esdi->rel.hdr)
11256 {
11257 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11258 esdo->rel.count += additional_reloc_count;
11259 }
11260 if (esdi->rela.hdr)
11261 {
11262 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11263 esdo->rela.count += additional_reloc_count;
11264 }
11265 }
11266 else
11267 {
11268 if (o->use_rela_p)
11269 esdo->rela.count += reloc_count;
11270 else
11271 esdo->rel.count += reloc_count;
11272 }
11273 }
11274
11275 if (o->reloc_count > 0)
11276 o->flags |= SEC_RELOC;
11277 else
11278 {
11279 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11280 set it (this is probably a bug) and if it is set
11281 assign_section_numbers will create a reloc section. */
11282 o->flags &=~ SEC_RELOC;
11283 }
11284
11285 /* If the SEC_ALLOC flag is not set, force the section VMA to
11286 zero. This is done in elf_fake_sections as well, but forcing
11287 the VMA to 0 here will ensure that relocs against these
11288 sections are handled correctly. */
11289 if ((o->flags & SEC_ALLOC) == 0
11290 && ! o->user_set_vma)
11291 o->vma = 0;
11292 }
11293
11294 if (! bfd_link_relocatable (info) && merged)
11295 elf_link_hash_traverse (elf_hash_table (info),
11296 _bfd_elf_link_sec_merge_syms, abfd);
11297
11298 /* Figure out the file positions for everything but the symbol table
11299 and the relocs. We set symcount to force assign_section_numbers
11300 to create a symbol table. */
11301 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11302 BFD_ASSERT (! abfd->output_has_begun);
11303 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11304 goto error_return;
11305
11306 /* Set sizes, and assign file positions for reloc sections. */
11307 for (o = abfd->sections; o != NULL; o = o->next)
11308 {
11309 struct bfd_elf_section_data *esdo = elf_section_data (o);
11310 if ((o->flags & SEC_RELOC) != 0)
11311 {
11312 if (esdo->rel.hdr
11313 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11314 goto error_return;
11315
11316 if (esdo->rela.hdr
11317 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11318 goto error_return;
11319 }
11320
11321 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11322 to count upwards while actually outputting the relocations. */
11323 esdo->rel.count = 0;
11324 esdo->rela.count = 0;
11325
11326 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11327 {
11328 /* Cache the section contents so that they can be compressed
11329 later. Use bfd_malloc since it will be freed by
11330 bfd_compress_section_contents. */
11331 unsigned char *contents = esdo->this_hdr.contents;
11332 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11333 abort ();
11334 contents
11335 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11336 if (contents == NULL)
11337 goto error_return;
11338 esdo->this_hdr.contents = contents;
11339 }
11340 }
11341
11342 /* We have now assigned file positions for all the sections except
11343 .symtab, .strtab, and non-loaded reloc sections. We start the
11344 .symtab section at the current file position, and write directly
11345 to it. We build the .strtab section in memory. */
11346 bfd_get_symcount (abfd) = 0;
11347 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11348 /* sh_name is set in prep_headers. */
11349 symtab_hdr->sh_type = SHT_SYMTAB;
11350 /* sh_flags, sh_addr and sh_size all start off zero. */
11351 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11352 /* sh_link is set in assign_section_numbers. */
11353 /* sh_info is set below. */
11354 /* sh_offset is set just below. */
11355 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11356
11357 if (max_sym_count < 20)
11358 max_sym_count = 20;
11359 elf_hash_table (info)->strtabsize = max_sym_count;
11360 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11361 elf_hash_table (info)->strtab
11362 = (struct elf_sym_strtab *) bfd_malloc (amt);
11363 if (elf_hash_table (info)->strtab == NULL)
11364 goto error_return;
11365 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11366 flinfo.symshndxbuf
11367 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11368 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11369
11370 if (info->strip != strip_all || emit_relocs)
11371 {
11372 file_ptr off = elf_next_file_pos (abfd);
11373
11374 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11375
11376 /* Note that at this point elf_next_file_pos (abfd) is
11377 incorrect. We do not yet know the size of the .symtab section.
11378 We correct next_file_pos below, after we do know the size. */
11379
11380 /* Start writing out the symbol table. The first symbol is always a
11381 dummy symbol. */
11382 elfsym.st_value = 0;
11383 elfsym.st_size = 0;
11384 elfsym.st_info = 0;
11385 elfsym.st_other = 0;
11386 elfsym.st_shndx = SHN_UNDEF;
11387 elfsym.st_target_internal = 0;
11388 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11389 bfd_und_section_ptr, NULL) != 1)
11390 goto error_return;
11391
11392 /* Output a symbol for each section. We output these even if we are
11393 discarding local symbols, since they are used for relocs. These
11394 symbols have no names. We store the index of each one in the
11395 index field of the section, so that we can find it again when
11396 outputting relocs. */
11397
11398 elfsym.st_size = 0;
11399 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11400 elfsym.st_other = 0;
11401 elfsym.st_value = 0;
11402 elfsym.st_target_internal = 0;
11403 for (i = 1; i < elf_numsections (abfd); i++)
11404 {
11405 o = bfd_section_from_elf_index (abfd, i);
11406 if (o != NULL)
11407 {
11408 o->target_index = bfd_get_symcount (abfd);
11409 elfsym.st_shndx = i;
11410 if (!bfd_link_relocatable (info))
11411 elfsym.st_value = o->vma;
11412 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11413 NULL) != 1)
11414 goto error_return;
11415 }
11416 }
11417 }
11418
11419 /* Allocate some memory to hold information read in from the input
11420 files. */
11421 if (max_contents_size != 0)
11422 {
11423 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11424 if (flinfo.contents == NULL)
11425 goto error_return;
11426 }
11427
11428 if (max_external_reloc_size != 0)
11429 {
11430 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11431 if (flinfo.external_relocs == NULL)
11432 goto error_return;
11433 }
11434
11435 if (max_internal_reloc_count != 0)
11436 {
11437 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11438 amt *= sizeof (Elf_Internal_Rela);
11439 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11440 if (flinfo.internal_relocs == NULL)
11441 goto error_return;
11442 }
11443
11444 if (max_sym_count != 0)
11445 {
11446 amt = max_sym_count * bed->s->sizeof_sym;
11447 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11448 if (flinfo.external_syms == NULL)
11449 goto error_return;
11450
11451 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11452 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11453 if (flinfo.internal_syms == NULL)
11454 goto error_return;
11455
11456 amt = max_sym_count * sizeof (long);
11457 flinfo.indices = (long int *) bfd_malloc (amt);
11458 if (flinfo.indices == NULL)
11459 goto error_return;
11460
11461 amt = max_sym_count * sizeof (asection *);
11462 flinfo.sections = (asection **) bfd_malloc (amt);
11463 if (flinfo.sections == NULL)
11464 goto error_return;
11465 }
11466
11467 if (max_sym_shndx_count != 0)
11468 {
11469 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11470 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11471 if (flinfo.locsym_shndx == NULL)
11472 goto error_return;
11473 }
11474
11475 if (elf_hash_table (info)->tls_sec)
11476 {
11477 bfd_vma base, end = 0;
11478 asection *sec;
11479
11480 for (sec = elf_hash_table (info)->tls_sec;
11481 sec && (sec->flags & SEC_THREAD_LOCAL);
11482 sec = sec->next)
11483 {
11484 bfd_size_type size = sec->size;
11485
11486 if (size == 0
11487 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11488 {
11489 struct bfd_link_order *ord = sec->map_tail.link_order;
11490
11491 if (ord != NULL)
11492 size = ord->offset + ord->size;
11493 }
11494 end = sec->vma + size;
11495 }
11496 base = elf_hash_table (info)->tls_sec->vma;
11497 /* Only align end of TLS section if static TLS doesn't have special
11498 alignment requirements. */
11499 if (bed->static_tls_alignment == 1)
11500 end = align_power (end,
11501 elf_hash_table (info)->tls_sec->alignment_power);
11502 elf_hash_table (info)->tls_size = end - base;
11503 }
11504
11505 /* Reorder SHF_LINK_ORDER sections. */
11506 for (o = abfd->sections; o != NULL; o = o->next)
11507 {
11508 if (!elf_fixup_link_order (abfd, o))
11509 return FALSE;
11510 }
11511
11512 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11513 return FALSE;
11514
11515 /* Since ELF permits relocations to be against local symbols, we
11516 must have the local symbols available when we do the relocations.
11517 Since we would rather only read the local symbols once, and we
11518 would rather not keep them in memory, we handle all the
11519 relocations for a single input file at the same time.
