Fix ARM fail of gap test
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
81 sec, 0, NULL, FALSE,
82 get_elf_backend_data (abfd)->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_linker_section (abfd, ".got");
109 if (s != NULL)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_anyway_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191 struct elf_link_hash_entry *h;
192
193 if (! is_elf_hash_table (info->hash))
194 return FALSE;
195
196 if (elf_hash_table (info)->dynamic_sections_created)
197 return TRUE;
198
199 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
200 return FALSE;
201
202 abfd = elf_hash_table (info)->dynobj;
203 bed = get_elf_backend_data (abfd);
204
205 flags = bed->dynamic_sec_flags;
206
207 /* A dynamically linked executable has a .interp section, but a
208 shared library does not. */
209 if (info->executable)
210 {
211 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
212 flags | SEC_READONLY);
213 if (s == NULL)
214 return FALSE;
215 }
216
217 /* Create sections to hold version informations. These are removed
218 if they are not needed. */
219 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
220 flags | SEC_READONLY);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
226 flags | SEC_READONLY);
227 if (s == NULL
228 || ! bfd_set_section_alignment (abfd, s, 1))
229 return FALSE;
230
231 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
232 flags | SEC_READONLY);
233 if (s == NULL
234 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
235 return FALSE;
236
237 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
238 flags | SEC_READONLY);
239 if (s == NULL
240 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
241 return FALSE;
242
243 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
244 flags | SEC_READONLY);
245 if (s == NULL)
246 return FALSE;
247
248 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 if (s == NULL
250 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
251 return FALSE;
252
253 /* The special symbol _DYNAMIC is always set to the start of the
254 .dynamic section. We could set _DYNAMIC in a linker script, but we
255 only want to define it if we are, in fact, creating a .dynamic
256 section. We don't want to define it if there is no .dynamic
257 section, since on some ELF platforms the start up code examines it
258 to decide how to initialize the process. */
259 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
260 elf_hash_table (info)->hdynamic = h;
261 if (h == NULL)
262 return FALSE;
263
264 if (info->emit_hash)
265 {
266 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
267 flags | SEC_READONLY);
268 if (s == NULL
269 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 return FALSE;
271 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
272 }
273
274 if (info->emit_gnu_hash)
275 {
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
282 4 32-bit words followed by variable count of 64-bit words, then
283 variable count of 32-bit words. */
284 if (bed->s->arch_size == 64)
285 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 else
287 elf_section_data (s)->this_hdr.sh_entsize = 4;
288 }
289
290 /* Let the backend create the rest of the sections. This lets the
291 backend set the right flags. The backend will normally create
292 the .got and .plt sections. */
293 if (bed->elf_backend_create_dynamic_sections == NULL
294 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
295 return FALSE;
296
297 elf_hash_table (info)->dynamic_sections_created = TRUE;
298
299 return TRUE;
300 }
301
302 /* Create dynamic sections when linking against a dynamic object. */
303
304 bfd_boolean
305 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 {
307 flagword flags, pltflags;
308 struct elf_link_hash_entry *h;
309 asection *s;
310 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
311 struct elf_link_hash_table *htab = elf_hash_table (info);
312
313 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
314 .rel[a].bss sections. */
315 flags = bed->dynamic_sec_flags;
316
317 pltflags = flags;
318 if (bed->plt_not_loaded)
319 /* We do not clear SEC_ALLOC here because we still want the OS to
320 allocate space for the section; it's just that there's nothing
321 to read in from the object file. */
322 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 else
324 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
325 if (bed->plt_readonly)
326 pltflags |= SEC_READONLY;
327
328 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 if (s == NULL
330 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
331 return FALSE;
332 htab->splt = s;
333
334 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 .plt section. */
336 if (bed->want_plt_sym)
337 {
338 h = _bfd_elf_define_linkage_sym (abfd, info, s,
339 "_PROCEDURE_LINKAGE_TABLE_");
340 elf_hash_table (info)->hplt = h;
341 if (h == NULL)
342 return FALSE;
343 }
344
345 s = bfd_make_section_anyway_with_flags (abfd,
346 (bed->rela_plts_and_copies_p
347 ? ".rela.plt" : ".rel.plt"),
348 flags | SEC_READONLY);
349 if (s == NULL
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
351 return FALSE;
352 htab->srelplt = s;
353
354 if (! _bfd_elf_create_got_section (abfd, info))
355 return FALSE;
356
357 if (bed->want_dynbss)
358 {
359 /* The .dynbss section is a place to put symbols which are defined
360 by dynamic objects, are referenced by regular objects, and are
361 not functions. We must allocate space for them in the process
362 image and use a R_*_COPY reloc to tell the dynamic linker to
363 initialize them at run time. The linker script puts the .dynbss
364 section into the .bss section of the final image. */
365 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
366 (SEC_ALLOC | SEC_LINKER_CREATED));
367 if (s == NULL)
368 return FALSE;
369
370 /* The .rel[a].bss section holds copy relocs. This section is not
371 normally needed. We need to create it here, though, so that the
372 linker will map it to an output section. We can't just create it
373 only if we need it, because we will not know whether we need it
374 until we have seen all the input files, and the first time the
375 main linker code calls BFD after examining all the input files
376 (size_dynamic_sections) the input sections have already been
377 mapped to the output sections. If the section turns out not to
378 be needed, we can discard it later. We will never need this
379 section when generating a shared object, since they do not use
380 copy relocs. */
381 if (! info->shared)
382 {
383 s = bfd_make_section_anyway_with_flags (abfd,
384 (bed->rela_plts_and_copies_p
385 ? ".rela.bss" : ".rel.bss"),
386 flags | SEC_READONLY);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
389 return FALSE;
390 }
391 }
392
393 return TRUE;
394 }
395 \f
396 /* Record a new dynamic symbol. We record the dynamic symbols as we
397 read the input files, since we need to have a list of all of them
398 before we can determine the final sizes of the output sections.
399 Note that we may actually call this function even though we are not
400 going to output any dynamic symbols; in some cases we know that a
401 symbol should be in the dynamic symbol table, but only if there is
402 one. */
403
404 bfd_boolean
405 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
406 struct elf_link_hash_entry *h)
407 {
408 if (h->dynindx == -1)
409 {
410 struct elf_strtab_hash *dynstr;
411 char *p;
412 const char *name;
413 bfd_size_type indx;
414
415 /* XXX: The ABI draft says the linker must turn hidden and
416 internal symbols into STB_LOCAL symbols when producing the
417 DSO. However, if ld.so honors st_other in the dynamic table,
418 this would not be necessary. */
419 switch (ELF_ST_VISIBILITY (h->other))
420 {
421 case STV_INTERNAL:
422 case STV_HIDDEN:
423 if (h->root.type != bfd_link_hash_undefined
424 && h->root.type != bfd_link_hash_undefweak)
425 {
426 h->forced_local = 1;
427 if (!elf_hash_table (info)->is_relocatable_executable)
428 return TRUE;
429 }
430
431 default:
432 break;
433 }
434
435 h->dynindx = elf_hash_table (info)->dynsymcount;
436 ++elf_hash_table (info)->dynsymcount;
437
438 dynstr = elf_hash_table (info)->dynstr;
439 if (dynstr == NULL)
440 {
441 /* Create a strtab to hold the dynamic symbol names. */
442 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
443 if (dynstr == NULL)
444 return FALSE;
445 }
446
447 /* We don't put any version information in the dynamic string
448 table. */
449 name = h->root.root.string;
450 p = strchr (name, ELF_VER_CHR);
451 if (p != NULL)
452 /* We know that the p points into writable memory. In fact,
453 there are only a few symbols that have read-only names, being
454 those like _GLOBAL_OFFSET_TABLE_ that are created specially
455 by the backends. Most symbols will have names pointing into
456 an ELF string table read from a file, or to objalloc memory. */
457 *p = 0;
458
459 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
460
461 if (p != NULL)
462 *p = ELF_VER_CHR;
463
464 if (indx == (bfd_size_type) -1)
465 return FALSE;
466 h->dynstr_index = indx;
467 }
468
469 return TRUE;
470 }
471 \f
472 /* Mark a symbol dynamic. */
473
474 static void
475 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
476 struct elf_link_hash_entry *h,
477 Elf_Internal_Sym *sym)
478 {
479 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480
481 /* It may be called more than once on the same H. */
482 if(h->dynamic || info->relocatable)
483 return;
484
485 if ((info->dynamic_data
486 && (h->type == STT_OBJECT
487 || (sym != NULL
488 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 || (d != NULL
490 && h->root.type == bfd_link_hash_new
491 && (*d->match) (&d->head, NULL, h->root.root.string)))
492 h->dynamic = 1;
493 }
494
495 /* Record an assignment to a symbol made by a linker script. We need
496 this in case some dynamic object refers to this symbol. */
497
498 bfd_boolean
499 bfd_elf_record_link_assignment (bfd *output_bfd,
500 struct bfd_link_info *info,
501 const char *name,
502 bfd_boolean provide,
503 bfd_boolean hidden)
504 {
505 struct elf_link_hash_entry *h, *hv;
506 struct elf_link_hash_table *htab;
507 const struct elf_backend_data *bed;
508
509 if (!is_elf_hash_table (info->hash))
510 return TRUE;
511
512 htab = elf_hash_table (info);
513 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
514 if (h == NULL)
515 return provide;
516
517 switch (h->root.type)
518 {
519 case bfd_link_hash_defined:
520 case bfd_link_hash_defweak:
521 case bfd_link_hash_common:
522 break;
523 case bfd_link_hash_undefweak:
524 case bfd_link_hash_undefined:
525 /* Since we're defining the symbol, don't let it seem to have not
526 been defined. record_dynamic_symbol and size_dynamic_sections
527 may depend on this. */
528 h->root.type = bfd_link_hash_new;
529 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
530 bfd_link_repair_undef_list (&htab->root);
531 break;
532 case bfd_link_hash_new:
533 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
534 h->non_elf = 0;
535 break;
536 case bfd_link_hash_indirect:
537 /* We had a versioned symbol in a dynamic library. We make the
538 the versioned symbol point to this one. */
539 bed = get_elf_backend_data (output_bfd);
540 hv = h;
541 while (hv->root.type == bfd_link_hash_indirect
542 || hv->root.type == bfd_link_hash_warning)
543 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
544 /* We don't need to update h->root.u since linker will set them
545 later. */
546 h->root.type = bfd_link_hash_undefined;
547 hv->root.type = bfd_link_hash_indirect;
548 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
549 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 break;
551 case bfd_link_hash_warning:
552 abort ();
553 break;
554 }
555
556 /* If this symbol is being provided by the linker script, and it is
557 currently defined by a dynamic object, but not by a regular
558 object, then mark it as undefined so that the generic linker will
559 force the correct value. */
560 if (provide
561 && h->def_dynamic
562 && !h->def_regular)
563 h->root.type = bfd_link_hash_undefined;
564
565 /* If this symbol is not being provided by the linker script, and it is
566 currently defined by a dynamic object, but not by a regular object,
567 then clear out any version information because the symbol will not be
568 associated with the dynamic object any more. */
569 if (!provide
570 && h->def_dynamic
571 && !h->def_regular)
572 h->verinfo.verdef = NULL;
573
574 h->def_regular = 1;
575
576 if (hidden)
577 {
578 bed = get_elf_backend_data (output_bfd);
579 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
580 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
581 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 }
583
584 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
585 and executables. */
586 if (!info->relocatable
587 && h->dynindx != -1
588 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
589 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
590 h->forced_local = 1;
591
592 if ((h->def_dynamic
593 || h->ref_dynamic
594 || info->shared
595 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 && h->dynindx == -1)
597 {
598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 return FALSE;
600
601 /* If this is a weak defined symbol, and we know a corresponding
602 real symbol from the same dynamic object, make sure the real
603 symbol is also made into a dynamic symbol. */
604 if (h->u.weakdef != NULL
605 && h->u.weakdef->dynindx == -1)
606 {
607 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
608 return FALSE;
609 }
610 }
611
612 return TRUE;
613 }
614
615 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
616 success, and 2 on a failure caused by attempting to record a symbol
617 in a discarded section, eg. a discarded link-once section symbol. */
618
619 int
620 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
621 bfd *input_bfd,
622 long input_indx)
623 {
624 bfd_size_type amt;
625 struct elf_link_local_dynamic_entry *entry;
626 struct elf_link_hash_table *eht;
627 struct elf_strtab_hash *dynstr;
628 unsigned long dynstr_index;
629 char *name;
630 Elf_External_Sym_Shndx eshndx;
631 char esym[sizeof (Elf64_External_Sym)];
632
633 if (! is_elf_hash_table (info->hash))
634 return 0;
635
636 /* See if the entry exists already. */
637 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
638 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 return 1;
640
641 amt = sizeof (*entry);
642 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
643 if (entry == NULL)
644 return 0;
645
646 /* Go find the symbol, so that we can find it's name. */
647 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
648 1, input_indx, &entry->isym, esym, &eshndx))
649 {
650 bfd_release (input_bfd, entry);
651 return 0;
652 }
653
654 if (entry->isym.st_shndx != SHN_UNDEF
655 && entry->isym.st_shndx < SHN_LORESERVE)
656 {
657 asection *s;
658
659 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
660 if (s == NULL || bfd_is_abs_section (s->output_section))
661 {
662 /* We can still bfd_release here as nothing has done another
663 bfd_alloc. We can't do this later in this function. */
664 bfd_release (input_bfd, entry);
665 return 2;
666 }
667 }
668
669 name = (bfd_elf_string_from_elf_section
670 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
671 entry->isym.st_name));
672
673 dynstr = elf_hash_table (info)->dynstr;
674 if (dynstr == NULL)
675 {
676 /* Create a strtab to hold the dynamic symbol names. */
677 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
678 if (dynstr == NULL)
679 return 0;
680 }
681
682 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
683 if (dynstr_index == (unsigned long) -1)
684 return 0;
685 entry->isym.st_name = dynstr_index;
686
687 eht = elf_hash_table (info);
688
689 entry->next = eht->dynlocal;
690 eht->dynlocal = entry;
691 entry->input_bfd = input_bfd;
692 entry->input_indx = input_indx;
693 eht->dynsymcount++;
694
695 /* Whatever binding the symbol had before, it's now local. */
