Revert "Add extern_protected_data and set it for x86"
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764 asection *ip;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
783
784 /* There shouldn't be section relative relocations
785 against any other section. */
786 default:
787 return TRUE;
788 }
789 }
790
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
795 symbols. */
796
797 static unsigned long
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
801 {
802 unsigned long dynsymcount = 0;
803
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
805 {
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
807 asection *p;
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
813 else
814 elf_section_data (p)->dynindx = 0;
815 }
816 *section_sym_count = dynsymcount;
817
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
820 &dynsymcount);
821
822 if (elf_hash_table (info)->dynlocal)
823 {
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
827 }
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
831 &dynsymcount);
832
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
837 ++dynsymcount;
838
839 elf_hash_table (info)->dynsymcount = dynsymcount;
840 return dynsymcount;
841 }
842
843 /* Merge st_other field. */
844
845 static void
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym, asection *sec,
848 bfd_boolean definition, bfd_boolean dynamic)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
851
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
856 dynamic);
857
858 if (!dynamic)
859 {
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
862
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
867 }
868 else if (definition
869 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
870 && (sec->flags & SEC_READONLY) == 0)
871 h->protected_def = 1;
872 }
873
874 /* This function is called when we want to merge a new symbol with an
875 existing symbol. It handles the various cases which arise when we
876 find a definition in a dynamic object, or when there is already a
877 definition in a dynamic object. The new symbol is described by
878 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
879 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
880 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
881 of an old common symbol. We set OVERRIDE if the old symbol is
882 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
883 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
884 to change. By OK to change, we mean that we shouldn't warn if the
885 type or size does change. */
886
887 static bfd_boolean
888 _bfd_elf_merge_symbol (bfd *abfd,
889 struct bfd_link_info *info,
890 const char *name,
891 Elf_Internal_Sym *sym,
892 asection **psec,
893 bfd_vma *pvalue,
894 struct elf_link_hash_entry **sym_hash,
895 bfd **poldbfd,
896 bfd_boolean *pold_weak,
897 unsigned int *pold_alignment,
898 bfd_boolean *skip,
899 bfd_boolean *override,
900 bfd_boolean *type_change_ok,
901 bfd_boolean *size_change_ok)
902 {
903 asection *sec, *oldsec;
904 struct elf_link_hash_entry *h;
905 struct elf_link_hash_entry *hi;
906 struct elf_link_hash_entry *flip;
907 int bind;
908 bfd *oldbfd;
909 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
910 bfd_boolean newweak, oldweak, newfunc, oldfunc;
911 const struct elf_backend_data *bed;
912
913 *skip = FALSE;
914 *override = FALSE;
915
916 sec = *psec;
917 bind = ELF_ST_BIND (sym->st_info);
918
919 if (! bfd_is_und_section (sec))
920 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
921 else
922 h = ((struct elf_link_hash_entry *)
923 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
924 if (h == NULL)
925 return FALSE;
926 *sym_hash = h;
927
928 bed = get_elf_backend_data (abfd);
929
930 /* For merging, we only care about real symbols. But we need to make
931 sure that indirect symbol dynamic flags are updated. */
932 hi = h;
933 while (h->root.type == bfd_link_hash_indirect
934 || h->root.type == bfd_link_hash_warning)
935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
936
937 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
938 existing symbol. */
939
940 oldbfd = NULL;
941 oldsec = NULL;
942 switch (h->root.type)
943 {
944 default:
945 break;
946
947 case bfd_link_hash_undefined:
948 case bfd_link_hash_undefweak:
949 oldbfd = h->root.u.undef.abfd;
950 break;
951
952 case bfd_link_hash_defined:
953 case bfd_link_hash_defweak:
954 oldbfd = h->root.u.def.section->owner;
955 oldsec = h->root.u.def.section;
956 break;
957
958 case bfd_link_hash_common:
959 oldbfd = h->root.u.c.p->section->owner;
960 oldsec = h->root.u.c.p->section;
961 if (pold_alignment)
962 *pold_alignment = h->root.u.c.p->alignment_power;
963 break;
964 }
965 if (poldbfd && *poldbfd == NULL)
966 *poldbfd = oldbfd;
967
968 /* Differentiate strong and weak symbols. */
969 newweak = bind == STB_WEAK;
970 oldweak = (h->root.type == bfd_link_hash_defweak
971 || h->root.type == bfd_link_hash_undefweak);
972 if (pold_weak)
973 *pold_weak = oldweak;
974
975 /* This code is for coping with dynamic objects, and is only useful
976 if we are doing an ELF link. */
977 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
978 return TRUE;
979
980 /* We have to check it for every instance since the first few may be
981 references and not all compilers emit symbol type for undefined
982 symbols. */
983 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
984
985 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
986 respectively, is from a dynamic object. */
987
988 newdyn = (abfd->flags & DYNAMIC) != 0;
989
990 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
991 syms and defined syms in dynamic libraries respectively.
992 ref_dynamic on the other hand can be set for a symbol defined in
993 a dynamic library, and def_dynamic may not be set; When the
994 definition in a dynamic lib is overridden by a definition in the
995 executable use of the symbol in the dynamic lib becomes a
996 reference to the executable symbol. */
997 if (newdyn)
998 {
999 if (bfd_is_und_section (sec))
1000 {
1001 if (bind != STB_WEAK)
1002 {
1003 h->ref_dynamic_nonweak = 1;
1004 hi->ref_dynamic_nonweak = 1;
1005 }
1006 }
1007 else
1008 {
1009 h->dynamic_def = 1;
1010 hi->dynamic_def = 1;
1011 }
1012 }
1013
1014 /* If we just created the symbol, mark it as being an ELF symbol.
1015 Other than that, there is nothing to do--there is no merge issue
1016 with a newly defined symbol--so we just return. */
1017
1018 if (h->root.type == bfd_link_hash_new)
1019 {
1020 h->non_elf = 0;
1021 return TRUE;
1022 }
1023
1024 /* In cases involving weak versioned symbols, we may wind up trying
1025 to merge a symbol with itself. Catch that here, to avoid the
1026 confusion that results if we try to override a symbol with
1027 itself. The additional tests catch cases like
1028 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1029 dynamic object, which we do want to handle here. */
1030 if (abfd == oldbfd
1031 && (newweak || oldweak)
1032 && ((abfd->flags & DYNAMIC) == 0
1033 || !h->def_regular))
1034 return TRUE;
1035
1036 olddyn = FALSE;
1037 if (oldbfd != NULL)
1038 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1039 else if (oldsec != NULL)
1040 {
1041 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1042 indices used by MIPS ELF. */
1043 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1044 }
1045
1046 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1047 respectively, appear to be a definition rather than reference. */
1048
1049 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1050
1051 olddef = (h->root.type != bfd_link_hash_undefined
1052 && h->root.type != bfd_link_hash_undefweak
1053 && h->root.type != bfd_link_hash_common);
1054
1055 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1056 respectively, appear to be a function. */
1057
1058 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1059 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1060
1061 oldfunc = (h->type != STT_NOTYPE
1062 && bed->is_function_type (h->type));
1063
1064 /* When we try to create a default indirect symbol from the dynamic
1065 definition with the default version, we skip it if its type and
1066 the type of existing regular definition mismatch. */
1067 if (pold_alignment == NULL
1068 && newdyn
1069 && newdef
1070 && !olddyn
1071 && (((olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1076 || (olddef
1077 && ((h->type == STT_GNU_IFUNC)
1078 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1079 {
1080 *skip = TRUE;
1081 return TRUE;
1082 }
1083
1084 /* Check TLS symbols. We don't check undefined symbols introduced
1085 by "ld -u" which have no type (and oldbfd NULL), and we don't
1086 check symbols from plugins because they also have no type. */
1087 if (oldbfd != NULL
1088 && (oldbfd->flags & BFD_PLUGIN) == 0
1089 && (abfd->flags & BFD_PLUGIN) == 0
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A "
1119 "mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B "
1124 "mismatches non-TLS reference in %B"),
1125 tbfd, ntbfd, h->root.root.string);
1126 else if (tdef)
1127 (*_bfd_error_handler)
1128 (_("%s: TLS definition in %B section %A "
1129 "mismatches non-TLS reference in %B"),
1130 tbfd, tsec, ntbfd, h->root.root.string);
1131 else
1132 (*_bfd_error_handler)
1133 (_("%s: TLS reference in %B "
1134 "mismatches non-TLS definition in %B section %A"),
1135 tbfd, ntbfd, ntsec, h->root.root.string);
1136
1137 bfd_set_error (bfd_error_bad_value);
1138 return FALSE;
1139 }
1140
1141 /* If the old symbol has non-default visibility, we ignore the new
1142 definition from a dynamic object. */
1143 if (newdyn
1144 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1145 && !bfd_is_und_section (sec))
1146 {
1147 *skip = TRUE;
1148 /* Make sure this symbol is dynamic. */
1149 h->ref_dynamic = 1;
1150 hi->ref_dynamic = 1;
1151 /* A protected symbol has external availability. Make sure it is
1152 recorded as dynamic.
1153
1154 FIXME: Should we check type and size for protected symbol? */
1155 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1156 return bfd_elf_link_record_dynamic_symbol (info, h);
1157 else
1158 return TRUE;
1159 }
1160 else if (!newdyn
1161 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1162 && h->def_dynamic)
1163 {
1164 /* If the new symbol with non-default visibility comes from a
1165 relocatable file and the old definition comes from a dynamic
1166 object, we remove the old definition. */
1167 if (hi->root.type == bfd_link_hash_indirect)
1168 {
1169 /* Handle the case where the old dynamic definition is
1170 default versioned. We need to copy the symbol info from
1171 the symbol with default version to the normal one if it
1172 was referenced before. */
1173 if (h->ref_regular)
1174 {
1175 hi->root.type = h->root.type;
1176 h->root.type = bfd_link_hash_indirect;
1177 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1178
1179 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1180 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1181 {
1182 /* If the new symbol is hidden or internal, completely undo
1183 any dynamic link state. */
1184 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1185 h->forced_local = 0;
1186 h->ref_dynamic = 0;
1187 }
1188 else
1189 h->ref_dynamic = 1;
1190
1191 h->def_dynamic = 0;
1192 /* FIXME: Should we check type and size for protected symbol? */
1193 h->size = 0;
1194 h->type = 0;
1195
1196 h = hi;
1197 }
1198 else
1199 h = hi;
1200 }
1201
1202 /* If the old symbol was undefined before, then it will still be
1203 on the undefs list. If the new symbol is undefined or
1204 common, we can't make it bfd_link_hash_new here, because new
1205 undefined or common symbols will be added to the undefs list
1206 by _bfd_generic_link_add_one_symbol. Symbols may not be
1207 added twice to the undefs list. Also, if the new symbol is
1208 undefweak then we don't want to lose the strong undef. */
1209 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1210 {
1211 h->root.type = bfd_link_hash_undefined;
1212 h->root.u.undef.abfd = abfd;
1213 }
1214 else
1215 {
1216 h->root.type = bfd_link_hash_new;
1217 h->root.u.undef.abfd = NULL;
1218 }
1219
1220 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1221 {
1222 /* If the new symbol is hidden or internal, completely undo
1223 any dynamic link state. */
1224 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1225 h->forced_local = 0;
1226 h->ref_dynamic = 0;
1227 }
1228 else
1229 h->ref_dynamic = 1;
1230 h->def_dynamic = 0;
1231 /* FIXME: Should we check type and size for protected symbol? */
1232 h->size = 0;
1233 h->type = 0;
1234 return TRUE;
1235 }
1236
1237 /* If a new weak symbol definition comes from a regular file and the
1238 old symbol comes from a dynamic library, we treat the new one as
1239 strong. Similarly, an old weak symbol definition from a regular
1240 file is treated as strong when the new symbol comes from a dynamic
1241 library. Further, an old weak symbol from a dynamic library is
1242 treated as strong if the new symbol is from a dynamic library.
1243 This reflects the way glibc's ld.so works.
1244
1245 Do this before setting *type_change_ok or *size_change_ok so that
1246 we warn properly when dynamic library symbols are overridden. */
1247
1248 if (newdef && !newdyn && olddyn)
1249 newweak = FALSE;
1250 if (olddef && newdyn)
1251 oldweak = FALSE;
1252
1253 /* Allow changes between different types of function symbol. */
1254 if (newfunc && oldfunc)
1255 *type_change_ok = TRUE;
1256
1257 /* It's OK to change the type if either the existing symbol or the
1258 new symbol is weak. A type change is also OK if the old symbol
1259 is undefined and the new symbol is defined. */
1260
1261 if (oldweak
1262 || newweak
1263 || (newdef
1264 && h->root.type == bfd_link_hash_undefined))
1265 *type_change_ok = TRUE;
1266
1267 /* It's OK to change the size if either the existing symbol or the
1268 new symbol is weak, or if the old symbol is undefined. */
1269
1270 if (*type_change_ok
1271 || h->root.type == bfd_link_hash_undefined)
1272 *size_change_ok = TRUE;
1273
1274 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1275 symbol, respectively, appears to be a common symbol in a dynamic
1276 object. If a symbol appears in an uninitialized section, and is
1277 not weak, and is not a function, then it may be a common symbol
1278 which was resolved when the dynamic object was created. We want
1279 to treat such symbols specially, because they raise special
1280 considerations when setting the symbol size: if the symbol
1281 appears as a common symbol in a regular object, and the size in
1282 the regular object is larger, we must make sure that we use the
1283 larger size. This problematic case can always be avoided in C,
1284 but it must be handled correctly when using Fortran shared
1285 libraries.
1286
1287 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1288 likewise for OLDDYNCOMMON and OLDDEF.
1289
1290 Note that this test is just a heuristic, and that it is quite
1291 possible to have an uninitialized symbol in a shared object which
1292 is really a definition, rather than a common symbol. This could
1293 lead to some minor confusion when the symbol really is a common
1294 symbol in some regular object. However, I think it will be
1295 harmless. */
1296
1297 if (newdyn
1298 && newdef
1299 && !newweak
1300 && (sec->flags & SEC_ALLOC) != 0
1301 && (sec->flags & SEC_LOAD) == 0
1302 && sym->st_size > 0
1303 && !newfunc)
1304 newdyncommon = TRUE;
1305 else
1306 newdyncommon = FALSE;
1307
1308 if (olddyn
1309 && olddef
1310 && h->root.type == bfd_link_hash_defined
1311 && h->def_dynamic
1312 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1313 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1314 && h->size > 0
1315 && !oldfunc)
1316 olddyncommon = TRUE;
1317 else
1318 olddyncommon = FALSE;
1319
1320 /* We now know everything about the old and new symbols. We ask the
1321 backend to check if we can merge them. */
1322 if (bed->merge_symbol != NULL)
1323 {
1324 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1325 return FALSE;
1326 sec = *psec;
1327 }
1328
1329 /* If both the old and the new symbols look like common symbols in a
1330 dynamic object, set the size of the symbol to the larger of the
1331 two. */
1332
1333 if (olddyncommon
1334 && newdyncommon
1335 && sym->st_size != h->size)
1336 {
1337 /* Since we think we have two common symbols, issue a multiple
1338 common warning if desired. Note that we only warn if the
1339 size is different. If the size is the same, we simply let
1340 the old symbol override the new one as normally happens with
1341 symbols defined in dynamic objects. */
1342
1343 if (! ((*info->callbacks->multiple_common)
1344 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1345 return FALSE;
1346
1347 if (sym->st_size > h->size)
1348 h->size = sym->st_size;
1349
1350 *size_change_ok = TRUE;
1351 }
1352
1353 /* If we are looking at a dynamic object, and we have found a
1354 definition, we need to see if the symbol was already defined by
1355 some other object. If so, we want to use the existing
1356 definition, and we do not want to report a multiple symbol
1357 definition error; we do this by clobbering *PSEC to be
1358 bfd_und_section_ptr.
1359
1360 We treat a common symbol as a definition if the symbol in the
1361 shared library is a function, since common symbols always
1362 represent variables; this can cause confusion in principle, but
1363 any such confusion would seem to indicate an erroneous program or
1364 shared library. We also permit a common symbol in a regular
1365 object to override a weak symbol in a shared object. */
1366
1367 if (newdyn
1368 && newdef
1369 && (olddef
1370 || (h->root.type == bfd_link_hash_common
1371 && (newweak || newfunc))))
1372 {
1373 *override = TRUE;
1374 newdef = FALSE;
1375 newdyncommon = FALSE;
1376
1377 *psec = sec = bfd_und_section_ptr;
1378 *size_change_ok = TRUE;
1379
1380 /* If we get here when the old symbol is a common symbol, then
1381 we are explicitly letting it override a weak symbol or
1382 function in a dynamic object, and we don't want to warn about
1383 a type change. If the old symbol is a defined symbol, a type
1384 change warning may still be appropriate. */
1385
1386 if (h->root.type == bfd_link_hash_common)
1387 *type_change_ok = TRUE;
1388 }
1389
1390 /* Handle the special case of an old common symbol merging with a
1391 new symbol which looks like a common symbol in a shared object.
1392 We change *PSEC and *PVALUE to make the new symbol look like a
1393 common symbol, and let _bfd_generic_link_add_one_symbol do the
1394 right thing. */
1395
1396 if (newdyncommon
1397 && h->root.type == bfd_link_hash_common)
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402 *pvalue = sym->st_size;
1403 *psec = sec = bed->common_section (oldsec);
1404 *size_change_ok = TRUE;
1405 }
1406
1407 /* Skip weak definitions of symbols that are already defined. */
1408 if (newdef && olddef && newweak)
1409 {
1410 /* Don't skip new non-IR weak syms. */
1411 if (!(oldbfd != NULL
1412 && (oldbfd->flags & BFD_PLUGIN) != 0
1413 && (abfd->flags & BFD_PLUGIN) == 0))
1414 {
1415 newdef = FALSE;
1416 *skip = TRUE;
1417 }
1418
1419 /* Merge st_other. If the symbol already has a dynamic index,
1420 but visibility says it should not be visible, turn it into a
1421 local symbol. */
1422 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1423 if (h->dynindx != -1)
1424 switch (ELF_ST_VISIBILITY (h->other))
1425 {
1426 case STV_INTERNAL:
1427 case STV_HIDDEN:
1428 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1429 break;
1430 }
1431 }
1432
1433 /* If the old symbol is from a dynamic object, and the new symbol is
1434 a definition which is not from a dynamic object, then the new
1435 symbol overrides the old symbol. Symbols from regular files
1436 always take precedence over symbols from dynamic objects, even if
1437 they are defined after the dynamic object in the link.
1438
1439 As above, we again permit a common symbol in a regular object to
1440 override a definition in a shared object if the shared object
1441 symbol is a function or is weak. */
1442
1443 flip = NULL;
1444 if (!newdyn
1445 && (newdef
1446 || (bfd_is_com_section (sec)
1447 && (oldweak || oldfunc)))
1448 && olddyn
1449 && olddef
1450 && h->def_dynamic)
1451 {
1452 /* Change the hash table entry to undefined, and let
1453 _bfd_generic_link_add_one_symbol do the right thing with the
1454 new definition. */
1455
1456 h->root.type = bfd_link_hash_undefined;
1457 h->root.u.undef.abfd = h->root.u.def.section->owner;
1458 *size_change_ok = TRUE;
1459
1460 olddef = FALSE;
1461 olddyncommon = FALSE;
1462
1463 /* We again permit a type change when a common symbol may be
1464 overriding a function. */
1465
1466 if (bfd_is_com_section (sec))
1467 {
1468 if (oldfunc)
1469 {
1470 /* If a common symbol overrides a function, make sure
1471 that it isn't defined dynamically nor has type
1472 function. */
1473 h->def_dynamic = 0;
1474 h->type = STT_NOTYPE;
1475 }
1476 *type_change_ok = TRUE;
1477 }
1478
1479 if (hi->root.type == bfd_link_hash_indirect)
1480 flip = hi;
1481 else
1482 /* This union may have been set to be non-NULL when this symbol
1483 was seen in a dynamic object. We must force the union to be
1484 NULL, so that it is correct for a regular symbol. */
1485 h->verinfo.vertree = NULL;
1486 }
1487
1488 /* Handle the special case of a new common symbol merging with an
1489 old symbol that looks like it might be a common symbol defined in
1490 a shared object. Note that we have already handled the case in
1491 which a new common symbol should simply override the definition
1492 in the shared library. */
1493
1494 if (! newdyn
1495 && bfd_is_com_section (sec)
1496 && olddyncommon)
1497 {
1498 /* It would be best if we could set the hash table entry to a
1499 common symbol, but we don't know what to use for the section
1500 or the alignment. */
1501 if (! ((*info->callbacks->multiple_common)
1502 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1503 return FALSE;
1504
1505 /* If the presumed common symbol in the dynamic object is
1506 larger, pretend that the new symbol has its size. */
1507
1508 if (h->size > *pvalue)
1509 *pvalue = h->size;
1510
1511 /* We need to remember the alignment required by the symbol
1512 in the dynamic object. */
1513 BFD_ASSERT (pold_alignment);
1514 *pold_alignment = h->root.u.def.section->alignment_power;
1515
1516 olddef = FALSE;
1517 olddyncommon = FALSE;
1518
1519 h->root.type = bfd_link_hash_undefined;
1520 h->root.u.undef.abfd = h->root.u.def.section->owner;
1521
1522 *size_change_ok = TRUE;
1523 *type_change_ok = TRUE;
1524
1525 if (hi->root.type == bfd_link_hash_indirect)
1526 flip = hi;
1527 else
1528 h->verinfo.vertree = NULL;
1529 }
1530
1531 if (flip != NULL)
1532 {
1533 /* Handle the case where we had a versioned symbol in a dynamic
1534 library and now find a definition in a normal object. In this
1535 case, we make the versioned symbol point to the normal one. */
1536 flip->root.type = h->root.type;
1537 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1538 h->root.type = bfd_link_hash_indirect;
1539 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1540 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1541 if (h->def_dynamic)
1542 {
1543 h->def_dynamic = 0;
1544 flip->ref_dynamic = 1;
1545 }
1546 }
1547
1548 return TRUE;
1549 }
1550
1551 /* This function is called to create an indirect symbol from the
1552 default for the symbol with the default version if needed. The
1553 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1554 set DYNSYM if the new indirect symbol is dynamic. */
1555
1556 static bfd_boolean
1557 _bfd_elf_add_default_symbol (bfd *abfd,
1558 struct bfd_link_info *info,
1559 struct elf_link_hash_entry *h,
1560 const char *name,
1561 Elf_Internal_Sym *sym,
1562 asection *sec,
1563 bfd_vma value,
1564 bfd **poldbfd,
1565 bfd_boolean *dynsym)
1566 {
1567 bfd_boolean type_change_ok;
1568 bfd_boolean size_change_ok;
1569 bfd_boolean skip;
1570 char *shortname;
1571 struct elf_link_hash_entry *hi;
1572 struct bfd_link_hash_entry *bh;
1573 const struct elf_backend_data *bed;
1574 bfd_boolean collect;
1575 bfd_boolean dynamic;
1576 bfd_boolean override;
1577 char *p;
1578 size_t len, shortlen;
1579 asection *tmp_sec;
1580
1581 /* If this symbol has a version, and it is the default version, we
1582 create an indirect symbol from the default name to the fully
1583 decorated name. This will cause external references which do not
1584 specify a version to be bound to this version of the symbol. */
1585 p = strchr (name, ELF_VER_CHR);
1586 if (p == NULL || p[1] != ELF_VER_CHR)
1587 return TRUE;
1588
1589 bed = get_elf_backend_data (abfd);
1590 collect = bed->collect;
1591 dynamic = (abfd->flags & DYNAMIC) != 0;
1592
1593 shortlen = p - name;
1594 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1595 if (shortname == NULL)
1596 return FALSE;
1597 memcpy (shortname, name, shortlen);
1598 shortname[shortlen] = '\0';
1599
1600 /* We are going to create a new symbol. Merge it with any existing
1601 symbol with this name. For the purposes of the merge, act as
1602 though we were defining the symbol we just defined, although we
1603 actually going to define an indirect symbol. */
1604 type_change_ok = FALSE;
1605 size_change_ok = FALSE;
1606 tmp_sec = sec;
1607 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1608 &hi, poldbfd, NULL, NULL, &skip, &override,
1609 &type_change_ok, &size_change_ok))
1610 return FALSE;
1611
1612 if (skip)
1613 goto nondefault;
1614
1615 if (! override)
1616 {
1617 bh = &hi->root;
1618 if (! (_bfd_generic_link_add_one_symbol
1619 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1620 0, name, FALSE, collect, &bh)))
1621 return FALSE;
1622 hi = (struct elf_link_hash_entry *) bh;
1623 }
1624 else
1625 {
1626 /* In this case the symbol named SHORTNAME is overriding the
1627 indirect symbol we want to add. We were planning on making
1628 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1629 is the name without a version. NAME is the fully versioned
1630 name, and it is the default version.
1631
1632 Overriding means that we already saw a definition for the
1633 symbol SHORTNAME in a regular object, and it is overriding
1634 the symbol defined in the dynamic object.
1635
1636 When this happens, we actually want to change NAME, the
1637 symbol we just added, to refer to SHORTNAME. This will cause
1638 references to NAME in the shared object to become references
1639 to SHORTNAME in the regular object. This is what we expect
1640 when we override a function in a shared object: that the
1641 references in the shared object will be mapped to the
1642 definition in the regular object. */
1643
1644 while (hi->root.type == bfd_link_hash_indirect
1645 || hi->root.type == bfd_link_hash_warning)
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1647
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1650 if (h->def_dynamic)
1651 {
1652 h->def_dynamic = 0;
1653 hi->ref_dynamic = 1;
1654 if (hi->ref_regular
1655 || hi->def_regular)
1656 {
1657 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1658 return FALSE;
1659 }
1660 }
1661
1662 /* Now set HI to H, so that the following code will set the
1663 other fields correctly. */
1664 hi = h;
1665 }
1666
1667 /* Check if HI is a warning symbol. */
1668 if (hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 /* If there is a duplicate definition somewhere, then HI may not
1672 point to an indirect symbol. We will have reported an error to
1673 the user in that case. */
1674
1675 if (hi->root.type == bfd_link_hash_indirect)
1676 {
1677 struct elf_link_hash_entry *ht;
1678
1679 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1681
1682 /* A reference to the SHORTNAME symbol from a dynamic library
1683 will be satisfied by the versioned symbol at runtime. In
1684 effect, we have a reference to the versioned symbol. */
1685 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1686 hi->dynamic_def |= ht->dynamic_def;
1687
1688 /* See if the new flags lead us to realize that the symbol must
1689 be dynamic. */
1690 if (! *dynsym)
1691 {
1692 if (! dynamic)
1693 {
1694 if (! info->executable
1695 || hi->def_dynamic
1696 || hi->ref_dynamic)
1697 *dynsym = TRUE;
1698 }
1699 else
1700 {
1701 if (hi->ref_regular)
1702 *dynsym = TRUE;
1703 }
1704 }
1705 }
1706
1707 /* We also need to define an indirection from the nondefault version
1708 of the symbol. */
1709
1710 nondefault:
1711 len = strlen (name);
1712 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1713 if (shortname == NULL)
1714 return FALSE;
1715 memcpy (shortname, name, shortlen);
1716 memcpy (shortname + shortlen, p + 1, len - shortlen);
1717
1718 /* Once again, merge with any existing symbol. */
1719 type_change_ok = FALSE;
1720 size_change_ok = FALSE;
1721 tmp_sec = sec;
1722 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1723 &hi, poldbfd, NULL, NULL, &skip, &override,
1724 &type_change_ok, &size_change_ok))
1725 return FALSE;
1726
1727 if (skip)
1728 return TRUE;
1729
1730 if (override)
1731 {
1732 /* Here SHORTNAME is a versioned name, so we don't expect to see
1733 the type of override we do in the case above unless it is
1734 overridden by a versioned definition. */
1735 if (hi->root.type != bfd_link_hash_defined
1736 && hi->root.type != bfd_link_hash_defweak)
1737 (*_bfd_error_handler)
1738 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1739 abfd, shortname);
1740 }
1741 else
1742 {
1743 bh = &hi->root;
1744 if (! (_bfd_generic_link_add_one_symbol
1745 (info, abfd, shortname, BSF_INDIRECT,
1746 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1747 return FALSE;
1748 hi = (struct elf_link_hash_entry *) bh;
1749
1750 /* If there is a duplicate definition somewhere, then HI may not
1751 point to an indirect symbol. We will have reported an error
1752 to the user in that case. */
1753
1754 if (hi->root.type == bfd_link_hash_indirect)
1755 {
1756 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1757 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1758 hi->dynamic_def |= h->dynamic_def;
1759
1760 /* See if the new flags lead us to realize that the symbol
1761 must be dynamic. */
1762 if (! *dynsym)
1763 {
1764 if (! dynamic)
1765 {
1766 if (! info->executable
1767 || hi->ref_dynamic)
1768 *dynsym = TRUE;
1769 }
1770 else
1771 {
1772 if (hi->ref_regular)
1773 *dynsym = TRUE;
1774 }
1775 }
1776 }
1777 }
1778
1779 return TRUE;
1780 }
1781 \f
1782 /* This routine is used to export all defined symbols into the dynamic
1783 symbol table. It is called via elf_link_hash_traverse. */
1784
1785 static bfd_boolean
1786 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1787 {
1788 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1789
1790 /* Ignore indirect symbols. These are added by the versioning code. */
1791 if (h->root.type == bfd_link_hash_indirect)
1792 return TRUE;
1793
1794 /* Ignore this if we won't export it. */
1795 if (!eif->info->export_dynamic && !h->dynamic)
1796 return TRUE;
1797
1798 if (h->dynindx == -1
1799 && (h->def_regular || h->ref_regular)
1800 && ! bfd_hide_sym_by_version (eif->info->version_info,
1801 h->root.root.string))
1802 {
1803 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1804 {
1805 eif->failed = TRUE;
1806 return FALSE;
1807 }
1808 }
1809
1810 return TRUE;
1811 }
1812 \f
1813 /* Look through the symbols which are defined in other shared
1814 libraries and referenced here. Update the list of version
1815 dependencies. This will be put into the .gnu.version_r section.
1816 This function is called via elf_link_hash_traverse. */
1817
1818 static bfd_boolean
1819 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1820 void *data)
1821 {
1822 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1823 Elf_Internal_Verneed *t;
1824 Elf_Internal_Vernaux *a;
1825 bfd_size_type amt;
1826
1827 /* We only care about symbols defined in shared objects with version
1828 information. */
1829 if (!h->def_dynamic
1830 || h->def_regular
1831 || h->dynindx == -1
1832 || h->verinfo.verdef == NULL
1833 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1834 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1835 return TRUE;
1836
1837 /* See if we already know about this version. */
1838 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1839 t != NULL;
1840 t = t->vn_nextref)
1841 {
1842 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1843 continue;
1844
1845 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1846 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1847 return TRUE;
1848
1849 break;
1850 }
1851
1852 /* This is a new version. Add it to tree we are building. */
1853
1854 if (t == NULL)
1855 {
1856 amt = sizeof *t;
1857 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1858 if (t == NULL)
1859 {
1860 rinfo->failed = TRUE;
1861 return FALSE;
1862 }
1863
1864 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1865 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1866 elf_tdata (rinfo->info->output_bfd)->verref = t;
1867 }
1868
1869 amt = sizeof *a;
1870 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (a == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 /* Note that we are copying a string pointer here, and testing it
1878 above. If bfd_elf_string_from_elf_section is ever changed to
1879 discard the string data when low in memory, this will have to be
1880 fixed. */
1881 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1882
1883 a->vna_flags = h->verinfo.verdef->vd_flags;
1884 a->vna_nextptr = t->vn_auxptr;
1885
1886 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1887 ++rinfo->vers;
1888
1889 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1890
1891 t->vn_auxptr = a;
1892
1893 return TRUE;
1894 }
1895
1896 /* Figure out appropriate versions for all the symbols. We may not
1897 have the version number script until we have read all of the input
1898 files, so until that point we don't know which symbols should be
1899 local. This function is called via elf_link_hash_traverse. */
1900
1901 static bfd_boolean
1902 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1903 {
1904 struct elf_info_failed *sinfo;
1905 struct bfd_link_info *info;
1906 const struct elf_backend_data *bed;
1907 struct elf_info_failed eif;
1908 char *p;
1909 bfd_size_type amt;
1910
1911 sinfo = (struct elf_info_failed *) data;
1912 info = sinfo->info;
1913
1914 /* Fix the symbol flags. */
1915 eif.failed = FALSE;
1916 eif.info = info;
1917 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1918 {
1919 if (eif.failed)
1920 sinfo->failed = TRUE;
1921 return FALSE;
1922 }
1923
1924 /* We only need version numbers for symbols defined in regular
1925 objects. */
1926 if (!h->def_regular)
1927 return TRUE;
1928
1929 bed = get_elf_backend_data (info->output_bfd);
1930 p = strchr (h->root.root.string, ELF_VER_CHR);
1931 if (p != NULL && h->verinfo.vertree == NULL)
1932 {
1933 struct bfd_elf_version_tree *t;
1934 bfd_boolean hidden;
1935
1936 hidden = TRUE;
1937
1938 /* There are two consecutive ELF_VER_CHR characters if this is
1939 not a hidden symbol. */
1940 ++p;
1941 if (*p == ELF_VER_CHR)
1942 {
1943 hidden = FALSE;
1944 ++p;
1945 }
1946
1947 /* If there is no version string, we can just return out. */
1948 if (*p == '\0')
1949 {
1950 if (hidden)
1951 h->hidden = 1;
1952 return TRUE;
1953 }
1954
1955 /* Look for the version. If we find it, it is no longer weak. */
1956 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1957 {
1958 if (strcmp (t->name, p) == 0)
1959 {
1960 size_t len;
1961 char *alc;
1962 struct bfd_elf_version_expr *d;
1963
1964 len = p - h->root.root.string;
1965 alc = (char *) bfd_malloc (len);
1966 if (alc == NULL)
1967 {
1968 sinfo->failed = TRUE;
1969 return FALSE;
1970 }
1971 memcpy (alc, h->root.root.string, len - 1);
1972 alc[len - 1] = '\0';
1973 if (alc[len - 2] == ELF_VER_CHR)
1974 alc[len - 2] = '\0';
1975
1976 h->verinfo.vertree = t;
1977 t->used = TRUE;
1978 d = NULL;
1979
1980 if (t->globals.list != NULL)
1981 d = (*t->match) (&t->globals, NULL, alc);
1982
1983 /* See if there is anything to force this symbol to
1984 local scope. */
1985 if (d == NULL && t->locals.list != NULL)
1986 {
1987 d = (*t->match) (&t->locals, NULL, alc);
1988 if (d != NULL
1989 && h->dynindx != -1
1990 && ! info->export_dynamic)
1991 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1992 }
1993
1994 free (alc);
1995 break;
1996 }
1997 }
1998
1999 /* If we are building an application, we need to create a
2000 version node for this version. */
2001 if (t == NULL && info->executable)
2002 {
2003 struct bfd_elf_version_tree **pp;
2004 int version_index;
2005
2006 /* If we aren't going to export this symbol, we don't need
2007 to worry about it. */
2008 if (h->dynindx == -1)
2009 return TRUE;
2010
2011 amt = sizeof *t;
2012 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2013 if (t == NULL)
2014 {
2015 sinfo->failed = TRUE;
2016 return FALSE;
2017 }
2018
2019 t->name = p;
2020 t->name_indx = (unsigned int) -1;
2021 t->used = TRUE;
2022
2023 version_index = 1;
2024 /* Don't count anonymous version tag. */
2025 if (sinfo->info->version_info != NULL
2026 && sinfo->info->version_info->vernum == 0)
2027 version_index = 0;
2028 for (pp = &sinfo->info->version_info;
2029 *pp != NULL;
2030 pp = &(*pp)->next)
2031 ++version_index;
2032 t->vernum = version_index;
2033
2034 *pp = t;
2035
2036 h->verinfo.vertree = t;
2037 }
2038 else if (t == NULL)
2039 {
2040 /* We could not find the version for a symbol when
2041 generating a shared archive. Return an error. */
2042 (*_bfd_error_handler)
2043 (_("%B: version node not found for symbol %s"),
2044 info->output_bfd, h->root.root.string);
2045 bfd_set_error (bfd_error_bad_value);
2046 sinfo->failed = TRUE;
2047 return FALSE;
2048 }
2049
2050 if (hidden)
2051 h->hidden = 1;
2052 }
2053
2054 /* If we don't have a version for this symbol, see if we can find
2055 something. */
2056 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2057 {
2058 bfd_boolean hide;
2059
2060 h->verinfo.vertree
2061 = bfd_find_version_for_sym (sinfo->info->version_info,
2062 h->root.root.string, &hide);
2063 if (h->verinfo.vertree != NULL && hide)
2064 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2065 }
2066
2067 return TRUE;
2068 }
2069 \f
2070 /* Read and swap the relocs from the section indicated by SHDR. This
2071 may be either a REL or a RELA section. The relocations are
2072 translated into RELA relocations and stored in INTERNAL_RELOCS,
2073 which should have already been allocated to contain enough space.
2074 The EXTERNAL_RELOCS are a buffer where the external form of the
2075 relocations should be stored.
2076
2077 Returns FALSE if something goes wrong. */
2078
2079 static bfd_boolean
2080 elf_link_read_relocs_from_section (bfd *abfd,
2081 asection *sec,
2082 Elf_Internal_Shdr *shdr,
2083 void *external_relocs,
2084 Elf_Internal_Rela *internal_relocs)
2085 {
2086 const struct elf_backend_data *bed;
2087 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2088 const bfd_byte *erela;
2089 const bfd_byte *erelaend;
2090 Elf_Internal_Rela *irela;
2091 Elf_Internal_Shdr *symtab_hdr;
2092 size_t nsyms;
2093
2094 /* Position ourselves at the start of the section. */
2095 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2096 return FALSE;
2097
2098 /* Read the relocations. */
2099 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2100 return FALSE;
2101
2102 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2103 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2104
2105 bed = get_elf_backend_data (abfd);
2106
2107 /* Convert the external relocations to the internal format. */
2108 if (shdr->sh_entsize == bed->s->sizeof_rel)
2109 swap_in = bed->s->swap_reloc_in;
2110 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2111 swap_in = bed->s->swap_reloca_in;
2112 else
2113 {
2114 bfd_set_error (bfd_error_wrong_format);
2115 return FALSE;
2116 }
2117
2118 erela = (const bfd_byte *) external_relocs;
2119 erelaend = erela + shdr->sh_size;
2120 irela = internal_relocs;
2121 while (erela < erelaend)
2122 {
2123 bfd_vma r_symndx;
2124
2125 (*swap_in) (abfd, erela, irela);
2126 r_symndx = ELF32_R_SYM (irela->r_info);
2127 if (bed->s->arch_size == 64)
2128 r_symndx >>= 24;
2129 if (nsyms > 0)
2130 {
2131 if ((size_t) r_symndx >= nsyms)
2132 {
2133 (*_bfd_error_handler)
2134 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2135 " for offset 0x%lx in section `%A'"),
2136 abfd, sec,
2137 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2138 bfd_set_error (bfd_error_bad_value);
2139 return FALSE;
2140 }
2141 }
2142 else if (r_symndx != STN_UNDEF)
2143 {
2144 (*_bfd_error_handler)
2145 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2146 " when the object file has no symbol table"),
2147 abfd, sec,
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2150 return FALSE;
2151 }
2152 irela += bed->s->int_rels_per_ext_rel;
2153 erela += shdr->sh_entsize;
2154 }
2155
2156 return TRUE;
2157 }
2158
2159 /* Read and swap the relocs for a section O. They may have been
2160 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2161 not NULL, they are used as buffers to read into. They are known to
2162 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2163 the return value is allocated using either malloc or bfd_alloc,
2164 according to the KEEP_MEMORY argument. If O has two relocation
2165 sections (both REL and RELA relocations), then the REL_HDR
2166 relocations will appear first in INTERNAL_RELOCS, followed by the
2167 RELA_HDR relocations. */
2168
2169 Elf_Internal_Rela *
2170 _bfd_elf_link_read_relocs (bfd *abfd,
2171 asection *o,
2172 void *external_relocs,
2173 Elf_Internal_Rela *internal_relocs,
2174 bfd_boolean keep_memory)
2175 {
2176 void *alloc1 = NULL;
2177 Elf_Internal_Rela *alloc2 = NULL;
2178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2179 struct bfd_elf_section_data *esdo = elf_section_data (o);
2180 Elf_Internal_Rela *internal_rela_relocs;
2181
2182 if (esdo->relocs != NULL)
2183 return esdo->relocs;
2184
2185 if (o->reloc_count == 0)
2186 return NULL;
2187
2188 if (internal_relocs == NULL)
2189 {
2190 bfd_size_type size;
2191
2192 size = o->reloc_count;
2193 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2194 if (keep_memory)
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2196 else
2197 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2198 if (internal_relocs == NULL)
2199 goto error_return;
2200 }
2201
2202 if (external_relocs == NULL)
2203 {
2204 bfd_size_type size = 0;
2205
2206 if (esdo->rel.hdr)
2207 size += esdo->rel.hdr->sh_size;
2208 if (esdo->rela.hdr)
2209 size += esdo->rela.hdr->sh_size;
2210
2211 alloc1 = bfd_malloc (size);
2212 if (alloc1 == NULL)
2213 goto error_return;
2214 external_relocs = alloc1;
2215 }
2216
2217 internal_rela_relocs = internal_relocs;
2218 if (esdo->rel.hdr)
2219 {
2220 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2221 external_relocs,
2222 internal_relocs))
2223 goto error_return;
2224 external_relocs = (((bfd_byte *) external_relocs)
2225 + esdo->rel.hdr->sh_size);
2226 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2227 * bed->s->int_rels_per_ext_rel);
2228 }
2229
2230 if (esdo->rela.hdr
2231 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2232 external_relocs,
2233 internal_rela_relocs)))
2234 goto error_return;
2235
2236 /* Cache the results for next time, if we can. */
2237 if (keep_memory)
2238 esdo->relocs = internal_relocs;
2239
2240 if (alloc1 != NULL)
2241 free (alloc1);
2242
2243 /* Don't free alloc2, since if it was allocated we are passing it
2244 back (under the name of internal_relocs). */
2245
2246 return internal_relocs;
2247
2248 error_return:
2249 if (alloc1 != NULL)
2250 free (alloc1);
2251 if (alloc2 != NULL)
2252 {
2253 if (keep_memory)
2254 bfd_release (abfd, alloc2);
2255 else
2256 free (alloc2);
2257 }
2258 return NULL;
2259 }
2260
2261 /* Compute the size of, and allocate space for, REL_HDR which is the
2262 section header for a section containing relocations for O. */
2263
2264 static bfd_boolean
2265 _bfd_elf_link_size_reloc_section (bfd *abfd,
2266 struct bfd_elf_section_reloc_data *reldata)
2267 {
2268 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2269
2270 /* That allows us to calculate the size of the section. */
2271 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2272
2273 /* The contents field must last into write_object_contents, so we
2274 allocate it with bfd_alloc rather than malloc. Also since we
2275 cannot be sure that the contents will actually be filled in,
2276 we zero the allocated space. */
2277 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2278 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2279 return FALSE;
2280
2281 if (reldata->hashes == NULL && reldata->count)
2282 {
2283 struct elf_link_hash_entry **p;
2284
2285 p = ((struct elf_link_hash_entry **)
2286 bfd_zmalloc (reldata->count * sizeof (*p)));
2287 if (p == NULL)
2288 return FALSE;
2289
2290 reldata->hashes = p;
2291 }
2292
2293 return TRUE;
2294 }
2295
2296 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2297 originated from the section given by INPUT_REL_HDR) to the
2298 OUTPUT_BFD. */
2299
2300 bfd_boolean
2301 _bfd_elf_link_output_relocs (bfd *output_bfd,
2302 asection *input_section,
2303 Elf_Internal_Shdr *input_rel_hdr,
2304 Elf_Internal_Rela *internal_relocs,
2305 struct elf_link_hash_entry **rel_hash
2306 ATTRIBUTE_UNUSED)
2307 {
2308 Elf_Internal_Rela *irela;
2309 Elf_Internal_Rela *irelaend;
2310 bfd_byte *erel;
2311 struct bfd_elf_section_reloc_data *output_reldata;
2312 asection *output_section;
2313 const struct elf_backend_data *bed;
2314 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2315 struct bfd_elf_section_data *esdo;
2316
2317 output_section = input_section->output_section;
2318
2319 bed = get_elf_backend_data (output_bfd);
2320 esdo = elf_section_data (output_section);
2321 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2322 {
2323 output_reldata = &esdo->rel;
2324 swap_out = bed->s->swap_reloc_out;
2325 }
2326 else if (esdo->rela.hdr
2327 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2328 {
2329 output_reldata = &esdo->rela;
2330 swap_out = bed->s->swap_reloca_out;
2331 }
2332 else
2333 {
2334 (*_bfd_error_handler)
2335 (_("%B: relocation size mismatch in %B section %A"),
2336 output_bfd, input_section->owner, input_section);
2337 bfd_set_error (bfd_error_wrong_format);
2338 return FALSE;
2339 }
2340
2341 erel = output_reldata->hdr->contents;
2342 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2343 irela = internal_relocs;
2344 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2345 * bed->s->int_rels_per_ext_rel);
2346 while (irela < irelaend)
2347 {
2348 (*swap_out) (output_bfd, irela, erel);
2349 irela += bed->s->int_rels_per_ext_rel;
2350 erel += input_rel_hdr->sh_entsize;
2351 }
2352
2353 /* Bump the counter, so that we know where to add the next set of
2354 relocations. */
2355 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2356
2357 return TRUE;
2358 }
2359 \f
2360 /* Make weak undefined symbols in PIE dynamic. */
2361
2362 bfd_boolean
2363 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2364 struct elf_link_hash_entry *h)
2365 {
2366 if (info->pie
2367 && h->dynindx == -1
2368 && h->root.type == bfd_link_hash_undefweak)
2369 return bfd_elf_link_record_dynamic_symbol (info, h);
2370
2371 return TRUE;
2372 }
2373
2374 /* Fix up the flags for a symbol. This handles various cases which
2375 can only be fixed after all the input files are seen. This is
2376 currently called by both adjust_dynamic_symbol and
2377 assign_sym_version, which is unnecessary but perhaps more robust in
2378 the face of future changes. */
2379
2380 static bfd_boolean
2381 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2382 struct elf_info_failed *eif)
2383 {
2384 const struct elf_backend_data *bed;
2385
2386 /* If this symbol was mentioned in a non-ELF file, try to set
2387 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2388 permit a non-ELF file to correctly refer to a symbol defined in
2389 an ELF dynamic object. */
2390 if (h->non_elf)
2391 {
2392 while (h->root.type == bfd_link_hash_indirect)
2393 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2394
2395 if (h->root.type != bfd_link_hash_defined
2396 && h->root.type != bfd_link_hash_defweak)
2397 {
2398 h->ref_regular = 1;
2399 h->ref_regular_nonweak = 1;
2400 }
2401 else
2402 {
2403 if (h->root.u.def.section->owner != NULL
2404 && (bfd_get_flavour (h->root.u.def.section->owner)
2405 == bfd_target_elf_flavour))
2406 {
2407 h->ref_regular = 1;
2408 h->ref_regular_nonweak = 1;
2409 }
2410 else
2411 h->def_regular = 1;
2412 }
2413
2414 if (h->dynindx == -1
2415 && (h->def_dynamic
2416 || h->ref_dynamic))
2417 {
2418 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2419 {
2420 eif->failed = TRUE;
2421 return FALSE;
2422 }
2423 }
2424 }
2425 else
2426 {
2427 /* Unfortunately, NON_ELF is only correct if the symbol
2428 was first seen in a non-ELF file. Fortunately, if the symbol
2429 was first seen in an ELF file, we're probably OK unless the
2430 symbol was defined in a non-ELF file. Catch that case here.
