* elflink.c (elf_link_output_extsym): Strip defined plugin symbols
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (bed->elf_backend_create_dynamic_sections == NULL
289 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
307
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
311
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
322
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
328
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
332 {
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
338 }
339
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
348
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
351
352 if (bed->want_dynbss)
353 {
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->forced_local)
725 return TRUE;
726
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
729
730 return TRUE;
731 }
732
733
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
736
737 static bfd_boolean
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
739 void *data)
740 {
741 size_t *count = (size_t *) data;
742
743 if (!h->forced_local)
744 return TRUE;
745
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
748
749 return TRUE;
750 }
751
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
754 bfd_boolean
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
757 asection *p)
758 {
759 struct elf_link_hash_table *htab;
760
761 switch (elf_section_data (p)->this_hdr.sh_type)
762 {
763 case SHT_PROGBITS:
764 case SHT_NOBITS:
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
767 case SHT_NULL:
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
770 return FALSE;
771
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
774
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
778 {
779 asection *ip;
780
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
785 return TRUE;
786 }
787 return FALSE;
788
789 /* There shouldn't be section relative relocations
790 against any other section. */
791 default:
792 return TRUE;
793 }
794 }
795
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
800 symbols. */
801
802 static unsigned long
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
806 {
807 unsigned long dynsymcount = 0;
808
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
810 {
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
812 asection *p;
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
818 else
819 elf_section_data (p)->dynindx = 0;
820 }
821 *section_sym_count = dynsymcount;
822
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
825 &dynsymcount);
826
827 if (elf_hash_table (info)->dynlocal)
828 {
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
832 }
833
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
836 &dynsymcount);
837
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
842 ++dynsymcount;
843
844 elf_hash_table (info)->dynsymcount = dynsymcount;
845 return dynsymcount;
846 }
847
848 /* Merge st_other field. */
849
850 static void
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
853 bfd_boolean dynamic)
854 {
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
856
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
862 dynamic);
863
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
866 if (definition
867 && !dynamic
868 && (abfd->no_export
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
873
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
875 {
876 unsigned char hvis, symvis, other, nvis;
877
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
881
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
885 if (! hvis)
886 nvis = symvis;
887 else if (! symvis)
888 nvis = hvis;
889 else
890 nvis = hvis < symvis ? hvis : symvis;
891
892 h->other = other | nvis;
893 }
894 }
895
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
907
908 bfd_boolean
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
911 const char *name,
912 Elf_Internal_Sym *sym,
913 asection **psec,
914 bfd_vma *pvalue,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
917 bfd_boolean *skip,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
921 {
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
925 int bind;
926 bfd *oldbfd;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
930
931 *skip = FALSE;
932 *override = FALSE;
933
934 sec = *psec;
935 bind = ELF_ST_BIND (sym->st_info);
936
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
941 {
942 *skip = TRUE;
943 return TRUE;
944 }
945
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
948 else
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
951 if (h == NULL)
952 return FALSE;
953 *sym_hash = h;
954
955 bed = get_elf_backend_data (abfd);
956
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
960 return TRUE;
961
962 /* For merging, we only care about real symbols. */
963
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
967
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
970 symbols. */
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
972
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
976
977 if (h->root.type == bfd_link_hash_new)
978 {
979 h->non_elf = 0;
980 return TRUE;
981 }
982
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
984 existing symbol. */
985
986 switch (h->root.type)
987 {
988 default:
989 oldbfd = NULL;
990 oldsec = NULL;
991 break;
992
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1003 break;
1004
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1008 break;
1009 }
1010
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1085
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1087 "ld -u". */
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1123 else if (tdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1127 else
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1131
1132 bfd_set_error (bfd_error_bad_value);
1133 return FALSE;
1134 }
1135
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1140 {
1141 if (!bfd_is_und_section (sec))
1142 h->dynamic_def = 1;
1143 else
1144 {
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1149 {
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1152 }
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1155 }
1156 }
1157
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1160 if (newdyn
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1163 {
1164 *skip = TRUE;
1165 /* Make sure this symbol is dynamic. */
1166 h->ref_dynamic = 1;
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1169
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 else
1174 return TRUE;
1175 }
1176 else if (!newdyn
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1178 && h->def_dynamic)
1179 {
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1184 {
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1189 if (h->ref_regular)
1190 {
1191 struct elf_link_hash_entry *vh = *sym_hash;
1192
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1199 {
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1203 }
1204 else
1205 {
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1212 }
1213 h = vh;
1214 }
1215 else
1216 h = *sym_hash;
1217 }
1218
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1221 {
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1227 undefs list. */
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1230 }
1231 else
1232 {
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1235 }
1236
1237 if (h->def_dynamic)
1238 {
1239 h->def_dynamic = 0;
1240 h->ref_dynamic = 1;
1241 }
1242 /* FIXME: Should we check type and size for protected symbol? */
1243 h->size = 0;
1244 h->type = 0;
1245 return TRUE;
1246 }
1247
1248 if (bind == STB_GNU_UNIQUE)
1249 h->unique_global = 1;
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1362 return FALSE;
1363
1364 if (sym->st_size > h->size)
1365 h->size = sym->st_size;
1366
1367 *size_change_ok = TRUE;
1368 }
1369
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1376
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1383
1384 if (newdyn
1385 && newdef
1386 && (olddef
1387 || (h->root.type == bfd_link_hash_common
1388 && (newweak || newfunc))))
1389 {
1390 *override = TRUE;
1391 newdef = FALSE;
1392 newdyncommon = FALSE;
1393
1394 *psec = sec = bfd_und_section_ptr;
1395 *size_change_ok = TRUE;
1396
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1402
1403 if (h->root.type == bfd_link_hash_common)
1404 *type_change_ok = TRUE;
1405 }
1406
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1411 right thing. */
1412
1413 if (newdyncommon
1414 && h->root.type == bfd_link_hash_common)
1415 {
1416 *override = TRUE;
1417 newdef = FALSE;
1418 newdyncommon = FALSE;
1419 *pvalue = sym->st_size;
1420 *psec = sec = bed->common_section (oldsec);
1421 *size_change_ok = TRUE;
1422 }
1423
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef && olddef && newweak)
1426 {
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd != NULL
1429 && (oldbfd->flags & BFD_PLUGIN) != 0
1430 && (abfd->flags & BFD_PLUGIN) == 0))
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1556 {
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1569
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1580 {
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1687 {
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1814 return TRUE;
1815
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1818 return TRUE;
1819
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1824 {
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1826 {
1827 eif->failed = TRUE;
1828 return FALSE;
1829 }
1830 }
1831
1832 return TRUE;
1833 }
1834 \f
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1842 void *data)
1843 {
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1847 bfd_size_type amt;
1848
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
1851 if (!h->def_dynamic
1852 || h->def_regular
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1856
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1859 t != NULL;
1860 t = t->vn_nextref)
1861 {
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1863 continue;
1864
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1867 return TRUE;
1868
1869 break;
1870 }
1871
1872 /* This is a new version. Add it to tree we are building. */
1873
1874 if (t == NULL)
1875 {
1876 amt = sizeof *t;
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (t == NULL)
1879 {
1880 rinfo->failed = TRUE;
1881 return FALSE;
1882 }
1883
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1887 }
1888
1889 amt = sizeof *a;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (a == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1900 fixed. */
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1902
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1905
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1907 ++rinfo->vers;
1908
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1910
1911 t->vn_auxptr = a;
1912
1913 return TRUE;
1914 }
1915
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1928 char *p;
1929 bfd_size_type amt;
1930
1931 sinfo = (struct elf_info_failed *) data;
1932 info = sinfo->info;
1933
1934 /* Fix the symbol flags. */
1935 eif.failed = FALSE;
1936 eif.info = info;
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1938 {
1939 if (eif.failed)
1940 sinfo->failed = TRUE;
1941 return FALSE;
1942 }
1943
1944 /* We only need version numbers for symbols defined in regular
1945 objects. */
1946 if (!h->def_regular)
1947 return TRUE;
1948
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1952 {
1953 struct bfd_elf_version_tree *t;
1954 bfd_boolean hidden;
1955
1956 hidden = TRUE;
1957
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1960 ++p;
1961 if (*p == ELF_VER_CHR)
1962 {
1963 hidden = FALSE;
1964 ++p;
1965 }
1966
1967 /* If there is no version string, we can just return out. */
1968 if (*p == '\0')
1969 {
1970 if (hidden)
1971 h->hidden = 1;
1972 return TRUE;
1973 }
1974
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1977 {
1978 if (strcmp (t->name, p) == 0)
1979 {
1980 size_t len;
1981 char *alc;
1982 struct bfd_elf_version_expr *d;
1983
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1986 if (alc == NULL)
1987 {
1988 sinfo->failed = TRUE;
1989 return FALSE;
1990 }
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1995
1996 h->verinfo.vertree = t;
1997 t->used = TRUE;
1998 d = NULL;
1999
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2002
2003 /* See if there is anything to force this symbol to
2004 local scope. */
2005 if (d == NULL && t->locals.list != NULL)
2006 {
2007 d = (*t->match) (&t->locals, NULL, alc);
2008 if (d != NULL
2009 && h->dynindx != -1
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2012 }
2013
2014 free (alc);
2015 break;
2016 }
2017 }
2018
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2022 {
2023 struct bfd_elf_version_tree **pp;
2024 int version_index;
2025
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2029 return TRUE;
2030
2031 amt = sizeof *t;
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2033 if (t == NULL)
2034 {
2035 sinfo->failed = TRUE;
2036 return FALSE;
2037 }
2038
2039 t->name = p;
2040 t->name_indx = (unsigned int) -1;
2041 t->used = TRUE;
2042
2043 version_index = 1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->info->version_info;
2049 *pp != NULL;
2050 pp = &(*pp)->next)
2051 ++version_index;
2052 t->vernum = version_index;
2053
2054 *pp = t;
2055
2056 h->verinfo.vertree = t;
2057 }
2058 else if (t == NULL)
2059 {
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2067 return FALSE;
2068 }
2069
2070 if (hidden)
2071 h->hidden = 1;
2072 }
2073
2074 /* If we don't have a version for this symbol, see if we can find
2075 something. */
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2077 {
2078 bfd_boolean hide;
2079
2080 h->verinfo.vertree
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2096
2097 Returns FALSE if something goes wrong. */
2098
2099 static bfd_boolean
2100 elf_link_read_relocs_from_section (bfd *abfd,
2101 asection *sec,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2105 {
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2112 size_t nsyms;
2113
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2116 return FALSE;
2117
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2120 return FALSE;
2121
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2124
2125 bed = get_elf_backend_data (abfd);
2126
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2132 else
2133 {
2134 bfd_set_error (bfd_error_wrong_format);
2135 return FALSE;
2136 }
2137
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2142 {
2143 bfd_vma r_symndx;
2144
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2148 r_symndx >>= 24;
2149 if (nsyms > 0)
2150 {
2151 if ((size_t) r_symndx >= nsyms)
2152 {
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2156 abfd, sec,
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2159 return FALSE;
2160 }
2161 }
2162 else if (r_symndx != STN_UNDEF)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2174 }
2175
2176 return TRUE;
2177 }
2178
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2188
2189 Elf_Internal_Rela *
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2191 asection *o,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2195 {
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2201
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2204
2205 if (o->reloc_count == 0)
2206 return NULL;
2207
2208 if (internal_relocs == NULL)
2209 {
2210 bfd_size_type size;
2211
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2214 if (keep_memory)
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2216 else
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2219 goto error_return;
2220 }
2221
2222 if (external_relocs == NULL)
2223 {
2224 bfd_size_type size = 0;
2225
2226 if (esdo->rel.hdr)
2227 size += esdo->rel.hdr->sh_size;
2228 if (esdo->rela.hdr)
2229 size += esdo->rela.hdr->sh_size;
2230
2231 alloc1 = bfd_malloc (size);
2232 if (alloc1 == NULL)
2233 goto error_return;
2234 external_relocs = alloc1;
2235 }
2236
2237 internal_rela_relocs = internal_relocs;
2238 if (esdo->rel.hdr)
2239 {
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2241 external_relocs,
2242 internal_relocs))
2243 goto error_return;
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2248 }
2249
2250 if (esdo->rela.hdr
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2252 external_relocs,
2253 internal_rela_relocs)))
2254 goto error_return;
2255
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 esdo->relocs = internal_relocs;
2259
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2265
2266 return internal_relocs;
2267
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2272 {
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2277 }
2278 return NULL;
2279 }
2280
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2283
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2287 {
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2289
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2292
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2299 return FALSE;
2300
2301 if (reldata->hashes == NULL && reldata->count)
2302 {
2303 struct elf_link_hash_entry **p;
2304
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2307 if (p == NULL)
2308 return FALSE;
2309
2310 reldata->hashes = p;
2311 }
2312
2313 return TRUE;
2314 }
2315
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2318 OUTPUT_BFD. */
2319
2320 bfd_boolean
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2326 ATTRIBUTE_UNUSED)
2327 {
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2330 bfd_byte *erel;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2336
2337 output_section = input_section->output_section;
2338
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2345 }
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2348 {
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2351 }
2352 else
2353 {
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2358 return FALSE;
2359 }
2360
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2367 {
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2371 }
2372
2373 /* Bump the counter, so that we know where to add the next set of
2374 relocations. */
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2376
2377 return TRUE;
2378 }
2379 \f
2380 /* Make weak undefined symbols in PIE dynamic. */
2381
2382 bfd_boolean
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2385 {
2386 if (info->pie
2387 && h->dynindx == -1
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2390
2391 return TRUE;
2392 }
2393
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2399
2400 static bfd_boolean
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2403 {
2404 const struct elf_backend_data *bed;
2405
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2410 if (h->non_elf)
2411 {
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2414
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2417 {
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2420 }
2421 else
2422 {
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2426 {
2427 h->ref_regular = 1;
2428 h->ref_regular_nonweak = 1;
2429 }
2430 else
2431 h->def_regular = 1;
2432 }
2433
2434 if (h->dynindx == -1
2435 && (h->def_dynamic
2436 || h->ref_dynamic))
2437 {
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2439 {
2440 eif->failed = TRUE;
2441 return FALSE;
2442 }
2443 }
2444 }
2445 else
2446 {
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2455 && !h->def_regular
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2461 h->def_regular = 1;
2462 }
2463
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2468 return FALSE;
2469
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2476 && !h->def_regular
2477 && h->ref_regular
2478 && !h->def_dynamic
2479 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2480 h->def_regular = 1;
2481
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2488 if (h->needs_plt
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2493 && h->def_regular)
2494 {
2495 bfd_boolean force_local;
2496
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2500 }
2501
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2507
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2512 {
2513 struct elf_link_hash_entry *weakdef;
2514
2515 weakdef = h->u.weakdef;
2516 while (h->root.type == bfd_link_hash_indirect)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2520 || h->root.type == bfd_link_hash_defweak);
2521 BFD_ASSERT (weakdef->def_dynamic);
2522
2523 /* If the real definition is defined by a regular object file,
2524 don't do anything special. See the longer description in
2525 _bfd_elf_adjust_dynamic_symbol, below. */
2526 if (weakdef->def_regular)
2527 h->u.weakdef = NULL;
2528 else
2529 {
2530 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2531 || weakdef->root.type == bfd_link_hash_defweak);
2532 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2533 }
2534 }
2535
2536 return TRUE;
2537 }
2538
2539 /* Make the backend pick a good value for a dynamic symbol. This is
2540 called via elf_link_hash_traverse, and also calls itself
2541 recursively. */
2542
2543 static bfd_boolean
2544 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2545 {
2546 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2547 bfd *dynobj;
2548 const struct elf_backend_data *bed;
2549
2550 if (! is_elf_hash_table (eif->info->hash))
2551 return FALSE;
2552
2553 /* Ignore indirect symbols. These are added by the versioning code. */
2554 if (h->root.type == bfd_link_hash_indirect)
2555 return TRUE;
2556
2557 /* Fix the symbol flags. */
2558 if (! _bfd_elf_fix_symbol_flags (h, eif))
2559 return FALSE;
2560
2561 /* If this symbol does not require a PLT entry, and it is not
2562 defined by a dynamic object, or is not referenced by a regular
2563 object, ignore it. We do have to handle a weak defined symbol,
2564 even if no regular object refers to it, if we decided to add it
2565 to the dynamic symbol table. FIXME: Do we normally need to worry
2566 about symbols which are defined by one dynamic object and
2567 referenced by another one? */
2568 if (!h->needs_plt
2569 && h->type != STT_GNU_IFUNC
2570 && (h->def_regular
2571 || !h->def_dynamic
2572 || (!h->ref_regular
2573 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2574 {
2575 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2576 return TRUE;
2577 }
2578
2579 /* If we've already adjusted this symbol, don't do it again. This
2580 can happen via a recursive call. */
2581 if (h->dynamic_adjusted)
2582 return TRUE;
2583
2584 /* Don't look at this symbol again. Note that we must set this
2585 after checking the above conditions, because we may look at a
2586 symbol once, decide not to do anything, and then get called
2587 recursively later after REF_REGULAR is set below. */
2588 h->dynamic_adjusted = 1;
2589
2590 /* If this is a weak definition, and we know a real definition, and
2591 the real symbol is not itself defined by a regular object file,
2592 then get a good value for the real definition. We handle the
2593 real symbol first, for the convenience of the backend routine.
2594
2595 Note that there is a confusing case here. If the real definition
2596 is defined by a regular object file, we don't get the real symbol
2597 from the dynamic object, but we do get the weak symbol. If the
2598 processor backend uses a COPY reloc, then if some routine in the
2599 dynamic object changes the real symbol, we will not see that
2600 change in the corresponding weak symbol. This is the way other
2601 ELF linkers work as well, and seems to be a result of the shared
2602 library model.
2603
2604 I will clarify this issue. Most SVR4 shared libraries define the
2605 variable _timezone and define timezone as a weak synonym. The
2606 tzset call changes _timezone. If you write
2607 extern int timezone;
2608 int _timezone = 5;
2609 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2610 you might expect that, since timezone is a synonym for _timezone,
2611 the same number will print both times. However, if the processor
2612 backend uses a COPY reloc, then actually timezone will be copied
2613 into your process image, and, since you define _timezone
2614 yourself, _timezone will not. Thus timezone and _timezone will
2615 wind up at different memory locations. The tzset call will set
2616 _timezone, leaving timezone unchanged. */
2617
2618 if (h->u.weakdef != NULL)
2619 {
2620 /* If we get to this point, there is an implicit reference to
2621 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2622 h->u.weakdef->ref_regular = 1;
2623
2624 /* Ensure that the backend adjust_dynamic_symbol function sees
2625 H->U.WEAKDEF before H by recursively calling ourselves. */
2626 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2627 return FALSE;
2628 }
2629
2630 /* If a symbol has no type and no size and does not require a PLT
2631 entry, then we are probably about to do the wrong thing here: we
2632 are probably going to create a COPY reloc for an empty object.
2633 This case can arise when a shared object is built with assembly
2634 code, and the assembly code fails to set the symbol type. */
2635 if (h->size == 0
2636 && h->type == STT_NOTYPE
2637 && !h->needs_plt)
2638 (*_bfd_error_handler)
2639 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2640 h->root.root.string);
2641
2642 dynobj = elf_hash_table (eif->info)->dynobj;
2643 bed = get_elf_backend_data (dynobj);
2644
2645 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2646 {
2647 eif->failed = TRUE;
2648 return FALSE;
2649 }
2650
2651 return TRUE;
2652 }
2653
2654 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2655 DYNBSS. */
2656
2657 bfd_boolean
2658 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2659 asection *dynbss)
2660 {
2661 unsigned int power_of_two;
2662 bfd_vma mask;
2663 asection *sec = h->root.u.def.section;
2664
2665 /* The section aligment of definition is the maximum alignment
2666 requirement of symbols defined in the section. Since we don't
2667 know the symbol alignment requirement, we start with the
2668 maximum alignment and check low bits of the symbol address
2669 for the minimum alignment. */
2670 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2671 mask = ((bfd_vma) 1 << power_of_two) - 1;
2672 while ((h->root.u.def.value & mask) != 0)
2673 {
2674 mask >>= 1;
2675 --power_of_two;
2676 }
2677
2678 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2679 dynbss))
2680 {
2681 /* Adjust the section alignment if needed. */
2682 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2683 power_of_two))
2684 return FALSE;
2685 }
2686
2687 /* We make sure that the symbol will be aligned properly. */
2688 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2689
2690 /* Define the symbol as being at this point in DYNBSS. */
2691 h->root.u.def.section = dynbss;
2692 h->root.u.def.value = dynbss->size;
2693
2694 /* Increment the size of DYNBSS to make room for the symbol. */
2695 dynbss->size += h->size;
2696
2697 return TRUE;
2698 }
2699
2700 /* Adjust all external symbols pointing into SEC_MERGE sections
2701 to reflect the object merging within the sections. */
2702
2703 static bfd_boolean
2704 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2705 {
2706 asection *sec;
2707
2708 if ((h->root.type == bfd_link_hash_defined
2709 || h->root.type == bfd_link_hash_defweak)
2710 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2711 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2712 {
2713 bfd *output_bfd = (bfd *) data;
2714
2715 h->root.u.def.value =
2716 _bfd_merged_section_offset (output_bfd,
2717 &h->root.u.def.section,
2718 elf_section_data (sec)->sec_info,
2719 h->root.u.def.value);
2720 }
2721
2722 return TRUE;
2723 }
2724
2725 /* Returns false if the symbol referred to by H should be considered
2726 to resolve local to the current module, and true if it should be
2727 considered to bind dynamically. */
2728
2729 bfd_boolean
2730 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2731 struct bfd_link_info *info,
2732 bfd_boolean not_local_protected)
2733 {
2734 bfd_boolean binding_stays_local_p;
2735 const struct elf_backend_data *bed;
2736 struct elf_link_hash_table *hash_table;
2737
2738 if (h == NULL)
2739 return FALSE;
2740
2741 while (h->root.type == bfd_link_hash_indirect
2742 || h->root.type == bfd_link_hash_warning)
2743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2744
2745 /* If it was forced local, then clearly it's not dynamic. */
2746 if (h->dynindx == -1)
2747 return FALSE;
2748 if (h->forced_local)
2749 return FALSE;
2750
2751 /* Identify the cases where name binding rules say that a
2752 visible symbol resolves locally. */
2753 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2754
2755 switch (ELF_ST_VISIBILITY (h->other))
2756 {
2757 case STV_INTERNAL:
2758 case STV_HIDDEN:
2759 return FALSE;
2760
2761 case STV_PROTECTED:
2762 hash_table = elf_hash_table (info);
2763 if (!is_elf_hash_table (hash_table))
2764 return FALSE;
2765
2766 bed = get_elf_backend_data (hash_table->dynobj);
2767
2768 /* Proper resolution for function pointer equality may require
2769 that these symbols perhaps be resolved dynamically, even though
2770 we should be resolving them to the current module. */
2771 if (!not_local_protected || !bed->is_function_type (h->type))
2772 binding_stays_local_p = TRUE;
2773 break;
2774
2775 default:
2776 break;
2777 }
2778
2779 /* If it isn't defined locally, then clearly it's dynamic. */
2780 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2781 return TRUE;
2782
2783 /* Otherwise, the symbol is dynamic if binding rules don't tell
2784 us that it remains local. */
2785 return !binding_stays_local_p;
2786 }
2787
2788 /* Return true if the symbol referred to by H should be considered
2789 to resolve local to the current module, and false otherwise. Differs
2790 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2791 undefined symbols. The two functions are virtually identical except
2792 for the place where forced_local and dynindx == -1 are tested. If
2793 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2794 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2795 the symbol is local only for defined symbols.
2796 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2797 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2798 treatment of undefined weak symbols. For those that do not make
2799 undefined weak symbols dynamic, both functions may return false. */
2800
2801 bfd_boolean
2802 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2803 struct bfd_link_info *info,
2804 bfd_boolean local_protected)
2805 {
2806 const struct elf_backend_data *bed;
2807 struct elf_link_hash_table *hash_table;
2808
2809 /* If it's a local sym, of course we resolve locally. */
2810 if (h == NULL)
2811 return TRUE;
2812
2813 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2814 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2815 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2816 return TRUE;
2817
2818 /* Common symbols that become definitions don't get the DEF_REGULAR
2819 flag set, so test it first, and don't bail out. */
2820 if (ELF_COMMON_DEF_P (h))
2821 /* Do nothing. */;
2822 /* If we don't have a definition in a regular file, then we can't
2823 resolve locally. The sym is either undefined or dynamic. */
2824 else if (!h->def_regular)
2825 return FALSE;
2826
2827 /* Forced local symbols resolve locally. */
2828 if (h->forced_local)
2829 return TRUE;
2830
2831 /* As do non-dynamic symbols. */
2832 if (h->dynindx == -1)
2833 return TRUE;
2834
2835 /* At this point, we know the symbol is defined and dynamic. In an
2836 executable it must resolve locally, likewise when building symbolic
2837 shared libraries. */
2838 if (info->executable || SYMBOLIC_BIND (info, h))
2839 return TRUE;
2840
2841 /* Now deal with defined dynamic symbols in shared libraries. Ones
2842 with default visibility might not resolve locally. */
2843 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2844 return FALSE;
2845
2846 hash_table = elf_hash_table (info);
2847 if (!is_elf_hash_table (hash_table))
2848 return TRUE;
2849
2850 bed = get_elf_backend_data (hash_table->dynobj);
2851
2852 /* STV_PROTECTED non-function symbols are local. */
2853 if (!bed->is_function_type (h->type))
2854 return TRUE;
2855
2856 /* Function pointer equality tests may require that STV_PROTECTED
2857 symbols be treated as dynamic symbols. If the address of a
2858 function not defined in an executable is set to that function's
2859 plt entry in the executable, then the address of the function in
2860 a shared library must also be the plt entry in the executable. */
2861 return local_protected;
2862 }
2863
2864 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2865 aligned. Returns the first TLS output section. */
2866
2867 struct bfd_section *
2868 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2869 {
2870 struct bfd_section *sec, *tls;
2871 unsigned int align = 0;
2872
2873 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2874 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2875 break;
2876 tls = sec;
2877
2878 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2879 if (sec->alignment_power > align)
2880 align = sec->alignment_power;
2881
2882 elf_hash_table (info)->tls_sec = tls;
2883
2884 /* Ensure the alignment of the first section is the largest alignment,
2885 so that the tls segment starts aligned. */
2886 if (tls != NULL)
2887 tls->alignment_power = align;
2888
2889 return tls;
2890 }
2891
2892 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2893 static bfd_boolean
2894 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2895 Elf_Internal_Sym *sym)
2896 {
2897 const struct elf_backend_data *bed;
2898
2899 /* Local symbols do not count, but target specific ones might. */
2900 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2901 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2902 return FALSE;
2903
2904 bed = get_elf_backend_data (abfd);
2905 /* Function symbols do not count. */
2906 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2907 return FALSE;
2908
2909 /* If the section is undefined, then so is the symbol. */
2910 if (sym->st_shndx == SHN_UNDEF)
2911 return FALSE;
2912
2913 /* If the symbol is defined in the common section, then
2914 it is a common definition and so does not count. */
2915 if (bed->common_definition (sym))
2916 return FALSE;
2917
2918 /* If the symbol is in a target specific section then we
2919 must rely upon the backend to tell us what it is. */
2920 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2921 /* FIXME - this function is not coded yet:
2922
2923 return _bfd_is_global_symbol_definition (abfd, sym);
2924
2925 Instead for now assume that the definition is not global,
2926 Even if this is wrong, at least the linker will behave
2927 in the same way that it used to do. */
2928 return FALSE;
2929
2930 return TRUE;
2931 }
2932
2933 /* Search the symbol table of the archive element of the archive ABFD
2934 whose archive map contains a mention of SYMDEF, and determine if
2935 the symbol is defined in this element. */
2936 static bfd_boolean
2937 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2938 {
2939 Elf_Internal_Shdr * hdr;
2940 bfd_size_type symcount;
2941 bfd_size_type extsymcount;
2942 bfd_size_type extsymoff;
2943 Elf_Internal_Sym *isymbuf;
2944 Elf_Internal_Sym *isym;
2945 Elf_Internal_Sym *isymend;
2946 bfd_boolean result;
2947
2948 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2949 if (abfd == NULL)
2950 return FALSE;
2951
2952 if (! bfd_check_format (abfd, bfd_object))
2953 return FALSE;
2954
2955 /* If we have already included the element containing this symbol in the
2956 link then we do not need to include it again. Just claim that any symbol
2957 it contains is not a definition, so that our caller will not decide to
2958 (re)include this element. */
2959 if (abfd->archive_pass)
2960 return FALSE;
2961
2962 /* Select the appropriate symbol table. */
2963 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2964 hdr = &elf_tdata (abfd)->symtab_hdr;
2965 else
2966 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2967
2968 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2969
2970 /* The sh_info field of the symtab header tells us where the
2971 external symbols start. We don't care about the local symbols. */
2972 if (elf_bad_symtab (abfd))
2973 {
2974 extsymcount = symcount;
2975 extsymoff = 0;
2976 }
2977 else
2978 {
2979 extsymcount = symcount - hdr->sh_info;
2980 extsymoff = hdr->sh_info;
2981 }
2982
2983 if (extsymcount == 0)
2984 return FALSE;
2985
2986 /* Read in the symbol table. */
2987 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2988 NULL, NULL, NULL);
2989 if (isymbuf == NULL)
2990 return FALSE;
2991
2992 /* Scan the symbol table looking for SYMDEF. */
2993 result = FALSE;
2994 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2995 {
2996 const char *name;
2997
2998 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2999 isym->st_name);
3000 if (name == NULL)
3001 break;
3002
3003 if (strcmp (name, symdef->name) == 0)
3004 {
3005 result = is_global_data_symbol_definition (abfd, isym);
3006 break;
3007 }
3008 }
3009
3010 free (isymbuf);
3011
3012 return result;
3013 }
3014 \f
3015 /* Add an entry to the .dynamic table. */
3016
3017 bfd_boolean
3018 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3019 bfd_vma tag,
3020 bfd_vma val)
3021 {
3022 struct elf_link_hash_table *hash_table;
3023 const struct elf_backend_data *bed;
3024 asection *s;
3025 bfd_size_type newsize;
3026 bfd_byte *newcontents;
3027 Elf_Internal_Dyn dyn;
3028
3029 hash_table = elf_hash_table (info);
3030 if (! is_elf_hash_table (hash_table))
3031 return FALSE;
3032
3033 bed = get_elf_backend_data (hash_table->dynobj);
3034 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3035 BFD_ASSERT (s != NULL);
3036
3037 newsize = s->size + bed->s->sizeof_dyn;
3038 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3039 if (newcontents == NULL)
3040 return FALSE;
3041
3042 dyn.d_tag = tag;
3043 dyn.d_un.d_val = val;
3044 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3045
3046 s->size = newsize;
3047 s->contents = newcontents;
3048
3049 return TRUE;
3050 }
3051
3052 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3053 otherwise just check whether one already exists. Returns -1 on error,
3054 1 if a DT_NEEDED tag already exists, and 0 on success. */
3055
3056 static int
3057 elf_add_dt_needed_tag (bfd *abfd,
3058 struct bfd_link_info *info,
3059 const char *soname,
3060 bfd_boolean do_it)
3061 {
3062 struct elf_link_hash_table *hash_table;
3063 bfd_size_type oldsize;
3064 bfd_size_type strindex;
3065
3066 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3067 return -1;
3068
3069 hash_table = elf_hash_table (info);
3070 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3071 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3072 if (strindex == (bfd_size_type) -1)
3073 return -1;
3074
3075 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3076 {
3077 asection *sdyn;
3078 const struct elf_backend_data *bed;
3079 bfd_byte *extdyn;
3080
3081 bed = get_elf_backend_data (hash_table->dynobj);
3082 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3083 if (sdyn != NULL)
3084 for (extdyn = sdyn->contents;
3085 extdyn < sdyn->contents + sdyn->size;
3086 extdyn += bed->s->sizeof_dyn)
3087 {
3088 Elf_Internal_Dyn dyn;
3089
3090 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3091 if (dyn.d_tag == DT_NEEDED
3092 && dyn.d_un.d_val == strindex)
3093 {
3094 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3095 return 1;
3096 }
3097 }
3098 }
3099
3100 if (do_it)
3101 {
3102 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3103 return -1;
3104
3105 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3106 return -1;
3107 }
3108 else
3109 /* We were just checking for existence of the tag. */
3110 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3111
3112 return 0;
3113 }
3114
3115 static bfd_boolean
3116 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3117 {
3118 for (; needed != NULL; needed = needed->next)
3119 if (strcmp (soname, needed->name) == 0)
3120 return TRUE;
3121
3122 return FALSE;
3123 }
3124
3125 /* Sort symbol by value and section. */
3126 static int
3127 elf_sort_symbol (const void *arg1, const void *arg2)
3128 {
3129 const struct elf_link_hash_entry *h1;
3130 const struct elf_link_hash_entry *h2;
3131 bfd_signed_vma vdiff;
3132
3133 h1 = *(const struct elf_link_hash_entry **) arg1;
3134 h2 = *(const struct elf_link_hash_entry **) arg2;
3135 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3136 if (vdiff != 0)
3137 return vdiff > 0 ? 1 : -1;
3138 else
3139 {
3140 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3141 if (sdiff != 0)
3142 return sdiff > 0 ? 1 : -1;
3143 }
3144 return 0;
3145 }
3146
3147 /* This function is used to adjust offsets into .dynstr for
3148 dynamic symbols. This is called via elf_link_hash_traverse. */
3149
3150 static bfd_boolean
3151 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3152 {
3153 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3154
3155 if (h->dynindx != -1)
3156 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3157 return TRUE;
3158 }
3159
3160 /* Assign string offsets in .dynstr, update all structures referencing
3161 them. */
3162
3163 static bfd_boolean
3164 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3165 {
3166 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3167 struct elf_link_local_dynamic_entry *entry;
3168 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3169 bfd *dynobj = hash_table->dynobj;
3170 asection *sdyn;
3171 bfd_size_type size;
3172 const struct elf_backend_data *bed;
3173 bfd_byte *extdyn;
3174
3175 _bfd_elf_strtab_finalize (dynstr);
3176 size = _bfd_elf_strtab_size (dynstr);
3177
3178 bed = get_elf_backend_data (dynobj);
3179 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3180 BFD_ASSERT (sdyn != NULL);
3181
3182 /* Update all .dynamic entries referencing .dynstr strings. */
3183 for (extdyn = sdyn->contents;
3184 extdyn < sdyn->contents + sdyn->size;
3185 extdyn += bed->s->sizeof_dyn)
3186 {
3187 Elf_Internal_Dyn dyn;
3188
3189 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3190 switch (dyn.d_tag)
3191 {
3192 case DT_STRSZ:
3193 dyn.d_un.d_val = size;
3194 break;
3195 case DT_NEEDED:
3196 case DT_SONAME:
3197 case DT_RPATH:
3198 case DT_RUNPATH:
3199 case DT_FILTER:
3200 case DT_AUXILIARY:
3201 case DT_AUDIT:
3202 case DT_DEPAUDIT:
3203 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3204 break;
3205 default:
3206 continue;
3207 }
3208 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3209 }
3210
3211 /* Now update local dynamic symbols. */
3212 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3213 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3214 entry->isym.st_name);
3215
3216 /* And the rest of dynamic symbols. */
3217 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3218
3219 /* Adjust version definitions. */
3220 if (elf_tdata (output_bfd)->cverdefs)
3221 {
3222 asection *s;
3223 bfd_byte *p;
3224 bfd_size_type i;
3225 Elf_Internal_Verdef def;
3226 Elf_Internal_Verdaux defaux;
3227
3228 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3229 p = s->contents;
3230 do
3231 {
3232 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3233 &def);
3234 p += sizeof (Elf_External_Verdef);
3235 if (def.vd_aux != sizeof (Elf_External_Verdef))
3236 continue;
3237 for (i = 0; i < def.vd_cnt; ++i)
3238 {
3239 _bfd_elf_swap_verdaux_in (output_bfd,
3240 (Elf_External_Verdaux *) p, &defaux);
3241 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3242 defaux.vda_name);
3243 _bfd_elf_swap_verdaux_out (output_bfd,
3244 &defaux, (Elf_External_Verdaux *) p);
3245 p += sizeof (Elf_External_Verdaux);
3246 }
3247 }
3248 while (def.vd_next);
3249 }
3250
3251 /* Adjust version references. */
3252 if (elf_tdata (output_bfd)->verref)
3253 {
3254 asection *s;
3255 bfd_byte *p;
3256 bfd_size_type i;
3257 Elf_Internal_Verneed need;
3258 Elf_Internal_Vernaux needaux;
3259
3260 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3261 p = s->contents;
3262 do
3263 {
3264 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3265 &need);
3266 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3267 _bfd_elf_swap_verneed_out (output_bfd, &need,
3268 (Elf_External_Verneed *) p);
3269 p += sizeof (Elf_External_Verneed);
3270 for (i = 0; i < need.vn_cnt; ++i)
3271 {
3272 _bfd_elf_swap_vernaux_in (output_bfd,
3273 (Elf_External_Vernaux *) p, &needaux);
3274 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3275 needaux.vna_name);
3276 _bfd_elf_swap_vernaux_out (output_bfd,
3277 &needaux,
3278 (Elf_External_Vernaux *) p);
3279 p += sizeof (Elf_External_Vernaux);
3280 }
3281 }
3282 while (need.vn_next);
3283 }
3284
3285 return TRUE;
3286 }
3287 \f
3288 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3289 The default is to only match when the INPUT and OUTPUT are exactly
3290 the same target. */
3291
3292 bfd_boolean
3293 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3294 const bfd_target *output)
3295 {
3296 return input == output;
3297 }
3298
3299 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3300 This version is used when different targets for the same architecture
3301 are virtually identical. */
3302
3303 bfd_boolean
3304 _bfd_elf_relocs_compatible (const bfd_target *input,
3305 const bfd_target *output)
3306 {
3307 const struct elf_backend_data *obed, *ibed;
3308
3309 if (input == output)
3310 return TRUE;
3311
3312 ibed = xvec_get_elf_backend_data (input);
3313 obed = xvec_get_elf_backend_data (output);
3314
3315 if (ibed->arch != obed->arch)
3316 return FALSE;
3317
3318 /* If both backends are using this function, deem them compatible. */
3319 return ibed->relocs_compatible == obed->relocs_compatible;
3320 }
3321
3322 /* Add symbols from an ELF object file to the linker hash table. */
3323
3324 static bfd_boolean
3325 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3326 {
3327 Elf_Internal_Ehdr *ehdr;
3328 Elf_Internal_Shdr *hdr;
3329 bfd_size_type symcount;
3330 bfd_size_type extsymcount;
3331 bfd_size_type extsymoff;
3332 struct elf_link_hash_entry **sym_hash;
3333 bfd_boolean dynamic;
3334 Elf_External_Versym *extversym = NULL;
3335 Elf_External_Versym *ever;
3336 struct elf_link_hash_entry *weaks;
3337 struct elf_link_hash_entry **nondeflt_vers = NULL;
3338 bfd_size_type nondeflt_vers_cnt = 0;
3339 Elf_Internal_Sym *isymbuf = NULL;
3340 Elf_Internal_Sym *isym;
3341 Elf_Internal_Sym *isymend;
3342 const struct elf_backend_data *bed;
3343 bfd_boolean add_needed;
3344 struct elf_link_hash_table *htab;
3345 bfd_size_type amt;
3346 void *alloc_mark = NULL;
3347 struct bfd_hash_entry **old_table = NULL;
3348 unsigned int old_size = 0;
3349 unsigned int old_count = 0;
3350 void *old_tab = NULL;
3351 void *old_hash;
3352 void *old_ent;
3353 struct bfd_link_hash_entry *old_undefs = NULL;
3354 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3355 long old_dynsymcount = 0;
3356 size_t tabsize = 0;
3357 size_t hashsize = 0;
3358
3359 htab = elf_hash_table (info);
3360 bed = get_elf_backend_data (abfd);
3361
3362 if ((abfd->flags & DYNAMIC) == 0)
3363 dynamic = FALSE;
3364 else
3365 {
3366 dynamic = TRUE;
3367
3368 /* You can't use -r against a dynamic object. Also, there's no
3369 hope of using a dynamic object which does not exactly match
3370 the format of the output file. */
3371 if (info->relocatable
3372 || !is_elf_hash_table (htab)
3373 || info->output_bfd->xvec != abfd->xvec)
3374 {
3375 if (info->relocatable)
3376 bfd_set_error (bfd_error_invalid_operation);
3377 else
3378 bfd_set_error (bfd_error_wrong_format);
3379 goto error_return;
3380 }
3381 }
3382
3383 ehdr = elf_elfheader (abfd);
3384 if (info->warn_alternate_em
3385 && bed->elf_machine_code != ehdr->e_machine
3386 && ((bed->elf_machine_alt1 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt1)
3388 || (bed->elf_machine_alt2 != 0
3389 && ehdr->e_machine == bed->elf_machine_alt2)))
3390 info->callbacks->einfo
3391 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3392 ehdr->e_machine, abfd, bed->elf_machine_code);
3393
3394 /* As a GNU extension, any input sections which are named
3395 .gnu.warning.SYMBOL are treated as warning symbols for the given
3396 symbol. This differs from .gnu.warning sections, which generate
3397 warnings when they are included in an output file. */
3398 /* PR 12761: Also generate this warning when building shared libraries. */
3399 if (info->executable || info->shared)
3400 {
3401 asection *s;
3402
3403 for (s = abfd->sections; s != NULL; s = s->next)
3404 {
3405 const char *name;
3406
3407 name = bfd_get_section_name (abfd, s);
3408 if (CONST_STRNEQ (name, ".gnu.warning."))
