PR15530, mark symbol in executables if it matches dynamic_list
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* For merging, we only care about real symbols. But we need to make
955 sure that indirect symbol dynamic flags are updated. */
956 hi = h;
957 while (h->root.type == bfd_link_hash_indirect
958 || h->root.type == bfd_link_hash_warning)
959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
960
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962 existing symbol. */
963
964 oldbfd = NULL;
965 oldsec = NULL;
966 switch (h->root.type)
967 {
968 default:
969 break;
970
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
974 break;
975
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 oldbfd = h->root.u.def.section->owner;
979 oldsec = h->root.u.def.section;
980 break;
981
982 case bfd_link_hash_common:
983 oldbfd = h->root.u.c.p->section->owner;
984 oldsec = h->root.u.c.p->section;
985 if (pold_alignment)
986 *pold_alignment = h->root.u.c.p->alignment_power;
987 break;
988 }
989 if (poldbfd && *poldbfd == NULL)
990 *poldbfd = oldbfd;
991
992 /* Differentiate strong and weak symbols. */
993 newweak = bind == STB_WEAK;
994 oldweak = (h->root.type == bfd_link_hash_defweak
995 || h->root.type == bfd_link_hash_undefweak);
996 if (pold_weak)
997 *pold_weak = oldweak;
998
999 /* This code is for coping with dynamic objects, and is only useful
1000 if we are doing an ELF link. */
1001 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1002 return TRUE;
1003
1004 /* We have to check it for every instance since the first few may be
1005 references and not all compilers emit symbol type for undefined
1006 symbols. */
1007 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1008
1009 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010 respectively, is from a dynamic object. */
1011
1012 newdyn = (abfd->flags & DYNAMIC) != 0;
1013
1014 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015 syms and defined syms in dynamic libraries respectively.
1016 ref_dynamic on the other hand can be set for a symbol defined in
1017 a dynamic library, and def_dynamic may not be set; When the
1018 definition in a dynamic lib is overridden by a definition in the
1019 executable use of the symbol in the dynamic lib becomes a
1020 reference to the executable symbol. */
1021 if (newdyn)
1022 {
1023 if (bfd_is_und_section (sec))
1024 {
1025 if (bind != STB_WEAK)
1026 {
1027 h->ref_dynamic_nonweak = 1;
1028 hi->ref_dynamic_nonweak = 1;
1029 }
1030 }
1031 else
1032 {
1033 h->dynamic_def = 1;
1034 hi->dynamic_def = 1;
1035 }
1036 }
1037
1038 /* If we just created the symbol, mark it as being an ELF symbol.
1039 Other than that, there is nothing to do--there is no merge issue
1040 with a newly defined symbol--so we just return. */
1041
1042 if (h->root.type == bfd_link_hash_new)
1043 {
1044 h->non_elf = 0;
1045 return TRUE;
1046 }
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. */
1091 if (pold_alignment == NULL
1092 && newdyn
1093 && newdef
1094 && !olddyn
1095 && (((olddef || h->root.type == bfd_link_hash_common)
1096 && ELF_ST_TYPE (sym->st_info) != h->type
1097 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1098 && h->type != STT_NOTYPE
1099 && !(newfunc && oldfunc))
1100 || (olddef
1101 && ((h->type == STT_GNU_IFUNC)
1102 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1103 {
1104 *skip = TRUE;
1105 return TRUE;
1106 }
1107
1108 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1109 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1110 *type_change_ok = TRUE;
1111
1112 /* Check TLS symbol. We don't check undefined symbol introduced by
1113 "ld -u". */
1114 else if (oldbfd != NULL
1115 && ELF_ST_TYPE (sym->st_info) != h->type
1116 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1117 {
1118 bfd *ntbfd, *tbfd;
1119 bfd_boolean ntdef, tdef;
1120 asection *ntsec, *tsec;
1121
1122 if (h->type == STT_TLS)
1123 {
1124 ntbfd = abfd;
1125 ntsec = sec;
1126 ntdef = newdef;
1127 tbfd = oldbfd;
1128 tsec = oldsec;
1129 tdef = olddef;
1130 }
1131 else
1132 {
1133 ntbfd = oldbfd;
1134 ntsec = oldsec;
1135 ntdef = olddef;
1136 tbfd = abfd;
1137 tsec = sec;
1138 tdef = newdef;
1139 }
1140
1141 if (tdef && ntdef)
1142 (*_bfd_error_handler)
1143 (_("%s: TLS definition in %B section %A "
1144 "mismatches non-TLS definition in %B section %A"),
1145 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1146 else if (!tdef && !ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS reference in %B "
1149 "mismatches non-TLS reference in %B"),
1150 tbfd, ntbfd, h->root.root.string);
1151 else if (tdef)
1152 (*_bfd_error_handler)
1153 (_("%s: TLS definition in %B section %A "
1154 "mismatches non-TLS reference in %B"),
1155 tbfd, tsec, ntbfd, h->root.root.string);
1156 else
1157 (*_bfd_error_handler)
1158 (_("%s: TLS reference in %B "
1159 "mismatches non-TLS definition in %B section %A"),
1160 tbfd, ntbfd, ntsec, h->root.root.string);
1161
1162 bfd_set_error (bfd_error_bad_value);
1163 return FALSE;
1164 }
1165
1166 /* If the old symbol has non-default visibility, we ignore the new
1167 definition from a dynamic object. */
1168 if (newdyn
1169 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1170 && !bfd_is_und_section (sec))
1171 {
1172 *skip = TRUE;
1173 /* Make sure this symbol is dynamic. */
1174 h->ref_dynamic = 1;
1175 hi->ref_dynamic = 1;
1176 /* A protected symbol has external availability. Make sure it is
1177 recorded as dynamic.
1178
1179 FIXME: Should we check type and size for protected symbol? */
1180 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1181 return bfd_elf_link_record_dynamic_symbol (info, h);
1182 else
1183 return TRUE;
1184 }
1185 else if (!newdyn
1186 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1187 && h->def_dynamic)
1188 {
1189 /* If the new symbol with non-default visibility comes from a
1190 relocatable file and the old definition comes from a dynamic
1191 object, we remove the old definition. */
1192 if (hi->root.type == bfd_link_hash_indirect)
1193 {
1194 /* Handle the case where the old dynamic definition is
1195 default versioned. We need to copy the symbol info from
1196 the symbol with default version to the normal one if it
1197 was referenced before. */
1198 if (h->ref_regular)
1199 {
1200 hi->root.type = h->root.type;
1201 h->root.type = bfd_link_hash_indirect;
1202 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1203
1204 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1205 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1206 {
1207 /* If the new symbol is hidden or internal, completely undo
1208 any dynamic link state. */
1209 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1210 h->forced_local = 0;
1211 h->ref_dynamic = 0;
1212 }
1213 else
1214 h->ref_dynamic = 1;
1215
1216 h->def_dynamic = 0;
1217 /* FIXME: Should we check type and size for protected symbol? */
1218 h->size = 0;
1219 h->type = 0;
1220
1221 h = hi;
1222 }
1223 else
1224 h = hi;
1225 }
1226
1227 /* If the old symbol was undefined before, then it will still be
1228 on the undefs list. If the new symbol is undefined or
1229 common, we can't make it bfd_link_hash_new here, because new
1230 undefined or common symbols will be added to the undefs list
1231 by _bfd_generic_link_add_one_symbol. Symbols may not be
1232 added twice to the undefs list. Also, if the new symbol is
1233 undefweak then we don't want to lose the strong undef. */
1234 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1235 {
1236 h->root.type = bfd_link_hash_undefined;
1237 h->root.u.undef.abfd = abfd;
1238 }
1239 else
1240 {
1241 h->root.type = bfd_link_hash_new;
1242 h->root.u.undef.abfd = NULL;
1243 }
1244
1245 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1246 {
1247 /* If the new symbol is hidden or internal, completely undo
1248 any dynamic link state. */
1249 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1250 h->forced_local = 0;
1251 h->ref_dynamic = 0;
1252 }
1253 else
1254 h->ref_dynamic = 1;
1255 h->def_dynamic = 0;
1256 /* FIXME: Should we check type and size for protected symbol? */
1257 h->size = 0;
1258 h->type = 0;
1259 return TRUE;
1260 }
1261
1262 /* If a new weak symbol definition comes from a regular file and the
1263 old symbol comes from a dynamic library, we treat the new one as
1264 strong. Similarly, an old weak symbol definition from a regular
1265 file is treated as strong when the new symbol comes from a dynamic
1266 library. Further, an old weak symbol from a dynamic library is
1267 treated as strong if the new symbol is from a dynamic library.
1268 This reflects the way glibc's ld.so works.
1269
1270 Do this before setting *type_change_ok or *size_change_ok so that
1271 we warn properly when dynamic library symbols are overridden. */
1272
1273 if (newdef && !newdyn && olddyn)
1274 newweak = FALSE;
1275 if (olddef && newdyn)
1276 oldweak = FALSE;
1277
1278 /* Allow changes between different types of function symbol. */
1279 if (newfunc && oldfunc)
1280 *type_change_ok = TRUE;
1281
1282 /* It's OK to change the type if either the existing symbol or the
1283 new symbol is weak. A type change is also OK if the old symbol
1284 is undefined and the new symbol is defined. */
1285
1286 if (oldweak
1287 || newweak
1288 || (newdef
1289 && h->root.type == bfd_link_hash_undefined))
1290 *type_change_ok = TRUE;
1291
1292 /* It's OK to change the size if either the existing symbol or the
1293 new symbol is weak, or if the old symbol is undefined. */
1294
1295 if (*type_change_ok
1296 || h->root.type == bfd_link_hash_undefined)
1297 *size_change_ok = TRUE;
1298
1299 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1300 symbol, respectively, appears to be a common symbol in a dynamic
1301 object. If a symbol appears in an uninitialized section, and is
1302 not weak, and is not a function, then it may be a common symbol
1303 which was resolved when the dynamic object was created. We want
1304 to treat such symbols specially, because they raise special
1305 considerations when setting the symbol size: if the symbol
1306 appears as a common symbol in a regular object, and the size in
1307 the regular object is larger, we must make sure that we use the
1308 larger size. This problematic case can always be avoided in C,
1309 but it must be handled correctly when using Fortran shared
1310 libraries.
1311
1312 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1313 likewise for OLDDYNCOMMON and OLDDEF.
1314
1315 Note that this test is just a heuristic, and that it is quite
1316 possible to have an uninitialized symbol in a shared object which
1317 is really a definition, rather than a common symbol. This could
1318 lead to some minor confusion when the symbol really is a common
1319 symbol in some regular object. However, I think it will be
1320 harmless. */
1321
1322 if (newdyn
1323 && newdef
1324 && !newweak
1325 && (sec->flags & SEC_ALLOC) != 0
1326 && (sec->flags & SEC_LOAD) == 0
1327 && sym->st_size > 0
1328 && !newfunc)
1329 newdyncommon = TRUE;
1330 else
1331 newdyncommon = FALSE;
1332
1333 if (olddyn
1334 && olddef
1335 && h->root.type == bfd_link_hash_defined
1336 && h->def_dynamic
1337 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1338 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1339 && h->size > 0
1340 && !oldfunc)
1341 olddyncommon = TRUE;
1342 else
1343 olddyncommon = FALSE;
1344
1345 /* We now know everything about the old and new symbols. We ask the
1346 backend to check if we can merge them. */
1347 if (bed->merge_symbol != NULL)
1348 {
1349 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1350 return FALSE;
1351 sec = *psec;
1352 }
1353
1354 /* If both the old and the new symbols look like common symbols in a
1355 dynamic object, set the size of the symbol to the larger of the
1356 two. */
1357
1358 if (olddyncommon
1359 && newdyncommon
1360 && sym->st_size != h->size)
1361 {
1362 /* Since we think we have two common symbols, issue a multiple
1363 common warning if desired. Note that we only warn if the
1364 size is different. If the size is the same, we simply let
1365 the old symbol override the new one as normally happens with
1366 symbols defined in dynamic objects. */
1367
1368 if (! ((*info->callbacks->multiple_common)
1369 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1370 return FALSE;
1371
1372 if (sym->st_size > h->size)
1373 h->size = sym->st_size;
1374
1375 *size_change_ok = TRUE;
1376 }
1377
1378 /* If we are looking at a dynamic object, and we have found a
1379 definition, we need to see if the symbol was already defined by
1380 some other object. If so, we want to use the existing
1381 definition, and we do not want to report a multiple symbol
1382 definition error; we do this by clobbering *PSEC to be
1383 bfd_und_section_ptr.
1384
1385 We treat a common symbol as a definition if the symbol in the
1386 shared library is a function, since common symbols always
1387 represent variables; this can cause confusion in principle, but
1388 any such confusion would seem to indicate an erroneous program or
1389 shared library. We also permit a common symbol in a regular
1390 object to override a weak symbol in a shared object. */
1391
1392 if (newdyn
1393 && newdef
1394 && (olddef
1395 || (h->root.type == bfd_link_hash_common
1396 && (newweak || newfunc))))
1397 {
1398 *override = TRUE;
1399 newdef = FALSE;
1400 newdyncommon = FALSE;
1401
1402 *psec = sec = bfd_und_section_ptr;
1403 *size_change_ok = TRUE;
1404
1405 /* If we get here when the old symbol is a common symbol, then
1406 we are explicitly letting it override a weak symbol or
1407 function in a dynamic object, and we don't want to warn about
1408 a type change. If the old symbol is a defined symbol, a type
1409 change warning may still be appropriate. */
1410
1411 if (h->root.type == bfd_link_hash_common)
1412 *type_change_ok = TRUE;
1413 }
1414
1415 /* Handle the special case of an old common symbol merging with a
1416 new symbol which looks like a common symbol in a shared object.
1417 We change *PSEC and *PVALUE to make the new symbol look like a
1418 common symbol, and let _bfd_generic_link_add_one_symbol do the
1419 right thing. */
1420
1421 if (newdyncommon
1422 && h->root.type == bfd_link_hash_common)
1423 {
1424 *override = TRUE;
1425 newdef = FALSE;
1426 newdyncommon = FALSE;
1427 *pvalue = sym->st_size;
1428 *psec = sec = bed->common_section (oldsec);
1429 *size_change_ok = TRUE;
1430 }
1431
1432 /* Skip weak definitions of symbols that are already defined. */
1433 if (newdef && olddef && newweak)
1434 {
1435 /* Don't skip new non-IR weak syms. */
1436 if (!(oldbfd != NULL
1437 && (oldbfd->flags & BFD_PLUGIN) != 0
1438 && (abfd->flags & BFD_PLUGIN) == 0))
1439 {
1440 newdef = FALSE;
1441 *skip = TRUE;
1442 }
1443
1444 /* Merge st_other. If the symbol already has a dynamic index,
1445 but visibility says it should not be visible, turn it into a
1446 local symbol. */
1447 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1448 if (h->dynindx != -1)
1449 switch (ELF_ST_VISIBILITY (h->other))
1450 {
1451 case STV_INTERNAL:
1452 case STV_HIDDEN:
1453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1454 break;
1455 }
1456 }
1457
1458 /* If the old symbol is from a dynamic object, and the new symbol is
1459 a definition which is not from a dynamic object, then the new
1460 symbol overrides the old symbol. Symbols from regular files
1461 always take precedence over symbols from dynamic objects, even if
1462 they are defined after the dynamic object in the link.
1463
1464 As above, we again permit a common symbol in a regular object to
1465 override a definition in a shared object if the shared object
1466 symbol is a function or is weak. */
1467
1468 flip = NULL;
1469 if (!newdyn
1470 && (newdef
1471 || (bfd_is_com_section (sec)
1472 && (oldweak || oldfunc)))
1473 && olddyn
1474 && olddef
1475 && h->def_dynamic)
1476 {
1477 /* Change the hash table entry to undefined, and let
1478 _bfd_generic_link_add_one_symbol do the right thing with the
1479 new definition. */
1480
1481 h->root.type = bfd_link_hash_undefined;
1482 h->root.u.undef.abfd = h->root.u.def.section->owner;
1483 *size_change_ok = TRUE;
1484
1485 olddef = FALSE;
1486 olddyncommon = FALSE;
1487
1488 /* We again permit a type change when a common symbol may be
1489 overriding a function. */
1490
1491 if (bfd_is_com_section (sec))
1492 {
1493 if (oldfunc)
1494 {
1495 /* If a common symbol overrides a function, make sure
1496 that it isn't defined dynamically nor has type
1497 function. */
1498 h->def_dynamic = 0;
1499 h->type = STT_NOTYPE;
1500 }
1501 *type_change_ok = TRUE;
1502 }
1503
1504 if (hi->root.type == bfd_link_hash_indirect)
1505 flip = hi;
1506 else
1507 /* This union may have been set to be non-NULL when this symbol
1508 was seen in a dynamic object. We must force the union to be
1509 NULL, so that it is correct for a regular symbol. */
1510 h->verinfo.vertree = NULL;
1511 }
1512
1513 /* Handle the special case of a new common symbol merging with an
1514 old symbol that looks like it might be a common symbol defined in
1515 a shared object. Note that we have already handled the case in
1516 which a new common symbol should simply override the definition
1517 in the shared library. */
1518
1519 if (! newdyn
1520 && bfd_is_com_section (sec)
1521 && olddyncommon)
1522 {
1523 /* It would be best if we could set the hash table entry to a
1524 common symbol, but we don't know what to use for the section
1525 or the alignment. */
1526 if (! ((*info->callbacks->multiple_common)
1527 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1528 return FALSE;
1529
1530 /* If the presumed common symbol in the dynamic object is
1531 larger, pretend that the new symbol has its size. */
1532
1533 if (h->size > *pvalue)
1534 *pvalue = h->size;
1535
1536 /* We need to remember the alignment required by the symbol
1537 in the dynamic object. */
1538 BFD_ASSERT (pold_alignment);
1539 *pold_alignment = h->root.u.def.section->alignment_power;
1540
1541 olddef = FALSE;
1542 olddyncommon = FALSE;
1543
1544 h->root.type = bfd_link_hash_undefined;
1545 h->root.u.undef.abfd = h->root.u.def.section->owner;
1546
1547 *size_change_ok = TRUE;
1548 *type_change_ok = TRUE;
1549
1550 if (hi->root.type == bfd_link_hash_indirect)
1551 flip = hi;
1552 else
1553 h->verinfo.vertree = NULL;
1554 }
1555
1556 if (flip != NULL)
1557 {
1558 /* Handle the case where we had a versioned symbol in a dynamic
1559 library and now find a definition in a normal object. In this
1560 case, we make the versioned symbol point to the normal one. */
1561 flip->root.type = h->root.type;
1562 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1563 h->root.type = bfd_link_hash_indirect;
1564 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1565 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1566 if (h->def_dynamic)
1567 {
1568 h->def_dynamic = 0;
1569 flip->ref_dynamic = 1;
1570 }
1571 }
1572
1573 return TRUE;
1574 }
1575
1576 /* This function is called to create an indirect symbol from the
1577 default for the symbol with the default version if needed. The
1578 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1579 set DYNSYM if the new indirect symbol is dynamic. */
1580
1581 static bfd_boolean
1582 _bfd_elf_add_default_symbol (bfd *abfd,
1583 struct bfd_link_info *info,
1584 struct elf_link_hash_entry *h,
1585 const char *name,
1586 Elf_Internal_Sym *sym,
1587 asection *sec,
1588 bfd_vma value,
1589 bfd **poldbfd,
1590 bfd_boolean *dynsym)
1591 {
1592 bfd_boolean type_change_ok;
1593 bfd_boolean size_change_ok;
1594 bfd_boolean skip;
1595 char *shortname;
1596 struct elf_link_hash_entry *hi;
1597 struct bfd_link_hash_entry *bh;
1598 const struct elf_backend_data *bed;
1599 bfd_boolean collect;
1600 bfd_boolean dynamic;
1601 bfd_boolean override;
1602 char *p;
1603 size_t len, shortlen;
1604 asection *tmp_sec;
1605
1606 /* If this symbol has a version, and it is the default version, we
1607 create an indirect symbol from the default name to the fully
1608 decorated name. This will cause external references which do not
1609 specify a version to be bound to this version of the symbol. */
1610 p = strchr (name, ELF_VER_CHR);
1611 if (p == NULL || p[1] != ELF_VER_CHR)
1612 return TRUE;
1613
1614 bed = get_elf_backend_data (abfd);
1615 collect = bed->collect;
1616 dynamic = (abfd->flags & DYNAMIC) != 0;
1617
1618 shortlen = p - name;
1619 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1620 if (shortname == NULL)
1621 return FALSE;
1622 memcpy (shortname, name, shortlen);
1623 shortname[shortlen] = '\0';
1624
1625 /* We are going to create a new symbol. Merge it with any existing
1626 symbol with this name. For the purposes of the merge, act as
1627 though we were defining the symbol we just defined, although we
1628 actually going to define an indirect symbol. */
1629 type_change_ok = FALSE;
1630 size_change_ok = FALSE;
1631 tmp_sec = sec;
1632 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1633 &hi, poldbfd, NULL, NULL, &skip, &override,
1634 &type_change_ok, &size_change_ok))
1635 return FALSE;
1636
1637 if (skip)
1638 goto nondefault;
1639
1640 if (! override)
1641 {
1642 bh = &hi->root;
1643 if (! (_bfd_generic_link_add_one_symbol
1644 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1645 0, name, FALSE, collect, &bh)))
1646 return FALSE;
1647 hi = (struct elf_link_hash_entry *) bh;
1648 }
1649 else
1650 {
1651 /* In this case the symbol named SHORTNAME is overriding the
1652 indirect symbol we want to add. We were planning on making
1653 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1654 is the name without a version. NAME is the fully versioned
1655 name, and it is the default version.
1656
1657 Overriding means that we already saw a definition for the
1658 symbol SHORTNAME in a regular object, and it is overriding
1659 the symbol defined in the dynamic object.
1660
1661 When this happens, we actually want to change NAME, the
1662 symbol we just added, to refer to SHORTNAME. This will cause
1663 references to NAME in the shared object to become references
1664 to SHORTNAME in the regular object. This is what we expect
1665 when we override a function in a shared object: that the
1666 references in the shared object will be mapped to the
1667 definition in the regular object. */
1668
1669 while (hi->root.type == bfd_link_hash_indirect
1670 || hi->root.type == bfd_link_hash_warning)
1671 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1672
1673 h->root.type = bfd_link_hash_indirect;
1674 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1675 if (h->def_dynamic)
1676 {
1677 h->def_dynamic = 0;
1678 hi->ref_dynamic = 1;
1679 if (hi->ref_regular
1680 || hi->def_regular)
1681 {
1682 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1683 return FALSE;
1684 }
1685 }
1686
1687 /* Now set HI to H, so that the following code will set the
1688 other fields correctly. */
1689 hi = h;
1690 }
1691
1692 /* Check if HI is a warning symbol. */
1693 if (hi->root.type == bfd_link_hash_warning)
1694 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1695
1696 /* If there is a duplicate definition somewhere, then HI may not
1697 point to an indirect symbol. We will have reported an error to
1698 the user in that case. */
1699
1700 if (hi->root.type == bfd_link_hash_indirect)
1701 {
1702 struct elf_link_hash_entry *ht;
1703
1704 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1705 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1706
1707 /* A reference to the SHORTNAME symbol from a dynamic library
1708 will be satisfied by the versioned symbol at runtime. In
1709 effect, we have a reference to the versioned symbol. */
1710 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1711 hi->dynamic_def |= ht->dynamic_def;
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->def_dynamic
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1723 }
1724 else
1725 {
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1728 }
1729 }
1730 }
1731
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1734
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 tmp_sec = sec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1748 &hi, NULL, NULL, NULL, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1751
1752 if (skip)
1753 return TRUE;
1754
1755 if (override)
1756 {
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1765 }
1766 else
1767 {
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1774
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1778
1779 if (hi->root.type == bfd_link_hash_indirect)
1780 {
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1783 hi->dynamic_def |= h->dynamic_def;
1784
1785 /* See if the new flags lead us to realize that the symbol
1786 must be dynamic. */
1787 if (! *dynsym)
1788 {
1789 if (! dynamic)
1790 {
1791 if (! info->executable
1792 || hi->ref_dynamic)
1793 *dynsym = TRUE;
1794 }
1795 else
1796 {
1797 if (hi->ref_regular)
1798 *dynsym = TRUE;
1799 }
1800 }
1801 }
1802 }
1803
1804 return TRUE;
1805 }
1806 \f
1807 /* This routine is used to export all defined symbols into the dynamic
1808 symbol table. It is called via elf_link_hash_traverse. */
1809
1810 static bfd_boolean
1811 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1812 {
1813 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 /* Ignore this if we won't export it. */
1820 if (!eif->info->export_dynamic && !h->dynamic)
1821 return TRUE;
1822
1823 if (h->dynindx == -1
1824 && (h->def_regular || h->ref_regular)
1825 && ! bfd_hide_sym_by_version (eif->info->version_info,
1826 h->root.root.string))
1827 {
1828 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1829 {
1830 eif->failed = TRUE;
1831 return FALSE;
1832 }
1833 }
1834
1835 return TRUE;
1836 }
1837 \f
1838 /* Look through the symbols which are defined in other shared
1839 libraries and referenced here. Update the list of version
1840 dependencies. This will be put into the .gnu.version_r section.
1841 This function is called via elf_link_hash_traverse. */
1842
1843 static bfd_boolean
1844 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1845 void *data)
1846 {
1847 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1848 Elf_Internal_Verneed *t;
1849 Elf_Internal_Vernaux *a;
1850 bfd_size_type amt;
1851
1852 /* We only care about symbols defined in shared objects with version
1853 information. */
1854 if (!h->def_dynamic
1855 || h->def_regular
1856 || h->dynindx == -1
1857 || h->verinfo.verdef == NULL)
1858 return TRUE;
1859
1860 /* See if we already know about this version. */
1861 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1862 t != NULL;
1863 t = t->vn_nextref)
1864 {
1865 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1866 continue;
1867
1868 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1869 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1870 return TRUE;
1871
1872 break;
1873 }
1874
1875 /* This is a new version. Add it to tree we are building. */
1876
1877 if (t == NULL)
1878 {
1879 amt = sizeof *t;
1880 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1881 if (t == NULL)
1882 {
1883 rinfo->failed = TRUE;
1884 return FALSE;
1885 }
1886
1887 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1888 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1889 elf_tdata (rinfo->info->output_bfd)->verref = t;
1890 }
1891
1892 amt = sizeof *a;
1893 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1894 if (a == NULL)
1895 {
1896 rinfo->failed = TRUE;
1897 return FALSE;
1898 }
1899
1900 /* Note that we are copying a string pointer here, and testing it
1901 above. If bfd_elf_string_from_elf_section is ever changed to
1902 discard the string data when low in memory, this will have to be
1903 fixed. */
1904 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1905
1906 a->vna_flags = h->verinfo.verdef->vd_flags;
1907 a->vna_nextptr = t->vn_auxptr;
1908
1909 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1910 ++rinfo->vers;
1911
1912 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1913
1914 t->vn_auxptr = a;
1915
1916 return TRUE;
1917 }
1918
1919 /* Figure out appropriate versions for all the symbols. We may not
1920 have the version number script until we have read all of the input
1921 files, so until that point we don't know which symbols should be
1922 local. This function is called via elf_link_hash_traverse. */
1923
1924 static bfd_boolean
1925 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1926 {
1927 struct elf_info_failed *sinfo;
1928 struct bfd_link_info *info;
1929 const struct elf_backend_data *bed;
1930 struct elf_info_failed eif;
1931 char *p;
1932 bfd_size_type amt;
1933
1934 sinfo = (struct elf_info_failed *) data;
1935 info = sinfo->info;
1936
1937 /* Fix the symbol flags. */
1938 eif.failed = FALSE;
1939 eif.info = info;
1940 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1941 {
1942 if (eif.failed)
1943 sinfo->failed = TRUE;
1944 return FALSE;
1945 }
1946
1947 /* We only need version numbers for symbols defined in regular
1948 objects. */
1949 if (!h->def_regular)
1950 return TRUE;
1951
1952 bed = get_elf_backend_data (info->output_bfd);
1953 p = strchr (h->root.root.string, ELF_VER_CHR);
1954 if (p != NULL && h->verinfo.vertree == NULL)
1955 {
1956 struct bfd_elf_version_tree *t;
1957 bfd_boolean hidden;
1958
1959 hidden = TRUE;
1960
1961 /* There are two consecutive ELF_VER_CHR characters if this is
1962 not a hidden symbol. */
1963 ++p;
1964 if (*p == ELF_VER_CHR)
1965 {
1966 hidden = FALSE;
1967 ++p;
1968 }
1969
1970 /* If there is no version string, we can just return out. */
1971 if (*p == '\0')
1972 {
1973 if (hidden)
1974 h->hidden = 1;
1975 return TRUE;
1976 }
1977
1978 /* Look for the version. If we find it, it is no longer weak. */
1979 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1980 {
1981 if (strcmp (t->name, p) == 0)
1982 {
1983 size_t len;
1984 char *alc;
1985 struct bfd_elf_version_expr *d;
1986
1987 len = p - h->root.root.string;
1988 alc = (char *) bfd_malloc (len);
1989 if (alc == NULL)
1990 {
1991 sinfo->failed = TRUE;
1992 return FALSE;
1993 }
1994 memcpy (alc, h->root.root.string, len - 1);
1995 alc[len - 1] = '\0';
1996 if (alc[len - 2] == ELF_VER_CHR)
1997 alc[len - 2] = '\0';
1998
1999 h->verinfo.vertree = t;
2000 t->used = TRUE;
2001 d = NULL;
2002
2003 if (t->globals.list != NULL)
2004 d = (*t->match) (&t->globals, NULL, alc);
2005
2006 /* See if there is anything to force this symbol to
2007 local scope. */
2008 if (d == NULL && t->locals.list != NULL)
2009 {
2010 d = (*t->match) (&t->locals, NULL, alc);
2011 if (d != NULL
2012 && h->dynindx != -1
2013 && ! info->export_dynamic)
2014 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2015 }
2016
2017 free (alc);
2018 break;
2019 }
2020 }
2021
2022 /* If we are building an application, we need to create a
2023 version node for this version. */
2024 if (t == NULL && info->executable)
2025 {
2026 struct bfd_elf_version_tree **pp;
2027 int version_index;
2028
2029 /* If we aren't going to export this symbol, we don't need
2030 to worry about it. */
2031 if (h->dynindx == -1)
2032 return TRUE;
2033
2034 amt = sizeof *t;
2035 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2036 if (t == NULL)
2037 {
2038 sinfo->failed = TRUE;
2039 return FALSE;
2040 }
2041
2042 t->name = p;
2043 t->name_indx = (unsigned int) -1;
2044 t->used = TRUE;
2045
2046 version_index = 1;
2047 /* Don't count anonymous version tag. */
2048 if (sinfo->info->version_info != NULL
2049 && sinfo->info->version_info->vernum == 0)
2050 version_index = 0;
2051 for (pp = &sinfo->info->version_info;
2052 *pp != NULL;
2053 pp = &(*pp)->next)
2054 ++version_index;
2055 t->vernum = version_index;
2056
2057 *pp = t;
2058
2059 h->verinfo.vertree = t;
2060 }
2061 else if (t == NULL)
2062 {
2063 /* We could not find the version for a symbol when
2064 generating a shared archive. Return an error. */
2065 (*_bfd_error_handler)
2066 (_("%B: version node not found for symbol %s"),
2067 info->output_bfd, h->root.root.string);
2068 bfd_set_error (bfd_error_bad_value);
2069 sinfo->failed = TRUE;
2070 return FALSE;
2071 }
2072
2073 if (hidden)
2074 h->hidden = 1;
2075 }
2076
2077 /* If we don't have a version for this symbol, see if we can find
2078 something. */
2079 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2080 {
2081 bfd_boolean hide;
2082
2083 h->verinfo.vertree
2084 = bfd_find_version_for_sym (sinfo->info->version_info,
2085 h->root.root.string, &hide);
2086 if (h->verinfo.vertree != NULL && hide)
2087 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2088 }
2089
2090 return TRUE;
2091 }
2092 \f
2093 /* Read and swap the relocs from the section indicated by SHDR. This
2094 may be either a REL or a RELA section. The relocations are
2095 translated into RELA relocations and stored in INTERNAL_RELOCS,
2096 which should have already been allocated to contain enough space.
2097 The EXTERNAL_RELOCS are a buffer where the external form of the
2098 relocations should be stored.
2099
2100 Returns FALSE if something goes wrong. */
2101
2102 static bfd_boolean
2103 elf_link_read_relocs_from_section (bfd *abfd,
2104 asection *sec,
2105 Elf_Internal_Shdr *shdr,
2106 void *external_relocs,
2107 Elf_Internal_Rela *internal_relocs)
2108 {
2109 const struct elf_backend_data *bed;
2110 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2111 const bfd_byte *erela;
2112 const bfd_byte *erelaend;
2113 Elf_Internal_Rela *irela;
2114 Elf_Internal_Shdr *symtab_hdr;
2115 size_t nsyms;
2116
2117 /* Position ourselves at the start of the section. */
2118 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2119 return FALSE;
2120
2121 /* Read the relocations. */
2122 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2123 return FALSE;
2124
2125 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2126 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2127
2128 bed = get_elf_backend_data (abfd);
2129
2130 /* Convert the external relocations to the internal format. */
2131 if (shdr->sh_entsize == bed->s->sizeof_rel)
2132 swap_in = bed->s->swap_reloc_in;
2133 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2134 swap_in = bed->s->swap_reloca_in;
2135 else
2136 {
2137 bfd_set_error (bfd_error_wrong_format);
2138 return FALSE;
2139 }
2140
2141 erela = (const bfd_byte *) external_relocs;
2142 erelaend = erela + shdr->sh_size;
2143 irela = internal_relocs;
2144 while (erela < erelaend)
2145 {
2146 bfd_vma r_symndx;
2147
2148 (*swap_in) (abfd, erela, irela);
2149 r_symndx = ELF32_R_SYM (irela->r_info);
2150 if (bed->s->arch_size == 64)
2151 r_symndx >>= 24;
2152 if (nsyms > 0)
2153 {
2154 if ((size_t) r_symndx >= nsyms)
2155 {
2156 (*_bfd_error_handler)
2157 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2158 " for offset 0x%lx in section `%A'"),
2159 abfd, sec,
2160 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2161 bfd_set_error (bfd_error_bad_value);
2162 return FALSE;
2163 }
2164 }
2165 else if (r_symndx != STN_UNDEF)
2166 {
2167 (*_bfd_error_handler)
2168 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2169 " when the object file has no symbol table"),
2170 abfd, sec,
2171 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2172 bfd_set_error (bfd_error_bad_value);
2173 return FALSE;
2174 }
2175 irela += bed->s->int_rels_per_ext_rel;
2176 erela += shdr->sh_entsize;
2177 }
2178
2179 return TRUE;
2180 }
2181
2182 /* Read and swap the relocs for a section O. They may have been
2183 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2184 not NULL, they are used as buffers to read into. They are known to
2185 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2186 the return value is allocated using either malloc or bfd_alloc,
2187 according to the KEEP_MEMORY argument. If O has two relocation
2188 sections (both REL and RELA relocations), then the REL_HDR
2189 relocations will appear first in INTERNAL_RELOCS, followed by the
2190 RELA_HDR relocations. */
2191
2192 Elf_Internal_Rela *
2193 _bfd_elf_link_read_relocs (bfd *abfd,
2194 asection *o,
2195 void *external_relocs,
2196 Elf_Internal_Rela *internal_relocs,
2197 bfd_boolean keep_memory)
2198 {
2199 void *alloc1 = NULL;
2200 Elf_Internal_Rela *alloc2 = NULL;
2201 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2202 struct bfd_elf_section_data *esdo = elf_section_data (o);
2203 Elf_Internal_Rela *internal_rela_relocs;
2204
2205 if (esdo->relocs != NULL)
2206 return esdo->relocs;
2207
2208 if (o->reloc_count == 0)
2209 return NULL;
2210
2211 if (internal_relocs == NULL)
2212 {
2213 bfd_size_type size;
2214
2215 size = o->reloc_count;
2216 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2217 if (keep_memory)
2218 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2219 else
2220 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2221 if (internal_relocs == NULL)
2222 goto error_return;
2223 }
2224
2225 if (external_relocs == NULL)
2226 {
2227 bfd_size_type size = 0;
2228
2229 if (esdo->rel.hdr)
2230 size += esdo->rel.hdr->sh_size;
2231 if (esdo->rela.hdr)
2232 size += esdo->rela.hdr->sh_size;
2233
2234 alloc1 = bfd_malloc (size);
2235 if (alloc1 == NULL)
2236 goto error_return;
2237 external_relocs = alloc1;
2238 }
2239
2240 internal_rela_relocs = internal_relocs;
2241 if (esdo->rel.hdr)
2242 {
2243 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2244 external_relocs,
2245 internal_relocs))
2246 goto error_return;
2247 external_relocs = (((bfd_byte *) external_relocs)
2248 + esdo->rel.hdr->sh_size);
2249 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2250 * bed->s->int_rels_per_ext_rel);
2251 }
2252
2253 if (esdo->rela.hdr
2254 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2255 external_relocs,
2256 internal_rela_relocs)))
2257 goto error_return;
2258
2259 /* Cache the results for next time, if we can. */
2260 if (keep_memory)
2261 esdo->relocs = internal_relocs;
2262
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265
2266 /* Don't free alloc2, since if it was allocated we are passing it
2267 back (under the name of internal_relocs). */
2268
2269 return internal_relocs;
2270
2271 error_return:
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274 if (alloc2 != NULL)
2275 {
2276 if (keep_memory)
2277 bfd_release (abfd, alloc2);
2278 else
2279 free (alloc2);
2280 }
2281 return NULL;
2282 }
2283
2284 /* Compute the size of, and allocate space for, REL_HDR which is the
2285 section header for a section containing relocations for O. */
2286
2287 static bfd_boolean
2288 _bfd_elf_link_size_reloc_section (bfd *abfd,
2289 struct bfd_elf_section_reloc_data *reldata)
2290 {
2291 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2292
2293 /* That allows us to calculate the size of the section. */
2294 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2295
2296 /* The contents field must last into write_object_contents, so we
2297 allocate it with bfd_alloc rather than malloc. Also since we
2298 cannot be sure that the contents will actually be filled in,
2299 we zero the allocated space. */
2300 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2301 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2302 return FALSE;
2303
2304 if (reldata->hashes == NULL && reldata->count)
2305 {
2306 struct elf_link_hash_entry **p;
2307
2308 p = (struct elf_link_hash_entry **)
2309 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2310 if (p == NULL)
2311 return FALSE;
2312
2313 reldata->hashes = p;
2314 }
2315
2316 return TRUE;
2317 }
2318
2319 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2320 originated from the section given by INPUT_REL_HDR) to the
2321 OUTPUT_BFD. */
2322
2323 bfd_boolean
2324 _bfd_elf_link_output_relocs (bfd *output_bfd,
2325 asection *input_section,
2326 Elf_Internal_Shdr *input_rel_hdr,
2327 Elf_Internal_Rela *internal_relocs,
2328 struct elf_link_hash_entry **rel_hash
2329 ATTRIBUTE_UNUSED)
2330 {
2331 Elf_Internal_Rela *irela;
2332 Elf_Internal_Rela *irelaend;
2333 bfd_byte *erel;
2334 struct bfd_elf_section_reloc_data *output_reldata;
2335 asection *output_section;
2336 const struct elf_backend_data *bed;
2337 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2338 struct bfd_elf_section_data *esdo;
2339
2340 output_section = input_section->output_section;
2341
2342 bed = get_elf_backend_data (output_bfd);
2343 esdo = elf_section_data (output_section);
2344 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2345 {
2346 output_reldata = &esdo->rel;
2347 swap_out = bed->s->swap_reloc_out;
2348 }
2349 else if (esdo->rela.hdr
2350 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2351 {
2352 output_reldata = &esdo->rela;
2353 swap_out = bed->s->swap_reloca_out;
2354 }
2355 else
2356 {
2357 (*_bfd_error_handler)
2358 (_("%B: relocation size mismatch in %B section %A"),
2359 output_bfd, input_section->owner, input_section);
2360 bfd_set_error (bfd_error_wrong_format);
2361 return FALSE;
2362 }
2363
2364 erel = output_reldata->hdr->contents;
2365 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2366 irela = internal_relocs;
2367 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2368 * bed->s->int_rels_per_ext_rel);
2369 while (irela < irelaend)
2370 {
2371 (*swap_out) (output_bfd, irela, erel);
2372 irela += bed->s->int_rels_per_ext_rel;
2373 erel += input_rel_hdr->sh_entsize;
2374 }
2375
2376 /* Bump the counter, so that we know where to add the next set of
2377 relocations. */
2378 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2379
2380 return TRUE;
2381 }
2382 \f
2383 /* Make weak undefined symbols in PIE dynamic. */
2384
2385 bfd_boolean
2386 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2387 struct elf_link_hash_entry *h)
2388 {
2389 if (info->pie
2390 && h->dynindx == -1
2391 && h->root.type == bfd_link_hash_undefweak)
2392 return bfd_elf_link_record_dynamic_symbol (info, h);
2393
2394 return TRUE;
2395 }
2396
2397 /* Fix up the flags for a symbol. This handles various cases which
2398 can only be fixed after all the input files are seen. This is
2399 currently called by both adjust_dynamic_symbol and
2400 assign_sym_version, which is unnecessary but perhaps more robust in
2401 the face of future changes. */
2402
2403 static bfd_boolean
2404 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2405 struct elf_info_failed *eif)
2406 {
2407 const struct elf_backend_data *bed;
2408
2409 /* If this symbol was mentioned in a non-ELF file, try to set
2410 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2411 permit a non-ELF file to correctly refer to a symbol defined in
2412 an ELF dynamic object. */
2413 if (h->non_elf)
2414 {
2415 while (h->root.type == bfd_link_hash_indirect)
2416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2417
2418 if (h->root.type != bfd_link_hash_defined
2419 && h->root.type != bfd_link_hash_defweak)
2420 {
2421 h->ref_regular = 1;
2422 h->ref_regular_nonweak = 1;
2423 }
2424 else
2425 {
2426 if (h->root.u.def.section->owner != NULL
2427 && (bfd_get_flavour (h->root.u.def.section->owner)
2428 == bfd_target_elf_flavour))
2429 {
2430 h->ref_regular = 1;
2431 h->ref_regular_nonweak = 1;
2432 }
2433 else
2434 h->def_regular = 1;
2435 }
2436
2437 if (h->dynindx == -1
2438 && (h->def_dynamic
2439 || h->ref_dynamic))
2440 {
2441 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2442 {
2443 eif->failed = TRUE;
2444 return FALSE;
2445 }
2446 }
2447 }
2448 else
2449 {
2450 /* Unfortunately, NON_ELF is only correct if the symbol
2451 was first seen in a non-ELF file. Fortunately, if the symbol
2452 was first seen in an ELF file, we're probably OK unless the
2453 symbol was defined in a non-ELF file. Catch that case here.