696 entry->isym.st_info
697 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
698
699 /* The dynindx will be set at the end of size_dynamic_sections. */
700
701 return 1;
702 }
703
704 /* Return the dynindex of a local dynamic symbol. */
705
706 long
707 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
708 bfd *input_bfd,
709 long input_indx)
710 {
711 struct elf_link_local_dynamic_entry *e;
712
713 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
714 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
715 return e->dynindx;
716 return -1;
717 }
718
719 /* This function is used to renumber the dynamic symbols, if some of
720 them are removed because they are marked as local. This is called
721 via elf_link_hash_traverse. */
722
723 static bfd_boolean
724 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 void *data)
726 {
727 size_t *count = (size_t *) data;
728
729 if (h->forced_local)
730 return TRUE;
731
732 if (h->dynindx != -1)
733 h->dynindx = ++(*count);
734
735 return TRUE;
736 }
737
738
739 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
740 STB_LOCAL binding. */
741
742 static bfd_boolean
743 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 void *data)
745 {
746 size_t *count = (size_t *) data;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755 }
756
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763 {
764 struct elf_link_hash_table *htab;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 if (strcmp (p->name, ".got") == 0
781 || strcmp (p->name, ".got.plt") == 0
782 || strcmp (p->name, ".plt") == 0)
783 {
784 asection *ip;
785
786 if (htab->dynobj != NULL
787 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
788 && ip->output_section == p)
789 return TRUE;
790 }
791 return FALSE;
792
793 /* There shouldn't be section relative relocations
794 against any other section. */
795 default:
796 return TRUE;
797 }
798 }
799
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
804 symbols. */
805
806 static unsigned long
807 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
808 struct bfd_link_info *info,
809 unsigned long *section_sym_count)
810 {
811 unsigned long dynsymcount = 0;
812
813 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
814 {
815 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
816 asection *p;
817 for (p = output_bfd->sections; p ; p = p->next)
818 if ((p->flags & SEC_EXCLUDE) == 0
819 && (p->flags & SEC_ALLOC) != 0
820 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
821 elf_section_data (p)->dynindx = ++dynsymcount;
822 else
823 elf_section_data (p)->dynindx = 0;
824 }
825 *section_sym_count = dynsymcount;
826
827 elf_link_hash_traverse (elf_hash_table (info),
828 elf_link_renumber_local_hash_table_dynsyms,
829 &dynsymcount);
830
831 if (elf_hash_table (info)->dynlocal)
832 {
833 struct elf_link_local_dynamic_entry *p;
834 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
835 p->dynindx = ++dynsymcount;
836 }
837
838 elf_link_hash_traverse (elf_hash_table (info),
839 elf_link_renumber_hash_table_dynsyms,
840 &dynsymcount);
841
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount != 0)
846 ++dynsymcount;
847
848 elf_hash_table (info)->dynsymcount = dynsymcount;
849 return dynsymcount;
850 }
851
852 /* Merge st_other field. */
853
854 static void
855 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
856 const Elf_Internal_Sym *isym,
857 bfd_boolean definition, bfd_boolean dynamic)
858 {
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
860
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. */
863 if (bed->elf_backend_merge_symbol_attribute)
864 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
865 dynamic);
866
867 if (!dynamic)
868 {
869 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
870 unsigned hvis = ELF_ST_VISIBILITY (h->other);
871
872 /* Keep the most constraining visibility. Leave the remainder
873 of the st_other field to elf_backend_merge_symbol_attribute. */
874 if (symvis - 1 < hvis - 1)
875 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
876 }
877 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
878 h->protected_def = 1;
879 }
880
881 /* This function is called when we want to merge a new symbol with an
882 existing symbol. It handles the various cases which arise when we
883 find a definition in a dynamic object, or when there is already a
884 definition in a dynamic object. The new symbol is described by
885 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
886 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
887 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
888 of an old common symbol. We set OVERRIDE if the old symbol is
889 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
890 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
891 to change. By OK to change, we mean that we shouldn't warn if the
892 type or size does change. */
893
894 static bfd_boolean
895 _bfd_elf_merge_symbol (bfd *abfd,
896 struct bfd_link_info *info,
897 const char *name,
898 Elf_Internal_Sym *sym,
899 asection **psec,
900 bfd_vma *pvalue,
901 struct elf_link_hash_entry **sym_hash,
902 bfd **poldbfd,
903 bfd_boolean *pold_weak,
904 unsigned int *pold_alignment,
905 bfd_boolean *skip,
906 bfd_boolean *override,
907 bfd_boolean *type_change_ok,
908 bfd_boolean *size_change_ok)
909 {
910 asection *sec, *oldsec;
911 struct elf_link_hash_entry *h;
912 struct elf_link_hash_entry *hi;
913 struct elf_link_hash_entry *flip;
914 int bind;
915 bfd *oldbfd;
916 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
917 bfd_boolean newweak, oldweak, newfunc, oldfunc;
918 const struct elf_backend_data *bed;
919
920 *skip = FALSE;
921 *override = FALSE;
922
923 sec = *psec;
924 bind = ELF_ST_BIND (sym->st_info);
925
926 if (! bfd_is_und_section (sec))
927 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
928 else
929 h = ((struct elf_link_hash_entry *)
930 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
931 if (h == NULL)
932 return FALSE;
933 *sym_hash = h;
934
935 bed = get_elf_backend_data (abfd);
936
937 /* For merging, we only care about real symbols. But we need to make
938 sure that indirect symbol dynamic flags are updated. */
939 hi = h;
940 while (h->root.type == bfd_link_hash_indirect
941 || h->root.type == bfd_link_hash_warning)
942 h = (struct elf_link_hash_entry *) h->root.u.i.link;
943
944 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
945 existing symbol. */
946
947 oldbfd = NULL;
948 oldsec = NULL;
949 switch (h->root.type)
950 {
951 default:
952 break;
953
954 case bfd_link_hash_undefined:
955 case bfd_link_hash_undefweak:
956 oldbfd = h->root.u.undef.abfd;
957 break;
958
959 case bfd_link_hash_defined:
960 case bfd_link_hash_defweak:
961 oldbfd = h->root.u.def.section->owner;
962 oldsec = h->root.u.def.section;
963 break;
964
965 case bfd_link_hash_common:
966 oldbfd = h->root.u.c.p->section->owner;
967 oldsec = h->root.u.c.p->section;
968 if (pold_alignment)
969 *pold_alignment = h->root.u.c.p->alignment_power;
970 break;
971 }
972 if (poldbfd && *poldbfd == NULL)
973 *poldbfd = oldbfd;
974
975 /* Differentiate strong and weak symbols. */
976 newweak = bind == STB_WEAK;
977 oldweak = (h->root.type == bfd_link_hash_defweak
978 || h->root.type == bfd_link_hash_undefweak);
979 if (pold_weak)
980 *pold_weak = oldweak;
981
982 /* This code is for coping with dynamic objects, and is only useful
983 if we are doing an ELF link. */
984 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
985 return TRUE;
986
987 /* We have to check it for every instance since the first few may be
988 references and not all compilers emit symbol type for undefined
989 symbols. */
990 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
991
992 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
993 respectively, is from a dynamic object. */
994
995 newdyn = (abfd->flags & DYNAMIC) != 0;
996
997 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
998 syms and defined syms in dynamic libraries respectively.
999 ref_dynamic on the other hand can be set for a symbol defined in
1000 a dynamic library, and def_dynamic may not be set; When the
1001 definition in a dynamic lib is overridden by a definition in the
1002 executable use of the symbol in the dynamic lib becomes a
1003 reference to the executable symbol. */
1004 if (newdyn)
1005 {
1006 if (bfd_is_und_section (sec))
1007 {
1008 if (bind != STB_WEAK)
1009 {
1010 h->ref_dynamic_nonweak = 1;
1011 hi->ref_dynamic_nonweak = 1;
1012 }
1013 }
1014 else
1015 {
1016 h->dynamic_def = 1;
1017 hi->dynamic_def = 1;
1018 }
1019 }
1020
1021 /* If we just created the symbol, mark it as being an ELF symbol.
1022 Other than that, there is nothing to do--there is no merge issue
1023 with a newly defined symbol--so we just return. */
1024
1025 if (h->root.type == bfd_link_hash_new)
1026 {
1027 h->non_elf = 0;
1028 return TRUE;
1029 }
1030
1031 /* In cases involving weak versioned symbols, we may wind up trying
1032 to merge a symbol with itself. Catch that here, to avoid the
1033 confusion that results if we try to override a symbol with
1034 itself. The additional tests catch cases like
1035 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1036 dynamic object, which we do want to handle here. */
1037 if (abfd == oldbfd
1038 && (newweak || oldweak)
1039 && ((abfd->flags & DYNAMIC) == 0
1040 || !h->def_regular))
1041 return TRUE;
1042
1043 olddyn = FALSE;
1044 if (oldbfd != NULL)
1045 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1046 else if (oldsec != NULL)
1047 {
1048 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1049 indices used by MIPS ELF. */
1050 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1051 }
1052
1053 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1054 respectively, appear to be a definition rather than reference. */
1055
1056 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1057
1058 olddef = (h->root.type != bfd_link_hash_undefined
1059 && h->root.type != bfd_link_hash_undefweak
1060 && h->root.type != bfd_link_hash_common);
1061
1062 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1063 respectively, appear to be a function. */
1064
1065 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1066 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1067
1068 oldfunc = (h->type != STT_NOTYPE
1069 && bed->is_function_type (h->type));
1070
1071 /* When we try to create a default indirect symbol from the dynamic
1072 definition with the default version, we skip it if its type and
1073 the type of existing regular definition mismatch. */
1074 if (pold_alignment == NULL
1075 && newdyn
1076 && newdef
1077 && !olddyn
1078 && (((olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1083 || (olddef
1084 && ((h->type == STT_GNU_IFUNC)
1085 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1086 {
1087 *skip = TRUE;
1088 return TRUE;
1089 }
1090
1091 /* Check TLS symbols. We don't check undefined symbols introduced
1092 by "ld -u" which have no type (and oldbfd NULL), and we don't
1093 check symbols from plugins because they also have no type. */
1094 if (oldbfd != NULL
1095 && (oldbfd->flags & BFD_PLUGIN) == 0
1096 && (abfd->flags & BFD_PLUGIN) == 0
1097 && ELF_ST_TYPE (sym->st_info) != h->type
1098 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1099 {
1100 bfd *ntbfd, *tbfd;
1101 bfd_boolean ntdef, tdef;
1102 asection *ntsec, *tsec;
1103
1104 if (h->type == STT_TLS)
1105 {
1106 ntbfd = abfd;
1107 ntsec = sec;
1108 ntdef = newdef;
1109 tbfd = oldbfd;
1110 tsec = oldsec;
1111 tdef = olddef;
1112 }
1113 else
1114 {
1115 ntbfd = oldbfd;
1116 ntsec = oldsec;
1117 ntdef = olddef;
1118 tbfd = abfd;
1119 tsec = sec;
1120 tdef = newdef;
1121 }
1122
1123 if (tdef && ntdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A "
1126 "mismatches non-TLS definition in %B section %A"),
1127 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1128 else if (!tdef && !ntdef)
1129 (*_bfd_error_handler)
1130 (_("%s: TLS reference in %B "
1131 "mismatches non-TLS reference in %B"),
1132 tbfd, ntbfd, h->root.root.string);
1133 else if (tdef)
1134 (*_bfd_error_handler)
1135 (_("%s: TLS definition in %B section %A "
1136 "mismatches non-TLS reference in %B"),
1137 tbfd, tsec, ntbfd, h->root.root.string);
1138 else
1139 (*_bfd_error_handler)
1140 (_("%s: TLS reference in %B "
1141 "mismatches non-TLS definition in %B section %A"),
1142 tbfd, ntbfd, ntsec, h->root.root.string);
1143
1144 bfd_set_error (bfd_error_bad_value);
1145 return FALSE;
1146 }
1147
1148 /* If the old symbol has non-default visibility, we ignore the new
1149 definition from a dynamic object. */
1150 if (newdyn
1151 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1152 && !bfd_is_und_section (sec))
1153 {
1154 *skip = TRUE;
1155 /* Make sure this symbol is dynamic. */
1156 h->ref_dynamic = 1;
1157 hi->ref_dynamic = 1;
1158 /* A protected symbol has external availability. Make sure it is
1159 recorded as dynamic.
1160
1161 FIXME: Should we check type and size for protected symbol? */
1162 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1163 return bfd_elf_link_record_dynamic_symbol (info, h);
1164 else
1165 return TRUE;
1166 }
1167 else if (!newdyn
1168 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1169 && h->def_dynamic)
1170 {
1171 /* If the new symbol with non-default visibility comes from a
1172 relocatable file and the old definition comes from a dynamic
1173 object, we remove the old definition. */
1174 if (hi->root.type == bfd_link_hash_indirect)
1175 {
1176 /* Handle the case where the old dynamic definition is
1177 default versioned. We need to copy the symbol info from
1178 the symbol with default version to the normal one if it
1179 was referenced before. */
1180 if (h->ref_regular)
1181 {
1182 hi->root.type = h->root.type;
1183 h->root.type = bfd_link_hash_indirect;
1184 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1185
1186 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1187 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1188 {
1189 /* If the new symbol is hidden or internal, completely undo
1190 any dynamic link state. */
1191 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1192 h->forced_local = 0;
1193 h->ref_dynamic = 0;
1194 }
1195 else
1196 h->ref_dynamic = 1;
1197
1198 h->def_dynamic = 0;
1199 /* FIXME: Should we check type and size for protected symbol? */
1200 h->size = 0;
1201 h->type = 0;
1202
1203 h = hi;
1204 }
1205 else
1206 h = hi;
1207 }
1208
1209 /* If the old symbol was undefined before, then it will still be
1210 on the undefs list. If the new symbol is undefined or
1211 common, we can't make it bfd_link_hash_new here, because new
1212 undefined or common symbols will be added to the undefs list
1213 by _bfd_generic_link_add_one_symbol. Symbols may not be
1214 added twice to the undefs list. Also, if the new symbol is
1215 undefweak then we don't want to lose the strong undef. */
1216 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 {
1218 h->root.type = bfd_link_hash_undefined;
1219 h->root.u.undef.abfd = abfd;
1220 }
1221 else
1222 {
1223 h->root.type = bfd_link_hash_new;
1224 h->root.u.undef.abfd = NULL;
1225 }
1226
1227 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1228 {
1229 /* If the new symbol is hidden or internal, completely undo
1230 any dynamic link state. */
1231 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1232 h->forced_local = 0;
1233 h->ref_dynamic = 0;
1234 }
1235 else
1236 h->ref_dynamic = 1;
1237 h->def_dynamic = 0;
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1242 }
1243
1244 /* If a new weak symbol definition comes from a regular file and the
1245 old symbol comes from a dynamic library, we treat the new one as
1246 strong. Similarly, an old weak symbol definition from a regular
1247 file is treated as strong when the new symbol comes from a dynamic
1248 library. Further, an old weak symbol from a dynamic library is
1249 treated as strong if the new symbol is from a dynamic library.