3409 {
3410 char *msg;
3411 bfd_size_type sz;
3412
3413 name += sizeof ".gnu.warning." - 1;
3414
3415 /* If this is a shared object, then look up the symbol
3416 in the hash table. If it is there, and it is already
3417 been defined, then we will not be using the entry
3418 from this shared object, so we don't need to warn.
3419 FIXME: If we see the definition in a regular object
3420 later on, we will warn, but we shouldn't. The only
3421 fix is to keep track of what warnings we are supposed
3422 to emit, and then handle them all at the end of the
3423 link. */
3424 if (dynamic)
3425 {
3426 struct elf_link_hash_entry *h;
3427
3428 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3429
3430 /* FIXME: What about bfd_link_hash_common? */
3431 if (h != NULL
3432 && (h->root.type == bfd_link_hash_defined
3433 || h->root.type == bfd_link_hash_defweak))
3434 {
3435 /* We don't want to issue this warning. Clobber
3436 the section size so that the warning does not
3437 get copied into the output file. */
3438 s->size = 0;
3439 continue;
3440 }
3441 }
3442
3443 sz = s->size;
3444 msg = (char *) bfd_alloc (abfd, sz + 1);
3445 if (msg == NULL)
3446 goto error_return;
3447
3448 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3449 goto error_return;
3450
3451 msg[sz] = '\0';
3452
3453 if (! (_bfd_generic_link_add_one_symbol
3454 (info, abfd, name, BSF_WARNING, s, 0, msg,
3455 FALSE, bed->collect, NULL)))
3456 goto error_return;
3457
3458 if (! info->relocatable)
3459 {
3460 /* Clobber the section size so that the warning does
3461 not get copied into the output file. */
3462 s->size = 0;
3463
3464 /* Also set SEC_EXCLUDE, so that symbols defined in
3465 the warning section don't get copied to the output. */
3466 s->flags |= SEC_EXCLUDE;
3467 }
3468 }
3469 }
3470 }
3471
3472 add_needed = TRUE;
3473 if (! dynamic)
3474 {
3475 /* If we are creating a shared library, create all the dynamic
3476 sections immediately. We need to attach them to something,
3477 so we attach them to this BFD, provided it is the right
3478 format. FIXME: If there are no input BFD's of the same
3479 format as the output, we can't make a shared library. */
3480 if (info->shared
3481 && is_elf_hash_table (htab)
3482 && info->output_bfd->xvec == abfd->xvec
3483 && !htab->dynamic_sections_created)
3484 {
3485 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3486 goto error_return;
3487 }
3488 }
3489 else if (!is_elf_hash_table (htab))
3490 goto error_return;
3491 else
3492 {
3493 asection *s;
3494 const char *soname = NULL;
3495 char *audit = NULL;
3496 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3497 int ret;
3498
3499 /* ld --just-symbols and dynamic objects don't mix very well.
3500 ld shouldn't allow it. */
3501 if ((s = abfd->sections) != NULL
3502 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3503 abort ();
3504
3505 /* If this dynamic lib was specified on the command line with
3506 --as-needed in effect, then we don't want to add a DT_NEEDED
3507 tag unless the lib is actually used. Similary for libs brought
3508 in by another lib's DT_NEEDED. When --no-add-needed is used
3509 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3510 any dynamic library in DT_NEEDED tags in the dynamic lib at
3511 all. */
3512 add_needed = (elf_dyn_lib_class (abfd)
3513 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3514 | DYN_NO_NEEDED)) == 0;
3515
3516 s = bfd_get_section_by_name (abfd, ".dynamic");
3517 if (s != NULL)
3518 {
3519 bfd_byte *dynbuf;
3520 bfd_byte *extdyn;
3521 unsigned int elfsec;
3522 unsigned long shlink;
3523
3524 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3525 {
3526 error_free_dyn:
3527 free (dynbuf);
3528 goto error_return;
3529 }
3530
3531 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3532 if (elfsec == SHN_BAD)
3533 goto error_free_dyn;
3534 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3535
3536 for (extdyn = dynbuf;
3537 extdyn < dynbuf + s->size;
3538 extdyn += bed->s->sizeof_dyn)
3539 {
3540 Elf_Internal_Dyn dyn;
3541
3542 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3543 if (dyn.d_tag == DT_SONAME)
3544 {
3545 unsigned int tagv = dyn.d_un.d_val;
3546 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3547 if (soname == NULL)
3548 goto error_free_dyn;
3549 }
3550 if (dyn.d_tag == DT_NEEDED)
3551 {
3552 struct bfd_link_needed_list *n, **pn;
3553 char *fnm, *anm;
3554 unsigned int tagv = dyn.d_un.d_val;
3555
3556 amt = sizeof (struct bfd_link_needed_list);
3557 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3558 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3559 if (n == NULL || fnm == NULL)
3560 goto error_free_dyn;
3561 amt = strlen (fnm) + 1;
3562 anm = (char *) bfd_alloc (abfd, amt);
3563 if (anm == NULL)
3564 goto error_free_dyn;
3565 memcpy (anm, fnm, amt);
3566 n->name = anm;
3567 n->by = abfd;
3568 n->next = NULL;
3569 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3570 ;
3571 *pn = n;
3572 }
3573 if (dyn.d_tag == DT_RUNPATH)
3574 {
3575 struct bfd_link_needed_list *n, **pn;
3576 char *fnm, *anm;
3577 unsigned int tagv = dyn.d_un.d_val;
3578
3579 amt = sizeof (struct bfd_link_needed_list);
3580 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3581 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (n == NULL || fnm == NULL)
3583 goto error_free_dyn;
3584 amt = strlen (fnm) + 1;
3585 anm = (char *) bfd_alloc (abfd, amt);
3586 if (anm == NULL)
3587 goto error_free_dyn;
3588 memcpy (anm, fnm, amt);
3589 n->name = anm;
3590 n->by = abfd;
3591 n->next = NULL;
3592 for (pn = & runpath;
3593 *pn != NULL;
3594 pn = &(*pn)->next)
3595 ;
3596 *pn = n;
3597 }
3598 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3599 if (!runpath && dyn.d_tag == DT_RPATH)
3600 {
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3604
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & rpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3621 ;
3622 *pn = n;
3623 }
3624 if (dyn.d_tag == DT_AUDIT)
3625 {
3626 unsigned int tagv = dyn.d_un.d_val;
3627 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3628 }
3629 }
3630
3631 free (dynbuf);
3632 }
3633
3634 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3635 frees all more recently bfd_alloc'd blocks as well. */
3636 if (runpath)
3637 rpath = runpath;
3638
3639 if (rpath)
3640 {
3641 struct bfd_link_needed_list **pn;
3642 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3643 ;
3644 *pn = rpath;
3645 }
3646
3647 /* We do not want to include any of the sections in a dynamic
3648 object in the output file. We hack by simply clobbering the
3649 list of sections in the BFD. This could be handled more
3650 cleanly by, say, a new section flag; the existing
3651 SEC_NEVER_LOAD flag is not the one we want, because that one
3652 still implies that the section takes up space in the output
3653 file. */
3654 bfd_section_list_clear (abfd);
3655
3656 /* Find the name to use in a DT_NEEDED entry that refers to this
3657 object. If the object has a DT_SONAME entry, we use it.
3658 Otherwise, if the generic linker stuck something in
3659 elf_dt_name, we use that. Otherwise, we just use the file
3660 name. */
3661 if (soname == NULL || *soname == '\0')
3662 {
3663 soname = elf_dt_name (abfd);
3664 if (soname == NULL || *soname == '\0')
3665 soname = bfd_get_filename (abfd);
3666 }
3667
3668 /* Save the SONAME because sometimes the linker emulation code
3669 will need to know it. */
3670 elf_dt_name (abfd) = soname;
3671
3672 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3673 if (ret < 0)
3674 goto error_return;
3675
3676 /* If we have already included this dynamic object in the
3677 link, just ignore it. There is no reason to include a
3678 particular dynamic object more than once. */
3679 if (ret > 0)
3680 return TRUE;
3681
3682 /* Save the DT_AUDIT entry for the linker emulation code. */
3683 elf_dt_audit (abfd) = audit;
3684 }
3685
3686 /* If this is a dynamic object, we always link against the .dynsym
3687 symbol table, not the .symtab symbol table. The dynamic linker
3688 will only see the .dynsym symbol table, so there is no reason to
3689 look at .symtab for a dynamic object. */
3690
3691 if (! dynamic || elf_dynsymtab (abfd) == 0)
3692 hdr = &elf_tdata (abfd)->symtab_hdr;
3693 else
3694 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3695
3696 symcount = hdr->sh_size / bed->s->sizeof_sym;
3697
3698 /* The sh_info field of the symtab header tells us where the
3699 external symbols start. We don't care about the local symbols at
3700 this point. */
3701 if (elf_bad_symtab (abfd))
3702 {
3703 extsymcount = symcount;
3704 extsymoff = 0;
3705 }
3706 else
3707 {
3708 extsymcount = symcount - hdr->sh_info;
3709 extsymoff = hdr->sh_info;
3710 }
3711
3712 sym_hash = NULL;
3713 if (extsymcount != 0)
3714 {
3715 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3716 NULL, NULL, NULL);
3717 if (isymbuf == NULL)
3718 goto error_return;
3719
3720 /* We store a pointer to the hash table entry for each external
3721 symbol. */
3722 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3723 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3724 if (sym_hash == NULL)
3725 goto error_free_sym;
3726 elf_sym_hashes (abfd) = sym_hash;
3727 }
3728
3729 if (dynamic)
3730 {
3731 /* Read in any version definitions. */
3732 if (!_bfd_elf_slurp_version_tables (abfd,
3733 info->default_imported_symver))
3734 goto error_free_sym;
3735
3736 /* Read in the symbol versions, but don't bother to convert them
3737 to internal format. */
3738 if (elf_dynversym (abfd) != 0)
3739 {
3740 Elf_Internal_Shdr *versymhdr;
3741
3742 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3743 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3744 if (extversym == NULL)
3745 goto error_free_sym;
3746 amt = versymhdr->sh_size;
3747 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3748 || bfd_bread (extversym, amt, abfd) != amt)
3749 goto error_free_vers;
3750 }
3751 }
3752
3753 /* If we are loading an as-needed shared lib, save the symbol table
3754 state before we start adding symbols. If the lib turns out
3755 to be unneeded, restore the state. */
3756 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3757 {
3758 unsigned int i;
3759 size_t entsize;
3760
3761 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3762 {
3763 struct bfd_hash_entry *p;
3764 struct elf_link_hash_entry *h;
3765
3766 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3767 {
3768 h = (struct elf_link_hash_entry *) p;
3769 entsize += htab->root.table.entsize;
3770 if (h->root.type == bfd_link_hash_warning)
3771 entsize += htab->root.table.entsize;
3772 }
3773 }
3774
3775 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3776 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3777 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3778 if (old_tab == NULL)
3779 goto error_free_vers;
3780
3781 /* Remember the current objalloc pointer, so that all mem for
3782 symbols added can later be reclaimed. */
3783 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3784 if (alloc_mark == NULL)
3785 goto error_free_vers;
3786
3787 /* Make a special call to the linker "notice" function to
3788 tell it that we are about to handle an as-needed lib. */
3789 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3790 notice_as_needed, 0, NULL))
3791 goto error_free_vers;
3792
3793 /* Clone the symbol table and sym hashes. Remember some
3794 pointers into the symbol table, and dynamic symbol count. */
3795 old_hash = (char *) old_tab + tabsize;
3796 old_ent = (char *) old_hash + hashsize;
3797 memcpy (old_tab, htab->root.table.table, tabsize);
3798 memcpy (old_hash, sym_hash, hashsize);
3799 old_undefs = htab->root.undefs;
3800 old_undefs_tail = htab->root.undefs_tail;
3801 old_table = htab->root.table.table;
3802 old_size = htab->root.table.size;
3803 old_count = htab->root.table.count;
3804 old_dynsymcount = htab->dynsymcount;
3805
3806 for (i = 0; i < htab->root.table.size; i++)
3807 {
3808 struct bfd_hash_entry *p;
3809 struct elf_link_hash_entry *h;
3810
3811 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3812 {
3813 memcpy (old_ent, p, htab->root.table.entsize);
3814 old_ent = (char *) old_ent + htab->root.table.entsize;
3815 h = (struct elf_link_hash_entry *) p;
3816 if (h->root.type == bfd_link_hash_warning)
3817 {
3818 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3819 old_ent = (char *) old_ent + htab->root.table.entsize;
3820 }
3821 }
3822 }
3823 }
3824
3825 weaks = NULL;
3826 ever = extversym != NULL ? extversym + extsymoff : NULL;
3827 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3828 isym < isymend;
3829 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3830 {
3831 int bind;
3832 bfd_vma value;
3833 asection *sec, *new_sec;
3834 flagword flags;
3835 const char *name;
3836 struct elf_link_hash_entry *h;
3837 bfd_boolean definition;
3838 bfd_boolean size_change_ok;
3839 bfd_boolean type_change_ok;
3840 bfd_boolean new_weakdef;
3841 bfd_boolean override;
3842 bfd_boolean common;
3843 unsigned int old_alignment;
3844 bfd *old_bfd;
3845 bfd * undef_bfd = NULL;
3846
3847 override = FALSE;
3848
3849 flags = BSF_NO_FLAGS;
3850 sec = NULL;
3851 value = isym->st_value;
3852 *sym_hash = NULL;
3853 common = bed->common_definition (isym);
3854
3855 bind = ELF_ST_BIND (isym->st_info);
3856 switch (bind)
3857 {
3858 case STB_LOCAL:
3859 /* This should be impossible, since ELF requires that all
3860 global symbols follow all local symbols, and that sh_info
3861 point to the first global symbol. Unfortunately, Irix 5
3862 screws this up. */
3863 continue;
3864
3865 case STB_GLOBAL:
3866 if (isym->st_shndx != SHN_UNDEF && !common)
3867 flags = BSF_GLOBAL;
3868 break;
3869
3870 case STB_WEAK:
3871 flags = BSF_WEAK;
3872 break;
3873
3874 case STB_GNU_UNIQUE:
3875 flags = BSF_GNU_UNIQUE;
3876 break;
3877
3878 default:
3879 /* Leave it up to the processor backend. */
3880 break;
3881 }
3882
3883 if (isym->st_shndx == SHN_UNDEF)
3884 sec = bfd_und_section_ptr;
3885 else if (isym->st_shndx == SHN_ABS)
3886 sec = bfd_abs_section_ptr;
3887 else if (isym->st_shndx == SHN_COMMON)
3888 {
3889 sec = bfd_com_section_ptr;
3890 /* What ELF calls the size we call the value. What ELF
3891 calls the value we call the alignment. */
3892 value = isym->st_size;
3893 }
3894 else
3895 {
3896 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3897 if (sec == NULL)
3898 sec = bfd_abs_section_ptr;
3899 else if (elf_discarded_section (sec))
3900 {
3901 /* Symbols from discarded section are undefined. We keep
3902 its visibility. */
3903 sec = bfd_und_section_ptr;
3904 isym->st_shndx = SHN_UNDEF;
3905 }
3906 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3907 value -= sec->vma;
3908 }
3909
3910 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3911 isym->st_name);
3912 if (name == NULL)
3913 goto error_free_vers;
3914
3915 if (isym->st_shndx == SHN_COMMON
3916 && (abfd->flags & BFD_PLUGIN) != 0)
3917 {
3918 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3919
3920 if (xc == NULL)
3921 {
3922 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3923 | SEC_EXCLUDE);
3924 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3925 if (xc == NULL)
3926 goto error_free_vers;
3927 }
3928 sec = xc;
3929 }
3930 else if (isym->st_shndx == SHN_COMMON
3931 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3932 && !info->relocatable)
3933 {
3934 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3935
3936 if (tcomm == NULL)
3937 {
3938 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3939 | SEC_LINKER_CREATED);
3940 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3941 if (tcomm == NULL)
3942 goto error_free_vers;
3943 }
3944 sec = tcomm;
3945 }
3946 else if (bed->elf_add_symbol_hook)
3947 {
3948 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3949 &sec, &value))
3950 goto error_free_vers;
3951
3952 /* The hook function sets the name to NULL if this symbol
3953 should be skipped for some reason. */
3954 if (name == NULL)
3955 continue;
3956 }
3957
3958 /* Sanity check that all possibilities were handled. */
3959 if (sec == NULL)
3960 {
3961 bfd_set_error (bfd_error_bad_value);
3962 goto error_free_vers;
3963 }
3964
3965 if (bfd_is_und_section (sec)
3966 || bfd_is_com_section (sec))
3967 definition = FALSE;
3968 else
3969 definition = TRUE;
3970
3971 size_change_ok = FALSE;
3972 type_change_ok = bed->type_change_ok;
3973 old_alignment = 0;
3974 old_bfd = NULL;
3975 new_sec = sec;
3976
3977 if (is_elf_hash_table (htab))
3978 {
3979 Elf_Internal_Versym iver;
3980 unsigned int vernum = 0;
3981 bfd_boolean skip;
3982
3983 /* If this is a definition of a symbol which was previously
3984 referenced in a non-weak manner then make a note of the bfd
3985 that contained the reference. This is used if we need to
3986 refer to the source of the reference later on. */
3987 if (! bfd_is_und_section (sec))
3988 {
3989 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3990
3991 if (h != NULL
3992 && h->root.type == bfd_link_hash_undefined
3993 && h->root.u.undef.abfd)
3994 undef_bfd = h->root.u.undef.abfd;
3995 }
3996
3997 if (ever == NULL)
3998 {
3999 if (info->default_imported_symver)
4000 /* Use the default symbol version created earlier. */
4001 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4002 else
4003 iver.vs_vers = 0;
4004 }
4005 else
4006 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4007
4008 vernum = iver.vs_vers & VERSYM_VERSION;
4009
4010 /* If this is a hidden symbol, or if it is not version
4011 1, we append the version name to the symbol name.
4012 However, we do not modify a non-hidden absolute symbol
4013 if it is not a function, because it might be the version
4014 symbol itself. FIXME: What if it isn't? */
4015 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4016 || (vernum > 1
4017 && (!bfd_is_abs_section (sec)
4018 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4019 {
4020 const char *verstr;
4021 size_t namelen, verlen, newlen;
4022 char *newname, *p;
4023
4024 if (isym->st_shndx != SHN_UNDEF)
4025 {
4026 if (vernum > elf_tdata (abfd)->cverdefs)
4027 verstr = NULL;
4028 else if (vernum > 1)
4029 verstr =
4030 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4031 else
4032 verstr = "";
4033
4034 if (verstr == NULL)
4035 {
4036 (*_bfd_error_handler)
4037 (_("%B: %s: invalid version %u (max %d)"),
4038 abfd, name, vernum,
4039 elf_tdata (abfd)->cverdefs);
4040 bfd_set_error (bfd_error_bad_value);
4041 goto error_free_vers;
4042 }
4043 }
4044 else
4045 {
4046 /* We cannot simply test for the number of
4047 entries in the VERNEED section since the
4048 numbers for the needed versions do not start
4049 at 0. */
4050 Elf_Internal_Verneed *t;
4051
4052 verstr = NULL;
4053 for (t = elf_tdata (abfd)->verref;
4054 t != NULL;
4055 t = t->vn_nextref)
4056 {
4057 Elf_Internal_Vernaux *a;
4058
4059 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4060 {
4061 if (a->vna_other == vernum)
4062 {
4063 verstr = a->vna_nodename;
4064 break;
4065 }
4066 }
4067 if (a != NULL)
4068 break;
4069 }
4070 if (verstr == NULL)
4071 {
4072 (*_bfd_error_handler)
4073 (_("%B: %s: invalid needed version %d"),
4074 abfd, name, vernum);
4075 bfd_set_error (bfd_error_bad_value);
4076 goto error_free_vers;
4077 }
4078 }
4079
4080 namelen = strlen (name);
4081 verlen = strlen (verstr);
4082 newlen = namelen + verlen + 2;
4083 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4084 && isym->st_shndx != SHN_UNDEF)
4085 ++newlen;
4086
4087 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4088 if (newname == NULL)
4089 goto error_free_vers;
4090 memcpy (newname, name, namelen);
4091 p = newname + namelen;
4092 *p++ = ELF_VER_CHR;
4093 /* If this is a defined non-hidden version symbol,
4094 we add another @ to the name. This indicates the
4095 default version of the symbol. */
4096 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4097 && isym->st_shndx != SHN_UNDEF)
4098 *p++ = ELF_VER_CHR;
4099 memcpy (p, verstr, verlen + 1);
4100
4101 name = newname;
4102 }
4103
4104 /* If necessary, make a second attempt to locate the bfd
4105 containing an unresolved, non-weak reference to the
4106 current symbol. */
4107 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4108 {
4109 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4110
4111 if (h != NULL
4112 && h->root.type == bfd_link_hash_undefined
4113 && h->root.u.undef.abfd)
4114 undef_bfd = h->root.u.undef.abfd;
4115 }
4116
4117 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4118 &value, &old_alignment,
4119 sym_hash, &skip, &override,
4120 &type_change_ok, &size_change_ok))
4121 goto error_free_vers;
4122
4123 if (skip)
4124 continue;
4125
4126 if (override)
4127 definition = FALSE;
4128
4129 h = *sym_hash;
4130 while (h->root.type == bfd_link_hash_indirect
4131 || h->root.type == bfd_link_hash_warning)
4132 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4133
4134 /* Remember the old alignment if this is a common symbol, so
4135 that we don't reduce the alignment later on. We can't
4136 check later, because _bfd_generic_link_add_one_symbol
4137 will set a default for the alignment which we want to
4138 override. We also remember the old bfd where the existing
4139 definition comes from. */
4140 switch (h->root.type)
4141 {
4142 default:
4143 break;
4144
4145 case bfd_link_hash_defined:
4146 case bfd_link_hash_defweak:
4147 old_bfd = h->root.u.def.section->owner;
4148 break;
4149
4150 case bfd_link_hash_common:
4151 old_bfd = h->root.u.c.p->section->owner;
4152 old_alignment = h->root.u.c.p->alignment_power;
4153 break;
4154 }
4155
4156 if (elf_tdata (abfd)->verdef != NULL
4157 && ! override
4158 && vernum > 1
4159 && definition)
4160 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4161 }
4162
4163 if (! (_bfd_generic_link_add_one_symbol
4164 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4165 (struct bfd_link_hash_entry **) sym_hash)))
4166 goto error_free_vers;
4167
4168 h = *sym_hash;
4169 while (h->root.type == bfd_link_hash_indirect
4170 || h->root.type == bfd_link_hash_warning)
4171 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4172
4173 *sym_hash = h;
4174 if (is_elf_hash_table (htab))
4175 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4176
4177 new_weakdef = FALSE;
4178 if (dynamic
4179 && definition
4180 && (flags & BSF_WEAK) != 0
4181 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4182 && is_elf_hash_table (htab)
4183 && h->u.weakdef == NULL)
4184 {
4185 /* Keep a list of all weak defined non function symbols from
4186 a dynamic object, using the weakdef field. Later in this
4187 function we will set the weakdef field to the correct
4188 value. We only put non-function symbols from dynamic
4189 objects on this list, because that happens to be the only
4190 time we need to know the normal symbol corresponding to a
4191 weak symbol, and the information is time consuming to
4192 figure out. If the weakdef field is not already NULL,
4193 then this symbol was already defined by some previous
4194 dynamic object, and we will be using that previous
4195 definition anyhow. */
4196
4197 h->u.weakdef = weaks;
4198 weaks = h;
4199 new_weakdef = TRUE;
4200 }
4201
4202 /* Set the alignment of a common symbol. */
4203 if ((common || bfd_is_com_section (sec))
4204 && h->root.type == bfd_link_hash_common)
4205 {
4206 unsigned int align;
4207
4208 if (common)
4209 align = bfd_log2 (isym->st_value);
4210 else
4211 {
4212 /* The new symbol is a common symbol in a shared object.
4213 We need to get the alignment from the section. */
4214 align = new_sec->alignment_power;
4215 }
4216 if (align > old_alignment)
4217 h->root.u.c.p->alignment_power = align;
4218 else
4219 h->root.u.c.p->alignment_power = old_alignment;
4220 }
4221
4222 if (is_elf_hash_table (htab))
4223 {
4224 bfd_boolean dynsym;
4225
4226 /* Check the alignment when a common symbol is involved. This
4227 can change when a common symbol is overridden by a normal
4228 definition or a common symbol is ignored due to the old
4229 normal definition. We need to make sure the maximum
4230 alignment is maintained. */
4231 if ((old_alignment || common)
4232 && h->root.type != bfd_link_hash_common)
4233 {
4234 unsigned int common_align;
4235 unsigned int normal_align;
4236 unsigned int symbol_align;
4237 bfd *normal_bfd;
4238 bfd *common_bfd;
4239
4240 symbol_align = ffs (h->root.u.def.value) - 1;
4241 if (h->root.u.def.section->owner != NULL
4242 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4243 {
4244 normal_align = h->root.u.def.section->alignment_power;
4245 if (normal_align > symbol_align)
4246 normal_align = symbol_align;
4247 }
4248 else
4249 normal_align = symbol_align;
4250
4251 if (old_alignment)
4252 {
4253 common_align = old_alignment;
4254 common_bfd = old_bfd;
4255 normal_bfd = abfd;
4256 }
4257 else
4258 {
4259 common_align = bfd_log2 (isym->st_value);
4260 common_bfd = abfd;
4261 normal_bfd = old_bfd;
4262 }
4263
4264 if (normal_align < common_align)
4265 {
4266 /* PR binutils/2735 */
4267 if (normal_bfd == NULL)
4268 (*_bfd_error_handler)
4269 (_("Warning: alignment %u of common symbol `%s' in %B"
4270 " is greater than the alignment (%u) of its section %A"),
4271 common_bfd, h->root.u.def.section,
4272 1 << common_align, name, 1 << normal_align);
4273 else
4274 (*_bfd_error_handler)
4275 (_("Warning: alignment %u of symbol `%s' in %B"
4276 " is smaller than %u in %B"),
4277 normal_bfd, common_bfd,
4278 1 << normal_align, name, 1 << common_align);
4279 }
4280 }
4281
4282 /* Remember the symbol size if it isn't undefined. */
4283 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4284 && (definition || h->size == 0))
4285 {
4286 if (h->size != 0
4287 && h->size != isym->st_size
4288 && ! size_change_ok)
4289 (*_bfd_error_handler)
4290 (_("Warning: size of symbol `%s' changed"
4291 " from %lu in %B to %lu in %B"),
4292 old_bfd, abfd,
4293 name, (unsigned long) h->size,
4294 (unsigned long) isym->st_size);
4295
4296 h->size = isym->st_size;
4297 }
4298
4299 /* If this is a common symbol, then we always want H->SIZE
4300 to be the size of the common symbol. The code just above
4301 won't fix the size if a common symbol becomes larger. We
4302 don't warn about a size change here, because that is
4303 covered by --warn-common. Allow changed between different
4304 function types. */
4305 if (h->root.type == bfd_link_hash_common)
4306 h->size = h->root.u.c.size;
4307
4308 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4309 && (definition || h->type == STT_NOTYPE))
4310 {
4311 unsigned int type = ELF_ST_TYPE (isym->st_info);
4312
4313 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4314 symbol. */
4315 if (type == STT_GNU_IFUNC
4316 && (abfd->flags & DYNAMIC) != 0)
4317 type = STT_FUNC;
4318
4319 if (h->type != type)
4320 {
4321 if (h->type != STT_NOTYPE && ! type_change_ok)
4322 (*_bfd_error_handler)
4323 (_("Warning: type of symbol `%s' changed"
4324 " from %d to %d in %B"),
4325 abfd, name, h->type, type);
4326
4327 h->type = type;
4328 }
4329 }
4330
4331 /* Merge st_other field. */
4332 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4333
4334 /* Set a flag in the hash table entry indicating the type of
4335 reference or definition we just found. Keep a count of
4336 the number of dynamic symbols we find. A dynamic symbol
4337 is one which is referenced or defined by both a regular
4338 object and a shared object. */
4339 dynsym = FALSE;
4340 if (! dynamic)
4341 {
4342 if (! definition)
4343 {
4344 h->ref_regular = 1;
4345 if (bind != STB_WEAK)
4346 h->ref_regular_nonweak = 1;
4347 }
4348 else
4349 {
4350 h->def_regular = 1;
4351 if (h->def_dynamic)
4352 {
4353 h->def_dynamic = 0;
4354 h->ref_dynamic = 1;
4355 }
4356 }
4357 if (! info->executable
4358 || h->def_dynamic
4359 || h->ref_dynamic)
4360 dynsym = TRUE;
4361 }
4362 else
4363 {
4364 if (! definition)
4365 h->ref_dynamic = 1;
4366 else
4367 {
4368 h->def_dynamic = 1;
4369 h->dynamic_def = 1;
4370 }
4371 if (h->def_regular
4372 || h->ref_regular
4373 || (h->u.weakdef != NULL
4374 && ! new_weakdef
4375 && h->u.weakdef->dynindx != -1))
4376 dynsym = TRUE;
4377 }
4378
4379 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4380 {
4381 /* We don't want to make debug symbol dynamic. */
4382 dynsym = FALSE;
4383 }
4384
4385 if (definition)
4386 h->target_internal = isym->st_target_internal;
4387
4388 /* Check to see if we need to add an indirect symbol for
4389 the default name. */
4390 if (definition || h->root.type == bfd_link_hash_common)
4391 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4392 &sec, &value, &dynsym,
4393 override))
4394 goto error_free_vers;
4395
4396 if (definition && !dynamic)
4397 {
4398 char *p = strchr (name, ELF_VER_CHR);
4399 if (p != NULL && p[1] != ELF_VER_CHR)
4400 {
4401 /* Queue non-default versions so that .symver x, x@FOO
4402 aliases can be checked. */
4403 if (!nondeflt_vers)
4404 {
4405 amt = ((isymend - isym + 1)
4406 * sizeof (struct elf_link_hash_entry *));
4407 nondeflt_vers =
4408 (struct elf_link_hash_entry **) bfd_malloc (amt);
4409 if (!nondeflt_vers)
4410 goto error_free_vers;
4411 }
4412 nondeflt_vers[nondeflt_vers_cnt++] = h;
4413 }
4414 }
4415
4416 if (dynsym && h->dynindx == -1)
4417 {
4418 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4419 goto error_free_vers;
4420 if (h->u.weakdef != NULL
4421 && ! new_weakdef
4422 && h->u.weakdef->dynindx == -1)
4423 {
4424 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4425 goto error_free_vers;
4426 }
4427 }
4428 else if (dynsym && h->dynindx != -1)
4429 /* If the symbol already has a dynamic index, but
4430 visibility says it should not be visible, turn it into
4431 a local symbol. */
4432 switch (ELF_ST_VISIBILITY (h->other))
4433 {
4434 case STV_INTERNAL:
4435 case STV_HIDDEN:
4436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4437 dynsym = FALSE;
4438 break;
4439 }
4440
4441 if (!add_needed
4442 && definition
4443 && ((dynsym
4444 && h->ref_regular)
4445 || (h->ref_dynamic
4446 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4447 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4448 {
4449 int ret;
4450 const char *soname = elf_dt_name (abfd);
4451
4452 /* A symbol from a library loaded via DT_NEEDED of some
4453 other library is referenced by a regular object.
4454 Add a DT_NEEDED entry for it. Issue an error if
4455 --no-add-needed is used and the reference was not
4456 a weak one. */
4457 if (undef_bfd != NULL
4458 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4459 {
4460 (*_bfd_error_handler)
4461 (_("%B: undefined reference to symbol '%s'"),
4462 undef_bfd, name);
4463 (*_bfd_error_handler)
4464 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4465 abfd, name);
4466 bfd_set_error (bfd_error_invalid_operation);
4467 goto error_free_vers;
4468 }
4469
4470 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4471 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4472
4473 add_needed = TRUE;
4474 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4475 if (ret < 0)
4476 goto error_free_vers;
4477
4478 BFD_ASSERT (ret == 0);
4479 }
4480 }
4481 }
4482
4483 if (extversym != NULL)
4484 {
4485 free (extversym);
4486 extversym = NULL;
4487 }
4488
4489 if (isymbuf != NULL)
4490 {
4491 free (isymbuf);
4492 isymbuf = NULL;
4493 }
4494
4495 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4496 {
4497 unsigned int i;
4498
4499 /* Restore the symbol table. */
4500 if (bed->as_needed_cleanup)
4501 (*bed->as_needed_cleanup) (abfd, info);
4502 old_hash = (char *) old_tab + tabsize;
4503 old_ent = (char *) old_hash + hashsize;
4504 sym_hash = elf_sym_hashes (abfd);
4505 htab->root.table.table = old_table;
4506 htab->root.table.size = old_size;
4507 htab->root.table.count = old_count;
4508 memcpy (htab->root.table.table, old_tab, tabsize);
4509 memcpy (sym_hash, old_hash, hashsize);
4510 htab->root.undefs = old_undefs;
4511 htab->root.undefs_tail = old_undefs_tail;
4512 for (i = 0; i < htab->root.table.size; i++)
4513 {
4514 struct bfd_hash_entry *p;
4515 struct elf_link_hash_entry *h;
4516
4517 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4518 {
4519 h = (struct elf_link_hash_entry *) p;
4520 if (h->root.type == bfd_link_hash_warning)
4521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4522 if (h->dynindx >= old_dynsymcount)
4523 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4524
4525 memcpy (p, old_ent, htab->root.table.entsize);
4526 old_ent = (char *) old_ent + htab->root.table.entsize;
4527 h = (struct elf_link_hash_entry *) p;
4528 if (h->root.type == bfd_link_hash_warning)
4529 {
4530 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4531 old_ent = (char *) old_ent + htab->root.table.entsize;
4532 }
4533 }
4534 }
4535
4536 /* Make a special call to the linker "notice" function to
4537 tell it that symbols added for crefs may need to be removed. */
4538 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4539 notice_not_needed, 0, NULL))
4540 goto error_free_vers;
4541
4542 free (old_tab);
4543 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4544 alloc_mark);
4545 if (nondeflt_vers != NULL)
4546 free (nondeflt_vers);
4547 return TRUE;
4548 }
4549
4550 if (old_tab != NULL)
4551 {
4552 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4553 notice_needed, 0, NULL))
4554 goto error_free_vers;
4555 free (old_tab);
4556 old_tab = NULL;
4557 }
4558
4559 /* Now that all the symbols from this input file are created, handle
4560 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4561 if (nondeflt_vers != NULL)
4562 {
4563 bfd_size_type cnt, symidx;
4564
4565 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4566 {
4567 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4568 char *shortname, *p;
4569
4570 p = strchr (h->root.root.string, ELF_VER_CHR);
4571 if (p == NULL
4572 || (h->root.type != bfd_link_hash_defined
4573 && h->root.type != bfd_link_hash_defweak))
4574 continue;
4575
4576 amt = p - h->root.root.string;
4577 shortname = (char *) bfd_malloc (amt + 1);
4578 if (!shortname)
4579 goto error_free_vers;
4580 memcpy (shortname, h->root.root.string, amt);
4581 shortname[amt] = '\0';
4582
4583 hi = (struct elf_link_hash_entry *)
4584 bfd_link_hash_lookup (&htab->root, shortname,
4585 FALSE, FALSE, FALSE);
4586 if (hi != NULL
4587 && hi->root.type == h->root.type
4588 && hi->root.u.def.value == h->root.u.def.value
4589 && hi->root.u.def.section == h->root.u.def.section)
4590 {
4591 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4592 hi->root.type = bfd_link_hash_indirect;
4593 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4594 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4595 sym_hash = elf_sym_hashes (abfd);
4596 if (sym_hash)
4597 for (symidx = 0; symidx < extsymcount; ++symidx)
4598 if (sym_hash[symidx] == hi)
4599 {
4600 sym_hash[symidx] = h;
4601 break;
4602 }
4603 }
4604 free (shortname);
4605 }
4606 free (nondeflt_vers);
4607 nondeflt_vers = NULL;
4608 }
4609
4610 /* Now set the weakdefs field correctly for all the weak defined
4611 symbols we found. The only way to do this is to search all the
4612 symbols. Since we only need the information for non functions in
4613 dynamic objects, that's the only time we actually put anything on
4614 the list WEAKS. We need this information so that if a regular
4615 object refers to a symbol defined weakly in a dynamic object, the
4616 real symbol in the dynamic object is also put in the dynamic
4617 symbols; we also must arrange for both symbols to point to the
4618 same memory location. We could handle the general case of symbol
4619 aliasing, but a general symbol alias can only be generated in
4620 assembler code, handling it correctly would be very time
4621 consuming, and other ELF linkers don't handle general aliasing
4622 either. */
4623 if (weaks != NULL)
4624 {
4625 struct elf_link_hash_entry **hpp;
4626 struct elf_link_hash_entry **hppend;
4627 struct elf_link_hash_entry **sorted_sym_hash;
4628 struct elf_link_hash_entry *h;
4629 size_t sym_count;
4630
4631 /* Since we have to search the whole symbol list for each weak
4632 defined symbol, search time for N weak defined symbols will be
4633 O(N^2). Binary search will cut it down to O(NlogN). */
4634 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4635 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4636 if (sorted_sym_hash == NULL)
4637 goto error_return;
4638 sym_hash = sorted_sym_hash;
4639 hpp = elf_sym_hashes (abfd);
4640 hppend = hpp + extsymcount;
4641 sym_count = 0;
4642 for (; hpp < hppend; hpp++)
4643 {
4644 h = *hpp;
4645 if (h != NULL
4646 && h->root.type == bfd_link_hash_defined
4647 && !bed->is_function_type (h->type))
4648 {
4649 *sym_hash = h;
4650 sym_hash++;
4651 sym_count++;
4652 }
4653 }
4654
4655 qsort (sorted_sym_hash, sym_count,
4656 sizeof (struct elf_link_hash_entry *),
4657 elf_sort_symbol);
4658
4659 while (weaks != NULL)
4660 {
4661 struct elf_link_hash_entry *hlook;
4662 asection *slook;
4663 bfd_vma vlook;
4664 long ilook;
4665 size_t i, j, idx;
4666
4667 hlook = weaks;
4668 weaks = hlook->u.weakdef;
4669 hlook->u.weakdef = NULL;
4670
4671 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4672 || hlook->root.type == bfd_link_hash_defweak
4673 || hlook->root.type == bfd_link_hash_common
4674 || hlook->root.type == bfd_link_hash_indirect);
4675 slook = hlook->root.u.def.section;
4676 vlook = hlook->root.u.def.value;
4677
4678 ilook = -1;
4679 i = 0;
4680 j = sym_count;
4681 while (i < j)
4682 {
4683 bfd_signed_vma vdiff;
4684 idx = (i + j) / 2;
4685 h = sorted_sym_hash [idx];
4686 vdiff = vlook - h->root.u.def.value;
4687 if (vdiff < 0)
4688 j = idx;
4689 else if (vdiff > 0)
4690 i = idx + 1;
4691 else
4692 {
4693 long sdiff = slook->id - h->root.u.def.section->id;
4694 if (sdiff < 0)
4695 j = idx;
4696 else if (sdiff > 0)
4697 i = idx + 1;
4698 else
4699 {
4700 ilook = idx;
4701 break;
4702 }
4703 }
4704 }
4705
4706 /* We didn't find a value/section match. */
4707 if (ilook == -1)
4708 continue;
4709
4710 for (i = ilook; i < sym_count; i++)
4711 {
4712 h = sorted_sym_hash [i];
4713
4714 /* Stop if value or section doesn't match. */
4715 if (h->root.u.def.value != vlook
4716 || h->root.u.def.section != slook)
4717 break;
4718 else if (h != hlook)
4719 {
4720 hlook->u.weakdef = h;
4721
4722 /* If the weak definition is in the list of dynamic
4723 symbols, make sure the real definition is put
4724 there as well. */
4725 if (hlook->dynindx != -1 && h->dynindx == -1)
4726 {
4727 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4728 {
4729 err_free_sym_hash:
4730 free (sorted_sym_hash);
4731 goto error_return;
4732 }
4733 }
4734
4735 /* If the real definition is in the list of dynamic
4736 symbols, make sure the weak definition is put
4737 there as well. If we don't do this, then the
4738 dynamic loader might not merge the entries for the
4739 real definition and the weak definition. */
4740 if (h->dynindx != -1 && hlook->dynindx == -1)
4741 {
4742 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4743 goto err_free_sym_hash;
4744 }
4745 break;
4746 }
4747 }
4748 }
4749
4750 free (sorted_sym_hash);
4751 }
4752
4753 if (bed->check_directives
4754 && !(*bed->check_directives) (abfd, info))
4755 return FALSE;
4756
4757 /* If this object is the same format as the output object, and it is
4758 not a shared library, then let the backend look through the
4759 relocs.
