1e98cb7fd04c48117c50c542ab5baac6952455a0
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
623 {
624 asection *s;
625
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
628 {
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
633 }
634 }
635
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
639
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
642 {
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
647 }
648
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
653
654 eht = elf_hash_table (info);
655
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
661
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
665
666 /* The dynindx will be set at the end of size_dynamic_sections. */
667
668 return 1;
669 }
670
671 /* Return the dynindex of a local dynamic symbol. */
672
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
677 {
678 struct elf_link_local_dynamic_entry *e;
679
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
684 }
685
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
689
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
693 {
694 size_t *count = data;
695
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
699 if (h->forced_local)
700 return TRUE;
701
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
704
705 return TRUE;
706 }
707
708
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
711
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
715 {
716 size_t *count = data;
717
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
720
721 if (!h->forced_local)
722 return TRUE;
723
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
726
727 return TRUE;
728 }
729
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
736 {
737 struct elf_link_hash_table *htab;
738
739 switch (elf_section_data (p)->this_hdr.sh_type)
740 {
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
749
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
752
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
756 {
757 asection *ip;
758
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
764 }
765 return FALSE;
766
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
771 }
772 }
773
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
779
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
784 {
785 unsigned long dynsymcount = 0;
786
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
788 {
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
798 }
799 *section_sym_count = dynsymcount;
800
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
804
805 if (elf_hash_table (info)->dynlocal)
806 {
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
810 }
811
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
815
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
821
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
824 }
825
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
837
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
851 {
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
860
861 *skip = FALSE;
862 *override = FALSE;
863
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
866
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
871 {
872 *skip = TRUE;
873 return TRUE;
874 }
875
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
884
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->hash->creator != abfd->xvec)
888 return TRUE;
889
890 /* For merging, we only care about real symbols. */
891
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
895
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
900
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
904
905 if (h->root.type == bfd_link_hash_new)
906 {
907 h->non_elf = 0;
908 return TRUE;
909 }
910
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
913
914 switch (h->root.type)
915 {
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
920
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
926
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
932
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
937 }
938
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
949
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
952
953 newdyn = (abfd->flags & DYNAMIC) != 0;
954
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
959 {
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
963 }
964
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
967
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
969
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
973
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
992 {
993 *skip = TRUE;
994 return TRUE;
995 }
996
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1002 {
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1006
1007 if (h->type == STT_TLS)
1008 {
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1015 }
1016 else
1017 {
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1024 }
1025
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1042
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1045 }
1046
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1051 {
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1055 {
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1060 {
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1063 }
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1066 }
1067 }
1068
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1074 {
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1080
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1086 }
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1090 {
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1095 {
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1101 {
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1111 {
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1115 }
1116 else
1117 {
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1124 }
1125 h = vh;
1126 }
1127 else
1128 h = *sym_hash;
1129 }
1130
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1133 {
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1142 }
1143 else
1144 {
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1147 }
1148
1149 if (h->def_dynamic)
1150 {
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1154 }
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1159 }
1160
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1165
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1173
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1176
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1181
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1186
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1190
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1196
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1199
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1203
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1216
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1219
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1226
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1237
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1249
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1261
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1265
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1269 {
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1275
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1280
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1283
1284 *size_change_ok = TRUE;
1285 }
1286
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1293
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1300
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1307 {
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1311
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1314
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1320
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1323 }
1324
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1330
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1333 {
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1340 }
1341
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1345
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1351
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1355
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1365 {
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1369
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1373
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1376
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1379
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1382
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1390 }
1391
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1397
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1401 {
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1409
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1412
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1415
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1420
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1423
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1426
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1429
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1434 }
1435
1436 if (flip != NULL)
1437 {
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1448 {
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1461
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1472 {
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1485
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1493
1494 if (override)
1495 {
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1505 {
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1509 }
1510 }
1511
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1515
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1522
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1534
1535 if (skip)
1536 goto nondefault;
1537
1538 if (! override)
1539 {
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1546 }
1547 else
1548 {
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1554
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1558
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1566
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1570
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1574 {
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1579 {
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1582 }
1583 }
1584
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1588 }
1589
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1593
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1597
1598 if (hi->root.type == bfd_link_hash_indirect)
1599 {
1600 struct elf_link_hash_entry *ht;
1601
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1604
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1608 {
1609 if (! dynamic)
1610 {
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1614 }
1615 else
1616 {
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1619 }
1620 }
1621 }
1622
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1625
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1633
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 return TRUE;
1645
1646 if (override)
1647 {
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1656 }
1657 else
1658 {
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1665
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1673
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1677 {
1678 if (! dynamic)
1679 {
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1683 }
1684 else
1685 {
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1688 }
1689 }
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695 \f
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1698
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1701 {
1702 struct elf_info_failed *eif = data;
1703
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1707
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1711
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1714
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1718 {
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1721
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1723 {
1724 if (t->globals.list != NULL)
1725 {
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1729 }
1730
1731 if (t->locals.list != NULL)
1732 {
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1736 }
1737 }
1738
1739 if (!eif->verdefs)
1740 {
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1743 {
1744 eif->failed = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752 \f
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1757
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1761 {
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1766
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1769
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1777
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1780 {
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1783
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1787
1788 break;
1789 }
1790
1791 /* This is a new version. Add it to tree we are building. */
1792
1793 if (t == NULL)
1794 {
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1798 {
1799 rinfo->failed = TRUE;
1800 return FALSE;
1801 }
1802
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1806 }
1807
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810
1811 /* Note that we are copying a string pointer here, and testing it
1812 above. If bfd_elf_string_from_elf_section is ever changed to
1813 discard the string data when low in memory, this will have to be
1814 fixed. */
1815 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1816
1817 a->vna_flags = h->verinfo.verdef->vd_flags;
1818 a->vna_nextptr = t->vn_auxptr;
1819
1820 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1821 ++rinfo->vers;
1822
1823 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1824
1825 t->vn_auxptr = a;
1826
1827 return TRUE;
1828 }
1829
1830 /* Figure out appropriate versions for all the symbols. We may not
1831 have the version number script until we have read all of the input
1832 files, so until that point we don't know which symbols should be
1833 local. This function is called via elf_link_hash_traverse. */
1834
1835 bfd_boolean
1836 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1837 {
1838 struct elf_assign_sym_version_info *sinfo;
1839 struct bfd_link_info *info;
1840 const struct elf_backend_data *bed;
1841 struct elf_info_failed eif;
1842 char *p;
1843 bfd_size_type amt;
1844
1845 sinfo = data;
1846 info = sinfo->info;
1847
1848 if (h->root.type == bfd_link_hash_warning)
1849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1850
1851 /* Fix the symbol flags. */
1852 eif.failed = FALSE;
1853 eif.info = info;
1854 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1855 {
1856 if (eif.failed)
1857 sinfo->failed = TRUE;
1858 return FALSE;
1859 }
1860
1861 /* We only need version numbers for symbols defined in regular
1862 objects. */
1863 if (!h->def_regular)
1864 return TRUE;
1865
1866 bed = get_elf_backend_data (sinfo->output_bfd);
1867 p = strchr (h->root.root.string, ELF_VER_CHR);
1868 if (p != NULL && h->verinfo.vertree == NULL)
1869 {
1870 struct bfd_elf_version_tree *t;
1871 bfd_boolean hidden;
1872
1873 hidden = TRUE;
1874
1875 /* There are two consecutive ELF_VER_CHR characters if this is
1876 not a hidden symbol. */
1877 ++p;
1878 if (*p == ELF_VER_CHR)
1879 {
1880 hidden = FALSE;
1881 ++p;
1882 }
1883
1884 /* If there is no version string, we can just return out. */
1885 if (*p == '\0')
1886 {
1887 if (hidden)
1888 h->hidden = 1;
1889 return TRUE;
1890 }
1891
1892 /* Look for the version. If we find it, it is no longer weak. */
1893 for (t = sinfo->verdefs; t != NULL; t = t->next)
1894 {
1895 if (strcmp (t->name, p) == 0)
1896 {
1897 size_t len;
1898 char *alc;
1899 struct bfd_elf_version_expr *d;
1900
1901 len = p - h->root.root.string;
1902 alc = bfd_malloc (len);
1903 if (alc == NULL)
1904 return FALSE;
1905 memcpy (alc, h->root.root.string, len - 1);
1906 alc[len - 1] = '\0';
1907 if (alc[len - 2] == ELF_VER_CHR)
1908 alc[len - 2] = '\0';
1909
1910 h->verinfo.vertree = t;
1911 t->used = TRUE;
1912 d = NULL;
1913
1914 if (t->globals.list != NULL)
1915 d = (*t->match) (&t->globals, NULL, alc);
1916
1917 /* See if there is anything to force this symbol to
1918 local scope. */
1919 if (d == NULL && t->locals.list != NULL)
1920 {
1921 d = (*t->match) (&t->locals, NULL, alc);
1922 if (d != NULL
1923 && h->dynindx != -1
1924 && ! info->export_dynamic)
1925 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1926 }
1927
1928 free (alc);
1929 break;
1930 }
1931 }
1932
1933 /* If we are building an application, we need to create a
1934 version node for this version. */
1935 if (t == NULL && info->executable)
1936 {
1937 struct bfd_elf_version_tree **pp;
1938 int version_index;
1939
1940 /* If we aren't going to export this symbol, we don't need
1941 to worry about it. */
1942 if (h->dynindx == -1)
1943 return TRUE;
1944
1945 amt = sizeof *t;
1946 t = bfd_zalloc (sinfo->output_bfd, amt);
1947 if (t == NULL)
1948 {
1949 sinfo->failed = TRUE;
1950 return FALSE;
1951 }
1952
1953 t->name = p;
1954 t->name_indx = (unsigned int) -1;
1955 t->used = TRUE;
1956
1957 version_index = 1;
1958 /* Don't count anonymous version tag. */
1959 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1960 version_index = 0;
1961 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1962 ++version_index;
1963 t->vernum = version_index;
1964
1965 *pp = t;
1966
1967 h->verinfo.vertree = t;
1968 }
1969 else if (t == NULL)
1970 {
1971 /* We could not find the version for a symbol when
1972 generating a shared archive. Return an error. */
1973 (*_bfd_error_handler)
1974 (_("%B: version node not found for symbol %s"),
1975 sinfo->output_bfd, h->root.root.string);
1976 bfd_set_error (bfd_error_bad_value);
1977 sinfo->failed = TRUE;
1978 return FALSE;
1979 }
1980
1981 if (hidden)
1982 h->hidden = 1;
1983 }
1984
1985 /* If we don't have a version for this symbol, see if we can find
1986 something. */
1987 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1988 {
1989 struct bfd_elf_version_tree *t;
1990 struct bfd_elf_version_tree *local_ver;
1991 struct bfd_elf_version_expr *d;
1992
1993 /* See if can find what version this symbol is in. If the
1994 symbol is supposed to be local, then don't actually register
1995 it. */
1996 local_ver = NULL;
1997 for (t = sinfo->verdefs; t != NULL; t = t->next)
1998 {
1999 if (t->globals.list != NULL)
2000 {
2001 bfd_boolean matched;
2002
2003 matched = FALSE;
2004 d = NULL;
2005 while ((d = (*t->match) (&t->globals, d,
2006 h->root.root.string)) != NULL)
2007 if (d->symver)
2008 matched = TRUE;
2009 else
2010 {
2011 /* There is a version without definition. Make
2012 the symbol the default definition for this
2013 version. */
2014 h->verinfo.vertree = t;
2015 local_ver = NULL;
2016 d->script = 1;
2017 break;
2018 }
2019 if (d != NULL)
2020 break;
2021 else if (matched)
2022 /* There is no undefined version for this symbol. Hide the
2023 default one. */
2024 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2025 }
2026
2027 if (t->locals.list != NULL)
2028 {
2029 d = NULL;
2030 while ((d = (*t->match) (&t->locals, d,
2031 h->root.root.string)) != NULL)
2032 {
2033 local_ver = t;
2034 /* If the match is "*", keep looking for a more
2035 explicit, perhaps even global, match.
2036 XXX: Shouldn't this be !d->wildcard instead? */
2037 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2038 break;
2039 }
2040
2041 if (d != NULL)
2042 break;
2043 }
2044 }
2045
2046 if (local_ver != NULL)
2047 {
2048 h->verinfo.vertree = local_ver;
2049 if (h->dynindx != -1
2050 && ! info->export_dynamic)
2051 {
2052 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2053 }
2054 }
2055 }
2056
2057 return TRUE;
2058 }
2059 \f
2060 /* Read and swap the relocs from the section indicated by SHDR. This
2061 may be either a REL or a RELA section. The relocations are
2062 translated into RELA relocations and stored in INTERNAL_RELOCS,
2063 which should have already been allocated to contain enough space.
2064 The EXTERNAL_RELOCS are a buffer where the external form of the
2065 relocations should be stored.
2066
2067 Returns FALSE if something goes wrong. */
2068
2069 static bfd_boolean
2070 elf_link_read_relocs_from_section (bfd *abfd,
2071 asection *sec,
2072 Elf_Internal_Shdr *shdr,
2073 void *external_relocs,
2074 Elf_Internal_Rela *internal_relocs)
2075 {
2076 const struct elf_backend_data *bed;
2077 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2078 const bfd_byte *erela;
2079 const bfd_byte *erelaend;
2080 Elf_Internal_Rela *irela;
2081 Elf_Internal_Shdr *symtab_hdr;
2082 size_t nsyms;
2083
2084 /* Position ourselves at the start of the section. */
2085 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2086 return FALSE;
2087
2088 /* Read the relocations. */
2089 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2090 return FALSE;
2091
2092 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2093 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2094
2095 bed = get_elf_backend_data (abfd);
2096
2097 /* Convert the external relocations to the internal format. */
2098 if (shdr->sh_entsize == bed->s->sizeof_rel)
2099 swap_in = bed->s->swap_reloc_in;
2100 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2101 swap_in = bed->s->swap_reloca_in;
2102 else
2103 {
2104 bfd_set_error (bfd_error_wrong_format);
2105 return FALSE;
2106 }
2107
2108 erela = external_relocs;
2109 erelaend = erela + shdr->sh_size;
2110 irela = internal_relocs;
2111 while (erela < erelaend)
2112 {
2113 bfd_vma r_symndx;
2114
2115 (*swap_in) (abfd, erela, irela);
2116 r_symndx = ELF32_R_SYM (irela->r_info);
2117 if (bed->s->arch_size == 64)
2118 r_symndx >>= 24;
2119 if ((size_t) r_symndx >= nsyms)
2120 {
2121 (*_bfd_error_handler)
2122 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2123 " for offset 0x%lx in section `%A'"),
2124 abfd, sec,
2125 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2126 bfd_set_error (bfd_error_bad_value);
2127 return FALSE;
2128 }
2129 irela += bed->s->int_rels_per_ext_rel;
2130 erela += shdr->sh_entsize;
2131 }
2132
2133 return TRUE;
2134 }
2135
2136 /* Read and swap the relocs for a section O. They may have been
2137 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2138 not NULL, they are used as buffers to read into. They are known to
2139 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2140 the return value is allocated using either malloc or bfd_alloc,
2141 according to the KEEP_MEMORY argument. If O has two relocation
2142 sections (both REL and RELA relocations), then the REL_HDR
2143 relocations will appear first in INTERNAL_RELOCS, followed by the
2144 REL_HDR2 relocations. */
2145
2146 Elf_Internal_Rela *
2147 _bfd_elf_link_read_relocs (bfd *abfd,
2148 asection *o,
2149 void *external_relocs,
2150 Elf_Internal_Rela *internal_relocs,
2151 bfd_boolean keep_memory)
2152 {
2153 Elf_Internal_Shdr *rel_hdr;
2154 void *alloc1 = NULL;
2155 Elf_Internal_Rela *alloc2 = NULL;
2156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2157
2158 if (elf_section_data (o)->relocs != NULL)
2159 return elf_section_data (o)->relocs;
2160
2161 if (o->reloc_count == 0)
2162 return NULL;
2163
2164 rel_hdr = &elf_section_data (o)->rel_hdr;
2165
2166 if (internal_relocs == NULL)
2167 {
2168 bfd_size_type size;
2169
2170 size = o->reloc_count;
2171 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2172 if (keep_memory)
2173 internal_relocs = bfd_alloc (abfd, size);
2174 else
2175 internal_relocs = alloc2 = bfd_malloc (size);
2176 if (internal_relocs == NULL)
2177 goto error_return;
2178 }
2179
2180 if (external_relocs == NULL)
2181 {
2182 bfd_size_type size = rel_hdr->sh_size;
2183
2184 if (elf_section_data (o)->rel_hdr2)
2185 size += elf_section_data (o)->rel_hdr2->sh_size;
2186 alloc1 = bfd_malloc (size);
2187 if (alloc1 == NULL)
2188 goto error_return;
2189 external_relocs = alloc1;
2190 }
2191
2192 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2193 external_relocs,
2194 internal_relocs))
2195 goto error_return;
2196 if (elf_section_data (o)->rel_hdr2
2197 && (!elf_link_read_relocs_from_section
2198 (abfd, o,
2199 elf_section_data (o)->rel_hdr2,
2200 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2201 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2202 * bed->s->int_rels_per_ext_rel))))
2203 goto error_return;
2204
2205 /* Cache the results for next time, if we can. */
2206 if (keep_memory)
2207 elf_section_data (o)->relocs = internal_relocs;
2208
2209 if (alloc1 != NULL)
2210 free (alloc1);
2211
2212 /* Don't free alloc2, since if it was allocated we are passing it
2213 back (under the name of internal_relocs). */
2214
2215 return internal_relocs;
2216
2217 error_return:
2218 if (alloc1 != NULL)
2219 free (alloc1);
2220 if (alloc2 != NULL)
2221 free (alloc2);
2222 return NULL;
2223 }
2224
2225 /* Compute the size of, and allocate space for, REL_HDR which is the
2226 section header for a section containing relocations for O. */
2227
2228 bfd_boolean
2229 _bfd_elf_link_size_reloc_section (bfd *abfd,
2230 Elf_Internal_Shdr *rel_hdr,
2231 asection *o)
2232 {
2233 bfd_size_type reloc_count;
2234 bfd_size_type num_rel_hashes;
2235
2236 /* Figure out how many relocations there will be. */
2237 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2238 reloc_count = elf_section_data (o)->rel_count;
2239 else
2240 reloc_count = elf_section_data (o)->rel_count2;
2241
2242 num_rel_hashes = o->reloc_count;
2243 if (num_rel_hashes < reloc_count)
2244 num_rel_hashes = reloc_count;
2245
2246 /* That allows us to calculate the size of the section. */
2247 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2248
2249 /* The contents field must last into write_object_contents, so we
2250 allocate it with bfd_alloc rather than malloc. Also since we
2251 cannot be sure that the contents will actually be filled in,
2252 we zero the allocated space. */
2253 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2254 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2255 return FALSE;
2256
2257 /* We only allocate one set of hash entries, so we only do it the
2258 first time we are called. */
2259 if (elf_section_data (o)->rel_hashes == NULL
2260 && num_rel_hashes)
2261 {
2262 struct elf_link_hash_entry **p;
2263
2264 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2265 if (p == NULL)
2266 return FALSE;
2267
2268 elf_section_data (o)->rel_hashes = p;
2269 }
2270
2271 return TRUE;
2272 }
2273
2274 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2275 originated from the section given by INPUT_REL_HDR) to the
2276 OUTPUT_BFD. */
2277
2278 bfd_boolean
2279 _bfd_elf_link_output_relocs (bfd *output_bfd,
2280 asection *input_section,
2281 Elf_Internal_Shdr *input_rel_hdr,
2282 Elf_Internal_Rela *internal_relocs,
2283 struct elf_link_hash_entry **rel_hash
2284 ATTRIBUTE_UNUSED)
2285 {
2286 Elf_Internal_Rela *irela;
2287 Elf_Internal_Rela *irelaend;
2288 bfd_byte *erel;
2289 Elf_Internal_Shdr *output_rel_hdr;
2290 asection *output_section;
2291 unsigned int *rel_countp = NULL;
2292 const struct elf_backend_data *bed;
2293 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2294
2295 output_section = input_section->output_section;
2296 output_rel_hdr = NULL;
2297
2298 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2299 == input_rel_hdr->sh_entsize)
2300 {
2301 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2302 rel_countp = &elf_section_data (output_section)->rel_count;
2303 }
2304 else if (elf_section_data (output_section)->rel_hdr2
2305 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2306 == input_rel_hdr->sh_entsize))
2307 {
2308 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2309 rel_countp = &elf_section_data (output_section)->rel_count2;
2310 }
2311 else
2312 {
2313 (*_bfd_error_handler)
2314 (_("%B: relocation size mismatch in %B section %A"),
2315 output_bfd, input_section->owner, input_section);
2316 bfd_set_error (bfd_error_wrong_object_format);
2317 return FALSE;
2318 }
2319
2320 bed = get_elf_backend_data (output_bfd);
2321 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2322 swap_out = bed->s->swap_reloc_out;
2323 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2324 swap_out = bed->s->swap_reloca_out;
2325 else
2326 abort ();
2327
2328 erel = output_rel_hdr->contents;
2329 erel += *rel_countp * input_rel_hdr->sh_entsize;
2330 irela = internal_relocs;
2331 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2332 * bed->s->int_rels_per_ext_rel);
2333 while (irela < irelaend)
2334 {
2335 (*swap_out) (output_bfd, irela, erel);
2336 irela += bed->s->int_rels_per_ext_rel;
2337 erel += input_rel_hdr->sh_entsize;
2338 }
2339
2340 /* Bump the counter, so that we know where to add the next set of
2341 relocations. */
2342 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2343
2344 return TRUE;
2345 }
2346 \f
2347 /* Make weak undefined symbols in PIE dynamic. */
2348
2349 bfd_boolean
2350 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2351 struct elf_link_hash_entry *h)
2352 {
2353 if (info->pie
2354 && h->dynindx == -1
2355 && h->root.type == bfd_link_hash_undefweak)
2356 return bfd_elf_link_record_dynamic_symbol (info, h);
2357
2358 return TRUE;
2359 }
2360
2361 /* Fix up the flags for a symbol. This handles various cases which
2362 can only be fixed after all the input files are seen. This is
2363 currently called by both adjust_dynamic_symbol and
2364 assign_sym_version, which is unnecessary but perhaps more robust in
2365 the face of future changes. */
2366
2367 bfd_boolean
2368 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2369 struct elf_info_failed *eif)
2370 {
2371 const struct elf_backend_data *bed;
2372
2373 /* If this symbol was mentioned in a non-ELF file, try to set
2374 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2375 permit a non-ELF file to correctly refer to a symbol defined in
2376 an ELF dynamic object. */
2377 if (h->non_elf)
2378 {
2379 while (h->root.type == bfd_link_hash_indirect)
2380 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2381
2382 if (h->root.type != bfd_link_hash_defined
2383 && h->root.type != bfd_link_hash_defweak)
2384 {
2385 h->ref_regular = 1;
2386 h->ref_regular_nonweak = 1;
2387 }
2388 else
2389 {
2390 if (h->root.u.def.section->owner != NULL
2391 && (bfd_get_flavour (h->root.u.def.section->owner)
2392 == bfd_target_elf_flavour))
2393 {
2394 h->ref_regular = 1;
2395 h->ref_regular_nonweak = 1;
2396 }
2397 else
2398 h->def_regular = 1;
2399 }
2400
2401 if (h->dynindx == -1
2402 && (h->def_dynamic
2403 || h->ref_dynamic))
2404 {
2405 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2406 {
2407 eif->failed = TRUE;
2408 return FALSE;
2409 }
2410 }
2411 }
2412 else
2413 {
2414 /* Unfortunately, NON_ELF is only correct if the symbol
2415 was first seen in a non-ELF file. Fortunately, if the symbol
2416 was first seen in an ELF file, we're probably OK unless the
2417 symbol was defined in a non-ELF file. Catch that case here.
2418 FIXME: We're still in trouble if the symbol was first seen in
2419 a dynamic object, and then later in a non-ELF regular object. */
2420 if ((h->root.type == bfd_link_hash_defined
2421 || h->root.type == bfd_link_hash_defweak)
2422 && !h->def_regular
2423 && (h->root.u.def.section->owner != NULL
2424 ? (bfd_get_flavour (h->root.u.def.section->owner)
2425 != bfd_target_elf_flavour)
2426 : (bfd_is_abs_section (h->root.u.def.section)
2427 && !h->def_dynamic)))
2428 h->def_regular = 1;
2429 }
2430
2431 /* Backend specific symbol fixup. */
2432 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2433 if (bed->elf_backend_fixup_symbol
2434 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2435 return FALSE;
2436
2437 /* If this is a final link, and the symbol was defined as a common
2438 symbol in a regular object file, and there was no definition in
2439 any dynamic object, then the linker will have allocated space for
2440 the symbol in a common section but the DEF_REGULAR
2441 flag will not have been set. */
2442 if (h->root.type == bfd_link_hash_defined
2443 && !h->def_regular
2444 && h->ref_regular
2445 && !h->def_dynamic
2446 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2447 h->def_regular = 1;
2448
2449 /* If -Bsymbolic was used (which means to bind references to global
2450 symbols to the definition within the shared object), and this
2451 symbol was defined in a regular object, then it actually doesn't
2452 need a PLT entry. Likewise, if the symbol has non-default
2453 visibility. If the symbol has hidden or internal visibility, we
2454 will force it local. */
2455 if (h->needs_plt
2456 && eif->info->shared
2457 && is_elf_hash_table (eif->info->hash)
2458 && (SYMBOLIC_BIND (eif->info, h)
2459 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2460 && h->def_regular)
2461 {
2462 bfd_boolean force_local;
2463
2464 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2465 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2466 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2467 }
2468
2469 /* If a weak undefined symbol has non-default visibility, we also
2470 hide it from the dynamic linker. */
2471 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2472 && h->root.type == bfd_link_hash_undefweak)
2473 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2474
2475 /* If this is a weak defined symbol in a dynamic object, and we know
2476 the real definition in the dynamic object, copy interesting flags
2477 over to the real definition. */
2478 if (h->u.weakdef != NULL)
2479 {
2480 struct elf_link_hash_entry *weakdef;
2481
2482 weakdef = h->u.weakdef;
2483 if (h->root.type == bfd_link_hash_indirect)
2484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2485
2486 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2487 || h->root.type == bfd_link_hash_defweak);
2488 BFD_ASSERT (weakdef->def_dynamic);
2489
2490 /* If the real definition is defined by a regular object file,
2491 don't do anything special. See the longer description in
2492 _bfd_elf_adjust_dynamic_symbol, below. */
2493 if (weakdef->def_regular)
2494 h->u.weakdef = NULL;
2495 else
2496 {
2497 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2498 || weakdef->root.type == bfd_link_hash_defweak);
2499 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2500 }
2501 }
2502
2503 return TRUE;
2504 }
2505
2506 /* Make the backend pick a good value for a dynamic symbol. This is
2507 called via elf_link_hash_traverse, and also calls itself
2508 recursively. */
2509
2510 bfd_boolean
2511 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2512 {
2513 struct elf_info_failed *eif = data;
2514 bfd *dynobj;
2515 const struct elf_backend_data *bed;
2516
2517 if (! is_elf_hash_table (eif->info->hash))
2518 return FALSE;
2519
2520 if (h->root.type == bfd_link_hash_warning)
2521 {
2522 h->got = elf_hash_table (eif->info)->init_got_offset;
2523 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2524
2525 /* When warning symbols are created, they **replace** the "real"
2526 entry in the hash table, thus we never get to see the real
2527 symbol in a hash traversal. So look at it now. */
2528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2529 }
2530
2531 /* Ignore indirect symbols. These are added by the versioning code. */
2532 if (h->root.type == bfd_link_hash_indirect)
2533 return TRUE;
2534
2535 /* Fix the symbol flags. */
2536 if (! _bfd_elf_fix_symbol_flags (h, eif))
2537 return FALSE;
2538
2539 /* If this symbol does not require a PLT entry, and it is not
2540 defined by a dynamic object, or is not referenced by a regular
2541 object, ignore it. We do have to handle a weak defined symbol,
2542 even if no regular object refers to it, if we decided to add it
2543 to the dynamic symbol table. FIXME: Do we normally need to worry
2544 about symbols which are defined by one dynamic object and
2545 referenced by another one? */
2546 if (!h->needs_plt
2547 && (h->def_regular
2548 || !h->def_dynamic
2549 || (!h->ref_regular
2550 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2551 {
2552 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2553 return TRUE;
2554 }
2555
2556 /* If we've already adjusted this symbol, don't do it again. This
2557 can happen via a recursive call. */
2558 if (h->dynamic_adjusted)
2559 return TRUE;
2560
2561 /* Don't look at this symbol again. Note that we must set this
2562 after checking the above conditions, because we may look at a
2563 symbol once, decide not to do anything, and then get called
2564 recursively later after REF_REGULAR is set below. */
2565 h->dynamic_adjusted = 1;
2566
2567 /* If this is a weak definition, and we know a real definition, and
2568 the real symbol is not itself defined by a regular object file,
2569 then get a good value for the real definition. We handle the
2570 real symbol first, for the convenience of the backend routine.
2571
2572 Note that there is a confusing case here. If the real definition
2573 is defined by a regular object file, we don't get the real symbol
2574 from the dynamic object, but we do get the weak symbol. If the
2575 processor backend uses a COPY reloc, then if some routine in the
2576 dynamic object changes the real symbol, we will not see that
2577 change in the corresponding weak symbol. This is the way other
2578 ELF linkers work as well, and seems to be a result of the shared
2579 library model.
2580
2581 I will clarify this issue. Most SVR4 shared libraries define the
2582 variable _timezone and define timezone as a weak synonym. The
2583 tzset call changes _timezone. If you write
2584 extern int timezone;
2585 int _timezone = 5;
2586 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2587 you might expect that, since timezone is a synonym for _timezone,
2588 the same number will print both times. However, if the processor
2589 backend uses a COPY reloc, then actually timezone will be copied
2590 into your process image, and, since you define _timezone
2591 yourself, _timezone will not. Thus timezone and _timezone will
2592 wind up at different memory locations. The tzset call will set
2593 _timezone, leaving timezone unchanged. */
2594
2595 if (h->u.weakdef != NULL)
2596 {
2597 /* If we get to this point, we know there is an implicit
2598 reference by a regular object file via the weak symbol H.
2599 FIXME: Is this really true? What if the traversal finds
2600 H->U.WEAKDEF before it finds H? */
2601 h->u.weakdef->ref_regular = 1;
2602
2603 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2604 return FALSE;
2605 }
2606
2607 /* If a symbol has no type and no size and does not require a PLT
2608 entry, then we are probably about to do the wrong thing here: we
2609 are probably going to create a COPY reloc for an empty object.