1250 This reflects the way glibc's ld.so works.
1251
1252 Do this before setting *type_change_ok or *size_change_ok so that
1253 we warn properly when dynamic library symbols are overridden. */
1254
1255 if (newdef && !newdyn && olddyn)
1256 newweak = FALSE;
1257 if (olddef && newdyn)
1258 oldweak = FALSE;
1259
1260 /* Allow changes between different types of function symbol. */
1261 if (newfunc && oldfunc)
1262 *type_change_ok = TRUE;
1263
1264 /* It's OK to change the type if either the existing symbol or the
1265 new symbol is weak. A type change is also OK if the old symbol
1266 is undefined and the new symbol is defined. */
1267
1268 if (oldweak
1269 || newweak
1270 || (newdef
1271 && h->root.type == bfd_link_hash_undefined))
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the size if either the existing symbol or the
1275 new symbol is weak, or if the old symbol is undefined. */
1276
1277 if (*type_change_ok
1278 || h->root.type == bfd_link_hash_undefined)
1279 *size_change_ok = TRUE;
1280
1281 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1282 symbol, respectively, appears to be a common symbol in a dynamic
1283 object. If a symbol appears in an uninitialized section, and is
1284 not weak, and is not a function, then it may be a common symbol
1285 which was resolved when the dynamic object was created. We want
1286 to treat such symbols specially, because they raise special
1287 considerations when setting the symbol size: if the symbol
1288 appears as a common symbol in a regular object, and the size in
1289 the regular object is larger, we must make sure that we use the
1290 larger size. This problematic case can always be avoided in C,
1291 but it must be handled correctly when using Fortran shared
1292 libraries.
1293
1294 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1295 likewise for OLDDYNCOMMON and OLDDEF.
1296
1297 Note that this test is just a heuristic, and that it is quite
1298 possible to have an uninitialized symbol in a shared object which
1299 is really a definition, rather than a common symbol. This could
1300 lead to some minor confusion when the symbol really is a common
1301 symbol in some regular object. However, I think it will be
1302 harmless. */
1303
1304 if (newdyn
1305 && newdef
1306 && !newweak
1307 && (sec->flags & SEC_ALLOC) != 0
1308 && (sec->flags & SEC_LOAD) == 0
1309 && sym->st_size > 0
1310 && !newfunc)
1311 newdyncommon = TRUE;
1312 else
1313 newdyncommon = FALSE;
1314
1315 if (olddyn
1316 && olddef
1317 && h->root.type == bfd_link_hash_defined
1318 && h->def_dynamic
1319 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1320 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1321 && h->size > 0
1322 && !oldfunc)
1323 olddyncommon = TRUE;
1324 else
1325 olddyncommon = FALSE;
1326
1327 /* We now know everything about the old and new symbols. We ask the
1328 backend to check if we can merge them. */
1329 if (bed->merge_symbol != NULL)
1330 {
1331 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1332 return FALSE;
1333 sec = *psec;
1334 }
1335
1336 /* If both the old and the new symbols look like common symbols in a
1337 dynamic object, set the size of the symbol to the larger of the
1338 two. */
1339
1340 if (olddyncommon
1341 && newdyncommon
1342 && sym->st_size != h->size)
1343 {
1344 /* Since we think we have two common symbols, issue a multiple
1345 common warning if desired. Note that we only warn if the
1346 size is different. If the size is the same, we simply let
1347 the old symbol override the new one as normally happens with
1348 symbols defined in dynamic objects. */
1349
1350 if (! ((*info->callbacks->multiple_common)
1351 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1352 return FALSE;
1353
1354 if (sym->st_size > h->size)
1355 h->size = sym->st_size;
1356
1357 *size_change_ok = TRUE;
1358 }
1359
1360 /* If we are looking at a dynamic object, and we have found a
1361 definition, we need to see if the symbol was already defined by
1362 some other object. If so, we want to use the existing
1363 definition, and we do not want to report a multiple symbol
1364 definition error; we do this by clobbering *PSEC to be
1365 bfd_und_section_ptr.
1366
1367 We treat a common symbol as a definition if the symbol in the
1368 shared library is a function, since common symbols always
1369 represent variables; this can cause confusion in principle, but
1370 any such confusion would seem to indicate an erroneous program or
1371 shared library. We also permit a common symbol in a regular
1372 object to override a weak symbol in a shared object. */
1373
1374 if (newdyn
1375 && newdef
1376 && (olddef
1377 || (h->root.type == bfd_link_hash_common
1378 && (newweak || newfunc))))
1379 {
1380 *override = TRUE;
1381 newdef = FALSE;
1382 newdyncommon = FALSE;
1383
1384 *psec = sec = bfd_und_section_ptr;
1385 *size_change_ok = TRUE;
1386
1387 /* If we get here when the old symbol is a common symbol, then
1388 we are explicitly letting it override a weak symbol or
1389 function in a dynamic object, and we don't want to warn about
1390 a type change. If the old symbol is a defined symbol, a type
1391 change warning may still be appropriate. */
1392
1393 if (h->root.type == bfd_link_hash_common)
1394 *type_change_ok = TRUE;
1395 }
1396
1397 /* Handle the special case of an old common symbol merging with a
1398 new symbol which looks like a common symbol in a shared object.
1399 We change *PSEC and *PVALUE to make the new symbol look like a
1400 common symbol, and let _bfd_generic_link_add_one_symbol do the
1401 right thing. */
1402
1403 if (newdyncommon
1404 && h->root.type == bfd_link_hash_common)
1405 {
1406 *override = TRUE;
1407 newdef = FALSE;
1408 newdyncommon = FALSE;
1409 *pvalue = sym->st_size;
1410 *psec = sec = bed->common_section (oldsec);
1411 *size_change_ok = TRUE;
1412 }
1413
1414 /* Skip weak definitions of symbols that are already defined. */
1415 if (newdef && olddef && newweak)
1416 {
1417 /* Don't skip new non-IR weak syms. */
1418 if (!(oldbfd != NULL
1419 && (oldbfd->flags & BFD_PLUGIN) != 0
1420 && (abfd->flags & BFD_PLUGIN) == 0))
1421 {
1422 newdef = FALSE;
1423 *skip = TRUE;
1424 }
1425
1426 /* Merge st_other. If the symbol already has a dynamic index,
1427 but visibility says it should not be visible, turn it into a
1428 local symbol. */
1429 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1430 if (h->dynindx != -1)
1431 switch (ELF_ST_VISIBILITY (h->other))
1432 {
1433 case STV_INTERNAL:
1434 case STV_HIDDEN:
1435 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1436 break;
1437 }
1438 }
1439
1440 /* If the old symbol is from a dynamic object, and the new symbol is
1441 a definition which is not from a dynamic object, then the new
1442 symbol overrides the old symbol. Symbols from regular files
1443 always take precedence over symbols from dynamic objects, even if
1444 they are defined after the dynamic object in the link.
1445
1446 As above, we again permit a common symbol in a regular object to
1447 override a definition in a shared object if the shared object
1448 symbol is a function or is weak. */
1449
1450 flip = NULL;
1451 if (!newdyn
1452 && (newdef
1453 || (bfd_is_com_section (sec)
1454 && (oldweak || oldfunc)))
1455 && olddyn
1456 && olddef
1457 && h->def_dynamic)
1458 {
1459 /* Change the hash table entry to undefined, and let
1460 _bfd_generic_link_add_one_symbol do the right thing with the
1461 new definition. */
1462
1463 h->root.type = bfd_link_hash_undefined;
1464 h->root.u.undef.abfd = h->root.u.def.section->owner;
1465 *size_change_ok = TRUE;
1466
1467 olddef = FALSE;
1468 olddyncommon = FALSE;
1469
1470 /* We again permit a type change when a common symbol may be
1471 overriding a function. */
1472
1473 if (bfd_is_com_section (sec))
1474 {
1475 if (oldfunc)
1476 {
1477 /* If a common symbol overrides a function, make sure
1478 that it isn't defined dynamically nor has type
1479 function. */
1480 h->def_dynamic = 0;
1481 h->type = STT_NOTYPE;
1482 }
1483 *type_change_ok = TRUE;
1484 }
1485
1486 if (hi->root.type == bfd_link_hash_indirect)
1487 flip = hi;
1488 else
1489 /* This union may have been set to be non-NULL when this symbol
1490 was seen in a dynamic object. We must force the union to be
1491 NULL, so that it is correct for a regular symbol. */
1492 h->verinfo.vertree = NULL;
1493 }
1494
1495 /* Handle the special case of a new common symbol merging with an
1496 old symbol that looks like it might be a common symbol defined in
1497 a shared object. Note that we have already handled the case in
1498 which a new common symbol should simply override the definition
1499 in the shared library. */
1500
1501 if (! newdyn
1502 && bfd_is_com_section (sec)
1503 && olddyncommon)
1504 {
1505 /* It would be best if we could set the hash table entry to a
1506 common symbol, but we don't know what to use for the section
1507 or the alignment. */
1508 if (! ((*info->callbacks->multiple_common)
1509 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1510 return FALSE;
1511
1512 /* If the presumed common symbol in the dynamic object is
1513 larger, pretend that the new symbol has its size. */
1514
1515 if (h->size > *pvalue)
1516 *pvalue = h->size;
1517
1518 /* We need to remember the alignment required by the symbol
1519 in the dynamic object. */
1520 BFD_ASSERT (pold_alignment);
1521 *pold_alignment = h->root.u.def.section->alignment_power;
1522
1523 olddef = FALSE;
1524 olddyncommon = FALSE;
1525
1526 h->root.type = bfd_link_hash_undefined;
1527 h->root.u.undef.abfd = h->root.u.def.section->owner;
1528
1529 *size_change_ok = TRUE;
1530 *type_change_ok = TRUE;
1531
1532 if (hi->root.type == bfd_link_hash_indirect)
1533 flip = hi;
1534 else
1535 h->verinfo.vertree = NULL;
1536 }
1537
1538 if (flip != NULL)
1539 {
1540 /* Handle the case where we had a versioned symbol in a dynamic
1541 library and now find a definition in a normal object. In this
1542 case, we make the versioned symbol point to the normal one. */
1543 flip->root.type = h->root.type;
1544 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1545 h->root.type = bfd_link_hash_indirect;
1546 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1547 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1548 if (h->def_dynamic)
1549 {
1550 h->def_dynamic = 0;
1551 flip->ref_dynamic = 1;
1552 }
1553 }
1554
1555 return TRUE;
1556 }
1557
1558 /* This function is called to create an indirect symbol from the
1559 default for the symbol with the default version if needed. The
1560 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1561 set DYNSYM if the new indirect symbol is dynamic. */
1562
1563 static bfd_boolean
1564 _bfd_elf_add_default_symbol (bfd *abfd,
1565 struct bfd_link_info *info,
1566 struct elf_link_hash_entry *h,
1567 const char *name,
1568 Elf_Internal_Sym *sym,
1569 asection *sec,
1570 bfd_vma value,
1571 bfd **poldbfd,
1572 bfd_boolean *dynsym)
1573 {
1574 bfd_boolean type_change_ok;
1575 bfd_boolean size_change_ok;
1576 bfd_boolean skip;
1577 char *shortname;
1578 struct elf_link_hash_entry *hi;
1579 struct bfd_link_hash_entry *bh;
1580 const struct elf_backend_data *bed;
1581 bfd_boolean collect;
1582 bfd_boolean dynamic;
1583 bfd_boolean override;
1584 char *p;
1585 size_t len, shortlen;
1586 asection *tmp_sec;
1587
1588 /* If this symbol has a version, and it is the default version, we
1589 create an indirect symbol from the default name to the fully
1590 decorated name. This will cause external references which do not
1591 specify a version to be bound to this version of the symbol. */
1592 p = strchr (name, ELF_VER_CHR);
1593 if (p == NULL || p[1] != ELF_VER_CHR)
1594 return TRUE;
1595
1596 bed = get_elf_backend_data (abfd);
1597 collect = bed->collect;
1598 dynamic = (abfd->flags & DYNAMIC) != 0;
1599
1600 shortlen = p - name;
1601 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1602 if (shortname == NULL)
1603 return FALSE;
1604 memcpy (shortname, name, shortlen);
1605 shortname[shortlen] = '\0';
1606
1607 /* We are going to create a new symbol. Merge it with any existing
1608 symbol with this name. For the purposes of the merge, act as
1609 though we were defining the symbol we just defined, although we
1610 actually going to define an indirect symbol. */
1611 type_change_ok = FALSE;
1612 size_change_ok = FALSE;
1613 tmp_sec = sec;
1614 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1615 &hi, poldbfd, NULL, NULL, &skip, &override,
1616 &type_change_ok, &size_change_ok))
1617 return FALSE;
1618
1619 if (skip)
1620 goto nondefault;
1621
1622 if (! override)
1623 {
1624 bh = &hi->root;
1625 if (! (_bfd_generic_link_add_one_symbol
1626 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1627 0, name, FALSE, collect, &bh)))
1628 return FALSE;
1629 hi = (struct elf_link_hash_entry *) bh;
1630 }
1631 else
1632 {
1633 /* In this case the symbol named SHORTNAME is overriding the
1634 indirect symbol we want to add. We were planning on making
1635 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1636 is the name without a version. NAME is the fully versioned
1637 name, and it is the default version.
1638
1639 Overriding means that we already saw a definition for the
1640 symbol SHORTNAME in a regular object, and it is overriding
1641 the symbol defined in the dynamic object.