2431 FIXME: We're still in trouble if the symbol was first seen in
2432 a dynamic object, and then later in a non-ELF regular object. */
2433 if ((h->root.type == bfd_link_hash_defined
2434 || h->root.type == bfd_link_hash_defweak)
2435 && !h->def_regular
2436 && (h->root.u.def.section->owner != NULL
2437 ? (bfd_get_flavour (h->root.u.def.section->owner)
2438 != bfd_target_elf_flavour)
2439 : (bfd_is_abs_section (h->root.u.def.section)
2440 && !h->def_dynamic)))
2441 h->def_regular = 1;
2442 }
2443
2444 /* Backend specific symbol fixup. */
2445 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2446 if (bed->elf_backend_fixup_symbol
2447 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2448 return FALSE;
2449
2450 /* If this is a final link, and the symbol was defined as a common
2451 symbol in a regular object file, and there was no definition in
2452 any dynamic object, then the linker will have allocated space for
2453 the symbol in a common section but the DEF_REGULAR
2454 flag will not have been set. */
2455 if (h->root.type == bfd_link_hash_defined
2456 && !h->def_regular
2457 && h->ref_regular
2458 && !h->def_dynamic
2459 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2460 h->def_regular = 1;
2461
2462 /* If -Bsymbolic was used (which means to bind references to global
2463 symbols to the definition within the shared object), and this
2464 symbol was defined in a regular object, then it actually doesn't
2465 need a PLT entry. Likewise, if the symbol has non-default
2466 visibility. If the symbol has hidden or internal visibility, we
2467 will force it local. */
2468 if (h->needs_plt
2469 && eif->info->shared
2470 && is_elf_hash_table (eif->info->hash)
2471 && (SYMBOLIC_BIND (eif->info, h)
2472 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2473 && h->def_regular)
2474 {
2475 bfd_boolean force_local;
2476
2477 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2478 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2479 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2480 }
2481
2482 /* If a weak undefined symbol has non-default visibility, we also
2483 hide it from the dynamic linker. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2485 && h->root.type == bfd_link_hash_undefweak)
2486 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2487
2488 /* If this is a weak defined symbol in a dynamic object, and we know
2489 the real definition in the dynamic object, copy interesting flags
2490 over to the real definition. */
2491 if (h->u.weakdef != NULL)
2492 {
2493 /* If the real definition is defined by a regular object file,
2494 don't do anything special. See the longer description in
2495 _bfd_elf_adjust_dynamic_symbol, below. */
2496 if (h->u.weakdef->def_regular)
2497 h->u.weakdef = NULL;
2498 else
2499 {
2500 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2501
2502 while (h->root.type == bfd_link_hash_indirect)
2503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2504
2505 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2506 || h->root.type == bfd_link_hash_defweak);
2507 BFD_ASSERT (weakdef->def_dynamic);
2508 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2509 || weakdef->root.type == bfd_link_hash_defweak);
2510 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2511 }
2512 }
2513
2514 return TRUE;
2515 }
2516
2517 /* Make the backend pick a good value for a dynamic symbol. This is
2518 called via elf_link_hash_traverse, and also calls itself
2519 recursively. */
2520
2521 static bfd_boolean
2522 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2523 {
2524 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2525 bfd *dynobj;
2526 const struct elf_backend_data *bed;
2527
2528 if (! is_elf_hash_table (eif->info->hash))
2529 return FALSE;
2530
2531 /* Ignore indirect symbols. These are added by the versioning code. */
2532 if (h->root.type == bfd_link_hash_indirect)
2533 return TRUE;
2534
2535 /* Fix the symbol flags. */
2536 if (! _bfd_elf_fix_symbol_flags (h, eif))
2537 return FALSE;
2538
2539 /* If this symbol does not require a PLT entry, and it is not
2540 defined by a dynamic object, or is not referenced by a regular
2541 object, ignore it. We do have to handle a weak defined symbol,
2542 even if no regular object refers to it, if we decided to add it
2543 to the dynamic symbol table. FIXME: Do we normally need to worry
2544 about symbols which are defined by one dynamic object and
2545 referenced by another one? */
2546 if (!h->needs_plt
2547 && h->type != STT_GNU_IFUNC
2548 && (h->def_regular
2549 || !h->def_dynamic
2550 || (!h->ref_regular
2551 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2552 {
2553 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2554 return TRUE;
2555 }
2556
2557 /* If we've already adjusted this symbol, don't do it again. This
2558 can happen via a recursive call. */
2559 if (h->dynamic_adjusted)
2560 return TRUE;
2561
2562 /* Don't look at this symbol again. Note that we must set this
2563 after checking the above conditions, because we may look at a
2564 symbol once, decide not to do anything, and then get called
2565 recursively later after REF_REGULAR is set below. */
2566 h->dynamic_adjusted = 1;
2567
2568 /* If this is a weak definition, and we know a real definition, and
2569 the real symbol is not itself defined by a regular object file,
2570 then get a good value for the real definition. We handle the
2571 real symbol first, for the convenience of the backend routine.
2572
2573 Note that there is a confusing case here. If the real definition
2574 is defined by a regular object file, we don't get the real symbol
2575 from the dynamic object, but we do get the weak symbol. If the
2576 processor backend uses a COPY reloc, then if some routine in the
2577 dynamic object changes the real symbol, we will not see that
2578 change in the corresponding weak symbol. This is the way other
2579 ELF linkers work as well, and seems to be a result of the shared
2580 library model.
2581
2582 I will clarify this issue. Most SVR4 shared libraries define the
2583 variable _timezone and define timezone as a weak synonym. The
2584 tzset call changes _timezone. If you write
2585 extern int timezone;
2586 int _timezone = 5;
2587 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2588 you might expect that, since timezone is a synonym for _timezone,
2589 the same number will print both times. However, if the processor
2590 backend uses a COPY reloc, then actually timezone will be copied
2591 into your process image, and, since you define _timezone
2592 yourself, _timezone will not. Thus timezone and _timezone will
2593 wind up at different memory locations. The tzset call will set
2594 _timezone, leaving timezone unchanged. */
2595
2596 if (h->u.weakdef != NULL)
2597 {
2598 /* If we get to this point, there is an implicit reference to
2599 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2600 h->u.weakdef->ref_regular = 1;
2601
2602 /* Ensure that the backend adjust_dynamic_symbol function sees
2603 H->U.WEAKDEF before H by recursively calling ourselves. */
2604 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2605 return FALSE;
2606 }
2607
2608 /* If a symbol has no type and no size and does not require a PLT
2609 entry, then we are probably about to do the wrong thing here: we
2610 are probably going to create a COPY reloc for an empty object.
2611 This case can arise when a shared object is built with assembly
2612 code, and the assembly code fails to set the symbol type. */
2613 if (h->size == 0
2614 && h->type == STT_NOTYPE
2615 && !h->needs_plt)
2616 (*_bfd_error_handler)
2617 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2618 h->root.root.string);
2619
2620 dynobj = elf_hash_table (eif->info)->dynobj;
2621 bed = get_elf_backend_data (dynobj);
2622
2623 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2624 {
2625 eif->failed = TRUE;
2626 return FALSE;
2627 }
2628
2629 return TRUE;
2630 }
2631
2632 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2633 DYNBSS. */
2634
2635 bfd_boolean
2636 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2637 struct elf_link_hash_entry *h,
2638 asection *dynbss)
2639 {
2640 unsigned int power_of_two;
2641 bfd_vma mask;
2642 asection *sec = h->root.u.def.section;
2643
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2652 {
2653 mask >>= 1;
2654 --power_of_two;
2655 }
2656
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 dynbss))
2659 {
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 power_of_two))
2663 return FALSE;
2664 }
2665
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2672
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2675
2676 if (h->protected_def)
2677 {
2678 info->callbacks->einfo
2679 (_("%P: copy reloc against protected `%T' is invalid\n"),
2680 h->root.root.string);
2681 bfd_set_error (bfd_error_bad_value);
2682 return FALSE;
2683 }
2684
2685 return TRUE;
2686 }
2687
2688 /* Adjust all external symbols pointing into SEC_MERGE sections
2689 to reflect the object merging within the sections. */
2690
2691 static bfd_boolean
2692 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2693 {
2694 asection *sec;
2695
2696 if ((h->root.type == bfd_link_hash_defined
2697 || h->root.type == bfd_link_hash_defweak)
2698 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2699 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2700 {
2701 bfd *output_bfd = (bfd *) data;
2702
2703 h->root.u.def.value =
2704 _bfd_merged_section_offset (output_bfd,
2705 &h->root.u.def.section,
2706 elf_section_data (sec)->sec_info,
2707 h->root.u.def.value);
2708 }
2709
2710 return TRUE;
2711 }
2712
2713 /* Returns false if the symbol referred to by H should be considered
2714 to resolve local to the current module, and true if it should be
2715 considered to bind dynamically. */
2716
2717 bfd_boolean
2718 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2719 struct bfd_link_info *info,
2720 bfd_boolean not_local_protected)
2721 {
2722 bfd_boolean binding_stays_local_p;
2723 const struct elf_backend_data *bed;
2724 struct elf_link_hash_table *hash_table;
2725
2726 if (h == NULL)
2727 return FALSE;
2728
2729 while (h->root.type == bfd_link_hash_indirect
2730 || h->root.type == bfd_link_hash_warning)
2731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2732
2733 /* If it was forced local, then clearly it's not dynamic. */
2734 if (h->dynindx == -1)
2735 return FALSE;
2736 if (h->forced_local)
2737 return FALSE;
2738
2739 /* Identify the cases where name binding rules say that a
2740 visible symbol resolves locally. */
2741 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2742
2743 switch (ELF_ST_VISIBILITY (h->other))
2744 {
2745 case STV_INTERNAL:
2746 case STV_HIDDEN:
2747 return FALSE;
2748
2749 case STV_PROTECTED:
2750 hash_table = elf_hash_table (info);
2751 if (!is_elf_hash_table (hash_table))
2752 return FALSE;
2753
2754 bed = get_elf_backend_data (hash_table->dynobj);
2755
2756 /* Proper resolution for function pointer equality may require
2757 that these symbols perhaps be resolved dynamically, even though
2758 we should be resolving them to the current module. */
2759 if (!not_local_protected || !bed->is_function_type (h->type))
2760 binding_stays_local_p = TRUE;
2761 break;
2762
2763 default:
2764 break;
2765 }
2766
2767 /* If it isn't defined locally, then clearly it's dynamic. */
2768 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2769 return TRUE;
2770
2771 /* Otherwise, the symbol is dynamic if binding rules don't tell
2772 us that it remains local. */
2773 return !binding_stays_local_p;
2774 }
2775
2776 /* Return true if the symbol referred to by H should be considered
2777 to resolve local to the current module, and false otherwise. Differs
2778 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2779 undefined symbols. The two functions are virtually identical except
2780 for the place where forced_local and dynindx == -1 are tested. If
2781 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2782 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2783 the symbol is local only for defined symbols.
2784 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2785 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2786 treatment of undefined weak symbols. For those that do not make
2787 undefined weak symbols dynamic, both functions may return false. */
2788
2789 bfd_boolean
2790 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2791 struct bfd_link_info *info,
2792 bfd_boolean local_protected)
2793 {
2794 const struct elf_backend_data *bed;
2795 struct elf_link_hash_table *hash_table;
2796
2797 /* If it's a local sym, of course we resolve locally. */
2798 if (h == NULL)
2799 return TRUE;
2800
2801 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2802 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2803 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2804 return TRUE;
2805
2806 /* Common symbols that become definitions don't get the DEF_REGULAR
2807 flag set, so test it first, and don't bail out. */
2808 if (ELF_COMMON_DEF_P (h))
2809 /* Do nothing. */;
2810 /* If we don't have a definition in a regular file, then we can't
2811 resolve locally. The sym is either undefined or dynamic. */
2812 else if (!h->def_regular)
2813 return FALSE;
2814
2815 /* Forced local symbols resolve locally. */
2816 if (h->forced_local)
2817 return TRUE;
2818
2819 /* As do non-dynamic symbols. */
2820 if (h->dynindx == -1)
2821 return TRUE;
2822
2823 /* At this point, we know the symbol is defined and dynamic. In an
2824 executable it must resolve locally, likewise when building symbolic
2825 shared libraries. */
2826 if (info->executable || SYMBOLIC_BIND (info, h))
2827 return TRUE;
2828
2829 /* Now deal with defined dynamic symbols in shared libraries. Ones
2830 with default visibility might not resolve locally. */
2831 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2832 return FALSE;
2833
2834 hash_table = elf_hash_table (info);
2835 if (!is_elf_hash_table (hash_table))
2836 return TRUE;
2837
2838 bed = get_elf_backend_data (hash_table->dynobj);
2839
2840 /* STV_PROTECTED non-function symbols are local. */
2841 if (!bed->is_function_type (h->type))
2842 return TRUE;
2843
2844 /* Function pointer equality tests may require that STV_PROTECTED
2845 symbols be treated as dynamic symbols. If the address of a
2846 function not defined in an executable is set to that function's
2847 plt entry in the executable, then the address of the function in
2848 a shared library must also be the plt entry in the executable. */
2849 return local_protected;
2850 }
2851
2852 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2853 aligned. Returns the first TLS output section. */
2854
2855 struct bfd_section *
2856 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2857 {
2858 struct bfd_section *sec, *tls;
2859 unsigned int align = 0;
2860
2861 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2862 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2863 break;
2864 tls = sec;
2865
2866 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2867 if (sec->alignment_power > align)
2868 align = sec->alignment_power;
2869
2870 elf_hash_table (info)->tls_sec = tls;
2871
2872 /* Ensure the alignment of the first section is the largest alignment,
2873 so that the tls segment starts aligned. */
2874 if (tls != NULL)
2875 tls->alignment_power = align;
2876
2877 return tls;
2878 }
2879
2880 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2881 static bfd_boolean
2882 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2883 Elf_Internal_Sym *sym)
2884 {
2885 const struct elf_backend_data *bed;
2886
2887 /* Local symbols do not count, but target specific ones might. */
2888 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2889 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2890 return FALSE;
2891
2892 bed = get_elf_backend_data (abfd);
2893 /* Function symbols do not count. */
2894 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2895 return FALSE;
2896
2897 /* If the section is undefined, then so is the symbol. */
2898 if (sym->st_shndx == SHN_UNDEF)
2899 return FALSE;
2900
2901 /* If the symbol is defined in the common section, then
2902 it is a common definition and so does not count. */
2903 if (bed->common_definition (sym))
2904 return FALSE;
2905
2906 /* If the symbol is in a target specific section then we
2907 must rely upon the backend to tell us what it is. */
2908 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2909 /* FIXME - this function is not coded yet:
2910
2911 return _bfd_is_global_symbol_definition (abfd, sym);
2912
2913 Instead for now assume that the definition is not global,
2914 Even if this is wrong, at least the linker will behave
2915 in the same way that it used to do. */
2916 return FALSE;
2917
2918 return TRUE;
2919 }
2920
2921 /* Search the symbol table of the archive element of the archive ABFD
2922 whose archive map contains a mention of SYMDEF, and determine if
2923 the symbol is defined in this element. */
2924 static bfd_boolean
2925 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2926 {
2927 Elf_Internal_Shdr * hdr;
2928 bfd_size_type symcount;
2929 bfd_size_type extsymcount;
2930 bfd_size_type extsymoff;
2931 Elf_Internal_Sym *isymbuf;
2932 Elf_Internal_Sym *isym;
2933 Elf_Internal_Sym *isymend;
2934 bfd_boolean result;
2935
2936 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2937 if (abfd == NULL)
2938 return FALSE;
2939
2940 if (! bfd_check_format (abfd, bfd_object))
2941 return FALSE;
2942
2943 /* Select the appropriate symbol table. */
2944 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2945 hdr = &elf_tdata (abfd)->symtab_hdr;
2946 else
2947 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2948
2949 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2950
2951 /* The sh_info field of the symtab header tells us where the
2952 external symbols start. We don't care about the local symbols. */
2953 if (elf_bad_symtab (abfd))
2954 {
2955 extsymcount = symcount;
2956 extsymoff = 0;
2957 }
2958 else
2959 {
2960 extsymcount = symcount - hdr->sh_info;
2961 extsymoff = hdr->sh_info;
2962 }
2963
2964 if (extsymcount == 0)
2965 return FALSE;
2966
2967 /* Read in the symbol table. */
2968 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2969 NULL, NULL, NULL);
2970 if (isymbuf == NULL)
2971 return FALSE;
2972
2973 /* Scan the symbol table looking for SYMDEF. */
2974 result = FALSE;
2975 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2976 {
2977 const char *name;
2978
2979 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2980 isym->st_name);
2981 if (name == NULL)
2982 break;
2983
2984 if (strcmp (name, symdef->name) == 0)
2985 {
2986 result = is_global_data_symbol_definition (abfd, isym);
2987 break;
2988 }
2989 }
2990
2991 free (isymbuf);
2992
2993 return result;
2994 }
2995 \f
2996 /* Add an entry to the .dynamic table. */
2997
2998 bfd_boolean
2999 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3000 bfd_vma tag,
3001 bfd_vma val)
3002 {
3003 struct elf_link_hash_table *hash_table;
3004 const struct elf_backend_data *bed;
3005 asection *s;
3006 bfd_size_type newsize;
3007 bfd_byte *newcontents;
3008 Elf_Internal_Dyn dyn;
3009
3010 hash_table = elf_hash_table (info);
3011 if (! is_elf_hash_table (hash_table))
3012 return FALSE;
3013
3014 bed = get_elf_backend_data (hash_table->dynobj);
3015 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3016 BFD_ASSERT (s != NULL);
3017
3018 newsize = s->size + bed->s->sizeof_dyn;
3019 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3020 if (newcontents == NULL)
3021 return FALSE;
3022
3023 dyn.d_tag = tag;
3024 dyn.d_un.d_val = val;
3025 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3026
3027 s->size = newsize;
3028 s->contents = newcontents;
3029
3030 return TRUE;
3031 }
3032
3033 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3034 otherwise just check whether one already exists. Returns -1 on error,
3035 1 if a DT_NEEDED tag already exists, and 0 on success. */
3036
3037 static int
3038 elf_add_dt_needed_tag (bfd *abfd,
3039 struct bfd_link_info *info,
3040 const char *soname,
3041 bfd_boolean do_it)
3042 {
3043 struct elf_link_hash_table *hash_table;
3044 bfd_size_type strindex;
3045
3046 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3047 return -1;
3048
3049 hash_table = elf_hash_table (info);
3050 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3051 if (strindex == (bfd_size_type) -1)
3052 return -1;
3053
3054 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3055 {
3056 asection *sdyn;
3057 const struct elf_backend_data *bed;
3058 bfd_byte *extdyn;
3059
3060 bed = get_elf_backend_data (hash_table->dynobj);
3061 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3062 if (sdyn != NULL)
3063 for (extdyn = sdyn->contents;
3064 extdyn < sdyn->contents + sdyn->size;
3065 extdyn += bed->s->sizeof_dyn)
3066 {
3067 Elf_Internal_Dyn dyn;
3068
3069 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3070 if (dyn.d_tag == DT_NEEDED
3071 && dyn.d_un.d_val == strindex)
3072 {
3073 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3074 return 1;
3075 }
3076 }
3077 }
3078
3079 if (do_it)
3080 {
3081 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3082 return -1;
3083
3084 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3085 return -1;
3086 }
3087 else
3088 /* We were just checking for existence of the tag. */
3089 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3090
3091 return 0;
3092 }
3093
3094 static bfd_boolean
3095 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3096 {
3097 for (; needed != NULL; needed = needed->next)
3098 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3099 && strcmp (soname, needed->name) == 0)
3100 return TRUE;
3101
3102 return FALSE;
3103 }
3104
3105 /* Sort symbol by value, section, and size. */
3106 static int
3107 elf_sort_symbol (const void *arg1, const void *arg2)
3108 {
3109 const struct elf_link_hash_entry *h1;
3110 const struct elf_link_hash_entry *h2;
3111 bfd_signed_vma vdiff;
3112
3113 h1 = *(const struct elf_link_hash_entry **) arg1;
3114 h2 = *(const struct elf_link_hash_entry **) arg2;
3115 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3116 if (vdiff != 0)
3117 return vdiff > 0 ? 1 : -1;
3118 else
3119 {
3120 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3121 if (sdiff != 0)
3122 return sdiff > 0 ? 1 : -1;
3123 }
3124 vdiff = h1->size - h2->size;
3125 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3126 }
3127
3128 /* This function is used to adjust offsets into .dynstr for
3129 dynamic symbols. This is called via elf_link_hash_traverse. */
3130
3131 static bfd_boolean
3132 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3133 {
3134 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3135
3136 if (h->dynindx != -1)
3137 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3138 return TRUE;
3139 }
3140
3141 /* Assign string offsets in .dynstr, update all structures referencing
3142 them. */
3143
3144 static bfd_boolean
3145 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3146 {
3147 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3148 struct elf_link_local_dynamic_entry *entry;
3149 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3150 bfd *dynobj = hash_table->dynobj;
3151 asection *sdyn;
3152 bfd_size_type size;
3153 const struct elf_backend_data *bed;
3154 bfd_byte *extdyn;
3155
3156 _bfd_elf_strtab_finalize (dynstr);
3157 size = _bfd_elf_strtab_size (dynstr);
3158
3159 bed = get_elf_backend_data (dynobj);
3160 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3161 BFD_ASSERT (sdyn != NULL);
3162
3163 /* Update all .dynamic entries referencing .dynstr strings. */
3164 for (extdyn = sdyn->contents;
3165 extdyn < sdyn->contents + sdyn->size;
3166 extdyn += bed->s->sizeof_dyn)
3167 {
3168 Elf_Internal_Dyn dyn;
3169
3170 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3171 switch (dyn.d_tag)
3172 {
3173 case DT_STRSZ:
3174 dyn.d_un.d_val = size;
3175 break;
3176 case DT_NEEDED:
3177 case DT_SONAME:
3178 case DT_RPATH:
3179 case DT_RUNPATH:
3180 case DT_FILTER:
3181 case DT_AUXILIARY:
3182 case DT_AUDIT:
3183 case DT_DEPAUDIT:
3184 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3185 break;
3186 default:
3187 continue;
3188 }
3189 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3190 }
3191
3192 /* Now update local dynamic symbols. */
3193 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3194 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3195 entry->isym.st_name);
3196
3197 /* And the rest of dynamic symbols. */
3198 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3199
3200 /* Adjust version definitions. */
3201 if (elf_tdata (output_bfd)->cverdefs)
3202 {
3203 asection *s;
3204 bfd_byte *p;
3205 bfd_size_type i;
3206 Elf_Internal_Verdef def;
3207 Elf_Internal_Verdaux defaux;
3208
3209 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3210 p = s->contents;
3211 do
3212 {
3213 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3214 &def);
3215 p += sizeof (Elf_External_Verdef);
3216 if (def.vd_aux != sizeof (Elf_External_Verdef))
3217 continue;
3218 for (i = 0; i < def.vd_cnt; ++i)
3219 {
3220 _bfd_elf_swap_verdaux_in (output_bfd,
3221 (Elf_External_Verdaux *) p, &defaux);
3222 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3223 defaux.vda_name);
3224 _bfd_elf_swap_verdaux_out (output_bfd,
3225 &defaux, (Elf_External_Verdaux *) p);
3226 p += sizeof (Elf_External_Verdaux);
3227 }
3228 }
3229 while (def.vd_next);
3230 }
3231
3232 /* Adjust version references. */
3233 if (elf_tdata (output_bfd)->verref)
3234 {
3235 asection *s;
3236 bfd_byte *p;
3237 bfd_size_type i;
3238 Elf_Internal_Verneed need;
3239 Elf_Internal_Vernaux needaux;
3240
3241 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3242 p = s->contents;
3243 do
3244 {
3245 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3246 &need);
3247 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3248 _bfd_elf_swap_verneed_out (output_bfd, &need,
3249 (Elf_External_Verneed *) p);
3250 p += sizeof (Elf_External_Verneed);
3251 for (i = 0; i < need.vn_cnt; ++i)
3252 {
3253 _bfd_elf_swap_vernaux_in (output_bfd,
3254 (Elf_External_Vernaux *) p, &needaux);
3255 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3256 needaux.vna_name);
3257 _bfd_elf_swap_vernaux_out (output_bfd,
3258 &needaux,
3259 (Elf_External_Vernaux *) p);
3260 p += sizeof (Elf_External_Vernaux);
3261 }
3262 }
3263 while (need.vn_next);
3264 }
3265
3266 return TRUE;
3267 }
3268 \f
3269 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3270 The default is to only match when the INPUT and OUTPUT are exactly
3271 the same target. */
3272
3273 bfd_boolean
3274 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3275 const bfd_target *output)
3276 {
3277 return input == output;
3278 }
3279
3280 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3281 This version is used when different targets for the same architecture
3282 are virtually identical. */
3283
3284 bfd_boolean
3285 _bfd_elf_relocs_compatible (const bfd_target *input,
3286 const bfd_target *output)
3287 {
3288 const struct elf_backend_data *obed, *ibed;
3289
3290 if (input == output)
3291 return TRUE;
3292
3293 ibed = xvec_get_elf_backend_data (input);
3294 obed = xvec_get_elf_backend_data (output);
3295
3296 if (ibed->arch != obed->arch)
3297 return FALSE;
3298
3299 /* If both backends are using this function, deem them compatible. */
3300 return ibed->relocs_compatible == obed->relocs_compatible;
3301 }
3302
3303 /* Make a special call to the linker "notice" function to tell it that
3304 we are about to handle an as-needed lib, or have finished
3305 processing the lib. */
3306
3307 bfd_boolean
3308 _bfd_elf_notice_as_needed (bfd *ibfd,
3309 struct bfd_link_info *info,
3310 enum notice_asneeded_action act)
3311 {
3312 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3313 }
3314
3315 /* Add symbols from an ELF object file to the linker hash table. */
3316
3317 static bfd_boolean
3318 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3319 {
3320 Elf_Internal_Ehdr *ehdr;
3321 Elf_Internal_Shdr *hdr;
3322 bfd_size_type symcount;
3323 bfd_size_type extsymcount;
3324 bfd_size_type extsymoff;
3325 struct elf_link_hash_entry **sym_hash;
3326 bfd_boolean dynamic;
3327 Elf_External_Versym *extversym = NULL;
3328 Elf_External_Versym *ever;
3329 struct elf_link_hash_entry *weaks;
3330 struct elf_link_hash_entry **nondeflt_vers = NULL;
3331 bfd_size_type nondeflt_vers_cnt = 0;
3332 Elf_Internal_Sym *isymbuf = NULL;
3333 Elf_Internal_Sym *isym;
3334 Elf_Internal_Sym *isymend;
3335 const struct elf_backend_data *bed;
3336 bfd_boolean add_needed;
3337 struct elf_link_hash_table *htab;
3338 bfd_size_type amt;
3339 void *alloc_mark = NULL;
3340 struct bfd_hash_entry **old_table = NULL;
3341 unsigned int old_size = 0;
3342 unsigned int old_count = 0;
3343 void *old_tab = NULL;
3344 void *old_ent;
3345 struct bfd_link_hash_entry *old_undefs = NULL;
3346 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3347 long old_dynsymcount = 0;
3348 bfd_size_type old_dynstr_size = 0;
3349 size_t tabsize = 0;
3350 asection *s;
3351 bfd_boolean just_syms;
3352
3353 htab = elf_hash_table (info);
3354 bed = get_elf_backend_data (abfd);
3355
3356 if ((abfd->flags & DYNAMIC) == 0)
3357 dynamic = FALSE;
3358 else
3359 {
3360 dynamic = TRUE;
3361
3362 /* You can't use -r against a dynamic object. Also, there's no
3363 hope of using a dynamic object which does not exactly match
3364 the format of the output file. */
3365 if (info->relocatable
3366 || !is_elf_hash_table (htab)
3367 || info->output_bfd->xvec != abfd->xvec)
3368 {
3369 if (info->relocatable)
3370 bfd_set_error (bfd_error_invalid_operation);
3371 else
3372 bfd_set_error (bfd_error_wrong_format);
3373 goto error_return;
3374 }
3375 }
3376
3377 ehdr = elf_elfheader (abfd);
3378 if (info->warn_alternate_em
3379 && bed->elf_machine_code != ehdr->e_machine
3380 && ((bed->elf_machine_alt1 != 0
3381 && ehdr->e_machine == bed->elf_machine_alt1)
3382 || (bed->elf_machine_alt2 != 0
3383 && ehdr->e_machine == bed->elf_machine_alt2)))
3384 info->callbacks->einfo
3385 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3386 ehdr->e_machine, abfd, bed->elf_machine_code);
3387
3388 /* As a GNU extension, any input sections which are named
3389 .gnu.warning.SYMBOL are treated as warning symbols for the given
3390 symbol. This differs from .gnu.warning sections, which generate
3391 warnings when they are included in an output file. */
3392 /* PR 12761: Also generate this warning when building shared libraries. */
3393 for (s = abfd->sections; s != NULL; s = s->next)
3394 {
3395 const char *name;
3396
3397 name = bfd_get_section_name (abfd, s);
3398 if (CONST_STRNEQ (name, ".gnu.warning."))
3399 {
3400 char *msg;
3401 bfd_size_type sz;
3402
3403 name += sizeof ".gnu.warning." - 1;
3404
3405 /* If this is a shared object, then look up the symbol
3406 in the hash table. If it is there, and it is already
3407 been defined, then we will not be using the entry
3408 from this shared object, so we don't need to warn.
3409 FIXME: If we see the definition in a regular object
3410 later on, we will warn, but we shouldn't. The only
3411 fix is to keep track of what warnings we are supposed
3412 to emit, and then handle them all at the end of the
3413 link. */
3414 if (dynamic)
3415 {
3416 struct elf_link_hash_entry *h;
3417
3418 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3419
3420 /* FIXME: What about bfd_link_hash_common? */
3421 if (h != NULL
3422 && (h->root.type == bfd_link_hash_defined
3423 || h->root.type == bfd_link_hash_defweak))
3424 continue;
3425 }
3426
3427 sz = s->size;
3428 msg = (char *) bfd_alloc (abfd, sz + 1);
3429 if (msg == NULL)
3430 goto error_return;
3431
3432 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3433 goto error_return;
3434
3435 msg[sz] = '\0';
3436
3437 if (! (_bfd_generic_link_add_one_symbol
3438 (info, abfd, name, BSF_WARNING, s, 0, msg,
3439 FALSE, bed->collect, NULL)))
3440 goto error_return;
3441
3442 if (!info->relocatable && info->executable)
3443 {
3444 /* Clobber the section size so that the warning does
3445 not get copied into the output file. */
3446 s->size = 0;
3447
3448 /* Also set SEC_EXCLUDE, so that symbols defined in
3449 the warning section don't get copied to the output. */
3450 s->flags |= SEC_EXCLUDE;
3451 }
3452 }
3453 }
3454
3455 just_syms = ((s = abfd->sections) != NULL
3456 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3457
3458 add_needed = TRUE;
3459 if (! dynamic)
3460 {
3461 /* If we are creating a shared library, create all the dynamic
3462 sections immediately. We need to attach them to something,
3463 so we attach them to this BFD, provided it is the right
3464 format and is not from ld --just-symbols. FIXME: If there
3465 are no input BFD's of the same format as the output, we can't
3466 make a shared library. */
3467 if (!just_syms
3468 && info->shared
3469 && is_elf_hash_table (htab)
3470 && info->output_bfd->xvec == abfd->xvec
3471 && !htab->dynamic_sections_created)
3472 {
3473 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3474 goto error_return;
3475 }
3476 }
3477 else if (!is_elf_hash_table (htab))
3478 goto error_return;
3479 else
3480 {
3481 const char *soname = NULL;
3482 char *audit = NULL;
3483 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3484 int ret;
3485
3486 /* ld --just-symbols and dynamic objects don't mix very well.
3487 ld shouldn't allow it. */
3488 if (just_syms)
3489 abort ();
3490
3491 /* If this dynamic lib was specified on the command line with
3492 --as-needed in effect, then we don't want to add a DT_NEEDED
3493 tag unless the lib is actually used. Similary for libs brought
3494 in by another lib's DT_NEEDED. When --no-add-needed is used
3495 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3496 any dynamic library in DT_NEEDED tags in the dynamic lib at
3497 all. */
3498 add_needed = (elf_dyn_lib_class (abfd)
3499 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3500 | DYN_NO_NEEDED)) == 0;
3501
3502 s = bfd_get_section_by_name (abfd, ".dynamic");
3503 if (s != NULL)
3504 {
3505 bfd_byte *dynbuf;
3506 bfd_byte *extdyn;
3507 unsigned int elfsec;
3508 unsigned long shlink;
3509
3510 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3511 {
3512 error_free_dyn:
3513 free (dynbuf);
3514 goto error_return;
3515 }
3516
3517 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3518 if (elfsec == SHN_BAD)
3519 goto error_free_dyn;
3520 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3521
3522 for (extdyn = dynbuf;
3523 extdyn < dynbuf + s->size;
3524 extdyn += bed->s->sizeof_dyn)
3525 {
3526 Elf_Internal_Dyn dyn;
3527
3528 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3529 if (dyn.d_tag == DT_SONAME)
3530 {
3531 unsigned int tagv = dyn.d_un.d_val;
3532 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3533 if (soname == NULL)
3534 goto error_free_dyn;
3535 }
3536 if (dyn.d_tag == DT_NEEDED)
3537 {
3538 struct bfd_link_needed_list *n, **pn;
3539 char *fnm, *anm;
3540 unsigned int tagv = dyn.d_un.d_val;
3541
3542 amt = sizeof (struct bfd_link_needed_list);
3543 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3544 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3545 if (n == NULL || fnm == NULL)
3546 goto error_free_dyn;
3547 amt = strlen (fnm) + 1;
3548 anm = (char *) bfd_alloc (abfd, amt);
3549 if (anm == NULL)
3550 goto error_free_dyn;
3551 memcpy (anm, fnm, amt);
3552 n->name = anm;
3553 n->by = abfd;
3554 n->next = NULL;
3555 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3556 ;
3557 *pn = n;
3558 }
3559 if (dyn.d_tag == DT_RUNPATH)
3560 {
3561 struct bfd_link_needed_list *n, **pn;
3562 char *fnm, *anm;
3563 unsigned int tagv = dyn.d_un.d_val;
3564
3565 amt = sizeof (struct bfd_link_needed_list);
3566 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3567 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3568 if (n == NULL || fnm == NULL)
3569 goto error_free_dyn;
3570 amt = strlen (fnm) + 1;
3571 anm = (char *) bfd_alloc (abfd, amt);
3572 if (anm == NULL)
3573 goto error_free_dyn;
3574 memcpy (anm, fnm, amt);
3575 n->name = anm;
3576 n->by = abfd;
3577 n->next = NULL;
3578 for (pn = & runpath;
3579 *pn != NULL;
3580 pn = &(*pn)->next)
3581 ;
3582 *pn = n;
3583 }
3584 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3585 if (!runpath && dyn.d_tag == DT_RPATH)
3586 {
3587 struct bfd_link_needed_list *n, **pn;
3588 char *fnm, *anm;
3589 unsigned int tagv = dyn.d_un.d_val;
3590
3591 amt = sizeof (struct bfd_link_needed_list);
3592 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3593 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3594 if (n == NULL || fnm == NULL)
3595 goto error_free_dyn;
3596 amt = strlen (fnm) + 1;
3597 anm = (char *) bfd_alloc (abfd, amt);
3598 if (anm == NULL)
3599 goto error_free_dyn;
3600 memcpy (anm, fnm, amt);
3601 n->name = anm;
3602 n->by = abfd;
3603 n->next = NULL;
3604 for (pn = & rpath;
3605 *pn != NULL;
3606 pn = &(*pn)->next)
3607 ;
3608 *pn = n;
3609 }
3610 if (dyn.d_tag == DT_AUDIT)
3611 {
3612 unsigned int tagv = dyn.d_un.d_val;
3613 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3614 }
3615 }
3616
3617 free (dynbuf);
3618 }
3619
3620 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3621 frees all more recently bfd_alloc'd blocks as well. */
3622 if (runpath)
3623 rpath = runpath;
3624
3625 if (rpath)
3626 {
3627 struct bfd_link_needed_list **pn;
3628 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3629 ;
3630 *pn = rpath;
3631 }
3632
3633 /* We do not want to include any of the sections in a dynamic
3634 object in the output file. We hack by simply clobbering the
3635 list of sections in the BFD. This could be handled more
3636 cleanly by, say, a new section flag; the existing
3637 SEC_NEVER_LOAD flag is not the one we want, because that one
3638 still implies that the section takes up space in the output
3639 file. */
3640 bfd_section_list_clear (abfd);
3641
3642 /* Find the name to use in a DT_NEEDED entry that refers to this
3643 object. If the object has a DT_SONAME entry, we use it.
3644 Otherwise, if the generic linker stuck something in
3645 elf_dt_name, we use that. Otherwise, we just use the file
3646 name. */
3647 if (soname == NULL || *soname == '\0')
3648 {
3649 soname = elf_dt_name (abfd);
3650 if (soname == NULL || *soname == '\0')
3651 soname = bfd_get_filename (abfd);
3652 }
3653
3654 /* Save the SONAME because sometimes the linker emulation code
3655 will need to know it. */
3656 elf_dt_name (abfd) = soname;
3657
3658 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3659 if (ret < 0)
3660 goto error_return;
3661
3662 /* If we have already included this dynamic object in the
3663 link, just ignore it. There is no reason to include a
3664 particular dynamic object more than once. */
3665 if (ret > 0)
3666 return TRUE;
3667
3668 /* Save the DT_AUDIT entry for the linker emulation code. */
3669 elf_dt_audit (abfd) = audit;
3670 }
3671
3672 /* If this is a dynamic object, we always link against the .dynsym
3673 symbol table, not the .symtab symbol table. The dynamic linker
3674 will only see the .dynsym symbol table, so there is no reason to
3675 look at .symtab for a dynamic object. */
3676
3677 if (! dynamic || elf_dynsymtab (abfd) == 0)
3678 hdr = &elf_tdata (abfd)->symtab_hdr;
3679 else
3680 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3681
3682 symcount = hdr->sh_size / bed->s->sizeof_sym;
3683
3684 /* The sh_info field of the symtab header tells us where the
3685 external symbols start. We don't care about the local symbols at
3686 this point. */
3687 if (elf_bad_symtab (abfd))
3688 {
3689 extsymcount = symcount;
3690 extsymoff = 0;
3691 }
3692 else
3693 {
3694 extsymcount = symcount - hdr->sh_info;
3695 extsymoff = hdr->sh_info;
3696 }
3697
3698 sym_hash = elf_sym_hashes (abfd);
3699 if (extsymcount != 0)
3700 {
3701 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3702 NULL, NULL, NULL);
3703 if (isymbuf == NULL)
3704 goto error_return;
3705
3706 if (sym_hash == NULL)
3707 {
3708 /* We store a pointer to the hash table entry for each
3709 external symbol. */
3710 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3711 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3712 if (sym_hash == NULL)
3713 goto error_free_sym;
3714 elf_sym_hashes (abfd) = sym_hash;
3715 }
3716 }
3717
3718 if (dynamic)
3719 {
3720 /* Read in any version definitions. */
3721 if (!_bfd_elf_slurp_version_tables (abfd,
3722 info->default_imported_symver))
3723 goto error_free_sym;
3724
3725 /* Read in the symbol versions, but don't bother to convert them
3726 to internal format. */
3727 if (elf_dynversym (abfd) != 0)
3728 {
3729 Elf_Internal_Shdr *versymhdr;
3730
3731 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3732 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3733 if (extversym == NULL)
3734 goto error_free_sym;
3735 amt = versymhdr->sh_size;
3736 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3737 || bfd_bread (extversym, amt, abfd) != amt)
3738 goto error_free_vers;
3739 }
3740 }
3741
3742 /* If we are loading an as-needed shared lib, save the symbol table
3743 state before we start adding symbols. If the lib turns out
3744 to be unneeded, restore the state. */
3745 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3746 {
3747 unsigned int i;
3748 size_t entsize;
3749
3750 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3751 {
3752 struct bfd_hash_entry *p;
3753 struct elf_link_hash_entry *h;
3754
3755 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3756 {
3757 h = (struct elf_link_hash_entry *) p;
3758 entsize += htab->root.table.entsize;
3759 if (h->root.type == bfd_link_hash_warning)
3760 entsize += htab->root.table.entsize;
3761 }
3762 }
3763
3764 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3765 old_tab = bfd_malloc (tabsize + entsize);
3766 if (old_tab == NULL)
3767 goto error_free_vers;
3768
3769 /* Remember the current objalloc pointer, so that all mem for
3770 symbols added can later be reclaimed. */
3771 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3772 if (alloc_mark == NULL)
3773 goto error_free_vers;
3774
3775 /* Make a special call to the linker "notice" function to
3776 tell it that we are about to handle an as-needed lib. */
3777 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3778 goto error_free_vers;
3779
3780 /* Clone the symbol table. Remember some pointers into the
3781 symbol table, and dynamic symbol count. */
3782 old_ent = (char *) old_tab + tabsize;
3783 memcpy (old_tab, htab->root.table.table, tabsize);
3784 old_undefs = htab->root.undefs;
3785 old_undefs_tail = htab->root.undefs_tail;
3786 old_table = htab->root.table.table;
3787 old_size = htab->root.table.size;
3788 old_count = htab->root.table.count;
3789 old_dynsymcount = htab->dynsymcount;
3790 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3791
3792 for (i = 0; i < htab->root.table.size; i++)
3793 {
3794 struct bfd_hash_entry *p;
3795 struct elf_link_hash_entry *h;
3796
3797 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3798 {
3799 memcpy (old_ent, p, htab->root.table.entsize);
3800 old_ent = (char *) old_ent + htab->root.table.entsize;
3801 h = (struct elf_link_hash_entry *) p;
3802 if (h->root.type == bfd_link_hash_warning)
3803 {
3804 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3805 old_ent = (char *) old_ent + htab->root.table.entsize;
3806 }
3807 }
3808 }
3809 }
3810
3811 weaks = NULL;
3812 ever = extversym != NULL ? extversym + extsymoff : NULL;
3813 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3814 isym < isymend;
3815 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3816 {
3817 int bind;
3818 bfd_vma value;
3819 asection *sec, *new_sec;
3820 flagword flags;
3821 const char *name;
3822 struct elf_link_hash_entry *h;
3823 struct elf_link_hash_entry *hi;
3824 bfd_boolean definition;
3825 bfd_boolean size_change_ok;
3826 bfd_boolean type_change_ok;
3827 bfd_boolean new_weakdef;
3828 bfd_boolean new_weak;
3829 bfd_boolean old_weak;
3830 bfd_boolean override;
3831 bfd_boolean common;
3832 unsigned int old_alignment;
3833 bfd *old_bfd;
3834
3835 override = FALSE;
3836
3837 flags = BSF_NO_FLAGS;
3838 sec = NULL;
3839 value = isym->st_value;
3840 common = bed->common_definition (isym);
3841
3842 bind = ELF_ST_BIND (isym->st_info);
3843 switch (bind)
3844 {
3845 case STB_LOCAL:
3846 /* This should be impossible, since ELF requires that all
3847 global symbols follow all local symbols, and that sh_info
3848 point to the first global symbol. Unfortunately, Irix 5
3849 screws this up. */
3850 continue;
3851
3852 case STB_GLOBAL:
3853 if (isym->st_shndx != SHN_UNDEF && !common)
3854 flags = BSF_GLOBAL;
3855 break;
3856
3857 case STB_WEAK:
3858 flags = BSF_WEAK;
3859 break;
3860
3861 case STB_GNU_UNIQUE:
3862 flags = BSF_GNU_UNIQUE;
3863 break;
3864
3865 default:
3866 /* Leave it up to the processor backend. */
3867 break;
3868 }
3869
3870 if (isym->st_shndx == SHN_UNDEF)
3871 sec = bfd_und_section_ptr;
3872 else if (isym->st_shndx == SHN_ABS)
3873 sec = bfd_abs_section_ptr;
3874 else if (isym->st_shndx == SHN_COMMON)
3875 {
3876 sec = bfd_com_section_ptr;
3877 /* What ELF calls the size we call the value. What ELF
3878 calls the value we call the alignment. */
3879 value = isym->st_size;
3880 }
3881 else
3882 {
3883 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3884 if (sec == NULL)
3885 sec = bfd_abs_section_ptr;
3886 else if (discarded_section (sec))
3887 {
3888 /* Symbols from discarded section are undefined. We keep
3889 its visibility. */
3890 sec = bfd_und_section_ptr;
3891 isym->st_shndx = SHN_UNDEF;
3892 }
3893 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3894 value -= sec->vma;
3895 }
3896
3897 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3898 isym->st_name);
3899 if (name == NULL)
3900 goto error_free_vers;
3901
3902 if (isym->st_shndx == SHN_COMMON
3903 && (abfd->flags & BFD_PLUGIN) != 0)
3904 {
3905 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3906
3907 if (xc == NULL)
3908 {
3909 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3910 | SEC_EXCLUDE);
3911 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3912 if (xc == NULL)
3913 goto error_free_vers;
3914 }
3915 sec = xc;
3916 }
3917 else if (isym->st_shndx == SHN_COMMON
3918 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3919 && !info->relocatable)
3920 {
3921 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3922
3923 if (tcomm == NULL)
3924 {
3925 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3926 | SEC_LINKER_CREATED);
3927 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3928 if (tcomm == NULL)
3929 goto error_free_vers;
3930 }
3931 sec = tcomm;
3932 }
3933 else if (bed->elf_add_symbol_hook)
3934 {
3935 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3936 &sec, &value))
3937 goto error_free_vers;
3938
3939 /* The hook function sets the name to NULL if this symbol
3940 should be skipped for some reason. */
3941 if (name == NULL)
3942 continue;
3943 }
3944
3945 /* Sanity check that all possibilities were handled. */
3946 if (sec == NULL)
3947 {
3948 bfd_set_error (bfd_error_bad_value);
3949 goto error_free_vers;
3950 }
3951
3952 /* Silently discard TLS symbols from --just-syms. There's
3953 no way to combine a static TLS block with a new TLS block
3954 for this executable. */
3955 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3956 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3957 continue;
3958
3959 if (bfd_is_und_section (sec)
3960 || bfd_is_com_section (sec))
3961 definition = FALSE;
3962 else
3963 definition = TRUE;
3964
3965 size_change_ok = FALSE;
3966 type_change_ok = bed->type_change_ok;
3967 old_weak = FALSE;
3968 old_alignment = 0;
3969 old_bfd = NULL;
3970 new_sec = sec;
3971
3972 if (is_elf_hash_table (htab))
3973 {
3974 Elf_Internal_Versym iver;
3975 unsigned int vernum = 0;
3976 bfd_boolean skip;
3977
3978 if (ever == NULL)
3979 {
3980 if (info->default_imported_symver)
3981 /* Use the default symbol version created earlier. */
3982 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3983 else
3984 iver.vs_vers = 0;
3985 }
3986 else
3987 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3988
3989 vernum = iver.vs_vers & VERSYM_VERSION;
3990
3991 /* If this is a hidden symbol, or if it is not version
3992 1, we append the version name to the symbol name.