2610 This case can arise when a shared object is built with assembly
2611 code, and the assembly code fails to set the symbol type. */
2612 if (h->size == 0
2613 && h->type == STT_NOTYPE
2614 && !h->needs_plt)
2615 (*_bfd_error_handler)
2616 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2617 h->root.root.string);
2618
2619 dynobj = elf_hash_table (eif->info)->dynobj;
2620 bed = get_elf_backend_data (dynobj);
2621 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2622 {
2623 eif->failed = TRUE;
2624 return FALSE;
2625 }
2626
2627 return TRUE;
2628 }
2629
2630 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2631 DYNBSS. */
2632
2633 bfd_boolean
2634 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2635 asection *dynbss)
2636 {
2637 unsigned int power_of_two;
2638 bfd_vma mask;
2639 asection *sec = h->root.u.def.section;
2640
2641 /* The section aligment of definition is the maximum alignment
2642 requirement of symbols defined in the section. Since we don't
2643 know the symbol alignment requirement, we start with the
2644 maximum alignment and check low bits of the symbol address
2645 for the minimum alignment. */
2646 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2647 mask = ((bfd_vma) 1 << power_of_two) - 1;
2648 while ((h->root.u.def.value & mask) != 0)
2649 {
2650 mask >>= 1;
2651 --power_of_two;
2652 }
2653
2654 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2655 dynbss))
2656 {
2657 /* Adjust the section alignment if needed. */
2658 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2659 power_of_two))
2660 return FALSE;
2661 }
2662
2663 /* We make sure that the symbol will be aligned properly. */
2664 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2665
2666 /* Define the symbol as being at this point in DYNBSS. */
2667 h->root.u.def.section = dynbss;
2668 h->root.u.def.value = dynbss->size;
2669
2670 /* Increment the size of DYNBSS to make room for the symbol. */
2671 dynbss->size += h->size;
2672
2673 return TRUE;
2674 }
2675
2676 /* Adjust all external symbols pointing into SEC_MERGE sections
2677 to reflect the object merging within the sections. */
2678
2679 bfd_boolean
2680 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2681 {
2682 asection *sec;
2683
2684 if (h->root.type == bfd_link_hash_warning)
2685 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2686
2687 if ((h->root.type == bfd_link_hash_defined
2688 || h->root.type == bfd_link_hash_defweak)
2689 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2690 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2691 {
2692 bfd *output_bfd = data;
2693
2694 h->root.u.def.value =
2695 _bfd_merged_section_offset (output_bfd,
2696 &h->root.u.def.section,
2697 elf_section_data (sec)->sec_info,
2698 h->root.u.def.value);
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Returns false if the symbol referred to by H should be considered
2705 to resolve local to the current module, and true if it should be
2706 considered to bind dynamically. */
2707
2708 bfd_boolean
2709 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2710 struct bfd_link_info *info,
2711 bfd_boolean ignore_protected)
2712 {
2713 bfd_boolean binding_stays_local_p;
2714 const struct elf_backend_data *bed;
2715 struct elf_link_hash_table *hash_table;
2716
2717 if (h == NULL)
2718 return FALSE;
2719
2720 while (h->root.type == bfd_link_hash_indirect
2721 || h->root.type == bfd_link_hash_warning)
2722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2723
2724 /* If it was forced local, then clearly it's not dynamic. */
2725 if (h->dynindx == -1)
2726 return FALSE;
2727 if (h->forced_local)
2728 return FALSE;
2729
2730 /* Identify the cases where name binding rules say that a
2731 visible symbol resolves locally. */
2732 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2733
2734 switch (ELF_ST_VISIBILITY (h->other))
2735 {
2736 case STV_INTERNAL:
2737 case STV_HIDDEN:
2738 return FALSE;
2739
2740 case STV_PROTECTED:
2741 hash_table = elf_hash_table (info);
2742 if (!is_elf_hash_table (hash_table))
2743 return FALSE;
2744
2745 bed = get_elf_backend_data (hash_table->dynobj);
2746
2747 /* Proper resolution for function pointer equality may require
2748 that these symbols perhaps be resolved dynamically, even though
2749 we should be resolving them to the current module. */
2750 if (!ignore_protected || !bed->is_function_type (h->type))
2751 binding_stays_local_p = TRUE;
2752 break;
2753
2754 default:
2755 break;
2756 }
2757
2758 /* If it isn't defined locally, then clearly it's dynamic. */
2759 if (!h->def_regular)
2760 return TRUE;
2761
2762 /* Otherwise, the symbol is dynamic if binding rules don't tell
2763 us that it remains local. */
2764 return !binding_stays_local_p;
2765 }
2766
2767 /* Return true if the symbol referred to by H should be considered
2768 to resolve local to the current module, and false otherwise. Differs
2769 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2770 undefined symbols and weak symbols. */
2771
2772 bfd_boolean
2773 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2774 struct bfd_link_info *info,
2775 bfd_boolean local_protected)
2776 {
2777 const struct elf_backend_data *bed;
2778 struct elf_link_hash_table *hash_table;
2779
2780 /* If it's a local sym, of course we resolve locally. */
2781 if (h == NULL)
2782 return TRUE;
2783
2784 /* Common symbols that become definitions don't get the DEF_REGULAR
2785 flag set, so test it first, and don't bail out. */
2786 if (ELF_COMMON_DEF_P (h))
2787 /* Do nothing. */;
2788 /* If we don't have a definition in a regular file, then we can't
2789 resolve locally. The sym is either undefined or dynamic. */
2790 else if (!h->def_regular)
2791 return FALSE;
2792
2793 /* Forced local symbols resolve locally. */
2794 if (h->forced_local)
2795 return TRUE;
2796
2797 /* As do non-dynamic symbols. */
2798 if (h->dynindx == -1)
2799 return TRUE;
2800
2801 /* At this point, we know the symbol is defined and dynamic. In an
2802 executable it must resolve locally, likewise when building symbolic
2803 shared libraries. */
2804 if (info->executable || SYMBOLIC_BIND (info, h))
2805 return TRUE;
2806
2807 /* Now deal with defined dynamic symbols in shared libraries. Ones
2808 with default visibility might not resolve locally. */
2809 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2810 return FALSE;
2811
2812 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2813 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2814 return TRUE;
2815
2816 hash_table = elf_hash_table (info);
2817 if (!is_elf_hash_table (hash_table))
2818 return TRUE;
2819
2820 bed = get_elf_backend_data (hash_table->dynobj);
2821
2822 /* STV_PROTECTED non-function symbols are local. */
2823 if (!bed->is_function_type (h->type))
2824 return TRUE;
2825
2826 /* Function pointer equality tests may require that STV_PROTECTED
2827 symbols be treated as dynamic symbols, even when we know that the
2828 dynamic linker will resolve them locally. */
2829 return local_protected;
2830 }
2831
2832 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2833 aligned. Returns the first TLS output section. */
2834
2835 struct bfd_section *
2836 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2837 {
2838 struct bfd_section *sec, *tls;
2839 unsigned int align = 0;
2840
2841 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2842 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2843 break;
2844 tls = sec;
2845
2846 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2847 if (sec->alignment_power > align)
2848 align = sec->alignment_power;
2849
2850 elf_hash_table (info)->tls_sec = tls;
2851
2852 /* Ensure the alignment of the first section is the largest alignment,
2853 so that the tls segment starts aligned. */
2854 if (tls != NULL)
2855 tls->alignment_power = align;
2856
2857 return tls;
2858 }
2859
2860 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2861 static bfd_boolean
2862 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2863 Elf_Internal_Sym *sym)
2864 {
2865 const struct elf_backend_data *bed;
2866
2867 /* Local symbols do not count, but target specific ones might. */
2868 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2869 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2870 return FALSE;
2871
2872 bed = get_elf_backend_data (abfd);
2873 /* Function symbols do not count. */
2874 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2875 return FALSE;
2876
2877 /* If the section is undefined, then so is the symbol. */
2878 if (sym->st_shndx == SHN_UNDEF)
2879 return FALSE;
2880
2881 /* If the symbol is defined in the common section, then
2882 it is a common definition and so does not count. */
2883 if (bed->common_definition (sym))
2884 return FALSE;
2885
2886 /* If the symbol is in a target specific section then we
2887 must rely upon the backend to tell us what it is. */
2888 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2889 /* FIXME - this function is not coded yet:
2890
2891 return _bfd_is_global_symbol_definition (abfd, sym);
2892
2893 Instead for now assume that the definition is not global,
2894 Even if this is wrong, at least the linker will behave
2895 in the same way that it used to do. */
2896 return FALSE;
2897
2898 return TRUE;
2899 }
2900
2901 /* Search the symbol table of the archive element of the archive ABFD
2902 whose archive map contains a mention of SYMDEF, and determine if
2903 the symbol is defined in this element. */
2904 static bfd_boolean
2905 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2906 {
2907 Elf_Internal_Shdr * hdr;
2908 bfd_size_type symcount;
2909 bfd_size_type extsymcount;
2910 bfd_size_type extsymoff;
2911 Elf_Internal_Sym *isymbuf;
2912 Elf_Internal_Sym *isym;
2913 Elf_Internal_Sym *isymend;
2914 bfd_boolean result;
2915
2916 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2917 if (abfd == NULL)
2918 return FALSE;
2919
2920 if (! bfd_check_format (abfd, bfd_object))
2921 return FALSE;
2922
2923 /* If we have already included the element containing this symbol in the
2924 link then we do not need to include it again. Just claim that any symbol
2925 it contains is not a definition, so that our caller will not decide to
2926 (re)include this element. */
2927 if (abfd->archive_pass)
2928 return FALSE;
2929
2930 /* Select the appropriate symbol table. */
2931 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2932 hdr = &elf_tdata (abfd)->symtab_hdr;
2933 else
2934 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2935
2936 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2937
2938 /* The sh_info field of the symtab header tells us where the
2939 external symbols start. We don't care about the local symbols. */
2940 if (elf_bad_symtab (abfd))
2941 {
2942 extsymcount = symcount;
2943 extsymoff = 0;
2944 }
2945 else
2946 {
2947 extsymcount = symcount - hdr->sh_info;
2948 extsymoff = hdr->sh_info;
2949 }
2950
2951 if (extsymcount == 0)
2952 return FALSE;
2953
2954 /* Read in the symbol table. */
2955 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2956 NULL, NULL, NULL);
2957 if (isymbuf == NULL)
2958 return FALSE;
2959
2960 /* Scan the symbol table looking for SYMDEF. */
2961 result = FALSE;
2962 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2963 {
2964 const char *name;
2965
2966 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2967 isym->st_name);
2968 if (name == NULL)
2969 break;
2970
2971 if (strcmp (name, symdef->name) == 0)
2972 {
2973 result = is_global_data_symbol_definition (abfd, isym);
2974 break;
2975 }
2976 }
2977
2978 free (isymbuf);
2979
2980 return result;
2981 }
2982 \f
2983 /* Add an entry to the .dynamic table. */
2984
2985 bfd_boolean
2986 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2987 bfd_vma tag,
2988 bfd_vma val)
2989 {
2990 struct elf_link_hash_table *hash_table;
2991 const struct elf_backend_data *bed;
2992 asection *s;
2993 bfd_size_type newsize;
2994 bfd_byte *newcontents;
2995 Elf_Internal_Dyn dyn;
2996
2997 hash_table = elf_hash_table (info);
2998 if (! is_elf_hash_table (hash_table))
2999 return FALSE;
3000
3001 bed = get_elf_backend_data (hash_table->dynobj);
3002 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3003 BFD_ASSERT (s != NULL);
3004
3005 newsize = s->size + bed->s->sizeof_dyn;
3006 newcontents = bfd_realloc (s->contents, newsize);
3007 if (newcontents == NULL)
3008 return FALSE;
3009
3010 dyn.d_tag = tag;
3011 dyn.d_un.d_val = val;
3012 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3013
3014 s->size = newsize;
3015 s->contents = newcontents;
3016
3017 return TRUE;
3018 }
3019
3020 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3021 otherwise just check whether one already exists. Returns -1 on error,
3022 1 if a DT_NEEDED tag already exists, and 0 on success. */
3023
3024 static int
3025 elf_add_dt_needed_tag (bfd *abfd,
3026 struct bfd_link_info *info,
3027 const char *soname,
3028 bfd_boolean do_it)
3029 {
3030 struct elf_link_hash_table *hash_table;
3031 bfd_size_type oldsize;
3032 bfd_size_type strindex;
3033
3034 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3035 return -1;
3036
3037 hash_table = elf_hash_table (info);
3038 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3039 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3040 if (strindex == (bfd_size_type) -1)
3041 return -1;
3042
3043 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3044 {
3045 asection *sdyn;
3046 const struct elf_backend_data *bed;
3047 bfd_byte *extdyn;
3048
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3051 if (sdyn != NULL)
3052 for (extdyn = sdyn->contents;
3053 extdyn < sdyn->contents + sdyn->size;
3054 extdyn += bed->s->sizeof_dyn)
3055 {
3056 Elf_Internal_Dyn dyn;
3057
3058 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3059 if (dyn.d_tag == DT_NEEDED
3060 && dyn.d_un.d_val == strindex)
3061 {
3062 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3063 return 1;
3064 }
3065 }
3066 }
3067
3068 if (do_it)
3069 {
3070 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3071 return -1;
3072
3073 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3074 return -1;
3075 }
3076 else
3077 /* We were just checking for existence of the tag. */
3078 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3079
3080 return 0;
3081 }
3082
3083 /* Sort symbol by value and section. */
3084 static int
3085 elf_sort_symbol (const void *arg1, const void *arg2)
3086 {
3087 const struct elf_link_hash_entry *h1;
3088 const struct elf_link_hash_entry *h2;
3089 bfd_signed_vma vdiff;
3090
3091 h1 = *(const struct elf_link_hash_entry **) arg1;
3092 h2 = *(const struct elf_link_hash_entry **) arg2;
3093 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3094 if (vdiff != 0)
3095 return vdiff > 0 ? 1 : -1;
3096 else
3097 {
3098 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3099 if (sdiff != 0)
3100 return sdiff > 0 ? 1 : -1;
3101 }
3102 return 0;
3103 }
3104
3105 /* This function is used to adjust offsets into .dynstr for
3106 dynamic symbols. This is called via elf_link_hash_traverse. */
3107
3108 static bfd_boolean
3109 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3110 {
3111 struct elf_strtab_hash *dynstr = data;
3112
3113 if (h->root.type == bfd_link_hash_warning)
3114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3115
3116 if (h->dynindx != -1)
3117 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3118 return TRUE;
3119 }
3120
3121 /* Assign string offsets in .dynstr, update all structures referencing
3122 them. */
3123
3124 static bfd_boolean
3125 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3126 {
3127 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3128 struct elf_link_local_dynamic_entry *entry;
3129 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3130 bfd *dynobj = hash_table->dynobj;
3131 asection *sdyn;
3132 bfd_size_type size;
3133 const struct elf_backend_data *bed;
3134 bfd_byte *extdyn;
3135
3136 _bfd_elf_strtab_finalize (dynstr);
3137 size = _bfd_elf_strtab_size (dynstr);
3138
3139 bed = get_elf_backend_data (dynobj);
3140 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3141 BFD_ASSERT (sdyn != NULL);
3142
3143 /* Update all .dynamic entries referencing .dynstr strings. */
3144 for (extdyn = sdyn->contents;
3145 extdyn < sdyn->contents + sdyn->size;
3146 extdyn += bed->s->sizeof_dyn)
3147 {
3148 Elf_Internal_Dyn dyn;
3149
3150 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3151 switch (dyn.d_tag)
3152 {
3153 case DT_STRSZ:
3154 dyn.d_un.d_val = size;
3155 break;
3156 case DT_NEEDED:
3157 case DT_SONAME:
3158 case DT_RPATH:
3159 case DT_RUNPATH:
3160 case DT_FILTER:
3161 case DT_AUXILIARY:
3162 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3163 break;
3164 default:
3165 continue;
3166 }
3167 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3168 }
3169
3170 /* Now update local dynamic symbols. */
3171 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3172 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3173 entry->isym.st_name);
3174
3175 /* And the rest of dynamic symbols. */
3176 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3177
3178 /* Adjust version definitions. */
3179 if (elf_tdata (output_bfd)->cverdefs)
3180 {
3181 asection *s;
3182 bfd_byte *p;
3183 bfd_size_type i;
3184 Elf_Internal_Verdef def;
3185 Elf_Internal_Verdaux defaux;
3186
3187 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3188 p = s->contents;
3189 do
3190 {
3191 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3192 &def);
3193 p += sizeof (Elf_External_Verdef);
3194 if (def.vd_aux != sizeof (Elf_External_Verdef))
3195 continue;
3196 for (i = 0; i < def.vd_cnt; ++i)
3197 {
3198 _bfd_elf_swap_verdaux_in (output_bfd,
3199 (Elf_External_Verdaux *) p, &defaux);
3200 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3201 defaux.vda_name);
3202 _bfd_elf_swap_verdaux_out (output_bfd,
3203 &defaux, (Elf_External_Verdaux *) p);
3204 p += sizeof (Elf_External_Verdaux);
3205 }
3206 }
3207 while (def.vd_next);
3208 }
3209
3210 /* Adjust version references. */
3211 if (elf_tdata (output_bfd)->verref)
3212 {
3213 asection *s;
3214 bfd_byte *p;
3215 bfd_size_type i;
3216 Elf_Internal_Verneed need;
3217 Elf_Internal_Vernaux needaux;
3218
3219 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3220 p = s->contents;
3221 do
3222 {
3223 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3224 &need);
3225 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3226 _bfd_elf_swap_verneed_out (output_bfd, &need,
3227 (Elf_External_Verneed *) p);
3228 p += sizeof (Elf_External_Verneed);
3229 for (i = 0; i < need.vn_cnt; ++i)
3230 {
3231 _bfd_elf_swap_vernaux_in (output_bfd,
3232 (Elf_External_Vernaux *) p, &needaux);
3233 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3234 needaux.vna_name);
3235 _bfd_elf_swap_vernaux_out (output_bfd,
3236 &needaux,
3237 (Elf_External_Vernaux *) p);
3238 p += sizeof (Elf_External_Vernaux);
3239 }
3240 }
3241 while (need.vn_next);
3242 }
3243
3244 return TRUE;
3245 }
3246 \f
3247 /* Add symbols from an ELF object file to the linker hash table. */
3248
3249 static bfd_boolean
3250 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3251 {
3252 Elf_Internal_Shdr *hdr;
3253 bfd_size_type symcount;
3254 bfd_size_type extsymcount;
3255 bfd_size_type extsymoff;
3256 struct elf_link_hash_entry **sym_hash;
3257 bfd_boolean dynamic;
3258 Elf_External_Versym *extversym = NULL;
3259 Elf_External_Versym *ever;
3260 struct elf_link_hash_entry *weaks;
3261 struct elf_link_hash_entry **nondeflt_vers = NULL;
3262 bfd_size_type nondeflt_vers_cnt = 0;
3263 Elf_Internal_Sym *isymbuf = NULL;
3264 Elf_Internal_Sym *isym;
3265 Elf_Internal_Sym *isymend;
3266 const struct elf_backend_data *bed;
3267 bfd_boolean add_needed;
3268 struct elf_link_hash_table *htab;
3269 bfd_size_type amt;
3270 void *alloc_mark = NULL;
3271 struct bfd_hash_entry **old_table = NULL;
3272 unsigned int old_size = 0;
3273 unsigned int old_count = 0;
3274 void *old_tab = NULL;
3275 void *old_hash;
3276 void *old_ent;
3277 struct bfd_link_hash_entry *old_undefs = NULL;
3278 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3279 long old_dynsymcount = 0;
3280 size_t tabsize = 0;
3281 size_t hashsize = 0;
3282
3283 htab = elf_hash_table (info);
3284 bed = get_elf_backend_data (abfd);
3285
3286 if ((abfd->flags & DYNAMIC) == 0)
3287 dynamic = FALSE;
3288 else
3289 {
3290 dynamic = TRUE;
3291
3292 /* You can't use -r against a dynamic object. Also, there's no
3293 hope of using a dynamic object which does not exactly match
3294 the format of the output file. */
3295 if (info->relocatable
3296 || !is_elf_hash_table (htab)
3297 || htab->root.creator != abfd->xvec)
3298 {
3299 if (info->relocatable)
3300 bfd_set_error (bfd_error_invalid_operation);
3301 else
3302 bfd_set_error (bfd_error_wrong_format);
3303 goto error_return;
3304 }
3305 }
3306
3307 /* As a GNU extension, any input sections which are named
3308 .gnu.warning.SYMBOL are treated as warning symbols for the given
3309 symbol. This differs from .gnu.warning sections, which generate
3310 warnings when they are included in an output file. */
3311 if (info->executable)
3312 {
3313 asection *s;
3314
3315 for (s = abfd->sections; s != NULL; s = s->next)
3316 {
3317 const char *name;
3318
3319 name = bfd_get_section_name (abfd, s);
3320 if (CONST_STRNEQ (name, ".gnu.warning."))
3321 {
3322 char *msg;
3323 bfd_size_type sz;
3324
3325 name += sizeof ".gnu.warning." - 1;
3326
3327 /* If this is a shared object, then look up the symbol
3328 in the hash table. If it is there, and it is already
3329 been defined, then we will not be using the entry
3330 from this shared object, so we don't need to warn.
3331 FIXME: If we see the definition in a regular object
3332 later on, we will warn, but we shouldn't. The only
3333 fix is to keep track of what warnings we are supposed
3334 to emit, and then handle them all at the end of the
3335 link. */
3336 if (dynamic)
3337 {
3338 struct elf_link_hash_entry *h;
3339
3340 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3341
3342 /* FIXME: What about bfd_link_hash_common? */
3343 if (h != NULL
3344 && (h->root.type == bfd_link_hash_defined
3345 || h->root.type == bfd_link_hash_defweak))
3346 {
3347 /* We don't want to issue this warning. Clobber
3348 the section size so that the warning does not
3349 get copied into the output file. */
3350 s->size = 0;
3351 continue;
3352 }
3353 }
3354
3355 sz = s->size;
3356 msg = bfd_alloc (abfd, sz + 1);
3357 if (msg == NULL)
3358 goto error_return;
3359
3360 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3361 goto error_return;
3362
3363 msg[sz] = '\0';
3364
3365 if (! (_bfd_generic_link_add_one_symbol
3366 (info, abfd, name, BSF_WARNING, s, 0, msg,
3367 FALSE, bed->collect, NULL)))
3368 goto error_return;
3369
3370 if (! info->relocatable)
3371 {
3372 /* Clobber the section size so that the warning does
3373 not get copied into the output file. */
3374 s->size = 0;
3375
3376 /* Also set SEC_EXCLUDE, so that symbols defined in
3377 the warning section don't get copied to the output. */
3378 s->flags |= SEC_EXCLUDE;
3379 }
3380 }
3381 }
3382 }
3383
3384 add_needed = TRUE;
3385 if (! dynamic)
3386 {
3387 /* If we are creating a shared library, create all the dynamic
3388 sections immediately. We need to attach them to something,
3389 so we attach them to this BFD, provided it is the right
3390 format. FIXME: If there are no input BFD's of the same
3391 format as the output, we can't make a shared library. */
3392 if (info->shared
3393 && is_elf_hash_table (htab)
3394 && htab->root.creator == abfd->xvec
3395 && !htab->dynamic_sections_created)
3396 {
3397 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3398 goto error_return;
3399 }
3400 }
3401 else if (!is_elf_hash_table (htab))
3402 goto error_return;
3403 else
3404 {
3405 asection *s;
3406 const char *soname = NULL;
3407 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3408 int ret;
3409
3410 /* ld --just-symbols and dynamic objects don't mix very well.
3411 ld shouldn't allow it. */
3412 if ((s = abfd->sections) != NULL
3413 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3414 abort ();
3415
3416 /* If this dynamic lib was specified on the command line with
3417 --as-needed in effect, then we don't want to add a DT_NEEDED
3418 tag unless the lib is actually used. Similary for libs brought
3419 in by another lib's DT_NEEDED. When --no-add-needed is used
3420 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3421 any dynamic library in DT_NEEDED tags in the dynamic lib at
3422 all. */
3423 add_needed = (elf_dyn_lib_class (abfd)
3424 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3425 | DYN_NO_NEEDED)) == 0;
3426
3427 s = bfd_get_section_by_name (abfd, ".dynamic");
3428 if (s != NULL)
3429 {
3430 bfd_byte *dynbuf;
3431 bfd_byte *extdyn;
3432 int elfsec;
3433 unsigned long shlink;
3434
3435 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3436 goto error_free_dyn;
3437
3438 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3439 if (elfsec == -1)
3440 goto error_free_dyn;
3441 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3442
3443 for (extdyn = dynbuf;
3444 extdyn < dynbuf + s->size;
3445 extdyn += bed->s->sizeof_dyn)
3446 {
3447 Elf_Internal_Dyn dyn;
3448
3449 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3450 if (dyn.d_tag == DT_SONAME)
3451 {
3452 unsigned int tagv = dyn.d_un.d_val;
3453 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3454 if (soname == NULL)
3455 goto error_free_dyn;
3456 }
3457 if (dyn.d_tag == DT_NEEDED)
3458 {
3459 struct bfd_link_needed_list *n, **pn;
3460 char *fnm, *anm;
3461 unsigned int tagv = dyn.d_un.d_val;
3462
3463 amt = sizeof (struct bfd_link_needed_list);
3464 n = bfd_alloc (abfd, amt);
3465 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3466 if (n == NULL || fnm == NULL)
3467 goto error_free_dyn;
3468 amt = strlen (fnm) + 1;
3469 anm = bfd_alloc (abfd, amt);
3470 if (anm == NULL)
3471 goto error_free_dyn;
3472 memcpy (anm, fnm, amt);
3473 n->name = anm;
3474 n->by = abfd;
3475 n->next = NULL;
3476 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3477 ;
3478 *pn = n;
3479 }
3480 if (dyn.d_tag == DT_RUNPATH)
3481 {
3482 struct bfd_link_needed_list *n, **pn;
3483 char *fnm, *anm;
3484 unsigned int tagv = dyn.d_un.d_val;
3485
3486 amt = sizeof (struct bfd_link_needed_list);
3487 n = bfd_alloc (abfd, amt);
3488 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3489 if (n == NULL || fnm == NULL)
3490 goto error_free_dyn;
3491 amt = strlen (fnm) + 1;
3492 anm = bfd_alloc (abfd, amt);
3493 if (anm == NULL)
3494 goto error_free_dyn;
3495 memcpy (anm, fnm, amt);
3496 n->name = anm;
3497 n->by = abfd;
3498 n->next = NULL;
3499 for (pn = & runpath;
3500 *pn != NULL;
3501 pn = &(*pn)->next)
3502 ;
3503 *pn = n;
3504 }
3505 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3506 if (!runpath && dyn.d_tag == DT_RPATH)
3507 {
3508 struct bfd_link_needed_list *n, **pn;
3509 char *fnm, *anm;
3510 unsigned int tagv = dyn.d_un.d_val;
3511
3512 amt = sizeof (struct bfd_link_needed_list);
3513 n = bfd_alloc (abfd, amt);
3514 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3515 if (n == NULL || fnm == NULL)
3516 goto error_free_dyn;
3517 amt = strlen (fnm) + 1;
3518 anm = bfd_alloc (abfd, amt);
3519 if (anm == NULL)
3520 {
3521 error_free_dyn:
3522 free (dynbuf);
3523 goto error_return;
3524 }
3525 memcpy (anm, fnm, amt);
3526 n->name = anm;
3527 n->by = abfd;
3528 n->next = NULL;
3529 for (pn = & rpath;
3530 *pn != NULL;
3531 pn = &(*pn)->next)
3532 ;
3533 *pn = n;
3534 }
3535 }
3536
3537 free (dynbuf);
3538 }
3539
3540 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3541 frees all more recently bfd_alloc'd blocks as well. */
3542 if (runpath)
3543 rpath = runpath;
3544
3545 if (rpath)
3546 {
3547 struct bfd_link_needed_list **pn;
3548 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3549 ;
3550 *pn = rpath;
3551 }
3552
3553 /* We do not want to include any of the sections in a dynamic
3554 object in the output file. We hack by simply clobbering the
3555 list of sections in the BFD. This could be handled more
3556 cleanly by, say, a new section flag; the existing
3557 SEC_NEVER_LOAD flag is not the one we want, because that one
3558 still implies that the section takes up space in the output
3559 file. */
3560 bfd_section_list_clear (abfd);
3561
3562 /* Find the name to use in a DT_NEEDED entry that refers to this
3563 object. If the object has a DT_SONAME entry, we use it.
3564 Otherwise, if the generic linker stuck something in
3565 elf_dt_name, we use that. Otherwise, we just use the file
3566 name. */
3567 if (soname == NULL || *soname == '\0')
3568 {
3569 soname = elf_dt_name (abfd);
3570 if (soname == NULL || *soname == '\0')
3571 soname = bfd_get_filename (abfd);
3572 }
3573
3574 /* Save the SONAME because sometimes the linker emulation code
3575 will need to know it. */
3576 elf_dt_name (abfd) = soname;
3577
3578 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3579 if (ret < 0)
3580 goto error_return;
3581
3582 /* If we have already included this dynamic object in the
3583 link, just ignore it. There is no reason to include a
3584 particular dynamic object more than once. */
3585 if (ret > 0)
3586 return TRUE;
3587 }
3588
3589 /* If this is a dynamic object, we always link against the .dynsym
3590 symbol table, not the .symtab symbol table. The dynamic linker
3591 will only see the .dynsym symbol table, so there is no reason to
3592 look at .symtab for a dynamic object. */
3593
3594 if (! dynamic || elf_dynsymtab (abfd) == 0)
3595 hdr = &elf_tdata (abfd)->symtab_hdr;
3596 else
3597 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3598
3599 symcount = hdr->sh_size / bed->s->sizeof_sym;
3600
3601 /* The sh_info field of the symtab header tells us where the
3602 external symbols start. We don't care about the local symbols at
3603 this point. */
3604 if (elf_bad_symtab (abfd))
3605 {
3606 extsymcount = symcount;
3607 extsymoff = 0;
3608 }
3609 else
3610 {
3611 extsymcount = symcount - hdr->sh_info;
3612 extsymoff = hdr->sh_info;
3613 }
3614
3615 sym_hash = NULL;
3616 if (extsymcount != 0)
3617 {
3618 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3619 NULL, NULL, NULL);
3620 if (isymbuf == NULL)
3621 goto error_return;
3622
3623 /* We store a pointer to the hash table entry for each external
3624 symbol. */
3625 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3626 sym_hash = bfd_alloc (abfd, amt);
3627 if (sym_hash == NULL)
3628 goto error_free_sym;
3629 elf_sym_hashes (abfd) = sym_hash;
3630 }
3631
3632 if (dynamic)
3633 {
3634 /* Read in any version definitions. */
3635 if (!_bfd_elf_slurp_version_tables (abfd,
3636 info->default_imported_symver))
3637 goto error_free_sym;
3638
3639 /* Read in the symbol versions, but don't bother to convert them
3640 to internal format. */
3641 if (elf_dynversym (abfd) != 0)
3642 {
3643 Elf_Internal_Shdr *versymhdr;
3644
3645 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3646 extversym = bfd_malloc (versymhdr->sh_size);
3647 if (extversym == NULL)
3648 goto error_free_sym;
3649 amt = versymhdr->sh_size;
3650 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3651 || bfd_bread (extversym, amt, abfd) != amt)
3652 goto error_free_vers;
3653 }
3654 }
3655
3656 /* If we are loading an as-needed shared lib, save the symbol table
3657 state before we start adding symbols. If the lib turns out
3658 to be unneeded, restore the state. */
3659 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3660 {
3661 unsigned int i;
3662 size_t entsize;
3663
3664 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3665 {
3666 struct bfd_hash_entry *p;
3667 struct elf_link_hash_entry *h;
3668
3669 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3670 {
3671 h = (struct elf_link_hash_entry *) p;
3672 entsize += htab->root.table.entsize;
3673 if (h->root.type == bfd_link_hash_warning)
3674 entsize += htab->root.table.entsize;
3675 }
3676 }
3677
3678 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3679 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3680 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3681 if (old_tab == NULL)
3682 goto error_free_vers;
3683
3684 /* Remember the current objalloc pointer, so that all mem for
3685 symbols added can later be reclaimed. */
3686 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3687 if (alloc_mark == NULL)
3688 goto error_free_vers;
3689
3690 /* Make a special call to the linker "notice" function to
3691 tell it that we are about to handle an as-needed lib. */
3692 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3693 notice_as_needed))
3694 goto error_free_vers;
3695
3696 /* Clone the symbol table and sym hashes. Remember some
3697 pointers into the symbol table, and dynamic symbol count. */
3698 old_hash = (char *) old_tab + tabsize;
3699 old_ent = (char *) old_hash + hashsize;
3700 memcpy (old_tab, htab->root.table.table, tabsize);
3701 memcpy (old_hash, sym_hash, hashsize);
3702 old_undefs = htab->root.undefs;
3703 old_undefs_tail = htab->root.undefs_tail;
3704 old_table = htab->root.table.table;
3705 old_size = htab->root.table.size;
3706 old_count = htab->root.table.count;
3707 old_dynsymcount = htab->dynsymcount;
3708
3709 for (i = 0; i < htab->root.table.size; i++)
3710 {
3711 struct bfd_hash_entry *p;
3712 struct elf_link_hash_entry *h;
3713
3714 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3715 {
3716 memcpy (old_ent, p, htab->root.table.entsize);
3717 old_ent = (char *) old_ent + htab->root.table.entsize;
3718 h = (struct elf_link_hash_entry *) p;
3719 if (h->root.type == bfd_link_hash_warning)
3720 {
3721 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3722 old_ent = (char *) old_ent + htab->root.table.entsize;
3723 }
3724 }
3725 }
3726 }
3727
3728 weaks = NULL;
3729 ever = extversym != NULL ? extversym + extsymoff : NULL;
3730 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3731 isym < isymend;
3732 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3733 {
3734 int bind;
3735 bfd_vma value;
3736 asection *sec, *new_sec;
3737 flagword flags;
3738 const char *name;
3739 struct elf_link_hash_entry *h;
3740 bfd_boolean definition;
3741 bfd_boolean size_change_ok;
3742 bfd_boolean type_change_ok;
3743 bfd_boolean new_weakdef;
3744 bfd_boolean override;
3745 bfd_boolean common;
3746 unsigned int old_alignment;
3747 bfd *old_bfd;
3748
3749 override = FALSE;
3750
3751 flags = BSF_NO_FLAGS;
3752 sec = NULL;
3753 value = isym->st_value;
3754 *sym_hash = NULL;
3755 common = bed->common_definition (isym);
3756
3757 bind = ELF_ST_BIND (isym->st_info);
3758 if (bind == STB_LOCAL)
3759 {
3760 /* This should be impossible, since ELF requires that all
3761 global symbols follow all local symbols, and that sh_info
3762 point to the first global symbol. Unfortunately, Irix 5
3763 screws this up. */
3764 continue;
3765 }
3766 else if (bind == STB_GLOBAL)
3767 {
3768 if (isym->st_shndx != SHN_UNDEF && !common)
3769 flags = BSF_GLOBAL;
3770 }
3771 else if (bind == STB_WEAK)
3772 flags = BSF_WEAK;
3773 else
3774 {
3775 /* Leave it up to the processor backend. */
3776 }
3777
3778 if (isym->st_shndx == SHN_UNDEF)
3779 sec = bfd_und_section_ptr;
3780 else if (isym->st_shndx < SHN_LORESERVE
3781 || isym->st_shndx > SHN_HIRESERVE)
3782 {
3783 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3784 if (sec == NULL)
3785 sec = bfd_abs_section_ptr;
3786 else if (sec->kept_section)
3787 {
3788 /* Symbols from discarded section are undefined. We keep
3789 its visibility. */
3790 sec = bfd_und_section_ptr;
3791 isym->st_shndx = SHN_UNDEF;
3792 }
3793 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3794 value -= sec->vma;
3795 }
3796 else if (isym->st_shndx == SHN_ABS)
3797 sec = bfd_abs_section_ptr;
3798 else if (isym->st_shndx == SHN_COMMON)
3799 {
3800 sec = bfd_com_section_ptr;
3801 /* What ELF calls the size we call the value. What ELF
3802 calls the value we call the alignment. */
3803 value = isym->st_size;
3804 }
3805 else
3806 {
3807 /* Leave it up to the processor backend. */
3808 }
3809
3810 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3811 isym->st_name);
3812 if (name == NULL)
3813 goto error_free_vers;
3814
3815 if (isym->st_shndx == SHN_COMMON
3816 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3817 && !info->relocatable)
3818 {
3819 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3820
3821 if (tcomm == NULL)
3822 {
3823 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3824 (SEC_ALLOC
3825 | SEC_IS_COMMON
3826 | SEC_LINKER_CREATED
3827 | SEC_THREAD_LOCAL));
3828 if (tcomm == NULL)
3829 goto error_free_vers;
3830 }
3831 sec = tcomm;
3832 }
3833 else if (bed->elf_add_symbol_hook)
3834 {
3835 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3836 &sec, &value))
3837 goto error_free_vers;
3838
3839 /* The hook function sets the name to NULL if this symbol
3840 should be skipped for some reason. */
3841 if (name == NULL)
3842 continue;
3843 }
3844
3845 /* Sanity check that all possibilities were handled. */
3846 if (sec == NULL)
3847 {
3848 bfd_set_error (bfd_error_bad_value);
3849 goto error_free_vers;
3850 }
3851
3852 if (bfd_is_und_section (sec)
3853 || bfd_is_com_section (sec))
3854 definition = FALSE;
3855 else
3856 definition = TRUE;
3857
3858 size_change_ok = FALSE;
3859 type_change_ok = bed->type_change_ok;
3860 old_alignment = 0;
3861 old_bfd = NULL;
3862 new_sec = sec;
3863
3864 if (is_elf_hash_table (htab))
3865 {
3866 Elf_Internal_Versym iver;
3867 unsigned int vernum = 0;
3868 bfd_boolean skip;
3869
3870 if (ever == NULL)
3871 {
3872 if (info->default_imported_symver)
3873 /* Use the default symbol version created earlier. */
3874 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3875 else
3876 iver.vs_vers = 0;
3877 }
3878 else
3879 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3880
3881 vernum = iver.vs_vers & VERSYM_VERSION;
3882
3883 /* If this is a hidden symbol, or if it is not version
3884 1, we append the version name to the symbol name.
3885 However, we do not modify a non-hidden absolute symbol
3886 if it is not a function, because it might be the version
3887 symbol itself. FIXME: What if it isn't? */
3888 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3889 || (vernum > 1
3890 && (!bfd_is_abs_section (sec)
3891 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3892 {
3893 const char *verstr;
3894 size_t namelen, verlen, newlen;
3895 char *newname, *p;
3896
3897 if (isym->st_shndx != SHN_UNDEF)
3898 {
3899 if (vernum > elf_tdata (abfd)->cverdefs)
3900 verstr = NULL;
3901 else if (vernum > 1)
3902 verstr =
3903 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3904 else
3905 verstr = "";
3906
3907 if (verstr == NULL)
3908 {
3909 (*_bfd_error_handler)
3910 (_("%B: %s: invalid version %u (max %d)"),
3911 abfd, name, vernum,
3912 elf_tdata (abfd)->cverdefs);
3913 bfd_set_error (bfd_error_bad_value);
3914 goto error_free_vers;
3915 }
3916 }
3917 else
3918 {
3919 /* We cannot simply test for the number of
3920 entries in the VERNEED section since the
3921 numbers for the needed versions do not start
3922 at 0. */
3923 Elf_Internal_Verneed *t;
3924
3925 verstr = NULL;
3926 for (t = elf_tdata (abfd)->verref;
3927 t != NULL;
3928 t = t->vn_nextref)
3929 {
3930 Elf_Internal_Vernaux *a;
3931
3932 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3933 {
3934 if (a->vna_other == vernum)
3935 {
3936 verstr = a->vna_nodename;
3937 break;
3938 }
3939 }
3940 if (a != NULL)
3941 break;
3942 }
3943 if (verstr == NULL)
3944 {
3945 (*_bfd_error_handler)
3946 (_("%B: %s: invalid needed version %d"),
3947 abfd, name, vernum);
3948 bfd_set_error (bfd_error_bad_value);
3949 goto error_free_vers;
3950 }
3951 }
3952
3953 namelen = strlen (name);
3954 verlen = strlen (verstr);
3955 newlen = namelen + verlen + 2;
3956 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3957 && isym->st_shndx != SHN_UNDEF)
3958 ++newlen;
3959
3960 newname = bfd_hash_allocate (&htab->root.table, newlen);
3961 if (newname == NULL)
3962 goto error_free_vers;
3963 memcpy (newname, name, namelen);
3964 p = newname + namelen;
3965 *p++ = ELF_VER_CHR;
3966 /* If this is a defined non-hidden version symbol,
3967 we add another @ to the name. This indicates the
3968 default version of the symbol. */
3969 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3970 && isym->st_shndx != SHN_UNDEF)
3971 *p++ = ELF_VER_CHR;
3972 memcpy (p, verstr, verlen + 1);
3973
3974 name = newname;
3975 }
3976
3977 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3978 &value, &old_alignment,
3979 sym_hash, &skip, &override,
3980 &type_change_ok, &size_change_ok))
3981 goto error_free_vers;
3982
3983 if (skip)
3984 continue;
3985
3986 if (override)
3987 definition = FALSE;
3988
3989 h = *sym_hash;
3990 while (h->root.type == bfd_link_hash_indirect
3991 || h->root.type == bfd_link_hash_warning)
3992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3993
3994 /* Remember the old alignment if this is a common symbol, so
3995 that we don't reduce the alignment later on. We can't
3996 check later, because _bfd_generic_link_add_one_symbol
3997 will set a default for the alignment which we want to
3998 override. We also remember the old bfd where the existing
3999 definition comes from. */
4000 switch (h->root.type)
4001 {
4002 default:
4003 break;
4004
4005 case bfd_link_hash_defined:
4006 case bfd_link_hash_defweak:
4007 old_bfd = h->root.u.def.section->owner;
4008 break;
4009
4010 case bfd_link_hash_common:
4011 old_bfd = h->root.u.c.p->section->owner;
4012 old_alignment = h->root.u.c.p->alignment_power;
4013 break;
4014 }
4015
4016 if (elf_tdata (abfd)->verdef != NULL
4017 && ! override
4018 && vernum > 1
4019 && definition)
4020 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4021 }
4022
4023 if (! (_bfd_generic_link_add_one_symbol
4024 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4025 (struct bfd_link_hash_entry **) sym_hash)))
4026 goto error_free_vers;
4027
4028 h = *sym_hash;
4029 while (h->root.type == bfd_link_hash_indirect
4030 || h->root.type == bfd_link_hash_warning)
4031 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4032 *sym_hash = h;
4033
4034 new_weakdef = FALSE;
4035 if (dynamic
4036 && definition
4037 && (flags & BSF_WEAK) != 0
4038 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4039 && is_elf_hash_table (htab)
4040 && h->u.weakdef == NULL)
4041 {
4042 /* Keep a list of all weak defined non function symbols from
4043 a dynamic object, using the weakdef field. Later in this
4044 function we will set the weakdef field to the correct
4045 value. We only put non-function symbols from dynamic
4046 objects on this list, because that happens to be the only
4047 time we need to know the normal symbol corresponding to a
4048 weak symbol, and the information is time consuming to
4049 figure out. If the weakdef field is not already NULL,
4050 then this symbol was already defined by some previous
4051 dynamic object, and we will be using that previous
4052 definition anyhow. */
4053
4054 h->u.weakdef = weaks;
4055 weaks = h;
4056 new_weakdef = TRUE;
4057 }
4058
4059 /* Set the alignment of a common symbol. */
4060 if ((common || bfd_is_com_section (sec))
4061 && h->root.type == bfd_link_hash_common)
4062 {
4063 unsigned int align;
4064
4065 if (common)
4066 align = bfd_log2 (isym->st_value);
4067 else
4068 {
4069 /* The new symbol is a common symbol in a shared object.
4070 We need to get the alignment from the section. */
4071 align = new_sec->alignment_power;
4072 }
4073 if (align > old_alignment
4074 /* Permit an alignment power of zero if an alignment of one
4075 is specified and no other alignments have been specified. */
4076 || (isym->st_value == 1 && old_alignment == 0))
4077 h->root.u.c.p->alignment_power = align;
4078 else
4079 h->root.u.c.p->alignment_power = old_alignment;
4080 }
4081
4082 if (is_elf_hash_table (htab))
4083 {
4084 bfd_boolean dynsym;
4085
4086 /* Check the alignment when a common symbol is involved. This
4087 can change when a common symbol is overridden by a normal
4088 definition or a common symbol is ignored due to the old
4089 normal definition. We need to make sure the maximum
4090 alignment is maintained. */
4091 if ((old_alignment || common)
4092 && h->root.type != bfd_link_hash_common)
4093 {
4094 unsigned int common_align;
4095 unsigned int normal_align;
4096 unsigned int symbol_align;
4097 bfd *normal_bfd;
4098 bfd *common_bfd;
4099
4100 symbol_align = ffs (h->root.u.def.value) - 1;
4101 if (h->root.u.def.section->owner != NULL
4102 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4103 {
4104 normal_align = h->root.u.def.section->alignment_power;
4105 if (normal_align > symbol_align)
4106 normal_align = symbol_align;
4107 }
4108 else
4109 normal_align = symbol_align;
4110
4111 if (old_alignment)
4112 {
4113 common_align = old_alignment;
4114 common_bfd = old_bfd;
4115 normal_bfd = abfd;
4116 }
4117 else
4118 {
4119 common_align = bfd_log2 (isym->st_value);
4120 common_bfd = abfd;
4121 normal_bfd = old_bfd;
4122 }
4123
4124 if (normal_align < common_align)
4125 {
4126 /* PR binutils/2735 */
4127 if (normal_bfd == NULL)
4128 (*_bfd_error_handler)
4129 (_("Warning: alignment %u of common symbol `%s' in %B"
4130 " is greater than the alignment (%u) of its section %A"),
4131 common_bfd, h->root.u.def.section,
4132 1 << common_align, name, 1 << normal_align);
4133 else
4134 (*_bfd_error_handler)
4135 (_("Warning: alignment %u of symbol `%s' in %B"
4136 " is smaller than %u in %B"),
4137 normal_bfd, common_bfd,
4138 1 << normal_align, name, 1 << common_align);
4139 }
4140 }
4141
4142 /* Remember the symbol size if it isn't undefined. */
4143 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4144 && (definition || h->size == 0))
4145 {
4146 if (h->size != 0
4147 && h->size != isym->st_size
4148 && ! size_change_ok)
4149 (*_bfd_error_handler)
4150 (_("Warning: size of symbol `%s' changed"
4151 " from %lu in %B to %lu in %B"),
4152 old_bfd, abfd,
4153 name, (unsigned long) h->size,
4154 (unsigned long) isym->st_size);
4155
4156 h->size = isym->st_size;
4157 }
4158
4159 /* If this is a common symbol, then we always want H->SIZE
4160 to be the size of the common symbol. The code just above
4161 won't fix the size if a common symbol becomes larger. We
4162 don't warn about a size change here, because that is
4163 covered by --warn-common. Allow changed between different
4164 function types. */
4165 if (h->root.type == bfd_link_hash_common)
4166 h->size = h->root.u.c.size;
4167
4168 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4169 && (definition || h->type == STT_NOTYPE))
4170 {
4171 if (h->type != STT_NOTYPE
4172 && h->type != ELF_ST_TYPE (isym->st_info)
4173 && ! type_change_ok)
4174 (*_bfd_error_handler)
4175 (_("Warning: type of symbol `%s' changed"
4176 " from %d to %d in %B"),
4177 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4178
4179 h->type = ELF_ST_TYPE (isym->st_info);
4180 }
4181
4182 /* If st_other has a processor-specific meaning, specific
4183 code might be needed here. We never merge the visibility
4184 attribute with the one from a dynamic object. */
4185 if (bed->elf_backend_merge_symbol_attribute)
4186 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4187 dynamic);
4188
4189 /* If this symbol has default visibility and the user has requested
4190 we not re-export it, then mark it as hidden. */
4191 if (definition && !dynamic
4192 && (abfd->no_export
4193 || (abfd->my_archive && abfd->my_archive->no_export))
4194 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4195 isym->st_other = (STV_HIDDEN
4196 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4197
4198 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4199 {
4200 unsigned char hvis, symvis, other, nvis;
4201
4202 /* Only merge the visibility. Leave the remainder of the
4203 st_other field to elf_backend_merge_symbol_attribute. */
4204 other = h->other & ~ELF_ST_VISIBILITY (-1);
4205
4206 /* Combine visibilities, using the most constraining one. */
4207 hvis = ELF_ST_VISIBILITY (h->other);
4208 symvis = ELF_ST_VISIBILITY (isym->st_other);
4209 if (! hvis)
4210 nvis = symvis;
4211 else if (! symvis)
4212 nvis = hvis;
4213 else
4214 nvis = hvis < symvis ? hvis : symvis;
4215
4216 h->other = other | nvis;
4217 }
4218
4219 /* Set a flag in the hash table entry indicating the type of
4220 reference or definition we just found. Keep a count of
4221 the number of dynamic symbols we find. A dynamic symbol
4222 is one which is referenced or defined by both a regular
4223 object and a shared object. */
4224 dynsym = FALSE;
4225 if (! dynamic)
4226 {
4227 if (! definition)
4228 {
4229 h->ref_regular = 1;
4230 if (bind != STB_WEAK)
4231 h->ref_regular_nonweak = 1;
4232 }
4233 else
4234 h->def_regular = 1;
4235 if (! info->executable
4236 || h->def_dynamic
4237 || h->ref_dynamic)
4238 dynsym = TRUE;
4239 }
4240 else
4241 {
4242 if (! definition)
4243 h->ref_dynamic = 1;
4244 else
4245 h->def_dynamic = 1;
4246 if (h->def_regular
4247 || h->ref_regular
4248 || (h->u.weakdef != NULL
4249 && ! new_weakdef
4250 && h->u.weakdef->dynindx != -1))
4251 dynsym = TRUE;
4252 }
4253
4254 if (definition && (sec->flags & SEC_DEBUGGING))
4255 {
4256 /* We don't want to make debug symbol dynamic. */
4257 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4258 dynsym = FALSE;
4259 }
4260
4261 /* Check to see if we need to add an indirect symbol for
4262 the default name. */
4263 if (definition || h->root.type == bfd_link_hash_common)
4264 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4265 &sec, &value, &dynsym,
4266 override))
4267 goto error_free_vers;
4268
4269 if (definition && !dynamic)
4270 {
4271 char *p = strchr (name, ELF_VER_CHR);
4272 if (p != NULL && p[1] != ELF_VER_CHR)
4273 {
4274 /* Queue non-default versions so that .symver x, x@FOO
4275 aliases can be checked. */
4276 if (!nondeflt_vers)
4277 {
4278 amt = ((isymend - isym + 1)
4279 * sizeof (struct elf_link_hash_entry *));
4280 nondeflt_vers = bfd_malloc (amt);
4281 }
4282 nondeflt_vers[nondeflt_vers_cnt++] = h;
4283 }
4284 }
4285
4286 if (dynsym && h->dynindx == -1)
4287 {
4288 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4289 goto error_free_vers;
4290 if (h->u.weakdef != NULL
4291 && ! new_weakdef
4292 && h->u.weakdef->dynindx == -1)
4293 {
4294 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4295 goto error_free_vers;
4296 }
4297 }
4298 else if (dynsym && h->dynindx != -1)
4299 /* If the symbol already has a dynamic index, but
4300 visibility says it should not be visible, turn it into
4301 a local symbol. */
4302 switch (ELF_ST_VISIBILITY (h->other))
4303 {
4304 case STV_INTERNAL:
4305 case STV_HIDDEN:
4306 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4307 dynsym = FALSE;
4308 break;
4309 }
4310
4311 if (!add_needed
4312 && definition
4313 && dynsym
4314 && h->ref_regular)
4315 {
4316 int ret;
4317 const char *soname = elf_dt_name (abfd);
4318
4319 /* A symbol from a library loaded via DT_NEEDED of some
4320 other library is referenced by a regular object.