11520
11521 Unfortunately, there is no way to know the total number of local
11522 symbols until we have seen all of them, and the local symbol
11523 indices precede the global symbol indices. This means that when
11524 we are generating relocatable output, and we see a reloc against
11525 a global symbol, we can not know the symbol index until we have
11526 finished examining all the local symbols to see which ones we are
11527 going to output. To deal with this, we keep the relocations in
11528 memory, and don't output them until the end of the link. This is
11529 an unfortunate waste of memory, but I don't see a good way around
11530 it. Fortunately, it only happens when performing a relocatable
11531 link, which is not the common case. FIXME: If keep_memory is set
11532 we could write the relocs out and then read them again; I don't
11533 know how bad the memory loss will be. */
11534
11535 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11536 sub->output_has_begun = FALSE;
11537 for (o = abfd->sections; o != NULL; o = o->next)
11538 {
11539 for (p = o->map_head.link_order; p != NULL; p = p->next)
11540 {
11541 if (p->type == bfd_indirect_link_order
11542 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11543 == bfd_target_elf_flavour)
11544 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11545 {
11546 if (! sub->output_has_begun)
11547 {
11548 if (! elf_link_input_bfd (&flinfo, sub))
11549 goto error_return;
11550 sub->output_has_begun = TRUE;
11551 }
11552 }
11553 else if (p->type == bfd_section_reloc_link_order
11554 || p->type == bfd_symbol_reloc_link_order)
11555 {
11556 if (! elf_reloc_link_order (abfd, info, o, p))
11557 goto error_return;
11558 }
11559 else
11560 {
11561 if (! _bfd_default_link_order (abfd, info, o, p))
11562 {
11563 if (p->type == bfd_indirect_link_order
11564 && (bfd_get_flavour (sub)
11565 == bfd_target_elf_flavour)
11566 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11567 != bed->s->elfclass))
11568 {
11569 const char *iclass, *oclass;
11570
11571 switch (bed->s->elfclass)
11572 {
11573 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11574 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11575 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11576 default: abort ();
11577 }
11578
11579 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11580 {
11581 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11582 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11583 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11584 default: abort ();
11585 }
11586
11587 bfd_set_error (bfd_error_wrong_format);
11588 (*_bfd_error_handler)
11589 (_("%B: file class %s incompatible with %s"),
11590 sub, iclass, oclass);
11591 }
11592
11593 goto error_return;
11594 }
11595 }
11596 }
11597 }
11598
11599 /* Free symbol buffer if needed. */
11600 if (!info->reduce_memory_overheads)
11601 {
11602 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11603 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11604 && elf_tdata (sub)->symbuf)
11605 {
11606 free (elf_tdata (sub)->symbuf);
11607 elf_tdata (sub)->symbuf = NULL;
11608 }
11609 }
11610
11611 /* Output any global symbols that got converted to local in a
11612 version script or due to symbol visibility. We do this in a
11613 separate step since ELF requires all local symbols to appear
11614 prior to any global symbols. FIXME: We should only do this if
11615 some global symbols were, in fact, converted to become local.
11616 FIXME: Will this work correctly with the Irix 5 linker? */
11617 eoinfo.failed = FALSE;
11618 eoinfo.flinfo = &flinfo;
11619 eoinfo.localsyms = TRUE;
11620 eoinfo.file_sym_done = FALSE;
11621 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11622 if (eoinfo.failed)
11623 return FALSE;
11624
11625 /* If backend needs to output some local symbols not present in the hash
11626 table, do it now. */
11627 if (bed->elf_backend_output_arch_local_syms
11628 && (info->strip != strip_all || emit_relocs))
11629 {
11630 typedef int (*out_sym_func)
11631 (void *, const char *, Elf_Internal_Sym *, asection *,
11632 struct elf_link_hash_entry *);
11633
11634 if (! ((*bed->elf_backend_output_arch_local_syms)
11635 (abfd, info, &flinfo,
11636 (out_sym_func) elf_link_output_symstrtab)))
11637 return FALSE;
11638 }
11639
11640 /* That wrote out all the local symbols. Finish up the symbol table
11641 with the global symbols. Even if we want to strip everything we
11642 can, we still need to deal with those global symbols that got
11643 converted to local in a version script. */
11644
11645 /* The sh_info field records the index of the first non local symbol. */
11646 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11647
11648 if (dynamic
11649 && elf_hash_table (info)->dynsym != NULL
11650 && (elf_hash_table (info)->dynsym->output_section
11651 != bfd_abs_section_ptr))
11652 {
11653 Elf_Internal_Sym sym;
11654 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11655 long last_local = 0;
11656
11657 /* Write out the section symbols for the output sections. */
11658 if (bfd_link_pic (info)
11659 || elf_hash_table (info)->is_relocatable_executable)
11660 {
11661 asection *s;
11662
11663 sym.st_size = 0;
11664 sym.st_name = 0;
11665 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11666 sym.st_other = 0;
11667 sym.st_target_internal = 0;
11668
11669 for (s = abfd->sections; s != NULL; s = s->next)
11670 {
11671 int indx;
11672 bfd_byte *dest;
11673 long dynindx;
11674
11675 dynindx = elf_section_data (s)->dynindx;
11676 if (dynindx <= 0)
11677 continue;
11678 indx = elf_section_data (s)->this_idx;
11679 BFD_ASSERT (indx > 0);
11680 sym.st_shndx = indx;
11681 if (! check_dynsym (abfd, &sym))
11682 return FALSE;
11683 sym.st_value = s->vma;
11684 dest = dynsym + dynindx * bed->s->sizeof_sym;
11685 if (last_local < dynindx)
11686 last_local = dynindx;
11687 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11688 }
11689 }
11690
11691 /* Write out the local dynsyms. */
11692 if (elf_hash_table (info)->dynlocal)
11693 {
11694 struct elf_link_local_dynamic_entry *e;
11695 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11696 {
11697 asection *s;
11698 bfd_byte *dest;
11699
11700 /* Copy the internal symbol and turn off visibility.
11701 Note that we saved a word of storage and overwrote
11702 the original st_name with the dynstr_index. */
11703 sym = e->isym;
11704 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11705
11706 s = bfd_section_from_elf_index (e->input_bfd,
11707 e->isym.st_shndx);
11708 if (s != NULL)
11709 {
11710 sym.st_shndx =
11711 elf_section_data (s->output_section)->this_idx;
11712 if (! check_dynsym (abfd, &sym))
11713 return FALSE;
11714 sym.st_value = (s->output_section->vma
11715 + s->output_offset
11716 + e->isym.st_value);
11717 }
11718
11719 if (last_local < e->dynindx)
11720 last_local = e->dynindx;
11721
11722 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11723 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11724 }
11725 }
11726
11727 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11728 last_local + 1;
11729 }
11730
11731 /* We get the global symbols from the hash table. */
11732 eoinfo.failed = FALSE;
11733 eoinfo.localsyms = FALSE;
11734 eoinfo.flinfo = &flinfo;
11735 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11736 if (eoinfo.failed)
11737 return FALSE;
11738
11739 /* If backend needs to output some symbols not present in the hash
11740 table, do it now. */
11741 if (bed->elf_backend_output_arch_syms
11742 && (info->strip != strip_all || emit_relocs))
11743 {
11744 typedef int (*out_sym_func)
11745 (void *, const char *, Elf_Internal_Sym *, asection *,
11746 struct elf_link_hash_entry *);
11747
11748 if (! ((*bed->elf_backend_output_arch_syms)
11749 (abfd, info, &flinfo,
11750 (out_sym_func) elf_link_output_symstrtab)))
11751 return FALSE;
11752 }
11753
11754 /* Finalize the .strtab section. */
11755 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11756
11757 /* Swap out the .strtab section. */
11758 if (!elf_link_swap_symbols_out (&flinfo))
11759 return FALSE;
11760
11761 /* Now we know the size of the symtab section. */
11762 if (bfd_get_symcount (abfd) > 0)
11763 {
11764 /* Finish up and write out the symbol string table (.strtab)
11765 section. */
11766 Elf_Internal_Shdr *symstrtab_hdr;
11767 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11768
11769 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11770 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11771 {
11772 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11773 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11774 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11775 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11776 symtab_shndx_hdr->sh_size = amt;
11777
11778 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11779 off, TRUE);
11780
11781 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11782 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11783 return FALSE;
11784 }
11785
11786 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11787 /* sh_name was set in prep_headers. */
11788 symstrtab_hdr->sh_type = SHT_STRTAB;
11789 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11790 symstrtab_hdr->sh_addr = 0;
11791 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11792 symstrtab_hdr->sh_entsize = 0;
11793 symstrtab_hdr->sh_link = 0;
11794 symstrtab_hdr->sh_info = 0;
11795 /* sh_offset is set just below. */
11796 symstrtab_hdr->sh_addralign = 1;
11797
11798 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11799 off, TRUE);
11800 elf_next_file_pos (abfd) = off;
11801
11802 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11803 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11804 return FALSE;
11805 }
11806
11807 /* Adjust the relocs to have the correct symbol indices. */
11808 for (o = abfd->sections; o != NULL; o = o->next)
11809 {
11810 struct bfd_elf_section_data *esdo = elf_section_data (o);
11811 bfd_boolean sort;
11812 if ((o->flags & SEC_RELOC) == 0)
11813 continue;
11814
11815 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11816 if (esdo->rel.hdr != NULL
11817 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11818 return FALSE;
11819 if (esdo->rela.hdr != NULL
11820 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11821 return FALSE;
11822