3993 However, we do not modify a non-hidden absolute symbol
3994 if it is not a function, because it might be the version
3995 symbol itself. FIXME: What if it isn't? */
3996 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3997 || (vernum > 1
3998 && (!bfd_is_abs_section (sec)
3999 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4000 {
4001 const char *verstr;
4002 size_t namelen, verlen, newlen;
4003 char *newname, *p;
4004
4005 if (isym->st_shndx != SHN_UNDEF)
4006 {
4007 if (vernum > elf_tdata (abfd)->cverdefs)
4008 verstr = NULL;
4009 else if (vernum > 1)
4010 verstr =
4011 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4012 else
4013 verstr = "";
4014
4015 if (verstr == NULL)
4016 {
4017 (*_bfd_error_handler)
4018 (_("%B: %s: invalid version %u (max %d)"),
4019 abfd, name, vernum,
4020 elf_tdata (abfd)->cverdefs);
4021 bfd_set_error (bfd_error_bad_value);
4022 goto error_free_vers;
4023 }
4024 }
4025 else
4026 {
4027 /* We cannot simply test for the number of
4028 entries in the VERNEED section since the
4029 numbers for the needed versions do not start
4030 at 0. */
4031 Elf_Internal_Verneed *t;
4032
4033 verstr = NULL;
4034 for (t = elf_tdata (abfd)->verref;
4035 t != NULL;
4036 t = t->vn_nextref)
4037 {
4038 Elf_Internal_Vernaux *a;
4039
4040 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4041 {
4042 if (a->vna_other == vernum)
4043 {
4044 verstr = a->vna_nodename;
4045 break;
4046 }
4047 }
4048 if (a != NULL)
4049 break;
4050 }
4051 if (verstr == NULL)
4052 {
4053 (*_bfd_error_handler)
4054 (_("%B: %s: invalid needed version %d"),
4055 abfd, name, vernum);
4056 bfd_set_error (bfd_error_bad_value);
4057 goto error_free_vers;
4058 }
4059 }
4060
4061 namelen = strlen (name);
4062 verlen = strlen (verstr);
4063 newlen = namelen + verlen + 2;
4064 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4065 && isym->st_shndx != SHN_UNDEF)
4066 ++newlen;
4067
4068 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4069 if (newname == NULL)
4070 goto error_free_vers;
4071 memcpy (newname, name, namelen);
4072 p = newname + namelen;
4073 *p++ = ELF_VER_CHR;
4074 /* If this is a defined non-hidden version symbol,
4075 we add another @ to the name. This indicates the
4076 default version of the symbol. */
4077 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4078 && isym->st_shndx != SHN_UNDEF)
4079 *p++ = ELF_VER_CHR;
4080 memcpy (p, verstr, verlen + 1);
4081
4082 name = newname;
4083 }
4084
4085 /* If this symbol has default visibility and the user has
4086 requested we not re-export it, then mark it as hidden. */
4087 if (definition
4088 && !dynamic
4089 && abfd->no_export
4090 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4091 isym->st_other = (STV_HIDDEN
4092 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4093
4094 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4095 sym_hash, &old_bfd, &old_weak,
4096 &old_alignment, &skip, &override,
4097 &type_change_ok, &size_change_ok))
4098 goto error_free_vers;
4099
4100 if (skip)
4101 continue;
4102
4103 if (override)
4104 definition = FALSE;
4105
4106 h = *sym_hash;
4107 while (h->root.type == bfd_link_hash_indirect
4108 || h->root.type == bfd_link_hash_warning)
4109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4110
4111 if (elf_tdata (abfd)->verdef != NULL
4112 && vernum > 1
4113 && definition)
4114 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4115 }
4116
4117 if (! (_bfd_generic_link_add_one_symbol
4118 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4119 (struct bfd_link_hash_entry **) sym_hash)))
4120 goto error_free_vers;
4121
4122 h = *sym_hash;
4123 /* We need to make sure that indirect symbol dynamic flags are
4124 updated. */
4125 hi = h;
4126 while (h->root.type == bfd_link_hash_indirect
4127 || h->root.type == bfd_link_hash_warning)
4128 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4129
4130 *sym_hash = h;
4131
4132 new_weak = (flags & BSF_WEAK) != 0;
4133 new_weakdef = FALSE;
4134 if (dynamic
4135 && definition
4136 && new_weak
4137 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4138 && is_elf_hash_table (htab)
4139 && h->u.weakdef == NULL)
4140 {
4141 /* Keep a list of all weak defined non function symbols from
4142 a dynamic object, using the weakdef field. Later in this
4143 function we will set the weakdef field to the correct
4144 value. We only put non-function symbols from dynamic
4145 objects on this list, because that happens to be the only
4146 time we need to know the normal symbol corresponding to a
4147 weak symbol, and the information is time consuming to
4148 figure out. If the weakdef field is not already NULL,
4149 then this symbol was already defined by some previous
4150 dynamic object, and we will be using that previous
4151 definition anyhow. */
4152
4153 h->u.weakdef = weaks;
4154 weaks = h;
4155 new_weakdef = TRUE;
4156 }
4157
4158 /* Set the alignment of a common symbol. */
4159 if ((common || bfd_is_com_section (sec))
4160 && h->root.type == bfd_link_hash_common)
4161 {
4162 unsigned int align;
4163
4164 if (common)
4165 align = bfd_log2 (isym->st_value);
4166 else
4167 {
4168 /* The new symbol is a common symbol in a shared object.
4169 We need to get the alignment from the section. */
4170 align = new_sec->alignment_power;
4171 }
4172 if (align > old_alignment)
4173 h->root.u.c.p->alignment_power = align;
4174 else
4175 h->root.u.c.p->alignment_power = old_alignment;
4176 }
4177
4178 if (is_elf_hash_table (htab))
4179 {
4180 /* Set a flag in the hash table entry indicating the type of
4181 reference or definition we just found. A dynamic symbol
4182 is one which is referenced or defined by both a regular
4183 object and a shared object. */
4184 bfd_boolean dynsym = FALSE;
4185
4186 /* Plugin symbols aren't normal. Don't set def_regular or
4187 ref_regular for them, or make them dynamic. */
4188 if ((abfd->flags & BFD_PLUGIN) != 0)
4189 ;
4190 else if (! dynamic)
4191 {
4192 if (! definition)
4193 {
4194 h->ref_regular = 1;
4195 if (bind != STB_WEAK)
4196 h->ref_regular_nonweak = 1;
4197 }
4198 else
4199 {
4200 h->def_regular = 1;
4201 if (h->def_dynamic)
4202 {
4203 h->def_dynamic = 0;
4204 h->ref_dynamic = 1;
4205 }
4206 }
4207
4208 /* If the indirect symbol has been forced local, don't
4209 make the real symbol dynamic. */
4210 if ((h == hi || !hi->forced_local)
4211 && (! info->executable
4212 || h->def_dynamic
4213 || h->ref_dynamic))
4214 dynsym = TRUE;
4215 }
4216 else
4217 {
4218 if (! definition)
4219 {
4220 h->ref_dynamic = 1;
4221 hi->ref_dynamic = 1;
4222 }
4223 else
4224 {
4225 h->def_dynamic = 1;
4226 hi->def_dynamic = 1;
4227 }
4228
4229 /* If the indirect symbol has been forced local, don't
4230 make the real symbol dynamic. */
4231 if ((h == hi || !hi->forced_local)
4232 && (h->def_regular
4233 || h->ref_regular
4234 || (h->u.weakdef != NULL
4235 && ! new_weakdef
4236 && h->u.weakdef->dynindx != -1)))
4237 dynsym = TRUE;
4238 }
4239
4240 /* Check to see if we need to add an indirect symbol for
4241 the default name. */
4242 if (definition
4243 || (!override && h->root.type == bfd_link_hash_common))
4244 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4245 sec, value, &old_bfd, &dynsym))
4246 goto error_free_vers;
4247
4248 /* Check the alignment when a common symbol is involved. This
4249 can change when a common symbol is overridden by a normal
4250 definition or a common symbol is ignored due to the old
4251 normal definition. We need to make sure the maximum
4252 alignment is maintained. */
4253 if ((old_alignment || common)
4254 && h->root.type != bfd_link_hash_common)
4255 {
4256 unsigned int common_align;
4257 unsigned int normal_align;
4258 unsigned int symbol_align;
4259 bfd *normal_bfd;
4260 bfd *common_bfd;
4261
4262 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4263 || h->root.type == bfd_link_hash_defweak);
4264
4265 symbol_align = ffs (h->root.u.def.value) - 1;
4266 if (h->root.u.def.section->owner != NULL
4267 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4268 {
4269 normal_align = h->root.u.def.section->alignment_power;
4270 if (normal_align > symbol_align)
4271 normal_align = symbol_align;
4272 }
4273 else
4274 normal_align = symbol_align;
4275
4276 if (old_alignment)
4277 {
4278 common_align = old_alignment;
4279 common_bfd = old_bfd;
4280 normal_bfd = abfd;
4281 }
4282 else
4283 {
4284 common_align = bfd_log2 (isym->st_value);
4285 common_bfd = abfd;
4286 normal_bfd = old_bfd;
4287 }
4288
4289 if (normal_align < common_align)
4290 {
4291 /* PR binutils/2735 */
4292 if (normal_bfd == NULL)
4293 (*_bfd_error_handler)
4294 (_("Warning: alignment %u of common symbol `%s' in %B is"
4295 " greater than the alignment (%u) of its section %A"),
4296 common_bfd, h->root.u.def.section,
4297 1 << common_align, name, 1 << normal_align);
4298 else
4299 (*_bfd_error_handler)
4300 (_("Warning: alignment %u of symbol `%s' in %B"
4301 " is smaller than %u in %B"),
4302 normal_bfd, common_bfd,
4303 1 << normal_align, name, 1 << common_align);
4304 }
4305 }
4306
4307 /* Remember the symbol size if it isn't undefined. */
4308 if (isym->st_size != 0
4309 && isym->st_shndx != SHN_UNDEF
4310 && (definition || h->size == 0))
4311 {
4312 if (h->size != 0
4313 && h->size != isym->st_size
4314 && ! size_change_ok)
4315 (*_bfd_error_handler)
4316 (_("Warning: size of symbol `%s' changed"
4317 " from %lu in %B to %lu in %B"),
4318 old_bfd, abfd,
4319 name, (unsigned long) h->size,
4320 (unsigned long) isym->st_size);
4321
4322 h->size = isym->st_size;
4323 }
4324
4325 /* If this is a common symbol, then we always want H->SIZE
4326 to be the size of the common symbol. The code just above
4327 won't fix the size if a common symbol becomes larger. We
4328 don't warn about a size change here, because that is
4329 covered by --warn-common. Allow changes between different
4330 function types. */
4331 if (h->root.type == bfd_link_hash_common)
4332 h->size = h->root.u.c.size;
4333
4334 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4335 && ((definition && !new_weak)
4336 || (old_weak && h->root.type == bfd_link_hash_common)
4337 || h->type == STT_NOTYPE))
4338 {
4339 unsigned int type = ELF_ST_TYPE (isym->st_info);
4340
4341 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4342 symbol. */
4343 if (type == STT_GNU_IFUNC
4344 && (abfd->flags & DYNAMIC) != 0)
4345 type = STT_FUNC;
4346
4347 if (h->type != type)
4348 {
4349 if (h->type != STT_NOTYPE && ! type_change_ok)
4350 (*_bfd_error_handler)
4351 (_("Warning: type of symbol `%s' changed"
4352 " from %d to %d in %B"),
4353 abfd, name, h->type, type);
4354
4355 h->type = type;
4356 }
4357 }
4358
4359 /* Merge st_other field. */
4360 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4361
4362 /* We don't want to make debug symbol dynamic. */
4363 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4364 dynsym = FALSE;
4365
4366 /* Nor should we make plugin symbols dynamic. */
4367 if ((abfd->flags & BFD_PLUGIN) != 0)
4368 dynsym = FALSE;
4369
4370 if (definition)
4371 {
4372 h->target_internal = isym->st_target_internal;
4373 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4374 }
4375
4376 if (definition && !dynamic)
4377 {
4378 char *p = strchr (name, ELF_VER_CHR);
4379 if (p != NULL && p[1] != ELF_VER_CHR)
4380 {
4381 /* Queue non-default versions so that .symver x, x@FOO
4382 aliases can be checked. */
4383 if (!nondeflt_vers)
4384 {
4385 amt = ((isymend - isym + 1)
4386 * sizeof (struct elf_link_hash_entry *));
4387 nondeflt_vers
4388 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4389 if (!nondeflt_vers)
4390 goto error_free_vers;
4391 }
4392 nondeflt_vers[nondeflt_vers_cnt++] = h;
4393 }
4394 }
4395
4396 if (dynsym && h->dynindx == -1)
4397 {
4398 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4399 goto error_free_vers;
4400 if (h->u.weakdef != NULL
4401 && ! new_weakdef
4402 && h->u.weakdef->dynindx == -1)
4403 {
4404 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4405 goto error_free_vers;
4406 }
4407 }
4408 else if (dynsym && h->dynindx != -1)
4409 /* If the symbol already has a dynamic index, but
4410 visibility says it should not be visible, turn it into
4411 a local symbol. */
4412 switch (ELF_ST_VISIBILITY (h->other))
4413 {
4414 case STV_INTERNAL:
4415 case STV_HIDDEN:
4416 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4417 dynsym = FALSE;
4418 break;
4419 }
4420
4421 /* Don't add DT_NEEDED for references from the dummy bfd. */
4422 if (!add_needed
4423 && definition
4424 && ((dynsym
4425 && h->ref_regular_nonweak
4426 && (old_bfd == NULL
4427 || (old_bfd->flags & BFD_PLUGIN) == 0))
4428 || (h->ref_dynamic_nonweak
4429 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4430 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4431 {
4432 int ret;
4433 const char *soname = elf_dt_name (abfd);
4434
4435 info->callbacks->minfo ("%!", soname, old_bfd,
4436 h->root.root.string);
4437
4438 /* A symbol from a library loaded via DT_NEEDED of some
4439 other library is referenced by a regular object.
4440 Add a DT_NEEDED entry for it. Issue an error if
4441 --no-add-needed is used and the reference was not
4442 a weak one. */
4443 if (old_bfd != NULL
4444 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4445 {
4446 (*_bfd_error_handler)
4447 (_("%B: undefined reference to symbol '%s'"),
4448 old_bfd, name);
4449 bfd_set_error (bfd_error_missing_dso);
4450 goto error_free_vers;
4451 }
4452
4453 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4454 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4455
4456 add_needed = TRUE;
4457 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4458 if (ret < 0)
4459 goto error_free_vers;
4460
4461 BFD_ASSERT (ret == 0);
4462 }
4463 }
4464 }
4465
4466 if (extversym != NULL)
4467 {
4468 free (extversym);
4469 extversym = NULL;
4470 }
4471
4472 if (isymbuf != NULL)
4473 {
4474 free (isymbuf);
4475 isymbuf = NULL;
4476 }
4477
4478 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4479 {
4480 unsigned int i;
4481
4482 /* Restore the symbol table. */
4483 old_ent = (char *) old_tab + tabsize;
4484 memset (elf_sym_hashes (abfd), 0,
4485 extsymcount * sizeof (struct elf_link_hash_entry *));
4486 htab->root.table.table = old_table;
4487 htab->root.table.size = old_size;
4488 htab->root.table.count = old_count;
4489 memcpy (htab->root.table.table, old_tab, tabsize);
4490 htab->root.undefs = old_undefs;
4491 htab->root.undefs_tail = old_undefs_tail;
4492 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4493 for (i = 0; i < htab->root.table.size; i++)
4494 {
4495 struct bfd_hash_entry *p;
4496 struct elf_link_hash_entry *h;
4497 bfd_size_type size;
4498 unsigned int alignment_power;
4499
4500 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4501 {
4502 h = (struct elf_link_hash_entry *) p;
4503 if (h->root.type == bfd_link_hash_warning)
4504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4505 if (h->dynindx >= old_dynsymcount
4506 && h->dynstr_index < old_dynstr_size)
4507 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4508
4509 /* Preserve the maximum alignment and size for common
4510 symbols even if this dynamic lib isn't on DT_NEEDED
4511 since it can still be loaded at run time by another
4512 dynamic lib. */
4513 if (h->root.type == bfd_link_hash_common)
4514 {
4515 size = h->root.u.c.size;
4516 alignment_power = h->root.u.c.p->alignment_power;
4517 }
4518 else
4519 {
4520 size = 0;
4521 alignment_power = 0;
4522 }
4523 memcpy (p, old_ent, htab->root.table.entsize);
4524 old_ent = (char *) old_ent + htab->root.table.entsize;
4525 h = (struct elf_link_hash_entry *) p;
4526 if (h->root.type == bfd_link_hash_warning)
4527 {
4528 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4529 old_ent = (char *) old_ent + htab->root.table.entsize;
4530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4531 }
4532 if (h->root.type == bfd_link_hash_common)
4533 {
4534 if (size > h->root.u.c.size)
4535 h->root.u.c.size = size;
4536 if (alignment_power > h->root.u.c.p->alignment_power)
4537 h->root.u.c.p->alignment_power = alignment_power;
4538 }
4539 }
4540 }
4541
4542 /* Make a special call to the linker "notice" function to
4543 tell it that symbols added for crefs may need to be removed. */
4544 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4545 goto error_free_vers;
4546
4547 free (old_tab);
4548 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4549 alloc_mark);
4550 if (nondeflt_vers != NULL)
4551 free (nondeflt_vers);
4552 return TRUE;
4553 }
4554
4555 if (old_tab != NULL)
4556 {
4557 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4558 goto error_free_vers;
4559 free (old_tab);
4560 old_tab = NULL;
4561 }
4562
4563 /* Now that all the symbols from this input file are created, handle
4564 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4565 if (nondeflt_vers != NULL)
4566 {
4567 bfd_size_type cnt, symidx;
4568
4569 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4570 {
4571 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4572 char *shortname, *p;
4573
4574 p = strchr (h->root.root.string, ELF_VER_CHR);
4575 if (p == NULL
4576 || (h->root.type != bfd_link_hash_defined
4577 && h->root.type != bfd_link_hash_defweak))
4578 continue;
4579
4580 amt = p - h->root.root.string;
4581 shortname = (char *) bfd_malloc (amt + 1);
4582 if (!shortname)
4583 goto error_free_vers;
4584 memcpy (shortname, h->root.root.string, amt);
4585 shortname[amt] = '\0';
4586
4587 hi = (struct elf_link_hash_entry *)
4588 bfd_link_hash_lookup (&htab->root, shortname,
4589 FALSE, FALSE, FALSE);
4590 if (hi != NULL
4591 && hi->root.type == h->root.type
4592 && hi->root.u.def.value == h->root.u.def.value
4593 && hi->root.u.def.section == h->root.u.def.section)
4594 {
4595 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4596 hi->root.type = bfd_link_hash_indirect;
4597 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4598 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4599 sym_hash = elf_sym_hashes (abfd);
4600 if (sym_hash)
4601 for (symidx = 0; symidx < extsymcount; ++symidx)
4602 if (sym_hash[symidx] == hi)
4603 {
4604 sym_hash[symidx] = h;
4605 break;
4606 }
4607 }
4608 free (shortname);
4609 }
4610 free (nondeflt_vers);
4611 nondeflt_vers = NULL;
4612 }
4613
4614 /* Now set the weakdefs field correctly for all the weak defined
4615 symbols we found. The only way to do this is to search all the
4616 symbols. Since we only need the information for non functions in
4617 dynamic objects, that's the only time we actually put anything on
4618 the list WEAKS. We need this information so that if a regular
4619 object refers to a symbol defined weakly in a dynamic object, the
4620 real symbol in the dynamic object is also put in the dynamic
4621 symbols; we also must arrange for both symbols to point to the
4622 same memory location. We could handle the general case of symbol
4623 aliasing, but a general symbol alias can only be generated in
4624 assembler code, handling it correctly would be very time
4625 consuming, and other ELF linkers don't handle general aliasing
4626 either. */
4627 if (weaks != NULL)
4628 {
4629 struct elf_link_hash_entry **hpp;
4630 struct elf_link_hash_entry **hppend;
4631 struct elf_link_hash_entry **sorted_sym_hash;
4632 struct elf_link_hash_entry *h;
4633 size_t sym_count;
4634
4635 /* Since we have to search the whole symbol list for each weak
4636 defined symbol, search time for N weak defined symbols will be
4637 O(N^2). Binary search will cut it down to O(NlogN). */
4638 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4639 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4640 if (sorted_sym_hash == NULL)
4641 goto error_return;
4642 sym_hash = sorted_sym_hash;
4643 hpp = elf_sym_hashes (abfd);
4644 hppend = hpp + extsymcount;
4645 sym_count = 0;
4646 for (; hpp < hppend; hpp++)
4647 {
4648 h = *hpp;
4649 if (h != NULL
4650 && h->root.type == bfd_link_hash_defined
4651 && !bed->is_function_type (h->type))
4652 {
4653 *sym_hash = h;
4654 sym_hash++;
4655 sym_count++;
4656 }
4657 }
4658
4659 qsort (sorted_sym_hash, sym_count,
4660 sizeof (struct elf_link_hash_entry *),
4661 elf_sort_symbol);
4662
4663 while (weaks != NULL)
4664 {
4665 struct elf_link_hash_entry *hlook;
4666 asection *slook;
4667 bfd_vma vlook;
4668 size_t i, j, idx = 0;
4669
4670 hlook = weaks;
4671 weaks = hlook->u.weakdef;
4672 hlook->u.weakdef = NULL;
4673
4674 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4675 || hlook->root.type == bfd_link_hash_defweak
4676 || hlook->root.type == bfd_link_hash_common
4677 || hlook->root.type == bfd_link_hash_indirect);
4678 slook = hlook->root.u.def.section;
4679 vlook = hlook->root.u.def.value;
4680
4681 i = 0;
4682 j = sym_count;
4683 while (i != j)
4684 {
4685 bfd_signed_vma vdiff;
4686 idx = (i + j) / 2;
4687 h = sorted_sym_hash[idx];
4688 vdiff = vlook - h->root.u.def.value;
4689 if (vdiff < 0)
4690 j = idx;
4691 else if (vdiff > 0)
4692 i = idx + 1;
4693 else
4694 {
4695 long sdiff = slook->id - h->root.u.def.section->id;
4696 if (sdiff < 0)
4697 j = idx;
4698 else if (sdiff > 0)
4699 i = idx + 1;
4700 else
4701 break;
4702 }
4703 }
4704
4705 /* We didn't find a value/section match. */
4706 if (i == j)
4707 continue;
4708
4709 /* With multiple aliases, or when the weak symbol is already
4710 strongly defined, we have multiple matching symbols and
4711 the binary search above may land on any of them. Step
4712 one past the matching symbol(s). */
4713 while (++idx != j)
4714 {
4715 h = sorted_sym_hash[idx];
4716 if (h->root.u.def.section != slook
4717 || h->root.u.def.value != vlook)
4718 break;
4719 }
4720
4721 /* Now look back over the aliases. Since we sorted by size
4722 as well as value and section, we'll choose the one with
4723 the largest size. */
4724 while (idx-- != i)
4725 {
4726 h = sorted_sym_hash[idx];
4727
4728 /* Stop if value or section doesn't match. */
4729 if (h->root.u.def.section != slook
4730 || h->root.u.def.value != vlook)
4731 break;
4732 else if (h != hlook)
4733 {
4734 hlook->u.weakdef = h;
4735
4736 /* If the weak definition is in the list of dynamic
4737 symbols, make sure the real definition is put
4738 there as well. */
4739 if (hlook->dynindx != -1 && h->dynindx == -1)
4740 {
4741 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4742 {
4743 err_free_sym_hash:
4744 free (sorted_sym_hash);
4745 goto error_return;
4746 }
4747 }
4748
4749 /* If the real definition is in the list of dynamic
4750 symbols, make sure the weak definition is put
4751 there as well. If we don't do this, then the
4752 dynamic loader might not merge the entries for the
4753 real definition and the weak definition. */
4754 if (h->dynindx != -1 && hlook->dynindx == -1)
4755 {
4756 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4757 goto err_free_sym_hash;
4758 }
4759 break;
4760 }
4761 }
4762 }
4763
4764 free (sorted_sym_hash);
4765 }
4766
4767 if (bed->check_directives
4768 && !(*bed->check_directives) (abfd, info))
4769 return FALSE;
4770
4771 /* If this object is the same format as the output object, and it is
4772 not a shared library, then let the backend look through the
4773 relocs.
4774
4775 This is required to build global offset table entries and to
4776 arrange for dynamic relocs. It is not required for the
4777 particular common case of linking non PIC code, even when linking
4778 against shared libraries, but unfortunately there is no way of
4779 knowing whether an object file has been compiled PIC or not.
4780 Looking through the relocs is not particularly time consuming.
4781 The problem is that we must either (1) keep the relocs in memory,
4782 which causes the linker to require additional runtime memory or
4783 (2) read the relocs twice from the input file, which wastes time.
4784 This would be a good case for using mmap.
4785
4786 I have no idea how to handle linking PIC code into a file of a
4787 different format. It probably can't be done. */
4788 if (! dynamic
4789 && is_elf_hash_table (htab)
4790 && bed->check_relocs != NULL
4791 && elf_object_id (abfd) == elf_hash_table_id (htab)
4792 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4793 {
4794 asection *o;
4795
4796 for (o = abfd->sections; o != NULL; o = o->next)
4797 {
4798 Elf_Internal_Rela *internal_relocs;
4799 bfd_boolean ok;
4800
4801 if ((o->flags & SEC_RELOC) == 0
4802 || o->reloc_count == 0
4803 || ((info->strip == strip_all || info->strip == strip_debugger)
4804 && (o->flags & SEC_DEBUGGING) != 0)
4805 || bfd_is_abs_section (o->output_section))
4806 continue;
4807
4808 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4809 info->keep_memory);
4810 if (internal_relocs == NULL)
4811 goto error_return;
4812
4813 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4814
4815 if (elf_section_data (o)->relocs != internal_relocs)
4816 free (internal_relocs);
4817
4818 if (! ok)
4819 goto error_return;
4820 }
4821 }
4822
4823 /* If this is a non-traditional link, try to optimize the handling
4824 of the .stab/.stabstr sections. */
4825 if (! dynamic
4826 && ! info->traditional_format
4827 && is_elf_hash_table (htab)
4828 && (info->strip != strip_all && info->strip != strip_debugger))
4829 {
4830 asection *stabstr;
4831
4832 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4833 if (stabstr != NULL)
4834 {
4835 bfd_size_type string_offset = 0;
4836 asection *stab;
4837
4838 for (stab = abfd->sections; stab; stab = stab->next)
4839 if (CONST_STRNEQ (stab->name, ".stab")
4840 && (!stab->name[5] ||
4841 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4842 && (stab->flags & SEC_MERGE) == 0
4843 && !bfd_is_abs_section (stab->output_section))
4844 {
4845 struct bfd_elf_section_data *secdata;
4846
4847 secdata = elf_section_data (stab);
4848 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4849 stabstr, &secdata->sec_info,
4850 &string_offset))
4851 goto error_return;
4852 if (secdata->sec_info)
4853 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4854 }
4855 }
4856 }
4857
4858 if (is_elf_hash_table (htab) && add_needed)
4859 {
4860 /* Add this bfd to the loaded list. */
4861 struct elf_link_loaded_list *n;
4862
4863 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4864 if (n == NULL)
4865 goto error_return;
4866 n->abfd = abfd;
4867 n->next = htab->loaded;
4868 htab->loaded = n;
4869 }
4870
4871 return TRUE;
4872
4873 error_free_vers:
4874 if (old_tab != NULL)
4875 free (old_tab);
4876 if (nondeflt_vers != NULL)
4877 free (nondeflt_vers);
4878 if (extversym != NULL)
4879 free (extversym);
4880 error_free_sym:
4881 if (isymbuf != NULL)
4882 free (isymbuf);
4883 error_return:
4884 return FALSE;
4885 }
4886
4887 /* Return the linker hash table entry of a symbol that might be
4888 satisfied by an archive symbol. Return -1 on error. */
4889
4890 struct elf_link_hash_entry *
4891 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4892 struct bfd_link_info *info,
4893 const char *name)
4894 {
4895 struct elf_link_hash_entry *h;
4896 char *p, *copy;
4897 size_t len, first;
4898
4899 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4900 if (h != NULL)
4901 return h;
4902
4903 /* If this is a default version (the name contains @@), look up the
4904 symbol again with only one `@' as well as without the version.
4905 The effect is that references to the symbol with and without the
4906 version will be matched by the default symbol in the archive. */
4907
4908 p = strchr (name, ELF_VER_CHR);
4909 if (p == NULL || p[1] != ELF_VER_CHR)
4910 return h;
4911
4912 /* First check with only one `@'. */
4913 len = strlen (name);
4914 copy = (char *) bfd_alloc (abfd, len);
4915 if (copy == NULL)
4916 return (struct elf_link_hash_entry *) 0 - 1;
4917
4918 first = p - name + 1;
4919 memcpy (copy, name, first);
4920 memcpy (copy + first, name + first + 1, len - first);
4921
4922 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4923 if (h == NULL)
4924 {
4925 /* We also need to check references to the symbol without the
4926 version. */
4927 copy[first - 1] = '\0';
4928 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4929 FALSE, FALSE, TRUE);
4930 }
4931
4932 bfd_release (abfd, copy);
4933 return h;
4934 }
4935
4936 /* Add symbols from an ELF archive file to the linker hash table. We
4937 don't use _bfd_generic_link_add_archive_symbols because we need to
4938 handle versioned symbols.
4939
4940 Fortunately, ELF archive handling is simpler than that done by
4941 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4942 oddities. In ELF, if we find a symbol in the archive map, and the
4943 symbol is currently undefined, we know that we must pull in that
4944 object file.
4945
4946 Unfortunately, we do have to make multiple passes over the symbol
4947 table until nothing further is resolved. */
4948
4949 static bfd_boolean
4950 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4951 {
4952 symindex c;
4953 unsigned char *included = NULL;
4954 carsym *symdefs;
4955 bfd_boolean loop;
4956 bfd_size_type amt;
4957 const struct elf_backend_data *bed;
4958 struct elf_link_hash_entry * (*archive_symbol_lookup)
4959 (bfd *, struct bfd_link_info *, const char *);
4960
4961 if (! bfd_has_map (abfd))
4962 {
4963 /* An empty archive is a special case. */
4964 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4965 return TRUE;
4966 bfd_set_error (bfd_error_no_armap);
4967 return FALSE;
4968 }
4969
4970 /* Keep track of all symbols we know to be already defined, and all
4971 files we know to be already included. This is to speed up the
4972 second and subsequent passes. */
4973 c = bfd_ardata (abfd)->symdef_count;
4974 if (c == 0)
4975 return TRUE;
4976 amt = c;
4977 amt *= sizeof (*included);
4978 included = (unsigned char *) bfd_zmalloc (amt);
4979 if (included == NULL)
4980 return FALSE;
4981
4982 symdefs = bfd_ardata (abfd)->symdefs;
4983 bed = get_elf_backend_data (abfd);
4984 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4985
4986 do
4987 {
4988 file_ptr last;
4989 symindex i;
4990 carsym *symdef;
4991 carsym *symdefend;
4992
4993 loop = FALSE;
4994 last = -1;
4995
4996 symdef = symdefs;
4997 symdefend = symdef + c;
4998 for (i = 0; symdef < symdefend; symdef++, i++)
4999 {
5000 struct elf_link_hash_entry *h;
5001 bfd *element;
5002 struct bfd_link_hash_entry *undefs_tail;
5003 symindex mark;
5004
5005 if (included[i])
5006 continue;
5007 if (symdef->file_offset == last)
5008 {
5009 included[i] = TRUE;
5010 continue;
5011 }
5012
5013 h = archive_symbol_lookup (abfd, info, symdef->name);
5014 if (h == (struct elf_link_hash_entry *) 0 - 1)
5015 goto error_return;
5016
5017 if (h == NULL)
5018 continue;
5019
5020 if (h->root.type == bfd_link_hash_common)
5021 {
5022 /* We currently have a common symbol. The archive map contains
5023 a reference to this symbol, so we may want to include it. We
5024 only want to include it however, if this archive element
5025 contains a definition of the symbol, not just another common
5026 declaration of it.
5027
5028 Unfortunately some archivers (including GNU ar) will put
5029 declarations of common symbols into their archive maps, as
5030 well as real definitions, so we cannot just go by the archive
5031 map alone. Instead we must read in the element's symbol
5032 table and check that to see what kind of symbol definition
5033 this is. */
5034 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5035 continue;
5036 }
5037 else if (h->root.type != bfd_link_hash_undefined)
5038 {
5039 if (h->root.type != bfd_link_hash_undefweak)
5040 /* Symbol must be defined. Don't check it again. */
5041 included[i] = TRUE;
5042 continue;
5043 }
5044
5045 /* We need to include this archive member. */
5046 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5047 if (element == NULL)
5048 goto error_return;
5049
5050 if (! bfd_check_format (element, bfd_object))
5051 goto error_return;
5052
5053 undefs_tail = info->hash->undefs_tail;
5054
5055 if (!(*info->callbacks
5056 ->add_archive_element) (info, element, symdef->name, &element))
5057 goto error_return;
5058 if (!bfd_link_add_symbols (element, info))
5059 goto error_return;
5060
5061 /* If there are any new undefined symbols, we need to make
5062 another pass through the archive in order to see whether
5063 they can be defined. FIXME: This isn't perfect, because
5064 common symbols wind up on undefs_tail and because an
5065 undefined symbol which is defined later on in this pass
5066 does not require another pass. This isn't a bug, but it
5067 does make the code less efficient than it could be. */
5068 if (undefs_tail != info->hash->undefs_tail)
5069 loop = TRUE;
5070
5071 /* Look backward to mark all symbols from this object file
5072 which we have already seen in this pass. */
5073 mark = i;
5074 do
5075 {
5076 included[mark] = TRUE;
5077 if (mark == 0)
5078 break;
5079 --mark;
5080 }
5081 while (symdefs[mark].file_offset == symdef->file_offset);
5082
5083 /* We mark subsequent symbols from this object file as we go
5084 on through the loop. */
5085 last = symdef->file_offset;
5086 }
5087 }
5088 while (loop);
5089
5090 free (included);
5091
5092 return TRUE;
5093
5094 error_return:
5095 if (included != NULL)
5096 free (included);
5097 return FALSE;
5098 }
5099
5100 /* Given an ELF BFD, add symbols to the global hash table as
5101 appropriate. */
5102
5103 bfd_boolean
5104 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5105 {
5106 switch (bfd_get_format (abfd))
5107 {
5108 case bfd_object:
5109 return elf_link_add_object_symbols (abfd, info);
5110 case bfd_archive:
5111 return elf_link_add_archive_symbols (abfd, info);
5112 default:
5113 bfd_set_error (bfd_error_wrong_format);
5114 return FALSE;
5115 }
5116 }
5117 \f
5118 struct hash_codes_info
5119 {
5120 unsigned long *hashcodes;
5121 bfd_boolean error;
5122 };
5123
5124 /* This function will be called though elf_link_hash_traverse to store
5125 all hash value of the exported symbols in an array. */
5126
5127 static bfd_boolean
5128 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5129 {
5130 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5131 const char *name;
5132 char *p;
5133 unsigned long ha;
5134 char *alc = NULL;
5135
5136 /* Ignore indirect symbols. These are added by the versioning code. */
5137 if (h->dynindx == -1)
5138 return TRUE;
5139
5140 name = h->root.root.string;
5141 p = strchr (name, ELF_VER_CHR);
5142 if (p != NULL)
5143 {
5144 alc = (char *) bfd_malloc (p - name + 1);
5145 if (alc == NULL)
5146 {
5147 inf->error = TRUE;
5148 return FALSE;
5149 }
5150 memcpy (alc, name, p - name);
5151 alc[p - name] = '\0';
5152 name = alc;
5153 }
5154
5155 /* Compute the hash value. */
5156 ha = bfd_elf_hash (name);
5157
5158 /* Store the found hash value in the array given as the argument. */
5159 *(inf->hashcodes)++ = ha;
5160
5161 /* And store it in the struct so that we can put it in the hash table
5162 later. */
5163 h->u.elf_hash_value = ha;
5164
5165 if (alc != NULL)
5166 free (alc);
5167
5168 return TRUE;
5169 }
5170
5171 struct collect_gnu_hash_codes
5172 {
5173 bfd *output_bfd;
5174 const struct elf_backend_data *bed;
5175 unsigned long int nsyms;
5176 unsigned long int maskbits;
5177 unsigned long int *hashcodes;
5178 unsigned long int *hashval;
5179 unsigned long int *indx;
5180 unsigned long int *counts;
5181 bfd_vma *bitmask;
5182 bfd_byte *contents;
5183 long int min_dynindx;
5184 unsigned long int bucketcount;
5185 unsigned long int symindx;
5186 long int local_indx;
5187 long int shift1, shift2;
5188 unsigned long int mask;
5189 bfd_boolean error;
5190 };
5191
5192 /* This function will be called though elf_link_hash_traverse to store
5193 all hash value of the exported symbols in an array. */
5194
5195 static bfd_boolean
5196 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5197 {
5198 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5199 const char *name;
5200 char *p;
5201 unsigned long ha;
5202 char *alc = NULL;
5203
5204 /* Ignore indirect symbols. These are added by the versioning code. */
5205 if (h->dynindx == -1)
5206 return TRUE;
5207
5208 /* Ignore also local symbols and undefined symbols. */
5209 if (! (*s->bed->elf_hash_symbol) (h))
5210 return TRUE;
5211
5212 name = h->root.root.string;
5213 p = strchr (name, ELF_VER_CHR);
5214 if (p != NULL)
5215 {
5216 alc = (char *) bfd_malloc (p - name + 1);
5217 if (alc == NULL)
5218 {
5219 s->error = TRUE;
5220 return FALSE;
5221 }
5222 memcpy (alc, name, p - name);
5223 alc[p - name] = '\0';
5224 name = alc;
5225 }
5226
5227 /* Compute the hash value. */
5228 ha = bfd_elf_gnu_hash (name);
5229
5230 /* Store the found hash value in the array for compute_bucket_count,
5231 and also for .dynsym reordering purposes. */
5232 s->hashcodes[s->nsyms] = ha;
5233 s->hashval[h->dynindx] = ha;
5234 ++s->nsyms;
5235 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5236 s->min_dynindx = h->dynindx;
5237
5238 if (alc != NULL)
5239 free (alc);
5240
5241 return TRUE;
5242 }
5243
5244 /* This function will be called though elf_link_hash_traverse to do
5245 final dynaminc symbol renumbering. */
5246
5247 static bfd_boolean
5248 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5249 {
5250 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5251 unsigned long int bucket;
5252 unsigned long int val;
5253
5254 /* Ignore indirect symbols. */
5255 if (h->dynindx == -1)
5256 return TRUE;
5257
5258 /* Ignore also local symbols and undefined symbols. */
5259 if (! (*s->bed->elf_hash_symbol) (h))
5260 {
5261 if (h->dynindx >= s->min_dynindx)
5262 h->dynindx = s->local_indx++;
5263 return TRUE;
5264 }
5265
5266 bucket = s->hashval[h->dynindx] % s->bucketcount;
5267 val = (s->hashval[h->dynindx] >> s->shift1)
5268 & ((s->maskbits >> s->shift1) - 1);
5269 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5270 s->bitmask[val]
5271 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5272 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5273 if (s->counts[bucket] == 1)
5274 /* Last element terminates the chain. */
5275 val |= 1;
5276 bfd_put_32 (s->output_bfd, val,
5277 s->contents + (s->indx[bucket] - s->symindx) * 4);
5278 --s->counts[bucket];
5279 h->dynindx = s->indx[bucket]++;
5280 return TRUE;
5281 }
5282
5283 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5284
5285 bfd_boolean
5286 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5287 {
5288 return !(h->forced_local
5289 || h->root.type == bfd_link_hash_undefined
5290 || h->root.type == bfd_link_hash_undefweak
5291 || ((h->root.type == bfd_link_hash_defined
5292 || h->root.type == bfd_link_hash_defweak)
5293 && h->root.u.def.section->output_section == NULL));
5294 }
5295
5296 /* Array used to determine the number of hash table buckets to use
5297 based on the number of symbols there are. If there are fewer than
5298 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5299 fewer than 37 we use 17 buckets, and so forth. We never use more
5300 than 32771 buckets. */
5301
5302 static const size_t elf_buckets[] =
5303 {
5304 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5305 16411, 32771, 0
5306 };
5307
5308 /* Compute bucket count for hashing table. We do not use a static set
5309 of possible tables sizes anymore. Instead we determine for all
5310 possible reasonable sizes of the table the outcome (i.e., the
5311 number of collisions etc) and choose the best solution. The
5312 weighting functions are not too simple to allow the table to grow
5313 without bounds. Instead one of the weighting factors is the size.