1642
1643 When this happens, we actually want to change NAME, the
1644 symbol we just added, to refer to SHORTNAME. This will cause
1645 references to NAME in the shared object to become references
1646 to SHORTNAME in the regular object. This is what we expect
1647 when we override a function in a shared object: that the
1648 references in the shared object will be mapped to the
1649 definition in the regular object. */
1650
1651 while (hi->root.type == bfd_link_hash_indirect
1652 || hi->root.type == bfd_link_hash_warning)
1653 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1654
1655 h->root.type = bfd_link_hash_indirect;
1656 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1657 if (h->def_dynamic)
1658 {
1659 h->def_dynamic = 0;
1660 hi->ref_dynamic = 1;
1661 if (hi->ref_regular
1662 || hi->def_regular)
1663 {
1664 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1665 return FALSE;
1666 }
1667 }
1668
1669 /* Now set HI to H, so that the following code will set the
1670 other fields correctly. */
1671 hi = h;
1672 }
1673
1674 /* Check if HI is a warning symbol. */
1675 if (hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1677
1678 /* If there is a duplicate definition somewhere, then HI may not
1679 point to an indirect symbol. We will have reported an error to
1680 the user in that case. */
1681
1682 if (hi->root.type == bfd_link_hash_indirect)
1683 {
1684 struct elf_link_hash_entry *ht;
1685
1686 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1687 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1688
1689 /* A reference to the SHORTNAME symbol from a dynamic library
1690 will be satisfied by the versioned symbol at runtime. In
1691 effect, we have a reference to the versioned symbol. */
1692 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1693 hi->dynamic_def |= ht->dynamic_def;
1694
1695 /* See if the new flags lead us to realize that the symbol must
1696 be dynamic. */
1697 if (! *dynsym)
1698 {
1699 if (! dynamic)
1700 {
1701 if (! info->executable
1702 || hi->def_dynamic
1703 || hi->ref_dynamic)
1704 *dynsym = TRUE;
1705 }
1706 else
1707 {
1708 if (hi->ref_regular)
1709 *dynsym = TRUE;
1710 }
1711 }
1712 }
1713
1714 /* We also need to define an indirection from the nondefault version
1715 of the symbol. */
1716
1717 nondefault:
1718 len = strlen (name);
1719 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1720 if (shortname == NULL)
1721 return FALSE;
1722 memcpy (shortname, name, shortlen);
1723 memcpy (shortname + shortlen, p + 1, len - shortlen);
1724
1725 /* Once again, merge with any existing symbol. */
1726 type_change_ok = FALSE;
1727 size_change_ok = FALSE;
1728 tmp_sec = sec;
1729 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1730 &hi, poldbfd, NULL, NULL, &skip, &override,
1731 &type_change_ok, &size_change_ok))
1732 return FALSE;
1733
1734 if (skip)
1735 return TRUE;
1736
1737 if (override)
1738 {
1739 /* Here SHORTNAME is a versioned name, so we don't expect to see
1740 the type of override we do in the case above unless it is
1741 overridden by a versioned definition. */
1742 if (hi->root.type != bfd_link_hash_defined
1743 && hi->root.type != bfd_link_hash_defweak)
1744 (*_bfd_error_handler)
1745 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1746 abfd, shortname);
1747 }
1748 else
1749 {
1750 bh = &hi->root;
1751 if (! (_bfd_generic_link_add_one_symbol
1752 (info, abfd, shortname, BSF_INDIRECT,
1753 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1754 return FALSE;
1755 hi = (struct elf_link_hash_entry *) bh;
1756
1757 /* If there is a duplicate definition somewhere, then HI may not
1758 point to an indirect symbol. We will have reported an error
1759 to the user in that case. */
1760
1761 if (hi->root.type == bfd_link_hash_indirect)
1762 {
1763 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1764 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1765 hi->dynamic_def |= h->dynamic_def;
1766
1767 /* See if the new flags lead us to realize that the symbol
1768 must be dynamic. */
1769 if (! *dynsym)
1770 {
1771 if (! dynamic)
1772 {
1773 if (! info->executable
1774 || hi->ref_dynamic)
1775 *dynsym = TRUE;
1776 }
1777 else
1778 {
1779 if (hi->ref_regular)
1780 *dynsym = TRUE;
1781 }
1782 }
1783 }
1784 }
1785
1786 return TRUE;
1787 }
1788 \f
1789 /* This routine is used to export all defined symbols into the dynamic
1790 symbol table. It is called via elf_link_hash_traverse. */
1791
1792 static bfd_boolean
1793 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1794 {
1795 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1796
1797 /* Ignore indirect symbols. These are added by the versioning code. */
1798 if (h->root.type == bfd_link_hash_indirect)
1799 return TRUE;
1800
1801 /* Ignore this if we won't export it. */
1802 if (!eif->info->export_dynamic && !h->dynamic)
1803 return TRUE;
1804
1805 if (h->dynindx == -1
1806 && (h->def_regular || h->ref_regular)
1807 && ! bfd_hide_sym_by_version (eif->info->version_info,
1808 h->root.root.string))
1809 {
1810 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1811 {
1812 eif->failed = TRUE;
1813 return FALSE;
1814 }
1815 }
1816
1817 return TRUE;
1818 }
1819 \f
1820 /* Look through the symbols which are defined in other shared
1821 libraries and referenced here. Update the list of version
1822 dependencies. This will be put into the .gnu.version_r section.
1823 This function is called via elf_link_hash_traverse. */
1824
1825 static bfd_boolean
1826 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1827 void *data)
1828 {
1829 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1830 Elf_Internal_Verneed *t;
1831 Elf_Internal_Vernaux *a;
1832 bfd_size_type amt;
1833
1834 /* We only care about symbols defined in shared objects with version
1835 information. */
1836 if (!h->def_dynamic
1837 || h->def_regular
1838 || h->dynindx == -1
1839 || h->verinfo.verdef == NULL
1840 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1841 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1842 return TRUE;
1843
1844 /* See if we already know about this version. */
1845 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1846 t != NULL;
1847 t = t->vn_nextref)
1848 {
1849 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1850 continue;
1851
1852 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1853 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1854 return TRUE;
1855
1856 break;
1857 }
1858
1859 /* This is a new version. Add it to tree we are building. */
1860
1861 if (t == NULL)
1862 {
1863 amt = sizeof *t;
1864 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1865 if (t == NULL)
1866 {
1867 rinfo->failed = TRUE;
1868 return FALSE;
1869 }
1870
1871 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1872 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1873 elf_tdata (rinfo->info->output_bfd)->verref = t;
1874 }
1875
1876 amt = sizeof *a;
1877 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (a == NULL)
1879 {
1880 rinfo->failed = TRUE;
1881 return FALSE;
1882 }
1883
1884 /* Note that we are copying a string pointer here, and testing it
1885 above. If bfd_elf_string_from_elf_section is ever changed to
1886 discard the string data when low in memory, this will have to be
1887 fixed. */
1888 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1889
1890 a->vna_flags = h->verinfo.verdef->vd_flags;
1891 a->vna_nextptr = t->vn_auxptr;
1892
1893 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1894 ++rinfo->vers;
1895
1896 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1897
1898 t->vn_auxptr = a;
1899
1900 return TRUE;
1901 }
1902
1903 /* Figure out appropriate versions for all the symbols. We may not
1904 have the version number script until we have read all of the input
1905 files, so until that point we don't know which symbols should be
1906 local. This function is called via elf_link_hash_traverse. */
1907
1908 static bfd_boolean
1909 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1910 {
1911 struct elf_info_failed *sinfo;
1912 struct bfd_link_info *info;
1913 const struct elf_backend_data *bed;
1914 struct elf_info_failed eif;
1915 char *p;
1916 bfd_size_type amt;
1917
1918 sinfo = (struct elf_info_failed *) data;
1919 info = sinfo->info;
1920
1921 /* Fix the symbol flags. */
1922 eif.failed = FALSE;
1923 eif.info = info;
1924 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1925 {
1926 if (eif.failed)
1927 sinfo->failed = TRUE;
1928 return FALSE;
1929 }
1930
1931 /* We only need version numbers for symbols defined in regular
1932 objects. */
1933 if (!h->def_regular)
1934 return TRUE;
1935
1936 bed = get_elf_backend_data (info->output_bfd);
1937 p = strchr (h->root.root.string, ELF_VER_CHR);
1938 if (p != NULL && h->verinfo.vertree == NULL)
1939 {
1940 struct bfd_elf_version_tree *t;
1941 bfd_boolean hidden;
1942
1943 hidden = TRUE;
1944
1945 /* There are two consecutive ELF_VER_CHR characters if this is
1946 not a hidden symbol. */
1947 ++p;
1948 if (*p == ELF_VER_CHR)
1949 {
1950 hidden = FALSE;
1951 ++p;
1952 }
1953
1954 /* If there is no version string, we can just return out. */
1955 if (*p == '\0')
1956 {
1957 if (hidden)
1958 h->hidden = 1;
1959 return TRUE;
1960 }
1961
1962 /* Look for the version. If we find it, it is no longer weak. */
1963 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1964 {
1965 if (strcmp (t->name, p) == 0)
1966 {
1967 size_t len;
1968 char *alc;
1969 struct bfd_elf_version_expr *d;
1970
1971 len = p - h->root.root.string;
1972 alc = (char *) bfd_malloc (len);
1973 if (alc == NULL)
1974 {
1975 sinfo->failed = TRUE;
1976 return FALSE;
1977 }
1978 memcpy (alc, h->root.root.string, len - 1);
1979 alc[len - 1] = '\0';
1980 if (alc[len - 2] == ELF_VER_CHR)
1981 alc[len - 2] = '\0';
1982
1983 h->verinfo.vertree = t;
1984 t->used = TRUE;
1985 d = NULL;
1986
1987 if (t->globals.list != NULL)
1988 d = (*t->match) (&t->globals, NULL, alc);
1989
1990 /* See if there is anything to force this symbol to
1991 local scope. */
1992 if (d == NULL && t->locals.list != NULL)
1993 {
1994 d = (*t->match) (&t->locals, NULL, alc);
1995 if (d != NULL
1996 && h->dynindx != -1
1997 && ! info->export_dynamic)
1998 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1999 }
2000
2001 free (alc);
2002 break;
2003 }
2004 }
2005
2006 /* If we are building an application, we need to create a
2007 version node for this version. */
2008 if (t == NULL && info->executable)
2009 {
2010 struct bfd_elf_version_tree **pp;
2011 int version_index;
2012
2013 /* If we aren't going to export this symbol, we don't need
2014 to worry about it. */
2015 if (h->dynindx == -1)
2016 return TRUE;
2017
2018 amt = sizeof *t;
2019 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2020 if (t == NULL)
2021 {
2022 sinfo->failed = TRUE;
2023 return FALSE;
2024 }
2025
2026 t->name = p;
2027 t->name_indx = (unsigned int) -1;
2028 t->used = TRUE;
2029
2030 version_index = 1;
2031 /* Don't count anonymous version tag. */
2032 if (sinfo->info->version_info != NULL
2033 && sinfo->info->version_info->vernum == 0)
2034 version_index = 0;
2035 for (pp = &sinfo->info->version_info;
2036 *pp != NULL;
2037 pp = &(*pp)->next)
2038 ++version_index;
2039 t->vernum = version_index;
2040
2041 *pp = t;
2042
2043 h->verinfo.vertree = t;
2044 }
2045 else if (t == NULL)
2046 {
2047 /* We could not find the version for a symbol when
2048 generating a shared archive. Return an error. */
2049 (*_bfd_error_handler)
2050 (_("%B: version node not found for symbol %s"),
2051 info->output_bfd, h->root.root.string);
2052 bfd_set_error (bfd_error_bad_value);
2053 sinfo->failed = TRUE;
2054 return FALSE;
2055 }
2056
2057 if (hidden)
2058 h->hidden = 1;
2059 }
2060
2061 /* If we don't have a version for this symbol, see if we can find
2062 something. */
2063 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2064 {
2065 bfd_boolean hide;
2066
2067 h->verinfo.vertree
2068 = bfd_find_version_for_sym (sinfo->info->version_info,
2069 h->root.root.string, &hide);
2070 if (h->verinfo.vertree != NULL && hide)
2071 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2072 }
2073
2074 return TRUE;
2075 }
2076 \f
2077 /* Read and swap the relocs from the section indicated by SHDR. This
2078 may be either a REL or a RELA section. The relocations are
2079 translated into RELA relocations and stored in INTERNAL_RELOCS,
2080 which should have already been allocated to contain enough space.
2081 The EXTERNAL_RELOCS are a buffer where the external form of the
2082 relocations should be stored.