11823 /* Set the reloc_count field to 0 to prevent write_relocs from
11824 trying to swap the relocs out itself. */
11825 o->reloc_count = 0;
11826 }
11827
11828 if (dynamic && info->combreloc && dynobj != NULL)
11829 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11830
11831 /* If we are linking against a dynamic object, or generating a
11832 shared library, finish up the dynamic linking information. */
11833 if (dynamic)
11834 {
11835 bfd_byte *dyncon, *dynconend;
11836
11837 /* Fix up .dynamic entries. */
11838 o = bfd_get_linker_section (dynobj, ".dynamic");
11839 BFD_ASSERT (o != NULL);
11840
11841 dyncon = o->contents;
11842 dynconend = o->contents + o->size;
11843 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11844 {
11845 Elf_Internal_Dyn dyn;
11846 const char *name;
11847 unsigned int type;
11848
11849 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11850
11851 switch (dyn.d_tag)
11852 {
11853 default:
11854 continue;
11855 case DT_NULL:
11856 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11857 {
11858 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11859 {
11860 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11861 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11862 default: continue;
11863 }
11864 dyn.d_un.d_val = relativecount;
11865 relativecount = 0;
11866 break;
11867 }
11868 continue;
11869
11870 case DT_INIT:
11871 name = info->init_function;
11872 goto get_sym;
11873 case DT_FINI:
11874 name = info->fini_function;
11875 get_sym:
11876 {
11877 struct elf_link_hash_entry *h;
11878
11879 h = elf_link_hash_lookup (elf_hash_table (info), name,
11880 FALSE, FALSE, TRUE);
11881 if (h != NULL
11882 && (h->root.type == bfd_link_hash_defined
11883 || h->root.type == bfd_link_hash_defweak))
11884 {
11885 dyn.d_un.d_ptr = h->root.u.def.value;
11886 o = h->root.u.def.section;
11887 if (o->output_section != NULL)
11888 dyn.d_un.d_ptr += (o->output_section->vma
11889 + o->output_offset);
11890 else
11891 {
11892 /* The symbol is imported from another shared
11893 library and does not apply to this one. */
11894 dyn.d_un.d_ptr = 0;
11895 }
11896 break;
11897 }
11898 }
11899 continue;
11900
11901 case DT_PREINIT_ARRAYSZ:
11902 name = ".preinit_array";
11903 goto get_out_size;
11904 case DT_INIT_ARRAYSZ:
11905 name = ".init_array";
11906 goto get_out_size;
11907 case DT_FINI_ARRAYSZ:
11908 name = ".fini_array";
11909 get_out_size:
11910 o = bfd_get_section_by_name (abfd, name);
11911 if (o == NULL)
11912 {
11913 (*_bfd_error_handler)
11914 (_("could not find section %s"), name);
11915 goto error_return;
11916 }
11917 if (o->size == 0)
11918 (*_bfd_error_handler)
11919 (_("warning: %s section has zero size"), name);
11920 dyn.d_un.d_val = o->size;
11921 break;
11922
11923 case DT_PREINIT_ARRAY:
11924 name = ".preinit_array";
11925 goto get_out_vma;
11926 case DT_INIT_ARRAY:
11927 name = ".init_array";
11928 goto get_out_vma;
11929 case DT_FINI_ARRAY:
11930 name = ".fini_array";
11931 get_out_vma:
11932 o = bfd_get_section_by_name (abfd, name);
11933 goto do_vma;
11934
11935 case DT_HASH:
11936 name = ".hash";
11937 goto get_vma;
11938 case DT_GNU_HASH:
11939 name = ".gnu.hash";
11940 goto get_vma;
11941 case DT_STRTAB:
11942 name = ".dynstr";
11943 goto get_vma;
11944 case DT_SYMTAB:
11945 name = ".dynsym";
11946 goto get_vma;
11947 case DT_VERDEF:
11948 name = ".gnu.version_d";
11949 goto get_vma;
11950 case DT_VERNEED:
11951 name = ".gnu.version_r";
11952 goto get_vma;
11953 case DT_VERSYM:
11954 name = ".gnu.version";
11955 get_vma:
11956 o = bfd_get_linker_section (dynobj, name);
11957 do_vma:
11958 if (o == NULL)
11959 {
11960 (*_bfd_error_handler)
11961 (_("could not find section %s"), name);
11962 goto error_return;
11963 }
11964 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11965 {
11966 (*_bfd_error_handler)
11967 (_("warning: section '%s' is being made into a note"), name);
11968 bfd_set_error (bfd_error_nonrepresentable_section);
11969 goto error_return;
11970 }
11971 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
11972 break;
11973
11974 case DT_REL:
11975 case DT_RELA:
11976 case DT_RELSZ:
11977 case DT_RELASZ:
11978 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11979 type = SHT_REL;
11980 else
11981 type = SHT_RELA;
11982 dyn.d_un.d_val = 0;
11983 dyn.d_un.d_ptr = 0;
11984 for (i = 1; i < elf_numsections (abfd); i++)
11985 {
11986 Elf_Internal_Shdr *hdr;
11987
11988 hdr = elf_elfsections (abfd)[i];
11989 if (hdr->sh_type == type
11990 && (hdr->sh_flags & SHF_ALLOC) != 0)
11991 {
11992 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11993 dyn.d_un.d_val += hdr->sh_size;
11994 else
11995 {
11996 if (dyn.d_un.d_ptr == 0
11997 || hdr->sh_addr < dyn.d_un.d_ptr)
11998 dyn.d_un.d_ptr = hdr->sh_addr;
11999 }
12000 }
12001 }
12002 break;
12003 }
12004 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12005 }
12006 }
12007
12008 /* If we have created any dynamic sections, then output them. */
12009 if (dynobj != NULL)
12010 {
12011 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12012 goto error_return;
12013
12014 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12015 if (((info->warn_shared_textrel && bfd_link_pic (info))
12016 || info->error_textrel)
12017 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12018 {
12019 bfd_byte *dyncon, *dynconend;
12020
12021 dyncon = o->contents;
12022 dynconend = o->contents + o->size;
12023 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12024 {
12025 Elf_Internal_Dyn dyn;
12026
12027 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12028
12029 if (dyn.d_tag == DT_TEXTREL)
12030 {
12031 if (info->error_textrel)
12032 info->callbacks->einfo
12033 (_("%P%X: read-only segment has dynamic relocations.\n"));
12034 else
12035 info->callbacks->einfo
12036 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12037 break;
12038 }
12039 }
12040 }
12041
12042 for (o = dynobj->sections; o != NULL; o = o->next)
12043 {
12044 if ((o->flags & SEC_HAS_CONTENTS) == 0
12045 || o->size == 0
12046 || o->output_section == bfd_abs_section_ptr)
12047 continue;
12048 if ((o->flags & SEC_LINKER_CREATED) == 0)
12049 {
12050 /* At this point, we are only interested in sections
12051 created by _bfd_elf_link_create_dynamic_sections. */
12052 continue;
12053 }
12054 if (elf_hash_table (info)->stab_info.stabstr == o)
12055 continue;
12056 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12057 continue;
12058 if (strcmp (o->name, ".dynstr") != 0)
12059 {
12060 if (! bfd_set_section_contents (abfd, o->output_section,
12061 o->contents,
12062 (file_ptr) o->output_offset
12063 * bfd_octets_per_byte (abfd),
12064 o->size))
12065 goto error_return;
12066 }
12067 else
12068 {
12069 /* The contents of the .dynstr section are actually in a
12070 stringtab. */
12071 file_ptr off;
12072
12073 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12074 if (bfd_seek (abfd, off, SEEK_SET) != 0
12075 || ! _bfd_elf_strtab_emit (abfd,
12076 elf_hash_table (info)->dynstr))
12077 goto error_return;
12078 }
12079 }
12080 }
12081
12082 if (bfd_link_relocatable (info))
12083 {
12084 bfd_boolean failed = FALSE;
12085
12086 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12087 if (failed)
12088 goto error_return;
12089 }
12090
12091 /* If we have optimized stabs strings, output them. */
12092 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12093 {
12094 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12095 goto error_return;
12096 }
12097
12098 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12099 goto error_return;
12100
12101 elf_final_link_free (abfd, &flinfo);
12102
12103 elf_linker (abfd) = TRUE;
12104
12105 if (attr_section)
12106 {
12107 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12108 if (contents == NULL)
12109 return FALSE; /* Bail out and fail. */
12110 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12111 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12112 free (contents);
12113 }
12114
12115 return TRUE;
12116
12117 error_return:
12118 elf_final_link_free (abfd, &flinfo);
12119 return FALSE;
12120 }
12121 \f
12122 /* Initialize COOKIE for input bfd ABFD. */
12123
12124 static bfd_boolean
12125 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12126 struct bfd_link_info *info, bfd *abfd)
12127 {
12128 Elf_Internal_Shdr *symtab_hdr;
12129 const struct elf_backend_data *bed;
12130
12131 bed = get_elf_backend_data (abfd);
12132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12133
12134 cookie->abfd = abfd;
12135 cookie->sym_hashes = elf_sym_hashes (abfd);
12136 cookie->bad_symtab = elf_bad_symtab (abfd);
12137 if (cookie->bad_symtab)
12138 {
12139 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12140 cookie->extsymoff = 0;
12141 }
12142 else
12143 {
12144 cookie->locsymcount = symtab_hdr->sh_info;
12145 cookie->extsymoff = symtab_hdr->sh_info;
12146 }
12147
12148 if (bed->s->arch_size == 32)
12149 cookie->r_sym_shift = 8;
12150 else
12151 cookie->r_sym_shift = 32;
12152
12153 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12154 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12155 {
12156 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12157 cookie->locsymcount, 0,
12158 NULL, NULL, NULL);
12159 if (cookie->locsyms == NULL)
12160 {
12161 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12162 return FALSE;
12163 }
12164 if (info->keep_memory)
12165 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12166 }
12167 return TRUE;
12168 }
12169
12170 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12171
12172 static void
12173 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12174 {
12175 Elf_Internal_Shdr *symtab_hdr;
12176
12177 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12178 if (cookie->locsyms != NULL
12179 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12180 free (cookie->locsyms);
12181 }
12182
12183 /* Initialize the relocation information in COOKIE for input section SEC
12184 of input bfd ABFD. */
12185
12186 static bfd_boolean
12187 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12188 struct bfd_link_info *info, bfd *abfd,
12189 asection *sec)
12190 {
12191 const struct elf_backend_data *bed;
12192
12193 if (sec->reloc_count == 0)
12194 {
12195 cookie->rels = NULL;
12196 cookie->relend = NULL;
12197 }
12198 else
12199 {
12200 bed = get_elf_backend_data (abfd);
12201