5314 Therefore the result is always a good payoff between few collisions
5315 (= short chain lengths) and table size. */
5316 static size_t
5317 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5318 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5319 unsigned long int nsyms,
5320 int gnu_hash)
5321 {
5322 size_t best_size = 0;
5323 unsigned long int i;
5324
5325 /* We have a problem here. The following code to optimize the table
5326 size requires an integer type with more the 32 bits. If
5327 BFD_HOST_U_64_BIT is set we know about such a type. */
5328 #ifdef BFD_HOST_U_64_BIT
5329 if (info->optimize)
5330 {
5331 size_t minsize;
5332 size_t maxsize;
5333 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5334 bfd *dynobj = elf_hash_table (info)->dynobj;
5335 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5336 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5337 unsigned long int *counts;
5338 bfd_size_type amt;
5339 unsigned int no_improvement_count = 0;
5340
5341 /* Possible optimization parameters: if we have NSYMS symbols we say
5342 that the hashing table must at least have NSYMS/4 and at most
5343 2*NSYMS buckets. */
5344 minsize = nsyms / 4;
5345 if (minsize == 0)
5346 minsize = 1;
5347 best_size = maxsize = nsyms * 2;
5348 if (gnu_hash)
5349 {
5350 if (minsize < 2)
5351 minsize = 2;
5352 if ((best_size & 31) == 0)
5353 ++best_size;
5354 }
5355
5356 /* Create array where we count the collisions in. We must use bfd_malloc
5357 since the size could be large. */
5358 amt = maxsize;
5359 amt *= sizeof (unsigned long int);
5360 counts = (unsigned long int *) bfd_malloc (amt);
5361 if (counts == NULL)
5362 return 0;
5363
5364 /* Compute the "optimal" size for the hash table. The criteria is a
5365 minimal chain length. The minor criteria is (of course) the size
5366 of the table. */
5367 for (i = minsize; i < maxsize; ++i)
5368 {
5369 /* Walk through the array of hashcodes and count the collisions. */
5370 BFD_HOST_U_64_BIT max;
5371 unsigned long int j;
5372 unsigned long int fact;
5373
5374 if (gnu_hash && (i & 31) == 0)
5375 continue;
5376
5377 memset (counts, '\0', i * sizeof (unsigned long int));
5378
5379 /* Determine how often each hash bucket is used. */
5380 for (j = 0; j < nsyms; ++j)
5381 ++counts[hashcodes[j] % i];
5382
5383 /* For the weight function we need some information about the
5384 pagesize on the target. This is information need not be 100%
5385 accurate. Since this information is not available (so far) we
5386 define it here to a reasonable default value. If it is crucial
5387 to have a better value some day simply define this value. */
5388 # ifndef BFD_TARGET_PAGESIZE
5389 # define BFD_TARGET_PAGESIZE (4096)
5390 # endif
5391
5392 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5393 and the chains. */
5394 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5395
5396 # if 1
5397 /* Variant 1: optimize for short chains. We add the squares
5398 of all the chain lengths (which favors many small chain
5399 over a few long chains). */
5400 for (j = 0; j < i; ++j)
5401 max += counts[j] * counts[j];
5402
5403 /* This adds penalties for the overall size of the table. */
5404 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5405 max *= fact * fact;
5406 # else
5407 /* Variant 2: Optimize a lot more for small table. Here we
5408 also add squares of the size but we also add penalties for
5409 empty slots (the +1 term). */
5410 for (j = 0; j < i; ++j)
5411 max += (1 + counts[j]) * (1 + counts[j]);
5412
5413 /* The overall size of the table is considered, but not as
5414 strong as in variant 1, where it is squared. */
5415 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5416 max *= fact;
5417 # endif
5418
5419 /* Compare with current best results. */
5420 if (max < best_chlen)
5421 {
5422 best_chlen = max;
5423 best_size = i;
5424 no_improvement_count = 0;
5425 }
5426 /* PR 11843: Avoid futile long searches for the best bucket size
5427 when there are a large number of symbols. */
5428 else if (++no_improvement_count == 100)
5429 break;
5430 }
5431
5432 free (counts);
5433 }
5434 else
5435 #endif /* defined (BFD_HOST_U_64_BIT) */
5436 {
5437 /* This is the fallback solution if no 64bit type is available or if we
5438 are not supposed to spend much time on optimizations. We select the
5439 bucket count using a fixed set of numbers. */
5440 for (i = 0; elf_buckets[i] != 0; i++)
5441 {
5442 best_size = elf_buckets[i];
5443 if (nsyms < elf_buckets[i + 1])
5444 break;
5445 }
5446 if (gnu_hash && best_size < 2)
5447 best_size = 2;
5448 }
5449
5450 return best_size;
5451 }
5452
5453 /* Size any SHT_GROUP section for ld -r. */
5454
5455 bfd_boolean
5456 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5457 {
5458 bfd *ibfd;
5459
5460 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5461 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5462 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5463 return FALSE;
5464 return TRUE;
5465 }
5466
5467 /* Set a default stack segment size. The value in INFO wins. If it
5468 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5469 undefined it is initialized. */
5470
5471 bfd_boolean
5472 bfd_elf_stack_segment_size (bfd *output_bfd,
5473 struct bfd_link_info *info,
5474 const char *legacy_symbol,
5475 bfd_vma default_size)
5476 {
5477 struct elf_link_hash_entry *h = NULL;
5478
5479 /* Look for legacy symbol. */
5480 if (legacy_symbol)
5481 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5482 FALSE, FALSE, FALSE);
5483 if (h && (h->root.type == bfd_link_hash_defined
5484 || h->root.type == bfd_link_hash_defweak)
5485 && h->def_regular
5486 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5487 {
5488 /* The symbol has no type if specified on the command line. */
5489 h->type = STT_OBJECT;
5490 if (info->stacksize)
5491 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5492 output_bfd, legacy_symbol);
5493 else if (h->root.u.def.section != bfd_abs_section_ptr)
5494 (*_bfd_error_handler) (_("%B: %s not absolute"),
5495 output_bfd, legacy_symbol);
5496 else
5497 info->stacksize = h->root.u.def.value;
5498 }
5499
5500 if (!info->stacksize)
5501 /* If the user didn't set a size, or explicitly inhibit the
5502 size, set it now. */
5503 info->stacksize = default_size;
5504
5505 /* Provide the legacy symbol, if it is referenced. */
5506 if (h && (h->root.type == bfd_link_hash_undefined
5507 || h->root.type == bfd_link_hash_undefweak))
5508 {
5509 struct bfd_link_hash_entry *bh = NULL;
5510
5511 if (!(_bfd_generic_link_add_one_symbol
5512 (info, output_bfd, legacy_symbol,
5513 BSF_GLOBAL, bfd_abs_section_ptr,
5514 info->stacksize >= 0 ? info->stacksize : 0,
5515 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5516 return FALSE;
5517
5518 h = (struct elf_link_hash_entry *) bh;
5519 h->def_regular = 1;
5520 h->type = STT_OBJECT;
5521 }
5522
5523 return TRUE;
5524 }
5525
5526 /* Set up the sizes and contents of the ELF dynamic sections. This is
5527 called by the ELF linker emulation before_allocation routine. We
5528 must set the sizes of the sections before the linker sets the
5529 addresses of the various sections. */
5530
5531 bfd_boolean
5532 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5533 const char *soname,
5534 const char *rpath,
5535 const char *filter_shlib,
5536 const char *audit,
5537 const char *depaudit,
5538 const char * const *auxiliary_filters,
5539 struct bfd_link_info *info,
5540 asection **sinterpptr)
5541 {
5542 bfd_size_type soname_indx;
5543 bfd *dynobj;
5544 const struct elf_backend_data *bed;
5545 struct elf_info_failed asvinfo;
5546
5547 *sinterpptr = NULL;
5548
5549 soname_indx = (bfd_size_type) -1;
5550
5551 if (!is_elf_hash_table (info->hash))
5552 return TRUE;
5553
5554 bed = get_elf_backend_data (output_bfd);
5555
5556 /* Any syms created from now on start with -1 in
5557 got.refcount/offset and plt.refcount/offset. */
5558 elf_hash_table (info)->init_got_refcount
5559 = elf_hash_table (info)->init_got_offset;
5560 elf_hash_table (info)->init_plt_refcount
5561 = elf_hash_table (info)->init_plt_offset;
5562
5563 if (info->relocatable
5564 && !_bfd_elf_size_group_sections (info))
5565 return FALSE;
5566
5567 /* The backend may have to create some sections regardless of whether
5568 we're dynamic or not. */
5569 if (bed->elf_backend_always_size_sections
5570 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5571 return FALSE;
5572
5573 /* Determine any GNU_STACK segment requirements, after the backend
5574 has had a chance to set a default segment size. */
5575 if (info->execstack)
5576 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5577 else if (info->noexecstack)
5578 elf_stack_flags (output_bfd) = PF_R | PF_W;
5579 else
5580 {
5581 bfd *inputobj;
5582 asection *notesec = NULL;
5583 int exec = 0;
5584
5585 for (inputobj = info->input_bfds;
5586 inputobj;
5587 inputobj = inputobj->link.next)
5588 {
5589 asection *s;
5590
5591 if (inputobj->flags
5592 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5593 continue;
5594 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5595 if (s)
5596 {
5597 if (s->flags & SEC_CODE)
5598 exec = PF_X;
5599 notesec = s;
5600 }
5601 else if (bed->default_execstack)
5602 exec = PF_X;
5603 }
5604 if (notesec || info->stacksize > 0)
5605 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5606 if (notesec && exec && info->relocatable
5607 && notesec->output_section != bfd_abs_section_ptr)
5608 notesec->output_section->flags |= SEC_CODE;
5609 }
5610
5611 dynobj = elf_hash_table (info)->dynobj;
5612
5613 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5614 {
5615 struct elf_info_failed eif;
5616 struct elf_link_hash_entry *h;
5617 asection *dynstr;
5618 struct bfd_elf_version_tree *t;
5619 struct bfd_elf_version_expr *d;
5620 asection *s;
5621 bfd_boolean all_defined;
5622
5623 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5624 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5625
5626 if (soname != NULL)
5627 {
5628 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5629 soname, TRUE);
5630 if (soname_indx == (bfd_size_type) -1
5631 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5632 return FALSE;
5633 }
5634
5635 if (info->symbolic)
5636 {
5637 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5638 return FALSE;
5639 info->flags |= DF_SYMBOLIC;
5640 }
5641
5642 if (rpath != NULL)
5643 {
5644 bfd_size_type indx;
5645 bfd_vma tag;
5646
5647 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5648 TRUE);
5649 if (indx == (bfd_size_type) -1)
5650 return FALSE;
5651
5652 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5653 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5654 return FALSE;
5655 }
5656
5657 if (filter_shlib != NULL)
5658 {
5659 bfd_size_type indx;
5660
5661 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5662 filter_shlib, TRUE);
5663 if (indx == (bfd_size_type) -1
5664 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5665 return FALSE;
5666 }
5667
5668 if (auxiliary_filters != NULL)
5669 {
5670 const char * const *p;
5671
5672 for (p = auxiliary_filters; *p != NULL; p++)
5673 {
5674 bfd_size_type indx;
5675
5676 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5677 *p, TRUE);
5678 if (indx == (bfd_size_type) -1
5679 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5680 return FALSE;
5681 }
5682 }
5683
5684 if (audit != NULL)
5685 {
5686 bfd_size_type indx;
5687
5688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5689 TRUE);
5690 if (indx == (bfd_size_type) -1
5691 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5692 return FALSE;
5693 }
5694
5695 if (depaudit != NULL)
5696 {
5697 bfd_size_type indx;
5698
5699 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5700 TRUE);
5701 if (indx == (bfd_size_type) -1
5702 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5703 return FALSE;
5704 }
5705
5706 eif.info = info;
5707 eif.failed = FALSE;
5708
5709 /* If we are supposed to export all symbols into the dynamic symbol
5710 table (this is not the normal case), then do so. */
5711 if (info->export_dynamic
5712 || (info->executable && info->dynamic))
5713 {
5714 elf_link_hash_traverse (elf_hash_table (info),
5715 _bfd_elf_export_symbol,
5716 &eif);
5717 if (eif.failed)
5718 return FALSE;
5719 }
5720
5721 /* Make all global versions with definition. */
5722 for (t = info->version_info; t != NULL; t = t->next)
5723 for (d = t->globals.list; d != NULL; d = d->next)
5724 if (!d->symver && d->literal)
5725 {
5726 const char *verstr, *name;
5727 size_t namelen, verlen, newlen;
5728 char *newname, *p, leading_char;
5729 struct elf_link_hash_entry *newh;
5730
5731 leading_char = bfd_get_symbol_leading_char (output_bfd);
5732 name = d->pattern;
5733 namelen = strlen (name) + (leading_char != '\0');
5734 verstr = t->name;
5735 verlen = strlen (verstr);
5736 newlen = namelen + verlen + 3;
5737
5738 newname = (char *) bfd_malloc (newlen);
5739 if (newname == NULL)
5740 return FALSE;
5741 newname[0] = leading_char;
5742 memcpy (newname + (leading_char != '\0'), name, namelen);
5743
5744 /* Check the hidden versioned definition. */
5745 p = newname + namelen;
5746 *p++ = ELF_VER_CHR;
5747 memcpy (p, verstr, verlen + 1);
5748 newh = elf_link_hash_lookup (elf_hash_table (info),
5749 newname, FALSE, FALSE,
5750 FALSE);
5751 if (newh == NULL
5752 || (newh->root.type != bfd_link_hash_defined
5753 && newh->root.type != bfd_link_hash_defweak))
5754 {
5755 /* Check the default versioned definition. */
5756 *p++ = ELF_VER_CHR;
5757 memcpy (p, verstr, verlen + 1);
5758 newh = elf_link_hash_lookup (elf_hash_table (info),
5759 newname, FALSE, FALSE,
5760 FALSE);
5761 }
5762 free (newname);
5763
5764 /* Mark this version if there is a definition and it is
5765 not defined in a shared object. */
5766 if (newh != NULL
5767 && !newh->def_dynamic
5768 && (newh->root.type == bfd_link_hash_defined
5769 || newh->root.type == bfd_link_hash_defweak))
5770 d->symver = 1;
5771 }
5772
5773 /* Attach all the symbols to their version information. */
5774 asvinfo.info = info;
5775 asvinfo.failed = FALSE;
5776
5777 elf_link_hash_traverse (elf_hash_table (info),
5778 _bfd_elf_link_assign_sym_version,
5779 &asvinfo);
5780 if (asvinfo.failed)
5781 return FALSE;
5782
5783 if (!info->allow_undefined_version)
5784 {
5785 /* Check if all global versions have a definition. */
5786 all_defined = TRUE;
5787 for (t = info->version_info; t != NULL; t = t->next)
5788 for (d = t->globals.list; d != NULL; d = d->next)
5789 if (d->literal && !d->symver && !d->script)
5790 {
5791 (*_bfd_error_handler)
5792 (_("%s: undefined version: %s"),
5793 d->pattern, t->name);
5794 all_defined = FALSE;
5795 }
5796
5797 if (!all_defined)
5798 {
5799 bfd_set_error (bfd_error_bad_value);
5800 return FALSE;
5801 }
5802 }
5803
5804 /* Find all symbols which were defined in a dynamic object and make
5805 the backend pick a reasonable value for them. */
5806 elf_link_hash_traverse (elf_hash_table (info),
5807 _bfd_elf_adjust_dynamic_symbol,
5808 &eif);
5809 if (eif.failed)
5810 return FALSE;
5811
5812 /* Add some entries to the .dynamic section. We fill in some of the
5813 values later, in bfd_elf_final_link, but we must add the entries
5814 now so that we know the final size of the .dynamic section. */
5815
5816 /* If there are initialization and/or finalization functions to
5817 call then add the corresponding DT_INIT/DT_FINI entries. */
5818 h = (info->init_function
5819 ? elf_link_hash_lookup (elf_hash_table (info),
5820 info->init_function, FALSE,
5821 FALSE, FALSE)
5822 : NULL);
5823 if (h != NULL
5824 && (h->ref_regular
5825 || h->def_regular))
5826 {
5827 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5828 return FALSE;
5829 }
5830 h = (info->fini_function
5831 ? elf_link_hash_lookup (elf_hash_table (info),
5832 info->fini_function, FALSE,
5833 FALSE, FALSE)
5834 : NULL);
5835 if (h != NULL
5836 && (h->ref_regular
5837 || h->def_regular))
5838 {
5839 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5840 return FALSE;
5841 }
5842
5843 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5844 if (s != NULL && s->linker_has_input)
5845 {
5846 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5847 if (! info->executable)
5848 {
5849 bfd *sub;
5850 asection *o;
5851
5852 for (sub = info->input_bfds; sub != NULL;
5853 sub = sub->link.next)
5854 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5855 for (o = sub->sections; o != NULL; o = o->next)
5856 if (elf_section_data (o)->this_hdr.sh_type
5857 == SHT_PREINIT_ARRAY)
5858 {
5859 (*_bfd_error_handler)
5860 (_("%B: .preinit_array section is not allowed in DSO"),
5861 sub);
5862 break;
5863 }
5864
5865 bfd_set_error (bfd_error_nonrepresentable_section);
5866 return FALSE;
5867 }
5868
5869 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5870 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5871 return FALSE;
5872 }
5873 s = bfd_get_section_by_name (output_bfd, ".init_array");
5874 if (s != NULL && s->linker_has_input)
5875 {
5876 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5877 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5878 return FALSE;
5879 }
5880 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5881 if (s != NULL && s->linker_has_input)
5882 {
5883 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5884 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5885 return FALSE;
5886 }
5887
5888 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5889 /* If .dynstr is excluded from the link, we don't want any of
5890 these tags. Strictly, we should be checking each section
5891 individually; This quick check covers for the case where
5892 someone does a /DISCARD/ : { *(*) }. */
5893 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5894 {
5895 bfd_size_type strsize;
5896
5897 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5898 if ((info->emit_hash
5899 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5900 || (info->emit_gnu_hash
5901 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5902 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5906 bed->s->sizeof_sym))
5907 return FALSE;
5908 }
5909 }
5910
5911 /* The backend must work out the sizes of all the other dynamic
5912 sections. */
5913 if (dynobj != NULL
5914 && bed->elf_backend_size_dynamic_sections != NULL
5915 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5916 return FALSE;
5917
5918 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5919 return FALSE;
5920
5921 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5922 {
5923 unsigned long section_sym_count;
5924 struct bfd_elf_version_tree *verdefs;
5925 asection *s;
5926
5927 /* Set up the version definition section. */
5928 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5929 BFD_ASSERT (s != NULL);
5930
5931 /* We may have created additional version definitions if we are
5932 just linking a regular application. */
5933 verdefs = info->version_info;
5934
5935 /* Skip anonymous version tag. */
5936 if (verdefs != NULL && verdefs->vernum == 0)
5937 verdefs = verdefs->next;
5938
5939 if (verdefs == NULL && !info->create_default_symver)
5940 s->flags |= SEC_EXCLUDE;
5941 else
5942 {
5943 unsigned int cdefs;
5944 bfd_size_type size;
5945 struct bfd_elf_version_tree *t;
5946 bfd_byte *p;
5947 Elf_Internal_Verdef def;
5948 Elf_Internal_Verdaux defaux;
5949 struct bfd_link_hash_entry *bh;
5950 struct elf_link_hash_entry *h;
5951 const char *name;
5952
5953 cdefs = 0;
5954 size = 0;
5955
5956 /* Make space for the base version. */
5957 size += sizeof (Elf_External_Verdef);
5958 size += sizeof (Elf_External_Verdaux);
5959 ++cdefs;
5960
5961 /* Make space for the default version. */
5962 if (info->create_default_symver)
5963 {
5964 size += sizeof (Elf_External_Verdef);
5965 ++cdefs;
5966 }
5967
5968 for (t = verdefs; t != NULL; t = t->next)
5969 {
5970 struct bfd_elf_version_deps *n;
5971
5972 /* Don't emit base version twice. */
5973 if (t->vernum == 0)
5974 continue;
5975
5976 size += sizeof (Elf_External_Verdef);
5977 size += sizeof (Elf_External_Verdaux);
5978 ++cdefs;
5979
5980 for (n = t->deps; n != NULL; n = n->next)
5981 size += sizeof (Elf_External_Verdaux);
5982 }
5983
5984 s->size = size;
5985 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5986 if (s->contents == NULL && s->size != 0)
5987 return FALSE;
5988
5989 /* Fill in the version definition section. */
5990
5991 p = s->contents;
5992
5993 def.vd_version = VER_DEF_CURRENT;
5994 def.vd_flags = VER_FLG_BASE;
5995 def.vd_ndx = 1;
5996 def.vd_cnt = 1;
5997 if (info->create_default_symver)
5998 {
5999 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6000 def.vd_next = sizeof (Elf_External_Verdef);
6001 }
6002 else
6003 {
6004 def.vd_aux = sizeof (Elf_External_Verdef);
6005 def.vd_next = (sizeof (Elf_External_Verdef)
6006 + sizeof (Elf_External_Verdaux));
6007 }
6008
6009 if (soname_indx != (bfd_size_type) -1)
6010 {
6011 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6012 soname_indx);
6013 def.vd_hash = bfd_elf_hash (soname);
6014 defaux.vda_name = soname_indx;
6015 name = soname;
6016 }
6017 else
6018 {
6019 bfd_size_type indx;
6020
6021 name = lbasename (output_bfd->filename);
6022 def.vd_hash = bfd_elf_hash (name);
6023 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6024 name, FALSE);
6025 if (indx == (bfd_size_type) -1)
6026 return FALSE;
6027 defaux.vda_name = indx;
6028 }
6029 defaux.vda_next = 0;
6030
6031 _bfd_elf_swap_verdef_out (output_bfd, &def,
6032 (Elf_External_Verdef *) p);
6033 p += sizeof (Elf_External_Verdef);
6034 if (info->create_default_symver)
6035 {
6036 /* Add a symbol representing this version. */
6037 bh = NULL;
6038 if (! (_bfd_generic_link_add_one_symbol
6039 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6040 0, NULL, FALSE,
6041 get_elf_backend_data (dynobj)->collect, &bh)))
6042 return FALSE;
6043 h = (struct elf_link_hash_entry *) bh;
6044 h->non_elf = 0;
6045 h->def_regular = 1;
6046 h->type = STT_OBJECT;
6047 h->verinfo.vertree = NULL;
6048
6049 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6050 return FALSE;
6051
6052 /* Create a duplicate of the base version with the same
6053 aux block, but different flags. */
6054 def.vd_flags = 0;
6055 def.vd_ndx = 2;
6056 def.vd_aux = sizeof (Elf_External_Verdef);
6057 if (verdefs)
6058 def.vd_next = (sizeof (Elf_External_Verdef)
6059 + sizeof (Elf_External_Verdaux));
6060 else
6061 def.vd_next = 0;
6062 _bfd_elf_swap_verdef_out (output_bfd, &def,
6063 (Elf_External_Verdef *) p);
6064 p += sizeof (Elf_External_Verdef);
6065 }
6066 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6067 (Elf_External_Verdaux *) p);
6068 p += sizeof (Elf_External_Verdaux);
6069
6070 for (t = verdefs; t != NULL; t = t->next)
6071 {
6072 unsigned int cdeps;
6073 struct bfd_elf_version_deps *n;
6074
6075 /* Don't emit the base version twice. */
6076 if (t->vernum == 0)
6077 continue;
6078
6079 cdeps = 0;
6080 for (n = t->deps; n != NULL; n = n->next)
6081 ++cdeps;
6082
6083 /* Add a symbol representing this version. */
6084 bh = NULL;
6085 if (! (_bfd_generic_link_add_one_symbol
6086 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6087 0, NULL, FALSE,
6088 get_elf_backend_data (dynobj)->collect, &bh)))
6089 return FALSE;
6090 h = (struct elf_link_hash_entry *) bh;
6091 h->non_elf = 0;
6092 h->def_regular = 1;
6093 h->type = STT_OBJECT;
6094 h->verinfo.vertree = t;
6095
6096 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6097 return FALSE;
6098
6099 def.vd_version = VER_DEF_CURRENT;
6100 def.vd_flags = 0;
6101 if (t->globals.list == NULL
6102 && t->locals.list == NULL
6103 && ! t->used)
6104 def.vd_flags |= VER_FLG_WEAK;
6105 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6106 def.vd_cnt = cdeps + 1;
6107 def.vd_hash = bfd_elf_hash (t->name);
6108 def.vd_aux = sizeof (Elf_External_Verdef);
6109 def.vd_next = 0;
6110
6111 /* If a basever node is next, it *must* be the last node in
6112 the chain, otherwise Verdef construction breaks. */
6113 if (t->next != NULL && t->next->vernum == 0)
6114 BFD_ASSERT (t->next->next == NULL);
6115
6116 if (t->next != NULL && t->next->vernum != 0)
6117 def.vd_next = (sizeof (Elf_External_Verdef)
6118 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6119
6120 _bfd_elf_swap_verdef_out (output_bfd, &def,
6121 (Elf_External_Verdef *) p);
6122 p += sizeof (Elf_External_Verdef);
6123
6124 defaux.vda_name = h->dynstr_index;
6125 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6126 h->dynstr_index);
6127 defaux.vda_next = 0;
6128 if (t->deps != NULL)
6129 defaux.vda_next = sizeof (Elf_External_Verdaux);
6130 t->name_indx = defaux.vda_name;
6131
6132 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6133 (Elf_External_Verdaux *) p);
6134 p += sizeof (Elf_External_Verdaux);
6135
6136 for (n = t->deps; n != NULL; n = n->next)
6137 {
6138 if (n->version_needed == NULL)
6139 {
6140 /* This can happen if there was an error in the
6141 version script. */
6142 defaux.vda_name = 0;
6143 }
6144 else
6145 {
6146 defaux.vda_name = n->version_needed->name_indx;
6147 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6148 defaux.vda_name);
6149 }
6150 if (n->next == NULL)
6151 defaux.vda_next = 0;
6152 else
6153 defaux.vda_next = sizeof (Elf_External_Verdaux);
6154
6155 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6156 (Elf_External_Verdaux *) p);
6157 p += sizeof (Elf_External_Verdaux);
6158 }
6159 }
6160
6161 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6162 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6163 return FALSE;
6164
6165 elf_tdata (output_bfd)->cverdefs = cdefs;
6166 }
6167
6168 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6169 {
6170 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6171 return FALSE;
6172 }
6173 else if (info->flags & DF_BIND_NOW)
6174 {
6175 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6176 return FALSE;
6177 }
6178
6179 if (info->flags_1)
6180 {
6181 if (info->executable)
6182 info->flags_1 &= ~ (DF_1_INITFIRST
6183 | DF_1_NODELETE
6184 | DF_1_NOOPEN);
6185 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6186 return FALSE;
6187 }
6188
6189 /* Work out the size of the version reference section. */
6190
6191 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6192 BFD_ASSERT (s != NULL);
6193 {
6194 struct elf_find_verdep_info sinfo;
6195
6196 sinfo.info = info;
6197 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6198 if (sinfo.vers == 0)
6199 sinfo.vers = 1;
6200 sinfo.failed = FALSE;
6201
6202 elf_link_hash_traverse (elf_hash_table (info),
6203 _bfd_elf_link_find_version_dependencies,
6204 &sinfo);
6205 if (sinfo.failed)
6206 return FALSE;
6207
6208 if (elf_tdata (output_bfd)->verref == NULL)
6209 s->flags |= SEC_EXCLUDE;
6210 else
6211 {
6212 Elf_Internal_Verneed *t;
6213 unsigned int size;
6214 unsigned int crefs;
6215 bfd_byte *p;
6216
6217 /* Build the version dependency section. */
6218 size = 0;
6219 crefs = 0;
6220 for (t = elf_tdata (output_bfd)->verref;
6221 t != NULL;
6222 t = t->vn_nextref)
6223 {
6224 Elf_Internal_Vernaux *a;
6225
6226 size += sizeof (Elf_External_Verneed);
6227 ++crefs;
6228 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6229 size += sizeof (Elf_External_Vernaux);
6230 }
6231
6232 s->size = size;
6233 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6234 if (s->contents == NULL)
6235 return FALSE;
6236
6237 p = s->contents;
6238 for (t = elf_tdata (output_bfd)->verref;
6239 t != NULL;
6240 t = t->vn_nextref)
6241 {
6242 unsigned int caux;
6243 Elf_Internal_Vernaux *a;
6244 bfd_size_type indx;
6245
6246 caux = 0;
6247 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6248 ++caux;
6249
6250 t->vn_version = VER_NEED_CURRENT;
6251 t->vn_cnt = caux;
6252 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6253 elf_dt_name (t->vn_bfd) != NULL
6254 ? elf_dt_name (t->vn_bfd)
6255 : lbasename (t->vn_bfd->filename),
6256 FALSE);
6257 if (indx == (bfd_size_type) -1)
6258 return FALSE;
6259 t->vn_file = indx;
6260 t->vn_aux = sizeof (Elf_External_Verneed);
6261 if (t->vn_nextref == NULL)
6262 t->vn_next = 0;
6263 else
6264 t->vn_next = (sizeof (Elf_External_Verneed)
6265 + caux * sizeof (Elf_External_Vernaux));
6266
6267 _bfd_elf_swap_verneed_out (output_bfd, t,
6268 (Elf_External_Verneed *) p);
6269 p += sizeof (Elf_External_Verneed);
6270
6271 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6272 {
6273 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6274 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6275 a->vna_nodename, FALSE);
6276 if (indx == (bfd_size_type) -1)
6277 return FALSE;
6278 a->vna_name = indx;
6279 if (a->vna_nextptr == NULL)
6280 a->vna_next = 0;
6281 else
6282 a->vna_next = sizeof (Elf_External_Vernaux);
6283
6284 _bfd_elf_swap_vernaux_out (output_bfd, a,
6285 (Elf_External_Vernaux *) p);
6286 p += sizeof (Elf_External_Vernaux);
6287 }
6288 }
6289
6290 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6291 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6292 return FALSE;
6293
6294 elf_tdata (output_bfd)->cverrefs = crefs;
6295 }
6296 }
6297
6298 if ((elf_tdata (output_bfd)->cverrefs == 0
6299 && elf_tdata (output_bfd)->cverdefs == 0)
6300 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6301 &section_sym_count) == 0)
6302 {
6303 s = bfd_get_linker_section (dynobj, ".gnu.version");
6304 s->flags |= SEC_EXCLUDE;
6305 }
6306 }
6307 return TRUE;
6308 }
6309
6310 /* Find the first non-excluded output section. We'll use its
6311 section symbol for some emitted relocs. */
6312 void
6313 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6314 {
6315 asection *s;
6316
6317 for (s = output_bfd->sections; s != NULL; s = s->next)
6318 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6319 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6320 {
6321 elf_hash_table (info)->text_index_section = s;
6322 break;
6323 }
6324 }
6325
6326 /* Find two non-excluded output sections, one for code, one for data.
6327 We'll use their section symbols for some emitted relocs. */
6328 void
6329 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6330 {
6331 asection *s;
6332
6333 /* Data first, since setting text_index_section changes
6334 _bfd_elf_link_omit_section_dynsym. */
6335 for (s = output_bfd->sections; s != NULL; s = s->next)
6336 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6337 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6338 {
6339 elf_hash_table (info)->data_index_section = s;
6340 break;
6341 }
6342
6343 for (s = output_bfd->sections; s != NULL; s = s->next)
6344 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6345 == (SEC_ALLOC | SEC_READONLY))
6346 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6347 {
6348 elf_hash_table (info)->text_index_section = s;
6349 break;
6350 }
6351
6352 if (elf_hash_table (info)->text_index_section == NULL)
6353 elf_hash_table (info)->text_index_section
6354 = elf_hash_table (info)->data_index_section;
6355 }
6356
6357 bfd_boolean
6358 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6359 {
6360 const struct elf_backend_data *bed;
6361
6362 if (!is_elf_hash_table (info->hash))
6363 return TRUE;
6364
6365 bed = get_elf_backend_data (output_bfd);
6366 (*bed->elf_backend_init_index_section) (output_bfd, info);
6367
6368 if (elf_hash_table (info)->dynamic_sections_created)
6369 {
6370 bfd *dynobj;
6371 asection *s;
6372 bfd_size_type dynsymcount;
6373 unsigned long section_sym_count;
6374 unsigned int dtagcount;
6375
6376 dynobj = elf_hash_table (info)->dynobj;
6377
6378 /* Assign dynsym indicies. In a shared library we generate a
6379 section symbol for each output section, which come first.
6380 Next come all of the back-end allocated local dynamic syms,
6381 followed by the rest of the global symbols. */
6382
6383 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6384 &section_sym_count);
6385
6386 /* Work out the size of the symbol version section. */
6387 s = bfd_get_linker_section (dynobj, ".gnu.version");
6388 BFD_ASSERT (s != NULL);
6389 if (dynsymcount != 0
6390 && (s->flags & SEC_EXCLUDE) == 0)
6391 {
6392 s->size = dynsymcount * sizeof (Elf_External_Versym);
6393 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6394 if (s->contents == NULL)
6395 return FALSE;
6396
6397 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6398 return FALSE;
6399 }
6400
6401 /* Set the size of the .dynsym and .hash sections. We counted
6402 the number of dynamic symbols in elf_link_add_object_symbols.
6403 We will build the contents of .dynsym and .hash when we build
6404 the final symbol table, because until then we do not know the
6405 correct value to give the symbols. We built the .dynstr
6406 section as we went along in elf_link_add_object_symbols. */
6407 s = bfd_get_linker_section (dynobj, ".dynsym");
6408 BFD_ASSERT (s != NULL);
6409 s->size = dynsymcount * bed->s->sizeof_sym;
6410
6411 if (dynsymcount != 0)
6412 {
6413 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6414 if (s->contents == NULL)
6415 return FALSE;
6416
6417 /* The first entry in .dynsym is a dummy symbol.
6418 Clear all the section syms, in case we don't output them all. */
6419 ++section_sym_count;
6420 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6421 }
6422
6423 elf_hash_table (info)->bucketcount = 0;
6424
6425 /* Compute the size of the hashing table. As a side effect this
6426 computes the hash values for all the names we export. */
6427 if (info->emit_hash)
6428 {
6429 unsigned long int *hashcodes;
6430 struct hash_codes_info hashinf;
6431 bfd_size_type amt;
6432 unsigned long int nsyms;
6433 size_t bucketcount;
6434 size_t hash_entry_size;
6435
6436 /* Compute the hash values for all exported symbols. At the same
6437 time store the values in an array so that we could use them for
6438 optimizations. */
6439 amt = dynsymcount * sizeof (unsigned long int);
6440 hashcodes = (unsigned long int *) bfd_malloc (amt);
6441 if (hashcodes == NULL)
6442 return FALSE;
6443 hashinf.hashcodes = hashcodes;
6444 hashinf.error = FALSE;
6445
6446 /* Put all hash values in HASHCODES. */
6447 elf_link_hash_traverse (elf_hash_table (info),
6448 elf_collect_hash_codes, &hashinf);
6449 if (hashinf.error)
6450 {
6451 free (hashcodes);
6452 return FALSE;
6453 }
6454
6455 nsyms = hashinf.hashcodes - hashcodes;
6456 bucketcount
6457 = compute_bucket_count (info, hashcodes, nsyms, 0);
6458 free (hashcodes);
6459
6460 if (bucketcount == 0)
6461 return FALSE;
6462
6463 elf_hash_table (info)->bucketcount = bucketcount;
6464
6465 s = bfd_get_linker_section (dynobj, ".hash");
6466 BFD_ASSERT (s != NULL);
6467 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6468 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6469 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6470 if (s->contents == NULL)
6471 return FALSE;
6472
6473 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6474 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6475 s->contents + hash_entry_size);
6476 }
6477
6478 if (info->emit_gnu_hash)
6479 {
6480 size_t i, cnt;
6481 unsigned char *contents;
6482 struct collect_gnu_hash_codes cinfo;
6483 bfd_size_type amt;
6484 size_t bucketcount;
6485
6486 memset (&cinfo, 0, sizeof (cinfo));
6487
6488 /* Compute the hash values for all exported symbols. At the same
6489 time store the values in an array so that we could use them for
6490 optimizations. */
6491 amt = dynsymcount * 2 * sizeof (unsigned long int);
6492 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6493 if (cinfo.hashcodes == NULL)
6494 return FALSE;
6495
6496 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6497 cinfo.min_dynindx = -1;
6498 cinfo.output_bfd = output_bfd;
6499 cinfo.bed = bed;
6500
6501 /* Put all hash values in HASHCODES. */
6502 elf_link_hash_traverse (elf_hash_table (info),
6503 elf_collect_gnu_hash_codes, &cinfo);
6504 if (cinfo.error)
6505 {
6506 free (cinfo.hashcodes);
6507 return FALSE;
6508 }
6509
6510 bucketcount
6511 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6512
6513 if (bucketcount == 0)
6514 {
6515 free (cinfo.hashcodes);
6516 return FALSE;
6517 }
6518
6519 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6520 BFD_ASSERT (s != NULL);
6521
6522 if (cinfo.nsyms == 0)
6523 {
6524 /* Empty .gnu.hash section is special. */
6525 BFD_ASSERT (cinfo.min_dynindx == -1);
6526 free (cinfo.hashcodes);
6527 s->size = 5 * 4 + bed->s->arch_size / 8;
6528 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6529 if (contents == NULL)
6530 return FALSE;
6531 s->contents = contents;
6532 /* 1 empty bucket. */
6533 bfd_put_32 (output_bfd, 1, contents);
6534 /* SYMIDX above the special symbol 0. */
6535 bfd_put_32 (output_bfd, 1, contents + 4);
6536 /* Just one word for bitmask. */
6537 bfd_put_32 (output_bfd, 1, contents + 8);
6538 /* Only hash fn bloom filter. */
6539 bfd_put_32 (output_bfd, 0, contents + 12);
6540 /* No hashes are valid - empty bitmask. */
6541 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6542 /* No hashes in the only bucket. */
6543 bfd_put_32 (output_bfd, 0,
6544 contents + 16 + bed->s->arch_size / 8);
6545 }
6546 else
6547 {
6548 unsigned long int maskwords, maskbitslog2, x;
6549 BFD_ASSERT (cinfo.min_dynindx != -1);
6550
6551 x = cinfo.nsyms;
6552 maskbitslog2 = 1;
6553 while ((x >>= 1) != 0)
6554 ++maskbitslog2;
6555 if (maskbitslog2 < 3)
6556 maskbitslog2 = 5;
6557 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6558 maskbitslog2 = maskbitslog2 + 3;
6559 else
6560 maskbitslog2 = maskbitslog2 + 2;
6561 if (bed->s->arch_size == 64)
6562 {
6563 if (maskbitslog2 == 5)
6564 maskbitslog2 = 6;
6565 cinfo.shift1 = 6;
6566 }
6567 else
6568 cinfo.shift1 = 5;
6569 cinfo.mask = (1 << cinfo.shift1) - 1;
6570 cinfo.shift2 = maskbitslog2;
6571 cinfo.maskbits = 1 << maskbitslog2;
6572 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6573 amt = bucketcount * sizeof (unsigned long int) * 2;
6574 amt += maskwords * sizeof (bfd_vma);
6575 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6576 if (cinfo.bitmask == NULL)
6577 {
6578 free (cinfo.hashcodes);
6579 return FALSE;
6580 }
6581
6582 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6583 cinfo.indx = cinfo.counts + bucketcount;
6584 cinfo.symindx = dynsymcount - cinfo.nsyms;
6585 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6586
6587 /* Determine how often each hash bucket is used. */
6588 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6589 for (i = 0; i < cinfo.nsyms; ++i)
6590 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6591
6592 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6593 if (cinfo.counts[i] != 0)
6594 {
6595 cinfo.indx[i] = cnt;
6596 cnt += cinfo.counts[i];
6597 }
6598 BFD_ASSERT (cnt == dynsymcount);
6599 cinfo.bucketcount = bucketcount;
6600 cinfo.local_indx = cinfo.min_dynindx;
6601
6602 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6603 s->size += cinfo.maskbits / 8;
6604 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6605 if (contents == NULL)
6606 {
6607 free (cinfo.bitmask);
6608 free (cinfo.hashcodes);
6609 return FALSE;
6610 }
6611
6612 s->contents = contents;
6613 bfd_put_32 (output_bfd, bucketcount, contents);
6614 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6615 bfd_put_32 (output_bfd, maskwords, contents + 8);
6616 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6617 contents += 16 + cinfo.maskbits / 8;
6618
6619 for (i = 0; i < bucketcount; ++i)
6620 {
6621 if (cinfo.counts[i] == 0)
6622 bfd_put_32 (output_bfd, 0, contents);
6623 else
6624 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6625 contents += 4;
6626 }
6627
6628 cinfo.contents = contents;
6629
6630 /* Renumber dynamic symbols, populate .gnu.hash section. */
6631 elf_link_hash_traverse (elf_hash_table (info),
6632 elf_renumber_gnu_hash_syms, &cinfo);
6633
6634 contents = s->contents + 16;
6635 for (i = 0; i < maskwords; ++i)
6636 {
6637 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6638 contents);
6639 contents += bed->s->arch_size / 8;
6640 }
6641
6642 free (cinfo.bitmask);
6643 free (cinfo.hashcodes);
6644 }
6645 }
6646
6647 s = bfd_get_linker_section (dynobj, ".dynstr");
6648 BFD_ASSERT (s != NULL);
6649
6650 elf_finalize_dynstr (output_bfd, info);
6651
6652 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6653
6654 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6655 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6656 return FALSE;
6657 }
6658
6659 return TRUE;
6660 }
6661 \f
6662 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6663
6664 static void
6665 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6666 asection *sec)
6667 {
6668 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6669 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6670 }
6671
6672 /* Finish SHF_MERGE section merging. */
6673
6674 bfd_boolean
6675 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6676 {
6677 bfd *ibfd;
6678 asection *sec;
6679
6680 if (!is_elf_hash_table (info->hash))
6681 return FALSE;
6682
6683 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6684 if ((ibfd->flags & DYNAMIC) == 0)
6685 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6686 if ((sec->flags & SEC_MERGE) != 0
6687 && !bfd_is_abs_section (sec->output_section))
6688 {
6689 struct bfd_elf_section_data *secdata;
6690
6691 secdata = elf_section_data (sec);
6692 if (! _bfd_add_merge_section (abfd,
6693 &elf_hash_table (info)->merge_info,
6694 sec, &secdata->sec_info))
6695 return FALSE;
6696 else if (secdata->sec_info)
6697 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6698 }
6699
6700 if (elf_hash_table (info)->merge_info != NULL)
6701 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6702 merge_sections_remove_hook);
6703 return TRUE;
6704 }
6705
6706 /* Create an entry in an ELF linker hash table. */
6707
6708 struct bfd_hash_entry *
6709 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6710 struct bfd_hash_table *table,
6711 const char *string)
6712 {
6713 /* Allocate the structure if it has not already been allocated by a
6714 subclass. */
6715 if (entry == NULL)
6716 {
6717 entry = (struct bfd_hash_entry *)
6718 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6719 if (entry == NULL)
6720 return entry;
6721 }
6722
6723 /* Call the allocation method of the superclass. */
6724 entry = _bfd_link_hash_newfunc (entry, table, string);
6725 if (entry != NULL)
6726 {
6727 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6728 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6729
6730 /* Set local fields. */
6731 ret->indx = -1;
6732 ret->dynindx = -1;
6733 ret->got = htab->init_got_refcount;
6734 ret->plt = htab->init_plt_refcount;
6735 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6736 - offsetof (struct elf_link_hash_entry, size)));
6737 /* Assume that we have been called by a non-ELF symbol reader.
6738 This flag is then reset by the code which reads an ELF input
6739 file. This ensures that a symbol created by a non-ELF symbol
6740 reader will have the flag set correctly. */
6741 ret->non_elf = 1;
6742 }
6743
6744 return entry;
6745 }
6746
6747 /* Copy data from an indirect symbol to its direct symbol, hiding the
6748 old indirect symbol. Also used for copying flags to a weakdef. */
6749
6750 void
6751 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6752 struct elf_link_hash_entry *dir,
6753 struct elf_link_hash_entry *ind)
6754 {
6755 struct elf_link_hash_table *htab;
6756
6757 /* Copy down any references that we may have already seen to the
6758 symbol which just became indirect. */
6759
6760 dir->ref_dynamic |= ind->ref_dynamic;
6761 dir->ref_regular |= ind->ref_regular;
6762 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6763 dir->non_got_ref |= ind->non_got_ref;
6764 dir->needs_plt |= ind->needs_plt;
6765 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6766
6767 if (ind->root.type != bfd_link_hash_indirect)
6768 return;
6769
6770 /* Copy over the global and procedure linkage table refcount entries.