4760
4761 This is required to build global offset table entries and to
4762 arrange for dynamic relocs. It is not required for the
4763 particular common case of linking non PIC code, even when linking
4764 against shared libraries, but unfortunately there is no way of
4765 knowing whether an object file has been compiled PIC or not.
4766 Looking through the relocs is not particularly time consuming.
4767 The problem is that we must either (1) keep the relocs in memory,
4768 which causes the linker to require additional runtime memory or
4769 (2) read the relocs twice from the input file, which wastes time.
4770 This would be a good case for using mmap.
4771
4772 I have no idea how to handle linking PIC code into a file of a
4773 different format. It probably can't be done. */
4774 if (! dynamic
4775 && is_elf_hash_table (htab)
4776 && bed->check_relocs != NULL
4777 && elf_object_id (abfd) == elf_hash_table_id (htab)
4778 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4779 {
4780 asection *o;
4781
4782 for (o = abfd->sections; o != NULL; o = o->next)
4783 {
4784 Elf_Internal_Rela *internal_relocs;
4785 bfd_boolean ok;
4786
4787 if ((o->flags & SEC_RELOC) == 0
4788 || o->reloc_count == 0
4789 || ((info->strip == strip_all || info->strip == strip_debugger)
4790 && (o->flags & SEC_DEBUGGING) != 0)
4791 || bfd_is_abs_section (o->output_section))
4792 continue;
4793
4794 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4795 info->keep_memory);
4796 if (internal_relocs == NULL)
4797 goto error_return;
4798
4799 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4800
4801 if (elf_section_data (o)->relocs != internal_relocs)
4802 free (internal_relocs);
4803
4804 if (! ok)
4805 goto error_return;
4806 }
4807 }
4808
4809 /* If this is a non-traditional link, try to optimize the handling
4810 of the .stab/.stabstr sections. */
4811 if (! dynamic
4812 && ! info->traditional_format
4813 && is_elf_hash_table (htab)
4814 && (info->strip != strip_all && info->strip != strip_debugger))
4815 {
4816 asection *stabstr;
4817
4818 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4819 if (stabstr != NULL)
4820 {
4821 bfd_size_type string_offset = 0;
4822 asection *stab;
4823
4824 for (stab = abfd->sections; stab; stab = stab->next)
4825 if (CONST_STRNEQ (stab->name, ".stab")
4826 && (!stab->name[5] ||
4827 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4828 && (stab->flags & SEC_MERGE) == 0
4829 && !bfd_is_abs_section (stab->output_section))
4830 {
4831 struct bfd_elf_section_data *secdata;
4832
4833 secdata = elf_section_data (stab);
4834 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4835 stabstr, &secdata->sec_info,
4836 &string_offset))
4837 goto error_return;
4838 if (secdata->sec_info)
4839 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4840 }
4841 }
4842 }
4843
4844 if (is_elf_hash_table (htab) && add_needed)
4845 {
4846 /* Add this bfd to the loaded list. */
4847 struct elf_link_loaded_list *n;
4848
4849 n = (struct elf_link_loaded_list *)
4850 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4851 if (n == NULL)
4852 goto error_return;
4853 n->abfd = abfd;
4854 n->next = htab->loaded;
4855 htab->loaded = n;
4856 }
4857
4858 return TRUE;
4859
4860 error_free_vers:
4861 if (old_tab != NULL)
4862 free (old_tab);
4863 if (nondeflt_vers != NULL)
4864 free (nondeflt_vers);
4865 if (extversym != NULL)
4866 free (extversym);
4867 error_free_sym:
4868 if (isymbuf != NULL)
4869 free (isymbuf);
4870 error_return:
4871 return FALSE;
4872 }
4873
4874 /* Return the linker hash table entry of a symbol that might be
4875 satisfied by an archive symbol. Return -1 on error. */
4876
4877 struct elf_link_hash_entry *
4878 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4879 struct bfd_link_info *info,
4880 const char *name)
4881 {
4882 struct elf_link_hash_entry *h;
4883 char *p, *copy;
4884 size_t len, first;
4885
4886 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4887 if (h != NULL)
4888 return h;
4889
4890 /* If this is a default version (the name contains @@), look up the
4891 symbol again with only one `@' as well as without the version.
4892 The effect is that references to the symbol with and without the
4893 version will be matched by the default symbol in the archive. */
4894
4895 p = strchr (name, ELF_VER_CHR);
4896 if (p == NULL || p[1] != ELF_VER_CHR)
4897 return h;
4898
4899 /* First check with only one `@'. */
4900 len = strlen (name);
4901 copy = (char *) bfd_alloc (abfd, len);
4902 if (copy == NULL)
4903 return (struct elf_link_hash_entry *) 0 - 1;
4904
4905 first = p - name + 1;
4906 memcpy (copy, name, first);
4907 memcpy (copy + first, name + first + 1, len - first);
4908
4909 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4910 if (h == NULL)
4911 {
4912 /* We also need to check references to the symbol without the
4913 version. */
4914 copy[first - 1] = '\0';
4915 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4916 FALSE, FALSE, TRUE);
4917 }
4918
4919 bfd_release (abfd, copy);
4920 return h;
4921 }
4922
4923 /* Add symbols from an ELF archive file to the linker hash table. We
4924 don't use _bfd_generic_link_add_archive_symbols because of a
4925 problem which arises on UnixWare. The UnixWare libc.so is an
4926 archive which includes an entry libc.so.1 which defines a bunch of
4927 symbols. The libc.so archive also includes a number of other
4928 object files, which also define symbols, some of which are the same
4929 as those defined in libc.so.1. Correct linking requires that we
4930 consider each object file in turn, and include it if it defines any
4931 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4932 this; it looks through the list of undefined symbols, and includes
4933 any object file which defines them. When this algorithm is used on
4934 UnixWare, it winds up pulling in libc.so.1 early and defining a
4935 bunch of symbols. This means that some of the other objects in the
4936 archive are not included in the link, which is incorrect since they
4937 precede libc.so.1 in the archive.
4938
4939 Fortunately, ELF archive handling is simpler than that done by
4940 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4941 oddities. In ELF, if we find a symbol in the archive map, and the
4942 symbol is currently undefined, we know that we must pull in that
4943 object file.
4944
4945 Unfortunately, we do have to make multiple passes over the symbol
4946 table until nothing further is resolved. */
4947
4948 static bfd_boolean
4949 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4950 {
4951 symindex c;
4952 bfd_boolean *defined = NULL;
4953 bfd_boolean *included = NULL;
4954 carsym *symdefs;
4955 bfd_boolean loop;
4956 bfd_size_type amt;
4957 const struct elf_backend_data *bed;
4958 struct elf_link_hash_entry * (*archive_symbol_lookup)
4959 (bfd *, struct bfd_link_info *, const char *);
4960
4961 if (! bfd_has_map (abfd))
4962 {
4963 /* An empty archive is a special case. */
4964 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4965 return TRUE;
4966 bfd_set_error (bfd_error_no_armap);
4967 return FALSE;
4968 }
4969
4970 /* Keep track of all symbols we know to be already defined, and all
4971 files we know to be already included. This is to speed up the
4972 second and subsequent passes. */
4973 c = bfd_ardata (abfd)->symdef_count;
4974 if (c == 0)
4975 return TRUE;
4976 amt = c;
4977 amt *= sizeof (bfd_boolean);
4978 defined = (bfd_boolean *) bfd_zmalloc (amt);
4979 included = (bfd_boolean *) bfd_zmalloc (amt);
4980 if (defined == NULL || included == NULL)
4981 goto error_return;
4982
4983 symdefs = bfd_ardata (abfd)->symdefs;
4984 bed = get_elf_backend_data (abfd);
4985 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4986
4987 do
4988 {
4989 file_ptr last;
4990 symindex i;
4991 carsym *symdef;
4992 carsym *symdefend;
4993
4994 loop = FALSE;
4995 last = -1;
4996
4997 symdef = symdefs;
4998 symdefend = symdef + c;
4999 for (i = 0; symdef < symdefend; symdef++, i++)
5000 {
5001 struct elf_link_hash_entry *h;
5002 bfd *element;
5003 struct bfd_link_hash_entry *undefs_tail;
5004 symindex mark;
5005
5006 if (defined[i] || included[i])
5007 continue;
5008 if (symdef->file_offset == last)
5009 {
5010 included[i] = TRUE;
5011 continue;
5012 }
5013
5014 h = archive_symbol_lookup (abfd, info, symdef->name);
5015 if (h == (struct elf_link_hash_entry *) 0 - 1)
5016 goto error_return;
5017
5018 if (h == NULL)
5019 continue;
5020
5021 if (h->root.type == bfd_link_hash_common)
5022 {
5023 /* We currently have a common symbol. The archive map contains
5024 a reference to this symbol, so we may want to include it. We
5025 only want to include it however, if this archive element
5026 contains a definition of the symbol, not just another common
5027 declaration of it.
5028
5029 Unfortunately some archivers (including GNU ar) will put
5030 declarations of common symbols into their archive maps, as
5031 well as real definitions, so we cannot just go by the archive
5032 map alone. Instead we must read in the element's symbol
5033 table and check that to see what kind of symbol definition
5034 this is. */
5035 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5036 continue;
5037 }
5038 else if (h->root.type != bfd_link_hash_undefined)
5039 {
5040 if (h->root.type != bfd_link_hash_undefweak)
5041 defined[i] = TRUE;
5042 continue;
5043 }
5044
5045 /* We need to include this archive member. */
5046 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5047 if (element == NULL)
5048 goto error_return;
5049
5050 if (! bfd_check_format (element, bfd_object))
5051 goto error_return;
5052
5053 /* Doublecheck that we have not included this object
5054 already--it should be impossible, but there may be
5055 something wrong with the archive. */
5056 if (element->archive_pass != 0)
5057 {
5058 bfd_set_error (bfd_error_bad_value);
5059 goto error_return;
5060 }
5061 element->archive_pass = 1;
5062
5063 undefs_tail = info->hash->undefs_tail;
5064
5065 if (!(*info->callbacks
5066 ->add_archive_element) (info, element, symdef->name, &element))
5067 goto error_return;
5068 if (!bfd_link_add_symbols (element, info))
5069 goto error_return;
5070
5071 /* If there are any new undefined symbols, we need to make
5072 another pass through the archive in order to see whether
5073 they can be defined. FIXME: This isn't perfect, because
5074 common symbols wind up on undefs_tail and because an
5075 undefined symbol which is defined later on in this pass
5076 does not require another pass. This isn't a bug, but it
5077 does make the code less efficient than it could be. */
5078 if (undefs_tail != info->hash->undefs_tail)
5079 loop = TRUE;
5080
5081 /* Look backward to mark all symbols from this object file
5082 which we have already seen in this pass. */
5083 mark = i;
5084 do
5085 {
5086 included[mark] = TRUE;
5087 if (mark == 0)
5088 break;
5089 --mark;
5090 }
5091 while (symdefs[mark].file_offset == symdef->file_offset);
5092
5093 /* We mark subsequent symbols from this object file as we go
5094 on through the loop. */
5095 last = symdef->file_offset;
5096 }
5097 }
5098 while (loop);
5099
5100 free (defined);
5101 free (included);
5102
5103 return TRUE;
5104
5105 error_return:
5106 if (defined != NULL)
5107 free (defined);
5108 if (included != NULL)
5109 free (included);
5110 return FALSE;
5111 }
5112
5113 /* Given an ELF BFD, add symbols to the global hash table as
5114 appropriate. */
5115
5116 bfd_boolean
5117 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5118 {
5119 switch (bfd_get_format (abfd))
5120 {
5121 case bfd_object:
5122 return elf_link_add_object_symbols (abfd, info);
5123 case bfd_archive:
5124 return elf_link_add_archive_symbols (abfd, info);
5125 default:
5126 bfd_set_error (bfd_error_wrong_format);
5127 return FALSE;
5128 }
5129 }
5130 \f
5131 struct hash_codes_info
5132 {
5133 unsigned long *hashcodes;
5134 bfd_boolean error;
5135 };
5136
5137 /* This function will be called though elf_link_hash_traverse to store
5138 all hash value of the exported symbols in an array. */
5139
5140 static bfd_boolean
5141 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5142 {
5143 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5144 const char *name;
5145 char *p;
5146 unsigned long ha;
5147 char *alc = NULL;
5148
5149 /* Ignore indirect symbols. These are added by the versioning code. */
5150 if (h->dynindx == -1)
5151 return TRUE;
5152
5153 name = h->root.root.string;
5154 p = strchr (name, ELF_VER_CHR);
5155 if (p != NULL)
5156 {
5157 alc = (char *) bfd_malloc (p - name + 1);
5158 if (alc == NULL)
5159 {
5160 inf->error = TRUE;
5161 return FALSE;
5162 }
5163 memcpy (alc, name, p - name);
5164 alc[p - name] = '\0';
5165 name = alc;
5166 }
5167
5168 /* Compute the hash value. */
5169 ha = bfd_elf_hash (name);
5170
5171 /* Store the found hash value in the array given as the argument. */
5172 *(inf->hashcodes)++ = ha;
5173
5174 /* And store it in the struct so that we can put it in the hash table
5175 later. */
5176 h->u.elf_hash_value = ha;
5177
5178 if (alc != NULL)
5179 free (alc);
5180
5181 return TRUE;
5182 }
5183
5184 struct collect_gnu_hash_codes
5185 {
5186 bfd *output_bfd;
5187 const struct elf_backend_data *bed;
5188 unsigned long int nsyms;
5189 unsigned long int maskbits;
5190 unsigned long int *hashcodes;
5191 unsigned long int *hashval;
5192 unsigned long int *indx;
5193 unsigned long int *counts;
5194 bfd_vma *bitmask;
5195 bfd_byte *contents;
5196 long int min_dynindx;
5197 unsigned long int bucketcount;
5198 unsigned long int symindx;
5199 long int local_indx;
5200 long int shift1, shift2;
5201 unsigned long int mask;
5202 bfd_boolean error;
5203 };
5204
5205 /* This function will be called though elf_link_hash_traverse to store
5206 all hash value of the exported symbols in an array. */
5207
5208 static bfd_boolean
5209 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5210 {
5211 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5212 const char *name;
5213 char *p;
5214 unsigned long ha;
5215 char *alc = NULL;
5216
5217 /* Ignore indirect symbols. These are added by the versioning code. */
5218 if (h->dynindx == -1)
5219 return TRUE;
5220
5221 /* Ignore also local symbols and undefined symbols. */
5222 if (! (*s->bed->elf_hash_symbol) (h))
5223 return TRUE;
5224
5225 name = h->root.root.string;
5226 p = strchr (name, ELF_VER_CHR);
5227 if (p != NULL)
5228 {
5229 alc = (char *) bfd_malloc (p - name + 1);
5230 if (alc == NULL)
5231 {
5232 s->error = TRUE;
5233 return FALSE;
5234 }
5235 memcpy (alc, name, p - name);
5236 alc[p - name] = '\0';
5237 name = alc;
5238 }
5239
5240 /* Compute the hash value. */
5241 ha = bfd_elf_gnu_hash (name);
5242
5243 /* Store the found hash value in the array for compute_bucket_count,
5244 and also for .dynsym reordering purposes. */
5245 s->hashcodes[s->nsyms] = ha;
5246 s->hashval[h->dynindx] = ha;
5247 ++s->nsyms;
5248 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5249 s->min_dynindx = h->dynindx;
5250
5251 if (alc != NULL)
5252 free (alc);
5253
5254 return TRUE;
5255 }
5256
5257 /* This function will be called though elf_link_hash_traverse to do
5258 final dynaminc symbol renumbering. */
5259
5260 static bfd_boolean
5261 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5262 {
5263 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5264 unsigned long int bucket;
5265 unsigned long int val;
5266
5267 /* Ignore indirect symbols. */
5268 if (h->dynindx == -1)
5269 return TRUE;
5270
5271 /* Ignore also local symbols and undefined symbols. */
5272 if (! (*s->bed->elf_hash_symbol) (h))
5273 {
5274 if (h->dynindx >= s->min_dynindx)
5275 h->dynindx = s->local_indx++;
5276 return TRUE;
5277 }
5278
5279 bucket = s->hashval[h->dynindx] % s->bucketcount;
5280 val = (s->hashval[h->dynindx] >> s->shift1)
5281 & ((s->maskbits >> s->shift1) - 1);
5282 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5283 s->bitmask[val]
5284 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5285 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5286 if (s->counts[bucket] == 1)
5287 /* Last element terminates the chain. */
5288 val |= 1;
5289 bfd_put_32 (s->output_bfd, val,
5290 s->contents + (s->indx[bucket] - s->symindx) * 4);
5291 --s->counts[bucket];
5292 h->dynindx = s->indx[bucket]++;
5293 return TRUE;
5294 }
5295
5296 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5297
5298 bfd_boolean
5299 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5300 {
5301 return !(h->forced_local
5302 || h->root.type == bfd_link_hash_undefined
5303 || h->root.type == bfd_link_hash_undefweak
5304 || ((h->root.type == bfd_link_hash_defined
5305 || h->root.type == bfd_link_hash_defweak)
5306 && h->root.u.def.section->output_section == NULL));
5307 }
5308
5309 /* Array used to determine the number of hash table buckets to use
5310 based on the number of symbols there are. If there are fewer than
5311 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5312 fewer than 37 we use 17 buckets, and so forth. We never use more
5313 than 32771 buckets. */
5314
5315 static const size_t elf_buckets[] =
5316 {
5317 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5318 16411, 32771, 0
5319 };
5320
5321 /* Compute bucket count for hashing table. We do not use a static set
5322 of possible tables sizes anymore. Instead we determine for all
5323 possible reasonable sizes of the table the outcome (i.e., the
5324 number of collisions etc) and choose the best solution. The
5325 weighting functions are not too simple to allow the table to grow
5326 without bounds. Instead one of the weighting factors is the size.
5327 Therefore the result is always a good payoff between few collisions
5328 (= short chain lengths) and table size. */
5329 static size_t
5330 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5331 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5332 unsigned long int nsyms,
5333 int gnu_hash)
5334 {
5335 size_t best_size = 0;
5336 unsigned long int i;
5337
5338 /* We have a problem here. The following code to optimize the table
5339 size requires an integer type with more the 32 bits. If
5340 BFD_HOST_U_64_BIT is set we know about such a type. */
5341 #ifdef BFD_HOST_U_64_BIT
5342 if (info->optimize)
5343 {
5344 size_t minsize;
5345 size_t maxsize;
5346 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5347 bfd *dynobj = elf_hash_table (info)->dynobj;
5348 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5349 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5350 unsigned long int *counts;
5351 bfd_size_type amt;
5352 unsigned int no_improvement_count = 0;
5353
5354 /* Possible optimization parameters: if we have NSYMS symbols we say
5355 that the hashing table must at least have NSYMS/4 and at most
5356 2*NSYMS buckets. */
5357 minsize = nsyms / 4;
5358 if (minsize == 0)
5359 minsize = 1;
5360 best_size = maxsize = nsyms * 2;
5361 if (gnu_hash)
5362 {
5363 if (minsize < 2)
5364 minsize = 2;
5365 if ((best_size & 31) == 0)
5366 ++best_size;
5367 }
5368
5369 /* Create array where we count the collisions in. We must use bfd_malloc
5370 since the size could be large. */
5371 amt = maxsize;
5372 amt *= sizeof (unsigned long int);
5373 counts = (unsigned long int *) bfd_malloc (amt);
5374 if (counts == NULL)
5375 return 0;
5376
5377 /* Compute the "optimal" size for the hash table. The criteria is a
5378 minimal chain length. The minor criteria is (of course) the size
5379 of the table. */
5380 for (i = minsize; i < maxsize; ++i)
5381 {
5382 /* Walk through the array of hashcodes and count the collisions. */
5383 BFD_HOST_U_64_BIT max;
5384 unsigned long int j;
5385 unsigned long int fact;
5386
5387 if (gnu_hash && (i & 31) == 0)
5388 continue;
5389
5390 memset (counts, '\0', i * sizeof (unsigned long int));
5391
5392 /* Determine how often each hash bucket is used. */
5393 for (j = 0; j < nsyms; ++j)
5394 ++counts[hashcodes[j] % i];
5395
5396 /* For the weight function we need some information about the
5397 pagesize on the target. This is information need not be 100%
5398 accurate. Since this information is not available (so far) we
5399 define it here to a reasonable default value. If it is crucial
5400 to have a better value some day simply define this value. */
5401 # ifndef BFD_TARGET_PAGESIZE
5402 # define BFD_TARGET_PAGESIZE (4096)
5403 # endif
5404
5405 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5406 and the chains. */
5407 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5408
5409 # if 1
5410 /* Variant 1: optimize for short chains. We add the squares
5411 of all the chain lengths (which favors many small chain
5412 over a few long chains). */
5413 for (j = 0; j < i; ++j)
5414 max += counts[j] * counts[j];
5415
5416 /* This adds penalties for the overall size of the table. */
5417 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5418 max *= fact * fact;
5419 # else
5420 /* Variant 2: Optimize a lot more for small table. Here we
5421 also add squares of the size but we also add penalties for
5422 empty slots (the +1 term). */
5423 for (j = 0; j < i; ++j)
5424 max += (1 + counts[j]) * (1 + counts[j]);
5425
5426 /* The overall size of the table is considered, but not as
5427 strong as in variant 1, where it is squared. */
5428 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5429 max *= fact;
5430 # endif
5431
5432 /* Compare with current best results. */
5433 if (max < best_chlen)
5434 {
5435 best_chlen = max;
5436 best_size = i;
5437 no_improvement_count = 0;
5438 }
5439 /* PR 11843: Avoid futile long searches for the best bucket size
5440 when there are a large number of symbols. */
5441 else if (++no_improvement_count == 100)
5442 break;
5443 }
5444
5445 free (counts);
5446 }
5447 else
5448 #endif /* defined (BFD_HOST_U_64_BIT) */
5449 {
5450 /* This is the fallback solution if no 64bit type is available or if we
5451 are not supposed to spend much time on optimizations. We select the
5452 bucket count using a fixed set of numbers. */
5453 for (i = 0; elf_buckets[i] != 0; i++)
5454 {
5455 best_size = elf_buckets[i];
5456 if (nsyms < elf_buckets[i + 1])
5457 break;
5458 }
5459 if (gnu_hash && best_size < 2)
5460 best_size = 2;
5461 }
5462
5463 return best_size;
5464 }
5465
5466 /* Size any SHT_GROUP section for ld -r. */
5467
5468 bfd_boolean
5469 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5470 {
5471 bfd *ibfd;
5472
5473 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5474 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5475 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5476 return FALSE;
5477 return TRUE;
5478 }
5479
5480 /* Set up the sizes and contents of the ELF dynamic sections. This is
5481 called by the ELF linker emulation before_allocation routine. We
5482 must set the sizes of the sections before the linker sets the
5483 addresses of the various sections. */
5484
5485 bfd_boolean
5486 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5487 const char *soname,
5488 const char *rpath,
5489 const char *filter_shlib,
5490 const char *audit,
5491 const char *depaudit,
5492 const char * const *auxiliary_filters,
5493 struct bfd_link_info *info,
5494 asection **sinterpptr)
5495 {
5496 bfd_size_type soname_indx;
5497 bfd *dynobj;
5498 const struct elf_backend_data *bed;
5499 struct elf_info_failed asvinfo;
5500
5501 *sinterpptr = NULL;
5502
5503 soname_indx = (bfd_size_type) -1;
5504
5505 if (!is_elf_hash_table (info->hash))
5506 return TRUE;
5507
5508 bed = get_elf_backend_data (output_bfd);
5509 if (info->execstack)
5510 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5511 else if (info->noexecstack)
5512 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5513 else
5514 {
5515 bfd *inputobj;
5516 asection *notesec = NULL;
5517 int exec = 0;
5518
5519 for (inputobj = info->input_bfds;
5520 inputobj;
5521 inputobj = inputobj->link_next)
5522 {
5523 asection *s;
5524
5525 if (inputobj->flags
5526 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5527 continue;
5528 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5529 if (s)
5530 {
5531 if (s->flags & SEC_CODE)
5532 exec = PF_X;
5533 notesec = s;
5534 }
5535 else if (bed->default_execstack)
5536 exec = PF_X;
5537 }
5538 if (notesec)
5539 {
5540 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5541 if (exec && info->relocatable
5542 && notesec->output_section != bfd_abs_section_ptr)
5543 notesec->output_section->flags |= SEC_CODE;
5544 }
5545 }
5546
5547 /* Any syms created from now on start with -1 in
5548 got.refcount/offset and plt.refcount/offset. */
5549 elf_hash_table (info)->init_got_refcount
5550 = elf_hash_table (info)->init_got_offset;
5551 elf_hash_table (info)->init_plt_refcount
5552 = elf_hash_table (info)->init_plt_offset;
5553
5554 if (info->relocatable
5555 && !_bfd_elf_size_group_sections (info))
5556 return FALSE;
5557
5558 /* The backend may have to create some sections regardless of whether
5559 we're dynamic or not. */
5560 if (bed->elf_backend_always_size_sections
5561 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5562 return FALSE;
5563
5564 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5565 return FALSE;
5566
5567 dynobj = elf_hash_table (info)->dynobj;
5568
5569 /* If there were no dynamic objects in the link, there is nothing to
5570 do here. */
5571 if (dynobj == NULL)
5572 return TRUE;
5573
5574 if (elf_hash_table (info)->dynamic_sections_created)
5575 {
5576 struct elf_info_failed eif;
5577 struct elf_link_hash_entry *h;
5578 asection *dynstr;
5579 struct bfd_elf_version_tree *t;
5580 struct bfd_elf_version_expr *d;
5581 asection *s;
5582 bfd_boolean all_defined;
5583
5584 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5585 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5586
5587 if (soname != NULL)
5588 {
5589 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5590 soname, TRUE);
5591 if (soname_indx == (bfd_size_type) -1
5592 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5593 return FALSE;
5594 }
5595
5596 if (info->symbolic)
5597 {
5598 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5599 return FALSE;
5600 info->flags |= DF_SYMBOLIC;
5601 }
5602
5603 if (rpath != NULL)
5604 {
5605 bfd_size_type indx;
5606
5607 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5608 TRUE);
5609 if (indx == (bfd_size_type) -1
5610 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5611 return FALSE;
5612
5613 if (info->new_dtags)
5614 {
5615 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5616 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5617 return FALSE;
5618 }
5619 }
5620
5621 if (filter_shlib != NULL)
5622 {
5623 bfd_size_type indx;
5624
5625 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5626 filter_shlib, TRUE);
5627 if (indx == (bfd_size_type) -1
5628 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5629 return FALSE;
5630 }
5631
5632 if (auxiliary_filters != NULL)
5633 {
5634 const char * const *p;
5635
5636 for (p = auxiliary_filters; *p != NULL; p++)
5637 {
5638 bfd_size_type indx;
5639
5640 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5641 *p, TRUE);
5642 if (indx == (bfd_size_type) -1
5643 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5644 return FALSE;
5645 }
5646 }
5647
5648 if (audit != NULL)
5649 {
5650 bfd_size_type indx;
5651
5652 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5653 TRUE);
5654 if (indx == (bfd_size_type) -1
5655 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5656 return FALSE;
5657 }
5658
5659 if (depaudit != NULL)
5660 {
5661 bfd_size_type indx;
5662
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5664 TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5667 return FALSE;
5668 }
5669
5670 eif.info = info;
5671 eif.failed = FALSE;
5672
5673 /* If we are supposed to export all symbols into the dynamic symbol
5674 table (this is not the normal case), then do so. */
5675 if (info->export_dynamic
5676 || (info->executable && info->dynamic))
5677 {
5678 elf_link_hash_traverse (elf_hash_table (info),
5679 _bfd_elf_export_symbol,
5680 &eif);
5681 if (eif.failed)
5682 return FALSE;
5683 }
5684
5685 /* Make all global versions with definition. */
5686 for (t = info->version_info; t != NULL; t = t->next)
5687 for (d = t->globals.list; d != NULL; d = d->next)
5688 if (!d->symver && d->literal)
5689 {
5690 const char *verstr, *name;
5691 size_t namelen, verlen, newlen;
5692 char *newname, *p, leading_char;
5693 struct elf_link_hash_entry *newh;
5694
5695 leading_char = bfd_get_symbol_leading_char (output_bfd);
5696 name = d->pattern;
5697 namelen = strlen (name) + (leading_char != '\0');
5698 verstr = t->name;
5699 verlen = strlen (verstr);
5700 newlen = namelen + verlen + 3;
5701
5702 newname = (char *) bfd_malloc (newlen);
5703 if (newname == NULL)
5704 return FALSE;
5705 newname[0] = leading_char;
5706 memcpy (newname + (leading_char != '\0'), name, namelen);
5707
5708 /* Check the hidden versioned definition. */
5709 p = newname + namelen;
5710 *p++ = ELF_VER_CHR;
5711 memcpy (p, verstr, verlen + 1);
5712 newh = elf_link_hash_lookup (elf_hash_table (info),
5713 newname, FALSE, FALSE,
5714 FALSE);
5715 if (newh == NULL
5716 || (newh->root.type != bfd_link_hash_defined
5717 && newh->root.type != bfd_link_hash_defweak))
5718 {
5719 /* Check the default versioned definition. */
5720 *p++ = ELF_VER_CHR;
5721 memcpy (p, verstr, verlen + 1);
5722 newh = elf_link_hash_lookup (elf_hash_table (info),
5723 newname, FALSE, FALSE,
5724 FALSE);
5725 }
5726 free (newname);
5727
5728 /* Mark this version if there is a definition and it is
5729 not defined in a shared object. */
5730 if (newh != NULL
5731 && !newh->def_dynamic
5732 && (newh->root.type == bfd_link_hash_defined
5733 || newh->root.type == bfd_link_hash_defweak))
5734 d->symver = 1;
5735 }
5736
5737 /* Attach all the symbols to their version information. */
5738 asvinfo.info = info;
5739 asvinfo.failed = FALSE;
5740
5741 elf_link_hash_traverse (elf_hash_table (info),
5742 _bfd_elf_link_assign_sym_version,
5743 &asvinfo);
5744 if (asvinfo.failed)
5745 return FALSE;
5746
5747 if (!info->allow_undefined_version)
5748 {
5749 /* Check if all global versions have a definition. */
5750 all_defined = TRUE;
5751 for (t = info->version_info; t != NULL; t = t->next)
5752 for (d = t->globals.list; d != NULL; d = d->next)
5753 if (d->literal && !d->symver && !d->script)
5754 {
5755 (*_bfd_error_handler)
5756 (_("%s: undefined version: %s"),
5757 d->pattern, t->name);
5758 all_defined = FALSE;
5759 }
5760
5761 if (!all_defined)
5762 {
5763 bfd_set_error (bfd_error_bad_value);
5764 return FALSE;
5765 }
5766 }
5767
5768 /* Find all symbols which were defined in a dynamic object and make
5769 the backend pick a reasonable value for them. */
5770 elf_link_hash_traverse (elf_hash_table (info),
5771 _bfd_elf_adjust_dynamic_symbol,
5772 &eif);
5773 if (eif.failed)
5774 return FALSE;
5775
5776 /* Add some entries to the .dynamic section. We fill in some of the
5777 values later, in bfd_elf_final_link, but we must add the entries
5778 now so that we know the final size of the .dynamic section. */
5779
5780 /* If there are initialization and/or finalization functions to
5781 call then add the corresponding DT_INIT/DT_FINI entries. */
5782 h = (info->init_function
5783 ? elf_link_hash_lookup (elf_hash_table (info),
5784 info->init_function, FALSE,
5785 FALSE, FALSE)
5786 : NULL);
5787 if (h != NULL
5788 && (h->ref_regular
5789 || h->def_regular))
5790 {
5791 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5792 return FALSE;
5793 }
5794 h = (info->fini_function
5795 ? elf_link_hash_lookup (elf_hash_table (info),
5796 info->fini_function, FALSE,
5797 FALSE, FALSE)
5798 : NULL);
5799 if (h != NULL
5800 && (h->ref_regular
5801 || h->def_regular))
5802 {
5803 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5804 return FALSE;
5805 }
5806
5807 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5808 if (s != NULL && s->linker_has_input)
5809 {
5810 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5811 if (! info->executable)
5812 {
5813 bfd *sub;
5814 asection *o;
5815
5816 for (sub = info->input_bfds; sub != NULL;
5817 sub = sub->link_next)
5818 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5819 for (o = sub->sections; o != NULL; o = o->next)
5820 if (elf_section_data (o)->this_hdr.sh_type
5821 == SHT_PREINIT_ARRAY)
5822 {
5823 (*_bfd_error_handler)
5824 (_("%B: .preinit_array section is not allowed in DSO"),
5825 sub);
5826 break;
5827 }
5828
5829 bfd_set_error (bfd_error_nonrepresentable_section);
5830 return FALSE;
5831 }
5832
5833 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5834 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5835 return FALSE;
5836 }
5837 s = bfd_get_section_by_name (output_bfd, ".init_array");
5838 if (s != NULL && s->linker_has_input)
5839 {
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5841 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5842 return FALSE;
5843 }
5844 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5845 if (s != NULL && s->linker_has_input)
5846 {
5847 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5848 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5849 return FALSE;
5850 }
5851
5852 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5853 /* If .dynstr is excluded from the link, we don't want any of
5854 these tags. Strictly, we should be checking each section
5855 individually; This quick check covers for the case where
5856 someone does a /DISCARD/ : { *(*) }. */
5857 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5858 {
5859 bfd_size_type strsize;
5860
5861 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5862 if ((info->emit_hash
5863 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5864 || (info->emit_gnu_hash
5865 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5866 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5867 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5868 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5869 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5870 bed->s->sizeof_sym))
5871 return FALSE;
5872 }
5873 }
5874
5875 /* The backend must work out the sizes of all the other dynamic
5876 sections. */
5877 if (bed->elf_backend_size_dynamic_sections
5878 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5879 return FALSE;
5880
5881 if (elf_hash_table (info)->dynamic_sections_created)
5882 {
5883 unsigned long section_sym_count;
5884 struct bfd_elf_version_tree *verdefs;
5885 asection *s;
5886
5887 /* Set up the version definition section. */
5888 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5889 BFD_ASSERT (s != NULL);
5890
5891 /* We may have created additional version definitions if we are
5892 just linking a regular application. */
5893 verdefs = info->version_info;
5894
5895 /* Skip anonymous version tag. */
5896 if (verdefs != NULL && verdefs->vernum == 0)
5897 verdefs = verdefs->next;
5898
5899 if (verdefs == NULL && !info->create_default_symver)
5900 s->flags |= SEC_EXCLUDE;
5901 else
5902 {
5903 unsigned int cdefs;
5904 bfd_size_type size;
5905 struct bfd_elf_version_tree *t;
5906 bfd_byte *p;
5907 Elf_Internal_Verdef def;
5908 Elf_Internal_Verdaux defaux;
5909 struct bfd_link_hash_entry *bh;
5910 struct elf_link_hash_entry *h;
5911 const char *name;
5912
5913 cdefs = 0;
5914 size = 0;
5915
5916 /* Make space for the base version. */
5917 size += sizeof (Elf_External_Verdef);
5918 size += sizeof (Elf_External_Verdaux);
5919 ++cdefs;
5920
5921 /* Make space for the default version. */
5922 if (info->create_default_symver)
5923 {
5924 size += sizeof (Elf_External_Verdef);
5925 ++cdefs;
5926 }
5927
5928 for (t = verdefs; t != NULL; t = t->next)
5929 {
5930 struct bfd_elf_version_deps *n;
5931
5932 /* Don't emit base version twice. */
5933 if (t->vernum == 0)
5934 continue;
5935
5936 size += sizeof (Elf_External_Verdef);
5937 size += sizeof (Elf_External_Verdaux);
5938 ++cdefs;
5939
5940 for (n = t->deps; n != NULL; n = n->next)
5941 size += sizeof (Elf_External_Verdaux);
5942 }
5943
5944 s->size = size;
5945 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5946 if (s->contents == NULL && s->size != 0)
5947 return FALSE;
5948
5949 /* Fill in the version definition section. */
5950
5951 p = s->contents;
5952
5953 def.vd_version = VER_DEF_CURRENT;
5954 def.vd_flags = VER_FLG_BASE;
5955 def.vd_ndx = 1;
5956 def.vd_cnt = 1;
5957 if (info->create_default_symver)
5958 {
5959 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5960 def.vd_next = sizeof (Elf_External_Verdef);
5961 }
5962 else
5963 {
5964 def.vd_aux = sizeof (Elf_External_Verdef);
5965 def.vd_next = (sizeof (Elf_External_Verdef)
5966 + sizeof (Elf_External_Verdaux));
5967 }
5968
5969 if (soname_indx != (bfd_size_type) -1)
5970 {
5971 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5972 soname_indx);
5973 def.vd_hash = bfd_elf_hash (soname);
5974 defaux.vda_name = soname_indx;
5975 name = soname;
5976 }
5977 else
5978 {
5979 bfd_size_type indx;
5980
5981 name = lbasename (output_bfd->filename);
5982 def.vd_hash = bfd_elf_hash (name);
5983 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5984 name, FALSE);
5985 if (indx == (bfd_size_type) -1)
5986 return FALSE;
5987 defaux.vda_name = indx;
5988 }
5989 defaux.vda_next = 0;
5990
5991 _bfd_elf_swap_verdef_out (output_bfd, &def,
5992 (Elf_External_Verdef *) p);
5993 p += sizeof (Elf_External_Verdef);
5994 if (info->create_default_symver)
5995 {
5996 /* Add a symbol representing this version. */
5997 bh = NULL;
5998 if (! (_bfd_generic_link_add_one_symbol
5999 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6000 0, NULL, FALSE,
6001 get_elf_backend_data (dynobj)->collect, &bh)))
6002 return FALSE;
6003 h = (struct elf_link_hash_entry *) bh;
6004 h->non_elf = 0;
6005 h->def_regular = 1;
6006 h->type = STT_OBJECT;
6007 h->verinfo.vertree = NULL;
6008
6009 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6010 return FALSE;
6011
6012 /* Create a duplicate of the base version with the same
6013 aux block, but different flags. */
6014 def.vd_flags = 0;
6015 def.vd_ndx = 2;
6016 def.vd_aux = sizeof (Elf_External_Verdef);
6017 if (verdefs)
6018 def.vd_next = (sizeof (Elf_External_Verdef)
6019 + sizeof (Elf_External_Verdaux));
6020 else
6021 def.vd_next = 0;
6022 _bfd_elf_swap_verdef_out (output_bfd, &def,
6023 (Elf_External_Verdef *) p);
6024 p += sizeof (Elf_External_Verdef);
6025 }
6026 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6027 (Elf_External_Verdaux *) p);
6028 p += sizeof (Elf_External_Verdaux);
6029
6030 for (t = verdefs; t != NULL; t = t->next)
6031 {
6032 unsigned int cdeps;
6033 struct bfd_elf_version_deps *n;
6034
6035 /* Don't emit the base version twice. */
6036 if (t->vernum == 0)
6037 continue;
6038
6039 cdeps = 0;
6040 for (n = t->deps; n != NULL; n = n->next)
6041 ++cdeps;
6042
6043 /* Add a symbol representing this version. */
6044 bh = NULL;
6045 if (! (_bfd_generic_link_add_one_symbol
6046 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6047 0, NULL, FALSE,
6048 get_elf_backend_data (dynobj)->collect, &bh)))
6049 return FALSE;
6050 h = (struct elf_link_hash_entry *) bh;
6051 h->non_elf = 0;
6052 h->def_regular = 1;
6053 h->type = STT_OBJECT;
6054 h->verinfo.vertree = t;
6055
6056 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6057 return FALSE;
6058
6059 def.vd_version = VER_DEF_CURRENT;
6060 def.vd_flags = 0;
6061 if (t->globals.list == NULL
6062 && t->locals.list == NULL
6063 && ! t->used)
6064 def.vd_flags |= VER_FLG_WEAK;
6065 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6066 def.vd_cnt = cdeps + 1;
6067 def.vd_hash = bfd_elf_hash (t->name);
6068 def.vd_aux = sizeof (Elf_External_Verdef);
6069 def.vd_next = 0;
6070
6071 /* If a basever node is next, it *must* be the last node in
6072 the chain, otherwise Verdef construction breaks. */
6073 if (t->next != NULL && t->next->vernum == 0)
6074 BFD_ASSERT (t->next->next == NULL);
6075
6076 if (t->next != NULL && t->next->vernum != 0)
6077 def.vd_next = (sizeof (Elf_External_Verdef)
6078 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6079
6080 _bfd_elf_swap_verdef_out (output_bfd, &def,
6081 (Elf_External_Verdef *) p);
6082 p += sizeof (Elf_External_Verdef);
6083
6084 defaux.vda_name = h->dynstr_index;
6085 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6086 h->dynstr_index);
6087 defaux.vda_next = 0;
6088 if (t->deps != NULL)
6089 defaux.vda_next = sizeof (Elf_External_Verdaux);
6090 t->name_indx = defaux.vda_name;
6091
6092 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6093 (Elf_External_Verdaux *) p);
6094 p += sizeof (Elf_External_Verdaux);
6095
6096 for (n = t->deps; n != NULL; n = n->next)
6097 {
6098 if (n->version_needed == NULL)
6099 {
6100 /* This can happen if there was an error in the
6101 version script. */
6102 defaux.vda_name = 0;
6103 }
6104 else
6105 {
6106 defaux.vda_name = n->version_needed->name_indx;
6107 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6108 defaux.vda_name);
6109 }
6110 if (n->next == NULL)
6111 defaux.vda_next = 0;
6112 else
6113 defaux.vda_next = sizeof (Elf_External_Verdaux);
6114
6115 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6116 (Elf_External_Verdaux *) p);
6117 p += sizeof (Elf_External_Verdaux);
6118 }
6119 }
6120
6121 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6122 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6123 return FALSE;
6124
6125 elf_tdata (output_bfd)->cverdefs = cdefs;
6126 }
6127
6128 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6129 {
6130 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6131 return FALSE;
6132 }
6133 else if (info->flags & DF_BIND_NOW)
6134 {
6135 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6136 return FALSE;
6137 }
6138
6139 if (info->flags_1)
6140 {
6141 if (info->executable)
6142 info->flags_1 &= ~ (DF_1_INITFIRST
6143 | DF_1_NODELETE
6144 | DF_1_NOOPEN);
6145 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6146 return FALSE;
6147 }
6148
6149 /* Work out the size of the version reference section. */
6150
6151 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6152 BFD_ASSERT (s != NULL);
6153 {
6154 struct elf_find_verdep_info sinfo;
6155
6156 sinfo.info = info;
6157 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6158 if (sinfo.vers == 0)
6159 sinfo.vers = 1;
6160 sinfo.failed = FALSE;
6161
6162 elf_link_hash_traverse (elf_hash_table (info),
6163 _bfd_elf_link_find_version_dependencies,
6164 &sinfo);
6165 if (sinfo.failed)
6166 return FALSE;
6167
6168 if (elf_tdata (output_bfd)->verref == NULL)
6169 s->flags |= SEC_EXCLUDE;
6170 else
6171 {
6172 Elf_Internal_Verneed *t;
6173 unsigned int size;
6174 unsigned int crefs;
6175 bfd_byte *p;
6176
6177 /* Build the version dependency section. */
6178 size = 0;
6179 crefs = 0;
6180 for (t = elf_tdata (output_bfd)->verref;
6181 t != NULL;
6182 t = t->vn_nextref)
6183 {
6184 Elf_Internal_Vernaux *a;
6185
6186 size += sizeof (Elf_External_Verneed);
6187 ++crefs;
6188 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6189 size += sizeof (Elf_External_Vernaux);
6190 }
6191
6192 s->size = size;
6193 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6194 if (s->contents == NULL)
6195 return FALSE;
6196
6197 p = s->contents;
6198 for (t = elf_tdata (output_bfd)->verref;
6199 t != NULL;
6200 t = t->vn_nextref)
6201 {
6202 unsigned int caux;
6203 Elf_Internal_Vernaux *a;
6204 bfd_size_type indx;
6205
6206 caux = 0;
6207 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6208 ++caux;
6209
6210 t->vn_version = VER_NEED_CURRENT;
6211 t->vn_cnt = caux;
6212 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6213 elf_dt_name (t->vn_bfd) != NULL
6214 ? elf_dt_name (t->vn_bfd)
6215 : lbasename (t->vn_bfd->filename),
6216 FALSE);
6217 if (indx == (bfd_size_type) -1)
6218 return FALSE;
6219 t->vn_file = indx;
6220 t->vn_aux = sizeof (Elf_External_Verneed);
6221 if (t->vn_nextref == NULL)
6222 t->vn_next = 0;
6223 else
6224 t->vn_next = (sizeof (Elf_External_Verneed)
6225 + caux * sizeof (Elf_External_Vernaux));
6226
6227 _bfd_elf_swap_verneed_out (output_bfd, t,
6228 (Elf_External_Verneed *) p);
6229 p += sizeof (Elf_External_Verneed);
6230
6231 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6232 {
6233 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6234 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6235 a->vna_nodename, FALSE);
6236 if (indx == (bfd_size_type) -1)
6237 return FALSE;
6238 a->vna_name = indx;
6239 if (a->vna_nextptr == NULL)
6240 a->vna_next = 0;
6241 else
6242 a->vna_next = sizeof (Elf_External_Vernaux);
6243
6244 _bfd_elf_swap_vernaux_out (output_bfd, a,
6245 (Elf_External_Vernaux *) p);
6246 p += sizeof (Elf_External_Vernaux);
6247 }
6248 }
6249
6250 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6251 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6252 return FALSE;
6253
6254 elf_tdata (output_bfd)->cverrefs = crefs;
6255 }
6256 }
6257
6258 if ((elf_tdata (output_bfd)->cverrefs == 0
6259 && elf_tdata (output_bfd)->cverdefs == 0)
6260 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6261 &section_sym_count) == 0)
6262 {
6263 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6264 s->flags |= SEC_EXCLUDE;
6265 }
6266 }
6267 return TRUE;
6268 }
6269
6270 /* Find the first non-excluded output section. We'll use its
6271 section symbol for some emitted relocs. */
6272 void
6273 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6274 {
6275 asection *s;
6276
6277 for (s = output_bfd->sections; s != NULL; s = s->next)
6278 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6279 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6280 {
6281 elf_hash_table (info)->text_index_section = s;
6282 break;
6283 }
6284 }
6285
6286 /* Find two non-excluded output sections, one for code, one for data.