12202 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12203 info->keep_memory);
12204 if (cookie->rels == NULL)
12205 return FALSE;
12206 cookie->rel = cookie->rels;
12207 cookie->relend = (cookie->rels
12208 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12209 }
12210 cookie->rel = cookie->rels;
12211 return TRUE;
12212 }
12213
12214 /* Free the memory allocated by init_reloc_cookie_rels,
12215 if appropriate. */
12216
12217 static void
12218 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12219 asection *sec)
12220 {
12221 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12222 free (cookie->rels);
12223 }
12224
12225 /* Initialize the whole of COOKIE for input section SEC. */
12226
12227 static bfd_boolean
12228 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12229 struct bfd_link_info *info,
12230 asection *sec)
12231 {
12232 if (!init_reloc_cookie (cookie, info, sec->owner))
12233 goto error1;
12234 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12235 goto error2;
12236 return TRUE;
12237
12238 error2:
12239 fini_reloc_cookie (cookie, sec->owner);
12240 error1:
12241 return FALSE;
12242 }
12243
12244 /* Free the memory allocated by init_reloc_cookie_for_section,
12245 if appropriate. */
12246
12247 static void
12248 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12249 asection *sec)
12250 {
12251 fini_reloc_cookie_rels (cookie, sec);
12252 fini_reloc_cookie (cookie, sec->owner);
12253 }
12254 \f
12255 /* Garbage collect unused sections. */
12256
12257 /* Default gc_mark_hook. */
12258
12259 asection *
12260 _bfd_elf_gc_mark_hook (asection *sec,
12261 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12262 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12263 struct elf_link_hash_entry *h,
12264 Elf_Internal_Sym *sym)
12265 {
12266 if (h != NULL)
12267 {
12268 switch (h->root.type)
12269 {
12270 case bfd_link_hash_defined:
12271 case bfd_link_hash_defweak:
12272 return h->root.u.def.section;
12273
12274 case bfd_link_hash_common:
12275 return h->root.u.c.p->section;
12276
12277 default:
12278 break;
12279 }
12280 }
12281 else
12282 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12283
12284 return NULL;
12285 }
12286
12287 /* For undefined __start_<name> and __stop_<name> symbols, return the
12288 first input section matching <name>. Return NULL otherwise. */
12289
12290 asection *
12291 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12292 struct elf_link_hash_entry *h)
12293 {
12294 asection *s;
12295 const char *sec_name;
12296
12297 if (h->root.type != bfd_link_hash_undefined
12298 && h->root.type != bfd_link_hash_undefweak)
12299 return NULL;
12300
12301 s = h->root.u.undef.section;
12302 if (s != NULL)
12303 {
12304 if (s == (asection *) 0 - 1)
12305 return NULL;
12306 return s;
12307 }
12308
12309 sec_name = NULL;
12310 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12311 sec_name = h->root.root.string + 8;
12312 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12313 sec_name = h->root.root.string + 7;
12314
12315 if (sec_name != NULL && *sec_name != '\0')
12316 {
12317 bfd *i;
12318
12319 for (i = info->input_bfds; i != NULL; i = i->link.next)
12320 {
12321 s = bfd_get_section_by_name (i, sec_name);
12322 if (s != NULL)
12323 {
12324 h->root.u.undef.section = s;
12325 break;
12326 }
12327 }
12328 }
12329
12330 if (s == NULL)
12331 h->root.u.undef.section = (asection *) 0 - 1;
12332
12333 return s;
12334 }
12335
12336 /* COOKIE->rel describes a relocation against section SEC, which is
12337 a section we've decided to keep. Return the section that contains
12338 the relocation symbol, or NULL if no section contains it. */
12339
12340 asection *
12341 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12342 elf_gc_mark_hook_fn gc_mark_hook,
12343 struct elf_reloc_cookie *cookie,
12344 bfd_boolean *start_stop)
12345 {
12346 unsigned long r_symndx;
12347 struct elf_link_hash_entry *h;
12348
12349 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12350 if (r_symndx == STN_UNDEF)
12351 return NULL;
12352
12353 if (r_symndx >= cookie->locsymcount
12354 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12355 {
12356 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12357 if (h == NULL)
12358 {
12359 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12360 sec->owner);
12361 return NULL;
12362 }
12363 while (h->root.type == bfd_link_hash_indirect
12364 || h->root.type == bfd_link_hash_warning)
12365 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12366 h->mark = 1;
12367 /* If this symbol is weak and there is a non-weak definition, we
12368 keep the non-weak definition because many backends put
12369 dynamic reloc info on the non-weak definition for code
12370 handling copy relocs. */
12371 if (h->u.weakdef != NULL)
12372 h->u.weakdef->mark = 1;
12373
12374 if (start_stop != NULL)
12375 {
12376 /* To work around a glibc bug, mark all XXX input sections
12377 when there is an as yet undefined reference to __start_XXX
12378 or __stop_XXX symbols. The linker will later define such
12379 symbols for orphan input sections that have a name
12380 representable as a C identifier. */
12381 asection *s = _bfd_elf_is_start_stop (info, h);
12382
12383 if (s != NULL)
12384 {
12385 *start_stop = !s->gc_mark;
12386 return s;
12387 }
12388 }
12389
12390 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12391 }
12392
12393 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12394 &cookie->locsyms[r_symndx]);
12395 }
12396
12397 /* COOKIE->rel describes a relocation against section SEC, which is
12398 a section we've decided to keep. Mark the section that contains
12399 the relocation symbol. */
12400
12401 bfd_boolean
12402 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12403 asection *sec,
12404 elf_gc_mark_hook_fn gc_mark_hook,
12405 struct elf_reloc_cookie *cookie)
12406 {
12407 asection *rsec;
12408 bfd_boolean start_stop = FALSE;
12409
12410 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12411 while (rsec != NULL)
12412 {
12413 if (!rsec->gc_mark)
12414 {
12415 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12416 || (rsec->owner->flags & DYNAMIC) != 0)
12417 rsec->gc_mark = 1;
12418 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12419 return FALSE;
12420 }
12421 if (!start_stop)
12422 break;
12423 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12424 }
12425 return TRUE;
12426 }
12427
12428 /* The mark phase of garbage collection. For a given section, mark
12429 it and any sections in this section's group, and all the sections
12430 which define symbols to which it refers. */
12431
12432 bfd_boolean
12433 _bfd_elf_gc_mark (struct bfd_link_info *info,
12434 asection *sec,
12435 elf_gc_mark_hook_fn gc_mark_hook)
12436 {
12437 bfd_boolean ret;
12438 asection *group_sec, *eh_frame;
12439
12440 sec->gc_mark = 1;
12441
12442 /* Mark all the sections in the group. */
12443 group_sec = elf_section_data (sec)->next_in_group;
12444 if (group_sec && !group_sec->gc_mark)
12445 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12446 return FALSE;
12447
12448 /* Look through the section relocs. */
12449 ret = TRUE;
12450 eh_frame = elf_eh_frame_section (sec->owner);
12451 if ((sec->flags & SEC_RELOC) != 0
12452 && sec->reloc_count > 0
12453 && sec != eh_frame)
12454 {
12455 struct elf_reloc_cookie cookie;
12456
12457 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12458 ret = FALSE;
12459 else
12460 {
12461 for (; cookie.rel < cookie.relend; cookie.rel++)
12462 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12463 {
12464 ret = FALSE;
12465 break;
12466 }
12467 fini_reloc_cookie_for_section (&cookie, sec);
12468 }
12469 }
12470
12471 if (ret && eh_frame && elf_fde_list (sec))
12472 {
12473 struct elf_reloc_cookie cookie;
12474
12475 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12476 ret = FALSE;
12477 else
12478 {
12479 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12480 gc_mark_hook, &cookie))
12481 ret = FALSE;
12482 fini_reloc_cookie_for_section (&cookie, eh_frame);
12483 }
12484 }
12485
12486 eh_frame = elf_section_eh_frame_entry (sec);
12487 if (ret && eh_frame && !eh_frame->gc_mark)
12488 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12489 ret = FALSE;
12490
12491 return ret;
12492 }
12493
12494 /* Scan and mark sections in a special or debug section group. */
12495
12496 static void
12497 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12498 {
12499 /* Point to first section of section group. */
12500 asection *ssec;
12501 /* Used to iterate the section group. */
12502 asection *msec;
12503
12504 bfd_boolean is_special_grp = TRUE;
12505 bfd_boolean is_debug_grp = TRUE;
12506
12507 /* First scan to see if group contains any section other than debug
12508 and special section. */
12509 ssec = msec = elf_next_in_group (grp);
12510 do
12511 {
12512 if ((msec->flags & SEC_DEBUGGING) == 0)
12513 is_debug_grp = FALSE;
12514
12515 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12516 is_special_grp = FALSE;
12517
12518 msec = elf_next_in_group (msec);
12519 }
12520 while (msec != ssec);
12521
12522 /* If this is a pure debug section group or pure special section group,
12523 keep all sections in this group. */
12524 if (is_debug_grp || is_special_grp)
12525 {
12526 do
12527 {
12528 msec->gc_mark = 1;
12529 msec = elf_next_in_group (msec);
12530 }
12531 while (msec != ssec);
12532 }
12533 }
12534
12535 /* Keep debug and special sections. */
12536
12537 bfd_boolean
12538 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12539 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12540 {
12541 bfd *ibfd;
12542
12543 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12544 {
12545 asection *isec;
12546 bfd_boolean some_kept;
12547 bfd_boolean debug_frag_seen;
12548
12549 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12550 continue;
12551
12552 /* Ensure all linker created sections are kept,
12553 see if any other section is already marked,
12554 and note if we have any fragmented debug sections. */
12555 debug_frag_seen = some_kept = FALSE;
12556 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12557 {
12558 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12559 isec->gc_mark = 1;
12560 else if (isec->gc_mark)
12561 some_kept = TRUE;
12562
12563 if (debug_frag_seen == FALSE
12564 && (isec->flags & SEC_DEBUGGING)
12565 && CONST_STRNEQ (isec->name, ".debug_line."))