2454 FIXME: We're still in trouble if the symbol was first seen in
2455 a dynamic object, and then later in a non-ELF regular object. */
2456 if ((h->root.type == bfd_link_hash_defined
2457 || h->root.type == bfd_link_hash_defweak)
2458 && !h->def_regular
2459 && (h->root.u.def.section->owner != NULL
2460 ? (bfd_get_flavour (h->root.u.def.section->owner)
2461 != bfd_target_elf_flavour)
2462 : (bfd_is_abs_section (h->root.u.def.section)
2463 && !h->def_dynamic)))
2464 h->def_regular = 1;
2465 }
2466
2467 /* Backend specific symbol fixup. */
2468 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2469 if (bed->elf_backend_fixup_symbol
2470 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2471 return FALSE;
2472
2473 /* If this is a final link, and the symbol was defined as a common
2474 symbol in a regular object file, and there was no definition in
2475 any dynamic object, then the linker will have allocated space for
2476 the symbol in a common section but the DEF_REGULAR
2477 flag will not have been set. */
2478 if (h->root.type == bfd_link_hash_defined
2479 && !h->def_regular
2480 && h->ref_regular
2481 && !h->def_dynamic
2482 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2483 h->def_regular = 1;
2484
2485 /* If -Bsymbolic was used (which means to bind references to global
2486 symbols to the definition within the shared object), and this
2487 symbol was defined in a regular object, then it actually doesn't
2488 need a PLT entry. Likewise, if the symbol has non-default
2489 visibility. If the symbol has hidden or internal visibility, we
2490 will force it local. */
2491 if (h->needs_plt
2492 && eif->info->shared
2493 && is_elf_hash_table (eif->info->hash)
2494 && (SYMBOLIC_BIND (eif->info, h)
2495 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2496 && h->def_regular)
2497 {
2498 bfd_boolean force_local;
2499
2500 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2501 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2502 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2503 }
2504
2505 /* If a weak undefined symbol has non-default visibility, we also
2506 hide it from the dynamic linker. */
2507 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2508 && h->root.type == bfd_link_hash_undefweak)
2509 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2510
2511 /* If this is a weak defined symbol in a dynamic object, and we know
2512 the real definition in the dynamic object, copy interesting flags
2513 over to the real definition. */
2514 if (h->u.weakdef != NULL)
2515 {
2516 /* If the real definition is defined by a regular object file,
2517 don't do anything special. See the longer description in
2518 _bfd_elf_adjust_dynamic_symbol, below. */
2519 if (h->u.weakdef->def_regular)
2520 h->u.weakdef = NULL;
2521 else
2522 {
2523 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2524
2525 while (h->root.type == bfd_link_hash_indirect)
2526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2527
2528 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2529 || h->root.type == bfd_link_hash_defweak);
2530 BFD_ASSERT (weakdef->def_dynamic);
2531 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2532 || weakdef->root.type == bfd_link_hash_defweak);
2533 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2534 }
2535 }
2536
2537 return TRUE;
2538 }
2539
2540 /* Make the backend pick a good value for a dynamic symbol. This is
2541 called via elf_link_hash_traverse, and also calls itself
2542 recursively. */
2543
2544 static bfd_boolean
2545 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2546 {
2547 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2548 bfd *dynobj;
2549 const struct elf_backend_data *bed;
2550
2551 if (! is_elf_hash_table (eif->info->hash))
2552 return FALSE;
2553
2554 /* Ignore indirect symbols. These are added by the versioning code. */
2555 if (h->root.type == bfd_link_hash_indirect)
2556 return TRUE;
2557
2558 /* Fix the symbol flags. */
2559 if (! _bfd_elf_fix_symbol_flags (h, eif))
2560 return FALSE;
2561
2562 /* If this symbol does not require a PLT entry, and it is not
2563 defined by a dynamic object, or is not referenced by a regular
2564 object, ignore it. We do have to handle a weak defined symbol,
2565 even if no regular object refers to it, if we decided to add it
2566 to the dynamic symbol table. FIXME: Do we normally need to worry
2567 about symbols which are defined by one dynamic object and
2568 referenced by another one? */
2569 if (!h->needs_plt
2570 && h->type != STT_GNU_IFUNC
2571 && (h->def_regular
2572 || !h->def_dynamic
2573 || (!h->ref_regular
2574 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2575 {
2576 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2577 return TRUE;
2578 }
2579
2580 /* If we've already adjusted this symbol, don't do it again. This
2581 can happen via a recursive call. */
2582 if (h->dynamic_adjusted)
2583 return TRUE;
2584
2585 /* Don't look at this symbol again. Note that we must set this
2586 after checking the above conditions, because we may look at a
2587 symbol once, decide not to do anything, and then get called
2588 recursively later after REF_REGULAR is set below. */
2589 h->dynamic_adjusted = 1;
2590
2591 /* If this is a weak definition, and we know a real definition, and
2592 the real symbol is not itself defined by a regular object file,
2593 then get a good value for the real definition. We handle the
2594 real symbol first, for the convenience of the backend routine.
2595
2596 Note that there is a confusing case here. If the real definition
2597 is defined by a regular object file, we don't get the real symbol
2598 from the dynamic object, but we do get the weak symbol. If the
2599 processor backend uses a COPY reloc, then if some routine in the
2600 dynamic object changes the real symbol, we will not see that
2601 change in the corresponding weak symbol. This is the way other
2602 ELF linkers work as well, and seems to be a result of the shared
2603 library model.
2604
2605 I will clarify this issue. Most SVR4 shared libraries define the
2606 variable _timezone and define timezone as a weak synonym. The
2607 tzset call changes _timezone. If you write
2608 extern int timezone;
2609 int _timezone = 5;
2610 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2611 you might expect that, since timezone is a synonym for _timezone,
2612 the same number will print both times. However, if the processor
2613 backend uses a COPY reloc, then actually timezone will be copied
2614 into your process image, and, since you define _timezone
2615 yourself, _timezone will not. Thus timezone and _timezone will
2616 wind up at different memory locations. The tzset call will set
2617 _timezone, leaving timezone unchanged. */
2618
2619 if (h->u.weakdef != NULL)
2620 {
2621 /* If we get to this point, there is an implicit reference to
2622 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2623 h->u.weakdef->ref_regular = 1;
2624
2625 /* Ensure that the backend adjust_dynamic_symbol function sees
2626 H->U.WEAKDEF before H by recursively calling ourselves. */
2627 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2628 return FALSE;
2629 }
2630
2631 /* If a symbol has no type and no size and does not require a PLT
2632 entry, then we are probably about to do the wrong thing here: we
2633 are probably going to create a COPY reloc for an empty object.
2634 This case can arise when a shared object is built with assembly
2635 code, and the assembly code fails to set the symbol type. */
2636 if (h->size == 0
2637 && h->type == STT_NOTYPE
2638 && !h->needs_plt)
2639 (*_bfd_error_handler)
2640 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2641 h->root.root.string);
2642
2643 dynobj = elf_hash_table (eif->info)->dynobj;
2644 bed = get_elf_backend_data (dynobj);
2645
2646 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2647 {
2648 eif->failed = TRUE;
2649 return FALSE;
2650 }
2651
2652 return TRUE;
2653 }
2654
2655 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2656 DYNBSS. */
2657
2658 bfd_boolean
2659 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2660 asection *dynbss)
2661 {
2662 unsigned int power_of_two;
2663 bfd_vma mask;
2664 asection *sec = h->root.u.def.section;
2665
2666 /* The section aligment of definition is the maximum alignment
2667 requirement of symbols defined in the section. Since we don't
2668 know the symbol alignment requirement, we start with the
2669 maximum alignment and check low bits of the symbol address
2670 for the minimum alignment. */
2671 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2672 mask = ((bfd_vma) 1 << power_of_two) - 1;
2673 while ((h->root.u.def.value & mask) != 0)
2674 {
2675 mask >>= 1;
2676 --power_of_two;
2677 }
2678
2679 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2680 dynbss))
2681 {
2682 /* Adjust the section alignment if needed. */
2683 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2684 power_of_two))
2685 return FALSE;
2686 }
2687
2688 /* We make sure that the symbol will be aligned properly. */
2689 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2690
2691 /* Define the symbol as being at this point in DYNBSS. */
2692 h->root.u.def.section = dynbss;
2693 h->root.u.def.value = dynbss->size;
2694
2695 /* Increment the size of DYNBSS to make room for the symbol. */
2696 dynbss->size += h->size;
2697
2698 return TRUE;
2699 }
2700
2701 /* Adjust all external symbols pointing into SEC_MERGE sections
2702 to reflect the object merging within the sections. */
2703
2704 static bfd_boolean
2705 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2706 {
2707 asection *sec;
2708
2709 if ((h->root.type == bfd_link_hash_defined
2710 || h->root.type == bfd_link_hash_defweak)
2711 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2712 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2713 {
2714 bfd *output_bfd = (bfd *) data;
2715
2716 h->root.u.def.value =
2717 _bfd_merged_section_offset (output_bfd,
2718 &h->root.u.def.section,
2719 elf_section_data (sec)->sec_info,
2720 h->root.u.def.value);
2721 }
2722
2723 return TRUE;
2724 }
2725
2726 /* Returns false if the symbol referred to by H should be considered
2727 to resolve local to the current module, and true if it should be
2728 considered to bind dynamically. */
2729
2730 bfd_boolean
2731 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2732 struct bfd_link_info *info,
2733 bfd_boolean not_local_protected)
2734 {
2735 bfd_boolean binding_stays_local_p;
2736 const struct elf_backend_data *bed;
2737 struct elf_link_hash_table *hash_table;
2738
2739 if (h == NULL)
2740 return FALSE;
2741
2742 while (h->root.type == bfd_link_hash_indirect
2743 || h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2745
2746 /* If it was forced local, then clearly it's not dynamic. */
2747 if (h->dynindx == -1)
2748 return FALSE;
2749 if (h->forced_local)
2750 return FALSE;
2751
2752 /* Identify the cases where name binding rules say that a
2753 visible symbol resolves locally. */
2754 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2755
2756 switch (ELF_ST_VISIBILITY (h->other))
2757 {
2758 case STV_INTERNAL:
2759 case STV_HIDDEN:
2760 return FALSE;
2761
2762 case STV_PROTECTED:
2763 hash_table = elf_hash_table (info);
2764 if (!is_elf_hash_table (hash_table))
2765 return FALSE;
2766
2767 bed = get_elf_backend_data (hash_table->dynobj);
2768
2769 /* Proper resolution for function pointer equality may require
2770 that these symbols perhaps be resolved dynamically, even though
2771 we should be resolving them to the current module. */
2772 if (!not_local_protected || !bed->is_function_type (h->type))
2773 binding_stays_local_p = TRUE;
2774 break;
2775
2776 default:
2777 break;
2778 }
2779
2780 /* If it isn't defined locally, then clearly it's dynamic. */
2781 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2782 return TRUE;
2783
2784 /* Otherwise, the symbol is dynamic if binding rules don't tell
2785 us that it remains local. */
2786 return !binding_stays_local_p;
2787 }
2788
2789 /* Return true if the symbol referred to by H should be considered
2790 to resolve local to the current module, and false otherwise. Differs
2791 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2792 undefined symbols. The two functions are virtually identical except
2793 for the place where forced_local and dynindx == -1 are tested. If
2794 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2795 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2796 the symbol is local only for defined symbols.
2797 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2798 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2799 treatment of undefined weak symbols. For those that do not make
2800 undefined weak symbols dynamic, both functions may return false. */
2801
2802 bfd_boolean
2803 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2804 struct bfd_link_info *info,
2805 bfd_boolean local_protected)
2806 {
2807 const struct elf_backend_data *bed;
2808 struct elf_link_hash_table *hash_table;
2809
2810 /* If it's a local sym, of course we resolve locally. */
2811 if (h == NULL)
2812 return TRUE;
2813
2814 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2815 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2816 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2817 return TRUE;
2818
2819 /* Common symbols that become definitions don't get the DEF_REGULAR
2820 flag set, so test it first, and don't bail out. */
2821 if (ELF_COMMON_DEF_P (h))
2822 /* Do nothing. */;
2823 /* If we don't have a definition in a regular file, then we can't
2824 resolve locally. The sym is either undefined or dynamic. */
2825 else if (!h->def_regular)
2826 return FALSE;
2827
2828 /* Forced local symbols resolve locally. */
2829 if (h->forced_local)
2830 return TRUE;
2831
2832 /* As do non-dynamic symbols. */
2833 if (h->dynindx == -1)
2834 return TRUE;
2835
2836 /* At this point, we know the symbol is defined and dynamic. In an
2837 executable it must resolve locally, likewise when building symbolic
2838 shared libraries. */
2839 if (info->executable || SYMBOLIC_BIND (info, h))
2840 return TRUE;
2841
2842 /* Now deal with defined dynamic symbols in shared libraries. Ones
2843 with default visibility might not resolve locally. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2845 return FALSE;
2846
2847 hash_table = elf_hash_table (info);
2848 if (!is_elf_hash_table (hash_table))
2849 return TRUE;
2850
2851 bed = get_elf_backend_data (hash_table->dynobj);
2852
2853 /* STV_PROTECTED non-function symbols are local. */
2854 if (!bed->is_function_type (h->type))
2855 return TRUE;
2856
2857 /* Function pointer equality tests may require that STV_PROTECTED
2858 symbols be treated as dynamic symbols. If the address of a
2859 function not defined in an executable is set to that function's
2860 plt entry in the executable, then the address of the function in
2861 a shared library must also be the plt entry in the executable. */
2862 return local_protected;
2863 }
2864
2865 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2866 aligned. Returns the first TLS output section. */
2867
2868 struct bfd_section *
2869 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2870 {
2871 struct bfd_section *sec, *tls;
2872 unsigned int align = 0;
2873
2874 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2875 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2876 break;
2877 tls = sec;
2878
2879 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2880 if (sec->alignment_power > align)
2881 align = sec->alignment_power;
2882
2883 elf_hash_table (info)->tls_sec = tls;
2884
2885 /* Ensure the alignment of the first section is the largest alignment,
2886 so that the tls segment starts aligned. */
2887 if (tls != NULL)
2888 tls->alignment_power = align;
2889
2890 return tls;
2891 }
2892
2893 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2894 static bfd_boolean
2895 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2896 Elf_Internal_Sym *sym)
2897 {
2898 const struct elf_backend_data *bed;
2899
2900 /* Local symbols do not count, but target specific ones might. */
2901 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2902 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2903 return FALSE;
2904
2905 bed = get_elf_backend_data (abfd);
2906 /* Function symbols do not count. */
2907 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2908 return FALSE;
2909
2910 /* If the section is undefined, then so is the symbol. */
2911 if (sym->st_shndx == SHN_UNDEF)
2912 return FALSE;
2913
2914 /* If the symbol is defined in the common section, then
2915 it is a common definition and so does not count. */
2916 if (bed->common_definition (sym))
2917 return FALSE;
2918
2919 /* If the symbol is in a target specific section then we
2920 must rely upon the backend to tell us what it is. */
2921 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2922 /* FIXME - this function is not coded yet:
2923
2924 return _bfd_is_global_symbol_definition (abfd, sym);
2925
2926 Instead for now assume that the definition is not global,
2927 Even if this is wrong, at least the linker will behave
2928 in the same way that it used to do. */
2929 return FALSE;
2930
2931 return TRUE;
2932 }
2933
2934 /* Search the symbol table of the archive element of the archive ABFD
2935 whose archive map contains a mention of SYMDEF, and determine if
2936 the symbol is defined in this element. */
2937 static bfd_boolean
2938 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2939 {
2940 Elf_Internal_Shdr * hdr;
2941 bfd_size_type symcount;
2942 bfd_size_type extsymcount;
2943 bfd_size_type extsymoff;
2944 Elf_Internal_Sym *isymbuf;
2945 Elf_Internal_Sym *isym;
2946 Elf_Internal_Sym *isymend;
2947 bfd_boolean result;
2948
2949 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2950 if (abfd == NULL)
2951 return FALSE;
2952
2953 if (! bfd_check_format (abfd, bfd_object))
2954 return FALSE;
2955
2956 /* If we have already included the element containing this symbol in the
2957 link then we do not need to include it again. Just claim that any symbol
2958 it contains is not a definition, so that our caller will not decide to
2959 (re)include this element. */
2960 if (abfd->archive_pass)
2961 return FALSE;
2962
2963 /* Select the appropriate symbol table. */
2964 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2965 hdr = &elf_tdata (abfd)->symtab_hdr;
2966 else
2967 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2968
2969 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2970
2971 /* The sh_info field of the symtab header tells us where the
2972 external symbols start. We don't care about the local symbols. */
2973 if (elf_bad_symtab (abfd))
2974 {
2975 extsymcount = symcount;
2976 extsymoff = 0;
2977 }
2978 else
2979 {
2980 extsymcount = symcount - hdr->sh_info;
2981 extsymoff = hdr->sh_info;
2982 }
2983
2984 if (extsymcount == 0)
2985 return FALSE;
2986
2987 /* Read in the symbol table. */
2988 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2989 NULL, NULL, NULL);
2990 if (isymbuf == NULL)
2991 return FALSE;
2992
2993 /* Scan the symbol table looking for SYMDEF. */
2994 result = FALSE;
2995 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2996 {
2997 const char *name;
2998
2999 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3000 isym->st_name);
3001 if (name == NULL)
3002 break;
3003
3004 if (strcmp (name, symdef->name) == 0)
3005 {
3006 result = is_global_data_symbol_definition (abfd, isym);
3007 break;
3008 }
3009 }
3010
3011 free (isymbuf);
3012
3013 return result;
3014 }
3015 \f
3016 /* Add an entry to the .dynamic table. */
3017
3018 bfd_boolean
3019 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3020 bfd_vma tag,
3021 bfd_vma val)
3022 {
3023 struct elf_link_hash_table *hash_table;
3024 const struct elf_backend_data *bed;
3025 asection *s;
3026 bfd_size_type newsize;
3027 bfd_byte *newcontents;
3028 Elf_Internal_Dyn dyn;
3029
3030 hash_table = elf_hash_table (info);
3031 if (! is_elf_hash_table (hash_table))
3032 return FALSE;
3033
3034 bed = get_elf_backend_data (hash_table->dynobj);
3035 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3036 BFD_ASSERT (s != NULL);
3037
3038 newsize = s->size + bed->s->sizeof_dyn;
3039 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3040 if (newcontents == NULL)
3041 return FALSE;
3042
3043 dyn.d_tag = tag;
3044 dyn.d_un.d_val = val;
3045 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3046
3047 s->size = newsize;
3048 s->contents = newcontents;
3049
3050 return TRUE;
3051 }
3052
3053 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3054 otherwise just check whether one already exists. Returns -1 on error,
3055 1 if a DT_NEEDED tag already exists, and 0 on success. */
3056
3057 static int
3058 elf_add_dt_needed_tag (bfd *abfd,
3059 struct bfd_link_info *info,
3060 const char *soname,
3061 bfd_boolean do_it)
3062 {
3063 struct elf_link_hash_table *hash_table;
3064 bfd_size_type strindex;
3065
3066 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3067 return -1;
3068
3069 hash_table = elf_hash_table (info);
3070 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3071 if (strindex == (bfd_size_type) -1)
3072 return -1;
3073
3074 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3075 {
3076 asection *sdyn;
3077 const struct elf_backend_data *bed;
3078 bfd_byte *extdyn;
3079
3080 bed = get_elf_backend_data (hash_table->dynobj);
3081 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3082 if (sdyn != NULL)
3083 for (extdyn = sdyn->contents;
3084 extdyn < sdyn->contents + sdyn->size;
3085 extdyn += bed->s->sizeof_dyn)
3086 {
3087 Elf_Internal_Dyn dyn;
3088
3089 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3090 if (dyn.d_tag == DT_NEEDED
3091 && dyn.d_un.d_val == strindex)
3092 {
3093 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3094 return 1;
3095 }
3096 }
3097 }
3098
3099 if (do_it)
3100 {
3101 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3102 return -1;
3103
3104 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3105 return -1;
3106 }
3107 else
3108 /* We were just checking for existence of the tag. */
3109 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3110
3111 return 0;
3112 }
3113
3114 static bfd_boolean
3115 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3116 {
3117 for (; needed != NULL; needed = needed->next)
3118 if (strcmp (soname, needed->name) == 0)
3119 return TRUE;
3120
3121 return FALSE;
3122 }
3123
3124 /* Sort symbol by value, section, and size. */
3125 static int
3126 elf_sort_symbol (const void *arg1, const void *arg2)
3127 {
3128 const struct elf_link_hash_entry *h1;
3129 const struct elf_link_hash_entry *h2;
3130 bfd_signed_vma vdiff;
3131
3132 h1 = *(const struct elf_link_hash_entry **) arg1;
3133 h2 = *(const struct elf_link_hash_entry **) arg2;
3134 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3135 if (vdiff != 0)
3136 return vdiff > 0 ? 1 : -1;
3137 else
3138 {
3139 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3140 if (sdiff != 0)
3141 return sdiff > 0 ? 1 : -1;
3142 }
3143 vdiff = h1->size - h2->size;
3144 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3145 }
3146
3147 /* This function is used to adjust offsets into .dynstr for
3148 dynamic symbols. This is called via elf_link_hash_traverse. */
3149
3150 static bfd_boolean
3151 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3152 {
3153 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3154
3155 if (h->dynindx != -1)
3156 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3157 return TRUE;
3158 }
3159
3160 /* Assign string offsets in .dynstr, update all structures referencing
3161 them. */
3162
3163 static bfd_boolean
3164 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3165 {
3166 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3167 struct elf_link_local_dynamic_entry *entry;
3168 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3169 bfd *dynobj = hash_table->dynobj;
3170 asection *sdyn;
3171 bfd_size_type size;
3172 const struct elf_backend_data *bed;
3173 bfd_byte *extdyn;
3174
3175 _bfd_elf_strtab_finalize (dynstr);
3176 size = _bfd_elf_strtab_size (dynstr);
3177
3178 bed = get_elf_backend_data (dynobj);
3179 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3180 BFD_ASSERT (sdyn != NULL);
3181
3182 /* Update all .dynamic entries referencing .dynstr strings. */
3183 for (extdyn = sdyn->contents;
3184 extdyn < sdyn->contents + sdyn->size;
3185 extdyn += bed->s->sizeof_dyn)
3186 {
3187 Elf_Internal_Dyn dyn;
3188
3189 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3190 switch (dyn.d_tag)
3191 {
3192 case DT_STRSZ:
3193 dyn.d_un.d_val = size;
3194 break;
3195 case DT_NEEDED:
3196 case DT_SONAME:
3197 case DT_RPATH:
3198 case DT_RUNPATH:
3199 case DT_FILTER:
3200 case DT_AUXILIARY:
3201 case DT_AUDIT:
3202 case DT_DEPAUDIT:
3203 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3204 break;
3205 default:
3206 continue;
3207 }
3208 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3209 }
3210
3211 /* Now update local dynamic symbols. */
3212 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3213 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3214 entry->isym.st_name);
3215
3216 /* And the rest of dynamic symbols. */
3217 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3218
3219 /* Adjust version definitions. */
3220 if (elf_tdata (output_bfd)->cverdefs)
3221 {
3222 asection *s;
3223 bfd_byte *p;
3224 bfd_size_type i;
3225 Elf_Internal_Verdef def;
3226 Elf_Internal_Verdaux defaux;
3227
3228 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3229 p = s->contents;
3230 do
3231 {
3232 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3233 &def);
3234 p += sizeof (Elf_External_Verdef);
3235 if (def.vd_aux != sizeof (Elf_External_Verdef))
3236 continue;
3237 for (i = 0; i < def.vd_cnt; ++i)
3238 {
3239 _bfd_elf_swap_verdaux_in (output_bfd,
3240 (Elf_External_Verdaux *) p, &defaux);
3241 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3242 defaux.vda_name);
3243 _bfd_elf_swap_verdaux_out (output_bfd,
3244 &defaux, (Elf_External_Verdaux *) p);
3245 p += sizeof (Elf_External_Verdaux);
3246 }
3247 }
3248 while (def.vd_next);
3249 }
3250
3251 /* Adjust version references. */
3252 if (elf_tdata (output_bfd)->verref)
3253 {
3254 asection *s;
3255 bfd_byte *p;
3256 bfd_size_type i;
3257 Elf_Internal_Verneed need;
3258 Elf_Internal_Vernaux needaux;
3259
3260 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3261 p = s->contents;
3262 do
3263 {
3264 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3265 &need);
3266 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3267 _bfd_elf_swap_verneed_out (output_bfd, &need,
3268 (Elf_External_Verneed *) p);
3269 p += sizeof (Elf_External_Verneed);
3270 for (i = 0; i < need.vn_cnt; ++i)
3271 {
3272 _bfd_elf_swap_vernaux_in (output_bfd,
3273 (Elf_External_Vernaux *) p, &needaux);
3274 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3275 needaux.vna_name);
3276 _bfd_elf_swap_vernaux_out (output_bfd,
3277 &needaux,
3278 (Elf_External_Vernaux *) p);
3279 p += sizeof (Elf_External_Vernaux);
3280 }
3281 }
3282 while (need.vn_next);
3283 }
3284
3285 return TRUE;
3286 }
3287 \f
3288 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3289 The default is to only match when the INPUT and OUTPUT are exactly
3290 the same target. */
3291
3292 bfd_boolean
3293 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3294 const bfd_target *output)
3295 {
3296 return input == output;
3297 }
3298
3299 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3300 This version is used when different targets for the same architecture
3301 are virtually identical. */
3302
3303 bfd_boolean
3304 _bfd_elf_relocs_compatible (const bfd_target *input,
3305 const bfd_target *output)
3306 {
3307 const struct elf_backend_data *obed, *ibed;
3308
3309 if (input == output)
3310 return TRUE;
3311
3312 ibed = xvec_get_elf_backend_data (input);
3313 obed = xvec_get_elf_backend_data (output);
3314
3315 if (ibed->arch != obed->arch)
3316 return FALSE;
3317
3318 /* If both backends are using this function, deem them compatible. */
3319 return ibed->relocs_compatible == obed->relocs_compatible;
3320 }
3321
3322 /* Make a special call to the linker "notice" function to tell it that
3323 we are about to handle an as-needed lib, or have finished
3324 processing the lib. */
3325
3326 bfd_boolean
3327 _bfd_elf_notice_as_needed (bfd *ibfd,
3328 struct bfd_link_info *info,
3329 enum notice_asneeded_action act)
3330 {
3331 return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3332 }
3333
3334 /* Add symbols from an ELF object file to the linker hash table. */
3335
3336 static bfd_boolean
3337 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3338 {
3339 Elf_Internal_Ehdr *ehdr;
3340 Elf_Internal_Shdr *hdr;
3341 bfd_size_type symcount;
3342 bfd_size_type extsymcount;
3343 bfd_size_type extsymoff;
3344 struct elf_link_hash_entry **sym_hash;
3345 bfd_boolean dynamic;
3346 Elf_External_Versym *extversym = NULL;
3347 Elf_External_Versym *ever;
3348 struct elf_link_hash_entry *weaks;
3349 struct elf_link_hash_entry **nondeflt_vers = NULL;
3350 bfd_size_type nondeflt_vers_cnt = 0;
3351 Elf_Internal_Sym *isymbuf = NULL;
3352 Elf_Internal_Sym *isym;
3353 Elf_Internal_Sym *isymend;
3354 const struct elf_backend_data *bed;
3355 bfd_boolean add_needed;
3356 struct elf_link_hash_table *htab;
3357 bfd_size_type amt;
3358 void *alloc_mark = NULL;
3359 struct bfd_hash_entry **old_table = NULL;
3360 unsigned int old_size = 0;
3361 unsigned int old_count = 0;
3362 void *old_tab = NULL;
3363 void *old_ent;
3364 struct bfd_link_hash_entry *old_undefs = NULL;
3365 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3366 long old_dynsymcount = 0;
3367 bfd_size_type old_dynstr_size = 0;
3368 size_t tabsize = 0;
3369 asection *s;
3370
3371 htab = elf_hash_table (info);
3372 bed = get_elf_backend_data (abfd);
3373
3374 if ((abfd->flags & DYNAMIC) == 0)
3375 dynamic = FALSE;
3376 else
3377 {
3378 dynamic = TRUE;
3379
3380 /* You can't use -r against a dynamic object. Also, there's no
3381 hope of using a dynamic object which does not exactly match
3382 the format of the output file. */
3383 if (info->relocatable
3384 || !is_elf_hash_table (htab)
3385 || info->output_bfd->xvec != abfd->xvec)
3386 {
3387 if (info->relocatable)
3388 bfd_set_error (bfd_error_invalid_operation);
3389 else
3390 bfd_set_error (bfd_error_wrong_format);
3391 goto error_return;
3392 }
3393 }
3394
3395 ehdr = elf_elfheader (abfd);
3396 if (info->warn_alternate_em
3397 && bed->elf_machine_code != ehdr->e_machine
3398 && ((bed->elf_machine_alt1 != 0
3399 && ehdr->e_machine == bed->elf_machine_alt1)
3400 || (bed->elf_machine_alt2 != 0
3401 && ehdr->e_machine == bed->elf_machine_alt2)))
3402 info->callbacks->einfo
3403 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3404 ehdr->e_machine, abfd, bed->elf_machine_code);
3405
3406 /* As a GNU extension, any input sections which are named
3407 .gnu.warning.SYMBOL are treated as warning symbols for the given
3408 symbol. This differs from .gnu.warning sections, which generate
3409 warnings when they are included in an output file. */
3410 /* PR 12761: Also generate this warning when building shared libraries. */
3411 for (s = abfd->sections; s != NULL; s = s->next)
3412 {
3413 const char *name;
3414
3415 name = bfd_get_section_name (abfd, s);
3416 if (CONST_STRNEQ (name, ".gnu.warning."))
3417 {
3418 char *msg;
3419 bfd_size_type sz;
3420
3421 name += sizeof ".gnu.warning." - 1;
3422
3423 /* If this is a shared object, then look up the symbol
3424 in the hash table. If it is there, and it is already
3425 been defined, then we will not be using the entry
3426 from this shared object, so we don't need to warn.
3427 FIXME: If we see the definition in a regular object
3428 later on, we will warn, but we shouldn't. The only
3429 fix is to keep track of what warnings we are supposed
3430 to emit, and then handle them all at the end of the
3431 link. */
3432 if (dynamic)
3433 {
3434 struct elf_link_hash_entry *h;
3435
3436 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3437
3438 /* FIXME: What about bfd_link_hash_common? */
3439 if (h != NULL
3440 && (h->root.type == bfd_link_hash_defined
3441 || h->root.type == bfd_link_hash_defweak))
3442 continue;
3443 }
3444
3445 sz = s->size;
3446 msg = (char *) bfd_alloc (abfd, sz + 1);
3447 if (msg == NULL)
3448 goto error_return;
3449
3450 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3451 goto error_return;
3452
3453 msg[sz] = '\0';
3454
3455 if (! (_bfd_generic_link_add_one_symbol
3456 (info, abfd, name, BSF_WARNING, s, 0, msg,
3457 FALSE, bed->collect, NULL)))
3458 goto error_return;
3459
3460 if (!info->relocatable && info->executable)
3461 {
3462 /* Clobber the section size so that the warning does
3463 not get copied into the output file. */
3464 s->size = 0;
3465
3466 /* Also set SEC_EXCLUDE, so that symbols defined in
3467 the warning section don't get copied to the output. */
3468 s->flags |= SEC_EXCLUDE;
3469 }
3470 }
3471 }
3472
3473 add_needed = TRUE;
3474 if (! dynamic)
3475 {
3476 /* If we are creating a shared library, create all the dynamic
3477 sections immediately. We need to attach them to something,
3478 so we attach them to this BFD, provided it is the right
3479 format. FIXME: If there are no input BFD's of the same
3480 format as the output, we can't make a shared library. */
3481 if (info->shared
3482 && is_elf_hash_table (htab)
3483 && info->output_bfd->xvec == abfd->xvec
3484 && !htab->dynamic_sections_created)
3485 {
3486 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3487 goto error_return;
3488 }
3489 }
3490 else if (!is_elf_hash_table (htab))
3491 goto error_return;
3492 else
3493 {
3494 const char *soname = NULL;
3495 char *audit = NULL;
3496 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3497 int ret;
3498
3499 /* ld --just-symbols and dynamic objects don't mix very well.
3500 ld shouldn't allow it. */
3501 if ((s = abfd->sections) != NULL
3502 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3503 abort ();
3504
3505 /* If this dynamic lib was specified on the command line with
3506 --as-needed in effect, then we don't want to add a DT_NEEDED
3507 tag unless the lib is actually used. Similary for libs brought
3508 in by another lib's DT_NEEDED. When --no-add-needed is used
3509 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3510 any dynamic library in DT_NEEDED tags in the dynamic lib at
3511 all. */
3512 add_needed = (elf_dyn_lib_class (abfd)
3513 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3514 | DYN_NO_NEEDED)) == 0;
3515
3516 s = bfd_get_section_by_name (abfd, ".dynamic");
3517 if (s != NULL)
3518 {
3519 bfd_byte *dynbuf;
3520 bfd_byte *extdyn;
3521 unsigned int elfsec;
3522 unsigned long shlink;
3523
3524 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3525 {
3526 error_free_dyn:
3527 free (dynbuf);
3528 goto error_return;
3529 }
3530
3531 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3532 if (elfsec == SHN_BAD)
3533 goto error_free_dyn;
3534 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3535
3536 for (extdyn = dynbuf;
3537 extdyn < dynbuf + s->size;
3538 extdyn += bed->s->sizeof_dyn)
3539 {
3540 Elf_Internal_Dyn dyn;
3541
3542 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3543 if (dyn.d_tag == DT_SONAME)
3544 {
3545 unsigned int tagv = dyn.d_un.d_val;
3546 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3547 if (soname == NULL)
3548 goto error_free_dyn;
3549 }
3550 if (dyn.d_tag == DT_NEEDED)
3551 {
3552 struct bfd_link_needed_list *n, **pn;
3553 char *fnm, *anm;
3554 unsigned int tagv = dyn.d_un.d_val;
3555
3556 amt = sizeof (struct bfd_link_needed_list);
3557 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3558 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3559 if (n == NULL || fnm == NULL)
3560 goto error_free_dyn;
3561 amt = strlen (fnm) + 1;
3562 anm = (char *) bfd_alloc (abfd, amt);
3563 if (anm == NULL)
3564 goto error_free_dyn;
3565 memcpy (anm, fnm, amt);
3566 n->name = anm;
3567 n->by = abfd;
3568 n->next = NULL;
3569 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3570 ;
3571 *pn = n;
3572 }
3573 if (dyn.d_tag == DT_RUNPATH)
3574 {
3575 struct bfd_link_needed_list *n, **pn;
3576 char *fnm, *anm;
3577 unsigned int tagv = dyn.d_un.d_val;
3578
3579 amt = sizeof (struct bfd_link_needed_list);
3580 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3581 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (n == NULL || fnm == NULL)
3583 goto error_free_dyn;
3584 amt = strlen (fnm) + 1;
3585 anm = (char *) bfd_alloc (abfd, amt);
3586 if (anm == NULL)
3587 goto error_free_dyn;
3588 memcpy (anm, fnm, amt);
3589 n->name = anm;
3590 n->by = abfd;
3591 n->next = NULL;
3592 for (pn = & runpath;
3593 *pn != NULL;
3594 pn = &(*pn)->next)
3595 ;
3596 *pn = n;
3597 }
3598 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3599 if (!runpath && dyn.d_tag == DT_RPATH)
3600 {
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3604
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & rpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3621 ;
3622 *pn = n;
3623 }
3624 if (dyn.d_tag == DT_AUDIT)
3625 {
3626 unsigned int tagv = dyn.d_un.d_val;
3627 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3628 }
3629 }
3630
3631 free (dynbuf);
3632 }
3633
3634 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3635 frees all more recently bfd_alloc'd blocks as well. */
3636 if (runpath)
3637 rpath = runpath;
3638
3639 if (rpath)
3640 {
3641 struct bfd_link_needed_list **pn;
3642 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3643 ;
3644 *pn = rpath;
3645 }
3646
3647 /* We do not want to include any of the sections in a dynamic
3648 object in the output file. We hack by simply clobbering the
3649 list of sections in the BFD. This could be handled more
3650 cleanly by, say, a new section flag; the existing
3651 SEC_NEVER_LOAD flag is not the one we want, because that one
3652 still implies that the section takes up space in the output
3653 file. */
3654 bfd_section_list_clear (abfd);
3655
3656 /* Find the name to use in a DT_NEEDED entry that refers to this
3657 object. If the object has a DT_SONAME entry, we use it.
3658 Otherwise, if the generic linker stuck something in
3659 elf_dt_name, we use that. Otherwise, we just use the file
3660 name. */
3661 if (soname == NULL || *soname == '\0')
3662 {
3663 soname = elf_dt_name (abfd);
3664 if (soname == NULL || *soname == '\0')
3665 soname = bfd_get_filename (abfd);
3666 }
3667
3668 /* Save the SONAME because sometimes the linker emulation code
3669 will need to know it. */
3670 elf_dt_name (abfd) = soname;
3671
3672 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3673 if (ret < 0)
3674 goto error_return;
3675
3676 /* If we have already included this dynamic object in the
3677 link, just ignore it. There is no reason to include a
3678 particular dynamic object more than once. */
3679 if (ret > 0)
3680 return TRUE;
3681
3682 /* Save the DT_AUDIT entry for the linker emulation code. */
3683 elf_dt_audit (abfd) = audit;
3684 }
3685
3686 /* If this is a dynamic object, we always link against the .dynsym
3687 symbol table, not the .symtab symbol table. The dynamic linker
3688 will only see the .dynsym symbol table, so there is no reason to
3689 look at .symtab for a dynamic object. */
3690
3691 if (! dynamic || elf_dynsymtab (abfd) == 0)
3692 hdr = &elf_tdata (abfd)->symtab_hdr;
3693 else
3694 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3695
3696 symcount = hdr->sh_size / bed->s->sizeof_sym;
3697
3698 /* The sh_info field of the symtab header tells us where the
3699 external symbols start. We don't care about the local symbols at
3700 this point. */
3701 if (elf_bad_symtab (abfd))
3702 {
3703 extsymcount = symcount;
3704 extsymoff = 0;
3705 }
3706 else
3707 {
3708 extsymcount = symcount - hdr->sh_info;
3709 extsymoff = hdr->sh_info;
3710 }
3711
3712 sym_hash = elf_sym_hashes (abfd);
3713 if (extsymcount != 0)
3714 {
3715 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3716 NULL, NULL, NULL);
3717 if (isymbuf == NULL)
3718 goto error_return;
3719
3720 if (sym_hash == NULL)
3721 {
3722 /* We store a pointer to the hash table entry for each
3723 external symbol. */
3724 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3725 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3726 if (sym_hash == NULL)
3727 goto error_free_sym;
3728 elf_sym_hashes (abfd) = sym_hash;
3729 }
3730 }
3731
3732 if (dynamic)
3733 {
3734 /* Read in any version definitions. */
3735 if (!_bfd_elf_slurp_version_tables (abfd,
3736 info->default_imported_symver))
3737 goto error_free_sym;
3738
3739 /* Read in the symbol versions, but don't bother to convert them
3740 to internal format. */
3741 if (elf_dynversym (abfd) != 0)
3742 {
3743 Elf_Internal_Shdr *versymhdr;
3744
3745 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3746 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3747 if (extversym == NULL)
3748 goto error_free_sym;
3749 amt = versymhdr->sh_size;
3750 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3751 || bfd_bread (extversym, amt, abfd) != amt)
3752 goto error_free_vers;
3753 }
3754 }
3755
3756 /* If we are loading an as-needed shared lib, save the symbol table
3757 state before we start adding symbols. If the lib turns out
3758 to be unneeded, restore the state. */
3759 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3760 {
3761 unsigned int i;
3762 size_t entsize;
3763
3764 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3765 {
3766 struct bfd_hash_entry *p;
3767 struct elf_link_hash_entry *h;
3768
3769 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3770 {
3771 h = (struct elf_link_hash_entry *) p;
3772 entsize += htab->root.table.entsize;
3773 if (h->root.type == bfd_link_hash_warning)
3774 entsize += htab->root.table.entsize;
3775 }
3776 }
3777
3778 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3779 old_tab = bfd_malloc (tabsize + entsize);
3780 if (old_tab == NULL)
3781 goto error_free_vers;
3782
3783 /* Remember the current objalloc pointer, so that all mem for
3784 symbols added can later be reclaimed. */
3785 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3786 if (alloc_mark == NULL)
3787 goto error_free_vers;
3788
3789 /* Make a special call to the linker "notice" function to
3790 tell it that we are about to handle an as-needed lib. */
3791 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3792 goto error_free_vers;
3793
3794 /* Clone the symbol table. Remember some pointers into the
3795 symbol table, and dynamic symbol count. */
3796 old_ent = (char *) old_tab + tabsize;
3797 memcpy (old_tab, htab->root.table.table, tabsize);
3798 old_undefs = htab->root.undefs;
3799 old_undefs_tail = htab->root.undefs_tail;
3800 old_table = htab->root.table.table;
3801 old_size = htab->root.table.size;
3802 old_count = htab->root.table.count;
3803 old_dynsymcount = htab->dynsymcount;
3804 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3805
3806 for (i = 0; i < htab->root.table.size; i++)
3807 {
3808 struct bfd_hash_entry *p;
3809 struct elf_link_hash_entry *h;
3810
3811 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3812 {
3813 memcpy (old_ent, p, htab->root.table.entsize);
3814 old_ent = (char *) old_ent + htab->root.table.entsize;
3815 h = (struct elf_link_hash_entry *) p;
3816 if (h->root.type == bfd_link_hash_warning)
3817 {
3818 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3819 old_ent = (char *) old_ent + htab->root.table.entsize;
3820 }
3821 }
3822 }
3823 }
3824
3825 weaks = NULL;
3826 ever = extversym != NULL ? extversym + extsymoff : NULL;
3827 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3828 isym < isymend;
3829 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3830 {
3831 int bind;
3832 bfd_vma value;
3833 asection *sec, *new_sec;
3834 flagword flags;
3835 const char *name;
3836 struct elf_link_hash_entry *h;
3837 struct elf_link_hash_entry *hi;
3838 bfd_boolean definition;
3839 bfd_boolean size_change_ok;
3840 bfd_boolean type_change_ok;
3841 bfd_boolean new_weakdef;
3842 bfd_boolean new_weak;
3843 bfd_boolean old_weak;
3844 bfd_boolean override;
3845 bfd_boolean common;
3846 unsigned int old_alignment;
3847 bfd *old_bfd;
3848
3849 override = FALSE;
3850
3851 flags = BSF_NO_FLAGS;
3852 sec = NULL;
3853 value = isym->st_value;
3854 common = bed->common_definition (isym);
3855
3856 bind = ELF_ST_BIND (isym->st_info);
3857 switch (bind)
3858 {
3859 case STB_LOCAL:
3860 /* This should be impossible, since ELF requires that all
3861 global symbols follow all local symbols, and that sh_info
3862 point to the first global symbol. Unfortunately, Irix 5
3863 screws this up. */
3864 continue;
3865
3866 case STB_GLOBAL:
3867 if (isym->st_shndx != SHN_UNDEF && !common)
3868 flags = BSF_GLOBAL;
3869 break;
3870
3871 case STB_WEAK:
3872 flags = BSF_WEAK;
3873 break;
3874
3875 case STB_GNU_UNIQUE:
3876 flags = BSF_GNU_UNIQUE;
3877 break;
3878
3879 default:
3880 /* Leave it up to the processor backend. */
3881 break;
3882 }
3883
3884 if (isym->st_shndx == SHN_UNDEF)
3885 sec = bfd_und_section_ptr;
3886 else if (isym->st_shndx == SHN_ABS)
3887 sec = bfd_abs_section_ptr;
3888 else if (isym->st_shndx == SHN_COMMON)
3889 {
3890 sec = bfd_com_section_ptr;
3891 /* What ELF calls the size we call the value. What ELF
3892 calls the value we call the alignment. */
3893 value = isym->st_size;
3894 }
3895 else
3896 {
3897 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3898 if (sec == NULL)
3899 sec = bfd_abs_section_ptr;
3900 else if (discarded_section (sec))
3901 {
3902 /* Symbols from discarded section are undefined. We keep
3903 its visibility. */
3904 sec = bfd_und_section_ptr;
3905 isym->st_shndx = SHN_UNDEF;
3906 }
3907 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3908 value -= sec->vma;
3909 }
3910
3911 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3912 isym->st_name);
3913 if (name == NULL)
3914 goto error_free_vers;
3915
3916 if (isym->st_shndx == SHN_COMMON
3917 && (abfd->flags & BFD_PLUGIN) != 0)
3918 {
3919 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3920
3921 if (xc == NULL)
3922 {
3923 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3924 | SEC_EXCLUDE);
3925 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3926 if (xc == NULL)
3927 goto error_free_vers;
3928 }
3929 sec = xc;
3930 }
3931 else if (isym->st_shndx == SHN_COMMON
3932 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3933 && !info->relocatable)
3934 {
3935 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3936
3937 if (tcomm == NULL)
3938 {
3939 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3940 | SEC_LINKER_CREATED);
3941 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3942 if (tcomm == NULL)
3943 goto error_free_vers;
3944 }
3945 sec = tcomm;
3946 }
3947 else if (bed->elf_add_symbol_hook)
3948 {
3949 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3950 &sec, &value))
3951 goto error_free_vers;
3952
3953 /* The hook function sets the name to NULL if this symbol
3954 should be skipped for some reason. */
3955 if (name == NULL)
3956 continue;
3957 }
3958
3959 /* Sanity check that all possibilities were handled. */
3960 if (sec == NULL)
3961 {
3962 bfd_set_error (bfd_error_bad_value);
3963 goto error_free_vers;
3964 }
3965
3966 /* Silently discard TLS symbols from --just-syms. There's
3967 no way to combine a static TLS block with a new TLS block
3968 for this executable. */
3969 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3970 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3971 continue;
3972
3973 if (bfd_is_und_section (sec)
3974 || bfd_is_com_section (sec))
3975 definition = FALSE;
3976 else
3977 definition = TRUE;
3978
3979 size_change_ok = FALSE;
3980 type_change_ok = bed->type_change_ok;
3981 old_weak = FALSE;
3982 old_alignment = 0;
3983 old_bfd = NULL;
3984 new_sec = sec;
3985
3986 if (is_elf_hash_table (htab))
3987 {
3988 Elf_Internal_Versym iver;
3989 unsigned int vernum = 0;
3990 bfd_boolean skip;
3991
3992 if (ever == NULL)
3993 {
3994 if (info->default_imported_symver)
3995 /* Use the default symbol version created earlier. */
3996 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3997 else
3998 iver.vs_vers = 0;
3999 }
4000 else
4001 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4002
4003 vernum = iver.vs_vers & VERSYM_VERSION;
4004
4005 /* If this is a hidden symbol, or if it is not version
4006 1, we append the version name to the symbol name.