6287 We'll use their section symbols for some emitted relocs. */
6288 void
6289 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6290 {
6291 asection *s;
6292
6293 /* Data first, since setting text_index_section changes
6294 _bfd_elf_link_omit_section_dynsym. */
6295 for (s = output_bfd->sections; s != NULL; s = s->next)
6296 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6297 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6298 {
6299 elf_hash_table (info)->data_index_section = s;
6300 break;
6301 }
6302
6303 for (s = output_bfd->sections; s != NULL; s = s->next)
6304 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6305 == (SEC_ALLOC | SEC_READONLY))
6306 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6307 {
6308 elf_hash_table (info)->text_index_section = s;
6309 break;
6310 }
6311
6312 if (elf_hash_table (info)->text_index_section == NULL)
6313 elf_hash_table (info)->text_index_section
6314 = elf_hash_table (info)->data_index_section;
6315 }
6316
6317 bfd_boolean
6318 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6319 {
6320 const struct elf_backend_data *bed;
6321
6322 if (!is_elf_hash_table (info->hash))
6323 return TRUE;
6324
6325 bed = get_elf_backend_data (output_bfd);
6326 (*bed->elf_backend_init_index_section) (output_bfd, info);
6327
6328 if (elf_hash_table (info)->dynamic_sections_created)
6329 {
6330 bfd *dynobj;
6331 asection *s;
6332 bfd_size_type dynsymcount;
6333 unsigned long section_sym_count;
6334 unsigned int dtagcount;
6335
6336 dynobj = elf_hash_table (info)->dynobj;
6337
6338 /* Assign dynsym indicies. In a shared library we generate a
6339 section symbol for each output section, which come first.
6340 Next come all of the back-end allocated local dynamic syms,
6341 followed by the rest of the global symbols. */
6342
6343 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6344 &section_sym_count);
6345
6346 /* Work out the size of the symbol version section. */
6347 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6348 BFD_ASSERT (s != NULL);
6349 if (dynsymcount != 0
6350 && (s->flags & SEC_EXCLUDE) == 0)
6351 {
6352 s->size = dynsymcount * sizeof (Elf_External_Versym);
6353 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6354 if (s->contents == NULL)
6355 return FALSE;
6356
6357 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6358 return FALSE;
6359 }
6360
6361 /* Set the size of the .dynsym and .hash sections. We counted
6362 the number of dynamic symbols in elf_link_add_object_symbols.
6363 We will build the contents of .dynsym and .hash when we build
6364 the final symbol table, because until then we do not know the
6365 correct value to give the symbols. We built the .dynstr
6366 section as we went along in elf_link_add_object_symbols. */
6367 s = bfd_get_section_by_name (dynobj, ".dynsym");
6368 BFD_ASSERT (s != NULL);
6369 s->size = dynsymcount * bed->s->sizeof_sym;
6370
6371 if (dynsymcount != 0)
6372 {
6373 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6374 if (s->contents == NULL)
6375 return FALSE;
6376
6377 /* The first entry in .dynsym is a dummy symbol.
6378 Clear all the section syms, in case we don't output them all. */
6379 ++section_sym_count;
6380 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6381 }
6382
6383 elf_hash_table (info)->bucketcount = 0;
6384
6385 /* Compute the size of the hashing table. As a side effect this
6386 computes the hash values for all the names we export. */
6387 if (info->emit_hash)
6388 {
6389 unsigned long int *hashcodes;
6390 struct hash_codes_info hashinf;
6391 bfd_size_type amt;
6392 unsigned long int nsyms;
6393 size_t bucketcount;
6394 size_t hash_entry_size;
6395
6396 /* Compute the hash values for all exported symbols. At the same
6397 time store the values in an array so that we could use them for
6398 optimizations. */
6399 amt = dynsymcount * sizeof (unsigned long int);
6400 hashcodes = (unsigned long int *) bfd_malloc (amt);
6401 if (hashcodes == NULL)
6402 return FALSE;
6403 hashinf.hashcodes = hashcodes;
6404 hashinf.error = FALSE;
6405
6406 /* Put all hash values in HASHCODES. */
6407 elf_link_hash_traverse (elf_hash_table (info),
6408 elf_collect_hash_codes, &hashinf);
6409 if (hashinf.error)
6410 {
6411 free (hashcodes);
6412 return FALSE;
6413 }
6414
6415 nsyms = hashinf.hashcodes - hashcodes;
6416 bucketcount
6417 = compute_bucket_count (info, hashcodes, nsyms, 0);
6418 free (hashcodes);
6419
6420 if (bucketcount == 0)
6421 return FALSE;
6422
6423 elf_hash_table (info)->bucketcount = bucketcount;
6424
6425 s = bfd_get_section_by_name (dynobj, ".hash");
6426 BFD_ASSERT (s != NULL);
6427 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6428 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6429 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6430 if (s->contents == NULL)
6431 return FALSE;
6432
6433 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6434 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6435 s->contents + hash_entry_size);
6436 }
6437
6438 if (info->emit_gnu_hash)
6439 {
6440 size_t i, cnt;
6441 unsigned char *contents;
6442 struct collect_gnu_hash_codes cinfo;
6443 bfd_size_type amt;
6444 size_t bucketcount;
6445
6446 memset (&cinfo, 0, sizeof (cinfo));
6447
6448 /* Compute the hash values for all exported symbols. At the same
6449 time store the values in an array so that we could use them for
6450 optimizations. */
6451 amt = dynsymcount * 2 * sizeof (unsigned long int);
6452 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6453 if (cinfo.hashcodes == NULL)
6454 return FALSE;
6455
6456 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6457 cinfo.min_dynindx = -1;
6458 cinfo.output_bfd = output_bfd;
6459 cinfo.bed = bed;
6460
6461 /* Put all hash values in HASHCODES. */
6462 elf_link_hash_traverse (elf_hash_table (info),
6463 elf_collect_gnu_hash_codes, &cinfo);
6464 if (cinfo.error)
6465 {
6466 free (cinfo.hashcodes);
6467 return FALSE;
6468 }
6469
6470 bucketcount
6471 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6472
6473 if (bucketcount == 0)
6474 {
6475 free (cinfo.hashcodes);
6476 return FALSE;
6477 }
6478
6479 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6480 BFD_ASSERT (s != NULL);
6481
6482 if (cinfo.nsyms == 0)
6483 {
6484 /* Empty .gnu.hash section is special. */
6485 BFD_ASSERT (cinfo.min_dynindx == -1);
6486 free (cinfo.hashcodes);
6487 s->size = 5 * 4 + bed->s->arch_size / 8;
6488 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6489 if (contents == NULL)
6490 return FALSE;
6491 s->contents = contents;
6492 /* 1 empty bucket. */
6493 bfd_put_32 (output_bfd, 1, contents);
6494 /* SYMIDX above the special symbol 0. */
6495 bfd_put_32 (output_bfd, 1, contents + 4);
6496 /* Just one word for bitmask. */
6497 bfd_put_32 (output_bfd, 1, contents + 8);
6498 /* Only hash fn bloom filter. */
6499 bfd_put_32 (output_bfd, 0, contents + 12);
6500 /* No hashes are valid - empty bitmask. */
6501 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6502 /* No hashes in the only bucket. */
6503 bfd_put_32 (output_bfd, 0,
6504 contents + 16 + bed->s->arch_size / 8);
6505 }
6506 else
6507 {
6508 unsigned long int maskwords, maskbitslog2, x;
6509 BFD_ASSERT (cinfo.min_dynindx != -1);
6510
6511 x = cinfo.nsyms;
6512 maskbitslog2 = 1;
6513 while ((x >>= 1) != 0)
6514 ++maskbitslog2;
6515 if (maskbitslog2 < 3)
6516 maskbitslog2 = 5;
6517 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6518 maskbitslog2 = maskbitslog2 + 3;
6519 else
6520 maskbitslog2 = maskbitslog2 + 2;
6521 if (bed->s->arch_size == 64)
6522 {
6523 if (maskbitslog2 == 5)
6524 maskbitslog2 = 6;
6525 cinfo.shift1 = 6;
6526 }
6527 else
6528 cinfo.shift1 = 5;
6529 cinfo.mask = (1 << cinfo.shift1) - 1;
6530 cinfo.shift2 = maskbitslog2;
6531 cinfo.maskbits = 1 << maskbitslog2;
6532 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6533 amt = bucketcount * sizeof (unsigned long int) * 2;
6534 amt += maskwords * sizeof (bfd_vma);
6535 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6536 if (cinfo.bitmask == NULL)
6537 {
6538 free (cinfo.hashcodes);
6539 return FALSE;
6540 }
6541
6542 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6543 cinfo.indx = cinfo.counts + bucketcount;
6544 cinfo.symindx = dynsymcount - cinfo.nsyms;
6545 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6546
6547 /* Determine how often each hash bucket is used. */
6548 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6549 for (i = 0; i < cinfo.nsyms; ++i)
6550 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6551
6552 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6553 if (cinfo.counts[i] != 0)
6554 {
6555 cinfo.indx[i] = cnt;
6556 cnt += cinfo.counts[i];
6557 }
6558 BFD_ASSERT (cnt == dynsymcount);
6559 cinfo.bucketcount = bucketcount;
6560 cinfo.local_indx = cinfo.min_dynindx;
6561
6562 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6563 s->size += cinfo.maskbits / 8;
6564 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6565 if (contents == NULL)
6566 {
6567 free (cinfo.bitmask);
6568 free (cinfo.hashcodes);
6569 return FALSE;
6570 }
6571
6572 s->contents = contents;
6573 bfd_put_32 (output_bfd, bucketcount, contents);
6574 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6575 bfd_put_32 (output_bfd, maskwords, contents + 8);
6576 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6577 contents += 16 + cinfo.maskbits / 8;
6578
6579 for (i = 0; i < bucketcount; ++i)
6580 {
6581 if (cinfo.counts[i] == 0)
6582 bfd_put_32 (output_bfd, 0, contents);
6583 else
6584 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6585 contents += 4;
6586 }
6587
6588 cinfo.contents = contents;
6589
6590 /* Renumber dynamic symbols, populate .gnu.hash section. */
6591 elf_link_hash_traverse (elf_hash_table (info),
6592 elf_renumber_gnu_hash_syms, &cinfo);
6593
6594 contents = s->contents + 16;
6595 for (i = 0; i < maskwords; ++i)
6596 {
6597 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6598 contents);
6599 contents += bed->s->arch_size / 8;
6600 }
6601
6602 free (cinfo.bitmask);
6603 free (cinfo.hashcodes);
6604 }
6605 }
6606
6607 s = bfd_get_section_by_name (dynobj, ".dynstr");
6608 BFD_ASSERT (s != NULL);
6609
6610 elf_finalize_dynstr (output_bfd, info);
6611
6612 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6613
6614 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6615 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6616 return FALSE;
6617 }
6618
6619 return TRUE;
6620 }
6621 \f
6622 /* Indicate that we are only retrieving symbol values from this
6623 section. */
6624
6625 void
6626 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6627 {
6628 if (is_elf_hash_table (info->hash))
6629 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6630 _bfd_generic_link_just_syms (sec, info);
6631 }
6632
6633 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6634
6635 static void
6636 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6637 asection *sec)
6638 {
6639 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6640 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6641 }
6642
6643 /* Finish SHF_MERGE section merging. */
6644
6645 bfd_boolean
6646 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6647 {
6648 bfd *ibfd;
6649 asection *sec;
6650
6651 if (!is_elf_hash_table (info->hash))
6652 return FALSE;
6653
6654 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6655 if ((ibfd->flags & DYNAMIC) == 0)
6656 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6657 if ((sec->flags & SEC_MERGE) != 0
6658 && !bfd_is_abs_section (sec->output_section))
6659 {
6660 struct bfd_elf_section_data *secdata;
6661
6662 secdata = elf_section_data (sec);
6663 if (! _bfd_add_merge_section (abfd,
6664 &elf_hash_table (info)->merge_info,
6665 sec, &secdata->sec_info))
6666 return FALSE;
6667 else if (secdata->sec_info)
6668 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6669 }
6670
6671 if (elf_hash_table (info)->merge_info != NULL)
6672 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6673 merge_sections_remove_hook);
6674 return TRUE;
6675 }
6676
6677 /* Create an entry in an ELF linker hash table. */
6678
6679 struct bfd_hash_entry *
6680 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6681 struct bfd_hash_table *table,
6682 const char *string)
6683 {
6684 /* Allocate the structure if it has not already been allocated by a
6685 subclass. */
6686 if (entry == NULL)
6687 {
6688 entry = (struct bfd_hash_entry *)
6689 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6690 if (entry == NULL)
6691 return entry;
6692 }
6693
6694 /* Call the allocation method of the superclass. */
6695 entry = _bfd_link_hash_newfunc (entry, table, string);
6696 if (entry != NULL)
6697 {
6698 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6699 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6700
6701 /* Set local fields. */
6702 ret->indx = -1;
6703 ret->dynindx = -1;
6704 ret->got = htab->init_got_refcount;
6705 ret->plt = htab->init_plt_refcount;
6706 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6707 - offsetof (struct elf_link_hash_entry, size)));
6708 /* Assume that we have been called by a non-ELF symbol reader.
6709 This flag is then reset by the code which reads an ELF input
6710 file. This ensures that a symbol created by a non-ELF symbol
6711 reader will have the flag set correctly. */
6712 ret->non_elf = 1;
6713 }
6714
6715 return entry;
6716 }
6717
6718 /* Copy data from an indirect symbol to its direct symbol, hiding the
6719 old indirect symbol. Also used for copying flags to a weakdef. */
6720
6721 void
6722 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6723 struct elf_link_hash_entry *dir,
6724 struct elf_link_hash_entry *ind)
6725 {
6726 struct elf_link_hash_table *htab;
6727
6728 /* Copy down any references that we may have already seen to the
6729 symbol which just became indirect. */
6730
6731 dir->ref_dynamic |= ind->ref_dynamic;
6732 dir->ref_regular |= ind->ref_regular;
6733 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6734 dir->non_got_ref |= ind->non_got_ref;
6735 dir->needs_plt |= ind->needs_plt;
6736 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6737
6738 if (ind->root.type != bfd_link_hash_indirect)
6739 return;
6740
6741 /* Copy over the global and procedure linkage table refcount entries.
6742 These may have been already set up by a check_relocs routine. */
6743 htab = elf_hash_table (info);
6744 if (ind->got.refcount > htab->init_got_refcount.refcount)
6745 {
6746 if (dir->got.refcount < 0)
6747 dir->got.refcount = 0;
6748 dir->got.refcount += ind->got.refcount;
6749 ind->got.refcount = htab->init_got_refcount.refcount;
6750 }
6751
6752 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6753 {
6754 if (dir->plt.refcount < 0)
6755 dir->plt.refcount = 0;
6756 dir->plt.refcount += ind->plt.refcount;
6757 ind->plt.refcount = htab->init_plt_refcount.refcount;
6758 }
6759
6760 if (ind->dynindx != -1)
6761 {
6762 if (dir->dynindx != -1)
6763 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6764 dir->dynindx = ind->dynindx;
6765 dir->dynstr_index = ind->dynstr_index;
6766 ind->dynindx = -1;
6767 ind->dynstr_index = 0;
6768 }
6769 }
6770
6771 void
6772 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6773 struct elf_link_hash_entry *h,
6774 bfd_boolean force_local)
6775 {
6776 /* STT_GNU_IFUNC symbol must go through PLT. */
6777 if (h->type != STT_GNU_IFUNC)
6778 {
6779 h->plt = elf_hash_table (info)->init_plt_offset;
6780 h->needs_plt = 0;
6781 }
6782 if (force_local)
6783 {
6784 h->forced_local = 1;
6785 if (h->dynindx != -1)
6786 {
6787 h->dynindx = -1;
6788 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6789 h->dynstr_index);
6790 }
6791 }
6792 }
6793
6794 /* Initialize an ELF linker hash table. */
6795
6796 bfd_boolean
6797 _bfd_elf_link_hash_table_init
6798 (struct elf_link_hash_table *table,
6799 bfd *abfd,
6800 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6801 struct bfd_hash_table *,
6802 const char *),
6803 unsigned int entsize,
6804 enum elf_target_id target_id)
6805 {
6806 bfd_boolean ret;
6807 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6808
6809 memset (table, 0, sizeof * table);
6810 table->init_got_refcount.refcount = can_refcount - 1;
6811 table->init_plt_refcount.refcount = can_refcount - 1;
6812 table->init_got_offset.offset = -(bfd_vma) 1;
6813 table->init_plt_offset.offset = -(bfd_vma) 1;
6814 /* The first dynamic symbol is a dummy. */
6815 table->dynsymcount = 1;
6816
6817 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6818
6819 table->root.type = bfd_link_elf_hash_table;
6820 table->hash_table_id = target_id;
6821
6822 return ret;
6823 }
6824
6825 /* Create an ELF linker hash table. */
6826
6827 struct bfd_link_hash_table *
6828 _bfd_elf_link_hash_table_create (bfd *abfd)
6829 {
6830 struct elf_link_hash_table *ret;
6831 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6832
6833 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6834 if (ret == NULL)
6835 return NULL;
6836
6837 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6838 sizeof (struct elf_link_hash_entry),
6839 GENERIC_ELF_DATA))
6840 {
6841 free (ret);
6842 return NULL;
6843 }
6844
6845 return &ret->root;
6846 }
6847
6848 /* This is a hook for the ELF emulation code in the generic linker to
6849 tell the backend linker what file name to use for the DT_NEEDED
6850 entry for a dynamic object. */
6851
6852 void
6853 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6854 {
6855 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6856 && bfd_get_format (abfd) == bfd_object)
6857 elf_dt_name (abfd) = name;
6858 }
6859
6860 int
6861 bfd_elf_get_dyn_lib_class (bfd *abfd)
6862 {
6863 int lib_class;
6864 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6865 && bfd_get_format (abfd) == bfd_object)
6866 lib_class = elf_dyn_lib_class (abfd);
6867 else
6868 lib_class = 0;
6869 return lib_class;
6870 }
6871
6872 void
6873 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6874 {
6875 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6876 && bfd_get_format (abfd) == bfd_object)
6877 elf_dyn_lib_class (abfd) = lib_class;
6878 }
6879
6880 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6881 the linker ELF emulation code. */
6882
6883 struct bfd_link_needed_list *
6884 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6885 struct bfd_link_info *info)
6886 {
6887 if (! is_elf_hash_table (info->hash))
6888 return NULL;
6889 return elf_hash_table (info)->needed;
6890 }
6891
6892 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6893 hook for the linker ELF emulation code. */
6894
6895 struct bfd_link_needed_list *
6896 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6897 struct bfd_link_info *info)
6898 {
6899 if (! is_elf_hash_table (info->hash))
6900 return NULL;
6901 return elf_hash_table (info)->runpath;
6902 }
6903
6904 /* Get the name actually used for a dynamic object for a link. This
6905 is the SONAME entry if there is one. Otherwise, it is the string
6906 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6907
6908 const char *
6909 bfd_elf_get_dt_soname (bfd *abfd)
6910 {
6911 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6912 && bfd_get_format (abfd) == bfd_object)
6913 return elf_dt_name (abfd);
6914 return NULL;
6915 }
6916
6917 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6918 the ELF linker emulation code. */
6919
6920 bfd_boolean
6921 bfd_elf_get_bfd_needed_list (bfd *abfd,
6922 struct bfd_link_needed_list **pneeded)
6923 {
6924 asection *s;
6925 bfd_byte *dynbuf = NULL;
6926 unsigned int elfsec;
6927 unsigned long shlink;
6928 bfd_byte *extdyn, *extdynend;
6929 size_t extdynsize;
6930 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6931
6932 *pneeded = NULL;
6933
6934 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6935 || bfd_get_format (abfd) != bfd_object)
6936 return TRUE;
6937
6938 s = bfd_get_section_by_name (abfd, ".dynamic");
6939 if (s == NULL || s->size == 0)
6940 return TRUE;
6941
6942 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6943 goto error_return;
6944
6945 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6946 if (elfsec == SHN_BAD)
6947 goto error_return;
6948
6949 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6950
6951 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6952 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6953
6954 extdyn = dynbuf;
6955 extdynend = extdyn + s->size;
6956 for (; extdyn < extdynend; extdyn += extdynsize)
6957 {
6958 Elf_Internal_Dyn dyn;
6959
6960 (*swap_dyn_in) (abfd, extdyn, &dyn);
6961
6962 if (dyn.d_tag == DT_NULL)
6963 break;
6964
6965 if (dyn.d_tag == DT_NEEDED)
6966 {
6967 const char *string;
6968 struct bfd_link_needed_list *l;
6969 unsigned int tagv = dyn.d_un.d_val;
6970 bfd_size_type amt;
6971
6972 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6973 if (string == NULL)
6974 goto error_return;
6975
6976 amt = sizeof *l;
6977 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6978 if (l == NULL)
6979 goto error_return;
6980
6981 l->by = abfd;
6982 l->name = string;
6983 l->next = *pneeded;
6984 *pneeded = l;
6985 }
6986 }
6987
6988 free (dynbuf);
6989
6990 return TRUE;
6991
6992 error_return:
6993 if (dynbuf != NULL)
6994 free (dynbuf);
6995 return FALSE;
6996 }
6997
6998 struct elf_symbuf_symbol
6999 {
7000 unsigned long st_name; /* Symbol name, index in string tbl */
7001 unsigned char st_info; /* Type and binding attributes */
7002 unsigned char st_other; /* Visibilty, and target specific */
7003 };
7004
7005 struct elf_symbuf_head
7006 {
7007 struct elf_symbuf_symbol *ssym;
7008 bfd_size_type count;
7009 unsigned int st_shndx;
7010 };
7011
7012 struct elf_symbol
7013 {
7014 union
7015 {
7016 Elf_Internal_Sym *isym;
7017 struct elf_symbuf_symbol *ssym;
7018 } u;
7019 const char *name;
7020 };
7021
7022 /* Sort references to symbols by ascending section number. */
7023
7024 static int
7025 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7026 {
7027 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7028 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7029
7030 return s1->st_shndx - s2->st_shndx;
7031 }
7032
7033 static int
7034 elf_sym_name_compare (const void *arg1, const void *arg2)
7035 {
7036 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7037 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7038 return strcmp (s1->name, s2->name);
7039 }
7040
7041 static struct elf_symbuf_head *
7042 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7043 {
7044 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7045 struct elf_symbuf_symbol *ssym;
7046 struct elf_symbuf_head *ssymbuf, *ssymhead;
7047 bfd_size_type i, shndx_count, total_size;
7048
7049 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7050 if (indbuf == NULL)
7051 return NULL;
7052
7053 for (ind = indbuf, i = 0; i < symcount; i++)
7054 if (isymbuf[i].st_shndx != SHN_UNDEF)
7055 *ind++ = &isymbuf[i];
7056 indbufend = ind;
7057
7058 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7059 elf_sort_elf_symbol);
7060
7061 shndx_count = 0;
7062 if (indbufend > indbuf)
7063 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7064 if (ind[0]->st_shndx != ind[1]->st_shndx)
7065 shndx_count++;
7066
7067 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7068 + (indbufend - indbuf) * sizeof (*ssym));
7069 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7070 if (ssymbuf == NULL)
7071 {
7072 free (indbuf);
7073 return NULL;
7074 }
7075
7076 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7077 ssymbuf->ssym = NULL;
7078 ssymbuf->count = shndx_count;
7079 ssymbuf->st_shndx = 0;
7080 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7081 {
7082 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7083 {
7084 ssymhead++;
7085 ssymhead->ssym = ssym;
7086 ssymhead->count = 0;
7087 ssymhead->st_shndx = (*ind)->st_shndx;
7088 }
7089 ssym->st_name = (*ind)->st_name;
7090 ssym->st_info = (*ind)->st_info;
7091 ssym->st_other = (*ind)->st_other;
7092 ssymhead->count++;
7093 }
7094 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7095 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7096 == total_size));
7097
7098 free (indbuf);
7099 return ssymbuf;
7100 }
7101
7102 /* Check if 2 sections define the same set of local and global
7103 symbols. */
7104
7105 static bfd_boolean
7106 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7107 struct bfd_link_info *info)
7108 {
7109 bfd *bfd1, *bfd2;
7110 const struct elf_backend_data *bed1, *bed2;
7111 Elf_Internal_Shdr *hdr1, *hdr2;
7112 bfd_size_type symcount1, symcount2;
7113 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7114 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7115 Elf_Internal_Sym *isym, *isymend;
7116 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7117 bfd_size_type count1, count2, i;
7118 unsigned int shndx1, shndx2;
7119 bfd_boolean result;
7120
7121 bfd1 = sec1->owner;
7122 bfd2 = sec2->owner;
7123
7124 /* Both sections have to be in ELF. */
7125 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7126 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7127 return FALSE;
7128
7129 if (elf_section_type (sec1) != elf_section_type (sec2))
7130 return FALSE;
7131
7132 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7133 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7134 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7135 return FALSE;
7136
7137 bed1 = get_elf_backend_data (bfd1);
7138 bed2 = get_elf_backend_data (bfd2);
7139 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7140 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7141 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7142 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7143
7144 if (symcount1 == 0 || symcount2 == 0)
7145 return FALSE;
7146
7147 result = FALSE;
7148 isymbuf1 = NULL;
7149 isymbuf2 = NULL;
7150 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7151 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7152
7153 if (ssymbuf1 == NULL)
7154 {
7155 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7156 NULL, NULL, NULL);
7157 if (isymbuf1 == NULL)
7158 goto done;
7159
7160 if (!info->reduce_memory_overheads)
7161 elf_tdata (bfd1)->symbuf = ssymbuf1
7162 = elf_create_symbuf (symcount1, isymbuf1);
7163 }
7164
7165 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7166 {
7167 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7168 NULL, NULL, NULL);
7169 if (isymbuf2 == NULL)
7170 goto done;
7171
7172 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7173 elf_tdata (bfd2)->symbuf = ssymbuf2
7174 = elf_create_symbuf (symcount2, isymbuf2);
7175 }
7176
7177 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7178 {
7179 /* Optimized faster version. */
7180 bfd_size_type lo, hi, mid;
7181 struct elf_symbol *symp;
7182 struct elf_symbuf_symbol *ssym, *ssymend;
7183
7184 lo = 0;
7185 hi = ssymbuf1->count;
7186 ssymbuf1++;
7187 count1 = 0;
7188 while (lo < hi)
7189 {
7190 mid = (lo + hi) / 2;
7191 if (shndx1 < ssymbuf1[mid].st_shndx)
7192 hi = mid;
7193 else if (shndx1 > ssymbuf1[mid].st_shndx)
7194 lo = mid + 1;
7195 else
7196 {
7197 count1 = ssymbuf1[mid].count;
7198 ssymbuf1 += mid;
7199 break;
7200 }
7201 }
7202
7203 lo = 0;
7204 hi = ssymbuf2->count;
7205 ssymbuf2++;
7206 count2 = 0;
7207 while (lo < hi)
7208 {
7209 mid = (lo + hi) / 2;
7210 if (shndx2 < ssymbuf2[mid].st_shndx)
7211 hi = mid;
7212 else if (shndx2 > ssymbuf2[mid].st_shndx)
7213 lo = mid + 1;
7214 else
7215 {
7216 count2 = ssymbuf2[mid].count;
7217 ssymbuf2 += mid;
7218 break;
7219 }
7220 }
7221
7222 if (count1 == 0 || count2 == 0 || count1 != count2)
7223 goto done;
7224
7225 symtable1 = (struct elf_symbol *)
7226 bfd_malloc (count1 * sizeof (struct elf_symbol));
7227 symtable2 = (struct elf_symbol *)
7228 bfd_malloc (count2 * sizeof (struct elf_symbol));
7229 if (symtable1 == NULL || symtable2 == NULL)
7230 goto done;
7231
7232 symp = symtable1;
7233 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7234 ssym < ssymend; ssym++, symp++)
7235 {
7236 symp->u.ssym = ssym;
7237 symp->name = bfd_elf_string_from_elf_section (bfd1,
7238 hdr1->sh_link,
7239 ssym->st_name);
7240 }
7241
7242 symp = symtable2;
7243 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7244 ssym < ssymend; ssym++, symp++)
7245 {
7246 symp->u.ssym = ssym;
7247 symp->name = bfd_elf_string_from_elf_section (bfd2,
7248 hdr2->sh_link,
7249 ssym->st_name);
7250 }
7251
7252 /* Sort symbol by name. */
7253 qsort (symtable1, count1, sizeof (struct elf_symbol),
7254 elf_sym_name_compare);
7255 qsort (symtable2, count1, sizeof (struct elf_symbol),
7256 elf_sym_name_compare);
7257
7258 for (i = 0; i < count1; i++)
7259 /* Two symbols must have the same binding, type and name. */
7260 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7261 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7262 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7263 goto done;
7264
7265 result = TRUE;
7266 goto done;
7267 }
7268
7269 symtable1 = (struct elf_symbol *)
7270 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7271 symtable2 = (struct elf_symbol *)
7272 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7273 if (symtable1 == NULL || symtable2 == NULL)
7274 goto done;
7275
7276 /* Count definitions in the section. */
7277 count1 = 0;
7278 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7279 if (isym->st_shndx == shndx1)
7280 symtable1[count1++].u.isym = isym;
7281
7282 count2 = 0;
7283 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7284 if (isym->st_shndx == shndx2)
7285 symtable2[count2++].u.isym = isym;
7286
7287 if (count1 == 0 || count2 == 0 || count1 != count2)
7288 goto done;
7289
7290 for (i = 0; i < count1; i++)
7291 symtable1[i].name
7292 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7293 symtable1[i].u.isym->st_name);
7294
7295 for (i = 0; i < count2; i++)
7296 symtable2[i].name
7297 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7298 symtable2[i].u.isym->st_name);
7299
7300 /* Sort symbol by name. */
7301 qsort (symtable1, count1, sizeof (struct elf_symbol),
7302 elf_sym_name_compare);
7303 qsort (symtable2, count1, sizeof (struct elf_symbol),
7304 elf_sym_name_compare);
7305
7306 for (i = 0; i < count1; i++)
7307 /* Two symbols must have the same binding, type and name. */
7308 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7309 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7310 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7311 goto done;
7312
7313 result = TRUE;
7314
7315 done:
7316 if (symtable1)
7317 free (symtable1);
7318 if (symtable2)
7319 free (symtable2);
7320 if (isymbuf1)
7321 free (isymbuf1);
7322 if (isymbuf2)
7323 free (isymbuf2);
7324
7325 return result;
7326 }
7327
7328 /* Return TRUE if 2 section types are compatible. */
7329
7330 bfd_boolean
7331 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7332 bfd *bbfd, const asection *bsec)
7333 {
7334 if (asec == NULL
7335 || bsec == NULL
7336 || abfd->xvec->flavour != bfd_target_elf_flavour
7337 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7338 return TRUE;
7339
7340 return elf_section_type (asec) == elf_section_type (bsec);
7341 }
7342 \f
7343 /* Final phase of ELF linker. */
7344
7345 /* A structure we use to avoid passing large numbers of arguments. */
7346
7347 struct elf_final_link_info
7348 {
7349 /* General link information. */
7350 struct bfd_link_info *info;
7351 /* Output BFD. */
7352 bfd *output_bfd;
7353 /* Symbol string table. */
7354 struct bfd_strtab_hash *symstrtab;
7355 /* .dynsym section. */
7356 asection *dynsym_sec;
7357 /* .hash section. */
7358 asection *hash_sec;
7359 /* symbol version section (.gnu.version). */
7360 asection *symver_sec;
7361 /* Buffer large enough to hold contents of any section. */
7362 bfd_byte *contents;
7363 /* Buffer large enough to hold external relocs of any section. */
7364 void *external_relocs;
7365 /* Buffer large enough to hold internal relocs of any section. */
7366 Elf_Internal_Rela *internal_relocs;
7367 /* Buffer large enough to hold external local symbols of any input
7368 BFD. */
7369 bfd_byte *external_syms;
7370 /* And a buffer for symbol section indices. */
7371 Elf_External_Sym_Shndx *locsym_shndx;
7372 /* Buffer large enough to hold internal local symbols of any input
7373 BFD. */
7374 Elf_Internal_Sym *internal_syms;
7375 /* Array large enough to hold a symbol index for each local symbol
7376 of any input BFD. */
7377 long *indices;
7378 /* Array large enough to hold a section pointer for each local
7379 symbol of any input BFD. */
7380 asection **sections;
7381 /* Buffer to hold swapped out symbols. */
7382 bfd_byte *symbuf;
7383 /* And one for symbol section indices. */
7384 Elf_External_Sym_Shndx *symshndxbuf;
7385 /* Number of swapped out symbols in buffer. */
7386 size_t symbuf_count;
7387 /* Number of symbols which fit in symbuf. */
7388 size_t symbuf_size;
7389 /* And same for symshndxbuf. */
7390 size_t shndxbuf_size;
7391 };
7392
7393 /* This struct is used to pass information to elf_link_output_extsym. */
7394
7395 struct elf_outext_info
7396 {
7397 bfd_boolean failed;
7398 bfd_boolean localsyms;
7399 struct elf_final_link_info *finfo;
7400 };
7401
7402
7403 /* Support for evaluating a complex relocation.