12566 debug_frag_seen = TRUE;
12567 }
12568
12569 /* If no section in this file will be kept, then we can
12570 toss out the debug and special sections. */
12571 if (!some_kept)
12572 continue;
12573
12574 /* Keep debug and special sections like .comment when they are
12575 not part of a group. Also keep section groups that contain
12576 just debug sections or special sections. */
12577 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12578 {
12579 if ((isec->flags & SEC_GROUP) != 0)
12580 _bfd_elf_gc_mark_debug_special_section_group (isec);
12581 else if (((isec->flags & SEC_DEBUGGING) != 0
12582 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12583 && elf_next_in_group (isec) == NULL)
12584 isec->gc_mark = 1;
12585 }
12586
12587 if (! debug_frag_seen)
12588 continue;
12589
12590 /* Look for CODE sections which are going to be discarded,
12591 and find and discard any fragmented debug sections which
12592 are associated with that code section. */
12593 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12594 if ((isec->flags & SEC_CODE) != 0
12595 && isec->gc_mark == 0)
12596 {
12597 unsigned int ilen;
12598 asection *dsec;
12599
12600 ilen = strlen (isec->name);
12601
12602 /* Association is determined by the name of the debug section
12603 containing the name of the code section as a suffix. For
12604 example .debug_line.text.foo is a debug section associated
12605 with .text.foo. */
12606 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12607 {
12608 unsigned int dlen;
12609
12610 if (dsec->gc_mark == 0
12611 || (dsec->flags & SEC_DEBUGGING) == 0)
12612 continue;
12613
12614 dlen = strlen (dsec->name);
12615
12616 if (dlen > ilen
12617 && strncmp (dsec->name + (dlen - ilen),
12618 isec->name, ilen) == 0)
12619 {
12620 dsec->gc_mark = 0;
12621 }
12622 }
12623 }
12624 }
12625 return TRUE;
12626 }
12627
12628 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12629
12630 struct elf_gc_sweep_symbol_info
12631 {
12632 struct bfd_link_info *info;
12633 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12634 bfd_boolean);
12635 };
12636
12637 static bfd_boolean
12638 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12639 {
12640 if (!h->mark
12641 && (((h->root.type == bfd_link_hash_defined
12642 || h->root.type == bfd_link_hash_defweak)
12643 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12644 && h->root.u.def.section->gc_mark))
12645 || h->root.type == bfd_link_hash_undefined
12646 || h->root.type == bfd_link_hash_undefweak))
12647 {
12648 struct elf_gc_sweep_symbol_info *inf;
12649
12650 inf = (struct elf_gc_sweep_symbol_info *) data;
12651 (*inf->hide_symbol) (inf->info, h, TRUE);
12652 h->def_regular = 0;
12653 h->ref_regular = 0;
12654 h->ref_regular_nonweak = 0;
12655 }
12656
12657 return TRUE;
12658 }
12659
12660 /* The sweep phase of garbage collection. Remove all garbage sections. */
12661
12662 typedef bfd_boolean (*gc_sweep_hook_fn)
12663 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12664
12665 static bfd_boolean
12666 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12667 {
12668 bfd *sub;
12669 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12670 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12671 unsigned long section_sym_count;
12672 struct elf_gc_sweep_symbol_info sweep_info;
12673
12674 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12675 {
12676 asection *o;
12677
12678 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12679 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12680 continue;
12681
12682 for (o = sub->sections; o != NULL; o = o->next)
12683 {
12684 /* When any section in a section group is kept, we keep all
12685 sections in the section group. If the first member of
12686 the section group is excluded, we will also exclude the
12687 group section. */
12688 if (o->flags & SEC_GROUP)
12689 {
12690 asection *first = elf_next_in_group (o);
12691 o->gc_mark = first->gc_mark;
12692 }
12693
12694 if (o->gc_mark)
12695 continue;
12696
12697 /* Skip sweeping sections already excluded. */
12698 if (o->flags & SEC_EXCLUDE)
12699 continue;
12700
12701 /* Since this is early in the link process, it is simple
12702 to remove a section from the output. */
12703 o->flags |= SEC_EXCLUDE;
12704
12705 if (info->print_gc_sections && o->size != 0)
12706 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12707
12708 /* But we also have to update some of the relocation
12709 info we collected before. */
12710 if (gc_sweep_hook
12711 && (o->flags & SEC_RELOC) != 0
12712 && o->reloc_count != 0
12713 && !((info->strip == strip_all || info->strip == strip_debugger)
12714 && (o->flags & SEC_DEBUGGING) != 0)
12715 && !bfd_is_abs_section (o->output_section))
12716 {
12717 Elf_Internal_Rela *internal_relocs;
12718 bfd_boolean r;
12719
12720 internal_relocs
12721 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12722 info->keep_memory);
12723 if (internal_relocs == NULL)
12724 return FALSE;
12725
12726 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12727
12728 if (elf_section_data (o)->relocs != internal_relocs)
12729 free (internal_relocs);
12730
12731 if (!r)
12732 return FALSE;
12733 }
12734 }
12735 }
12736
12737 /* Remove the symbols that were in the swept sections from the dynamic
12738 symbol table. GCFIXME: Anyone know how to get them out of the
12739 static symbol table as well? */
12740 sweep_info.info = info;
12741 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12742 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12743 &sweep_info);
12744
12745 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12746 return TRUE;
12747 }
12748
12749 /* Propagate collected vtable information. This is called through
12750 elf_link_hash_traverse. */
12751
12752 static bfd_boolean
12753 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12754 {
12755 /* Those that are not vtables. */
12756 if (h->vtable == NULL || h->vtable->parent == NULL)
12757 return TRUE;
12758
12759 /* Those vtables that do not have parents, we cannot merge. */
12760 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12761 return TRUE;
12762
12763 /* If we've already been done, exit. */
12764 if (h->vtable->used && h->vtable->used[-1])
12765 return TRUE;
12766
12767 /* Make sure the parent's table is up to date. */
12768 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12769
12770 if (h->vtable->used == NULL)
12771 {
12772 /* None of this table's entries were referenced. Re-use the
12773 parent's table. */
12774 h->vtable->used = h->vtable->parent->vtable->used;
12775 h->vtable->size = h->vtable->parent->vtable->size;
12776 }
12777 else
12778 {
12779 size_t n;
12780 bfd_boolean *cu, *pu;
12781
12782 /* Or the parent's entries into ours. */
12783 cu = h->vtable->used;
12784 cu[-1] = TRUE;
12785 pu = h->vtable->parent->vtable->used;
12786 if (pu != NULL)
12787 {
12788 const struct elf_backend_data *bed;
12789 unsigned int log_file_align;
12790
12791 bed = get_elf_backend_data (h->root.u.def.section->owner);
12792 log_file_align = bed->s->log_file_align;
12793 n = h->vtable->parent->vtable->size >> log_file_align;
12794 while (n--)
12795 {
12796 if (*pu)
12797 *cu = TRUE;
12798 pu++;
12799 cu++;
12800 }
12801 }
12802 }
12803
12804 return TRUE;
12805 }
12806
12807 static bfd_boolean
12808 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12809 {
12810 asection *sec;
12811 bfd_vma hstart, hend;
12812 Elf_Internal_Rela *relstart, *relend, *rel;
12813 const struct elf_backend_data *bed;
12814 unsigned int log_file_align;
12815
12816 /* Take care of both those symbols that do not describe vtables as
12817 well as those that are not loaded. */
12818 if (h->vtable == NULL || h->vtable->parent == NULL)
12819 return TRUE;
12820
12821 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12822 || h->root.type == bfd_link_hash_defweak);
12823
12824 sec = h->root.u.def.section;
12825 hstart = h->root.u.def.value;
12826 hend = hstart + h->size;
12827
12828 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12829 if (!relstart)
12830 return *(bfd_boolean *) okp = FALSE;
12831 bed = get_elf_backend_data (sec->owner);
12832 log_file_align = bed->s->log_file_align;
12833
12834 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12835
12836 for (rel = relstart; rel < relend; ++rel)
12837 if (rel->r_offset >= hstart && rel->r_offset < hend)
12838 {
12839 /* If the entry is in use, do nothing. */
12840 if (h->vtable->used
12841 && (rel->r_offset - hstart) < h->vtable->size)
12842 {
12843 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12844 if (h->vtable->used[entry])
12845 continue;
12846 }
12847 /* Otherwise, kill it. */
12848 rel->r_offset = rel->r_info = rel->r_addend = 0;
12849 }
12850
12851 return TRUE;
12852 }
12853
12854 /* Mark sections containing dynamically referenced symbols. When
12855 building shared libraries, we must assume that any visible symbol is
12856 referenced. */
12857
12858 bfd_boolean
12859 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12860 {
12861 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12862 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12863
12864 if ((h->root.type == bfd_link_hash_defined
12865 || h->root.type == bfd_link_hash_defweak)
12866 && (h->ref_dynamic
12867 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12868 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12869 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12870 && (!bfd_link_executable (info)
12871 || info->export_dynamic
12872 || (h->dynamic
12873 && d != NULL
12874 && (*d->match) (&d->head, NULL, h->root.root.string)))
12875 && (h->versioned >= versioned
12876 || !bfd_hide_sym_by_version (info->version_info,
12877 h->root.root.string)))))
12878 h->root.u.def.section->flags |= SEC_KEEP;
12879
12880 return TRUE;
12881 }
12882
12883 /* Keep all sections containing symbols undefined on the command-line,
12884 and the section containing the entry symbol. */
12885
12886 void
12887 _bfd_elf_gc_keep (struct bfd_link_info *info)
12888 {
12889 struct bfd_sym_chain *sym;
12890
12891 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12892 {
12893 struct elf_link_hash_entry *h;
12894
12895 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12896 FALSE, FALSE, FALSE);