4007 However, we do not modify a non-hidden absolute symbol
4008 if it is not a function, because it might be the version
4009 symbol itself. FIXME: What if it isn't? */
4010 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4011 || (vernum > 1
4012 && (!bfd_is_abs_section (sec)
4013 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4014 {
4015 const char *verstr;
4016 size_t namelen, verlen, newlen;
4017 char *newname, *p;
4018
4019 if (isym->st_shndx != SHN_UNDEF)
4020 {
4021 if (vernum > elf_tdata (abfd)->cverdefs)
4022 verstr = NULL;
4023 else if (vernum > 1)
4024 verstr =
4025 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4026 else
4027 verstr = "";
4028
4029 if (verstr == NULL)
4030 {
4031 (*_bfd_error_handler)
4032 (_("%B: %s: invalid version %u (max %d)"),
4033 abfd, name, vernum,
4034 elf_tdata (abfd)->cverdefs);
4035 bfd_set_error (bfd_error_bad_value);
4036 goto error_free_vers;
4037 }
4038 }
4039 else
4040 {
4041 /* We cannot simply test for the number of
4042 entries in the VERNEED section since the
4043 numbers for the needed versions do not start
4044 at 0. */
4045 Elf_Internal_Verneed *t;
4046
4047 verstr = NULL;
4048 for (t = elf_tdata (abfd)->verref;
4049 t != NULL;
4050 t = t->vn_nextref)
4051 {
4052 Elf_Internal_Vernaux *a;
4053
4054 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4055 {
4056 if (a->vna_other == vernum)
4057 {
4058 verstr = a->vna_nodename;
4059 break;
4060 }
4061 }
4062 if (a != NULL)
4063 break;
4064 }
4065 if (verstr == NULL)
4066 {
4067 (*_bfd_error_handler)
4068 (_("%B: %s: invalid needed version %d"),
4069 abfd, name, vernum);
4070 bfd_set_error (bfd_error_bad_value);
4071 goto error_free_vers;
4072 }
4073 }
4074
4075 namelen = strlen (name);
4076 verlen = strlen (verstr);
4077 newlen = namelen + verlen + 2;
4078 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4079 && isym->st_shndx != SHN_UNDEF)
4080 ++newlen;
4081
4082 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4083 if (newname == NULL)
4084 goto error_free_vers;
4085 memcpy (newname, name, namelen);
4086 p = newname + namelen;
4087 *p++ = ELF_VER_CHR;
4088 /* If this is a defined non-hidden version symbol,
4089 we add another @ to the name. This indicates the
4090 default version of the symbol. */
4091 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4092 && isym->st_shndx != SHN_UNDEF)
4093 *p++ = ELF_VER_CHR;
4094 memcpy (p, verstr, verlen + 1);
4095
4096 name = newname;
4097 }
4098
4099 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4100 sym_hash, &old_bfd, &old_weak,
4101 &old_alignment, &skip, &override,
4102 &type_change_ok, &size_change_ok))
4103 goto error_free_vers;
4104
4105 if (skip)
4106 continue;
4107
4108 if (override)
4109 definition = FALSE;
4110
4111 h = *sym_hash;
4112 while (h->root.type == bfd_link_hash_indirect
4113 || h->root.type == bfd_link_hash_warning)
4114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4115
4116 if (elf_tdata (abfd)->verdef != NULL
4117 && vernum > 1
4118 && definition)
4119 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4120 }
4121
4122 if (! (_bfd_generic_link_add_one_symbol
4123 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4124 (struct bfd_link_hash_entry **) sym_hash)))
4125 goto error_free_vers;
4126
4127 h = *sym_hash;
4128 /* We need to make sure that indirect symbol dynamic flags are
4129 updated. */
4130 hi = h;
4131 while (h->root.type == bfd_link_hash_indirect
4132 || h->root.type == bfd_link_hash_warning)
4133 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4134
4135 *sym_hash = h;
4136
4137 new_weak = (flags & BSF_WEAK) != 0;
4138 new_weakdef = FALSE;
4139 if (dynamic
4140 && definition
4141 && new_weak
4142 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4143 && is_elf_hash_table (htab)
4144 && h->u.weakdef == NULL)
4145 {
4146 /* Keep a list of all weak defined non function symbols from
4147 a dynamic object, using the weakdef field. Later in this
4148 function we will set the weakdef field to the correct
4149 value. We only put non-function symbols from dynamic
4150 objects on this list, because that happens to be the only
4151 time we need to know the normal symbol corresponding to a
4152 weak symbol, and the information is time consuming to
4153 figure out. If the weakdef field is not already NULL,
4154 then this symbol was already defined by some previous
4155 dynamic object, and we will be using that previous
4156 definition anyhow. */
4157
4158 h->u.weakdef = weaks;
4159 weaks = h;
4160 new_weakdef = TRUE;
4161 }
4162
4163 /* Set the alignment of a common symbol. */
4164 if ((common || bfd_is_com_section (sec))
4165 && h->root.type == bfd_link_hash_common)
4166 {
4167 unsigned int align;
4168
4169 if (common)
4170 align = bfd_log2 (isym->st_value);
4171 else
4172 {
4173 /* The new symbol is a common symbol in a shared object.
4174 We need to get the alignment from the section. */
4175 align = new_sec->alignment_power;
4176 }
4177 if (align > old_alignment)
4178 h->root.u.c.p->alignment_power = align;
4179 else
4180 h->root.u.c.p->alignment_power = old_alignment;
4181 }
4182
4183 if (is_elf_hash_table (htab))
4184 {
4185 /* Set a flag in the hash table entry indicating the type of
4186 reference or definition we just found. A dynamic symbol
4187 is one which is referenced or defined by both a regular
4188 object and a shared object. */
4189 bfd_boolean dynsym = FALSE;
4190
4191 /* Plugin symbols aren't normal. Don't set def_regular or
4192 ref_regular for them, or make them dynamic. */
4193 if ((abfd->flags & BFD_PLUGIN) != 0)
4194 ;
4195 else if (! dynamic)
4196 {
4197 if (! definition)
4198 {
4199 h->ref_regular = 1;
4200 if (bind != STB_WEAK)
4201 h->ref_regular_nonweak = 1;
4202 }
4203 else
4204 {
4205 h->def_regular = 1;
4206 if (h->def_dynamic)
4207 {
4208 h->def_dynamic = 0;
4209 h->ref_dynamic = 1;
4210 }
4211 }
4212
4213 /* If the indirect symbol has been forced local, don't
4214 make the real symbol dynamic. */
4215 if ((h == hi || !hi->forced_local)
4216 && (! info->executable
4217 || h->def_dynamic
4218 || h->ref_dynamic))
4219 dynsym = TRUE;
4220 }
4221 else
4222 {
4223 if (! definition)
4224 {
4225 h->ref_dynamic = 1;
4226 hi->ref_dynamic = 1;
4227 }
4228 else
4229 {
4230 h->def_dynamic = 1;
4231 hi->def_dynamic = 1;
4232 }
4233
4234 /* If the indirect symbol has been forced local, don't
4235 make the real symbol dynamic. */
4236 if ((h == hi || !hi->forced_local)
4237 && (h->def_regular
4238 || h->ref_regular
4239 || (h->u.weakdef != NULL
4240 && ! new_weakdef
4241 && h->u.weakdef->dynindx != -1)))
4242 dynsym = TRUE;
4243 }
4244
4245 /* Check to see if we need to add an indirect symbol for
4246 the default name. */
4247 if (definition
4248 || (!override && h->root.type == bfd_link_hash_common))
4249 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4250 sec, value, &old_bfd, &dynsym))
4251 goto error_free_vers;
4252
4253 /* Check the alignment when a common symbol is involved. This
4254 can change when a common symbol is overridden by a normal
4255 definition or a common symbol is ignored due to the old
4256 normal definition. We need to make sure the maximum
4257 alignment is maintained. */
4258 if ((old_alignment || common)
4259 && h->root.type != bfd_link_hash_common)
4260 {
4261 unsigned int common_align;
4262 unsigned int normal_align;
4263 unsigned int symbol_align;
4264 bfd *normal_bfd;
4265 bfd *common_bfd;
4266
4267 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4268 || h->root.type == bfd_link_hash_defweak);
4269
4270 symbol_align = ffs (h->root.u.def.value) - 1;
4271 if (h->root.u.def.section->owner != NULL
4272 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4273 {
4274 normal_align = h->root.u.def.section->alignment_power;
4275 if (normal_align > symbol_align)
4276 normal_align = symbol_align;
4277 }
4278 else
4279 normal_align = symbol_align;
4280
4281 if (old_alignment)
4282 {
4283 common_align = old_alignment;
4284 common_bfd = old_bfd;
4285 normal_bfd = abfd;
4286 }
4287 else
4288 {
4289 common_align = bfd_log2 (isym->st_value);
4290 common_bfd = abfd;
4291 normal_bfd = old_bfd;
4292 }
4293
4294 if (normal_align < common_align)
4295 {
4296 /* PR binutils/2735 */
4297 if (normal_bfd == NULL)
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of common symbol `%s' in %B is"
4300 " greater than the alignment (%u) of its section %A"),
4301 common_bfd, h->root.u.def.section,
4302 1 << common_align, name, 1 << normal_align);
4303 else
4304 (*_bfd_error_handler)
4305 (_("Warning: alignment %u of symbol `%s' in %B"
4306 " is smaller than %u in %B"),
4307 normal_bfd, common_bfd,
4308 1 << normal_align, name, 1 << common_align);
4309 }
4310 }
4311
4312 /* Remember the symbol size if it isn't undefined. */
4313 if (isym->st_size != 0
4314 && isym->st_shndx != SHN_UNDEF
4315 && (definition || h->size == 0))
4316 {
4317 if (h->size != 0
4318 && h->size != isym->st_size
4319 && ! size_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: size of symbol `%s' changed"
4322 " from %lu in %B to %lu in %B"),
4323 old_bfd, abfd,
4324 name, (unsigned long) h->size,
4325 (unsigned long) isym->st_size);
4326
4327 h->size = isym->st_size;
4328 }
4329
4330 /* If this is a common symbol, then we always want H->SIZE
4331 to be the size of the common symbol. The code just above
4332 won't fix the size if a common symbol becomes larger. We
4333 don't warn about a size change here, because that is
4334 covered by --warn-common. Allow changes between different
4335 function types. */
4336 if (h->root.type == bfd_link_hash_common)
4337 h->size = h->root.u.c.size;
4338
4339 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4340 && ((definition && !new_weak)
4341 || (old_weak && h->root.type == bfd_link_hash_common)
4342 || h->type == STT_NOTYPE))
4343 {
4344 unsigned int type = ELF_ST_TYPE (isym->st_info);
4345
4346 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4347 symbol. */
4348 if (type == STT_GNU_IFUNC
4349 && (abfd->flags & DYNAMIC) != 0)
4350 type = STT_FUNC;
4351
4352 if (h->type != type)
4353 {
4354 if (h->type != STT_NOTYPE && ! type_change_ok)
4355 (*_bfd_error_handler)
4356 (_("Warning: type of symbol `%s' changed"
4357 " from %d to %d in %B"),
4358 abfd, name, h->type, type);
4359
4360 h->type = type;
4361 }
4362 }
4363
4364 /* Merge st_other field. */
4365 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4366
4367 /* We don't want to make debug symbol dynamic. */
4368 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4369 dynsym = FALSE;
4370
4371 /* Nor should we make plugin symbols dynamic. */
4372 if ((abfd->flags & BFD_PLUGIN) != 0)
4373 dynsym = FALSE;
4374
4375 if (definition)
4376 {
4377 h->target_internal = isym->st_target_internal;
4378 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4379 }
4380
4381 if (definition && !dynamic)
4382 {
4383 char *p = strchr (name, ELF_VER_CHR);
4384 if (p != NULL && p[1] != ELF_VER_CHR)
4385 {
4386 /* Queue non-default versions so that .symver x, x@FOO
4387 aliases can be checked. */
4388 if (!nondeflt_vers)
4389 {
4390 amt = ((isymend - isym + 1)
4391 * sizeof (struct elf_link_hash_entry *));
4392 nondeflt_vers =
4393 (struct elf_link_hash_entry **) bfd_malloc (amt);
4394 if (!nondeflt_vers)
4395 goto error_free_vers;
4396 }
4397 nondeflt_vers[nondeflt_vers_cnt++] = h;
4398 }
4399 }
4400
4401 if (dynsym && h->dynindx == -1)
4402 {
4403 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4404 goto error_free_vers;
4405 if (h->u.weakdef != NULL
4406 && ! new_weakdef
4407 && h->u.weakdef->dynindx == -1)
4408 {
4409 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4410 goto error_free_vers;
4411 }
4412 }
4413 else if (dynsym && h->dynindx != -1)
4414 /* If the symbol already has a dynamic index, but
4415 visibility says it should not be visible, turn it into
4416 a local symbol. */
4417 switch (ELF_ST_VISIBILITY (h->other))
4418 {
4419 case STV_INTERNAL:
4420 case STV_HIDDEN:
4421 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4422 dynsym = FALSE;
4423 break;
4424 }
4425
4426 /* Don't add DT_NEEDED for references from the dummy bfd. */
4427 if (!add_needed
4428 && definition
4429 && ((dynsym
4430 && h->ref_regular_nonweak
4431 && (old_bfd == NULL
4432 || (old_bfd->flags & BFD_PLUGIN) == 0))
4433 || (h->ref_dynamic_nonweak
4434 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4435 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4436 {
4437 int ret;
4438 const char *soname = elf_dt_name (abfd);
4439
4440 info->callbacks->minfo ("%!", soname, old_bfd,
4441 h->root.root.string);
4442
4443 /* A symbol from a library loaded via DT_NEEDED of some
4444 other library is referenced by a regular object.
4445 Add a DT_NEEDED entry for it. Issue an error if
4446 --no-add-needed is used and the reference was not
4447 a weak one. */
4448 if (old_bfd != NULL
4449 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4450 {
4451 (*_bfd_error_handler)
4452 (_("%B: undefined reference to symbol '%s'"),
4453 old_bfd, name);
4454 bfd_set_error (bfd_error_missing_dso);
4455 goto error_free_vers;
4456 }
4457
4458 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4459 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4460
4461 add_needed = TRUE;
4462 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4463 if (ret < 0)
4464 goto error_free_vers;
4465
4466 BFD_ASSERT (ret == 0);
4467 }
4468 }
4469 }
4470
4471 if (extversym != NULL)
4472 {
4473 free (extversym);
4474 extversym = NULL;
4475 }
4476
4477 if (isymbuf != NULL)
4478 {
4479 free (isymbuf);
4480 isymbuf = NULL;
4481 }
4482
4483 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4484 {
4485 unsigned int i;
4486
4487 /* Restore the symbol table. */
4488 old_ent = (char *) old_tab + tabsize;
4489 memset (elf_sym_hashes (abfd), 0,
4490 extsymcount * sizeof (struct elf_link_hash_entry *));
4491 htab->root.table.table = old_table;
4492 htab->root.table.size = old_size;
4493 htab->root.table.count = old_count;
4494 memcpy (htab->root.table.table, old_tab, tabsize);
4495 htab->root.undefs = old_undefs;
4496 htab->root.undefs_tail = old_undefs_tail;
4497 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4498 for (i = 0; i < htab->root.table.size; i++)
4499 {
4500 struct bfd_hash_entry *p;
4501 struct elf_link_hash_entry *h;
4502 bfd_size_type size;
4503 unsigned int alignment_power;
4504
4505 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4506 {
4507 h = (struct elf_link_hash_entry *) p;
4508 if (h->root.type == bfd_link_hash_warning)
4509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4510 if (h->dynindx >= old_dynsymcount
4511 && h->dynstr_index < old_dynstr_size)
4512 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4513
4514 /* Preserve the maximum alignment and size for common
4515 symbols even if this dynamic lib isn't on DT_NEEDED
4516 since it can still be loaded at run time by another
4517 dynamic lib. */
4518 if (h->root.type == bfd_link_hash_common)
4519 {
4520 size = h->root.u.c.size;
4521 alignment_power = h->root.u.c.p->alignment_power;
4522 }
4523 else
4524 {
4525 size = 0;
4526 alignment_power = 0;
4527 }
4528 memcpy (p, old_ent, htab->root.table.entsize);
4529 old_ent = (char *) old_ent + htab->root.table.entsize;
4530 h = (struct elf_link_hash_entry *) p;
4531 if (h->root.type == bfd_link_hash_warning)
4532 {
4533 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4534 old_ent = (char *) old_ent + htab->root.table.entsize;
4535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4536 }
4537 if (h->root.type == bfd_link_hash_common)
4538 {
4539 if (size > h->root.u.c.size)
4540 h->root.u.c.size = size;
4541 if (alignment_power > h->root.u.c.p->alignment_power)
4542 h->root.u.c.p->alignment_power = alignment_power;
4543 }
4544 }
4545 }
4546
4547 /* Make a special call to the linker "notice" function to
4548 tell it that symbols added for crefs may need to be removed. */
4549 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4550 goto error_free_vers;
4551
4552 free (old_tab);
4553 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4554 alloc_mark);
4555 if (nondeflt_vers != NULL)
4556 free (nondeflt_vers);
4557 return TRUE;
4558 }
4559
4560 if (old_tab != NULL)
4561 {
4562 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4563 goto error_free_vers;
4564 free (old_tab);
4565 old_tab = NULL;
4566 }
4567
4568 /* Now that all the symbols from this input file are created, handle
4569 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4570 if (nondeflt_vers != NULL)
4571 {
4572 bfd_size_type cnt, symidx;
4573
4574 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4575 {
4576 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4577 char *shortname, *p;
4578
4579 p = strchr (h->root.root.string, ELF_VER_CHR);
4580 if (p == NULL
4581 || (h->root.type != bfd_link_hash_defined
4582 && h->root.type != bfd_link_hash_defweak))
4583 continue;
4584
4585 amt = p - h->root.root.string;
4586 shortname = (char *) bfd_malloc (amt + 1);
4587 if (!shortname)
4588 goto error_free_vers;
4589 memcpy (shortname, h->root.root.string, amt);
4590 shortname[amt] = '\0';
4591
4592 hi = (struct elf_link_hash_entry *)
4593 bfd_link_hash_lookup (&htab->root, shortname,
4594 FALSE, FALSE, FALSE);
4595 if (hi != NULL
4596 && hi->root.type == h->root.type
4597 && hi->root.u.def.value == h->root.u.def.value
4598 && hi->root.u.def.section == h->root.u.def.section)
4599 {
4600 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4601 hi->root.type = bfd_link_hash_indirect;
4602 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4603 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4604 sym_hash = elf_sym_hashes (abfd);
4605 if (sym_hash)
4606 for (symidx = 0; symidx < extsymcount; ++symidx)
4607 if (sym_hash[symidx] == hi)
4608 {
4609 sym_hash[symidx] = h;
4610 break;
4611 }
4612 }
4613 free (shortname);
4614 }
4615 free (nondeflt_vers);
4616 nondeflt_vers = NULL;
4617 }
4618
4619 /* Now set the weakdefs field correctly for all the weak defined
4620 symbols we found. The only way to do this is to search all the
4621 symbols. Since we only need the information for non functions in
4622 dynamic objects, that's the only time we actually put anything on
4623 the list WEAKS. We need this information so that if a regular
4624 object refers to a symbol defined weakly in a dynamic object, the
4625 real symbol in the dynamic object is also put in the dynamic
4626 symbols; we also must arrange for both symbols to point to the
4627 same memory location. We could handle the general case of symbol
4628 aliasing, but a general symbol alias can only be generated in
4629 assembler code, handling it correctly would be very time
4630 consuming, and other ELF linkers don't handle general aliasing
4631 either. */
4632 if (weaks != NULL)
4633 {
4634 struct elf_link_hash_entry **hpp;
4635 struct elf_link_hash_entry **hppend;
4636 struct elf_link_hash_entry **sorted_sym_hash;
4637 struct elf_link_hash_entry *h;
4638 size_t sym_count;
4639
4640 /* Since we have to search the whole symbol list for each weak
4641 defined symbol, search time for N weak defined symbols will be
4642 O(N^2). Binary search will cut it down to O(NlogN). */
4643 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4644 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4645 if (sorted_sym_hash == NULL)
4646 goto error_return;
4647 sym_hash = sorted_sym_hash;
4648 hpp = elf_sym_hashes (abfd);
4649 hppend = hpp + extsymcount;
4650 sym_count = 0;
4651 for (; hpp < hppend; hpp++)
4652 {
4653 h = *hpp;
4654 if (h != NULL
4655 && h->root.type == bfd_link_hash_defined
4656 && !bed->is_function_type (h->type))
4657 {
4658 *sym_hash = h;
4659 sym_hash++;
4660 sym_count++;
4661 }
4662 }
4663
4664 qsort (sorted_sym_hash, sym_count,
4665 sizeof (struct elf_link_hash_entry *),
4666 elf_sort_symbol);
4667
4668 while (weaks != NULL)
4669 {
4670 struct elf_link_hash_entry *hlook;
4671 asection *slook;
4672 bfd_vma vlook;
4673 size_t i, j, idx = 0;
4674
4675 hlook = weaks;
4676 weaks = hlook->u.weakdef;
4677 hlook->u.weakdef = NULL;
4678
4679 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4680 || hlook->root.type == bfd_link_hash_defweak
4681 || hlook->root.type == bfd_link_hash_common
4682 || hlook->root.type == bfd_link_hash_indirect);
4683 slook = hlook->root.u.def.section;
4684 vlook = hlook->root.u.def.value;
4685
4686 i = 0;
4687 j = sym_count;
4688 while (i != j)
4689 {
4690 bfd_signed_vma vdiff;
4691 idx = (i + j) / 2;
4692 h = sorted_sym_hash[idx];
4693 vdiff = vlook - h->root.u.def.value;
4694 if (vdiff < 0)
4695 j = idx;
4696 else if (vdiff > 0)
4697 i = idx + 1;
4698 else
4699 {
4700 long sdiff = slook->id - h->root.u.def.section->id;
4701 if (sdiff < 0)
4702 j = idx;
4703 else if (sdiff > 0)
4704 i = idx + 1;
4705 else
4706 break;
4707 }
4708 }
4709
4710 /* We didn't find a value/section match. */
4711 if (i == j)
4712 continue;
4713
4714 /* With multiple aliases, or when the weak symbol is already
4715 strongly defined, we have multiple matching symbols and
4716 the binary search above may land on any of them. Step
4717 one past the matching symbol(s). */
4718 while (++idx != j)
4719 {
4720 h = sorted_sym_hash[idx];
4721 if (h->root.u.def.section != slook
4722 || h->root.u.def.value != vlook)
4723 break;
4724 }
4725
4726 /* Now look back over the aliases. Since we sorted by size
4727 as well as value and section, we'll choose the one with
4728 the largest size. */
4729 while (idx-- != i)
4730 {
4731 h = sorted_sym_hash[idx];
4732
4733 /* Stop if value or section doesn't match. */
4734 if (h->root.u.def.section != slook
4735 || h->root.u.def.value != vlook)
4736 break;
4737 else if (h != hlook)
4738 {
4739 hlook->u.weakdef = h;
4740
4741 /* If the weak definition is in the list of dynamic
4742 symbols, make sure the real definition is put
4743 there as well. */
4744 if (hlook->dynindx != -1 && h->dynindx == -1)
4745 {
4746 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4747 {
4748 err_free_sym_hash:
4749 free (sorted_sym_hash);
4750 goto error_return;
4751 }
4752 }
4753
4754 /* If the real definition is in the list of dynamic
4755 symbols, make sure the weak definition is put
4756 there as well. If we don't do this, then the
4757 dynamic loader might not merge the entries for the
4758 real definition and the weak definition. */
4759 if (h->dynindx != -1 && hlook->dynindx == -1)
4760 {
4761 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4762 goto err_free_sym_hash;
4763 }
4764 break;
4765 }
4766 }
4767 }
4768
4769 free (sorted_sym_hash);
4770 }
4771
4772 if (bed->check_directives
4773 && !(*bed->check_directives) (abfd, info))
4774 return FALSE;
4775
4776 /* If this object is the same format as the output object, and it is
4777 not a shared library, then let the backend look through the
4778 relocs.
4779
4780 This is required to build global offset table entries and to
4781 arrange for dynamic relocs. It is not required for the
4782 particular common case of linking non PIC code, even when linking
4783 against shared libraries, but unfortunately there is no way of
4784 knowing whether an object file has been compiled PIC or not.
4785 Looking through the relocs is not particularly time consuming.
4786 The problem is that we must either (1) keep the relocs in memory,
4787 which causes the linker to require additional runtime memory or
4788 (2) read the relocs twice from the input file, which wastes time.
4789 This would be a good case for using mmap.
4790
4791 I have no idea how to handle linking PIC code into a file of a
4792 different format. It probably can't be done. */
4793 if (! dynamic
4794 && is_elf_hash_table (htab)
4795 && bed->check_relocs != NULL
4796 && elf_object_id (abfd) == elf_hash_table_id (htab)
4797 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4798 {
4799 asection *o;
4800
4801 for (o = abfd->sections; o != NULL; o = o->next)
4802 {
4803 Elf_Internal_Rela *internal_relocs;
4804 bfd_boolean ok;
4805
4806 if ((o->flags & SEC_RELOC) == 0
4807 || o->reloc_count == 0
4808 || ((info->strip == strip_all || info->strip == strip_debugger)
4809 && (o->flags & SEC_DEBUGGING) != 0)
4810 || bfd_is_abs_section (o->output_section))
4811 continue;
4812
4813 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4814 info->keep_memory);
4815 if (internal_relocs == NULL)
4816 goto error_return;
4817
4818 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4819
4820 if (elf_section_data (o)->relocs != internal_relocs)
4821 free (internal_relocs);
4822
4823 if (! ok)
4824 goto error_return;
4825 }
4826 }
4827
4828 /* If this is a non-traditional link, try to optimize the handling
4829 of the .stab/.stabstr sections. */
4830 if (! dynamic
4831 && ! info->traditional_format
4832 && is_elf_hash_table (htab)
4833 && (info->strip != strip_all && info->strip != strip_debugger))
4834 {
4835 asection *stabstr;
4836
4837 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4838 if (stabstr != NULL)
4839 {
4840 bfd_size_type string_offset = 0;
4841 asection *stab;
4842
4843 for (stab = abfd->sections; stab; stab = stab->next)
4844 if (CONST_STRNEQ (stab->name, ".stab")
4845 && (!stab->name[5] ||
4846 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4847 && (stab->flags & SEC_MERGE) == 0
4848 && !bfd_is_abs_section (stab->output_section))
4849 {
4850 struct bfd_elf_section_data *secdata;
4851
4852 secdata = elf_section_data (stab);
4853 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4854 stabstr, &secdata->sec_info,
4855 &string_offset))
4856 goto error_return;
4857 if (secdata->sec_info)
4858 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4859 }
4860 }
4861 }
4862
4863 if (is_elf_hash_table (htab) && add_needed)
4864 {
4865 /* Add this bfd to the loaded list. */
4866 struct elf_link_loaded_list *n;
4867
4868 n = (struct elf_link_loaded_list *)
4869 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4870 if (n == NULL)
4871 goto error_return;
4872 n->abfd = abfd;
4873 n->next = htab->loaded;
4874 htab->loaded = n;
4875 }
4876
4877 return TRUE;
4878
4879 error_free_vers:
4880 if (old_tab != NULL)
4881 free (old_tab);
4882 if (nondeflt_vers != NULL)
4883 free (nondeflt_vers);
4884 if (extversym != NULL)
4885 free (extversym);
4886 error_free_sym:
4887 if (isymbuf != NULL)
4888 free (isymbuf);
4889 error_return:
4890 return FALSE;
4891 }
4892
4893 /* Return the linker hash table entry of a symbol that might be
4894 satisfied by an archive symbol. Return -1 on error. */
4895
4896 struct elf_link_hash_entry *
4897 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4898 struct bfd_link_info *info,
4899 const char *name)
4900 {
4901 struct elf_link_hash_entry *h;
4902 char *p, *copy;
4903 size_t len, first;
4904
4905 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4906 if (h != NULL)
4907 return h;
4908
4909 /* If this is a default version (the name contains @@), look up the
4910 symbol again with only one `@' as well as without the version.
4911 The effect is that references to the symbol with and without the
4912 version will be matched by the default symbol in the archive. */
4913
4914 p = strchr (name, ELF_VER_CHR);
4915 if (p == NULL || p[1] != ELF_VER_CHR)
4916 return h;
4917
4918 /* First check with only one `@'. */
4919 len = strlen (name);
4920 copy = (char *) bfd_alloc (abfd, len);
4921 if (copy == NULL)
4922 return (struct elf_link_hash_entry *) 0 - 1;
4923
4924 first = p - name + 1;
4925 memcpy (copy, name, first);
4926 memcpy (copy + first, name + first + 1, len - first);
4927
4928 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4929 if (h == NULL)
4930 {
4931 /* We also need to check references to the symbol without the
4932 version. */
4933 copy[first - 1] = '\0';
4934 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4935 FALSE, FALSE, TRUE);
4936 }
4937
4938 bfd_release (abfd, copy);
4939 return h;
4940 }
4941
4942 /* Add symbols from an ELF archive file to the linker hash table. We
4943 don't use _bfd_generic_link_add_archive_symbols because of a
4944 problem which arises on UnixWare. The UnixWare libc.so is an
4945 archive which includes an entry libc.so.1 which defines a bunch of
4946 symbols. The libc.so archive also includes a number of other
4947 object files, which also define symbols, some of which are the same
4948 as those defined in libc.so.1. Correct linking requires that we
4949 consider each object file in turn, and include it if it defines any
4950 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4951 this; it looks through the list of undefined symbols, and includes
4952 any object file which defines them. When this algorithm is used on
4953 UnixWare, it winds up pulling in libc.so.1 early and defining a
4954 bunch of symbols. This means that some of the other objects in the
4955 archive are not included in the link, which is incorrect since they
4956 precede libc.so.1 in the archive.
4957
4958 Fortunately, ELF archive handling is simpler than that done by
4959 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4960 oddities. In ELF, if we find a symbol in the archive map, and the
4961 symbol is currently undefined, we know that we must pull in that
4962 object file.
4963
4964 Unfortunately, we do have to make multiple passes over the symbol
4965 table until nothing further is resolved. */
4966
4967 static bfd_boolean
4968 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4969 {
4970 symindex c;
4971 bfd_boolean *defined = NULL;
4972 bfd_boolean *included = NULL;
4973 carsym *symdefs;
4974 bfd_boolean loop;
4975 bfd_size_type amt;
4976 const struct elf_backend_data *bed;
4977 struct elf_link_hash_entry * (*archive_symbol_lookup)
4978 (bfd *, struct bfd_link_info *, const char *);
4979
4980 if (! bfd_has_map (abfd))
4981 {
4982 /* An empty archive is a special case. */
4983 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4984 return TRUE;
4985 bfd_set_error (bfd_error_no_armap);
4986 return FALSE;
4987 }
4988
4989 /* Keep track of all symbols we know to be already defined, and all
4990 files we know to be already included. This is to speed up the
4991 second and subsequent passes. */
4992 c = bfd_ardata (abfd)->symdef_count;
4993 if (c == 0)
4994 return TRUE;
4995 amt = c;
4996 amt *= sizeof (bfd_boolean);
4997 defined = (bfd_boolean *) bfd_zmalloc (amt);
4998 included = (bfd_boolean *) bfd_zmalloc (amt);
4999 if (defined == NULL || included == NULL)
5000 goto error_return;
5001
5002 symdefs = bfd_ardata (abfd)->symdefs;
5003 bed = get_elf_backend_data (abfd);
5004 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5005
5006 do
5007 {
5008 file_ptr last;
5009 symindex i;
5010 carsym *symdef;
5011 carsym *symdefend;
5012
5013 loop = FALSE;
5014 last = -1;
5015
5016 symdef = symdefs;
5017 symdefend = symdef + c;
5018 for (i = 0; symdef < symdefend; symdef++, i++)
5019 {
5020 struct elf_link_hash_entry *h;
5021 bfd *element;
5022 struct bfd_link_hash_entry *undefs_tail;
5023 symindex mark;
5024
5025 if (defined[i] || included[i])
5026 continue;
5027 if (symdef->file_offset == last)
5028 {
5029 included[i] = TRUE;
5030 continue;
5031 }
5032
5033 h = archive_symbol_lookup (abfd, info, symdef->name);
5034 if (h == (struct elf_link_hash_entry *) 0 - 1)
5035 goto error_return;
5036
5037 if (h == NULL)
5038 continue;
5039
5040 if (h->root.type == bfd_link_hash_common)
5041 {
5042 /* We currently have a common symbol. The archive map contains
5043 a reference to this symbol, so we may want to include it. We
5044 only want to include it however, if this archive element
5045 contains a definition of the symbol, not just another common
5046 declaration of it.
5047
5048 Unfortunately some archivers (including GNU ar) will put
5049 declarations of common symbols into their archive maps, as
5050 well as real definitions, so we cannot just go by the archive
5051 map alone. Instead we must read in the element's symbol
5052 table and check that to see what kind of symbol definition
5053 this is. */
5054 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5055 continue;
5056 }
5057 else if (h->root.type != bfd_link_hash_undefined)
5058 {
5059 if (h->root.type != bfd_link_hash_undefweak)
5060 defined[i] = TRUE;
5061 continue;
5062 }
5063
5064 /* We need to include this archive member. */
5065 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5066 if (element == NULL)
5067 goto error_return;
5068
5069 if (! bfd_check_format (element, bfd_object))
5070 goto error_return;
5071
5072 /* Doublecheck that we have not included this object
5073 already--it should be impossible, but there may be
5074 something wrong with the archive. */
5075 if (element->archive_pass != 0)
5076 {
5077 bfd_set_error (bfd_error_bad_value);
5078 goto error_return;
5079 }
5080 element->archive_pass = 1;
5081
5082 undefs_tail = info->hash->undefs_tail;
5083
5084 if (!(*info->callbacks
5085 ->add_archive_element) (info, element, symdef->name, &element))
5086 goto error_return;
5087 if (!bfd_link_add_symbols (element, info))
5088 goto error_return;
5089
5090 /* If there are any new undefined symbols, we need to make
5091 another pass through the archive in order to see whether
5092 they can be defined. FIXME: This isn't perfect, because
5093 common symbols wind up on undefs_tail and because an
5094 undefined symbol which is defined later on in this pass
5095 does not require another pass. This isn't a bug, but it
5096 does make the code less efficient than it could be. */
5097 if (undefs_tail != info->hash->undefs_tail)
5098 loop = TRUE;
5099
5100 /* Look backward to mark all symbols from this object file
5101 which we have already seen in this pass. */
5102 mark = i;
5103 do
5104 {
5105 included[mark] = TRUE;
5106 if (mark == 0)
5107 break;
5108 --mark;
5109 }
5110 while (symdefs[mark].file_offset == symdef->file_offset);
5111
5112 /* We mark subsequent symbols from this object file as we go
5113 on through the loop. */
5114 last = symdef->file_offset;
5115 }
5116 }
5117 while (loop);
5118
5119 free (defined);
5120 free (included);
5121
5122 return TRUE;
5123
5124 error_return:
5125 if (defined != NULL)
5126 free (defined);
5127 if (included != NULL)
5128 free (included);
5129 return FALSE;
5130 }
5131
5132 /* Given an ELF BFD, add symbols to the global hash table as
5133 appropriate. */
5134
5135 bfd_boolean
5136 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5137 {
5138 switch (bfd_get_format (abfd))
5139 {
5140 case bfd_object:
5141 return elf_link_add_object_symbols (abfd, info);
5142 case bfd_archive:
5143 return elf_link_add_archive_symbols (abfd, info);
5144 default:
5145 bfd_set_error (bfd_error_wrong_format);
5146 return FALSE;
5147 }
5148 }
5149 \f
5150 struct hash_codes_info
5151 {
5152 unsigned long *hashcodes;
5153 bfd_boolean error;
5154 };
5155
5156 /* This function will be called though elf_link_hash_traverse to store
5157 all hash value of the exported symbols in an array. */
5158
5159 static bfd_boolean
5160 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5161 {
5162 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5163 const char *name;
5164 char *p;
5165 unsigned long ha;
5166 char *alc = NULL;
5167
5168 /* Ignore indirect symbols. These are added by the versioning code. */
5169 if (h->dynindx == -1)
5170 return TRUE;
5171
5172 name = h->root.root.string;
5173 p = strchr (name, ELF_VER_CHR);
5174 if (p != NULL)
5175 {
5176 alc = (char *) bfd_malloc (p - name + 1);
5177 if (alc == NULL)
5178 {
5179 inf->error = TRUE;
5180 return FALSE;
5181 }
5182 memcpy (alc, name, p - name);
5183 alc[p - name] = '\0';
5184 name = alc;
5185 }
5186
5187 /* Compute the hash value. */
5188 ha = bfd_elf_hash (name);
5189
5190 /* Store the found hash value in the array given as the argument. */
5191 *(inf->hashcodes)++ = ha;
5192
5193 /* And store it in the struct so that we can put it in the hash table
5194 later. */
5195 h->u.elf_hash_value = ha;
5196
5197 if (alc != NULL)
5198 free (alc);
5199
5200 return TRUE;
5201 }
5202
5203 struct collect_gnu_hash_codes
5204 {
5205 bfd *output_bfd;
5206 const struct elf_backend_data *bed;
5207 unsigned long int nsyms;
5208 unsigned long int maskbits;
5209 unsigned long int *hashcodes;
5210 unsigned long int *hashval;
5211 unsigned long int *indx;
5212 unsigned long int *counts;
5213 bfd_vma *bitmask;
5214 bfd_byte *contents;
5215 long int min_dynindx;
5216 unsigned long int bucketcount;
5217 unsigned long int symindx;
5218 long int local_indx;
5219 long int shift1, shift2;
5220 unsigned long int mask;
5221 bfd_boolean error;
5222 };
5223
5224 /* This function will be called though elf_link_hash_traverse to store
5225 all hash value of the exported symbols in an array. */
5226
5227 static bfd_boolean
5228 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5229 {
5230 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5231 const char *name;
5232 char *p;
5233 unsigned long ha;
5234 char *alc = NULL;
5235
5236 /* Ignore indirect symbols. These are added by the versioning code. */
5237 if (h->dynindx == -1)
5238 return TRUE;
5239
5240 /* Ignore also local symbols and undefined symbols. */
5241 if (! (*s->bed->elf_hash_symbol) (h))
5242 return TRUE;
5243
5244 name = h->root.root.string;
5245 p = strchr (name, ELF_VER_CHR);
5246 if (p != NULL)
5247 {
5248 alc = (char *) bfd_malloc (p - name + 1);
5249 if (alc == NULL)
5250 {
5251 s->error = TRUE;
5252 return FALSE;
5253 }
5254 memcpy (alc, name, p - name);
5255 alc[p - name] = '\0';
5256 name = alc;
5257 }
5258
5259 /* Compute the hash value. */
5260 ha = bfd_elf_gnu_hash (name);
5261
5262 /* Store the found hash value in the array for compute_bucket_count,
5263 and also for .dynsym reordering purposes. */
5264 s->hashcodes[s->nsyms] = ha;
5265 s->hashval[h->dynindx] = ha;
5266 ++s->nsyms;
5267 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5268 s->min_dynindx = h->dynindx;
5269
5270 if (alc != NULL)
5271 free (alc);
5272
5273 return TRUE;
5274 }
5275
5276 /* This function will be called though elf_link_hash_traverse to do
5277 final dynaminc symbol renumbering. */
5278
5279 static bfd_boolean
5280 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5281 {
5282 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5283 unsigned long int bucket;
5284 unsigned long int val;
5285
5286 /* Ignore indirect symbols. */
5287 if (h->dynindx == -1)
5288 return TRUE;
5289
5290 /* Ignore also local symbols and undefined symbols. */
5291 if (! (*s->bed->elf_hash_symbol) (h))
5292 {
5293 if (h->dynindx >= s->min_dynindx)
5294 h->dynindx = s->local_indx++;
5295 return TRUE;
5296 }
5297
5298 bucket = s->hashval[h->dynindx] % s->bucketcount;
5299 val = (s->hashval[h->dynindx] >> s->shift1)
5300 & ((s->maskbits >> s->shift1) - 1);
5301 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5302 s->bitmask[val]
5303 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5304 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5305 if (s->counts[bucket] == 1)
5306 /* Last element terminates the chain. */
5307 val |= 1;
5308 bfd_put_32 (s->output_bfd, val,
5309 s->contents + (s->indx[bucket] - s->symindx) * 4);
5310 --s->counts[bucket];
5311 h->dynindx = s->indx[bucket]++;
5312 return TRUE;
5313 }
5314
5315 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5316
5317 bfd_boolean
5318 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5319 {
5320 return !(h->forced_local
5321 || h->root.type == bfd_link_hash_undefined
5322 || h->root.type == bfd_link_hash_undefweak
5323 || ((h->root.type == bfd_link_hash_defined
5324 || h->root.type == bfd_link_hash_defweak)
5325 && h->root.u.def.section->output_section == NULL));
5326 }
5327
5328 /* Array used to determine the number of hash table buckets to use
5329 based on the number of symbols there are. If there are fewer than
5330 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5331 fewer than 37 we use 17 buckets, and so forth. We never use more
5332 than 32771 buckets. */
5333
5334 static const size_t elf_buckets[] =
5335 {
5336 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5337 16411, 32771, 0
5338 };
5339
5340 /* Compute bucket count for hashing table. We do not use a static set
5341 of possible tables sizes anymore. Instead we determine for all
5342 possible reasonable sizes of the table the outcome (i.e., the
5343 number of collisions etc) and choose the best solution. The
5344 weighting functions are not too simple to allow the table to grow
5345 without bounds. Instead one of the weighting factors is the size.