4321 Add a DT_NEEDED entry for it. Issue an error if
4322 --no-add-needed is used. */
4323 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4324 {
4325 (*_bfd_error_handler)
4326 (_("%s: invalid DSO for symbol `%s' definition"),
4327 abfd, name);
4328 bfd_set_error (bfd_error_bad_value);
4329 goto error_free_vers;
4330 }
4331
4332 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4333
4334 add_needed = TRUE;
4335 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4336 if (ret < 0)
4337 goto error_free_vers;
4338
4339 BFD_ASSERT (ret == 0);
4340 }
4341 }
4342 }
4343
4344 if (extversym != NULL)
4345 {
4346 free (extversym);
4347 extversym = NULL;
4348 }
4349
4350 if (isymbuf != NULL)
4351 {
4352 free (isymbuf);
4353 isymbuf = NULL;
4354 }
4355
4356 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4357 {
4358 unsigned int i;
4359
4360 /* Restore the symbol table. */
4361 if (bed->as_needed_cleanup)
4362 (*bed->as_needed_cleanup) (abfd, info);
4363 old_hash = (char *) old_tab + tabsize;
4364 old_ent = (char *) old_hash + hashsize;
4365 sym_hash = elf_sym_hashes (abfd);
4366 htab->root.table.table = old_table;
4367 htab->root.table.size = old_size;
4368 htab->root.table.count = old_count;
4369 memcpy (htab->root.table.table, old_tab, tabsize);
4370 memcpy (sym_hash, old_hash, hashsize);
4371 htab->root.undefs = old_undefs;
4372 htab->root.undefs_tail = old_undefs_tail;
4373 for (i = 0; i < htab->root.table.size; i++)
4374 {
4375 struct bfd_hash_entry *p;
4376 struct elf_link_hash_entry *h;
4377
4378 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4379 {
4380 h = (struct elf_link_hash_entry *) p;
4381 if (h->root.type == bfd_link_hash_warning)
4382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4383 if (h->dynindx >= old_dynsymcount)
4384 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4385
4386 memcpy (p, old_ent, htab->root.table.entsize);
4387 old_ent = (char *) old_ent + htab->root.table.entsize;
4388 h = (struct elf_link_hash_entry *) p;
4389 if (h->root.type == bfd_link_hash_warning)
4390 {
4391 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4392 old_ent = (char *) old_ent + htab->root.table.entsize;
4393 }
4394 }
4395 }
4396
4397 /* Make a special call to the linker "notice" function to
4398 tell it that symbols added for crefs may need to be removed. */
4399 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4400 notice_not_needed))
4401 goto error_free_vers;
4402
4403 free (old_tab);
4404 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4405 alloc_mark);
4406 if (nondeflt_vers != NULL)
4407 free (nondeflt_vers);
4408 return TRUE;
4409 }
4410
4411 if (old_tab != NULL)
4412 {
4413 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4414 notice_needed))
4415 goto error_free_vers;
4416 free (old_tab);
4417 old_tab = NULL;
4418 }
4419
4420 /* Now that all the symbols from this input file are created, handle
4421 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4422 if (nondeflt_vers != NULL)
4423 {
4424 bfd_size_type cnt, symidx;
4425
4426 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4427 {
4428 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4429 char *shortname, *p;
4430
4431 p = strchr (h->root.root.string, ELF_VER_CHR);
4432 if (p == NULL
4433 || (h->root.type != bfd_link_hash_defined
4434 && h->root.type != bfd_link_hash_defweak))
4435 continue;
4436
4437 amt = p - h->root.root.string;
4438 shortname = bfd_malloc (amt + 1);
4439 memcpy (shortname, h->root.root.string, amt);
4440 shortname[amt] = '\0';
4441
4442 hi = (struct elf_link_hash_entry *)
4443 bfd_link_hash_lookup (&htab->root, shortname,
4444 FALSE, FALSE, FALSE);
4445 if (hi != NULL
4446 && hi->root.type == h->root.type
4447 && hi->root.u.def.value == h->root.u.def.value
4448 && hi->root.u.def.section == h->root.u.def.section)
4449 {
4450 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4451 hi->root.type = bfd_link_hash_indirect;
4452 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4453 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4454 sym_hash = elf_sym_hashes (abfd);
4455 if (sym_hash)
4456 for (symidx = 0; symidx < extsymcount; ++symidx)
4457 if (sym_hash[symidx] == hi)
4458 {
4459 sym_hash[symidx] = h;
4460 break;
4461 }
4462 }
4463 free (shortname);
4464 }
4465 free (nondeflt_vers);
4466 nondeflt_vers = NULL;
4467 }
4468
4469 /* Now set the weakdefs field correctly for all the weak defined
4470 symbols we found. The only way to do this is to search all the
4471 symbols. Since we only need the information for non functions in
4472 dynamic objects, that's the only time we actually put anything on
4473 the list WEAKS. We need this information so that if a regular
4474 object refers to a symbol defined weakly in a dynamic object, the
4475 real symbol in the dynamic object is also put in the dynamic
4476 symbols; we also must arrange for both symbols to point to the
4477 same memory location. We could handle the general case of symbol
4478 aliasing, but a general symbol alias can only be generated in
4479 assembler code, handling it correctly would be very time
4480 consuming, and other ELF linkers don't handle general aliasing
4481 either. */
4482 if (weaks != NULL)
4483 {
4484 struct elf_link_hash_entry **hpp;
4485 struct elf_link_hash_entry **hppend;
4486 struct elf_link_hash_entry **sorted_sym_hash;
4487 struct elf_link_hash_entry *h;
4488 size_t sym_count;
4489
4490 /* Since we have to search the whole symbol list for each weak
4491 defined symbol, search time for N weak defined symbols will be
4492 O(N^2). Binary search will cut it down to O(NlogN). */
4493 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4494 sorted_sym_hash = bfd_malloc (amt);
4495 if (sorted_sym_hash == NULL)
4496 goto error_return;
4497 sym_hash = sorted_sym_hash;
4498 hpp = elf_sym_hashes (abfd);
4499 hppend = hpp + extsymcount;
4500 sym_count = 0;
4501 for (; hpp < hppend; hpp++)
4502 {
4503 h = *hpp;
4504 if (h != NULL
4505 && h->root.type == bfd_link_hash_defined
4506 && !bed->is_function_type (h->type))
4507 {
4508 *sym_hash = h;
4509 sym_hash++;
4510 sym_count++;
4511 }
4512 }
4513
4514 qsort (sorted_sym_hash, sym_count,
4515 sizeof (struct elf_link_hash_entry *),
4516 elf_sort_symbol);
4517
4518 while (weaks != NULL)
4519 {
4520 struct elf_link_hash_entry *hlook;
4521 asection *slook;
4522 bfd_vma vlook;
4523 long ilook;
4524 size_t i, j, idx;
4525
4526 hlook = weaks;
4527 weaks = hlook->u.weakdef;
4528 hlook->u.weakdef = NULL;
4529
4530 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4531 || hlook->root.type == bfd_link_hash_defweak
4532 || hlook->root.type == bfd_link_hash_common
4533 || hlook->root.type == bfd_link_hash_indirect);
4534 slook = hlook->root.u.def.section;
4535 vlook = hlook->root.u.def.value;
4536
4537 ilook = -1;
4538 i = 0;
4539 j = sym_count;
4540 while (i < j)
4541 {
4542 bfd_signed_vma vdiff;
4543 idx = (i + j) / 2;
4544 h = sorted_sym_hash [idx];
4545 vdiff = vlook - h->root.u.def.value;
4546 if (vdiff < 0)
4547 j = idx;
4548 else if (vdiff > 0)
4549 i = idx + 1;
4550 else
4551 {
4552 long sdiff = slook->id - h->root.u.def.section->id;
4553 if (sdiff < 0)
4554 j = idx;
4555 else if (sdiff > 0)
4556 i = idx + 1;
4557 else
4558 {
4559 ilook = idx;
4560 break;
4561 }
4562 }
4563 }
4564
4565 /* We didn't find a value/section match. */
4566 if (ilook == -1)
4567 continue;
4568
4569 for (i = ilook; i < sym_count; i++)
4570 {
4571 h = sorted_sym_hash [i];
4572
4573 /* Stop if value or section doesn't match. */
4574 if (h->root.u.def.value != vlook
4575 || h->root.u.def.section != slook)
4576 break;
4577 else if (h != hlook)
4578 {
4579 hlook->u.weakdef = h;
4580
4581 /* If the weak definition is in the list of dynamic
4582 symbols, make sure the real definition is put
4583 there as well. */
4584 if (hlook->dynindx != -1 && h->dynindx == -1)
4585 {
4586 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4587 goto error_return;
4588 }
4589
4590 /* If the real definition is in the list of dynamic
4591 symbols, make sure the weak definition is put
4592 there as well. If we don't do this, then the
4593 dynamic loader might not merge the entries for the
4594 real definition and the weak definition. */
4595 if (h->dynindx != -1 && hlook->dynindx == -1)
4596 {
4597 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4598 goto error_return;
4599 }
4600 break;
4601 }
4602 }
4603 }
4604
4605 free (sorted_sym_hash);
4606 }
4607
4608 if (bed->check_directives)
4609 (*bed->check_directives) (abfd, info);
4610
4611 /* If this object is the same format as the output object, and it is
4612 not a shared library, then let the backend look through the
4613 relocs.
4614
4615 This is required to build global offset table entries and to
4616 arrange for dynamic relocs. It is not required for the
4617 particular common case of linking non PIC code, even when linking
4618 against shared libraries, but unfortunately there is no way of
4619 knowing whether an object file has been compiled PIC or not.
4620 Looking through the relocs is not particularly time consuming.
4621 The problem is that we must either (1) keep the relocs in memory,
4622 which causes the linker to require additional runtime memory or
4623 (2) read the relocs twice from the input file, which wastes time.
4624 This would be a good case for using mmap.
4625
4626 I have no idea how to handle linking PIC code into a file of a
4627 different format. It probably can't be done. */
4628 if (! dynamic
4629 && is_elf_hash_table (htab)
4630 && htab->root.creator == abfd->xvec
4631 && bed->check_relocs != NULL)
4632 {
4633 asection *o;
4634
4635 for (o = abfd->sections; o != NULL; o = o->next)
4636 {
4637 Elf_Internal_Rela *internal_relocs;
4638 bfd_boolean ok;
4639
4640 if ((o->flags & SEC_RELOC) == 0
4641 || o->reloc_count == 0
4642 || ((info->strip == strip_all || info->strip == strip_debugger)
4643 && (o->flags & SEC_DEBUGGING) != 0)
4644 || bfd_is_abs_section (o->output_section))
4645 continue;
4646
4647 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4648 info->keep_memory);
4649 if (internal_relocs == NULL)
4650 goto error_return;
4651
4652 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4653
4654 if (elf_section_data (o)->relocs != internal_relocs)
4655 free (internal_relocs);
4656
4657 if (! ok)
4658 goto error_return;
4659 }
4660 }
4661
4662 /* If this is a non-traditional link, try to optimize the handling
4663 of the .stab/.stabstr sections. */
4664 if (! dynamic
4665 && ! info->traditional_format
4666 && is_elf_hash_table (htab)
4667 && (info->strip != strip_all && info->strip != strip_debugger))
4668 {
4669 asection *stabstr;
4670
4671 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4672 if (stabstr != NULL)
4673 {
4674 bfd_size_type string_offset = 0;
4675 asection *stab;
4676
4677 for (stab = abfd->sections; stab; stab = stab->next)
4678 if (CONST_STRNEQ (stab->name, ".stab")
4679 && (!stab->name[5] ||
4680 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4681 && (stab->flags & SEC_MERGE) == 0
4682 && !bfd_is_abs_section (stab->output_section))
4683 {
4684 struct bfd_elf_section_data *secdata;
4685
4686 secdata = elf_section_data (stab);
4687 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4688 stabstr, &secdata->sec_info,
4689 &string_offset))
4690 goto error_return;
4691 if (secdata->sec_info)
4692 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4693 }
4694 }
4695 }
4696
4697 if (is_elf_hash_table (htab) && add_needed)
4698 {
4699 /* Add this bfd to the loaded list. */
4700 struct elf_link_loaded_list *n;
4701
4702 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4703 if (n == NULL)
4704 goto error_return;
4705 n->abfd = abfd;
4706 n->next = htab->loaded;
4707 htab->loaded = n;
4708 }
4709
4710 return TRUE;
4711
4712 error_free_vers:
4713 if (old_tab != NULL)
4714 free (old_tab);
4715 if (nondeflt_vers != NULL)
4716 free (nondeflt_vers);
4717 if (extversym != NULL)
4718 free (extversym);
4719 error_free_sym:
4720 if (isymbuf != NULL)
4721 free (isymbuf);
4722 error_return:
4723 return FALSE;
4724 }
4725
4726 /* Return the linker hash table entry of a symbol that might be
4727 satisfied by an archive symbol. Return -1 on error. */
4728
4729 struct elf_link_hash_entry *
4730 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4731 struct bfd_link_info *info,
4732 const char *name)
4733 {
4734 struct elf_link_hash_entry *h;
4735 char *p, *copy;
4736 size_t len, first;
4737
4738 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4739 if (h != NULL)
4740 return h;
4741
4742 /* If this is a default version (the name contains @@), look up the
4743 symbol again with only one `@' as well as without the version.
4744 The effect is that references to the symbol with and without the
4745 version will be matched by the default symbol in the archive. */
4746
4747 p = strchr (name, ELF_VER_CHR);
4748 if (p == NULL || p[1] != ELF_VER_CHR)
4749 return h;
4750
4751 /* First check with only one `@'. */
4752 len = strlen (name);
4753 copy = bfd_alloc (abfd, len);
4754 if (copy == NULL)
4755 return (struct elf_link_hash_entry *) 0 - 1;
4756
4757 first = p - name + 1;
4758 memcpy (copy, name, first);
4759 memcpy (copy + first, name + first + 1, len - first);
4760
4761 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4762 if (h == NULL)
4763 {
4764 /* We also need to check references to the symbol without the
4765 version. */
4766 copy[first - 1] = '\0';
4767 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4768 FALSE, FALSE, FALSE);
4769 }
4770
4771 bfd_release (abfd, copy);
4772 return h;
4773 }
4774
4775 /* Add symbols from an ELF archive file to the linker hash table. We
4776 don't use _bfd_generic_link_add_archive_symbols because of a
4777 problem which arises on UnixWare. The UnixWare libc.so is an
4778 archive which includes an entry libc.so.1 which defines a bunch of
4779 symbols. The libc.so archive also includes a number of other
4780 object files, which also define symbols, some of which are the same
4781 as those defined in libc.so.1. Correct linking requires that we
4782 consider each object file in turn, and include it if it defines any
4783 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4784 this; it looks through the list of undefined symbols, and includes
4785 any object file which defines them. When this algorithm is used on
4786 UnixWare, it winds up pulling in libc.so.1 early and defining a
4787 bunch of symbols. This means that some of the other objects in the
4788 archive are not included in the link, which is incorrect since they
4789 precede libc.so.1 in the archive.
4790
4791 Fortunately, ELF archive handling is simpler than that done by
4792 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4793 oddities. In ELF, if we find a symbol in the archive map, and the
4794 symbol is currently undefined, we know that we must pull in that
4795 object file.
4796
4797 Unfortunately, we do have to make multiple passes over the symbol
4798 table until nothing further is resolved. */
4799
4800 static bfd_boolean
4801 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4802 {
4803 symindex c;
4804 bfd_boolean *defined = NULL;
4805 bfd_boolean *included = NULL;
4806 carsym *symdefs;
4807 bfd_boolean loop;
4808 bfd_size_type amt;
4809 const struct elf_backend_data *bed;
4810 struct elf_link_hash_entry * (*archive_symbol_lookup)
4811 (bfd *, struct bfd_link_info *, const char *);
4812
4813 if (! bfd_has_map (abfd))
4814 {
4815 /* An empty archive is a special case. */
4816 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4817 return TRUE;
4818 bfd_set_error (bfd_error_no_armap);
4819 return FALSE;
4820 }
4821
4822 /* Keep track of all symbols we know to be already defined, and all
4823 files we know to be already included. This is to speed up the
4824 second and subsequent passes. */
4825 c = bfd_ardata (abfd)->symdef_count;
4826 if (c == 0)
4827 return TRUE;
4828 amt = c;
4829 amt *= sizeof (bfd_boolean);
4830 defined = bfd_zmalloc (amt);
4831 included = bfd_zmalloc (amt);
4832 if (defined == NULL || included == NULL)
4833 goto error_return;
4834
4835 symdefs = bfd_ardata (abfd)->symdefs;
4836 bed = get_elf_backend_data (abfd);
4837 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4838
4839 do
4840 {
4841 file_ptr last;
4842 symindex i;
4843 carsym *symdef;
4844 carsym *symdefend;
4845
4846 loop = FALSE;
4847 last = -1;
4848
4849 symdef = symdefs;
4850 symdefend = symdef + c;
4851 for (i = 0; symdef < symdefend; symdef++, i++)
4852 {
4853 struct elf_link_hash_entry *h;
4854 bfd *element;
4855 struct bfd_link_hash_entry *undefs_tail;
4856 symindex mark;
4857
4858 if (defined[i] || included[i])
4859 continue;
4860 if (symdef->file_offset == last)
4861 {
4862 included[i] = TRUE;
4863 continue;
4864 }
4865
4866 h = archive_symbol_lookup (abfd, info, symdef->name);
4867 if (h == (struct elf_link_hash_entry *) 0 - 1)
4868 goto error_return;
4869
4870 if (h == NULL)
4871 continue;
4872
4873 if (h->root.type == bfd_link_hash_common)
4874 {
4875 /* We currently have a common symbol. The archive map contains
4876 a reference to this symbol, so we may want to include it. We
4877 only want to include it however, if this archive element
4878 contains a definition of the symbol, not just another common
4879 declaration of it.
4880
4881 Unfortunately some archivers (including GNU ar) will put
4882 declarations of common symbols into their archive maps, as
4883 well as real definitions, so we cannot just go by the archive
4884 map alone. Instead we must read in the element's symbol
4885 table and check that to see what kind of symbol definition
4886 this is. */
4887 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4888 continue;
4889 }
4890 else if (h->root.type != bfd_link_hash_undefined)
4891 {
4892 if (h->root.type != bfd_link_hash_undefweak)
4893 defined[i] = TRUE;
4894 continue;
4895 }
4896
4897 /* We need to include this archive member. */
4898 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4899 if (element == NULL)
4900 goto error_return;
4901
4902 if (! bfd_check_format (element, bfd_object))
4903 goto error_return;
4904
4905 /* Doublecheck that we have not included this object
4906 already--it should be impossible, but there may be
4907 something wrong with the archive. */
4908 if (element->archive_pass != 0)
4909 {
4910 bfd_set_error (bfd_error_bad_value);
4911 goto error_return;
4912 }
4913 element->archive_pass = 1;
4914
4915 undefs_tail = info->hash->undefs_tail;
4916
4917 if (! (*info->callbacks->add_archive_element) (info, element,
4918 symdef->name))
4919 goto error_return;
4920 if (! bfd_link_add_symbols (element, info))
4921 goto error_return;
4922
4923 /* If there are any new undefined symbols, we need to make
4924 another pass through the archive in order to see whether
4925 they can be defined. FIXME: This isn't perfect, because
4926 common symbols wind up on undefs_tail and because an
4927 undefined symbol which is defined later on in this pass
4928 does not require another pass. This isn't a bug, but it
4929 does make the code less efficient than it could be. */
4930 if (undefs_tail != info->hash->undefs_tail)
4931 loop = TRUE;
4932
4933 /* Look backward to mark all symbols from this object file
4934 which we have already seen in this pass. */
4935 mark = i;
4936 do
4937 {
4938 included[mark] = TRUE;
4939 if (mark == 0)
4940 break;
4941 --mark;
4942 }
4943 while (symdefs[mark].file_offset == symdef->file_offset);
4944
4945 /* We mark subsequent symbols from this object file as we go
4946 on through the loop. */
4947 last = symdef->file_offset;
4948 }
4949 }
4950 while (loop);
4951
4952 free (defined);
4953 free (included);
4954
4955 return TRUE;
4956
4957 error_return:
4958 if (defined != NULL)
4959 free (defined);
4960 if (included != NULL)
4961 free (included);
4962 return FALSE;
4963 }
4964
4965 /* Given an ELF BFD, add symbols to the global hash table as
4966 appropriate. */
4967
4968 bfd_boolean
4969 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4970 {
4971 switch (bfd_get_format (abfd))
4972 {
4973 case bfd_object:
4974 return elf_link_add_object_symbols (abfd, info);
4975 case bfd_archive:
4976 return elf_link_add_archive_symbols (abfd, info);
4977 default:
4978 bfd_set_error (bfd_error_wrong_format);
4979 return FALSE;
4980 }
4981 }
4982 \f
4983 /* This function will be called though elf_link_hash_traverse to store
4984 all hash value of the exported symbols in an array. */
4985
4986 static bfd_boolean
4987 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4988 {
4989 unsigned long **valuep = data;
4990 const char *name;
4991 char *p;
4992 unsigned long ha;
4993 char *alc = NULL;
4994
4995 if (h->root.type == bfd_link_hash_warning)
4996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4997
4998 /* Ignore indirect symbols. These are added by the versioning code. */
4999 if (h->dynindx == -1)
5000 return TRUE;
5001
5002 name = h->root.root.string;
5003 p = strchr (name, ELF_VER_CHR);
5004 if (p != NULL)
5005 {
5006 alc = bfd_malloc (p - name + 1);
5007 memcpy (alc, name, p - name);
5008 alc[p - name] = '\0';
5009 name = alc;
5010 }
5011
5012 /* Compute the hash value. */
5013 ha = bfd_elf_hash (name);
5014
5015 /* Store the found hash value in the array given as the argument. */
5016 *(*valuep)++ = ha;
5017
5018 /* And store it in the struct so that we can put it in the hash table
5019 later. */
5020 h->u.elf_hash_value = ha;
5021
5022 if (alc != NULL)
5023 free (alc);
5024
5025 return TRUE;
5026 }
5027
5028 struct collect_gnu_hash_codes
5029 {
5030 bfd *output_bfd;
5031 const struct elf_backend_data *bed;
5032 unsigned long int nsyms;
5033 unsigned long int maskbits;
5034 unsigned long int *hashcodes;
5035 unsigned long int *hashval;
5036 unsigned long int *indx;
5037 unsigned long int *counts;
5038 bfd_vma *bitmask;
5039 bfd_byte *contents;
5040 long int min_dynindx;
5041 unsigned long int bucketcount;
5042 unsigned long int symindx;
5043 long int local_indx;
5044 long int shift1, shift2;
5045 unsigned long int mask;
5046 };
5047
5048 /* This function will be called though elf_link_hash_traverse to store
5049 all hash value of the exported symbols in an array. */
5050
5051 static bfd_boolean
5052 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5053 {
5054 struct collect_gnu_hash_codes *s = data;
5055 const char *name;
5056 char *p;
5057 unsigned long ha;
5058 char *alc = NULL;
5059
5060 if (h->root.type == bfd_link_hash_warning)
5061 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5062
5063 /* Ignore indirect symbols. These are added by the versioning code. */
5064 if (h->dynindx == -1)
5065 return TRUE;
5066
5067 /* Ignore also local symbols and undefined symbols. */
5068 if (! (*s->bed->elf_hash_symbol) (h))
5069 return TRUE;
5070
5071 name = h->root.root.string;
5072 p = strchr (name, ELF_VER_CHR);
5073 if (p != NULL)
5074 {
5075 alc = bfd_malloc (p - name + 1);
5076 memcpy (alc, name, p - name);
5077 alc[p - name] = '\0';
5078 name = alc;
5079 }
5080
5081 /* Compute the hash value. */
5082 ha = bfd_elf_gnu_hash (name);
5083
5084 /* Store the found hash value in the array for compute_bucket_count,
5085 and also for .dynsym reordering purposes. */
5086 s->hashcodes[s->nsyms] = ha;
5087 s->hashval[h->dynindx] = ha;
5088 ++s->nsyms;
5089 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5090 s->min_dynindx = h->dynindx;
5091
5092 if (alc != NULL)
5093 free (alc);
5094
5095 return TRUE;
5096 }
5097
5098 /* This function will be called though elf_link_hash_traverse to do
5099 final dynaminc symbol renumbering. */
5100
5101 static bfd_boolean
5102 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5103 {
5104 struct collect_gnu_hash_codes *s = data;
5105 unsigned long int bucket;
5106 unsigned long int val;
5107
5108 if (h->root.type == bfd_link_hash_warning)
5109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5110
5111 /* Ignore indirect symbols. */
5112 if (h->dynindx == -1)
5113 return TRUE;
5114
5115 /* Ignore also local symbols and undefined symbols. */
5116 if (! (*s->bed->elf_hash_symbol) (h))
5117 {
5118 if (h->dynindx >= s->min_dynindx)
5119 h->dynindx = s->local_indx++;
5120 return TRUE;
5121 }
5122
5123 bucket = s->hashval[h->dynindx] % s->bucketcount;
5124 val = (s->hashval[h->dynindx] >> s->shift1)
5125 & ((s->maskbits >> s->shift1) - 1);
5126 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5127 s->bitmask[val]
5128 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5129 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5130 if (s->counts[bucket] == 1)
5131 /* Last element terminates the chain. */
5132 val |= 1;
5133 bfd_put_32 (s->output_bfd, val,
5134 s->contents + (s->indx[bucket] - s->symindx) * 4);
5135 --s->counts[bucket];
5136 h->dynindx = s->indx[bucket]++;
5137 return TRUE;
5138 }
5139
5140 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5141
5142 bfd_boolean
5143 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5144 {
5145 return !(h->forced_local
5146 || h->root.type == bfd_link_hash_undefined
5147 || h->root.type == bfd_link_hash_undefweak
5148 || ((h->root.type == bfd_link_hash_defined
5149 || h->root.type == bfd_link_hash_defweak)
5150 && h->root.u.def.section->output_section == NULL));
5151 }
5152
5153 /* Array used to determine the number of hash table buckets to use
5154 based on the number of symbols there are. If there are fewer than
5155 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5156 fewer than 37 we use 17 buckets, and so forth. We never use more
5157 than 32771 buckets. */
5158
5159 static const size_t elf_buckets[] =
5160 {
5161 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5162 16411, 32771, 0
5163 };
5164
5165 /* Compute bucket count for hashing table. We do not use a static set
5166 of possible tables sizes anymore. Instead we determine for all
5167 possible reasonable sizes of the table the outcome (i.e., the
5168 number of collisions etc) and choose the best solution. The
5169 weighting functions are not too simple to allow the table to grow
5170 without bounds. Instead one of the weighting factors is the size.