12897
12898 if (h != NULL
12899 && (h->root.type == bfd_link_hash_defined
12900 || h->root.type == bfd_link_hash_defweak)
12901 && !bfd_is_abs_section (h->root.u.def.section))
12902 h->root.u.def.section->flags |= SEC_KEEP;
12903 }
12904 }
12905
12906 bfd_boolean
12907 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12908 struct bfd_link_info *info)
12909 {
12910 bfd *ibfd = info->input_bfds;
12911
12912 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12913 {
12914 asection *sec;
12915 struct elf_reloc_cookie cookie;
12916
12917 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12918 continue;
12919
12920 if (!init_reloc_cookie (&cookie, info, ibfd))
12921 return FALSE;
12922
12923 for (sec = ibfd->sections; sec; sec = sec->next)
12924 {
12925 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12926 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12927 {
12928 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12929 fini_reloc_cookie_rels (&cookie, sec);
12930 }
12931 }
12932 }
12933 return TRUE;
12934 }
12935
12936 /* Do mark and sweep of unused sections. */
12937
12938 bfd_boolean
12939 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12940 {
12941 bfd_boolean ok = TRUE;
12942 bfd *sub;
12943 elf_gc_mark_hook_fn gc_mark_hook;
12944 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12945 struct elf_link_hash_table *htab;
12946
12947 if (!bed->can_gc_sections
12948 || !is_elf_hash_table (info->hash))
12949 {
12950 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12951 return TRUE;
12952 }
12953
12954 bed->gc_keep (info);
12955 htab = elf_hash_table (info);
12956
12957 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12958 at the .eh_frame section if we can mark the FDEs individually. */
12959 for (sub = info->input_bfds;
12960 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12961 sub = sub->link.next)
12962 {
12963 asection *sec;
12964 struct elf_reloc_cookie cookie;
12965
12966 sec = bfd_get_section_by_name (sub, ".eh_frame");
12967 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12968 {
12969 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12970 if (elf_section_data (sec)->sec_info
12971 && (sec->flags & SEC_LINKER_CREATED) == 0)
12972 elf_eh_frame_section (sub) = sec;
12973 fini_reloc_cookie_for_section (&cookie, sec);
12974 sec = bfd_get_next_section_by_name (NULL, sec);
12975 }
12976 }
12977
12978 /* Apply transitive closure to the vtable entry usage info. */
12979 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12980 if (!ok)
12981 return FALSE;
12982
12983 /* Kill the vtable relocations that were not used. */
12984 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12985 if (!ok)
12986 return FALSE;
12987
12988 /* Mark dynamically referenced symbols. */
12989 if (htab->dynamic_sections_created)
12990 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12991
12992 /* Grovel through relocs to find out who stays ... */
12993 gc_mark_hook = bed->gc_mark_hook;
12994 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12995 {
12996 asection *o;
12997
12998 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12999 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13000 continue;
13001
13002 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13003 Also treat note sections as a root, if the section is not part
13004 of a group. */
13005 for (o = sub->sections; o != NULL; o = o->next)
13006 if (!o->gc_mark
13007 && (o->flags & SEC_EXCLUDE) == 0
13008 && ((o->flags & SEC_KEEP) != 0
13009 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13010 && elf_next_in_group (o) == NULL )))
13011 {
13012 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13013 return FALSE;
13014 }
13015 }
13016
13017 /* Allow the backend to mark additional target specific sections. */
13018 bed->gc_mark_extra_sections (info, gc_mark_hook);
13019
13020 /* ... and mark SEC_EXCLUDE for those that go. */
13021 return elf_gc_sweep (abfd, info);
13022 }
13023 \f
13024 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13025
13026 bfd_boolean
13027 bfd_elf_gc_record_vtinherit (bfd *abfd,
13028 asection *sec,
13029 struct elf_link_hash_entry *h,
13030 bfd_vma offset)
13031 {
13032 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13033 struct elf_link_hash_entry **search, *child;
13034 bfd_size_type extsymcount;
13035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13036
13037 /* The sh_info field of the symtab header tells us where the
13038 external symbols start. We don't care about the local symbols at
13039 this point. */
13040 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13041 if (!elf_bad_symtab (abfd))
13042 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13043
13044 sym_hashes = elf_sym_hashes (abfd);
13045 sym_hashes_end = sym_hashes + extsymcount;
13046
13047 /* Hunt down the child symbol, which is in this section at the same
13048 offset as the relocation. */
13049 for (search = sym_hashes; search != sym_hashes_end; ++search)
13050 {
13051 if ((child = *search) != NULL
13052 && (child->root.type == bfd_link_hash_defined
13053 || child->root.type == bfd_link_hash_defweak)
13054 && child->root.u.def.section == sec
13055 && child->root.u.def.value == offset)
13056 goto win;
13057 }
13058
13059 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
13060 abfd, sec, (unsigned long) offset);
13061 bfd_set_error (bfd_error_invalid_operation);
13062 return FALSE;
13063
13064 win:
13065 if (!child->vtable)
13066 {
13067 child->vtable = ((struct elf_link_virtual_table_entry *)
13068 bfd_zalloc (abfd, sizeof (*child->vtable)));
13069 if (!child->vtable)
13070 return FALSE;
13071 }
13072 if (!h)
13073 {
13074 /* This *should* only be the absolute section. It could potentially
13075 be that someone has defined a non-global vtable though, which
13076 would be bad. It isn't worth paging in the local symbols to be
13077 sure though; that case should simply be handled by the assembler. */
13078
13079 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13080 }
13081 else
13082 child->vtable->parent = h;
13083
13084 return TRUE;
13085 }
13086
13087 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13088
13089 bfd_boolean
13090 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13091 asection *sec ATTRIBUTE_UNUSED,
13092 struct elf_link_hash_entry *h,
13093 bfd_vma addend)
13094 {
13095 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13096 unsigned int log_file_align = bed->s->log_file_align;
13097
13098 if (!h->vtable)
13099 {
13100 h->vtable = ((struct elf_link_virtual_table_entry *)
13101 bfd_zalloc (abfd, sizeof (*h->vtable)));
13102 if (!h->vtable)
13103 return FALSE;
13104 }
13105
13106 if (addend >= h->vtable->size)
13107 {
13108 size_t size, bytes, file_align;
13109 bfd_boolean *ptr = h->vtable->used;
13110
13111 /* While the symbol is undefined, we have to be prepared to handle
13112 a zero size. */
13113 file_align = 1 << log_file_align;
13114 if (h->root.type == bfd_link_hash_undefined)
13115 size = addend + file_align;
13116 else
13117 {
13118 size = h->size;
13119 if (addend >= size)
13120 {
13121 /* Oops! We've got a reference past the defined end of
13122 the table. This is probably a bug -- shall we warn? */
13123 size = addend + file_align;
13124 }
13125 }
13126 size = (size + file_align - 1) & -file_align;
13127
13128 /* Allocate one extra entry for use as a "done" flag for the
13129 consolidation pass. */
13130 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13131
13132 if (ptr)
13133 {
13134 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13135
13136 if (ptr != NULL)
13137 {
13138 size_t oldbytes;
13139
13140 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13141 * sizeof (bfd_boolean));
13142 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13143 }
13144 }
13145 else
13146 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13147
13148 if (ptr == NULL)
13149 return FALSE;
13150
13151 /* And arrange for that done flag to be at index -1. */
13152 h->vtable->used = ptr + 1;
13153 h->vtable->size = size;
13154 }
13155
13156 h->vtable->used[addend >> log_file_align] = TRUE;
13157
13158 return TRUE;
13159 }
13160
13161 /* Map an ELF section header flag to its corresponding string. */
13162 typedef struct
13163 {
13164 char *flag_name;
13165 flagword flag_value;
13166 } elf_flags_to_name_table;
13167
13168 static elf_flags_to_name_table elf_flags_to_names [] =
13169 {
13170 { "SHF_WRITE", SHF_WRITE },
13171 { "SHF_ALLOC", SHF_ALLOC },
13172 { "SHF_EXECINSTR", SHF_EXECINSTR },
13173 { "SHF_MERGE", SHF_MERGE },
13174 { "SHF_STRINGS", SHF_STRINGS },
13175 { "SHF_INFO_LINK", SHF_INFO_LINK},
13176 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13177 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13178 { "SHF_GROUP", SHF_GROUP },
13179 { "SHF_TLS", SHF_TLS },
13180 { "SHF_MASKOS", SHF_MASKOS },
13181 { "SHF_EXCLUDE", SHF_EXCLUDE },
13182 };
13183
13184 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13185 bfd_boolean
13186 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13187 struct flag_info *flaginfo,
13188 asection *section)
13189 {
13190 const bfd_vma sh_flags = elf_section_flags (section);
13191
13192 if (!flaginfo->flags_initialized)
13193 {
13194 bfd *obfd = info->output_bfd;
13195 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13196 struct flag_info_list *tf = flaginfo->flag_list;
13197 int with_hex = 0;
13198 int without_hex = 0;
13199
13200 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13201 {
13202 unsigned i;
13203 flagword (*lookup) (char *);
13204
13205 lookup = bed->elf_backend_lookup_section_flags_hook;
13206 if (lookup != NULL)
13207 {
13208 flagword hexval = (*lookup) ((char *) tf->name);
13209
13210 if (hexval != 0)
13211 {
13212 if (tf->with == with_flags)
13213 with_hex |= hexval;
13214 else if (tf->with == without_flags)
13215 without_hex |= hexval;
13216 tf->valid = TRUE;
13217 continue;
13218 }
13219 }
13220 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13221 {
13222 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13223 {
13224 if (tf->with == with_flags)
13225 with_hex |= elf_flags_to_names[i].flag_value;
13226 else if (tf->with == without_flags)