5346 Therefore the result is always a good payoff between few collisions
5347 (= short chain lengths) and table size. */
5348 static size_t
5349 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5350 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5351 unsigned long int nsyms,
5352 int gnu_hash)
5353 {
5354 size_t best_size = 0;
5355 unsigned long int i;
5356
5357 /* We have a problem here. The following code to optimize the table
5358 size requires an integer type with more the 32 bits. If
5359 BFD_HOST_U_64_BIT is set we know about such a type. */
5360 #ifdef BFD_HOST_U_64_BIT
5361 if (info->optimize)
5362 {
5363 size_t minsize;
5364 size_t maxsize;
5365 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5366 bfd *dynobj = elf_hash_table (info)->dynobj;
5367 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5368 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5369 unsigned long int *counts;
5370 bfd_size_type amt;
5371 unsigned int no_improvement_count = 0;
5372
5373 /* Possible optimization parameters: if we have NSYMS symbols we say
5374 that the hashing table must at least have NSYMS/4 and at most
5375 2*NSYMS buckets. */
5376 minsize = nsyms / 4;
5377 if (minsize == 0)
5378 minsize = 1;
5379 best_size = maxsize = nsyms * 2;
5380 if (gnu_hash)
5381 {
5382 if (minsize < 2)
5383 minsize = 2;
5384 if ((best_size & 31) == 0)
5385 ++best_size;
5386 }
5387
5388 /* Create array where we count the collisions in. We must use bfd_malloc
5389 since the size could be large. */
5390 amt = maxsize;
5391 amt *= sizeof (unsigned long int);
5392 counts = (unsigned long int *) bfd_malloc (amt);
5393 if (counts == NULL)
5394 return 0;
5395
5396 /* Compute the "optimal" size for the hash table. The criteria is a
5397 minimal chain length. The minor criteria is (of course) the size
5398 of the table. */
5399 for (i = minsize; i < maxsize; ++i)
5400 {
5401 /* Walk through the array of hashcodes and count the collisions. */
5402 BFD_HOST_U_64_BIT max;
5403 unsigned long int j;
5404 unsigned long int fact;
5405
5406 if (gnu_hash && (i & 31) == 0)
5407 continue;
5408
5409 memset (counts, '\0', i * sizeof (unsigned long int));
5410
5411 /* Determine how often each hash bucket is used. */
5412 for (j = 0; j < nsyms; ++j)
5413 ++counts[hashcodes[j] % i];
5414
5415 /* For the weight function we need some information about the
5416 pagesize on the target. This is information need not be 100%
5417 accurate. Since this information is not available (so far) we
5418 define it here to a reasonable default value. If it is crucial
5419 to have a better value some day simply define this value. */
5420 # ifndef BFD_TARGET_PAGESIZE
5421 # define BFD_TARGET_PAGESIZE (4096)
5422 # endif
5423
5424 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5425 and the chains. */
5426 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5427
5428 # if 1
5429 /* Variant 1: optimize for short chains. We add the squares
5430 of all the chain lengths (which favors many small chain
5431 over a few long chains). */
5432 for (j = 0; j < i; ++j)
5433 max += counts[j] * counts[j];
5434
5435 /* This adds penalties for the overall size of the table. */
5436 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5437 max *= fact * fact;
5438 # else
5439 /* Variant 2: Optimize a lot more for small table. Here we
5440 also add squares of the size but we also add penalties for
5441 empty slots (the +1 term). */
5442 for (j = 0; j < i; ++j)
5443 max += (1 + counts[j]) * (1 + counts[j]);
5444
5445 /* The overall size of the table is considered, but not as
5446 strong as in variant 1, where it is squared. */
5447 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5448 max *= fact;
5449 # endif
5450
5451 /* Compare with current best results. */
5452 if (max < best_chlen)
5453 {
5454 best_chlen = max;
5455 best_size = i;
5456 no_improvement_count = 0;
5457 }
5458 /* PR 11843: Avoid futile long searches for the best bucket size
5459 when there are a large number of symbols. */
5460 else if (++no_improvement_count == 100)
5461 break;
5462 }
5463
5464 free (counts);
5465 }
5466 else
5467 #endif /* defined (BFD_HOST_U_64_BIT) */
5468 {
5469 /* This is the fallback solution if no 64bit type is available or if we
5470 are not supposed to spend much time on optimizations. We select the
5471 bucket count using a fixed set of numbers. */
5472 for (i = 0; elf_buckets[i] != 0; i++)
5473 {
5474 best_size = elf_buckets[i];
5475 if (nsyms < elf_buckets[i + 1])
5476 break;
5477 }
5478 if (gnu_hash && best_size < 2)
5479 best_size = 2;
5480 }
5481
5482 return best_size;
5483 }
5484
5485 /* Size any SHT_GROUP section for ld -r. */
5486
5487 bfd_boolean
5488 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5489 {
5490 bfd *ibfd;
5491
5492 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5493 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5494 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5495 return FALSE;
5496 return TRUE;
5497 }
5498
5499 /* Set a default stack segment size. The value in INFO wins. If it
5500 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5501 undefined it is initialized. */
5502
5503 bfd_boolean
5504 bfd_elf_stack_segment_size (bfd *output_bfd,
5505 struct bfd_link_info *info,
5506 const char *legacy_symbol,
5507 bfd_vma default_size)
5508 {
5509 struct elf_link_hash_entry *h = NULL;
5510
5511 /* Look for legacy symbol. */
5512 if (legacy_symbol)
5513 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5514 FALSE, FALSE, FALSE);
5515 if (h && (h->root.type == bfd_link_hash_defined
5516 || h->root.type == bfd_link_hash_defweak)
5517 && h->def_regular
5518 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5519 {
5520 /* The symbol has no type if specified on the command line. */
5521 h->type = STT_OBJECT;
5522 if (info->stacksize)
5523 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5524 output_bfd, legacy_symbol);
5525 else if (h->root.u.def.section != bfd_abs_section_ptr)
5526 (*_bfd_error_handler) (_("%B: %s not absolute"),
5527 output_bfd, legacy_symbol);
5528 else
5529 info->stacksize = h->root.u.def.value;
5530 }
5531
5532 if (!info->stacksize)
5533 /* If the user didn't set a size, or explicitly inhibit the
5534 size, set it now. */
5535 info->stacksize = default_size;
5536
5537 /* Provide the legacy symbol, if it is referenced. */
5538 if (h && (h->root.type == bfd_link_hash_undefined
5539 || h->root.type == bfd_link_hash_undefweak))
5540 {
5541 struct bfd_link_hash_entry *bh = NULL;
5542
5543 if (!(_bfd_generic_link_add_one_symbol
5544 (info, output_bfd, legacy_symbol,
5545 BSF_GLOBAL, bfd_abs_section_ptr,
5546 info->stacksize >= 0 ? info->stacksize : 0,
5547 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5548 return FALSE;
5549
5550 h = (struct elf_link_hash_entry *) bh;
5551 h->def_regular = 1;
5552 h->type = STT_OBJECT;
5553 }
5554
5555 return TRUE;
5556 }
5557
5558 /* Set up the sizes and contents of the ELF dynamic sections. This is
5559 called by the ELF linker emulation before_allocation routine. We
5560 must set the sizes of the sections before the linker sets the
5561 addresses of the various sections. */
5562
5563 bfd_boolean
5564 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5565 const char *soname,
5566 const char *rpath,
5567 const char *filter_shlib,
5568 const char *audit,
5569 const char *depaudit,
5570 const char * const *auxiliary_filters,
5571 struct bfd_link_info *info,
5572 asection **sinterpptr)
5573 {
5574 bfd_size_type soname_indx;
5575 bfd *dynobj;
5576 const struct elf_backend_data *bed;
5577 struct elf_info_failed asvinfo;
5578
5579 *sinterpptr = NULL;
5580
5581 soname_indx = (bfd_size_type) -1;
5582
5583 if (!is_elf_hash_table (info->hash))
5584 return TRUE;
5585
5586 bed = get_elf_backend_data (output_bfd);
5587
5588 /* Any syms created from now on start with -1 in
5589 got.refcount/offset and plt.refcount/offset. */
5590 elf_hash_table (info)->init_got_refcount
5591 = elf_hash_table (info)->init_got_offset;
5592 elf_hash_table (info)->init_plt_refcount
5593 = elf_hash_table (info)->init_plt_offset;
5594
5595 if (info->relocatable
5596 && !_bfd_elf_size_group_sections (info))
5597 return FALSE;
5598
5599 /* The backend may have to create some sections regardless of whether
5600 we're dynamic or not. */
5601 if (bed->elf_backend_always_size_sections
5602 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5603 return FALSE;
5604
5605 /* Determine any GNU_STACK segment requirements, after the backend
5606 has had a chance to set a default segment size. */
5607 if (info->execstack)
5608 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5609 else if (info->noexecstack)
5610 elf_stack_flags (output_bfd) = PF_R | PF_W;
5611 else
5612 {
5613 bfd *inputobj;
5614 asection *notesec = NULL;
5615 int exec = 0;
5616
5617 for (inputobj = info->input_bfds;
5618 inputobj;
5619 inputobj = inputobj->link_next)
5620 {
5621 asection *s;
5622
5623 if (inputobj->flags
5624 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5625 continue;
5626 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5627 if (s)
5628 {
5629 if (s->flags & SEC_CODE)
5630 exec = PF_X;
5631 notesec = s;
5632 }
5633 else if (bed->default_execstack)
5634 exec = PF_X;
5635 }
5636 if (notesec || info->stacksize > 0)
5637 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5638 if (notesec && exec && info->relocatable
5639 && notesec->output_section != bfd_abs_section_ptr)
5640 notesec->output_section->flags |= SEC_CODE;
5641 }
5642
5643 dynobj = elf_hash_table (info)->dynobj;
5644
5645 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5646 {
5647 struct elf_info_failed eif;
5648 struct elf_link_hash_entry *h;
5649 asection *dynstr;
5650 struct bfd_elf_version_tree *t;
5651 struct bfd_elf_version_expr *d;
5652 asection *s;
5653 bfd_boolean all_defined;
5654
5655 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5656 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5657
5658 if (soname != NULL)
5659 {
5660 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5661 soname, TRUE);
5662 if (soname_indx == (bfd_size_type) -1
5663 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5664 return FALSE;
5665 }
5666
5667 if (info->symbolic)
5668 {
5669 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5670 return FALSE;
5671 info->flags |= DF_SYMBOLIC;
5672 }
5673
5674 if (rpath != NULL)
5675 {
5676 bfd_size_type indx;
5677 bfd_vma tag;
5678
5679 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5680 TRUE);
5681 if (indx == (bfd_size_type) -1)
5682 return FALSE;
5683
5684 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5685 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5686 return FALSE;
5687 }
5688
5689 if (filter_shlib != NULL)
5690 {
5691 bfd_size_type indx;
5692
5693 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5694 filter_shlib, TRUE);
5695 if (indx == (bfd_size_type) -1
5696 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5697 return FALSE;
5698 }
5699
5700 if (auxiliary_filters != NULL)
5701 {
5702 const char * const *p;
5703
5704 for (p = auxiliary_filters; *p != NULL; p++)
5705 {
5706 bfd_size_type indx;
5707
5708 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5709 *p, TRUE);
5710 if (indx == (bfd_size_type) -1
5711 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5712 return FALSE;
5713 }
5714 }
5715
5716 if (audit != NULL)
5717 {
5718 bfd_size_type indx;
5719
5720 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5721 TRUE);
5722 if (indx == (bfd_size_type) -1
5723 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5724 return FALSE;
5725 }
5726
5727 if (depaudit != NULL)
5728 {
5729 bfd_size_type indx;
5730
5731 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5732 TRUE);
5733 if (indx == (bfd_size_type) -1
5734 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5735 return FALSE;
5736 }
5737
5738 eif.info = info;
5739 eif.failed = FALSE;
5740
5741 /* If we are supposed to export all symbols into the dynamic symbol
5742 table (this is not the normal case), then do so. */
5743 if (info->export_dynamic
5744 || (info->executable && info->dynamic))
5745 {
5746 elf_link_hash_traverse (elf_hash_table (info),
5747 _bfd_elf_export_symbol,
5748 &eif);
5749 if (eif.failed)
5750 return FALSE;
5751 }
5752
5753 /* Make all global versions with definition. */
5754 for (t = info->version_info; t != NULL; t = t->next)
5755 for (d = t->globals.list; d != NULL; d = d->next)
5756 if (!d->symver && d->literal)
5757 {
5758 const char *verstr, *name;
5759 size_t namelen, verlen, newlen;
5760 char *newname, *p, leading_char;
5761 struct elf_link_hash_entry *newh;
5762
5763 leading_char = bfd_get_symbol_leading_char (output_bfd);
5764 name = d->pattern;
5765 namelen = strlen (name) + (leading_char != '\0');
5766 verstr = t->name;
5767 verlen = strlen (verstr);
5768 newlen = namelen + verlen + 3;
5769
5770 newname = (char *) bfd_malloc (newlen);
5771 if (newname == NULL)
5772 return FALSE;
5773 newname[0] = leading_char;
5774 memcpy (newname + (leading_char != '\0'), name, namelen);
5775
5776 /* Check the hidden versioned definition. */
5777 p = newname + namelen;
5778 *p++ = ELF_VER_CHR;
5779 memcpy (p, verstr, verlen + 1);
5780 newh = elf_link_hash_lookup (elf_hash_table (info),
5781 newname, FALSE, FALSE,
5782 FALSE);
5783 if (newh == NULL
5784 || (newh->root.type != bfd_link_hash_defined
5785 && newh->root.type != bfd_link_hash_defweak))
5786 {
5787 /* Check the default versioned definition. */
5788 *p++ = ELF_VER_CHR;
5789 memcpy (p, verstr, verlen + 1);
5790 newh = elf_link_hash_lookup (elf_hash_table (info),
5791 newname, FALSE, FALSE,
5792 FALSE);
5793 }
5794 free (newname);
5795
5796 /* Mark this version if there is a definition and it is
5797 not defined in a shared object. */
5798 if (newh != NULL
5799 && !newh->def_dynamic
5800 && (newh->root.type == bfd_link_hash_defined
5801 || newh->root.type == bfd_link_hash_defweak))
5802 d->symver = 1;
5803 }
5804
5805 /* Attach all the symbols to their version information. */
5806 asvinfo.info = info;
5807 asvinfo.failed = FALSE;
5808
5809 elf_link_hash_traverse (elf_hash_table (info),
5810 _bfd_elf_link_assign_sym_version,
5811 &asvinfo);
5812 if (asvinfo.failed)
5813 return FALSE;
5814
5815 if (!info->allow_undefined_version)
5816 {
5817 /* Check if all global versions have a definition. */
5818 all_defined = TRUE;
5819 for (t = info->version_info; t != NULL; t = t->next)
5820 for (d = t->globals.list; d != NULL; d = d->next)
5821 if (d->literal && !d->symver && !d->script)
5822 {
5823 (*_bfd_error_handler)
5824 (_("%s: undefined version: %s"),
5825 d->pattern, t->name);
5826 all_defined = FALSE;
5827 }
5828
5829 if (!all_defined)
5830 {
5831 bfd_set_error (bfd_error_bad_value);
5832 return FALSE;
5833 }
5834 }
5835
5836 /* Find all symbols which were defined in a dynamic object and make
5837 the backend pick a reasonable value for them. */
5838 elf_link_hash_traverse (elf_hash_table (info),
5839 _bfd_elf_adjust_dynamic_symbol,
5840 &eif);
5841 if (eif.failed)
5842 return FALSE;
5843
5844 /* Add some entries to the .dynamic section. We fill in some of the
5845 values later, in bfd_elf_final_link, but we must add the entries
5846 now so that we know the final size of the .dynamic section. */
5847
5848 /* If there are initialization and/or finalization functions to
5849 call then add the corresponding DT_INIT/DT_FINI entries. */
5850 h = (info->init_function
5851 ? elf_link_hash_lookup (elf_hash_table (info),
5852 info->init_function, FALSE,
5853 FALSE, FALSE)
5854 : NULL);
5855 if (h != NULL
5856 && (h->ref_regular
5857 || h->def_regular))
5858 {
5859 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5860 return FALSE;
5861 }
5862 h = (info->fini_function
5863 ? elf_link_hash_lookup (elf_hash_table (info),
5864 info->fini_function, FALSE,
5865 FALSE, FALSE)
5866 : NULL);
5867 if (h != NULL
5868 && (h->ref_regular
5869 || h->def_regular))
5870 {
5871 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5872 return FALSE;
5873 }
5874
5875 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5876 if (s != NULL && s->linker_has_input)
5877 {
5878 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5879 if (! info->executable)
5880 {
5881 bfd *sub;
5882 asection *o;
5883
5884 for (sub = info->input_bfds; sub != NULL;
5885 sub = sub->link_next)
5886 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5887 for (o = sub->sections; o != NULL; o = o->next)
5888 if (elf_section_data (o)->this_hdr.sh_type
5889 == SHT_PREINIT_ARRAY)
5890 {
5891 (*_bfd_error_handler)
5892 (_("%B: .preinit_array section is not allowed in DSO"),
5893 sub);
5894 break;
5895 }
5896
5897 bfd_set_error (bfd_error_nonrepresentable_section);
5898 return FALSE;
5899 }
5900
5901 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5902 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5903 return FALSE;
5904 }
5905 s = bfd_get_section_by_name (output_bfd, ".init_array");
5906 if (s != NULL && s->linker_has_input)
5907 {
5908 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5909 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5910 return FALSE;
5911 }
5912 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5913 if (s != NULL && s->linker_has_input)
5914 {
5915 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5916 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5917 return FALSE;
5918 }
5919
5920 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5921 /* If .dynstr is excluded from the link, we don't want any of
5922 these tags. Strictly, we should be checking each section
5923 individually; This quick check covers for the case where
5924 someone does a /DISCARD/ : { *(*) }. */
5925 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5926 {
5927 bfd_size_type strsize;
5928
5929 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5930 if ((info->emit_hash
5931 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5932 || (info->emit_gnu_hash
5933 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5934 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5935 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5936 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5937 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5938 bed->s->sizeof_sym))
5939 return FALSE;
5940 }
5941 }
5942
5943 /* The backend must work out the sizes of all the other dynamic
5944 sections. */
5945 if (dynobj != NULL
5946 && bed->elf_backend_size_dynamic_sections != NULL
5947 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5948 return FALSE;
5949
5950 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5951 return FALSE;
5952
5953 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5954 {
5955 unsigned long section_sym_count;
5956 struct bfd_elf_version_tree *verdefs;
5957 asection *s;
5958
5959 /* Set up the version definition section. */
5960 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5961 BFD_ASSERT (s != NULL);
5962
5963 /* We may have created additional version definitions if we are
5964 just linking a regular application. */
5965 verdefs = info->version_info;
5966
5967 /* Skip anonymous version tag. */
5968 if (verdefs != NULL && verdefs->vernum == 0)
5969 verdefs = verdefs->next;
5970
5971 if (verdefs == NULL && !info->create_default_symver)
5972 s->flags |= SEC_EXCLUDE;
5973 else
5974 {
5975 unsigned int cdefs;
5976 bfd_size_type size;
5977 struct bfd_elf_version_tree *t;
5978 bfd_byte *p;
5979 Elf_Internal_Verdef def;
5980 Elf_Internal_Verdaux defaux;
5981 struct bfd_link_hash_entry *bh;
5982 struct elf_link_hash_entry *h;
5983 const char *name;
5984
5985 cdefs = 0;
5986 size = 0;
5987
5988 /* Make space for the base version. */
5989 size += sizeof (Elf_External_Verdef);
5990 size += sizeof (Elf_External_Verdaux);
5991 ++cdefs;
5992
5993 /* Make space for the default version. */
5994 if (info->create_default_symver)
5995 {
5996 size += sizeof (Elf_External_Verdef);
5997 ++cdefs;
5998 }
5999
6000 for (t = verdefs; t != NULL; t = t->next)
6001 {
6002 struct bfd_elf_version_deps *n;
6003
6004 /* Don't emit base version twice. */
6005 if (t->vernum == 0)
6006 continue;
6007
6008 size += sizeof (Elf_External_Verdef);
6009 size += sizeof (Elf_External_Verdaux);
6010 ++cdefs;
6011
6012 for (n = t->deps; n != NULL; n = n->next)
6013 size += sizeof (Elf_External_Verdaux);
6014 }
6015
6016 s->size = size;
6017 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6018 if (s->contents == NULL && s->size != 0)
6019 return FALSE;
6020
6021 /* Fill in the version definition section. */
6022
6023 p = s->contents;
6024
6025 def.vd_version = VER_DEF_CURRENT;
6026 def.vd_flags = VER_FLG_BASE;
6027 def.vd_ndx = 1;
6028 def.vd_cnt = 1;
6029 if (info->create_default_symver)
6030 {
6031 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6032 def.vd_next = sizeof (Elf_External_Verdef);
6033 }
6034 else
6035 {
6036 def.vd_aux = sizeof (Elf_External_Verdef);
6037 def.vd_next = (sizeof (Elf_External_Verdef)
6038 + sizeof (Elf_External_Verdaux));
6039 }
6040
6041 if (soname_indx != (bfd_size_type) -1)
6042 {
6043 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6044 soname_indx);
6045 def.vd_hash = bfd_elf_hash (soname);
6046 defaux.vda_name = soname_indx;
6047 name = soname;
6048 }
6049 else
6050 {
6051 bfd_size_type indx;
6052
6053 name = lbasename (output_bfd->filename);
6054 def.vd_hash = bfd_elf_hash (name);
6055 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6056 name, FALSE);
6057 if (indx == (bfd_size_type) -1)
6058 return FALSE;
6059 defaux.vda_name = indx;
6060 }
6061 defaux.vda_next = 0;
6062
6063 _bfd_elf_swap_verdef_out (output_bfd, &def,
6064 (Elf_External_Verdef *) p);
6065 p += sizeof (Elf_External_Verdef);
6066 if (info->create_default_symver)
6067 {
6068 /* Add a symbol representing this version. */
6069 bh = NULL;
6070 if (! (_bfd_generic_link_add_one_symbol
6071 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6072 0, NULL, FALSE,
6073 get_elf_backend_data (dynobj)->collect, &bh)))
6074 return FALSE;
6075 h = (struct elf_link_hash_entry *) bh;
6076 h->non_elf = 0;
6077 h->def_regular = 1;
6078 h->type = STT_OBJECT;
6079 h->verinfo.vertree = NULL;
6080
6081 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6082 return FALSE;
6083
6084 /* Create a duplicate of the base version with the same
6085 aux block, but different flags. */
6086 def.vd_flags = 0;
6087 def.vd_ndx = 2;
6088 def.vd_aux = sizeof (Elf_External_Verdef);
6089 if (verdefs)
6090 def.vd_next = (sizeof (Elf_External_Verdef)
6091 + sizeof (Elf_External_Verdaux));
6092 else
6093 def.vd_next = 0;
6094 _bfd_elf_swap_verdef_out (output_bfd, &def,
6095 (Elf_External_Verdef *) p);
6096 p += sizeof (Elf_External_Verdef);
6097 }
6098 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6099 (Elf_External_Verdaux *) p);
6100 p += sizeof (Elf_External_Verdaux);
6101
6102 for (t = verdefs; t != NULL; t = t->next)
6103 {
6104 unsigned int cdeps;
6105 struct bfd_elf_version_deps *n;
6106
6107 /* Don't emit the base version twice. */
6108 if (t->vernum == 0)
6109 continue;
6110
6111 cdeps = 0;
6112 for (n = t->deps; n != NULL; n = n->next)
6113 ++cdeps;
6114
6115 /* Add a symbol representing this version. */
6116 bh = NULL;
6117 if (! (_bfd_generic_link_add_one_symbol
6118 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6119 0, NULL, FALSE,
6120 get_elf_backend_data (dynobj)->collect, &bh)))
6121 return FALSE;
6122 h = (struct elf_link_hash_entry *) bh;
6123 h->non_elf = 0;
6124 h->def_regular = 1;
6125 h->type = STT_OBJECT;
6126 h->verinfo.vertree = t;
6127
6128 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6129 return FALSE;
6130
6131 def.vd_version = VER_DEF_CURRENT;
6132 def.vd_flags = 0;
6133 if (t->globals.list == NULL
6134 && t->locals.list == NULL
6135 && ! t->used)
6136 def.vd_flags |= VER_FLG_WEAK;
6137 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6138 def.vd_cnt = cdeps + 1;
6139 def.vd_hash = bfd_elf_hash (t->name);
6140 def.vd_aux = sizeof (Elf_External_Verdef);
6141 def.vd_next = 0;
6142
6143 /* If a basever node is next, it *must* be the last node in
6144 the chain, otherwise Verdef construction breaks. */
6145 if (t->next != NULL && t->next->vernum == 0)
6146 BFD_ASSERT (t->next->next == NULL);
6147
6148 if (t->next != NULL && t->next->vernum != 0)
6149 def.vd_next = (sizeof (Elf_External_Verdef)
6150 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6151
6152 _bfd_elf_swap_verdef_out (output_bfd, &def,
6153 (Elf_External_Verdef *) p);
6154 p += sizeof (Elf_External_Verdef);
6155
6156 defaux.vda_name = h->dynstr_index;
6157 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6158 h->dynstr_index);
6159 defaux.vda_next = 0;
6160 if (t->deps != NULL)
6161 defaux.vda_next = sizeof (Elf_External_Verdaux);
6162 t->name_indx = defaux.vda_name;
6163
6164 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6165 (Elf_External_Verdaux *) p);
6166 p += sizeof (Elf_External_Verdaux);
6167
6168 for (n = t->deps; n != NULL; n = n->next)
6169 {
6170 if (n->version_needed == NULL)
6171 {
6172 /* This can happen if there was an error in the
6173 version script. */
6174 defaux.vda_name = 0;
6175 }
6176 else
6177 {
6178 defaux.vda_name = n->version_needed->name_indx;
6179 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6180 defaux.vda_name);
6181 }
6182 if (n->next == NULL)
6183 defaux.vda_next = 0;
6184 else
6185 defaux.vda_next = sizeof (Elf_External_Verdaux);
6186
6187 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6188 (Elf_External_Verdaux *) p);
6189 p += sizeof (Elf_External_Verdaux);
6190 }
6191 }
6192
6193 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6194 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6195 return FALSE;
6196
6197 elf_tdata (output_bfd)->cverdefs = cdefs;
6198 }
6199
6200 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6201 {
6202 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6203 return FALSE;
6204 }
6205 else if (info->flags & DF_BIND_NOW)
6206 {
6207 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6208 return FALSE;
6209 }
6210
6211 if (info->flags_1)
6212 {
6213 if (info->executable)
6214 info->flags_1 &= ~ (DF_1_INITFIRST
6215 | DF_1_NODELETE
6216 | DF_1_NOOPEN);
6217 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6218 return FALSE;
6219 }
6220
6221 /* Work out the size of the version reference section. */
6222
6223 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6224 BFD_ASSERT (s != NULL);
6225 {
6226 struct elf_find_verdep_info sinfo;
6227
6228 sinfo.info = info;
6229 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6230 if (sinfo.vers == 0)
6231 sinfo.vers = 1;
6232 sinfo.failed = FALSE;
6233
6234 elf_link_hash_traverse (elf_hash_table (info),
6235 _bfd_elf_link_find_version_dependencies,
6236 &sinfo);
6237 if (sinfo.failed)
6238 return FALSE;
6239
6240 if (elf_tdata (output_bfd)->verref == NULL)
6241 s->flags |= SEC_EXCLUDE;
6242 else
6243 {
6244 Elf_Internal_Verneed *t;
6245 unsigned int size;
6246 unsigned int crefs;
6247 bfd_byte *p;
6248
6249 /* Build the version dependency section. */
6250 size = 0;
6251 crefs = 0;
6252 for (t = elf_tdata (output_bfd)->verref;
6253 t != NULL;
6254 t = t->vn_nextref)
6255 {
6256 Elf_Internal_Vernaux *a;
6257
6258 size += sizeof (Elf_External_Verneed);
6259 ++crefs;
6260 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6261 size += sizeof (Elf_External_Vernaux);
6262 }
6263
6264 s->size = size;
6265 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6266 if (s->contents == NULL)
6267 return FALSE;
6268
6269 p = s->contents;
6270 for (t = elf_tdata (output_bfd)->verref;
6271 t != NULL;
6272 t = t->vn_nextref)
6273 {
6274 unsigned int caux;
6275 Elf_Internal_Vernaux *a;
6276 bfd_size_type indx;
6277
6278 caux = 0;
6279 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6280 ++caux;
6281
6282 t->vn_version = VER_NEED_CURRENT;
6283 t->vn_cnt = caux;
6284 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6285 elf_dt_name (t->vn_bfd) != NULL
6286 ? elf_dt_name (t->vn_bfd)
6287 : lbasename (t->vn_bfd->filename),
6288 FALSE);
6289 if (indx == (bfd_size_type) -1)
6290 return FALSE;
6291 t->vn_file = indx;
6292 t->vn_aux = sizeof (Elf_External_Verneed);
6293 if (t->vn_nextref == NULL)
6294 t->vn_next = 0;
6295 else
6296 t->vn_next = (sizeof (Elf_External_Verneed)
6297 + caux * sizeof (Elf_External_Vernaux));
6298
6299 _bfd_elf_swap_verneed_out (output_bfd, t,
6300 (Elf_External_Verneed *) p);
6301 p += sizeof (Elf_External_Verneed);
6302
6303 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6304 {
6305 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6306 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6307 a->vna_nodename, FALSE);
6308 if (indx == (bfd_size_type) -1)
6309 return FALSE;
6310 a->vna_name = indx;
6311 if (a->vna_nextptr == NULL)
6312 a->vna_next = 0;
6313 else
6314 a->vna_next = sizeof (Elf_External_Vernaux);
6315
6316 _bfd_elf_swap_vernaux_out (output_bfd, a,
6317 (Elf_External_Vernaux *) p);
6318 p += sizeof (Elf_External_Vernaux);
6319 }
6320 }
6321
6322 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6323 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6324 return FALSE;
6325
6326 elf_tdata (output_bfd)->cverrefs = crefs;
6327 }
6328 }
6329
6330 if ((elf_tdata (output_bfd)->cverrefs == 0
6331 && elf_tdata (output_bfd)->cverdefs == 0)
6332 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6333 &section_sym_count) == 0)
6334 {
6335 s = bfd_get_linker_section (dynobj, ".gnu.version");
6336 s->flags |= SEC_EXCLUDE;
6337 }
6338 }
6339 return TRUE;
6340 }
6341
6342 /* Find the first non-excluded output section. We'll use its
6343 section symbol for some emitted relocs. */
6344 void
6345 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6346 {
6347 asection *s;
6348
6349 for (s = output_bfd->sections; s != NULL; s = s->next)
6350 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6351 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6352 {
6353 elf_hash_table (info)->text_index_section = s;
6354 break;
6355 }
6356 }
6357
6358 /* Find two non-excluded output sections, one for code, one for data.
6359 We'll use their section symbols for some emitted relocs. */
6360 void
6361 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6362 {
6363 asection *s;
6364
6365 /* Data first, since setting text_index_section changes
6366 _bfd_elf_link_omit_section_dynsym. */
6367 for (s = output_bfd->sections; s != NULL; s = s->next)
6368 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6369 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6370 {
6371 elf_hash_table (info)->data_index_section = s;
6372 break;
6373 }
6374
6375 for (s = output_bfd->sections; s != NULL; s = s->next)
6376 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6377 == (SEC_ALLOC | SEC_READONLY))
6378 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6379 {
6380 elf_hash_table (info)->text_index_section = s;
6381 break;
6382 }
6383
6384 if (elf_hash_table (info)->text_index_section == NULL)
6385 elf_hash_table (info)->text_index_section
6386 = elf_hash_table (info)->data_index_section;
6387 }
6388
6389 bfd_boolean
6390 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6391 {
6392 const struct elf_backend_data *bed;
6393
6394 if (!is_elf_hash_table (info->hash))
6395 return TRUE;
6396
6397 bed = get_elf_backend_data (output_bfd);
6398 (*bed->elf_backend_init_index_section) (output_bfd, info);
6399
6400 if (elf_hash_table (info)->dynamic_sections_created)
6401 {
6402 bfd *dynobj;
6403 asection *s;
6404 bfd_size_type dynsymcount;
6405 unsigned long section_sym_count;
6406 unsigned int dtagcount;
6407
6408 dynobj = elf_hash_table (info)->dynobj;
6409
6410 /* Assign dynsym indicies. In a shared library we generate a
6411 section symbol for each output section, which come first.
6412 Next come all of the back-end allocated local dynamic syms,
6413 followed by the rest of the global symbols. */
6414
6415 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6416 &section_sym_count);
6417
6418 /* Work out the size of the symbol version section. */
6419 s = bfd_get_linker_section (dynobj, ".gnu.version");
6420 BFD_ASSERT (s != NULL);
6421 if (dynsymcount != 0
6422 && (s->flags & SEC_EXCLUDE) == 0)
6423 {
6424 s->size = dynsymcount * sizeof (Elf_External_Versym);
6425 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6426 if (s->contents == NULL)
6427 return FALSE;
6428
6429 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6430 return FALSE;
6431 }
6432
6433 /* Set the size of the .dynsym and .hash sections. We counted
6434 the number of dynamic symbols in elf_link_add_object_symbols.
6435 We will build the contents of .dynsym and .hash when we build
6436 the final symbol table, because until then we do not know the
6437 correct value to give the symbols. We built the .dynstr
6438 section as we went along in elf_link_add_object_symbols. */
6439 s = bfd_get_linker_section (dynobj, ".dynsym");
6440 BFD_ASSERT (s != NULL);
6441 s->size = dynsymcount * bed->s->sizeof_sym;
6442
6443 if (dynsymcount != 0)
6444 {
6445 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6446 if (s->contents == NULL)
6447 return FALSE;
6448
6449 /* The first entry in .dynsym is a dummy symbol.
6450 Clear all the section syms, in case we don't output them all. */
6451 ++section_sym_count;
6452 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6453 }
6454
6455 elf_hash_table (info)->bucketcount = 0;
6456
6457 /* Compute the size of the hashing table. As a side effect this
6458 computes the hash values for all the names we export. */
6459 if (info->emit_hash)
6460 {
6461 unsigned long int *hashcodes;
6462 struct hash_codes_info hashinf;
6463 bfd_size_type amt;
6464 unsigned long int nsyms;
6465 size_t bucketcount;
6466 size_t hash_entry_size;
6467
6468 /* Compute the hash values for all exported symbols. At the same
6469 time store the values in an array so that we could use them for
6470 optimizations. */
6471 amt = dynsymcount * sizeof (unsigned long int);
6472 hashcodes = (unsigned long int *) bfd_malloc (amt);
6473 if (hashcodes == NULL)
6474 return FALSE;
6475 hashinf.hashcodes = hashcodes;
6476 hashinf.error = FALSE;
6477
6478 /* Put all hash values in HASHCODES. */
6479 elf_link_hash_traverse (elf_hash_table (info),
6480 elf_collect_hash_codes, &hashinf);
6481 if (hashinf.error)
6482 {
6483 free (hashcodes);
6484 return FALSE;
6485 }
6486
6487 nsyms = hashinf.hashcodes - hashcodes;
6488 bucketcount
6489 = compute_bucket_count (info, hashcodes, nsyms, 0);
6490 free (hashcodes);
6491
6492 if (bucketcount == 0)
6493 return FALSE;
6494
6495 elf_hash_table (info)->bucketcount = bucketcount;
6496
6497 s = bfd_get_linker_section (dynobj, ".hash");
6498 BFD_ASSERT (s != NULL);
6499 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6500 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6501 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6502 if (s->contents == NULL)
6503 return FALSE;
6504
6505 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6506 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6507 s->contents + hash_entry_size);
6508 }
6509
6510 if (info->emit_gnu_hash)
6511 {
6512 size_t i, cnt;
6513 unsigned char *contents;
6514 struct collect_gnu_hash_codes cinfo;
6515 bfd_size_type amt;
6516 size_t bucketcount;
6517
6518 memset (&cinfo, 0, sizeof (cinfo));
6519
6520 /* Compute the hash values for all exported symbols. At the same
6521 time store the values in an array so that we could use them for
6522 optimizations. */
6523 amt = dynsymcount * 2 * sizeof (unsigned long int);
6524 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6525 if (cinfo.hashcodes == NULL)
6526 return FALSE;
6527
6528 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6529 cinfo.min_dynindx = -1;
6530 cinfo.output_bfd = output_bfd;
6531 cinfo.bed = bed;
6532
6533 /* Put all hash values in HASHCODES. */
6534 elf_link_hash_traverse (elf_hash_table (info),
6535 elf_collect_gnu_hash_codes, &cinfo);
6536 if (cinfo.error)
6537 {
6538 free (cinfo.hashcodes);
6539 return FALSE;
6540 }
6541
6542 bucketcount
6543 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6544
6545 if (bucketcount == 0)
6546 {
6547 free (cinfo.hashcodes);
6548 return FALSE;
6549 }
6550
6551 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6552 BFD_ASSERT (s != NULL);
6553
6554 if (cinfo.nsyms == 0)
6555 {
6556 /* Empty .gnu.hash section is special. */
6557 BFD_ASSERT (cinfo.min_dynindx == -1);
6558 free (cinfo.hashcodes);
6559 s->size = 5 * 4 + bed->s->arch_size / 8;
6560 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6561 if (contents == NULL)
6562 return FALSE;
6563 s->contents = contents;
6564 /* 1 empty bucket. */
6565 bfd_put_32 (output_bfd, 1, contents);
6566 /* SYMIDX above the special symbol 0. */
6567 bfd_put_32 (output_bfd, 1, contents + 4);
6568 /* Just one word for bitmask. */
6569 bfd_put_32 (output_bfd, 1, contents + 8);
6570 /* Only hash fn bloom filter. */
6571 bfd_put_32 (output_bfd, 0, contents + 12);
6572 /* No hashes are valid - empty bitmask. */
6573 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6574 /* No hashes in the only bucket. */
6575 bfd_put_32 (output_bfd, 0,
6576 contents + 16 + bed->s->arch_size / 8);
6577 }
6578 else
6579 {
6580 unsigned long int maskwords, maskbitslog2, x;
6581 BFD_ASSERT (cinfo.min_dynindx != -1);
6582
6583 x = cinfo.nsyms;
6584 maskbitslog2 = 1;
6585 while ((x >>= 1) != 0)
6586 ++maskbitslog2;
6587 if (maskbitslog2 < 3)
6588 maskbitslog2 = 5;
6589 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6590 maskbitslog2 = maskbitslog2 + 3;
6591 else
6592 maskbitslog2 = maskbitslog2 + 2;
6593 if (bed->s->arch_size == 64)
6594 {
6595 if (maskbitslog2 == 5)
6596 maskbitslog2 = 6;
6597 cinfo.shift1 = 6;
6598 }
6599 else
6600 cinfo.shift1 = 5;
6601 cinfo.mask = (1 << cinfo.shift1) - 1;
6602 cinfo.shift2 = maskbitslog2;
6603 cinfo.maskbits = 1 << maskbitslog2;
6604 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6605 amt = bucketcount * sizeof (unsigned long int) * 2;
6606 amt += maskwords * sizeof (bfd_vma);
6607 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6608 if (cinfo.bitmask == NULL)
6609 {
6610 free (cinfo.hashcodes);
6611 return FALSE;
6612 }
6613
6614 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6615 cinfo.indx = cinfo.counts + bucketcount;
6616 cinfo.symindx = dynsymcount - cinfo.nsyms;
6617 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6618
6619 /* Determine how often each hash bucket is used. */
6620 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6621 for (i = 0; i < cinfo.nsyms; ++i)
6622 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6623
6624 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6625 if (cinfo.counts[i] != 0)
6626 {
6627 cinfo.indx[i] = cnt;
6628 cnt += cinfo.counts[i];
6629 }
6630 BFD_ASSERT (cnt == dynsymcount);
6631 cinfo.bucketcount = bucketcount;
6632 cinfo.local_indx = cinfo.min_dynindx;
6633
6634 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6635 s->size += cinfo.maskbits / 8;
6636 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6637 if (contents == NULL)
6638 {
6639 free (cinfo.bitmask);
6640 free (cinfo.hashcodes);
6641 return FALSE;
6642 }
6643
6644 s->contents = contents;
6645 bfd_put_32 (output_bfd, bucketcount, contents);
6646 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6647 bfd_put_32 (output_bfd, maskwords, contents + 8);
6648 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6649 contents += 16 + cinfo.maskbits / 8;
6650
6651 for (i = 0; i < bucketcount; ++i)
6652 {
6653 if (cinfo.counts[i] == 0)
6654 bfd_put_32 (output_bfd, 0, contents);
6655 else
6656 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6657 contents += 4;
6658 }
6659
6660 cinfo.contents = contents;
6661
6662 /* Renumber dynamic symbols, populate .gnu.hash section. */
6663 elf_link_hash_traverse (elf_hash_table (info),
6664 elf_renumber_gnu_hash_syms, &cinfo);
6665
6666 contents = s->contents + 16;
6667 for (i = 0; i < maskwords; ++i)
6668 {
6669 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6670 contents);
6671 contents += bed->s->arch_size / 8;
6672 }
6673
6674 free (cinfo.bitmask);
6675 free (cinfo.hashcodes);
6676 }
6677 }
6678
6679 s = bfd_get_linker_section (dynobj, ".dynstr");
6680 BFD_ASSERT (s != NULL);
6681
6682 elf_finalize_dynstr (output_bfd, info);
6683
6684 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6685
6686 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6687 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6688 return FALSE;
6689 }
6690
6691 return TRUE;
6692 }
6693 \f
6694 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6695
6696 static void
6697 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6698 asection *sec)
6699 {
6700 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6701 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6702 }
6703
6704 /* Finish SHF_MERGE section merging. */
6705
6706 bfd_boolean
6707 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6708 {
6709 bfd *ibfd;
6710 asection *sec;
6711
6712 if (!is_elf_hash_table (info->hash))
6713 return FALSE;
6714
6715 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6716 if ((ibfd->flags & DYNAMIC) == 0)
6717 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6718 if ((sec->flags & SEC_MERGE) != 0
6719 && !bfd_is_abs_section (sec->output_section))
6720 {
6721 struct bfd_elf_section_data *secdata;
6722
6723 secdata = elf_section_data (sec);
6724 if (! _bfd_add_merge_section (abfd,
6725 &elf_hash_table (info)->merge_info,
6726 sec, &secdata->sec_info))
6727 return FALSE;
6728 else if (secdata->sec_info)
6729 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6730 }
6731
6732 if (elf_hash_table (info)->merge_info != NULL)
6733 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6734 merge_sections_remove_hook);
6735 return TRUE;
6736 }
6737
6738 /* Create an entry in an ELF linker hash table. */
6739
6740 struct bfd_hash_entry *
6741 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6742 struct bfd_hash_table *table,
6743 const char *string)
6744 {
6745 /* Allocate the structure if it has not already been allocated by a
6746 subclass. */
6747 if (entry == NULL)
6748 {
6749 entry = (struct bfd_hash_entry *)
6750 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6751 if (entry == NULL)
6752 return entry;
6753 }
6754
6755 /* Call the allocation method of the superclass. */
6756 entry = _bfd_link_hash_newfunc (entry, table, string);
6757 if (entry != NULL)
6758 {
6759 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6760 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6761
6762 /* Set local fields. */
6763 ret->indx = -1;
6764 ret->dynindx = -1;
6765 ret->got = htab->init_got_refcount;
6766 ret->plt = htab->init_plt_refcount;
6767 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6768 - offsetof (struct elf_link_hash_entry, size)));
6769 /* Assume that we have been called by a non-ELF symbol reader.
6770 This flag is then reset by the code which reads an ELF input
6771 file. This ensures that a symbol created by a non-ELF symbol
6772 reader will have the flag set correctly. */
6773 ret->non_elf = 1;
6774 }
6775
6776 return entry;
6777 }
6778
6779 /* Copy data from an indirect symbol to its direct symbol, hiding the
6780 old indirect symbol. Also used for copying flags to a weakdef. */
6781
6782 void
6783 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6784 struct elf_link_hash_entry *dir,
6785 struct elf_link_hash_entry *ind)
6786 {
6787 struct elf_link_hash_table *htab;
6788
6789 /* Copy down any references that we may have already seen to the
6790 symbol which just became indirect. */
6791
6792 dir->ref_dynamic |= ind->ref_dynamic;
6793 dir->ref_regular |= ind->ref_regular;
6794 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6795 dir->non_got_ref |= ind->non_got_ref;
6796 dir->needs_plt |= ind->needs_plt;
6797 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6798
6799 if (ind->root.type != bfd_link_hash_indirect)
6800 return;
6801
6802 /* Copy over the global and procedure linkage table refcount entries.