7404
7405 Complex relocations are generalized, self-describing relocations. The
7406 implementation of them consists of two parts: complex symbols, and the
7407 relocations themselves.
7408
7409 The relocations are use a reserved elf-wide relocation type code (R_RELC
7410 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7411 information (start bit, end bit, word width, etc) into the addend. This
7412 information is extracted from CGEN-generated operand tables within gas.
7413
7414 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7415 internal) representing prefix-notation expressions, including but not
7416 limited to those sorts of expressions normally encoded as addends in the
7417 addend field. The symbol mangling format is:
7418
7419 <node> := <literal>
7420 | <unary-operator> ':' <node>
7421 | <binary-operator> ':' <node> ':' <node>
7422 ;
7423
7424 <literal> := 's' <digits=N> ':' <N character symbol name>
7425 | 'S' <digits=N> ':' <N character section name>
7426 | '#' <hexdigits>
7427 ;
7428
7429 <binary-operator> := as in C
7430 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7431
7432 static void
7433 set_symbol_value (bfd *bfd_with_globals,
7434 Elf_Internal_Sym *isymbuf,
7435 size_t locsymcount,
7436 size_t symidx,
7437 bfd_vma val)
7438 {
7439 struct elf_link_hash_entry **sym_hashes;
7440 struct elf_link_hash_entry *h;
7441 size_t extsymoff = locsymcount;
7442
7443 if (symidx < locsymcount)
7444 {
7445 Elf_Internal_Sym *sym;
7446
7447 sym = isymbuf + symidx;
7448 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7449 {
7450 /* It is a local symbol: move it to the
7451 "absolute" section and give it a value. */
7452 sym->st_shndx = SHN_ABS;
7453 sym->st_value = val;
7454 return;
7455 }
7456 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7457 extsymoff = 0;
7458 }
7459
7460 /* It is a global symbol: set its link type
7461 to "defined" and give it a value. */
7462
7463 sym_hashes = elf_sym_hashes (bfd_with_globals);
7464 h = sym_hashes [symidx - extsymoff];
7465 while (h->root.type == bfd_link_hash_indirect
7466 || h->root.type == bfd_link_hash_warning)
7467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7468 h->root.type = bfd_link_hash_defined;
7469 h->root.u.def.value = val;
7470 h->root.u.def.section = bfd_abs_section_ptr;
7471 }
7472
7473 static bfd_boolean
7474 resolve_symbol (const char *name,
7475 bfd *input_bfd,
7476 struct elf_final_link_info *finfo,
7477 bfd_vma *result,
7478 Elf_Internal_Sym *isymbuf,
7479 size_t locsymcount)
7480 {
7481 Elf_Internal_Sym *sym;
7482 struct bfd_link_hash_entry *global_entry;
7483 const char *candidate = NULL;
7484 Elf_Internal_Shdr *symtab_hdr;
7485 size_t i;
7486
7487 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7488
7489 for (i = 0; i < locsymcount; ++ i)
7490 {
7491 sym = isymbuf + i;
7492
7493 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7494 continue;
7495
7496 candidate = bfd_elf_string_from_elf_section (input_bfd,
7497 symtab_hdr->sh_link,
7498 sym->st_name);
7499 #ifdef DEBUG
7500 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7501 name, candidate, (unsigned long) sym->st_value);
7502 #endif
7503 if (candidate && strcmp (candidate, name) == 0)
7504 {
7505 asection *sec = finfo->sections [i];
7506
7507 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7508 *result += sec->output_offset + sec->output_section->vma;
7509 #ifdef DEBUG
7510 printf ("Found symbol with value %8.8lx\n",
7511 (unsigned long) *result);
7512 #endif
7513 return TRUE;
7514 }
7515 }
7516
7517 /* Hmm, haven't found it yet. perhaps it is a global. */
7518 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7519 FALSE, FALSE, TRUE);
7520 if (!global_entry)
7521 return FALSE;
7522
7523 if (global_entry->type == bfd_link_hash_defined
7524 || global_entry->type == bfd_link_hash_defweak)
7525 {
7526 *result = (global_entry->u.def.value
7527 + global_entry->u.def.section->output_section->vma
7528 + global_entry->u.def.section->output_offset);
7529 #ifdef DEBUG
7530 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7531 global_entry->root.string, (unsigned long) *result);
7532 #endif
7533 return TRUE;
7534 }
7535
7536 return FALSE;
7537 }
7538
7539 static bfd_boolean
7540 resolve_section (const char *name,
7541 asection *sections,
7542 bfd_vma *result)
7543 {
7544 asection *curr;
7545 unsigned int len;
7546
7547 for (curr = sections; curr; curr = curr->next)
7548 if (strcmp (curr->name, name) == 0)
7549 {
7550 *result = curr->vma;
7551 return TRUE;
7552 }
7553
7554 /* Hmm. still haven't found it. try pseudo-section names. */
7555 for (curr = sections; curr; curr = curr->next)
7556 {
7557 len = strlen (curr->name);
7558 if (len > strlen (name))
7559 continue;
7560
7561 if (strncmp (curr->name, name, len) == 0)
7562 {
7563 if (strncmp (".end", name + len, 4) == 0)
7564 {
7565 *result = curr->vma + curr->size;
7566 return TRUE;
7567 }
7568
7569 /* Insert more pseudo-section names here, if you like. */
7570 }
7571 }
7572
7573 return FALSE;
7574 }
7575
7576 static void
7577 undefined_reference (const char *reftype, const char *name)
7578 {
7579 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7580 reftype, name);
7581 }
7582
7583 static bfd_boolean
7584 eval_symbol (bfd_vma *result,
7585 const char **symp,
7586 bfd *input_bfd,
7587 struct elf_final_link_info *finfo,
7588 bfd_vma dot,
7589 Elf_Internal_Sym *isymbuf,
7590 size_t locsymcount,
7591 int signed_p)
7592 {
7593 size_t len;
7594 size_t symlen;
7595 bfd_vma a;
7596 bfd_vma b;
7597 char symbuf[4096];
7598 const char *sym = *symp;
7599 const char *symend;
7600 bfd_boolean symbol_is_section = FALSE;
7601
7602 len = strlen (sym);
7603 symend = sym + len;
7604
7605 if (len < 1 || len > sizeof (symbuf))
7606 {
7607 bfd_set_error (bfd_error_invalid_operation);
7608 return FALSE;
7609 }
7610
7611 switch (* sym)
7612 {
7613 case '.':
7614 *result = dot;
7615 *symp = sym + 1;
7616 return TRUE;
7617
7618 case '#':
7619 ++sym;
7620 *result = strtoul (sym, (char **) symp, 16);
7621 return TRUE;
7622
7623 case 'S':
7624 symbol_is_section = TRUE;
7625 case 's':
7626 ++sym;
7627 symlen = strtol (sym, (char **) symp, 10);
7628 sym = *symp + 1; /* Skip the trailing ':'. */
7629
7630 if (symend < sym || symlen + 1 > sizeof (symbuf))
7631 {
7632 bfd_set_error (bfd_error_invalid_operation);
7633 return FALSE;
7634 }
7635
7636 memcpy (symbuf, sym, symlen);
7637 symbuf[symlen] = '\0';
7638 *symp = sym + symlen;
7639
7640 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7641 the symbol as a section, or vice-versa. so we're pretty liberal in our
7642 interpretation here; section means "try section first", not "must be a
7643 section", and likewise with symbol. */
7644
7645 if (symbol_is_section)
7646 {
7647 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7648 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7649 isymbuf, locsymcount))
7650 {
7651 undefined_reference ("section", symbuf);
7652 return FALSE;
7653 }
7654 }
7655 else
7656 {
7657 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7658 isymbuf, locsymcount)
7659 && !resolve_section (symbuf, finfo->output_bfd->sections,
7660 result))
7661 {
7662 undefined_reference ("symbol", symbuf);
7663 return FALSE;
7664 }
7665 }
7666
7667 return TRUE;
7668
7669 /* All that remains are operators. */
7670
7671 #define UNARY_OP(op) \
7672 if (strncmp (sym, #op, strlen (#op)) == 0) \
7673 { \
7674 sym += strlen (#op); \
7675 if (*sym == ':') \
7676 ++sym; \
7677 *symp = sym; \
7678 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7679 isymbuf, locsymcount, signed_p)) \
7680 return FALSE; \
7681 if (signed_p) \
7682 *result = op ((bfd_signed_vma) a); \
7683 else \
7684 *result = op a; \
7685 return TRUE; \
7686 }
7687
7688 #define BINARY_OP(op) \
7689 if (strncmp (sym, #op, strlen (#op)) == 0) \
7690 { \
7691 sym += strlen (#op); \
7692 if (*sym == ':') \
7693 ++sym; \
7694 *symp = sym; \
7695 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7696 isymbuf, locsymcount, signed_p)) \
7697 return FALSE; \
7698 ++*symp; \
7699 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7700 isymbuf, locsymcount, signed_p)) \
7701 return FALSE; \
7702 if (signed_p) \
7703 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7704 else \
7705 *result = a op b; \
7706 return TRUE; \
7707 }
7708
7709 default:
7710 UNARY_OP (0-);
7711 BINARY_OP (<<);
7712 BINARY_OP (>>);
7713 BINARY_OP (==);
7714 BINARY_OP (!=);
7715 BINARY_OP (<=);
7716 BINARY_OP (>=);
7717 BINARY_OP (&&);
7718 BINARY_OP (||);
7719 UNARY_OP (~);
7720 UNARY_OP (!);
7721 BINARY_OP (*);
7722 BINARY_OP (/);
7723 BINARY_OP (%);
7724 BINARY_OP (^);
7725 BINARY_OP (|);
7726 BINARY_OP (&);
7727 BINARY_OP (+);
7728 BINARY_OP (-);
7729 BINARY_OP (<);
7730 BINARY_OP (>);
7731 #undef UNARY_OP
7732 #undef BINARY_OP
7733 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7734 bfd_set_error (bfd_error_invalid_operation);
7735 return FALSE;
7736 }
7737 }
7738
7739 static void
7740 put_value (bfd_vma size,
7741 unsigned long chunksz,
7742 bfd *input_bfd,
7743 bfd_vma x,
7744 bfd_byte *location)
7745 {
7746 location += (size - chunksz);
7747
7748 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7749 {
7750 switch (chunksz)
7751 {
7752 default:
7753 case 0:
7754 abort ();
7755 case 1:
7756 bfd_put_8 (input_bfd, x, location);
7757 break;
7758 case 2:
7759 bfd_put_16 (input_bfd, x, location);
7760 break;
7761 case 4:
7762 bfd_put_32 (input_bfd, x, location);
7763 break;
7764 case 8:
7765 #ifdef BFD64
7766 bfd_put_64 (input_bfd, x, location);
7767 #else
7768 abort ();
7769 #endif
7770 break;
7771 }
7772 }
7773 }
7774
7775 static bfd_vma
7776 get_value (bfd_vma size,
7777 unsigned long chunksz,
7778 bfd *input_bfd,
7779 bfd_byte *location)
7780 {
7781 bfd_vma x = 0;
7782
7783 for (; size; size -= chunksz, location += chunksz)
7784 {
7785 switch (chunksz)
7786 {
7787 default:
7788 case 0:
7789 abort ();
7790 case 1:
7791 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7792 break;
7793 case 2:
7794 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7795 break;
7796 case 4:
7797 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7798 break;
7799 case 8:
7800 #ifdef BFD64
7801 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7802 #else
7803 abort ();
7804 #endif
7805 break;
7806 }
7807 }
7808 return x;
7809 }
7810
7811 static void
7812 decode_complex_addend (unsigned long *start, /* in bits */
7813 unsigned long *oplen, /* in bits */
7814 unsigned long *len, /* in bits */
7815 unsigned long *wordsz, /* in bytes */
7816 unsigned long *chunksz, /* in bytes */
7817 unsigned long *lsb0_p,
7818 unsigned long *signed_p,
7819 unsigned long *trunc_p,
7820 unsigned long encoded)
7821 {
7822 * start = encoded & 0x3F;
7823 * len = (encoded >> 6) & 0x3F;
7824 * oplen = (encoded >> 12) & 0x3F;
7825 * wordsz = (encoded >> 18) & 0xF;
7826 * chunksz = (encoded >> 22) & 0xF;
7827 * lsb0_p = (encoded >> 27) & 1;
7828 * signed_p = (encoded >> 28) & 1;
7829 * trunc_p = (encoded >> 29) & 1;
7830 }
7831
7832 bfd_reloc_status_type
7833 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7834 asection *input_section ATTRIBUTE_UNUSED,
7835 bfd_byte *contents,
7836 Elf_Internal_Rela *rel,
7837 bfd_vma relocation)
7838 {
7839 bfd_vma shift, x, mask;
7840 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7841 bfd_reloc_status_type r;
7842
7843 /* Perform this reloc, since it is complex.
7844 (this is not to say that it necessarily refers to a complex
7845 symbol; merely that it is a self-describing CGEN based reloc.
7846 i.e. the addend has the complete reloc information (bit start, end,
7847 word size, etc) encoded within it.). */
7848
7849 decode_complex_addend (&start, &oplen, &len, &wordsz,
7850 &chunksz, &lsb0_p, &signed_p,
7851 &trunc_p, rel->r_addend);
7852
7853 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7854
7855 if (lsb0_p)
7856 shift = (start + 1) - len;
7857 else
7858 shift = (8 * wordsz) - (start + len);
7859
7860 /* FIXME: octets_per_byte. */
7861 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7862
7863 #ifdef DEBUG
7864 printf ("Doing complex reloc: "
7865 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7866 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7867 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7868 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7869 oplen, (unsigned long) x, (unsigned long) mask,
7870 (unsigned long) relocation);
7871 #endif
7872
7873 r = bfd_reloc_ok;
7874 if (! trunc_p)
7875 /* Now do an overflow check. */
7876 r = bfd_check_overflow ((signed_p
7877 ? complain_overflow_signed
7878 : complain_overflow_unsigned),
7879 len, 0, (8 * wordsz),
7880 relocation);
7881
7882 /* Do the deed. */
7883 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7884
7885 #ifdef DEBUG
7886 printf (" relocation: %8.8lx\n"
7887 " shifted mask: %8.8lx\n"
7888 " shifted/masked reloc: %8.8lx\n"
7889 " result: %8.8lx\n",
7890 (unsigned long) relocation, (unsigned long) (mask << shift),
7891 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7892 #endif
7893 /* FIXME: octets_per_byte. */
7894 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7895 return r;
7896 }
7897
7898 /* When performing a relocatable link, the input relocations are
7899 preserved. But, if they reference global symbols, the indices
7900 referenced must be updated. Update all the relocations found in
7901 RELDATA. */
7902
7903 static void
7904 elf_link_adjust_relocs (bfd *abfd,
7905 struct bfd_elf_section_reloc_data *reldata)
7906 {
7907 unsigned int i;
7908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7909 bfd_byte *erela;
7910 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7911 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7912 bfd_vma r_type_mask;
7913 int r_sym_shift;
7914 unsigned int count = reldata->count;
7915 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7916
7917 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7918 {
7919 swap_in = bed->s->swap_reloc_in;
7920 swap_out = bed->s->swap_reloc_out;
7921 }
7922 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7923 {
7924 swap_in = bed->s->swap_reloca_in;
7925 swap_out = bed->s->swap_reloca_out;
7926 }
7927 else
7928 abort ();
7929
7930 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7931 abort ();
7932
7933 if (bed->s->arch_size == 32)
7934 {
7935 r_type_mask = 0xff;
7936 r_sym_shift = 8;
7937 }
7938 else
7939 {
7940 r_type_mask = 0xffffffff;
7941 r_sym_shift = 32;
7942 }
7943
7944 erela = reldata->hdr->contents;
7945 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7946 {
7947 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7948 unsigned int j;
7949
7950 if (*rel_hash == NULL)
7951 continue;
7952
7953 BFD_ASSERT ((*rel_hash)->indx >= 0);
7954
7955 (*swap_in) (abfd, erela, irela);
7956 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7957 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7958 | (irela[j].r_info & r_type_mask));
7959 (*swap_out) (abfd, irela, erela);
7960 }
7961 }
7962
7963 struct elf_link_sort_rela
7964 {
7965 union {
7966 bfd_vma offset;
7967 bfd_vma sym_mask;
7968 } u;
7969 enum elf_reloc_type_class type;
7970 /* We use this as an array of size int_rels_per_ext_rel. */
7971 Elf_Internal_Rela rela[1];
7972 };
7973
7974 static int
7975 elf_link_sort_cmp1 (const void *A, const void *B)
7976 {
7977 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7978 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7979 int relativea, relativeb;
7980
7981 relativea = a->type == reloc_class_relative;
7982 relativeb = b->type == reloc_class_relative;
7983
7984 if (relativea < relativeb)
7985 return 1;
7986 if (relativea > relativeb)
7987 return -1;
7988 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7989 return -1;
7990 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7991 return 1;
7992 if (a->rela->r_offset < b->rela->r_offset)
7993 return -1;
7994 if (a->rela->r_offset > b->rela->r_offset)
7995 return 1;
7996 return 0;
7997 }
7998
7999 static int
8000 elf_link_sort_cmp2 (const void *A, const void *B)
8001 {
8002 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8003 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8004 int copya, copyb;
8005
8006 if (a->u.offset < b->u.offset)
8007 return -1;
8008 if (a->u.offset > b->u.offset)
8009 return 1;
8010 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8011 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8012 if (copya < copyb)
8013 return -1;
8014 if (copya > copyb)
8015 return 1;
8016 if (a->rela->r_offset < b->rela->r_offset)
8017 return -1;
8018 if (a->rela->r_offset > b->rela->r_offset)
8019 return 1;
8020 return 0;
8021 }
8022
8023 static size_t
8024 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8025 {
8026 asection *dynamic_relocs;
8027 asection *rela_dyn;
8028 asection *rel_dyn;
8029 bfd_size_type count, size;
8030 size_t i, ret, sort_elt, ext_size;
8031 bfd_byte *sort, *s_non_relative, *p;
8032 struct elf_link_sort_rela *sq;
8033 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8034 int i2e = bed->s->int_rels_per_ext_rel;
8035 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8036 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8037 struct bfd_link_order *lo;
8038 bfd_vma r_sym_mask;
8039 bfd_boolean use_rela;
8040
8041 /* Find a dynamic reloc section. */
8042 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8043 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8044 if (rela_dyn != NULL && rela_dyn->size > 0
8045 && rel_dyn != NULL && rel_dyn->size > 0)
8046 {
8047 bfd_boolean use_rela_initialised = FALSE;
8048
8049 /* This is just here to stop gcc from complaining.
8050 It's initialization checking code is not perfect. */
8051 use_rela = TRUE;
8052
8053 /* Both sections are present. Examine the sizes
8054 of the indirect sections to help us choose. */
8055 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8056 if (lo->type == bfd_indirect_link_order)
8057 {
8058 asection *o = lo->u.indirect.section;
8059
8060 if ((o->size % bed->s->sizeof_rela) == 0)
8061 {
8062 if ((o->size % bed->s->sizeof_rel) == 0)
8063 /* Section size is divisible by both rel and rela sizes.
8064 It is of no help to us. */
8065 ;
8066 else
8067 {
8068 /* Section size is only divisible by rela. */
8069 if (use_rela_initialised && (use_rela == FALSE))
8070 {
8071 _bfd_error_handler
8072 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8073 bfd_set_error (bfd_error_invalid_operation);
8074 return 0;
8075 }
8076 else
8077 {
8078 use_rela = TRUE;
8079 use_rela_initialised = TRUE;
8080 }
8081 }
8082 }
8083 else if ((o->size % bed->s->sizeof_rel) == 0)
8084 {
8085 /* Section size is only divisible by rel. */
8086 if (use_rela_initialised && (use_rela == TRUE))
8087 {
8088 _bfd_error_handler
8089 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8090 bfd_set_error (bfd_error_invalid_operation);
8091 return 0;
8092 }
8093 else
8094 {
8095 use_rela = FALSE;
8096 use_rela_initialised = TRUE;
8097 }
8098 }
8099 else
8100 {
8101 /* The section size is not divisible by either - something is wrong. */
8102 _bfd_error_handler
8103 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8104 bfd_set_error (bfd_error_invalid_operation);
8105 return 0;
8106 }
8107 }
8108
8109 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8110 if (lo->type == bfd_indirect_link_order)
8111 {
8112 asection *o = lo->u.indirect.section;
8113
8114 if ((o->size % bed->s->sizeof_rela) == 0)
8115 {
8116 if ((o->size % bed->s->sizeof_rel) == 0)
8117 /* Section size is divisible by both rel and rela sizes.
8118 It is of no help to us. */
8119 ;
8120 else
8121 {
8122 /* Section size is only divisible by rela. */
8123 if (use_rela_initialised && (use_rela == FALSE))
8124 {
8125 _bfd_error_handler
8126 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8127 bfd_set_error (bfd_error_invalid_operation);
8128 return 0;
8129 }
8130 else
8131 {
8132 use_rela = TRUE;
8133 use_rela_initialised = TRUE;
8134 }
8135 }
8136 }
8137 else if ((o->size % bed->s->sizeof_rel) == 0)
8138 {
8139 /* Section size is only divisible by rel. */
8140 if (use_rela_initialised && (use_rela == TRUE))
8141 {
8142 _bfd_error_handler
8143 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8144 bfd_set_error (bfd_error_invalid_operation);
8145 return 0;
8146 }
8147 else
8148 {
8149 use_rela = FALSE;
8150 use_rela_initialised = TRUE;
8151 }
8152 }
8153 else
8154 {
8155 /* The section size is not divisible by either - something is wrong. */
8156 _bfd_error_handler
8157 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8158 bfd_set_error (bfd_error_invalid_operation);
8159 return 0;
8160 }
8161 }
8162
8163 if (! use_rela_initialised)
8164 /* Make a guess. */
8165 use_rela = TRUE;
8166 }
8167 else if (rela_dyn != NULL && rela_dyn->size > 0)
8168 use_rela = TRUE;
8169 else if (rel_dyn != NULL && rel_dyn->size > 0)
8170 use_rela = FALSE;
8171 else
8172 return 0;
8173
8174 if (use_rela)
8175 {
8176 dynamic_relocs = rela_dyn;
8177 ext_size = bed->s->sizeof_rela;
8178 swap_in = bed->s->swap_reloca_in;
8179 swap_out = bed->s->swap_reloca_out;
8180 }
8181 else
8182 {
8183 dynamic_relocs = rel_dyn;
8184 ext_size = bed->s->sizeof_rel;
8185 swap_in = bed->s->swap_reloc_in;
8186 swap_out = bed->s->swap_reloc_out;
8187 }
8188
8189 size = 0;
8190 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8191 if (lo->type == bfd_indirect_link_order)
8192 size += lo->u.indirect.section->size;
8193
8194 if (size != dynamic_relocs->size)
8195 return 0;
8196
8197 sort_elt = (sizeof (struct elf_link_sort_rela)
8198 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8199
8200 count = dynamic_relocs->size / ext_size;
8201 if (count == 0)
8202 return 0;
8203 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8204
8205 if (sort == NULL)
8206 {
8207 (*info->callbacks->warning)
8208 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8209 return 0;
8210 }
8211
8212 if (bed->s->arch_size == 32)
8213 r_sym_mask = ~(bfd_vma) 0xff;
8214 else
8215 r_sym_mask = ~(bfd_vma) 0xffffffff;
8216
8217 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8218 if (lo->type == bfd_indirect_link_order)
8219 {
8220 bfd_byte *erel, *erelend;
8221 asection *o = lo->u.indirect.section;
8222
8223 if (o->contents == NULL && o->size != 0)
8224 {
8225 /* This is a reloc section that is being handled as a normal
8226 section. See bfd_section_from_shdr. We can't combine
8227 relocs in this case. */
8228 free (sort);
8229 return 0;
8230 }
8231 erel = o->contents;
8232 erelend = o->contents + o->size;
8233 /* FIXME: octets_per_byte. */
8234 p = sort + o->output_offset / ext_size * sort_elt;
8235
8236 while (erel < erelend)
8237 {
8238 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8239
8240 (*swap_in) (abfd, erel, s->rela);
8241 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8242 s->u.sym_mask = r_sym_mask;
8243 p += sort_elt;
8244 erel += ext_size;
8245 }
8246 }
8247
8248 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8249
8250 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8251 {
8252 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8253 if (s->type != reloc_class_relative)
8254 break;
8255 }
8256 ret = i;
8257 s_non_relative = p;
8258
8259 sq = (struct elf_link_sort_rela *) s_non_relative;
8260 for (; i < count; i++, p += sort_elt)
8261 {
8262 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8263 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8264 sq = sp;
8265 sp->u.offset = sq->rela->r_offset;
8266 }
8267
8268 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8269
8270 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8271 if (lo->type == bfd_indirect_link_order)
8272 {
8273 bfd_byte *erel, *erelend;
8274 asection *o = lo->u.indirect.section;
8275
8276 erel = o->contents;
8277 erelend = o->contents + o->size;
8278 /* FIXME: octets_per_byte. */
8279 p = sort + o->output_offset / ext_size * sort_elt;
8280 while (erel < erelend)
8281 {
8282 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8283 (*swap_out) (abfd, s->rela, erel);
8284 p += sort_elt;
8285 erel += ext_size;
8286 }
8287 }
8288
8289 free (sort);
8290 *psec = dynamic_relocs;
8291 return ret;
8292 }
8293
8294 /* Flush the output symbols to the file. */
8295
8296 static bfd_boolean
8297 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8298 const struct elf_backend_data *bed)
8299 {
8300 if (finfo->symbuf_count > 0)
8301 {
8302 Elf_Internal_Shdr *hdr;
8303 file_ptr pos;
8304 bfd_size_type amt;
8305
8306 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8307 pos = hdr->sh_offset + hdr->sh_size;
8308 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8309 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8310 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8311 return FALSE;
8312
8313 hdr->sh_size += amt;
8314 finfo->symbuf_count = 0;
8315 }
8316
8317 return TRUE;
8318 }
8319
8320 /* Add a symbol to the output symbol table. */
8321
8322 static int
8323 elf_link_output_sym (struct elf_final_link_info *finfo,
8324 const char *name,
8325 Elf_Internal_Sym *elfsym,
8326 asection *input_sec,
8327 struct elf_link_hash_entry *h)
8328 {
8329 bfd_byte *dest;
8330 Elf_External_Sym_Shndx *destshndx;
8331 int (*output_symbol_hook)
8332 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8333 struct elf_link_hash_entry *);
8334 const struct elf_backend_data *bed;
8335
8336 bed = get_elf_backend_data (finfo->output_bfd);
8337 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8338 if (output_symbol_hook != NULL)
8339 {
8340 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8341 if (ret != 1)
8342 return ret;
8343 }
8344
8345 if (name == NULL || *name == '\0')
8346 elfsym->st_name = 0;
8347 else if (input_sec->flags & SEC_EXCLUDE)
8348 elfsym->st_name = 0;
8349 else
8350 {
8351 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8352 name, TRUE, FALSE);
8353 if (elfsym->st_name == (unsigned long) -1)
8354 return 0;
8355 }
8356
8357 if (finfo->symbuf_count >= finfo->symbuf_size)
8358 {
8359 if (! elf_link_flush_output_syms (finfo, bed))
8360 return 0;
8361 }
8362
8363 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8364 destshndx = finfo->symshndxbuf;
8365 if (destshndx != NULL)
8366 {
8367 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8368 {
8369 bfd_size_type amt;
8370
8371 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8372 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8373 amt * 2);
8374 if (destshndx == NULL)
8375 return 0;
8376 finfo->symshndxbuf = destshndx;
8377 memset ((char *) destshndx + amt, 0, amt);
8378 finfo->shndxbuf_size *= 2;
8379 }
8380 destshndx += bfd_get_symcount (finfo->output_bfd);
8381 }
8382
8383 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8384 finfo->symbuf_count += 1;
8385 bfd_get_symcount (finfo->output_bfd) += 1;
8386
8387 return 1;
8388 }
8389
8390 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8391
8392 static bfd_boolean
8393 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8394 {
8395 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8396 && sym->st_shndx < SHN_LORESERVE)
8397 {
8398 /* The gABI doesn't support dynamic symbols in output sections
8399 beyond 64k. */
8400 (*_bfd_error_handler)
8401 (_("%B: Too many sections: %d (>= %d)"),
8402 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8403 bfd_set_error (bfd_error_nonrepresentable_section);
8404 return FALSE;
8405 }
8406 return TRUE;
8407 }
8408
8409 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8410 allowing an unsatisfied unversioned symbol in the DSO to match a
8411 versioned symbol that would normally require an explicit version.
8412 We also handle the case that a DSO references a hidden symbol
8413 which may be satisfied by a versioned symbol in another DSO. */
8414
8415 static bfd_boolean
8416 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8417 const struct elf_backend_data *bed,
8418 struct elf_link_hash_entry *h)
8419 {
8420 bfd *abfd;
8421 struct elf_link_loaded_list *loaded;
8422
8423 if (!is_elf_hash_table (info->hash))
8424 return FALSE;
8425
8426 switch (h->root.type)
8427 {
8428 default:
8429 abfd = NULL;
8430 break;
8431
8432 case bfd_link_hash_undefined:
8433 case bfd_link_hash_undefweak:
8434 abfd = h->root.u.undef.abfd;
8435 if ((abfd->flags & DYNAMIC) == 0
8436 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8437 return FALSE;
8438 break;
8439
8440 case bfd_link_hash_defined:
8441 case bfd_link_hash_defweak:
8442 abfd = h->root.u.def.section->owner;
8443 break;
8444
8445 case bfd_link_hash_common:
8446 abfd = h->root.u.c.p->section->owner;
8447 break;
8448 }
8449 BFD_ASSERT (abfd != NULL);
8450
8451 for (loaded = elf_hash_table (info)->loaded;
8452 loaded != NULL;
8453 loaded = loaded->next)
8454 {
8455 bfd *input;
8456 Elf_Internal_Shdr *hdr;
8457 bfd_size_type symcount;
8458 bfd_size_type extsymcount;
8459 bfd_size_type extsymoff;
8460 Elf_Internal_Shdr *versymhdr;
8461 Elf_Internal_Sym *isym;
8462 Elf_Internal_Sym *isymend;
8463 Elf_Internal_Sym *isymbuf;
8464 Elf_External_Versym *ever;
8465 Elf_External_Versym *extversym;
8466
8467 input = loaded->abfd;
8468
8469 /* We check each DSO for a possible hidden versioned definition. */
8470 if (input == abfd
8471 || (input->flags & DYNAMIC) == 0
8472 || elf_dynversym (input) == 0)
8473 continue;
8474
8475 hdr = &elf_tdata (input)->dynsymtab_hdr;
8476
8477 symcount = hdr->sh_size / bed->s->sizeof_sym;
8478 if (elf_bad_symtab (input))
8479 {
8480 extsymcount = symcount;
8481 extsymoff = 0;
8482 }
8483 else
8484 {
8485 extsymcount = symcount - hdr->sh_info;
8486 extsymoff = hdr->sh_info;
8487 }
8488
8489 if (extsymcount == 0)
8490 continue;
8491
8492 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8493 NULL, NULL, NULL);
8494 if (isymbuf == NULL)
8495 return FALSE;
8496
8497 /* Read in any version definitions. */
8498 versymhdr = &elf_tdata (input)->dynversym_hdr;
8499 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8500 if (extversym == NULL)
8501 goto error_ret;
8502
8503 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8504 || (bfd_bread (extversym, versymhdr->sh_size, input)
8505 != versymhdr->sh_size))
8506 {
8507 free (extversym);
8508 error_ret:
8509 free (isymbuf);
8510 return FALSE;
8511 }
8512
8513 ever = extversym + extsymoff;
8514 isymend = isymbuf + extsymcount;
8515 for (isym = isymbuf; isym < isymend; isym++, ever++)
8516 {
8517 const char *name;
8518 Elf_Internal_Versym iver;
8519 unsigned short version_index;
8520
8521 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8522 || isym->st_shndx == SHN_UNDEF)
8523 continue;
8524
8525 name = bfd_elf_string_from_elf_section (input,
8526 hdr->sh_link,
8527 isym->st_name);
8528 if (strcmp (name, h->root.root.string) != 0)
8529 continue;
8530
8531 _bfd_elf_swap_versym_in (input, ever, &iver);
8532
8533 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8534 && !(h->def_regular
8535 && h->forced_local))
8536 {
8537 /* If we have a non-hidden versioned sym, then it should
8538 have provided a definition for the undefined sym unless
8539 it is defined in a non-shared object and forced local.
8540 */
8541 abort ();
8542 }
8543
8544 version_index = iver.vs_vers & VERSYM_VERSION;
8545 if (version_index == 1 || version_index == 2)
8546 {
8547 /* This is the base or first version. We can use it. */
8548 free (extversym);
8549 free (isymbuf);
8550 return TRUE;
8551 }
8552 }
8553
8554 free (extversym);
8555 free (isymbuf);
8556 }
8557
8558 return FALSE;
8559 }
8560
8561 /* Add an external symbol to the symbol table. This is called from
8562 the hash table traversal routine. When generating a shared object,
8563 we go through the symbol table twice. The first time we output
8564 anything that might have been forced to local scope in a version
8565 script. The second time we output the symbols that are still
8566 global symbols. */
8567
8568 static bfd_boolean
8569 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8570 {
8571 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8572 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8573 struct elf_final_link_info *finfo = eoinfo->finfo;
8574 bfd_boolean strip;
8575 Elf_Internal_Sym sym;
8576 asection *input_sec;
8577 const struct elf_backend_data *bed;
8578 long indx;
8579 int ret;
8580
8581 if (h->root.type == bfd_link_hash_warning)
8582 {
8583 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8584 if (h->root.type == bfd_link_hash_new)
8585 return TRUE;
8586 }
8587
8588 /* Decide whether to output this symbol in this pass. */
8589 if (eoinfo->localsyms)
8590 {
8591 if (!h->forced_local)
8592 return TRUE;
8593 }
8594 else
8595 {
8596 if (h->forced_local)
8597 return TRUE;
8598 }
8599
8600 bed = get_elf_backend_data (finfo->output_bfd);
8601
8602 if (h->root.type == bfd_link_hash_undefined)
8603 {
8604 /* If we have an undefined symbol reference here then it must have
8605 come from a shared library that is being linked in. (Undefined
8606 references in regular files have already been handled unless
8607 they are in unreferenced sections which are removed by garbage
8608 collection). */
8609 bfd_boolean ignore_undef = FALSE;
8610
8611 /* Some symbols may be special in that the fact that they're
8612 undefined can be safely ignored - let backend determine that. */
8613 if (bed->elf_backend_ignore_undef_symbol)
8614 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8615
8616 /* If we are reporting errors for this situation then do so now. */
8617 if (!ignore_undef
8618 && h->ref_dynamic
8619 && (!h->ref_regular || finfo->info->gc_sections)
8620 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8621 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8622 {
8623 if (! (finfo->info->callbacks->undefined_symbol
8624 (finfo->info, h->root.root.string,
8625 h->ref_regular ? NULL : h->root.u.undef.abfd,
8626 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8627 {
8628 bfd_set_error (bfd_error_bad_value);
8629 eoinfo->failed = TRUE;
8630 return FALSE;
8631 }
8632 }
8633 }
8634
8635 /* We should also warn if a forced local symbol is referenced from
8636 shared libraries. */
8637 if (! finfo->info->relocatable
8638 && (! finfo->info->shared)
8639 && h->forced_local
8640 && h->ref_dynamic
8641 && !h->dynamic_def
8642 && !h->dynamic_weak
8643 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8644 {
8645 bfd *def_bfd;
8646 const char *msg;
8647
8648 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8649 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8650 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8651 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8652 else
8653 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8654 def_bfd = finfo->output_bfd;
8655 if (h->root.u.def.section != bfd_abs_section_ptr)
8656 def_bfd = h->root.u.def.section->owner;
8657 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8658 h->root.root.string);
8659 bfd_set_error (bfd_error_bad_value);
8660 eoinfo->failed = TRUE;
8661 return FALSE;
8662 }
8663
8664 /* We don't want to output symbols that have never been mentioned by
8665 a regular file, or that we have been told to strip. However, if
8666 h->indx is set to -2, the symbol is used by a reloc and we must
8667 output it. */
8668 if (h->indx == -2)
8669 strip = FALSE;
8670 else if ((h->def_dynamic
8671 || h->ref_dynamic
8672 || h->root.type == bfd_link_hash_new)
8673 && !h->def_regular
8674 && !h->ref_regular)
8675 strip = TRUE;
8676 else if (finfo->info->strip == strip_all)
8677 strip = TRUE;
8678 else if (finfo->info->strip == strip_some
8679 && bfd_hash_lookup (finfo->info->keep_hash,
8680 h->root.root.string, FALSE, FALSE) == NULL)
8681 strip = TRUE;
8682 else if ((h->root.type == bfd_link_hash_defined
8683 || h->root.type == bfd_link_hash_defweak)
8684 && ((finfo->info->strip_discarded
8685 && elf_discarded_section (h->root.u.def.section))
8686 || (h->root.u.def.section->owner != NULL
8687 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8688 strip = TRUE;
8689 else if ((h->root.type == bfd_link_hash_undefined
8690 || h->root.type == bfd_link_hash_undefweak)
8691 && h->root.u.undef.abfd != NULL
8692 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8693 strip = TRUE;
8694 else
8695 strip = FALSE;
8696
8697 /* If we're stripping it, and it's not a dynamic symbol, there's
8698 nothing else to do unless it is a forced local symbol or a
8699 STT_GNU_IFUNC symbol. */
8700 if (strip
8701 && h->dynindx == -1
8702 && h->type != STT_GNU_IFUNC
8703 && !h->forced_local)
8704 return TRUE;
8705
8706 sym.st_value = 0;
8707 sym.st_size = h->size;
8708 sym.st_other = h->other;
8709 if (h->forced_local)
8710 {
8711 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8712 /* Turn off visibility on local symbol. */
8713 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8714 }
8715 else if (h->unique_global)
8716 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8717 else if (h->root.type == bfd_link_hash_undefweak
8718 || h->root.type == bfd_link_hash_defweak)
8719 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8720 else
8721 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8722 sym.st_target_internal = h->target_internal;
8723
8724 switch (h->root.type)
8725 {
8726 default:
8727 case bfd_link_hash_new:
8728 case bfd_link_hash_warning:
8729 abort ();
8730 return FALSE;
8731
8732 case bfd_link_hash_undefined:
8733 case bfd_link_hash_undefweak:
8734 input_sec = bfd_und_section_ptr;
8735 sym.st_shndx = SHN_UNDEF;
8736 break;
8737
8738 case bfd_link_hash_defined:
8739 case bfd_link_hash_defweak:
8740 {
8741 input_sec = h->root.u.def.section;
8742 if (input_sec->output_section != NULL)
8743 {
8744 sym.st_shndx =
8745 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8746 input_sec->output_section);
8747 if (sym.st_shndx == SHN_BAD)
8748 {
8749 (*_bfd_error_handler)
8750 (_("%B: could not find output section %A for input section %A"),
8751 finfo->output_bfd, input_sec->output_section, input_sec);
8752 bfd_set_error (bfd_error_nonrepresentable_section);
8753 eoinfo->failed = TRUE;
8754 return FALSE;
8755 }
8756
8757 /* ELF symbols in relocatable files are section relative,
8758 but in nonrelocatable files they are virtual
8759 addresses. */
8760 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8761 if (! finfo->info->relocatable)
8762 {
8763 sym.st_value += input_sec->output_section->vma;
8764 if (h->type == STT_TLS)
8765 {
8766 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8767 if (tls_sec != NULL)
8768 sym.st_value -= tls_sec->vma;
8769 else
8770 {
8771 /* The TLS section may have been garbage collected. */
8772 BFD_ASSERT (finfo->info->gc_sections
8773 && !input_sec->gc_mark);
8774 }
8775 }
8776 }
8777 }
8778 else
8779 {
8780 BFD_ASSERT (input_sec->owner == NULL
8781 || (input_sec->owner->flags & DYNAMIC) != 0);
8782 sym.st_shndx = SHN_UNDEF;
8783 input_sec = bfd_und_section_ptr;
8784 }
8785 }
8786 break;
8787
8788 case bfd_link_hash_common:
8789 input_sec = h->root.u.c.p->section;
8790 sym.st_shndx = bed->common_section_index (input_sec);
8791 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8792 break;
8793
8794 case bfd_link_hash_indirect:
8795 /* These symbols are created by symbol versioning. They point
8796 to the decorated version of the name. For example, if the
8797 symbol foo@@GNU_1.2 is the default, which should be used when
8798 foo is used with no version, then we add an indirect symbol
8799 foo which points to foo@@GNU_1.2. We ignore these symbols,
8800 since the indirected symbol is already in the hash table. */
8801 return TRUE;
8802 }
8803
8804 /* Give the processor backend a chance to tweak the symbol value,
8805 and also to finish up anything that needs to be done for this
8806 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8807 forced local syms when non-shared is due to a historical quirk.