13227 without_hex |= elf_flags_to_names[i].flag_value;
13228 tf->valid = TRUE;
13229 break;
13230 }
13231 }
13232 if (!tf->valid)
13233 {
13234 info->callbacks->einfo
13235 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13236 return FALSE;
13237 }
13238 }
13239 flaginfo->flags_initialized = TRUE;
13240 flaginfo->only_with_flags |= with_hex;
13241 flaginfo->not_with_flags |= without_hex;
13242 }
13243
13244 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13245 return FALSE;
13246
13247 if ((flaginfo->not_with_flags & sh_flags) != 0)
13248 return FALSE;
13249
13250 return TRUE;
13251 }
13252
13253 struct alloc_got_off_arg {
13254 bfd_vma gotoff;
13255 struct bfd_link_info *info;
13256 };
13257
13258 /* We need a special top-level link routine to convert got reference counts
13259 to real got offsets. */
13260
13261 static bfd_boolean
13262 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13263 {
13264 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13265 bfd *obfd = gofarg->info->output_bfd;
13266 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13267
13268 if (h->got.refcount > 0)
13269 {
13270 h->got.offset = gofarg->gotoff;
13271 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13272 }
13273 else
13274 h->got.offset = (bfd_vma) -1;
13275
13276 return TRUE;
13277 }
13278
13279 /* And an accompanying bit to work out final got entry offsets once
13280 we're done. Should be called from final_link. */
13281
13282 bfd_boolean
13283 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13284 struct bfd_link_info *info)
13285 {
13286 bfd *i;
13287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13288 bfd_vma gotoff;
13289 struct alloc_got_off_arg gofarg;
13290
13291 BFD_ASSERT (abfd == info->output_bfd);
13292
13293 if (! is_elf_hash_table (info->hash))
13294 return FALSE;
13295
13296 /* The GOT offset is relative to the .got section, but the GOT header is
13297 put into the .got.plt section, if the backend uses it. */
13298 if (bed->want_got_plt)
13299 gotoff = 0;
13300 else
13301 gotoff = bed->got_header_size;
13302
13303 /* Do the local .got entries first. */
13304 for (i = info->input_bfds; i; i = i->link.next)
13305 {
13306 bfd_signed_vma *local_got;
13307 bfd_size_type j, locsymcount;
13308 Elf_Internal_Shdr *symtab_hdr;
13309
13310 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13311 continue;
13312
13313 local_got = elf_local_got_refcounts (i);
13314 if (!local_got)
13315 continue;
13316
13317 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13318 if (elf_bad_symtab (i))
13319 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13320 else
13321 locsymcount = symtab_hdr->sh_info;
13322
13323 for (j = 0; j < locsymcount; ++j)
13324 {
13325 if (local_got[j] > 0)
13326 {
13327 local_got[j] = gotoff;
13328 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13329 }
13330 else
13331 local_got[j] = (bfd_vma) -1;
13332 }
13333 }
13334
13335 /* Then the global .got entries. .plt refcounts are handled by
13336 adjust_dynamic_symbol */
13337 gofarg.gotoff = gotoff;
13338 gofarg.info = info;
13339 elf_link_hash_traverse (elf_hash_table (info),
13340 elf_gc_allocate_got_offsets,
13341 &gofarg);
13342 return TRUE;
13343 }
13344
13345 /* Many folk need no more in the way of final link than this, once
13346 got entry reference counting is enabled. */
13347
13348 bfd_boolean
13349 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13350 {
13351 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13352 return FALSE;
13353
13354 /* Invoke the regular ELF backend linker to do all the work. */
13355 return bfd_elf_final_link (abfd, info);
13356 }
13357
13358 bfd_boolean
13359 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13360 {
13361 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13362
13363 if (rcookie->bad_symtab)
13364 rcookie->rel = rcookie->rels;
13365
13366 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13367 {
13368 unsigned long r_symndx;
13369
13370 if (! rcookie->bad_symtab)
13371 if (rcookie->rel->r_offset > offset)
13372 return FALSE;
13373 if (rcookie->rel->r_offset != offset)
13374 continue;
13375
13376 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13377 if (r_symndx == STN_UNDEF)
13378 return TRUE;
13379
13380 if (r_symndx >= rcookie->locsymcount
13381 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13382 {
13383 struct elf_link_hash_entry *h;
13384
13385 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13386
13387 while (h->root.type == bfd_link_hash_indirect
13388 || h->root.type == bfd_link_hash_warning)
13389 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13390
13391 if ((h->root.type == bfd_link_hash_defined
13392 || h->root.type == bfd_link_hash_defweak)
13393 && (h->root.u.def.section->owner != rcookie->abfd
13394 || h->root.u.def.section->kept_section != NULL
13395 || discarded_section (h->root.u.def.section)))
13396 return TRUE;
13397 }
13398 else
13399 {
13400 /* It's not a relocation against a global symbol,
13401 but it could be a relocation against a local
13402 symbol for a discarded section. */
13403 asection *isec;
13404 Elf_Internal_Sym *isym;
13405
13406 /* Need to: get the symbol; get the section. */
13407 isym = &rcookie->locsyms[r_symndx];
13408 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13409 if (isec != NULL
13410 && (isec->kept_section != NULL
13411 || discarded_section (isec)))
13412 return TRUE;
13413 }
13414 return FALSE;
13415 }
13416 return FALSE;
13417 }
13418
13419 /* Discard unneeded references to discarded sections.
13420 Returns -1 on error, 1 if any section's size was changed, 0 if
13421 nothing changed. This function assumes that the relocations are in
13422 sorted order, which is true for all known assemblers. */
13423
13424 int
13425 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13426 {
13427 struct elf_reloc_cookie cookie;
13428 asection *o;
13429 bfd *abfd;
13430 int changed = 0;
13431
13432 if (info->traditional_format
13433 || !is_elf_hash_table (info->hash))
13434 return 0;
13435
13436 o = bfd_get_section_by_name (output_bfd, ".stab");
13437 if (o != NULL)
13438 {
13439 asection *i;
13440
13441 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13442 {
13443 if (i->size == 0
13444 || i->reloc_count == 0
13445 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13446 continue;
13447
13448 abfd = i->owner;
13449 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13450 continue;
13451
13452 if (!init_reloc_cookie_for_section (&cookie, info, i))
13453 return -1;
13454
13455 if (_bfd_discard_section_stabs (abfd, i,
13456 elf_section_data (i)->sec_info,
13457 bfd_elf_reloc_symbol_deleted_p,
13458 &cookie))
13459 changed = 1;
13460
13461 fini_reloc_cookie_for_section (&cookie, i);
13462 }
13463 }
13464
13465 o = NULL;
13466 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13467 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13468 if (o != NULL)
13469 {
13470 asection *i;
13471
13472 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13473 {
13474 if (i->size == 0)
13475 continue;
13476
13477 abfd = i->owner;
13478 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13479 continue;
13480
13481 if (!init_reloc_cookie_for_section (&cookie, info, i))
13482 return -1;
13483
13484 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13485 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13486 bfd_elf_reloc_symbol_deleted_p,
13487 &cookie))
13488 changed = 1;
13489
13490 fini_reloc_cookie_for_section (&cookie, i);
13491 }
13492 }
13493
13494 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13495 {
13496 const struct elf_backend_data *bed;
13497
13498 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13499 continue;
13500
13501 bed = get_elf_backend_data (abfd);
13502
13503 if (bed->elf_backend_discard_info != NULL)
13504 {
13505 if (!init_reloc_cookie (&cookie, info, abfd))
13506 return -1;
13507
13508 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13509 changed = 1;
13510
13511 fini_reloc_cookie (&cookie, abfd);
13512 }
13513 }
13514
13515 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13516 _bfd_elf_end_eh_frame_parsing (info);
13517
13518 if (info->eh_frame_hdr_type
13519 && !bfd_link_relocatable (info)
13520 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13521 changed = 1;
13522
13523 return changed;
13524 }
13525
13526 bfd_boolean
13527 _bfd_elf_section_already_linked (bfd *abfd,
13528 asection *sec,
13529 struct bfd_link_info *info)
13530 {
13531 flagword flags;
13532 const char *name, *key;
13533 struct bfd_section_already_linked *l;
13534 struct bfd_section_already_linked_hash_entry *already_linked_list;
13535
13536 if (sec->output_section == bfd_abs_section_ptr)
13537 return FALSE;
13538
13539 flags = sec->flags;
13540
13541 /* Return if it isn't a linkonce section. A comdat group section
13542 also has SEC_LINK_ONCE set. */
13543 if ((flags & SEC_LINK_ONCE) == 0)
13544 return FALSE;
13545
13546 /* Don't put group member sections on our list of already linked
13547 sections. They are handled as a group via their group section. */
13548 if (elf_sec_group (sec) != NULL)
13549 return FALSE;
13550
13551 /* For a SHT_GROUP section, use the group signature as the key. */
13552 name = sec->name;
13553 if ((flags & SEC_GROUP) != 0
13554 && elf_next_in_group (sec) != NULL
13555 && elf_group_name (elf_next_in_group (sec)) != NULL)
13556 key = elf_group_name (elf_next_in_group (sec));
13557 else
13558 {
13559 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13560 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13561 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13562 key++;
13563 else
13564 /* Must be a user linkonce section that doesn't follow gcc's
13565 naming convention. In this case we won't be matching
13566 single member groups. */
13567 key = name;
13568 }
13569
13570 already_linked_list = bfd_section_already_linked_table_lookup (key);
13571
13572 for (l = already_linked_list->entry; l != NULL; l = l->next)
13573 {
13574 /* We may have 2 different types of sections on the list: group
13575 sections with a signature of <key> (<key> is some string),
13576 and linkonce sections named .gnu.linkonce.<type>.<key>.