2083
2084 Returns FALSE if something goes wrong. */
2085
2086 static bfd_boolean
2087 elf_link_read_relocs_from_section (bfd *abfd,
2088 asection *sec,
2089 Elf_Internal_Shdr *shdr,
2090 void *external_relocs,
2091 Elf_Internal_Rela *internal_relocs)
2092 {
2093 const struct elf_backend_data *bed;
2094 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2095 const bfd_byte *erela;
2096 const bfd_byte *erelaend;
2097 Elf_Internal_Rela *irela;
2098 Elf_Internal_Shdr *symtab_hdr;
2099 size_t nsyms;
2100
2101 /* Position ourselves at the start of the section. */
2102 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2103 return FALSE;
2104
2105 /* Read the relocations. */
2106 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2107 return FALSE;
2108
2109 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2110 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2111
2112 bed = get_elf_backend_data (abfd);
2113
2114 /* Convert the external relocations to the internal format. */
2115 if (shdr->sh_entsize == bed->s->sizeof_rel)
2116 swap_in = bed->s->swap_reloc_in;
2117 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2118 swap_in = bed->s->swap_reloca_in;
2119 else
2120 {
2121 bfd_set_error (bfd_error_wrong_format);
2122 return FALSE;
2123 }
2124
2125 erela = (const bfd_byte *) external_relocs;
2126 erelaend = erela + shdr->sh_size;
2127 irela = internal_relocs;
2128 while (erela < erelaend)
2129 {
2130 bfd_vma r_symndx;
2131
2132 (*swap_in) (abfd, erela, irela);
2133 r_symndx = ELF32_R_SYM (irela->r_info);
2134 if (bed->s->arch_size == 64)
2135 r_symndx >>= 24;
2136 if (nsyms > 0)
2137 {
2138 if ((size_t) r_symndx >= nsyms)
2139 {
2140 (*_bfd_error_handler)
2141 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2142 " for offset 0x%lx in section `%A'"),
2143 abfd, sec,
2144 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2145 bfd_set_error (bfd_error_bad_value);
2146 return FALSE;
2147 }
2148 }
2149 else if (r_symndx != STN_UNDEF)
2150 {
2151 (*_bfd_error_handler)
2152 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2153 " when the object file has no symbol table"),
2154 abfd, sec,
2155 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2156 bfd_set_error (bfd_error_bad_value);
2157 return FALSE;
2158 }
2159 irela += bed->s->int_rels_per_ext_rel;
2160 erela += shdr->sh_entsize;
2161 }
2162
2163 return TRUE;
2164 }
2165
2166 /* Read and swap the relocs for a section O. They may have been
2167 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2168 not NULL, they are used as buffers to read into. They are known to
2169 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2170 the return value is allocated using either malloc or bfd_alloc,
2171 according to the KEEP_MEMORY argument. If O has two relocation
2172 sections (both REL and RELA relocations), then the REL_HDR
2173 relocations will appear first in INTERNAL_RELOCS, followed by the
2174 RELA_HDR relocations. */
2175
2176 Elf_Internal_Rela *
2177 _bfd_elf_link_read_relocs (bfd *abfd,
2178 asection *o,
2179 void *external_relocs,
2180 Elf_Internal_Rela *internal_relocs,
2181 bfd_boolean keep_memory)
2182 {
2183 void *alloc1 = NULL;
2184 Elf_Internal_Rela *alloc2 = NULL;
2185 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2186 struct bfd_elf_section_data *esdo = elf_section_data (o);
2187 Elf_Internal_Rela *internal_rela_relocs;
2188
2189 if (esdo->relocs != NULL)
2190 return esdo->relocs;
2191
2192 if (o->reloc_count == 0)
2193 return NULL;
2194
2195 if (internal_relocs == NULL)
2196 {
2197 bfd_size_type size;
2198
2199 size = o->reloc_count;
2200 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2201 if (keep_memory)
2202 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2203 else
2204 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2205 if (internal_relocs == NULL)
2206 goto error_return;
2207 }
2208
2209 if (external_relocs == NULL)
2210 {
2211 bfd_size_type size = 0;
2212
2213 if (esdo->rel.hdr)
2214 size += esdo->rel.hdr->sh_size;
2215 if (esdo->rela.hdr)
2216 size += esdo->rela.hdr->sh_size;
2217
2218 alloc1 = bfd_malloc (size);
2219 if (alloc1 == NULL)
2220 goto error_return;
2221 external_relocs = alloc1;
2222 }
2223
2224 internal_rela_relocs = internal_relocs;
2225 if (esdo->rel.hdr)
2226 {
2227 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2228 external_relocs,
2229 internal_relocs))
2230 goto error_return;
2231 external_relocs = (((bfd_byte *) external_relocs)
2232 + esdo->rel.hdr->sh_size);
2233 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2234 * bed->s->int_rels_per_ext_rel);
2235 }
2236
2237 if (esdo->rela.hdr
2238 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2239 external_relocs,
2240 internal_rela_relocs)))
2241 goto error_return;
2242
2243 /* Cache the results for next time, if we can. */
2244 if (keep_memory)
2245 esdo->relocs = internal_relocs;
2246
2247 if (alloc1 != NULL)
2248 free (alloc1);
2249
2250 /* Don't free alloc2, since if it was allocated we are passing it
2251 back (under the name of internal_relocs). */
2252
2253 return internal_relocs;
2254
2255 error_return:
2256 if (alloc1 != NULL)
2257 free (alloc1);
2258 if (alloc2 != NULL)
2259 {
2260 if (keep_memory)
2261 bfd_release (abfd, alloc2);
2262 else
2263 free (alloc2);
2264 }
2265 return NULL;
2266 }
2267
2268 /* Compute the size of, and allocate space for, REL_HDR which is the
2269 section header for a section containing relocations for O. */
2270
2271 static bfd_boolean
2272 _bfd_elf_link_size_reloc_section (bfd *abfd,
2273 struct bfd_elf_section_reloc_data *reldata)
2274 {
2275 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2276
2277 /* That allows us to calculate the size of the section. */
2278 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2279
2280 /* The contents field must last into write_object_contents, so we
2281 allocate it with bfd_alloc rather than malloc. Also since we
2282 cannot be sure that the contents will actually be filled in,
2283 we zero the allocated space. */
2284 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2285 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2286 return FALSE;
2287
2288 if (reldata->hashes == NULL && reldata->count)
2289 {
2290 struct elf_link_hash_entry **p;
2291
2292 p = (struct elf_link_hash_entry **)
2293 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2294 if (p == NULL)
2295 return FALSE;
2296
2297 reldata->hashes = p;
2298 }
2299
2300 return TRUE;
2301 }
2302
2303 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2304 originated from the section given by INPUT_REL_HDR) to the
2305 OUTPUT_BFD. */
2306
2307 bfd_boolean
2308 _bfd_elf_link_output_relocs (bfd *output_bfd,
2309 asection *input_section,
2310 Elf_Internal_Shdr *input_rel_hdr,
2311 Elf_Internal_Rela *internal_relocs,
2312 struct elf_link_hash_entry **rel_hash
2313 ATTRIBUTE_UNUSED)
2314 {
2315 Elf_Internal_Rela *irela;
2316 Elf_Internal_Rela *irelaend;
2317 bfd_byte *erel;
2318 struct bfd_elf_section_reloc_data *output_reldata;
2319 asection *output_section;
2320 const struct elf_backend_data *bed;
2321 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2322 struct bfd_elf_section_data *esdo;
2323
2324 output_section = input_section->output_section;
2325
2326 bed = get_elf_backend_data (output_bfd);
2327 esdo = elf_section_data (output_section);
2328 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2329 {
2330 output_reldata = &esdo->rel;
2331 swap_out = bed->s->swap_reloc_out;
2332 }
2333 else if (esdo->rela.hdr
2334 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2335 {
2336 output_reldata = &esdo->rela;
2337 swap_out = bed->s->swap_reloca_out;
2338 }
2339 else
2340 {
2341 (*_bfd_error_handler)
2342 (_("%B: relocation size mismatch in %B section %A"),
2343 output_bfd, input_section->owner, input_section);
2344 bfd_set_error (bfd_error_wrong_format);
2345 return FALSE;
2346 }
2347
2348 erel = output_reldata->hdr->contents;
2349 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2350 irela = internal_relocs;
2351 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2352 * bed->s->int_rels_per_ext_rel);
2353 while (irela < irelaend)
2354 {
2355 (*swap_out) (output_bfd, irela, erel);
2356 irela += bed->s->int_rels_per_ext_rel;
2357 erel += input_rel_hdr->sh_entsize;
2358 }
2359
2360 /* Bump the counter, so that we know where to add the next set of
2361 relocations. */
2362 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2363
2364 return TRUE;
2365 }
2366 \f
2367 /* Make weak undefined symbols in PIE dynamic. */
2368
2369 bfd_boolean
2370 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2372 {
2373 if (info->pie
2374 && h->dynindx == -1
2375 && h->root.type == bfd_link_hash_undefweak)
2376 return bfd_elf_link_record_dynamic_symbol (info, h);
2377
2378 return TRUE;
2379 }
2380
2381 /* Fix up the flags for a symbol. This handles various cases which
2382 can only be fixed after all the input files are seen. This is
2383 currently called by both adjust_dynamic_symbol and
2384 assign_sym_version, which is unnecessary but perhaps more robust in
2385 the face of future changes. */
2386
2387 static bfd_boolean
2388 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2389 struct elf_info_failed *eif)
2390 {
2391 const struct elf_backend_data *bed;
2392
2393 /* If this symbol was mentioned in a non-ELF file, try to set
2394 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2395 permit a non-ELF file to correctly refer to a symbol defined in
2396 an ELF dynamic object. */
2397 if (h->non_elf)
2398 {
2399 while (h->root.type == bfd_link_hash_indirect)
2400 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2401
2402 if (h->root.type != bfd_link_hash_defined
2403 && h->root.type != bfd_link_hash_defweak)
2404 {
2405 h->ref_regular = 1;
2406 h->ref_regular_nonweak = 1;
2407 }
2408 else
2409 {
2410 if (h->root.u.def.section->owner != NULL
2411 && (bfd_get_flavour (h->root.u.def.section->owner)
2412 == bfd_target_elf_flavour))
2413 {
2414 h->ref_regular = 1;
2415 h->ref_regular_nonweak = 1;
2416 }
2417 else
2418 h->def_regular = 1;
2419 }
2420
2421 if (h->dynindx == -1
2422 && (h->def_dynamic
2423 || h->ref_dynamic))
2424 {
2425 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2426 {
2427 eif->failed = TRUE;
2428 return FALSE;
2429 }
2430 }
2431 }
2432 else
2433 {
2434 /* Unfortunately, NON_ELF is only correct if the symbol
2435 was first seen in a non-ELF file. Fortunately, if the symbol
2436 was first seen in an ELF file, we're probably OK unless the
2437 symbol was defined in a non-ELF file. Catch that case here.
2438 FIXME: We're still in trouble if the symbol was first seen in
2439 a dynamic object, and then later in a non-ELF regular object. */
2440 if ((h->root.type == bfd_link_hash_defined
2441 || h->root.type == bfd_link_hash_defweak)
2442 && !h->def_regular
2443 && (h->root.u.def.section->owner != NULL
2444 ? (bfd_get_flavour (h->root.u.def.section->owner)
2445 != bfd_target_elf_flavour)
2446 : (bfd_is_abs_section (h->root.u.def.section)
2447 && !h->def_dynamic)))
2448 h->def_regular = 1;
2449 }
2450
2451 /* Backend specific symbol fixup. */
2452 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2453 if (bed->elf_backend_fixup_symbol
2454 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2455 return FALSE;
2456
2457 /* If this is a final link, and the symbol was defined as a common
2458 symbol in a regular object file, and there was no definition in
2459 any dynamic object, then the linker will have allocated space for
2460 the symbol in a common section but the DEF_REGULAR
2461 flag will not have been set. */
2462 if (h->root.type == bfd_link_hash_defined
2463 && !h->def_regular
2464 && h->ref_regular
2465 && !h->def_dynamic
2466 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2467 h->def_regular = 1;
2468
2469 /* If -Bsymbolic was used (which means to bind references to global
2470 symbols to the definition within the shared object), and this
2471 symbol was defined in a regular object, then it actually doesn't
2472 need a PLT entry. Likewise, if the symbol has non-default
2473 visibility. If the symbol has hidden or internal visibility, we
2474 will force it local. */
2475 if (h->needs_plt
2476 && eif->info->shared
2477 && is_elf_hash_table (eif->info->hash)
2478 && (SYMBOLIC_BIND (eif->info, h)
2479 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2480 && h->def_regular)
2481 {
2482 bfd_boolean force_local;
2483
2484 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2485 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2486 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2487 }
2488
2489 /* If a weak undefined symbol has non-default visibility, we also
2490 hide it from the dynamic linker. */
2491 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2492 && h->root.type == bfd_link_hash_undefweak)
2493 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2494
2495 /* If this is a weak defined symbol in a dynamic object, and we know
2496 the real definition in the dynamic object, copy interesting flags
2497 over to the real definition. */
2498 if (h->u.weakdef != NULL)
2499 {
2500 /* If the real definition is defined by a regular object file,
2501 don't do anything special. See the longer description in
2502 _bfd_elf_adjust_dynamic_symbol, below. */
2503 if (h->u.weakdef->def_regular)
2504 h->u.weakdef = NULL;
2505 else
2506 {
2507 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2508
2509 while (h->root.type == bfd_link_hash_indirect)
2510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2511
2512 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2513 || h->root.type == bfd_link_hash_defweak);
2514 BFD_ASSERT (weakdef->def_dynamic);
2515 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2516 || weakdef->root.type == bfd_link_hash_defweak);
2517 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2518 }
2519 }
2520
2521 return TRUE;
2522 }
2523
2524 /* Make the backend pick a good value for a dynamic symbol. This is
2525 called via elf_link_hash_traverse, and also calls itself
2526 recursively. */
2527
2528 static bfd_boolean
2529 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2530 {
2531 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2532 bfd *dynobj;
2533 const struct elf_backend_data *bed;
2534
2535 if (! is_elf_hash_table (eif->info->hash))
2536 return FALSE;
2537
2538 /* Ignore indirect symbols. These are added by the versioning code. */
2539 if (h->root.type == bfd_link_hash_indirect)
2540 return TRUE;
2541
2542 /* Fix the symbol flags. */
2543 if (! _bfd_elf_fix_symbol_flags (h, eif))
2544 return FALSE;
2545
2546 /* If this symbol does not require a PLT entry, and it is not
2547 defined by a dynamic object, or is not referenced by a regular
2548 object, ignore it. We do have to handle a weak defined symbol,
2549 even if no regular object refers to it, if we decided to add it
2550 to the dynamic symbol table. FIXME: Do we normally need to worry
2551 about symbols which are defined by one dynamic object and
2552 referenced by another one? */
2553 if (!h->needs_plt
2554 && h->type != STT_GNU_IFUNC
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2559 {
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2562 }
2563
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2568
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2574
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2579
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2588
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2602
2603 if (h->u.weakdef != NULL)
2604 {
2605 /* If we get to this point, there is an implicit reference to
2606 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2607 h->u.weakdef->ref_regular = 1;
2608
2609 /* Ensure that the backend adjust_dynamic_symbol function sees
2610 H->U.WEAKDEF before H by recursively calling ourselves. */
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2613 }
2614
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2626
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629
2630 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2631 {
2632 eif->failed = TRUE;
2633 return FALSE;
2634 }
2635
2636 return TRUE;
2637 }
2638
2639 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2640 DYNBSS. */
2641
2642 bfd_boolean
2643 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2644 struct elf_link_hash_entry *h,
2645 asection *dynbss)
2646 {
2647 unsigned int power_of_two;
2648 bfd_vma mask;
2649 asection *sec = h->root.u.def.section;
2650
2651 /* The section aligment of definition is the maximum alignment
2652 requirement of symbols defined in the section. Since we don't
2653 know the symbol alignment requirement, we start with the
2654 maximum alignment and check low bits of the symbol address
2655 for the minimum alignment. */
2656 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2657 mask = ((bfd_vma) 1 << power_of_two) - 1;
2658 while ((h->root.u.def.value & mask) != 0)
2659 {
2660 mask >>= 1;
2661 --power_of_two;
2662 }
2663
2664 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2665 dynbss))
2666 {
2667 /* Adjust the section alignment if needed. */
2668 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2669 power_of_two))
2670 return FALSE;
2671 }
2672
2673 /* We make sure that the symbol will be aligned properly. */
2674 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2675
2676 /* Define the symbol as being at this point in DYNBSS. */
2677 h->root.u.def.section = dynbss;
2678 h->root.u.def.value = dynbss->size;
2679
2680 /* Increment the size of DYNBSS to make room for the symbol. */
2681 dynbss->size += h->size;
2682
2683 if (h->protected_def)
2684 {
2685 info->callbacks->einfo
2686 (_("%P: copy reloc against protected `%T' is invalid\n"),
2687 h->root.root.string);
2688 bfd_set_error (bfd_error_bad_value);
2689 return FALSE;
2690 }
2691
2692 return TRUE;
2693 }
2694
2695 /* Adjust all external symbols pointing into SEC_MERGE sections
2696 to reflect the object merging within the sections. */
2697
2698 static bfd_boolean
2699 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2700 {
2701 asection *sec;
2702
2703 if ((h->root.type == bfd_link_hash_defined
2704 || h->root.type == bfd_link_hash_defweak)
2705 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2706 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2707 {
2708 bfd *output_bfd = (bfd *) data;
2709
2710 h->root.u.def.value =
2711 _bfd_merged_section_offset (output_bfd,
2712 &h->root.u.def.section,
2713 elf_section_data (sec)->sec_info,
2714 h->root.u.def.value);
2715 }
2716
2717 return TRUE;
2718 }
2719
2720 /* Returns false if the symbol referred to by H should be considered
2721 to resolve local to the current module, and true if it should be
2722 considered to bind dynamically. */
2723
2724 bfd_boolean
2725 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2726 struct bfd_link_info *info,
2727 bfd_boolean not_local_protected)
2728 {
2729 bfd_boolean binding_stays_local_p;
2730 const struct elf_backend_data *bed;
2731 struct elf_link_hash_table *hash_table;
2732
2733 if (h == NULL)
2734 return FALSE;
2735
2736 while (h->root.type == bfd_link_hash_indirect
2737 || h->root.type == bfd_link_hash_warning)
2738 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2739
2740 /* If it was forced local, then clearly it's not dynamic. */
2741 if (h->dynindx == -1)
2742 return FALSE;
2743 if (h->forced_local)
2744 return FALSE;
2745
2746 /* Identify the cases where name binding rules say that a
2747 visible symbol resolves locally. */
2748 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2749
2750 switch (ELF_ST_VISIBILITY (h->other))
2751 {
2752 case STV_INTERNAL:
2753 case STV_HIDDEN:
2754 return FALSE;
2755
2756 case STV_PROTECTED:
2757 hash_table = elf_hash_table (info);
2758 if (!is_elf_hash_table (hash_table))
2759 return FALSE;
2760
2761 bed = get_elf_backend_data (hash_table->dynobj);
2762
2763 /* Proper resolution for function pointer equality may require
2764 that these symbols perhaps be resolved dynamically, even though
2765 we should be resolving them to the current module. */
2766 if (!not_local_protected || !bed->is_function_type (h->type))
2767 binding_stays_local_p = TRUE;
2768 break;
2769
2770 default:
2771 break;
2772 }
2773
2774 /* If it isn't defined locally, then clearly it's dynamic. */
2775 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2776 return TRUE;
2777
2778 /* Otherwise, the symbol is dynamic if binding rules don't tell
2779 us that it remains local. */
2780 return !binding_stays_local_p;
2781 }
2782
2783 /* Return true if the symbol referred to by H should be considered
2784 to resolve local to the current module, and false otherwise. Differs
2785 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2786 undefined symbols. The two functions are virtually identical except
2787 for the place where forced_local and dynindx == -1 are tested. If
2788 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2789 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2790 the symbol is local only for defined symbols.