6771 These may have been already set up by a check_relocs routine. */
6772 htab = elf_hash_table (info);
6773 if (ind->got.refcount > htab->init_got_refcount.refcount)
6774 {
6775 if (dir->got.refcount < 0)
6776 dir->got.refcount = 0;
6777 dir->got.refcount += ind->got.refcount;
6778 ind->got.refcount = htab->init_got_refcount.refcount;
6779 }
6780
6781 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6782 {
6783 if (dir->plt.refcount < 0)
6784 dir->plt.refcount = 0;
6785 dir->plt.refcount += ind->plt.refcount;
6786 ind->plt.refcount = htab->init_plt_refcount.refcount;
6787 }
6788
6789 if (ind->dynindx != -1)
6790 {
6791 if (dir->dynindx != -1)
6792 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6793 dir->dynindx = ind->dynindx;
6794 dir->dynstr_index = ind->dynstr_index;
6795 ind->dynindx = -1;
6796 ind->dynstr_index = 0;
6797 }
6798 }
6799
6800 void
6801 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6802 struct elf_link_hash_entry *h,
6803 bfd_boolean force_local)
6804 {
6805 /* STT_GNU_IFUNC symbol must go through PLT. */
6806 if (h->type != STT_GNU_IFUNC)
6807 {
6808 h->plt = elf_hash_table (info)->init_plt_offset;
6809 h->needs_plt = 0;
6810 }
6811 if (force_local)
6812 {
6813 h->forced_local = 1;
6814 if (h->dynindx != -1)
6815 {
6816 h->dynindx = -1;
6817 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6818 h->dynstr_index);
6819 }
6820 }
6821 }
6822
6823 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6824 caller. */
6825
6826 bfd_boolean
6827 _bfd_elf_link_hash_table_init
6828 (struct elf_link_hash_table *table,
6829 bfd *abfd,
6830 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6831 struct bfd_hash_table *,
6832 const char *),
6833 unsigned int entsize,
6834 enum elf_target_id target_id)
6835 {
6836 bfd_boolean ret;
6837 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6838
6839 table->init_got_refcount.refcount = can_refcount - 1;
6840 table->init_plt_refcount.refcount = can_refcount - 1;
6841 table->init_got_offset.offset = -(bfd_vma) 1;
6842 table->init_plt_offset.offset = -(bfd_vma) 1;
6843 /* The first dynamic symbol is a dummy. */
6844 table->dynsymcount = 1;
6845
6846 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6847
6848 table->root.type = bfd_link_elf_hash_table;
6849 table->hash_table_id = target_id;
6850
6851 return ret;
6852 }
6853
6854 /* Create an ELF linker hash table. */
6855
6856 struct bfd_link_hash_table *
6857 _bfd_elf_link_hash_table_create (bfd *abfd)
6858 {
6859 struct elf_link_hash_table *ret;
6860 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6861
6862 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6863 if (ret == NULL)
6864 return NULL;
6865
6866 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6867 sizeof (struct elf_link_hash_entry),
6868 GENERIC_ELF_DATA))
6869 {
6870 free (ret);
6871 return NULL;
6872 }
6873 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6874
6875 return &ret->root;
6876 }
6877
6878 /* Destroy an ELF linker hash table. */
6879
6880 void
6881 _bfd_elf_link_hash_table_free (bfd *obfd)
6882 {
6883 struct elf_link_hash_table *htab;
6884
6885 htab = (struct elf_link_hash_table *) obfd->link.hash;
6886 if (htab->dynstr != NULL)
6887 _bfd_elf_strtab_free (htab->dynstr);
6888 _bfd_merge_sections_free (htab->merge_info);
6889 _bfd_generic_link_hash_table_free (obfd);
6890 }
6891
6892 /* This is a hook for the ELF emulation code in the generic linker to
6893 tell the backend linker what file name to use for the DT_NEEDED
6894 entry for a dynamic object. */
6895
6896 void
6897 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6898 {
6899 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6900 && bfd_get_format (abfd) == bfd_object)
6901 elf_dt_name (abfd) = name;
6902 }
6903
6904 int
6905 bfd_elf_get_dyn_lib_class (bfd *abfd)
6906 {
6907 int lib_class;
6908 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6909 && bfd_get_format (abfd) == bfd_object)
6910 lib_class = elf_dyn_lib_class (abfd);
6911 else
6912 lib_class = 0;
6913 return lib_class;
6914 }
6915
6916 void
6917 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6918 {
6919 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6920 && bfd_get_format (abfd) == bfd_object)
6921 elf_dyn_lib_class (abfd) = lib_class;
6922 }
6923
6924 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6925 the linker ELF emulation code. */
6926
6927 struct bfd_link_needed_list *
6928 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6929 struct bfd_link_info *info)
6930 {
6931 if (! is_elf_hash_table (info->hash))
6932 return NULL;
6933 return elf_hash_table (info)->needed;
6934 }
6935
6936 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6937 hook for the linker ELF emulation code. */
6938
6939 struct bfd_link_needed_list *
6940 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6941 struct bfd_link_info *info)
6942 {
6943 if (! is_elf_hash_table (info->hash))
6944 return NULL;
6945 return elf_hash_table (info)->runpath;
6946 }
6947
6948 /* Get the name actually used for a dynamic object for a link. This
6949 is the SONAME entry if there is one. Otherwise, it is the string
6950 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6951
6952 const char *
6953 bfd_elf_get_dt_soname (bfd *abfd)
6954 {
6955 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6956 && bfd_get_format (abfd) == bfd_object)
6957 return elf_dt_name (abfd);
6958 return NULL;
6959 }
6960
6961 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6962 the ELF linker emulation code. */
6963
6964 bfd_boolean
6965 bfd_elf_get_bfd_needed_list (bfd *abfd,
6966 struct bfd_link_needed_list **pneeded)
6967 {
6968 asection *s;
6969 bfd_byte *dynbuf = NULL;
6970 unsigned int elfsec;
6971 unsigned long shlink;
6972 bfd_byte *extdyn, *extdynend;
6973 size_t extdynsize;
6974 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6975
6976 *pneeded = NULL;
6977
6978 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6979 || bfd_get_format (abfd) != bfd_object)
6980 return TRUE;
6981
6982 s = bfd_get_section_by_name (abfd, ".dynamic");
6983 if (s == NULL || s->size == 0)
6984 return TRUE;
6985
6986 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6987 goto error_return;
6988
6989 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6990 if (elfsec == SHN_BAD)
6991 goto error_return;
6992
6993 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6994
6995 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6996 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6997
6998 extdyn = dynbuf;
6999 extdynend = extdyn + s->size;
7000 for (; extdyn < extdynend; extdyn += extdynsize)
7001 {
7002 Elf_Internal_Dyn dyn;
7003
7004 (*swap_dyn_in) (abfd, extdyn, &dyn);
7005
7006 if (dyn.d_tag == DT_NULL)
7007 break;
7008
7009 if (dyn.d_tag == DT_NEEDED)
7010 {
7011 const char *string;
7012 struct bfd_link_needed_list *l;
7013 unsigned int tagv = dyn.d_un.d_val;
7014 bfd_size_type amt;
7015
7016 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7017 if (string == NULL)
7018 goto error_return;
7019
7020 amt = sizeof *l;
7021 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7022 if (l == NULL)
7023 goto error_return;
7024
7025 l->by = abfd;
7026 l->name = string;
7027 l->next = *pneeded;
7028 *pneeded = l;
7029 }
7030 }
7031
7032 free (dynbuf);
7033
7034 return TRUE;
7035
7036 error_return:
7037 if (dynbuf != NULL)
7038 free (dynbuf);
7039 return FALSE;
7040 }
7041
7042 struct elf_symbuf_symbol
7043 {
7044 unsigned long st_name; /* Symbol name, index in string tbl */
7045 unsigned char st_info; /* Type and binding attributes */
7046 unsigned char st_other; /* Visibilty, and target specific */
7047 };
7048
7049 struct elf_symbuf_head
7050 {
7051 struct elf_symbuf_symbol *ssym;
7052 bfd_size_type count;
7053 unsigned int st_shndx;
7054 };
7055
7056 struct elf_symbol
7057 {
7058 union
7059 {
7060 Elf_Internal_Sym *isym;
7061 struct elf_symbuf_symbol *ssym;
7062 } u;
7063 const char *name;
7064 };
7065
7066 /* Sort references to symbols by ascending section number. */
7067
7068 static int
7069 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7070 {
7071 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7072 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7073
7074 return s1->st_shndx - s2->st_shndx;
7075 }
7076
7077 static int
7078 elf_sym_name_compare (const void *arg1, const void *arg2)
7079 {
7080 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7081 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7082 return strcmp (s1->name, s2->name);
7083 }
7084
7085 static struct elf_symbuf_head *
7086 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7087 {
7088 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7089 struct elf_symbuf_symbol *ssym;
7090 struct elf_symbuf_head *ssymbuf, *ssymhead;
7091 bfd_size_type i, shndx_count, total_size;
7092
7093 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7094 if (indbuf == NULL)
7095 return NULL;
7096
7097 for (ind = indbuf, i = 0; i < symcount; i++)
7098 if (isymbuf[i].st_shndx != SHN_UNDEF)
7099 *ind++ = &isymbuf[i];
7100 indbufend = ind;
7101
7102 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7103 elf_sort_elf_symbol);
7104
7105 shndx_count = 0;
7106 if (indbufend > indbuf)
7107 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7108 if (ind[0]->st_shndx != ind[1]->st_shndx)
7109 shndx_count++;
7110
7111 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7112 + (indbufend - indbuf) * sizeof (*ssym));
7113 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7114 if (ssymbuf == NULL)
7115 {
7116 free (indbuf);
7117 return NULL;
7118 }
7119
7120 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7121 ssymbuf->ssym = NULL;
7122 ssymbuf->count = shndx_count;
7123 ssymbuf->st_shndx = 0;
7124 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7125 {
7126 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7127 {
7128 ssymhead++;
7129 ssymhead->ssym = ssym;
7130 ssymhead->count = 0;
7131 ssymhead->st_shndx = (*ind)->st_shndx;
7132 }
7133 ssym->st_name = (*ind)->st_name;
7134 ssym->st_info = (*ind)->st_info;
7135 ssym->st_other = (*ind)->st_other;
7136 ssymhead->count++;
7137 }
7138 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7139 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7140 == total_size));
7141
7142 free (indbuf);
7143 return ssymbuf;
7144 }
7145
7146 /* Check if 2 sections define the same set of local and global
7147 symbols. */
7148
7149 static bfd_boolean
7150 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7151 struct bfd_link_info *info)
7152 {
7153 bfd *bfd1, *bfd2;
7154 const struct elf_backend_data *bed1, *bed2;
7155 Elf_Internal_Shdr *hdr1, *hdr2;
7156 bfd_size_type symcount1, symcount2;
7157 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7158 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7159 Elf_Internal_Sym *isym, *isymend;
7160 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7161 bfd_size_type count1, count2, i;
7162 unsigned int shndx1, shndx2;
7163 bfd_boolean result;
7164
7165 bfd1 = sec1->owner;
7166 bfd2 = sec2->owner;
7167
7168 /* Both sections have to be in ELF. */
7169 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7170 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7171 return FALSE;
7172
7173 if (elf_section_type (sec1) != elf_section_type (sec2))
7174 return FALSE;
7175
7176 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7177 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7178 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7179 return FALSE;
7180
7181 bed1 = get_elf_backend_data (bfd1);
7182 bed2 = get_elf_backend_data (bfd2);
7183 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7184 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7185 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7186 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7187
7188 if (symcount1 == 0 || symcount2 == 0)
7189 return FALSE;
7190
7191 result = FALSE;
7192 isymbuf1 = NULL;
7193 isymbuf2 = NULL;
7194 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7195 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7196
7197 if (ssymbuf1 == NULL)
7198 {
7199 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7200 NULL, NULL, NULL);
7201 if (isymbuf1 == NULL)
7202 goto done;
7203
7204 if (!info->reduce_memory_overheads)
7205 elf_tdata (bfd1)->symbuf = ssymbuf1
7206 = elf_create_symbuf (symcount1, isymbuf1);
7207 }
7208
7209 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7210 {
7211 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7212 NULL, NULL, NULL);
7213 if (isymbuf2 == NULL)
7214 goto done;
7215
7216 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7217 elf_tdata (bfd2)->symbuf = ssymbuf2
7218 = elf_create_symbuf (symcount2, isymbuf2);
7219 }
7220
7221 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7222 {
7223 /* Optimized faster version. */
7224 bfd_size_type lo, hi, mid;
7225 struct elf_symbol *symp;
7226 struct elf_symbuf_symbol *ssym, *ssymend;
7227
7228 lo = 0;
7229 hi = ssymbuf1->count;
7230 ssymbuf1++;
7231 count1 = 0;
7232 while (lo < hi)
7233 {
7234 mid = (lo + hi) / 2;
7235 if (shndx1 < ssymbuf1[mid].st_shndx)
7236 hi = mid;
7237 else if (shndx1 > ssymbuf1[mid].st_shndx)
7238 lo = mid + 1;
7239 else
7240 {
7241 count1 = ssymbuf1[mid].count;
7242 ssymbuf1 += mid;
7243 break;
7244 }
7245 }
7246
7247 lo = 0;
7248 hi = ssymbuf2->count;
7249 ssymbuf2++;
7250 count2 = 0;
7251 while (lo < hi)
7252 {
7253 mid = (lo + hi) / 2;
7254 if (shndx2 < ssymbuf2[mid].st_shndx)
7255 hi = mid;
7256 else if (shndx2 > ssymbuf2[mid].st_shndx)
7257 lo = mid + 1;
7258 else
7259 {
7260 count2 = ssymbuf2[mid].count;
7261 ssymbuf2 += mid;
7262 break;
7263 }
7264 }
7265
7266 if (count1 == 0 || count2 == 0 || count1 != count2)
7267 goto done;
7268
7269 symtable1
7270 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7271 symtable2
7272 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7273 if (symtable1 == NULL || symtable2 == NULL)
7274 goto done;
7275
7276 symp = symtable1;
7277 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7278 ssym < ssymend; ssym++, symp++)
7279 {
7280 symp->u.ssym = ssym;
7281 symp->name = bfd_elf_string_from_elf_section (bfd1,
7282 hdr1->sh_link,
7283 ssym->st_name);
7284 }
7285
7286 symp = symtable2;
7287 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7288 ssym < ssymend; ssym++, symp++)
7289 {
7290 symp->u.ssym = ssym;
7291 symp->name = bfd_elf_string_from_elf_section (bfd2,
7292 hdr2->sh_link,
7293 ssym->st_name);
7294 }
7295
7296 /* Sort symbol by name. */
7297 qsort (symtable1, count1, sizeof (struct elf_symbol),
7298 elf_sym_name_compare);
7299 qsort (symtable2, count1, sizeof (struct elf_symbol),
7300 elf_sym_name_compare);
7301
7302 for (i = 0; i < count1; i++)
7303 /* Two symbols must have the same binding, type and name. */
7304 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7305 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7306 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7307 goto done;
7308
7309 result = TRUE;
7310 goto done;
7311 }
7312
7313 symtable1 = (struct elf_symbol *)
7314 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7315 symtable2 = (struct elf_symbol *)
7316 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7317 if (symtable1 == NULL || symtable2 == NULL)
7318 goto done;
7319
7320 /* Count definitions in the section. */
7321 count1 = 0;
7322 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7323 if (isym->st_shndx == shndx1)
7324 symtable1[count1++].u.isym = isym;
7325
7326 count2 = 0;
7327 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7328 if (isym->st_shndx == shndx2)
7329 symtable2[count2++].u.isym = isym;
7330
7331 if (count1 == 0 || count2 == 0 || count1 != count2)
7332 goto done;
7333
7334 for (i = 0; i < count1; i++)
7335 symtable1[i].name
7336 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7337 symtable1[i].u.isym->st_name);
7338
7339 for (i = 0; i < count2; i++)
7340 symtable2[i].name
7341 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7342 symtable2[i].u.isym->st_name);
7343
7344 /* Sort symbol by name. */
7345 qsort (symtable1, count1, sizeof (struct elf_symbol),
7346 elf_sym_name_compare);
7347 qsort (symtable2, count1, sizeof (struct elf_symbol),
7348 elf_sym_name_compare);
7349
7350 for (i = 0; i < count1; i++)
7351 /* Two symbols must have the same binding, type and name. */
7352 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7353 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7354 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7355 goto done;
7356
7357 result = TRUE;
7358
7359 done:
7360 if (symtable1)
7361 free (symtable1);
7362 if (symtable2)
7363 free (symtable2);
7364 if (isymbuf1)
7365 free (isymbuf1);
7366 if (isymbuf2)
7367 free (isymbuf2);
7368
7369 return result;
7370 }
7371
7372 /* Return TRUE if 2 section types are compatible. */
7373
7374 bfd_boolean
7375 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7376 bfd *bbfd, const asection *bsec)
7377 {
7378 if (asec == NULL
7379 || bsec == NULL
7380 || abfd->xvec->flavour != bfd_target_elf_flavour
7381 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7382 return TRUE;
7383
7384 return elf_section_type (asec) == elf_section_type (bsec);
7385 }
7386 \f
7387 /* Final phase of ELF linker. */
7388
7389 /* A structure we use to avoid passing large numbers of arguments. */
7390
7391 struct elf_final_link_info
7392 {
7393 /* General link information. */
7394 struct bfd_link_info *info;
7395 /* Output BFD. */
7396 bfd *output_bfd;
7397 /* Symbol string table. */
7398 struct bfd_strtab_hash *symstrtab;
7399 /* .dynsym section. */
7400 asection *dynsym_sec;
7401 /* .hash section. */
7402 asection *hash_sec;
7403 /* symbol version section (.gnu.version). */
7404 asection *symver_sec;
7405 /* Buffer large enough to hold contents of any section. */
7406 bfd_byte *contents;
7407 /* Buffer large enough to hold external relocs of any section. */
7408 void *external_relocs;
7409 /* Buffer large enough to hold internal relocs of any section. */
7410 Elf_Internal_Rela *internal_relocs;
7411 /* Buffer large enough to hold external local symbols of any input
7412 BFD. */
7413 bfd_byte *external_syms;
7414 /* And a buffer for symbol section indices. */
7415 Elf_External_Sym_Shndx *locsym_shndx;
7416 /* Buffer large enough to hold internal local symbols of any input
7417 BFD. */
7418 Elf_Internal_Sym *internal_syms;
7419 /* Array large enough to hold a symbol index for each local symbol
7420 of any input BFD. */
7421 long *indices;
7422 /* Array large enough to hold a section pointer for each local
7423 symbol of any input BFD. */
7424 asection **sections;
7425 /* Buffer to hold swapped out symbols. */
7426 bfd_byte *symbuf;
7427 /* And one for symbol section indices. */
7428 Elf_External_Sym_Shndx *symshndxbuf;
7429 /* Number of swapped out symbols in buffer. */
7430 size_t symbuf_count;
7431 /* Number of symbols which fit in symbuf. */
7432 size_t symbuf_size;
7433 /* And same for symshndxbuf. */
7434 size_t shndxbuf_size;
7435 /* Number of STT_FILE syms seen. */
7436 size_t filesym_count;
7437 };
7438
7439 /* This struct is used to pass information to elf_link_output_extsym. */
7440
7441 struct elf_outext_info
7442 {
7443 bfd_boolean failed;
7444 bfd_boolean localsyms;
7445 bfd_boolean file_sym_done;
7446 struct elf_final_link_info *flinfo;
7447 };
7448
7449
7450 /* Support for evaluating a complex relocation.
7451
7452 Complex relocations are generalized, self-describing relocations. The
7453 implementation of them consists of two parts: complex symbols, and the
7454 relocations themselves.
7455
7456 The relocations are use a reserved elf-wide relocation type code (R_RELC
7457 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7458 information (start bit, end bit, word width, etc) into the addend. This
7459 information is extracted from CGEN-generated operand tables within gas.
7460
7461 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7462 internal) representing prefix-notation expressions, including but not
7463 limited to those sorts of expressions normally encoded as addends in the
7464 addend field. The symbol mangling format is:
7465
7466 <node> := <literal>
7467 | <unary-operator> ':' <node>
7468 | <binary-operator> ':' <node> ':' <node>
7469 ;
7470
7471 <literal> := 's' <digits=N> ':' <N character symbol name>
7472 | 'S' <digits=N> ':' <N character section name>
7473 | '#' <hexdigits>
7474 ;
7475
7476 <binary-operator> := as in C
7477 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7478
7479 static void
7480 set_symbol_value (bfd *bfd_with_globals,
7481 Elf_Internal_Sym *isymbuf,
7482 size_t locsymcount,
7483 size_t symidx,
7484 bfd_vma val)
7485 {
7486 struct elf_link_hash_entry **sym_hashes;
7487 struct elf_link_hash_entry *h;
7488 size_t extsymoff = locsymcount;
7489
7490 if (symidx < locsymcount)
7491 {
7492 Elf_Internal_Sym *sym;
7493
7494 sym = isymbuf + symidx;
7495 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7496 {
7497 /* It is a local symbol: move it to the
7498 "absolute" section and give it a value. */
7499 sym->st_shndx = SHN_ABS;
7500 sym->st_value = val;
7501 return;
7502 }
7503 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7504 extsymoff = 0;
7505 }
7506
7507 /* It is a global symbol: set its link type
7508 to "defined" and give it a value. */
7509
7510 sym_hashes = elf_sym_hashes (bfd_with_globals);
7511 h = sym_hashes [symidx - extsymoff];
7512 while (h->root.type == bfd_link_hash_indirect
7513 || h->root.type == bfd_link_hash_warning)
7514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7515 h->root.type = bfd_link_hash_defined;
7516 h->root.u.def.value = val;
7517 h->root.u.def.section = bfd_abs_section_ptr;
7518 }
7519
7520 static bfd_boolean
7521 resolve_symbol (const char *name,
7522 bfd *input_bfd,
7523 struct elf_final_link_info *flinfo,
7524 bfd_vma *result,
7525 Elf_Internal_Sym *isymbuf,
7526 size_t locsymcount)
7527 {
7528 Elf_Internal_Sym *sym;
7529 struct bfd_link_hash_entry *global_entry;
7530 const char *candidate = NULL;
7531 Elf_Internal_Shdr *symtab_hdr;
7532 size_t i;
7533
7534 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7535
7536 for (i = 0; i < locsymcount; ++ i)
7537 {
7538 sym = isymbuf + i;
7539
7540 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7541 continue;
7542
7543 candidate = bfd_elf_string_from_elf_section (input_bfd,
7544 symtab_hdr->sh_link,
7545 sym->st_name);
7546 #ifdef DEBUG
7547 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7548 name, candidate, (unsigned long) sym->st_value);
7549 #endif
7550 if (candidate && strcmp (candidate, name) == 0)
7551 {
7552 asection *sec = flinfo->sections [i];
7553
7554 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7555 *result += sec->output_offset + sec->output_section->vma;
7556 #ifdef DEBUG
7557 printf ("Found symbol with value %8.8lx\n",
7558 (unsigned long) *result);
7559 #endif
7560 return TRUE;
7561 }
7562 }
7563
7564 /* Hmm, haven't found it yet. perhaps it is a global. */
7565 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7566 FALSE, FALSE, TRUE);
7567 if (!global_entry)
7568 return FALSE;
7569
7570 if (global_entry->type == bfd_link_hash_defined
7571 || global_entry->type == bfd_link_hash_defweak)
7572 {
7573 *result = (global_entry->u.def.value
7574 + global_entry->u.def.section->output_section->vma
7575 + global_entry->u.def.section->output_offset);
7576 #ifdef DEBUG
7577 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7578 global_entry->root.string, (unsigned long) *result);
7579 #endif
7580 return TRUE;
7581 }
7582
7583 return FALSE;
7584 }
7585
7586 static bfd_boolean
7587 resolve_section (const char *name,
7588 asection *sections,
7589 bfd_vma *result)
7590 {
7591 asection *curr;
7592 unsigned int len;
7593
7594 for (curr = sections; curr; curr = curr->next)
7595 if (strcmp (curr->name, name) == 0)
7596 {
7597 *result = curr->vma;
7598 return TRUE;
7599 }
7600
7601 /* Hmm. still haven't found it. try pseudo-section names. */
7602 for (curr = sections; curr; curr = curr->next)
7603 {
7604 len = strlen (curr->name);
7605 if (len > strlen (name))
7606 continue;
7607
7608 if (strncmp (curr->name, name, len) == 0)
7609 {
7610 if (strncmp (".end", name + len, 4) == 0)
7611 {
7612 *result = curr->vma + curr->size;
7613 return TRUE;
7614 }
7615
7616 /* Insert more pseudo-section names here, if you like. */
7617 }
7618 }
7619
7620 return FALSE;
7621 }
7622
7623 static void
7624 undefined_reference (const char *reftype, const char *name)
7625 {
7626 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7627 reftype, name);
7628 }
7629
7630 static bfd_boolean
7631 eval_symbol (bfd_vma *result,
7632 const char **symp,
7633 bfd *input_bfd,
7634 struct elf_final_link_info *flinfo,
7635 bfd_vma dot,
7636 Elf_Internal_Sym *isymbuf,
7637 size_t locsymcount,
7638 int signed_p)
7639 {
7640 size_t len;
7641 size_t symlen;
7642 bfd_vma a;
7643 bfd_vma b;
7644 char symbuf[4096];
7645 const char *sym = *symp;
7646 const char *symend;
7647 bfd_boolean symbol_is_section = FALSE;
7648
7649 len = strlen (sym);
7650 symend = sym + len;
7651
7652 if (len < 1 || len > sizeof (symbuf))
7653 {
7654 bfd_set_error (bfd_error_invalid_operation);
7655 return FALSE;
7656 }
7657
7658 switch (* sym)
7659 {
7660 case '.':
7661 *result = dot;
7662 *symp = sym + 1;
7663 return TRUE;
7664
7665 case '#':
7666 ++sym;
7667 *result = strtoul (sym, (char **) symp, 16);
7668 return TRUE;
7669
7670 case 'S':
7671 symbol_is_section = TRUE;
7672 case 's':
7673 ++sym;
7674 symlen = strtol (sym, (char **) symp, 10);
7675 sym = *symp + 1; /* Skip the trailing ':'. */
7676
7677 if (symend < sym || symlen + 1 > sizeof (symbuf))
7678 {
7679 bfd_set_error (bfd_error_invalid_operation);
7680 return FALSE;
7681 }
7682
7683 memcpy (symbuf, sym, symlen);
7684 symbuf[symlen] = '\0';
7685 *symp = sym + symlen;
7686
7687 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7688 the symbol as a section, or vice-versa. so we're pretty liberal in our
7689 interpretation here; section means "try section first", not "must be a
7690 section", and likewise with symbol. */
7691
7692 if (symbol_is_section)
7693 {
7694 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7695 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7696 isymbuf, locsymcount))
7697 {
7698 undefined_reference ("section", symbuf);
7699 return FALSE;
7700 }
7701 }
7702 else
7703 {
7704 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7705 isymbuf, locsymcount)
7706 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7707 result))
7708 {
7709 undefined_reference ("symbol", symbuf);
7710 return FALSE;
7711 }
7712 }
7713
7714 return TRUE;
7715
7716 /* All that remains are operators. */
7717
7718 #define UNARY_OP(op) \
7719 if (strncmp (sym, #op, strlen (#op)) == 0) \
7720 { \
7721 sym += strlen (#op); \
7722 if (*sym == ':') \
7723 ++sym; \
7724 *symp = sym; \
7725 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7726 isymbuf, locsymcount, signed_p)) \
7727 return FALSE; \
7728 if (signed_p) \
7729 *result = op ((bfd_signed_vma) a); \
7730 else \
7731 *result = op a; \
7732 return TRUE; \
7733 }
7734
7735 #define BINARY_OP(op) \
7736 if (strncmp (sym, #op, strlen (#op)) == 0) \
7737 { \
7738 sym += strlen (#op); \
7739 if (*sym == ':') \
7740 ++sym; \
7741 *symp = sym; \
7742 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7743 isymbuf, locsymcount, signed_p)) \
7744 return FALSE; \
7745 ++*symp; \
7746 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7747 isymbuf, locsymcount, signed_p)) \
7748 return FALSE; \
7749 if (signed_p) \
7750 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7751 else \
7752 *result = a op b; \
7753 return TRUE; \
7754 }
7755
7756 default:
7757 UNARY_OP (0-);
7758 BINARY_OP (<<);
7759 BINARY_OP (>>);
7760 BINARY_OP (==);
7761 BINARY_OP (!=);
7762 BINARY_OP (<=);
7763 BINARY_OP (>=);
7764 BINARY_OP (&&);
7765 BINARY_OP (||);
7766 UNARY_OP (~);
7767 UNARY_OP (!);
7768 BINARY_OP (*);
7769 BINARY_OP (/);
7770 BINARY_OP (%);
7771 BINARY_OP (^);
7772 BINARY_OP (|);
7773 BINARY_OP (&);
7774 BINARY_OP (+);
7775 BINARY_OP (-);
7776 BINARY_OP (<);
7777 BINARY_OP (>);
7778 #undef UNARY_OP
7779 #undef BINARY_OP
7780 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7781 bfd_set_error (bfd_error_invalid_operation);
7782 return FALSE;
7783 }
7784 }
7785
7786 static void
7787 put_value (bfd_vma size,
7788 unsigned long chunksz,
7789 bfd *input_bfd,
7790 bfd_vma x,
7791 bfd_byte *location)
7792 {
7793 location += (size - chunksz);
7794
7795 for (; size; size -= chunksz, location -= chunksz)
7796 {
7797 switch (chunksz)
7798 {
7799 case 1:
7800 bfd_put_8 (input_bfd, x, location);
7801 x >>= 8;
7802 break;
7803 case 2:
7804 bfd_put_16 (input_bfd, x, location);
7805 x >>= 16;
7806 break;
7807 case 4:
7808 bfd_put_32 (input_bfd, x, location);
7809 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7810 x >>= 16;
7811 x >>= 16;
7812 break;
7813 #ifdef BFD64
7814 case 8:
7815 bfd_put_64 (input_bfd, x, location);
7816 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7817 x >>= 32;
7818 x >>= 32;
7819 break;
7820 #endif
7821 default:
7822 abort ();
7823 break;
7824 }
7825 }
7826 }
7827
7828 static bfd_vma
7829 get_value (bfd_vma size,
7830 unsigned long chunksz,
7831 bfd *input_bfd,
7832 bfd_byte *location)
7833 {
7834 int shift;
7835 bfd_vma x = 0;
7836
7837 /* Sanity checks. */
7838 BFD_ASSERT (chunksz <= sizeof (x)
7839 && size >= chunksz
7840 && chunksz != 0
7841 && (size % chunksz) == 0
7842 && input_bfd != NULL
7843 && location != NULL);
7844
7845 if (chunksz == sizeof (x))
7846 {
7847 BFD_ASSERT (size == chunksz);
7848
7849 /* Make sure that we do not perform an undefined shift operation.
7850 We know that size == chunksz so there will only be one iteration
7851 of the loop below. */
7852 shift = 0;
7853 }
7854 else
7855 shift = 8 * chunksz;
7856
7857 for (; size; size -= chunksz, location += chunksz)
7858 {
7859 switch (chunksz)
7860 {
7861 case 1:
7862 x = (x << shift) | bfd_get_8 (input_bfd, location);
7863 break;
7864 case 2:
7865 x = (x << shift) | bfd_get_16 (input_bfd, location);
7866 break;
7867 case 4:
7868 x = (x << shift) | bfd_get_32 (input_bfd, location);
7869 break;
7870 #ifdef BFD64
7871 case 8:
7872 x = (x << shift) | bfd_get_64 (input_bfd, location);
7873 break;
7874 #endif
7875 default:
7876 abort ();
7877 }
7878 }
7879 return x;
7880 }
7881
7882 static void
7883 decode_complex_addend (unsigned long *start, /* in bits */
7884 unsigned long *oplen, /* in bits */
7885 unsigned long *len, /* in bits */
7886 unsigned long *wordsz, /* in bytes */
7887 unsigned long *chunksz, /* in bytes */
7888 unsigned long *lsb0_p,
7889 unsigned long *signed_p,
7890 unsigned long *trunc_p,
7891 unsigned long encoded)
7892 {
7893 * start = encoded & 0x3F;
7894 * len = (encoded >> 6) & 0x3F;
7895 * oplen = (encoded >> 12) & 0x3F;
7896 * wordsz = (encoded >> 18) & 0xF;
7897 * chunksz = (encoded >> 22) & 0xF;
7898 * lsb0_p = (encoded >> 27) & 1;
7899 * signed_p = (encoded >> 28) & 1;
7900 * trunc_p = (encoded >> 29) & 1;
7901 }
7902
7903 bfd_reloc_status_type
7904 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7905 asection *input_section ATTRIBUTE_UNUSED,
7906 bfd_byte *contents,
7907 Elf_Internal_Rela *rel,
7908 bfd_vma relocation)
7909 {
7910 bfd_vma shift, x, mask;
7911 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7912 bfd_reloc_status_type r;
7913
7914 /* Perform this reloc, since it is complex.
7915 (this is not to say that it necessarily refers to a complex
7916 symbol; merely that it is a self-describing CGEN based reloc.
7917 i.e. the addend has the complete reloc information (bit start, end,
7918 word size, etc) encoded within it.). */
7919
7920 decode_complex_addend (&start, &oplen, &len, &wordsz,
7921 &chunksz, &lsb0_p, &signed_p,
7922 &trunc_p, rel->r_addend);
7923
7924 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7925
7926 if (lsb0_p)
7927 shift = (start + 1) - len;
7928 else
7929 shift = (8 * wordsz) - (start + len);
7930
7931 /* FIXME: octets_per_byte. */
7932 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7933
7934 #ifdef DEBUG
7935 printf ("Doing complex reloc: "
7936 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7937 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7938 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7939 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7940 oplen, (unsigned long) x, (unsigned long) mask,
7941 (unsigned long) relocation);
7942 #endif
7943
7944 r = bfd_reloc_ok;
7945 if (! trunc_p)
7946 /* Now do an overflow check. */
7947 r = bfd_check_overflow ((signed_p
7948 ? complain_overflow_signed
7949 : complain_overflow_unsigned),
7950 len, 0, (8 * wordsz),
7951 relocation);
7952
7953 /* Do the deed. */
7954 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7955
7956 #ifdef DEBUG
7957 printf (" relocation: %8.8lx\n"
7958 " shifted mask: %8.8lx\n"
7959 " shifted/masked reloc: %8.8lx\n"
7960 " result: %8.8lx\n",
7961 (unsigned long) relocation, (unsigned long) (mask << shift),
7962 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7963 #endif
7964 /* FIXME: octets_per_byte. */
7965 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7966 return r;
7967 }
7968
7969 /* qsort comparison functions sorting external relocs by r_offset. */
7970
7971 static int
7972 cmp_ext32l_r_offset (const void *p, const void *q)
7973 {
7974 union aligned32
7975 {
7976 uint32_t v;
7977 unsigned char c[4];
7978 };
7979 const union aligned32 *a
7980 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7981 const union aligned32 *b
7982 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7983
7984 uint32_t aval = ( (uint32_t) a->c[0]
7985 | (uint32_t) a->c[1] << 8
7986 | (uint32_t) a->c[2] << 16
7987 | (uint32_t) a->c[3] << 24);
7988 uint32_t bval = ( (uint32_t) b->c[0]
7989 | (uint32_t) b->c[1] << 8
7990 | (uint32_t) b->c[2] << 16
7991 | (uint32_t) b->c[3] << 24);
7992 if (aval < bval)
7993 return -1;
7994 else if (aval > bval)
7995 return 1;
7996 return 0;
7997 }
7998
7999 static int
8000 cmp_ext32b_r_offset (const void *p, const void *q)
8001 {
8002 union aligned32
8003 {
8004 uint32_t v;
8005 unsigned char c[4];
8006 };
8007 const union aligned32 *a
8008 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8009 const union aligned32 *b
8010 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8011
8012 uint32_t aval = ( (uint32_t) a->c[0] << 24
8013 | (uint32_t) a->c[1] << 16
8014 | (uint32_t) a->c[2] << 8
8015 | (uint32_t) a->c[3]);
8016 uint32_t bval = ( (uint32_t) b->c[0] << 24
8017 | (uint32_t) b->c[1] << 16
8018 | (uint32_t) b->c[2] << 8
8019 | (uint32_t) b->c[3]);
8020 if (aval < bval)
8021 return -1;
8022 else if (aval > bval)
8023 return 1;
8024 return 0;
8025 }
8026
8027 #ifdef BFD_HOST_64_BIT
8028 static int
8029 cmp_ext64l_r_offset (const void *p, const void *q)
8030 {
8031 union aligned64
8032 {
8033 uint64_t v;
8034 unsigned char c[8];
8035 };
8036 const union aligned64 *a
8037 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8038 const union aligned64 *b
8039 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8040
8041 uint64_t aval = ( (uint64_t) a->c[0]
8042 | (uint64_t) a->c[1] << 8
8043 | (uint64_t) a->c[2] << 16
8044 | (uint64_t) a->c[3] << 24
8045 | (uint64_t) a->c[4] << 32
8046 | (uint64_t) a->c[5] << 40
8047 | (uint64_t) a->c[6] << 48
8048 | (uint64_t) a->c[7] << 56);
8049 uint64_t bval = ( (uint64_t) b->c[0]
8050 | (uint64_t) b->c[1] << 8
8051 | (uint64_t) b->c[2] << 16
8052 | (uint64_t) b->c[3] << 24
8053 | (uint64_t) b->c[4] << 32
8054 | (uint64_t) b->c[5] << 40
8055 | (uint64_t) b->c[6] << 48
8056 | (uint64_t) b->c[7] << 56);
8057 if (aval < bval)
8058 return -1;
8059 else if (aval > bval)
8060 return 1;
8061 return 0;
8062 }
8063
8064 static int
8065 cmp_ext64b_r_offset (const void *p, const void *q)
8066 {
8067 union aligned64
8068 {
8069 uint64_t v;
8070 unsigned char c[8];
8071 };
8072 const union aligned64 *a
8073 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8074 const union aligned64 *b
8075 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8076
8077 uint64_t aval = ( (uint64_t) a->c[0] << 56
8078 | (uint64_t) a->c[1] << 48
8079 | (uint64_t) a->c[2] << 40
8080 | (uint64_t) a->c[3] << 32
8081 | (uint64_t) a->c[4] << 24
8082 | (uint64_t) a->c[5] << 16
8083 | (uint64_t) a->c[6] << 8
8084 | (uint64_t) a->c[7]);
8085 uint64_t bval = ( (uint64_t) b->c[0] << 56
8086 | (uint64_t) b->c[1] << 48
8087 | (uint64_t) b->c[2] << 40
8088 | (uint64_t) b->c[3] << 32
8089 | (uint64_t) b->c[4] << 24
8090 | (uint64_t) b->c[5] << 16
8091 | (uint64_t) b->c[6] << 8
8092 | (uint64_t) b->c[7]);
8093 if (aval < bval)
8094 return -1;
8095 else if (aval > bval)
8096 return 1;
8097 return 0;
8098 }
8099 #endif
8100
8101 /* When performing a relocatable link, the input relocations are
8102 preserved. But, if they reference global symbols, the indices
8103 referenced must be updated. Update all the relocations found in
8104 RELDATA. */
8105
8106 static void
8107 elf_link_adjust_relocs (bfd *abfd,
8108 struct bfd_elf_section_reloc_data *reldata,
8109 bfd_boolean sort)
8110 {
8111 unsigned int i;
8112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8113 bfd_byte *erela;
8114 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8115 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8116 bfd_vma r_type_mask;
8117 int r_sym_shift;
8118 unsigned int count = reldata->count;
8119 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8120
8121 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8122 {
8123 swap_in = bed->s->swap_reloc_in;
8124 swap_out = bed->s->swap_reloc_out;
8125 }
8126 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8127 {
8128 swap_in = bed->s->swap_reloca_in;
8129 swap_out = bed->s->swap_reloca_out;
8130 }
8131 else
8132 abort ();
8133
8134 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8135 abort ();
8136
8137 if (bed->s->arch_size == 32)
8138 {
8139 r_type_mask = 0xff;
8140 r_sym_shift = 8;
8141 }
8142 else
8143 {
8144 r_type_mask = 0xffffffff;
8145 r_sym_shift = 32;
8146 }
8147
8148 erela = reldata->hdr->contents;
8149 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8150 {
8151 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8152 unsigned int j;
8153
8154 if (*rel_hash == NULL)
8155 continue;
8156
8157 BFD_ASSERT ((*rel_hash)->indx >= 0);
8158
8159 (*swap_in) (abfd, erela, irela);
8160 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8161 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8162 | (irela[j].r_info & r_type_mask));
8163 (*swap_out) (abfd, irela, erela);
8164 }
8165
8166 if (sort)
8167 {
8168 int (*compare) (const void *, const void *);
8169
8170 if (bed->s->arch_size == 32)
8171 {
8172 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8173 compare = cmp_ext32l_r_offset;
8174 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8175 compare = cmp_ext32b_r_offset;
8176 else
8177 abort ();
8178 }
8179 else
8180 {
8181 #ifdef BFD_HOST_64_BIT
8182 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8183 compare = cmp_ext64l_r_offset;
8184 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8185 compare = cmp_ext64b_r_offset;
8186 else
8187 #endif
8188 abort ();
8189 }
8190 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8191 free (reldata->hashes);
8192 reldata->hashes = NULL;
8193 }
8194 }
8195
8196 struct elf_link_sort_rela
8197 {
8198 union {
8199 bfd_vma offset;
8200 bfd_vma sym_mask;
8201 } u;
8202 enum elf_reloc_type_class type;
8203 /* We use this as an array of size int_rels_per_ext_rel. */
8204 Elf_Internal_Rela rela[1];
8205 };
8206
8207 static int
8208 elf_link_sort_cmp1 (const void *A, const void *B)
8209 {
8210 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8211 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8212 int relativea, relativeb;
8213
8214 relativea = a->type == reloc_class_relative;
8215 relativeb = b->type == reloc_class_relative;
8216
8217 if (relativea < relativeb)
8218 return 1;
8219 if (relativea > relativeb)
8220 return -1;
8221 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8222 return -1;
8223 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8224 return 1;
8225 if (a->rela->r_offset < b->rela->r_offset)
8226 return -1;
8227 if (a->rela->r_offset > b->rela->r_offset)
8228 return 1;
8229 return 0;
8230 }
8231
8232 static int
8233 elf_link_sort_cmp2 (const void *A, const void *B)
8234 {
8235 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8236 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8237
8238 if (a->type < b->type)
8239 return -1;
8240 if (a->type > b->type)
8241 return 1;
8242 if (a->u.offset < b->u.offset)
8243 return -1;
8244 if (a->u.offset > b->u.offset)
8245 return 1;
8246 if (a->rela->r_offset < b->rela->r_offset)
8247 return -1;
8248 if (a->rela->r_offset > b->rela->r_offset)
8249 return 1;
8250 return 0;
8251 }
8252
8253 static size_t
8254 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8255 {
8256 asection *dynamic_relocs;
8257 asection *rela_dyn;
8258 asection *rel_dyn;
8259 bfd_size_type count, size;
8260 size_t i, ret, sort_elt, ext_size;
8261 bfd_byte *sort, *s_non_relative, *p;
8262 struct elf_link_sort_rela *sq;
8263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8264 int i2e = bed->s->int_rels_per_ext_rel;
8265 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8266 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8267 struct bfd_link_order *lo;
8268 bfd_vma r_sym_mask;
8269 bfd_boolean use_rela;
8270
8271 /* Find a dynamic reloc section. */
8272 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8273 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8274 if (rela_dyn != NULL && rela_dyn->size > 0
8275 && rel_dyn != NULL && rel_dyn->size > 0)
8276 {
8277 bfd_boolean use_rela_initialised = FALSE;
8278
8279 /* This is just here to stop gcc from complaining.
8280 It's initialization checking code is not perfect. */
8281 use_rela = TRUE;
8282
8283 /* Both sections are present. Examine the sizes
8284 of the indirect sections to help us choose. */
8285 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8286 if (lo->type == bfd_indirect_link_order)
8287 {
8288 asection *o = lo->u.indirect.section;
8289
8290 if ((o->size % bed->s->sizeof_rela) == 0)
8291 {
8292 if ((o->size % bed->s->sizeof_rel) == 0)
8293 /* Section size is divisible by both rel and rela sizes.
8294 It is of no help to us. */
8295 ;
8296 else
8297 {
8298 /* Section size is only divisible by rela. */
8299 if (use_rela_initialised && (use_rela == FALSE))
8300 {
8301 _bfd_error_handler
8302 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8303 bfd_set_error (bfd_error_invalid_operation);
8304 return 0;
8305 }
8306 else
8307 {
8308 use_rela = TRUE;
8309 use_rela_initialised = TRUE;
8310 }
8311 }
8312 }
8313 else if ((o->size % bed->s->sizeof_rel) == 0)
8314 {
8315 /* Section size is only divisible by rel. */
8316 if (use_rela_initialised && (use_rela == TRUE))
8317 {
8318 _bfd_error_handler
8319 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8320 bfd_set_error (bfd_error_invalid_operation);
8321 return 0;
8322 }
8323 else
8324 {
8325 use_rela = FALSE;
8326 use_rela_initialised = TRUE;
8327 }
8328 }
8329 else
8330 {
8331 /* The section size is not divisible by either - something is wrong. */
8332 _bfd_error_handler
8333 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8334 bfd_set_error (bfd_error_invalid_operation);
8335 return 0;
8336 }
8337 }
8338
8339 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8340 if (lo->type == bfd_indirect_link_order)
8341 {
8342 asection *o = lo->u.indirect.section;
8343
8344 if ((o->size % bed->s->sizeof_rela) == 0)
8345 {
8346 if ((o->size % bed->s->sizeof_rel) == 0)
8347 /* Section size is divisible by both rel and rela sizes.
8348 It is of no help to us. */
8349 ;
8350 else
8351 {
8352 /* Section size is only divisible by rela. */
8353 if (use_rela_initialised && (use_rela == FALSE))
8354 {
8355 _bfd_error_handler
8356 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8357 bfd_set_error (bfd_error_invalid_operation);
8358 return 0;
8359 }
8360 else
8361 {
8362 use_rela = TRUE;
8363 use_rela_initialised = TRUE;
8364 }
8365 }
8366 }
8367 else if ((o->size % bed->s->sizeof_rel) == 0)
8368 {
8369 /* Section size is only divisible by rel. */
8370 if (use_rela_initialised && (use_rela == TRUE))
8371 {
8372 _bfd_error_handler
8373 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8374 bfd_set_error (bfd_error_invalid_operation);
8375 return 0;
8376 }
8377 else
8378 {
8379 use_rela = FALSE;
8380 use_rela_initialised = TRUE;
8381 }
8382 }
8383 else
8384 {
8385 /* The section size is not divisible by either - something is wrong. */
8386 _bfd_error_handler
8387 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8388 bfd_set_error (bfd_error_invalid_operation);
8389 return 0;
8390 }
8391 }
8392
8393 if (! use_rela_initialised)
8394 /* Make a guess. */
8395 use_rela = TRUE;
8396 }
8397 else if (rela_dyn != NULL && rela_dyn->size > 0)
8398 use_rela = TRUE;
8399 else if (rel_dyn != NULL && rel_dyn->size > 0)
8400 use_rela = FALSE;
8401 else
8402 return 0;
8403
8404 if (use_rela)
8405 {
8406 dynamic_relocs = rela_dyn;
8407 ext_size = bed->s->sizeof_rela;
8408 swap_in = bed->s->swap_reloca_in;
8409 swap_out = bed->s->swap_reloca_out;
8410 }
8411 else
8412 {
8413 dynamic_relocs = rel_dyn;
8414 ext_size = bed->s->sizeof_rel;
8415 swap_in = bed->s->swap_reloc_in;
8416 swap_out = bed->s->swap_reloc_out;
8417 }
8418
8419 size = 0;
8420 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8421 if (lo->type == bfd_indirect_link_order)
8422 size += lo->u.indirect.section->size;
8423
8424 if (size != dynamic_relocs->size)
8425 return 0;
8426
8427 sort_elt = (sizeof (struct elf_link_sort_rela)
8428 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8429
8430 count = dynamic_relocs->size / ext_size;
8431 if (count == 0)
8432 return 0;
8433 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8434
8435 if (sort == NULL)
8436 {
8437 (*info->callbacks->warning)
8438 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8439 return 0;
8440 }
8441
8442 if (bed->s->arch_size == 32)
8443 r_sym_mask = ~(bfd_vma) 0xff;
8444 else
8445 r_sym_mask = ~(bfd_vma) 0xffffffff;
8446
8447 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8448 if (lo->type == bfd_indirect_link_order)
8449 {
8450 bfd_byte *erel, *erelend;
8451 asection *o = lo->u.indirect.section;
8452
8453 if (o->contents == NULL && o->size != 0)
8454 {
8455 /* This is a reloc section that is being handled as a normal
8456 section. See bfd_section_from_shdr. We can't combine
8457 relocs in this case. */
8458 free (sort);
8459 return 0;
8460 }
8461 erel = o->contents;
8462 erelend = o->contents + o->size;
8463 /* FIXME: octets_per_byte. */
8464 p = sort + o->output_offset / ext_size * sort_elt;
8465
8466 while (erel < erelend)
8467 {
8468 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8469
8470 (*swap_in) (abfd, erel, s->rela);
8471 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8472 s->u.sym_mask = r_sym_mask;
8473 p += sort_elt;
8474 erel += ext_size;
8475 }
8476 }
8477
8478 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8479
8480 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8481 {
8482 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8483 if (s->type != reloc_class_relative)
8484 break;
8485 }
8486 ret = i;
8487 s_non_relative = p;
8488
8489 sq = (struct elf_link_sort_rela *) s_non_relative;
8490 for (; i < count; i++, p += sort_elt)
8491 {
8492 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8493 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8494 sq = sp;
8495 sp->u.offset = sq->rela->r_offset;
8496 }
8497
8498 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8499
8500 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8501 if (lo->type == bfd_indirect_link_order)
8502 {
8503 bfd_byte *erel, *erelend;
8504 asection *o = lo->u.indirect.section;
8505
8506 erel = o->contents;
8507 erelend = o->contents + o->size;
8508 /* FIXME: octets_per_byte. */
8509 p = sort + o->output_offset / ext_size * sort_elt;
8510 while (erel < erelend)
8511 {
8512 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8513 (*swap_out) (abfd, s->rela, erel);
8514 p += sort_elt;
8515 erel += ext_size;
8516 }
8517 }
8518
8519 free (sort);
8520 *psec = dynamic_relocs;
8521 return ret;
8522 }
8523
8524 /* Flush the output symbols to the file. */
8525
8526 static bfd_boolean
8527 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8528 const struct elf_backend_data *bed)
8529 {
8530 if (flinfo->symbuf_count > 0)
8531 {
8532 Elf_Internal_Shdr *hdr;
8533 file_ptr pos;
8534 bfd_size_type amt;
8535
8536 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8537 pos = hdr->sh_offset + hdr->sh_size;
8538 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8539 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8540 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8541 return FALSE;
8542
8543 hdr->sh_size += amt;
8544 flinfo->symbuf_count = 0;
8545 }
8546
8547 return TRUE;
8548 }
8549
8550 /* Add a symbol to the output symbol table. */
8551
8552 static int
8553 elf_link_output_sym (struct elf_final_link_info *flinfo,
8554 const char *name,
8555 Elf_Internal_Sym *elfsym,
8556 asection *input_sec,
8557 struct elf_link_hash_entry *h)
8558 {
8559 bfd_byte *dest;
8560 Elf_External_Sym_Shndx *destshndx;
8561 int (*output_symbol_hook)
8562 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8563 struct elf_link_hash_entry *);
8564 const struct elf_backend_data *bed;
8565
8566 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8567
8568 bed = get_elf_backend_data (flinfo->output_bfd);
8569 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8570 if (output_symbol_hook != NULL)
8571 {
8572 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8573 if (ret != 1)
8574 return ret;
8575 }
8576
8577 if (name == NULL || *name == '\0')
8578 elfsym->st_name = 0;
8579 else if (input_sec->flags & SEC_EXCLUDE)
8580 elfsym->st_name = 0;
8581 else
8582 {
8583 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8584 name, TRUE, FALSE);
8585 if (elfsym->st_name == (unsigned long) -1)
8586 return 0;
8587 }
8588
8589 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8590 {
8591 if (! elf_link_flush_output_syms (flinfo, bed))
8592 return 0;
8593 }
8594
8595 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8596 destshndx = flinfo->symshndxbuf;
8597 if (destshndx != NULL)
8598 {
8599 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8600 {
8601 bfd_size_type amt;
8602
8603 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8604 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8605 amt * 2);
8606 if (destshndx == NULL)
8607 return 0;
8608 flinfo->symshndxbuf = destshndx;
8609 memset ((char *) destshndx + amt, 0, amt);
8610 flinfo->shndxbuf_size *= 2;
8611 }
8612 destshndx += bfd_get_symcount (flinfo->output_bfd);
8613 }
8614
8615 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8616 flinfo->symbuf_count += 1;
8617 bfd_get_symcount (flinfo->output_bfd) += 1;
8618
8619 return 1;
8620 }
8621
8622 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8623
8624 static bfd_boolean
8625 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8626 {
8627 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8628 && sym->st_shndx < SHN_LORESERVE)
8629 {
8630 /* The gABI doesn't support dynamic symbols in output sections
8631 beyond 64k. */
8632 (*_bfd_error_handler)
8633 (_("%B: Too many sections: %d (>= %d)"),
8634 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8635 bfd_set_error (bfd_error_nonrepresentable_section);
8636 return FALSE;
8637 }
8638 return TRUE;
8639 }
8640
8641 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8642 allowing an unsatisfied unversioned symbol in the DSO to match a
8643 versioned symbol that would normally require an explicit version.