6803 These may have been already set up by a check_relocs routine. */
6804 htab = elf_hash_table (info);
6805 if (ind->got.refcount > htab->init_got_refcount.refcount)
6806 {
6807 if (dir->got.refcount < 0)
6808 dir->got.refcount = 0;
6809 dir->got.refcount += ind->got.refcount;
6810 ind->got.refcount = htab->init_got_refcount.refcount;
6811 }
6812
6813 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6814 {
6815 if (dir->plt.refcount < 0)
6816 dir->plt.refcount = 0;
6817 dir->plt.refcount += ind->plt.refcount;
6818 ind->plt.refcount = htab->init_plt_refcount.refcount;
6819 }
6820
6821 if (ind->dynindx != -1)
6822 {
6823 if (dir->dynindx != -1)
6824 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6825 dir->dynindx = ind->dynindx;
6826 dir->dynstr_index = ind->dynstr_index;
6827 ind->dynindx = -1;
6828 ind->dynstr_index = 0;
6829 }
6830 }
6831
6832 void
6833 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6834 struct elf_link_hash_entry *h,
6835 bfd_boolean force_local)
6836 {
6837 /* STT_GNU_IFUNC symbol must go through PLT. */
6838 if (h->type != STT_GNU_IFUNC)
6839 {
6840 h->plt = elf_hash_table (info)->init_plt_offset;
6841 h->needs_plt = 0;
6842 }
6843 if (force_local)
6844 {
6845 h->forced_local = 1;
6846 if (h->dynindx != -1)
6847 {
6848 h->dynindx = -1;
6849 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6850 h->dynstr_index);
6851 }
6852 }
6853 }
6854
6855 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6856 caller. */
6857
6858 bfd_boolean
6859 _bfd_elf_link_hash_table_init
6860 (struct elf_link_hash_table *table,
6861 bfd *abfd,
6862 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6863 struct bfd_hash_table *,
6864 const char *),
6865 unsigned int entsize,
6866 enum elf_target_id target_id)
6867 {
6868 bfd_boolean ret;
6869 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6870
6871 table->init_got_refcount.refcount = can_refcount - 1;
6872 table->init_plt_refcount.refcount = can_refcount - 1;
6873 table->init_got_offset.offset = -(bfd_vma) 1;
6874 table->init_plt_offset.offset = -(bfd_vma) 1;
6875 /* The first dynamic symbol is a dummy. */
6876 table->dynsymcount = 1;
6877
6878 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6879
6880 table->root.type = bfd_link_elf_hash_table;
6881 table->hash_table_id = target_id;
6882
6883 return ret;
6884 }
6885
6886 /* Create an ELF linker hash table. */
6887
6888 struct bfd_link_hash_table *
6889 _bfd_elf_link_hash_table_create (bfd *abfd)
6890 {
6891 struct elf_link_hash_table *ret;
6892 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6893
6894 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6895 if (ret == NULL)
6896 return NULL;
6897
6898 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6899 sizeof (struct elf_link_hash_entry),
6900 GENERIC_ELF_DATA))
6901 {
6902 free (ret);
6903 return NULL;
6904 }
6905
6906 return &ret->root;
6907 }
6908
6909 /* Destroy an ELF linker hash table. */
6910
6911 void
6912 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6913 {
6914 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6915 if (htab->dynstr != NULL)
6916 _bfd_elf_strtab_free (htab->dynstr);
6917 _bfd_merge_sections_free (htab->merge_info);
6918 _bfd_generic_link_hash_table_free (hash);
6919 }
6920
6921 /* This is a hook for the ELF emulation code in the generic linker to
6922 tell the backend linker what file name to use for the DT_NEEDED
6923 entry for a dynamic object. */
6924
6925 void
6926 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6927 {
6928 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6929 && bfd_get_format (abfd) == bfd_object)
6930 elf_dt_name (abfd) = name;
6931 }
6932
6933 int
6934 bfd_elf_get_dyn_lib_class (bfd *abfd)
6935 {
6936 int lib_class;
6937 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6938 && bfd_get_format (abfd) == bfd_object)
6939 lib_class = elf_dyn_lib_class (abfd);
6940 else
6941 lib_class = 0;
6942 return lib_class;
6943 }
6944
6945 void
6946 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6947 {
6948 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6949 && bfd_get_format (abfd) == bfd_object)
6950 elf_dyn_lib_class (abfd) = lib_class;
6951 }
6952
6953 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6954 the linker ELF emulation code. */
6955
6956 struct bfd_link_needed_list *
6957 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6958 struct bfd_link_info *info)
6959 {
6960 if (! is_elf_hash_table (info->hash))
6961 return NULL;
6962 return elf_hash_table (info)->needed;
6963 }
6964
6965 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6966 hook for the linker ELF emulation code. */
6967
6968 struct bfd_link_needed_list *
6969 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6970 struct bfd_link_info *info)
6971 {
6972 if (! is_elf_hash_table (info->hash))
6973 return NULL;
6974 return elf_hash_table (info)->runpath;
6975 }
6976
6977 /* Get the name actually used for a dynamic object for a link. This
6978 is the SONAME entry if there is one. Otherwise, it is the string
6979 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6980
6981 const char *
6982 bfd_elf_get_dt_soname (bfd *abfd)
6983 {
6984 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6985 && bfd_get_format (abfd) == bfd_object)
6986 return elf_dt_name (abfd);
6987 return NULL;
6988 }
6989
6990 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6991 the ELF linker emulation code. */
6992
6993 bfd_boolean
6994 bfd_elf_get_bfd_needed_list (bfd *abfd,
6995 struct bfd_link_needed_list **pneeded)
6996 {
6997 asection *s;
6998 bfd_byte *dynbuf = NULL;
6999 unsigned int elfsec;
7000 unsigned long shlink;
7001 bfd_byte *extdyn, *extdynend;
7002 size_t extdynsize;
7003 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7004
7005 *pneeded = NULL;
7006
7007 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7008 || bfd_get_format (abfd) != bfd_object)
7009 return TRUE;
7010
7011 s = bfd_get_section_by_name (abfd, ".dynamic");
7012 if (s == NULL || s->size == 0)
7013 return TRUE;
7014
7015 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7016 goto error_return;
7017
7018 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7019 if (elfsec == SHN_BAD)
7020 goto error_return;
7021
7022 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7023
7024 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7025 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7026
7027 extdyn = dynbuf;
7028 extdynend = extdyn + s->size;
7029 for (; extdyn < extdynend; extdyn += extdynsize)
7030 {
7031 Elf_Internal_Dyn dyn;
7032
7033 (*swap_dyn_in) (abfd, extdyn, &dyn);
7034
7035 if (dyn.d_tag == DT_NULL)
7036 break;
7037
7038 if (dyn.d_tag == DT_NEEDED)
7039 {
7040 const char *string;
7041 struct bfd_link_needed_list *l;
7042 unsigned int tagv = dyn.d_un.d_val;
7043 bfd_size_type amt;
7044
7045 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7046 if (string == NULL)
7047 goto error_return;
7048
7049 amt = sizeof *l;
7050 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7051 if (l == NULL)
7052 goto error_return;
7053
7054 l->by = abfd;
7055 l->name = string;
7056 l->next = *pneeded;
7057 *pneeded = l;
7058 }
7059 }
7060
7061 free (dynbuf);
7062
7063 return TRUE;
7064
7065 error_return:
7066 if (dynbuf != NULL)
7067 free (dynbuf);
7068 return FALSE;
7069 }
7070
7071 struct elf_symbuf_symbol
7072 {
7073 unsigned long st_name; /* Symbol name, index in string tbl */
7074 unsigned char st_info; /* Type and binding attributes */
7075 unsigned char st_other; /* Visibilty, and target specific */
7076 };
7077
7078 struct elf_symbuf_head
7079 {
7080 struct elf_symbuf_symbol *ssym;
7081 bfd_size_type count;
7082 unsigned int st_shndx;
7083 };
7084
7085 struct elf_symbol
7086 {
7087 union
7088 {
7089 Elf_Internal_Sym *isym;
7090 struct elf_symbuf_symbol *ssym;
7091 } u;
7092 const char *name;
7093 };
7094
7095 /* Sort references to symbols by ascending section number. */
7096
7097 static int
7098 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7099 {
7100 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7101 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7102
7103 return s1->st_shndx - s2->st_shndx;
7104 }
7105
7106 static int
7107 elf_sym_name_compare (const void *arg1, const void *arg2)
7108 {
7109 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7110 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7111 return strcmp (s1->name, s2->name);
7112 }
7113
7114 static struct elf_symbuf_head *
7115 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7116 {
7117 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7118 struct elf_symbuf_symbol *ssym;
7119 struct elf_symbuf_head *ssymbuf, *ssymhead;
7120 bfd_size_type i, shndx_count, total_size;
7121
7122 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7123 if (indbuf == NULL)
7124 return NULL;
7125
7126 for (ind = indbuf, i = 0; i < symcount; i++)
7127 if (isymbuf[i].st_shndx != SHN_UNDEF)
7128 *ind++ = &isymbuf[i];
7129 indbufend = ind;
7130
7131 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7132 elf_sort_elf_symbol);
7133
7134 shndx_count = 0;
7135 if (indbufend > indbuf)
7136 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7137 if (ind[0]->st_shndx != ind[1]->st_shndx)
7138 shndx_count++;
7139
7140 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7141 + (indbufend - indbuf) * sizeof (*ssym));
7142 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7143 if (ssymbuf == NULL)
7144 {
7145 free (indbuf);
7146 return NULL;
7147 }
7148
7149 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7150 ssymbuf->ssym = NULL;
7151 ssymbuf->count = shndx_count;
7152 ssymbuf->st_shndx = 0;
7153 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7154 {
7155 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7156 {
7157 ssymhead++;
7158 ssymhead->ssym = ssym;
7159 ssymhead->count = 0;
7160 ssymhead->st_shndx = (*ind)->st_shndx;
7161 }
7162 ssym->st_name = (*ind)->st_name;
7163 ssym->st_info = (*ind)->st_info;
7164 ssym->st_other = (*ind)->st_other;
7165 ssymhead->count++;
7166 }
7167 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7168 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7169 == total_size));
7170
7171 free (indbuf);
7172 return ssymbuf;
7173 }
7174
7175 /* Check if 2 sections define the same set of local and global
7176 symbols. */
7177
7178 static bfd_boolean
7179 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7180 struct bfd_link_info *info)
7181 {
7182 bfd *bfd1, *bfd2;
7183 const struct elf_backend_data *bed1, *bed2;
7184 Elf_Internal_Shdr *hdr1, *hdr2;
7185 bfd_size_type symcount1, symcount2;
7186 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7187 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7188 Elf_Internal_Sym *isym, *isymend;
7189 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7190 bfd_size_type count1, count2, i;
7191 unsigned int shndx1, shndx2;
7192 bfd_boolean result;
7193
7194 bfd1 = sec1->owner;
7195 bfd2 = sec2->owner;
7196
7197 /* Both sections have to be in ELF. */
7198 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7199 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7200 return FALSE;
7201
7202 if (elf_section_type (sec1) != elf_section_type (sec2))
7203 return FALSE;
7204
7205 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7206 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7207 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7208 return FALSE;
7209
7210 bed1 = get_elf_backend_data (bfd1);
7211 bed2 = get_elf_backend_data (bfd2);
7212 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7213 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7214 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7215 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7216
7217 if (symcount1 == 0 || symcount2 == 0)
7218 return FALSE;
7219
7220 result = FALSE;
7221 isymbuf1 = NULL;
7222 isymbuf2 = NULL;
7223 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7224 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7225
7226 if (ssymbuf1 == NULL)
7227 {
7228 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7229 NULL, NULL, NULL);
7230 if (isymbuf1 == NULL)
7231 goto done;
7232
7233 if (!info->reduce_memory_overheads)
7234 elf_tdata (bfd1)->symbuf = ssymbuf1
7235 = elf_create_symbuf (symcount1, isymbuf1);
7236 }
7237
7238 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7239 {
7240 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7241 NULL, NULL, NULL);
7242 if (isymbuf2 == NULL)
7243 goto done;
7244
7245 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7246 elf_tdata (bfd2)->symbuf = ssymbuf2
7247 = elf_create_symbuf (symcount2, isymbuf2);
7248 }
7249
7250 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7251 {
7252 /* Optimized faster version. */
7253 bfd_size_type lo, hi, mid;
7254 struct elf_symbol *symp;
7255 struct elf_symbuf_symbol *ssym, *ssymend;
7256
7257 lo = 0;
7258 hi = ssymbuf1->count;
7259 ssymbuf1++;
7260 count1 = 0;
7261 while (lo < hi)
7262 {
7263 mid = (lo + hi) / 2;
7264 if (shndx1 < ssymbuf1[mid].st_shndx)
7265 hi = mid;
7266 else if (shndx1 > ssymbuf1[mid].st_shndx)
7267 lo = mid + 1;
7268 else
7269 {
7270 count1 = ssymbuf1[mid].count;
7271 ssymbuf1 += mid;
7272 break;
7273 }
7274 }
7275
7276 lo = 0;
7277 hi = ssymbuf2->count;
7278 ssymbuf2++;
7279 count2 = 0;
7280 while (lo < hi)
7281 {
7282 mid = (lo + hi) / 2;
7283 if (shndx2 < ssymbuf2[mid].st_shndx)
7284 hi = mid;
7285 else if (shndx2 > ssymbuf2[mid].st_shndx)
7286 lo = mid + 1;
7287 else
7288 {
7289 count2 = ssymbuf2[mid].count;
7290 ssymbuf2 += mid;
7291 break;
7292 }
7293 }
7294
7295 if (count1 == 0 || count2 == 0 || count1 != count2)
7296 goto done;
7297
7298 symtable1 = (struct elf_symbol *)
7299 bfd_malloc (count1 * sizeof (struct elf_symbol));
7300 symtable2 = (struct elf_symbol *)
7301 bfd_malloc (count2 * sizeof (struct elf_symbol));
7302 if (symtable1 == NULL || symtable2 == NULL)
7303 goto done;
7304
7305 symp = symtable1;
7306 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7307 ssym < ssymend; ssym++, symp++)
7308 {
7309 symp->u.ssym = ssym;
7310 symp->name = bfd_elf_string_from_elf_section (bfd1,
7311 hdr1->sh_link,
7312 ssym->st_name);
7313 }
7314
7315 symp = symtable2;
7316 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7317 ssym < ssymend; ssym++, symp++)
7318 {
7319 symp->u.ssym = ssym;
7320 symp->name = bfd_elf_string_from_elf_section (bfd2,
7321 hdr2->sh_link,
7322 ssym->st_name);
7323 }
7324
7325 /* Sort symbol by name. */
7326 qsort (symtable1, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7328 qsort (symtable2, count1, sizeof (struct elf_symbol),
7329 elf_sym_name_compare);
7330
7331 for (i = 0; i < count1; i++)
7332 /* Two symbols must have the same binding, type and name. */
7333 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7334 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7335 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7336 goto done;
7337
7338 result = TRUE;
7339 goto done;
7340 }
7341
7342 symtable1 = (struct elf_symbol *)
7343 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7344 symtable2 = (struct elf_symbol *)
7345 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7346 if (symtable1 == NULL || symtable2 == NULL)
7347 goto done;
7348
7349 /* Count definitions in the section. */
7350 count1 = 0;
7351 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7352 if (isym->st_shndx == shndx1)
7353 symtable1[count1++].u.isym = isym;
7354
7355 count2 = 0;
7356 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7357 if (isym->st_shndx == shndx2)
7358 symtable2[count2++].u.isym = isym;
7359
7360 if (count1 == 0 || count2 == 0 || count1 != count2)
7361 goto done;
7362
7363 for (i = 0; i < count1; i++)
7364 symtable1[i].name
7365 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7366 symtable1[i].u.isym->st_name);
7367
7368 for (i = 0; i < count2; i++)
7369 symtable2[i].name
7370 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7371 symtable2[i].u.isym->st_name);
7372
7373 /* Sort symbol by name. */
7374 qsort (symtable1, count1, sizeof (struct elf_symbol),
7375 elf_sym_name_compare);
7376 qsort (symtable2, count1, sizeof (struct elf_symbol),
7377 elf_sym_name_compare);
7378
7379 for (i = 0; i < count1; i++)
7380 /* Two symbols must have the same binding, type and name. */
7381 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7382 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7383 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7384 goto done;
7385
7386 result = TRUE;
7387
7388 done:
7389 if (symtable1)
7390 free (symtable1);
7391 if (symtable2)
7392 free (symtable2);
7393 if (isymbuf1)
7394 free (isymbuf1);
7395 if (isymbuf2)
7396 free (isymbuf2);
7397
7398 return result;
7399 }
7400
7401 /* Return TRUE if 2 section types are compatible. */
7402
7403 bfd_boolean
7404 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7405 bfd *bbfd, const asection *bsec)
7406 {
7407 if (asec == NULL
7408 || bsec == NULL
7409 || abfd->xvec->flavour != bfd_target_elf_flavour
7410 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7411 return TRUE;
7412
7413 return elf_section_type (asec) == elf_section_type (bsec);
7414 }
7415 \f
7416 /* Final phase of ELF linker. */
7417
7418 /* A structure we use to avoid passing large numbers of arguments. */
7419
7420 struct elf_final_link_info
7421 {
7422 /* General link information. */
7423 struct bfd_link_info *info;
7424 /* Output BFD. */
7425 bfd *output_bfd;
7426 /* Symbol string table. */
7427 struct bfd_strtab_hash *symstrtab;
7428 /* .dynsym section. */
7429 asection *dynsym_sec;
7430 /* .hash section. */
7431 asection *hash_sec;
7432 /* symbol version section (.gnu.version). */
7433 asection *symver_sec;
7434 /* Buffer large enough to hold contents of any section. */
7435 bfd_byte *contents;
7436 /* Buffer large enough to hold external relocs of any section. */
7437 void *external_relocs;
7438 /* Buffer large enough to hold internal relocs of any section. */
7439 Elf_Internal_Rela *internal_relocs;
7440 /* Buffer large enough to hold external local symbols of any input
7441 BFD. */
7442 bfd_byte *external_syms;
7443 /* And a buffer for symbol section indices. */
7444 Elf_External_Sym_Shndx *locsym_shndx;
7445 /* Buffer large enough to hold internal local symbols of any input
7446 BFD. */
7447 Elf_Internal_Sym *internal_syms;
7448 /* Array large enough to hold a symbol index for each local symbol
7449 of any input BFD. */
7450 long *indices;
7451 /* Array large enough to hold a section pointer for each local
7452 symbol of any input BFD. */
7453 asection **sections;
7454 /* Buffer to hold swapped out symbols. */
7455 bfd_byte *symbuf;
7456 /* And one for symbol section indices. */
7457 Elf_External_Sym_Shndx *symshndxbuf;
7458 /* Number of swapped out symbols in buffer. */
7459 size_t symbuf_count;
7460 /* Number of symbols which fit in symbuf. */
7461 size_t symbuf_size;
7462 /* And same for symshndxbuf. */
7463 size_t shndxbuf_size;
7464 /* Number of STT_FILE syms seen. */
7465 size_t filesym_count;
7466 };
7467
7468 /* This struct is used to pass information to elf_link_output_extsym. */
7469
7470 struct elf_outext_info
7471 {
7472 bfd_boolean failed;
7473 bfd_boolean localsyms;
7474 bfd_boolean need_second_pass;
7475 bfd_boolean second_pass;
7476 bfd_boolean file_sym_done;
7477 struct elf_final_link_info *flinfo;
7478 };
7479
7480
7481 /* Support for evaluating a complex relocation.
7482
7483 Complex relocations are generalized, self-describing relocations. The
7484 implementation of them consists of two parts: complex symbols, and the
7485 relocations themselves.
7486
7487 The relocations are use a reserved elf-wide relocation type code (R_RELC
7488 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7489 information (start bit, end bit, word width, etc) into the addend. This
7490 information is extracted from CGEN-generated operand tables within gas.
7491
7492 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7493 internal) representing prefix-notation expressions, including but not
7494 limited to those sorts of expressions normally encoded as addends in the
7495 addend field. The symbol mangling format is:
7496
7497 <node> := <literal>
7498 | <unary-operator> ':' <node>
7499 | <binary-operator> ':' <node> ':' <node>
7500 ;
7501
7502 <literal> := 's' <digits=N> ':' <N character symbol name>
7503 | 'S' <digits=N> ':' <N character section name>
7504 | '#' <hexdigits>
7505 ;
7506
7507 <binary-operator> := as in C
7508 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7509
7510 static void
7511 set_symbol_value (bfd *bfd_with_globals,
7512 Elf_Internal_Sym *isymbuf,
7513 size_t locsymcount,
7514 size_t symidx,
7515 bfd_vma val)
7516 {
7517 struct elf_link_hash_entry **sym_hashes;
7518 struct elf_link_hash_entry *h;
7519 size_t extsymoff = locsymcount;
7520
7521 if (symidx < locsymcount)
7522 {
7523 Elf_Internal_Sym *sym;
7524
7525 sym = isymbuf + symidx;
7526 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7527 {
7528 /* It is a local symbol: move it to the
7529 "absolute" section and give it a value. */
7530 sym->st_shndx = SHN_ABS;
7531 sym->st_value = val;
7532 return;
7533 }
7534 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7535 extsymoff = 0;
7536 }
7537
7538 /* It is a global symbol: set its link type
7539 to "defined" and give it a value. */
7540
7541 sym_hashes = elf_sym_hashes (bfd_with_globals);
7542 h = sym_hashes [symidx - extsymoff];
7543 while (h->root.type == bfd_link_hash_indirect
7544 || h->root.type == bfd_link_hash_warning)
7545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7546 h->root.type = bfd_link_hash_defined;
7547 h->root.u.def.value = val;
7548 h->root.u.def.section = bfd_abs_section_ptr;
7549 }
7550
7551 static bfd_boolean
7552 resolve_symbol (const char *name,
7553 bfd *input_bfd,
7554 struct elf_final_link_info *flinfo,
7555 bfd_vma *result,
7556 Elf_Internal_Sym *isymbuf,
7557 size_t locsymcount)
7558 {
7559 Elf_Internal_Sym *sym;
7560 struct bfd_link_hash_entry *global_entry;
7561 const char *candidate = NULL;
7562 Elf_Internal_Shdr *symtab_hdr;
7563 size_t i;
7564
7565 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7566
7567 for (i = 0; i < locsymcount; ++ i)
7568 {
7569 sym = isymbuf + i;
7570
7571 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7572 continue;
7573
7574 candidate = bfd_elf_string_from_elf_section (input_bfd,
7575 symtab_hdr->sh_link,
7576 sym->st_name);
7577 #ifdef DEBUG
7578 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7579 name, candidate, (unsigned long) sym->st_value);
7580 #endif
7581 if (candidate && strcmp (candidate, name) == 0)
7582 {
7583 asection *sec = flinfo->sections [i];
7584
7585 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7586 *result += sec->output_offset + sec->output_section->vma;
7587 #ifdef DEBUG
7588 printf ("Found symbol with value %8.8lx\n",
7589 (unsigned long) *result);
7590 #endif
7591 return TRUE;
7592 }
7593 }
7594
7595 /* Hmm, haven't found it yet. perhaps it is a global. */
7596 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7597 FALSE, FALSE, TRUE);
7598 if (!global_entry)
7599 return FALSE;
7600
7601 if (global_entry->type == bfd_link_hash_defined
7602 || global_entry->type == bfd_link_hash_defweak)
7603 {
7604 *result = (global_entry->u.def.value
7605 + global_entry->u.def.section->output_section->vma
7606 + global_entry->u.def.section->output_offset);
7607 #ifdef DEBUG
7608 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7609 global_entry->root.string, (unsigned long) *result);
7610 #endif
7611 return TRUE;
7612 }
7613
7614 return FALSE;
7615 }
7616
7617 static bfd_boolean
7618 resolve_section (const char *name,
7619 asection *sections,
7620 bfd_vma *result)
7621 {
7622 asection *curr;
7623 unsigned int len;
7624
7625 for (curr = sections; curr; curr = curr->next)
7626 if (strcmp (curr->name, name) == 0)
7627 {
7628 *result = curr->vma;
7629 return TRUE;
7630 }
7631
7632 /* Hmm. still haven't found it. try pseudo-section names. */
7633 for (curr = sections; curr; curr = curr->next)
7634 {
7635 len = strlen (curr->name);
7636 if (len > strlen (name))
7637 continue;
7638
7639 if (strncmp (curr->name, name, len) == 0)
7640 {
7641 if (strncmp (".end", name + len, 4) == 0)
7642 {
7643 *result = curr->vma + curr->size;
7644 return TRUE;
7645 }
7646
7647 /* Insert more pseudo-section names here, if you like. */
7648 }
7649 }
7650
7651 return FALSE;
7652 }
7653
7654 static void
7655 undefined_reference (const char *reftype, const char *name)
7656 {
7657 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7658 reftype, name);
7659 }
7660
7661 static bfd_boolean
7662 eval_symbol (bfd_vma *result,
7663 const char **symp,
7664 bfd *input_bfd,
7665 struct elf_final_link_info *flinfo,
7666 bfd_vma dot,
7667 Elf_Internal_Sym *isymbuf,
7668 size_t locsymcount,
7669 int signed_p)
7670 {
7671 size_t len;
7672 size_t symlen;
7673 bfd_vma a;
7674 bfd_vma b;
7675 char symbuf[4096];
7676 const char *sym = *symp;
7677 const char *symend;
7678 bfd_boolean symbol_is_section = FALSE;
7679
7680 len = strlen (sym);
7681 symend = sym + len;
7682
7683 if (len < 1 || len > sizeof (symbuf))
7684 {
7685 bfd_set_error (bfd_error_invalid_operation);
7686 return FALSE;
7687 }
7688
7689 switch (* sym)
7690 {
7691 case '.':
7692 *result = dot;
7693 *symp = sym + 1;
7694 return TRUE;
7695
7696 case '#':
7697 ++sym;
7698 *result = strtoul (sym, (char **) symp, 16);
7699 return TRUE;
7700
7701 case 'S':
7702 symbol_is_section = TRUE;
7703 case 's':
7704 ++sym;
7705 symlen = strtol (sym, (char **) symp, 10);
7706 sym = *symp + 1; /* Skip the trailing ':'. */
7707
7708 if (symend < sym || symlen + 1 > sizeof (symbuf))
7709 {
7710 bfd_set_error (bfd_error_invalid_operation);
7711 return FALSE;
7712 }
7713
7714 memcpy (symbuf, sym, symlen);
7715 symbuf[symlen] = '\0';
7716 *symp = sym + symlen;
7717
7718 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7719 the symbol as a section, or vice-versa. so we're pretty liberal in our
7720 interpretation here; section means "try section first", not "must be a
7721 section", and likewise with symbol. */
7722
7723 if (symbol_is_section)
7724 {
7725 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7726 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7727 isymbuf, locsymcount))
7728 {
7729 undefined_reference ("section", symbuf);
7730 return FALSE;
7731 }
7732 }
7733 else
7734 {
7735 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7736 isymbuf, locsymcount)
7737 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7738 result))
7739 {
7740 undefined_reference ("symbol", symbuf);
7741 return FALSE;
7742 }
7743 }
7744
7745 return TRUE;
7746
7747 /* All that remains are operators. */
7748
7749 #define UNARY_OP(op) \
7750 if (strncmp (sym, #op, strlen (#op)) == 0) \
7751 { \
7752 sym += strlen (#op); \
7753 if (*sym == ':') \
7754 ++sym; \
7755 *symp = sym; \
7756 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7757 isymbuf, locsymcount, signed_p)) \
7758 return FALSE; \
7759 if (signed_p) \
7760 *result = op ((bfd_signed_vma) a); \
7761 else \
7762 *result = op a; \
7763 return TRUE; \
7764 }
7765
7766 #define BINARY_OP(op) \
7767 if (strncmp (sym, #op, strlen (#op)) == 0) \
7768 { \
7769 sym += strlen (#op); \
7770 if (*sym == ':') \
7771 ++sym; \
7772 *symp = sym; \
7773 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7774 isymbuf, locsymcount, signed_p)) \
7775 return FALSE; \
7776 ++*symp; \
7777 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7778 isymbuf, locsymcount, signed_p)) \
7779 return FALSE; \
7780 if (signed_p) \
7781 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7782 else \
7783 *result = a op b; \
7784 return TRUE; \
7785 }
7786
7787 default:
7788 UNARY_OP (0-);
7789 BINARY_OP (<<);
7790 BINARY_OP (>>);
7791 BINARY_OP (==);
7792 BINARY_OP (!=);
7793 BINARY_OP (<=);
7794 BINARY_OP (>=);
7795 BINARY_OP (&&);
7796 BINARY_OP (||);
7797 UNARY_OP (~);
7798 UNARY_OP (!);
7799 BINARY_OP (*);
7800 BINARY_OP (/);
7801 BINARY_OP (%);
7802 BINARY_OP (^);
7803 BINARY_OP (|);
7804 BINARY_OP (&);
7805 BINARY_OP (+);
7806 BINARY_OP (-);
7807 BINARY_OP (<);
7808 BINARY_OP (>);
7809 #undef UNARY_OP
7810 #undef BINARY_OP
7811 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7812 bfd_set_error (bfd_error_invalid_operation);
7813 return FALSE;
7814 }
7815 }
7816
7817 static void
7818 put_value (bfd_vma size,
7819 unsigned long chunksz,
7820 bfd *input_bfd,
7821 bfd_vma x,
7822 bfd_byte *location)
7823 {
7824 location += (size - chunksz);
7825
7826 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7827 {
7828 switch (chunksz)
7829 {
7830 default:
7831 case 0:
7832 abort ();
7833 case 1:
7834 bfd_put_8 (input_bfd, x, location);
7835 break;
7836 case 2:
7837 bfd_put_16 (input_bfd, x, location);
7838 break;
7839 case 4:
7840 bfd_put_32 (input_bfd, x, location);
7841 break;
7842 case 8:
7843 #ifdef BFD64
7844 bfd_put_64 (input_bfd, x, location);
7845 #else
7846 abort ();
7847 #endif
7848 break;
7849 }
7850 }
7851 }
7852
7853 static bfd_vma
7854 get_value (bfd_vma size,
7855 unsigned long chunksz,
7856 bfd *input_bfd,
7857 bfd_byte *location)
7858 {
7859 int shift;
7860 bfd_vma x = 0;
7861
7862 /* Sanity checks. */
7863 BFD_ASSERT (chunksz <= sizeof (x)
7864 && size >= chunksz
7865 && chunksz != 0
7866 && (size % chunksz) == 0
7867 && input_bfd != NULL
7868 && location != NULL);
7869
7870 if (chunksz == sizeof (x))
7871 {
7872 BFD_ASSERT (size == chunksz);
7873
7874 /* Make sure that we do not perform an undefined shift operation.
7875 We know that size == chunksz so there will only be one iteration
7876 of the loop below. */
7877 shift = 0;
7878 }
7879 else
7880 shift = 8 * chunksz;
7881
7882 for (; size; size -= chunksz, location += chunksz)
7883 {
7884 switch (chunksz)
7885 {
7886 case 1:
7887 x = (x << shift) | bfd_get_8 (input_bfd, location);
7888 break;
7889 case 2:
7890 x = (x << shift) | bfd_get_16 (input_bfd, location);
7891 break;
7892 case 4:
7893 x = (x << shift) | bfd_get_32 (input_bfd, location);
7894 break;
7895 #ifdef BFD64
7896 case 8:
7897 x = (x << shift) | bfd_get_64 (input_bfd, location);
7898 break;
7899 #endif
7900 default:
7901 abort ();
7902 }
7903 }
7904 return x;
7905 }
7906
7907 static void
7908 decode_complex_addend (unsigned long *start, /* in bits */
7909 unsigned long *oplen, /* in bits */
7910 unsigned long *len, /* in bits */
7911 unsigned long *wordsz, /* in bytes */
7912 unsigned long *chunksz, /* in bytes */
7913 unsigned long *lsb0_p,
7914 unsigned long *signed_p,
7915 unsigned long *trunc_p,
7916 unsigned long encoded)
7917 {
7918 * start = encoded & 0x3F;
7919 * len = (encoded >> 6) & 0x3F;
7920 * oplen = (encoded >> 12) & 0x3F;
7921 * wordsz = (encoded >> 18) & 0xF;
7922 * chunksz = (encoded >> 22) & 0xF;
7923 * lsb0_p = (encoded >> 27) & 1;
7924 * signed_p = (encoded >> 28) & 1;
7925 * trunc_p = (encoded >> 29) & 1;
7926 }
7927
7928 bfd_reloc_status_type
7929 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7930 asection *input_section ATTRIBUTE_UNUSED,
7931 bfd_byte *contents,
7932 Elf_Internal_Rela *rel,
7933 bfd_vma relocation)
7934 {
7935 bfd_vma shift, x, mask;
7936 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7937 bfd_reloc_status_type r;
7938
7939 /* Perform this reloc, since it is complex.
7940 (this is not to say that it necessarily refers to a complex
7941 symbol; merely that it is a self-describing CGEN based reloc.
7942 i.e. the addend has the complete reloc information (bit start, end,
7943 word size, etc) encoded within it.). */
7944
7945 decode_complex_addend (&start, &oplen, &len, &wordsz,
7946 &chunksz, &lsb0_p, &signed_p,
7947 &trunc_p, rel->r_addend);
7948
7949 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7950
7951 if (lsb0_p)
7952 shift = (start + 1) - len;
7953 else
7954 shift = (8 * wordsz) - (start + len);
7955
7956 /* FIXME: octets_per_byte. */
7957 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7958
7959 #ifdef DEBUG
7960 printf ("Doing complex reloc: "
7961 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7962 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7963 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7964 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7965 oplen, (unsigned long) x, (unsigned long) mask,
7966 (unsigned long) relocation);
7967 #endif
7968
7969 r = bfd_reloc_ok;
7970 if (! trunc_p)
7971 /* Now do an overflow check. */
7972 r = bfd_check_overflow ((signed_p
7973 ? complain_overflow_signed
7974 : complain_overflow_unsigned),
7975 len, 0, (8 * wordsz),
7976 relocation);
7977
7978 /* Do the deed. */
7979 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7980
7981 #ifdef DEBUG
7982 printf (" relocation: %8.8lx\n"
7983 " shifted mask: %8.8lx\n"
7984 " shifted/masked reloc: %8.8lx\n"
7985 " result: %8.8lx\n",
7986 (unsigned long) relocation, (unsigned long) (mask << shift),
7987 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7988 #endif
7989 /* FIXME: octets_per_byte. */
7990 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7991 return r;
7992 }
7993
7994 /* When performing a relocatable link, the input relocations are
7995 preserved. But, if they reference global symbols, the indices
7996 referenced must be updated. Update all the relocations found in
7997 RELDATA. */
7998
7999 static void
8000 elf_link_adjust_relocs (bfd *abfd,
8001 struct bfd_elf_section_reloc_data *reldata)
8002 {
8003 unsigned int i;
8004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8005 bfd_byte *erela;
8006 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8007 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8008 bfd_vma r_type_mask;
8009 int r_sym_shift;
8010 unsigned int count = reldata->count;
8011 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8012
8013 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8014 {
8015 swap_in = bed->s->swap_reloc_in;
8016 swap_out = bed->s->swap_reloc_out;
8017 }
8018 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8019 {
8020 swap_in = bed->s->swap_reloca_in;
8021 swap_out = bed->s->swap_reloca_out;
8022 }
8023 else
8024 abort ();
8025
8026 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8027 abort ();
8028
8029 if (bed->s->arch_size == 32)
8030 {
8031 r_type_mask = 0xff;
8032 r_sym_shift = 8;
8033 }
8034 else
8035 {
8036 r_type_mask = 0xffffffff;
8037 r_sym_shift = 32;
8038 }
8039
8040 erela = reldata->hdr->contents;
8041 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8042 {
8043 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8044 unsigned int j;
8045
8046 if (*rel_hash == NULL)
8047 continue;
8048
8049 BFD_ASSERT ((*rel_hash)->indx >= 0);
8050
8051 (*swap_in) (abfd, erela, irela);
8052 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8053 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8054 | (irela[j].r_info & r_type_mask));
8055 (*swap_out) (abfd, irela, erela);
8056 }
8057 }
8058
8059 struct elf_link_sort_rela
8060 {
8061 union {
8062 bfd_vma offset;
8063 bfd_vma sym_mask;
8064 } u;
8065 enum elf_reloc_type_class type;
8066 /* We use this as an array of size int_rels_per_ext_rel. */
8067 Elf_Internal_Rela rela[1];
8068 };
8069
8070 static int
8071 elf_link_sort_cmp1 (const void *A, const void *B)
8072 {
8073 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8074 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8075 int relativea, relativeb;
8076
8077 relativea = a->type == reloc_class_relative;
8078 relativeb = b->type == reloc_class_relative;
8079
8080 if (relativea < relativeb)
8081 return 1;
8082 if (relativea > relativeb)
8083 return -1;
8084 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8085 return -1;
8086 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8087 return 1;
8088 if (a->rela->r_offset < b->rela->r_offset)
8089 return -1;
8090 if (a->rela->r_offset > b->rela->r_offset)
8091 return 1;
8092 return 0;
8093 }
8094
8095 static int
8096 elf_link_sort_cmp2 (const void *A, const void *B)
8097 {
8098 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8099 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8100
8101 if (a->type < b->type)
8102 return -1;
8103 if (a->type > b->type)
8104 return 1;
8105 if (a->u.offset < b->u.offset)
8106 return -1;
8107 if (a->u.offset > b->u.offset)
8108 return 1;
8109 if (a->rela->r_offset < b->rela->r_offset)
8110 return -1;
8111 if (a->rela->r_offset > b->rela->r_offset)
8112 return 1;
8113 return 0;
8114 }
8115
8116 static size_t
8117 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8118 {
8119 asection *dynamic_relocs;
8120 asection *rela_dyn;
8121 asection *rel_dyn;
8122 bfd_size_type count, size;
8123 size_t i, ret, sort_elt, ext_size;
8124 bfd_byte *sort, *s_non_relative, *p;
8125 struct elf_link_sort_rela *sq;
8126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8127 int i2e = bed->s->int_rels_per_ext_rel;
8128 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8129 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8130 struct bfd_link_order *lo;
8131 bfd_vma r_sym_mask;
8132 bfd_boolean use_rela;
8133
8134 /* Find a dynamic reloc section. */
8135 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8136 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8137 if (rela_dyn != NULL && rela_dyn->size > 0
8138 && rel_dyn != NULL && rel_dyn->size > 0)
8139 {
8140 bfd_boolean use_rela_initialised = FALSE;
8141
8142 /* This is just here to stop gcc from complaining.
8143 It's initialization checking code is not perfect. */
8144 use_rela = TRUE;
8145
8146 /* Both sections are present. Examine the sizes
8147 of the indirect sections to help us choose. */
8148 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8149 if (lo->type == bfd_indirect_link_order)
8150 {
8151 asection *o = lo->u.indirect.section;
8152
8153 if ((o->size % bed->s->sizeof_rela) == 0)
8154 {
8155 if ((o->size % bed->s->sizeof_rel) == 0)
8156 /* Section size is divisible by both rel and rela sizes.
8157 It is of no help to us. */
8158 ;
8159 else
8160 {
8161 /* Section size is only divisible by rela. */
8162 if (use_rela_initialised && (use_rela == FALSE))
8163 {
8164 _bfd_error_handler
8165 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8166 bfd_set_error (bfd_error_invalid_operation);
8167 return 0;
8168 }
8169 else
8170 {
8171 use_rela = TRUE;
8172 use_rela_initialised = TRUE;
8173 }
8174 }
8175 }
8176 else if ((o->size % bed->s->sizeof_rel) == 0)
8177 {
8178 /* Section size is only divisible by rel. */
8179 if (use_rela_initialised && (use_rela == TRUE))
8180 {
8181 _bfd_error_handler
8182 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8184 return 0;
8185 }
8186 else
8187 {
8188 use_rela = FALSE;
8189 use_rela_initialised = TRUE;
8190 }
8191 }
8192 else
8193 {
8194 /* The section size is not divisible by either - something is wrong. */
8195 _bfd_error_handler
8196 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8197 bfd_set_error (bfd_error_invalid_operation);
8198 return 0;
8199 }
8200 }
8201
8202 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8203 if (lo->type == bfd_indirect_link_order)
8204 {
8205 asection *o = lo->u.indirect.section;
8206
8207 if ((o->size % bed->s->sizeof_rela) == 0)
8208 {
8209 if ((o->size % bed->s->sizeof_rel) == 0)
8210 /* Section size is divisible by both rel and rela sizes.
8211 It is of no help to us. */
8212 ;
8213 else
8214 {
8215 /* Section size is only divisible by rela. */
8216 if (use_rela_initialised && (use_rela == FALSE))
8217 {
8218 _bfd_error_handler
8219 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8220 bfd_set_error (bfd_error_invalid_operation);
8221 return 0;
8222 }
8223 else
8224 {
8225 use_rela = TRUE;
8226 use_rela_initialised = TRUE;
8227 }
8228 }
8229 }
8230 else if ((o->size % bed->s->sizeof_rel) == 0)
8231 {
8232 /* Section size is only divisible by rel. */
8233 if (use_rela_initialised && (use_rela == TRUE))
8234 {
8235 _bfd_error_handler
8236 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8237 bfd_set_error (bfd_error_invalid_operation);
8238 return 0;
8239 }
8240 else
8241 {
8242 use_rela = FALSE;
8243 use_rela_initialised = TRUE;
8244 }
8245 }
8246 else
8247 {
8248 /* The section size is not divisible by either - something is wrong. */
8249 _bfd_error_handler
8250 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8251 bfd_set_error (bfd_error_invalid_operation);
8252 return 0;
8253 }
8254 }
8255
8256 if (! use_rela_initialised)
8257 /* Make a guess. */
8258 use_rela = TRUE;
8259 }
8260 else if (rela_dyn != NULL && rela_dyn->size > 0)
8261 use_rela = TRUE;
8262 else if (rel_dyn != NULL && rel_dyn->size > 0)
8263 use_rela = FALSE;
8264 else
8265 return 0;
8266
8267 if (use_rela)
8268 {
8269 dynamic_relocs = rela_dyn;
8270 ext_size = bed->s->sizeof_rela;
8271 swap_in = bed->s->swap_reloca_in;
8272 swap_out = bed->s->swap_reloca_out;
8273 }
8274 else
8275 {
8276 dynamic_relocs = rel_dyn;
8277 ext_size = bed->s->sizeof_rel;
8278 swap_in = bed->s->swap_reloc_in;
8279 swap_out = bed->s->swap_reloc_out;
8280 }
8281
8282 size = 0;
8283 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8284 if (lo->type == bfd_indirect_link_order)
8285 size += lo->u.indirect.section->size;
8286
8287 if (size != dynamic_relocs->size)
8288 return 0;
8289
8290 sort_elt = (sizeof (struct elf_link_sort_rela)
8291 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8292
8293 count = dynamic_relocs->size / ext_size;
8294 if (count == 0)
8295 return 0;
8296 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8297
8298 if (sort == NULL)
8299 {
8300 (*info->callbacks->warning)
8301 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8302 return 0;
8303 }
8304
8305 if (bed->s->arch_size == 32)
8306 r_sym_mask = ~(bfd_vma) 0xff;
8307 else
8308 r_sym_mask = ~(bfd_vma) 0xffffffff;
8309
8310 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8311 if (lo->type == bfd_indirect_link_order)
8312 {
8313 bfd_byte *erel, *erelend;
8314 asection *o = lo->u.indirect.section;
8315
8316 if (o->contents == NULL && o->size != 0)
8317 {
8318 /* This is a reloc section that is being handled as a normal
8319 section. See bfd_section_from_shdr. We can't combine
8320 relocs in this case. */
8321 free (sort);
8322 return 0;
8323 }
8324 erel = o->contents;
8325 erelend = o->contents + o->size;
8326 /* FIXME: octets_per_byte. */
8327 p = sort + o->output_offset / ext_size * sort_elt;
8328
8329 while (erel < erelend)
8330 {
8331 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8332
8333 (*swap_in) (abfd, erel, s->rela);
8334 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8335 s->u.sym_mask = r_sym_mask;
8336 p += sort_elt;
8337 erel += ext_size;
8338 }
8339 }
8340
8341 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8342
8343 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8344 {
8345 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8346 if (s->type != reloc_class_relative)
8347 break;
8348 }
8349 ret = i;
8350 s_non_relative = p;
8351
8352 sq = (struct elf_link_sort_rela *) s_non_relative;
8353 for (; i < count; i++, p += sort_elt)
8354 {
8355 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8356 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8357 sq = sp;
8358 sp->u.offset = sq->rela->r_offset;
8359 }
8360
8361 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8362
8363 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8364 if (lo->type == bfd_indirect_link_order)
8365 {
8366 bfd_byte *erel, *erelend;
8367 asection *o = lo->u.indirect.section;
8368
8369 erel = o->contents;
8370 erelend = o->contents + o->size;
8371 /* FIXME: octets_per_byte. */
8372 p = sort + o->output_offset / ext_size * sort_elt;
8373 while (erel < erelend)
8374 {
8375 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8376 (*swap_out) (abfd, s->rela, erel);
8377 p += sort_elt;
8378 erel += ext_size;
8379 }
8380 }
8381
8382 free (sort);
8383 *psec = dynamic_relocs;
8384 return ret;
8385 }
8386
8387 /* Flush the output symbols to the file. */
8388
8389 static bfd_boolean
8390 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8391 const struct elf_backend_data *bed)
8392 {
8393 if (flinfo->symbuf_count > 0)
8394 {
8395 Elf_Internal_Shdr *hdr;
8396 file_ptr pos;
8397 bfd_size_type amt;
8398
8399 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8400 pos = hdr->sh_offset + hdr->sh_size;
8401 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8402 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8403 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8404 return FALSE;
8405
8406 hdr->sh_size += amt;
8407 flinfo->symbuf_count = 0;
8408 }
8409
8410 return TRUE;
8411 }
8412
8413 /* Add a symbol to the output symbol table. */
8414
8415 static int
8416 elf_link_output_sym (struct elf_final_link_info *flinfo,
8417 const char *name,
8418 Elf_Internal_Sym *elfsym,
8419 asection *input_sec,
8420 struct elf_link_hash_entry *h)
8421 {
8422 bfd_byte *dest;
8423 Elf_External_Sym_Shndx *destshndx;
8424 int (*output_symbol_hook)
8425 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8426 struct elf_link_hash_entry *);
8427 const struct elf_backend_data *bed;
8428
8429 bed = get_elf_backend_data (flinfo->output_bfd);
8430 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8431 if (output_symbol_hook != NULL)
8432 {
8433 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8434 if (ret != 1)
8435 return ret;
8436 }
8437
8438 if (name == NULL || *name == '\0')
8439 elfsym->st_name = 0;
8440 else if (input_sec->flags & SEC_EXCLUDE)
8441 elfsym->st_name = 0;
8442 else
8443 {
8444 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8445 name, TRUE, FALSE);
8446 if (elfsym->st_name == (unsigned long) -1)
8447 return 0;
8448 }
8449
8450 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8451 {
8452 if (! elf_link_flush_output_syms (flinfo, bed))
8453 return 0;
8454 }
8455
8456 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8457 destshndx = flinfo->symshndxbuf;
8458 if (destshndx != NULL)
8459 {
8460 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8461 {
8462 bfd_size_type amt;
8463
8464 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8465 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8466 amt * 2);
8467 if (destshndx == NULL)
8468 return 0;
8469 flinfo->symshndxbuf = destshndx;
8470 memset ((char *) destshndx + amt, 0, amt);
8471 flinfo->shndxbuf_size *= 2;
8472 }
8473 destshndx += bfd_get_symcount (flinfo->output_bfd);
8474 }
8475
8476 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8477 flinfo->symbuf_count += 1;
8478 bfd_get_symcount (flinfo->output_bfd) += 1;
8479
8480 return 1;
8481 }
8482
8483 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8484
8485 static bfd_boolean
8486 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8487 {
8488 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8489 && sym->st_shndx < SHN_LORESERVE)
8490 {
8491 /* The gABI doesn't support dynamic symbols in output sections
8492 beyond 64k. */
8493 (*_bfd_error_handler)
8494 (_("%B: Too many sections: %d (>= %d)"),
8495 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8496 bfd_set_error (bfd_error_nonrepresentable_section);
8497 return FALSE;
8498 }
8499 return TRUE;
8500 }
8501
8502 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8503 allowing an unsatisfied unversioned symbol in the DSO to match a
8504 versioned symbol that would normally require an explicit version.