2791 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2792 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2793 treatment of undefined weak symbols. For those that do not make
2794 undefined weak symbols dynamic, both functions may return false. */
2795
2796 bfd_boolean
2797 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2798 struct bfd_link_info *info,
2799 bfd_boolean local_protected)
2800 {
2801 const struct elf_backend_data *bed;
2802 struct elf_link_hash_table *hash_table;
2803
2804 /* If it's a local sym, of course we resolve locally. */
2805 if (h == NULL)
2806 return TRUE;
2807
2808 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2809 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2810 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2811 return TRUE;
2812
2813 /* Common symbols that become definitions don't get the DEF_REGULAR
2814 flag set, so test it first, and don't bail out. */
2815 if (ELF_COMMON_DEF_P (h))
2816 /* Do nothing. */;
2817 /* If we don't have a definition in a regular file, then we can't
2818 resolve locally. The sym is either undefined or dynamic. */
2819 else if (!h->def_regular)
2820 return FALSE;
2821
2822 /* Forced local symbols resolve locally. */
2823 if (h->forced_local)
2824 return TRUE;
2825
2826 /* As do non-dynamic symbols. */
2827 if (h->dynindx == -1)
2828 return TRUE;
2829
2830 /* At this point, we know the symbol is defined and dynamic. In an
2831 executable it must resolve locally, likewise when building symbolic
2832 shared libraries. */
2833 if (info->executable || SYMBOLIC_BIND (info, h))
2834 return TRUE;
2835
2836 /* Now deal with defined dynamic symbols in shared libraries. Ones
2837 with default visibility might not resolve locally. */
2838 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2839 return FALSE;
2840
2841 hash_table = elf_hash_table (info);
2842 if (!is_elf_hash_table (hash_table))
2843 return TRUE;
2844
2845 bed = get_elf_backend_data (hash_table->dynobj);
2846
2847 /* STV_PROTECTED non-function symbols are local. */
2848 if (!bed->is_function_type (h->type))
2849 return TRUE;
2850
2851 /* Function pointer equality tests may require that STV_PROTECTED
2852 symbols be treated as dynamic symbols. If the address of a
2853 function not defined in an executable is set to that function's
2854 plt entry in the executable, then the address of the function in
2855 a shared library must also be the plt entry in the executable. */
2856 return local_protected;
2857 }
2858
2859 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2860 aligned. Returns the first TLS output section. */
2861
2862 struct bfd_section *
2863 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2864 {
2865 struct bfd_section *sec, *tls;
2866 unsigned int align = 0;
2867
2868 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2869 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2870 break;
2871 tls = sec;
2872
2873 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2874 if (sec->alignment_power > align)
2875 align = sec->alignment_power;
2876
2877 elf_hash_table (info)->tls_sec = tls;
2878
2879 /* Ensure the alignment of the first section is the largest alignment,
2880 so that the tls segment starts aligned. */
2881 if (tls != NULL)
2882 tls->alignment_power = align;
2883
2884 return tls;
2885 }
2886
2887 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2888 static bfd_boolean
2889 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2890 Elf_Internal_Sym *sym)
2891 {
2892 const struct elf_backend_data *bed;
2893
2894 /* Local symbols do not count, but target specific ones might. */
2895 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2896 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2897 return FALSE;
2898
2899 bed = get_elf_backend_data (abfd);
2900 /* Function symbols do not count. */
2901 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2902 return FALSE;
2903
2904 /* If the section is undefined, then so is the symbol. */
2905 if (sym->st_shndx == SHN_UNDEF)
2906 return FALSE;
2907
2908 /* If the symbol is defined in the common section, then
2909 it is a common definition and so does not count. */
2910 if (bed->common_definition (sym))
2911 return FALSE;
2912
2913 /* If the symbol is in a target specific section then we
2914 must rely upon the backend to tell us what it is. */
2915 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2916 /* FIXME - this function is not coded yet:
2917
2918 return _bfd_is_global_symbol_definition (abfd, sym);
2919
2920 Instead for now assume that the definition is not global,
2921 Even if this is wrong, at least the linker will behave
2922 in the same way that it used to do. */
2923 return FALSE;
2924
2925 return TRUE;
2926 }
2927
2928 /* Search the symbol table of the archive element of the archive ABFD
2929 whose archive map contains a mention of SYMDEF, and determine if
2930 the symbol is defined in this element. */
2931 static bfd_boolean
2932 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2933 {
2934 Elf_Internal_Shdr * hdr;
2935 bfd_size_type symcount;
2936 bfd_size_type extsymcount;
2937 bfd_size_type extsymoff;
2938 Elf_Internal_Sym *isymbuf;
2939 Elf_Internal_Sym *isym;
2940 Elf_Internal_Sym *isymend;
2941 bfd_boolean result;
2942
2943 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2944 if (abfd == NULL)
2945 return FALSE;
2946
2947 if (! bfd_check_format (abfd, bfd_object))
2948 return FALSE;
2949
2950 /* Select the appropriate symbol table. */
2951 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2952 hdr = &elf_tdata (abfd)->symtab_hdr;
2953 else
2954 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2955
2956 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2957
2958 /* The sh_info field of the symtab header tells us where the
2959 external symbols start. We don't care about the local symbols. */
2960 if (elf_bad_symtab (abfd))
2961 {
2962 extsymcount = symcount;
2963 extsymoff = 0;
2964 }
2965 else
2966 {
2967 extsymcount = symcount - hdr->sh_info;
2968 extsymoff = hdr->sh_info;
2969 }
2970
2971 if (extsymcount == 0)
2972 return FALSE;
2973
2974 /* Read in the symbol table. */
2975 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2976 NULL, NULL, NULL);
2977 if (isymbuf == NULL)
2978 return FALSE;
2979
2980 /* Scan the symbol table looking for SYMDEF. */
2981 result = FALSE;
2982 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2983 {
2984 const char *name;
2985
2986 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2987 isym->st_name);
2988 if (name == NULL)
2989 break;
2990
2991 if (strcmp (name, symdef->name) == 0)
2992 {
2993 result = is_global_data_symbol_definition (abfd, isym);
2994 break;
2995 }
2996 }
2997
2998 free (isymbuf);
2999
3000 return result;
3001 }
3002 \f
3003 /* Add an entry to the .dynamic table. */
3004
3005 bfd_boolean
3006 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3007 bfd_vma tag,
3008 bfd_vma val)
3009 {
3010 struct elf_link_hash_table *hash_table;
3011 const struct elf_backend_data *bed;
3012 asection *s;
3013 bfd_size_type newsize;
3014 bfd_byte *newcontents;
3015 Elf_Internal_Dyn dyn;
3016
3017 hash_table = elf_hash_table (info);
3018 if (! is_elf_hash_table (hash_table))
3019 return FALSE;
3020
3021 bed = get_elf_backend_data (hash_table->dynobj);
3022 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3023 BFD_ASSERT (s != NULL);
3024
3025 newsize = s->size + bed->s->sizeof_dyn;
3026 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3027 if (newcontents == NULL)
3028 return FALSE;
3029
3030 dyn.d_tag = tag;
3031 dyn.d_un.d_val = val;
3032 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3033
3034 s->size = newsize;
3035 s->contents = newcontents;
3036
3037 return TRUE;
3038 }
3039
3040 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3041 otherwise just check whether one already exists. Returns -1 on error,
3042 1 if a DT_NEEDED tag already exists, and 0 on success. */
3043
3044 static int
3045 elf_add_dt_needed_tag (bfd *abfd,
3046 struct bfd_link_info *info,
3047 const char *soname,
3048 bfd_boolean do_it)
3049 {
3050 struct elf_link_hash_table *hash_table;
3051 bfd_size_type strindex;
3052
3053 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3054 return -1;
3055
3056 hash_table = elf_hash_table (info);
3057 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3058 if (strindex == (bfd_size_type) -1)
3059 return -1;
3060
3061 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3062 {
3063 asection *sdyn;
3064 const struct elf_backend_data *bed;
3065 bfd_byte *extdyn;
3066
3067 bed = get_elf_backend_data (hash_table->dynobj);
3068 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3069 if (sdyn != NULL)
3070 for (extdyn = sdyn->contents;
3071 extdyn < sdyn->contents + sdyn->size;
3072 extdyn += bed->s->sizeof_dyn)
3073 {
3074 Elf_Internal_Dyn dyn;
3075
3076 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3077 if (dyn.d_tag == DT_NEEDED
3078 && dyn.d_un.d_val == strindex)
3079 {
3080 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3081 return 1;
3082 }
3083 }
3084 }
3085
3086 if (do_it)
3087 {
3088 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3089 return -1;
3090
3091 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3092 return -1;
3093 }
3094 else
3095 /* We were just checking for existence of the tag. */
3096 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3097
3098 return 0;
3099 }
3100
3101 static bfd_boolean
3102 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3103 {
3104 for (; needed != NULL; needed = needed->next)
3105 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3106 && strcmp (soname, needed->name) == 0)
3107 return TRUE;
3108
3109 return FALSE;
3110 }
3111
3112 /* Sort symbol by value, section, and size. */
3113 static int
3114 elf_sort_symbol (const void *arg1, const void *arg2)
3115 {
3116 const struct elf_link_hash_entry *h1;
3117 const struct elf_link_hash_entry *h2;
3118 bfd_signed_vma vdiff;
3119
3120 h1 = *(const struct elf_link_hash_entry **) arg1;
3121 h2 = *(const struct elf_link_hash_entry **) arg2;
3122 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3123 if (vdiff != 0)
3124 return vdiff > 0 ? 1 : -1;
3125 else
3126 {
3127 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3128 if (sdiff != 0)
3129 return sdiff > 0 ? 1 : -1;
3130 }
3131 vdiff = h1->size - h2->size;
3132 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3133 }
3134
3135 /* This function is used to adjust offsets into .dynstr for
3136 dynamic symbols. This is called via elf_link_hash_traverse. */
3137
3138 static bfd_boolean
3139 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3140 {
3141 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3142
3143 if (h->dynindx != -1)
3144 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3145 return TRUE;
3146 }
3147
3148 /* Assign string offsets in .dynstr, update all structures referencing
3149 them. */
3150
3151 static bfd_boolean
3152 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3153 {
3154 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3155 struct elf_link_local_dynamic_entry *entry;
3156 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3157 bfd *dynobj = hash_table->dynobj;
3158 asection *sdyn;
3159 bfd_size_type size;
3160 const struct elf_backend_data *bed;
3161 bfd_byte *extdyn;
3162
3163 _bfd_elf_strtab_finalize (dynstr);
3164 size = _bfd_elf_strtab_size (dynstr);
3165
3166 bed = get_elf_backend_data (dynobj);
3167 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3168 BFD_ASSERT (sdyn != NULL);
3169
3170 /* Update all .dynamic entries referencing .dynstr strings. */
3171 for (extdyn = sdyn->contents;
3172 extdyn < sdyn->contents + sdyn->size;
3173 extdyn += bed->s->sizeof_dyn)
3174 {
3175 Elf_Internal_Dyn dyn;
3176
3177 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3178 switch (dyn.d_tag)
3179 {
3180 case DT_STRSZ:
3181 dyn.d_un.d_val = size;
3182 break;
3183 case DT_NEEDED:
3184 case DT_SONAME:
3185 case DT_RPATH:
3186 case DT_RUNPATH:
3187 case DT_FILTER:
3188 case DT_AUXILIARY:
3189 case DT_AUDIT:
3190 case DT_DEPAUDIT:
3191 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3192 break;
3193 default:
3194 continue;
3195 }
3196 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3197 }
3198
3199 /* Now update local dynamic symbols. */
3200 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3201 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3202 entry->isym.st_name);
3203
3204 /* And the rest of dynamic symbols. */
3205 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3206
3207 /* Adjust version definitions. */
3208 if (elf_tdata (output_bfd)->cverdefs)
3209 {
3210 asection *s;
3211 bfd_byte *p;
3212 bfd_size_type i;
3213 Elf_Internal_Verdef def;
3214 Elf_Internal_Verdaux defaux;
3215
3216 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3217 p = s->contents;
3218 do
3219 {
3220 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3221 &def);
3222 p += sizeof (Elf_External_Verdef);
3223 if (def.vd_aux != sizeof (Elf_External_Verdef))