5171 Therefore the result is always a good payoff between few collisions
5172 (= short chain lengths) and table size. */
5173 static size_t
5174 compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes,
5175 unsigned long int nsyms, int gnu_hash)
5176 {
5177 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5178 size_t best_size = 0;
5179 unsigned long int i;
5180 bfd_size_type amt;
5181
5182 /* We have a problem here. The following code to optimize the table
5183 size requires an integer type with more the 32 bits. If
5184 BFD_HOST_U_64_BIT is set we know about such a type. */
5185 #ifdef BFD_HOST_U_64_BIT
5186 if (info->optimize)
5187 {
5188 size_t minsize;
5189 size_t maxsize;
5190 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5191 bfd *dynobj = elf_hash_table (info)->dynobj;
5192 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5193 unsigned long int *counts;
5194
5195 /* Possible optimization parameters: if we have NSYMS symbols we say
5196 that the hashing table must at least have NSYMS/4 and at most
5197 2*NSYMS buckets. */
5198 minsize = nsyms / 4;
5199 if (minsize == 0)
5200 minsize = 1;
5201 best_size = maxsize = nsyms * 2;
5202 if (gnu_hash)
5203 {
5204 if (minsize < 2)
5205 minsize = 2;
5206 if ((best_size & 31) == 0)
5207 ++best_size;
5208 }
5209
5210 /* Create array where we count the collisions in. We must use bfd_malloc
5211 since the size could be large. */
5212 amt = maxsize;
5213 amt *= sizeof (unsigned long int);
5214 counts = bfd_malloc (amt);
5215 if (counts == NULL)
5216 return 0;
5217
5218 /* Compute the "optimal" size for the hash table. The criteria is a
5219 minimal chain length. The minor criteria is (of course) the size
5220 of the table. */
5221 for (i = minsize; i < maxsize; ++i)
5222 {
5223 /* Walk through the array of hashcodes and count the collisions. */
5224 BFD_HOST_U_64_BIT max;
5225 unsigned long int j;
5226 unsigned long int fact;
5227
5228 if (gnu_hash && (i & 31) == 0)
5229 continue;
5230
5231 memset (counts, '\0', i * sizeof (unsigned long int));
5232
5233 /* Determine how often each hash bucket is used. */
5234 for (j = 0; j < nsyms; ++j)
5235 ++counts[hashcodes[j] % i];
5236
5237 /* For the weight function we need some information about the
5238 pagesize on the target. This is information need not be 100%
5239 accurate. Since this information is not available (so far) we
5240 define it here to a reasonable default value. If it is crucial
5241 to have a better value some day simply define this value. */
5242 # ifndef BFD_TARGET_PAGESIZE
5243 # define BFD_TARGET_PAGESIZE (4096)
5244 # endif
5245
5246 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5247 and the chains. */
5248 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5249
5250 # if 1
5251 /* Variant 1: optimize for short chains. We add the squares
5252 of all the chain lengths (which favors many small chain
5253 over a few long chains). */
5254 for (j = 0; j < i; ++j)
5255 max += counts[j] * counts[j];
5256
5257 /* This adds penalties for the overall size of the table. */
5258 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5259 max *= fact * fact;
5260 # else
5261 /* Variant 2: Optimize a lot more for small table. Here we
5262 also add squares of the size but we also add penalties for
5263 empty slots (the +1 term). */
5264 for (j = 0; j < i; ++j)
5265 max += (1 + counts[j]) * (1 + counts[j]);
5266
5267 /* The overall size of the table is considered, but not as
5268 strong as in variant 1, where it is squared. */
5269 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5270 max *= fact;
5271 # endif
5272
5273 /* Compare with current best results. */
5274 if (max < best_chlen)
5275 {
5276 best_chlen = max;
5277 best_size = i;
5278 }
5279 }
5280
5281 free (counts);
5282 }
5283 else
5284 #endif /* defined (BFD_HOST_U_64_BIT) */
5285 {
5286 /* This is the fallback solution if no 64bit type is available or if we
5287 are not supposed to spend much time on optimizations. We select the
5288 bucket count using a fixed set of numbers. */
5289 for (i = 0; elf_buckets[i] != 0; i++)
5290 {
5291 best_size = elf_buckets[i];
5292 if (nsyms < elf_buckets[i + 1])
5293 break;
5294 }
5295 if (gnu_hash && best_size < 2)
5296 best_size = 2;
5297 }
5298
5299 return best_size;
5300 }
5301
5302 /* Set up the sizes and contents of the ELF dynamic sections. This is
5303 called by the ELF linker emulation before_allocation routine. We
5304 must set the sizes of the sections before the linker sets the
5305 addresses of the various sections. */
5306
5307 bfd_boolean
5308 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5309 const char *soname,
5310 const char *rpath,
5311 const char *filter_shlib,
5312 const char * const *auxiliary_filters,
5313 struct bfd_link_info *info,
5314 asection **sinterpptr,
5315 struct bfd_elf_version_tree *verdefs)
5316 {
5317 bfd_size_type soname_indx;
5318 bfd *dynobj;
5319 const struct elf_backend_data *bed;
5320 struct elf_assign_sym_version_info asvinfo;
5321
5322 *sinterpptr = NULL;
5323
5324 soname_indx = (bfd_size_type) -1;
5325
5326 if (!is_elf_hash_table (info->hash))
5327 return TRUE;
5328
5329 bed = get_elf_backend_data (output_bfd);
5330 elf_tdata (output_bfd)->relro = info->relro;
5331 if (info->execstack)
5332 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5333 else if (info->noexecstack)
5334 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5335 else
5336 {
5337 bfd *inputobj;
5338 asection *notesec = NULL;
5339 int exec = 0;
5340
5341 for (inputobj = info->input_bfds;
5342 inputobj;
5343 inputobj = inputobj->link_next)
5344 {
5345 asection *s;
5346
5347 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5348 continue;
5349 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5350 if (s)
5351 {
5352 if (s->flags & SEC_CODE)
5353 exec = PF_X;
5354 notesec = s;
5355 }
5356 else if (bed->default_execstack)
5357 exec = PF_X;
5358 }
5359 if (notesec)
5360 {
5361 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5362 if (exec && info->relocatable
5363 && notesec->output_section != bfd_abs_section_ptr)
5364 notesec->output_section->flags |= SEC_CODE;
5365 }
5366 }
5367
5368 /* Any syms created from now on start with -1 in
5369 got.refcount/offset and plt.refcount/offset. */
5370 elf_hash_table (info)->init_got_refcount
5371 = elf_hash_table (info)->init_got_offset;
5372 elf_hash_table (info)->init_plt_refcount
5373 = elf_hash_table (info)->init_plt_offset;
5374
5375 /* The backend may have to create some sections regardless of whether
5376 we're dynamic or not. */
5377 if (bed->elf_backend_always_size_sections
5378 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5379 return FALSE;
5380
5381 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5382 return FALSE;
5383
5384 dynobj = elf_hash_table (info)->dynobj;
5385
5386 /* If there were no dynamic objects in the link, there is nothing to
5387 do here. */
5388 if (dynobj == NULL)
5389 return TRUE;
5390
5391 if (elf_hash_table (info)->dynamic_sections_created)
5392 {
5393 struct elf_info_failed eif;
5394 struct elf_link_hash_entry *h;
5395 asection *dynstr;
5396 struct bfd_elf_version_tree *t;
5397 struct bfd_elf_version_expr *d;
5398 asection *s;
5399 bfd_boolean all_defined;
5400
5401 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5402 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5403
5404 if (soname != NULL)
5405 {
5406 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5407 soname, TRUE);
5408 if (soname_indx == (bfd_size_type) -1
5409 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5410 return FALSE;
5411 }
5412
5413 if (info->symbolic)
5414 {
5415 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5416 return FALSE;
5417 info->flags |= DF_SYMBOLIC;
5418 }
5419
5420 if (rpath != NULL)
5421 {
5422 bfd_size_type indx;
5423
5424 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5425 TRUE);
5426 if (indx == (bfd_size_type) -1
5427 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5428 return FALSE;
5429
5430 if (info->new_dtags)
5431 {
5432 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5433 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5434 return FALSE;
5435 }
5436 }
5437
5438 if (filter_shlib != NULL)
5439 {
5440 bfd_size_type indx;
5441
5442 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5443 filter_shlib, TRUE);
5444 if (indx == (bfd_size_type) -1
5445 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5446 return FALSE;
5447 }
5448
5449 if (auxiliary_filters != NULL)
5450 {
5451 const char * const *p;
5452
5453 for (p = auxiliary_filters; *p != NULL; p++)
5454 {
5455 bfd_size_type indx;
5456
5457 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5458 *p, TRUE);
5459 if (indx == (bfd_size_type) -1
5460 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5461 return FALSE;
5462 }
5463 }
5464
5465 eif.info = info;
5466 eif.verdefs = verdefs;
5467 eif.failed = FALSE;
5468
5469 /* If we are supposed to export all symbols into the dynamic symbol
5470 table (this is not the normal case), then do so. */
5471 if (info->export_dynamic
5472 || (info->executable && info->dynamic))
5473 {
5474 elf_link_hash_traverse (elf_hash_table (info),
5475 _bfd_elf_export_symbol,
5476 &eif);
5477 if (eif.failed)
5478 return FALSE;
5479 }
5480
5481 /* Make all global versions with definition. */
5482 for (t = verdefs; t != NULL; t = t->next)
5483 for (d = t->globals.list; d != NULL; d = d->next)
5484 if (!d->symver && d->symbol)
5485 {
5486 const char *verstr, *name;
5487 size_t namelen, verlen, newlen;
5488 char *newname, *p;
5489 struct elf_link_hash_entry *newh;
5490
5491 name = d->symbol;
5492 namelen = strlen (name);
5493 verstr = t->name;
5494 verlen = strlen (verstr);
5495 newlen = namelen + verlen + 3;
5496
5497 newname = bfd_malloc (newlen);
5498 if (newname == NULL)
5499 return FALSE;
5500 memcpy (newname, name, namelen);
5501
5502 /* Check the hidden versioned definition. */
5503 p = newname + namelen;
5504 *p++ = ELF_VER_CHR;
5505 memcpy (p, verstr, verlen + 1);
5506 newh = elf_link_hash_lookup (elf_hash_table (info),
5507 newname, FALSE, FALSE,
5508 FALSE);
5509 if (newh == NULL
5510 || (newh->root.type != bfd_link_hash_defined
5511 && newh->root.type != bfd_link_hash_defweak))
5512 {
5513 /* Check the default versioned definition. */
5514 *p++ = ELF_VER_CHR;
5515 memcpy (p, verstr, verlen + 1);
5516 newh = elf_link_hash_lookup (elf_hash_table (info),
5517 newname, FALSE, FALSE,
5518 FALSE);
5519 }
5520 free (newname);
5521
5522 /* Mark this version if there is a definition and it is
5523 not defined in a shared object. */
5524 if (newh != NULL
5525 && !newh->def_dynamic
5526 && (newh->root.type == bfd_link_hash_defined
5527 || newh->root.type == bfd_link_hash_defweak))
5528 d->symver = 1;
5529 }
5530
5531 /* Attach all the symbols to their version information. */
5532 asvinfo.output_bfd = output_bfd;
5533 asvinfo.info = info;
5534 asvinfo.verdefs = verdefs;
5535 asvinfo.failed = FALSE;
5536
5537 elf_link_hash_traverse (elf_hash_table (info),
5538 _bfd_elf_link_assign_sym_version,
5539 &asvinfo);
5540 if (asvinfo.failed)
5541 return FALSE;
5542
5543 if (!info->allow_undefined_version)
5544 {
5545 /* Check if all global versions have a definition. */
5546 all_defined = TRUE;
5547 for (t = verdefs; t != NULL; t = t->next)
5548 for (d = t->globals.list; d != NULL; d = d->next)
5549 if (!d->symver && !d->script)
5550 {
5551 (*_bfd_error_handler)
5552 (_("%s: undefined version: %s"),
5553 d->pattern, t->name);
5554 all_defined = FALSE;
5555 }
5556
5557 if (!all_defined)
5558 {
5559 bfd_set_error (bfd_error_bad_value);
5560 return FALSE;
5561 }
5562 }
5563
5564 /* Find all symbols which were defined in a dynamic object and make
5565 the backend pick a reasonable value for them. */
5566 elf_link_hash_traverse (elf_hash_table (info),
5567 _bfd_elf_adjust_dynamic_symbol,
5568 &eif);
5569 if (eif.failed)
5570 return FALSE;
5571
5572 /* Add some entries to the .dynamic section. We fill in some of the
5573 values later, in bfd_elf_final_link, but we must add the entries
5574 now so that we know the final size of the .dynamic section. */
5575
5576 /* If there are initialization and/or finalization functions to
5577 call then add the corresponding DT_INIT/DT_FINI entries. */
5578 h = (info->init_function
5579 ? elf_link_hash_lookup (elf_hash_table (info),
5580 info->init_function, FALSE,
5581 FALSE, FALSE)
5582 : NULL);
5583 if (h != NULL
5584 && (h->ref_regular
5585 || h->def_regular))
5586 {
5587 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5588 return FALSE;
5589 }
5590 h = (info->fini_function
5591 ? elf_link_hash_lookup (elf_hash_table (info),
5592 info->fini_function, FALSE,
5593 FALSE, FALSE)
5594 : NULL);
5595 if (h != NULL
5596 && (h->ref_regular
5597 || h->def_regular))
5598 {
5599 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5600 return FALSE;
5601 }
5602
5603 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5604 if (s != NULL && s->linker_has_input)
5605 {
5606 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5607 if (! info->executable)
5608 {
5609 bfd *sub;
5610 asection *o;
5611
5612 for (sub = info->input_bfds; sub != NULL;
5613 sub = sub->link_next)
5614 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5615 for (o = sub->sections; o != NULL; o = o->next)
5616 if (elf_section_data (o)->this_hdr.sh_type
5617 == SHT_PREINIT_ARRAY)
5618 {
5619 (*_bfd_error_handler)
5620 (_("%B: .preinit_array section is not allowed in DSO"),
5621 sub);
5622 break;
5623 }
5624
5625 bfd_set_error (bfd_error_nonrepresentable_section);
5626 return FALSE;
5627 }
5628
5629 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5630 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5631 return FALSE;
5632 }
5633 s = bfd_get_section_by_name (output_bfd, ".init_array");
5634 if (s != NULL && s->linker_has_input)
5635 {
5636 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5637 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5638 return FALSE;
5639 }
5640 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5641 if (s != NULL && s->linker_has_input)
5642 {
5643 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5644 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5645 return FALSE;
5646 }
5647
5648 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5649 /* If .dynstr is excluded from the link, we don't want any of
5650 these tags. Strictly, we should be checking each section
5651 individually; This quick check covers for the case where
5652 someone does a /DISCARD/ : { *(*) }. */
5653 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5654 {
5655 bfd_size_type strsize;
5656
5657 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5658 if ((info->emit_hash
5659 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5660 || (info->emit_gnu_hash
5661 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5662 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5663 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5664 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5665 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5666 bed->s->sizeof_sym))
5667 return FALSE;
5668 }
5669 }
5670
5671 /* The backend must work out the sizes of all the other dynamic
5672 sections. */
5673 if (bed->elf_backend_size_dynamic_sections
5674 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5675 return FALSE;
5676
5677 if (elf_hash_table (info)->dynamic_sections_created)
5678 {
5679 unsigned long section_sym_count;
5680 asection *s;
5681
5682 /* Set up the version definition section. */
5683 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5684 BFD_ASSERT (s != NULL);
5685
5686 /* We may have created additional version definitions if we are
5687 just linking a regular application. */
5688 verdefs = asvinfo.verdefs;
5689
5690 /* Skip anonymous version tag. */
5691 if (verdefs != NULL && verdefs->vernum == 0)
5692 verdefs = verdefs->next;
5693
5694 if (verdefs == NULL && !info->create_default_symver)
5695 s->flags |= SEC_EXCLUDE;
5696 else
5697 {
5698 unsigned int cdefs;
5699 bfd_size_type size;
5700 struct bfd_elf_version_tree *t;
5701 bfd_byte *p;
5702 Elf_Internal_Verdef def;
5703 Elf_Internal_Verdaux defaux;
5704 struct bfd_link_hash_entry *bh;
5705 struct elf_link_hash_entry *h;
5706 const char *name;
5707
5708 cdefs = 0;
5709 size = 0;
5710
5711 /* Make space for the base version. */
5712 size += sizeof (Elf_External_Verdef);
5713 size += sizeof (Elf_External_Verdaux);
5714 ++cdefs;
5715
5716 /* Make space for the default version. */
5717 if (info->create_default_symver)
5718 {
5719 size += sizeof (Elf_External_Verdef);
5720 ++cdefs;
5721 }
5722
5723 for (t = verdefs; t != NULL; t = t->next)
5724 {
5725 struct bfd_elf_version_deps *n;
5726
5727 size += sizeof (Elf_External_Verdef);
5728 size += sizeof (Elf_External_Verdaux);
5729 ++cdefs;
5730
5731 for (n = t->deps; n != NULL; n = n->next)
5732 size += sizeof (Elf_External_Verdaux);
5733 }
5734
5735 s->size = size;
5736 s->contents = bfd_alloc (output_bfd, s->size);
5737 if (s->contents == NULL && s->size != 0)
5738 return FALSE;
5739
5740 /* Fill in the version definition section. */
5741
5742 p = s->contents;
5743
5744 def.vd_version = VER_DEF_CURRENT;
5745 def.vd_flags = VER_FLG_BASE;
5746 def.vd_ndx = 1;
5747 def.vd_cnt = 1;
5748 if (info->create_default_symver)
5749 {
5750 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5751 def.vd_next = sizeof (Elf_External_Verdef);
5752 }
5753 else
5754 {
5755 def.vd_aux = sizeof (Elf_External_Verdef);
5756 def.vd_next = (sizeof (Elf_External_Verdef)
5757 + sizeof (Elf_External_Verdaux));
5758 }
5759
5760 if (soname_indx != (bfd_size_type) -1)
5761 {
5762 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5763 soname_indx);
5764 def.vd_hash = bfd_elf_hash (soname);
5765 defaux.vda_name = soname_indx;
5766 name = soname;
5767 }
5768 else
5769 {
5770 bfd_size_type indx;
5771
5772 name = lbasename (output_bfd->filename);
5773 def.vd_hash = bfd_elf_hash (name);
5774 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5775 name, FALSE);
5776 if (indx == (bfd_size_type) -1)
5777 return FALSE;
5778 defaux.vda_name = indx;
5779 }
5780 defaux.vda_next = 0;
5781
5782 _bfd_elf_swap_verdef_out (output_bfd, &def,
5783 (Elf_External_Verdef *) p);
5784 p += sizeof (Elf_External_Verdef);
5785 if (info->create_default_symver)
5786 {
5787 /* Add a symbol representing this version. */
5788 bh = NULL;
5789 if (! (_bfd_generic_link_add_one_symbol
5790 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5791 0, NULL, FALSE,
5792 get_elf_backend_data (dynobj)->collect, &bh)))
5793 return FALSE;
5794 h = (struct elf_link_hash_entry *) bh;
5795 h->non_elf = 0;
5796 h->def_regular = 1;
5797 h->type = STT_OBJECT;
5798 h->verinfo.vertree = NULL;
5799
5800 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5801 return FALSE;
5802
5803 /* Create a duplicate of the base version with the same
5804 aux block, but different flags. */
5805 def.vd_flags = 0;
5806 def.vd_ndx = 2;
5807 def.vd_aux = sizeof (Elf_External_Verdef);
5808 if (verdefs)
5809 def.vd_next = (sizeof (Elf_External_Verdef)
5810 + sizeof (Elf_External_Verdaux));
5811 else
5812 def.vd_next = 0;
5813 _bfd_elf_swap_verdef_out (output_bfd, &def,
5814 (Elf_External_Verdef *) p);
5815 p += sizeof (Elf_External_Verdef);
5816 }
5817 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5818 (Elf_External_Verdaux *) p);
5819 p += sizeof (Elf_External_Verdaux);
5820
5821 for (t = verdefs; t != NULL; t = t->next)
5822 {
5823 unsigned int cdeps;
5824 struct bfd_elf_version_deps *n;
5825
5826 cdeps = 0;
5827 for (n = t->deps; n != NULL; n = n->next)
5828 ++cdeps;
5829
5830 /* Add a symbol representing this version. */
5831 bh = NULL;
5832 if (! (_bfd_generic_link_add_one_symbol
5833 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5834 0, NULL, FALSE,
5835 get_elf_backend_data (dynobj)->collect, &bh)))
5836 return FALSE;
5837 h = (struct elf_link_hash_entry *) bh;
5838 h->non_elf = 0;
5839 h->def_regular = 1;
5840 h->type = STT_OBJECT;
5841 h->verinfo.vertree = t;
5842
5843 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5844 return FALSE;
5845
5846 def.vd_version = VER_DEF_CURRENT;
5847 def.vd_flags = 0;
5848 if (t->globals.list == NULL
5849 && t->locals.list == NULL
5850 && ! t->used)
5851 def.vd_flags |= VER_FLG_WEAK;
5852 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5853 def.vd_cnt = cdeps + 1;
5854 def.vd_hash = bfd_elf_hash (t->name);
5855 def.vd_aux = sizeof (Elf_External_Verdef);
5856 def.vd_next = 0;
5857 if (t->next != NULL)
5858 def.vd_next = (sizeof (Elf_External_Verdef)
5859 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5860
5861 _bfd_elf_swap_verdef_out (output_bfd, &def,
5862 (Elf_External_Verdef *) p);
5863 p += sizeof (Elf_External_Verdef);
5864
5865 defaux.vda_name = h->dynstr_index;
5866 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5867 h->dynstr_index);
5868 defaux.vda_next = 0;
5869 if (t->deps != NULL)
5870 defaux.vda_next = sizeof (Elf_External_Verdaux);
5871 t->name_indx = defaux.vda_name;
5872
5873 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5874 (Elf_External_Verdaux *) p);
5875 p += sizeof (Elf_External_Verdaux);
5876
5877 for (n = t->deps; n != NULL; n = n->next)
5878 {
5879 if (n->version_needed == NULL)
5880 {
5881 /* This can happen if there was an error in the
5882 version script. */
5883 defaux.vda_name = 0;
5884 }
5885 else
5886 {
5887 defaux.vda_name = n->version_needed->name_indx;
5888 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5889 defaux.vda_name);
5890 }
5891 if (n->next == NULL)
5892 defaux.vda_next = 0;
5893 else
5894 defaux.vda_next = sizeof (Elf_External_Verdaux);
5895
5896 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5897 (Elf_External_Verdaux *) p);
5898 p += sizeof (Elf_External_Verdaux);
5899 }
5900 }
5901
5902 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5904 return FALSE;
5905
5906 elf_tdata (output_bfd)->cverdefs = cdefs;
5907 }
5908
5909 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5910 {
5911 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5912 return FALSE;
5913 }
5914 else if (info->flags & DF_BIND_NOW)
5915 {
5916 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5917 return FALSE;
5918 }
5919
5920 if (info->flags_1)
5921 {
5922 if (info->executable)
5923 info->flags_1 &= ~ (DF_1_INITFIRST
5924 | DF_1_NODELETE
5925 | DF_1_NOOPEN);
5926 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5927 return FALSE;
5928 }
5929
5930 /* Work out the size of the version reference section. */
5931
5932 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5933 BFD_ASSERT (s != NULL);
5934 {
5935 struct elf_find_verdep_info sinfo;
5936
5937 sinfo.output_bfd = output_bfd;
5938 sinfo.info = info;
5939 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5940 if (sinfo.vers == 0)
5941 sinfo.vers = 1;
5942 sinfo.failed = FALSE;
5943
5944 elf_link_hash_traverse (elf_hash_table (info),
5945 _bfd_elf_link_find_version_dependencies,
5946 &sinfo);
5947
5948 if (elf_tdata (output_bfd)->verref == NULL)
5949 s->flags |= SEC_EXCLUDE;
5950 else
5951 {
5952 Elf_Internal_Verneed *t;
5953 unsigned int size;
5954 unsigned int crefs;
5955 bfd_byte *p;
5956
5957 /* Build the version definition section. */
5958 size = 0;
5959 crefs = 0;
5960 for (t = elf_tdata (output_bfd)->verref;
5961 t != NULL;
5962 t = t->vn_nextref)
5963 {
5964 Elf_Internal_Vernaux *a;
5965
5966 size += sizeof (Elf_External_Verneed);
5967 ++crefs;
5968 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5969 size += sizeof (Elf_External_Vernaux);
5970 }
5971
5972 s->size = size;
5973 s->contents = bfd_alloc (output_bfd, s->size);
5974 if (s->contents == NULL)
5975 return FALSE;
5976
5977 p = s->contents;
5978 for (t = elf_tdata (output_bfd)->verref;
5979 t != NULL;
5980 t = t->vn_nextref)
5981 {
5982 unsigned int caux;
5983 Elf_Internal_Vernaux *a;
5984 bfd_size_type indx;
5985
5986 caux = 0;
5987 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5988 ++caux;
5989
5990 t->vn_version = VER_NEED_CURRENT;
5991 t->vn_cnt = caux;
5992 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5993 elf_dt_name (t->vn_bfd) != NULL
5994 ? elf_dt_name (t->vn_bfd)
5995 : lbasename (t->vn_bfd->filename),
5996 FALSE);
5997 if (indx == (bfd_size_type) -1)
5998 return FALSE;
5999 t->vn_file = indx;
6000 t->vn_aux = sizeof (Elf_External_Verneed);
6001 if (t->vn_nextref == NULL)
6002 t->vn_next = 0;
6003 else
6004 t->vn_next = (sizeof (Elf_External_Verneed)
6005 + caux * sizeof (Elf_External_Vernaux));
6006
6007 _bfd_elf_swap_verneed_out (output_bfd, t,
6008 (Elf_External_Verneed *) p);
6009 p += sizeof (Elf_External_Verneed);
6010
6011 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6012 {
6013 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6014 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6015 a->vna_nodename, FALSE);
6016 if (indx == (bfd_size_type) -1)
6017 return FALSE;
6018 a->vna_name = indx;
6019 if (a->vna_nextptr == NULL)
6020 a->vna_next = 0;
6021 else
6022 a->vna_next = sizeof (Elf_External_Vernaux);
6023
6024 _bfd_elf_swap_vernaux_out (output_bfd, a,
6025 (Elf_External_Vernaux *) p);
6026 p += sizeof (Elf_External_Vernaux);
6027 }
6028 }
6029
6030 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6031 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6032 return FALSE;
6033
6034 elf_tdata (output_bfd)->cverrefs = crefs;
6035 }
6036 }
6037
6038 if ((elf_tdata (output_bfd)->cverrefs == 0
6039 && elf_tdata (output_bfd)->cverdefs == 0)
6040 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6041 &section_sym_count) == 0)
6042 {
6043 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6044 s->flags |= SEC_EXCLUDE;
6045 }
6046 }
6047 return TRUE;
6048 }
6049
6050 /* Find the first non-excluded output section. We'll use its
6051 section symbol for some emitted relocs. */
6052 void
6053 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6054 {
6055 asection *s;
6056
6057 for (s = output_bfd->sections; s != NULL; s = s->next)
6058 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6059 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6060 {
6061 elf_hash_table (info)->text_index_section = s;
6062 break;
6063 }
6064 }
6065
6066 /* Find two non-excluded output sections, one for code, one for data.
6067 We'll use their section symbols for some emitted relocs. */
6068 void
6069 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6070 {
6071 asection *s;
6072
6073 for (s = output_bfd->sections; s != NULL; s = s->next)
6074 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6075 == (SEC_ALLOC | SEC_READONLY))
6076 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6077 {
6078 elf_hash_table (info)->text_index_section = s;
6079 break;
6080 }
6081
6082 for (s = output_bfd->sections; s != NULL; s = s->next)
6083 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6084 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6085 {
6086 elf_hash_table (info)->data_index_section = s;
6087 break;
6088 }
6089
6090 if (elf_hash_table (info)->text_index_section == NULL)
6091 elf_hash_table (info)->text_index_section
6092 = elf_hash_table (info)->data_index_section;
6093 }
6094
6095 bfd_boolean
6096 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6097 {
6098 const struct elf_backend_data *bed;
6099
6100 if (!is_elf_hash_table (info->hash))
6101 return TRUE;
6102
6103 bed = get_elf_backend_data (output_bfd);
6104 (*bed->elf_backend_init_index_section) (output_bfd, info);
6105
6106 if (elf_hash_table (info)->dynamic_sections_created)
6107 {
6108 bfd *dynobj;
6109 asection *s;
6110 bfd_size_type dynsymcount;
6111 unsigned long section_sym_count;
6112 unsigned int dtagcount;
6113
6114 dynobj = elf_hash_table (info)->dynobj;
6115
6116 /* Assign dynsym indicies. In a shared library we generate a
6117 section symbol for each output section, which come first.
6118 Next come all of the back-end allocated local dynamic syms,
6119 followed by the rest of the global symbols. */
6120
6121 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6122 &section_sym_count);
6123
6124 /* Work out the size of the symbol version section. */
6125 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6126 BFD_ASSERT (s != NULL);
6127 if (dynsymcount != 0
6128 && (s->flags & SEC_EXCLUDE) == 0)
6129 {
6130 s->size = dynsymcount * sizeof (Elf_External_Versym);
6131 s->contents = bfd_zalloc (output_bfd, s->size);
6132 if (s->contents == NULL)
6133 return FALSE;
6134
6135 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6136 return FALSE;
6137 }
6138
6139 /* Set the size of the .dynsym and .hash sections. We counted
6140 the number of dynamic symbols in elf_link_add_object_symbols.
6141 We will build the contents of .dynsym and .hash when we build
6142 the final symbol table, because until then we do not know the
6143 correct value to give the symbols. We built the .dynstr
6144 section as we went along in elf_link_add_object_symbols. */
6145 s = bfd_get_section_by_name (dynobj, ".dynsym");
6146 BFD_ASSERT (s != NULL);
6147 s->size = dynsymcount * bed->s->sizeof_sym;
6148
6149 if (dynsymcount != 0)
6150 {
6151 s->contents = bfd_alloc (output_bfd, s->size);
6152 if (s->contents == NULL)
6153 return FALSE;
6154
6155 /* The first entry in .dynsym is a dummy symbol.
6156 Clear all the section syms, in case we don't output them all. */
6157 ++section_sym_count;
6158 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6159 }
6160
6161 elf_hash_table (info)->bucketcount = 0;
6162
6163 /* Compute the size of the hashing table. As a side effect this
6164 computes the hash values for all the names we export. */
6165 if (info->emit_hash)
6166 {
6167 unsigned long int *hashcodes;
6168 unsigned long int *hashcodesp;
6169 bfd_size_type amt;
6170 unsigned long int nsyms;
6171 size_t bucketcount;
6172 size_t hash_entry_size;
6173
6174 /* Compute the hash values for all exported symbols. At the same
6175 time store the values in an array so that we could use them for
6176 optimizations. */
6177 amt = dynsymcount * sizeof (unsigned long int);
6178 hashcodes = bfd_malloc (amt);
6179 if (hashcodes == NULL)
6180 return FALSE;
6181 hashcodesp = hashcodes;
6182
6183 /* Put all hash values in HASHCODES. */
6184 elf_link_hash_traverse (elf_hash_table (info),
6185 elf_collect_hash_codes, &hashcodesp);
6186
6187 nsyms = hashcodesp - hashcodes;
6188 bucketcount
6189 = compute_bucket_count (info, hashcodes, nsyms, 0);
6190 free (hashcodes);
6191
6192 if (bucketcount == 0)
6193 return FALSE;
6194
6195 elf_hash_table (info)->bucketcount = bucketcount;
6196
6197 s = bfd_get_section_by_name (dynobj, ".hash");
6198 BFD_ASSERT (s != NULL);
6199 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6200 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6201 s->contents = bfd_zalloc (output_bfd, s->size);
6202 if (s->contents == NULL)
6203 return FALSE;
6204
6205 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6206 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6207 s->contents + hash_entry_size);
6208 }
6209
6210 if (info->emit_gnu_hash)
6211 {
6212 size_t i, cnt;
6213 unsigned char *contents;
6214 struct collect_gnu_hash_codes cinfo;
6215 bfd_size_type amt;
6216 size_t bucketcount;
6217
6218 memset (&cinfo, 0, sizeof (cinfo));
6219
6220 /* Compute the hash values for all exported symbols. At the same
6221 time store the values in an array so that we could use them for
6222 optimizations. */
6223 amt = dynsymcount * 2 * sizeof (unsigned long int);
6224 cinfo.hashcodes = bfd_malloc (amt);
6225 if (cinfo.hashcodes == NULL)
6226 return FALSE;
6227
6228 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6229 cinfo.min_dynindx = -1;
6230 cinfo.output_bfd = output_bfd;
6231 cinfo.bed = bed;
6232
6233 /* Put all hash values in HASHCODES. */
6234 elf_link_hash_traverse (elf_hash_table (info),
6235 elf_collect_gnu_hash_codes, &cinfo);
6236
6237 bucketcount
6238 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6239
6240 if (bucketcount == 0)
6241 {
6242 free (cinfo.hashcodes);
6243 return FALSE;
6244 }
6245
6246 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6247 BFD_ASSERT (s != NULL);
6248
6249 if (cinfo.nsyms == 0)
6250 {
6251 /* Empty .gnu.hash section is special. */
6252 BFD_ASSERT (cinfo.min_dynindx == -1);
6253 free (cinfo.hashcodes);
6254 s->size = 5 * 4 + bed->s->arch_size / 8;
6255 contents = bfd_zalloc (output_bfd, s->size);
6256 if (contents == NULL)
6257 return FALSE;
6258 s->contents = contents;
6259 /* 1 empty bucket. */
6260 bfd_put_32 (output_bfd, 1, contents);
6261 /* SYMIDX above the special symbol 0. */
6262 bfd_put_32 (output_bfd, 1, contents + 4);
6263 /* Just one word for bitmask. */
6264 bfd_put_32 (output_bfd, 1, contents + 8);
6265 /* Only hash fn bloom filter. */
6266 bfd_put_32 (output_bfd, 0, contents + 12);
6267 /* No hashes are valid - empty bitmask. */
6268 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6269 /* No hashes in the only bucket. */
6270 bfd_put_32 (output_bfd, 0,
6271 contents + 16 + bed->s->arch_size / 8);
6272 }
6273 else
6274 {
6275 unsigned long int maskwords, maskbitslog2;
6276 BFD_ASSERT (cinfo.min_dynindx != -1);
6277
6278 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6279 if (maskbitslog2 < 3)
6280 maskbitslog2 = 5;
6281 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6282 maskbitslog2 = maskbitslog2 + 3;
6283 else
6284 maskbitslog2 = maskbitslog2 + 2;
6285 if (bed->s->arch_size == 64)
6286 {
6287 if (maskbitslog2 == 5)
6288 maskbitslog2 = 6;
6289 cinfo.shift1 = 6;
6290 }
6291 else
6292 cinfo.shift1 = 5;
6293 cinfo.mask = (1 << cinfo.shift1) - 1;
6294 cinfo.shift2 = maskbitslog2;
6295 cinfo.maskbits = 1 << maskbitslog2;
6296 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6297 amt = bucketcount * sizeof (unsigned long int) * 2;
6298 amt += maskwords * sizeof (bfd_vma);
6299 cinfo.bitmask = bfd_malloc (amt);
6300 if (cinfo.bitmask == NULL)
6301 {
6302 free (cinfo.hashcodes);
6303 return FALSE;
6304 }
6305
6306 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6307 cinfo.indx = cinfo.counts + bucketcount;
6308 cinfo.symindx = dynsymcount - cinfo.nsyms;
6309 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6310
6311 /* Determine how often each hash bucket is used. */
6312 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6313 for (i = 0; i < cinfo.nsyms; ++i)
6314 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6315
6316 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6317 if (cinfo.counts[i] != 0)
6318 {
6319 cinfo.indx[i] = cnt;
6320 cnt += cinfo.counts[i];
6321 }
6322 BFD_ASSERT (cnt == dynsymcount);
6323 cinfo.bucketcount = bucketcount;
6324 cinfo.local_indx = cinfo.min_dynindx;
6325
6326 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6327 s->size += cinfo.maskbits / 8;
6328 contents = bfd_zalloc (output_bfd, s->size);
6329 if (contents == NULL)
6330 {
6331 free (cinfo.bitmask);
6332 free (cinfo.hashcodes);
6333 return FALSE;
6334 }
6335
6336 s->contents = contents;
6337 bfd_put_32 (output_bfd, bucketcount, contents);
6338 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6339 bfd_put_32 (output_bfd, maskwords, contents + 8);
6340 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6341 contents += 16 + cinfo.maskbits / 8;
6342
6343 for (i = 0; i < bucketcount; ++i)
6344 {
6345 if (cinfo.counts[i] == 0)
6346 bfd_put_32 (output_bfd, 0, contents);
6347 else
6348 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6349 contents += 4;
6350 }
6351
6352 cinfo.contents = contents;
6353
6354 /* Renumber dynamic symbols, populate .gnu.hash section. */
6355 elf_link_hash_traverse (elf_hash_table (info),
6356 elf_renumber_gnu_hash_syms, &cinfo);
6357
6358 contents = s->contents + 16;
6359 for (i = 0; i < maskwords; ++i)
6360 {
6361 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6362 contents);
6363 contents += bed->s->arch_size / 8;
6364 }
6365
6366 free (cinfo.bitmask);
6367 free (cinfo.hashcodes);
6368 }
6369 }
6370
6371 s = bfd_get_section_by_name (dynobj, ".dynstr");
6372 BFD_ASSERT (s != NULL);
6373
6374 elf_finalize_dynstr (output_bfd, info);
6375
6376 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6377
6378 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6379 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6380 return FALSE;
6381 }
6382
6383 return TRUE;
6384 }
6385 \f
6386 /* Indicate that we are only retrieving symbol values from this
6387 section. */
6388
6389 void
6390 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6391 {
6392 if (is_elf_hash_table (info->hash))
6393 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6394 _bfd_generic_link_just_syms (sec, info);
6395 }
6396
6397 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6398
6399 static void
6400 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6401 asection *sec)
6402 {
6403 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6404 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6405 }
6406
6407 /* Finish SHF_MERGE section merging. */
6408
6409 bfd_boolean
6410 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6411 {
6412 bfd *ibfd;
6413 asection *sec;
6414
6415 if (!is_elf_hash_table (info->hash))
6416 return FALSE;
6417
6418 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6419 if ((ibfd->flags & DYNAMIC) == 0)
6420 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6421 if ((sec->flags & SEC_MERGE) != 0
6422 && !bfd_is_abs_section (sec->output_section))
6423 {
6424 struct bfd_elf_section_data *secdata;
6425
6426 secdata = elf_section_data (sec);
6427 if (! _bfd_add_merge_section (abfd,
6428 &elf_hash_table (info)->merge_info,
6429 sec, &secdata->sec_info))
6430 return FALSE;
6431 else if (secdata->sec_info)
6432 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6433 }
6434
6435 if (elf_hash_table (info)->merge_info != NULL)
6436 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6437 merge_sections_remove_hook);
6438 return TRUE;
6439 }
6440
6441 /* Create an entry in an ELF linker hash table. */
6442
6443 struct bfd_hash_entry *
6444 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6445 struct bfd_hash_table *table,
6446 const char *string)
6447 {
6448 /* Allocate the structure if it has not already been allocated by a
6449 subclass. */
6450 if (entry == NULL)
6451 {
6452 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6453 if (entry == NULL)
6454 return entry;
6455 }
6456
6457 /* Call the allocation method of the superclass. */
6458 entry = _bfd_link_hash_newfunc (entry, table, string);
6459 if (entry != NULL)
6460 {
6461 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6462 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6463
6464 /* Set local fields. */
6465 ret->indx = -1;
6466 ret->dynindx = -1;
6467 ret->got = htab->init_got_refcount;
6468 ret->plt = htab->init_plt_refcount;
6469 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6470 - offsetof (struct elf_link_hash_entry, size)));
6471 /* Assume that we have been called by a non-ELF symbol reader.
6472 This flag is then reset by the code which reads an ELF input
6473 file. This ensures that a symbol created by a non-ELF symbol
6474 reader will have the flag set correctly. */
6475 ret->non_elf = 1;
6476 }
6477
6478 return entry;
6479 }
6480
6481 /* Copy data from an indirect symbol to its direct symbol, hiding the
6482 old indirect symbol. Also used for copying flags to a weakdef. */
6483
6484 void
6485 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6486 struct elf_link_hash_entry *dir,
6487 struct elf_link_hash_entry *ind)
6488 {
6489 struct elf_link_hash_table *htab;
6490
6491 /* Copy down any references that we may have already seen to the
6492 symbol which just became indirect. */
6493
6494 dir->ref_dynamic |= ind->ref_dynamic;
6495 dir->ref_regular |= ind->ref_regular;
6496 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6497 dir->non_got_ref |= ind->non_got_ref;
6498 dir->needs_plt |= ind->needs_plt;
6499 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6500
6501 if (ind->root.type != bfd_link_hash_indirect)
6502 return;
6503
6504 /* Copy over the global and procedure linkage table refcount entries.
6505 These may have been already set up by a check_relocs routine. */
6506 htab = elf_hash_table (info);
6507 if (ind->got.refcount > htab->init_got_refcount.refcount)
6508 {
6509 if (dir->got.refcount < 0)
6510 dir->got.refcount = 0;
6511 dir->got.refcount += ind->got.refcount;
6512 ind->got.refcount = htab->init_got_refcount.refcount;
6513 }
6514
6515 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6516 {
6517 if (dir->plt.refcount < 0)
6518 dir->plt.refcount = 0;
6519 dir->plt.refcount += ind->plt.refcount;
6520 ind->plt.refcount = htab->init_plt_refcount.refcount;
6521 }
6522
6523 if (ind->dynindx != -1)
6524 {
6525 if (dir->dynindx != -1)
6526 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6527 dir->dynindx = ind->dynindx;
6528 dir->dynstr_index = ind->dynstr_index;
6529 ind->dynindx = -1;
6530 ind->dynstr_index = 0;
6531 }
6532 }
6533
6534 void
6535 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6536 struct elf_link_hash_entry *h,
6537 bfd_boolean force_local)
6538 {
6539 h->plt = elf_hash_table (info)->init_plt_offset;
6540 h->needs_plt = 0;
6541 if (force_local)
6542 {
6543 h->forced_local = 1;
6544 if (h->dynindx != -1)
6545 {
6546 h->dynindx = -1;
6547 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6548 h->dynstr_index);
6549 }
6550 }
6551 }
6552
6553 /* Initialize an ELF linker hash table. */
6554
6555 bfd_boolean
6556 _bfd_elf_link_hash_table_init
6557 (struct elf_link_hash_table *table,
6558 bfd *abfd,
6559 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6560 struct bfd_hash_table *,
6561 const char *),
6562 unsigned int entsize)
6563 {
6564 bfd_boolean ret;
6565 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6566
6567 memset (table, 0, sizeof * table);
6568 table->init_got_refcount.refcount = can_refcount - 1;
6569 table->init_plt_refcount.refcount = can_refcount - 1;
6570 table->init_got_offset.offset = -(bfd_vma) 1;
6571 table->init_plt_offset.offset = -(bfd_vma) 1;
6572 /* The first dynamic symbol is a dummy. */
6573 table->dynsymcount = 1;
6574
6575 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6576 table->root.type = bfd_link_elf_hash_table;
6577
6578 return ret;
6579 }
6580
6581 /* Create an ELF linker hash table. */
6582
6583 struct bfd_link_hash_table *
6584 _bfd_elf_link_hash_table_create (bfd *abfd)
6585 {
6586 struct elf_link_hash_table *ret;
6587 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6588
6589 ret = bfd_malloc (amt);
6590 if (ret == NULL)
6591 return NULL;
6592
6593 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6594 sizeof (struct elf_link_hash_entry)))
6595 {
6596 free (ret);
6597 return NULL;
6598 }
6599
6600 return &ret->root;
6601 }
6602
6603 /* This is a hook for the ELF emulation code in the generic linker to
6604 tell the backend linker what file name to use for the DT_NEEDED
6605 entry for a dynamic object. */
6606
6607 void
6608 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6609 {
6610 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6611 && bfd_get_format (abfd) == bfd_object)
6612 elf_dt_name (abfd) = name;
6613 }
6614
6615 int
6616 bfd_elf_get_dyn_lib_class (bfd *abfd)
6617 {
6618 int lib_class;
6619 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6620 && bfd_get_format (abfd) == bfd_object)
6621 lib_class = elf_dyn_lib_class (abfd);
6622 else
6623 lib_class = 0;
6624 return lib_class;
6625 }
6626
6627 void
6628 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6629 {
6630 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6631 && bfd_get_format (abfd) == bfd_object)
6632 elf_dyn_lib_class (abfd) = lib_class;
6633 }
6634
6635 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6636 the linker ELF emulation code. */
6637
6638 struct bfd_link_needed_list *
6639 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6640 struct bfd_link_info *info)
6641 {
6642 if (! is_elf_hash_table (info->hash))
6643 return NULL;
6644 return elf_hash_table (info)->needed;
6645 }
6646
6647 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6648 hook for the linker ELF emulation code. */
6649
6650 struct bfd_link_needed_list *
6651 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6652 struct bfd_link_info *info)
6653 {
6654 if (! is_elf_hash_table (info->hash))
6655 return NULL;
6656 return elf_hash_table (info)->runpath;
6657 }
6658
6659 /* Get the name actually used for a dynamic object for a link. This
6660 is the SONAME entry if there is one. Otherwise, it is the string
6661 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6662
6663 const char *
6664 bfd_elf_get_dt_soname (bfd *abfd)
6665 {
6666 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6667 && bfd_get_format (abfd) == bfd_object)
6668 return elf_dt_name (abfd);
6669 return NULL;
6670 }
6671
6672 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6673 the ELF linker emulation code. */
6674
6675 bfd_boolean
6676 bfd_elf_get_bfd_needed_list (bfd *abfd,
6677 struct bfd_link_needed_list **pneeded)
6678 {
6679 asection *s;
6680 bfd_byte *dynbuf = NULL;
6681 int elfsec;
6682 unsigned long shlink;
6683 bfd_byte *extdyn, *extdynend;
6684 size_t extdynsize;
6685 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6686
6687 *pneeded = NULL;
6688
6689 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6690 || bfd_get_format (abfd) != bfd_object)
6691 return TRUE;
6692
6693 s = bfd_get_section_by_name (abfd, ".dynamic");
6694 if (s == NULL || s->size == 0)
6695 return TRUE;
6696
6697 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6698 goto error_return;
6699
6700 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6701 if (elfsec == -1)
6702 goto error_return;
6703
6704 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6705
6706 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6707 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6708
6709 extdyn = dynbuf;
6710 extdynend = extdyn + s->size;
6711 for (; extdyn < extdynend; extdyn += extdynsize)
6712 {
6713 Elf_Internal_Dyn dyn;
6714
6715 (*swap_dyn_in) (abfd, extdyn, &dyn);
6716
6717 if (dyn.d_tag == DT_NULL)
6718 break;
6719
6720 if (dyn.d_tag == DT_NEEDED)
6721 {
6722 const char *string;
6723 struct bfd_link_needed_list *l;
6724 unsigned int tagv = dyn.d_un.d_val;
6725 bfd_size_type amt;
6726
6727 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6728 if (string == NULL)
6729 goto error_return;
6730
6731 amt = sizeof *l;
6732 l = bfd_alloc (abfd, amt);
6733 if (l == NULL)
6734 goto error_return;
6735
6736 l->by = abfd;
6737 l->name = string;
6738 l->next = *pneeded;
6739 *pneeded = l;
6740 }
6741 }
6742
6743 free (dynbuf);
6744
6745 return TRUE;
6746
6747 error_return:
6748 if (dynbuf != NULL)
6749 free (dynbuf);
6750 return FALSE;
6751 }
6752
6753 struct elf_symbuf_symbol
6754 {
6755 unsigned long st_name; /* Symbol name, index in string tbl */
6756 unsigned char st_info; /* Type and binding attributes */
6757 unsigned char st_other; /* Visibilty, and target specific */
6758 };
6759
6760 struct elf_symbuf_head
6761 {
6762 struct elf_symbuf_symbol *ssym;
6763 bfd_size_type count;
6764 unsigned int st_shndx;
6765 };
6766
6767 struct elf_symbol
6768 {
6769 union
6770 {
6771 Elf_Internal_Sym *isym;
6772 struct elf_symbuf_symbol *ssym;
6773 } u;
6774 const char *name;
6775 };
6776
6777 /* Sort references to symbols by ascending section number. */
6778
6779 static int
6780 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6781 {
6782 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6783 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6784
6785 return s1->st_shndx - s2->st_shndx;
6786 }
6787
6788 static int
6789 elf_sym_name_compare (const void *arg1, const void *arg2)
6790 {
6791 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6792 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6793 return strcmp (s1->name, s2->name);
6794 }
6795
6796 static struct elf_symbuf_head *
6797 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6798 {
6799 Elf_Internal_Sym **ind, **indbufend, **indbuf
6800 = bfd_malloc2 (symcount, sizeof (*indbuf));
6801 struct elf_symbuf_symbol *ssym;
6802 struct elf_symbuf_head *ssymbuf, *ssymhead;
6803 bfd_size_type i, shndx_count;
6804
6805 if (indbuf == NULL)
6806 return NULL;
6807
6808 for (ind = indbuf, i = 0; i < symcount; i++)
6809 if (isymbuf[i].st_shndx != SHN_UNDEF)
6810 *ind++ = &isymbuf[i];
6811 indbufend = ind;
6812
6813 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6814 elf_sort_elf_symbol);
6815
6816 shndx_count = 0;
6817 if (indbufend > indbuf)
6818 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6819 if (ind[0]->st_shndx != ind[1]->st_shndx)
6820 shndx_count++;
6821
6822 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
6823 + (indbufend - indbuf) * sizeof (*ssymbuf));
6824 if (ssymbuf == NULL)
6825 {
6826 free (indbuf);
6827 return NULL;
6828 }
6829
6830 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
6831 ssymbuf->ssym = NULL;
6832 ssymbuf->count = shndx_count;
6833 ssymbuf->st_shndx = 0;
6834 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6835 {
6836 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6837 {
6838 ssymhead++;
6839 ssymhead->ssym = ssym;
6840 ssymhead->count = 0;
6841 ssymhead->st_shndx = (*ind)->st_shndx;
6842 }
6843 ssym->st_name = (*ind)->st_name;
6844 ssym->st_info = (*ind)->st_info;
6845 ssym->st_other = (*ind)->st_other;
6846 ssymhead->count++;
6847 }
6848 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
6849
6850 free (indbuf);
6851 return ssymbuf;
6852 }
6853
6854 /* Check if 2 sections define the same set of local and global
6855 symbols. */
6856
6857 bfd_boolean
6858 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6859 struct bfd_link_info *info)
6860 {
6861 bfd *bfd1, *bfd2;
6862 const struct elf_backend_data *bed1, *bed2;
6863 Elf_Internal_Shdr *hdr1, *hdr2;
6864 bfd_size_type symcount1, symcount2;
6865 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6866 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6867 Elf_Internal_Sym *isym, *isymend;
6868 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6869 bfd_size_type count1, count2, i;
6870 int shndx1, shndx2;
6871 bfd_boolean result;
6872
6873 bfd1 = sec1->owner;
6874 bfd2 = sec2->owner;
6875
6876 /* If both are .gnu.linkonce sections, they have to have the same
6877 section name. */
6878 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
6879 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
6880 return strcmp (sec1->name + sizeof ".gnu.linkonce",
6881 sec2->name + sizeof ".gnu.linkonce") == 0;
6882
6883 /* Both sections have to be in ELF. */
6884 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6885 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6886 return FALSE;
6887
6888 if (elf_section_type (sec1) != elf_section_type (sec2))
6889 return FALSE;
6890
6891 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
6892 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
6893 {
6894 /* If both are members of section groups, they have to have the
6895 same group name. */
6896 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
6897 return FALSE;
6898 }
6899
6900 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6901 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6902 if (shndx1 == -1 || shndx2 == -1)
6903 return FALSE;
6904
6905 bed1 = get_elf_backend_data (bfd1);
6906 bed2 = get_elf_backend_data (bfd2);
6907 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6908 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6909 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6910 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6911
6912 if (symcount1 == 0 || symcount2 == 0)
6913 return FALSE;
6914
6915 result = FALSE;
6916 isymbuf1 = NULL;
6917 isymbuf2 = NULL;
6918 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6919 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6920
6921 if (ssymbuf1 == NULL)
6922 {
6923 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6924 NULL, NULL, NULL);
6925 if (isymbuf1 == NULL)
6926 goto done;
6927
6928 if (!info->reduce_memory_overheads)
6929 elf_tdata (bfd1)->symbuf = ssymbuf1
6930 = elf_create_symbuf (symcount1, isymbuf1);
6931 }
6932
6933 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6934 {
6935 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6936 NULL, NULL, NULL);
6937 if (isymbuf2 == NULL)
6938 goto done;
6939
6940 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6941 elf_tdata (bfd2)->symbuf = ssymbuf2
6942 = elf_create_symbuf (symcount2, isymbuf2);
6943 }
6944
6945 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
6946 {
6947 /* Optimized faster version. */
6948 bfd_size_type lo, hi, mid;
6949 struct elf_symbol *symp;
6950 struct elf_symbuf_symbol *ssym, *ssymend;
6951
6952 lo = 0;
6953 hi = ssymbuf1->count;
6954 ssymbuf1++;
6955 count1 = 0;
6956 while (lo < hi)
6957 {
6958 mid = (lo + hi) / 2;
6959 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
6960 hi = mid;
6961 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
6962 lo = mid + 1;
6963 else
6964 {
6965 count1 = ssymbuf1[mid].count;
6966 ssymbuf1 += mid;
6967 break;
6968 }
6969 }
6970
6971 lo = 0;
6972 hi = ssymbuf2->count;
6973 ssymbuf2++;
6974 count2 = 0;
6975 while (lo < hi)
6976 {
6977 mid = (lo + hi) / 2;
6978 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
6979 hi = mid;
6980 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
6981 lo = mid + 1;
6982 else
6983 {
6984 count2 = ssymbuf2[mid].count;
6985 ssymbuf2 += mid;
6986 break;
6987 }
6988 }
6989
6990 if (count1 == 0 || count2 == 0 || count1 != count2)
6991 goto done;
6992
6993 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
6994 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
6995 if (symtable1 == NULL || symtable2 == NULL)
6996 goto done;
6997
6998 symp = symtable1;
6999 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7000 ssym < ssymend; ssym++, symp++)
7001 {
7002 symp->u.ssym = ssym;
7003 symp->name = bfd_elf_string_from_elf_section (bfd1,
7004 hdr1->sh_link,
7005 ssym->st_name);
7006 }
7007
7008 symp = symtable2;
7009 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7010 ssym < ssymend; ssym++, symp++)
7011 {
7012 symp->u.ssym = ssym;
7013 symp->name = bfd_elf_string_from_elf_section (bfd2,
7014 hdr2->sh_link,
7015 ssym->st_name);
7016 }
7017
7018 /* Sort symbol by name. */
7019 qsort (symtable1, count1, sizeof (struct elf_symbol),
7020 elf_sym_name_compare);
7021 qsort (symtable2, count1, sizeof (struct elf_symbol),
7022 elf_sym_name_compare);
7023
7024 for (i = 0; i < count1; i++)
7025 /* Two symbols must have the same binding, type and name. */
7026 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7027 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7028 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7029 goto done;
7030
7031 result = TRUE;
7032 goto done;
7033 }
7034
7035 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7036 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7037 if (symtable1 == NULL || symtable2 == NULL)
7038 goto done;
7039
7040 /* Count definitions in the section. */
7041 count1 = 0;
7042 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7043 if (isym->st_shndx == (unsigned int) shndx1)
7044 symtable1[count1++].u.isym = isym;
7045
7046 count2 = 0;
7047 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7048 if (isym->st_shndx == (unsigned int) shndx2)
7049 symtable2[count2++].u.isym = isym;
7050
7051 if (count1 == 0 || count2 == 0 || count1 != count2)
7052 goto done;
7053
7054 for (i = 0; i < count1; i++)
7055 symtable1[i].name
7056 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7057 symtable1[i].u.isym->st_name);
7058
7059 for (i = 0; i < count2; i++)
7060 symtable2[i].name
7061 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7062 symtable2[i].u.isym->st_name);
7063
7064 /* Sort symbol by name. */
7065 qsort (symtable1, count1, sizeof (struct elf_symbol),
7066 elf_sym_name_compare);
7067 qsort (symtable2, count1, sizeof (struct elf_symbol),
7068 elf_sym_name_compare);
7069
7070 for (i = 0; i < count1; i++)
7071 /* Two symbols must have the same binding, type and name. */
7072 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7073 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7074 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7075 goto done;
7076
7077 result = TRUE;
7078
7079 done:
7080 if (symtable1)
7081 free (symtable1);
7082 if (symtable2)
7083 free (symtable2);
7084 if (isymbuf1)
7085 free (isymbuf1);
7086 if (isymbuf2)
7087 free (isymbuf2);
7088
7089 return result;
7090 }
7091
7092 /* Return TRUE if 2 section types are compatible. */
7093
7094 bfd_boolean
7095 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7096 bfd *bbfd, const asection *bsec)
7097 {
7098 if (asec == NULL
7099 || bsec == NULL
7100 || abfd->xvec->flavour != bfd_target_elf_flavour
7101 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7102 return TRUE;
7103
7104 return elf_section_type (asec) == elf_section_type (bsec);
7105 }
7106 \f
7107 /* Final phase of ELF linker. */
7108
7109 /* A structure we use to avoid passing large numbers of arguments. */
7110
7111 struct elf_final_link_info
7112 {
7113 /* General link information. */
7114 struct bfd_link_info *info;
7115 /* Output BFD. */
7116 bfd *output_bfd;
7117 /* Symbol string table. */
7118 struct bfd_strtab_hash *symstrtab;
7119 /* .dynsym section. */
7120 asection *dynsym_sec;
7121 /* .hash section. */
7122 asection *hash_sec;
7123 /* symbol version section (.gnu.version). */
7124 asection *symver_sec;
7125 /* Buffer large enough to hold contents of any section. */
7126 bfd_byte *contents;
7127 /* Buffer large enough to hold external relocs of any section. */
7128 void *external_relocs;
7129 /* Buffer large enough to hold internal relocs of any section. */
7130 Elf_Internal_Rela *internal_relocs;
7131 /* Buffer large enough to hold external local symbols of any input
7132 BFD. */
7133 bfd_byte *external_syms;
7134 /* And a buffer for symbol section indices. */
7135 Elf_External_Sym_Shndx *locsym_shndx;
7136 /* Buffer large enough to hold internal local symbols of any input
7137 BFD. */
7138 Elf_Internal_Sym *internal_syms;
7139 /* Array large enough to hold a symbol index for each local symbol
7140 of any input BFD. */
7141 long *indices;
7142 /* Array large enough to hold a section pointer for each local
7143 symbol of any input BFD. */
7144 asection **sections;
7145 /* Buffer to hold swapped out symbols. */
7146 bfd_byte *symbuf;
7147 /* And one for symbol section indices. */
7148 Elf_External_Sym_Shndx *symshndxbuf;
7149 /* Number of swapped out symbols in buffer. */
7150 size_t symbuf_count;
7151 /* Number of symbols which fit in symbuf. */
7152 size_t symbuf_size;
7153 /* And same for symshndxbuf. */
7154 size_t shndxbuf_size;
7155 };
7156
7157 /* This struct is used to pass information to elf_link_output_extsym. */
7158
7159 struct elf_outext_info
7160 {
7161 bfd_boolean failed;
7162 bfd_boolean localsyms;
7163 struct elf_final_link_info *finfo;
7164 };
7165
7166
7167 /* Support for evaluating a complex relocation.