8644 We also handle the case that a DSO references a hidden symbol
8645 which may be satisfied by a versioned symbol in another DSO. */
8646
8647 static bfd_boolean
8648 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8649 const struct elf_backend_data *bed,
8650 struct elf_link_hash_entry *h)
8651 {
8652 bfd *abfd;
8653 struct elf_link_loaded_list *loaded;
8654
8655 if (!is_elf_hash_table (info->hash))
8656 return FALSE;
8657
8658 /* Check indirect symbol. */
8659 while (h->root.type == bfd_link_hash_indirect)
8660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8661
8662 switch (h->root.type)
8663 {
8664 default:
8665 abfd = NULL;
8666 break;
8667
8668 case bfd_link_hash_undefined:
8669 case bfd_link_hash_undefweak:
8670 abfd = h->root.u.undef.abfd;
8671 if ((abfd->flags & DYNAMIC) == 0
8672 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8673 return FALSE;
8674 break;
8675
8676 case bfd_link_hash_defined:
8677 case bfd_link_hash_defweak:
8678 abfd = h->root.u.def.section->owner;
8679 break;
8680
8681 case bfd_link_hash_common:
8682 abfd = h->root.u.c.p->section->owner;
8683 break;
8684 }
8685 BFD_ASSERT (abfd != NULL);
8686
8687 for (loaded = elf_hash_table (info)->loaded;
8688 loaded != NULL;
8689 loaded = loaded->next)
8690 {
8691 bfd *input;
8692 Elf_Internal_Shdr *hdr;
8693 bfd_size_type symcount;
8694 bfd_size_type extsymcount;
8695 bfd_size_type extsymoff;
8696 Elf_Internal_Shdr *versymhdr;
8697 Elf_Internal_Sym *isym;
8698 Elf_Internal_Sym *isymend;
8699 Elf_Internal_Sym *isymbuf;
8700 Elf_External_Versym *ever;
8701 Elf_External_Versym *extversym;
8702
8703 input = loaded->abfd;
8704
8705 /* We check each DSO for a possible hidden versioned definition. */
8706 if (input == abfd
8707 || (input->flags & DYNAMIC) == 0
8708 || elf_dynversym (input) == 0)
8709 continue;
8710
8711 hdr = &elf_tdata (input)->dynsymtab_hdr;
8712
8713 symcount = hdr->sh_size / bed->s->sizeof_sym;
8714 if (elf_bad_symtab (input))
8715 {
8716 extsymcount = symcount;
8717 extsymoff = 0;
8718 }
8719 else
8720 {
8721 extsymcount = symcount - hdr->sh_info;
8722 extsymoff = hdr->sh_info;
8723 }
8724
8725 if (extsymcount == 0)
8726 continue;
8727
8728 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8729 NULL, NULL, NULL);
8730 if (isymbuf == NULL)
8731 return FALSE;
8732
8733 /* Read in any version definitions. */
8734 versymhdr = &elf_tdata (input)->dynversym_hdr;
8735 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8736 if (extversym == NULL)
8737 goto error_ret;
8738
8739 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8740 || (bfd_bread (extversym, versymhdr->sh_size, input)
8741 != versymhdr->sh_size))
8742 {
8743 free (extversym);
8744 error_ret:
8745 free (isymbuf);
8746 return FALSE;
8747 }
8748
8749 ever = extversym + extsymoff;
8750 isymend = isymbuf + extsymcount;
8751 for (isym = isymbuf; isym < isymend; isym++, ever++)
8752 {
8753 const char *name;
8754 Elf_Internal_Versym iver;
8755 unsigned short version_index;
8756
8757 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8758 || isym->st_shndx == SHN_UNDEF)
8759 continue;
8760
8761 name = bfd_elf_string_from_elf_section (input,
8762 hdr->sh_link,
8763 isym->st_name);
8764 if (strcmp (name, h->root.root.string) != 0)
8765 continue;
8766
8767 _bfd_elf_swap_versym_in (input, ever, &iver);
8768
8769 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8770 && !(h->def_regular
8771 && h->forced_local))
8772 {
8773 /* If we have a non-hidden versioned sym, then it should
8774 have provided a definition for the undefined sym unless
8775 it is defined in a non-shared object and forced local.
8776 */
8777 abort ();
8778 }
8779
8780 version_index = iver.vs_vers & VERSYM_VERSION;
8781 if (version_index == 1 || version_index == 2)
8782 {
8783 /* This is the base or first version. We can use it. */
8784 free (extversym);
8785 free (isymbuf);
8786 return TRUE;
8787 }
8788 }
8789
8790 free (extversym);
8791 free (isymbuf);
8792 }
8793
8794 return FALSE;
8795 }
8796
8797 /* Add an external symbol to the symbol table. This is called from
8798 the hash table traversal routine. When generating a shared object,
8799 we go through the symbol table twice. The first time we output
8800 anything that might have been forced to local scope in a version
8801 script. The second time we output the symbols that are still
8802 global symbols. */
8803
8804 static bfd_boolean
8805 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8806 {
8807 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8808 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8809 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8810 bfd_boolean strip;
8811 Elf_Internal_Sym sym;
8812 asection *input_sec;
8813 const struct elf_backend_data *bed;
8814 long indx;
8815 int ret;
8816
8817 if (h->root.type == bfd_link_hash_warning)
8818 {
8819 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8820 if (h->root.type == bfd_link_hash_new)
8821 return TRUE;
8822 }
8823
8824 /* Decide whether to output this symbol in this pass. */
8825 if (eoinfo->localsyms)
8826 {
8827 if (!h->forced_local)
8828 return TRUE;
8829 }
8830 else
8831 {
8832 if (h->forced_local)
8833 return TRUE;
8834 }
8835
8836 bed = get_elf_backend_data (flinfo->output_bfd);
8837
8838 if (h->root.type == bfd_link_hash_undefined)
8839 {
8840 /* If we have an undefined symbol reference here then it must have
8841 come from a shared library that is being linked in. (Undefined
8842 references in regular files have already been handled unless
8843 they are in unreferenced sections which are removed by garbage
8844 collection). */
8845 bfd_boolean ignore_undef = FALSE;
8846
8847 /* Some symbols may be special in that the fact that they're
8848 undefined can be safely ignored - let backend determine that. */
8849 if (bed->elf_backend_ignore_undef_symbol)
8850 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8851
8852 /* If we are reporting errors for this situation then do so now. */
8853 if (!ignore_undef
8854 && h->ref_dynamic
8855 && (!h->ref_regular || flinfo->info->gc_sections)
8856 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8857 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8858 {
8859 if (!(flinfo->info->callbacks->undefined_symbol
8860 (flinfo->info, h->root.root.string,
8861 h->ref_regular ? NULL : h->root.u.undef.abfd,
8862 NULL, 0,
8863 (flinfo->info->unresolved_syms_in_shared_libs
8864 == RM_GENERATE_ERROR))))
8865 {
8866 bfd_set_error (bfd_error_bad_value);
8867 eoinfo->failed = TRUE;
8868 return FALSE;
8869 }
8870 }
8871 }
8872
8873 /* We should also warn if a forced local symbol is referenced from
8874 shared libraries. */
8875 if (!flinfo->info->relocatable
8876 && flinfo->info->executable
8877 && h->forced_local
8878 && h->ref_dynamic
8879 && h->def_regular
8880 && !h->dynamic_def
8881 && h->ref_dynamic_nonweak
8882 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8883 {
8884 bfd *def_bfd;
8885 const char *msg;
8886 struct elf_link_hash_entry *hi = h;
8887
8888 /* Check indirect symbol. */
8889 while (hi->root.type == bfd_link_hash_indirect)
8890 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8891
8892 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8893 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8894 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8895 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8896 else
8897 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8898 def_bfd = flinfo->output_bfd;
8899 if (hi->root.u.def.section != bfd_abs_section_ptr)
8900 def_bfd = hi->root.u.def.section->owner;
8901 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8902 h->root.root.string);
8903 bfd_set_error (bfd_error_bad_value);
8904 eoinfo->failed = TRUE;
8905 return FALSE;
8906 }
8907
8908 /* We don't want to output symbols that have never been mentioned by
8909 a regular file, or that we have been told to strip. However, if
8910 h->indx is set to -2, the symbol is used by a reloc and we must
8911 output it. */
8912 strip = FALSE;
8913 if (h->indx == -2)
8914 ;
8915 else if ((h->def_dynamic
8916 || h->ref_dynamic
8917 || h->root.type == bfd_link_hash_new)
8918 && !h->def_regular
8919 && !h->ref_regular)
8920 strip = TRUE;
8921 else if (flinfo->info->strip == strip_all)
8922 strip = TRUE;
8923 else if (flinfo->info->strip == strip_some
8924 && bfd_hash_lookup (flinfo->info->keep_hash,
8925 h->root.root.string, FALSE, FALSE) == NULL)
8926 strip = TRUE;
8927 else if ((h->root.type == bfd_link_hash_defined
8928 || h->root.type == bfd_link_hash_defweak)
8929 && ((flinfo->info->strip_discarded
8930 && discarded_section (h->root.u.def.section))
8931 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8932 && h->root.u.def.section->owner != NULL
8933 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8934 strip = TRUE;
8935 else if ((h->root.type == bfd_link_hash_undefined
8936 || h->root.type == bfd_link_hash_undefweak)
8937 && h->root.u.undef.abfd != NULL
8938 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8939 strip = TRUE;
8940
8941 /* If we're stripping it, and it's not a dynamic symbol, there's
8942 nothing else to do. However, if it is a forced local symbol or
8943 an ifunc symbol we need to give the backend finish_dynamic_symbol
8944 function a chance to make it dynamic. */
8945 if (strip
8946 && h->dynindx == -1
8947 && h->type != STT_GNU_IFUNC
8948 && !h->forced_local)
8949 return TRUE;
8950
8951 sym.st_value = 0;
8952 sym.st_size = h->size;
8953 sym.st_other = h->other;
8954 if (h->forced_local)
8955 {
8956 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8957 /* Turn off visibility on local symbol. */
8958 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8959 }
8960 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8961 else if (h->unique_global && h->def_regular)
8962 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8963 else if (h->root.type == bfd_link_hash_undefweak
8964 || h->root.type == bfd_link_hash_defweak)
8965 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8966 else
8967 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8968 sym.st_target_internal = h->target_internal;
8969
8970 switch (h->root.type)
8971 {
8972 default:
8973 case bfd_link_hash_new:
8974 case bfd_link_hash_warning:
8975 abort ();
8976 return FALSE;
8977
8978 case bfd_link_hash_undefined:
8979 case bfd_link_hash_undefweak:
8980 input_sec = bfd_und_section_ptr;
8981 sym.st_shndx = SHN_UNDEF;
8982 break;
8983
8984 case bfd_link_hash_defined:
8985 case bfd_link_hash_defweak:
8986 {
8987 input_sec = h->root.u.def.section;
8988 if (input_sec->output_section != NULL)
8989 {
8990 sym.st_shndx =
8991 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8992 input_sec->output_section);
8993 if (sym.st_shndx == SHN_BAD)
8994 {
8995 (*_bfd_error_handler)
8996 (_("%B: could not find output section %A for input section %A"),
8997 flinfo->output_bfd, input_sec->output_section, input_sec);
8998 bfd_set_error (bfd_error_nonrepresentable_section);
8999 eoinfo->failed = TRUE;
9000 return FALSE;
9001 }
9002
9003 /* ELF symbols in relocatable files are section relative,
9004 but in nonrelocatable files they are virtual
9005 addresses. */
9006 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9007 if (!flinfo->info->relocatable)
9008 {
9009 sym.st_value += input_sec->output_section->vma;
9010 if (h->type == STT_TLS)
9011 {
9012 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9013 if (tls_sec != NULL)
9014 sym.st_value -= tls_sec->vma;
9015 }
9016 }
9017 }
9018 else
9019 {
9020 BFD_ASSERT (input_sec->owner == NULL
9021 || (input_sec->owner->flags & DYNAMIC) != 0);
9022 sym.st_shndx = SHN_UNDEF;
9023 input_sec = bfd_und_section_ptr;
9024 }
9025 }
9026 break;
9027
9028 case bfd_link_hash_common:
9029 input_sec = h->root.u.c.p->section;
9030 sym.st_shndx = bed->common_section_index (input_sec);
9031 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9032 break;
9033
9034 case bfd_link_hash_indirect:
9035 /* These symbols are created by symbol versioning. They point
9036 to the decorated version of the name. For example, if the
9037 symbol foo@@GNU_1.2 is the default, which should be used when
9038 foo is used with no version, then we add an indirect symbol
9039 foo which points to foo@@GNU_1.2. We ignore these symbols,
9040 since the indirected symbol is already in the hash table. */
9041 return TRUE;
9042 }
9043
9044 /* Give the processor backend a chance to tweak the symbol value,
9045 and also to finish up anything that needs to be done for this
9046 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9047 forced local syms when non-shared is due to a historical quirk.
9048 STT_GNU_IFUNC symbol must go through PLT. */
9049 if ((h->type == STT_GNU_IFUNC
9050 && h->def_regular
9051 && !flinfo->info->relocatable)
9052 || ((h->dynindx != -1
9053 || h->forced_local)
9054 && ((flinfo->info->shared
9055 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9056 || h->root.type != bfd_link_hash_undefweak))
9057 || !h->forced_local)
9058 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9059 {
9060 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9061 (flinfo->output_bfd, flinfo->info, h, &sym)))
9062 {
9063 eoinfo->failed = TRUE;
9064 return FALSE;
9065 }
9066 }
9067
9068 /* If we are marking the symbol as undefined, and there are no
9069 non-weak references to this symbol from a regular object, then
9070 mark the symbol as weak undefined; if there are non-weak
9071 references, mark the symbol as strong. We can't do this earlier,
9072 because it might not be marked as undefined until the
9073 finish_dynamic_symbol routine gets through with it. */
9074 if (sym.st_shndx == SHN_UNDEF
9075 && h->ref_regular
9076 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9077 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9078 {
9079 int bindtype;
9080 unsigned int type = ELF_ST_TYPE (sym.st_info);
9081
9082 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9083 if (type == STT_GNU_IFUNC)
9084 type = STT_FUNC;
9085
9086 if (h->ref_regular_nonweak)
9087 bindtype = STB_GLOBAL;
9088 else
9089 bindtype = STB_WEAK;
9090 sym.st_info = ELF_ST_INFO (bindtype, type);
9091 }
9092
9093 /* If this is a symbol defined in a dynamic library, don't use the
9094 symbol size from the dynamic library. Relinking an executable
9095 against a new library may introduce gratuitous changes in the
9096 executable's symbols if we keep the size. */
9097 if (sym.st_shndx == SHN_UNDEF
9098 && !h->def_regular
9099 && h->def_dynamic)
9100 sym.st_size = 0;
9101
9102 /* If a non-weak symbol with non-default visibility is not defined
9103 locally, it is a fatal error. */
9104 if (!flinfo->info->relocatable
9105 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9106 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9107 && h->root.type == bfd_link_hash_undefined
9108 && !h->def_regular)
9109 {
9110 const char *msg;
9111
9112 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9113 msg = _("%B: protected symbol `%s' isn't defined");
9114 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9115 msg = _("%B: internal symbol `%s' isn't defined");
9116 else
9117 msg = _("%B: hidden symbol `%s' isn't defined");
9118 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9119 bfd_set_error (bfd_error_bad_value);
9120 eoinfo->failed = TRUE;
9121 return FALSE;
9122 }
9123
9124 /* If this symbol should be put in the .dynsym section, then put it
9125 there now. We already know the symbol index. We also fill in
9126 the entry in the .hash section. */
9127 if (flinfo->dynsym_sec != NULL
9128 && h->dynindx != -1
9129 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9130 {
9131 bfd_byte *esym;
9132
9133 /* Since there is no version information in the dynamic string,
9134 if there is no version info in symbol version section, we will
9135 have a run-time problem. */
9136 if (h->verinfo.verdef == NULL)
9137 {
9138 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9139
9140 if (p && p [1] != '\0')
9141 {
9142 (*_bfd_error_handler)
9143 (_("%B: No symbol version section for versioned symbol `%s'"),
9144 flinfo->output_bfd, h->root.root.string);
9145 eoinfo->failed = TRUE;
9146 return FALSE;
9147 }
9148 }
9149
9150 sym.st_name = h->dynstr_index;
9151 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9152 if (!check_dynsym (flinfo->output_bfd, &sym))
9153 {
9154 eoinfo->failed = TRUE;
9155 return FALSE;
9156 }
9157 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9158
9159 if (flinfo->hash_sec != NULL)
9160 {
9161 size_t hash_entry_size;
9162 bfd_byte *bucketpos;
9163 bfd_vma chain;
9164 size_t bucketcount;
9165 size_t bucket;
9166
9167 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9168 bucket = h->u.elf_hash_value % bucketcount;
9169
9170 hash_entry_size
9171 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9172 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9173 + (bucket + 2) * hash_entry_size);
9174 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9175 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9176 bucketpos);
9177 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9178 ((bfd_byte *) flinfo->hash_sec->contents
9179 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9180 }
9181
9182 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9183 {
9184 Elf_Internal_Versym iversym;
9185 Elf_External_Versym *eversym;
9186
9187 if (!h->def_regular)
9188 {
9189 if (h->verinfo.verdef == NULL
9190 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9191 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9192 iversym.vs_vers = 0;
9193 else
9194 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9195 }
9196 else
9197 {
9198 if (h->verinfo.vertree == NULL)
9199 iversym.vs_vers = 1;
9200 else
9201 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9202 if (flinfo->info->create_default_symver)
9203 iversym.vs_vers++;
9204 }
9205
9206 if (h->hidden)
9207 iversym.vs_vers |= VERSYM_HIDDEN;
9208
9209 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9210 eversym += h->dynindx;
9211 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9212 }
9213 }
9214
9215 /* If the symbol is undefined, and we didn't output it to .dynsym,
9216 strip it from .symtab too. Obviously we can't do this for
9217 relocatable output or when needed for --emit-relocs. */
9218 else if (input_sec == bfd_und_section_ptr
9219 && h->indx != -2
9220 && !flinfo->info->relocatable)
9221 return TRUE;
9222 /* Also strip others that we couldn't earlier due to dynamic symbol
9223 processing. */
9224 if (strip)
9225 return TRUE;
9226 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9227 return TRUE;
9228
9229 /* Output a FILE symbol so that following locals are not associated
9230 with the wrong input file. We need one for forced local symbols
9231 if we've seen more than one FILE symbol or when we have exactly
9232 one FILE symbol but global symbols are present in a file other
9233 than the one with the FILE symbol. We also need one if linker
9234 defined symbols are present. In practice these conditions are
9235 always met, so just emit the FILE symbol unconditionally. */
9236 if (eoinfo->localsyms
9237 && !eoinfo->file_sym_done
9238 && eoinfo->flinfo->filesym_count != 0)
9239 {
9240 Elf_Internal_Sym fsym;
9241
9242 memset (&fsym, 0, sizeof (fsym));
9243 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9244 fsym.st_shndx = SHN_ABS;
9245 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9246 bfd_und_section_ptr, NULL))
9247 return FALSE;
9248
9249 eoinfo->file_sym_done = TRUE;
9250 }
9251
9252 indx = bfd_get_symcount (flinfo->output_bfd);
9253 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9254 if (ret == 0)
9255 {
9256 eoinfo->failed = TRUE;
9257 return FALSE;
9258 }
9259 else if (ret == 1)
9260 h->indx = indx;
9261 else if (h->indx == -2)
9262 abort();
9263
9264 return TRUE;
9265 }
9266
9267 /* Return TRUE if special handling is done for relocs in SEC against
9268 symbols defined in discarded sections. */
9269
9270 static bfd_boolean
9271 elf_section_ignore_discarded_relocs (asection *sec)
9272 {
9273 const struct elf_backend_data *bed;
9274
9275 switch (sec->sec_info_type)
9276 {
9277 case SEC_INFO_TYPE_STABS:
9278 case SEC_INFO_TYPE_EH_FRAME:
9279 return TRUE;
9280 default:
9281 break;
9282 }
9283
9284 bed = get_elf_backend_data (sec->owner);
9285 if (bed->elf_backend_ignore_discarded_relocs != NULL
9286 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9287 return TRUE;
9288
9289 return FALSE;
9290 }
9291
9292 /* Return a mask saying how ld should treat relocations in SEC against
9293 symbols defined in discarded sections. If this function returns
9294 COMPLAIN set, ld will issue a warning message. If this function
9295 returns PRETEND set, and the discarded section was link-once and the
9296 same size as the kept link-once section, ld will pretend that the
9297 symbol was actually defined in the kept section. Otherwise ld will
9298 zero the reloc (at least that is the intent, but some cooperation by
9299 the target dependent code is needed, particularly for REL targets). */
9300
9301 unsigned int
9302 _bfd_elf_default_action_discarded (asection *sec)
9303 {
9304 if (sec->flags & SEC_DEBUGGING)
9305 return PRETEND;
9306
9307 if (strcmp (".eh_frame", sec->name) == 0)
9308 return 0;
9309
9310 if (strcmp (".gcc_except_table", sec->name) == 0)
9311 return 0;
9312
9313 return COMPLAIN | PRETEND;
9314 }
9315
9316 /* Find a match between a section and a member of a section group. */
9317
9318 static asection *
9319 match_group_member (asection *sec, asection *group,
9320 struct bfd_link_info *info)
9321 {
9322 asection *first = elf_next_in_group (group);
9323 asection *s = first;
9324
9325 while (s != NULL)
9326 {
9327 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9328 return s;
9329
9330 s = elf_next_in_group (s);
9331 if (s == first)
9332 break;
9333 }
9334
9335 return NULL;
9336 }
9337
9338 /* Check if the kept section of a discarded section SEC can be used
9339 to replace it. Return the replacement if it is OK. Otherwise return
9340 NULL. */
9341
9342 asection *
9343 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9344 {
9345 asection *kept;
9346
9347 kept = sec->kept_section;
9348 if (kept != NULL)
9349 {
9350 if ((kept->flags & SEC_GROUP) != 0)
9351 kept = match_group_member (sec, kept, info);
9352 if (kept != NULL
9353 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9354 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9355 kept = NULL;
9356 sec->kept_section = kept;
9357 }
9358 return kept;
9359 }
9360
9361 /* Link an input file into the linker output file. This function
9362 handles all the sections and relocations of the input file at once.
9363 This is so that we only have to read the local symbols once, and
9364 don't have to keep them in memory. */
9365
9366 static bfd_boolean
9367 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9368 {
9369 int (*relocate_section)
9370 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9371 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9372 bfd *output_bfd;
9373 Elf_Internal_Shdr *symtab_hdr;
9374 size_t locsymcount;
9375 size_t extsymoff;
9376 Elf_Internal_Sym *isymbuf;
9377 Elf_Internal_Sym *isym;
9378 Elf_Internal_Sym *isymend;
9379 long *pindex;
9380 asection **ppsection;
9381 asection *o;
9382 const struct elf_backend_data *bed;
9383 struct elf_link_hash_entry **sym_hashes;
9384 bfd_size_type address_size;
9385 bfd_vma r_type_mask;
9386 int r_sym_shift;
9387 bfd_boolean have_file_sym = FALSE;
9388
9389 output_bfd = flinfo->output_bfd;
9390 bed = get_elf_backend_data (output_bfd);
9391 relocate_section = bed->elf_backend_relocate_section;
9392
9393 /* If this is a dynamic object, we don't want to do anything here:
9394 we don't want the local symbols, and we don't want the section
9395 contents. */
9396 if ((input_bfd->flags & DYNAMIC) != 0)
9397 return TRUE;
9398
9399 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9400 if (elf_bad_symtab (input_bfd))
9401 {
9402 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9403 extsymoff = 0;
9404 }
9405 else
9406 {
9407 locsymcount = symtab_hdr->sh_info;
9408 extsymoff = symtab_hdr->sh_info;
9409 }
9410
9411 /* Read the local symbols. */
9412 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9413 if (isymbuf == NULL && locsymcount != 0)
9414 {
9415 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9416 flinfo->internal_syms,
9417 flinfo->external_syms,
9418 flinfo->locsym_shndx);
9419 if (isymbuf == NULL)
9420 return FALSE;
9421 }
9422
9423 /* Find local symbol sections and adjust values of symbols in
9424 SEC_MERGE sections. Write out those local symbols we know are
9425 going into the output file. */
9426 isymend = isymbuf + locsymcount;
9427 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9428 isym < isymend;
9429 isym++, pindex++, ppsection++)
9430 {
9431 asection *isec;
9432 const char *name;
9433 Elf_Internal_Sym osym;
9434 long indx;
9435 int ret;
9436
9437 *pindex = -1;
9438
9439 if (elf_bad_symtab (input_bfd))
9440 {
9441 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9442 {
9443 *ppsection = NULL;
9444 continue;
9445 }
9446 }
9447
9448 if (isym->st_shndx == SHN_UNDEF)
9449 isec = bfd_und_section_ptr;
9450 else if (isym->st_shndx == SHN_ABS)
9451 isec = bfd_abs_section_ptr;
9452 else if (isym->st_shndx == SHN_COMMON)
9453 isec = bfd_com_section_ptr;
9454 else
9455 {
9456 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9457 if (isec == NULL)
9458 {
9459 /* Don't attempt to output symbols with st_shnx in the
9460 reserved range other than SHN_ABS and SHN_COMMON. */
9461 *ppsection = NULL;
9462 continue;
9463 }
9464 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9465 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9466 isym->st_value =
9467 _bfd_merged_section_offset (output_bfd, &isec,
9468 elf_section_data (isec)->sec_info,
9469 isym->st_value);
9470 }
9471
9472 *ppsection = isec;
9473
9474 /* Don't output the first, undefined, symbol. In fact, don't
9475 output any undefined local symbol. */
9476 if (isec == bfd_und_section_ptr)
9477 continue;
9478
9479 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9480 {
9481 /* We never output section symbols. Instead, we use the
9482 section symbol of the corresponding section in the output
9483 file. */
9484 continue;
9485 }
9486
9487 /* If we are stripping all symbols, we don't want to output this
9488 one. */
9489 if (flinfo->info->strip == strip_all)
9490 continue;
9491
9492 /* If we are discarding all local symbols, we don't want to
9493 output this one. If we are generating a relocatable output
9494 file, then some of the local symbols may be required by
9495 relocs; we output them below as we discover that they are
9496 needed. */
9497 if (flinfo->info->discard == discard_all)
9498 continue;
9499
9500 /* If this symbol is defined in a section which we are
9501 discarding, we don't need to keep it. */
9502 if (isym->st_shndx != SHN_UNDEF
9503 && isym->st_shndx < SHN_LORESERVE
9504 && bfd_section_removed_from_list (output_bfd,
9505 isec->output_section))
9506 continue;
9507
9508 /* Get the name of the symbol. */
9509 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9510 isym->st_name);
9511 if (name == NULL)
9512 return FALSE;
9513
9514 /* See if we are discarding symbols with this name. */
9515 if ((flinfo->info->strip == strip_some
9516 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9517 == NULL))
9518 || (((flinfo->info->discard == discard_sec_merge
9519 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9520 || flinfo->info->discard == discard_l)
9521 && bfd_is_local_label_name (input_bfd, name)))
9522 continue;
9523
9524 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9525 {
9526 if (input_bfd->lto_output)
9527 /* -flto puts a temp file name here. This means builds
9528 are not reproducible. Discard the symbol. */
9529 continue;
9530 have_file_sym = TRUE;
9531 flinfo->filesym_count += 1;
9532 }
9533 if (!have_file_sym)
9534 {
9535 /* In the absence of debug info, bfd_find_nearest_line uses
9536 FILE symbols to determine the source file for local
9537 function symbols. Provide a FILE symbol here if input
9538 files lack such, so that their symbols won't be
9539 associated with a previous input file. It's not the
9540 source file, but the best we can do. */
9541 have_file_sym = TRUE;
9542 flinfo->filesym_count += 1;
9543 memset (&osym, 0, sizeof (osym));
9544 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9545 osym.st_shndx = SHN_ABS;
9546 if (!elf_link_output_sym (flinfo,
9547 (input_bfd->lto_output ? NULL
9548 : input_bfd->filename),
9549 &osym, bfd_abs_section_ptr, NULL))
9550 return FALSE;
9551 }
9552
9553 osym = *isym;
9554
9555 /* Adjust the section index for the output file. */
9556 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9557 isec->output_section);
9558 if (osym.st_shndx == SHN_BAD)
9559 return FALSE;
9560
9561 /* ELF symbols in relocatable files are section relative, but
9562 in executable files they are virtual addresses. Note that
9563 this code assumes that all ELF sections have an associated
9564 BFD section with a reasonable value for output_offset; below
9565 we assume that they also have a reasonable value for
9566 output_section. Any special sections must be set up to meet
9567 these requirements. */
9568 osym.st_value += isec->output_offset;
9569 if (!flinfo->info->relocatable)
9570 {
9571 osym.st_value += isec->output_section->vma;
9572 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9573 {
9574 /* STT_TLS symbols are relative to PT_TLS segment base. */
9575 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9576 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9577 }
9578 }
9579
9580 indx = bfd_get_symcount (output_bfd);
9581 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9582 if (ret == 0)
9583 return FALSE;
9584 else if (ret == 1)
9585 *pindex = indx;
9586 }
9587
9588 if (bed->s->arch_size == 32)
9589 {
9590 r_type_mask = 0xff;
9591 r_sym_shift = 8;
9592 address_size = 4;
9593 }
9594 else
9595 {
9596 r_type_mask = 0xffffffff;
9597 r_sym_shift = 32;
9598 address_size = 8;
9599 }
9600
9601 /* Relocate the contents of each section. */
9602 sym_hashes = elf_sym_hashes (input_bfd);
9603 for (o = input_bfd->sections; o != NULL; o = o->next)
9604 {
9605 bfd_byte *contents;
9606
9607 if (! o->linker_mark)
9608 {
9609 /* This section was omitted from the link. */
9610 continue;
9611 }
9612
9613 if (flinfo->info->relocatable
9614 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9615 {
9616 /* Deal with the group signature symbol. */
9617 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9618 unsigned long symndx = sec_data->this_hdr.sh_info;
9619 asection *osec = o->output_section;
9620
9621 if (symndx >= locsymcount
9622 || (elf_bad_symtab (input_bfd)
9623 && flinfo->sections[symndx] == NULL))
9624 {
9625 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9626 while (h->root.type == bfd_link_hash_indirect
9627 || h->root.type == bfd_link_hash_warning)
9628 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9629 /* Arrange for symbol to be output. */
9630 h->indx = -2;
9631 elf_section_data (osec)->this_hdr.sh_info = -2;
9632 }
9633 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9634 {
9635 /* We'll use the output section target_index. */
9636 asection *sec = flinfo->sections[symndx]->output_section;
9637 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9638 }
9639 else
9640 {
9641 if (flinfo->indices[symndx] == -1)
9642 {
9643 /* Otherwise output the local symbol now. */
9644 Elf_Internal_Sym sym = isymbuf[symndx];
9645 asection *sec = flinfo->sections[symndx]->output_section;
9646 const char *name;
9647 long indx;
9648 int ret;
9649
9650 name = bfd_elf_string_from_elf_section (input_bfd,
9651 symtab_hdr->sh_link,
9652 sym.st_name);
9653 if (name == NULL)
9654 return FALSE;
9655
9656 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9657 sec);
9658 if (sym.st_shndx == SHN_BAD)
9659 return FALSE;
9660
9661 sym.st_value += o->output_offset;
9662
9663 indx = bfd_get_symcount (output_bfd);
9664 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9665 if (ret == 0)
9666 return FALSE;
9667 else if (ret == 1)
9668 flinfo->indices[symndx] = indx;
9669 else
9670 abort ();
9671 }
9672 elf_section_data (osec)->this_hdr.sh_info
9673 = flinfo->indices[symndx];
9674 }
9675 }
9676
9677 if ((o->flags & SEC_HAS_CONTENTS) == 0
9678 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9679 continue;
9680
9681 if ((o->flags & SEC_LINKER_CREATED) != 0)
9682 {
9683 /* Section was created by _bfd_elf_link_create_dynamic_sections
9684 or somesuch. */
9685 continue;
9686 }
9687
9688 /* Get the contents of the section. They have been cached by a
9689 relaxation routine. Note that o is a section in an input
9690 file, so the contents field will not have been set by any of
9691 the routines which work on output files. */
9692 if (elf_section_data (o)->this_hdr.contents != NULL)
9693 {
9694 contents = elf_section_data (o)->this_hdr.contents;
9695 if (bed->caches_rawsize
9696 && o->rawsize != 0
9697 && o->rawsize < o->size)
9698 {
9699 memcpy (flinfo->contents, contents, o->rawsize);
9700 contents = flinfo->contents;
9701 }
9702 }
9703 else
9704 {
9705 contents = flinfo->contents;
9706 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9707 return FALSE;
9708 }
9709
9710 if ((o->flags & SEC_RELOC) != 0)
9711 {
9712 Elf_Internal_Rela *internal_relocs;
9713 Elf_Internal_Rela *rel, *relend;
9714 int action_discarded;
9715 int ret;
9716
9717 /* Get the swapped relocs. */
9718 internal_relocs
9719 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9720 flinfo->internal_relocs, FALSE);
9721 if (internal_relocs == NULL
9722 && o->reloc_count > 0)
9723 return FALSE;
9724
9725 /* We need to reverse-copy input .ctors/.dtors sections if
9726 they are placed in .init_array/.finit_array for output. */
9727 if (o->size > address_size
9728 && ((strncmp (o->name, ".ctors", 6) == 0
9729 && strcmp (o->output_section->name,
9730 ".init_array") == 0)
9731 || (strncmp (o->name, ".dtors", 6) == 0
9732 && strcmp (o->output_section->name,
9733 ".fini_array") == 0))
9734 && (o->name[6] == 0 || o->name[6] == '.'))
9735 {
9736 if (o->size != o->reloc_count * address_size)
9737 {
9738 (*_bfd_error_handler)
9739 (_("error: %B: size of section %A is not "
9740 "multiple of address size"),
9741 input_bfd, o);
9742 bfd_set_error (bfd_error_on_input);
9743 return FALSE;
9744 }
9745 o->flags |= SEC_ELF_REVERSE_COPY;
9746 }
9747
9748 action_discarded = -1;
9749 if (!elf_section_ignore_discarded_relocs (o))
9750 action_discarded = (*bed->action_discarded) (o);
9751
9752 /* Run through the relocs evaluating complex reloc symbols and
9753 looking for relocs against symbols from discarded sections
9754 or section symbols from removed link-once sections.
9755 Complain about relocs against discarded sections. Zero
9756 relocs against removed link-once sections. */
9757
9758 rel = internal_relocs;
9759 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9760 for ( ; rel < relend; rel++)
9761 {
9762 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9763 unsigned int s_type;
9764 asection **ps, *sec;
9765 struct elf_link_hash_entry *h = NULL;
9766 const char *sym_name;
9767
9768 if (r_symndx == STN_UNDEF)
9769 continue;
9770
9771 if (r_symndx >= locsymcount
9772 || (elf_bad_symtab (input_bfd)
9773 && flinfo->sections[r_symndx] == NULL))
9774 {
9775 h = sym_hashes[r_symndx - extsymoff];
9776
9777 /* Badly formatted input files can contain relocs that
9778 reference non-existant symbols. Check here so that
9779 we do not seg fault. */
9780 if (h == NULL)
9781 {
9782 char buffer [32];
9783
9784 sprintf_vma (buffer, rel->r_info);
9785 (*_bfd_error_handler)
9786 (_("error: %B contains a reloc (0x%s) for section %A "
9787 "that references a non-existent global symbol"),
9788 input_bfd, o, buffer);
9789 bfd_set_error (bfd_error_bad_value);
9790 return FALSE;
9791 }
9792
9793 while (h->root.type == bfd_link_hash_indirect
9794 || h->root.type == bfd_link_hash_warning)
9795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9796
9797 s_type = h->type;
9798
9799 /* If a plugin symbol is referenced from a non-IR file,
9800 mark the symbol as undefined. Note that the
9801 linker may attach linker created dynamic sections
9802 to the plugin bfd. Symbols defined in linker
9803 created sections are not plugin symbols. */
9804 if (h->root.non_ir_ref
9805 && (h->root.type == bfd_link_hash_defined
9806 || h->root.type == bfd_link_hash_defweak)
9807 && (h->root.u.def.section->flags
9808 & SEC_LINKER_CREATED) == 0
9809 && h->root.u.def.section->owner != NULL
9810 && (h->root.u.def.section->owner->flags
9811 & BFD_PLUGIN) != 0)
9812 {
9813 h->root.type = bfd_link_hash_undefined;
9814 h->root.u.undef.abfd = h->root.u.def.section->owner;
9815 }
9816
9817 ps = NULL;
9818 if (h->root.type == bfd_link_hash_defined
9819 || h->root.type == bfd_link_hash_defweak)
9820 ps = &h->root.u.def.section;
9821
9822 sym_name = h->root.root.string;
9823 }
9824 else
9825 {
9826 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9827
9828 s_type = ELF_ST_TYPE (sym->st_info);
9829 ps = &flinfo->sections[r_symndx];
9830 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9831 sym, *ps);
9832 }
9833
9834 if ((s_type == STT_RELC || s_type == STT_SRELC)
9835 && !flinfo->info->relocatable)
9836 {
9837 bfd_vma val;
9838 bfd_vma dot = (rel->r_offset
9839 + o->output_offset + o->output_section->vma);
9840 #ifdef DEBUG
9841 printf ("Encountered a complex symbol!");
9842 printf (" (input_bfd %s, section %s, reloc %ld\n",
9843 input_bfd->filename, o->name,
9844 (long) (rel - internal_relocs));
9845 printf (" symbol: idx %8.8lx, name %s\n",
9846 r_symndx, sym_name);
9847 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9848 (unsigned long) rel->r_info,
9849 (unsigned long) rel->r_offset);
9850 #endif
9851 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9852 isymbuf, locsymcount, s_type == STT_SRELC))
9853 return FALSE;
9854
9855 /* Symbol evaluated OK. Update to absolute value. */
9856 set_symbol_value (input_bfd, isymbuf, locsymcount,
9857 r_symndx, val);
9858 continue;
9859 }
9860
9861 if (action_discarded != -1 && ps != NULL)
9862 {
9863 /* Complain if the definition comes from a
9864 discarded section. */
9865 if ((sec = *ps) != NULL && discarded_section (sec))
9866 {
9867 BFD_ASSERT (r_symndx != STN_UNDEF);
9868 if (action_discarded & COMPLAIN)
9869 (*flinfo->info->callbacks->einfo)
9870 (_("%X`%s' referenced in section `%A' of %B: "
9871 "defined in discarded section `%A' of %B\n"),
9872 sym_name, o, input_bfd, sec, sec->owner);
9873
9874 /* Try to do the best we can to support buggy old
9875 versions of gcc. Pretend that the symbol is
9876 really defined in the kept linkonce section.
9877 FIXME: This is quite broken. Modifying the
9878 symbol here means we will be changing all later
9879 uses of the symbol, not just in this section. */
9880 if (action_discarded & PRETEND)
9881 {
9882 asection *kept;
9883
9884 kept = _bfd_elf_check_kept_section (sec,
9885 flinfo->info);
9886 if (kept != NULL)
9887 {
9888 *ps = kept;
9889 continue;
9890 }
9891 }
9892 }
9893 }
9894 }
9895
9896 /* Relocate the section by invoking a back end routine.
9897
9898 The back end routine is responsible for adjusting the
9899 section contents as necessary, and (if using Rela relocs
9900 and generating a relocatable output file) adjusting the
9901 reloc addend as necessary.
9902
9903 The back end routine does not have to worry about setting
9904 the reloc address or the reloc symbol index.
9905
9906 The back end routine is given a pointer to the swapped in
9907 internal symbols, and can access the hash table entries
9908 for the external symbols via elf_sym_hashes (input_bfd).
9909
9910 When generating relocatable output, the back end routine
9911 must handle STB_LOCAL/STT_SECTION symbols specially. The
9912 output symbol is going to be a section symbol
9913 corresponding to the output section, which will require
9914 the addend to be adjusted. */
9915
9916 ret = (*relocate_section) (output_bfd, flinfo->info,
9917 input_bfd, o, contents,
9918 internal_relocs,
9919 isymbuf,
9920 flinfo->sections);
9921 if (!ret)
9922 return FALSE;
9923
9924 if (ret == 2
9925 || flinfo->info->relocatable
9926 || flinfo->info->emitrelocations)
9927 {
9928 Elf_Internal_Rela *irela;
9929 Elf_Internal_Rela *irelaend, *irelamid;
9930 bfd_vma last_offset;
9931 struct elf_link_hash_entry **rel_hash;
9932 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9933 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9934 unsigned int next_erel;
9935 bfd_boolean rela_normal;
9936 struct bfd_elf_section_data *esdi, *esdo;
9937
9938 esdi = elf_section_data (o);
9939 esdo = elf_section_data (o->output_section);
9940 rela_normal = FALSE;
9941
9942 /* Adjust the reloc addresses and symbol indices. */
9943
9944 irela = internal_relocs;
9945 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9946 rel_hash = esdo->rel.hashes + esdo->rel.count;
9947 /* We start processing the REL relocs, if any. When we reach
9948 IRELAMID in the loop, we switch to the RELA relocs. */
9949 irelamid = irela;
9950 if (esdi->rel.hdr != NULL)
9951 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9952 * bed->s->int_rels_per_ext_rel);
9953 rel_hash_list = rel_hash;
9954 rela_hash_list = NULL;
9955 last_offset = o->output_offset;
9956 if (!flinfo->info->relocatable)
9957 last_offset += o->output_section->vma;
9958 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9959 {
9960 unsigned long r_symndx;
9961 asection *sec;
9962 Elf_Internal_Sym sym;
9963
9964 if (next_erel == bed->s->int_rels_per_ext_rel)
9965 {
9966 rel_hash++;
9967 next_erel = 0;
9968 }
9969
9970 if (irela == irelamid)
9971 {
9972 rel_hash = esdo->rela.hashes + esdo->rela.count;
9973 rela_hash_list = rel_hash;
9974 rela_normal = bed->rela_normal;
9975 }
9976
9977 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9978 flinfo->info, o,
9979 irela->r_offset);
9980 if (irela->r_offset >= (bfd_vma) -2)
9981 {
9982 /* This is a reloc for a deleted entry or somesuch.