3224 continue;
3225 for (i = 0; i < def.vd_cnt; ++i)
3226 {
3227 _bfd_elf_swap_verdaux_in (output_bfd,
3228 (Elf_External_Verdaux *) p, &defaux);
3229 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3230 defaux.vda_name);
3231 _bfd_elf_swap_verdaux_out (output_bfd,
3232 &defaux, (Elf_External_Verdaux *) p);
3233 p += sizeof (Elf_External_Verdaux);
3234 }
3235 }
3236 while (def.vd_next);
3237 }
3238
3239 /* Adjust version references. */
3240 if (elf_tdata (output_bfd)->verref)
3241 {
3242 asection *s;
3243 bfd_byte *p;
3244 bfd_size_type i;
3245 Elf_Internal_Verneed need;
3246 Elf_Internal_Vernaux needaux;
3247
3248 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3249 p = s->contents;
3250 do
3251 {
3252 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3253 &need);
3254 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3255 _bfd_elf_swap_verneed_out (output_bfd, &need,
3256 (Elf_External_Verneed *) p);
3257 p += sizeof (Elf_External_Verneed);
3258 for (i = 0; i < need.vn_cnt; ++i)
3259 {
3260 _bfd_elf_swap_vernaux_in (output_bfd,
3261 (Elf_External_Vernaux *) p, &needaux);
3262 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3263 needaux.vna_name);
3264 _bfd_elf_swap_vernaux_out (output_bfd,
3265 &needaux,
3266 (Elf_External_Vernaux *) p);
3267 p += sizeof (Elf_External_Vernaux);
3268 }
3269 }
3270 while (need.vn_next);
3271 }
3272
3273 return TRUE;
3274 }
3275 \f
3276 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3277 The default is to only match when the INPUT and OUTPUT are exactly
3278 the same target. */
3279
3280 bfd_boolean
3281 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3282 const bfd_target *output)
3283 {
3284 return input == output;
3285 }
3286
3287 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3288 This version is used when different targets for the same architecture
3289 are virtually identical. */
3290
3291 bfd_boolean
3292 _bfd_elf_relocs_compatible (const bfd_target *input,
3293 const bfd_target *output)
3294 {
3295 const struct elf_backend_data *obed, *ibed;
3296
3297 if (input == output)
3298 return TRUE;
3299
3300 ibed = xvec_get_elf_backend_data (input);
3301 obed = xvec_get_elf_backend_data (output);
3302
3303 if (ibed->arch != obed->arch)
3304 return FALSE;
3305
3306 /* If both backends are using this function, deem them compatible. */
3307 return ibed->relocs_compatible == obed->relocs_compatible;
3308 }
3309
3310 /* Make a special call to the linker "notice" function to tell it that
3311 we are about to handle an as-needed lib, or have finished
3312 processing the lib. */
3313
3314 bfd_boolean
3315 _bfd_elf_notice_as_needed (bfd *ibfd,
3316 struct bfd_link_info *info,
3317 enum notice_asneeded_action act)
3318 {
3319 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3320 }
3321
3322 /* Add symbols from an ELF object file to the linker hash table. */
3323
3324 static bfd_boolean
3325 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3326 {
3327 Elf_Internal_Ehdr *ehdr;
3328 Elf_Internal_Shdr *hdr;
3329 bfd_size_type symcount;
3330 bfd_size_type extsymcount;
3331 bfd_size_type extsymoff;
3332 struct elf_link_hash_entry **sym_hash;
3333 bfd_boolean dynamic;
3334 Elf_External_Versym *extversym = NULL;
3335 Elf_External_Versym *ever;
3336 struct elf_link_hash_entry *weaks;
3337 struct elf_link_hash_entry **nondeflt_vers = NULL;
3338 bfd_size_type nondeflt_vers_cnt = 0;
3339 Elf_Internal_Sym *isymbuf = NULL;
3340 Elf_Internal_Sym *isym;
3341 Elf_Internal_Sym *isymend;
3342 const struct elf_backend_data *bed;
3343 bfd_boolean add_needed;
3344 struct elf_link_hash_table *htab;
3345 bfd_size_type amt;
3346 void *alloc_mark = NULL;
3347 struct bfd_hash_entry **old_table = NULL;
3348 unsigned int old_size = 0;
3349 unsigned int old_count = 0;
3350 void *old_tab = NULL;
3351 void *old_ent;
3352 struct bfd_link_hash_entry *old_undefs = NULL;
3353 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3354 long old_dynsymcount = 0;
3355 bfd_size_type old_dynstr_size = 0;
3356 size_t tabsize = 0;
3357 asection *s;
3358 bfd_boolean just_syms;
3359
3360 htab = elf_hash_table (info);
3361 bed = get_elf_backend_data (abfd);
3362
3363 if ((abfd->flags & DYNAMIC) == 0)
3364 dynamic = FALSE;
3365 else
3366 {
3367 dynamic = TRUE;
3368
3369 /* You can't use -r against a dynamic object. Also, there's no
3370 hope of using a dynamic object which does not exactly match
3371 the format of the output file. */
3372 if (info->relocatable
3373 || !is_elf_hash_table (htab)
3374 || info->output_bfd->xvec != abfd->xvec)
3375 {
3376 if (info->relocatable)
3377 bfd_set_error (bfd_error_invalid_operation);
3378 else
3379 bfd_set_error (bfd_error_wrong_format);
3380 goto error_return;
3381 }
3382 }
3383
3384 ehdr = elf_elfheader (abfd);
3385 if (info->warn_alternate_em
3386 && bed->elf_machine_code != ehdr->e_machine
3387 && ((bed->elf_machine_alt1 != 0
3388 && ehdr->e_machine == bed->elf_machine_alt1)
3389 || (bed->elf_machine_alt2 != 0
3390 && ehdr->e_machine == bed->elf_machine_alt2)))
3391 info->callbacks->einfo
3392 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3393 ehdr->e_machine, abfd, bed->elf_machine_code);
3394
3395 /* As a GNU extension, any input sections which are named
3396 .gnu.warning.SYMBOL are treated as warning symbols for the given
3397 symbol. This differs from .gnu.warning sections, which generate
3398 warnings when they are included in an output file. */
3399 /* PR 12761: Also generate this warning when building shared libraries. */
3400 for (s = abfd->sections; s != NULL; s = s->next)
3401 {
3402 const char *name;
3403
3404 name = bfd_get_section_name (abfd, s);
3405 if (CONST_STRNEQ (name, ".gnu.warning."))
3406 {
3407 char *msg;
3408 bfd_size_type sz;
3409
3410 name += sizeof ".gnu.warning." - 1;
3411
3412 /* If this is a shared object, then look up the symbol
3413 in the hash table. If it is there, and it is already
3414 been defined, then we will not be using the entry
3415 from this shared object, so we don't need to warn.
3416 FIXME: If we see the definition in a regular object
3417 later on, we will warn, but we shouldn't. The only
3418 fix is to keep track of what warnings we are supposed
3419 to emit, and then handle them all at the end of the
3420 link. */
3421 if (dynamic)
3422 {
3423 struct elf_link_hash_entry *h;
3424
3425 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3426
3427 /* FIXME: What about bfd_link_hash_common? */
3428 if (h != NULL
3429 && (h->root.type == bfd_link_hash_defined
3430 || h->root.type == bfd_link_hash_defweak))
3431 continue;
3432 }
3433
3434 sz = s->size;
3435 msg = (char *) bfd_alloc (abfd, sz + 1);
3436 if (msg == NULL)
3437 goto error_return;
3438
3439 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3440 goto error_return;
3441
3442 msg[sz] = '\0';
3443
3444 if (! (_bfd_generic_link_add_one_symbol
3445 (info, abfd, name, BSF_WARNING, s, 0, msg,
3446 FALSE, bed->collect, NULL)))
3447 goto error_return;
3448
3449 if (!info->relocatable && info->executable)
3450 {
3451 /* Clobber the section size so that the warning does
3452 not get copied into the output file. */
3453 s->size = 0;
3454
3455 /* Also set SEC_EXCLUDE, so that symbols defined in
3456 the warning section don't get copied to the output. */
3457 s->flags |= SEC_EXCLUDE;
3458 }
3459 }
3460 }
3461
3462 just_syms = ((s = abfd->sections) != NULL
3463 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3464
3465 add_needed = TRUE;
3466 if (! dynamic)
3467 {
3468 /* If we are creating a shared library, create all the dynamic
3469 sections immediately. We need to attach them to something,
3470 so we attach them to this BFD, provided it is the right
3471 format and is not from ld --just-symbols. FIXME: If there
3472 are no input BFD's of the same format as the output, we can't
3473 make a shared library. */
3474 if (!just_syms
3475 && info->shared
3476 && is_elf_hash_table (htab)
3477 && info->output_bfd->xvec == abfd->xvec
3478 && !htab->dynamic_sections_created)
3479 {
3480 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3481 goto error_return;
3482 }
3483 }
3484 else if (!is_elf_hash_table (htab))
3485 goto error_return;
3486 else
3487 {
3488 const char *soname = NULL;
3489 char *audit = NULL;
3490 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3491 int ret;
3492
3493 /* ld --just-symbols and dynamic objects don't mix very well.
3494 ld shouldn't allow it. */
3495 if (just_syms)
3496 abort ();
3497
3498 /* If this dynamic lib was specified on the command line with
3499 --as-needed in effect, then we don't want to add a DT_NEEDED
3500 tag unless the lib is actually used. Similary for libs brought
3501 in by another lib's DT_NEEDED. When --no-add-needed is used
3502 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3503 any dynamic library in DT_NEEDED tags in the dynamic lib at
3504 all. */
3505 add_needed = (elf_dyn_lib_class (abfd)
3506 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3507 | DYN_NO_NEEDED)) == 0;
3508
3509 s = bfd_get_section_by_name (abfd, ".dynamic");
3510 if (s != NULL)
3511 {
3512 bfd_byte *dynbuf;
3513 bfd_byte *extdyn;
3514 unsigned int elfsec;
3515 unsigned long shlink;
3516
3517 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3518 {
3519 error_free_dyn:
3520 free (dynbuf);
3521 goto error_return;
3522 }
3523
3524 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3525 if (elfsec == SHN_BAD)
3526 goto error_free_dyn;
3527 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3528
3529 for (extdyn = dynbuf;
3530 extdyn < dynbuf + s->size;
3531 extdyn += bed->s->sizeof_dyn)
3532 {
3533 Elf_Internal_Dyn dyn;
3534
3535 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3536 if (dyn.d_tag == DT_SONAME)
3537 {
3538 unsigned int tagv = dyn.d_un.d_val;
3539 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3540 if (soname == NULL)
3541 goto error_free_dyn;
3542 }
3543 if (dyn.d_tag == DT_NEEDED)
3544 {
3545 struct bfd_link_needed_list *n, **pn;
3546 char *fnm, *anm;
3547 unsigned int tagv = dyn.d_un.d_val;
3548
3549 amt = sizeof (struct bfd_link_needed_list);
3550 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3551 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3552 if (n == NULL || fnm == NULL)
3553 goto error_free_dyn;
3554 amt = strlen (fnm) + 1;
3555 anm = (char *) bfd_alloc (abfd, amt);
3556 if (anm == NULL)
3557 goto error_free_dyn;
3558 memcpy (anm, fnm, amt);
3559 n->name = anm;
3560 n->by = abfd;
3561 n->next = NULL;
3562 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3563 ;
3564 *pn = n;
3565 }
3566 if (dyn.d_tag == DT_RUNPATH)
3567 {
3568 struct bfd_link_needed_list *n, **pn;
3569 char *fnm, *anm;
3570 unsigned int tagv = dyn.d_un.d_val;
3571
3572 amt = sizeof (struct bfd_link_needed_list);
3573 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3574 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 if (n == NULL || fnm == NULL)
3576 goto error_free_dyn;
3577 amt = strlen (fnm) + 1;
3578 anm = (char *) bfd_alloc (abfd, amt);
3579 if (anm == NULL)
3580 goto error_free_dyn;
3581 memcpy (anm, fnm, amt);
3582 n->name = anm;
3583 n->by = abfd;
3584 n->next = NULL;
3585 for (pn = & runpath;
3586 *pn != NULL;
3587 pn = &(*pn)->next)
3588 ;
3589 *pn = n;
3590 }
3591 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3592 if (!runpath && dyn.d_tag == DT_RPATH)
3593 {
3594 struct bfd_link_needed_list *n, **pn;
3595 char *fnm, *anm;
3596 unsigned int tagv = dyn.d_un.d_val;
3597
3598 amt = sizeof (struct bfd_link_needed_list);
3599 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3600 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3601 if (n == NULL || fnm == NULL)
3602 goto error_free_dyn;
3603 amt = strlen (fnm) + 1;
3604 anm = (char *) bfd_alloc (abfd, amt);
3605 if (anm == NULL)
3606 goto error_free_dyn;
3607 memcpy (anm, fnm, amt);
3608 n->name = anm;
3609 n->by = abfd;
3610 n->next = NULL;
3611 for (pn = & rpath;
3612 *pn != NULL;
3613 pn = &(*pn)->next)
3614 ;
3615 *pn = n;
3616 }
3617 if (dyn.d_tag == DT_AUDIT)
3618 {
3619 unsigned int tagv = dyn.d_un.d_val;
3620 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3621 }
3622 }
3623
3624 free (dynbuf);
3625 }
3626
3627 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3628 frees all more recently bfd_alloc'd blocks as well. */
3629 if (runpath)
3630 rpath = runpath;
3631
3632 if (rpath)
3633 {
3634 struct bfd_link_needed_list **pn;
3635 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3636 ;
3637 *pn = rpath;
3638 }
3639
3640 /* We do not want to include any of the sections in a dynamic
3641 object in the output file. We hack by simply clobbering the
3642 list of sections in the BFD. This could be handled more
3643 cleanly by, say, a new section flag; the existing
3644 SEC_NEVER_LOAD flag is not the one we want, because that one
3645 still implies that the section takes up space in the output
3646 file. */
3647 bfd_section_list_clear (abfd);
3648
3649 /* Find the name to use in a DT_NEEDED entry that refers to this
3650 object. If the object has a DT_SONAME entry, we use it.