7168
7169 Complex relocations are generalized, self-describing relocations. The
7170 implementation of them consists of two parts: complex symbols, and the
7171 relocations themselves.
7172
7173 The relocations are use a reserved elf-wide relocation type code (R_RELC
7174 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7175 information (start bit, end bit, word width, etc) into the addend. This
7176 information is extracted from CGEN-generated operand tables within gas.
7177
7178 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7179 internal) representing prefix-notation expressions, including but not
7180 limited to those sorts of expressions normally encoded as addends in the
7181 addend field. The symbol mangling format is:
7182
7183 <node> := <literal>
7184 | <unary-operator> ':' <node>
7185 | <binary-operator> ':' <node> ':' <node>
7186 ;
7187
7188 <literal> := 's' <digits=N> ':' <N character symbol name>
7189 | 'S' <digits=N> ':' <N character section name>
7190 | '#' <hexdigits>
7191 ;
7192
7193 <binary-operator> := as in C
7194 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7195
7196 static void
7197 set_symbol_value (bfd * bfd_with_globals,
7198 struct elf_final_link_info * finfo,
7199 int symidx,
7200 bfd_vma val)
7201 {
7202 bfd_boolean is_local;
7203 Elf_Internal_Sym * sym;
7204 struct elf_link_hash_entry ** sym_hashes;
7205 struct elf_link_hash_entry * h;
7206
7207 sym_hashes = elf_sym_hashes (bfd_with_globals);
7208 sym = finfo->internal_syms + symidx;
7209 is_local = ELF_ST_BIND(sym->st_info) == STB_LOCAL;
7210
7211 if (is_local)
7212 {
7213 /* It is a local symbol: move it to the
7214 "absolute" section and give it a value. */
7215 sym->st_shndx = SHN_ABS;
7216 sym->st_value = val;
7217 }
7218 else
7219 {
7220 /* It is a global symbol: set its link type
7221 to "defined" and give it a value. */
7222 h = sym_hashes [symidx];
7223 while (h->root.type == bfd_link_hash_indirect
7224 || h->root.type == bfd_link_hash_warning)
7225 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7226 h->root.type = bfd_link_hash_defined;
7227 h->root.u.def.value = val;
7228 h->root.u.def.section = bfd_abs_section_ptr;
7229 }
7230 }
7231
7232 static bfd_boolean
7233 resolve_symbol (const char * name,
7234 bfd * input_bfd,
7235 struct elf_final_link_info * finfo,
7236 bfd_vma * result,
7237 size_t locsymcount)
7238 {
7239 Elf_Internal_Sym * sym;
7240 struct bfd_link_hash_entry * global_entry;
7241 const char * candidate = NULL;
7242 Elf_Internal_Shdr * symtab_hdr;
7243 asection * sec = NULL;
7244 size_t i;
7245
7246 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7247
7248 for (i = 0; i < locsymcount; ++ i)
7249 {
7250 sym = finfo->internal_syms + i;
7251 sec = finfo->sections [i];
7252
7253 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7254 continue;
7255
7256 candidate = bfd_elf_string_from_elf_section (input_bfd,
7257 symtab_hdr->sh_link,
7258 sym->st_name);
7259 #ifdef DEBUG
7260 printf ("Comparing string: '%s' vs. '%s' = 0x%x\n",
7261 name, candidate, (unsigned int)sym->st_value);
7262 #endif
7263 if (candidate && strcmp (candidate, name) == 0)
7264 {
7265 * result = sym->st_value;
7266
7267 if (sym->st_shndx > SHN_UNDEF &&
7268 sym->st_shndx < SHN_LORESERVE)
7269 {
7270 #ifdef DEBUG
7271 printf ("adjusting for sec '%s' @ 0x%x + 0x%x\n",
7272 sec->output_section->name,
7273 (unsigned int)sec->output_section->vma,
7274 (unsigned int)sec->output_offset);
7275 #endif
7276 * result += sec->output_offset + sec->output_section->vma;
7277 }
7278 #ifdef DEBUG
7279 printf ("Found symbol with effective value %8.8x\n", (unsigned int)* result);
7280 #endif
7281 return TRUE;
7282 }
7283 }
7284
7285 /* Hmm, haven't found it yet. perhaps it is a global. */
7286 global_entry = bfd_link_hash_lookup (finfo->info->hash, name, FALSE, FALSE, TRUE);
7287 if (!global_entry)
7288 return FALSE;
7289
7290 if (global_entry->type == bfd_link_hash_defined
7291 || global_entry->type == bfd_link_hash_defweak)
7292 {
7293 * result = global_entry->u.def.value
7294 + global_entry->u.def.section->output_section->vma
7295 + global_entry->u.def.section->output_offset;
7296 #ifdef DEBUG
7297 printf ("Found GLOBAL symbol '%s' with value %8.8x\n",
7298 global_entry->root.string, (unsigned int)*result);
7299 #endif
7300 return TRUE;
7301 }
7302
7303 if (global_entry->type == bfd_link_hash_common)
7304 {
7305 *result = global_entry->u.def.value +
7306 bfd_com_section_ptr->output_section->vma +
7307 bfd_com_section_ptr->output_offset;
7308 #ifdef DEBUG
7309 printf ("Found COMMON symbol '%s' with value %8.8x\n",
7310 global_entry->root.string, (unsigned int)*result);
7311 #endif
7312 return TRUE;
7313 }
7314
7315 return FALSE;
7316 }
7317
7318 static bfd_boolean
7319 resolve_section (const char * name,
7320 asection * sections,
7321 bfd_vma * result)
7322 {
7323 asection * curr;
7324 unsigned int len;
7325
7326 for (curr = sections; curr; curr = curr->next)
7327 if (strcmp (curr->name, name) == 0)
7328 {
7329 *result = curr->vma;
7330 return TRUE;
7331 }
7332
7333 /* Hmm. still haven't found it. try pseudo-section names. */
7334 for (curr = sections; curr; curr = curr->next)
7335 {
7336 len = strlen (curr->name);
7337 if (len > strlen (name))
7338 continue;
7339
7340 if (strncmp (curr->name, name, len) == 0)
7341 {
7342 if (strncmp (".end", name + len, 4) == 0)
7343 {
7344 *result = curr->vma + curr->size;
7345 return TRUE;
7346 }
7347
7348 /* Insert more pseudo-section names here, if you like. */
7349 }
7350 }
7351
7352 return FALSE;
7353 }
7354
7355 static void
7356 undefined_reference (const char * reftype,
7357 const char * name)
7358 {
7359 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), reftype, name);
7360 }
7361
7362 static bfd_boolean
7363 eval_symbol (bfd_vma * result,
7364 char * sym,
7365 char ** advanced,
7366 bfd * input_bfd,
7367 struct elf_final_link_info * finfo,
7368 bfd_vma addr,
7369 bfd_vma section_offset,
7370 size_t locsymcount,
7371 int signed_p)
7372 {
7373 int len;
7374 int symlen;
7375 bfd_vma a;
7376 bfd_vma b;
7377 const int bufsz = 4096;
7378 char symbuf [bufsz];
7379 const char * symend;
7380 bfd_boolean symbol_is_section = FALSE;
7381
7382 len = strlen (sym);
7383 symend = sym + len;
7384
7385 if (len < 1 || len > bufsz)
7386 {
7387 bfd_set_error (bfd_error_invalid_operation);
7388 return FALSE;
7389 }
7390
7391 switch (* sym)
7392 {
7393 case '.':
7394 * result = addr + section_offset;
7395 * advanced = sym + 1;
7396 return TRUE;
7397
7398 case '#':
7399 ++ sym;
7400 * result = strtoul (sym, advanced, 16);
7401 return TRUE;
7402
7403 case 'S':
7404 symbol_is_section = TRUE;
7405 case 's':
7406 ++ sym;
7407 symlen = strtol (sym, &sym, 10);
7408 ++ sym; /* Skip the trailing ':'. */
7409
7410 if ((symend < sym) || ((symlen + 1) > bufsz))
7411 {
7412 bfd_set_error (bfd_error_invalid_operation);
7413 return FALSE;
7414 }
7415
7416 memcpy (symbuf, sym, symlen);
7417 symbuf [symlen] = '\0';
7418 * advanced = sym + symlen;
7419
7420 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7421 the symbol as a section, or vice-versa. so we're pretty liberal in our
7422 interpretation here; section means "try section first", not "must be a
7423 section", and likewise with symbol. */
7424
7425 if (symbol_is_section)
7426 {
7427 if ((resolve_section (symbuf, finfo->output_bfd->sections, result) != TRUE)
7428 && (resolve_symbol (symbuf, input_bfd, finfo, result, locsymcount) != TRUE))
7429 {
7430 undefined_reference ("section", symbuf);
7431 return FALSE;
7432 }
7433 }
7434 else
7435 {
7436 if ((resolve_symbol (symbuf, input_bfd, finfo, result, locsymcount) != TRUE)
7437 && (resolve_section (symbuf, finfo->output_bfd->sections,
7438 result) != TRUE))
7439 {
7440 undefined_reference ("symbol", symbuf);
7441 return FALSE;
7442 }
7443 }
7444
7445 return TRUE;
7446
7447 /* All that remains are operators. */
7448
7449 #define UNARY_OP(op) \
7450 if (strncmp (sym, #op, strlen (#op)) == 0) \
7451 { \
7452 sym += strlen (#op); \
7453 if (* sym == ':') \
7454 ++ sym; \
7455 if (eval_symbol (& a, sym, & sym, input_bfd, finfo, addr, \
7456 section_offset, locsymcount, signed_p) \
7457 != TRUE) \
7458 return FALSE; \
7459 if (signed_p) \
7460 * result = op ((signed)a); \
7461 else \
7462 * result = op a; \
7463 * advanced = sym; \
7464 return TRUE; \
7465 }
7466
7467 #define BINARY_OP(op) \
7468 if (strncmp (sym, #op, strlen (#op)) == 0) \
7469 { \
7470 sym += strlen (#op); \
7471 if (* sym == ':') \
7472 ++ sym; \
7473 if (eval_symbol (& a, sym, & sym, input_bfd, finfo, addr, \
7474 section_offset, locsymcount, signed_p) \
7475 != TRUE) \
7476 return FALSE; \
7477 ++ sym; \
7478 if (eval_symbol (& b, sym, & sym, input_bfd, finfo, addr, \
7479 section_offset, locsymcount, signed_p) \
7480 != TRUE) \
7481 return FALSE; \
7482 if (signed_p) \
7483 * result = ((signed) a) op ((signed) b); \
7484 else \
7485 * result = a op b; \
7486 * advanced = sym; \
7487 return TRUE; \
7488 }
7489
7490 default:
7491 UNARY_OP (0-);
7492 BINARY_OP (<<);
7493 BINARY_OP (>>);
7494 BINARY_OP (==);
7495 BINARY_OP (!=);
7496 BINARY_OP (<=);
7497 BINARY_OP (>=);
7498 BINARY_OP (&&);
7499 BINARY_OP (||);
7500 UNARY_OP (~);
7501 UNARY_OP (!);
7502 BINARY_OP (*);
7503 BINARY_OP (/);
7504 BINARY_OP (%);
7505 BINARY_OP (^);
7506 BINARY_OP (|);
7507 BINARY_OP (&);
7508 BINARY_OP (+);
7509 BINARY_OP (-);
7510 BINARY_OP (<);
7511 BINARY_OP (>);
7512 #undef UNARY_OP
7513 #undef BINARY_OP
7514 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7515 bfd_set_error (bfd_error_invalid_operation);
7516 return FALSE;
7517 }
7518 }
7519
7520 /* Entry point to evaluator, called from elf_link_input_bfd. */
7521
7522 static bfd_boolean
7523 evaluate_complex_relocation_symbols (bfd * input_bfd,
7524 struct elf_final_link_info * finfo,
7525 size_t locsymcount)
7526 {
7527 const struct elf_backend_data * bed;
7528 Elf_Internal_Shdr * symtab_hdr;
7529 struct elf_link_hash_entry ** sym_hashes;
7530 asection * reloc_sec;
7531 bfd_boolean result = TRUE;
7532
7533 /* For each section, we're going to check and see if it has any
7534 complex relocations, and we're going to evaluate any of them
7535 we can. */
7536
7537 if (finfo->info->relocatable)
7538 return TRUE;
7539
7540 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7541 sym_hashes = elf_sym_hashes (input_bfd);
7542 bed = get_elf_backend_data (input_bfd);
7543
7544 for (reloc_sec = input_bfd->sections; reloc_sec; reloc_sec = reloc_sec->next)
7545 {
7546 Elf_Internal_Rela * internal_relocs;
7547 unsigned long i;
7548
7549 /* This section was omitted from the link. */
7550 if (! reloc_sec->linker_mark)
7551 continue;
7552
7553 /* Only process sections containing relocs. */
7554 if ((reloc_sec->flags & SEC_RELOC) == 0)
7555 continue;
7556
7557 if (reloc_sec->reloc_count == 0)
7558 continue;
7559
7560 /* Read in the relocs for this section. */
7561 internal_relocs
7562 = _bfd_elf_link_read_relocs (input_bfd, reloc_sec, NULL,
7563 (Elf_Internal_Rela *) NULL,
7564 FALSE);
7565 if (internal_relocs == NULL)
7566 continue;
7567
7568 for (i = reloc_sec->reloc_count; i--;)
7569 {
7570 Elf_Internal_Rela * rel;
7571 char * sym_name;
7572 bfd_vma index;
7573 Elf_Internal_Sym * sym;
7574 bfd_vma result;
7575 bfd_vma section_offset;
7576 bfd_vma addr;
7577 int signed_p = 0;
7578
7579 rel = internal_relocs + i;
7580 section_offset = reloc_sec->output_section->vma
7581 + reloc_sec->output_offset;
7582 addr = rel->r_offset;
7583
7584 index = ELF32_R_SYM (rel->r_info);
7585 if (bed->s->arch_size == 64)
7586 index >>= 24;
7587
7588 if (index == STN_UNDEF)
7589 continue;
7590
7591 if (index < locsymcount)
7592 {
7593 /* The symbol is local. */
7594 sym = finfo->internal_syms + index;
7595
7596 /* We're only processing STT_RELC or STT_SRELC type symbols. */
7597 if ((ELF_ST_TYPE (sym->st_info) != STT_RELC) &&
7598 (ELF_ST_TYPE (sym->st_info) != STT_SRELC))
7599 continue;
7600
7601 sym_name = bfd_elf_string_from_elf_section
7602 (input_bfd, symtab_hdr->sh_link, sym->st_name);
7603
7604 signed_p = (ELF_ST_TYPE (sym->st_info) == STT_SRELC);
7605 }
7606 else
7607 {
7608 /* The symbol is global. */
7609 struct elf_link_hash_entry * h;
7610
7611 if (elf_bad_symtab (input_bfd))
7612 continue;
7613
7614 h = sym_hashes [index - locsymcount];
7615 while ( h->root.type == bfd_link_hash_indirect
7616 || h->root.type == bfd_link_hash_warning)
7617 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7618
7619 if (h->type != STT_RELC && h->type != STT_SRELC)
7620 continue;
7621
7622 signed_p = (h->type == STT_SRELC);
7623 sym_name = (char *) h->root.root.string;
7624 }
7625 #ifdef DEBUG
7626 printf ("Encountered a complex symbol!");
7627 printf (" (input_bfd %s, section %s, reloc %ld\n",
7628 input_bfd->filename, reloc_sec->name, i);
7629 printf (" symbol: idx %8.8lx, name %s\n",
7630 index, sym_name);
7631 printf (" reloc : info %8.8lx, addr %8.8lx\n",
7632 rel->r_info, addr);
7633 printf (" Evaluating '%s' ...\n ", sym_name);
7634 #endif
7635 if (eval_symbol (& result, sym_name, & sym_name, input_bfd,
7636 finfo, addr, section_offset, locsymcount,
7637 signed_p))
7638 /* Symbol evaluated OK. Update to absolute value. */
7639 set_symbol_value (input_bfd, finfo, index, result);
7640
7641 else
7642 result = FALSE;
7643 }
7644
7645 if (internal_relocs != elf_section_data (reloc_sec)->relocs)
7646 free (internal_relocs);
7647 }
7648
7649 /* If nothing went wrong, then we adjusted
7650 everything we wanted to adjust. */
7651 return result;
7652 }
7653
7654 static void
7655 put_value (bfd_vma size,
7656 unsigned long chunksz,
7657 bfd * input_bfd,
7658 bfd_vma x,
7659 bfd_byte * location)
7660 {
7661 location += (size - chunksz);
7662
7663 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7664 {
7665 switch (chunksz)
7666 {
7667 default:
7668 case 0:
7669 abort ();
7670 case 1:
7671 bfd_put_8 (input_bfd, x, location);
7672 break;
7673 case 2:
7674 bfd_put_16 (input_bfd, x, location);
7675 break;
7676 case 4:
7677 bfd_put_32 (input_bfd, x, location);
7678 break;
7679 case 8:
7680 #ifdef BFD64
7681 bfd_put_64 (input_bfd, x, location);
7682 #else
7683 abort ();
7684 #endif
7685 break;
7686 }
7687 }
7688 }
7689
7690 static bfd_vma
7691 get_value (bfd_vma size,
7692 unsigned long chunksz,
7693 bfd * input_bfd,
7694 bfd_byte * location)
7695 {
7696 bfd_vma x = 0;
7697
7698 for (; size; size -= chunksz, location += chunksz)
7699 {
7700 switch (chunksz)
7701 {
7702 default:
7703 case 0:
7704 abort ();
7705 case 1:
7706 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7707 break;
7708 case 2:
7709 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7710 break;
7711 case 4:
7712 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7713 break;
7714 case 8:
7715 #ifdef BFD64
7716 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7717 #else
7718 abort ();
7719 #endif
7720 break;
7721 }
7722 }
7723 return x;
7724 }
7725
7726 static void
7727 decode_complex_addend
7728 (unsigned long * start, /* in bits */
7729 unsigned long * oplen, /* in bits */
7730 unsigned long * len, /* in bits */
7731 unsigned long * wordsz, /* in bytes */
7732 unsigned long * chunksz, /* in bytes */
7733 unsigned long * lsb0_p,
7734 unsigned long * signed_p,
7735 unsigned long * trunc_p,
7736 unsigned long encoded)
7737 {
7738 * start = encoded & 0x3F;
7739 * len = (encoded >> 6) & 0x3F;
7740 * oplen = (encoded >> 12) & 0x3F;
7741 * wordsz = (encoded >> 18) & 0xF;
7742 * chunksz = (encoded >> 22) & 0xF;
7743 * lsb0_p = (encoded >> 27) & 1;
7744 * signed_p = (encoded >> 28) & 1;
7745 * trunc_p = (encoded >> 29) & 1;
7746 }
7747
7748 void
7749 bfd_elf_perform_complex_relocation
7750 (bfd * output_bfd ATTRIBUTE_UNUSED,
7751 struct bfd_link_info * info,
7752 bfd * input_bfd,
7753 asection * input_section,
7754 bfd_byte * contents,
7755 Elf_Internal_Rela * rel,
7756 Elf_Internal_Sym * local_syms,
7757 asection ** local_sections)
7758 {
7759 const struct elf_backend_data * bed;
7760 Elf_Internal_Shdr * symtab_hdr;
7761 asection * sec;
7762 bfd_vma relocation = 0, shift, x;
7763 bfd_vma r_symndx;
7764 bfd_vma mask;
7765 unsigned long start, oplen, len, wordsz,
7766 chunksz, lsb0_p, signed_p, trunc_p;
7767
7768 /* Perform this reloc, since it is complex.
7769 (this is not to say that it necessarily refers to a complex
7770 symbol; merely that it is a self-describing CGEN based reloc.
7771 i.e. the addend has the complete reloc information (bit start, end,
7772 word size, etc) encoded within it.). */
7773 r_symndx = ELF32_R_SYM (rel->r_info);
7774 bed = get_elf_backend_data (input_bfd);
7775 if (bed->s->arch_size == 64)
7776 r_symndx >>= 24;
7777
7778 #ifdef DEBUG
7779 printf ("Performing complex relocation %ld...\n", r_symndx);
7780 #endif
7781
7782 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7783 if (r_symndx < symtab_hdr->sh_info)
7784 {
7785 /* The symbol is local. */
7786 Elf_Internal_Sym * sym;
7787
7788 sym = local_syms + r_symndx;
7789 sec = local_sections [r_symndx];
7790 relocation = sym->st_value;
7791 if (sym->st_shndx > SHN_UNDEF &&
7792 sym->st_shndx < SHN_LORESERVE)
7793 relocation += (sec->output_offset +
7794 sec->output_section->vma);
7795 }
7796 else
7797 {
7798 /* The symbol is global. */
7799 struct elf_link_hash_entry **sym_hashes;
7800 struct elf_link_hash_entry * h;
7801
7802 sym_hashes = elf_sym_hashes (input_bfd);
7803 h = sym_hashes [r_symndx];
7804
7805 while (h->root.type == bfd_link_hash_indirect
7806 || h->root.type == bfd_link_hash_warning)
7807 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7808
7809 if (h->root.type == bfd_link_hash_defined
7810 || h->root.type == bfd_link_hash_defweak)
7811 {
7812 sec = h->root.u.def.section;
7813 relocation = h->root.u.def.value;
7814
7815 if (! bfd_is_abs_section (sec))
7816 relocation += (sec->output_section->vma
7817 + sec->output_offset);
7818 }
7819 if (h->root.type == bfd_link_hash_undefined
7820 && !((*info->callbacks->undefined_symbol)
7821 (info, h->root.root.string, input_bfd,
7822 input_section, rel->r_offset,
7823 info->unresolved_syms_in_objects == RM_GENERATE_ERROR
7824 || ELF_ST_VISIBILITY (h->other))))
7825 return;
7826 }
7827
7828 decode_complex_addend (& start, & oplen, & len, & wordsz,
7829 & chunksz, & lsb0_p, & signed_p,
7830 & trunc_p, rel->r_addend);
7831
7832 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7833
7834 if (lsb0_p)
7835 shift = (start + 1) - len;
7836 else
7837 shift = (8 * wordsz) - (start + len);
7838
7839 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7840
7841 #ifdef DEBUG
7842 printf ("Doing complex reloc: "
7843 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7844 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7845 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7846 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7847 oplen, x, mask, relocation);
7848 #endif
7849
7850 if (! trunc_p)
7851 {
7852 /* Now do an overflow check. */
7853 if (bfd_check_overflow ((signed_p ?
7854 complain_overflow_signed :
7855 complain_overflow_unsigned),
7856 len, 0, (8 * wordsz),
7857 relocation) == bfd_reloc_overflow)
7858 (*_bfd_error_handler)
7859 ("%s (%s + 0x%lx): relocation overflow: 0x%lx %sdoes not fit "
7860 "within 0x%lx",
7861 input_bfd->filename, input_section->name, rel->r_offset,
7862 relocation, (signed_p ? "(signed) " : ""), mask);
7863 }
7864
7865 /* Do the deed. */
7866 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7867
7868 #ifdef DEBUG
7869 printf (" relocation: %8.8lx\n"
7870 " shifted mask: %8.8lx\n"
7871 " shifted/masked reloc: %8.8lx\n"
7872 " result: %8.8lx\n",
7873 relocation, (mask << shift),
7874 ((relocation & mask) << shift), x);
7875 #endif
7876 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7877 }
7878
7879 /* When performing a relocatable link, the input relocations are
7880 preserved. But, if they reference global symbols, the indices
7881 referenced must be updated. Update all the relocations in
7882 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7883
7884 static void
7885 elf_link_adjust_relocs (bfd *abfd,
7886 Elf_Internal_Shdr *rel_hdr,
7887 unsigned int count,
7888 struct elf_link_hash_entry **rel_hash)
7889 {
7890 unsigned int i;
7891 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7892 bfd_byte *erela;
7893 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7894 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7895 bfd_vma r_type_mask;
7896 int r_sym_shift;
7897
7898 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7899 {
7900 swap_in = bed->s->swap_reloc_in;
7901 swap_out = bed->s->swap_reloc_out;
7902 }
7903 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7904 {
7905 swap_in = bed->s->swap_reloca_in;
7906 swap_out = bed->s->swap_reloca_out;
7907 }
7908 else
7909 abort ();
7910
7911 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7912 abort ();
7913
7914 if (bed->s->arch_size == 32)
7915 {
7916 r_type_mask = 0xff;
7917 r_sym_shift = 8;
7918 }
7919 else
7920 {
7921 r_type_mask = 0xffffffff;
7922 r_sym_shift = 32;
7923 }
7924
7925 erela = rel_hdr->contents;
7926 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7927 {
7928 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7929 unsigned int j;
7930
7931 if (*rel_hash == NULL)
7932 continue;
7933
7934 BFD_ASSERT ((*rel_hash)->indx >= 0);
7935
7936 (*swap_in) (abfd, erela, irela);
7937 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7938 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7939 | (irela[j].r_info & r_type_mask));
7940 (*swap_out) (abfd, irela, erela);
7941 }
7942 }
7943
7944 struct elf_link_sort_rela
7945 {
7946 union {
7947 bfd_vma offset;
7948 bfd_vma sym_mask;
7949 } u;
7950 enum elf_reloc_type_class type;
7951 /* We use this as an array of size int_rels_per_ext_rel. */
7952 Elf_Internal_Rela rela[1];
7953 };
7954
7955 static int
7956 elf_link_sort_cmp1 (const void *A, const void *B)
7957 {
7958 const struct elf_link_sort_rela *a = A;
7959 const struct elf_link_sort_rela *b = B;
7960 int relativea, relativeb;
7961
7962 relativea = a->type == reloc_class_relative;
7963 relativeb = b->type == reloc_class_relative;
7964
7965 if (relativea < relativeb)
7966 return 1;
7967 if (relativea > relativeb)
7968 return -1;
7969 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7970 return -1;
7971 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7972 return 1;
7973 if (a->rela->r_offset < b->rela->r_offset)
7974 return -1;
7975 if (a->rela->r_offset > b->rela->r_offset)
7976 return 1;
7977 return 0;
7978 }
7979
7980 static int
7981 elf_link_sort_cmp2 (const void *A, const void *B)
7982 {
7983 const struct elf_link_sort_rela *a = A;
7984 const struct elf_link_sort_rela *b = B;
7985 int copya, copyb;
7986
7987 if (a->u.offset < b->u.offset)
7988 return -1;
7989 if (a->u.offset > b->u.offset)
7990 return 1;
7991 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7992 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7993 if (copya < copyb)
7994 return -1;
7995 if (copya > copyb)
7996 return 1;
7997 if (a->rela->r_offset < b->rela->r_offset)
7998 return -1;
7999 if (a->rela->r_offset > b->rela->r_offset)
8000 return 1;
8001 return 0;
8002 }
8003
8004 static size_t
8005 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8006 {
8007 asection *dynamic_relocs;
8008 asection *rela_dyn;
8009 asection *rel_dyn;
8010 bfd_size_type count, size;
8011 size_t i, ret, sort_elt, ext_size;
8012 bfd_byte *sort, *s_non_relative, *p;
8013 struct elf_link_sort_rela *sq;
8014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8015 int i2e = bed->s->int_rels_per_ext_rel;
8016 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8017 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8018 struct bfd_link_order *lo;
8019 bfd_vma r_sym_mask;
8020 bfd_boolean use_rela;
8021
8022 /* Find a dynamic reloc section. */
8023 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8024 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8025 if (rela_dyn != NULL && rela_dyn->size > 0
8026 && rel_dyn != NULL && rel_dyn->size > 0)
8027 {
8028 bfd_boolean use_rela_initialised = FALSE;
8029
8030 /* This is just here to stop gcc from complaining.
8031 It's initialization checking code is not perfect. */
8032 use_rela = TRUE;
8033
8034 /* Both sections are present. Examine the sizes
8035 of the indirect sections to help us choose. */
8036 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8037 if (lo->type == bfd_indirect_link_order)
8038 {
8039 asection *o = lo->u.indirect.section;
8040
8041 if ((o->size % bed->s->sizeof_rela) == 0)
8042 {
8043 if ((o->size % bed->s->sizeof_rel) == 0)
8044 /* Section size is divisible by both rel and rela sizes.
8045 It is of no help to us. */
8046 ;
8047 else
8048 {
8049 /* Section size is only divisible by rela. */
8050 if (use_rela_initialised && (use_rela == FALSE))
8051 {
8052 _bfd_error_handler
8053 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8054 bfd_set_error (bfd_error_invalid_operation);
8055 return 0;
8056 }
8057 else
8058 {
8059 use_rela = TRUE;
8060 use_rela_initialised = TRUE;
8061 }
8062 }
8063 }
8064 else if ((o->size % bed->s->sizeof_rel) == 0)
8065 {
8066 /* Section size is only divisible by rel. */
8067 if (use_rela_initialised && (use_rela == TRUE))
8068 {
8069 _bfd_error_handler
8070 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8071 bfd_set_error (bfd_error_invalid_operation);
8072 return 0;
8073 }
8074 else
8075 {
8076 use_rela = FALSE;
8077 use_rela_initialised = TRUE;
8078 }
8079 }
8080 else
8081 {
8082 /* The section size is not divisible by either - something is wrong. */
8083 _bfd_error_handler
8084 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8085 bfd_set_error (bfd_error_invalid_operation);
8086 return 0;
8087 }
8088 }
8089
8090 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8091 if (lo->type == bfd_indirect_link_order)
8092 {
8093 asection *o = lo->u.indirect.section;
8094
8095 if ((o->size % bed->s->sizeof_rela) == 0)
8096 {
8097 if ((o->size % bed->s->sizeof_rel) == 0)
8098 /* Section size is divisible by both rel and rela sizes.