8808 STT_GNU_IFUNC symbol must go through PLT. */
8809 if ((h->type == STT_GNU_IFUNC
8810 && h->def_regular
8811 && !finfo->info->relocatable)
8812 || ((h->dynindx != -1
8813 || h->forced_local)
8814 && ((finfo->info->shared
8815 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8816 || h->root.type != bfd_link_hash_undefweak))
8817 || !h->forced_local)
8818 && elf_hash_table (finfo->info)->dynamic_sections_created))
8819 {
8820 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8821 (finfo->output_bfd, finfo->info, h, &sym)))
8822 {
8823 eoinfo->failed = TRUE;
8824 return FALSE;
8825 }
8826 }
8827
8828 /* If we are marking the symbol as undefined, and there are no
8829 non-weak references to this symbol from a regular object, then
8830 mark the symbol as weak undefined; if there are non-weak
8831 references, mark the symbol as strong. We can't do this earlier,
8832 because it might not be marked as undefined until the
8833 finish_dynamic_symbol routine gets through with it. */
8834 if (sym.st_shndx == SHN_UNDEF
8835 && h->ref_regular
8836 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8837 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8838 {
8839 int bindtype;
8840 unsigned int type = ELF_ST_TYPE (sym.st_info);
8841
8842 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8843 if (type == STT_GNU_IFUNC)
8844 type = STT_FUNC;
8845
8846 if (h->ref_regular_nonweak)
8847 bindtype = STB_GLOBAL;
8848 else
8849 bindtype = STB_WEAK;
8850 sym.st_info = ELF_ST_INFO (bindtype, type);
8851 }
8852
8853 /* If this is a symbol defined in a dynamic library, don't use the
8854 symbol size from the dynamic library. Relinking an executable
8855 against a new library may introduce gratuitous changes in the
8856 executable's symbols if we keep the size. */
8857 if (sym.st_shndx == SHN_UNDEF
8858 && !h->def_regular
8859 && h->def_dynamic)
8860 sym.st_size = 0;
8861
8862 /* If a non-weak symbol with non-default visibility is not defined
8863 locally, it is a fatal error. */
8864 if (! finfo->info->relocatable
8865 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8866 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8867 && h->root.type == bfd_link_hash_undefined
8868 && !h->def_regular)
8869 {
8870 const char *msg;
8871
8872 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8873 msg = _("%B: protected symbol `%s' isn't defined");
8874 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8875 msg = _("%B: internal symbol `%s' isn't defined");
8876 else
8877 msg = _("%B: hidden symbol `%s' isn't defined");
8878 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8879 bfd_set_error (bfd_error_bad_value);
8880 eoinfo->failed = TRUE;
8881 return FALSE;
8882 }
8883
8884 /* If this symbol should be put in the .dynsym section, then put it
8885 there now. We already know the symbol index. We also fill in
8886 the entry in the .hash section. */
8887 if (h->dynindx != -1
8888 && elf_hash_table (finfo->info)->dynamic_sections_created)
8889 {
8890 bfd_byte *esym;
8891
8892 sym.st_name = h->dynstr_index;
8893 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8894 if (! check_dynsym (finfo->output_bfd, &sym))
8895 {
8896 eoinfo->failed = TRUE;
8897 return FALSE;
8898 }
8899 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8900
8901 if (finfo->hash_sec != NULL)
8902 {
8903 size_t hash_entry_size;
8904 bfd_byte *bucketpos;
8905 bfd_vma chain;
8906 size_t bucketcount;
8907 size_t bucket;
8908
8909 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8910 bucket = h->u.elf_hash_value % bucketcount;
8911
8912 hash_entry_size
8913 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8914 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8915 + (bucket + 2) * hash_entry_size);
8916 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8917 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8918 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8919 ((bfd_byte *) finfo->hash_sec->contents
8920 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8921 }
8922
8923 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8924 {
8925 Elf_Internal_Versym iversym;
8926 Elf_External_Versym *eversym;
8927
8928 if (!h->def_regular)
8929 {
8930 if (h->verinfo.verdef == NULL)
8931 iversym.vs_vers = 0;
8932 else
8933 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8934 }
8935 else
8936 {
8937 if (h->verinfo.vertree == NULL)
8938 iversym.vs_vers = 1;
8939 else
8940 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8941 if (finfo->info->create_default_symver)
8942 iversym.vs_vers++;
8943 }
8944
8945 if (h->hidden)
8946 iversym.vs_vers |= VERSYM_HIDDEN;
8947
8948 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8949 eversym += h->dynindx;
8950 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8951 }
8952 }
8953
8954 /* If we're stripping it, then it was just a dynamic symbol, and
8955 there's nothing else to do. */
8956 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8957 return TRUE;
8958
8959 indx = bfd_get_symcount (finfo->output_bfd);
8960 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8961 if (ret == 0)
8962 {
8963 eoinfo->failed = TRUE;
8964 return FALSE;
8965 }
8966 else if (ret == 1)
8967 h->indx = indx;
8968 else if (h->indx == -2)
8969 abort();
8970
8971 return TRUE;
8972 }
8973
8974 /* Return TRUE if special handling is done for relocs in SEC against
8975 symbols defined in discarded sections. */
8976
8977 static bfd_boolean
8978 elf_section_ignore_discarded_relocs (asection *sec)
8979 {
8980 const struct elf_backend_data *bed;
8981
8982 switch (sec->sec_info_type)
8983 {
8984 case ELF_INFO_TYPE_STABS:
8985 case ELF_INFO_TYPE_EH_FRAME:
8986 return TRUE;
8987 default:
8988 break;
8989 }
8990
8991 bed = get_elf_backend_data (sec->owner);
8992 if (bed->elf_backend_ignore_discarded_relocs != NULL
8993 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8994 return TRUE;
8995
8996 return FALSE;
8997 }
8998
8999 /* Return a mask saying how ld should treat relocations in SEC against
9000 symbols defined in discarded sections. If this function returns
9001 COMPLAIN set, ld will issue a warning message. If this function
9002 returns PRETEND set, and the discarded section was link-once and the
9003 same size as the kept link-once section, ld will pretend that the
9004 symbol was actually defined in the kept section. Otherwise ld will
9005 zero the reloc (at least that is the intent, but some cooperation by
9006 the target dependent code is needed, particularly for REL targets). */
9007
9008 unsigned int
9009 _bfd_elf_default_action_discarded (asection *sec)
9010 {
9011 if (sec->flags & SEC_DEBUGGING)
9012 return PRETEND;
9013
9014 if (strcmp (".eh_frame", sec->name) == 0)
9015 return 0;
9016
9017 if (strcmp (".gcc_except_table", sec->name) == 0)
9018 return 0;
9019
9020 return COMPLAIN | PRETEND;
9021 }
9022
9023 /* Find a match between a section and a member of a section group. */
9024
9025 static asection *
9026 match_group_member (asection *sec, asection *group,
9027 struct bfd_link_info *info)
9028 {
9029 asection *first = elf_next_in_group (group);
9030 asection *s = first;
9031
9032 while (s != NULL)
9033 {
9034 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9035 return s;
9036
9037 s = elf_next_in_group (s);
9038 if (s == first)
9039 break;
9040 }
9041
9042 return NULL;
9043 }
9044
9045 /* Check if the kept section of a discarded section SEC can be used
9046 to replace it. Return the replacement if it is OK. Otherwise return
9047 NULL. */
9048
9049 asection *
9050 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9051 {
9052 asection *kept;
9053
9054 kept = sec->kept_section;
9055 if (kept != NULL)
9056 {
9057 if ((kept->flags & SEC_GROUP) != 0)
9058 kept = match_group_member (sec, kept, info);
9059 if (kept != NULL
9060 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9061 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9062 kept = NULL;
9063 sec->kept_section = kept;
9064 }
9065 return kept;
9066 }
9067
9068 /* Link an input file into the linker output file. This function
9069 handles all the sections and relocations of the input file at once.
9070 This is so that we only have to read the local symbols once, and
9071 don't have to keep them in memory. */
9072
9073 static bfd_boolean
9074 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9075 {
9076 int (*relocate_section)
9077 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9078 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9079 bfd *output_bfd;
9080 Elf_Internal_Shdr *symtab_hdr;
9081 size_t locsymcount;
9082 size_t extsymoff;
9083 Elf_Internal_Sym *isymbuf;
9084 Elf_Internal_Sym *isym;
9085 Elf_Internal_Sym *isymend;
9086 long *pindex;
9087 asection **ppsection;
9088 asection *o;
9089 const struct elf_backend_data *bed;
9090 struct elf_link_hash_entry **sym_hashes;
9091 bfd_size_type address_size;
9092 bfd_vma r_type_mask;
9093 int r_sym_shift;
9094
9095 output_bfd = finfo->output_bfd;
9096 bed = get_elf_backend_data (output_bfd);
9097 relocate_section = bed->elf_backend_relocate_section;
9098
9099 /* If this is a dynamic object, we don't want to do anything here:
9100 we don't want the local symbols, and we don't want the section
9101 contents. */
9102 if ((input_bfd->flags & DYNAMIC) != 0)
9103 return TRUE;
9104
9105 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9106 if (elf_bad_symtab (input_bfd))
9107 {
9108 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9109 extsymoff = 0;
9110 }
9111 else
9112 {
9113 locsymcount = symtab_hdr->sh_info;
9114 extsymoff = symtab_hdr->sh_info;
9115 }
9116
9117 /* Read the local symbols. */
9118 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9119 if (isymbuf == NULL && locsymcount != 0)
9120 {
9121 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9122 finfo->internal_syms,
9123 finfo->external_syms,
9124 finfo->locsym_shndx);
9125 if (isymbuf == NULL)
9126 return FALSE;
9127 }
9128
9129 /* Find local symbol sections and adjust values of symbols in
9130 SEC_MERGE sections. Write out those local symbols we know are
9131 going into the output file. */
9132 isymend = isymbuf + locsymcount;
9133 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9134 isym < isymend;
9135 isym++, pindex++, ppsection++)
9136 {
9137 asection *isec;
9138 const char *name;
9139 Elf_Internal_Sym osym;
9140 long indx;
9141 int ret;
9142
9143 *pindex = -1;
9144
9145 if (elf_bad_symtab (input_bfd))
9146 {
9147 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9148 {
9149 *ppsection = NULL;
9150 continue;
9151 }
9152 }
9153
9154 if (isym->st_shndx == SHN_UNDEF)
9155 isec = bfd_und_section_ptr;
9156 else if (isym->st_shndx == SHN_ABS)
9157 isec = bfd_abs_section_ptr;
9158 else if (isym->st_shndx == SHN_COMMON)
9159 isec = bfd_com_section_ptr;
9160 else
9161 {
9162 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9163 if (isec == NULL)
9164 {
9165 /* Don't attempt to output symbols with st_shnx in the
9166 reserved range other than SHN_ABS and SHN_COMMON. */
9167 *ppsection = NULL;
9168 continue;
9169 }
9170 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9171 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9172 isym->st_value =
9173 _bfd_merged_section_offset (output_bfd, &isec,
9174 elf_section_data (isec)->sec_info,
9175 isym->st_value);
9176 }
9177
9178 *ppsection = isec;
9179
9180 /* Don't output the first, undefined, symbol. */
9181 if (ppsection == finfo->sections)
9182 continue;
9183
9184 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9185 {
9186 /* We never output section symbols. Instead, we use the
9187 section symbol of the corresponding section in the output
9188 file. */
9189 continue;
9190 }
9191
9192 /* If we are stripping all symbols, we don't want to output this
9193 one. */
9194 if (finfo->info->strip == strip_all)
9195 continue;
9196
9197 /* If we are discarding all local symbols, we don't want to
9198 output this one. If we are generating a relocatable output
9199 file, then some of the local symbols may be required by
9200 relocs; we output them below as we discover that they are
9201 needed. */
9202 if (finfo->info->discard == discard_all)
9203 continue;
9204
9205 /* If this symbol is defined in a section which we are
9206 discarding, we don't need to keep it. */
9207 if (isym->st_shndx != SHN_UNDEF
9208 && isym->st_shndx < SHN_LORESERVE
9209 && bfd_section_removed_from_list (output_bfd,
9210 isec->output_section))
9211 continue;
9212
9213 /* Get the name of the symbol. */
9214 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9215 isym->st_name);
9216 if (name == NULL)
9217 return FALSE;
9218
9219 /* See if we are discarding symbols with this name. */
9220 if ((finfo->info->strip == strip_some
9221 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9222 == NULL))
9223 || (((finfo->info->discard == discard_sec_merge
9224 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9225 || finfo->info->discard == discard_l)
9226 && bfd_is_local_label_name (input_bfd, name)))
9227 continue;
9228
9229 osym = *isym;
9230
9231 /* Adjust the section index for the output file. */
9232 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9233 isec->output_section);
9234 if (osym.st_shndx == SHN_BAD)
9235 return FALSE;
9236
9237 /* ELF symbols in relocatable files are section relative, but
9238 in executable files they are virtual addresses. Note that
9239 this code assumes that all ELF sections have an associated
9240 BFD section with a reasonable value for output_offset; below
9241 we assume that they also have a reasonable value for
9242 output_section. Any special sections must be set up to meet
9243 these requirements. */
9244 osym.st_value += isec->output_offset;
9245 if (! finfo->info->relocatable)
9246 {
9247 osym.st_value += isec->output_section->vma;
9248 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9249 {
9250 /* STT_TLS symbols are relative to PT_TLS segment base. */
9251 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9252 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9253 }
9254 }
9255
9256 indx = bfd_get_symcount (output_bfd);
9257 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9258 if (ret == 0)
9259 return FALSE;
9260 else if (ret == 1)
9261 *pindex = indx;
9262 }
9263
9264 if (bed->s->arch_size == 32)
9265 {
9266 r_type_mask = 0xff;
9267 r_sym_shift = 8;
9268 address_size = 4;
9269 }
9270 else
9271 {
9272 r_type_mask = 0xffffffff;
9273 r_sym_shift = 32;
9274 address_size = 8;
9275 }
9276
9277 /* Relocate the contents of each section. */
9278 sym_hashes = elf_sym_hashes (input_bfd);
9279 for (o = input_bfd->sections; o != NULL; o = o->next)
9280 {
9281 bfd_byte *contents;
9282
9283 if (! o->linker_mark)
9284 {
9285 /* This section was omitted from the link. */
9286 continue;
9287 }
9288
9289 if (finfo->info->relocatable
9290 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9291 {
9292 /* Deal with the group signature symbol. */
9293 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9294 unsigned long symndx = sec_data->this_hdr.sh_info;
9295 asection *osec = o->output_section;
9296
9297 if (symndx >= locsymcount
9298 || (elf_bad_symtab (input_bfd)
9299 && finfo->sections[symndx] == NULL))
9300 {
9301 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9302 while (h->root.type == bfd_link_hash_indirect
9303 || h->root.type == bfd_link_hash_warning)
9304 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9305 /* Arrange for symbol to be output. */
9306 h->indx = -2;
9307 elf_section_data (osec)->this_hdr.sh_info = -2;
9308 }
9309 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9310 {
9311 /* We'll use the output section target_index. */
9312 asection *sec = finfo->sections[symndx]->output_section;
9313 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9314 }
9315 else
9316 {
9317 if (finfo->indices[symndx] == -1)
9318 {
9319 /* Otherwise output the local symbol now. */
9320 Elf_Internal_Sym sym = isymbuf[symndx];
9321 asection *sec = finfo->sections[symndx]->output_section;
9322 const char *name;
9323 long indx;
9324 int ret;
9325
9326 name = bfd_elf_string_from_elf_section (input_bfd,
9327 symtab_hdr->sh_link,
9328 sym.st_name);
9329 if (name == NULL)
9330 return FALSE;
9331
9332 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9333 sec);
9334 if (sym.st_shndx == SHN_BAD)
9335 return FALSE;
9336
9337 sym.st_value += o->output_offset;
9338
9339 indx = bfd_get_symcount (output_bfd);
9340 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9341 if (ret == 0)
9342 return FALSE;
9343 else if (ret == 1)
9344 finfo->indices[symndx] = indx;
9345 else
9346 abort ();
9347 }
9348 elf_section_data (osec)->this_hdr.sh_info
9349 = finfo->indices[symndx];
9350 }
9351 }
9352
9353 if ((o->flags & SEC_HAS_CONTENTS) == 0
9354 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9355 continue;
9356
9357 if ((o->flags & SEC_LINKER_CREATED) != 0)
9358 {
9359 /* Section was created by _bfd_elf_link_create_dynamic_sections
9360 or somesuch. */
9361 continue;
9362 }
9363
9364 /* Get the contents of the section. They have been cached by a
9365 relaxation routine. Note that o is a section in an input
9366 file, so the contents field will not have been set by any of
9367 the routines which work on output files. */
9368 if (elf_section_data (o)->this_hdr.contents != NULL)
9369 contents = elf_section_data (o)->this_hdr.contents;
9370 else
9371 {
9372 contents = finfo->contents;
9373 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9374 return FALSE;
9375 }
9376
9377 if ((o->flags & SEC_RELOC) != 0)
9378 {
9379 Elf_Internal_Rela *internal_relocs;
9380 Elf_Internal_Rela *rel, *relend;
9381 int action_discarded;
9382 int ret;
9383
9384 /* Get the swapped relocs. */
9385 internal_relocs
9386 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9387 finfo->internal_relocs, FALSE);
9388 if (internal_relocs == NULL
9389 && o->reloc_count > 0)
9390 return FALSE;
9391
9392 /* We need to reverse-copy input .ctors/.dtors sections if
9393 they are placed in .init_array/.finit_array for output. */
9394 if (o->size > address_size
9395 && ((strncmp (o->name, ".ctors", 6) == 0
9396 && strcmp (o->output_section->name,
9397 ".init_array") == 0)
9398 || (strncmp (o->name, ".dtors", 6) == 0
9399 && strcmp (o->output_section->name,
9400 ".fini_array") == 0))
9401 && (o->name[6] == 0 || o->name[6] == '.'))
9402 {
9403 if (o->size != o->reloc_count * address_size)
9404 {
9405 (*_bfd_error_handler)
9406 (_("error: %B: size of section %A is not "
9407 "multiple of address size"),
9408 input_bfd, o);
9409 bfd_set_error (bfd_error_on_input);
9410 return FALSE;
9411 }
9412 o->flags |= SEC_ELF_REVERSE_COPY;
9413 }
9414
9415 action_discarded = -1;
9416 if (!elf_section_ignore_discarded_relocs (o))
9417 action_discarded = (*bed->action_discarded) (o);
9418
9419 /* Run through the relocs evaluating complex reloc symbols and
9420 looking for relocs against symbols from discarded sections
9421 or section symbols from removed link-once sections.
9422 Complain about relocs against discarded sections. Zero
9423 relocs against removed link-once sections. */
9424
9425 rel = internal_relocs;
9426 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9427 for ( ; rel < relend; rel++)
9428 {
9429 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9430 unsigned int s_type;
9431 asection **ps, *sec;
9432 struct elf_link_hash_entry *h = NULL;
9433 const char *sym_name;
9434
9435 if (r_symndx == STN_UNDEF)
9436 continue;
9437
9438 if (r_symndx >= locsymcount
9439 || (elf_bad_symtab (input_bfd)
9440 && finfo->sections[r_symndx] == NULL))
9441 {
9442 h = sym_hashes[r_symndx - extsymoff];
9443
9444 /* Badly formatted input files can contain relocs that
9445 reference non-existant symbols. Check here so that
9446 we do not seg fault. */
9447 if (h == NULL)
9448 {
9449 char buffer [32];
9450
9451 sprintf_vma (buffer, rel->r_info);
9452 (*_bfd_error_handler)
9453 (_("error: %B contains a reloc (0x%s) for section %A "
9454 "that references a non-existent global symbol"),
9455 input_bfd, o, buffer);
9456 bfd_set_error (bfd_error_bad_value);
9457 return FALSE;
9458 }
9459
9460 while (h->root.type == bfd_link_hash_indirect
9461 || h->root.type == bfd_link_hash_warning)
9462 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9463
9464 s_type = h->type;
9465
9466 ps = NULL;
9467 if (h->root.type == bfd_link_hash_defined
9468 || h->root.type == bfd_link_hash_defweak)
9469 ps = &h->root.u.def.section;
9470
9471 sym_name = h->root.root.string;
9472 }
9473 else
9474 {
9475 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9476
9477 s_type = ELF_ST_TYPE (sym->st_info);
9478 ps = &finfo->sections[r_symndx];
9479 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9480 sym, *ps);
9481 }
9482
9483 if ((s_type == STT_RELC || s_type == STT_SRELC)
9484 && !finfo->info->relocatable)
9485 {
9486 bfd_vma val;
9487 bfd_vma dot = (rel->r_offset
9488 + o->output_offset + o->output_section->vma);
9489 #ifdef DEBUG
9490 printf ("Encountered a complex symbol!");
9491 printf (" (input_bfd %s, section %s, reloc %ld\n",
9492 input_bfd->filename, o->name,
9493 (long) (rel - internal_relocs));
9494 printf (" symbol: idx %8.8lx, name %s\n",
9495 r_symndx, sym_name);
9496 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9497 (unsigned long) rel->r_info,
9498 (unsigned long) rel->r_offset);
9499 #endif
9500 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9501 isymbuf, locsymcount, s_type == STT_SRELC))
9502 return FALSE;
9503
9504 /* Symbol evaluated OK. Update to absolute value. */
9505 set_symbol_value (input_bfd, isymbuf, locsymcount,
9506 r_symndx, val);
9507 continue;
9508 }
9509
9510 if (action_discarded != -1 && ps != NULL)
9511 {
9512 /* Complain if the definition comes from a
9513 discarded section. */
9514 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9515 {
9516 BFD_ASSERT (r_symndx != STN_UNDEF);
9517 if (action_discarded & COMPLAIN)
9518 (*finfo->info->callbacks->einfo)
9519 (_("%X`%s' referenced in section `%A' of %B: "
9520 "defined in discarded section `%A' of %B\n"),
9521 sym_name, o, input_bfd, sec, sec->owner);
9522
9523 /* Try to do the best we can to support buggy old
9524 versions of gcc. Pretend that the symbol is
9525 really defined in the kept linkonce section.
9526 FIXME: This is quite broken. Modifying the
9527 symbol here means we will be changing all later
9528 uses of the symbol, not just in this section. */
9529 if (action_discarded & PRETEND)
9530 {
9531 asection *kept;
9532
9533 kept = _bfd_elf_check_kept_section (sec,
9534 finfo->info);
9535 if (kept != NULL)
9536 {
9537 *ps = kept;
9538 continue;
9539 }
9540 }
9541 }
9542 }
9543 }
9544
9545 /* Relocate the section by invoking a back end routine.
9546
9547 The back end routine is responsible for adjusting the
9548 section contents as necessary, and (if using Rela relocs
9549 and generating a relocatable output file) adjusting the
9550 reloc addend as necessary.
9551
9552 The back end routine does not have to worry about setting
9553 the reloc address or the reloc symbol index.
9554
9555 The back end routine is given a pointer to the swapped in
9556 internal symbols, and can access the hash table entries
9557 for the external symbols via elf_sym_hashes (input_bfd).
9558
9559 When generating relocatable output, the back end routine
9560 must handle STB_LOCAL/STT_SECTION symbols specially. The
9561 output symbol is going to be a section symbol
9562 corresponding to the output section, which will require
9563 the addend to be adjusted. */
9564
9565 ret = (*relocate_section) (output_bfd, finfo->info,
9566 input_bfd, o, contents,
9567 internal_relocs,
9568 isymbuf,
9569 finfo->sections);
9570 if (!ret)
9571 return FALSE;
9572
9573 if (ret == 2
9574 || finfo->info->relocatable
9575 || finfo->info->emitrelocations)
9576 {
9577 Elf_Internal_Rela *irela;
9578 Elf_Internal_Rela *irelaend, *irelamid;
9579 bfd_vma last_offset;
9580 struct elf_link_hash_entry **rel_hash;
9581 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9582 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9583 unsigned int next_erel;
9584 bfd_boolean rela_normal;
9585 struct bfd_elf_section_data *esdi, *esdo;
9586
9587 esdi = elf_section_data (o);
9588 esdo = elf_section_data (o->output_section);
9589 rela_normal = FALSE;
9590
9591 /* Adjust the reloc addresses and symbol indices. */
9592
9593 irela = internal_relocs;
9594 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9595 rel_hash = esdo->rel.hashes + esdo->rel.count;
9596 /* We start processing the REL relocs, if any. When we reach
9597 IRELAMID in the loop, we switch to the RELA relocs. */
9598 irelamid = irela;
9599 if (esdi->rel.hdr != NULL)
9600 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9601 * bed->s->int_rels_per_ext_rel);
9602 rel_hash_list = rel_hash;
9603 rela_hash_list = NULL;
9604 last_offset = o->output_offset;
9605 if (!finfo->info->relocatable)
9606 last_offset += o->output_section->vma;
9607 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9608 {
9609 unsigned long r_symndx;
9610 asection *sec;
9611 Elf_Internal_Sym sym;
9612
9613 if (next_erel == bed->s->int_rels_per_ext_rel)
9614 {
9615 rel_hash++;
9616 next_erel = 0;
9617 }
9618
9619 if (irela == irelamid)
9620 {
9621 rel_hash = esdo->rela.hashes + esdo->rela.count;
9622 rela_hash_list = rel_hash;
9623 rela_normal = bed->rela_normal;
9624 }
9625
9626 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9627 finfo->info, o,
9628 irela->r_offset);
9629 if (irela->r_offset >= (bfd_vma) -2)
9630 {
9631 /* This is a reloc for a deleted entry or somesuch.
9632 Turn it into an R_*_NONE reloc, at the same
9633 offset as the last reloc. elf_eh_frame.c and
9634 bfd_elf_discard_info rely on reloc offsets
9635 being ordered. */
9636 irela->r_offset = last_offset;
9637 irela->r_info = 0;
9638 irela->r_addend = 0;
9639 continue;
9640 }
9641
9642 irela->r_offset += o->output_offset;
9643
9644 /* Relocs in an executable have to be virtual addresses. */
9645 if (!finfo->info->relocatable)
9646 irela->r_offset += o->output_section->vma;
9647
9648 last_offset = irela->r_offset;
9649
9650 r_symndx = irela->r_info >> r_sym_shift;
9651 if (r_symndx == STN_UNDEF)
9652 continue;
9653
9654 if (r_symndx >= locsymcount
9655 || (elf_bad_symtab (input_bfd)
9656 && finfo->sections[r_symndx] == NULL))
9657 {
9658 struct elf_link_hash_entry *rh;
9659 unsigned long indx;
9660
9661 /* This is a reloc against a global symbol. We
9662 have not yet output all the local symbols, so
9663 we do not know the symbol index of any global
9664 symbol. We set the rel_hash entry for this
9665 reloc to point to the global hash table entry
9666 for this symbol. The symbol index is then
9667 set at the end of bfd_elf_final_link. */
9668 indx = r_symndx - extsymoff;
9669 rh = elf_sym_hashes (input_bfd)[indx];
9670 while (rh->root.type == bfd_link_hash_indirect
9671 || rh->root.type == bfd_link_hash_warning)
9672 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9673
9674 /* Setting the index to -2 tells
9675 elf_link_output_extsym that this symbol is
9676 used by a reloc. */
9677 BFD_ASSERT (rh->indx < 0);
9678 rh->indx = -2;
9679
9680 *rel_hash = rh;
9681
9682 continue;
9683 }
9684
9685 /* This is a reloc against a local symbol. */
9686
9687 *rel_hash = NULL;
9688 sym = isymbuf[r_symndx];
9689 sec = finfo->sections[r_symndx];
9690 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9691 {
9692 /* I suppose the backend ought to fill in the
9693 section of any STT_SECTION symbol against a
9694 processor specific section. */
9695 r_symndx = STN_UNDEF;
9696 if (bfd_is_abs_section (sec))
9697 ;
9698 else if (sec == NULL || sec->owner == NULL)
9699 {
9700 bfd_set_error (bfd_error_bad_value);
9701 return FALSE;
9702 }
9703 else
9704 {
9705 asection *osec = sec->output_section;
9706
9707 /* If we have discarded a section, the output
9708 section will be the absolute section. In
9709 case of discarded SEC_MERGE sections, use
9710 the kept section. relocate_section should
9711 have already handled discarded linkonce
9712 sections. */
9713 if (bfd_is_abs_section (osec)
9714 && sec->kept_section != NULL
9715 && sec->kept_section->output_section != NULL)
9716 {
9717 osec = sec->kept_section->output_section;
9718 irela->r_addend -= osec->vma;
9719 }
9720
9721 if (!bfd_is_abs_section (osec))
9722 {
9723 r_symndx = osec->target_index;
9724 if (r_symndx == STN_UNDEF)
9725 {
9726 struct elf_link_hash_table *htab;
9727 asection *oi;
9728
9729 htab = elf_hash_table (finfo->info);
9730 oi = htab->text_index_section;
9731 if ((osec->flags & SEC_READONLY) == 0
9732 && htab->data_index_section != NULL)
9733 oi = htab->data_index_section;
9734
9735 if (oi != NULL)
9736 {
9737 irela->r_addend += osec->vma - oi->vma;
9738 r_symndx = oi->target_index;
9739 }
9740 }
9741
9742 BFD_ASSERT (r_symndx != STN_UNDEF);
9743 }
9744 }
9745
9746 /* Adjust the addend according to where the
9747 section winds up in the output section. */
9748 if (rela_normal)
9749 irela->r_addend += sec->output_offset;
9750 }
9751 else
9752 {
9753 if (finfo->indices[r_symndx] == -1)
9754 {
9755 unsigned long shlink;
9756 const char *name;
9757 asection *osec;
9758 long indx;
9759
9760 if (finfo->info->strip == strip_all)
9761 {
9762 /* You can't do ld -r -s. */
9763 bfd_set_error (bfd_error_invalid_operation);
9764 return FALSE;
9765 }
9766
9767 /* This symbol was skipped earlier, but
9768 since it is needed by a reloc, we
9769 must output it now. */
9770 shlink = symtab_hdr->sh_link;
9771 name = (bfd_elf_string_from_elf_section
9772 (input_bfd, shlink, sym.st_name));
9773 if (name == NULL)
9774 return FALSE;
9775
9776 osec = sec->output_section;
9777 sym.st_shndx =
9778 _bfd_elf_section_from_bfd_section (output_bfd,
9779 osec);
9780 if (sym.st_shndx == SHN_BAD)
9781 return FALSE;
9782
9783 sym.st_value += sec->output_offset;
9784 if (! finfo->info->relocatable)
9785 {
9786 sym.st_value += osec->vma;
9787 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9788 {
9789 /* STT_TLS symbols are relative to PT_TLS
9790 segment base. */
9791 BFD_ASSERT (elf_hash_table (finfo->info)
9792 ->tls_sec != NULL);
9793 sym.st_value -= (elf_hash_table (finfo->info)
9794 ->tls_sec->vma);
9795 }
9796 }
9797
9798 indx = bfd_get_symcount (output_bfd);
9799 ret = elf_link_output_sym (finfo, name, &sym, sec,
9800 NULL);
9801 if (ret == 0)
9802 return FALSE;
9803 else if (ret == 1)
9804 finfo->indices[r_symndx] = indx;
9805 else
9806 abort ();
9807 }
9808
9809 r_symndx = finfo->indices[r_symndx];
9810 }
9811
9812 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9813 | (irela->r_info & r_type_mask));
9814 }
9815
9816 /* Swap out the relocs. */
9817 input_rel_hdr = esdi->rel.hdr;
9818 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9819 {
9820 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9821 input_rel_hdr,
9822 internal_relocs,
9823 rel_hash_list))
9824 return FALSE;
9825 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9826 * bed->s->int_rels_per_ext_rel);
9827 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9828 }
9829
9830 input_rela_hdr = esdi->rela.hdr;
9831 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9832 {
9833 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9834 input_rela_hdr,
9835 internal_relocs,
9836 rela_hash_list))
9837 return FALSE;
9838 }
9839 }
9840 }
9841
9842 /* Write out the modified section contents. */
9843 if (bed->elf_backend_write_section
9844 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9845 contents))
9846 {
9847 /* Section written out. */
9848 }
9849 else switch (o->sec_info_type)
9850 {
9851 case ELF_INFO_TYPE_STABS:
9852 if (! (_bfd_write_section_stabs
9853 (output_bfd,
9854 &elf_hash_table (finfo->info)->stab_info,
9855 o, &elf_section_data (o)->sec_info, contents)))
9856 return FALSE;
9857 break;
9858 case ELF_INFO_TYPE_MERGE:
9859 if (! _bfd_write_merged_section (output_bfd, o,
9860 elf_section_data (o)->sec_info))
9861 return FALSE;
9862 break;
9863 case ELF_INFO_TYPE_EH_FRAME:
9864 {
9865 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9866 o, contents))
9867 return FALSE;
9868 }
9869 break;
9870 default:
9871 {
9872 /* FIXME: octets_per_byte. */
9873 if (! (o->flags & SEC_EXCLUDE))
9874 {
9875 file_ptr offset = (file_ptr) o->output_offset;
9876 bfd_size_type todo = o->size;
9877 if ((o->flags & SEC_ELF_REVERSE_COPY))
9878 {
9879 /* Reverse-copy input section to output. */
9880 do
9881 {
9882 todo -= address_size;
9883 if (! bfd_set_section_contents (output_bfd,
9884 o->output_section,
9885 contents + todo,
9886 offset,
9887 address_size))
9888 return FALSE;
9889 if (todo == 0)
9890 break;
9891 offset += address_size;
9892 }
9893 while (1);
9894 }
9895 else if (! bfd_set_section_contents (output_bfd,
9896 o->output_section,
9897 contents,
9898 offset, todo))
9899 return FALSE;
9900 }
9901 }
9902 break;
9903 }
9904 }
9905
9906 return TRUE;
9907 }
9908
9909 /* Generate a reloc when linking an ELF file. This is a reloc
9910 requested by the linker, and does not come from any input file. This
9911 is used to build constructor and destructor tables when linking
9912 with -Ur. */
9913
9914 static bfd_boolean
9915 elf_reloc_link_order (bfd *output_bfd,
9916 struct bfd_link_info *info,
9917 asection *output_section,
9918 struct bfd_link_order *link_order)
9919 {
9920 reloc_howto_type *howto;
9921 long indx;
9922 bfd_vma offset;
9923 bfd_vma addend;
9924 struct bfd_elf_section_reloc_data *reldata;
9925 struct elf_link_hash_entry **rel_hash_ptr;
9926 Elf_Internal_Shdr *rel_hdr;
9927 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9928 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9929 bfd_byte *erel;
9930 unsigned int i;
9931 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9932
9933 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9934 if (howto == NULL)
9935 {
9936 bfd_set_error (bfd_error_bad_value);
9937 return FALSE;
9938 }
9939
9940 addend = link_order->u.reloc.p->addend;
9941
9942 if (esdo->rel.hdr)
9943 reldata = &esdo->rel;
9944 else if (esdo->rela.hdr)
9945 reldata = &esdo->rela;
9946 else
9947 {
9948 reldata = NULL;
9949 BFD_ASSERT (0);
9950 }
9951
9952 /* Figure out the symbol index. */
9953 rel_hash_ptr = reldata->hashes + reldata->count;
9954 if (link_order->type == bfd_section_reloc_link_order)
9955 {
9956 indx = link_order->u.reloc.p->u.section->target_index;
9957 BFD_ASSERT (indx != 0);
9958 *rel_hash_ptr = NULL;
9959 }
9960 else
9961 {
9962 struct elf_link_hash_entry *h;
9963
9964 /* Treat a reloc against a defined symbol as though it were
9965 actually against the section. */
9966 h = ((struct elf_link_hash_entry *)
9967 bfd_wrapped_link_hash_lookup (output_bfd, info,
9968 link_order->u.reloc.p->u.name,
9969 FALSE, FALSE, TRUE));
9970 if (h != NULL
9971 && (h->root.type == bfd_link_hash_defined
9972 || h->root.type == bfd_link_hash_defweak))
9973 {
9974 asection *section;
9975
9976 section = h->root.u.def.section;
9977 indx = section->output_section->target_index;
9978 *rel_hash_ptr = NULL;
9979 /* It seems that we ought to add the symbol value to the
9980 addend here, but in practice it has already been added
9981 because it was passed to constructor_callback. */
9982 addend += section->output_section->vma + section->output_offset;
9983 }
9984 else if (h != NULL)
9985 {
9986 /* Setting the index to -2 tells elf_link_output_extsym that
9987 this symbol is used by a reloc. */
9988 h->indx = -2;
9989 *rel_hash_ptr = h;
9990 indx = 0;
9991 }
9992 else
9993 {
9994 if (! ((*info->callbacks->unattached_reloc)
9995 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9996 return FALSE;
9997 indx = 0;
9998 }
9999 }
10000
10001 /* If this is an inplace reloc, we must write the addend into the
10002 object file. */
10003 if (howto->partial_inplace && addend != 0)
10004 {
10005 bfd_size_type size;
10006 bfd_reloc_status_type rstat;
10007 bfd_byte *buf;
10008 bfd_boolean ok;
10009 const char *sym_name;
10010
10011 size = (bfd_size_type) bfd_get_reloc_size (howto);
10012 buf = (bfd_byte *) bfd_zmalloc (size);
10013 if (buf == NULL)
10014 return FALSE;
10015 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10016 switch (rstat)
10017 {
10018 case bfd_reloc_ok:
10019 break;
10020
10021 default:
10022 case bfd_reloc_outofrange:
10023 abort ();
10024
10025 case bfd_reloc_overflow:
10026 if (link_order->type == bfd_section_reloc_link_order)
10027 sym_name = bfd_section_name (output_bfd,
10028 link_order->u.reloc.p->u.section);
10029 else
10030 sym_name = link_order->u.reloc.p->u.name;
10031 if (! ((*info->callbacks->reloc_overflow)
10032 (info, NULL, sym_name, howto->name, addend, NULL,
10033 NULL, (bfd_vma) 0)))
10034 {
10035 free (buf);
10036 return FALSE;
10037 }
10038 break;
10039 }
10040 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10041 link_order->offset, size);
10042 free (buf);
10043 if (! ok)
10044 return FALSE;
10045 }
10046
10047 /* The address of a reloc is relative to the section in a
10048 relocatable file, and is a virtual address in an executable
10049 file. */
10050 offset = link_order->offset;
10051 if (! info->relocatable)
10052 offset += output_section->vma;
10053
10054 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10055 {
10056 irel[i].r_offset = offset;
10057 irel[i].r_info = 0;
10058 irel[i].r_addend = 0;
10059 }
10060 if (bed->s->arch_size == 32)
10061 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10062 else
10063 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10064
10065 rel_hdr = reldata->hdr;
10066 erel = rel_hdr->contents;
10067 if (rel_hdr->sh_type == SHT_REL)
10068 {
10069 erel += reldata->count * bed->s->sizeof_rel;
10070 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10071 }
10072 else
10073 {
10074 irel[0].r_addend = addend;
10075 erel += reldata->count * bed->s->sizeof_rela;
10076 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10077 }
10078
10079 ++reldata->count;
10080
10081 return TRUE;
10082 }
10083
10084
10085 /* Get the output vma of the section pointed to by the sh_link field. */
10086
10087 static bfd_vma
10088 elf_get_linked_section_vma (struct bfd_link_order *p)
10089 {
10090 Elf_Internal_Shdr **elf_shdrp;
10091 asection *s;
10092 int elfsec;
10093
10094 s = p->u.indirect.section;
10095 elf_shdrp = elf_elfsections (s->owner);
10096 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10097 elfsec = elf_shdrp[elfsec]->sh_link;
10098 /* PR 290:
10099 The Intel C compiler generates SHT_IA_64_UNWIND with
10100 SHF_LINK_ORDER. But it doesn't set the sh_link or
10101 sh_info fields. Hence we could get the situation
10102 where elfsec is 0. */
10103 if (elfsec == 0)
10104 {
10105 const struct elf_backend_data *bed
10106 = get_elf_backend_data (s->owner);
10107 if (bed->link_order_error_handler)
10108 bed->link_order_error_handler
10109 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10110 return 0;
10111 }
10112 else
10113 {
10114 s = elf_shdrp[elfsec]->bfd_section;
10115 return s->output_section->vma + s->output_offset;
10116 }
10117 }
10118
10119
10120 /* Compare two sections based on the locations of the sections they are
10121 linked to. Used by elf_fixup_link_order. */
10122
10123 static int
10124 compare_link_order (const void * a, const void * b)
10125 {
10126 bfd_vma apos;
10127 bfd_vma bpos;
10128
10129 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10130 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10131 if (apos < bpos)
10132 return -1;
10133 return apos > bpos;
10134 }
10135
10136
10137 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10138 order as their linked sections. Returns false if this could not be done
10139 because an output section includes both ordered and unordered
10140 sections. Ideally we'd do this in the linker proper. */
10141
10142 static bfd_boolean
10143 elf_fixup_link_order (bfd *abfd, asection *o)
10144 {
10145 int seen_linkorder;
10146 int seen_other;
10147 int n;
10148 struct bfd_link_order *p;
10149 bfd *sub;
10150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10151 unsigned elfsec;
10152 struct bfd_link_order **sections;
10153 asection *s, *other_sec, *linkorder_sec;
10154 bfd_vma offset;
10155
10156 other_sec = NULL;
10157 linkorder_sec = NULL;
10158 seen_other = 0;
10159 seen_linkorder = 0;
10160 for (p = o->map_head.link_order; p != NULL; p = p->next)
10161 {
10162 if (p->type == bfd_indirect_link_order)
10163 {
10164 s = p->u.indirect.section;
10165 sub = s->owner;
10166 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10167 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10168 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10169 && elfsec < elf_numsections (sub)
10170 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10171 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10172 {