9983 Turn it into an R_*_NONE reloc, at the same
9984 offset as the last reloc. elf_eh_frame.c and
9985 bfd_elf_discard_info rely on reloc offsets
9986 being ordered. */
9987 irela->r_offset = last_offset;
9988 irela->r_info = 0;
9989 irela->r_addend = 0;
9990 continue;
9991 }
9992
9993 irela->r_offset += o->output_offset;
9994
9995 /* Relocs in an executable have to be virtual addresses. */
9996 if (!flinfo->info->relocatable)
9997 irela->r_offset += o->output_section->vma;
9998
9999 last_offset = irela->r_offset;
10000
10001 r_symndx = irela->r_info >> r_sym_shift;
10002 if (r_symndx == STN_UNDEF)
10003 continue;
10004
10005 if (r_symndx >= locsymcount
10006 || (elf_bad_symtab (input_bfd)
10007 && flinfo->sections[r_symndx] == NULL))
10008 {
10009 struct elf_link_hash_entry *rh;
10010 unsigned long indx;
10011
10012 /* This is a reloc against a global symbol. We
10013 have not yet output all the local symbols, so
10014 we do not know the symbol index of any global
10015 symbol. We set the rel_hash entry for this
10016 reloc to point to the global hash table entry
10017 for this symbol. The symbol index is then
10018 set at the end of bfd_elf_final_link. */
10019 indx = r_symndx - extsymoff;
10020 rh = elf_sym_hashes (input_bfd)[indx];
10021 while (rh->root.type == bfd_link_hash_indirect
10022 || rh->root.type == bfd_link_hash_warning)
10023 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10024
10025 /* Setting the index to -2 tells
10026 elf_link_output_extsym that this symbol is
10027 used by a reloc. */
10028 BFD_ASSERT (rh->indx < 0);
10029 rh->indx = -2;
10030
10031 *rel_hash = rh;
10032
10033 continue;
10034 }
10035
10036 /* This is a reloc against a local symbol. */
10037
10038 *rel_hash = NULL;
10039 sym = isymbuf[r_symndx];
10040 sec = flinfo->sections[r_symndx];
10041 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10042 {
10043 /* I suppose the backend ought to fill in the
10044 section of any STT_SECTION symbol against a
10045 processor specific section. */
10046 r_symndx = STN_UNDEF;
10047 if (bfd_is_abs_section (sec))
10048 ;
10049 else if (sec == NULL || sec->owner == NULL)
10050 {
10051 bfd_set_error (bfd_error_bad_value);
10052 return FALSE;
10053 }
10054 else
10055 {
10056 asection *osec = sec->output_section;
10057
10058 /* If we have discarded a section, the output
10059 section will be the absolute section. In
10060 case of discarded SEC_MERGE sections, use
10061 the kept section. relocate_section should
10062 have already handled discarded linkonce
10063 sections. */
10064 if (bfd_is_abs_section (osec)
10065 && sec->kept_section != NULL
10066 && sec->kept_section->output_section != NULL)
10067 {
10068 osec = sec->kept_section->output_section;
10069 irela->r_addend -= osec->vma;
10070 }
10071
10072 if (!bfd_is_abs_section (osec))
10073 {
10074 r_symndx = osec->target_index;
10075 if (r_symndx == STN_UNDEF)
10076 {
10077 irela->r_addend += osec->vma;
10078 osec = _bfd_nearby_section (output_bfd, osec,
10079 osec->vma);
10080 irela->r_addend -= osec->vma;
10081 r_symndx = osec->target_index;
10082 }
10083 }
10084 }
10085
10086 /* Adjust the addend according to where the
10087 section winds up in the output section. */
10088 if (rela_normal)
10089 irela->r_addend += sec->output_offset;
10090 }
10091 else
10092 {
10093 if (flinfo->indices[r_symndx] == -1)
10094 {
10095 unsigned long shlink;
10096 const char *name;
10097 asection *osec;
10098 long indx;
10099
10100 if (flinfo->info->strip == strip_all)
10101 {
10102 /* You can't do ld -r -s. */
10103 bfd_set_error (bfd_error_invalid_operation);
10104 return FALSE;
10105 }
10106
10107 /* This symbol was skipped earlier, but
10108 since it is needed by a reloc, we
10109 must output it now. */
10110 shlink = symtab_hdr->sh_link;
10111 name = (bfd_elf_string_from_elf_section
10112 (input_bfd, shlink, sym.st_name));
10113 if (name == NULL)
10114 return FALSE;
10115
10116 osec = sec->output_section;
10117 sym.st_shndx =
10118 _bfd_elf_section_from_bfd_section (output_bfd,
10119 osec);
10120 if (sym.st_shndx == SHN_BAD)
10121 return FALSE;
10122
10123 sym.st_value += sec->output_offset;
10124 if (!flinfo->info->relocatable)
10125 {
10126 sym.st_value += osec->vma;
10127 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10128 {
10129 /* STT_TLS symbols are relative to PT_TLS
10130 segment base. */
10131 BFD_ASSERT (elf_hash_table (flinfo->info)
10132 ->tls_sec != NULL);
10133 sym.st_value -= (elf_hash_table (flinfo->info)
10134 ->tls_sec->vma);
10135 }
10136 }
10137
10138 indx = bfd_get_symcount (output_bfd);
10139 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10140 NULL);
10141 if (ret == 0)
10142 return FALSE;
10143 else if (ret == 1)
10144 flinfo->indices[r_symndx] = indx;
10145 else
10146 abort ();
10147 }
10148
10149 r_symndx = flinfo->indices[r_symndx];
10150 }
10151
10152 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10153 | (irela->r_info & r_type_mask));
10154 }
10155
10156 /* Swap out the relocs. */
10157 input_rel_hdr = esdi->rel.hdr;
10158 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10159 {
10160 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10161 input_rel_hdr,
10162 internal_relocs,
10163 rel_hash_list))
10164 return FALSE;
10165 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10166 * bed->s->int_rels_per_ext_rel);
10167 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10168 }
10169
10170 input_rela_hdr = esdi->rela.hdr;
10171 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10172 {
10173 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10174 input_rela_hdr,
10175 internal_relocs,
10176 rela_hash_list))
10177 return FALSE;
10178 }
10179 }
10180 }
10181
10182 /* Write out the modified section contents. */
10183 if (bed->elf_backend_write_section
10184 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10185 contents))
10186 {
10187 /* Section written out. */
10188 }
10189 else switch (o->sec_info_type)
10190 {
10191 case SEC_INFO_TYPE_STABS:
10192 if (! (_bfd_write_section_stabs
10193 (output_bfd,
10194 &elf_hash_table (flinfo->info)->stab_info,
10195 o, &elf_section_data (o)->sec_info, contents)))
10196 return FALSE;
10197 break;
10198 case SEC_INFO_TYPE_MERGE:
10199 if (! _bfd_write_merged_section (output_bfd, o,
10200 elf_section_data (o)->sec_info))
10201 return FALSE;
10202 break;
10203 case SEC_INFO_TYPE_EH_FRAME:
10204 {
10205 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10206 o, contents))
10207 return FALSE;
10208 }
10209 break;
10210 default:
10211 {
10212 /* FIXME: octets_per_byte. */
10213 if (! (o->flags & SEC_EXCLUDE))
10214 {
10215 file_ptr offset = (file_ptr) o->output_offset;
10216 bfd_size_type todo = o->size;
10217 if ((o->flags & SEC_ELF_REVERSE_COPY))
10218 {
10219 /* Reverse-copy input section to output. */
10220 do
10221 {
10222 todo -= address_size;
10223 if (! bfd_set_section_contents (output_bfd,
10224 o->output_section,
10225 contents + todo,
10226 offset,
10227 address_size))
10228 return FALSE;
10229 if (todo == 0)
10230 break;
10231 offset += address_size;
10232 }
10233 while (1);
10234 }
10235 else if (! bfd_set_section_contents (output_bfd,
10236 o->output_section,
10237 contents,
10238 offset, todo))
10239 return FALSE;
10240 }
10241 }
10242 break;
10243 }
10244 }
10245
10246 return TRUE;
10247 }
10248
10249 /* Generate a reloc when linking an ELF file. This is a reloc
10250 requested by the linker, and does not come from any input file. This
10251 is used to build constructor and destructor tables when linking
10252 with -Ur. */
10253
10254 static bfd_boolean
10255 elf_reloc_link_order (bfd *output_bfd,
10256 struct bfd_link_info *info,
10257 asection *output_section,
10258 struct bfd_link_order *link_order)
10259 {
10260 reloc_howto_type *howto;
10261 long indx;
10262 bfd_vma offset;
10263 bfd_vma addend;
10264 struct bfd_elf_section_reloc_data *reldata;
10265 struct elf_link_hash_entry **rel_hash_ptr;
10266 Elf_Internal_Shdr *rel_hdr;
10267 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10268 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10269 bfd_byte *erel;
10270 unsigned int i;
10271 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10272
10273 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10274 if (howto == NULL)
10275 {
10276 bfd_set_error (bfd_error_bad_value);
10277 return FALSE;
10278 }
10279
10280 addend = link_order->u.reloc.p->addend;
10281
10282 if (esdo->rel.hdr)
10283 reldata = &esdo->rel;
10284 else if (esdo->rela.hdr)
10285 reldata = &esdo->rela;
10286 else
10287 {
10288 reldata = NULL;
10289 BFD_ASSERT (0);
10290 }
10291
10292 /* Figure out the symbol index. */
10293 rel_hash_ptr = reldata->hashes + reldata->count;
10294 if (link_order->type == bfd_section_reloc_link_order)
10295 {
10296 indx = link_order->u.reloc.p->u.section->target_index;
10297 BFD_ASSERT (indx != 0);
10298 *rel_hash_ptr = NULL;
10299 }
10300 else
10301 {
10302 struct elf_link_hash_entry *h;
10303
10304 /* Treat a reloc against a defined symbol as though it were
10305 actually against the section. */
10306 h = ((struct elf_link_hash_entry *)
10307 bfd_wrapped_link_hash_lookup (output_bfd, info,
10308 link_order->u.reloc.p->u.name,
10309 FALSE, FALSE, TRUE));
10310 if (h != NULL
10311 && (h->root.type == bfd_link_hash_defined
10312 || h->root.type == bfd_link_hash_defweak))
10313 {
10314 asection *section;
10315
10316 section = h->root.u.def.section;
10317 indx = section->output_section->target_index;
10318 *rel_hash_ptr = NULL;
10319 /* It seems that we ought to add the symbol value to the
10320 addend here, but in practice it has already been added
10321 because it was passed to constructor_callback. */
10322 addend += section->output_section->vma + section->output_offset;
10323 }
10324 else if (h != NULL)
10325 {
10326 /* Setting the index to -2 tells elf_link_output_extsym that
10327 this symbol is used by a reloc. */
10328 h->indx = -2;
10329 *rel_hash_ptr = h;
10330 indx = 0;
10331 }
10332 else
10333 {
10334 if (! ((*info->callbacks->unattached_reloc)
10335 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10336 return FALSE;
10337 indx = 0;
10338 }
10339 }
10340
10341 /* If this is an inplace reloc, we must write the addend into the
10342 object file. */
10343 if (howto->partial_inplace && addend != 0)
10344 {
10345 bfd_size_type size;
10346 bfd_reloc_status_type rstat;
10347 bfd_byte *buf;
10348 bfd_boolean ok;
10349 const char *sym_name;
10350
10351 size = (bfd_size_type) bfd_get_reloc_size (howto);
10352 buf = (bfd_byte *) bfd_zmalloc (size);
10353 if (buf == NULL && size != 0)
10354 return FALSE;
10355 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10356 switch (rstat)
10357 {
10358 case bfd_reloc_ok:
10359 break;
10360
10361 default:
10362 case bfd_reloc_outofrange:
10363 abort ();
10364
10365 case bfd_reloc_overflow:
10366 if (link_order->type == bfd_section_reloc_link_order)
10367 sym_name = bfd_section_name (output_bfd,
10368 link_order->u.reloc.p->u.section);
10369 else
10370 sym_name = link_order->u.reloc.p->u.name;
10371 if (! ((*info->callbacks->reloc_overflow)
10372 (info, NULL, sym_name, howto->name, addend, NULL,
10373 NULL, (bfd_vma) 0)))
10374 {
10375 free (buf);
10376 return FALSE;
10377 }
10378 break;
10379 }
10380 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10381 link_order->offset, size);
10382 free (buf);
10383 if (! ok)
10384 return FALSE;
10385 }
10386
10387 /* The address of a reloc is relative to the section in a
10388 relocatable file, and is a virtual address in an executable
10389 file. */
10390 offset = link_order->offset;
10391 if (! info->relocatable)
10392 offset += output_section->vma;
10393
10394 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10395 {
10396 irel[i].r_offset = offset;
10397 irel[i].r_info = 0;
10398 irel[i].r_addend = 0;
10399 }
10400 if (bed->s->arch_size == 32)
10401 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10402 else
10403 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10404
10405 rel_hdr = reldata->hdr;
10406 erel = rel_hdr->contents;
10407 if (rel_hdr->sh_type == SHT_REL)
10408 {
10409 erel += reldata->count * bed->s->sizeof_rel;
10410 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10411 }
10412 else
10413 {
10414 irel[0].r_addend = addend;
10415 erel += reldata->count * bed->s->sizeof_rela;
10416 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10417 }
10418
10419 ++reldata->count;
10420
10421 return TRUE;
10422 }
10423
10424
10425 /* Get the output vma of the section pointed to by the sh_link field. */
10426
10427 static bfd_vma
10428 elf_get_linked_section_vma (struct bfd_link_order *p)
10429 {
10430 Elf_Internal_Shdr **elf_shdrp;
10431 asection *s;
10432 int elfsec;
10433
10434 s = p->u.indirect.section;
10435 elf_shdrp = elf_elfsections (s->owner);
10436 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10437 elfsec = elf_shdrp[elfsec]->sh_link;
10438 /* PR 290:
10439 The Intel C compiler generates SHT_IA_64_UNWIND with
10440 SHF_LINK_ORDER. But it doesn't set the sh_link or
10441 sh_info fields. Hence we could get the situation
10442 where elfsec is 0. */
10443 if (elfsec == 0)
10444 {
10445 const struct elf_backend_data *bed
10446 = get_elf_backend_data (s->owner);
10447 if (bed->link_order_error_handler)
10448 bed->link_order_error_handler
10449 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10450 return 0;
10451 }
10452 else
10453 {
10454 s = elf_shdrp[elfsec]->bfd_section;
10455 return s->output_section->vma + s->output_offset;
10456 }
10457 }
10458
10459
10460 /* Compare two sections based on the locations of the sections they are
10461 linked to. Used by elf_fixup_link_order. */
10462
10463 static int
10464 compare_link_order (const void * a, const void * b)
10465 {
10466 bfd_vma apos;
10467 bfd_vma bpos;
10468
10469 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10470 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10471 if (apos < bpos)
10472 return -1;
10473 return apos > bpos;
10474 }
10475
10476
10477 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10478 order as their linked sections. Returns false if this could not be done
10479 because an output section includes both ordered and unordered
10480 sections. Ideally we'd do this in the linker proper. */
10481
10482 static bfd_boolean
10483 elf_fixup_link_order (bfd *abfd, asection *o)
10484 {
10485 int seen_linkorder;
10486 int seen_other;
10487 int n;
10488 struct bfd_link_order *p;
10489 bfd *sub;
10490 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10491 unsigned elfsec;
10492 struct bfd_link_order **sections;
10493 asection *s, *other_sec, *linkorder_sec;
10494 bfd_vma offset;
10495
10496 other_sec = NULL;
10497 linkorder_sec = NULL;
10498 seen_other = 0;
10499 seen_linkorder = 0;
10500 for (p = o->map_head.link_order; p != NULL; p = p->next)
10501 {
10502 if (p->type == bfd_indirect_link_order)
10503 {
10504 s = p->u.indirect.section;
10505 sub = s->owner;
10506 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10507 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10508 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10509 && elfsec < elf_numsections (sub)
10510 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10511 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10512 {
10513 seen_linkorder++;
10514 linkorder_sec = s;
10515 }
10516 else
10517 {
10518 seen_other++;
10519 other_sec = s;
10520 }
10521 }
10522 else
10523 seen_other++;
10524
10525 if (seen_other && seen_linkorder)
10526 {
10527 if (other_sec && linkorder_sec)
10528 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10529 o, linkorder_sec,
10530 linkorder_sec->owner, other_sec,
10531 other_sec->owner);
10532 else
10533 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10534 o);
10535 bfd_set_error (bfd_error_bad_value);
10536 return FALSE;
10537 }
10538 }
10539
10540 if (!seen_linkorder)
10541 return TRUE;
10542
10543 sections = (struct bfd_link_order **)
10544 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10545 if (sections == NULL)
10546 return FALSE;
10547 seen_linkorder = 0;
10548
10549 for (p = o->map_head.link_order; p != NULL; p = p->next)
10550 {
10551 sections[seen_linkorder++] = p;
10552 }
10553 /* Sort the input sections in the order of their linked section. */
10554 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10555 compare_link_order);
10556
10557 /* Change the offsets of the sections. */
10558 offset = 0;
10559 for (n = 0; n < seen_linkorder; n++)
10560 {
10561 s = sections[n]->u.indirect.section;
10562 offset &= ~(bfd_vma) 0 << s->alignment_power;
10563 s->output_offset = offset;
10564 sections[n]->offset = offset;
10565 /* FIXME: octets_per_byte. */
10566 offset += sections[n]->size;
10567 }
10568
10569 free (sections);
10570 return TRUE;
10571 }
10572
10573 static void
10574 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10575 {
10576 asection *o;
10577
10578 if (flinfo->symstrtab != NULL)
10579 _bfd_stringtab_free (flinfo->symstrtab);
10580 if (flinfo->contents != NULL)
10581 free (flinfo->contents);
10582 if (flinfo->external_relocs != NULL)
10583 free (flinfo->external_relocs);
10584 if (flinfo->internal_relocs != NULL)
10585 free (flinfo->internal_relocs);
10586 if (flinfo->external_syms != NULL)
10587 free (flinfo->external_syms);
10588 if (flinfo->locsym_shndx != NULL)
10589 free (flinfo->locsym_shndx);
10590 if (flinfo->internal_syms != NULL)
10591 free (flinfo->internal_syms);
10592 if (flinfo->indices != NULL)
10593 free (flinfo->indices);
10594 if (flinfo->sections != NULL)
10595 free (flinfo->sections);
10596 if (flinfo->symbuf != NULL)
10597 free (flinfo->symbuf);
10598 if (flinfo->symshndxbuf != NULL)
10599 free (flinfo->symshndxbuf);
10600 for (o = obfd->sections; o != NULL; o = o->next)
10601 {
10602 struct bfd_elf_section_data *esdo = elf_section_data (o);
10603 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10604 free (esdo->rel.hashes);
10605 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10606 free (esdo->rela.hashes);
10607 }
10608 }
10609
10610 /* Do the final step of an ELF link. */
10611
10612 bfd_boolean
10613 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10614 {
10615 bfd_boolean dynamic;
10616 bfd_boolean emit_relocs;
10617 bfd *dynobj;
10618 struct elf_final_link_info flinfo;
10619 asection *o;
10620 struct bfd_link_order *p;
10621 bfd *sub;
10622 bfd_size_type max_contents_size;
10623 bfd_size_type max_external_reloc_size;
10624 bfd_size_type max_internal_reloc_count;
10625 bfd_size_type max_sym_count;
10626 bfd_size_type max_sym_shndx_count;
10627 Elf_Internal_Sym elfsym;
10628 unsigned int i;
10629 Elf_Internal_Shdr *symtab_hdr;
10630 Elf_Internal_Shdr *symtab_shndx_hdr;
10631 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10632 struct elf_outext_info eoinfo;
10633 bfd_boolean merged;
10634 size_t relativecount = 0;
10635 asection *reldyn = 0;
10636 bfd_size_type amt;
10637 asection *attr_section = NULL;
10638 bfd_vma attr_size = 0;
10639 const char *std_attrs_section;
10640
10641 if (! is_elf_hash_table (info->hash))
10642 return FALSE;
10643
10644 if (info->shared)
10645 abfd->flags |= DYNAMIC;
10646
10647 dynamic = elf_hash_table (info)->dynamic_sections_created;
10648 dynobj = elf_hash_table (info)->dynobj;
10649
10650 emit_relocs = (info->relocatable
10651 || info->emitrelocations);
10652
10653 flinfo.info = info;
10654 flinfo.output_bfd = abfd;
10655 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10656 if (flinfo.symstrtab == NULL)
10657 return FALSE;
10658
10659 if (! dynamic)
10660 {
10661 flinfo.dynsym_sec = NULL;
10662 flinfo.hash_sec = NULL;
10663 flinfo.symver_sec = NULL;
10664 }
10665 else
10666 {
10667 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10668 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10669 /* Note that dynsym_sec can be NULL (on VMS). */
10670 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10671 /* Note that it is OK if symver_sec is NULL. */
10672 }
10673
10674 flinfo.contents = NULL;
10675 flinfo.external_relocs = NULL;
10676 flinfo.internal_relocs = NULL;
10677 flinfo.external_syms = NULL;
10678 flinfo.locsym_shndx = NULL;
10679 flinfo.internal_syms = NULL;
10680 flinfo.indices = NULL;
10681 flinfo.sections = NULL;
10682 flinfo.symbuf = NULL;
10683 flinfo.symshndxbuf = NULL;
10684 flinfo.symbuf_count = 0;
10685 flinfo.shndxbuf_size = 0;
10686 flinfo.filesym_count = 0;
10687
10688 /* The object attributes have been merged. Remove the input
10689 sections from the link, and set the contents of the output
10690 secton. */
10691 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10692 for (o = abfd->sections; o != NULL; o = o->next)
10693 {
10694 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10695 || strcmp (o->name, ".gnu.attributes") == 0)
10696 {
10697 for (p = o->map_head.link_order; p != NULL; p = p->next)
10698 {
10699 asection *input_section;
10700
10701 if (p->type != bfd_indirect_link_order)
10702 continue;
10703 input_section = p->u.indirect.section;
10704 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10705 elf_link_input_bfd ignores this section. */
10706 input_section->flags &= ~SEC_HAS_CONTENTS;
10707 }
10708
10709 attr_size = bfd_elf_obj_attr_size (abfd);
10710 if (attr_size)
10711 {
10712 bfd_set_section_size (abfd, o, attr_size);
10713 attr_section = o;
10714 /* Skip this section later on. */
10715 o->map_head.link_order = NULL;
10716 }
10717 else
10718 o->flags |= SEC_EXCLUDE;
10719 }
10720 }
10721
10722 /* Count up the number of relocations we will output for each output
10723 section, so that we know the sizes of the reloc sections. We
10724 also figure out some maximum sizes. */
10725 max_contents_size = 0;
10726 max_external_reloc_size = 0;
10727 max_internal_reloc_count = 0;
10728 max_sym_count = 0;
10729 max_sym_shndx_count = 0;
10730 merged = FALSE;
10731 for (o = abfd->sections; o != NULL; o = o->next)
10732 {
10733 struct bfd_elf_section_data *esdo = elf_section_data (o);
10734 o->reloc_count = 0;
10735
10736 for (p = o->map_head.link_order; p != NULL; p = p->next)
10737 {
10738 unsigned int reloc_count = 0;
10739 struct bfd_elf_section_data *esdi = NULL;
10740
10741 if (p->type == bfd_section_reloc_link_order
10742 || p->type == bfd_symbol_reloc_link_order)
10743 reloc_count = 1;
10744 else if (p->type == bfd_indirect_link_order)
10745 {
10746 asection *sec;
10747
10748 sec = p->u.indirect.section;
10749 esdi = elf_section_data (sec);
10750
10751 /* Mark all sections which are to be included in the
10752 link. This will normally be every section. We need
10753 to do this so that we can identify any sections which
10754 the linker has decided to not include. */
10755 sec->linker_mark = TRUE;
10756
10757 if (sec->flags & SEC_MERGE)
10758 merged = TRUE;
10759
10760 if (esdo->this_hdr.sh_type == SHT_REL
10761 || esdo->this_hdr.sh_type == SHT_RELA)
10762 /* Some backends use reloc_count in relocation sections
10763 to count particular types of relocs. Of course,
10764 reloc sections themselves can't have relocations. */
10765 reloc_count = 0;
10766 else if (info->relocatable || info->emitrelocations)
10767 reloc_count = sec->reloc_count;
10768 else if (bed->elf_backend_count_relocs)
10769 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10770
10771 if (sec->rawsize > max_contents_size)
10772 max_contents_size = sec->rawsize;
10773 if (sec->size > max_contents_size)
10774 max_contents_size = sec->size;
10775
10776 /* We are interested in just local symbols, not all
10777 symbols. */
10778 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10779 && (sec->owner->flags & DYNAMIC) == 0)
10780 {
10781 size_t sym_count;
10782
10783 if (elf_bad_symtab (sec->owner))
10784 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10785 / bed->s->sizeof_sym);
10786 else
10787 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10788
10789 if (sym_count > max_sym_count)
10790 max_sym_count = sym_count;
10791
10792 if (sym_count > max_sym_shndx_count
10793 && elf_symtab_shndx (sec->owner) != 0)
10794 max_sym_shndx_count = sym_count;
10795
10796 if ((sec->flags & SEC_RELOC) != 0)
10797 {
10798 size_t ext_size = 0;
10799
10800 if (esdi->rel.hdr != NULL)
10801 ext_size = esdi->rel.hdr->sh_size;
10802 if (esdi->rela.hdr != NULL)
10803 ext_size += esdi->rela.hdr->sh_size;
10804
10805 if (ext_size > max_external_reloc_size)
10806 max_external_reloc_size = ext_size;
10807 if (sec->reloc_count > max_internal_reloc_count)
10808 max_internal_reloc_count = sec->reloc_count;
10809 }
10810 }
10811 }
10812
10813 if (reloc_count == 0)
10814 continue;
10815
10816 o->reloc_count += reloc_count;
10817
10818 if (p->type == bfd_indirect_link_order
10819 && (info->relocatable || info->emitrelocations))
10820 {
10821 if (esdi->rel.hdr)
10822 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10823 if (esdi->rela.hdr)
10824 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10825 }
10826 else
10827 {
10828 if (o->use_rela_p)
10829 esdo->rela.count += reloc_count;
10830 else
10831 esdo->rel.count += reloc_count;
10832 }
10833 }
10834
10835 if (o->reloc_count > 0)
10836 o->flags |= SEC_RELOC;
10837 else
10838 {
10839 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10840 set it (this is probably a bug) and if it is set
10841 assign_section_numbers will create a reloc section. */
10842 o->flags &=~ SEC_RELOC;
10843 }
10844
10845 /* If the SEC_ALLOC flag is not set, force the section VMA to
10846 zero. This is done in elf_fake_sections as well, but forcing
10847 the VMA to 0 here will ensure that relocs against these
10848 sections are handled correctly. */
10849 if ((o->flags & SEC_ALLOC) == 0
10850 && ! o->user_set_vma)
10851 o->vma = 0;
10852 }
10853
10854 if (! info->relocatable && merged)
10855 elf_link_hash_traverse (elf_hash_table (info),
10856 _bfd_elf_link_sec_merge_syms, abfd);
10857
10858 /* Figure out the file positions for everything but the symbol table
10859 and the relocs. We set symcount to force assign_section_numbers
10860 to create a symbol table. */
10861 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10862 BFD_ASSERT (! abfd->output_has_begun);
10863 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10864 goto error_return;
10865
10866 /* Set sizes, and assign file positions for reloc sections. */
10867 for (o = abfd->sections; o != NULL; o = o->next)
10868 {
10869 struct bfd_elf_section_data *esdo = elf_section_data (o);
10870 if ((o->flags & SEC_RELOC) != 0)
10871 {
10872 if (esdo->rel.hdr
10873 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10874 goto error_return;
10875
10876 if (esdo->rela.hdr
10877 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10878 goto error_return;
10879 }
10880
10881 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10882 to count upwards while actually outputting the relocations. */
10883 esdo->rel.count = 0;
10884 esdo->rela.count = 0;
10885 }
10886
10887 /* We have now assigned file positions for all the sections except
10888 .symtab, .strtab, and non-loaded reloc sections. We start the
10889 .symtab section at the current file position, and write directly
10890 to it. We build the .strtab section in memory. */
10891 bfd_get_symcount (abfd) = 0;
10892 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10893 /* sh_name is set in prep_headers. */
10894 symtab_hdr->sh_type = SHT_SYMTAB;
10895 /* sh_flags, sh_addr and sh_size all start off zero. */
10896 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10897 /* sh_link is set in assign_section_numbers. */
10898 /* sh_info is set below. */
10899 /* sh_offset is set just below. */
10900 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10901
10902 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10903 continuously seeking to the right position in the file. */
10904 if (! info->keep_memory || max_sym_count < 20)
10905 flinfo.symbuf_size = 20;
10906 else
10907 flinfo.symbuf_size = max_sym_count;
10908 amt = flinfo.symbuf_size;
10909 amt *= bed->s->sizeof_sym;
10910 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10911 if (flinfo.symbuf == NULL)
10912 goto error_return;
10913 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10914 {
10915 /* Wild guess at number of output symbols. realloc'd as needed. */
10916 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10917 flinfo.shndxbuf_size = amt;
10918 amt *= sizeof (Elf_External_Sym_Shndx);
10919 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10920 if (flinfo.symshndxbuf == NULL)
10921 goto error_return;
10922 }
10923
10924 if (info->strip != strip_all || emit_relocs)
10925 {
10926 file_ptr off = elf_next_file_pos (abfd);
10927
10928 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10929
10930 /* Note that at this point elf_next_file_pos (abfd) is
10931 incorrect. We do not yet know the size of the .symtab section.
10932 We correct next_file_pos below, after we do know the size. */
10933
10934 /* Start writing out the symbol table. The first symbol is always a
10935 dummy symbol. */
10936 elfsym.st_value = 0;
10937 elfsym.st_size = 0;
10938 elfsym.st_info = 0;
10939 elfsym.st_other = 0;
10940 elfsym.st_shndx = SHN_UNDEF;
10941 elfsym.st_target_internal = 0;
10942 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10943 NULL) != 1)
10944 goto error_return;
10945
10946 /* Output a symbol for each section. We output these even if we are
10947 discarding local symbols, since they are used for relocs. These
10948 symbols have no names. We store the index of each one in the
10949 index field of the section, so that we can find it again when
10950 outputting relocs. */
10951
10952 elfsym.st_size = 0;
10953 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10954 elfsym.st_other = 0;
10955 elfsym.st_value = 0;
10956 elfsym.st_target_internal = 0;
10957 for (i = 1; i < elf_numsections (abfd); i++)
10958 {
10959 o = bfd_section_from_elf_index (abfd, i);
10960 if (o != NULL)
10961 {
10962 o->target_index = bfd_get_symcount (abfd);
10963 elfsym.st_shndx = i;
10964 if (!info->relocatable)
10965 elfsym.st_value = o->vma;
10966 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10967 goto error_return;
10968 }
10969 }
10970 }
10971
10972 /* Allocate some memory to hold information read in from the input
10973 files. */
10974 if (max_contents_size != 0)
10975 {
10976 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10977 if (flinfo.contents == NULL)
10978 goto error_return;
10979 }
10980
10981 if (max_external_reloc_size != 0)
10982 {
10983 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10984 if (flinfo.external_relocs == NULL)
10985 goto error_return;
10986 }
10987
10988 if (max_internal_reloc_count != 0)
10989 {
10990 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10991 amt *= sizeof (Elf_Internal_Rela);
10992 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10993 if (flinfo.internal_relocs == NULL)
10994 goto error_return;
10995 }
10996
10997 if (max_sym_count != 0)
10998 {
10999 amt = max_sym_count * bed->s->sizeof_sym;
11000 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11001 if (flinfo.external_syms == NULL)
11002 goto error_return;
11003
11004 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11005 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11006 if (flinfo.internal_syms == NULL)
11007 goto error_return;
11008
11009 amt = max_sym_count * sizeof (long);
11010 flinfo.indices = (long int *) bfd_malloc (amt);
11011 if (flinfo.indices == NULL)
11012 goto error_return;
11013
11014 amt = max_sym_count * sizeof (asection *);
11015 flinfo.sections = (asection **) bfd_malloc (amt);
11016 if (flinfo.sections == NULL)
11017 goto error_return;
11018 }
11019
11020 if (max_sym_shndx_count != 0)
11021 {
11022 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11023 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11024 if (flinfo.locsym_shndx == NULL)
11025 goto error_return;
11026 }
11027
11028 if (elf_hash_table (info)->tls_sec)
11029 {
11030 bfd_vma base, end = 0;
11031 asection *sec;
11032
11033 for (sec = elf_hash_table (info)->tls_sec;
11034 sec && (sec->flags & SEC_THREAD_LOCAL);
11035 sec = sec->next)
11036 {
11037 bfd_size_type size = sec->size;
11038
11039 if (size == 0
11040 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11041 {
11042 struct bfd_link_order *ord = sec->map_tail.link_order;
11043
11044 if (ord != NULL)
11045 size = ord->offset + ord->size;
11046 }
11047 end = sec->vma + size;
11048 }
11049 base = elf_hash_table (info)->tls_sec->vma;
11050 /* Only align end of TLS section if static TLS doesn't have special
11051 alignment requirements. */
11052 if (bed->static_tls_alignment == 1)
11053 end = align_power (end,
11054 elf_hash_table (info)->tls_sec->alignment_power);
11055 elf_hash_table (info)->tls_size = end - base;
11056 }
11057
11058 /* Reorder SHF_LINK_ORDER sections. */
11059 for (o = abfd->sections; o != NULL; o = o->next)
11060 {
11061 if (!elf_fixup_link_order (abfd, o))
11062 return FALSE;
11063 }
11064
11065 /* Since ELF permits relocations to be against local symbols, we
11066 must have the local symbols available when we do the relocations.
11067 Since we would rather only read the local symbols once, and we
11068 would rather not keep them in memory, we handle all the
11069 relocations for a single input file at the same time.
11070
11071 Unfortunately, there is no way to know the total number of local
11072 symbols until we have seen all of them, and the local symbol
11073 indices precede the global symbol indices. This means that when
11074 we are generating relocatable output, and we see a reloc against
11075 a global symbol, we can not know the symbol index until we have
11076 finished examining all the local symbols to see which ones we are
11077 going to output. To deal with this, we keep the relocations in
11078 memory, and don't output them until the end of the link. This is
11079 an unfortunate waste of memory, but I don't see a good way around
11080 it. Fortunately, it only happens when performing a relocatable
11081 link, which is not the common case. FIXME: If keep_memory is set
11082 we could write the relocs out and then read them again; I don't
11083 know how bad the memory loss will be. */
11084
11085 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11086 sub->output_has_begun = FALSE;
11087 for (o = abfd->sections; o != NULL; o = o->next)
11088 {
11089 for (p = o->map_head.link_order; p != NULL; p = p->next)
11090 {
11091 if (p->type == bfd_indirect_link_order
11092 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11093 == bfd_target_elf_flavour)
11094 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11095 {
11096 if (! sub->output_has_begun)
11097 {
11098 if (! elf_link_input_bfd (&flinfo, sub))
11099 goto error_return;
11100 sub->output_has_begun = TRUE;
11101 }
11102 }
11103 else if (p->type == bfd_section_reloc_link_order
11104 || p->type == bfd_symbol_reloc_link_order)
11105 {
11106 if (! elf_reloc_link_order (abfd, info, o, p))
11107 goto error_return;
11108 }
11109 else
11110 {
11111 if (! _bfd_default_link_order (abfd, info, o, p))
11112 {
11113 if (p->type == bfd_indirect_link_order
11114 && (bfd_get_flavour (sub)
11115 == bfd_target_elf_flavour)
11116 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11117 != bed->s->elfclass))
11118 {
11119 const char *iclass, *oclass;
11120
11121 if (bed->s->elfclass == ELFCLASS64)
11122 {
11123 iclass = "ELFCLASS32";
11124 oclass = "ELFCLASS64";
11125 }
11126 else
11127 {
11128 iclass = "ELFCLASS64";
11129 oclass = "ELFCLASS32";
11130 }
11131
11132 bfd_set_error (bfd_error_wrong_format);
11133 (*_bfd_error_handler)
11134 (_("%B: file class %s incompatible with %s"),
11135 sub, iclass, oclass);
11136 }
11137
11138 goto error_return;
11139 }
11140 }
11141 }
11142 }
11143
11144 /* Free symbol buffer if needed. */
11145 if (!info->reduce_memory_overheads)
11146 {
11147 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11148 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11149 && elf_tdata (sub)->symbuf)
11150 {
11151 free (elf_tdata (sub)->symbuf);
11152 elf_tdata (sub)->symbuf = NULL;
11153 }
11154 }
11155
11156 /* Output any global symbols that got converted to local in a
11157 version script or due to symbol visibility. We do this in a
11158 separate step since ELF requires all local symbols to appear
11159 prior to any global symbols. FIXME: We should only do this if
11160 some global symbols were, in fact, converted to become local.
11161 FIXME: Will this work correctly with the Irix 5 linker? */
11162 eoinfo.failed = FALSE;
11163 eoinfo.flinfo = &flinfo;
11164 eoinfo.localsyms = TRUE;
11165 eoinfo.file_sym_done = FALSE;
11166 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11167 if (eoinfo.failed)
11168 return FALSE;
11169
11170 /* If backend needs to output some local symbols not present in the hash
11171 table, do it now. */
11172 if (bed->elf_backend_output_arch_local_syms
11173 && (info->strip != strip_all || emit_relocs))
11174 {
11175 typedef int (*out_sym_func)
11176 (void *, const char *, Elf_Internal_Sym *, asection *,
11177 struct elf_link_hash_entry *);
11178
11179 if (! ((*bed->elf_backend_output_arch_local_syms)
11180 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11181 return FALSE;
11182 }
11183
11184 /* That wrote out all the local symbols. Finish up the symbol table
11185 with the global symbols. Even if we want to strip everything we
11186 can, we still need to deal with those global symbols that got
11187 converted to local in a version script. */
11188
11189 /* The sh_info field records the index of the first non local symbol. */
11190 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11191
11192 if (dynamic
11193 && flinfo.dynsym_sec != NULL
11194 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11195 {
11196 Elf_Internal_Sym sym;
11197 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11198 long last_local = 0;
11199
11200 /* Write out the section symbols for the output sections. */
11201 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11202 {
11203 asection *s;
11204
11205 sym.st_size = 0;
11206 sym.st_name = 0;
11207 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11208 sym.st_other = 0;
11209 sym.st_target_internal = 0;
11210
11211 for (s = abfd->sections; s != NULL; s = s->next)
11212 {
11213 int indx;
11214 bfd_byte *dest;
11215 long dynindx;
11216
11217 dynindx = elf_section_data (s)->dynindx;
11218 if (dynindx <= 0)
11219 continue;
11220 indx = elf_section_data (s)->this_idx;
11221 BFD_ASSERT (indx > 0);
11222 sym.st_shndx = indx;
11223 if (! check_dynsym (abfd, &sym))
11224 return FALSE;
11225 sym.st_value = s->vma;
11226 dest = dynsym + dynindx * bed->s->sizeof_sym;
11227 if (last_local < dynindx)
11228 last_local = dynindx;
11229 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11230 }
11231 }
11232
11233 /* Write out the local dynsyms. */
11234 if (elf_hash_table (info)->dynlocal)
11235 {
11236 struct elf_link_local_dynamic_entry *e;
11237 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11238 {
11239 asection *s;
11240 bfd_byte *dest;
11241
11242 /* Copy the internal symbol and turn off visibility.