8099 It is of no help to us. */
8100 ;
8101 else
8102 {
8103 /* Section size is only divisible by rela. */
8104 if (use_rela_initialised && (use_rela == FALSE))
8105 {
8106 _bfd_error_handler
8107 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8108 bfd_set_error (bfd_error_invalid_operation);
8109 return 0;
8110 }
8111 else
8112 {
8113 use_rela = TRUE;
8114 use_rela_initialised = TRUE;
8115 }
8116 }
8117 }
8118 else if ((o->size % bed->s->sizeof_rel) == 0)
8119 {
8120 /* Section size is only divisible by rel. */
8121 if (use_rela_initialised && (use_rela == TRUE))
8122 {
8123 _bfd_error_handler
8124 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8125 bfd_set_error (bfd_error_invalid_operation);
8126 return 0;
8127 }
8128 else
8129 {
8130 use_rela = FALSE;
8131 use_rela_initialised = TRUE;
8132 }
8133 }
8134 else
8135 {
8136 /* The section size is not divisible by either - something is wrong. */
8137 _bfd_error_handler
8138 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8139 bfd_set_error (bfd_error_invalid_operation);
8140 return 0;
8141 }
8142 }
8143
8144 if (! use_rela_initialised)
8145 /* Make a guess. */
8146 use_rela = TRUE;
8147 }
8148 else if (rela_dyn != NULL && rela_dyn->size > 0)
8149 use_rela = TRUE;
8150 else if (rel_dyn != NULL && rel_dyn->size > 0)
8151 use_rela = FALSE;
8152 else
8153 return 0;
8154
8155 if (use_rela)
8156 {
8157 dynamic_relocs = rela_dyn;
8158 ext_size = bed->s->sizeof_rela;
8159 swap_in = bed->s->swap_reloca_in;
8160 swap_out = bed->s->swap_reloca_out;
8161 }
8162 else
8163 {
8164 dynamic_relocs = rel_dyn;
8165 ext_size = bed->s->sizeof_rel;
8166 swap_in = bed->s->swap_reloc_in;
8167 swap_out = bed->s->swap_reloc_out;
8168 }
8169
8170 size = 0;
8171 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8172 if (lo->type == bfd_indirect_link_order)
8173 size += lo->u.indirect.section->size;
8174
8175 if (size != dynamic_relocs->size)
8176 return 0;
8177
8178 sort_elt = (sizeof (struct elf_link_sort_rela)
8179 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8180
8181 count = dynamic_relocs->size / ext_size;
8182 sort = bfd_zmalloc (sort_elt * count);
8183
8184 if (sort == NULL)
8185 {
8186 (*info->callbacks->warning)
8187 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8188 return 0;
8189 }
8190
8191 if (bed->s->arch_size == 32)
8192 r_sym_mask = ~(bfd_vma) 0xff;
8193 else
8194 r_sym_mask = ~(bfd_vma) 0xffffffff;
8195
8196 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8197 if (lo->type == bfd_indirect_link_order)
8198 {
8199 bfd_byte *erel, *erelend;
8200 asection *o = lo->u.indirect.section;
8201
8202 if (o->contents == NULL && o->size != 0)
8203 {
8204 /* This is a reloc section that is being handled as a normal
8205 section. See bfd_section_from_shdr. We can't combine
8206 relocs in this case. */
8207 free (sort);
8208 return 0;
8209 }
8210 erel = o->contents;
8211 erelend = o->contents + o->size;
8212 p = sort + o->output_offset / ext_size * sort_elt;
8213
8214 while (erel < erelend)
8215 {
8216 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8217
8218 (*swap_in) (abfd, erel, s->rela);
8219 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8220 s->u.sym_mask = r_sym_mask;
8221 p += sort_elt;
8222 erel += ext_size;
8223 }
8224 }
8225
8226 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8227
8228 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8229 {
8230 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8231 if (s->type != reloc_class_relative)
8232 break;
8233 }
8234 ret = i;
8235 s_non_relative = p;
8236
8237 sq = (struct elf_link_sort_rela *) s_non_relative;
8238 for (; i < count; i++, p += sort_elt)
8239 {
8240 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8241 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8242 sq = sp;
8243 sp->u.offset = sq->rela->r_offset;
8244 }
8245
8246 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8247
8248 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8249 if (lo->type == bfd_indirect_link_order)
8250 {
8251 bfd_byte *erel, *erelend;
8252 asection *o = lo->u.indirect.section;
8253
8254 erel = o->contents;
8255 erelend = o->contents + o->size;
8256 p = sort + o->output_offset / ext_size * sort_elt;
8257 while (erel < erelend)
8258 {
8259 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8260 (*swap_out) (abfd, s->rela, erel);
8261 p += sort_elt;
8262 erel += ext_size;
8263 }
8264 }
8265
8266 free (sort);
8267 *psec = dynamic_relocs;
8268 return ret;
8269 }
8270
8271 /* Flush the output symbols to the file. */
8272
8273 static bfd_boolean
8274 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8275 const struct elf_backend_data *bed)
8276 {
8277 if (finfo->symbuf_count > 0)
8278 {
8279 Elf_Internal_Shdr *hdr;
8280 file_ptr pos;
8281 bfd_size_type amt;
8282
8283 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8284 pos = hdr->sh_offset + hdr->sh_size;
8285 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8286 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8287 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8288 return FALSE;
8289
8290 hdr->sh_size += amt;
8291 finfo->symbuf_count = 0;
8292 }
8293
8294 return TRUE;
8295 }
8296
8297 /* Add a symbol to the output symbol table. */
8298
8299 static bfd_boolean
8300 elf_link_output_sym (struct elf_final_link_info *finfo,
8301 const char *name,
8302 Elf_Internal_Sym *elfsym,
8303 asection *input_sec,
8304 struct elf_link_hash_entry *h)
8305 {
8306 bfd_byte *dest;
8307 Elf_External_Sym_Shndx *destshndx;
8308 bfd_boolean (*output_symbol_hook)
8309 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8310 struct elf_link_hash_entry *);
8311 const struct elf_backend_data *bed;
8312
8313 bed = get_elf_backend_data (finfo->output_bfd);
8314 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8315 if (output_symbol_hook != NULL)
8316 {
8317 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8318 return FALSE;
8319 }
8320
8321 if (name == NULL || *name == '\0')
8322 elfsym->st_name = 0;
8323 else if (input_sec->flags & SEC_EXCLUDE)
8324 elfsym->st_name = 0;
8325 else
8326 {
8327 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8328 name, TRUE, FALSE);
8329 if (elfsym->st_name == (unsigned long) -1)
8330 return FALSE;
8331 }
8332
8333 if (finfo->symbuf_count >= finfo->symbuf_size)
8334 {
8335 if (! elf_link_flush_output_syms (finfo, bed))
8336 return FALSE;
8337 }
8338
8339 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8340 destshndx = finfo->symshndxbuf;
8341 if (destshndx != NULL)
8342 {
8343 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8344 {
8345 bfd_size_type amt;
8346
8347 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8348 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
8349 if (destshndx == NULL)
8350 return FALSE;
8351 memset ((char *) destshndx + amt, 0, amt);
8352 finfo->shndxbuf_size *= 2;
8353 }
8354 destshndx += bfd_get_symcount (finfo->output_bfd);
8355 }
8356
8357 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8358 finfo->symbuf_count += 1;
8359 bfd_get_symcount (finfo->output_bfd) += 1;
8360
8361 return TRUE;
8362 }
8363
8364 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8365
8366 static bfd_boolean
8367 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8368 {
8369 if (sym->st_shndx > SHN_HIRESERVE)
8370 {
8371 /* The gABI doesn't support dynamic symbols in output sections
8372 beyond 64k. */
8373 (*_bfd_error_handler)
8374 (_("%B: Too many sections: %d (>= %d)"),
8375 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8376 bfd_set_error (bfd_error_nonrepresentable_section);
8377 return FALSE;
8378 }
8379 return TRUE;
8380 }
8381
8382 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8383 allowing an unsatisfied unversioned symbol in the DSO to match a
8384 versioned symbol that would normally require an explicit version.
8385 We also handle the case that a DSO references a hidden symbol
8386 which may be satisfied by a versioned symbol in another DSO. */
8387
8388 static bfd_boolean
8389 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8390 const struct elf_backend_data *bed,
8391 struct elf_link_hash_entry *h)
8392 {
8393 bfd *abfd;
8394 struct elf_link_loaded_list *loaded;
8395
8396 if (!is_elf_hash_table (info->hash))
8397 return FALSE;
8398
8399 switch (h->root.type)
8400 {
8401 default:
8402 abfd = NULL;
8403 break;
8404
8405 case bfd_link_hash_undefined:
8406 case bfd_link_hash_undefweak:
8407 abfd = h->root.u.undef.abfd;
8408 if ((abfd->flags & DYNAMIC) == 0
8409 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8410 return FALSE;
8411 break;
8412
8413 case bfd_link_hash_defined:
8414 case bfd_link_hash_defweak:
8415 abfd = h->root.u.def.section->owner;
8416 break;
8417
8418 case bfd_link_hash_common:
8419 abfd = h->root.u.c.p->section->owner;
8420 break;
8421 }
8422 BFD_ASSERT (abfd != NULL);
8423
8424 for (loaded = elf_hash_table (info)->loaded;
8425 loaded != NULL;
8426 loaded = loaded->next)
8427 {
8428 bfd *input;
8429 Elf_Internal_Shdr *hdr;
8430 bfd_size_type symcount;
8431 bfd_size_type extsymcount;
8432 bfd_size_type extsymoff;
8433 Elf_Internal_Shdr *versymhdr;
8434 Elf_Internal_Sym *isym;
8435 Elf_Internal_Sym *isymend;
8436 Elf_Internal_Sym *isymbuf;
8437 Elf_External_Versym *ever;
8438 Elf_External_Versym *extversym;
8439
8440 input = loaded->abfd;
8441
8442 /* We check each DSO for a possible hidden versioned definition. */
8443 if (input == abfd
8444 || (input->flags & DYNAMIC) == 0
8445 || elf_dynversym (input) == 0)
8446 continue;
8447
8448 hdr = &elf_tdata (input)->dynsymtab_hdr;
8449
8450 symcount = hdr->sh_size / bed->s->sizeof_sym;
8451 if (elf_bad_symtab (input))
8452 {
8453 extsymcount = symcount;
8454 extsymoff = 0;
8455 }
8456 else
8457 {
8458 extsymcount = symcount - hdr->sh_info;
8459 extsymoff = hdr->sh_info;
8460 }
8461
8462 if (extsymcount == 0)
8463 continue;
8464
8465 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8466 NULL, NULL, NULL);
8467 if (isymbuf == NULL)
8468 return FALSE;
8469
8470 /* Read in any version definitions. */
8471 versymhdr = &elf_tdata (input)->dynversym_hdr;
8472 extversym = bfd_malloc (versymhdr->sh_size);
8473 if (extversym == NULL)
8474 goto error_ret;
8475
8476 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8477 || (bfd_bread (extversym, versymhdr->sh_size, input)
8478 != versymhdr->sh_size))
8479 {
8480 free (extversym);
8481 error_ret:
8482 free (isymbuf);
8483 return FALSE;
8484 }
8485
8486 ever = extversym + extsymoff;
8487 isymend = isymbuf + extsymcount;
8488 for (isym = isymbuf; isym < isymend; isym++, ever++)
8489 {
8490 const char *name;
8491 Elf_Internal_Versym iver;
8492 unsigned short version_index;
8493
8494 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8495 || isym->st_shndx == SHN_UNDEF)
8496 continue;
8497
8498 name = bfd_elf_string_from_elf_section (input,
8499 hdr->sh_link,
8500 isym->st_name);
8501 if (strcmp (name, h->root.root.string) != 0)
8502 continue;
8503
8504 _bfd_elf_swap_versym_in (input, ever, &iver);
8505
8506 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8507 {
8508 /* If we have a non-hidden versioned sym, then it should
8509 have provided a definition for the undefined sym. */
8510 abort ();
8511 }
8512
8513 version_index = iver.vs_vers & VERSYM_VERSION;
8514 if (version_index == 1 || version_index == 2)
8515 {
8516 /* This is the base or first version. We can use it. */
8517 free (extversym);
8518 free (isymbuf);
8519 return TRUE;
8520 }
8521 }
8522
8523 free (extversym);
8524 free (isymbuf);
8525 }
8526
8527 return FALSE;
8528 }
8529
8530 /* Add an external symbol to the symbol table. This is called from
8531 the hash table traversal routine. When generating a shared object,
8532 we go through the symbol table twice. The first time we output
8533 anything that might have been forced to local scope in a version
8534 script. The second time we output the symbols that are still
8535 global symbols. */
8536
8537 static bfd_boolean
8538 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8539 {
8540 struct elf_outext_info *eoinfo = data;
8541 struct elf_final_link_info *finfo = eoinfo->finfo;
8542 bfd_boolean strip;
8543 Elf_Internal_Sym sym;
8544 asection *input_sec;
8545 const struct elf_backend_data *bed;
8546
8547 if (h->root.type == bfd_link_hash_warning)
8548 {
8549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8550 if (h->root.type == bfd_link_hash_new)
8551 return TRUE;
8552 }
8553
8554 /* Decide whether to output this symbol in this pass. */
8555 if (eoinfo->localsyms)
8556 {
8557 if (!h->forced_local)
8558 return TRUE;
8559 }
8560 else
8561 {
8562 if (h->forced_local)
8563 return TRUE;
8564 }
8565
8566 bed = get_elf_backend_data (finfo->output_bfd);
8567
8568 if (h->root.type == bfd_link_hash_undefined)
8569 {
8570 /* If we have an undefined symbol reference here then it must have
8571 come from a shared library that is being linked in. (Undefined
8572 references in regular files have already been handled). */
8573 bfd_boolean ignore_undef = FALSE;
8574
8575 /* Some symbols may be special in that the fact that they're
8576 undefined can be safely ignored - let backend determine that. */
8577 if (bed->elf_backend_ignore_undef_symbol)
8578 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8579
8580 /* If we are reporting errors for this situation then do so now. */
8581 if (ignore_undef == FALSE
8582 && h->ref_dynamic
8583 && ! h->ref_regular
8584 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8585 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8586 {
8587 if (! (finfo->info->callbacks->undefined_symbol
8588 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8589 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8590 {
8591 eoinfo->failed = TRUE;
8592 return FALSE;
8593 }
8594 }
8595 }
8596
8597 /* We should also warn if a forced local symbol is referenced from
8598 shared libraries. */
8599 if (! finfo->info->relocatable
8600 && (! finfo->info->shared)
8601 && h->forced_local
8602 && h->ref_dynamic
8603 && !h->dynamic_def
8604 && !h->dynamic_weak
8605 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8606 {
8607 (*_bfd_error_handler)
8608 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8609 finfo->output_bfd,
8610 h->root.u.def.section == bfd_abs_section_ptr
8611 ? finfo->output_bfd : h->root.u.def.section->owner,
8612 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8613 ? "internal"
8614 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8615 ? "hidden" : "local",
8616 h->root.root.string);
8617 eoinfo->failed = TRUE;
8618 return FALSE;
8619 }
8620
8621 /* We don't want to output symbols that have never been mentioned by
8622 a regular file, or that we have been told to strip. However, if
8623 h->indx is set to -2, the symbol is used by a reloc and we must
8624 output it. */
8625 if (h->indx == -2)
8626 strip = FALSE;
8627 else if ((h->def_dynamic
8628 || h->ref_dynamic
8629 || h->root.type == bfd_link_hash_new)
8630 && !h->def_regular
8631 && !h->ref_regular)
8632 strip = TRUE;
8633 else if (finfo->info->strip == strip_all)
8634 strip = TRUE;
8635 else if (finfo->info->strip == strip_some
8636 && bfd_hash_lookup (finfo->info->keep_hash,
8637 h->root.root.string, FALSE, FALSE) == NULL)
8638 strip = TRUE;
8639 else if (finfo->info->strip_discarded
8640 && (h->root.type == bfd_link_hash_defined
8641 || h->root.type == bfd_link_hash_defweak)
8642 && elf_discarded_section (h->root.u.def.section))
8643 strip = TRUE;
8644 else
8645 strip = FALSE;
8646
8647 /* If we're stripping it, and it's not a dynamic symbol, there's
8648 nothing else to do unless it is a forced local symbol. */
8649 if (strip
8650 && h->dynindx == -1
8651 && !h->forced_local)
8652 return TRUE;
8653
8654 sym.st_value = 0;
8655 sym.st_size = h->size;
8656 sym.st_other = h->other;
8657 if (h->forced_local)
8658 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8659 else if (h->root.type == bfd_link_hash_undefweak
8660 || h->root.type == bfd_link_hash_defweak)
8661 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8662 else
8663 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8664
8665 switch (h->root.type)
8666 {
8667 default:
8668 case bfd_link_hash_new:
8669 case bfd_link_hash_warning:
8670 abort ();
8671 return FALSE;
8672
8673 case bfd_link_hash_undefined:
8674 case bfd_link_hash_undefweak:
8675 input_sec = bfd_und_section_ptr;
8676 sym.st_shndx = SHN_UNDEF;
8677 break;
8678
8679 case bfd_link_hash_defined:
8680 case bfd_link_hash_defweak:
8681 {
8682 input_sec = h->root.u.def.section;
8683 if (input_sec->output_section != NULL)
8684 {
8685 sym.st_shndx =
8686 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8687 input_sec->output_section);
8688 if (sym.st_shndx == SHN_BAD)
8689 {
8690 (*_bfd_error_handler)
8691 (_("%B: could not find output section %A for input section %A"),
8692 finfo->output_bfd, input_sec->output_section, input_sec);
8693 eoinfo->failed = TRUE;
8694 return FALSE;
8695 }
8696
8697 /* ELF symbols in relocatable files are section relative,
8698 but in nonrelocatable files they are virtual
8699 addresses. */
8700 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8701 if (! finfo->info->relocatable)
8702 {
8703 sym.st_value += input_sec->output_section->vma;
8704 if (h->type == STT_TLS)
8705 {
8706 /* STT_TLS symbols are relative to PT_TLS segment
8707 base. */
8708 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
8709 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
8710 }
8711 }
8712 }
8713 else
8714 {
8715 BFD_ASSERT (input_sec->owner == NULL
8716 || (input_sec->owner->flags & DYNAMIC) != 0);
8717 sym.st_shndx = SHN_UNDEF;
8718 input_sec = bfd_und_section_ptr;
8719 }
8720 }
8721 break;
8722
8723 case bfd_link_hash_common:
8724 input_sec = h->root.u.c.p->section;
8725 sym.st_shndx = bed->common_section_index (input_sec);
8726 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8727 break;
8728
8729 case bfd_link_hash_indirect:
8730 /* These symbols are created by symbol versioning. They point
8731 to the decorated version of the name. For example, if the
8732 symbol foo@@GNU_1.2 is the default, which should be used when
8733 foo is used with no version, then we add an indirect symbol
8734 foo which points to foo@@GNU_1.2. We ignore these symbols,
8735 since the indirected symbol is already in the hash table. */
8736 return TRUE;
8737 }
8738
8739 /* Give the processor backend a chance to tweak the symbol value,
8740 and also to finish up anything that needs to be done for this
8741 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8742 forced local syms when non-shared is due to a historical quirk. */
8743 if ((h->dynindx != -1
8744 || h->forced_local)
8745 && ((finfo->info->shared
8746 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8747 || h->root.type != bfd_link_hash_undefweak))
8748 || !h->forced_local)
8749 && elf_hash_table (finfo->info)->dynamic_sections_created)
8750 {
8751 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8752 (finfo->output_bfd, finfo->info, h, &sym)))
8753 {
8754 eoinfo->failed = TRUE;
8755 return FALSE;
8756 }
8757 }
8758
8759 /* If we are marking the symbol as undefined, and there are no
8760 non-weak references to this symbol from a regular object, then
8761 mark the symbol as weak undefined; if there are non-weak
8762 references, mark the symbol as strong. We can't do this earlier,
8763 because it might not be marked as undefined until the
8764 finish_dynamic_symbol routine gets through with it. */
8765 if (sym.st_shndx == SHN_UNDEF
8766 && h->ref_regular
8767 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8768 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8769 {
8770 int bindtype;
8771
8772 if (h->ref_regular_nonweak)
8773 bindtype = STB_GLOBAL;
8774 else
8775 bindtype = STB_WEAK;
8776 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8777 }
8778
8779 /* If a non-weak symbol with non-default visibility is not defined
8780 locally, it is a fatal error. */
8781 if (! finfo->info->relocatable
8782 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8783 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8784 && h->root.type == bfd_link_hash_undefined
8785 && !h->def_regular)
8786 {
8787 (*_bfd_error_handler)
8788 (_("%B: %s symbol `%s' isn't defined"),
8789 finfo->output_bfd,
8790 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8791 ? "protected"
8792 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8793 ? "internal" : "hidden",
8794 h->root.root.string);
8795 eoinfo->failed = TRUE;
8796 return FALSE;
8797 }
8798
8799 /* If this symbol should be put in the .dynsym section, then put it
8800 there now. We already know the symbol index. We also fill in
8801 the entry in the .hash section. */
8802 if (h->dynindx != -1
8803 && elf_hash_table (finfo->info)->dynamic_sections_created)
8804 {
8805 bfd_byte *esym;
8806
8807 sym.st_name = h->dynstr_index;
8808 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8809 if (! check_dynsym (finfo->output_bfd, &sym))
8810 {
8811 eoinfo->failed = TRUE;
8812 return FALSE;
8813 }
8814 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8815
8816 if (finfo->hash_sec != NULL)
8817 {
8818 size_t hash_entry_size;
8819 bfd_byte *bucketpos;
8820 bfd_vma chain;
8821 size_t bucketcount;
8822 size_t bucket;
8823
8824 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8825 bucket = h->u.elf_hash_value % bucketcount;
8826
8827 hash_entry_size
8828 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8829 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8830 + (bucket + 2) * hash_entry_size);
8831 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8832 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8833 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8834 ((bfd_byte *) finfo->hash_sec->contents
8835 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8836 }
8837
8838 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8839 {
8840 Elf_Internal_Versym iversym;
8841 Elf_External_Versym *eversym;
8842
8843 if (!h->def_regular)
8844 {
8845 if (h->verinfo.verdef == NULL)
8846 iversym.vs_vers = 0;
8847 else
8848 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8849 }
8850 else
8851 {
8852 if (h->verinfo.vertree == NULL)
8853 iversym.vs_vers = 1;
8854 else
8855 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8856 if (finfo->info->create_default_symver)
8857 iversym.vs_vers++;
8858 }
8859
8860 if (h->hidden)
8861 iversym.vs_vers |= VERSYM_HIDDEN;
8862
8863 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8864 eversym += h->dynindx;
8865 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8866 }
8867 }
8868
8869 /* If we're stripping it, then it was just a dynamic symbol, and
8870 there's nothing else to do. */
8871 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8872 return TRUE;
8873
8874 h->indx = bfd_get_symcount (finfo->output_bfd);
8875
8876 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8877 {
8878 eoinfo->failed = TRUE;
8879 return FALSE;
8880 }
8881
8882 return TRUE;
8883 }
8884
8885 /* Return TRUE if special handling is done for relocs in SEC against
8886 symbols defined in discarded sections. */
8887
8888 static bfd_boolean
8889 elf_section_ignore_discarded_relocs (asection *sec)
8890 {
8891 const struct elf_backend_data *bed;
8892
8893 switch (sec->sec_info_type)
8894 {
8895 case ELF_INFO_TYPE_STABS:
8896 case ELF_INFO_TYPE_EH_FRAME:
8897 return TRUE;
8898 default:
8899 break;
8900 }
8901
8902 bed = get_elf_backend_data (sec->owner);
8903 if (bed->elf_backend_ignore_discarded_relocs != NULL
8904 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8905 return TRUE;
8906
8907 return FALSE;
8908 }
8909
8910 /* Return a mask saying how ld should treat relocations in SEC against
8911 symbols defined in discarded sections. If this function returns
8912 COMPLAIN set, ld will issue a warning message. If this function
8913 returns PRETEND set, and the discarded section was link-once and the
8914 same size as the kept link-once section, ld will pretend that the
8915 symbol was actually defined in the kept section. Otherwise ld will
8916 zero the reloc (at least that is the intent, but some cooperation by
8917 the target dependent code is needed, particularly for REL targets). */
8918
8919 unsigned int
8920 _bfd_elf_default_action_discarded (asection *sec)
8921 {
8922 if (sec->flags & SEC_DEBUGGING)
8923 return PRETEND;
8924
8925 if (strcmp (".eh_frame", sec->name) == 0)
8926 return 0;
8927
8928 if (strcmp (".gcc_except_table", sec->name) == 0)
8929 return 0;
8930
8931 return COMPLAIN | PRETEND;
8932 }
8933
8934 /* Find a match between a section and a member of a section group. */
8935
8936 static asection *
8937 match_group_member (asection *sec, asection *group,
8938 struct bfd_link_info *info)
8939 {
8940 asection *first = elf_next_in_group (group);
8941 asection *s = first;
8942
8943 while (s != NULL)
8944 {
8945 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8946 return s;
8947
8948 s = elf_next_in_group (s);
8949 if (s == first)
8950 break;
8951 }
8952
8953 return NULL;
8954 }
8955
8956 /* Check if the kept section of a discarded section SEC can be used
8957 to replace it. Return the replacement if it is OK. Otherwise return
8958 NULL. */
8959
8960 asection *
8961 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8962 {
8963 asection *kept;
8964
8965 kept = sec->kept_section;
8966 if (kept != NULL)
8967 {
8968 if ((kept->flags & SEC_GROUP) != 0)
8969 kept = match_group_member (sec, kept, info);
8970 if (kept != NULL && sec->size != kept->size)
8971 kept = NULL;
8972 sec->kept_section = kept;
8973 }
8974 return kept;
8975 }
8976
8977 /* Link an input file into the linker output file. This function
8978 handles all the sections and relocations of the input file at once.
8979 This is so that we only have to read the local symbols once, and
8980 don't have to keep them in memory. */
8981
8982 static bfd_boolean
8983 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8984 {
8985 int (*relocate_section)
8986 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8987 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8988 bfd *output_bfd;
8989 Elf_Internal_Shdr *symtab_hdr;
8990 size_t locsymcount;
8991 size_t extsymoff;
8992 Elf_Internal_Sym *isymbuf;
8993 Elf_Internal_Sym *isym;
8994 Elf_Internal_Sym *isymend;
8995 long *pindex;
8996 asection **ppsection;
8997 asection *o;
8998 const struct elf_backend_data *bed;
8999 struct elf_link_hash_entry **sym_hashes;
9000
9001 output_bfd = finfo->output_bfd;
9002 bed = get_elf_backend_data (output_bfd);
9003 relocate_section = bed->elf_backend_relocate_section;
9004
9005 /* If this is a dynamic object, we don't want to do anything here:
9006 we don't want the local symbols, and we don't want the section
9007 contents. */
9008 if ((input_bfd->flags & DYNAMIC) != 0)
9009 return TRUE;
9010
9011 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9012 if (elf_bad_symtab (input_bfd))
9013 {
9014 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9015 extsymoff = 0;
9016 }
9017 else
9018 {
9019 locsymcount = symtab_hdr->sh_info;
9020 extsymoff = symtab_hdr->sh_info;
9021 }
9022
9023 /* Read the local symbols. */
9024 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9025 if (isymbuf == NULL && locsymcount != 0)
9026 {
9027 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9028 finfo->internal_syms,
9029 finfo->external_syms,
9030 finfo->locsym_shndx);
9031 if (isymbuf == NULL)
9032 return FALSE;
9033 }
9034 /* evaluate_complex_relocation_symbols looks for symbols in
9035 finfo->internal_syms. */
9036 else if (isymbuf != NULL && locsymcount != 0)
9037 {
9038 bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9039 finfo->internal_syms,
9040 finfo->external_syms,
9041 finfo->locsym_shndx);
9042 }
9043
9044 /* Find local symbol sections and adjust values of symbols in
9045 SEC_MERGE sections. Write out those local symbols we know are
9046 going into the output file. */
9047 isymend = isymbuf + locsymcount;
9048 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9049 isym < isymend;
9050 isym++, pindex++, ppsection++)
9051 {
9052 asection *isec;
9053 const char *name;
9054 Elf_Internal_Sym osym;
9055
9056 *pindex = -1;
9057
9058 if (elf_bad_symtab (input_bfd))
9059 {
9060 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9061 {
9062 *ppsection = NULL;
9063 continue;
9064 }
9065 }
9066
9067 if (isym->st_shndx == SHN_UNDEF)
9068 isec = bfd_und_section_ptr;
9069 else if (isym->st_shndx < SHN_LORESERVE
9070 || isym->st_shndx > SHN_HIRESERVE)
9071 {
9072 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9073 if (isec
9074 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
9075 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9076 isym->st_value =
9077 _bfd_merged_section_offset (output_bfd, &isec,
9078 elf_section_data (isec)->sec_info,
9079 isym->st_value);
9080 }
9081 else if (isym->st_shndx == SHN_ABS)
9082 isec = bfd_abs_section_ptr;
9083 else if (isym->st_shndx == SHN_COMMON)
9084 isec = bfd_com_section_ptr;
9085 else
9086 {
9087 /* Don't attempt to output symbols with st_shnx in the
9088 reserved range other than SHN_ABS and SHN_COMMON. */
9089 *ppsection = NULL;
9090 continue;
9091 }
9092
9093 *ppsection = isec;
9094
9095 /* Don't output the first, undefined, symbol. */
9096 if (ppsection == finfo->sections)
9097 continue;
9098
9099 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9100 {
9101 /* We never output section symbols. Instead, we use the
9102 section symbol of the corresponding section in the output
9103 file. */
9104 continue;
9105 }
9106
9107 /* If we are stripping all symbols, we don't want to output this
9108 one. */
9109 if (finfo->info->strip == strip_all)
9110 continue;
9111
9112 /* If we are discarding all local symbols, we don't want to
9113 output this one. If we are generating a relocatable output
9114 file, then some of the local symbols may be required by
9115 relocs; we output them below as we discover that they are
9116 needed. */
9117 if (finfo->info->discard == discard_all)
9118 continue;
9119
9120 /* If this symbol is defined in a section which we are
9121 discarding, we don't need to keep it. */
9122 if (isym->st_shndx != SHN_UNDEF
9123 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9124 && (isec == NULL
9125 || bfd_section_removed_from_list (output_bfd,
9126 isec->output_section)))
9127 continue;
9128
9129 /* Get the name of the symbol. */
9130 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9131 isym->st_name);
9132 if (name == NULL)
9133 return FALSE;
9134
9135 /* See if we are discarding symbols with this name. */
9136 if ((finfo->info->strip == strip_some
9137 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9138 == NULL))
9139 || (((finfo->info->discard == discard_sec_merge
9140 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9141 || finfo->info->discard == discard_l)
9142 && bfd_is_local_label_name (input_bfd, name)))
9143 continue;
9144
9145 /* If we get here, we are going to output this symbol. */
9146
9147 osym = *isym;
9148
9149 /* Adjust the section index for the output file. */
9150 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9151 isec->output_section);
9152 if (osym.st_shndx == SHN_BAD)
9153 return FALSE;
9154
9155 *pindex = bfd_get_symcount (output_bfd);
9156
9157 /* ELF symbols in relocatable files are section relative, but
9158 in executable files they are virtual addresses. Note that
9159 this code assumes that all ELF sections have an associated
9160 BFD section with a reasonable value for output_offset; below
9161 we assume that they also have a reasonable value for
9162 output_section. Any special sections must be set up to meet
9163 these requirements. */
9164 osym.st_value += isec->output_offset;
9165 if (! finfo->info->relocatable)
9166 {
9167 osym.st_value += isec->output_section->vma;
9168 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9169 {
9170 /* STT_TLS symbols are relative to PT_TLS segment base. */
9171 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9172 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9173 }
9174 }
9175
9176 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9177 return FALSE;
9178 }
9179
9180 if (! evaluate_complex_relocation_symbols (input_bfd, finfo, locsymcount))
9181 return FALSE;
9182
9183 /* Relocate the contents of each section. */
9184 sym_hashes = elf_sym_hashes (input_bfd);
9185 for (o = input_bfd->sections; o != NULL; o = o->next)
9186 {
9187 bfd_byte *contents;
9188
9189 if (! o->linker_mark)
9190 {
9191 /* This section was omitted from the link. */
9192 continue;
9193 }
9194
9195 if ((o->flags & SEC_HAS_CONTENTS) == 0
9196 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9197 continue;
9198
9199 if ((o->flags & SEC_LINKER_CREATED) != 0)
9200 {
9201 /* Section was created by _bfd_elf_link_create_dynamic_sections
9202 or somesuch. */
9203 continue;
9204 }
9205
9206 /* Get the contents of the section. They have been cached by a
9207 relaxation routine. Note that o is a section in an input
9208 file, so the contents field will not have been set by any of
9209 the routines which work on output files. */
9210 if (elf_section_data (o)->this_hdr.contents != NULL)
9211 contents = elf_section_data (o)->this_hdr.contents;
9212 else
9213 {
9214 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9215
9216 contents = finfo->contents;
9217 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9218 return FALSE;
9219 }
9220
9221 if ((o->flags & SEC_RELOC) != 0)
9222 {
9223 Elf_Internal_Rela *internal_relocs;
9224 bfd_vma r_type_mask;
9225 int r_sym_shift;
9226 int ret;
9227
9228 /* Get the swapped relocs. */
9229 internal_relocs
9230 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9231 finfo->internal_relocs, FALSE);
9232 if (internal_relocs == NULL
9233 && o->reloc_count > 0)
9234 return FALSE;
9235
9236 if (bed->s->arch_size == 32)
9237 {
9238 r_type_mask = 0xff;
9239 r_sym_shift = 8;
9240 }
9241 else
9242 {
9243 r_type_mask = 0xffffffff;
9244 r_sym_shift = 32;
9245 }
9246
9247 /* Run through the relocs looking for any against symbols
9248 from discarded sections and section symbols from
9249 removed link-once sections. Complain about relocs
9250 against discarded sections. Zero relocs against removed
9251 link-once sections. */
9252 if (!elf_section_ignore_discarded_relocs (o))
9253 {
9254 Elf_Internal_Rela *rel, *relend;
9255 unsigned int action = (*bed->action_discarded) (o);
9256
9257 rel = internal_relocs;
9258 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9259 for ( ; rel < relend; rel++)
9260 {
9261 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9262 asection **ps, *sec;
9263 struct elf_link_hash_entry *h = NULL;
9264 const char *sym_name;
9265
9266 if (r_symndx == STN_UNDEF)
9267 continue;
9268
9269 if (r_symndx >= locsymcount
9270 || (elf_bad_symtab (input_bfd)
9271 && finfo->sections[r_symndx] == NULL))
9272 {
9273 h = sym_hashes[r_symndx - extsymoff];
9274
9275 /* Badly formatted input files can contain relocs that
9276 reference non-existant symbols. Check here so that
9277 we do not seg fault. */
9278 if (h == NULL)
9279 {
9280 char buffer [32];
9281
9282 sprintf_vma (buffer, rel->r_info);
9283 (*_bfd_error_handler)
9284 (_("error: %B contains a reloc (0x%s) for section %A "
9285 "that references a non-existent global symbol"),
9286 input_bfd, o, buffer);
9287 bfd_set_error (bfd_error_bad_value);
9288 return FALSE;
9289 }
9290
9291 while (h->root.type == bfd_link_hash_indirect
9292 || h->root.type == bfd_link_hash_warning)
9293 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9294
9295 if (h->root.type != bfd_link_hash_defined
9296 && h->root.type != bfd_link_hash_defweak)
9297 continue;
9298
9299 ps = &h->root.u.def.section;
9300 sym_name = h->root.root.string;
9301 }
9302 else
9303 {
9304 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9305 ps = &finfo->sections[r_symndx];
9306 sym_name = bfd_elf_sym_name (input_bfd,
9307 symtab_hdr,
9308 sym, *ps);
9309 }
9310
9311 /* Complain if the definition comes from a
9312 discarded section. */
9313 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9314 {
9315 BFD_ASSERT (r_symndx != 0);
9316 if (action & COMPLAIN)
9317 (*finfo->info->callbacks->einfo)
9318 (_("%X`%s' referenced in section `%A' of %B: "
9319 "defined in discarded section `%A' of %B\n"),
9320 sym_name, o, input_bfd, sec, sec->owner);
9321
9322 /* Try to do the best we can to support buggy old
9323 versions of gcc. Pretend that the symbol is
9324 really defined in the kept linkonce section.
9325 FIXME: This is quite broken. Modifying the
9326 symbol here means we will be changing all later
9327 uses of the symbol, not just in this section. */
9328 if (action & PRETEND)
9329 {
9330 asection *kept;
9331
9332 kept = _bfd_elf_check_kept_section (sec,
9333 finfo->info);
9334 if (kept != NULL)
9335 {
9336 *ps = kept;
9337 continue;
9338 }
9339 }
9340 }
9341 }
9342 }
9343
9344 /* Relocate the section by invoking a back end routine.
9345
9346 The back end routine is responsible for adjusting the
9347 section contents as necessary, and (if using Rela relocs
9348 and generating a relocatable output file) adjusting the
9349 reloc addend as necessary.
9350
9351 The back end routine does not have to worry about setting
9352 the reloc address or the reloc symbol index.
9353
9354 The back end routine is given a pointer to the swapped in
9355 internal symbols, and can access the hash table entries
9356 for the external symbols via elf_sym_hashes (input_bfd).
9357
9358 When generating relocatable output, the back end routine
9359 must handle STB_LOCAL/STT_SECTION symbols specially. The
9360 output symbol is going to be a section symbol
9361 corresponding to the output section, which will require
9362 the addend to be adjusted. */
9363
9364 ret = (*relocate_section) (output_bfd, finfo->info,
9365 input_bfd, o, contents,
9366 internal_relocs,
9367 isymbuf,
9368 finfo->sections);
9369 if (!ret)
9370 return FALSE;
9371
9372 if (ret == 2
9373 || finfo->info->relocatable
9374 || finfo->info->emitrelocations)
9375 {
9376 Elf_Internal_Rela *irela;
9377 Elf_Internal_Rela *irelaend;
9378 bfd_vma last_offset;
9379 struct elf_link_hash_entry **rel_hash;
9380 struct elf_link_hash_entry **rel_hash_list;
9381 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9382 unsigned int next_erel;
9383 bfd_boolean rela_normal;
9384
9385 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9386 rela_normal = (bed->rela_normal
9387 && (input_rel_hdr->sh_entsize
9388 == bed->s->sizeof_rela));
9389
9390 /* Adjust the reloc addresses and symbol indices. */
9391
9392 irela = internal_relocs;
9393 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9394 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9395 + elf_section_data (o->output_section)->rel_count
9396 + elf_section_data (o->output_section)->rel_count2);
9397 rel_hash_list = rel_hash;
9398 last_offset = o->output_offset;
9399 if (!finfo->info->relocatable)
9400 last_offset += o->output_section->vma;
9401 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9402 {
9403 unsigned long r_symndx;
9404 asection *sec;
9405 Elf_Internal_Sym sym;
9406
9407 if (next_erel == bed->s->int_rels_per_ext_rel)
9408 {
9409 rel_hash++;
9410 next_erel = 0;
9411 }
9412
9413 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9414 finfo->info, o,
9415 irela->r_offset);
9416 if (irela->r_offset >= (bfd_vma) -2)
9417 {
9418 /* This is a reloc for a deleted entry or somesuch.