13577 Match like sections. LTO plugin sections are an exception.
13578 They are always named .gnu.linkonce.t.<key> and match either
13579 type of section. */
13580 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13581 && ((flags & SEC_GROUP) != 0
13582 || strcmp (name, l->sec->name) == 0))
13583 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13584 {
13585 /* The section has already been linked. See if we should
13586 issue a warning. */
13587 if (!_bfd_handle_already_linked (sec, l, info))
13588 return FALSE;
13589
13590 if (flags & SEC_GROUP)
13591 {
13592 asection *first = elf_next_in_group (sec);
13593 asection *s = first;
13594
13595 while (s != NULL)
13596 {
13597 s->output_section = bfd_abs_section_ptr;
13598 /* Record which group discards it. */
13599 s->kept_section = l->sec;
13600 s = elf_next_in_group (s);
13601 /* These lists are circular. */
13602 if (s == first)
13603 break;
13604 }
13605 }
13606
13607 return TRUE;
13608 }
13609 }
13610
13611 /* A single member comdat group section may be discarded by a
13612 linkonce section and vice versa. */
13613 if ((flags & SEC_GROUP) != 0)
13614 {
13615 asection *first = elf_next_in_group (sec);
13616
13617 if (first != NULL && elf_next_in_group (first) == first)
13618 /* Check this single member group against linkonce sections. */
13619 for (l = already_linked_list->entry; l != NULL; l = l->next)
13620 if ((l->sec->flags & SEC_GROUP) == 0
13621 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13622 {
13623 first->output_section = bfd_abs_section_ptr;
13624 first->kept_section = l->sec;
13625 sec->output_section = bfd_abs_section_ptr;
13626 break;
13627 }
13628 }
13629 else
13630 /* Check this linkonce section against single member groups. */
13631 for (l = already_linked_list->entry; l != NULL; l = l->next)
13632 if (l->sec->flags & SEC_GROUP)
13633 {
13634 asection *first = elf_next_in_group (l->sec);
13635
13636 if (first != NULL
13637 && elf_next_in_group (first) == first
13638 && bfd_elf_match_symbols_in_sections (first, sec, info))
13639 {
13640 sec->output_section = bfd_abs_section_ptr;
13641 sec->kept_section = first;
13642 break;
13643 }
13644 }
13645
13646 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13647 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13648 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13649 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13650 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13651 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13652 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13653 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13654 The reverse order cannot happen as there is never a bfd with only the
13655 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13656 matter as here were are looking only for cross-bfd sections. */
13657
13658 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13659 for (l = already_linked_list->entry; l != NULL; l = l->next)
13660 if ((l->sec->flags & SEC_GROUP) == 0
13661 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13662 {
13663 if (abfd != l->sec->owner)
13664 sec->output_section = bfd_abs_section_ptr;
13665 break;
13666 }
13667
13668 /* This is the first section with this name. Record it. */
13669 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13670 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13671 return sec->output_section == bfd_abs_section_ptr;
13672 }
13673
13674 bfd_boolean
13675 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13676 {
13677 return sym->st_shndx == SHN_COMMON;
13678 }
13679
13680 unsigned int
13681 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13682 {
13683 return SHN_COMMON;
13684 }
13685
13686 asection *
13687 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13688 {
13689 return bfd_com_section_ptr;
13690 }
13691
13692 bfd_vma
13693 _bfd_elf_default_got_elt_size (bfd *abfd,
13694 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13695 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13696 bfd *ibfd ATTRIBUTE_UNUSED,
13697 unsigned long symndx ATTRIBUTE_UNUSED)
13698 {
13699 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13700 return bed->s->arch_size / 8;
13701 }
13702
13703 /* Routines to support the creation of dynamic relocs. */
13704
13705 /* Returns the name of the dynamic reloc section associated with SEC. */
13706
13707 static const char *
13708 get_dynamic_reloc_section_name (bfd * abfd,
13709 asection * sec,
13710 bfd_boolean is_rela)
13711 {
13712 char *name;
13713 const char *old_name = bfd_get_section_name (NULL, sec);
13714 const char *prefix = is_rela ? ".rela" : ".rel";
13715
13716 if (old_name == NULL)
13717 return NULL;
13718
13719 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13720 sprintf (name, "%s%s", prefix, old_name);
13721
13722 return name;
13723 }
13724
13725 /* Returns the dynamic reloc section associated with SEC.
13726 If necessary compute the name of the dynamic reloc section based
13727 on SEC's name (looked up in ABFD's string table) and the setting
13728 of IS_RELA. */
13729
13730 asection *
13731 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13732 asection * sec,
13733 bfd_boolean is_rela)
13734 {
13735 asection * reloc_sec = elf_section_data (sec)->sreloc;
13736
13737 if (reloc_sec == NULL)
13738 {
13739 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13740
13741 if (name != NULL)
13742 {
13743 reloc_sec = bfd_get_linker_section (abfd, name);
13744
13745 if (reloc_sec != NULL)
13746 elf_section_data (sec)->sreloc = reloc_sec;
13747 }
13748 }
13749
13750 return reloc_sec;
13751 }
13752
13753 /* Returns the dynamic reloc section associated with SEC. If the
13754 section does not exist it is created and attached to the DYNOBJ
13755 bfd and stored in the SRELOC field of SEC's elf_section_data
13756 structure.
13757
13758 ALIGNMENT is the alignment for the newly created section and
13759 IS_RELA defines whether the name should be .rela.<SEC's name>
13760 or .rel.<SEC's name>. The section name is looked up in the
13761 string table associated with ABFD. */
13762
13763 asection *
13764 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13765 bfd *dynobj,
13766 unsigned int alignment,
13767 bfd *abfd,
13768 bfd_boolean is_rela)
13769 {
13770 asection * reloc_sec = elf_section_data (sec)->sreloc;
13771
13772 if (reloc_sec == NULL)
13773 {
13774 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13775
13776 if (name == NULL)
13777 return NULL;
13778
13779 reloc_sec = bfd_get_linker_section (dynobj, name);
13780
13781 if (reloc_sec == NULL)
13782 {
13783 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13784 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13785 if ((sec->flags & SEC_ALLOC) != 0)
13786 flags |= SEC_ALLOC | SEC_LOAD;
13787
13788 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13789 if (reloc_sec != NULL)
13790 {
13791 /* _bfd_elf_get_sec_type_attr chooses a section type by
13792 name. Override as it may be wrong, eg. for a user
13793 section named "auto" we'll get ".relauto" which is
13794 seen to be a .rela section. */
13795 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13796 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13797 reloc_sec = NULL;
13798 }
13799 }
13800
13801 elf_section_data (sec)->sreloc = reloc_sec;
13802 }
13803
13804 return reloc_sec;
13805 }
13806
13807 /* Copy the ELF symbol type and other attributes for a linker script
13808 assignment from HSRC to HDEST. Generally this should be treated as
13809 if we found a strong non-dynamic definition for HDEST (except that
13810 ld ignores multiple definition errors). */
13811 void
13812 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13813 struct bfd_link_hash_entry *hdest,
13814 struct bfd_link_hash_entry *hsrc)
13815 {
13816 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13817 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13818 Elf_Internal_Sym isym;
13819
13820 ehdest->type = ehsrc->type;
13821 ehdest->target_internal = ehsrc->target_internal;
13822
13823 isym.st_other = ehsrc->other;
13824 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13825 }
13826
13827 /* Append a RELA relocation REL to section S in BFD. */
13828
13829 void
13830 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13831 {
13832 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13833 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13834 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13835 bed->s->swap_reloca_out (abfd, rel, loc);
13836 }
13837
13838 /* Append a REL relocation REL to section S in BFD. */
13839
13840 void
13841 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13842 {
13843 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13844 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13845 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13846 bed->s->swap_reloc_out (abfd, rel, loc);
13847 }
This page took 0.43079 seconds and 3 git commands to generate.