10173 seen_linkorder++;
10174 linkorder_sec = s;
10175 }
10176 else
10177 {
10178 seen_other++;
10179 other_sec = s;
10180 }
10181 }
10182 else
10183 seen_other++;
10184
10185 if (seen_other && seen_linkorder)
10186 {
10187 if (other_sec && linkorder_sec)
10188 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10189 o, linkorder_sec,
10190 linkorder_sec->owner, other_sec,
10191 other_sec->owner);
10192 else
10193 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10194 o);
10195 bfd_set_error (bfd_error_bad_value);
10196 return FALSE;
10197 }
10198 }
10199
10200 if (!seen_linkorder)
10201 return TRUE;
10202
10203 sections = (struct bfd_link_order **)
10204 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10205 if (sections == NULL)
10206 return FALSE;
10207 seen_linkorder = 0;
10208
10209 for (p = o->map_head.link_order; p != NULL; p = p->next)
10210 {
10211 sections[seen_linkorder++] = p;
10212 }
10213 /* Sort the input sections in the order of their linked section. */
10214 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10215 compare_link_order);
10216
10217 /* Change the offsets of the sections. */
10218 offset = 0;
10219 for (n = 0; n < seen_linkorder; n++)
10220 {
10221 s = sections[n]->u.indirect.section;
10222 offset &= ~(bfd_vma) 0 << s->alignment_power;
10223 s->output_offset = offset;
10224 sections[n]->offset = offset;
10225 /* FIXME: octets_per_byte. */
10226 offset += sections[n]->size;
10227 }
10228
10229 free (sections);
10230 return TRUE;
10231 }
10232
10233
10234 /* Do the final step of an ELF link. */
10235
10236 bfd_boolean
10237 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10238 {
10239 bfd_boolean dynamic;
10240 bfd_boolean emit_relocs;
10241 bfd *dynobj;
10242 struct elf_final_link_info finfo;
10243 asection *o;
10244 struct bfd_link_order *p;
10245 bfd *sub;
10246 bfd_size_type max_contents_size;
10247 bfd_size_type max_external_reloc_size;
10248 bfd_size_type max_internal_reloc_count;
10249 bfd_size_type max_sym_count;
10250 bfd_size_type max_sym_shndx_count;
10251 file_ptr off;
10252 Elf_Internal_Sym elfsym;
10253 unsigned int i;
10254 Elf_Internal_Shdr *symtab_hdr;
10255 Elf_Internal_Shdr *symtab_shndx_hdr;
10256 Elf_Internal_Shdr *symstrtab_hdr;
10257 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10258 struct elf_outext_info eoinfo;
10259 bfd_boolean merged;
10260 size_t relativecount = 0;
10261 asection *reldyn = 0;
10262 bfd_size_type amt;
10263 asection *attr_section = NULL;
10264 bfd_vma attr_size = 0;
10265 const char *std_attrs_section;
10266
10267 if (! is_elf_hash_table (info->hash))
10268 return FALSE;
10269
10270 if (info->shared)
10271 abfd->flags |= DYNAMIC;
10272
10273 dynamic = elf_hash_table (info)->dynamic_sections_created;
10274 dynobj = elf_hash_table (info)->dynobj;
10275
10276 emit_relocs = (info->relocatable
10277 || info->emitrelocations);
10278
10279 finfo.info = info;
10280 finfo.output_bfd = abfd;
10281 finfo.symstrtab = _bfd_elf_stringtab_init ();
10282 if (finfo.symstrtab == NULL)
10283 return FALSE;
10284
10285 if (! dynamic)
10286 {
10287 finfo.dynsym_sec = NULL;
10288 finfo.hash_sec = NULL;
10289 finfo.symver_sec = NULL;
10290 }
10291 else
10292 {
10293 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10294 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10295 BFD_ASSERT (finfo.dynsym_sec != NULL);
10296 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10297 /* Note that it is OK if symver_sec is NULL. */
10298 }
10299
10300 finfo.contents = NULL;
10301 finfo.external_relocs = NULL;
10302 finfo.internal_relocs = NULL;
10303 finfo.external_syms = NULL;
10304 finfo.locsym_shndx = NULL;
10305 finfo.internal_syms = NULL;
10306 finfo.indices = NULL;
10307 finfo.sections = NULL;
10308 finfo.symbuf = NULL;
10309 finfo.symshndxbuf = NULL;
10310 finfo.symbuf_count = 0;
10311 finfo.shndxbuf_size = 0;
10312
10313 /* The object attributes have been merged. Remove the input
10314 sections from the link, and set the contents of the output
10315 secton. */
10316 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10317 for (o = abfd->sections; o != NULL; o = o->next)
10318 {
10319 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10320 || strcmp (o->name, ".gnu.attributes") == 0)
10321 {
10322 for (p = o->map_head.link_order; p != NULL; p = p->next)
10323 {
10324 asection *input_section;
10325
10326 if (p->type != bfd_indirect_link_order)
10327 continue;
10328 input_section = p->u.indirect.section;
10329 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10330 elf_link_input_bfd ignores this section. */
10331 input_section->flags &= ~SEC_HAS_CONTENTS;
10332 }
10333
10334 attr_size = bfd_elf_obj_attr_size (abfd);
10335 if (attr_size)
10336 {
10337 bfd_set_section_size (abfd, o, attr_size);
10338 attr_section = o;
10339 /* Skip this section later on. */
10340 o->map_head.link_order = NULL;
10341 }
10342 else
10343 o->flags |= SEC_EXCLUDE;
10344 }
10345 }
10346
10347 /* Count up the number of relocations we will output for each output
10348 section, so that we know the sizes of the reloc sections. We
10349 also figure out some maximum sizes. */
10350 max_contents_size = 0;
10351 max_external_reloc_size = 0;
10352 max_internal_reloc_count = 0;
10353 max_sym_count = 0;
10354 max_sym_shndx_count = 0;
10355 merged = FALSE;
10356 for (o = abfd->sections; o != NULL; o = o->next)
10357 {
10358 struct bfd_elf_section_data *esdo = elf_section_data (o);
10359 o->reloc_count = 0;
10360
10361 for (p = o->map_head.link_order; p != NULL; p = p->next)
10362 {
10363 unsigned int reloc_count = 0;
10364 struct bfd_elf_section_data *esdi = NULL;
10365
10366 if (p->type == bfd_section_reloc_link_order
10367 || p->type == bfd_symbol_reloc_link_order)
10368 reloc_count = 1;
10369 else if (p->type == bfd_indirect_link_order)
10370 {
10371 asection *sec;
10372
10373 sec = p->u.indirect.section;
10374 esdi = elf_section_data (sec);
10375
10376 /* Mark all sections which are to be included in the
10377 link. This will normally be every section. We need
10378 to do this so that we can identify any sections which
10379 the linker has decided to not include. */
10380 sec->linker_mark = TRUE;
10381
10382 if (sec->flags & SEC_MERGE)
10383 merged = TRUE;
10384
10385 if (info->relocatable || info->emitrelocations)
10386 reloc_count = sec->reloc_count;
10387 else if (bed->elf_backend_count_relocs)
10388 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10389
10390 if (sec->rawsize > max_contents_size)
10391 max_contents_size = sec->rawsize;
10392 if (sec->size > max_contents_size)
10393 max_contents_size = sec->size;
10394
10395 /* We are interested in just local symbols, not all
10396 symbols. */
10397 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10398 && (sec->owner->flags & DYNAMIC) == 0)
10399 {
10400 size_t sym_count;
10401
10402 if (elf_bad_symtab (sec->owner))
10403 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10404 / bed->s->sizeof_sym);
10405 else
10406 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10407
10408 if (sym_count > max_sym_count)
10409 max_sym_count = sym_count;
10410
10411 if (sym_count > max_sym_shndx_count
10412 && elf_symtab_shndx (sec->owner) != 0)
10413 max_sym_shndx_count = sym_count;
10414
10415 if ((sec->flags & SEC_RELOC) != 0)
10416 {
10417 size_t ext_size = 0;
10418
10419 if (esdi->rel.hdr != NULL)
10420 ext_size = esdi->rel.hdr->sh_size;
10421 if (esdi->rela.hdr != NULL)
10422 ext_size += esdi->rela.hdr->sh_size;
10423
10424 if (ext_size > max_external_reloc_size)
10425 max_external_reloc_size = ext_size;
10426 if (sec->reloc_count > max_internal_reloc_count)
10427 max_internal_reloc_count = sec->reloc_count;
10428 }
10429 }
10430 }
10431
10432 if (reloc_count == 0)
10433 continue;
10434
10435 o->reloc_count += reloc_count;
10436
10437 if (p->type == bfd_indirect_link_order
10438 && (info->relocatable || info->emitrelocations))
10439 {
10440 if (esdi->rel.hdr)
10441 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10442 if (esdi->rela.hdr)
10443 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10444 }
10445 else
10446 {
10447 if (o->use_rela_p)
10448 esdo->rela.count += reloc_count;
10449 else
10450 esdo->rel.count += reloc_count;
10451 }
10452 }
10453
10454 if (o->reloc_count > 0)
10455 o->flags |= SEC_RELOC;
10456 else
10457 {
10458 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10459 set it (this is probably a bug) and if it is set
10460 assign_section_numbers will create a reloc section. */
10461 o->flags &=~ SEC_RELOC;
10462 }
10463
10464 /* If the SEC_ALLOC flag is not set, force the section VMA to
10465 zero. This is done in elf_fake_sections as well, but forcing
10466 the VMA to 0 here will ensure that relocs against these
10467 sections are handled correctly. */
10468 if ((o->flags & SEC_ALLOC) == 0
10469 && ! o->user_set_vma)
10470 o->vma = 0;
10471 }
10472
10473 if (! info->relocatable && merged)
10474 elf_link_hash_traverse (elf_hash_table (info),
10475 _bfd_elf_link_sec_merge_syms, abfd);
10476
10477 /* Figure out the file positions for everything but the symbol table
10478 and the relocs. We set symcount to force assign_section_numbers
10479 to create a symbol table. */
10480 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10481 BFD_ASSERT (! abfd->output_has_begun);
10482 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10483 goto error_return;
10484
10485 /* Set sizes, and assign file positions for reloc sections. */
10486 for (o = abfd->sections; o != NULL; o = o->next)
10487 {
10488 struct bfd_elf_section_data *esdo = elf_section_data (o);
10489 if ((o->flags & SEC_RELOC) != 0)
10490 {
10491 if (esdo->rel.hdr
10492 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10493 goto error_return;
10494
10495 if (esdo->rela.hdr
10496 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10497 goto error_return;
10498 }
10499
10500 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10501 to count upwards while actually outputting the relocations. */
10502 esdo->rel.count = 0;
10503 esdo->rela.count = 0;
10504 }
10505
10506 _bfd_elf_assign_file_positions_for_relocs (abfd);
10507
10508 /* We have now assigned file positions for all the sections except
10509 .symtab and .strtab. We start the .symtab section at the current
10510 file position, and write directly to it. We build the .strtab
10511 section in memory. */
10512 bfd_get_symcount (abfd) = 0;
10513 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10514 /* sh_name is set in prep_headers. */
10515 symtab_hdr->sh_type = SHT_SYMTAB;
10516 /* sh_flags, sh_addr and sh_size all start off zero. */
10517 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10518 /* sh_link is set in assign_section_numbers. */
10519 /* sh_info is set below. */
10520 /* sh_offset is set just below. */
10521 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10522
10523 off = elf_tdata (abfd)->next_file_pos;
10524 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10525
10526 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10527 incorrect. We do not yet know the size of the .symtab section.
10528 We correct next_file_pos below, after we do know the size. */
10529
10530 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10531 continuously seeking to the right position in the file. */
10532 if (! info->keep_memory || max_sym_count < 20)
10533 finfo.symbuf_size = 20;
10534 else
10535 finfo.symbuf_size = max_sym_count;
10536 amt = finfo.symbuf_size;
10537 amt *= bed->s->sizeof_sym;
10538 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10539 if (finfo.symbuf == NULL)
10540 goto error_return;
10541 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10542 {
10543 /* Wild guess at number of output symbols. realloc'd as needed. */
10544 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10545 finfo.shndxbuf_size = amt;
10546 amt *= sizeof (Elf_External_Sym_Shndx);
10547 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10548 if (finfo.symshndxbuf == NULL)
10549 goto error_return;
10550 }
10551
10552 /* Start writing out the symbol table. The first symbol is always a
10553 dummy symbol. */
10554 if (info->strip != strip_all
10555 || emit_relocs)
10556 {
10557 elfsym.st_value = 0;
10558 elfsym.st_size = 0;
10559 elfsym.st_info = 0;
10560 elfsym.st_other = 0;
10561 elfsym.st_shndx = SHN_UNDEF;
10562 elfsym.st_target_internal = 0;
10563 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10564 NULL) != 1)
10565 goto error_return;
10566 }
10567
10568 /* Output a symbol for each section. We output these even if we are
10569 discarding local symbols, since they are used for relocs. These
10570 symbols have no names. We store the index of each one in the
10571 index field of the section, so that we can find it again when
10572 outputting relocs. */
10573 if (info->strip != strip_all
10574 || emit_relocs)
10575 {
10576 elfsym.st_size = 0;
10577 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10578 elfsym.st_other = 0;
10579 elfsym.st_value = 0;
10580 elfsym.st_target_internal = 0;
10581 for (i = 1; i < elf_numsections (abfd); i++)
10582 {
10583 o = bfd_section_from_elf_index (abfd, i);
10584 if (o != NULL)
10585 {
10586 o->target_index = bfd_get_symcount (abfd);
10587 elfsym.st_shndx = i;
10588 if (!info->relocatable)
10589 elfsym.st_value = o->vma;
10590 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10591 goto error_return;
10592 }
10593 }
10594 }
10595
10596 /* Allocate some memory to hold information read in from the input
10597 files. */
10598 if (max_contents_size != 0)
10599 {
10600 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10601 if (finfo.contents == NULL)
10602 goto error_return;
10603 }
10604
10605 if (max_external_reloc_size != 0)
10606 {
10607 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10608 if (finfo.external_relocs == NULL)
10609 goto error_return;
10610 }
10611
10612 if (max_internal_reloc_count != 0)
10613 {
10614 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10615 amt *= sizeof (Elf_Internal_Rela);
10616 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10617 if (finfo.internal_relocs == NULL)
10618 goto error_return;
10619 }
10620
10621 if (max_sym_count != 0)
10622 {
10623 amt = max_sym_count * bed->s->sizeof_sym;
10624 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10625 if (finfo.external_syms == NULL)
10626 goto error_return;
10627
10628 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10629 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10630 if (finfo.internal_syms == NULL)
10631 goto error_return;
10632
10633 amt = max_sym_count * sizeof (long);
10634 finfo.indices = (long int *) bfd_malloc (amt);
10635 if (finfo.indices == NULL)
10636 goto error_return;
10637
10638 amt = max_sym_count * sizeof (asection *);
10639 finfo.sections = (asection **) bfd_malloc (amt);
10640 if (finfo.sections == NULL)
10641 goto error_return;
10642 }
10643
10644 if (max_sym_shndx_count != 0)
10645 {
10646 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10647 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10648 if (finfo.locsym_shndx == NULL)
10649 goto error_return;
10650 }
10651
10652 if (elf_hash_table (info)->tls_sec)
10653 {
10654 bfd_vma base, end = 0;
10655 asection *sec;
10656
10657 for (sec = elf_hash_table (info)->tls_sec;
10658 sec && (sec->flags & SEC_THREAD_LOCAL);
10659 sec = sec->next)
10660 {
10661 bfd_size_type size = sec->size;
10662
10663 if (size == 0
10664 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10665 {
10666 struct bfd_link_order *ord = sec->map_tail.link_order;
10667
10668 if (ord != NULL)
10669 size = ord->offset + ord->size;
10670 }
10671 end = sec->vma + size;
10672 }
10673 base = elf_hash_table (info)->tls_sec->vma;
10674 /* Only align end of TLS section if static TLS doesn't have special
10675 alignment requirements. */
10676 if (bed->static_tls_alignment == 1)
10677 end = align_power (end,
10678 elf_hash_table (info)->tls_sec->alignment_power);
10679 elf_hash_table (info)->tls_size = end - base;
10680 }
10681
10682 /* Reorder SHF_LINK_ORDER sections. */
10683 for (o = abfd->sections; o != NULL; o = o->next)
10684 {
10685 if (!elf_fixup_link_order (abfd, o))
10686 return FALSE;
10687 }
10688
10689 /* Since ELF permits relocations to be against local symbols, we
10690 must have the local symbols available when we do the relocations.
10691 Since we would rather only read the local symbols once, and we
10692 would rather not keep them in memory, we handle all the
10693 relocations for a single input file at the same time.
10694
10695 Unfortunately, there is no way to know the total number of local
10696 symbols until we have seen all of them, and the local symbol
10697 indices precede the global symbol indices. This means that when
10698 we are generating relocatable output, and we see a reloc against
10699 a global symbol, we can not know the symbol index until we have
10700 finished examining all the local symbols to see which ones we are
10701 going to output. To deal with this, we keep the relocations in
10702 memory, and don't output them until the end of the link. This is
10703 an unfortunate waste of memory, but I don't see a good way around
10704 it. Fortunately, it only happens when performing a relocatable
10705 link, which is not the common case. FIXME: If keep_memory is set
10706 we could write the relocs out and then read them again; I don't
10707 know how bad the memory loss will be. */
10708
10709 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10710 sub->output_has_begun = FALSE;
10711 for (o = abfd->sections; o != NULL; o = o->next)
10712 {
10713 for (p = o->map_head.link_order; p != NULL; p = p->next)
10714 {
10715 if (p->type == bfd_indirect_link_order
10716 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10717 == bfd_target_elf_flavour)
10718 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10719 {
10720 if (! sub->output_has_begun)
10721 {
10722 if (! elf_link_input_bfd (&finfo, sub))
10723 goto error_return;
10724 sub->output_has_begun = TRUE;
10725 }
10726 }
10727 else if (p->type == bfd_section_reloc_link_order
10728 || p->type == bfd_symbol_reloc_link_order)
10729 {
10730 if (! elf_reloc_link_order (abfd, info, o, p))
10731 goto error_return;
10732 }
10733 else
10734 {
10735 if (! _bfd_default_link_order (abfd, info, o, p))
10736 {
10737 if (p->type == bfd_indirect_link_order
10738 && (bfd_get_flavour (sub)
10739 == bfd_target_elf_flavour)
10740 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10741 != bed->s->elfclass))
10742 {
10743 const char *iclass, *oclass;
10744
10745 if (bed->s->elfclass == ELFCLASS64)
10746 {
10747 iclass = "ELFCLASS32";
10748 oclass = "ELFCLASS64";
10749 }
10750 else
10751 {
10752 iclass = "ELFCLASS64";
10753 oclass = "ELFCLASS32";
10754 }
10755
10756 bfd_set_error (bfd_error_wrong_format);
10757 (*_bfd_error_handler)
10758 (_("%B: file class %s incompatible with %s"),
10759 sub, iclass, oclass);
10760 }
10761
10762 goto error_return;
10763 }
10764 }
10765 }
10766 }
10767
10768 /* Free symbol buffer if needed. */
10769 if (!info->reduce_memory_overheads)
10770 {
10771 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10772 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10773 && elf_tdata (sub)->symbuf)
10774 {
10775 free (elf_tdata (sub)->symbuf);
10776 elf_tdata (sub)->symbuf = NULL;
10777 }
10778 }
10779
10780 /* Output any global symbols that got converted to local in a
10781 version script or due to symbol visibility. We do this in a
10782 separate step since ELF requires all local symbols to appear
10783 prior to any global symbols. FIXME: We should only do this if
10784 some global symbols were, in fact, converted to become local.
10785 FIXME: Will this work correctly with the Irix 5 linker? */
10786 eoinfo.failed = FALSE;
10787 eoinfo.finfo = &finfo;
10788 eoinfo.localsyms = TRUE;
10789 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10790 if (eoinfo.failed)
10791 return FALSE;
10792
10793 /* If backend needs to output some local symbols not present in the hash
10794 table, do it now. */
10795 if (bed->elf_backend_output_arch_local_syms)
10796 {
10797 typedef int (*out_sym_func)
10798 (void *, const char *, Elf_Internal_Sym *, asection *,
10799 struct elf_link_hash_entry *);
10800
10801 if (! ((*bed->elf_backend_output_arch_local_syms)
10802 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10803 return FALSE;
10804 }
10805
10806 /* That wrote out all the local symbols. Finish up the symbol table
10807 with the global symbols. Even if we want to strip everything we
10808 can, we still need to deal with those global symbols that got
10809 converted to local in a version script. */
10810
10811 /* The sh_info field records the index of the first non local symbol. */
10812 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10813
10814 if (dynamic
10815 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10816 {
10817 Elf_Internal_Sym sym;
10818 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10819 long last_local = 0;
10820
10821 /* Write out the section symbols for the output sections. */
10822 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10823 {
10824 asection *s;
10825
10826 sym.st_size = 0;
10827 sym.st_name = 0;
10828 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10829 sym.st_other = 0;
10830 sym.st_target_internal = 0;
10831
10832 for (s = abfd->sections; s != NULL; s = s->next)
10833 {
10834 int indx;
10835 bfd_byte *dest;
10836 long dynindx;
10837
10838 dynindx = elf_section_data (s)->dynindx;
10839 if (dynindx <= 0)
10840 continue;
10841 indx = elf_section_data (s)->this_idx;
10842 BFD_ASSERT (indx > 0);
10843 sym.st_shndx = indx;
10844 if (! check_dynsym (abfd, &sym))
10845 return FALSE;
10846 sym.st_value = s->vma;
10847 dest = dynsym + dynindx * bed->s->sizeof_sym;
10848 if (last_local < dynindx)
10849 last_local = dynindx;
10850 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10851 }
10852 }
10853
10854 /* Write out the local dynsyms. */
10855 if (elf_hash_table (info)->dynlocal)
10856 {
10857 struct elf_link_local_dynamic_entry *e;
10858 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10859 {
10860 asection *s;
10861 bfd_byte *dest;
10862
10863 /* Copy the internal symbol and turn off visibility.
10864 Note that we saved a word of storage and overwrote
10865 the original st_name with the dynstr_index. */
10866 sym = e->isym;
10867 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10868
10869 s = bfd_section_from_elf_index (e->input_bfd,
10870 e->isym.st_shndx);
10871 if (s != NULL)
10872 {
10873 sym.st_shndx =
10874 elf_section_data (s->output_section)->this_idx;
10875 if (! check_dynsym (abfd, &sym))
10876 return FALSE;
10877 sym.st_value = (s->output_section->vma
10878 + s->output_offset
10879 + e->isym.st_value);
10880 }
10881
10882 if (last_local < e->dynindx)
10883 last_local = e->dynindx;
10884
10885 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10886 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10887 }
10888 }
10889
10890 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10891 last_local + 1;
10892 }
10893
10894 /* We get the global symbols from the hash table. */
10895 eoinfo.failed = FALSE;
10896 eoinfo.localsyms = FALSE;
10897 eoinfo.finfo = &finfo;
10898 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10899 if (eoinfo.failed)
10900 return FALSE;
10901
10902 /* If backend needs to output some symbols not present in the hash
10903 table, do it now. */
10904 if (bed->elf_backend_output_arch_syms)
10905 {
10906 typedef int (*out_sym_func)
10907 (void *, const char *, Elf_Internal_Sym *, asection *,
10908 struct elf_link_hash_entry *);
10909
10910 if (! ((*bed->elf_backend_output_arch_syms)
10911 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10912 return FALSE;
10913 }
10914
10915 /* Flush all symbols to the file. */
10916 if (! elf_link_flush_output_syms (&finfo, bed))
10917 return FALSE;
10918
10919 /* Now we know the size of the symtab section. */
10920 off += symtab_hdr->sh_size;
10921
10922 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10923 if (symtab_shndx_hdr->sh_name != 0)
10924 {
10925 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10926 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10927 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10928 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10929 symtab_shndx_hdr->sh_size = amt;
10930
10931 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10932 off, TRUE);
10933
10934 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10935 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10936 return FALSE;
10937 }
10938
10939
10940 /* Finish up and write out the symbol string table (.strtab)
10941 section. */
10942 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10943 /* sh_name was set in prep_headers. */
10944 symstrtab_hdr->sh_type = SHT_STRTAB;
10945 symstrtab_hdr->sh_flags = 0;
10946 symstrtab_hdr->sh_addr = 0;
10947 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10948 symstrtab_hdr->sh_entsize = 0;
10949 symstrtab_hdr->sh_link = 0;
10950 symstrtab_hdr->sh_info = 0;
10951 /* sh_offset is set just below. */
10952 symstrtab_hdr->sh_addralign = 1;
10953
10954 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10955 elf_tdata (abfd)->next_file_pos = off;
10956
10957 if (bfd_get_symcount (abfd) > 0)
10958 {
10959 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10960 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10961 return FALSE;
10962 }
10963
10964 /* Adjust the relocs to have the correct symbol indices. */
10965 for (o = abfd->sections; o != NULL; o = o->next)
10966 {
10967 struct bfd_elf_section_data *esdo = elf_section_data (o);
10968 if ((o->flags & SEC_RELOC) == 0)
10969 continue;
10970
10971 if (esdo->rel.hdr != NULL)
10972 elf_link_adjust_relocs (abfd, &esdo->rel);
10973 if (esdo->rela.hdr != NULL)
10974 elf_link_adjust_relocs (abfd, &esdo->rela);
10975
10976 /* Set the reloc_count field to 0 to prevent write_relocs from
10977 trying to swap the relocs out itself. */
10978 o->reloc_count = 0;
10979 }
10980
10981 if (dynamic && info->combreloc && dynobj != NULL)
10982 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10983
10984 /* If we are linking against a dynamic object, or generating a
10985 shared library, finish up the dynamic linking information. */
10986 if (dynamic)
10987 {
10988 bfd_byte *dyncon, *dynconend;
10989
10990 /* Fix up .dynamic entries. */
10991 o = bfd_get_section_by_name (dynobj, ".dynamic");
10992 BFD_ASSERT (o != NULL);
10993
10994 dyncon = o->contents;
10995 dynconend = o->contents + o->size;
10996 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10997 {
10998 Elf_Internal_Dyn dyn;
10999 const char *name;
11000 unsigned int type;
11001
11002 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11003
11004 switch (dyn.d_tag)
11005 {
11006 default:
11007 continue;
11008 case DT_NULL:
11009 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11010 {
11011 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11012 {
11013 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11014 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11015 default: continue;
11016 }
11017 dyn.d_un.d_val = relativecount;
11018 relativecount = 0;
11019 break;
11020 }
11021 continue;
11022
11023 case DT_INIT:
11024 name = info->init_function;
11025 goto get_sym;
11026 case DT_FINI:
11027 name = info->fini_function;
11028 get_sym:
11029 {
11030 struct elf_link_hash_entry *h;
11031
11032 h = elf_link_hash_lookup (elf_hash_table (info), name,
11033 FALSE, FALSE, TRUE);
11034 if (h != NULL
11035 && (h->root.type == bfd_link_hash_defined
11036 || h->root.type == bfd_link_hash_defweak))
11037 {
11038 dyn.d_un.d_ptr = h->root.u.def.value;
11039 o = h->root.u.def.section;
11040 if (o->output_section != NULL)
11041 dyn.d_un.d_ptr += (o->output_section->vma
11042 + o->output_offset);
11043 else
11044 {
11045 /* The symbol is imported from another shared
11046 library and does not apply to this one. */
11047 dyn.d_un.d_ptr = 0;
11048 }
11049 break;
11050 }
11051 }
11052 continue;
11053
11054 case DT_PREINIT_ARRAYSZ:
11055 name = ".preinit_array";
11056 goto get_size;
11057 case DT_INIT_ARRAYSZ:
11058 name = ".init_array";
11059 goto get_size;
11060 case DT_FINI_ARRAYSZ:
11061 name = ".fini_array";
11062 get_size:
11063 o = bfd_get_section_by_name (abfd, name);
11064 if (o == NULL)
11065 {
11066 (*_bfd_error_handler)
11067 (_("%B: could not find output section %s"), abfd, name);
11068 goto error_return;
11069 }
11070 if (o->size == 0)
11071 (*_bfd_error_handler)
11072 (_("warning: %s section has zero size"), name);
11073 dyn.d_un.d_val = o->size;
11074 break;
11075
11076 case DT_PREINIT_ARRAY:
11077 name = ".preinit_array";
11078 goto get_vma;
11079 case DT_INIT_ARRAY:
11080 name = ".init_array";
11081 goto get_vma;
11082 case DT_FINI_ARRAY:
11083 name = ".fini_array";
11084 goto get_vma;
11085
11086 case DT_HASH:
11087 name = ".hash";
11088 goto get_vma;
11089 case DT_GNU_HASH:
11090 name = ".gnu.hash";
11091 goto get_vma;
11092 case DT_STRTAB:
11093 name = ".dynstr";
11094 goto get_vma;
11095 case DT_SYMTAB:
11096 name = ".dynsym";
11097 goto get_vma;
11098 case DT_VERDEF:
11099 name = ".gnu.version_d";
11100 goto get_vma;
11101 case DT_VERNEED:
11102 name = ".gnu.version_r";
11103 goto get_vma;
11104 case DT_VERSYM:
11105 name = ".gnu.version";
11106 get_vma:
11107 o = bfd_get_section_by_name (abfd, name);
11108 if (o == NULL)
11109 {
11110 (*_bfd_error_handler)
11111 (_("%B: could not find output section %s"), abfd, name);
11112 goto error_return;
11113 }
11114 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11115 {
11116 (*_bfd_error_handler)
11117 (_("warning: section '%s' is being made into a note"), name);
11118 bfd_set_error (bfd_error_nonrepresentable_section);
11119 goto error_return;
11120 }
11121 dyn.d_un.d_ptr = o->vma;
11122 break;
11123
11124 case DT_REL:
11125 case DT_RELA:
11126 case DT_RELSZ:
11127 case DT_RELASZ:
11128 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11129 type = SHT_REL;
11130 else
11131 type = SHT_RELA;
11132 dyn.d_un.d_val = 0;
11133 dyn.d_un.d_ptr = 0;
11134 for (i = 1; i < elf_numsections (abfd); i++)
11135 {
11136 Elf_Internal_Shdr *hdr;
11137
11138 hdr = elf_elfsections (abfd)[i];
11139 if (hdr->sh_type == type
11140 && (hdr->sh_flags & SHF_ALLOC) != 0)
11141 {
11142 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11143 dyn.d_un.d_val += hdr->sh_size;
11144 else
11145 {
11146 if (dyn.d_un.d_ptr == 0
11147 || hdr->sh_addr < dyn.d_un.d_ptr)
11148 dyn.d_un.d_ptr = hdr->sh_addr;
11149 }
11150 }
11151 }
11152 break;
11153 }
11154 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11155 }
11156 }
11157
11158 /* If we have created any dynamic sections, then output them. */
11159 if (dynobj != NULL)
11160 {
11161 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11162 goto error_return;
11163
11164 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11165 if (info->warn_shared_textrel && info->shared)
11166 {
11167 bfd_byte *dyncon, *dynconend;
11168
11169 /* Fix up .dynamic entries. */
11170 o = bfd_get_section_by_name (dynobj, ".dynamic");
11171 BFD_ASSERT (o != NULL);
11172
11173 dyncon = o->contents;
11174 dynconend = o->contents + o->size;
11175 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11176 {
11177 Elf_Internal_Dyn dyn;
11178
11179 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11180
11181 if (dyn.d_tag == DT_TEXTREL)
11182 {
11183 info->callbacks->einfo
11184 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11185 break;
11186 }
11187 }
11188 }
11189
11190 for (o = dynobj->sections; o != NULL; o = o->next)
11191 {
11192 if ((o->flags & SEC_HAS_CONTENTS) == 0
11193 || o->size == 0
11194 || o->output_section == bfd_abs_section_ptr)
11195 continue;
11196 if ((o->flags & SEC_LINKER_CREATED) == 0)
11197 {
11198 /* At this point, we are only interested in sections
11199 created by _bfd_elf_link_create_dynamic_sections. */
11200 continue;
11201 }
11202 if (elf_hash_table (info)->stab_info.stabstr == o)
11203 continue;
11204 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11205 continue;
11206 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11207 != SHT_STRTAB)
11208 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11209 {
11210 /* FIXME: octets_per_byte. */
11211 if (! bfd_set_section_contents (abfd, o->output_section,
11212 o->contents,
11213 (file_ptr) o->output_offset,
11214 o->size))
11215 goto error_return;
11216 }
11217 else
11218 {
11219 /* The contents of the .dynstr section are actually in a
11220 stringtab. */
11221 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11222 if (bfd_seek (abfd, off, SEEK_SET) != 0
11223 || ! _bfd_elf_strtab_emit (abfd,
11224 elf_hash_table (info)->dynstr))
11225 goto error_return;
11226 }
11227 }
11228 }
11229
11230 if (info->relocatable)
11231 {
11232 bfd_boolean failed = FALSE;
11233
11234 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11235 if (failed)
11236 goto error_return;
11237 }
11238
11239 /* If we have optimized stabs strings, output them. */
11240 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11241 {
11242 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11243 goto error_return;
11244 }
11245
11246 if (info->eh_frame_hdr)
11247 {
11248 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11249 goto error_return;
11250 }
11251
11252 if (finfo.symstrtab != NULL)
11253 _bfd_stringtab_free (finfo.symstrtab);
11254 if (finfo.contents != NULL)
11255 free (finfo.contents);
11256 if (finfo.external_relocs != NULL)
11257 free (finfo.external_relocs);
11258 if (finfo.internal_relocs != NULL)
11259 free (finfo.internal_relocs);
11260 if (finfo.external_syms != NULL)
11261 free (finfo.external_syms);
11262 if (finfo.locsym_shndx != NULL)
11263 free (finfo.locsym_shndx);
11264 if (finfo.internal_syms != NULL)
11265 free (finfo.internal_syms);
11266 if (finfo.indices != NULL)
11267 free (finfo.indices);
11268 if (finfo.sections != NULL)
11269 free (finfo.sections);
11270 if (finfo.symbuf != NULL)
11271 free (finfo.symbuf);
11272 if (finfo.symshndxbuf != NULL)
11273 free (finfo.symshndxbuf);
11274 for (o = abfd->sections; o != NULL; o = o->next)
11275 {
11276 struct bfd_elf_section_data *esdo = elf_section_data (o);
11277 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11278 free (esdo->rel.hashes);
11279 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11280 free (esdo->rela.hashes);
11281 }
11282
11283 elf_tdata (abfd)->linker = TRUE;
11284
11285 if (attr_section)
11286 {
11287 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11288 if (contents == NULL)
11289 return FALSE; /* Bail out and fail. */
11290 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11291 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11292 free (contents);
11293 }
11294
11295 return TRUE;
11296
11297 error_return:
11298 if (finfo.symstrtab != NULL)
11299 _bfd_stringtab_free (finfo.symstrtab);
11300 if (finfo.contents != NULL)
11301 free (finfo.contents);
11302 if (finfo.external_relocs != NULL)
11303 free (finfo.external_relocs);
11304 if (finfo.internal_relocs != NULL)
11305 free (finfo.internal_relocs);
11306 if (finfo.external_syms != NULL)
11307 free (finfo.external_syms);
11308 if (finfo.locsym_shndx != NULL)
11309 free (finfo.locsym_shndx);
11310 if (finfo.internal_syms != NULL)
11311 free (finfo.internal_syms);
11312 if (finfo.indices != NULL)
11313 free (finfo.indices);
11314 if (finfo.sections != NULL)
11315 free (finfo.sections);
11316 if (finfo.symbuf != NULL)
11317 free (finfo.symbuf);
11318 if (finfo.symshndxbuf != NULL)
11319 free (finfo.symshndxbuf);
11320 for (o = abfd->sections; o != NULL; o = o->next)
11321 {
11322 struct bfd_elf_section_data *esdo = elf_section_data (o);
11323 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11324 free (esdo->rel.hashes);
11325 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11326 free (esdo->rela.hashes);
11327 }
11328
11329 return FALSE;
11330 }
11331 \f
11332 /* Initialize COOKIE for input bfd ABFD. */
11333
11334 static bfd_boolean
11335 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11336 struct bfd_link_info *info, bfd *abfd)
11337 {
11338 Elf_Internal_Shdr *symtab_hdr;
11339 const struct elf_backend_data *bed;
11340
11341 bed = get_elf_backend_data (abfd);
11342 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11343
11344 cookie->abfd = abfd;
11345 cookie->sym_hashes = elf_sym_hashes (abfd);
11346 cookie->bad_symtab = elf_bad_symtab (abfd);
11347 if (cookie->bad_symtab)
11348 {
11349 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11350 cookie->extsymoff = 0;
11351 }
11352 else
11353 {
11354 cookie->locsymcount = symtab_hdr->sh_info;
11355 cookie->extsymoff = symtab_hdr->sh_info;
11356 }
11357
11358 if (bed->s->arch_size == 32)
11359 cookie->r_sym_shift = 8;
11360 else
11361 cookie->r_sym_shift = 32;
11362
11363 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11364 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11365 {
11366 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11367 cookie->locsymcount, 0,
11368 NULL, NULL, NULL);
11369 if (cookie->locsyms == NULL)
11370 {
11371 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11372 return FALSE;
11373 }
11374 if (info->keep_memory)
11375 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11376 }
11377 return TRUE;
11378 }
11379
11380 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11381
11382 static void
11383 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11384 {
11385 Elf_Internal_Shdr *symtab_hdr;
11386
11387 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11388 if (cookie->locsyms != NULL
11389 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11390 free (cookie->locsyms);
11391 }
11392
11393 /* Initialize the relocation information in COOKIE for input section SEC
11394 of input bfd ABFD. */
11395
11396 static bfd_boolean
11397 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11398 struct bfd_link_info *info, bfd *abfd,
11399 asection *sec)
11400 {
11401 const struct elf_backend_data *bed;
11402
11403 if (sec->reloc_count == 0)
11404 {
11405 cookie->rels = NULL;
11406 cookie->relend = NULL;
11407 }
11408 else
11409 {
11410 bed = get_elf_backend_data (abfd);
11411
11412 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11413 info->keep_memory);
11414 if (cookie->rels == NULL)
11415 return FALSE;
11416 cookie->rel = cookie->rels;
11417 cookie->relend = (cookie->rels
11418 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11419 }
11420 cookie->rel = cookie->rels;
11421 return TRUE;
11422 }
11423
11424 /* Free the memory allocated by init_reloc_cookie_rels,
11425 if appropriate. */
11426
11427 static void
11428 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11429 asection *sec)
11430 {
11431 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11432 free (cookie->rels);
11433 }
11434
11435 /* Initialize the whole of COOKIE for input section SEC. */
11436
11437 static bfd_boolean
11438 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11439 struct bfd_link_info *info,
11440 asection *sec)
11441 {
11442 if (!init_reloc_cookie (cookie, info, sec->owner))
11443 goto error1;
11444 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11445 goto error2;
11446 return TRUE;
11447
11448 error2:
11449 fini_reloc_cookie (cookie, sec->owner);
11450 error1:
11451 return FALSE;
11452 }
11453
11454 /* Free the memory allocated by init_reloc_cookie_for_section,
11455 if appropriate. */
11456
11457 static void
11458 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11459 asection *sec)
11460 {
11461 fini_reloc_cookie_rels (cookie, sec);
11462 fini_reloc_cookie (cookie, sec->owner);
11463 }
11464 \f
11465 /* Garbage collect unused sections. */
11466
11467 /* Default gc_mark_hook. */
11468
11469 asection *
11470 _bfd_elf_gc_mark_hook (asection *sec,
11471 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11472 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11473 struct elf_link_hash_entry *h,
11474 Elf_Internal_Sym *sym)
11475 {
11476 const char *sec_name;
11477
11478 if (h != NULL)
11479 {
11480 switch (h->root.type)
11481 {
11482 case bfd_link_hash_defined:
11483 case bfd_link_hash_defweak:
11484 return h->root.u.def.section;
11485
11486 case bfd_link_hash_common:
11487 return h->root.u.c.p->section;
11488
11489 case bfd_link_hash_undefined:
11490 case bfd_link_hash_undefweak:
11491 /* To work around a glibc bug, keep all XXX input sections
11492 when there is an as yet undefined reference to __start_XXX
11493 or __stop_XXX symbols. The linker will later define such