9419 Turn it into an R_*_NONE reloc, at the same
9420 offset as the last reloc. elf_eh_frame.c and
9421 bfd_elf_discard_info rely on reloc offsets
9422 being ordered. */
9423 irela->r_offset = last_offset;
9424 irela->r_info = 0;
9425 irela->r_addend = 0;
9426 continue;
9427 }
9428
9429 irela->r_offset += o->output_offset;
9430
9431 /* Relocs in an executable have to be virtual addresses. */
9432 if (!finfo->info->relocatable)
9433 irela->r_offset += o->output_section->vma;
9434
9435 last_offset = irela->r_offset;
9436
9437 r_symndx = irela->r_info >> r_sym_shift;
9438 if (r_symndx == STN_UNDEF)
9439 continue;
9440
9441 if (r_symndx >= locsymcount
9442 || (elf_bad_symtab (input_bfd)
9443 && finfo->sections[r_symndx] == NULL))
9444 {
9445 struct elf_link_hash_entry *rh;
9446 unsigned long indx;
9447
9448 /* This is a reloc against a global symbol. We
9449 have not yet output all the local symbols, so
9450 we do not know the symbol index of any global
9451 symbol. We set the rel_hash entry for this
9452 reloc to point to the global hash table entry
9453 for this symbol. The symbol index is then
9454 set at the end of bfd_elf_final_link. */
9455 indx = r_symndx - extsymoff;
9456 rh = elf_sym_hashes (input_bfd)[indx];
9457 while (rh->root.type == bfd_link_hash_indirect
9458 || rh->root.type == bfd_link_hash_warning)
9459 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9460
9461 /* Setting the index to -2 tells
9462 elf_link_output_extsym that this symbol is
9463 used by a reloc. */
9464 BFD_ASSERT (rh->indx < 0);
9465 rh->indx = -2;
9466
9467 *rel_hash = rh;
9468
9469 continue;
9470 }
9471
9472 /* This is a reloc against a local symbol. */
9473
9474 *rel_hash = NULL;
9475 sym = isymbuf[r_symndx];
9476 sec = finfo->sections[r_symndx];
9477 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9478 {
9479 /* I suppose the backend ought to fill in the
9480 section of any STT_SECTION symbol against a
9481 processor specific section. */
9482 r_symndx = 0;
9483 if (bfd_is_abs_section (sec))
9484 ;
9485 else if (sec == NULL || sec->owner == NULL)
9486 {
9487 bfd_set_error (bfd_error_bad_value);
9488 return FALSE;
9489 }
9490 else
9491 {
9492 asection *osec = sec->output_section;
9493
9494 /* If we have discarded a section, the output
9495 section will be the absolute section. In
9496 case of discarded SEC_MERGE sections, use
9497 the kept section. relocate_section should
9498 have already handled discarded linkonce
9499 sections. */
9500 if (bfd_is_abs_section (osec)
9501 && sec->kept_section != NULL
9502 && sec->kept_section->output_section != NULL)
9503 {
9504 osec = sec->kept_section->output_section;
9505 irela->r_addend -= osec->vma;
9506 }
9507
9508 if (!bfd_is_abs_section (osec))
9509 {
9510 r_symndx = osec->target_index;
9511 if (r_symndx == 0)
9512 {
9513 struct elf_link_hash_table *htab;
9514 asection *oi;
9515
9516 htab = elf_hash_table (finfo->info);
9517 oi = htab->text_index_section;
9518 if ((osec->flags & SEC_READONLY) == 0
9519 && htab->data_index_section != NULL)
9520 oi = htab->data_index_section;
9521
9522 if (oi != NULL)
9523 {
9524 irela->r_addend += osec->vma - oi->vma;
9525 r_symndx = oi->target_index;
9526 }
9527 }
9528
9529 BFD_ASSERT (r_symndx != 0);
9530 }
9531 }
9532
9533 /* Adjust the addend according to where the
9534 section winds up in the output section. */
9535 if (rela_normal)
9536 irela->r_addend += sec->output_offset;
9537 }
9538 else
9539 {
9540 if (finfo->indices[r_symndx] == -1)
9541 {
9542 unsigned long shlink;
9543 const char *name;
9544 asection *osec;
9545
9546 if (finfo->info->strip == strip_all)
9547 {
9548 /* You can't do ld -r -s. */
9549 bfd_set_error (bfd_error_invalid_operation);
9550 return FALSE;
9551 }
9552
9553 /* This symbol was skipped earlier, but
9554 since it is needed by a reloc, we
9555 must output it now. */
9556 shlink = symtab_hdr->sh_link;
9557 name = (bfd_elf_string_from_elf_section
9558 (input_bfd, shlink, sym.st_name));
9559 if (name == NULL)
9560 return FALSE;
9561
9562 osec = sec->output_section;
9563 sym.st_shndx =
9564 _bfd_elf_section_from_bfd_section (output_bfd,
9565 osec);
9566 if (sym.st_shndx == SHN_BAD)
9567 return FALSE;
9568
9569 sym.st_value += sec->output_offset;
9570 if (! finfo->info->relocatable)
9571 {
9572 sym.st_value += osec->vma;
9573 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9574 {
9575 /* STT_TLS symbols are relative to PT_TLS
9576 segment base. */
9577 BFD_ASSERT (elf_hash_table (finfo->info)
9578 ->tls_sec != NULL);
9579 sym.st_value -= (elf_hash_table (finfo->info)
9580 ->tls_sec->vma);
9581 }
9582 }
9583
9584 finfo->indices[r_symndx]
9585 = bfd_get_symcount (output_bfd);
9586
9587 if (! elf_link_output_sym (finfo, name, &sym, sec,
9588 NULL))
9589 return FALSE;
9590 }
9591
9592 r_symndx = finfo->indices[r_symndx];
9593 }
9594
9595 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9596 | (irela->r_info & r_type_mask));
9597 }
9598
9599 /* Swap out the relocs. */
9600 if (input_rel_hdr->sh_size != 0
9601 && !bed->elf_backend_emit_relocs (output_bfd, o,
9602 input_rel_hdr,
9603 internal_relocs,
9604 rel_hash_list))
9605 return FALSE;
9606
9607 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9608 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9609 {
9610 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9611 * bed->s->int_rels_per_ext_rel);
9612 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9613 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9614 input_rel_hdr2,
9615 internal_relocs,
9616 rel_hash_list))
9617 return FALSE;
9618 }
9619 }
9620 }
9621
9622 /* Write out the modified section contents. */
9623 if (bed->elf_backend_write_section
9624 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9625 contents))
9626 {
9627 /* Section written out. */
9628 }
9629 else switch (o->sec_info_type)
9630 {
9631 case ELF_INFO_TYPE_STABS:
9632 if (! (_bfd_write_section_stabs
9633 (output_bfd,
9634 &elf_hash_table (finfo->info)->stab_info,
9635 o, &elf_section_data (o)->sec_info, contents)))
9636 return FALSE;
9637 break;
9638 case ELF_INFO_TYPE_MERGE:
9639 if (! _bfd_write_merged_section (output_bfd, o,
9640 elf_section_data (o)->sec_info))
9641 return FALSE;
9642 break;
9643 case ELF_INFO_TYPE_EH_FRAME:
9644 {
9645 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9646 o, contents))
9647 return FALSE;
9648 }
9649 break;
9650 default:
9651 {
9652 if (! (o->flags & SEC_EXCLUDE)
9653 && ! bfd_set_section_contents (output_bfd, o->output_section,
9654 contents,
9655 (file_ptr) o->output_offset,
9656 o->size))
9657 return FALSE;
9658 }
9659 break;
9660 }
9661 }
9662
9663 return TRUE;
9664 }
9665
9666 /* Generate a reloc when linking an ELF file. This is a reloc
9667 requested by the linker, and does not come from any input file. This
9668 is used to build constructor and destructor tables when linking
9669 with -Ur. */
9670
9671 static bfd_boolean
9672 elf_reloc_link_order (bfd *output_bfd,
9673 struct bfd_link_info *info,
9674 asection *output_section,
9675 struct bfd_link_order *link_order)
9676 {
9677 reloc_howto_type *howto;
9678 long indx;
9679 bfd_vma offset;
9680 bfd_vma addend;
9681 struct elf_link_hash_entry **rel_hash_ptr;
9682 Elf_Internal_Shdr *rel_hdr;
9683 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9684 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9685 bfd_byte *erel;
9686 unsigned int i;
9687
9688 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9689 if (howto == NULL)
9690 {
9691 bfd_set_error (bfd_error_bad_value);
9692 return FALSE;
9693 }
9694
9695 addend = link_order->u.reloc.p->addend;
9696
9697 /* Figure out the symbol index. */
9698 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9699 + elf_section_data (output_section)->rel_count
9700 + elf_section_data (output_section)->rel_count2);
9701 if (link_order->type == bfd_section_reloc_link_order)
9702 {
9703 indx = link_order->u.reloc.p->u.section->target_index;
9704 BFD_ASSERT (indx != 0);
9705 *rel_hash_ptr = NULL;
9706 }
9707 else
9708 {
9709 struct elf_link_hash_entry *h;
9710
9711 /* Treat a reloc against a defined symbol as though it were
9712 actually against the section. */
9713 h = ((struct elf_link_hash_entry *)
9714 bfd_wrapped_link_hash_lookup (output_bfd, info,
9715 link_order->u.reloc.p->u.name,
9716 FALSE, FALSE, TRUE));
9717 if (h != NULL
9718 && (h->root.type == bfd_link_hash_defined
9719 || h->root.type == bfd_link_hash_defweak))
9720 {
9721 asection *section;
9722
9723 section = h->root.u.def.section;
9724 indx = section->output_section->target_index;
9725 *rel_hash_ptr = NULL;
9726 /* It seems that we ought to add the symbol value to the
9727 addend here, but in practice it has already been added
9728 because it was passed to constructor_callback. */
9729 addend += section->output_section->vma + section->output_offset;
9730 }
9731 else if (h != NULL)
9732 {
9733 /* Setting the index to -2 tells elf_link_output_extsym that
9734 this symbol is used by a reloc. */
9735 h->indx = -2;
9736 *rel_hash_ptr = h;
9737 indx = 0;
9738 }
9739 else
9740 {
9741 if (! ((*info->callbacks->unattached_reloc)
9742 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9743 return FALSE;
9744 indx = 0;
9745 }
9746 }
9747
9748 /* If this is an inplace reloc, we must write the addend into the
9749 object file. */
9750 if (howto->partial_inplace && addend != 0)
9751 {
9752 bfd_size_type size;
9753 bfd_reloc_status_type rstat;
9754 bfd_byte *buf;
9755 bfd_boolean ok;
9756 const char *sym_name;
9757
9758 size = bfd_get_reloc_size (howto);
9759 buf = bfd_zmalloc (size);
9760 if (buf == NULL)
9761 return FALSE;
9762 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9763 switch (rstat)
9764 {
9765 case bfd_reloc_ok:
9766 break;
9767
9768 default:
9769 case bfd_reloc_outofrange:
9770 abort ();
9771
9772 case bfd_reloc_overflow:
9773 if (link_order->type == bfd_section_reloc_link_order)
9774 sym_name = bfd_section_name (output_bfd,
9775 link_order->u.reloc.p->u.section);
9776 else
9777 sym_name = link_order->u.reloc.p->u.name;
9778 if (! ((*info->callbacks->reloc_overflow)
9779 (info, NULL, sym_name, howto->name, addend, NULL,
9780 NULL, (bfd_vma) 0)))
9781 {
9782 free (buf);
9783 return FALSE;
9784 }
9785 break;
9786 }
9787 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9788 link_order->offset, size);
9789 free (buf);
9790 if (! ok)
9791 return FALSE;
9792 }
9793
9794 /* The address of a reloc is relative to the section in a
9795 relocatable file, and is a virtual address in an executable
9796 file. */
9797 offset = link_order->offset;
9798 if (! info->relocatable)
9799 offset += output_section->vma;
9800
9801 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9802 {
9803 irel[i].r_offset = offset;
9804 irel[i].r_info = 0;
9805 irel[i].r_addend = 0;
9806 }
9807 if (bed->s->arch_size == 32)
9808 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9809 else
9810 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9811
9812 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9813 erel = rel_hdr->contents;
9814 if (rel_hdr->sh_type == SHT_REL)
9815 {
9816 erel += (elf_section_data (output_section)->rel_count
9817 * bed->s->sizeof_rel);
9818 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9819 }
9820 else
9821 {
9822 irel[0].r_addend = addend;
9823 erel += (elf_section_data (output_section)->rel_count
9824 * bed->s->sizeof_rela);
9825 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9826 }
9827
9828 ++elf_section_data (output_section)->rel_count;
9829
9830 return TRUE;
9831 }
9832
9833
9834 /* Get the output vma of the section pointed to by the sh_link field. */
9835
9836 static bfd_vma
9837 elf_get_linked_section_vma (struct bfd_link_order *p)
9838 {
9839 Elf_Internal_Shdr **elf_shdrp;
9840 asection *s;
9841 int elfsec;
9842
9843 s = p->u.indirect.section;
9844 elf_shdrp = elf_elfsections (s->owner);
9845 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9846 elfsec = elf_shdrp[elfsec]->sh_link;
9847 /* PR 290:
9848 The Intel C compiler generates SHT_IA_64_UNWIND with
9849 SHF_LINK_ORDER. But it doesn't set the sh_link or
9850 sh_info fields. Hence we could get the situation
9851 where elfsec is 0. */
9852 if (elfsec == 0)
9853 {
9854 const struct elf_backend_data *bed
9855 = get_elf_backend_data (s->owner);
9856 if (bed->link_order_error_handler)
9857 bed->link_order_error_handler
9858 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9859 return 0;
9860 }
9861 else
9862 {
9863 s = elf_shdrp[elfsec]->bfd_section;
9864 return s->output_section->vma + s->output_offset;
9865 }
9866 }
9867
9868
9869 /* Compare two sections based on the locations of the sections they are
9870 linked to. Used by elf_fixup_link_order. */
9871
9872 static int
9873 compare_link_order (const void * a, const void * b)
9874 {
9875 bfd_vma apos;
9876 bfd_vma bpos;
9877
9878 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9879 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9880 if (apos < bpos)
9881 return -1;
9882 return apos > bpos;
9883 }
9884
9885
9886 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9887 order as their linked sections. Returns false if this could not be done
9888 because an output section includes both ordered and unordered
9889 sections. Ideally we'd do this in the linker proper. */
9890
9891 static bfd_boolean
9892 elf_fixup_link_order (bfd *abfd, asection *o)
9893 {
9894 int seen_linkorder;
9895 int seen_other;
9896 int n;
9897 struct bfd_link_order *p;
9898 bfd *sub;
9899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9900 unsigned elfsec;
9901 struct bfd_link_order **sections;
9902 asection *s, *other_sec, *linkorder_sec;
9903 bfd_vma offset;
9904
9905 other_sec = NULL;
9906 linkorder_sec = NULL;
9907 seen_other = 0;
9908 seen_linkorder = 0;
9909 for (p = o->map_head.link_order; p != NULL; p = p->next)
9910 {
9911 if (p->type == bfd_indirect_link_order)
9912 {
9913 s = p->u.indirect.section;
9914 sub = s->owner;
9915 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9916 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9917 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9918 && elfsec < elf_numsections (sub)
9919 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9920 {
9921 seen_linkorder++;
9922 linkorder_sec = s;
9923 }
9924 else
9925 {
9926 seen_other++;
9927 other_sec = s;
9928 }
9929 }
9930 else
9931 seen_other++;
9932
9933 if (seen_other && seen_linkorder)
9934 {
9935 if (other_sec && linkorder_sec)
9936 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9937 o, linkorder_sec,
9938 linkorder_sec->owner, other_sec,
9939 other_sec->owner);
9940 else
9941 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9942 o);
9943 bfd_set_error (bfd_error_bad_value);
9944 return FALSE;
9945 }
9946 }
9947
9948 if (!seen_linkorder)
9949 return TRUE;
9950
9951 sections = (struct bfd_link_order **)
9952 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
9953 seen_linkorder = 0;
9954
9955 for (p = o->map_head.link_order; p != NULL; p = p->next)
9956 {
9957 sections[seen_linkorder++] = p;
9958 }
9959 /* Sort the input sections in the order of their linked section. */
9960 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9961 compare_link_order);
9962
9963 /* Change the offsets of the sections. */
9964 offset = 0;
9965 for (n = 0; n < seen_linkorder; n++)
9966 {
9967 s = sections[n]->u.indirect.section;
9968 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
9969 s->output_offset = offset;
9970 sections[n]->offset = offset;
9971 offset += sections[n]->size;
9972 }
9973
9974 return TRUE;
9975 }
9976
9977
9978 /* Do the final step of an ELF link. */
9979
9980 bfd_boolean
9981 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9982 {
9983 bfd_boolean dynamic;
9984 bfd_boolean emit_relocs;
9985 bfd *dynobj;
9986 struct elf_final_link_info finfo;
9987 register asection *o;
9988 register struct bfd_link_order *p;
9989 register bfd *sub;
9990 bfd_size_type max_contents_size;
9991 bfd_size_type max_external_reloc_size;
9992 bfd_size_type max_internal_reloc_count;
9993 bfd_size_type max_sym_count;
9994 bfd_size_type max_sym_shndx_count;
9995 file_ptr off;
9996 Elf_Internal_Sym elfsym;
9997 unsigned int i;
9998 Elf_Internal_Shdr *symtab_hdr;
9999 Elf_Internal_Shdr *symtab_shndx_hdr;
10000 Elf_Internal_Shdr *symstrtab_hdr;
10001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10002 struct elf_outext_info eoinfo;
10003 bfd_boolean merged;
10004 size_t relativecount = 0;
10005 asection *reldyn = 0;
10006 bfd_size_type amt;
10007 asection *attr_section = NULL;
10008 bfd_vma attr_size = 0;
10009 const char *std_attrs_section;
10010
10011 if (! is_elf_hash_table (info->hash))
10012 return FALSE;
10013
10014 if (info->shared)
10015 abfd->flags |= DYNAMIC;
10016
10017 dynamic = elf_hash_table (info)->dynamic_sections_created;
10018 dynobj = elf_hash_table (info)->dynobj;
10019
10020 emit_relocs = (info->relocatable
10021 || info->emitrelocations);
10022
10023 finfo.info = info;
10024 finfo.output_bfd = abfd;
10025 finfo.symstrtab = _bfd_elf_stringtab_init ();
10026 if (finfo.symstrtab == NULL)
10027 return FALSE;
10028
10029 if (! dynamic)
10030 {
10031 finfo.dynsym_sec = NULL;
10032 finfo.hash_sec = NULL;
10033 finfo.symver_sec = NULL;
10034 }
10035 else
10036 {
10037 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10038 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10039 BFD_ASSERT (finfo.dynsym_sec != NULL);
10040 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10041 /* Note that it is OK if symver_sec is NULL. */
10042 }
10043
10044 finfo.contents = NULL;
10045 finfo.external_relocs = NULL;
10046 finfo.internal_relocs = NULL;
10047 finfo.external_syms = NULL;
10048 finfo.locsym_shndx = NULL;
10049 finfo.internal_syms = NULL;
10050 finfo.indices = NULL;
10051 finfo.sections = NULL;
10052 finfo.symbuf = NULL;
10053 finfo.symshndxbuf = NULL;
10054 finfo.symbuf_count = 0;
10055 finfo.shndxbuf_size = 0;
10056
10057 /* The object attributes have been merged. Remove the input
10058 sections from the link, and set the contents of the output
10059 secton. */
10060 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10061 for (o = abfd->sections; o != NULL; o = o->next)
10062 {
10063 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10064 || strcmp (o->name, ".gnu.attributes") == 0)
10065 {
10066 for (p = o->map_head.link_order; p != NULL; p = p->next)
10067 {
10068 asection *input_section;
10069
10070 if (p->type != bfd_indirect_link_order)
10071 continue;
10072 input_section = p->u.indirect.section;
10073 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10074 elf_link_input_bfd ignores this section. */
10075 input_section->flags &= ~SEC_HAS_CONTENTS;
10076 }
10077
10078 attr_size = bfd_elf_obj_attr_size (abfd);
10079 if (attr_size)
10080 {
10081 bfd_set_section_size (abfd, o, attr_size);
10082 attr_section = o;
10083 /* Skip this section later on. */
10084 o->map_head.link_order = NULL;
10085 }
10086 else
10087 o->flags |= SEC_EXCLUDE;
10088 }
10089 }
10090
10091 /* Count up the number of relocations we will output for each output
10092 section, so that we know the sizes of the reloc sections. We
10093 also figure out some maximum sizes. */
10094 max_contents_size = 0;
10095 max_external_reloc_size = 0;
10096 max_internal_reloc_count = 0;
10097 max_sym_count = 0;
10098 max_sym_shndx_count = 0;
10099 merged = FALSE;
10100 for (o = abfd->sections; o != NULL; o = o->next)
10101 {
10102 struct bfd_elf_section_data *esdo = elf_section_data (o);
10103 o->reloc_count = 0;
10104
10105 for (p = o->map_head.link_order; p != NULL; p = p->next)
10106 {
10107 unsigned int reloc_count = 0;
10108 struct bfd_elf_section_data *esdi = NULL;
10109 unsigned int *rel_count1;
10110
10111 if (p->type == bfd_section_reloc_link_order
10112 || p->type == bfd_symbol_reloc_link_order)
10113 reloc_count = 1;
10114 else if (p->type == bfd_indirect_link_order)
10115 {
10116 asection *sec;
10117
10118 sec = p->u.indirect.section;
10119 esdi = elf_section_data (sec);
10120
10121 /* Mark all sections which are to be included in the
10122 link. This will normally be every section. We need
10123 to do this so that we can identify any sections which
10124 the linker has decided to not include. */
10125 sec->linker_mark = TRUE;
10126
10127 if (sec->flags & SEC_MERGE)
10128 merged = TRUE;
10129
10130 if (info->relocatable || info->emitrelocations)
10131 reloc_count = sec->reloc_count;
10132 else if (bed->elf_backend_count_relocs)
10133 {
10134 Elf_Internal_Rela * relocs;
10135
10136 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10137 NULL, NULL,
10138 info->keep_memory);
10139
10140 if (relocs != NULL)
10141 {
10142 reloc_count
10143 = (*bed->elf_backend_count_relocs) (sec, relocs);
10144
10145 if (elf_section_data (sec)->relocs != relocs)
10146 free (relocs);
10147 }
10148 }
10149
10150 if (sec->rawsize > max_contents_size)
10151 max_contents_size = sec->rawsize;
10152 if (sec->size > max_contents_size)
10153 max_contents_size = sec->size;
10154
10155 /* We are interested in just local symbols, not all
10156 symbols. */
10157 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10158 && (sec->owner->flags & DYNAMIC) == 0)
10159 {
10160 size_t sym_count;
10161
10162 if (elf_bad_symtab (sec->owner))
10163 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10164 / bed->s->sizeof_sym);
10165 else
10166 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10167
10168 if (sym_count > max_sym_count)
10169 max_sym_count = sym_count;
10170
10171 if (sym_count > max_sym_shndx_count
10172 && elf_symtab_shndx (sec->owner) != 0)
10173 max_sym_shndx_count = sym_count;
10174
10175 if ((sec->flags & SEC_RELOC) != 0)
10176 {
10177 size_t ext_size;
10178
10179 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10180 if (ext_size > max_external_reloc_size)
10181 max_external_reloc_size = ext_size;
10182 if (sec->reloc_count > max_internal_reloc_count)
10183 max_internal_reloc_count = sec->reloc_count;
10184 }
10185 }
10186 }
10187
10188 if (reloc_count == 0)
10189 continue;
10190
10191 o->reloc_count += reloc_count;
10192
10193 /* MIPS may have a mix of REL and RELA relocs on sections.
10194 To support this curious ABI we keep reloc counts in
10195 elf_section_data too. We must be careful to add the
10196 relocations from the input section to the right output
10197 count. FIXME: Get rid of one count. We have
10198 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10199 rel_count1 = &esdo->rel_count;
10200 if (esdi != NULL)
10201 {
10202 bfd_boolean same_size;
10203 bfd_size_type entsize1;
10204
10205 entsize1 = esdi->rel_hdr.sh_entsize;
10206 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10207 || entsize1 == bed->s->sizeof_rela);
10208 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10209
10210 if (!same_size)
10211 rel_count1 = &esdo->rel_count2;
10212
10213 if (esdi->rel_hdr2 != NULL)
10214 {
10215 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10216 unsigned int alt_count;
10217 unsigned int *rel_count2;
10218
10219 BFD_ASSERT (entsize2 != entsize1
10220 && (entsize2 == bed->s->sizeof_rel
10221 || entsize2 == bed->s->sizeof_rela));
10222
10223 rel_count2 = &esdo->rel_count2;
10224 if (!same_size)
10225 rel_count2 = &esdo->rel_count;
10226
10227 /* The following is probably too simplistic if the
10228 backend counts output relocs unusually. */
10229 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10230 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10231 *rel_count2 += alt_count;
10232 reloc_count -= alt_count;
10233 }
10234 }
10235 *rel_count1 += reloc_count;
10236 }
10237
10238 if (o->reloc_count > 0)
10239 o->flags |= SEC_RELOC;
10240 else
10241 {
10242 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10243 set it (this is probably a bug) and if it is set
10244 assign_section_numbers will create a reloc section. */
10245 o->flags &=~ SEC_RELOC;
10246 }
10247
10248 /* If the SEC_ALLOC flag is not set, force the section VMA to
10249 zero. This is done in elf_fake_sections as well, but forcing
10250 the VMA to 0 here will ensure that relocs against these
10251 sections are handled correctly. */
10252 if ((o->flags & SEC_ALLOC) == 0
10253 && ! o->user_set_vma)
10254 o->vma = 0;
10255 }
10256
10257 if (! info->relocatable && merged)
10258 elf_link_hash_traverse (elf_hash_table (info),
10259 _bfd_elf_link_sec_merge_syms, abfd);
10260
10261 /* Figure out the file positions for everything but the symbol table
10262 and the relocs. We set symcount to force assign_section_numbers
10263 to create a symbol table. */
10264 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10265 BFD_ASSERT (! abfd->output_has_begun);
10266 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10267 goto error_return;
10268
10269 /* Set sizes, and assign file positions for reloc sections. */
10270 for (o = abfd->sections; o != NULL; o = o->next)
10271 {
10272 if ((o->flags & SEC_RELOC) != 0)
10273 {
10274 if (!(_bfd_elf_link_size_reloc_section
10275 (abfd, &elf_section_data (o)->rel_hdr, o)))
10276 goto error_return;
10277
10278 if (elf_section_data (o)->rel_hdr2
10279 && !(_bfd_elf_link_size_reloc_section
10280 (abfd, elf_section_data (o)->rel_hdr2, o)))
10281 goto error_return;
10282 }
10283
10284 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10285 to count upwards while actually outputting the relocations. */
10286 elf_section_data (o)->rel_count = 0;
10287 elf_section_data (o)->rel_count2 = 0;
10288 }
10289
10290 _bfd_elf_assign_file_positions_for_relocs (abfd);
10291
10292 /* We have now assigned file positions for all the sections except
10293 .symtab and .strtab. We start the .symtab section at the current
10294 file position, and write directly to it. We build the .strtab
10295 section in memory. */
10296 bfd_get_symcount (abfd) = 0;
10297 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10298 /* sh_name is set in prep_headers. */
10299 symtab_hdr->sh_type = SHT_SYMTAB;
10300 /* sh_flags, sh_addr and sh_size all start off zero. */
10301 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10302 /* sh_link is set in assign_section_numbers. */
10303 /* sh_info is set below. */
10304 /* sh_offset is set just below. */
10305 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10306
10307 off = elf_tdata (abfd)->next_file_pos;
10308 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10309
10310 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10311 incorrect. We do not yet know the size of the .symtab section.
10312 We correct next_file_pos below, after we do know the size. */
10313
10314 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10315 continuously seeking to the right position in the file. */
10316 if (! info->keep_memory || max_sym_count < 20)
10317 finfo.symbuf_size = 20;
10318 else
10319 finfo.symbuf_size = max_sym_count;
10320 amt = finfo.symbuf_size;
10321 amt *= bed->s->sizeof_sym;
10322 finfo.symbuf = bfd_malloc (amt);
10323 if (finfo.symbuf == NULL)
10324 goto error_return;
10325 if (elf_numsections (abfd) > SHN_LORESERVE)
10326 {
10327 /* Wild guess at number of output symbols. realloc'd as needed. */
10328 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10329 finfo.shndxbuf_size = amt;
10330 amt *= sizeof (Elf_External_Sym_Shndx);
10331 finfo.symshndxbuf = bfd_zmalloc (amt);
10332 if (finfo.symshndxbuf == NULL)
10333 goto error_return;
10334 }
10335
10336 /* Start writing out the symbol table. The first symbol is always a
10337 dummy symbol. */
10338 if (info->strip != strip_all
10339 || emit_relocs)
10340 {
10341 elfsym.st_value = 0;
10342 elfsym.st_size = 0;
10343 elfsym.st_info = 0;
10344 elfsym.st_other = 0;
10345 elfsym.st_shndx = SHN_UNDEF;
10346 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10347 NULL))
10348 goto error_return;
10349 }
10350
10351 /* Output a symbol for each section. We output these even if we are
10352 discarding local symbols, since they are used for relocs. These
10353 symbols have no names. We store the index of each one in the
10354 index field of the section, so that we can find it again when
10355 outputting relocs. */
10356 if (info->strip != strip_all
10357 || emit_relocs)
10358 {
10359 elfsym.st_size = 0;
10360 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10361 elfsym.st_other = 0;
10362 elfsym.st_value = 0;
10363 for (i = 1; i < elf_numsections (abfd); i++)
10364 {
10365 o = bfd_section_from_elf_index (abfd, i);
10366 if (o != NULL)
10367 {
10368 o->target_index = bfd_get_symcount (abfd);
10369 elfsym.st_shndx = i;
10370 if (!info->relocatable)
10371 elfsym.st_value = o->vma;
10372 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10373 goto error_return;
10374 }
10375 if (i == SHN_LORESERVE - 1)
10376 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10377 }
10378 }
10379
10380 /* Allocate some memory to hold information read in from the input
10381 files. */
10382 if (max_contents_size != 0)
10383 {
10384 finfo.contents = bfd_malloc (max_contents_size);
10385 if (finfo.contents == NULL)
10386 goto error_return;
10387 }
10388
10389 if (max_external_reloc_size != 0)
10390 {
10391 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10392 if (finfo.external_relocs == NULL)
10393 goto error_return;
10394 }
10395
10396 if (max_internal_reloc_count != 0)
10397 {
10398 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10399 amt *= sizeof (Elf_Internal_Rela);
10400 finfo.internal_relocs = bfd_malloc (amt);
10401 if (finfo.internal_relocs == NULL)
10402 goto error_return;
10403 }
10404
10405 if (max_sym_count != 0)
10406 {
10407 amt = max_sym_count * bed->s->sizeof_sym;
10408 finfo.external_syms = bfd_malloc (amt);
10409 if (finfo.external_syms == NULL)
10410 goto error_return;
10411
10412 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10413 finfo.internal_syms = bfd_malloc (amt);
10414 if (finfo.internal_syms == NULL)
10415 goto error_return;
10416
10417 amt = max_sym_count * sizeof (long);
10418 finfo.indices = bfd_malloc (amt);
10419 if (finfo.indices == NULL)
10420 goto error_return;
10421
10422 amt = max_sym_count * sizeof (asection *);
10423 finfo.sections = bfd_malloc (amt);
10424 if (finfo.sections == NULL)
10425 goto error_return;
10426 }
10427
10428 if (max_sym_shndx_count != 0)
10429 {
10430 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10431 finfo.locsym_shndx = bfd_malloc (amt);
10432 if (finfo.locsym_shndx == NULL)
10433 goto error_return;
10434 }
10435
10436 if (elf_hash_table (info)->tls_sec)
10437 {
10438 bfd_vma base, end = 0;
10439 asection *sec;
10440
10441 for (sec = elf_hash_table (info)->tls_sec;
10442 sec && (sec->flags & SEC_THREAD_LOCAL);
10443 sec = sec->next)
10444 {
10445 bfd_size_type size = sec->size;
10446
10447 if (size == 0
10448 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10449 {
10450 struct bfd_link_order *o = sec->map_tail.link_order;
10451 if (o != NULL)
10452 size = o->offset + o->size;
10453 }
10454 end = sec->vma + size;
10455 }
10456 base = elf_hash_table (info)->tls_sec->vma;
10457 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10458 elf_hash_table (info)->tls_size = end - base;
10459 }
10460
10461 /* Reorder SHF_LINK_ORDER sections. */
10462 for (o = abfd->sections; o != NULL; o = o->next)
10463 {
10464 if (!elf_fixup_link_order (abfd, o))
10465 return FALSE;
10466 }
10467
10468 /* Since ELF permits relocations to be against local symbols, we
10469 must have the local symbols available when we do the relocations.
10470 Since we would rather only read the local symbols once, and we
10471 would rather not keep them in memory, we handle all the
10472 relocations for a single input file at the same time.
10473
10474 Unfortunately, there is no way to know the total number of local
10475 symbols until we have seen all of them, and the local symbol
10476 indices precede the global symbol indices. This means that when
10477 we are generating relocatable output, and we see a reloc against
10478 a global symbol, we can not know the symbol index until we have
10479 finished examining all the local symbols to see which ones we are
10480 going to output. To deal with this, we keep the relocations in
10481 memory, and don't output them until the end of the link. This is
10482 an unfortunate waste of memory, but I don't see a good way around
10483 it. Fortunately, it only happens when performing a relocatable
10484 link, which is not the common case. FIXME: If keep_memory is set
10485 we could write the relocs out and then read them again; I don't
10486 know how bad the memory loss will be. */
10487
10488 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10489 sub->output_has_begun = FALSE;
10490 for (o = abfd->sections; o != NULL; o = o->next)
10491 {
10492 for (p = o->map_head.link_order; p != NULL; p = p->next)
10493 {
10494 if (p->type == bfd_indirect_link_order
10495 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10496 == bfd_target_elf_flavour)
10497 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10498 {
10499 if (! sub->output_has_begun)
10500 {
10501 if (! elf_link_input_bfd (&finfo, sub))
10502 goto error_return;
10503 sub->output_has_begun = TRUE;
10504 }
10505 }
10506 else if (p->type == bfd_section_reloc_link_order
10507 || p->type == bfd_symbol_reloc_link_order)
10508 {
10509 if (! elf_reloc_link_order (abfd, info, o, p))
10510 goto error_return;
10511 }
10512 else
10513 {
10514 if (! _bfd_default_link_order (abfd, info, o, p))
10515 goto error_return;
10516 }
10517 }
10518 }
10519
10520 /* Free symbol buffer if needed. */
10521 if (!info->reduce_memory_overheads)
10522 {
10523 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10524 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10525 && elf_tdata (sub)->symbuf)
10526 {
10527 free (elf_tdata (sub)->symbuf);
10528 elf_tdata (sub)->symbuf = NULL;
10529 }
10530 }
10531
10532 /* Output any global symbols that got converted to local in a
10533 version script or due to symbol visibility. We do this in a
10534 separate step since ELF requires all local symbols to appear
10535 prior to any global symbols. FIXME: We should only do this if
10536 some global symbols were, in fact, converted to become local.
10537 FIXME: Will this work correctly with the Irix 5 linker? */
10538 eoinfo.failed = FALSE;
10539 eoinfo.finfo = &finfo;
10540 eoinfo.localsyms = TRUE;
10541 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10542 &eoinfo);
10543 if (eoinfo.failed)
10544 return FALSE;
10545
10546 /* If backend needs to output some local symbols not present in the hash
10547 table, do it now. */
10548 if (bed->elf_backend_output_arch_local_syms)
10549 {
10550 typedef bfd_boolean (*out_sym_func)
10551 (void *, const char *, Elf_Internal_Sym *, asection *,
10552 struct elf_link_hash_entry *);
10553
10554 if (! ((*bed->elf_backend_output_arch_local_syms)
10555 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10556 return FALSE;
10557 }
10558
10559 /* That wrote out all the local symbols. Finish up the symbol table
10560 with the global symbols. Even if we want to strip everything we
10561 can, we still need to deal with those global symbols that got
10562 converted to local in a version script. */
10563
10564 /* The sh_info field records the index of the first non local symbol. */
10565 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10566
10567 if (dynamic
10568 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10569 {
10570 Elf_Internal_Sym sym;
10571 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10572 long last_local = 0;
10573
10574 /* Write out the section symbols for the output sections. */
10575 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10576 {
10577 asection *s;
10578
10579 sym.st_size = 0;
10580 sym.st_name = 0;
10581 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10582 sym.st_other = 0;
10583
10584 for (s = abfd->sections; s != NULL; s = s->next)
10585 {
10586 int indx;
10587 bfd_byte *dest;
10588 long dynindx;
10589
10590 dynindx = elf_section_data (s)->dynindx;
10591 if (dynindx <= 0)
10592 continue;
10593 indx = elf_section_data (s)->this_idx;
10594 BFD_ASSERT (indx > 0);
10595 sym.st_shndx = indx;
10596 if (! check_dynsym (abfd, &sym))
10597 return FALSE;
10598 sym.st_value = s->vma;
10599 dest = dynsym + dynindx * bed->s->sizeof_sym;
10600 if (last_local < dynindx)
10601 last_local = dynindx;
10602 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10603 }
10604 }
10605
10606 /* Write out the local dynsyms. */
10607 if (elf_hash_table (info)->dynlocal)
10608 {
10609 struct elf_link_local_dynamic_entry *e;
10610 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10611 {
10612 asection *s;
10613 bfd_byte *dest;
10614
10615 sym.st_size = e->isym.st_size;
10616 sym.st_other = e->isym.st_other;
10617
10618 /* Copy the internal symbol as is.