8505 We also handle the case that a DSO references a hidden symbol
8506 which may be satisfied by a versioned symbol in another DSO. */
8507
8508 static bfd_boolean
8509 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8510 const struct elf_backend_data *bed,
8511 struct elf_link_hash_entry *h)
8512 {
8513 bfd *abfd;
8514 struct elf_link_loaded_list *loaded;
8515
8516 if (!is_elf_hash_table (info->hash))
8517 return FALSE;
8518
8519 /* Check indirect symbol. */
8520 while (h->root.type == bfd_link_hash_indirect)
8521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8522
8523 switch (h->root.type)
8524 {
8525 default:
8526 abfd = NULL;
8527 break;
8528
8529 case bfd_link_hash_undefined:
8530 case bfd_link_hash_undefweak:
8531 abfd = h->root.u.undef.abfd;
8532 if ((abfd->flags & DYNAMIC) == 0
8533 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8534 return FALSE;
8535 break;
8536
8537 case bfd_link_hash_defined:
8538 case bfd_link_hash_defweak:
8539 abfd = h->root.u.def.section->owner;
8540 break;
8541
8542 case bfd_link_hash_common:
8543 abfd = h->root.u.c.p->section->owner;
8544 break;
8545 }
8546 BFD_ASSERT (abfd != NULL);
8547
8548 for (loaded = elf_hash_table (info)->loaded;
8549 loaded != NULL;
8550 loaded = loaded->next)
8551 {
8552 bfd *input;
8553 Elf_Internal_Shdr *hdr;
8554 bfd_size_type symcount;
8555 bfd_size_type extsymcount;
8556 bfd_size_type extsymoff;
8557 Elf_Internal_Shdr *versymhdr;
8558 Elf_Internal_Sym *isym;
8559 Elf_Internal_Sym *isymend;
8560 Elf_Internal_Sym *isymbuf;
8561 Elf_External_Versym *ever;
8562 Elf_External_Versym *extversym;
8563
8564 input = loaded->abfd;
8565
8566 /* We check each DSO for a possible hidden versioned definition. */
8567 if (input == abfd
8568 || (input->flags & DYNAMIC) == 0
8569 || elf_dynversym (input) == 0)
8570 continue;
8571
8572 hdr = &elf_tdata (input)->dynsymtab_hdr;
8573
8574 symcount = hdr->sh_size / bed->s->sizeof_sym;
8575 if (elf_bad_symtab (input))
8576 {
8577 extsymcount = symcount;
8578 extsymoff = 0;
8579 }
8580 else
8581 {
8582 extsymcount = symcount - hdr->sh_info;
8583 extsymoff = hdr->sh_info;
8584 }
8585
8586 if (extsymcount == 0)
8587 continue;
8588
8589 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8590 NULL, NULL, NULL);
8591 if (isymbuf == NULL)
8592 return FALSE;
8593
8594 /* Read in any version definitions. */
8595 versymhdr = &elf_tdata (input)->dynversym_hdr;
8596 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8597 if (extversym == NULL)
8598 goto error_ret;
8599
8600 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8601 || (bfd_bread (extversym, versymhdr->sh_size, input)
8602 != versymhdr->sh_size))
8603 {
8604 free (extversym);
8605 error_ret:
8606 free (isymbuf);
8607 return FALSE;
8608 }
8609
8610 ever = extversym + extsymoff;
8611 isymend = isymbuf + extsymcount;
8612 for (isym = isymbuf; isym < isymend; isym++, ever++)
8613 {
8614 const char *name;
8615 Elf_Internal_Versym iver;
8616 unsigned short version_index;
8617
8618 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8619 || isym->st_shndx == SHN_UNDEF)
8620 continue;
8621
8622 name = bfd_elf_string_from_elf_section (input,
8623 hdr->sh_link,
8624 isym->st_name);
8625 if (strcmp (name, h->root.root.string) != 0)
8626 continue;
8627
8628 _bfd_elf_swap_versym_in (input, ever, &iver);
8629
8630 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8631 && !(h->def_regular
8632 && h->forced_local))
8633 {
8634 /* If we have a non-hidden versioned sym, then it should
8635 have provided a definition for the undefined sym unless
8636 it is defined in a non-shared object and forced local.
8637 */
8638 abort ();
8639 }
8640
8641 version_index = iver.vs_vers & VERSYM_VERSION;
8642 if (version_index == 1 || version_index == 2)
8643 {
8644 /* This is the base or first version. We can use it. */
8645 free (extversym);
8646 free (isymbuf);
8647 return TRUE;
8648 }
8649 }
8650
8651 free (extversym);
8652 free (isymbuf);
8653 }
8654
8655 return FALSE;
8656 }
8657
8658 /* Add an external symbol to the symbol table. This is called from
8659 the hash table traversal routine. When generating a shared object,
8660 we go through the symbol table twice. The first time we output
8661 anything that might have been forced to local scope in a version
8662 script. The second time we output the symbols that are still
8663 global symbols. */
8664
8665 static bfd_boolean
8666 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8667 {
8668 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8669 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8670 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8671 bfd_boolean strip;
8672 Elf_Internal_Sym sym;
8673 asection *input_sec;
8674 const struct elf_backend_data *bed;
8675 long indx;
8676 int ret;
8677
8678 if (h->root.type == bfd_link_hash_warning)
8679 {
8680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8681 if (h->root.type == bfd_link_hash_new)
8682 return TRUE;
8683 }
8684
8685 /* Decide whether to output this symbol in this pass. */
8686 if (eoinfo->localsyms)
8687 {
8688 if (!h->forced_local)
8689 return TRUE;
8690 if (eoinfo->second_pass
8691 && !((h->root.type == bfd_link_hash_defined
8692 || h->root.type == bfd_link_hash_defweak)
8693 && h->root.u.def.section->output_section != NULL))
8694 return TRUE;
8695
8696 if (!eoinfo->file_sym_done
8697 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8698 : eoinfo->flinfo->filesym_count > 1))
8699 {
8700 /* Output a FILE symbol so that following locals are not associated
8701 with the wrong input file. */
8702 memset (&sym, 0, sizeof (sym));
8703 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8704 sym.st_shndx = SHN_ABS;
8705 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8706 bfd_und_section_ptr, NULL))
8707 return FALSE;
8708
8709 eoinfo->file_sym_done = TRUE;
8710 }
8711 }
8712 else
8713 {
8714 if (h->forced_local)
8715 return TRUE;
8716 }
8717
8718 bed = get_elf_backend_data (flinfo->output_bfd);
8719
8720 if (h->root.type == bfd_link_hash_undefined)
8721 {
8722 /* If we have an undefined symbol reference here then it must have
8723 come from a shared library that is being linked in. (Undefined
8724 references in regular files have already been handled unless
8725 they are in unreferenced sections which are removed by garbage
8726 collection). */
8727 bfd_boolean ignore_undef = FALSE;
8728
8729 /* Some symbols may be special in that the fact that they're
8730 undefined can be safely ignored - let backend determine that. */
8731 if (bed->elf_backend_ignore_undef_symbol)
8732 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8733
8734 /* If we are reporting errors for this situation then do so now. */
8735 if (!ignore_undef
8736 && h->ref_dynamic
8737 && (!h->ref_regular || flinfo->info->gc_sections)
8738 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8739 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8740 {
8741 if (!(flinfo->info->callbacks->undefined_symbol
8742 (flinfo->info, h->root.root.string,
8743 h->ref_regular ? NULL : h->root.u.undef.abfd,
8744 NULL, 0,
8745 (flinfo->info->unresolved_syms_in_shared_libs
8746 == RM_GENERATE_ERROR))))
8747 {
8748 bfd_set_error (bfd_error_bad_value);
8749 eoinfo->failed = TRUE;
8750 return FALSE;
8751 }
8752 }
8753 }
8754
8755 /* We should also warn if a forced local symbol is referenced from
8756 shared libraries. */
8757 if (!flinfo->info->relocatable
8758 && flinfo->info->executable
8759 && h->forced_local
8760 && h->ref_dynamic
8761 && h->def_regular
8762 && !h->dynamic_def
8763 && h->ref_dynamic_nonweak
8764 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8765 {
8766 bfd *def_bfd;
8767 const char *msg;
8768 struct elf_link_hash_entry *hi = h;
8769
8770 /* Check indirect symbol. */
8771 while (hi->root.type == bfd_link_hash_indirect)
8772 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8773
8774 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8775 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8776 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8777 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8778 else
8779 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8780 def_bfd = flinfo->output_bfd;
8781 if (hi->root.u.def.section != bfd_abs_section_ptr)
8782 def_bfd = hi->root.u.def.section->owner;
8783 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8784 h->root.root.string);
8785 bfd_set_error (bfd_error_bad_value);
8786 eoinfo->failed = TRUE;
8787 return FALSE;
8788 }
8789
8790 /* We don't want to output symbols that have never been mentioned by
8791 a regular file, or that we have been told to strip. However, if
8792 h->indx is set to -2, the symbol is used by a reloc and we must
8793 output it. */
8794 if (h->indx == -2)
8795 strip = FALSE;
8796 else if ((h->def_dynamic
8797 || h->ref_dynamic
8798 || h->root.type == bfd_link_hash_new)
8799 && !h->def_regular
8800 && !h->ref_regular)
8801 strip = TRUE;
8802 else if (flinfo->info->strip == strip_all)
8803 strip = TRUE;
8804 else if (flinfo->info->strip == strip_some
8805 && bfd_hash_lookup (flinfo->info->keep_hash,
8806 h->root.root.string, FALSE, FALSE) == NULL)
8807 strip = TRUE;
8808 else if ((h->root.type == bfd_link_hash_defined
8809 || h->root.type == bfd_link_hash_defweak)
8810 && ((flinfo->info->strip_discarded
8811 && discarded_section (h->root.u.def.section))
8812 || (h->root.u.def.section->owner != NULL
8813 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8814 strip = TRUE;
8815 else if ((h->root.type == bfd_link_hash_undefined
8816 || h->root.type == bfd_link_hash_undefweak)
8817 && h->root.u.undef.abfd != NULL
8818 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8819 strip = TRUE;
8820 else
8821 strip = FALSE;
8822
8823 /* If we're stripping it, and it's not a dynamic symbol, there's
8824 nothing else to do unless it is a forced local symbol or a
8825 STT_GNU_IFUNC symbol. */
8826 if (strip
8827 && h->dynindx == -1
8828 && h->type != STT_GNU_IFUNC
8829 && !h->forced_local)
8830 return TRUE;
8831
8832 sym.st_value = 0;
8833 sym.st_size = h->size;
8834 sym.st_other = h->other;
8835 if (h->forced_local)
8836 {
8837 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8838 /* Turn off visibility on local symbol. */
8839 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8840 }
8841 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8842 else if (h->unique_global && h->def_regular)
8843 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8844 else if (h->root.type == bfd_link_hash_undefweak
8845 || h->root.type == bfd_link_hash_defweak)
8846 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8847 else
8848 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8849 sym.st_target_internal = h->target_internal;
8850
8851 switch (h->root.type)
8852 {
8853 default:
8854 case bfd_link_hash_new:
8855 case bfd_link_hash_warning:
8856 abort ();
8857 return FALSE;
8858
8859 case bfd_link_hash_undefined:
8860 case bfd_link_hash_undefweak:
8861 input_sec = bfd_und_section_ptr;
8862 sym.st_shndx = SHN_UNDEF;
8863 break;
8864
8865 case bfd_link_hash_defined:
8866 case bfd_link_hash_defweak:
8867 {
8868 input_sec = h->root.u.def.section;
8869 if (input_sec->output_section != NULL)
8870 {
8871 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8872 {
8873 bfd_boolean second_pass_sym
8874 = (input_sec->owner == flinfo->output_bfd
8875 || input_sec->owner == NULL
8876 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8877 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8878
8879 eoinfo->need_second_pass |= second_pass_sym;
8880 if (eoinfo->second_pass != second_pass_sym)
8881 return TRUE;
8882 }
8883
8884 sym.st_shndx =
8885 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8886 input_sec->output_section);
8887 if (sym.st_shndx == SHN_BAD)
8888 {
8889 (*_bfd_error_handler)
8890 (_("%B: could not find output section %A for input section %A"),
8891 flinfo->output_bfd, input_sec->output_section, input_sec);
8892 bfd_set_error (bfd_error_nonrepresentable_section);
8893 eoinfo->failed = TRUE;
8894 return FALSE;
8895 }
8896
8897 /* ELF symbols in relocatable files are section relative,
8898 but in nonrelocatable files they are virtual
8899 addresses. */
8900 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8901 if (!flinfo->info->relocatable)
8902 {
8903 sym.st_value += input_sec->output_section->vma;
8904 if (h->type == STT_TLS)
8905 {
8906 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8907 if (tls_sec != NULL)
8908 sym.st_value -= tls_sec->vma;
8909 else
8910 {
8911 /* The TLS section may have been garbage collected. */
8912 BFD_ASSERT (flinfo->info->gc_sections
8913 && !input_sec->gc_mark);
8914 }
8915 }
8916 }
8917 }
8918 else
8919 {
8920 BFD_ASSERT (input_sec->owner == NULL
8921 || (input_sec->owner->flags & DYNAMIC) != 0);
8922 sym.st_shndx = SHN_UNDEF;
8923 input_sec = bfd_und_section_ptr;
8924 }
8925 }
8926 break;
8927
8928 case bfd_link_hash_common:
8929 input_sec = h->root.u.c.p->section;
8930 sym.st_shndx = bed->common_section_index (input_sec);
8931 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8932 break;
8933
8934 case bfd_link_hash_indirect:
8935 /* These symbols are created by symbol versioning. They point
8936 to the decorated version of the name. For example, if the
8937 symbol foo@@GNU_1.2 is the default, which should be used when
8938 foo is used with no version, then we add an indirect symbol
8939 foo which points to foo@@GNU_1.2. We ignore these symbols,
8940 since the indirected symbol is already in the hash table. */
8941 return TRUE;
8942 }
8943
8944 /* Give the processor backend a chance to tweak the symbol value,
8945 and also to finish up anything that needs to be done for this
8946 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8947 forced local syms when non-shared is due to a historical quirk.
8948 STT_GNU_IFUNC symbol must go through PLT. */
8949 if ((h->type == STT_GNU_IFUNC
8950 && h->def_regular
8951 && !flinfo->info->relocatable)
8952 || ((h->dynindx != -1
8953 || h->forced_local)
8954 && ((flinfo->info->shared
8955 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8956 || h->root.type != bfd_link_hash_undefweak))
8957 || !h->forced_local)
8958 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8959 {
8960 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8961 (flinfo->output_bfd, flinfo->info, h, &sym)))
8962 {
8963 eoinfo->failed = TRUE;
8964 return FALSE;
8965 }
8966 }
8967
8968 /* If we are marking the symbol as undefined, and there are no
8969 non-weak references to this symbol from a regular object, then
8970 mark the symbol as weak undefined; if there are non-weak
8971 references, mark the symbol as strong. We can't do this earlier,
8972 because it might not be marked as undefined until the
8973 finish_dynamic_symbol routine gets through with it. */
8974 if (sym.st_shndx == SHN_UNDEF
8975 && h->ref_regular
8976 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8977 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8978 {
8979 int bindtype;
8980 unsigned int type = ELF_ST_TYPE (sym.st_info);
8981
8982 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8983 if (type == STT_GNU_IFUNC)
8984 type = STT_FUNC;
8985
8986 if (h->ref_regular_nonweak)
8987 bindtype = STB_GLOBAL;
8988 else
8989 bindtype = STB_WEAK;
8990 sym.st_info = ELF_ST_INFO (bindtype, type);
8991 }
8992
8993 /* If this is a symbol defined in a dynamic library, don't use the
8994 symbol size from the dynamic library. Relinking an executable
8995 against a new library may introduce gratuitous changes in the
8996 executable's symbols if we keep the size. */
8997 if (sym.st_shndx == SHN_UNDEF
8998 && !h->def_regular
8999 && h->def_dynamic)
9000 sym.st_size = 0;
9001
9002 /* If a non-weak symbol with non-default visibility is not defined
9003 locally, it is a fatal error. */
9004 if (!flinfo->info->relocatable
9005 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9006 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9007 && h->root.type == bfd_link_hash_undefined
9008 && !h->def_regular)
9009 {
9010 const char *msg;
9011
9012 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9013 msg = _("%B: protected symbol `%s' isn't defined");
9014 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9015 msg = _("%B: internal symbol `%s' isn't defined");
9016 else
9017 msg = _("%B: hidden symbol `%s' isn't defined");
9018 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9019 bfd_set_error (bfd_error_bad_value);
9020 eoinfo->failed = TRUE;
9021 return FALSE;
9022 }
9023
9024 /* If this symbol should be put in the .dynsym section, then put it
9025 there now. We already know the symbol index. We also fill in
9026 the entry in the .hash section. */
9027 if (flinfo->dynsym_sec != NULL
9028 && h->dynindx != -1
9029 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9030 {
9031 bfd_byte *esym;
9032
9033 /* Since there is no version information in the dynamic string,
9034 if there is no version info in symbol version section, we will
9035 have a run-time problem. */
9036 if (h->verinfo.verdef == NULL)
9037 {
9038 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9039
9040 if (p && p [1] != '\0')
9041 {
9042 (*_bfd_error_handler)
9043 (_("%B: No symbol version section for versioned symbol `%s'"),
9044 flinfo->output_bfd, h->root.root.string);
9045 eoinfo->failed = TRUE;
9046 return FALSE;
9047 }
9048 }
9049
9050 sym.st_name = h->dynstr_index;
9051 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9052 if (!check_dynsym (flinfo->output_bfd, &sym))
9053 {
9054 eoinfo->failed = TRUE;
9055 return FALSE;
9056 }
9057 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9058
9059 if (flinfo->hash_sec != NULL)
9060 {
9061 size_t hash_entry_size;
9062 bfd_byte *bucketpos;
9063 bfd_vma chain;
9064 size_t bucketcount;
9065 size_t bucket;
9066
9067 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9068 bucket = h->u.elf_hash_value % bucketcount;
9069
9070 hash_entry_size
9071 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9072 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9073 + (bucket + 2) * hash_entry_size);
9074 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9075 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9076 bucketpos);
9077 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9078 ((bfd_byte *) flinfo->hash_sec->contents
9079 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9080 }
9081
9082 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9083 {
9084 Elf_Internal_Versym iversym;
9085 Elf_External_Versym *eversym;
9086
9087 if (!h->def_regular)
9088 {
9089 if (h->verinfo.verdef == NULL)
9090 iversym.vs_vers = 0;
9091 else
9092 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9093 }
9094 else
9095 {
9096 if (h->verinfo.vertree == NULL)
9097 iversym.vs_vers = 1;
9098 else
9099 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9100 if (flinfo->info->create_default_symver)
9101 iversym.vs_vers++;
9102 }
9103
9104 if (h->hidden)
9105 iversym.vs_vers |= VERSYM_HIDDEN;
9106
9107 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9108 eversym += h->dynindx;
9109 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9110 }
9111 }
9112
9113 /* If we're stripping it, then it was just a dynamic symbol, and
9114 there's nothing else to do. */
9115 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9116 return TRUE;
9117
9118 indx = bfd_get_symcount (flinfo->output_bfd);
9119 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9120 if (ret == 0)
9121 {
9122 eoinfo->failed = TRUE;
9123 return FALSE;
9124 }
9125 else if (ret == 1)
9126 h->indx = indx;
9127 else if (h->indx == -2)
9128 abort();
9129
9130 return TRUE;
9131 }
9132
9133 /* Return TRUE if special handling is done for relocs in SEC against
9134 symbols defined in discarded sections. */
9135
9136 static bfd_boolean
9137 elf_section_ignore_discarded_relocs (asection *sec)
9138 {
9139 const struct elf_backend_data *bed;
9140
9141 switch (sec->sec_info_type)
9142 {
9143 case SEC_INFO_TYPE_STABS:
9144 case SEC_INFO_TYPE_EH_FRAME:
9145 return TRUE;
9146 default:
9147 break;
9148 }
9149
9150 bed = get_elf_backend_data (sec->owner);
9151 if (bed->elf_backend_ignore_discarded_relocs != NULL
9152 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9153 return TRUE;
9154
9155 return FALSE;
9156 }
9157
9158 /* Return a mask saying how ld should treat relocations in SEC against
9159 symbols defined in discarded sections. If this function returns
9160 COMPLAIN set, ld will issue a warning message. If this function
9161 returns PRETEND set, and the discarded section was link-once and the
9162 same size as the kept link-once section, ld will pretend that the
9163 symbol was actually defined in the kept section. Otherwise ld will
9164 zero the reloc (at least that is the intent, but some cooperation by
9165 the target dependent code is needed, particularly for REL targets). */
9166
9167 unsigned int
9168 _bfd_elf_default_action_discarded (asection *sec)
9169 {
9170 if (sec->flags & SEC_DEBUGGING)
9171 return PRETEND;
9172
9173 if (strcmp (".eh_frame", sec->name) == 0)
9174 return 0;
9175
9176 if (strcmp (".gcc_except_table", sec->name) == 0)
9177 return 0;
9178
9179 return COMPLAIN | PRETEND;
9180 }
9181
9182 /* Find a match between a section and a member of a section group. */
9183
9184 static asection *
9185 match_group_member (asection *sec, asection *group,
9186 struct bfd_link_info *info)
9187 {
9188 asection *first = elf_next_in_group (group);
9189 asection *s = first;
9190
9191 while (s != NULL)
9192 {
9193 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9194 return s;
9195
9196 s = elf_next_in_group (s);
9197 if (s == first)
9198 break;
9199 }
9200
9201 return NULL;
9202 }
9203
9204 /* Check if the kept section of a discarded section SEC can be used
9205 to replace it. Return the replacement if it is OK. Otherwise return
9206 NULL. */
9207
9208 asection *
9209 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9210 {
9211 asection *kept;
9212
9213 kept = sec->kept_section;
9214 if (kept != NULL)
9215 {
9216 if ((kept->flags & SEC_GROUP) != 0)
9217 kept = match_group_member (sec, kept, info);
9218 if (kept != NULL
9219 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9220 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9221 kept = NULL;
9222 sec->kept_section = kept;
9223 }
9224 return kept;
9225 }
9226
9227 /* Link an input file into the linker output file. This function
9228 handles all the sections and relocations of the input file at once.
9229 This is so that we only have to read the local symbols once, and
9230 don't have to keep them in memory. */
9231
9232 static bfd_boolean
9233 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9234 {
9235 int (*relocate_section)
9236 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9237 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9238 bfd *output_bfd;
9239 Elf_Internal_Shdr *symtab_hdr;
9240 size_t locsymcount;
9241 size_t extsymoff;
9242 Elf_Internal_Sym *isymbuf;
9243 Elf_Internal_Sym *isym;
9244 Elf_Internal_Sym *isymend;
9245 long *pindex;
9246 asection **ppsection;
9247 asection *o;
9248 const struct elf_backend_data *bed;
9249 struct elf_link_hash_entry **sym_hashes;
9250 bfd_size_type address_size;
9251 bfd_vma r_type_mask;
9252 int r_sym_shift;
9253 bfd_boolean have_file_sym = FALSE;
9254
9255 output_bfd = flinfo->output_bfd;
9256 bed = get_elf_backend_data (output_bfd);
9257 relocate_section = bed->elf_backend_relocate_section;
9258
9259 /* If this is a dynamic object, we don't want to do anything here:
9260 we don't want the local symbols, and we don't want the section
9261 contents. */
9262 if ((input_bfd->flags & DYNAMIC) != 0)
9263 return TRUE;
9264
9265 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9266 if (elf_bad_symtab (input_bfd))
9267 {
9268 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9269 extsymoff = 0;
9270 }
9271 else
9272 {
9273 locsymcount = symtab_hdr->sh_info;
9274 extsymoff = symtab_hdr->sh_info;
9275 }
9276
9277 /* Read the local symbols. */
9278 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9279 if (isymbuf == NULL && locsymcount != 0)
9280 {
9281 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9282 flinfo->internal_syms,
9283 flinfo->external_syms,
9284 flinfo->locsym_shndx);
9285 if (isymbuf == NULL)
9286 return FALSE;
9287 }
9288
9289 /* Find local symbol sections and adjust values of symbols in
9290 SEC_MERGE sections. Write out those local symbols we know are
9291 going into the output file. */
9292 isymend = isymbuf + locsymcount;
9293 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9294 isym < isymend;
9295 isym++, pindex++, ppsection++)
9296 {
9297 asection *isec;
9298 const char *name;
9299 Elf_Internal_Sym osym;
9300 long indx;
9301 int ret;
9302
9303 *pindex = -1;
9304
9305 if (elf_bad_symtab (input_bfd))
9306 {
9307 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9308 {
9309 *ppsection = NULL;
9310 continue;
9311 }
9312 }
9313
9314 if (isym->st_shndx == SHN_UNDEF)
9315 isec = bfd_und_section_ptr;
9316 else if (isym->st_shndx == SHN_ABS)
9317 isec = bfd_abs_section_ptr;
9318 else if (isym->st_shndx == SHN_COMMON)
9319 isec = bfd_com_section_ptr;
9320 else
9321 {
9322 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9323 if (isec == NULL)
9324 {
9325 /* Don't attempt to output symbols with st_shnx in the
9326 reserved range other than SHN_ABS and SHN_COMMON. */
9327 *ppsection = NULL;
9328 continue;
9329 }
9330 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9331 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9332 isym->st_value =
9333 _bfd_merged_section_offset (output_bfd, &isec,
9334 elf_section_data (isec)->sec_info,
9335 isym->st_value);
9336 }
9337
9338 *ppsection = isec;
9339
9340 /* Don't output the first, undefined, symbol. */
9341 if (ppsection == flinfo->sections)
9342 continue;
9343
9344 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9345 {
9346 /* We never output section symbols. Instead, we use the
9347 section symbol of the corresponding section in the output
9348 file. */
9349 continue;
9350 }
9351
9352 /* If we are stripping all symbols, we don't want to output this
9353 one. */
9354 if (flinfo->info->strip == strip_all)
9355 continue;
9356
9357 /* If we are discarding all local symbols, we don't want to
9358 output this one. If we are generating a relocatable output
9359 file, then some of the local symbols may be required by
9360 relocs; we output them below as we discover that they are
9361 needed. */
9362 if (flinfo->info->discard == discard_all)
9363 continue;
9364
9365 /* If this symbol is defined in a section which we are
9366 discarding, we don't need to keep it. */
9367 if (isym->st_shndx != SHN_UNDEF
9368 && isym->st_shndx < SHN_LORESERVE
9369 && bfd_section_removed_from_list (output_bfd,
9370 isec->output_section))
9371 continue;
9372
9373 /* Get the name of the symbol. */
9374 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9375 isym->st_name);
9376 if (name == NULL)
9377 return FALSE;
9378
9379 /* See if we are discarding symbols with this name. */
9380 if ((flinfo->info->strip == strip_some
9381 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9382 == NULL))
9383 || (((flinfo->info->discard == discard_sec_merge
9384 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9385 || flinfo->info->discard == discard_l)
9386 && bfd_is_local_label_name (input_bfd, name)))
9387 continue;
9388
9389 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9390 {
9391 have_file_sym = TRUE;
9392 flinfo->filesym_count += 1;
9393 }
9394 if (!have_file_sym)
9395 {
9396 /* In the absence of debug info, bfd_find_nearest_line uses
9397 FILE symbols to determine the source file for local
9398 function symbols. Provide a FILE symbol here if input
9399 files lack such, so that their symbols won't be
9400 associated with a previous input file. It's not the
9401 source file, but the best we can do. */
9402 have_file_sym = TRUE;
9403 flinfo->filesym_count += 1;
9404 memset (&osym, 0, sizeof (osym));
9405 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9406 osym.st_shndx = SHN_ABS;
9407 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9408 bfd_abs_section_ptr, NULL))
9409 return FALSE;
9410 }
9411
9412 osym = *isym;
9413
9414 /* Adjust the section index for the output file. */
9415 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9416 isec->output_section);
9417 if (osym.st_shndx == SHN_BAD)
9418 return FALSE;
9419
9420 /* ELF symbols in relocatable files are section relative, but
9421 in executable files they are virtual addresses. Note that
9422 this code assumes that all ELF sections have an associated
9423 BFD section with a reasonable value for output_offset; below
9424 we assume that they also have a reasonable value for
9425 output_section. Any special sections must be set up to meet
9426 these requirements. */
9427 osym.st_value += isec->output_offset;
9428 if (!flinfo->info->relocatable)
9429 {
9430 osym.st_value += isec->output_section->vma;
9431 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9432 {
9433 /* STT_TLS symbols are relative to PT_TLS segment base. */
9434 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9435 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9436 }
9437 }
9438
9439 indx = bfd_get_symcount (output_bfd);
9440 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9441 if (ret == 0)
9442 return FALSE;
9443 else if (ret == 1)
9444 *pindex = indx;
9445 }
9446
9447 if (bed->s->arch_size == 32)
9448 {
9449 r_type_mask = 0xff;
9450 r_sym_shift = 8;
9451 address_size = 4;
9452 }
9453 else
9454 {
9455 r_type_mask = 0xffffffff;
9456 r_sym_shift = 32;
9457 address_size = 8;
9458 }
9459
9460 /* Relocate the contents of each section. */
9461 sym_hashes = elf_sym_hashes (input_bfd);
9462 for (o = input_bfd->sections; o != NULL; o = o->next)
9463 {
9464 bfd_byte *contents;
9465
9466 if (! o->linker_mark)
9467 {
9468 /* This section was omitted from the link. */
9469 continue;
9470 }
9471
9472 if (flinfo->info->relocatable
9473 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9474 {
9475 /* Deal with the group signature symbol. */
9476 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9477 unsigned long symndx = sec_data->this_hdr.sh_info;
9478 asection *osec = o->output_section;
9479
9480 if (symndx >= locsymcount
9481 || (elf_bad_symtab (input_bfd)
9482 && flinfo->sections[symndx] == NULL))
9483 {
9484 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9485 while (h->root.type == bfd_link_hash_indirect
9486 || h->root.type == bfd_link_hash_warning)
9487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9488 /* Arrange for symbol to be output. */
9489 h->indx = -2;
9490 elf_section_data (osec)->this_hdr.sh_info = -2;
9491 }
9492 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9493 {
9494 /* We'll use the output section target_index. */
9495 asection *sec = flinfo->sections[symndx]->output_section;
9496 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9497 }
9498 else
9499 {
9500 if (flinfo->indices[symndx] == -1)
9501 {
9502 /* Otherwise output the local symbol now. */
9503 Elf_Internal_Sym sym = isymbuf[symndx];
9504 asection *sec = flinfo->sections[symndx]->output_section;
9505 const char *name;
9506 long indx;
9507 int ret;
9508
9509 name = bfd_elf_string_from_elf_section (input_bfd,
9510 symtab_hdr->sh_link,
9511 sym.st_name);
9512 if (name == NULL)
9513 return FALSE;
9514
9515 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9516 sec);
9517 if (sym.st_shndx == SHN_BAD)
9518 return FALSE;
9519
9520 sym.st_value += o->output_offset;
9521
9522 indx = bfd_get_symcount (output_bfd);
9523 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9524 if (ret == 0)
9525 return FALSE;
9526 else if (ret == 1)
9527 flinfo->indices[symndx] = indx;
9528 else
9529 abort ();
9530 }
9531 elf_section_data (osec)->this_hdr.sh_info
9532 = flinfo->indices[symndx];
9533 }
9534 }
9535
9536 if ((o->flags & SEC_HAS_CONTENTS) == 0
9537 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9538 continue;
9539
9540 if ((o->flags & SEC_LINKER_CREATED) != 0)
9541 {
9542 /* Section was created by _bfd_elf_link_create_dynamic_sections
9543 or somesuch. */
9544 continue;
9545 }
9546
9547 /* Get the contents of the section. They have been cached by a
9548 relaxation routine. Note that o is a section in an input
9549 file, so the contents field will not have been set by any of
9550 the routines which work on output files. */
9551 if (elf_section_data (o)->this_hdr.contents != NULL)
9552 {
9553 contents = elf_section_data (o)->this_hdr.contents;
9554 if (bed->caches_rawsize
9555 && o->rawsize != 0
9556 && o->rawsize < o->size)
9557 {
9558 memcpy (flinfo->contents, contents, o->rawsize);
9559 contents = flinfo->contents;
9560 }
9561 }
9562 else
9563 {
9564 contents = flinfo->contents;
9565 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9566 return FALSE;
9567 }
9568
9569 if ((o->flags & SEC_RELOC) != 0)
9570 {
9571 Elf_Internal_Rela *internal_relocs;
9572 Elf_Internal_Rela *rel, *relend;
9573 int action_discarded;
9574 int ret;
9575
9576 /* Get the swapped relocs. */
9577 internal_relocs
9578 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9579 flinfo->internal_relocs, FALSE);
9580 if (internal_relocs == NULL
9581 && o->reloc_count > 0)
9582 return FALSE;
9583
9584 /* We need to reverse-copy input .ctors/.dtors sections if
9585 they are placed in .init_array/.finit_array for output. */
9586 if (o->size > address_size
9587 && ((strncmp (o->name, ".ctors", 6) == 0
9588 && strcmp (o->output_section->name,
9589 ".init_array") == 0)
9590 || (strncmp (o->name, ".dtors", 6) == 0
9591 && strcmp (o->output_section->name,
9592 ".fini_array") == 0))
9593 && (o->name[6] == 0 || o->name[6] == '.'))
9594 {
9595 if (o->size != o->reloc_count * address_size)
9596 {
9597 (*_bfd_error_handler)
9598 (_("error: %B: size of section %A is not "
9599 "multiple of address size"),
9600 input_bfd, o);
9601 bfd_set_error (bfd_error_on_input);
9602 return FALSE;
9603 }
9604 o->flags |= SEC_ELF_REVERSE_COPY;
9605 }
9606
9607 action_discarded = -1;
9608 if (!elf_section_ignore_discarded_relocs (o))
9609 action_discarded = (*bed->action_discarded) (o);
9610
9611 /* Run through the relocs evaluating complex reloc symbols and
9612 looking for relocs against symbols from discarded sections
9613 or section symbols from removed link-once sections.
9614 Complain about relocs against discarded sections. Zero
9615 relocs against removed link-once sections. */
9616
9617 rel = internal_relocs;
9618 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9619 for ( ; rel < relend; rel++)
9620 {
9621 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9622 unsigned int s_type;
9623 asection **ps, *sec;
9624 struct elf_link_hash_entry *h = NULL;
9625 const char *sym_name;
9626
9627 if (r_symndx == STN_UNDEF)
9628 continue;
9629
9630 if (r_symndx >= locsymcount
9631 || (elf_bad_symtab (input_bfd)
9632 && flinfo->sections[r_symndx] == NULL))
9633 {
9634 h = sym_hashes[r_symndx - extsymoff];
9635
9636 /* Badly formatted input files can contain relocs that
9637 reference non-existant symbols. Check here so that
9638 we do not seg fault. */
9639 if (h == NULL)
9640 {
9641 char buffer [32];
9642
9643 sprintf_vma (buffer, rel->r_info);
9644 (*_bfd_error_handler)
9645 (_("error: %B contains a reloc (0x%s) for section %A "
9646 "that references a non-existent global symbol"),
9647 input_bfd, o, buffer);
9648 bfd_set_error (bfd_error_bad_value);
9649 return FALSE;
9650 }
9651
9652 while (h->root.type == bfd_link_hash_indirect
9653 || h->root.type == bfd_link_hash_warning)
9654 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9655
9656 s_type = h->type;
9657
9658 ps = NULL;
9659 if (h->root.type == bfd_link_hash_defined
9660 || h->root.type == bfd_link_hash_defweak)
9661 ps = &h->root.u.def.section;
9662
9663 sym_name = h->root.root.string;
9664 }
9665 else
9666 {
9667 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9668
9669 s_type = ELF_ST_TYPE (sym->st_info);
9670 ps = &flinfo->sections[r_symndx];
9671 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9672 sym, *ps);
9673 }
9674
9675 if ((s_type == STT_RELC || s_type == STT_SRELC)
9676 && !flinfo->info->relocatable)
9677 {
9678 bfd_vma val;
9679 bfd_vma dot = (rel->r_offset
9680 + o->output_offset + o->output_section->vma);
9681 #ifdef DEBUG
9682 printf ("Encountered a complex symbol!");
9683 printf (" (input_bfd %s, section %s, reloc %ld\n",
9684 input_bfd->filename, o->name,
9685 (long) (rel - internal_relocs));
9686 printf (" symbol: idx %8.8lx, name %s\n",
9687 r_symndx, sym_name);
9688 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9689 (unsigned long) rel->r_info,
9690 (unsigned long) rel->r_offset);
9691 #endif
9692 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9693 isymbuf, locsymcount, s_type == STT_SRELC))
9694 return FALSE;
9695
9696 /* Symbol evaluated OK. Update to absolute value. */
9697 set_symbol_value (input_bfd, isymbuf, locsymcount,
9698 r_symndx, val);
9699 continue;
9700 }
9701
9702 if (action_discarded != -1 && ps != NULL)
9703 {
9704 /* Complain if the definition comes from a
9705 discarded section. */
9706 if ((sec = *ps) != NULL && discarded_section (sec))
9707 {
9708 BFD_ASSERT (r_symndx != STN_UNDEF);
9709 if (action_discarded & COMPLAIN)
9710 (*flinfo->info->callbacks->einfo)
9711 (_("%X`%s' referenced in section `%A' of %B: "
9712 "defined in discarded section `%A' of %B\n"),
9713 sym_name, o, input_bfd, sec, sec->owner);
9714
9715 /* Try to do the best we can to support buggy old
9716 versions of gcc. Pretend that the symbol is
9717 really defined in the kept linkonce section.
9718 FIXME: This is quite broken. Modifying the
9719 symbol here means we will be changing all later
9720 uses of the symbol, not just in this section. */
9721 if (action_discarded & PRETEND)
9722 {
9723 asection *kept;
9724
9725 kept = _bfd_elf_check_kept_section (sec,
9726 flinfo->info);
9727 if (kept != NULL)
9728 {
9729 *ps = kept;
9730 continue;
9731 }
9732 }
9733 }
9734 }
9735 }
9736
9737 /* Relocate the section by invoking a back end routine.
9738
9739 The back end routine is responsible for adjusting the
9740 section contents as necessary, and (if using Rela relocs
9741 and generating a relocatable output file) adjusting the
9742 reloc addend as necessary.
9743
9744 The back end routine does not have to worry about setting
9745 the reloc address or the reloc symbol index.
9746
9747 The back end routine is given a pointer to the swapped in
9748 internal symbols, and can access the hash table entries
9749 for the external symbols via elf_sym_hashes (input_bfd).
9750
9751 When generating relocatable output, the back end routine
9752 must handle STB_LOCAL/STT_SECTION symbols specially. The
9753 output symbol is going to be a section symbol
9754 corresponding to the output section, which will require
9755 the addend to be adjusted. */
9756
9757 ret = (*relocate_section) (output_bfd, flinfo->info,
9758 input_bfd, o, contents,
9759 internal_relocs,
9760 isymbuf,
9761 flinfo->sections);
9762 if (!ret)
9763 return FALSE;
9764
9765 if (ret == 2
9766 || flinfo->info->relocatable
9767 || flinfo->info->emitrelocations)
9768 {
9769 Elf_Internal_Rela *irela;
9770 Elf_Internal_Rela *irelaend, *irelamid;
9771 bfd_vma last_offset;
9772 struct elf_link_hash_entry **rel_hash;
9773 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9774 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9775 unsigned int next_erel;
9776 bfd_boolean rela_normal;
9777 struct bfd_elf_section_data *esdi, *esdo;
9778
9779 esdi = elf_section_data (o);
9780 esdo = elf_section_data (o->output_section);
9781 rela_normal = FALSE;
9782
9783 /* Adjust the reloc addresses and symbol indices. */
9784
9785 irela = internal_relocs;
9786 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9787 rel_hash = esdo->rel.hashes + esdo->rel.count;
9788 /* We start processing the REL relocs, if any. When we reach
9789 IRELAMID in the loop, we switch to the RELA relocs. */
9790 irelamid = irela;
9791 if (esdi->rel.hdr != NULL)
9792 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9793 * bed->s->int_rels_per_ext_rel);
9794 rel_hash_list = rel_hash;
9795 rela_hash_list = NULL;
9796 last_offset = o->output_offset;
9797 if (!flinfo->info->relocatable)
9798 last_offset += o->output_section->vma;
9799 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9800 {
9801 unsigned long r_symndx;
9802 asection *sec;
9803 Elf_Internal_Sym sym;
9804
9805 if (next_erel == bed->s->int_rels_per_ext_rel)
9806 {
9807 rel_hash++;
9808 next_erel = 0;
9809 }
9810
9811 if (irela == irelamid)
9812 {
9813 rel_hash = esdo->rela.hashes + esdo->rela.count;
9814 rela_hash_list = rel_hash;
9815 rela_normal = bed->rela_normal;
9816 }
9817
9818 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9819 flinfo->info, o,
9820 irela->r_offset);
9821 if (irela->r_offset >= (bfd_vma) -2)
9822 {
9823 /* This is a reloc for a deleted entry or somesuch.