11494 symbols for orphan input sections that have a name
11495 representable as a C identifier. */
11496 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11497 sec_name = h->root.root.string + 8;
11498 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11499 sec_name = h->root.root.string + 7;
11500 else
11501 sec_name = NULL;
11502
11503 if (sec_name && *sec_name != '\0')
11504 {
11505 bfd *i;
11506
11507 for (i = info->input_bfds; i; i = i->link_next)
11508 {
11509 sec = bfd_get_section_by_name (i, sec_name);
11510 if (sec)
11511 sec->flags |= SEC_KEEP;
11512 }
11513 }
11514 break;
11515
11516 default:
11517 break;
11518 }
11519 }
11520 else
11521 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11522
11523 return NULL;
11524 }
11525
11526 /* COOKIE->rel describes a relocation against section SEC, which is
11527 a section we've decided to keep. Return the section that contains
11528 the relocation symbol, or NULL if no section contains it. */
11529
11530 asection *
11531 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11532 elf_gc_mark_hook_fn gc_mark_hook,
11533 struct elf_reloc_cookie *cookie)
11534 {
11535 unsigned long r_symndx;
11536 struct elf_link_hash_entry *h;
11537
11538 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11539 if (r_symndx == STN_UNDEF)
11540 return NULL;
11541
11542 if (r_symndx >= cookie->locsymcount
11543 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11544 {
11545 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11546 while (h->root.type == bfd_link_hash_indirect
11547 || h->root.type == bfd_link_hash_warning)
11548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11549 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11550 }
11551
11552 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11553 &cookie->locsyms[r_symndx]);
11554 }
11555
11556 /* COOKIE->rel describes a relocation against section SEC, which is
11557 a section we've decided to keep. Mark the section that contains
11558 the relocation symbol. */
11559
11560 bfd_boolean
11561 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11562 asection *sec,
11563 elf_gc_mark_hook_fn gc_mark_hook,
11564 struct elf_reloc_cookie *cookie)
11565 {
11566 asection *rsec;
11567
11568 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11569 if (rsec && !rsec->gc_mark)
11570 {
11571 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11572 rsec->gc_mark = 1;
11573 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11574 return FALSE;
11575 }
11576 return TRUE;
11577 }
11578
11579 /* The mark phase of garbage collection. For a given section, mark
11580 it and any sections in this section's group, and all the sections
11581 which define symbols to which it refers. */
11582
11583 bfd_boolean
11584 _bfd_elf_gc_mark (struct bfd_link_info *info,
11585 asection *sec,
11586 elf_gc_mark_hook_fn gc_mark_hook)
11587 {
11588 bfd_boolean ret;
11589 asection *group_sec, *eh_frame;
11590
11591 sec->gc_mark = 1;
11592
11593 /* Mark all the sections in the group. */
11594 group_sec = elf_section_data (sec)->next_in_group;
11595 if (group_sec && !group_sec->gc_mark)
11596 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11597 return FALSE;
11598
11599 /* Look through the section relocs. */
11600 ret = TRUE;
11601 eh_frame = elf_eh_frame_section (sec->owner);
11602 if ((sec->flags & SEC_RELOC) != 0
11603 && sec->reloc_count > 0
11604 && sec != eh_frame)
11605 {
11606 struct elf_reloc_cookie cookie;
11607
11608 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11609 ret = FALSE;
11610 else
11611 {
11612 for (; cookie.rel < cookie.relend; cookie.rel++)
11613 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11614 {
11615 ret = FALSE;
11616 break;
11617 }
11618 fini_reloc_cookie_for_section (&cookie, sec);
11619 }
11620 }
11621
11622 if (ret && eh_frame && elf_fde_list (sec))
11623 {
11624 struct elf_reloc_cookie cookie;
11625
11626 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11627 ret = FALSE;
11628 else
11629 {
11630 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11631 gc_mark_hook, &cookie))
11632 ret = FALSE;
11633 fini_reloc_cookie_for_section (&cookie, eh_frame);
11634 }
11635 }
11636
11637 return ret;
11638 }
11639
11640 /* Keep debug and special sections. */
11641
11642 bfd_boolean
11643 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11644 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11645 {
11646 bfd *ibfd;
11647
11648 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11649 {
11650 asection *isec;
11651 bfd_boolean some_kept;
11652
11653 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11654 continue;
11655
11656 /* Ensure all linker created sections are kept, and see whether
11657 any other section is already marked. */
11658 some_kept = FALSE;
11659 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11660 {
11661 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11662 isec->gc_mark = 1;
11663 else if (isec->gc_mark)
11664 some_kept = TRUE;
11665 }
11666
11667 /* If no section in this file will be kept, then we can
11668 toss out debug sections. */
11669 if (!some_kept)
11670 continue;
11671
11672 /* Keep debug and special sections like .comment when they are
11673 not part of a group, or when we have single-member groups. */
11674 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11675 if ((elf_next_in_group (isec) == NULL
11676 || elf_next_in_group (isec) == isec)
11677 && ((isec->flags & SEC_DEBUGGING) != 0
11678 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11679 isec->gc_mark = 1;
11680 }
11681 return TRUE;
11682 }
11683
11684 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11685
11686 struct elf_gc_sweep_symbol_info
11687 {
11688 struct bfd_link_info *info;
11689 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11690 bfd_boolean);
11691 };
11692
11693 static bfd_boolean
11694 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11695 {
11696 if (((h->root.type == bfd_link_hash_defined
11697 || h->root.type == bfd_link_hash_defweak)
11698 && !h->root.u.def.section->gc_mark
11699 && (!(h->root.u.def.section->owner->flags & DYNAMIC)
11700 || (h->plt.refcount <= 0
11701 && h->got.refcount <= 0)))
11702 || (h->root.type == bfd_link_hash_undefined
11703 && h->plt.refcount <= 0
11704 && h->got.refcount <= 0))
11705 {
11706 struct elf_gc_sweep_symbol_info *inf =
11707 (struct elf_gc_sweep_symbol_info *) data;
11708 (*inf->hide_symbol) (inf->info, h, TRUE);
11709 }
11710
11711 return TRUE;
11712 }
11713
11714 /* The sweep phase of garbage collection. Remove all garbage sections. */
11715
11716 typedef bfd_boolean (*gc_sweep_hook_fn)
11717 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11718
11719 static bfd_boolean
11720 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11721 {
11722 bfd *sub;
11723 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11724 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11725 unsigned long section_sym_count;
11726 struct elf_gc_sweep_symbol_info sweep_info;
11727
11728 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11729 {
11730 asection *o;
11731
11732 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11733 continue;
11734
11735 for (o = sub->sections; o != NULL; o = o->next)
11736 {
11737 /* When any section in a section group is kept, we keep all
11738 sections in the section group. If the first member of
11739 the section group is excluded, we will also exclude the
11740 group section. */
11741 if (o->flags & SEC_GROUP)
11742 {
11743 asection *first = elf_next_in_group (o);
11744 o->gc_mark = first->gc_mark;
11745 }
11746
11747 if (o->gc_mark)
11748 continue;
11749
11750 /* Skip sweeping sections already excluded. */
11751 if (o->flags & SEC_EXCLUDE)
11752 continue;
11753
11754 /* Since this is early in the link process, it is simple
11755 to remove a section from the output. */
11756 o->flags |= SEC_EXCLUDE;
11757
11758 if (info->print_gc_sections && o->size != 0)
11759 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11760
11761 /* But we also have to update some of the relocation
11762 info we collected before. */
11763 if (gc_sweep_hook
11764 && (o->flags & SEC_RELOC) != 0
11765 && o->reloc_count > 0
11766 && !bfd_is_abs_section (o->output_section))
11767 {
11768 Elf_Internal_Rela *internal_relocs;
11769 bfd_boolean r;
11770
11771 internal_relocs
11772 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11773 info->keep_memory);
11774 if (internal_relocs == NULL)
11775 return FALSE;
11776
11777 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11778
11779 if (elf_section_data (o)->relocs != internal_relocs)
11780 free (internal_relocs);
11781
11782 if (!r)
11783 return FALSE;
11784 }
11785 }
11786 }
11787
11788 /* Remove the symbols that were in the swept sections from the dynamic
11789 symbol table. GCFIXME: Anyone know how to get them out of the
11790 static symbol table as well? */
11791 sweep_info.info = info;
11792 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11793 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11794 &sweep_info);
11795
11796 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11797 return TRUE;
11798 }
11799
11800 /* Propagate collected vtable information. This is called through
11801 elf_link_hash_traverse. */
11802
11803 static bfd_boolean
11804 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11805 {
11806 /* Those that are not vtables. */
11807 if (h->vtable == NULL || h->vtable->parent == NULL)
11808 return TRUE;
11809
11810 /* Those vtables that do not have parents, we cannot merge. */
11811 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11812 return TRUE;
11813
11814 /* If we've already been done, exit. */
11815 if (h->vtable->used && h->vtable->used[-1])
11816 return TRUE;
11817
11818 /* Make sure the parent's table is up to date. */
11819 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11820
11821 if (h->vtable->used == NULL)
11822 {
11823 /* None of this table's entries were referenced. Re-use the
11824 parent's table. */
11825 h->vtable->used = h->vtable->parent->vtable->used;
11826 h->vtable->size = h->vtable->parent->vtable->size;
11827 }
11828 else
11829 {
11830 size_t n;
11831 bfd_boolean *cu, *pu;
11832
11833 /* Or the parent's entries into ours. */
11834 cu = h->vtable->used;
11835 cu[-1] = TRUE;
11836 pu = h->vtable->parent->vtable->used;
11837 if (pu != NULL)
11838 {
11839 const struct elf_backend_data *bed;
11840 unsigned int log_file_align;
11841
11842 bed = get_elf_backend_data (h->root.u.def.section->owner);
11843 log_file_align = bed->s->log_file_align;
11844 n = h->vtable->parent->vtable->size >> log_file_align;
11845 while (n--)
11846 {
11847 if (*pu)
11848 *cu = TRUE;
11849 pu++;
11850 cu++;
11851 }
11852 }
11853 }
11854
11855 return TRUE;
11856 }
11857
11858 static bfd_boolean
11859 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11860 {
11861 asection *sec;
11862 bfd_vma hstart, hend;
11863 Elf_Internal_Rela *relstart, *relend, *rel;
11864 const struct elf_backend_data *bed;
11865 unsigned int log_file_align;
11866
11867 /* Take care of both those symbols that do not describe vtables as
11868 well as those that are not loaded. */
11869 if (h->vtable == NULL || h->vtable->parent == NULL)
11870 return TRUE;
11871
11872 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11873 || h->root.type == bfd_link_hash_defweak);
11874
11875 sec = h->root.u.def.section;
11876 hstart = h->root.u.def.value;
11877 hend = hstart + h->size;
11878
11879 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11880 if (!relstart)
11881 return *(bfd_boolean *) okp = FALSE;
11882 bed = get_elf_backend_data (sec->owner);
11883 log_file_align = bed->s->log_file_align;
11884
11885 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11886
11887 for (rel = relstart; rel < relend; ++rel)
11888 if (rel->r_offset >= hstart && rel->r_offset < hend)
11889 {
11890 /* If the entry is in use, do nothing. */
11891 if (h->vtable->used
11892 && (rel->r_offset - hstart) < h->vtable->size)
11893 {
11894 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11895 if (h->vtable->used[entry])
11896 continue;
11897 }
11898 /* Otherwise, kill it. */
11899 rel->r_offset = rel->r_info = rel->r_addend = 0;
11900 }
11901
11902 return TRUE;
11903 }
11904
11905 /* Mark sections containing dynamically referenced symbols. When
11906 building shared libraries, we must assume that any visible symbol is
11907 referenced. */
11908
11909 bfd_boolean
11910 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11911 {
11912 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11913
11914 if ((h->root.type == bfd_link_hash_defined
11915 || h->root.type == bfd_link_hash_defweak)
11916 && (h->ref_dynamic
11917 || (!info->executable
11918 && h->def_regular
11919 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11920 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11921 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
11922 || !bfd_hide_sym_by_version (info->version_info,
11923 h->root.root.string)))))
11924 h->root.u.def.section->flags |= SEC_KEEP;
11925
11926 return TRUE;
11927 }
11928
11929 /* Keep all sections containing symbols undefined on the command-line,
11930 and the section containing the entry symbol. */
11931
11932 void
11933 _bfd_elf_gc_keep (struct bfd_link_info *info)
11934 {
11935 struct bfd_sym_chain *sym;
11936
11937 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11938 {
11939 struct elf_link_hash_entry *h;
11940
11941 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11942 FALSE, FALSE, FALSE);
11943
11944 if (h != NULL
11945 && (h->root.type == bfd_link_hash_defined
11946 || h->root.type == bfd_link_hash_defweak)
11947 && !bfd_is_abs_section (h->root.u.def.section))
11948 h->root.u.def.section->flags |= SEC_KEEP;
11949 }
11950 }
11951
11952 /* Do mark and sweep of unused sections. */
11953
11954 bfd_boolean
11955 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11956 {
11957 bfd_boolean ok = TRUE;
11958 bfd *sub;
11959 elf_gc_mark_hook_fn gc_mark_hook;
11960 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11961
11962 if (!bed->can_gc_sections
11963 || !is_elf_hash_table (info->hash))
11964 {
11965 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11966 return TRUE;
11967 }
11968
11969 bed->gc_keep (info);
11970
11971 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11972 at the .eh_frame section if we can mark the FDEs individually. */
11973 _bfd_elf_begin_eh_frame_parsing (info);
11974 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11975 {
11976 asection *sec;
11977 struct elf_reloc_cookie cookie;
11978
11979 sec = bfd_get_section_by_name (sub, ".eh_frame");
11980 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11981 {
11982 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11983 if (elf_section_data (sec)->sec_info)
11984 elf_eh_frame_section (sub) = sec;
11985 fini_reloc_cookie_for_section (&cookie, sec);
11986 }
11987 }
11988 _bfd_elf_end_eh_frame_parsing (info);
11989
11990 /* Apply transitive closure to the vtable entry usage info. */
11991 elf_link_hash_traverse (elf_hash_table (info),
11992 elf_gc_propagate_vtable_entries_used,
11993 &ok);
11994 if (!ok)
11995 return FALSE;
11996
11997 /* Kill the vtable relocations that were not used. */
11998 elf_link_hash_traverse (elf_hash_table (info),
11999 elf_gc_smash_unused_vtentry_relocs,
12000 &ok);
12001 if (!ok)
12002 return FALSE;
12003
12004 /* Mark dynamically referenced symbols. */
12005 if (elf_hash_table (info)->dynamic_sections_created)
12006 elf_link_hash_traverse (elf_hash_table (info),
12007 bed->gc_mark_dynamic_ref,
12008 info);
12009
12010 /* Grovel through relocs to find out who stays ... */
12011 gc_mark_hook = bed->gc_mark_hook;
12012 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12013 {
12014 asection *o;
12015
12016 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12017 continue;
12018
12019 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12020 Also treat note sections as a root, if the section is not part
12021 of a group. */
12022 for (o = sub->sections; o != NULL; o = o->next)
12023 if (!o->gc_mark
12024 && (o->flags & SEC_EXCLUDE) == 0
12025 && ((o->flags & SEC_KEEP) != 0
12026 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12027 && elf_next_in_group (o) == NULL )))
12028 {
12029 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12030 return FALSE;
12031 }
12032 }
12033
12034 /* Allow the backend to mark additional target specific sections. */
12035 bed->gc_mark_extra_sections (info, gc_mark_hook);
12036
12037 /* ... and mark SEC_EXCLUDE for those that go. */
12038 return elf_gc_sweep (abfd, info);
12039 }
12040 \f
12041 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12042
12043 bfd_boolean
12044 bfd_elf_gc_record_vtinherit (bfd *abfd,
12045 asection *sec,
12046 struct elf_link_hash_entry *h,
12047 bfd_vma offset)
12048 {
12049 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12050 struct elf_link_hash_entry **search, *child;
12051 bfd_size_type extsymcount;
12052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12053
12054 /* The sh_info field of the symtab header tells us where the
12055 external symbols start. We don't care about the local symbols at
12056 this point. */
12057 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12058 if (!elf_bad_symtab (abfd))
12059 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12060
12061 sym_hashes = elf_sym_hashes (abfd);
12062 sym_hashes_end = sym_hashes + extsymcount;
12063
12064 /* Hunt down the child symbol, which is in this section at the same
12065 offset as the relocation. */
12066 for (search = sym_hashes; search != sym_hashes_end; ++search)
12067 {
12068 if ((child = *search) != NULL
12069 && (child->root.type == bfd_link_hash_defined
12070 || child->root.type == bfd_link_hash_defweak)
12071 && child->root.u.def.section == sec
12072 && child->root.u.def.value == offset)
12073 goto win;
12074 }
12075
12076 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12077 abfd, sec, (unsigned long) offset);
12078 bfd_set_error (bfd_error_invalid_operation);
12079 return FALSE;
12080
12081 win:
12082 if (!child->vtable)
12083 {
12084 child->vtable = (struct elf_link_virtual_table_entry *)
12085 bfd_zalloc (abfd, sizeof (*child->vtable));
12086 if (!child->vtable)
12087 return FALSE;
12088 }
12089 if (!h)
12090 {
12091 /* This *should* only be the absolute section. It could potentially
12092 be that someone has defined a non-global vtable though, which
12093 would be bad. It isn't worth paging in the local symbols to be
12094 sure though; that case should simply be handled by the assembler. */
12095
12096 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12097 }
12098 else
12099 child->vtable->parent = h;
12100
12101 return TRUE;
12102 }
12103
12104 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12105
12106 bfd_boolean
12107 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12108 asection *sec ATTRIBUTE_UNUSED,
12109 struct elf_link_hash_entry *h,
12110 bfd_vma addend)
12111 {
12112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12113 unsigned int log_file_align = bed->s->log_file_align;
12114
12115 if (!h->vtable)
12116 {
12117 h->vtable = (struct elf_link_virtual_table_entry *)
12118 bfd_zalloc (abfd, sizeof (*h->vtable));
12119 if (!h->vtable)
12120 return FALSE;
12121 }
12122
12123 if (addend >= h->vtable->size)
12124 {
12125 size_t size, bytes, file_align;
12126 bfd_boolean *ptr = h->vtable->used;
12127
12128 /* While the symbol is undefined, we have to be prepared to handle
12129 a zero size. */
12130 file_align = 1 << log_file_align;
12131 if (h->root.type == bfd_link_hash_undefined)
12132 size = addend + file_align;
12133 else
12134 {
12135 size = h->size;
12136 if (addend >= size)
12137 {
12138 /* Oops! We've got a reference past the defined end of
12139 the table. This is probably a bug -- shall we warn? */
12140 size = addend + file_align;
12141 }
12142 }
12143 size = (size + file_align - 1) & -file_align;
12144
12145 /* Allocate one extra entry for use as a "done" flag for the
12146 consolidation pass. */
12147 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12148
12149 if (ptr)
12150 {
12151 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12152
12153 if (ptr != NULL)
12154 {
12155 size_t oldbytes;
12156
12157 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12158 * sizeof (bfd_boolean));
12159 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12160 }
12161 }
12162 else
12163 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12164
12165 if (ptr == NULL)
12166 return FALSE;
12167
12168 /* And arrange for that done flag to be at index -1. */
12169 h->vtable->used = ptr + 1;
12170 h->vtable->size = size;
12171 }
12172
12173 h->vtable->used[addend >> log_file_align] = TRUE;
12174
12175 return TRUE;
12176 }
12177
12178 /* Map an ELF section header flag to its corresponding string. */
12179 typedef struct
12180 {
12181 char *flag_name;
12182 flagword flag_value;
12183 } elf_flags_to_name_table;
12184
12185 static elf_flags_to_name_table elf_flags_to_names [] =
12186 {
12187 { "SHF_WRITE", SHF_WRITE },
12188 { "SHF_ALLOC", SHF_ALLOC },
12189 { "SHF_EXECINSTR", SHF_EXECINSTR },
12190 { "SHF_MERGE", SHF_MERGE },
12191 { "SHF_STRINGS", SHF_STRINGS },
12192 { "SHF_INFO_LINK", SHF_INFO_LINK},
12193 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12194 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12195 { "SHF_GROUP", SHF_GROUP },
12196 { "SHF_TLS", SHF_TLS },
12197 { "SHF_MASKOS", SHF_MASKOS },
12198 { "SHF_EXCLUDE", SHF_EXCLUDE },
12199 };
12200
12201 void
12202 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12203 struct flag_info *finfo)
12204 {
12205 bfd *output_bfd = info->output_bfd;
12206 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12207 struct flag_info_list *tf = finfo->flag_list;
12208 int with_hex = 0;
12209 int without_hex = 0;
12210
12211 for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12212 {
12213 int i;
12214 if (bed->elf_backend_lookup_section_flags_hook)
12215 {
12216 flagword hexval =
12217 (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12218
12219 if (hexval != 0)
12220 {
12221 if (tf->with == with_flags)
12222 with_hex |= hexval;
12223 else if (tf->with == without_flags)
12224 without_hex |= hexval;
12225 tf->valid = TRUE;
12226 continue;
12227 }
12228 }
12229 for (i = 0; i < 12; i++)
12230 {
12231 if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12232 {
12233 if (tf->with == with_flags)
12234 with_hex |= elf_flags_to_names[i].flag_value;
12235 else if (tf->with == without_flags)
12236 without_hex |= elf_flags_to_names[i].flag_value;
12237 tf->valid = TRUE;
12238 continue;
12239 }
12240 }
12241 if (tf->valid == FALSE)
12242 {
12243 info->callbacks->einfo
12244 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12245 return;
12246 }
12247 }
12248 finfo->flags_initialized = TRUE;
12249 finfo->only_with_flags |= with_hex;
12250 finfo->not_with_flags |= without_hex;
12251
12252 return;
12253 }
12254
12255 struct alloc_got_off_arg {
12256 bfd_vma gotoff;
12257 struct bfd_link_info *info;
12258 };
12259
12260 /* We need a special top-level link routine to convert got reference counts
12261 to real got offsets. */
12262
12263 static bfd_boolean
12264 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12265 {
12266 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12267 bfd *obfd = gofarg->info->output_bfd;
12268 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12269
12270 if (h->got.refcount > 0)
12271 {
12272 h->got.offset = gofarg->gotoff;
12273 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12274 }
12275 else
12276 h->got.offset = (bfd_vma) -1;
12277
12278 return TRUE;
12279 }
12280
12281 /* And an accompanying bit to work out final got entry offsets once
12282 we're done. Should be called from final_link. */
12283
12284 bfd_boolean
12285 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12286 struct bfd_link_info *info)
12287 {
12288 bfd *i;
12289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12290 bfd_vma gotoff;
12291 struct alloc_got_off_arg gofarg;
12292
12293 BFD_ASSERT (abfd == info->output_bfd);
12294
12295 if (! is_elf_hash_table (info->hash))
12296 return FALSE;
12297
12298 /* The GOT offset is relative to the .got section, but the GOT header is
12299 put into the .got.plt section, if the backend uses it. */
12300 if (bed->want_got_plt)
12301 gotoff = 0;
12302 else
12303 gotoff = bed->got_header_size;
12304
12305 /* Do the local .got entries first. */
12306 for (i = info->input_bfds; i; i = i->link_next)
12307 {
12308 bfd_signed_vma *local_got;
12309 bfd_size_type j, locsymcount;
12310 Elf_Internal_Shdr *symtab_hdr;
12311
12312 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12313 continue;
12314
12315 local_got = elf_local_got_refcounts (i);
12316 if (!local_got)
12317 continue;
12318
12319 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12320 if (elf_bad_symtab (i))
12321 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12322 else
12323 locsymcount = symtab_hdr->sh_info;
12324
12325 for (j = 0; j < locsymcount; ++j)
12326 {
12327 if (local_got[j] > 0)
12328 {
12329 local_got[j] = gotoff;
12330 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12331 }
12332 else
12333 local_got[j] = (bfd_vma) -1;
12334 }
12335 }
12336
12337 /* Then the global .got entries. .plt refcounts are handled by
12338 adjust_dynamic_symbol */
12339 gofarg.gotoff = gotoff;
12340 gofarg.info = info;
12341 elf_link_hash_traverse (elf_hash_table (info),
12342 elf_gc_allocate_got_offsets,
12343 &gofarg);
12344 return TRUE;
12345 }
12346
12347 /* Many folk need no more in the way of final link than this, once
12348 got entry reference counting is enabled. */
12349
12350 bfd_boolean
12351 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12352 {
12353 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12354 return FALSE;
12355
12356 /* Invoke the regular ELF backend linker to do all the work. */
12357 return bfd_elf_final_link (abfd, info);
12358 }
12359
12360 bfd_boolean
12361 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12362 {
12363 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12364
12365 if (rcookie->bad_symtab)
12366 rcookie->rel = rcookie->rels;
12367
12368 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12369 {
12370 unsigned long r_symndx;
12371
12372 if (! rcookie->bad_symtab)
12373 if (rcookie->rel->r_offset > offset)
12374 return FALSE;
12375 if (rcookie->rel->r_offset != offset)
12376 continue;
12377
12378 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12379 if (r_symndx == STN_UNDEF)
12380 return TRUE;
12381
12382 if (r_symndx >= rcookie->locsymcount
12383 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12384 {
12385 struct elf_link_hash_entry *h;
12386
12387 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12388
12389 while (h->root.type == bfd_link_hash_indirect
12390 || h->root.type == bfd_link_hash_warning)
12391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12392
12393 if ((h->root.type == bfd_link_hash_defined
12394 || h->root.type == bfd_link_hash_defweak)
12395 && elf_discarded_section (h->root.u.def.section))
12396 return TRUE;
12397 else
12398 return FALSE;
12399 }
12400 else
12401 {
12402 /* It's not a relocation against a global symbol,
12403 but it could be a relocation against a local
12404 symbol for a discarded section. */
12405 asection *isec;
12406 Elf_Internal_Sym *isym;
12407
12408 /* Need to: get the symbol; get the section. */
12409 isym = &rcookie->locsyms[r_symndx];
12410 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12411 if (isec != NULL && elf_discarded_section (isec))
12412 return TRUE;
12413 }
12414 return FALSE;
12415 }
12416 return FALSE;
12417 }
12418
12419 /* Discard unneeded references to discarded sections.
12420 Returns TRUE if any section's size was changed. */
12421 /* This function assumes that the relocations are in sorted order,
12422 which is true for all known assemblers. */
12423
12424 bfd_boolean
12425 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12426 {
12427 struct elf_reloc_cookie cookie;
12428 asection *stab, *eh;
12429 const struct elf_backend_data *bed;
12430 bfd *abfd;
12431 bfd_boolean ret = FALSE;
12432
12433 if (info->traditional_format
12434 || !is_elf_hash_table (info->hash))
12435 return FALSE;
12436
12437 _bfd_elf_begin_eh_frame_parsing (info);
12438 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12439 {
12440 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12441 continue;
12442
12443 bed = get_elf_backend_data (abfd);
12444
12445 if ((abfd->flags & DYNAMIC) != 0)
12446 continue;
12447
12448 eh = NULL;
12449 if (!info->relocatable)
12450 {
12451 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12452 if (eh != NULL
12453 && (eh->size == 0
12454 || bfd_is_abs_section (eh->output_section)))
12455 eh = NULL;
12456 }
12457
12458 stab = bfd_get_section_by_name (abfd, ".stab");
12459 if (stab != NULL
12460 && (stab->size == 0
12461 || bfd_is_abs_section (stab->output_section)
12462 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12463 stab = NULL;
12464
12465 if (stab == NULL
12466 && eh == NULL
12467 && bed->elf_backend_discard_info == NULL)
12468 continue;
12469
12470 if (!init_reloc_cookie (&cookie, info, abfd))
12471 return FALSE;
12472
12473 if (stab != NULL
12474 && stab->reloc_count > 0
12475 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12476 {
12477 if (_bfd_discard_section_stabs (abfd, stab,
12478 elf_section_data (stab)->sec_info,
12479 bfd_elf_reloc_symbol_deleted_p,
12480 &cookie))
12481 ret = TRUE;
12482 fini_reloc_cookie_rels (&cookie, stab);
12483 }
12484
12485 if (eh != NULL
12486 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12487 {
12488 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12489 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12490 bfd_elf_reloc_symbol_deleted_p,
12491 &cookie))
12492 ret = TRUE;
12493 fini_reloc_cookie_rels (&cookie, eh);
12494 }
12495
12496 if (bed->elf_backend_discard_info != NULL
12497 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12498 ret = TRUE;
12499
12500 fini_reloc_cookie (&cookie, abfd);
12501 }
12502 _bfd_elf_end_eh_frame_parsing (info);
12503
12504 if (info->eh_frame_hdr
12505 && !info->relocatable
12506 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12507 ret = TRUE;
12508
12509 return ret;
12510 }
12511
12512 bfd_boolean
12513 _bfd_elf_section_already_linked (bfd *abfd,
12514 asection *sec,
12515 struct bfd_link_info *info)
12516 {
12517 flagword flags;
12518 const char *name, *key;
12519 struct bfd_section_already_linked *l;
12520 struct bfd_section_already_linked_hash_entry *already_linked_list;
12521
12522 if (sec->output_section == bfd_abs_section_ptr)
12523 return FALSE;
12524
12525 flags = sec->flags;
12526
12527 /* Return if it isn't a linkonce section. A comdat group section
12528 also has SEC_LINK_ONCE set. */
12529 if ((flags & SEC_LINK_ONCE) == 0)
12530 return FALSE;
12531
12532 /* Don't put group member sections on our list of already linked
12533 sections. They are handled as a group via their group section. */
12534 if (elf_sec_group (sec) != NULL)
12535 return FALSE;
12536
12537 /* For a SHT_GROUP section, use the group signature as the key. */
12538 name = sec->name;
12539 if ((flags & SEC_GROUP) != 0
12540 && elf_next_in_group (sec) != NULL
12541 && elf_group_name (elf_next_in_group (sec)) != NULL)
12542 key = elf_group_name (elf_next_in_group (sec));
12543 else
12544 {
12545 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12546 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12547 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12548 key++;
12549 else
12550 /* Must be a user linkonce section that doesn't follow gcc's
12551 naming convention. In this case we won't be matching
12552 single member groups. */
12553 key = name;
12554 }
12555
12556 already_linked_list = bfd_section_already_linked_table_lookup (key);
12557
12558 for (l = already_linked_list->entry; l != NULL; l = l->next)
12559 {
12560 /* We may have 2 different types of sections on the list: group
12561 sections with a signature of <key> (<key> is some string),
12562 and linkonce sections named .gnu.linkonce.<type>.<key>.
12563 Match like sections. LTO plugin sections are an exception.
12564 They are always named .gnu.linkonce.t.<key> and match either
12565 type of section. */
12566 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12567 && ((flags & SEC_GROUP) != 0
12568 || strcmp (name, l->sec->name) == 0))
12569 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12570 {
12571 /* The section has already been linked. See if we should
12572 issue a warning. */
12573 if (!_bfd_handle_already_linked (sec, l, info))
12574 return FALSE;
12575
12576 if (flags & SEC_GROUP)
12577 {
12578 asection *first = elf_next_in_group (sec);
12579 asection *s = first;
12580
12581 while (s != NULL)
12582 {
12583 s->output_section = bfd_abs_section_ptr;
12584 /* Record which group discards it. */
12585 s->kept_section = l->sec;
12586 s = elf_next_in_group (s);
12587 /* These lists are circular. */
12588 if (s == first)
12589 break;
12590 }
12591 }
12592
12593 return TRUE;
12594 }
12595 }
12596
12597 /* A single member comdat group section may be discarded by a
12598 linkonce section and vice versa. */
12599 if ((flags & SEC_GROUP) != 0)
12600 {
12601 asection *first = elf_next_in_group (sec);
12602
12603 if (first != NULL && elf_next_in_group (first) == first)
12604 /* Check this single member group against linkonce sections. */
12605 for (l = already_linked_list->entry; l != NULL; l = l->next)
12606 if ((l->sec->flags & SEC_GROUP) == 0
12607 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12608 {
12609 first->output_section = bfd_abs_section_ptr;
12610 first->kept_section = l->sec;
12611 sec->output_section = bfd_abs_section_ptr;
12612 break;
12613 }
12614 }
12615 else
12616 /* Check this linkonce section against single member groups. */
12617 for (l = already_linked_list->entry; l != NULL; l = l->next)
12618 if (l->sec->flags & SEC_GROUP)
12619 {
12620 asection *first = elf_next_in_group (l->sec);
12621
12622 if (first != NULL
12623 && elf_next_in_group (first) == first
12624 && bfd_elf_match_symbols_in_sections (first, sec, info))
12625 {
12626 sec->output_section = bfd_abs_section_ptr;
12627 sec->kept_section = first;
12628 break;
12629 }
12630 }
12631
12632 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12633 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12634 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12635 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12636 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12637 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12638 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12639 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12640 The reverse order cannot happen as there is never a bfd with only the
12641 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12642 matter as here were are looking only for cross-bfd sections. */
12643
12644 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12645 for (l = already_linked_list->entry; l != NULL; l = l->next)
12646 if ((l->sec->flags & SEC_GROUP) == 0
12647 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12648 {
12649 if (abfd != l->sec->owner)
12650 sec->output_section = bfd_abs_section_ptr;
12651 break;
12652 }
12653
12654 /* This is the first section with this name. Record it. */
12655 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12656 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12657 return sec->output_section == bfd_abs_section_ptr;
12658 }
12659
12660 bfd_boolean
12661 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12662 {
12663 return sym->st_shndx == SHN_COMMON;
12664 }
12665
12666 unsigned int
12667 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12668 {
12669 return SHN_COMMON;
12670 }
12671
12672 asection *
12673 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12674 {
12675 return bfd_com_section_ptr;
12676 }
12677
12678 bfd_vma
12679 _bfd_elf_default_got_elt_size (bfd *abfd,
12680 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12681 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12682 bfd *ibfd ATTRIBUTE_UNUSED,
12683 unsigned long symndx ATTRIBUTE_UNUSED)
12684 {
12685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12686 return bed->s->arch_size / 8;
12687 }
12688
12689 /* Routines to support the creation of dynamic relocs. */
12690
12691 /* Returns the name of the dynamic reloc section associated with SEC. */
12692
12693 static const char *
12694 get_dynamic_reloc_section_name (bfd * abfd,
12695 asection * sec,
12696 bfd_boolean is_rela)
12697 {
12698 char *name;
12699 const char *old_name = bfd_get_section_name (NULL, sec);
12700 const char *prefix = is_rela ? ".rela" : ".rel";
12701
12702 if (old_name == NULL)
12703 return NULL;
12704
12705 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12706 sprintf (name, "%s%s", prefix, old_name);
12707
12708 return name;
12709 }
12710
12711 /* Returns the dynamic reloc section associated with SEC.
12712 If necessary compute the name of the dynamic reloc section based
12713 on SEC's name (looked up in ABFD's string table) and the setting
12714 of IS_RELA. */
12715
12716 asection *
12717 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12718 asection * sec,
12719 bfd_boolean is_rela)
12720 {
12721 asection * reloc_sec = elf_section_data (sec)->sreloc;
12722
12723 if (reloc_sec == NULL)
12724 {
12725 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12726
12727 if (name != NULL)
12728 {
12729 reloc_sec = bfd_get_section_by_name (abfd, name);
12730
12731 if (reloc_sec != NULL)
12732 elf_section_data (sec)->sreloc = reloc_sec;
12733 }
12734 }
12735
12736 return reloc_sec;
12737 }
12738
12739 /* Returns the dynamic reloc section associated with SEC. If the
12740 section does not exist it is created and attached to the DYNOBJ
12741 bfd and stored in the SRELOC field of SEC's elf_section_data
12742 structure.
12743
12744 ALIGNMENT is the alignment for the newly created section and
12745 IS_RELA defines whether the name should be .rela.<SEC's name>
12746 or .rel.<SEC's name>. The section name is looked up in the
12747 string table associated with ABFD. */
12748
12749 asection *
12750 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12751 bfd * dynobj,
12752 unsigned int alignment,
12753 bfd * abfd,
12754 bfd_boolean is_rela)
12755 {
12756 asection * reloc_sec = elf_section_data (sec)->sreloc;
12757
12758 if (reloc_sec == NULL)
12759 {
12760 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12761
12762 if (name == NULL)
12763 return NULL;
12764
12765 reloc_sec = bfd_get_section_by_name (dynobj, name);
12766
12767 if (reloc_sec == NULL)
12768 {
12769 flagword flags;
12770
12771 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12772 if ((sec->flags & SEC_ALLOC) != 0)
12773 flags |= SEC_ALLOC | SEC_LOAD;
12774
12775 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12776 if (reloc_sec != NULL)
12777 {
12778 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12779 reloc_sec = NULL;
12780 }
12781 }
12782
12783 elf_section_data (sec)->sreloc = reloc_sec;
12784 }
12785
12786 return reloc_sec;
12787 }
12788
12789 /* Copy the ELF symbol type associated with a linker hash entry. */
12790 void
12791 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12792 struct bfd_link_hash_entry * hdest,
12793 struct bfd_link_hash_entry * hsrc)
12794 {
12795 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12796 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12797
12798 ehdest->type = ehsrc->type;
12799 ehdest->target_internal = ehsrc->target_internal;
12800 }
12801
12802 /* Append a RELA relocation REL to section S in BFD. */
12803
12804 void
12805 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12806 {
12807 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12808 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12809 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12810 bed->s->swap_reloca_out (abfd, rel, loc);
12811 }
12812
12813 /* Append a REL relocation REL to section S in BFD. */
12814
12815 void
12816 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12817 {
12818 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12819 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12820 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12821 bed->s->swap_reloca_out (abfd, rel, loc);
12822 }
This page took 0.324927 seconds and 4 git commands to generate.