11243 Note that we saved a word of storage and overwrote
11244 the original st_name with the dynstr_index. */
11245 sym = e->isym;
11246 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11247
11248 s = bfd_section_from_elf_index (e->input_bfd,
11249 e->isym.st_shndx);
11250 if (s != NULL)
11251 {
11252 sym.st_shndx =
11253 elf_section_data (s->output_section)->this_idx;
11254 if (! check_dynsym (abfd, &sym))
11255 return FALSE;
11256 sym.st_value = (s->output_section->vma
11257 + s->output_offset
11258 + e->isym.st_value);
11259 }
11260
11261 if (last_local < e->dynindx)
11262 last_local = e->dynindx;
11263
11264 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11265 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11266 }
11267 }
11268
11269 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11270 last_local + 1;
11271 }
11272
11273 /* We get the global symbols from the hash table. */
11274 eoinfo.failed = FALSE;
11275 eoinfo.localsyms = FALSE;
11276 eoinfo.flinfo = &flinfo;
11277 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11278 if (eoinfo.failed)
11279 return FALSE;
11280
11281 /* If backend needs to output some symbols not present in the hash
11282 table, do it now. */
11283 if (bed->elf_backend_output_arch_syms
11284 && (info->strip != strip_all || emit_relocs))
11285 {
11286 typedef int (*out_sym_func)
11287 (void *, const char *, Elf_Internal_Sym *, asection *,
11288 struct elf_link_hash_entry *);
11289
11290 if (! ((*bed->elf_backend_output_arch_syms)
11291 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11292 return FALSE;
11293 }
11294
11295 /* Flush all symbols to the file. */
11296 if (! elf_link_flush_output_syms (&flinfo, bed))
11297 return FALSE;
11298
11299 /* Now we know the size of the symtab section. */
11300 if (bfd_get_symcount (abfd) > 0)
11301 {
11302 /* Finish up and write out the symbol string table (.strtab)
11303 section. */
11304 Elf_Internal_Shdr *symstrtab_hdr;
11305 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11306
11307 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11308 if (symtab_shndx_hdr->sh_name != 0)
11309 {
11310 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11311 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11312 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11313 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11314 symtab_shndx_hdr->sh_size = amt;
11315
11316 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11317 off, TRUE);
11318
11319 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11320 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11321 return FALSE;
11322 }
11323
11324 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11325 /* sh_name was set in prep_headers. */
11326 symstrtab_hdr->sh_type = SHT_STRTAB;
11327 symstrtab_hdr->sh_flags = 0;
11328 symstrtab_hdr->sh_addr = 0;
11329 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11330 symstrtab_hdr->sh_entsize = 0;
11331 symstrtab_hdr->sh_link = 0;
11332 symstrtab_hdr->sh_info = 0;
11333 /* sh_offset is set just below. */
11334 symstrtab_hdr->sh_addralign = 1;
11335
11336 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11337 off, TRUE);
11338 elf_next_file_pos (abfd) = off;
11339
11340 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11341 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11342 return FALSE;
11343 }
11344
11345 /* Adjust the relocs to have the correct symbol indices. */
11346 for (o = abfd->sections; o != NULL; o = o->next)
11347 {
11348 struct bfd_elf_section_data *esdo = elf_section_data (o);
11349 bfd_boolean sort;
11350 if ((o->flags & SEC_RELOC) == 0)
11351 continue;
11352
11353 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11354 if (esdo->rel.hdr != NULL)
11355 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11356 if (esdo->rela.hdr != NULL)
11357 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11358
11359 /* Set the reloc_count field to 0 to prevent write_relocs from
11360 trying to swap the relocs out itself. */
11361 o->reloc_count = 0;
11362 }
11363
11364 if (dynamic && info->combreloc && dynobj != NULL)
11365 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11366
11367 /* If we are linking against a dynamic object, or generating a
11368 shared library, finish up the dynamic linking information. */
11369 if (dynamic)
11370 {
11371 bfd_byte *dyncon, *dynconend;
11372
11373 /* Fix up .dynamic entries. */
11374 o = bfd_get_linker_section (dynobj, ".dynamic");
11375 BFD_ASSERT (o != NULL);
11376
11377 dyncon = o->contents;
11378 dynconend = o->contents + o->size;
11379 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11380 {
11381 Elf_Internal_Dyn dyn;
11382 const char *name;
11383 unsigned int type;
11384
11385 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11386
11387 switch (dyn.d_tag)
11388 {
11389 default:
11390 continue;
11391 case DT_NULL:
11392 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11393 {
11394 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11395 {
11396 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11397 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11398 default: continue;
11399 }
11400 dyn.d_un.d_val = relativecount;
11401 relativecount = 0;
11402 break;
11403 }
11404 continue;
11405
11406 case DT_INIT:
11407 name = info->init_function;
11408 goto get_sym;
11409 case DT_FINI:
11410 name = info->fini_function;
11411 get_sym:
11412 {
11413 struct elf_link_hash_entry *h;
11414
11415 h = elf_link_hash_lookup (elf_hash_table (info), name,
11416 FALSE, FALSE, TRUE);
11417 if (h != NULL
11418 && (h->root.type == bfd_link_hash_defined
11419 || h->root.type == bfd_link_hash_defweak))
11420 {
11421 dyn.d_un.d_ptr = h->root.u.def.value;
11422 o = h->root.u.def.section;
11423 if (o->output_section != NULL)
11424 dyn.d_un.d_ptr += (o->output_section->vma
11425 + o->output_offset);
11426 else
11427 {
11428 /* The symbol is imported from another shared
11429 library and does not apply to this one. */
11430 dyn.d_un.d_ptr = 0;
11431 }
11432 break;
11433 }
11434 }
11435 continue;
11436
11437 case DT_PREINIT_ARRAYSZ:
11438 name = ".preinit_array";
11439 goto get_size;
11440 case DT_INIT_ARRAYSZ:
11441 name = ".init_array";
11442 goto get_size;
11443 case DT_FINI_ARRAYSZ:
11444 name = ".fini_array";
11445 get_size:
11446 o = bfd_get_section_by_name (abfd, name);
11447 if (o == NULL)
11448 {
11449 (*_bfd_error_handler)
11450 (_("%B: could not find output section %s"), abfd, name);
11451 goto error_return;
11452 }
11453 if (o->size == 0)
11454 (*_bfd_error_handler)
11455 (_("warning: %s section has zero size"), name);
11456 dyn.d_un.d_val = o->size;
11457 break;
11458
11459 case DT_PREINIT_ARRAY:
11460 name = ".preinit_array";
11461 goto get_vma;
11462 case DT_INIT_ARRAY:
11463 name = ".init_array";
11464 goto get_vma;
11465 case DT_FINI_ARRAY:
11466 name = ".fini_array";
11467 goto get_vma;
11468
11469 case DT_HASH:
11470 name = ".hash";
11471 goto get_vma;
11472 case DT_GNU_HASH:
11473 name = ".gnu.hash";
11474 goto get_vma;
11475 case DT_STRTAB:
11476 name = ".dynstr";
11477 goto get_vma;
11478 case DT_SYMTAB:
11479 name = ".dynsym";
11480 goto get_vma;
11481 case DT_VERDEF:
11482 name = ".gnu.version_d";
11483 goto get_vma;
11484 case DT_VERNEED:
11485 name = ".gnu.version_r";
11486 goto get_vma;
11487 case DT_VERSYM:
11488 name = ".gnu.version";
11489 get_vma:
11490 o = bfd_get_section_by_name (abfd, name);
11491 if (o == NULL)
11492 {
11493 (*_bfd_error_handler)
11494 (_("%B: could not find output section %s"), abfd, name);
11495 goto error_return;
11496 }
11497 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11498 {
11499 (*_bfd_error_handler)
11500 (_("warning: section '%s' is being made into a note"), name);
11501 bfd_set_error (bfd_error_nonrepresentable_section);
11502 goto error_return;
11503 }
11504 dyn.d_un.d_ptr = o->vma;
11505 break;
11506
11507 case DT_REL:
11508 case DT_RELA:
11509 case DT_RELSZ:
11510 case DT_RELASZ:
11511 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11512 type = SHT_REL;
11513 else
11514 type = SHT_RELA;
11515 dyn.d_un.d_val = 0;
11516 dyn.d_un.d_ptr = 0;
11517 for (i = 1; i < elf_numsections (abfd); i++)
11518 {
11519 Elf_Internal_Shdr *hdr;
11520
11521 hdr = elf_elfsections (abfd)[i];
11522 if (hdr->sh_type == type
11523 && (hdr->sh_flags & SHF_ALLOC) != 0)
11524 {
11525 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11526 dyn.d_un.d_val += hdr->sh_size;
11527 else
11528 {
11529 if (dyn.d_un.d_ptr == 0
11530 || hdr->sh_addr < dyn.d_un.d_ptr)
11531 dyn.d_un.d_ptr = hdr->sh_addr;
11532 }
11533 }
11534 }
11535 break;
11536 }
11537 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11538 }
11539 }
11540
11541 /* If we have created any dynamic sections, then output them. */
11542 if (dynobj != NULL)
11543 {
11544 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11545 goto error_return;
11546
11547 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11548 if (((info->warn_shared_textrel && info->shared)
11549 || info->error_textrel)
11550 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11551 {
11552 bfd_byte *dyncon, *dynconend;
11553
11554 dyncon = o->contents;
11555 dynconend = o->contents + o->size;
11556 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11557 {
11558 Elf_Internal_Dyn dyn;
11559
11560 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11561
11562 if (dyn.d_tag == DT_TEXTREL)
11563 {
11564 if (info->error_textrel)
11565 info->callbacks->einfo
11566 (_("%P%X: read-only segment has dynamic relocations.\n"));
11567 else
11568 info->callbacks->einfo
11569 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11570 break;
11571 }
11572 }
11573 }
11574
11575 for (o = dynobj->sections; o != NULL; o = o->next)
11576 {
11577 if ((o->flags & SEC_HAS_CONTENTS) == 0
11578 || o->size == 0
11579 || o->output_section == bfd_abs_section_ptr)
11580 continue;
11581 if ((o->flags & SEC_LINKER_CREATED) == 0)
11582 {
11583 /* At this point, we are only interested in sections
11584 created by _bfd_elf_link_create_dynamic_sections. */
11585 continue;
11586 }
11587 if (elf_hash_table (info)->stab_info.stabstr == o)
11588 continue;
11589 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11590 continue;
11591 if (strcmp (o->name, ".dynstr") != 0)
11592 {
11593 /* FIXME: octets_per_byte. */
11594 if (! bfd_set_section_contents (abfd, o->output_section,
11595 o->contents,
11596 (file_ptr) o->output_offset,
11597 o->size))
11598 goto error_return;
11599 }
11600 else
11601 {
11602 /* The contents of the .dynstr section are actually in a
11603 stringtab. */
11604 file_ptr off;
11605
11606 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11607 if (bfd_seek (abfd, off, SEEK_SET) != 0
11608 || ! _bfd_elf_strtab_emit (abfd,
11609 elf_hash_table (info)->dynstr))
11610 goto error_return;
11611 }
11612 }
11613 }
11614
11615 if (info->relocatable)
11616 {
11617 bfd_boolean failed = FALSE;
11618
11619 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11620 if (failed)
11621 goto error_return;
11622 }
11623
11624 /* If we have optimized stabs strings, output them. */
11625 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11626 {
11627 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11628 goto error_return;
11629 }
11630
11631 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11632 goto error_return;
11633
11634 elf_final_link_free (abfd, &flinfo);
11635
11636 elf_linker (abfd) = TRUE;
11637
11638 if (attr_section)
11639 {
11640 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11641 if (contents == NULL)
11642 return FALSE; /* Bail out and fail. */
11643 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11644 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11645 free (contents);
11646 }
11647
11648 return TRUE;
11649
11650 error_return:
11651 elf_final_link_free (abfd, &flinfo);
11652 return FALSE;
11653 }
11654 \f
11655 /* Initialize COOKIE for input bfd ABFD. */
11656
11657 static bfd_boolean
11658 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11659 struct bfd_link_info *info, bfd *abfd)
11660 {
11661 Elf_Internal_Shdr *symtab_hdr;
11662 const struct elf_backend_data *bed;
11663
11664 bed = get_elf_backend_data (abfd);
11665 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11666
11667 cookie->abfd = abfd;
11668 cookie->sym_hashes = elf_sym_hashes (abfd);
11669 cookie->bad_symtab = elf_bad_symtab (abfd);
11670 if (cookie->bad_symtab)
11671 {
11672 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11673 cookie->extsymoff = 0;
11674 }
11675 else
11676 {
11677 cookie->locsymcount = symtab_hdr->sh_info;
11678 cookie->extsymoff = symtab_hdr->sh_info;
11679 }
11680
11681 if (bed->s->arch_size == 32)
11682 cookie->r_sym_shift = 8;
11683 else
11684 cookie->r_sym_shift = 32;
11685
11686 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11687 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11688 {
11689 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11690 cookie->locsymcount, 0,
11691 NULL, NULL, NULL);
11692 if (cookie->locsyms == NULL)
11693 {
11694 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11695 return FALSE;
11696 }
11697 if (info->keep_memory)
11698 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11699 }
11700 return TRUE;
11701 }
11702
11703 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11704
11705 static void
11706 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11707 {
11708 Elf_Internal_Shdr *symtab_hdr;
11709
11710 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11711 if (cookie->locsyms != NULL
11712 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11713 free (cookie->locsyms);
11714 }
11715
11716 /* Initialize the relocation information in COOKIE for input section SEC
11717 of input bfd ABFD. */
11718
11719 static bfd_boolean
11720 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11721 struct bfd_link_info *info, bfd *abfd,
11722 asection *sec)
11723 {
11724 const struct elf_backend_data *bed;
11725
11726 if (sec->reloc_count == 0)
11727 {
11728 cookie->rels = NULL;
11729 cookie->relend = NULL;
11730 }
11731 else
11732 {
11733 bed = get_elf_backend_data (abfd);
11734
11735 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11736 info->keep_memory);
11737 if (cookie->rels == NULL)
11738 return FALSE;
11739 cookie->rel = cookie->rels;
11740 cookie->relend = (cookie->rels
11741 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11742 }
11743 cookie->rel = cookie->rels;
11744 return TRUE;
11745 }
11746
11747 /* Free the memory allocated by init_reloc_cookie_rels,
11748 if appropriate. */
11749
11750 static void
11751 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11752 asection *sec)
11753 {
11754 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11755 free (cookie->rels);
11756 }
11757
11758 /* Initialize the whole of COOKIE for input section SEC. */
11759
11760 static bfd_boolean
11761 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11762 struct bfd_link_info *info,
11763 asection *sec)
11764 {
11765 if (!init_reloc_cookie (cookie, info, sec->owner))
11766 goto error1;
11767 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11768 goto error2;
11769 return TRUE;
11770
11771 error2:
11772 fini_reloc_cookie (cookie, sec->owner);
11773 error1:
11774 return FALSE;
11775 }
11776
11777 /* Free the memory allocated by init_reloc_cookie_for_section,
11778 if appropriate. */
11779
11780 static void
11781 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11782 asection *sec)
11783 {
11784 fini_reloc_cookie_rels (cookie, sec);
11785 fini_reloc_cookie (cookie, sec->owner);
11786 }
11787 \f
11788 /* Garbage collect unused sections. */
11789
11790 /* Default gc_mark_hook. */
11791
11792 asection *
11793 _bfd_elf_gc_mark_hook (asection *sec,
11794 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11795 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11796 struct elf_link_hash_entry *h,
11797 Elf_Internal_Sym *sym)
11798 {
11799 const char *sec_name;
11800
11801 if (h != NULL)
11802 {
11803 switch (h->root.type)
11804 {
11805 case bfd_link_hash_defined:
11806 case bfd_link_hash_defweak:
11807 return h->root.u.def.section;
11808
11809 case bfd_link_hash_common:
11810 return h->root.u.c.p->section;
11811
11812 case bfd_link_hash_undefined:
11813 case bfd_link_hash_undefweak:
11814 /* To work around a glibc bug, keep all XXX input sections
11815 when there is an as yet undefined reference to __start_XXX
11816 or __stop_XXX symbols. The linker will later define such
11817 symbols for orphan input sections that have a name
11818 representable as a C identifier. */
11819 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11820 sec_name = h->root.root.string + 8;
11821 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11822 sec_name = h->root.root.string + 7;
11823 else
11824 sec_name = NULL;
11825
11826 if (sec_name && *sec_name != '\0')
11827 {
11828 bfd *i;
11829
11830 for (i = info->input_bfds; i; i = i->link.next)
11831 {
11832 sec = bfd_get_section_by_name (i, sec_name);
11833 if (sec)
11834 sec->flags |= SEC_KEEP;
11835 }
11836 }
11837 break;
11838
11839 default:
11840 break;
11841 }
11842 }
11843 else
11844 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11845
11846 return NULL;
11847 }
11848
11849 /* COOKIE->rel describes a relocation against section SEC, which is
11850 a section we've decided to keep. Return the section that contains
11851 the relocation symbol, or NULL if no section contains it. */
11852
11853 asection *
11854 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11855 elf_gc_mark_hook_fn gc_mark_hook,
11856 struct elf_reloc_cookie *cookie)
11857 {
11858 unsigned long r_symndx;
11859 struct elf_link_hash_entry *h;
11860
11861 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11862 if (r_symndx == STN_UNDEF)
11863 return NULL;
11864
11865 if (r_symndx >= cookie->locsymcount
11866 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11867 {
11868 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11869 if (h == NULL)
11870 {
11871 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11872 sec->owner);
11873 return NULL;
11874 }
11875 while (h->root.type == bfd_link_hash_indirect
11876 || h->root.type == bfd_link_hash_warning)
11877 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11878 h->mark = 1;
11879 /* If this symbol is weak and there is a non-weak definition, we
11880 keep the non-weak definition because many backends put
11881 dynamic reloc info on the non-weak definition for code
11882 handling copy relocs. */
11883 if (h->u.weakdef != NULL)
11884 h->u.weakdef->mark = 1;
11885 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11886 }
11887
11888 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11889 &cookie->locsyms[r_symndx]);
11890 }
11891
11892 /* COOKIE->rel describes a relocation against section SEC, which is
11893 a section we've decided to keep. Mark the section that contains
11894 the relocation symbol. */
11895
11896 bfd_boolean
11897 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11898 asection *sec,
11899 elf_gc_mark_hook_fn gc_mark_hook,
11900 struct elf_reloc_cookie *cookie)
11901 {
11902 asection *rsec;
11903
11904 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11905 if (rsec && !rsec->gc_mark)
11906 {
11907 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11908 || (rsec->owner->flags & DYNAMIC) != 0)
11909 rsec->gc_mark = 1;
11910 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11911 return FALSE;
11912 }
11913 return TRUE;
11914 }
11915
11916 /* The mark phase of garbage collection. For a given section, mark
11917 it and any sections in this section's group, and all the sections
11918 which define symbols to which it refers. */
11919
11920 bfd_boolean
11921 _bfd_elf_gc_mark (struct bfd_link_info *info,
11922 asection *sec,
11923 elf_gc_mark_hook_fn gc_mark_hook)
11924 {
11925 bfd_boolean ret;
11926 asection *group_sec, *eh_frame;
11927
11928 sec->gc_mark = 1;
11929
11930 /* Mark all the sections in the group. */
11931 group_sec = elf_section_data (sec)->next_in_group;
11932 if (group_sec && !group_sec->gc_mark)
11933 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11934 return FALSE;
11935
11936 /* Look through the section relocs. */
11937 ret = TRUE;
11938 eh_frame = elf_eh_frame_section (sec->owner);
11939 if ((sec->flags & SEC_RELOC) != 0
11940 && sec->reloc_count > 0
11941 && sec != eh_frame)
11942 {
11943 struct elf_reloc_cookie cookie;
11944
11945 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11946 ret = FALSE;
11947 else
11948 {
11949 for (; cookie.rel < cookie.relend; cookie.rel++)
11950 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11951 {
11952 ret = FALSE;
11953 break;
11954 }
11955 fini_reloc_cookie_for_section (&cookie, sec);
11956 }
11957 }
11958
11959 if (ret && eh_frame && elf_fde_list (sec))
11960 {
11961 struct elf_reloc_cookie cookie;
11962
11963 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11964 ret = FALSE;
11965 else
11966 {
11967 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11968 gc_mark_hook, &cookie))
11969 ret = FALSE;
11970 fini_reloc_cookie_for_section (&cookie, eh_frame);
11971 }
11972 }
11973
11974 return ret;
11975 }
11976
11977 /* Scan and mark sections in a special or debug section group. */
11978
11979 static void
11980 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11981 {
11982 /* Point to first section of section group. */
11983 asection *ssec;
11984 /* Used to iterate the section group. */
11985 asection *msec;
11986
11987 bfd_boolean is_special_grp = TRUE;
11988 bfd_boolean is_debug_grp = TRUE;
11989
11990 /* First scan to see if group contains any section other than debug
11991 and special section. */
11992 ssec = msec = elf_next_in_group (grp);
11993 do
11994 {
11995 if ((msec->flags & SEC_DEBUGGING) == 0)
11996 is_debug_grp = FALSE;
11997
11998 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11999 is_special_grp = FALSE;
12000
12001 msec = elf_next_in_group (msec);
12002 }
12003 while (msec != ssec);
12004
12005 /* If this is a pure debug section group or pure special section group,
12006 keep all sections in this group. */
12007 if (is_debug_grp || is_special_grp)
12008 {
12009 do
12010 {
12011 msec->gc_mark = 1;
12012 msec = elf_next_in_group (msec);
12013 }
12014 while (msec != ssec);
12015 }
12016 }
12017
12018 /* Keep debug and special sections. */
12019
12020 bfd_boolean
12021 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12022 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12023 {
12024 bfd *ibfd;
12025
12026 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12027 {
12028 asection *isec;
12029 bfd_boolean some_kept;
12030 bfd_boolean debug_frag_seen;
12031
12032 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12033 continue;
12034
12035 /* Ensure all linker created sections are kept,
12036 see if any other section is already marked,
12037 and note if we have any fragmented debug sections. */
12038 debug_frag_seen = some_kept = FALSE;
12039 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12040 {
12041 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12042 isec->gc_mark = 1;
12043 else if (isec->gc_mark)
12044 some_kept = TRUE;
12045
12046 if (debug_frag_seen == FALSE
12047 && (isec->flags & SEC_DEBUGGING)
12048 && CONST_STRNEQ (isec->name, ".debug_line."))
12049 debug_frag_seen = TRUE;
12050 }
12051
12052 /* If no section in this file will be kept, then we can
12053 toss out the debug and special sections. */
12054 if (!some_kept)
12055 continue;
12056
12057 /* Keep debug and special sections like .comment when they are
12058 not part of a group. Also keep section groups that contain
12059 just debug sections or special sections. */
12060 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12061 {
12062 if ((isec->flags & SEC_GROUP) != 0)
12063 _bfd_elf_gc_mark_debug_special_section_group (isec);
12064 else if (((isec->flags & SEC_DEBUGGING) != 0
12065 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12066 && elf_next_in_group (isec) == NULL)
12067 isec->gc_mark = 1;
12068 }
12069
12070 if (! debug_frag_seen)
12071 continue;
12072
12073 /* Look for CODE sections which are going to be discarded,
12074 and find and discard any fragmented debug sections which
12075 are associated with that code section. */
12076 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12077 if ((isec->flags & SEC_CODE) != 0
12078 && isec->gc_mark == 0)
12079 {
12080 unsigned int ilen;
12081 asection *dsec;
12082
12083 ilen = strlen (isec->name);
12084
12085 /* Association is determined by the name of the debug section
12086 containing the name of the code section as a suffix. For
12087 example .debug_line.text.foo is a debug section associated
12088 with .text.foo. */
12089 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12090 {
12091 unsigned int dlen;
12092
12093 if (dsec->gc_mark == 0
12094 || (dsec->flags & SEC_DEBUGGING) == 0)
12095 continue;
12096
12097 dlen = strlen (dsec->name);
12098
12099 if (dlen > ilen
12100 && strncmp (dsec->name + (dlen - ilen),
12101 isec->name, ilen) == 0)
12102 {
12103 dsec->gc_mark = 0;
12104 }
12105 }
12106 }
12107 }
12108 return TRUE;
12109 }
12110
12111 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12112
12113 struct elf_gc_sweep_symbol_info
12114 {
12115 struct bfd_link_info *info;
12116 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12117 bfd_boolean);
12118 };
12119
12120 static bfd_boolean
12121 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12122 {
12123 if (!h->mark
12124 && (((h->root.type == bfd_link_hash_defined
12125 || h->root.type == bfd_link_hash_defweak)
12126 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12127 && h->root.u.def.section->gc_mark))
12128 || h->root.type == bfd_link_hash_undefined
12129 || h->root.type == bfd_link_hash_undefweak))
12130 {
12131 struct elf_gc_sweep_symbol_info *inf;
12132
12133 inf = (struct elf_gc_sweep_symbol_info *) data;
12134 (*inf->hide_symbol) (inf->info, h, TRUE);
12135 h->def_regular = 0;
12136 h->ref_regular = 0;
12137 h->ref_regular_nonweak = 0;
12138 }
12139
12140 return TRUE;
12141 }
12142
12143 /* The sweep phase of garbage collection. Remove all garbage sections. */
12144
12145 typedef bfd_boolean (*gc_sweep_hook_fn)
12146 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12147
12148 static bfd_boolean
12149 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12150 {
12151 bfd *sub;
12152 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12153 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12154 unsigned long section_sym_count;
12155 struct elf_gc_sweep_symbol_info sweep_info;
12156
12157 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12158 {
12159 asection *o;
12160
12161 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12162 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12163 continue;
12164
12165 for (o = sub->sections; o != NULL; o = o->next)
12166 {
12167 /* When any section in a section group is kept, we keep all
12168 sections in the section group. If the first member of
12169 the section group is excluded, we will also exclude the
12170 group section. */
12171 if (o->flags & SEC_GROUP)
12172 {
12173 asection *first = elf_next_in_group (o);
12174 o->gc_mark = first->gc_mark;
12175 }
12176
12177 if (o->gc_mark)
12178 continue;
12179
12180 /* Skip sweeping sections already excluded. */
12181 if (o->flags & SEC_EXCLUDE)
12182 continue;
12183
12184 /* Since this is early in the link process, it is simple
12185 to remove a section from the output. */
12186 o->flags |= SEC_EXCLUDE;
12187
12188 if (info->print_gc_sections && o->size != 0)
12189 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12190
12191 /* But we also have to update some of the relocation
12192 info we collected before. */
12193 if (gc_sweep_hook
12194 && (o->flags & SEC_RELOC) != 0
12195 && o->reloc_count != 0
12196 && !((info->strip == strip_all || info->strip == strip_debugger)
12197 && (o->flags & SEC_DEBUGGING) != 0)
12198 && !bfd_is_abs_section (o->output_section))
12199 {
12200 Elf_Internal_Rela *internal_relocs;
12201 bfd_boolean r;
12202
12203 internal_relocs
12204 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12205 info->keep_memory);
12206 if (internal_relocs == NULL)
12207 return FALSE;
12208
12209 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12210
12211 if (elf_section_data (o)->relocs != internal_relocs)
12212 free (internal_relocs);
12213
12214 if (!r)
12215 return FALSE;
12216 }
12217 }
12218 }
12219
12220 /* Remove the symbols that were in the swept sections from the dynamic
12221 symbol table. GCFIXME: Anyone know how to get them out of the
12222 static symbol table as well? */
12223 sweep_info.info = info;
12224 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12225 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12226 &sweep_info);
12227
12228 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12229 return TRUE;
12230 }
12231
12232 /* Propagate collected vtable information. This is called through
12233 elf_link_hash_traverse. */
12234
12235 static bfd_boolean
12236 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12237 {
12238 /* Those that are not vtables. */
12239 if (h->vtable == NULL || h->vtable->parent == NULL)
12240 return TRUE;
12241
12242 /* Those vtables that do not have parents, we cannot merge. */
12243 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12244 return TRUE;
12245
12246 /* If we've already been done, exit. */
12247 if (h->vtable->used && h->vtable->used[-1])
12248 return TRUE;
12249
12250 /* Make sure the parent's table is up to date. */
12251 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12252
12253 if (h->vtable->used == NULL)
12254 {
12255 /* None of this table's entries were referenced. Re-use the
12256 parent's table. */
12257 h->vtable->used = h->vtable->parent->vtable->used;
12258 h->vtable->size = h->vtable->parent->vtable->size;
12259 }
12260 else
12261 {
12262 size_t n;
12263 bfd_boolean *cu, *pu;
12264
12265 /* Or the parent's entries into ours. */
12266 cu = h->vtable->used;
12267 cu[-1] = TRUE;
12268 pu = h->vtable->parent->vtable->used;
12269 if (pu != NULL)
12270 {
12271 const struct elf_backend_data *bed;
12272 unsigned int log_file_align;
12273
12274 bed = get_elf_backend_data (h->root.u.def.section->owner);
12275 log_file_align = bed->s->log_file_align;
12276 n = h->vtable->parent->vtable->size >> log_file_align;
12277 while (n--)
12278 {
12279 if (*pu)
12280 *cu = TRUE;
12281 pu++;
12282 cu++;
12283 }
12284 }
12285 }
12286
12287 return TRUE;
12288 }
12289
12290 static bfd_boolean
12291 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12292 {
12293 asection *sec;
12294 bfd_vma hstart, hend;
12295 Elf_Internal_Rela *relstart, *relend, *rel;
12296 const struct elf_backend_data *bed;
12297 unsigned int log_file_align;
12298
12299 /* Take care of both those symbols that do not describe vtables as
12300 well as those that are not loaded. */
12301 if (h->vtable == NULL || h->vtable->parent == NULL)
12302 return TRUE;
12303
12304 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12305 || h->root.type == bfd_link_hash_defweak);
12306
12307 sec = h->root.u.def.section;
12308 hstart = h->root.u.def.value;
12309 hend = hstart + h->size;
12310
12311 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12312 if (!relstart)
12313 return *(bfd_boolean *) okp = FALSE;
12314 bed = get_elf_backend_data (sec->owner);
12315 log_file_align = bed->s->log_file_align;
12316
12317 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12318
12319 for (rel = relstart; rel < relend; ++rel)
12320 if (rel->r_offset >= hstart && rel->r_offset < hend)
12321 {
12322 /* If the entry is in use, do nothing. */
12323 if (h->vtable->used
12324 && (rel->r_offset - hstart) < h->vtable->size)
12325 {
12326 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12327 if (h->vtable->used[entry])
12328 continue;
12329 }
12330 /* Otherwise, kill it. */
12331 rel->r_offset = rel->r_info = rel->r_addend = 0;
12332 }
12333
12334 return TRUE;
12335 }
12336
12337 /* Mark sections containing dynamically referenced symbols. When
12338 building shared libraries, we must assume that any visible symbol is
12339 referenced. */
12340
12341 bfd_boolean
12342 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12343 {
12344 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12345 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12346
12347 if ((h->root.type == bfd_link_hash_defined
12348 || h->root.type == bfd_link_hash_defweak)
12349 && (h->ref_dynamic
12350 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12351 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12352 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12353 && (!info->executable
12354 || info->export_dynamic
12355 || (h->dynamic
12356 && d != NULL
12357 && (*d->match) (&d->head, NULL, h->root.root.string)))
12358 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12359 || !bfd_hide_sym_by_version (info->version_info,
12360 h->root.root.string)))))
12361 h->root.u.def.section->flags |= SEC_KEEP;
12362
12363 return TRUE;
12364 }
12365
12366 /* Keep all sections containing symbols undefined on the command-line,
12367 and the section containing the entry symbol. */
12368
12369 void
12370 _bfd_elf_gc_keep (struct bfd_link_info *info)
12371 {
12372 struct bfd_sym_chain *sym;
12373
12374 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12375 {
12376 struct elf_link_hash_entry *h;
12377
12378 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12379 FALSE, FALSE, FALSE);
12380
12381 if (h != NULL
12382 && (h->root.type == bfd_link_hash_defined
12383 || h->root.type == bfd_link_hash_defweak)
12384 && !bfd_is_abs_section (h->root.u.def.section))
12385 h->root.u.def.section->flags |= SEC_KEEP;
12386 }
12387 }
12388
12389 /* Do mark and sweep of unused sections. */
12390
12391 bfd_boolean
12392 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12393 {
12394 bfd_boolean ok = TRUE;
12395 bfd *sub;
12396 elf_gc_mark_hook_fn gc_mark_hook;
12397 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12398 struct elf_link_hash_table *htab;
12399
12400 if (!bed->can_gc_sections
12401 || !is_elf_hash_table (info->hash))
12402 {
12403 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12404 return TRUE;
12405 }
12406
12407 bed->gc_keep (info);
12408 htab = elf_hash_table (info);
12409
12410 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12411 at the .eh_frame section if we can mark the FDEs individually. */
12412 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12413 {
12414 asection *sec;
12415 struct elf_reloc_cookie cookie;
12416
12417 sec = bfd_get_section_by_name (sub, ".eh_frame");
12418 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12419 {
12420 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12421 if (elf_section_data (sec)->sec_info
12422 && (sec->flags & SEC_LINKER_CREATED) == 0)
12423 elf_eh_frame_section (sub) = sec;
12424 fini_reloc_cookie_for_section (&cookie, sec);
12425 sec = bfd_get_next_section_by_name (sec);
12426 }
12427 }
12428
12429 /* Apply transitive closure to the vtable entry usage info. */
12430 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12431 if (!ok)
12432 return FALSE;
12433
12434 /* Kill the vtable relocations that were not used. */
12435 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12436 if (!ok)
12437 return FALSE;
12438
12439 /* Mark dynamically referenced symbols. */
12440 if (htab->dynamic_sections_created)
12441 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12442
12443 /* Grovel through relocs to find out who stays ... */
12444 gc_mark_hook = bed->gc_mark_hook;
12445 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12446 {
12447 asection *o;
12448
12449 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12450 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12451 continue;
12452
12453 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12454 Also treat note sections as a root, if the section is not part
12455 of a group. */
12456 for (o = sub->sections; o != NULL; o = o->next)
12457 if (!o->gc_mark
12458 && (o->flags & SEC_EXCLUDE) == 0
12459 && ((o->flags & SEC_KEEP) != 0
12460 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12461 && elf_next_in_group (o) == NULL )))
12462 {
12463 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12464 return FALSE;
12465 }
12466 }
12467
12468 /* Allow the backend to mark additional target specific sections. */
12469 bed->gc_mark_extra_sections (info, gc_mark_hook);
12470
12471 /* ... and mark SEC_EXCLUDE for those that go. */
12472 return elf_gc_sweep (abfd, info);
12473 }
12474 \f
12475 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12476
12477 bfd_boolean
12478 bfd_elf_gc_record_vtinherit (bfd *abfd,
12479 asection *sec,
12480 struct elf_link_hash_entry *h,
12481 bfd_vma offset)
12482 {
12483 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12484 struct elf_link_hash_entry **search, *child;
12485 bfd_size_type extsymcount;
12486 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12487
12488 /* The sh_info field of the symtab header tells us where the
12489 external symbols start. We don't care about the local symbols at
12490 this point. */
12491 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12492 if (!elf_bad_symtab (abfd))
12493 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12494
12495 sym_hashes = elf_sym_hashes (abfd);
12496 sym_hashes_end = sym_hashes + extsymcount;
12497
12498 /* Hunt down the child symbol, which is in this section at the same
12499 offset as the relocation. */
12500 for (search = sym_hashes; search != sym_hashes_end; ++search)
12501 {
12502 if ((child = *search) != NULL
12503 && (child->root.type == bfd_link_hash_defined
12504 || child->root.type == bfd_link_hash_defweak)
12505 && child->root.u.def.section == sec
12506 && child->root.u.def.value == offset)
12507 goto win;
12508 }
12509
12510 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12511 abfd, sec, (unsigned long) offset);
12512 bfd_set_error (bfd_error_invalid_operation);
12513 return FALSE;
12514
12515 win:
12516 if (!child->vtable)
12517 {
12518 child->vtable = ((struct elf_link_virtual_table_entry *)
12519 bfd_zalloc (abfd, sizeof (*child->vtable)));
12520 if (!child->vtable)
12521 return FALSE;
12522 }
12523 if (!h)
12524 {
12525 /* This *should* only be the absolute section. It could potentially
12526 be that someone has defined a non-global vtable though, which
12527 would be bad. It isn't worth paging in the local symbols to be
12528 sure though; that case should simply be handled by the assembler. */
12529
12530 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12531 }
12532 else
12533 child->vtable->parent = h;
12534
12535 return TRUE;
12536 }
12537
12538 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12539
12540 bfd_boolean
12541 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12542 asection *sec ATTRIBUTE_UNUSED,
12543 struct elf_link_hash_entry *h,
12544 bfd_vma addend)
12545 {
12546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12547 unsigned int log_file_align = bed->s->log_file_align;
12548
12549 if (!h->vtable)
12550 {
12551 h->vtable = ((struct elf_link_virtual_table_entry *)
12552 bfd_zalloc (abfd, sizeof (*h->vtable)));
12553 if (!h->vtable)
12554 return FALSE;
12555 }
12556
12557 if (addend >= h->vtable->size)
12558 {
12559 size_t size, bytes, file_align;
12560 bfd_boolean *ptr = h->vtable->used;
12561
12562 /* While the symbol is undefined, we have to be prepared to handle
12563 a zero size. */
12564 file_align = 1 << log_file_align;
12565 if (h->root.type == bfd_link_hash_undefined)
12566 size = addend + file_align;
12567 else
12568 {
12569 size = h->size;
12570 if (addend >= size)
12571 {
12572 /* Oops! We've got a reference past the defined end of
12573 the table. This is probably a bug -- shall we warn? */
12574 size = addend + file_align;
12575 }
12576 }
12577 size = (size + file_align - 1) & -file_align;
12578
12579 /* Allocate one extra entry for use as a "done" flag for the
12580 consolidation pass. */
12581 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12582
12583 if (ptr)
12584 {
12585 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12586
12587 if (ptr != NULL)
12588 {
12589 size_t oldbytes;
12590
12591 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12592 * sizeof (bfd_boolean));
12593 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12594 }
12595 }
12596 else
12597 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12598
12599 if (ptr == NULL)
12600 return FALSE;
12601
12602 /* And arrange for that done flag to be at index -1. */
12603 h->vtable->used = ptr + 1;
12604 h->vtable->size = size;
12605 }
12606
12607 h->vtable->used[addend >> log_file_align] = TRUE;
12608
12609 return TRUE;
12610 }
12611
12612 /* Map an ELF section header flag to its corresponding string. */
12613 typedef struct
12614 {
12615 char *flag_name;
12616 flagword flag_value;
12617 } elf_flags_to_name_table;
12618
12619 static elf_flags_to_name_table elf_flags_to_names [] =
12620 {
12621 { "SHF_WRITE", SHF_WRITE },
12622 { "SHF_ALLOC", SHF_ALLOC },
12623 { "SHF_EXECINSTR", SHF_EXECINSTR },
12624 { "SHF_MERGE", SHF_MERGE },
12625 { "SHF_STRINGS", SHF_STRINGS },
12626 { "SHF_INFO_LINK", SHF_INFO_LINK},
12627 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12628 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12629 { "SHF_GROUP", SHF_GROUP },
12630 { "SHF_TLS", SHF_TLS },
12631 { "SHF_MASKOS", SHF_MASKOS },
12632 { "SHF_EXCLUDE", SHF_EXCLUDE },
12633 };
12634
12635 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12636 bfd_boolean
12637 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12638 struct flag_info *flaginfo,
12639 asection *section)
12640 {
12641 const bfd_vma sh_flags = elf_section_flags (section);
12642
12643 if (!flaginfo->flags_initialized)
12644 {
12645 bfd *obfd = info->output_bfd;
12646 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12647 struct flag_info_list *tf = flaginfo->flag_list;
12648 int with_hex = 0;
12649 int without_hex = 0;
12650
12651 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12652 {
12653 unsigned i;
12654 flagword (*lookup) (char *);
12655
12656 lookup = bed->elf_backend_lookup_section_flags_hook;
12657 if (lookup != NULL)
12658 {
12659 flagword hexval = (*lookup) ((char *) tf->name);
12660
12661 if (hexval != 0)
12662 {
12663 if (tf->with == with_flags)
12664 with_hex |= hexval;
12665 else if (tf->with == without_flags)
12666 without_hex |= hexval;
12667 tf->valid = TRUE;
12668 continue;
12669 }
12670 }
12671 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12672 {
12673 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12674 {
12675 if (tf->with == with_flags)
12676 with_hex |= elf_flags_to_names[i].flag_value;
12677 else if (tf->with == without_flags)
12678 without_hex |= elf_flags_to_names[i].flag_value;
12679 tf->valid = TRUE;
12680 break;
12681 }
12682 }
12683 if (!tf->valid)
12684 {
12685 info->callbacks->einfo
12686 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12687 return FALSE;
12688 }
12689 }
12690 flaginfo->flags_initialized = TRUE;
12691 flaginfo->only_with_flags |= with_hex;
12692 flaginfo->not_with_flags |= without_hex;
12693 }
12694
12695 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12696 return FALSE;
12697
12698 if ((flaginfo->not_with_flags & sh_flags) != 0)
12699 return FALSE;
12700
12701 return TRUE;
12702 }
12703
12704 struct alloc_got_off_arg {
12705 bfd_vma gotoff;
12706 struct bfd_link_info *info;
12707 };
12708
12709 /* We need a special top-level link routine to convert got reference counts
12710 to real got offsets. */
12711
12712 static bfd_boolean
12713 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12714 {
12715 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12716 bfd *obfd = gofarg->info->output_bfd;
12717 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12718
12719 if (h->got.refcount > 0)
12720 {
12721 h->got.offset = gofarg->gotoff;
12722 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12723 }
12724 else
12725 h->got.offset = (bfd_vma) -1;
12726
12727 return TRUE;
12728 }
12729
12730 /* And an accompanying bit to work out final got entry offsets once
12731 we're done. Should be called from final_link. */
12732
12733 bfd_boolean
12734 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12735 struct bfd_link_info *info)
12736 {
12737 bfd *i;
12738 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12739 bfd_vma gotoff;
12740 struct alloc_got_off_arg gofarg;
12741
12742 BFD_ASSERT (abfd == info->output_bfd);
12743
12744 if (! is_elf_hash_table (info->hash))
12745 return FALSE;
12746
12747 /* The GOT offset is relative to the .got section, but the GOT header is
12748 put into the .got.plt section, if the backend uses it. */
12749 if (bed->want_got_plt)
12750 gotoff = 0;
12751 else
12752 gotoff = bed->got_header_size;
12753
12754 /* Do the local .got entries first. */
12755 for (i = info->input_bfds; i; i = i->link.next)
12756 {
12757 bfd_signed_vma *local_got;
12758 bfd_size_type j, locsymcount;
12759 Elf_Internal_Shdr *symtab_hdr;
12760
12761 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12762 continue;
12763
12764 local_got = elf_local_got_refcounts (i);
12765 if (!local_got)
12766 continue;
12767
12768 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12769 if (elf_bad_symtab (i))
12770 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12771 else
12772 locsymcount = symtab_hdr->sh_info;
12773
12774 for (j = 0; j < locsymcount; ++j)
12775 {
12776 if (local_got[j] > 0)
12777 {
12778 local_got[j] = gotoff;
12779 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12780 }
12781 else
12782 local_got[j] = (bfd_vma) -1;
12783 }
12784 }
12785
12786 /* Then the global .got entries. .plt refcounts are handled by
12787 adjust_dynamic_symbol */
12788 gofarg.gotoff = gotoff;
12789 gofarg.info = info;
12790 elf_link_hash_traverse (elf_hash_table (info),
12791 elf_gc_allocate_got_offsets,
12792 &gofarg);
12793 return TRUE;
12794 }
12795
12796 /* Many folk need no more in the way of final link than this, once
12797 got entry reference counting is enabled. */
12798
12799 bfd_boolean
12800 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12801 {
12802 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12803 return FALSE;
12804
12805 /* Invoke the regular ELF backend linker to do all the work. */
12806 return bfd_elf_final_link (abfd, info);
12807 }
12808
12809 bfd_boolean
12810 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12811 {
12812 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12813
12814 if (rcookie->bad_symtab)
12815 rcookie->rel = rcookie->rels;
12816
12817 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12818 {
12819 unsigned long r_symndx;
12820
12821 if (! rcookie->bad_symtab)
12822 if (rcookie->rel->r_offset > offset)
12823 return FALSE;
12824 if (rcookie->rel->r_offset != offset)
12825 continue;
12826
12827 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12828 if (r_symndx == STN_UNDEF)
12829 return TRUE;
12830
12831 if (r_symndx >= rcookie->locsymcount
12832 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12833 {
12834 struct elf_link_hash_entry *h;
12835
12836 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12837
12838 while (h->root.type == bfd_link_hash_indirect
12839 || h->root.type == bfd_link_hash_warning)
12840 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12841
12842 if ((h->root.type == bfd_link_hash_defined
12843 || h->root.type == bfd_link_hash_defweak)
12844 && (h->root.u.def.section->owner != rcookie->abfd
12845 || h->root.u.def.section->kept_section != NULL
12846 || discarded_section (h->root.u.def.section)))
12847 return TRUE;
12848 }
12849 else
12850 {
12851 /* It's not a relocation against a global symbol,
12852 but it could be a relocation against a local
12853 symbol for a discarded section. */
12854 asection *isec;
12855 Elf_Internal_Sym *isym;
12856
12857 /* Need to: get the symbol; get the section. */
12858 isym = &rcookie->locsyms[r_symndx];
12859 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12860 if (isec != NULL
12861 && (isec->kept_section != NULL
12862 || discarded_section (isec)))
12863 return TRUE;
12864 }
12865 return FALSE;
12866 }
12867 return FALSE;
12868 }
12869
12870 /* Discard unneeded references to discarded sections.
12871 Returns -1 on error, 1 if any section's size was changed, 0 if
12872 nothing changed. This function assumes that the relocations are in
12873 sorted order, which is true for all known assemblers. */
12874
12875 int
12876 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12877 {
12878 struct elf_reloc_cookie cookie;
12879 asection *o;
12880 bfd *abfd;
12881 int changed = 0;
12882
12883 if (info->traditional_format
12884 || !is_elf_hash_table (info->hash))
12885 return 0;
12886
12887 o = bfd_get_section_by_name (output_bfd, ".stab");
12888 if (o != NULL)
12889 {
12890 asection *i;
12891
12892 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12893 {
12894 if (i->size == 0
12895 || i->reloc_count == 0
12896 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12897 continue;
12898
12899 abfd = i->owner;
12900 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12901 continue;
12902
12903 if (!init_reloc_cookie_for_section (&cookie, info, i))
12904 return -1;
12905
12906 if (_bfd_discard_section_stabs (abfd, i,
12907 elf_section_data (i)->sec_info,
12908 bfd_elf_reloc_symbol_deleted_p,
12909 &cookie))
12910 changed = 1;
12911
12912 fini_reloc_cookie_for_section (&cookie, i);
12913 }
12914 }
12915
12916 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12917 if (o != NULL)
12918 {
12919 asection *i;
12920
12921 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12922 {
12923 if (i->size == 0)
12924 continue;
12925
12926 abfd = i->owner;
12927 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12928 continue;
12929
12930 if (!init_reloc_cookie_for_section (&cookie, info, i))
12931 return -1;
12932
12933 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12934 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12935 bfd_elf_reloc_symbol_deleted_p,
12936 &cookie))
12937 changed = 1;
12938
12939 fini_reloc_cookie_for_section (&cookie, i);
12940 }
12941 }
12942
12943 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12944 {
12945 const struct elf_backend_data *bed;
12946
12947 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12948 continue;
12949
12950 bed = get_elf_backend_data (abfd);
12951
12952 if (bed->elf_backend_discard_info != NULL)
12953 {
12954 if (!init_reloc_cookie (&cookie, info, abfd))
12955 return -1;
12956
12957 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12958 changed = 1;
12959
12960 fini_reloc_cookie (&cookie, abfd);
12961 }
12962 }
12963
12964 if (info->eh_frame_hdr
12965 && !info->relocatable
12966 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12967 changed = 1;
12968
12969 return changed;
12970 }
12971
12972 bfd_boolean
12973 _bfd_elf_section_already_linked (bfd *abfd,
12974 asection *sec,
12975 struct bfd_link_info *info)
12976 {
12977 flagword flags;
12978 const char *name, *key;
12979 struct bfd_section_already_linked *l;
12980 struct bfd_section_already_linked_hash_entry *already_linked_list;
12981
12982 if (sec->output_section == bfd_abs_section_ptr)
12983 return FALSE;
12984
12985 flags = sec->flags;
12986
12987 /* Return if it isn't a linkonce section. A comdat group section
12988 also has SEC_LINK_ONCE set. */
12989 if ((flags & SEC_LINK_ONCE) == 0)
12990 return FALSE;
12991
12992 /* Don't put group member sections on our list of already linked
12993 sections. They are handled as a group via their group section. */
12994 if (elf_sec_group (sec) != NULL)
12995 return FALSE;
12996
12997 /* For a SHT_GROUP section, use the group signature as the key. */
12998 name = sec->name;
12999 if ((flags & SEC_GROUP) != 0
13000 && elf_next_in_group (sec) != NULL
13001 && elf_group_name (elf_next_in_group (sec)) != NULL)
13002 key = elf_group_name (elf_next_in_group (sec));
13003 else
13004 {
13005 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13006 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13007 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13008 key++;
13009 else
13010 /* Must be a user linkonce section that doesn't follow gcc's
13011 naming convention. In this case we won't be matching
13012 single member groups. */
13013 key = name;
13014 }
13015
13016 already_linked_list = bfd_section_already_linked_table_lookup (key);
13017
13018 for (l = already_linked_list->entry; l != NULL; l = l->next)
13019 {
13020 /* We may have 2 different types of sections on the list: group
13021 sections with a signature of <key> (<key> is some string),
13022 and linkonce sections named .gnu.linkonce.<type>.<key>.
13023 Match like sections. LTO plugin sections are an exception.
13024 They are always named .gnu.linkonce.t.<key> and match either
13025 type of section. */
13026 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13027 && ((flags & SEC_GROUP) != 0
13028 || strcmp (name, l->sec->name) == 0))
13029 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13030 {
13031 /* The section has already been linked. See if we should
13032 issue a warning. */
13033 if (!_bfd_handle_already_linked (sec, l, info))
13034 return FALSE;
13035
13036 if (flags & SEC_GROUP)
13037 {
13038 asection *first = elf_next_in_group (sec);
13039 asection *s = first;
13040
13041 while (s != NULL)
13042 {
13043 s->output_section = bfd_abs_section_ptr;
13044 /* Record which group discards it. */
13045 s->kept_section = l->sec;
13046 s = elf_next_in_group (s);
13047 /* These lists are circular. */
13048 if (s == first)
13049 break;
13050 }
13051 }
13052
13053 return TRUE;
13054 }
13055 }
13056
13057 /* A single member comdat group section may be discarded by a
13058 linkonce section and vice versa. */
13059 if ((flags & SEC_GROUP) != 0)
13060 {
13061 asection *first = elf_next_in_group (sec);
13062
13063 if (first != NULL && elf_next_in_group (first) == first)
13064 /* Check this single member group against linkonce sections. */
13065 for (l = already_linked_list->entry; l != NULL; l = l->next)
13066 if ((l->sec->flags & SEC_GROUP) == 0
13067 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13068 {
13069 first->output_section = bfd_abs_section_ptr;
13070 first->kept_section = l->sec;
13071 sec->output_section = bfd_abs_section_ptr;
13072 break;
13073 }
13074 }
13075 else
13076 /* Check this linkonce section against single member groups. */
13077 for (l = already_linked_list->entry; l != NULL; l = l->next)
13078 if (l->sec->flags & SEC_GROUP)
13079 {
13080 asection *first = elf_next_in_group (l->sec);
13081
13082 if (first != NULL
13083 && elf_next_in_group (first) == first
13084 && bfd_elf_match_symbols_in_sections (first, sec, info))
13085 {
13086 sec->output_section = bfd_abs_section_ptr;
13087 sec->kept_section = first;
13088 break;
13089 }
13090 }
13091
13092 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13093 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13094 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13095 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13096 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13097 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13098 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13099 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13100 The reverse order cannot happen as there is never a bfd with only the
13101 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13102 matter as here were are looking only for cross-bfd sections. */
13103
13104 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13105 for (l = already_linked_list->entry; l != NULL; l = l->next)
13106 if ((l->sec->flags & SEC_GROUP) == 0
13107 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13108 {
13109 if (abfd != l->sec->owner)
13110 sec->output_section = bfd_abs_section_ptr;
13111 break;
13112 }
13113
13114 /* This is the first section with this name. Record it. */
13115 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13116 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13117 return sec->output_section == bfd_abs_section_ptr;
13118 }
13119
13120 bfd_boolean
13121 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13122 {
13123 return sym->st_shndx == SHN_COMMON;
13124 }
13125
13126 unsigned int
13127 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13128 {
13129 return SHN_COMMON;
13130 }
13131
13132 asection *
13133 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13134 {
13135 return bfd_com_section_ptr;
13136 }
13137
13138 bfd_vma
13139 _bfd_elf_default_got_elt_size (bfd *abfd,
13140 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13141 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13142 bfd *ibfd ATTRIBUTE_UNUSED,
13143 unsigned long symndx ATTRIBUTE_UNUSED)
13144 {
13145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13146 return bed->s->arch_size / 8;
13147 }
13148
13149 /* Routines to support the creation of dynamic relocs. */
13150
13151 /* Returns the name of the dynamic reloc section associated with SEC. */
13152
13153 static const char *
13154 get_dynamic_reloc_section_name (bfd * abfd,
13155 asection * sec,
13156 bfd_boolean is_rela)
13157 {
13158 char *name;
13159 const char *old_name = bfd_get_section_name (NULL, sec);
13160 const char *prefix = is_rela ? ".rela" : ".rel";
13161
13162 if (old_name == NULL)
13163 return NULL;
13164
13165 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13166 sprintf (name, "%s%s", prefix, old_name);
13167
13168 return name;
13169 }
13170
13171 /* Returns the dynamic reloc section associated with SEC.
13172 If necessary compute the name of the dynamic reloc section based
13173 on SEC's name (looked up in ABFD's string table) and the setting
13174 of IS_RELA. */
13175
13176 asection *
13177 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13178 asection * sec,
13179 bfd_boolean is_rela)
13180 {
13181 asection * reloc_sec = elf_section_data (sec)->sreloc;
13182
13183 if (reloc_sec == NULL)
13184 {
13185 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13186
13187 if (name != NULL)
13188 {
13189 reloc_sec = bfd_get_linker_section (abfd, name);
13190
13191 if (reloc_sec != NULL)
13192 elf_section_data (sec)->sreloc = reloc_sec;
13193 }
13194 }
13195
13196 return reloc_sec;
13197 }
13198
13199 /* Returns the dynamic reloc section associated with SEC. If the
13200 section does not exist it is created and attached to the DYNOBJ
13201 bfd and stored in the SRELOC field of SEC's elf_section_data
13202 structure.
13203
13204 ALIGNMENT is the alignment for the newly created section and
13205 IS_RELA defines whether the name should be .rela.<SEC's name>
13206 or .rel.<SEC's name>. The section name is looked up in the
13207 string table associated with ABFD. */
13208
13209 asection *
13210 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13211 bfd *dynobj,
13212 unsigned int alignment,
13213 bfd *abfd,
13214 bfd_boolean is_rela)
13215 {
13216 asection * reloc_sec = elf_section_data (sec)->sreloc;
13217
13218 if (reloc_sec == NULL)
13219 {
13220 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13221
13222 if (name == NULL)
13223 return NULL;
13224
13225 reloc_sec = bfd_get_linker_section (dynobj, name);
13226
13227 if (reloc_sec == NULL)
13228 {
13229 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13230 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13231 if ((sec->flags & SEC_ALLOC) != 0)
13232 flags |= SEC_ALLOC | SEC_LOAD;
13233
13234 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13235 if (reloc_sec != NULL)
13236 {
13237 /* _bfd_elf_get_sec_type_attr chooses a section type by
13238 name. Override as it may be wrong, eg. for a user
13239 section named "auto" we'll get ".relauto" which is
13240 seen to be a .rela section. */
13241 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13242 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13243 reloc_sec = NULL;
13244 }
13245 }
13246
13247 elf_section_data (sec)->sreloc = reloc_sec;
13248 }
13249
13250 return reloc_sec;
13251 }
13252
13253 /* Copy the ELF symbol type and other attributes for a linker script
13254 assignment from HSRC to HDEST. Generally this should be treated as
13255 if we found a strong non-dynamic definition for HDEST (except that
13256 ld ignores multiple definition errors). */
13257 void
13258 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13259 struct bfd_link_hash_entry *hdest,
13260 struct bfd_link_hash_entry *hsrc)
13261 {
13262 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13263 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13264 Elf_Internal_Sym isym;
13265
13266 ehdest->type = ehsrc->type;
13267 ehdest->target_internal = ehsrc->target_internal;
13268
13269 isym.st_other = ehsrc->other;
13270 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13271 }
13272
13273 /* Append a RELA relocation REL to section S in BFD. */
13274
13275 void
13276 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13277 {
13278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13279 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13280 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13281 bed->s->swap_reloca_out (abfd, rel, loc);
13282 }
13283
13284 /* Append a REL relocation REL to section S in BFD. */
13285
13286 void
13287 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13288 {
13289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13290 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13291 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13292 bed->s->swap_reloc_out (abfd, rel, loc);
13293 }
This page took 0.430061 seconds and 4 git commands to generate.