10619 Note that we saved a word of storage and overwrote
10620 the original st_name with the dynstr_index. */
10621 sym = e->isym;
10622
10623 if (e->isym.st_shndx != SHN_UNDEF
10624 && (e->isym.st_shndx < SHN_LORESERVE
10625 || e->isym.st_shndx > SHN_HIRESERVE))
10626 {
10627 s = bfd_section_from_elf_index (e->input_bfd,
10628 e->isym.st_shndx);
10629
10630 sym.st_shndx =
10631 elf_section_data (s->output_section)->this_idx;
10632 if (! check_dynsym (abfd, &sym))
10633 return FALSE;
10634 sym.st_value = (s->output_section->vma
10635 + s->output_offset
10636 + e->isym.st_value);
10637 }
10638
10639 if (last_local < e->dynindx)
10640 last_local = e->dynindx;
10641
10642 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10643 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10644 }
10645 }
10646
10647 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10648 last_local + 1;
10649 }
10650
10651 /* We get the global symbols from the hash table. */
10652 eoinfo.failed = FALSE;
10653 eoinfo.localsyms = FALSE;
10654 eoinfo.finfo = &finfo;
10655 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10656 &eoinfo);
10657 if (eoinfo.failed)
10658 return FALSE;
10659
10660 /* If backend needs to output some symbols not present in the hash
10661 table, do it now. */
10662 if (bed->elf_backend_output_arch_syms)
10663 {
10664 typedef bfd_boolean (*out_sym_func)
10665 (void *, const char *, Elf_Internal_Sym *, asection *,
10666 struct elf_link_hash_entry *);
10667
10668 if (! ((*bed->elf_backend_output_arch_syms)
10669 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10670 return FALSE;
10671 }
10672
10673 /* Flush all symbols to the file. */
10674 if (! elf_link_flush_output_syms (&finfo, bed))
10675 return FALSE;
10676
10677 /* Now we know the size of the symtab section. */
10678 off += symtab_hdr->sh_size;
10679
10680 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10681 if (symtab_shndx_hdr->sh_name != 0)
10682 {
10683 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10684 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10685 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10686 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10687 symtab_shndx_hdr->sh_size = amt;
10688
10689 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10690 off, TRUE);
10691
10692 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10693 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10694 return FALSE;
10695 }
10696
10697
10698 /* Finish up and write out the symbol string table (.strtab)
10699 section. */
10700 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10701 /* sh_name was set in prep_headers. */
10702 symstrtab_hdr->sh_type = SHT_STRTAB;
10703 symstrtab_hdr->sh_flags = 0;
10704 symstrtab_hdr->sh_addr = 0;
10705 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10706 symstrtab_hdr->sh_entsize = 0;
10707 symstrtab_hdr->sh_link = 0;
10708 symstrtab_hdr->sh_info = 0;
10709 /* sh_offset is set just below. */
10710 symstrtab_hdr->sh_addralign = 1;
10711
10712 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10713 elf_tdata (abfd)->next_file_pos = off;
10714
10715 if (bfd_get_symcount (abfd) > 0)
10716 {
10717 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10718 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10719 return FALSE;
10720 }
10721
10722 /* Adjust the relocs to have the correct symbol indices. */
10723 for (o = abfd->sections; o != NULL; o = o->next)
10724 {
10725 if ((o->flags & SEC_RELOC) == 0)
10726 continue;
10727
10728 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10729 elf_section_data (o)->rel_count,
10730 elf_section_data (o)->rel_hashes);
10731 if (elf_section_data (o)->rel_hdr2 != NULL)
10732 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10733 elf_section_data (o)->rel_count2,
10734 (elf_section_data (o)->rel_hashes
10735 + elf_section_data (o)->rel_count));
10736
10737 /* Set the reloc_count field to 0 to prevent write_relocs from
10738 trying to swap the relocs out itself. */
10739 o->reloc_count = 0;
10740 }
10741
10742 if (dynamic && info->combreloc && dynobj != NULL)
10743 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10744
10745 /* If we are linking against a dynamic object, or generating a
10746 shared library, finish up the dynamic linking information. */
10747 if (dynamic)
10748 {
10749 bfd_byte *dyncon, *dynconend;
10750
10751 /* Fix up .dynamic entries. */
10752 o = bfd_get_section_by_name (dynobj, ".dynamic");
10753 BFD_ASSERT (o != NULL);
10754
10755 dyncon = o->contents;
10756 dynconend = o->contents + o->size;
10757 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10758 {
10759 Elf_Internal_Dyn dyn;
10760 const char *name;
10761 unsigned int type;
10762
10763 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10764
10765 switch (dyn.d_tag)
10766 {
10767 default:
10768 continue;
10769 case DT_NULL:
10770 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10771 {
10772 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10773 {
10774 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10775 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10776 default: continue;
10777 }
10778 dyn.d_un.d_val = relativecount;
10779 relativecount = 0;
10780 break;
10781 }
10782 continue;
10783
10784 case DT_INIT:
10785 name = info->init_function;
10786 goto get_sym;
10787 case DT_FINI:
10788 name = info->fini_function;
10789 get_sym:
10790 {
10791 struct elf_link_hash_entry *h;
10792
10793 h = elf_link_hash_lookup (elf_hash_table (info), name,
10794 FALSE, FALSE, TRUE);
10795 if (h != NULL
10796 && (h->root.type == bfd_link_hash_defined
10797 || h->root.type == bfd_link_hash_defweak))
10798 {
10799 dyn.d_un.d_val = h->root.u.def.value;
10800 o = h->root.u.def.section;
10801 if (o->output_section != NULL)
10802 dyn.d_un.d_val += (o->output_section->vma
10803 + o->output_offset);
10804 else
10805 {
10806 /* The symbol is imported from another shared
10807 library and does not apply to this one. */
10808 dyn.d_un.d_val = 0;
10809 }
10810 break;
10811 }
10812 }
10813 continue;
10814
10815 case DT_PREINIT_ARRAYSZ:
10816 name = ".preinit_array";
10817 goto get_size;
10818 case DT_INIT_ARRAYSZ:
10819 name = ".init_array";
10820 goto get_size;
10821 case DT_FINI_ARRAYSZ:
10822 name = ".fini_array";
10823 get_size:
10824 o = bfd_get_section_by_name (abfd, name);
10825 if (o == NULL)
10826 {
10827 (*_bfd_error_handler)
10828 (_("%B: could not find output section %s"), abfd, name);
10829 goto error_return;
10830 }
10831 if (o->size == 0)
10832 (*_bfd_error_handler)
10833 (_("warning: %s section has zero size"), name);
10834 dyn.d_un.d_val = o->size;
10835 break;
10836
10837 case DT_PREINIT_ARRAY:
10838 name = ".preinit_array";
10839 goto get_vma;
10840 case DT_INIT_ARRAY:
10841 name = ".init_array";
10842 goto get_vma;
10843 case DT_FINI_ARRAY:
10844 name = ".fini_array";
10845 goto get_vma;
10846
10847 case DT_HASH:
10848 name = ".hash";
10849 goto get_vma;
10850 case DT_GNU_HASH:
10851 name = ".gnu.hash";
10852 goto get_vma;
10853 case DT_STRTAB:
10854 name = ".dynstr";
10855 goto get_vma;
10856 case DT_SYMTAB:
10857 name = ".dynsym";
10858 goto get_vma;
10859 case DT_VERDEF:
10860 name = ".gnu.version_d";
10861 goto get_vma;
10862 case DT_VERNEED:
10863 name = ".gnu.version_r";
10864 goto get_vma;
10865 case DT_VERSYM:
10866 name = ".gnu.version";
10867 get_vma:
10868 o = bfd_get_section_by_name (abfd, name);
10869 if (o == NULL)
10870 {
10871 (*_bfd_error_handler)
10872 (_("%B: could not find output section %s"), abfd, name);
10873 goto error_return;
10874 }
10875 dyn.d_un.d_ptr = o->vma;
10876 break;
10877
10878 case DT_REL:
10879 case DT_RELA:
10880 case DT_RELSZ:
10881 case DT_RELASZ:
10882 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10883 type = SHT_REL;
10884 else
10885 type = SHT_RELA;
10886 dyn.d_un.d_val = 0;
10887 for (i = 1; i < elf_numsections (abfd); i++)
10888 {
10889 Elf_Internal_Shdr *hdr;
10890
10891 hdr = elf_elfsections (abfd)[i];
10892 if (hdr->sh_type == type
10893 && (hdr->sh_flags & SHF_ALLOC) != 0)
10894 {
10895 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10896 dyn.d_un.d_val += hdr->sh_size;
10897 else
10898 {
10899 if (dyn.d_un.d_val == 0
10900 || hdr->sh_addr < dyn.d_un.d_val)
10901 dyn.d_un.d_val = hdr->sh_addr;
10902 }
10903 }
10904 }
10905 break;
10906 }
10907 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10908 }
10909 }
10910
10911 /* If we have created any dynamic sections, then output them. */
10912 if (dynobj != NULL)
10913 {
10914 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10915 goto error_return;
10916
10917 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10918 if (info->warn_shared_textrel && info->shared)
10919 {
10920 bfd_byte *dyncon, *dynconend;
10921
10922 /* Fix up .dynamic entries. */
10923 o = bfd_get_section_by_name (dynobj, ".dynamic");
10924 BFD_ASSERT (o != NULL);
10925
10926 dyncon = o->contents;
10927 dynconend = o->contents + o->size;
10928 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10929 {
10930 Elf_Internal_Dyn dyn;
10931
10932 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10933
10934 if (dyn.d_tag == DT_TEXTREL)
10935 {
10936 info->callbacks->einfo
10937 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10938 break;
10939 }
10940 }
10941 }
10942
10943 for (o = dynobj->sections; o != NULL; o = o->next)
10944 {
10945 if ((o->flags & SEC_HAS_CONTENTS) == 0
10946 || o->size == 0
10947 || o->output_section == bfd_abs_section_ptr)
10948 continue;
10949 if ((o->flags & SEC_LINKER_CREATED) == 0)
10950 {
10951 /* At this point, we are only interested in sections
10952 created by _bfd_elf_link_create_dynamic_sections. */
10953 continue;
10954 }
10955 if (elf_hash_table (info)->stab_info.stabstr == o)
10956 continue;
10957 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10958 continue;
10959 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10960 != SHT_STRTAB)
10961 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10962 {
10963 if (! bfd_set_section_contents (abfd, o->output_section,
10964 o->contents,
10965 (file_ptr) o->output_offset,
10966 o->size))
10967 goto error_return;
10968 }
10969 else
10970 {
10971 /* The contents of the .dynstr section are actually in a
10972 stringtab. */
10973 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10974 if (bfd_seek (abfd, off, SEEK_SET) != 0
10975 || ! _bfd_elf_strtab_emit (abfd,
10976 elf_hash_table (info)->dynstr))
10977 goto error_return;
10978 }
10979 }
10980 }
10981
10982 if (info->relocatable)
10983 {
10984 bfd_boolean failed = FALSE;
10985
10986 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10987 if (failed)
10988 goto error_return;
10989 }
10990
10991 /* If we have optimized stabs strings, output them. */
10992 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10993 {
10994 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10995 goto error_return;
10996 }
10997
10998 if (info->eh_frame_hdr)
10999 {
11000 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11001 goto error_return;
11002 }
11003
11004 if (finfo.symstrtab != NULL)
11005 _bfd_stringtab_free (finfo.symstrtab);
11006 if (finfo.contents != NULL)
11007 free (finfo.contents);
11008 if (finfo.external_relocs != NULL)
11009 free (finfo.external_relocs);
11010 if (finfo.internal_relocs != NULL)
11011 free (finfo.internal_relocs);
11012 if (finfo.external_syms != NULL)
11013 free (finfo.external_syms);
11014 if (finfo.locsym_shndx != NULL)
11015 free (finfo.locsym_shndx);
11016 if (finfo.internal_syms != NULL)
11017 free (finfo.internal_syms);
11018 if (finfo.indices != NULL)
11019 free (finfo.indices);
11020 if (finfo.sections != NULL)
11021 free (finfo.sections);
11022 if (finfo.symbuf != NULL)
11023 free (finfo.symbuf);
11024 if (finfo.symshndxbuf != NULL)
11025 free (finfo.symshndxbuf);
11026 for (o = abfd->sections; o != NULL; o = o->next)
11027 {
11028 if ((o->flags & SEC_RELOC) != 0
11029 && elf_section_data (o)->rel_hashes != NULL)
11030 free (elf_section_data (o)->rel_hashes);
11031 }
11032
11033 elf_tdata (abfd)->linker = TRUE;
11034
11035 if (attr_section)
11036 {
11037 bfd_byte *contents = bfd_malloc (attr_size);
11038 if (contents == NULL)
11039 return FALSE; /* Bail out and fail. */
11040 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11041 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11042 free (contents);
11043 }
11044
11045 return TRUE;
11046
11047 error_return:
11048 if (finfo.symstrtab != NULL)
11049 _bfd_stringtab_free (finfo.symstrtab);
11050 if (finfo.contents != NULL)
11051 free (finfo.contents);
11052 if (finfo.external_relocs != NULL)
11053 free (finfo.external_relocs);
11054 if (finfo.internal_relocs != NULL)
11055 free (finfo.internal_relocs);
11056 if (finfo.external_syms != NULL)
11057 free (finfo.external_syms);
11058 if (finfo.locsym_shndx != NULL)
11059 free (finfo.locsym_shndx);
11060 if (finfo.internal_syms != NULL)
11061 free (finfo.internal_syms);
11062 if (finfo.indices != NULL)
11063 free (finfo.indices);
11064 if (finfo.sections != NULL)
11065 free (finfo.sections);
11066 if (finfo.symbuf != NULL)
11067 free (finfo.symbuf);
11068 if (finfo.symshndxbuf != NULL)
11069 free (finfo.symshndxbuf);
11070 for (o = abfd->sections; o != NULL; o = o->next)
11071 {
11072 if ((o->flags & SEC_RELOC) != 0
11073 && elf_section_data (o)->rel_hashes != NULL)
11074 free (elf_section_data (o)->rel_hashes);
11075 }
11076
11077 return FALSE;
11078 }
11079 \f
11080 /* Garbage collect unused sections. */
11081
11082 /* Default gc_mark_hook. */
11083
11084 asection *
11085 _bfd_elf_gc_mark_hook (asection *sec,
11086 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11087 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11088 struct elf_link_hash_entry *h,
11089 Elf_Internal_Sym *sym)
11090 {
11091 if (h != NULL)
11092 {
11093 switch (h->root.type)
11094 {
11095 case bfd_link_hash_defined:
11096 case bfd_link_hash_defweak:
11097 return h->root.u.def.section;
11098
11099 case bfd_link_hash_common:
11100 return h->root.u.c.p->section;
11101
11102 default:
11103 break;
11104 }
11105 }
11106 else
11107 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11108
11109 return NULL;
11110 }
11111
11112 /* The mark phase of garbage collection. For a given section, mark
11113 it and any sections in this section's group, and all the sections
11114 which define symbols to which it refers. */
11115
11116 bfd_boolean
11117 _bfd_elf_gc_mark (struct bfd_link_info *info,
11118 asection *sec,
11119 elf_gc_mark_hook_fn gc_mark_hook)
11120 {
11121 bfd_boolean ret;
11122 bfd_boolean is_eh;
11123 asection *group_sec;
11124
11125 sec->gc_mark = 1;
11126
11127 /* Mark all the sections in the group. */
11128 group_sec = elf_section_data (sec)->next_in_group;
11129 if (group_sec && !group_sec->gc_mark)
11130 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11131 return FALSE;
11132
11133 /* Look through the section relocs. */
11134 ret = TRUE;
11135 is_eh = strcmp (sec->name, ".eh_frame") == 0;
11136 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
11137 {
11138 Elf_Internal_Rela *relstart, *rel, *relend;
11139 Elf_Internal_Shdr *symtab_hdr;
11140 struct elf_link_hash_entry **sym_hashes;
11141 size_t nlocsyms;
11142 size_t extsymoff;
11143 bfd *input_bfd = sec->owner;
11144 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
11145 Elf_Internal_Sym *isym = NULL;
11146 int r_sym_shift;
11147
11148 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
11149 sym_hashes = elf_sym_hashes (input_bfd);
11150
11151 /* Read the local symbols. */
11152 if (elf_bad_symtab (input_bfd))
11153 {
11154 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
11155 extsymoff = 0;
11156 }
11157 else
11158 extsymoff = nlocsyms = symtab_hdr->sh_info;
11159
11160 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11161 if (isym == NULL && nlocsyms != 0)
11162 {
11163 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
11164 NULL, NULL, NULL);
11165 if (isym == NULL)
11166 return FALSE;
11167 }
11168
11169 /* Read the relocations. */
11170 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
11171 info->keep_memory);
11172 if (relstart == NULL)
11173 {
11174 ret = FALSE;
11175 goto out1;
11176 }
11177 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11178
11179 if (bed->s->arch_size == 32)
11180 r_sym_shift = 8;
11181 else
11182 r_sym_shift = 32;
11183
11184 for (rel = relstart; rel < relend; rel++)
11185 {
11186 unsigned long r_symndx;
11187 asection *rsec;
11188 struct elf_link_hash_entry *h;
11189
11190 r_symndx = rel->r_info >> r_sym_shift;
11191 if (r_symndx == 0)
11192 continue;
11193
11194 if (r_symndx >= nlocsyms
11195 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
11196 {
11197 h = sym_hashes[r_symndx - extsymoff];
11198 while (h->root.type == bfd_link_hash_indirect
11199 || h->root.type == bfd_link_hash_warning)
11200 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11201 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
11202 }
11203 else
11204 {
11205 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
11206 }
11207
11208 if (rsec && !rsec->gc_mark)
11209 {
11210 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11211 rsec->gc_mark = 1;
11212 else if (is_eh)
11213 rsec->gc_mark_from_eh = 1;
11214 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11215 {
11216 ret = FALSE;
11217 goto out2;
11218 }
11219 }
11220 }
11221
11222 out2:
11223 if (elf_section_data (sec)->relocs != relstart)
11224 free (relstart);
11225 out1:
11226 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
11227 {
11228 if (! info->keep_memory)
11229 free (isym);
11230 else
11231 symtab_hdr->contents = (unsigned char *) isym;
11232 }
11233 }
11234
11235 return ret;
11236 }
11237
11238 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11239
11240 struct elf_gc_sweep_symbol_info
11241 {
11242 struct bfd_link_info *info;
11243 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11244 bfd_boolean);
11245 };
11246
11247 static bfd_boolean
11248 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11249 {
11250 if (h->root.type == bfd_link_hash_warning)
11251 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11252
11253 if ((h->root.type == bfd_link_hash_defined
11254 || h->root.type == bfd_link_hash_defweak)
11255 && !h->root.u.def.section->gc_mark
11256 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11257 {
11258 struct elf_gc_sweep_symbol_info *inf = data;
11259 (*inf->hide_symbol) (inf->info, h, TRUE);
11260 }
11261
11262 return TRUE;
11263 }
11264
11265 /* The sweep phase of garbage collection. Remove all garbage sections. */
11266
11267 typedef bfd_boolean (*gc_sweep_hook_fn)
11268 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11269
11270 static bfd_boolean
11271 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11272 {
11273 bfd *sub;
11274 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11275 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11276 unsigned long section_sym_count;
11277 struct elf_gc_sweep_symbol_info sweep_info;
11278
11279 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11280 {
11281 asection *o;
11282
11283 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11284 continue;
11285
11286 for (o = sub->sections; o != NULL; o = o->next)
11287 {
11288 /* Keep debug and special sections. */
11289 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11290 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11291 o->gc_mark = 1;
11292
11293 if (o->gc_mark)
11294 continue;
11295
11296 /* Skip sweeping sections already excluded. */
11297 if (o->flags & SEC_EXCLUDE)
11298 continue;
11299
11300 /* Since this is early in the link process, it is simple
11301 to remove a section from the output. */
11302 o->flags |= SEC_EXCLUDE;
11303
11304 if (info->print_gc_sections && o->size != 0)
11305 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11306
11307 /* But we also have to update some of the relocation
11308 info we collected before. */
11309 if (gc_sweep_hook
11310 && (o->flags & SEC_RELOC) != 0
11311 && o->reloc_count > 0
11312 && !bfd_is_abs_section (o->output_section))
11313 {
11314 Elf_Internal_Rela *internal_relocs;
11315 bfd_boolean r;
11316
11317 internal_relocs
11318 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11319 info->keep_memory);
11320 if (internal_relocs == NULL)
11321 return FALSE;
11322
11323 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11324
11325 if (elf_section_data (o)->relocs != internal_relocs)
11326 free (internal_relocs);
11327
11328 if (!r)
11329 return FALSE;
11330 }
11331 }
11332 }
11333
11334 /* Remove the symbols that were in the swept sections from the dynamic
11335 symbol table. GCFIXME: Anyone know how to get them out of the
11336 static symbol table as well? */
11337 sweep_info.info = info;
11338 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11339 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11340 &sweep_info);
11341
11342 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11343 return TRUE;
11344 }
11345
11346 /* Propagate collected vtable information. This is called through
11347 elf_link_hash_traverse. */
11348
11349 static bfd_boolean
11350 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11351 {
11352 if (h->root.type == bfd_link_hash_warning)
11353 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11354
11355 /* Those that are not vtables. */
11356 if (h->vtable == NULL || h->vtable->parent == NULL)
11357 return TRUE;
11358
11359 /* Those vtables that do not have parents, we cannot merge. */
11360 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11361 return TRUE;
11362
11363 /* If we've already been done, exit. */
11364 if (h->vtable->used && h->vtable->used[-1])
11365 return TRUE;
11366
11367 /* Make sure the parent's table is up to date. */
11368 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11369
11370 if (h->vtable->used == NULL)
11371 {
11372 /* None of this table's entries were referenced. Re-use the
11373 parent's table. */
11374 h->vtable->used = h->vtable->parent->vtable->used;
11375 h->vtable->size = h->vtable->parent->vtable->size;
11376 }
11377 else
11378 {
11379 size_t n;
11380 bfd_boolean *cu, *pu;
11381
11382 /* Or the parent's entries into ours. */
11383 cu = h->vtable->used;
11384 cu[-1] = TRUE;
11385 pu = h->vtable->parent->vtable->used;
11386 if (pu != NULL)
11387 {
11388 const struct elf_backend_data *bed;
11389 unsigned int log_file_align;
11390
11391 bed = get_elf_backend_data (h->root.u.def.section->owner);
11392 log_file_align = bed->s->log_file_align;
11393 n = h->vtable->parent->vtable->size >> log_file_align;
11394 while (n--)
11395 {
11396 if (*pu)
11397 *cu = TRUE;
11398 pu++;
11399 cu++;
11400 }
11401 }
11402 }
11403
11404 return TRUE;
11405 }
11406
11407 static bfd_boolean
11408 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11409 {
11410 asection *sec;
11411 bfd_vma hstart, hend;
11412 Elf_Internal_Rela *relstart, *relend, *rel;
11413 const struct elf_backend_data *bed;
11414 unsigned int log_file_align;
11415
11416 if (h->root.type == bfd_link_hash_warning)
11417 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11418
11419 /* Take care of both those symbols that do not describe vtables as
11420 well as those that are not loaded. */
11421 if (h->vtable == NULL || h->vtable->parent == NULL)
11422 return TRUE;
11423
11424 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11425 || h->root.type == bfd_link_hash_defweak);
11426
11427 sec = h->root.u.def.section;
11428 hstart = h->root.u.def.value;
11429 hend = hstart + h->size;
11430
11431 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11432 if (!relstart)
11433 return *(bfd_boolean *) okp = FALSE;
11434 bed = get_elf_backend_data (sec->owner);
11435 log_file_align = bed->s->log_file_align;
11436
11437 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11438
11439 for (rel = relstart; rel < relend; ++rel)
11440 if (rel->r_offset >= hstart && rel->r_offset < hend)
11441 {
11442 /* If the entry is in use, do nothing. */
11443 if (h->vtable->used
11444 && (rel->r_offset - hstart) < h->vtable->size)
11445 {
11446 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11447 if (h->vtable->used[entry])
11448 continue;
11449 }
11450 /* Otherwise, kill it. */
11451 rel->r_offset = rel->r_info = rel->r_addend = 0;
11452 }
11453
11454 return TRUE;
11455 }
11456
11457 /* Mark sections containing dynamically referenced symbols. When
11458 building shared libraries, we must assume that any visible symbol is
11459 referenced. */
11460
11461 bfd_boolean
11462 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11463 {
11464 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11465
11466 if (h->root.type == bfd_link_hash_warning)
11467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11468
11469 if ((h->root.type == bfd_link_hash_defined
11470 || h->root.type == bfd_link_hash_defweak)
11471 && (h->ref_dynamic
11472 || (!info->executable
11473 && h->def_regular
11474 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11475 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11476 h->root.u.def.section->flags |= SEC_KEEP;
11477
11478 return TRUE;
11479 }
11480
11481 /* Do mark and sweep of unused sections. */
11482
11483 bfd_boolean
11484 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11485 {
11486 bfd_boolean ok = TRUE;
11487 bfd *sub;
11488 elf_gc_mark_hook_fn gc_mark_hook;
11489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11490
11491 if (!bed->can_gc_sections
11492 || info->relocatable
11493 || info->emitrelocations
11494 || !is_elf_hash_table (info->hash))
11495 {
11496 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11497 return TRUE;
11498 }
11499
11500 /* Apply transitive closure to the vtable entry usage info. */
11501 elf_link_hash_traverse (elf_hash_table (info),
11502 elf_gc_propagate_vtable_entries_used,
11503 &ok);
11504 if (!ok)
11505 return FALSE;
11506
11507 /* Kill the vtable relocations that were not used. */
11508 elf_link_hash_traverse (elf_hash_table (info),
11509 elf_gc_smash_unused_vtentry_relocs,
11510 &ok);
11511 if (!ok)
11512 return FALSE;
11513
11514 /* Mark dynamically referenced symbols. */
11515 if (elf_hash_table (info)->dynamic_sections_created)
11516 elf_link_hash_traverse (elf_hash_table (info),
11517 bed->gc_mark_dynamic_ref,
11518 info);
11519
11520 /* Grovel through relocs to find out who stays ... */
11521 gc_mark_hook = bed->gc_mark_hook;
11522 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11523 {
11524 asection *o;
11525
11526 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11527 continue;
11528
11529 for (o = sub->sections; o != NULL; o = o->next)
11530 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11531 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11532 return FALSE;
11533 }
11534
11535 /* Allow the backend to mark additional target specific sections. */
11536 if (bed->gc_mark_extra_sections)
11537 bed->gc_mark_extra_sections(info, gc_mark_hook);
11538
11539 /* ... again for sections marked from eh_frame. */
11540 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11541 {
11542 asection *o;
11543
11544 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11545 continue;
11546
11547 /* Keep .gcc_except_table.* if the associated .text.* (or the
11548 associated .gnu.linkonce.t.* if .text.* doesn't exist) is
11549 marked. This isn't very nice, but the proper solution,
11550 splitting .eh_frame up and using comdat doesn't pan out
11551 easily due to needing special relocs to handle the
11552 difference of two symbols in separate sections.
11553 Don't keep code sections referenced by .eh_frame. */
11554 #define TEXT_PREFIX ".text."
11555 #define TEXT_PREFIX2 ".gnu.linkonce.t."
11556 #define GCC_EXCEPT_TABLE_PREFIX ".gcc_except_table."
11557 for (o = sub->sections; o != NULL; o = o->next)
11558 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
11559 {
11560 if (CONST_STRNEQ (o->name, GCC_EXCEPT_TABLE_PREFIX))
11561 {
11562 char *fn_name;
11563 const char *sec_name;
11564 asection *fn_text;
11565 unsigned o_name_prefix_len , fn_name_prefix_len, tmp;
11566
11567 o_name_prefix_len = strlen (GCC_EXCEPT_TABLE_PREFIX);
11568 sec_name = o->name + o_name_prefix_len;
11569 fn_name_prefix_len = strlen (TEXT_PREFIX);
11570 tmp = strlen (TEXT_PREFIX2);
11571 if (tmp > fn_name_prefix_len)
11572 fn_name_prefix_len = tmp;
11573 fn_name
11574 = bfd_malloc (fn_name_prefix_len + strlen (sec_name) + 1);
11575 if (fn_name == NULL)
11576 return FALSE;
11577
11578 /* Try the first prefix. */
11579 sprintf (fn_name, "%s%s", TEXT_PREFIX, sec_name);
11580 fn_text = bfd_get_section_by_name (sub, fn_name);
11581
11582 /* Try the second prefix. */
11583 if (fn_text == NULL)
11584 {
11585 sprintf (fn_name, "%s%s", TEXT_PREFIX2, sec_name);
11586 fn_text = bfd_get_section_by_name (sub, fn_name);
11587 }
11588
11589 free (fn_name);
11590 if (fn_text == NULL || !fn_text->gc_mark)
11591 continue;
11592 }
11593
11594 /* If not using specially named exception table section,
11595 then keep whatever we are using. */
11596 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11597 return FALSE;
11598 }
11599 }
11600
11601 /* ... and mark SEC_EXCLUDE for those that go. */
11602 return elf_gc_sweep (abfd, info);
11603 }
11604 \f
11605 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11606
11607 bfd_boolean
11608 bfd_elf_gc_record_vtinherit (bfd *abfd,
11609 asection *sec,
11610 struct elf_link_hash_entry *h,
11611 bfd_vma offset)
11612 {
11613 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11614 struct elf_link_hash_entry **search, *child;
11615 bfd_size_type extsymcount;
11616 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11617
11618 /* The sh_info field of the symtab header tells us where the
11619 external symbols start. We don't care about the local symbols at
11620 this point. */
11621 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11622 if (!elf_bad_symtab (abfd))
11623 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11624
11625 sym_hashes = elf_sym_hashes (abfd);
11626 sym_hashes_end = sym_hashes + extsymcount;
11627
11628 /* Hunt down the child symbol, which is in this section at the same
11629 offset as the relocation. */
11630 for (search = sym_hashes; search != sym_hashes_end; ++search)
11631 {
11632 if ((child = *search) != NULL
11633 && (child->root.type == bfd_link_hash_defined
11634 || child->root.type == bfd_link_hash_defweak)
11635 && child->root.u.def.section == sec
11636 && child->root.u.def.value == offset)
11637 goto win;
11638 }
11639
11640 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11641 abfd, sec, (unsigned long) offset);
11642 bfd_set_error (bfd_error_invalid_operation);
11643 return FALSE;
11644
11645 win:
11646 if (!child->vtable)
11647 {
11648 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11649 if (!child->vtable)
11650 return FALSE;
11651 }
11652 if (!h)
11653 {
11654 /* This *should* only be the absolute section. It could potentially
11655 be that someone has defined a non-global vtable though, which
11656 would be bad. It isn't worth paging in the local symbols to be
11657 sure though; that case should simply be handled by the assembler. */
11658
11659 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11660 }
11661 else
11662 child->vtable->parent = h;
11663
11664 return TRUE;
11665 }
11666
11667 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11668
11669 bfd_boolean
11670 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11671 asection *sec ATTRIBUTE_UNUSED,
11672 struct elf_link_hash_entry *h,
11673 bfd_vma addend)
11674 {
11675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11676 unsigned int log_file_align = bed->s->log_file_align;
11677
11678 if (!h->vtable)
11679 {
11680 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11681 if (!h->vtable)
11682 return FALSE;
11683 }
11684
11685 if (addend >= h->vtable->size)
11686 {
11687 size_t size, bytes, file_align;
11688 bfd_boolean *ptr = h->vtable->used;
11689
11690 /* While the symbol is undefined, we have to be prepared to handle
11691 a zero size. */
11692 file_align = 1 << log_file_align;
11693 if (h->root.type == bfd_link_hash_undefined)
11694 size = addend + file_align;
11695 else
11696 {
11697 size = h->size;
11698 if (addend >= size)
11699 {
11700 /* Oops! We've got a reference past the defined end of
11701 the table. This is probably a bug -- shall we warn? */
11702 size = addend + file_align;
11703 }
11704 }
11705 size = (size + file_align - 1) & -file_align;
11706
11707 /* Allocate one extra entry for use as a "done" flag for the
11708 consolidation pass. */
11709 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11710
11711 if (ptr)
11712 {
11713 ptr = bfd_realloc (ptr - 1, bytes);
11714
11715 if (ptr != NULL)
11716 {
11717 size_t oldbytes;
11718
11719 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11720 * sizeof (bfd_boolean));
11721 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11722 }
11723 }
11724 else
11725 ptr = bfd_zmalloc (bytes);
11726
11727 if (ptr == NULL)
11728 return FALSE;
11729
11730 /* And arrange for that done flag to be at index -1. */
11731 h->vtable->used = ptr + 1;
11732 h->vtable->size = size;
11733 }
11734
11735 h->vtable->used[addend >> log_file_align] = TRUE;
11736
11737 return TRUE;
11738 }
11739
11740 struct alloc_got_off_arg {
11741 bfd_vma gotoff;
11742 unsigned int got_elt_size;
11743 };
11744
11745 /* We need a special top-level link routine to convert got reference counts
11746 to real got offsets. */
11747
11748 static bfd_boolean
11749 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11750 {
11751 struct alloc_got_off_arg *gofarg = arg;
11752
11753 if (h->root.type == bfd_link_hash_warning)
11754 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11755
11756 if (h->got.refcount > 0)
11757 {
11758 h->got.offset = gofarg->gotoff;
11759 gofarg->gotoff += gofarg->got_elt_size;
11760 }
11761 else
11762 h->got.offset = (bfd_vma) -1;
11763
11764 return TRUE;
11765 }
11766
11767 /* And an accompanying bit to work out final got entry offsets once
11768 we're done. Should be called from final_link. */
11769
11770 bfd_boolean
11771 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11772 struct bfd_link_info *info)
11773 {
11774 bfd *i;
11775 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11776 bfd_vma gotoff;
11777 unsigned int got_elt_size = bed->s->arch_size / 8;
11778 struct alloc_got_off_arg gofarg;
11779
11780 if (! is_elf_hash_table (info->hash))
11781 return FALSE;
11782
11783 /* The GOT offset is relative to the .got section, but the GOT header is
11784 put into the .got.plt section, if the backend uses it. */
11785 if (bed->want_got_plt)
11786 gotoff = 0;
11787 else
11788 gotoff = bed->got_header_size;
11789
11790 /* Do the local .got entries first. */
11791 for (i = info->input_bfds; i; i = i->link_next)
11792 {
11793 bfd_signed_vma *local_got;
11794 bfd_size_type j, locsymcount;
11795 Elf_Internal_Shdr *symtab_hdr;
11796
11797 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11798 continue;
11799
11800 local_got = elf_local_got_refcounts (i);
11801 if (!local_got)
11802 continue;
11803
11804 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11805 if (elf_bad_symtab (i))
11806 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11807 else
11808 locsymcount = symtab_hdr->sh_info;
11809
11810 for (j = 0; j < locsymcount; ++j)
11811 {
11812 if (local_got[j] > 0)
11813 {
11814 local_got[j] = gotoff;
11815 gotoff += got_elt_size;
11816 }
11817 else
11818 local_got[j] = (bfd_vma) -1;
11819 }
11820 }
11821
11822 /* Then the global .got entries. .plt refcounts are handled by
11823 adjust_dynamic_symbol */
11824 gofarg.gotoff = gotoff;
11825 gofarg.got_elt_size = got_elt_size;
11826 elf_link_hash_traverse (elf_hash_table (info),
11827 elf_gc_allocate_got_offsets,
11828 &gofarg);
11829 return TRUE;
11830 }
11831
11832 /* Many folk need no more in the way of final link than this, once
11833 got entry reference counting is enabled. */
11834
11835 bfd_boolean
11836 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11837 {
11838 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11839 return FALSE;
11840
11841 /* Invoke the regular ELF backend linker to do all the work. */
11842 return bfd_elf_final_link (abfd, info);
11843 }
11844
11845 bfd_boolean
11846 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11847 {
11848 struct elf_reloc_cookie *rcookie = cookie;
11849
11850 if (rcookie->bad_symtab)
11851 rcookie->rel = rcookie->rels;
11852
11853 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11854 {
11855 unsigned long r_symndx;
11856
11857 if (! rcookie->bad_symtab)
11858 if (rcookie->rel->r_offset > offset)
11859 return FALSE;
11860 if (rcookie->rel->r_offset != offset)
11861 continue;
11862
11863 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11864 if (r_symndx == SHN_UNDEF)
11865 return TRUE;
11866
11867 if (r_symndx >= rcookie->locsymcount
11868 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11869 {
11870 struct elf_link_hash_entry *h;
11871
11872 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11873
11874 while (h->root.type == bfd_link_hash_indirect
11875 || h->root.type == bfd_link_hash_warning)
11876 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11877
11878 if ((h->root.type == bfd_link_hash_defined
11879 || h->root.type == bfd_link_hash_defweak)
11880 && elf_discarded_section (h->root.u.def.section))
11881 return TRUE;
11882 else
11883 return FALSE;
11884 }
11885 else
11886 {
11887 /* It's not a relocation against a global symbol,
11888 but it could be a relocation against a local
11889 symbol for a discarded section. */
11890 asection *isec;
11891 Elf_Internal_Sym *isym;
11892
11893 /* Need to: get the symbol; get the section. */
11894 isym = &rcookie->locsyms[r_symndx];
11895 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
11896 {
11897 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11898 if (isec != NULL && elf_discarded_section (isec))
11899 return TRUE;
11900 }
11901 }
11902 return FALSE;
11903 }
11904 return FALSE;
11905 }
11906
11907 /* Discard unneeded references to discarded sections.
11908 Returns TRUE if any section's size was changed. */
11909 /* This function assumes that the relocations are in sorted order,
11910 which is true for all known assemblers. */
11911
11912 bfd_boolean
11913 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11914 {
11915 struct elf_reloc_cookie cookie;
11916 asection *stab, *eh;
11917 Elf_Internal_Shdr *symtab_hdr;
11918 const struct elf_backend_data *bed;
11919 bfd *abfd;
11920 unsigned int count;
11921 bfd_boolean ret = FALSE;
11922
11923 if (info->traditional_format
11924 || !is_elf_hash_table (info->hash))
11925 return FALSE;
11926
11927 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11928 {
11929 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11930 continue;
11931
11932 bed = get_elf_backend_data (abfd);
11933
11934 if ((abfd->flags & DYNAMIC) != 0)
11935 continue;
11936
11937 eh = NULL;
11938 if (!info->relocatable)
11939 {
11940 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11941 if (eh != NULL
11942 && (eh->size == 0
11943 || bfd_is_abs_section (eh->output_section)))
11944 eh = NULL;
11945 }
11946
11947 stab = bfd_get_section_by_name (abfd, ".stab");
11948 if (stab != NULL
11949 && (stab->size == 0
11950 || bfd_is_abs_section (stab->output_section)
11951 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11952 stab = NULL;
11953
11954 if (stab == NULL
11955 && eh == NULL
11956 && bed->elf_backend_discard_info == NULL)
11957 continue;
11958
11959 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11960 cookie.abfd = abfd;
11961 cookie.sym_hashes = elf_sym_hashes (abfd);
11962 cookie.bad_symtab = elf_bad_symtab (abfd);
11963 if (cookie.bad_symtab)
11964 {
11965 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11966 cookie.extsymoff = 0;
11967 }
11968 else
11969 {
11970 cookie.locsymcount = symtab_hdr->sh_info;
11971 cookie.extsymoff = symtab_hdr->sh_info;
11972 }
11973
11974 if (bed->s->arch_size == 32)
11975 cookie.r_sym_shift = 8;
11976 else
11977 cookie.r_sym_shift = 32;
11978
11979 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11980 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
11981 {
11982 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11983 cookie.locsymcount, 0,
11984 NULL, NULL, NULL);
11985 if (cookie.locsyms == NULL)
11986 {
11987 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11988 return FALSE;
11989 }
11990 }
11991
11992 if (stab != NULL)
11993 {
11994 cookie.rels = NULL;
11995 count = stab->reloc_count;
11996 if (count != 0)
11997 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
11998 info->keep_memory);
11999 if (cookie.rels != NULL)
12000 {
12001 cookie.rel = cookie.rels;
12002 cookie.relend = cookie.rels;
12003 cookie.relend += count * bed->s->int_rels_per_ext_rel;
12004 if (_bfd_discard_section_stabs (abfd, stab,
12005 elf_section_data (stab)->sec_info,
12006 bfd_elf_reloc_symbol_deleted_p,
12007 &cookie))
12008 ret = TRUE;
12009 if (elf_section_data (stab)->relocs != cookie.rels)
12010 free (cookie.rels);
12011 }
12012 }
12013
12014 if (eh != NULL)
12015 {
12016 cookie.rels = NULL;
12017 count = eh->reloc_count;
12018 if (count != 0)
12019 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
12020 info->keep_memory);
12021 cookie.rel = cookie.rels;
12022 cookie.relend = cookie.rels;
12023 if (cookie.rels != NULL)
12024 cookie.relend += count * bed->s->int_rels_per_ext_rel;
12025
12026 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12027 bfd_elf_reloc_symbol_deleted_p,
12028 &cookie))
12029 ret = TRUE;
12030
12031 if (cookie.rels != NULL
12032 && elf_section_data (eh)->relocs != cookie.rels)
12033 free (cookie.rels);
12034 }
12035
12036 if (bed->elf_backend_discard_info != NULL
12037 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12038 ret = TRUE;
12039
12040 if (cookie.locsyms != NULL
12041 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
12042 {
12043 if (! info->keep_memory)
12044 free (cookie.locsyms);
12045 else
12046 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
12047 }
12048 }
12049
12050 if (info->eh_frame_hdr
12051 && !info->relocatable
12052 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12053 ret = TRUE;
12054
12055 return ret;
12056 }
12057
12058 void
12059 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
12060 struct bfd_link_info *info)
12061 {
12062 flagword flags;
12063 const char *name, *p;
12064 struct bfd_section_already_linked *l;
12065 struct bfd_section_already_linked_hash_entry *already_linked_list;
12066
12067 if (sec->output_section == bfd_abs_section_ptr)
12068 return;
12069
12070 flags = sec->flags;
12071
12072 /* Return if it isn't a linkonce section. A comdat group section
12073 also has SEC_LINK_ONCE set. */
12074 if ((flags & SEC_LINK_ONCE) == 0)
12075 return;
12076
12077 /* Don't put group member sections on our list of already linked
12078 sections. They are handled as a group via their group section. */
12079 if (elf_sec_group (sec) != NULL)
12080 return;
12081
12082 /* FIXME: When doing a relocatable link, we may have trouble
12083 copying relocations in other sections that refer to local symbols
12084 in the section being discarded. Those relocations will have to
12085 be converted somehow; as of this writing I'm not sure that any of
12086 the backends handle that correctly.
12087
12088 It is tempting to instead not discard link once sections when
12089 doing a relocatable link (technically, they should be discarded
12090 whenever we are building constructors). However, that fails,
12091 because the linker winds up combining all the link once sections
12092 into a single large link once section, which defeats the purpose
12093 of having link once sections in the first place.
12094
12095 Also, not merging link once sections in a relocatable link
12096 causes trouble for MIPS ELF, which relies on link once semantics
12097 to handle the .reginfo section correctly. */
12098
12099 name = bfd_get_section_name (abfd, sec);
12100
12101 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12102 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12103 p++;
12104 else
12105 p = name;
12106
12107 already_linked_list = bfd_section_already_linked_table_lookup (p);
12108
12109 for (l = already_linked_list->entry; l != NULL; l = l->next)
12110 {
12111 /* We may have 2 different types of sections on the list: group
12112 sections and linkonce sections. Match like sections. */
12113 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12114 && strcmp (name, l->sec->name) == 0
12115 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12116 {
12117 /* The section has already been linked. See if we should
12118 issue a warning. */
12119 switch (flags & SEC_LINK_DUPLICATES)
12120 {
12121 default:
12122 abort ();
12123
12124 case SEC_LINK_DUPLICATES_DISCARD:
12125 break;
12126
12127 case SEC_LINK_DUPLICATES_ONE_ONLY:
12128 (*_bfd_error_handler)
12129 (_("%B: ignoring duplicate section `%A'"),
12130 abfd, sec);
12131 break;
12132
12133 case SEC_LINK_DUPLICATES_SAME_SIZE:
12134 if (sec->size != l->sec->size)
12135 (*_bfd_error_handler)
12136 (_("%B: duplicate section `%A' has different size"),
12137 abfd, sec);
12138 break;
12139
12140 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12141 if (sec->size != l->sec->size)
12142 (*_bfd_error_handler)
12143 (_("%B: duplicate section `%A' has different size"),
12144 abfd, sec);
12145 else if (sec->size != 0)
12146 {
12147 bfd_byte *sec_contents, *l_sec_contents;
12148
12149 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12150 (*_bfd_error_handler)
12151 (_("%B: warning: could not read contents of section `%A'"),
12152 abfd, sec);
12153 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12154 &l_sec_contents))
12155 (*_bfd_error_handler)
12156 (_("%B: warning: could not read contents of section `%A'"),
12157 l->sec->owner, l->sec);
12158 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12159 (*_bfd_error_handler)
12160 (_("%B: warning: duplicate section `%A' has different contents"),
12161 abfd, sec);
12162
12163 if (sec_contents)
12164 free (sec_contents);
12165 if (l_sec_contents)
12166 free (l_sec_contents);
12167 }
12168 break;
12169 }
12170
12171 /* Set the output_section field so that lang_add_section
12172 does not create a lang_input_section structure for this
12173 section. Since there might be a symbol in the section
12174 being discarded, we must retain a pointer to the section
12175 which we are really going to use. */
12176 sec->output_section = bfd_abs_section_ptr;
12177 sec->kept_section = l->sec;
12178
12179 if (flags & SEC_GROUP)
12180 {
12181 asection *first = elf_next_in_group (sec);
12182 asection *s = first;
12183
12184 while (s != NULL)
12185 {
12186 s->output_section = bfd_abs_section_ptr;
12187 /* Record which group discards it. */
12188 s->kept_section = l->sec;
12189 s = elf_next_in_group (s);
12190 /* These lists are circular. */
12191 if (s == first)
12192 break;
12193 }
12194 }
12195
12196 return;
12197 }
12198 }
12199
12200 /* A single member comdat group section may be discarded by a
12201 linkonce section and vice versa. */
12202
12203 if ((flags & SEC_GROUP) != 0)
12204 {
12205 asection *first = elf_next_in_group (sec);
12206
12207 if (first != NULL && elf_next_in_group (first) == first)
12208 /* Check this single member group against linkonce sections. */
12209 for (l = already_linked_list->entry; l != NULL; l = l->next)
12210 if ((l->sec->flags & SEC_GROUP) == 0
12211 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12212 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12213 {
12214 first->output_section = bfd_abs_section_ptr;
12215 first->kept_section = l->sec;
12216 sec->output_section = bfd_abs_section_ptr;
12217 break;
12218 }
12219 }
12220 else
12221 /* Check this linkonce section against single member groups. */
12222 for (l = already_linked_list->entry; l != NULL; l = l->next)
12223 if (l->sec->flags & SEC_GROUP)
12224 {
12225 asection *first = elf_next_in_group (l->sec);
12226
12227 if (first != NULL
12228 && elf_next_in_group (first) == first
12229 && bfd_elf_match_symbols_in_sections (first, sec, info))
12230 {
12231 sec->output_section = bfd_abs_section_ptr;
12232 sec->kept_section = first;
12233 break;
12234 }
12235 }
12236
12237 /* This is the first section with this name. Record it. */
12238 bfd_section_already_linked_table_insert (already_linked_list, sec);
12239 }
12240
12241 bfd_boolean
12242 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12243 {
12244 return sym->st_shndx == SHN_COMMON;
12245 }
12246
12247 unsigned int
12248 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12249 {
12250 return SHN_COMMON;
12251 }
12252
12253 asection *
12254 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12255 {
12256 return bfd_com_section_ptr;
12257 }
This page took 0.282569 seconds and 3 git commands to generate.