9824 Turn it into an R_*_NONE reloc, at the same
9825 offset as the last reloc. elf_eh_frame.c and
9826 bfd_elf_discard_info rely on reloc offsets
9827 being ordered. */
9828 irela->r_offset = last_offset;
9829 irela->r_info = 0;
9830 irela->r_addend = 0;
9831 continue;
9832 }
9833
9834 irela->r_offset += o->output_offset;
9835
9836 /* Relocs in an executable have to be virtual addresses. */
9837 if (!flinfo->info->relocatable)
9838 irela->r_offset += o->output_section->vma;
9839
9840 last_offset = irela->r_offset;
9841
9842 r_symndx = irela->r_info >> r_sym_shift;
9843 if (r_symndx == STN_UNDEF)
9844 continue;
9845
9846 if (r_symndx >= locsymcount
9847 || (elf_bad_symtab (input_bfd)
9848 && flinfo->sections[r_symndx] == NULL))
9849 {
9850 struct elf_link_hash_entry *rh;
9851 unsigned long indx;
9852
9853 /* This is a reloc against a global symbol. We
9854 have not yet output all the local symbols, so
9855 we do not know the symbol index of any global
9856 symbol. We set the rel_hash entry for this
9857 reloc to point to the global hash table entry
9858 for this symbol. The symbol index is then
9859 set at the end of bfd_elf_final_link. */
9860 indx = r_symndx - extsymoff;
9861 rh = elf_sym_hashes (input_bfd)[indx];
9862 while (rh->root.type == bfd_link_hash_indirect
9863 || rh->root.type == bfd_link_hash_warning)
9864 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9865
9866 /* Setting the index to -2 tells
9867 elf_link_output_extsym that this symbol is
9868 used by a reloc. */
9869 BFD_ASSERT (rh->indx < 0);
9870 rh->indx = -2;
9871
9872 *rel_hash = rh;
9873
9874 continue;
9875 }
9876
9877 /* This is a reloc against a local symbol. */
9878
9879 *rel_hash = NULL;
9880 sym = isymbuf[r_symndx];
9881 sec = flinfo->sections[r_symndx];
9882 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9883 {
9884 /* I suppose the backend ought to fill in the
9885 section of any STT_SECTION symbol against a
9886 processor specific section. */
9887 r_symndx = STN_UNDEF;
9888 if (bfd_is_abs_section (sec))
9889 ;
9890 else if (sec == NULL || sec->owner == NULL)
9891 {
9892 bfd_set_error (bfd_error_bad_value);
9893 return FALSE;
9894 }
9895 else
9896 {
9897 asection *osec = sec->output_section;
9898
9899 /* If we have discarded a section, the output
9900 section will be the absolute section. In
9901 case of discarded SEC_MERGE sections, use
9902 the kept section. relocate_section should
9903 have already handled discarded linkonce
9904 sections. */
9905 if (bfd_is_abs_section (osec)
9906 && sec->kept_section != NULL
9907 && sec->kept_section->output_section != NULL)
9908 {
9909 osec = sec->kept_section->output_section;
9910 irela->r_addend -= osec->vma;
9911 }
9912
9913 if (!bfd_is_abs_section (osec))
9914 {
9915 r_symndx = osec->target_index;
9916 if (r_symndx == STN_UNDEF)
9917 {
9918 irela->r_addend += osec->vma;
9919 osec = _bfd_nearby_section (output_bfd, osec,
9920 osec->vma);
9921 irela->r_addend -= osec->vma;
9922 r_symndx = osec->target_index;
9923 }
9924 }
9925 }
9926
9927 /* Adjust the addend according to where the
9928 section winds up in the output section. */
9929 if (rela_normal)
9930 irela->r_addend += sec->output_offset;
9931 }
9932 else
9933 {
9934 if (flinfo->indices[r_symndx] == -1)
9935 {
9936 unsigned long shlink;
9937 const char *name;
9938 asection *osec;
9939 long indx;
9940
9941 if (flinfo->info->strip == strip_all)
9942 {
9943 /* You can't do ld -r -s. */
9944 bfd_set_error (bfd_error_invalid_operation);
9945 return FALSE;
9946 }
9947
9948 /* This symbol was skipped earlier, but
9949 since it is needed by a reloc, we
9950 must output it now. */
9951 shlink = symtab_hdr->sh_link;
9952 name = (bfd_elf_string_from_elf_section
9953 (input_bfd, shlink, sym.st_name));
9954 if (name == NULL)
9955 return FALSE;
9956
9957 osec = sec->output_section;
9958 sym.st_shndx =
9959 _bfd_elf_section_from_bfd_section (output_bfd,
9960 osec);
9961 if (sym.st_shndx == SHN_BAD)
9962 return FALSE;
9963
9964 sym.st_value += sec->output_offset;
9965 if (!flinfo->info->relocatable)
9966 {
9967 sym.st_value += osec->vma;
9968 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9969 {
9970 /* STT_TLS symbols are relative to PT_TLS
9971 segment base. */
9972 BFD_ASSERT (elf_hash_table (flinfo->info)
9973 ->tls_sec != NULL);
9974 sym.st_value -= (elf_hash_table (flinfo->info)
9975 ->tls_sec->vma);
9976 }
9977 }
9978
9979 indx = bfd_get_symcount (output_bfd);
9980 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9981 NULL);
9982 if (ret == 0)
9983 return FALSE;
9984 else if (ret == 1)
9985 flinfo->indices[r_symndx] = indx;
9986 else
9987 abort ();
9988 }
9989
9990 r_symndx = flinfo->indices[r_symndx];
9991 }
9992
9993 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9994 | (irela->r_info & r_type_mask));
9995 }
9996
9997 /* Swap out the relocs. */
9998 input_rel_hdr = esdi->rel.hdr;
9999 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10000 {
10001 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10002 input_rel_hdr,
10003 internal_relocs,
10004 rel_hash_list))
10005 return FALSE;
10006 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10007 * bed->s->int_rels_per_ext_rel);
10008 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10009 }
10010
10011 input_rela_hdr = esdi->rela.hdr;
10012 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10013 {
10014 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10015 input_rela_hdr,
10016 internal_relocs,
10017 rela_hash_list))
10018 return FALSE;
10019 }
10020 }
10021 }
10022
10023 /* Write out the modified section contents. */
10024 if (bed->elf_backend_write_section
10025 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10026 contents))
10027 {
10028 /* Section written out. */
10029 }
10030 else switch (o->sec_info_type)
10031 {
10032 case SEC_INFO_TYPE_STABS:
10033 if (! (_bfd_write_section_stabs
10034 (output_bfd,
10035 &elf_hash_table (flinfo->info)->stab_info,
10036 o, &elf_section_data (o)->sec_info, contents)))
10037 return FALSE;
10038 break;
10039 case SEC_INFO_TYPE_MERGE:
10040 if (! _bfd_write_merged_section (output_bfd, o,
10041 elf_section_data (o)->sec_info))
10042 return FALSE;
10043 break;
10044 case SEC_INFO_TYPE_EH_FRAME:
10045 {
10046 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10047 o, contents))
10048 return FALSE;
10049 }
10050 break;
10051 default:
10052 {
10053 /* FIXME: octets_per_byte. */
10054 if (! (o->flags & SEC_EXCLUDE))
10055 {
10056 file_ptr offset = (file_ptr) o->output_offset;
10057 bfd_size_type todo = o->size;
10058 if ((o->flags & SEC_ELF_REVERSE_COPY))
10059 {
10060 /* Reverse-copy input section to output. */
10061 do
10062 {
10063 todo -= address_size;
10064 if (! bfd_set_section_contents (output_bfd,
10065 o->output_section,
10066 contents + todo,
10067 offset,
10068 address_size))
10069 return FALSE;
10070 if (todo == 0)
10071 break;
10072 offset += address_size;
10073 }
10074 while (1);
10075 }
10076 else if (! bfd_set_section_contents (output_bfd,
10077 o->output_section,
10078 contents,
10079 offset, todo))
10080 return FALSE;
10081 }
10082 }
10083 break;
10084 }
10085 }
10086
10087 return TRUE;
10088 }
10089
10090 /* Generate a reloc when linking an ELF file. This is a reloc
10091 requested by the linker, and does not come from any input file. This
10092 is used to build constructor and destructor tables when linking
10093 with -Ur. */
10094
10095 static bfd_boolean
10096 elf_reloc_link_order (bfd *output_bfd,
10097 struct bfd_link_info *info,
10098 asection *output_section,
10099 struct bfd_link_order *link_order)
10100 {
10101 reloc_howto_type *howto;
10102 long indx;
10103 bfd_vma offset;
10104 bfd_vma addend;
10105 struct bfd_elf_section_reloc_data *reldata;
10106 struct elf_link_hash_entry **rel_hash_ptr;
10107 Elf_Internal_Shdr *rel_hdr;
10108 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10109 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10110 bfd_byte *erel;
10111 unsigned int i;
10112 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10113
10114 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10115 if (howto == NULL)
10116 {
10117 bfd_set_error (bfd_error_bad_value);
10118 return FALSE;
10119 }
10120
10121 addend = link_order->u.reloc.p->addend;
10122
10123 if (esdo->rel.hdr)
10124 reldata = &esdo->rel;
10125 else if (esdo->rela.hdr)
10126 reldata = &esdo->rela;
10127 else
10128 {
10129 reldata = NULL;
10130 BFD_ASSERT (0);
10131 }
10132
10133 /* Figure out the symbol index. */
10134 rel_hash_ptr = reldata->hashes + reldata->count;
10135 if (link_order->type == bfd_section_reloc_link_order)
10136 {
10137 indx = link_order->u.reloc.p->u.section->target_index;
10138 BFD_ASSERT (indx != 0);
10139 *rel_hash_ptr = NULL;
10140 }
10141 else
10142 {
10143 struct elf_link_hash_entry *h;
10144
10145 /* Treat a reloc against a defined symbol as though it were
10146 actually against the section. */
10147 h = ((struct elf_link_hash_entry *)
10148 bfd_wrapped_link_hash_lookup (output_bfd, info,
10149 link_order->u.reloc.p->u.name,
10150 FALSE, FALSE, TRUE));
10151 if (h != NULL
10152 && (h->root.type == bfd_link_hash_defined
10153 || h->root.type == bfd_link_hash_defweak))
10154 {
10155 asection *section;
10156
10157 section = h->root.u.def.section;
10158 indx = section->output_section->target_index;
10159 *rel_hash_ptr = NULL;
10160 /* It seems that we ought to add the symbol value to the
10161 addend here, but in practice it has already been added
10162 because it was passed to constructor_callback. */
10163 addend += section->output_section->vma + section->output_offset;
10164 }
10165 else if (h != NULL)
10166 {
10167 /* Setting the index to -2 tells elf_link_output_extsym that
10168 this symbol is used by a reloc. */
10169 h->indx = -2;
10170 *rel_hash_ptr = h;
10171 indx = 0;
10172 }
10173 else
10174 {
10175 if (! ((*info->callbacks->unattached_reloc)
10176 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10177 return FALSE;
10178 indx = 0;
10179 }
10180 }
10181
10182 /* If this is an inplace reloc, we must write the addend into the
10183 object file. */
10184 if (howto->partial_inplace && addend != 0)
10185 {
10186 bfd_size_type size;
10187 bfd_reloc_status_type rstat;
10188 bfd_byte *buf;
10189 bfd_boolean ok;
10190 const char *sym_name;
10191
10192 size = (bfd_size_type) bfd_get_reloc_size (howto);
10193 buf = (bfd_byte *) bfd_zmalloc (size);
10194 if (buf == NULL)
10195 return FALSE;
10196 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10197 switch (rstat)
10198 {
10199 case bfd_reloc_ok:
10200 break;
10201
10202 default:
10203 case bfd_reloc_outofrange:
10204 abort ();
10205
10206 case bfd_reloc_overflow:
10207 if (link_order->type == bfd_section_reloc_link_order)
10208 sym_name = bfd_section_name (output_bfd,
10209 link_order->u.reloc.p->u.section);
10210 else
10211 sym_name = link_order->u.reloc.p->u.name;
10212 if (! ((*info->callbacks->reloc_overflow)
10213 (info, NULL, sym_name, howto->name, addend, NULL,
10214 NULL, (bfd_vma) 0)))
10215 {
10216 free (buf);
10217 return FALSE;
10218 }
10219 break;
10220 }
10221 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10222 link_order->offset, size);
10223 free (buf);
10224 if (! ok)
10225 return FALSE;
10226 }
10227
10228 /* The address of a reloc is relative to the section in a
10229 relocatable file, and is a virtual address in an executable
10230 file. */
10231 offset = link_order->offset;
10232 if (! info->relocatable)
10233 offset += output_section->vma;
10234
10235 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10236 {
10237 irel[i].r_offset = offset;
10238 irel[i].r_info = 0;
10239 irel[i].r_addend = 0;
10240 }
10241 if (bed->s->arch_size == 32)
10242 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10243 else
10244 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10245
10246 rel_hdr = reldata->hdr;
10247 erel = rel_hdr->contents;
10248 if (rel_hdr->sh_type == SHT_REL)
10249 {
10250 erel += reldata->count * bed->s->sizeof_rel;
10251 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10252 }
10253 else
10254 {
10255 irel[0].r_addend = addend;
10256 erel += reldata->count * bed->s->sizeof_rela;
10257 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10258 }
10259
10260 ++reldata->count;
10261
10262 return TRUE;
10263 }
10264
10265
10266 /* Get the output vma of the section pointed to by the sh_link field. */
10267
10268 static bfd_vma
10269 elf_get_linked_section_vma (struct bfd_link_order *p)
10270 {
10271 Elf_Internal_Shdr **elf_shdrp;
10272 asection *s;
10273 int elfsec;
10274
10275 s = p->u.indirect.section;
10276 elf_shdrp = elf_elfsections (s->owner);
10277 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10278 elfsec = elf_shdrp[elfsec]->sh_link;
10279 /* PR 290:
10280 The Intel C compiler generates SHT_IA_64_UNWIND with
10281 SHF_LINK_ORDER. But it doesn't set the sh_link or
10282 sh_info fields. Hence we could get the situation
10283 where elfsec is 0. */
10284 if (elfsec == 0)
10285 {
10286 const struct elf_backend_data *bed
10287 = get_elf_backend_data (s->owner);
10288 if (bed->link_order_error_handler)
10289 bed->link_order_error_handler
10290 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10291 return 0;
10292 }
10293 else
10294 {
10295 s = elf_shdrp[elfsec]->bfd_section;
10296 return s->output_section->vma + s->output_offset;
10297 }
10298 }
10299
10300
10301 /* Compare two sections based on the locations of the sections they are
10302 linked to. Used by elf_fixup_link_order. */
10303
10304 static int
10305 compare_link_order (const void * a, const void * b)
10306 {
10307 bfd_vma apos;
10308 bfd_vma bpos;
10309
10310 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10311 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10312 if (apos < bpos)
10313 return -1;
10314 return apos > bpos;
10315 }
10316
10317
10318 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10319 order as their linked sections. Returns false if this could not be done
10320 because an output section includes both ordered and unordered
10321 sections. Ideally we'd do this in the linker proper. */
10322
10323 static bfd_boolean
10324 elf_fixup_link_order (bfd *abfd, asection *o)
10325 {
10326 int seen_linkorder;
10327 int seen_other;
10328 int n;
10329 struct bfd_link_order *p;
10330 bfd *sub;
10331 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10332 unsigned elfsec;
10333 struct bfd_link_order **sections;
10334 asection *s, *other_sec, *linkorder_sec;
10335 bfd_vma offset;
10336
10337 other_sec = NULL;
10338 linkorder_sec = NULL;
10339 seen_other = 0;
10340 seen_linkorder = 0;
10341 for (p = o->map_head.link_order; p != NULL; p = p->next)
10342 {
10343 if (p->type == bfd_indirect_link_order)
10344 {
10345 s = p->u.indirect.section;
10346 sub = s->owner;
10347 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10348 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10349 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10350 && elfsec < elf_numsections (sub)
10351 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10352 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10353 {
10354 seen_linkorder++;
10355 linkorder_sec = s;
10356 }
10357 else
10358 {
10359 seen_other++;
10360 other_sec = s;
10361 }
10362 }
10363 else
10364 seen_other++;
10365
10366 if (seen_other && seen_linkorder)
10367 {
10368 if (other_sec && linkorder_sec)
10369 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10370 o, linkorder_sec,
10371 linkorder_sec->owner, other_sec,
10372 other_sec->owner);
10373 else
10374 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10375 o);
10376 bfd_set_error (bfd_error_bad_value);
10377 return FALSE;
10378 }
10379 }
10380
10381 if (!seen_linkorder)
10382 return TRUE;
10383
10384 sections = (struct bfd_link_order **)
10385 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10386 if (sections == NULL)
10387 return FALSE;
10388 seen_linkorder = 0;
10389
10390 for (p = o->map_head.link_order; p != NULL; p = p->next)
10391 {
10392 sections[seen_linkorder++] = p;
10393 }
10394 /* Sort the input sections in the order of their linked section. */
10395 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10396 compare_link_order);
10397
10398 /* Change the offsets of the sections. */
10399 offset = 0;
10400 for (n = 0; n < seen_linkorder; n++)
10401 {
10402 s = sections[n]->u.indirect.section;
10403 offset &= ~(bfd_vma) 0 << s->alignment_power;
10404 s->output_offset = offset;
10405 sections[n]->offset = offset;
10406 /* FIXME: octets_per_byte. */
10407 offset += sections[n]->size;
10408 }
10409
10410 free (sections);
10411 return TRUE;
10412 }
10413
10414 static void
10415 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10416 {
10417 asection *o;
10418
10419 if (flinfo->symstrtab != NULL)
10420 _bfd_stringtab_free (flinfo->symstrtab);
10421 if (flinfo->contents != NULL)
10422 free (flinfo->contents);
10423 if (flinfo->external_relocs != NULL)
10424 free (flinfo->external_relocs);
10425 if (flinfo->internal_relocs != NULL)
10426 free (flinfo->internal_relocs);
10427 if (flinfo->external_syms != NULL)
10428 free (flinfo->external_syms);
10429 if (flinfo->locsym_shndx != NULL)
10430 free (flinfo->locsym_shndx);
10431 if (flinfo->internal_syms != NULL)
10432 free (flinfo->internal_syms);
10433 if (flinfo->indices != NULL)
10434 free (flinfo->indices);
10435 if (flinfo->sections != NULL)
10436 free (flinfo->sections);
10437 if (flinfo->symbuf != NULL)
10438 free (flinfo->symbuf);
10439 if (flinfo->symshndxbuf != NULL)
10440 free (flinfo->symshndxbuf);
10441 for (o = obfd->sections; o != NULL; o = o->next)
10442 {
10443 struct bfd_elf_section_data *esdo = elf_section_data (o);
10444 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10445 free (esdo->rel.hashes);
10446 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10447 free (esdo->rela.hashes);
10448 }
10449 }
10450
10451 /* Do the final step of an ELF link. */
10452
10453 bfd_boolean
10454 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10455 {
10456 bfd_boolean dynamic;
10457 bfd_boolean emit_relocs;
10458 bfd *dynobj;
10459 struct elf_final_link_info flinfo;
10460 asection *o;
10461 struct bfd_link_order *p;
10462 bfd *sub;
10463 bfd_size_type max_contents_size;
10464 bfd_size_type max_external_reloc_size;
10465 bfd_size_type max_internal_reloc_count;
10466 bfd_size_type max_sym_count;
10467 bfd_size_type max_sym_shndx_count;
10468 file_ptr off;
10469 Elf_Internal_Sym elfsym;
10470 unsigned int i;
10471 Elf_Internal_Shdr *symtab_hdr;
10472 Elf_Internal_Shdr *symtab_shndx_hdr;
10473 Elf_Internal_Shdr *symstrtab_hdr;
10474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10475 struct elf_outext_info eoinfo;
10476 bfd_boolean merged;
10477 size_t relativecount = 0;
10478 asection *reldyn = 0;
10479 bfd_size_type amt;
10480 asection *attr_section = NULL;
10481 bfd_vma attr_size = 0;
10482 const char *std_attrs_section;
10483
10484 if (! is_elf_hash_table (info->hash))
10485 return FALSE;
10486
10487 if (info->shared)
10488 abfd->flags |= DYNAMIC;
10489
10490 dynamic = elf_hash_table (info)->dynamic_sections_created;
10491 dynobj = elf_hash_table (info)->dynobj;
10492
10493 emit_relocs = (info->relocatable
10494 || info->emitrelocations);
10495
10496 flinfo.info = info;
10497 flinfo.output_bfd = abfd;
10498 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10499 if (flinfo.symstrtab == NULL)
10500 return FALSE;
10501
10502 if (! dynamic)
10503 {
10504 flinfo.dynsym_sec = NULL;
10505 flinfo.hash_sec = NULL;
10506 flinfo.symver_sec = NULL;
10507 }
10508 else
10509 {
10510 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10511 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10512 /* Note that dynsym_sec can be NULL (on VMS). */
10513 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10514 /* Note that it is OK if symver_sec is NULL. */
10515 }
10516
10517 flinfo.contents = NULL;
10518 flinfo.external_relocs = NULL;
10519 flinfo.internal_relocs = NULL;
10520 flinfo.external_syms = NULL;
10521 flinfo.locsym_shndx = NULL;
10522 flinfo.internal_syms = NULL;
10523 flinfo.indices = NULL;
10524 flinfo.sections = NULL;
10525 flinfo.symbuf = NULL;
10526 flinfo.symshndxbuf = NULL;
10527 flinfo.symbuf_count = 0;
10528 flinfo.shndxbuf_size = 0;
10529 flinfo.filesym_count = 0;
10530
10531 /* The object attributes have been merged. Remove the input
10532 sections from the link, and set the contents of the output
10533 secton. */
10534 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10535 for (o = abfd->sections; o != NULL; o = o->next)
10536 {
10537 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10538 || strcmp (o->name, ".gnu.attributes") == 0)
10539 {
10540 for (p = o->map_head.link_order; p != NULL; p = p->next)
10541 {
10542 asection *input_section;
10543
10544 if (p->type != bfd_indirect_link_order)
10545 continue;
10546 input_section = p->u.indirect.section;
10547 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10548 elf_link_input_bfd ignores this section. */
10549 input_section->flags &= ~SEC_HAS_CONTENTS;
10550 }
10551
10552 attr_size = bfd_elf_obj_attr_size (abfd);
10553 if (attr_size)
10554 {
10555 bfd_set_section_size (abfd, o, attr_size);
10556 attr_section = o;
10557 /* Skip this section later on. */
10558 o->map_head.link_order = NULL;
10559 }
10560 else
10561 o->flags |= SEC_EXCLUDE;
10562 }
10563 }
10564
10565 /* Count up the number of relocations we will output for each output
10566 section, so that we know the sizes of the reloc sections. We
10567 also figure out some maximum sizes. */
10568 max_contents_size = 0;
10569 max_external_reloc_size = 0;
10570 max_internal_reloc_count = 0;
10571 max_sym_count = 0;
10572 max_sym_shndx_count = 0;
10573 merged = FALSE;
10574 for (o = abfd->sections; o != NULL; o = o->next)
10575 {
10576 struct bfd_elf_section_data *esdo = elf_section_data (o);
10577 o->reloc_count = 0;
10578
10579 for (p = o->map_head.link_order; p != NULL; p = p->next)
10580 {
10581 unsigned int reloc_count = 0;
10582 struct bfd_elf_section_data *esdi = NULL;
10583
10584 if (p->type == bfd_section_reloc_link_order
10585 || p->type == bfd_symbol_reloc_link_order)
10586 reloc_count = 1;
10587 else if (p->type == bfd_indirect_link_order)
10588 {
10589 asection *sec;
10590
10591 sec = p->u.indirect.section;
10592 esdi = elf_section_data (sec);
10593
10594 /* Mark all sections which are to be included in the
10595 link. This will normally be every section. We need
10596 to do this so that we can identify any sections which
10597 the linker has decided to not include. */
10598 sec->linker_mark = TRUE;
10599
10600 if (sec->flags & SEC_MERGE)
10601 merged = TRUE;
10602
10603 if (esdo->this_hdr.sh_type == SHT_REL
10604 || esdo->this_hdr.sh_type == SHT_RELA)
10605 /* Some backends use reloc_count in relocation sections
10606 to count particular types of relocs. Of course,
10607 reloc sections themselves can't have relocations. */
10608 reloc_count = 0;
10609 else if (info->relocatable || info->emitrelocations)
10610 reloc_count = sec->reloc_count;
10611 else if (bed->elf_backend_count_relocs)
10612 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10613
10614 if (sec->rawsize > max_contents_size)
10615 max_contents_size = sec->rawsize;
10616 if (sec->size > max_contents_size)
10617 max_contents_size = sec->size;
10618
10619 /* We are interested in just local symbols, not all
10620 symbols. */
10621 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10622 && (sec->owner->flags & DYNAMIC) == 0)
10623 {
10624 size_t sym_count;
10625
10626 if (elf_bad_symtab (sec->owner))
10627 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10628 / bed->s->sizeof_sym);
10629 else
10630 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10631
10632 if (sym_count > max_sym_count)
10633 max_sym_count = sym_count;
10634
10635 if (sym_count > max_sym_shndx_count
10636 && elf_symtab_shndx (sec->owner) != 0)
10637 max_sym_shndx_count = sym_count;
10638
10639 if ((sec->flags & SEC_RELOC) != 0)
10640 {
10641 size_t ext_size = 0;
10642
10643 if (esdi->rel.hdr != NULL)
10644 ext_size = esdi->rel.hdr->sh_size;
10645 if (esdi->rela.hdr != NULL)
10646 ext_size += esdi->rela.hdr->sh_size;
10647
10648 if (ext_size > max_external_reloc_size)
10649 max_external_reloc_size = ext_size;
10650 if (sec->reloc_count > max_internal_reloc_count)
10651 max_internal_reloc_count = sec->reloc_count;
10652 }
10653 }
10654 }
10655
10656 if (reloc_count == 0)
10657 continue;
10658
10659 o->reloc_count += reloc_count;
10660
10661 if (p->type == bfd_indirect_link_order
10662 && (info->relocatable || info->emitrelocations))
10663 {
10664 if (esdi->rel.hdr)
10665 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10666 if (esdi->rela.hdr)
10667 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10668 }
10669 else
10670 {
10671 if (o->use_rela_p)
10672 esdo->rela.count += reloc_count;
10673 else
10674 esdo->rel.count += reloc_count;
10675 }
10676 }
10677
10678 if (o->reloc_count > 0)
10679 o->flags |= SEC_RELOC;
10680 else
10681 {
10682 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10683 set it (this is probably a bug) and if it is set
10684 assign_section_numbers will create a reloc section. */
10685 o->flags &=~ SEC_RELOC;
10686 }
10687
10688 /* If the SEC_ALLOC flag is not set, force the section VMA to
10689 zero. This is done in elf_fake_sections as well, but forcing
10690 the VMA to 0 here will ensure that relocs against these
10691 sections are handled correctly. */
10692 if ((o->flags & SEC_ALLOC) == 0
10693 && ! o->user_set_vma)
10694 o->vma = 0;
10695 }
10696
10697 if (! info->relocatable && merged)
10698 elf_link_hash_traverse (elf_hash_table (info),
10699 _bfd_elf_link_sec_merge_syms, abfd);
10700
10701 /* Figure out the file positions for everything but the symbol table
10702 and the relocs. We set symcount to force assign_section_numbers
10703 to create a symbol table. */
10704 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10705 BFD_ASSERT (! abfd->output_has_begun);
10706 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10707 goto error_return;
10708
10709 /* Set sizes, and assign file positions for reloc sections. */
10710 for (o = abfd->sections; o != NULL; o = o->next)
10711 {
10712 struct bfd_elf_section_data *esdo = elf_section_data (o);
10713 if ((o->flags & SEC_RELOC) != 0)
10714 {
10715 if (esdo->rel.hdr
10716 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10717 goto error_return;
10718
10719 if (esdo->rela.hdr
10720 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10721 goto error_return;
10722 }
10723
10724 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10725 to count upwards while actually outputting the relocations. */
10726 esdo->rel.count = 0;
10727 esdo->rela.count = 0;
10728 }
10729
10730 _bfd_elf_assign_file_positions_for_relocs (abfd);
10731
10732 /* We have now assigned file positions for all the sections except
10733 .symtab and .strtab. We start the .symtab section at the current
10734 file position, and write directly to it. We build the .strtab
10735 section in memory. */
10736 bfd_get_symcount (abfd) = 0;
10737 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10738 /* sh_name is set in prep_headers. */
10739 symtab_hdr->sh_type = SHT_SYMTAB;
10740 /* sh_flags, sh_addr and sh_size all start off zero. */
10741 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10742 /* sh_link is set in assign_section_numbers. */
10743 /* sh_info is set below. */
10744 /* sh_offset is set just below. */
10745 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10746
10747 off = elf_next_file_pos (abfd);
10748 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10749
10750 /* Note that at this point elf_next_file_pos (abfd) is
10751 incorrect. We do not yet know the size of the .symtab section.
10752 We correct next_file_pos below, after we do know the size. */
10753
10754 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10755 continuously seeking to the right position in the file. */
10756 if (! info->keep_memory || max_sym_count < 20)
10757 flinfo.symbuf_size = 20;
10758 else
10759 flinfo.symbuf_size = max_sym_count;
10760 amt = flinfo.symbuf_size;
10761 amt *= bed->s->sizeof_sym;
10762 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10763 if (flinfo.symbuf == NULL)
10764 goto error_return;
10765 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10766 {
10767 /* Wild guess at number of output symbols. realloc'd as needed. */
10768 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10769 flinfo.shndxbuf_size = amt;
10770 amt *= sizeof (Elf_External_Sym_Shndx);
10771 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10772 if (flinfo.symshndxbuf == NULL)
10773 goto error_return;
10774 }
10775
10776 /* Start writing out the symbol table. The first symbol is always a
10777 dummy symbol. */
10778 if (info->strip != strip_all
10779 || emit_relocs)
10780 {
10781 elfsym.st_value = 0;
10782 elfsym.st_size = 0;
10783 elfsym.st_info = 0;
10784 elfsym.st_other = 0;
10785 elfsym.st_shndx = SHN_UNDEF;
10786 elfsym.st_target_internal = 0;
10787 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10788 NULL) != 1)
10789 goto error_return;
10790 }
10791
10792 /* Output a symbol for each section. We output these even if we are
10793 discarding local symbols, since they are used for relocs. These
10794 symbols have no names. We store the index of each one in the
10795 index field of the section, so that we can find it again when
10796 outputting relocs. */
10797 if (info->strip != strip_all
10798 || emit_relocs)
10799 {
10800 elfsym.st_size = 0;
10801 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10802 elfsym.st_other = 0;
10803 elfsym.st_value = 0;
10804 elfsym.st_target_internal = 0;
10805 for (i = 1; i < elf_numsections (abfd); i++)
10806 {
10807 o = bfd_section_from_elf_index (abfd, i);
10808 if (o != NULL)
10809 {
10810 o->target_index = bfd_get_symcount (abfd);
10811 elfsym.st_shndx = i;
10812 if (!info->relocatable)
10813 elfsym.st_value = o->vma;
10814 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10815 goto error_return;
10816 }
10817 }
10818 }
10819
10820 /* Allocate some memory to hold information read in from the input
10821 files. */
10822 if (max_contents_size != 0)
10823 {
10824 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10825 if (flinfo.contents == NULL)
10826 goto error_return;
10827 }
10828
10829 if (max_external_reloc_size != 0)
10830 {
10831 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10832 if (flinfo.external_relocs == NULL)
10833 goto error_return;
10834 }
10835
10836 if (max_internal_reloc_count != 0)
10837 {
10838 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10839 amt *= sizeof (Elf_Internal_Rela);
10840 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10841 if (flinfo.internal_relocs == NULL)
10842 goto error_return;
10843 }
10844
10845 if (max_sym_count != 0)
10846 {
10847 amt = max_sym_count * bed->s->sizeof_sym;
10848 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10849 if (flinfo.external_syms == NULL)
10850 goto error_return;
10851
10852 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10853 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10854 if (flinfo.internal_syms == NULL)
10855 goto error_return;
10856
10857 amt = max_sym_count * sizeof (long);
10858 flinfo.indices = (long int *) bfd_malloc (amt);
10859 if (flinfo.indices == NULL)
10860 goto error_return;
10861
10862 amt = max_sym_count * sizeof (asection *);
10863 flinfo.sections = (asection **) bfd_malloc (amt);
10864 if (flinfo.sections == NULL)
10865 goto error_return;
10866 }
10867
10868 if (max_sym_shndx_count != 0)
10869 {
10870 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10871 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10872 if (flinfo.locsym_shndx == NULL)
10873 goto error_return;
10874 }
10875
10876 if (elf_hash_table (info)->tls_sec)
10877 {
10878 bfd_vma base, end = 0;
10879 asection *sec;
10880
10881 for (sec = elf_hash_table (info)->tls_sec;
10882 sec && (sec->flags & SEC_THREAD_LOCAL);
10883 sec = sec->next)
10884 {
10885 bfd_size_type size = sec->size;
10886
10887 if (size == 0
10888 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10889 {
10890 struct bfd_link_order *ord = sec->map_tail.link_order;
10891
10892 if (ord != NULL)
10893 size = ord->offset + ord->size;
10894 }
10895 end = sec->vma + size;
10896 }
10897 base = elf_hash_table (info)->tls_sec->vma;
10898 /* Only align end of TLS section if static TLS doesn't have special
10899 alignment requirements. */
10900 if (bed->static_tls_alignment == 1)
10901 end = align_power (end,
10902 elf_hash_table (info)->tls_sec->alignment_power);
10903 elf_hash_table (info)->tls_size = end - base;
10904 }
10905
10906 /* Reorder SHF_LINK_ORDER sections. */
10907 for (o = abfd->sections; o != NULL; o = o->next)
10908 {
10909 if (!elf_fixup_link_order (abfd, o))
10910 return FALSE;
10911 }
10912
10913 /* Since ELF permits relocations to be against local symbols, we
10914 must have the local symbols available when we do the relocations.
10915 Since we would rather only read the local symbols once, and we
10916 would rather not keep them in memory, we handle all the
10917 relocations for a single input file at the same time.
10918
10919 Unfortunately, there is no way to know the total number of local
10920 symbols until we have seen all of them, and the local symbol
10921 indices precede the global symbol indices. This means that when
10922 we are generating relocatable output, and we see a reloc against
10923 a global symbol, we can not know the symbol index until we have
10924 finished examining all the local symbols to see which ones we are
10925 going to output. To deal with this, we keep the relocations in
10926 memory, and don't output them until the end of the link. This is
10927 an unfortunate waste of memory, but I don't see a good way around
10928 it. Fortunately, it only happens when performing a relocatable
10929 link, which is not the common case. FIXME: If keep_memory is set
10930 we could write the relocs out and then read them again; I don't
10931 know how bad the memory loss will be. */
10932
10933 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10934 sub->output_has_begun = FALSE;
10935 for (o = abfd->sections; o != NULL; o = o->next)
10936 {
10937 for (p = o->map_head.link_order; p != NULL; p = p->next)
10938 {
10939 if (p->type == bfd_indirect_link_order
10940 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10941 == bfd_target_elf_flavour)
10942 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10943 {
10944 if (! sub->output_has_begun)
10945 {
10946 if (! elf_link_input_bfd (&flinfo, sub))
10947 goto error_return;
10948 sub->output_has_begun = TRUE;
10949 }
10950 }
10951 else if (p->type == bfd_section_reloc_link_order
10952 || p->type == bfd_symbol_reloc_link_order)
10953 {
10954 if (! elf_reloc_link_order (abfd, info, o, p))
10955 goto error_return;
10956 }
10957 else
10958 {
10959 if (! _bfd_default_link_order (abfd, info, o, p))
10960 {
10961 if (p->type == bfd_indirect_link_order
10962 && (bfd_get_flavour (sub)
10963 == bfd_target_elf_flavour)
10964 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10965 != bed->s->elfclass))
10966 {
10967 const char *iclass, *oclass;
10968
10969 if (bed->s->elfclass == ELFCLASS64)
10970 {
10971 iclass = "ELFCLASS32";
10972 oclass = "ELFCLASS64";
10973 }
10974 else
10975 {
10976 iclass = "ELFCLASS64";
10977 oclass = "ELFCLASS32";
10978 }
10979
10980 bfd_set_error (bfd_error_wrong_format);
10981 (*_bfd_error_handler)
10982 (_("%B: file class %s incompatible with %s"),
10983 sub, iclass, oclass);
10984 }
10985
10986 goto error_return;
10987 }
10988 }
10989 }
10990 }
10991
10992 /* Free symbol buffer if needed. */
10993 if (!info->reduce_memory_overheads)
10994 {
10995 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10996 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10997 && elf_tdata (sub)->symbuf)
10998 {
10999 free (elf_tdata (sub)->symbuf);
11000 elf_tdata (sub)->symbuf = NULL;
11001 }
11002 }
11003
11004 /* Output any global symbols that got converted to local in a
11005 version script or due to symbol visibility. We do this in a
11006 separate step since ELF requires all local symbols to appear
11007 prior to any global symbols. FIXME: We should only do this if
11008 some global symbols were, in fact, converted to become local.
11009 FIXME: Will this work correctly with the Irix 5 linker? */
11010 eoinfo.failed = FALSE;
11011 eoinfo.flinfo = &flinfo;
11012 eoinfo.localsyms = TRUE;
11013 eoinfo.need_second_pass = FALSE;
11014 eoinfo.second_pass = FALSE;
11015 eoinfo.file_sym_done = FALSE;
11016 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11017 if (eoinfo.failed)
11018 return FALSE;
11019
11020 if (eoinfo.need_second_pass)
11021 {
11022 eoinfo.second_pass = TRUE;
11023 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11024 if (eoinfo.failed)
11025 return FALSE;
11026 }
11027
11028 /* If backend needs to output some local symbols not present in the hash
11029 table, do it now. */
11030 if (bed->elf_backend_output_arch_local_syms)
11031 {
11032 typedef int (*out_sym_func)
11033 (void *, const char *, Elf_Internal_Sym *, asection *,
11034 struct elf_link_hash_entry *);
11035
11036 if (! ((*bed->elf_backend_output_arch_local_syms)
11037 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11038 return FALSE;
11039 }
11040
11041 /* That wrote out all the local symbols. Finish up the symbol table
11042 with the global symbols. Even if we want to strip everything we
11043 can, we still need to deal with those global symbols that got
11044 converted to local in a version script. */
11045
11046 /* The sh_info field records the index of the first non local symbol. */
11047 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11048
11049 if (dynamic
11050 && flinfo.dynsym_sec != NULL
11051 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11052 {
11053 Elf_Internal_Sym sym;
11054 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11055 long last_local = 0;
11056
11057 /* Write out the section symbols for the output sections. */
11058 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11059 {
11060 asection *s;
11061
11062 sym.st_size = 0;
11063 sym.st_name = 0;
11064 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11065 sym.st_other = 0;
11066 sym.st_target_internal = 0;
11067
11068 for (s = abfd->sections; s != NULL; s = s->next)
11069 {
11070 int indx;
11071 bfd_byte *dest;
11072 long dynindx;
11073
11074 dynindx = elf_section_data (s)->dynindx;
11075 if (dynindx <= 0)
11076 continue;
11077 indx = elf_section_data (s)->this_idx;
11078 BFD_ASSERT (indx > 0);
11079 sym.st_shndx = indx;
11080 if (! check_dynsym (abfd, &sym))
11081 return FALSE;
11082 sym.st_value = s->vma;
11083 dest = dynsym + dynindx * bed->s->sizeof_sym;
11084 if (last_local < dynindx)
11085 last_local = dynindx;
11086 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11087 }
11088 }
11089
11090 /* Write out the local dynsyms. */
11091 if (elf_hash_table (info)->dynlocal)
11092 {
11093 struct elf_link_local_dynamic_entry *e;
11094 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11095 {
11096 asection *s;
11097 bfd_byte *dest;
11098
11099 /* Copy the internal symbol and turn off visibility.
11100 Note that we saved a word of storage and overwrote
11101 the original st_name with the dynstr_index. */
11102 sym = e->isym;
11103 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11104
11105 s = bfd_section_from_elf_index (e->input_bfd,
11106 e->isym.st_shndx);
11107 if (s != NULL)
11108 {
11109 sym.st_shndx =
11110 elf_section_data (s->output_section)->this_idx;
11111 if (! check_dynsym (abfd, &sym))
11112 return FALSE;
11113 sym.st_value = (s->output_section->vma
11114 + s->output_offset
11115 + e->isym.st_value);
11116 }
11117
11118 if (last_local < e->dynindx)
11119 last_local = e->dynindx;
11120
11121 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11122 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11123 }
11124 }
11125
11126 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11127 last_local + 1;
11128 }
11129
11130 /* We get the global symbols from the hash table. */
11131 eoinfo.failed = FALSE;
11132 eoinfo.localsyms = FALSE;
11133 eoinfo.flinfo = &flinfo;
11134 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11135 if (eoinfo.failed)
11136 return FALSE;
11137
11138 /* If backend needs to output some symbols not present in the hash
11139 table, do it now. */
11140 if (bed->elf_backend_output_arch_syms)
11141 {
11142 typedef int (*out_sym_func)
11143 (void *, const char *, Elf_Internal_Sym *, asection *,
11144 struct elf_link_hash_entry *);
11145
11146 if (! ((*bed->elf_backend_output_arch_syms)
11147 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11148 return FALSE;
11149 }
11150
11151 /* Flush all symbols to the file. */
11152 if (! elf_link_flush_output_syms (&flinfo, bed))
11153 return FALSE;
11154
11155 /* Now we know the size of the symtab section. */
11156 off += symtab_hdr->sh_size;
11157
11158 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11159 if (symtab_shndx_hdr->sh_name != 0)
11160 {
11161 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11162 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11163 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11164 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11165 symtab_shndx_hdr->sh_size = amt;
11166
11167 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11168 off, TRUE);
11169
11170 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11171 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11172 return FALSE;
11173 }
11174
11175
11176 /* Finish up and write out the symbol string table (.strtab)
11177 section. */
11178 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11179 /* sh_name was set in prep_headers. */
11180 symstrtab_hdr->sh_type = SHT_STRTAB;
11181 symstrtab_hdr->sh_flags = 0;
11182 symstrtab_hdr->sh_addr = 0;
11183 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11184 symstrtab_hdr->sh_entsize = 0;
11185 symstrtab_hdr->sh_link = 0;
11186 symstrtab_hdr->sh_info = 0;
11187 /* sh_offset is set just below. */
11188 symstrtab_hdr->sh_addralign = 1;
11189
11190 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11191 elf_next_file_pos (abfd) = off;
11192
11193 if (bfd_get_symcount (abfd) > 0)
11194 {
11195 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11196 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11197 return FALSE;
11198 }
11199
11200 /* Adjust the relocs to have the correct symbol indices. */
11201 for (o = abfd->sections; o != NULL; o = o->next)
11202 {
11203 struct bfd_elf_section_data *esdo = elf_section_data (o);
11204 if ((o->flags & SEC_RELOC) == 0)
11205 continue;
11206
11207 if (esdo->rel.hdr != NULL)
11208 elf_link_adjust_relocs (abfd, &esdo->rel);
11209 if (esdo->rela.hdr != NULL)
11210 elf_link_adjust_relocs (abfd, &esdo->rela);
11211
11212 /* Set the reloc_count field to 0 to prevent write_relocs from
11213 trying to swap the relocs out itself. */
11214 o->reloc_count = 0;
11215 }
11216
11217 if (dynamic && info->combreloc && dynobj != NULL)
11218 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11219
11220 /* If we are linking against a dynamic object, or generating a
11221 shared library, finish up the dynamic linking information. */
11222 if (dynamic)
11223 {
11224 bfd_byte *dyncon, *dynconend;
11225
11226 /* Fix up .dynamic entries. */
11227 o = bfd_get_linker_section (dynobj, ".dynamic");
11228 BFD_ASSERT (o != NULL);
11229
11230 dyncon = o->contents;
11231 dynconend = o->contents + o->size;
11232 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11233 {
11234 Elf_Internal_Dyn dyn;
11235 const char *name;
11236 unsigned int type;
11237
11238 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11239
11240 switch (dyn.d_tag)
11241 {
11242 default:
11243 continue;
11244 case DT_NULL:
11245 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11246 {
11247 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11248 {
11249 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11250 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11251 default: continue;
11252 }
11253 dyn.d_un.d_val = relativecount;
11254 relativecount = 0;
11255 break;
11256 }
11257 continue;
11258
11259 case DT_INIT:
11260 name = info->init_function;
11261 goto get_sym;
11262 case DT_FINI:
11263 name = info->fini_function;
11264 get_sym:
11265 {
11266 struct elf_link_hash_entry *h;
11267
11268 h = elf_link_hash_lookup (elf_hash_table (info), name,
11269 FALSE, FALSE, TRUE);
11270 if (h != NULL
11271 && (h->root.type == bfd_link_hash_defined
11272 || h->root.type == bfd_link_hash_defweak))
11273 {
11274 dyn.d_un.d_ptr = h->root.u.def.value;
11275 o = h->root.u.def.section;
11276 if (o->output_section != NULL)
11277 dyn.d_un.d_ptr += (o->output_section->vma
11278 + o->output_offset);
11279 else
11280 {
11281 /* The symbol is imported from another shared
11282 library and does not apply to this one. */
11283 dyn.d_un.d_ptr = 0;
11284 }
11285 break;
11286 }
11287 }
11288 continue;
11289
11290 case DT_PREINIT_ARRAYSZ:
11291 name = ".preinit_array";
11292 goto get_size;
11293 case DT_INIT_ARRAYSZ:
11294 name = ".init_array";
11295 goto get_size;
11296 case DT_FINI_ARRAYSZ:
11297 name = ".fini_array";
11298 get_size:
11299 o = bfd_get_section_by_name (abfd, name);
11300 if (o == NULL)
11301 {
11302 (*_bfd_error_handler)
11303 (_("%B: could not find output section %s"), abfd, name);
11304 goto error_return;
11305 }
11306 if (o->size == 0)
11307 (*_bfd_error_handler)
11308 (_("warning: %s section has zero size"), name);
11309 dyn.d_un.d_val = o->size;
11310 break;
11311
11312 case DT_PREINIT_ARRAY:
11313 name = ".preinit_array";
11314 goto get_vma;
11315 case DT_INIT_ARRAY:
11316 name = ".init_array";
11317 goto get_vma;
11318 case DT_FINI_ARRAY:
11319 name = ".fini_array";
11320 goto get_vma;
11321
11322 case DT_HASH:
11323 name = ".hash";
11324 goto get_vma;
11325 case DT_GNU_HASH:
11326 name = ".gnu.hash";
11327 goto get_vma;
11328 case DT_STRTAB:
11329 name = ".dynstr";
11330 goto get_vma;
11331 case DT_SYMTAB:
11332 name = ".dynsym";
11333 goto get_vma;
11334 case DT_VERDEF:
11335 name = ".gnu.version_d";
11336 goto get_vma;
11337 case DT_VERNEED:
11338 name = ".gnu.version_r";
11339 goto get_vma;
11340 case DT_VERSYM:
11341 name = ".gnu.version";
11342 get_vma:
11343 o = bfd_get_section_by_name (abfd, name);
11344 if (o == NULL)
11345 {
11346 (*_bfd_error_handler)
11347 (_("%B: could not find output section %s"), abfd, name);
11348 goto error_return;
11349 }
11350 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11351 {
11352 (*_bfd_error_handler)
11353 (_("warning: section '%s' is being made into a note"), name);
11354 bfd_set_error (bfd_error_nonrepresentable_section);
11355 goto error_return;
11356 }
11357 dyn.d_un.d_ptr = o->vma;
11358 break;
11359
11360 case DT_REL:
11361 case DT_RELA:
11362 case DT_RELSZ:
11363 case DT_RELASZ:
11364 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11365 type = SHT_REL;
11366 else
11367 type = SHT_RELA;
11368 dyn.d_un.d_val = 0;
11369 dyn.d_un.d_ptr = 0;
11370 for (i = 1; i < elf_numsections (abfd); i++)
11371 {
11372 Elf_Internal_Shdr *hdr;
11373
11374 hdr = elf_elfsections (abfd)[i];
11375 if (hdr->sh_type == type
11376 && (hdr->sh_flags & SHF_ALLOC) != 0)
11377 {
11378 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11379 dyn.d_un.d_val += hdr->sh_size;
11380 else
11381 {
11382 if (dyn.d_un.d_ptr == 0
11383 || hdr->sh_addr < dyn.d_un.d_ptr)
11384 dyn.d_un.d_ptr = hdr->sh_addr;
11385 }
11386 }
11387 }
11388 break;
11389 }
11390 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11391 }
11392 }
11393
11394 /* If we have created any dynamic sections, then output them. */
11395 if (dynobj != NULL)
11396 {
11397 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11398 goto error_return;
11399
11400 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11401 if (((info->warn_shared_textrel && info->shared)
11402 || info->error_textrel)
11403 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11404 {
11405 bfd_byte *dyncon, *dynconend;
11406
11407 dyncon = o->contents;
11408 dynconend = o->contents + o->size;
11409 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11410 {
11411 Elf_Internal_Dyn dyn;
11412
11413 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11414
11415 if (dyn.d_tag == DT_TEXTREL)
11416 {
11417 if (info->error_textrel)
11418 info->callbacks->einfo
11419 (_("%P%X: read-only segment has dynamic relocations.\n"));
11420 else
11421 info->callbacks->einfo
11422 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11423 break;
11424 }
11425 }
11426 }
11427
11428 for (o = dynobj->sections; o != NULL; o = o->next)
11429 {
11430 if ((o->flags & SEC_HAS_CONTENTS) == 0
11431 || o->size == 0
11432 || o->output_section == bfd_abs_section_ptr)
11433 continue;
11434 if ((o->flags & SEC_LINKER_CREATED) == 0)
11435 {
11436 /* At this point, we are only interested in sections
11437 created by _bfd_elf_link_create_dynamic_sections. */
11438 continue;
11439 }
11440 if (elf_hash_table (info)->stab_info.stabstr == o)
11441 continue;
11442 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11443 continue;
11444 if (strcmp (o->name, ".dynstr") != 0)
11445 {
11446 /* FIXME: octets_per_byte. */
11447 if (! bfd_set_section_contents (abfd, o->output_section,
11448 o->contents,
11449 (file_ptr) o->output_offset,
11450 o->size))
11451 goto error_return;
11452 }
11453 else
11454 {
11455 /* The contents of the .dynstr section are actually in a
11456 stringtab. */
11457 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11458 if (bfd_seek (abfd, off, SEEK_SET) != 0
11459 || ! _bfd_elf_strtab_emit (abfd,
11460 elf_hash_table (info)->dynstr))
11461 goto error_return;
11462 }
11463 }
11464 }
11465
11466 if (info->relocatable)
11467 {
11468 bfd_boolean failed = FALSE;
11469
11470 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11471 if (failed)
11472 goto error_return;
11473 }
11474
11475 /* If we have optimized stabs strings, output them. */
11476 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11477 {
11478 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11479 goto error_return;
11480 }
11481
11482 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11483 goto error_return;
11484
11485 elf_final_link_free (abfd, &flinfo);
11486
11487 elf_linker (abfd) = TRUE;
11488
11489 if (attr_section)
11490 {
11491 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11492 if (contents == NULL)
11493 return FALSE; /* Bail out and fail. */
11494 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11495 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11496 free (contents);
11497 }
11498
11499 return TRUE;
11500
11501 error_return:
11502 elf_final_link_free (abfd, &flinfo);
11503 return FALSE;
11504 }
11505 \f
11506 /* Initialize COOKIE for input bfd ABFD. */
11507
11508 static bfd_boolean
11509 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11510 struct bfd_link_info *info, bfd *abfd)
11511 {
11512 Elf_Internal_Shdr *symtab_hdr;
11513 const struct elf_backend_data *bed;
11514
11515 bed = get_elf_backend_data (abfd);
11516 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11517
11518 cookie->abfd = abfd;
11519 cookie->sym_hashes = elf_sym_hashes (abfd);
11520 cookie->bad_symtab = elf_bad_symtab (abfd);
11521 if (cookie->bad_symtab)
11522 {
11523 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11524 cookie->extsymoff = 0;
11525 }
11526 else
11527 {
11528 cookie->locsymcount = symtab_hdr->sh_info;
11529 cookie->extsymoff = symtab_hdr->sh_info;
11530 }
11531
11532 if (bed->s->arch_size == 32)
11533 cookie->r_sym_shift = 8;
11534 else
11535 cookie->r_sym_shift = 32;
11536
11537 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11538 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11539 {
11540 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11541 cookie->locsymcount, 0,
11542 NULL, NULL, NULL);
11543 if (cookie->locsyms == NULL)
11544 {
11545 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11546 return FALSE;
11547 }
11548 if (info->keep_memory)
11549 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11550 }
11551 return TRUE;
11552 }
11553
11554 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11555
11556 static void
11557 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11558 {
11559 Elf_Internal_Shdr *symtab_hdr;
11560
11561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11562 if (cookie->locsyms != NULL
11563 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11564 free (cookie->locsyms);
11565 }
11566
11567 /* Initialize the relocation information in COOKIE for input section SEC
11568 of input bfd ABFD. */
11569
11570 static bfd_boolean
11571 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11572 struct bfd_link_info *info, bfd *abfd,
11573 asection *sec)
11574 {
11575 const struct elf_backend_data *bed;
11576
11577 if (sec->reloc_count == 0)
11578 {
11579 cookie->rels = NULL;
11580 cookie->relend = NULL;
11581 }
11582 else
11583 {
11584 bed = get_elf_backend_data (abfd);
11585
11586 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11587 info->keep_memory);
11588 if (cookie->rels == NULL)
11589 return FALSE;
11590 cookie->rel = cookie->rels;
11591 cookie->relend = (cookie->rels
11592 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11593 }
11594 cookie->rel = cookie->rels;
11595 return TRUE;
11596 }
11597
11598 /* Free the memory allocated by init_reloc_cookie_rels,
11599 if appropriate. */
11600
11601 static void
11602 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11603 asection *sec)
11604 {
11605 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11606 free (cookie->rels);
11607 }
11608
11609 /* Initialize the whole of COOKIE for input section SEC. */
11610
11611 static bfd_boolean
11612 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11613 struct bfd_link_info *info,
11614 asection *sec)
11615 {
11616 if (!init_reloc_cookie (cookie, info, sec->owner))
11617 goto error1;
11618 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11619 goto error2;
11620 return TRUE;
11621
11622 error2:
11623 fini_reloc_cookie (cookie, sec->owner);
11624 error1:
11625 return FALSE;
11626 }
11627
11628 /* Free the memory allocated by init_reloc_cookie_for_section,
11629 if appropriate. */
11630
11631 static void
11632 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11633 asection *sec)
11634 {
11635 fini_reloc_cookie_rels (cookie, sec);
11636 fini_reloc_cookie (cookie, sec->owner);
11637 }
11638 \f
11639 /* Garbage collect unused sections. */
11640
11641 /* Default gc_mark_hook. */
11642
11643 asection *
11644 _bfd_elf_gc_mark_hook (asection *sec,
11645 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11646 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11647 struct elf_link_hash_entry *h,
11648 Elf_Internal_Sym *sym)
11649 {
11650 const char *sec_name;
11651
11652 if (h != NULL)
11653 {
11654 switch (h->root.type)
11655 {
11656 case bfd_link_hash_defined:
11657 case bfd_link_hash_defweak:
11658 return h->root.u.def.section;
11659
11660 case bfd_link_hash_common:
11661 return h->root.u.c.p->section;
11662
11663 case bfd_link_hash_undefined:
11664 case bfd_link_hash_undefweak:
11665 /* To work around a glibc bug, keep all XXX input sections
11666 when there is an as yet undefined reference to __start_XXX
11667 or __stop_XXX symbols. The linker will later define such
11668 symbols for orphan input sections that have a name
11669 representable as a C identifier. */
11670 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11671 sec_name = h->root.root.string + 8;
11672 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11673 sec_name = h->root.root.string + 7;
11674 else
11675 sec_name = NULL;
11676
11677 if (sec_name && *sec_name != '\0')
11678 {
11679 bfd *i;
11680
11681 for (i = info->input_bfds; i; i = i->link_next)
11682 {
11683 sec = bfd_get_section_by_name (i, sec_name);
11684 if (sec)
11685 sec->flags |= SEC_KEEP;
11686 }
11687 }
11688 break;
11689
11690 default:
11691 break;
11692 }
11693 }
11694 else
11695 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11696
11697 return NULL;
11698 }
11699
11700 /* COOKIE->rel describes a relocation against section SEC, which is
11701 a section we've decided to keep. Return the section that contains
11702 the relocation symbol, or NULL if no section contains it. */
11703
11704 asection *
11705 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11706 elf_gc_mark_hook_fn gc_mark_hook,
11707 struct elf_reloc_cookie *cookie)
11708 {
11709 unsigned long r_symndx;
11710 struct elf_link_hash_entry *h;
11711
11712 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11713 if (r_symndx == STN_UNDEF)
11714 return NULL;
11715
11716 if (r_symndx >= cookie->locsymcount
11717 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11718 {
11719 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11720 while (h->root.type == bfd_link_hash_indirect
11721 || h->root.type == bfd_link_hash_warning)
11722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11723 h->mark = 1;
11724 /* If this symbol is weak and there is a non-weak definition, we
11725 keep the non-weak definition because many backends put
11726 dynamic reloc info on the non-weak definition for code
11727 handling copy relocs. */
11728 if (h->u.weakdef != NULL)
11729 h->u.weakdef->mark = 1;
11730 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11731 }
11732
11733 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11734 &cookie->locsyms[r_symndx]);
11735 }
11736
11737 /* COOKIE->rel describes a relocation against section SEC, which is
11738 a section we've decided to keep. Mark the section that contains
11739 the relocation symbol. */
11740
11741 bfd_boolean
11742 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11743 asection *sec,
11744 elf_gc_mark_hook_fn gc_mark_hook,
11745 struct elf_reloc_cookie *cookie)
11746 {
11747 asection *rsec;
11748
11749 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11750 if (rsec && !rsec->gc_mark)
11751 {
11752 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11753 || (rsec->owner->flags & DYNAMIC) != 0)
11754 rsec->gc_mark = 1;
11755 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11756 return FALSE;
11757 }
11758 return TRUE;
11759 }
11760
11761 /* The mark phase of garbage collection. For a given section, mark
11762 it and any sections in this section's group, and all the sections
11763 which define symbols to which it refers. */
11764
11765 bfd_boolean
11766 _bfd_elf_gc_mark (struct bfd_link_info *info,
11767 asection *sec,
11768 elf_gc_mark_hook_fn gc_mark_hook)
11769 {
11770 bfd_boolean ret;
11771 asection *group_sec, *eh_frame;
11772
11773 sec->gc_mark = 1;
11774
11775 /* Mark all the sections in the group. */
11776 group_sec = elf_section_data (sec)->next_in_group;
11777 if (group_sec && !group_sec->gc_mark)
11778 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11779 return FALSE;
11780
11781 /* Look through the section relocs. */
11782 ret = TRUE;
11783 eh_frame = elf_eh_frame_section (sec->owner);
11784 if ((sec->flags & SEC_RELOC) != 0
11785 && sec->reloc_count > 0
11786 && sec != eh_frame)
11787 {
11788 struct elf_reloc_cookie cookie;
11789
11790 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11791 ret = FALSE;
11792 else
11793 {
11794 for (; cookie.rel < cookie.relend; cookie.rel++)
11795 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11796 {
11797 ret = FALSE;
11798 break;
11799 }
11800 fini_reloc_cookie_for_section (&cookie, sec);
11801 }
11802 }
11803
11804 if (ret && eh_frame && elf_fde_list (sec))
11805 {
11806 struct elf_reloc_cookie cookie;
11807
11808 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11809 ret = FALSE;
11810 else
11811 {
11812 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11813 gc_mark_hook, &cookie))
11814 ret = FALSE;
11815 fini_reloc_cookie_for_section (&cookie, eh_frame);
11816 }
11817 }
11818
11819 return ret;
11820 }
11821
11822 /* Keep debug and special sections. */
11823
11824 bfd_boolean
11825 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11826 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11827 {
11828 bfd *ibfd;
11829
11830 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11831 {
11832 asection *isec;
11833 bfd_boolean some_kept;
11834 bfd_boolean debug_frag_seen;
11835
11836 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11837 continue;
11838
11839 /* Ensure all linker created sections are kept,
11840 see if any other section is already marked,
11841 and note if we have any fragmented debug sections. */
11842 debug_frag_seen = some_kept = FALSE;
11843 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11844 {
11845 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11846 isec->gc_mark = 1;
11847 else if (isec->gc_mark)
11848 some_kept = TRUE;
11849
11850 if (debug_frag_seen == FALSE
11851 && (isec->flags & SEC_DEBUGGING)
11852 && CONST_STRNEQ (isec->name, ".debug_line."))
11853 debug_frag_seen = TRUE;
11854 }
11855
11856 /* If no section in this file will be kept, then we can
11857 toss out the debug and special sections. */
11858 if (!some_kept)
11859 continue;
11860
11861 /* Keep debug and special sections like .comment when they are
11862 not part of a group, or when we have single-member groups. */
11863 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11864 if ((elf_next_in_group (isec) == NULL
11865 || elf_next_in_group (isec) == isec)
11866 && ((isec->flags & SEC_DEBUGGING) != 0
11867 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11868 isec->gc_mark = 1;
11869
11870 if (! debug_frag_seen)
11871 continue;
11872
11873 /* Look for CODE sections which are going to be discarded,
11874 and find and discard any fragmented debug sections which
11875 are associated with that code section. */
11876 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11877 if ((isec->flags & SEC_CODE) != 0
11878 && isec->gc_mark == 0)
11879 {
11880 unsigned int ilen;
11881 asection *dsec;
11882
11883 ilen = strlen (isec->name);
11884
11885 /* Association is determined by the name of the debug section
11886 containing the name of the code section as a suffix. For
11887 example .debug_line.text.foo is a debug section associated
11888 with .text.foo. */
11889 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11890 {
11891 unsigned int dlen;
11892
11893 if (dsec->gc_mark == 0
11894 || (dsec->flags & SEC_DEBUGGING) == 0)
11895 continue;
11896
11897 dlen = strlen (dsec->name);
11898
11899 if (dlen > ilen
11900 && strncmp (dsec->name + (dlen - ilen),
11901 isec->name, ilen) == 0)
11902 {
11903 dsec->gc_mark = 0;
11904 break;
11905 }
11906 }
11907 }
11908 }
11909 return TRUE;
11910 }
11911
11912 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11913
11914 struct elf_gc_sweep_symbol_info
11915 {
11916 struct bfd_link_info *info;
11917 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11918 bfd_boolean);
11919 };
11920
11921 static bfd_boolean
11922 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11923 {
11924 if (!h->mark
11925 && (((h->root.type == bfd_link_hash_defined
11926 || h->root.type == bfd_link_hash_defweak)
11927 && !(h->def_regular
11928 && h->root.u.def.section->gc_mark))
11929 || h->root.type == bfd_link_hash_undefined
11930 || h->root.type == bfd_link_hash_undefweak))
11931 {
11932 struct elf_gc_sweep_symbol_info *inf;
11933
11934 inf = (struct elf_gc_sweep_symbol_info *) data;
11935 (*inf->hide_symbol) (inf->info, h, TRUE);
11936 h->def_regular = 0;
11937 h->ref_regular = 0;
11938 h->ref_regular_nonweak = 0;
11939 }
11940
11941 return TRUE;
11942 }
11943
11944 /* The sweep phase of garbage collection. Remove all garbage sections. */
11945
11946 typedef bfd_boolean (*gc_sweep_hook_fn)
11947 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11948
11949 static bfd_boolean
11950 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11951 {
11952 bfd *sub;
11953 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11954 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11955 unsigned long section_sym_count;
11956 struct elf_gc_sweep_symbol_info sweep_info;
11957
11958 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11959 {
11960 asection *o;
11961
11962 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11963 continue;
11964
11965 for (o = sub->sections; o != NULL; o = o->next)
11966 {
11967 /* When any section in a section group is kept, we keep all
11968 sections in the section group. If the first member of
11969 the section group is excluded, we will also exclude the
11970 group section. */
11971 if (o->flags & SEC_GROUP)
11972 {
11973 asection *first = elf_next_in_group (o);
11974 o->gc_mark = first->gc_mark;
11975 }
11976
11977 if (o->gc_mark)
11978 continue;
11979
11980 /* Skip sweeping sections already excluded. */
11981 if (o->flags & SEC_EXCLUDE)
11982 continue;
11983
11984 /* Since this is early in the link process, it is simple
11985 to remove a section from the output. */
11986 o->flags |= SEC_EXCLUDE;
11987
11988 if (info->print_gc_sections && o->size != 0)
11989 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11990
11991 /* But we also have to update some of the relocation
11992 info we collected before. */
11993 if (gc_sweep_hook
11994 && (o->flags & SEC_RELOC) != 0
11995 && o->reloc_count > 0
11996 && !bfd_is_abs_section (o->output_section))
11997 {
11998 Elf_Internal_Rela *internal_relocs;
11999 bfd_boolean r;
12000
12001 internal_relocs
12002 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12003 info->keep_memory);
12004 if (internal_relocs == NULL)
12005 return FALSE;
12006
12007 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12008
12009 if (elf_section_data (o)->relocs != internal_relocs)
12010 free (internal_relocs);
12011
12012 if (!r)
12013 return FALSE;
12014 }
12015 }
12016 }
12017
12018 /* Remove the symbols that were in the swept sections from the dynamic
12019 symbol table. GCFIXME: Anyone know how to get them out of the
12020 static symbol table as well? */
12021 sweep_info.info = info;
12022 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12023 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12024 &sweep_info);
12025
12026 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12027 return TRUE;
12028 }
12029
12030 /* Propagate collected vtable information. This is called through
12031 elf_link_hash_traverse. */
12032
12033 static bfd_boolean
12034 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12035 {
12036 /* Those that are not vtables. */
12037 if (h->vtable == NULL || h->vtable->parent == NULL)
12038 return TRUE;
12039
12040 /* Those vtables that do not have parents, we cannot merge. */
12041 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12042 return TRUE;
12043
12044 /* If we've already been done, exit. */
12045 if (h->vtable->used && h->vtable->used[-1])
12046 return TRUE;
12047
12048 /* Make sure the parent's table is up to date. */
12049 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12050
12051 if (h->vtable->used == NULL)
12052 {
12053 /* None of this table's entries were referenced. Re-use the
12054 parent's table. */
12055 h->vtable->used = h->vtable->parent->vtable->used;
12056 h->vtable->size = h->vtable->parent->vtable->size;
12057 }
12058 else
12059 {
12060 size_t n;
12061 bfd_boolean *cu, *pu;
12062
12063 /* Or the parent's entries into ours. */
12064 cu = h->vtable->used;
12065 cu[-1] = TRUE;
12066 pu = h->vtable->parent->vtable->used;
12067 if (pu != NULL)
12068 {
12069 const struct elf_backend_data *bed;
12070 unsigned int log_file_align;
12071
12072 bed = get_elf_backend_data (h->root.u.def.section->owner);
12073 log_file_align = bed->s->log_file_align;
12074 n = h->vtable->parent->vtable->size >> log_file_align;
12075 while (n--)
12076 {
12077 if (*pu)
12078 *cu = TRUE;
12079 pu++;
12080 cu++;
12081 }
12082 }
12083 }
12084
12085 return TRUE;
12086 }
12087
12088 static bfd_boolean
12089 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12090 {
12091 asection *sec;
12092 bfd_vma hstart, hend;
12093 Elf_Internal_Rela *relstart, *relend, *rel;
12094 const struct elf_backend_data *bed;
12095 unsigned int log_file_align;
12096
12097 /* Take care of both those symbols that do not describe vtables as
12098 well as those that are not loaded. */
12099 if (h->vtable == NULL || h->vtable->parent == NULL)
12100 return TRUE;
12101
12102 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12103 || h->root.type == bfd_link_hash_defweak);
12104
12105 sec = h->root.u.def.section;
12106 hstart = h->root.u.def.value;
12107 hend = hstart + h->size;
12108
12109 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12110 if (!relstart)
12111 return *(bfd_boolean *) okp = FALSE;
12112 bed = get_elf_backend_data (sec->owner);
12113 log_file_align = bed->s->log_file_align;
12114
12115 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12116
12117 for (rel = relstart; rel < relend; ++rel)
12118 if (rel->r_offset >= hstart && rel->r_offset < hend)
12119 {
12120 /* If the entry is in use, do nothing. */
12121 if (h->vtable->used
12122 && (rel->r_offset - hstart) < h->vtable->size)
12123 {
12124 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12125 if (h->vtable->used[entry])
12126 continue;
12127 }
12128 /* Otherwise, kill it. */
12129 rel->r_offset = rel->r_info = rel->r_addend = 0;
12130 }
12131
12132 return TRUE;
12133 }
12134
12135 /* Mark sections containing dynamically referenced symbols. When
12136 building shared libraries, we must assume that any visible symbol is
12137 referenced. */
12138
12139 bfd_boolean
12140 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12141 {
12142 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12143 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12144
12145 if ((h->root.type == bfd_link_hash_defined
12146 || h->root.type == bfd_link_hash_defweak)
12147 && (h->ref_dynamic
12148 || (h->def_regular
12149 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12150 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12151 && (!info->executable
12152 || info->export_dynamic
12153 || (h->dynamic
12154 && d != NULL
12155 && (*d->match) (&d->head, NULL, h->root.root.string)))
12156 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12157 || !bfd_hide_sym_by_version (info->version_info,
12158 h->root.root.string)))))
12159 h->root.u.def.section->flags |= SEC_KEEP;
12160
12161 return TRUE;
12162 }
12163
12164 /* Keep all sections containing symbols undefined on the command-line,
12165 and the section containing the entry symbol. */
12166
12167 void
12168 _bfd_elf_gc_keep (struct bfd_link_info *info)
12169 {
12170 struct bfd_sym_chain *sym;
12171
12172 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12173 {
12174 struct elf_link_hash_entry *h;
12175
12176 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12177 FALSE, FALSE, FALSE);
12178
12179 if (h != NULL
12180 && (h->root.type == bfd_link_hash_defined
12181 || h->root.type == bfd_link_hash_defweak)
12182 && !bfd_is_abs_section (h->root.u.def.section))
12183 h->root.u.def.section->flags |= SEC_KEEP;
12184 }
12185 }
12186
12187 /* Do mark and sweep of unused sections. */
12188
12189 bfd_boolean
12190 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12191 {
12192 bfd_boolean ok = TRUE;
12193 bfd *sub;
12194 elf_gc_mark_hook_fn gc_mark_hook;
12195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12196
12197 if (!bed->can_gc_sections
12198 || !is_elf_hash_table (info->hash))
12199 {
12200 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12201 return TRUE;
12202 }
12203
12204 bed->gc_keep (info);
12205
12206 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12207 at the .eh_frame section if we can mark the FDEs individually. */
12208 _bfd_elf_begin_eh_frame_parsing (info);
12209 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12210 {
12211 asection *sec;
12212 struct elf_reloc_cookie cookie;
12213
12214 sec = bfd_get_section_by_name (sub, ".eh_frame");
12215 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12216 {
12217 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12218 if (elf_section_data (sec)->sec_info
12219 && (sec->flags & SEC_LINKER_CREATED) == 0)
12220 elf_eh_frame_section (sub) = sec;
12221 fini_reloc_cookie_for_section (&cookie, sec);
12222 sec = bfd_get_next_section_by_name (sec);
12223 }
12224 }
12225 _bfd_elf_end_eh_frame_parsing (info);
12226
12227 /* Apply transitive closure to the vtable entry usage info. */
12228 elf_link_hash_traverse (elf_hash_table (info),
12229 elf_gc_propagate_vtable_entries_used,
12230 &ok);
12231 if (!ok)
12232 return FALSE;
12233
12234 /* Kill the vtable relocations that were not used. */
12235 elf_link_hash_traverse (elf_hash_table (info),
12236 elf_gc_smash_unused_vtentry_relocs,
12237 &ok);
12238 if (!ok)
12239 return FALSE;
12240
12241 /* Mark dynamically referenced symbols. */
12242 if (elf_hash_table (info)->dynamic_sections_created)
12243 elf_link_hash_traverse (elf_hash_table (info),
12244 bed->gc_mark_dynamic_ref,
12245 info);
12246
12247 /* Grovel through relocs to find out who stays ... */
12248 gc_mark_hook = bed->gc_mark_hook;
12249 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12250 {
12251 asection *o;
12252
12253 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12254 continue;
12255
12256 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12257 Also treat note sections as a root, if the section is not part
12258 of a group. */
12259 for (o = sub->sections; o != NULL; o = o->next)
12260 if (!o->gc_mark
12261 && (o->flags & SEC_EXCLUDE) == 0
12262 && ((o->flags & SEC_KEEP) != 0
12263 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12264 && elf_next_in_group (o) == NULL )))
12265 {
12266 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12267 return FALSE;
12268 }
12269 }
12270
12271 /* Allow the backend to mark additional target specific sections. */
12272 bed->gc_mark_extra_sections (info, gc_mark_hook);
12273
12274 /* ... and mark SEC_EXCLUDE for those that go. */
12275 return elf_gc_sweep (abfd, info);
12276 }
12277 \f
12278 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12279
12280 bfd_boolean
12281 bfd_elf_gc_record_vtinherit (bfd *abfd,
12282 asection *sec,
12283 struct elf_link_hash_entry *h,
12284 bfd_vma offset)
12285 {
12286 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12287 struct elf_link_hash_entry **search, *child;
12288 bfd_size_type extsymcount;
12289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12290
12291 /* The sh_info field of the symtab header tells us where the
12292 external symbols start. We don't care about the local symbols at
12293 this point. */
12294 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12295 if (!elf_bad_symtab (abfd))
12296 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12297
12298 sym_hashes = elf_sym_hashes (abfd);
12299 sym_hashes_end = sym_hashes + extsymcount;
12300
12301 /* Hunt down the child symbol, which is in this section at the same
12302 offset as the relocation. */
12303 for (search = sym_hashes; search != sym_hashes_end; ++search)
12304 {
12305 if ((child = *search) != NULL
12306 && (child->root.type == bfd_link_hash_defined
12307 || child->root.type == bfd_link_hash_defweak)
12308 && child->root.u.def.section == sec
12309 && child->root.u.def.value == offset)
12310 goto win;
12311 }
12312
12313 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12314 abfd, sec, (unsigned long) offset);
12315 bfd_set_error (bfd_error_invalid_operation);
12316 return FALSE;
12317
12318 win:
12319 if (!child->vtable)
12320 {
12321 child->vtable = (struct elf_link_virtual_table_entry *)
12322 bfd_zalloc (abfd, sizeof (*child->vtable));
12323 if (!child->vtable)
12324 return FALSE;
12325 }
12326 if (!h)
12327 {
12328 /* This *should* only be the absolute section. It could potentially
12329 be that someone has defined a non-global vtable though, which
12330 would be bad. It isn't worth paging in the local symbols to be
12331 sure though; that case should simply be handled by the assembler. */
12332
12333 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12334 }
12335 else
12336 child->vtable->parent = h;
12337
12338 return TRUE;
12339 }
12340
12341 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12342
12343 bfd_boolean
12344 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12345 asection *sec ATTRIBUTE_UNUSED,
12346 struct elf_link_hash_entry *h,
12347 bfd_vma addend)
12348 {
12349 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12350 unsigned int log_file_align = bed->s->log_file_align;
12351
12352 if (!h->vtable)
12353 {
12354 h->vtable = (struct elf_link_virtual_table_entry *)
12355 bfd_zalloc (abfd, sizeof (*h->vtable));
12356 if (!h->vtable)
12357 return FALSE;
12358 }
12359
12360 if (addend >= h->vtable->size)
12361 {
12362 size_t size, bytes, file_align;
12363 bfd_boolean *ptr = h->vtable->used;
12364
12365 /* While the symbol is undefined, we have to be prepared to handle
12366 a zero size. */
12367 file_align = 1 << log_file_align;
12368 if (h->root.type == bfd_link_hash_undefined)
12369 size = addend + file_align;
12370 else
12371 {
12372 size = h->size;
12373 if (addend >= size)
12374 {
12375 /* Oops! We've got a reference past the defined end of
12376 the table. This is probably a bug -- shall we warn? */
12377 size = addend + file_align;
12378 }
12379 }
12380 size = (size + file_align - 1) & -file_align;
12381
12382 /* Allocate one extra entry for use as a "done" flag for the
12383 consolidation pass. */
12384 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12385
12386 if (ptr)
12387 {
12388 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12389
12390 if (ptr != NULL)
12391 {
12392 size_t oldbytes;
12393
12394 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12395 * sizeof (bfd_boolean));
12396 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12397 }
12398 }
12399 else
12400 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12401
12402 if (ptr == NULL)
12403 return FALSE;
12404
12405 /* And arrange for that done flag to be at index -1. */
12406 h->vtable->used = ptr + 1;
12407 h->vtable->size = size;
12408 }
12409
12410 h->vtable->used[addend >> log_file_align] = TRUE;
12411
12412 return TRUE;
12413 }
12414
12415 /* Map an ELF section header flag to its corresponding string. */
12416 typedef struct
12417 {
12418 char *flag_name;
12419 flagword flag_value;
12420 } elf_flags_to_name_table;
12421
12422 static elf_flags_to_name_table elf_flags_to_names [] =
12423 {
12424 { "SHF_WRITE", SHF_WRITE },
12425 { "SHF_ALLOC", SHF_ALLOC },
12426 { "SHF_EXECINSTR", SHF_EXECINSTR },
12427 { "SHF_MERGE", SHF_MERGE },
12428 { "SHF_STRINGS", SHF_STRINGS },
12429 { "SHF_INFO_LINK", SHF_INFO_LINK},
12430 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12431 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12432 { "SHF_GROUP", SHF_GROUP },
12433 { "SHF_TLS", SHF_TLS },
12434 { "SHF_MASKOS", SHF_MASKOS },
12435 { "SHF_EXCLUDE", SHF_EXCLUDE },
12436 };
12437
12438 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12439 bfd_boolean
12440 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12441 struct flag_info *flaginfo,
12442 asection *section)
12443 {
12444 const bfd_vma sh_flags = elf_section_flags (section);
12445
12446 if (!flaginfo->flags_initialized)
12447 {
12448 bfd *obfd = info->output_bfd;
12449 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12450 struct flag_info_list *tf = flaginfo->flag_list;
12451 int with_hex = 0;
12452 int without_hex = 0;
12453
12454 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12455 {
12456 unsigned i;
12457 flagword (*lookup) (char *);
12458
12459 lookup = bed->elf_backend_lookup_section_flags_hook;
12460 if (lookup != NULL)
12461 {
12462 flagword hexval = (*lookup) ((char *) tf->name);
12463
12464 if (hexval != 0)
12465 {
12466 if (tf->with == with_flags)
12467 with_hex |= hexval;
12468 else if (tf->with == without_flags)
12469 without_hex |= hexval;
12470 tf->valid = TRUE;
12471 continue;
12472 }
12473 }
12474 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12475 {
12476 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12477 {
12478 if (tf->with == with_flags)
12479 with_hex |= elf_flags_to_names[i].flag_value;
12480 else if (tf->with == without_flags)
12481 without_hex |= elf_flags_to_names[i].flag_value;
12482 tf->valid = TRUE;
12483 break;
12484 }
12485 }
12486 if (!tf->valid)
12487 {
12488 info->callbacks->einfo
12489 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12490 return FALSE;
12491 }
12492 }
12493 flaginfo->flags_initialized = TRUE;
12494 flaginfo->only_with_flags |= with_hex;
12495 flaginfo->not_with_flags |= without_hex;
12496 }
12497
12498 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12499 return FALSE;
12500
12501 if ((flaginfo->not_with_flags & sh_flags) != 0)
12502 return FALSE;
12503
12504 return TRUE;
12505 }
12506
12507 struct alloc_got_off_arg {
12508 bfd_vma gotoff;
12509 struct bfd_link_info *info;
12510 };
12511
12512 /* We need a special top-level link routine to convert got reference counts
12513 to real got offsets. */
12514
12515 static bfd_boolean
12516 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12517 {
12518 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12519 bfd *obfd = gofarg->info->output_bfd;
12520 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12521
12522 if (h->got.refcount > 0)
12523 {
12524 h->got.offset = gofarg->gotoff;
12525 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12526 }
12527 else
12528 h->got.offset = (bfd_vma) -1;
12529
12530 return TRUE;
12531 }
12532
12533 /* And an accompanying bit to work out final got entry offsets once
12534 we're done. Should be called from final_link. */
12535
12536 bfd_boolean
12537 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12538 struct bfd_link_info *info)
12539 {
12540 bfd *i;
12541 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12542 bfd_vma gotoff;
12543 struct alloc_got_off_arg gofarg;
12544
12545 BFD_ASSERT (abfd == info->output_bfd);
12546
12547 if (! is_elf_hash_table (info->hash))
12548 return FALSE;
12549
12550 /* The GOT offset is relative to the .got section, but the GOT header is
12551 put into the .got.plt section, if the backend uses it. */
12552 if (bed->want_got_plt)
12553 gotoff = 0;
12554 else
12555 gotoff = bed->got_header_size;
12556
12557 /* Do the local .got entries first. */
12558 for (i = info->input_bfds; i; i = i->link_next)
12559 {
12560 bfd_signed_vma *local_got;
12561 bfd_size_type j, locsymcount;
12562 Elf_Internal_Shdr *symtab_hdr;
12563
12564 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12565 continue;
12566
12567 local_got = elf_local_got_refcounts (i);
12568 if (!local_got)
12569 continue;
12570
12571 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12572 if (elf_bad_symtab (i))
12573 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12574 else
12575 locsymcount = symtab_hdr->sh_info;
12576
12577 for (j = 0; j < locsymcount; ++j)
12578 {
12579 if (local_got[j] > 0)
12580 {
12581 local_got[j] = gotoff;
12582 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12583 }
12584 else
12585 local_got[j] = (bfd_vma) -1;
12586 }
12587 }
12588
12589 /* Then the global .got entries. .plt refcounts are handled by
12590 adjust_dynamic_symbol */
12591 gofarg.gotoff = gotoff;
12592 gofarg.info = info;
12593 elf_link_hash_traverse (elf_hash_table (info),
12594 elf_gc_allocate_got_offsets,
12595 &gofarg);
12596 return TRUE;
12597 }
12598
12599 /* Many folk need no more in the way of final link than this, once
12600 got entry reference counting is enabled. */
12601
12602 bfd_boolean
12603 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12604 {
12605 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12606 return FALSE;
12607
12608 /* Invoke the regular ELF backend linker to do all the work. */
12609 return bfd_elf_final_link (abfd, info);
12610 }
12611
12612 bfd_boolean
12613 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12614 {
12615 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12616
12617 if (rcookie->bad_symtab)
12618 rcookie->rel = rcookie->rels;
12619
12620 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12621 {
12622 unsigned long r_symndx;
12623
12624 if (! rcookie->bad_symtab)
12625 if (rcookie->rel->r_offset > offset)
12626 return FALSE;
12627 if (rcookie->rel->r_offset != offset)
12628 continue;
12629
12630 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12631 if (r_symndx == STN_UNDEF)
12632 return TRUE;
12633
12634 if (r_symndx >= rcookie->locsymcount
12635 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12636 {
12637 struct elf_link_hash_entry *h;
12638
12639 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12640
12641 while (h->root.type == bfd_link_hash_indirect
12642 || h->root.type == bfd_link_hash_warning)
12643 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12644
12645 if ((h->root.type == bfd_link_hash_defined
12646 || h->root.type == bfd_link_hash_defweak)
12647 && discarded_section (h->root.u.def.section))
12648 return TRUE;
12649 else
12650 return FALSE;
12651 }
12652 else
12653 {
12654 /* It's not a relocation against a global symbol,
12655 but it could be a relocation against a local
12656 symbol for a discarded section. */
12657 asection *isec;
12658 Elf_Internal_Sym *isym;
12659
12660 /* Need to: get the symbol; get the section. */
12661 isym = &rcookie->locsyms[r_symndx];
12662 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12663 if (isec != NULL && discarded_section (isec))
12664 return TRUE;
12665 }
12666 return FALSE;
12667 }
12668 return FALSE;
12669 }
12670
12671 /* Discard unneeded references to discarded sections.
12672 Returns TRUE if any section's size was changed. */
12673 /* This function assumes that the relocations are in sorted order,
12674 which is true for all known assemblers. */
12675
12676 bfd_boolean
12677 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12678 {
12679 struct elf_reloc_cookie cookie;
12680 asection *stab, *eh;
12681 const struct elf_backend_data *bed;
12682 bfd *abfd;
12683 bfd_boolean ret = FALSE;
12684
12685 if (info->traditional_format
12686 || !is_elf_hash_table (info->hash))
12687 return FALSE;
12688
12689 _bfd_elf_begin_eh_frame_parsing (info);
12690 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12691 {
12692 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12693 continue;
12694
12695 bed = get_elf_backend_data (abfd);
12696
12697 eh = NULL;
12698 if (!info->relocatable)
12699 {
12700 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12701 while (eh != NULL
12702 && (eh->size == 0
12703 || bfd_is_abs_section (eh->output_section)))
12704 eh = bfd_get_next_section_by_name (eh);
12705 }
12706
12707 stab = bfd_get_section_by_name (abfd, ".stab");
12708 if (stab != NULL
12709 && (stab->size == 0
12710 || bfd_is_abs_section (stab->output_section)
12711 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12712 stab = NULL;
12713
12714 if (stab == NULL
12715 && eh == NULL
12716 && bed->elf_backend_discard_info == NULL)
12717 continue;
12718
12719 if (!init_reloc_cookie (&cookie, info, abfd))
12720 return FALSE;
12721
12722 if (stab != NULL
12723 && stab->reloc_count > 0
12724 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12725 {
12726 if (_bfd_discard_section_stabs (abfd, stab,
12727 elf_section_data (stab)->sec_info,
12728 bfd_elf_reloc_symbol_deleted_p,
12729 &cookie))
12730 ret = TRUE;
12731 fini_reloc_cookie_rels (&cookie, stab);
12732 }
12733
12734 while (eh != NULL
12735 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12736 {
12737 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12738 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12739 bfd_elf_reloc_symbol_deleted_p,
12740 &cookie))
12741 ret = TRUE;
12742 fini_reloc_cookie_rels (&cookie, eh);
12743 eh = bfd_get_next_section_by_name (eh);
12744 }
12745
12746 if (bed->elf_backend_discard_info != NULL
12747 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12748 ret = TRUE;
12749
12750 fini_reloc_cookie (&cookie, abfd);
12751 }
12752 _bfd_elf_end_eh_frame_parsing (info);
12753
12754 if (info->eh_frame_hdr
12755 && !info->relocatable
12756 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12757 ret = TRUE;
12758
12759 return ret;
12760 }
12761
12762 bfd_boolean
12763 _bfd_elf_section_already_linked (bfd *abfd,
12764 asection *sec,
12765 struct bfd_link_info *info)
12766 {
12767 flagword flags;
12768 const char *name, *key;
12769 struct bfd_section_already_linked *l;
12770 struct bfd_section_already_linked_hash_entry *already_linked_list;
12771
12772 if (sec->output_section == bfd_abs_section_ptr)
12773 return FALSE;
12774
12775 flags = sec->flags;
12776
12777 /* Return if it isn't a linkonce section. A comdat group section
12778 also has SEC_LINK_ONCE set. */
12779 if ((flags & SEC_LINK_ONCE) == 0)
12780 return FALSE;
12781
12782 /* Don't put group member sections on our list of already linked
12783 sections. They are handled as a group via their group section. */
12784 if (elf_sec_group (sec) != NULL)
12785 return FALSE;
12786
12787 /* For a SHT_GROUP section, use the group signature as the key. */
12788 name = sec->name;
12789 if ((flags & SEC_GROUP) != 0
12790 && elf_next_in_group (sec) != NULL
12791 && elf_group_name (elf_next_in_group (sec)) != NULL)
12792 key = elf_group_name (elf_next_in_group (sec));
12793 else
12794 {
12795 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12796 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12797 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12798 key++;
12799 else
12800 /* Must be a user linkonce section that doesn't follow gcc's
12801 naming convention. In this case we won't be matching
12802 single member groups. */
12803 key = name;
12804 }
12805
12806 already_linked_list = bfd_section_already_linked_table_lookup (key);
12807
12808 for (l = already_linked_list->entry; l != NULL; l = l->next)
12809 {
12810 /* We may have 2 different types of sections on the list: group
12811 sections with a signature of <key> (<key> is some string),
12812 and linkonce sections named .gnu.linkonce.<type>.<key>.
12813 Match like sections. LTO plugin sections are an exception.
12814 They are always named .gnu.linkonce.t.<key> and match either
12815 type of section. */
12816 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12817 && ((flags & SEC_GROUP) != 0
12818 || strcmp (name, l->sec->name) == 0))
12819 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12820 {
12821 /* The section has already been linked. See if we should
12822 issue a warning. */
12823 if (!_bfd_handle_already_linked (sec, l, info))
12824 return FALSE;
12825
12826 if (flags & SEC_GROUP)
12827 {
12828 asection *first = elf_next_in_group (sec);
12829 asection *s = first;
12830
12831 while (s != NULL)
12832 {
12833 s->output_section = bfd_abs_section_ptr;
12834 /* Record which group discards it. */
12835 s->kept_section = l->sec;
12836 s = elf_next_in_group (s);
12837 /* These lists are circular. */
12838 if (s == first)
12839 break;
12840 }
12841 }
12842
12843 return TRUE;
12844 }
12845 }
12846
12847 /* A single member comdat group section may be discarded by a
12848 linkonce section and vice versa. */
12849 if ((flags & SEC_GROUP) != 0)
12850 {
12851 asection *first = elf_next_in_group (sec);
12852
12853 if (first != NULL && elf_next_in_group (first) == first)
12854 /* Check this single member group against linkonce sections. */
12855 for (l = already_linked_list->entry; l != NULL; l = l->next)
12856 if ((l->sec->flags & SEC_GROUP) == 0
12857 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12858 {
12859 first->output_section = bfd_abs_section_ptr;
12860 first->kept_section = l->sec;
12861 sec->output_section = bfd_abs_section_ptr;
12862 break;
12863 }
12864 }
12865 else
12866 /* Check this linkonce section against single member groups. */
12867 for (l = already_linked_list->entry; l != NULL; l = l->next)
12868 if (l->sec->flags & SEC_GROUP)
12869 {
12870 asection *first = elf_next_in_group (l->sec);
12871
12872 if (first != NULL
12873 && elf_next_in_group (first) == first
12874 && bfd_elf_match_symbols_in_sections (first, sec, info))
12875 {
12876 sec->output_section = bfd_abs_section_ptr;
12877 sec->kept_section = first;
12878 break;
12879 }
12880 }
12881
12882 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12883 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12884 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12885 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12886 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12887 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12888 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12889 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12890 The reverse order cannot happen as there is never a bfd with only the
12891 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12892 matter as here were are looking only for cross-bfd sections. */
12893
12894 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12895 for (l = already_linked_list->entry; l != NULL; l = l->next)
12896 if ((l->sec->flags & SEC_GROUP) == 0
12897 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12898 {
12899 if (abfd != l->sec->owner)
12900 sec->output_section = bfd_abs_section_ptr;
12901 break;
12902 }
12903
12904 /* This is the first section with this name. Record it. */
12905 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12906 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12907 return sec->output_section == bfd_abs_section_ptr;
12908 }
12909
12910 bfd_boolean
12911 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12912 {
12913 return sym->st_shndx == SHN_COMMON;
12914 }
12915
12916 unsigned int
12917 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12918 {
12919 return SHN_COMMON;
12920 }
12921
12922 asection *
12923 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12924 {
12925 return bfd_com_section_ptr;
12926 }
12927
12928 bfd_vma
12929 _bfd_elf_default_got_elt_size (bfd *abfd,
12930 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12931 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12932 bfd *ibfd ATTRIBUTE_UNUSED,
12933 unsigned long symndx ATTRIBUTE_UNUSED)
12934 {
12935 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12936 return bed->s->arch_size / 8;
12937 }
12938
12939 /* Routines to support the creation of dynamic relocs. */
12940
12941 /* Returns the name of the dynamic reloc section associated with SEC. */
12942
12943 static const char *
12944 get_dynamic_reloc_section_name (bfd * abfd,
12945 asection * sec,
12946 bfd_boolean is_rela)
12947 {
12948 char *name;
12949 const char *old_name = bfd_get_section_name (NULL, sec);
12950 const char *prefix = is_rela ? ".rela" : ".rel";
12951
12952 if (old_name == NULL)
12953 return NULL;
12954
12955 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12956 sprintf (name, "%s%s", prefix, old_name);
12957
12958 return name;
12959 }
12960
12961 /* Returns the dynamic reloc section associated with SEC.
12962 If necessary compute the name of the dynamic reloc section based
12963 on SEC's name (looked up in ABFD's string table) and the setting
12964 of IS_RELA. */
12965
12966 asection *
12967 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12968 asection * sec,
12969 bfd_boolean is_rela)
12970 {
12971 asection * reloc_sec = elf_section_data (sec)->sreloc;
12972
12973 if (reloc_sec == NULL)
12974 {
12975 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12976
12977 if (name != NULL)
12978 {
12979 reloc_sec = bfd_get_linker_section (abfd, name);
12980
12981 if (reloc_sec != NULL)
12982 elf_section_data (sec)->sreloc = reloc_sec;
12983 }
12984 }
12985
12986 return reloc_sec;
12987 }
12988
12989 /* Returns the dynamic reloc section associated with SEC. If the
12990 section does not exist it is created and attached to the DYNOBJ
12991 bfd and stored in the SRELOC field of SEC's elf_section_data
12992 structure.
12993
12994 ALIGNMENT is the alignment for the newly created section and
12995 IS_RELA defines whether the name should be .rela.<SEC's name>
12996 or .rel.<SEC's name>. The section name is looked up in the
12997 string table associated with ABFD. */
12998
12999 asection *
13000 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13001 bfd * dynobj,
13002 unsigned int alignment,
13003 bfd * abfd,
13004 bfd_boolean is_rela)
13005 {
13006 asection * reloc_sec = elf_section_data (sec)->sreloc;
13007
13008 if (reloc_sec == NULL)
13009 {
13010 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13011
13012 if (name == NULL)
13013 return NULL;
13014
13015 reloc_sec = bfd_get_linker_section (dynobj, name);
13016
13017 if (reloc_sec == NULL)
13018 {
13019 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13020 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13021 if ((sec->flags & SEC_ALLOC) != 0)
13022 flags |= SEC_ALLOC | SEC_LOAD;
13023
13024 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13025 if (reloc_sec != NULL)
13026 {
13027 /* _bfd_elf_get_sec_type_attr chooses a section type by
13028 name. Override as it may be wrong, eg. for a user
13029 section named "auto" we'll get ".relauto" which is
13030 seen to be a .rela section. */
13031 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13032 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13033 reloc_sec = NULL;
13034 }
13035 }
13036
13037 elf_section_data (sec)->sreloc = reloc_sec;
13038 }
13039
13040 return reloc_sec;
13041 }
13042
13043 /* Copy the ELF symbol type associated with a linker hash entry. */
13044 void
13045 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13046 struct bfd_link_hash_entry * hdest,
13047 struct bfd_link_hash_entry * hsrc)
13048 {
13049 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13050 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13051
13052 ehdest->type = ehsrc->type;
13053 ehdest->target_internal = ehsrc->target_internal;
13054 }
13055
13056 /* Append a RELA relocation REL to section S in BFD. */
13057
13058 void
13059 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13060 {
13061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13062 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13063 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13064 bed->s->swap_reloca_out (abfd, rel, loc);
13065 }
13066
13067 /* Append a REL relocation REL to section S in BFD. */
13068
13069 void
13070 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13071 {
13072 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13073 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13074 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13075 bed->s->swap_reloc_out (abfd, rel, loc);
13076 }
This page took 0.331594 seconds and 4 git commands to generate.