3651 Otherwise, if the generic linker stuck something in
3652 elf_dt_name, we use that. Otherwise, we just use the file
3653 name. */
3654 if (soname == NULL || *soname == '\0')
3655 {
3656 soname = elf_dt_name (abfd);
3657 if (soname == NULL || *soname == '\0')
3658 soname = bfd_get_filename (abfd);
3659 }
3660
3661 /* Save the SONAME because sometimes the linker emulation code
3662 will need to know it. */
3663 elf_dt_name (abfd) = soname;
3664
3665 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3666 if (ret < 0)
3667 goto error_return;
3668
3669 /* If we have already included this dynamic object in the
3670 link, just ignore it. There is no reason to include a
3671 particular dynamic object more than once. */
3672 if (ret > 0)
3673 return TRUE;
3674
3675 /* Save the DT_AUDIT entry for the linker emulation code. */
3676 elf_dt_audit (abfd) = audit;
3677 }
3678
3679 /* If this is a dynamic object, we always link against the .dynsym
3680 symbol table, not the .symtab symbol table. The dynamic linker
3681 will only see the .dynsym symbol table, so there is no reason to
3682 look at .symtab for a dynamic object. */
3683
3684 if (! dynamic || elf_dynsymtab (abfd) == 0)
3685 hdr = &elf_tdata (abfd)->symtab_hdr;
3686 else
3687 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3688
3689 symcount = hdr->sh_size / bed->s->sizeof_sym;
3690
3691 /* The sh_info field of the symtab header tells us where the
3692 external symbols start. We don't care about the local symbols at
3693 this point. */
3694 if (elf_bad_symtab (abfd))
3695 {
3696 extsymcount = symcount;
3697 extsymoff = 0;
3698 }
3699 else
3700 {
3701 extsymcount = symcount - hdr->sh_info;
3702 extsymoff = hdr->sh_info;
3703 }
3704
3705 sym_hash = elf_sym_hashes (abfd);
3706 if (extsymcount != 0)
3707 {
3708 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3709 NULL, NULL, NULL);
3710 if (isymbuf == NULL)
3711 goto error_return;
3712
3713 if (sym_hash == NULL)
3714 {
3715 /* We store a pointer to the hash table entry for each
3716 external symbol. */
3717 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3718 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3719 if (sym_hash == NULL)
3720 goto error_free_sym;
3721 elf_sym_hashes (abfd) = sym_hash;
3722 }
3723 }
3724
3725 if (dynamic)
3726 {
3727 /* Read in any version definitions. */
3728 if (!_bfd_elf_slurp_version_tables (abfd,
3729 info->default_imported_symver))
3730 goto error_free_sym;
3731
3732 /* Read in the symbol versions, but don't bother to convert them
3733 to internal format. */
3734 if (elf_dynversym (abfd) != 0)
3735 {
3736 Elf_Internal_Shdr *versymhdr;
3737
3738 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3739 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3740 if (extversym == NULL)
3741 goto error_free_sym;
3742 amt = versymhdr->sh_size;
3743 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3744 || bfd_bread (extversym, amt, abfd) != amt)
3745 goto error_free_vers;
3746 }
3747 }
3748
3749 /* If we are loading an as-needed shared lib, save the symbol table
3750 state before we start adding symbols. If the lib turns out
3751 to be unneeded, restore the state. */
3752 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3753 {
3754 unsigned int i;
3755 size_t entsize;
3756
3757 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3758 {
3759 struct bfd_hash_entry *p;
3760 struct elf_link_hash_entry *h;
3761
3762 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3763 {
3764 h = (struct elf_link_hash_entry *) p;
3765 entsize += htab->root.table.entsize;
3766 if (h->root.type == bfd_link_hash_warning)
3767 entsize += htab->root.table.entsize;
3768 }
3769 }
3770
3771 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3772 old_tab = bfd_malloc (tabsize + entsize);
3773 if (old_tab == NULL)
3774 goto error_free_vers;
3775
3776 /* Remember the current objalloc pointer, so that all mem for
3777 symbols added can later be reclaimed. */
3778 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3779 if (alloc_mark == NULL)
3780 goto error_free_vers;
3781
3782 /* Make a special call to the linker "notice" function to
3783 tell it that we are about to handle an as-needed lib. */
3784 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3785 goto error_free_vers;
3786
3787 /* Clone the symbol table. Remember some pointers into the
3788 symbol table, and dynamic symbol count. */
3789 old_ent = (char *) old_tab + tabsize;
3790 memcpy (old_tab, htab->root.table.table, tabsize);
3791 old_undefs = htab->root.undefs;
3792 old_undefs_tail = htab->root.undefs_tail;
3793 old_table = htab->root.table.table;
3794 old_size = htab->root.table.size;
3795 old_count = htab->root.table.count;
3796 old_dynsymcount = htab->dynsymcount;
3797 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3798
3799 for (i = 0; i < htab->root.table.size; i++)
3800 {
3801 struct bfd_hash_entry *p;
3802 struct elf_link_hash_entry *h;
3803
3804 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3805 {
3806 memcpy (old_ent, p, htab->root.table.entsize);
3807 old_ent = (char *) old_ent + htab->root.table.entsize;
3808 h = (struct elf_link_hash_entry *) p;
3809 if (h->root.type == bfd_link_hash_warning)
3810 {
3811 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 }
3814 }
3815 }
3816 }
3817
3818 weaks = NULL;
3819 ever = extversym != NULL ? extversym + extsymoff : NULL;
3820 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3821 isym < isymend;
3822 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3823 {
3824 int bind;
3825 bfd_vma value;
3826 asection *sec, *new_sec;
3827 flagword flags;
3828 const char *name;
3829 struct elf_link_hash_entry *h;
3830 struct elf_link_hash_entry *hi;
3831 bfd_boolean definition;
3832 bfd_boolean size_change_ok;
3833 bfd_boolean type_change_ok;
3834 bfd_boolean new_weakdef;
3835 bfd_boolean new_weak;
3836 bfd_boolean old_weak;
3837 bfd_boolean override;
3838 bfd_boolean common;
3839 unsigned int old_alignment;
3840 bfd *old_bfd;
3841
3842 override = FALSE;
3843
3844 flags = BSF_NO_FLAGS;
3845 sec = NULL;
3846 value = isym->st_value;
3847 common = bed->common_definition (isym);
3848
3849 bind = ELF_ST_BIND (isym->st_info);
3850 switch (bind)
3851 {
3852 case STB_LOCAL:
3853 /* This should be impossible, since ELF requires that all
3854 global symbols follow all local symbols, and that sh_info
3855 point to the first global symbol. Unfortunately, Irix 5
3856 screws this up. */
3857 continue;
3858
3859 case STB_GLOBAL:
3860 if (isym->st_shndx != SHN_UNDEF && !common)
3861 flags = BSF_GLOBAL;
3862 break;
3863
3864 case STB_WEAK:
3865 flags = BSF_WEAK;
3866 break;
3867
3868 case STB_GNU_UNIQUE:
3869 flags = BSF_GNU_UNIQUE;
3870 break;
3871
3872 default:
3873 /* Leave it up to the processor backend. */
3874 break;
3875 }
3876
3877 if (isym->st_shndx == SHN_UNDEF)
3878 sec = bfd_und_section_ptr;
3879 else if (isym->st_shndx == SHN_ABS)
3880 sec = bfd_abs_section_ptr;
3881 else if (isym->st_shndx == SHN_COMMON)
3882 {
3883 sec = bfd_com_section_ptr;
3884 /* What ELF calls the size we call the value. What ELF
3885 calls the value we call the alignment. */
3886 value = isym->st_size;
3887 }
3888 else
3889 {
3890 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3891 if (sec == NULL)
3892 sec = bfd_abs_section_ptr;
3893 else if (discarded_section (sec))
3894 {
3895 /* Symbols from discarded section are undefined. We keep
3896 its visibility. */
3897 sec = bfd_und_section_ptr;
3898 isym->st_shndx = SHN_UNDEF;
3899 }
3900 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3901 value -= sec->vma;
3902 }
3903
3904 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3905 isym->st_name);
3906 if (name == NULL)
3907 goto error_free_vers;
3908
3909 if (isym->st_shndx == SHN_COMMON
3910 && (abfd->flags & BFD_PLUGIN) != 0)
3911 {
3912 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3913
3914 if (xc == NULL)
3915 {
3916 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3917 | SEC_EXCLUDE);
3918 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3919 if (xc == NULL)
3920 goto error_free_vers;
3921 }
3922 sec = xc;
3923 }
3924 else if (isym->st_shndx == SHN_COMMON
3925 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3926 && !info->relocatable)
3927 {
3928 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3929
3930 if (tcomm == NULL)
3931 {
3932 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3933 | SEC_LINKER_CREATED);
3934 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3935 if (tcomm == NULL)
3936 goto error_free_vers;
3937 }
3938 sec = tcomm;
3939 }
3940 else if (bed->elf_add_symbol_hook)
3941 {
3942 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3943 &sec, &value))
3944 goto error_free_vers;
3945
3946 /* The hook function sets the name to NULL if this symbol
3947 should be skipped for some reason. */
3948 if (name == NULL)
3949 continue;
3950 }
3951
3952 /* Sanity check that all possibilities were handled. */
3953 if (sec == NULL)
3954 {
3955 bfd_set_error (bfd_error_bad_value);
3956 goto error_free_vers;
3957 }
3958
3959 /* Silently discard TLS symbols from --just-syms. There's
3960 no way to combine a static TLS block with a new TLS block
3961 for this executable. */
3962 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3963 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3964 continue;
3965
3966 if (bfd_is_und_section (sec)
3967 || bfd_is_com_section (sec))
3968 definition = FALSE;
3969 else
3970 definition = TRUE;
3971
3972 size_change_ok = FALSE;
3973 type_change_ok = bed->type_change_ok;
3974 old_weak = FALSE;
3975 old_alignment = 0;
3976 old_bfd = NULL;
3977 new_sec = sec;
3978
3979 if (is_elf_hash_table (htab))
3980 {
3981 Elf_Internal_Versym iver;
3982 unsigned int vernum = 0;
3983 bfd_boolean skip;
3984
3985 if (ever == NULL)
3986 {
3987 if (info->default_imported_symver)
3988 /* Use the default symbol version created earlier. */
3989 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3990 else
3991 iver.vs_vers = 0;
3992 }
3993 else
3994 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3995
3996 vernum = iver.vs_vers & VERSYM_VERSION;
3997
3998 /* If this is a hidden symbol, or if it is not version
3999 1, we append the version name to the symbol name.
4000 However, we do not modify a non-hidden absolute symbol
4001 if it is not a function, because it might be the version
4002 symbol itself. FIXME: What if it isn't? */
4003 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4004 || (vernum > 1
4005 && (!bfd_is_abs_section (sec)
4006 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4007 {
4008 const char *verstr;
4009 size_t namelen, verlen, newlen;
4010 char *newname, *p;
4011
4012 if (isym->st_shndx != SHN_UNDEF)
4013 {
4014 if (vernum > elf_tdata (abfd)->cverdefs)
4015 verstr = NULL;
4016 else if (vernum > 1)
4017 verstr =
4018 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4019 else
4020 verstr = "";
4021
4022 if (verstr == NULL)
4023 {
4024 (*_bfd_error_handler)
4025 (_("%B: %s: invalid version %u (max %d)"),
4026 abfd, name, vernum,
4027 elf_tdata (abfd)->cverdefs);
4028 bfd_set_error (bfd_error_bad_value);
4029 goto error_free_vers;
4030 }
4031 }
4032 else
4033 {
4034 /* We cannot simply test for the number of
4035 entries in the VERNEED section since the
4036 numbers for the needed versions do not start
4037 at 0. */
4038 Elf_Internal_Verneed *t;
4039
4040 verstr = NULL;
4041 for (t = elf_tdata (abfd)->verref;
4042 t != NULL;
4043 t = t->vn_nextref)
4044 {
4045 Elf_Internal_Vernaux *a;
4046
4047 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4048 {
4049 if (a->vna_other == vernum)
4050 {
4051 verstr = a->vna_nodename;
4052 break;
4053 }
4054 }
4055 if (a != NULL)
4056 break;
4057 }
4058 if (verstr == NULL)
4059 {
4060 (*_bfd_error_handler)
4061 (_("%B: %s: invalid needed version %d"),
4062 abfd, name, vernum);
4063 bfd_set_error (bfd_error_bad_value);
4064 goto error_free_vers;
4065 }
4066 }
4067
4068 namelen = strlen (name);
4069 verlen = strlen (verstr);
4070 newlen = namelen + verlen + 2;
4071 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4072 && isym->st_shndx != SHN_UNDEF)
4073 ++newlen;
4074
4075 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4076 if (newname == NULL)
4077 goto error_free_vers;
4078 memcpy (newname, name, namelen);
4079 p = newname + namelen;
4080 *p++ = ELF_VER_CHR;
4081 /* If this is a defined non-hidden version symbol,
4082 we add another @ to the name. This indicates the
4083 default version of the symbol. */
4084 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4085 && isym->st_shndx != SHN_UNDEF)
4086 *p++ = ELF_VER_CHR;
4087 memcpy (p, verstr, verlen + 1);
4088
4089 name = newname;
4090 }
4091
4092 /* If this symbol has default visibility and the user has
4093 requested we not re-export it, then mark it as hidden. */
4094 if (definition
4095 && !dynamic
4096 && (abfd->no_export
4097 || (abfd->my_archive && abfd->my_archive->no_export))
4098 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4099 isym->st_other = (STV_HIDDEN
4100 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4101
4102 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4103 sym_hash, &old_bfd, &old_weak,
4104 &old_alignment, &skip, &override,
4105 &type_change_ok, &size_change_ok))
4106 goto error_free_vers;
4107
4108 if (skip)
4109 continue;
4110
4111 if (override)
4112 definition = FALSE;
4113
4114 h = *sym_hash;
4115 while (h->root.type == bfd_link_hash_indirect
4116 || h->root.type == bfd_link_hash_warning)
4117 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4118
4119 if (elf_tdata (abfd)->verdef != NULL
4120 && vernum > 1
4121 && definition)
4122 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4123 }
4124
4125 if (! (_bfd_generic_link_add_one_symbol
4126 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4127 (struct bfd_link_hash_entry **) sym_hash)))
4128 goto error_free_vers;
4129
4130 h = *sym_hash;
4131 /* We need to make sure that indirect symbol dynamic flags are
4132 updated. */
4133 hi = h;
4134 while (h->root.type == bfd_link_hash_indirect
4135 || h->root.type == bfd_link_hash_warning)
4136 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4137
4138 *sym_hash = h;
4139
4140 new_weak = (flags & BSF_WEAK) != 0;
4141 new_weakdef = FALSE;
4142 if (dynamic
4143 && definition
4144 && new_weak
4145 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4146 && is_elf_hash_table (htab)
4147 && h->u.weakdef == NULL)
4148 {
4149 /* Keep a list of all weak defined non function symbols from
4150 a dynamic object, using the weakdef field. Later in this
4151 function we will set the weakdef field to the correct
4152 value. We only put non-function symbols from dynamic
4153 objects on this list, because that happens to be the only
4154 time we need to know the normal symbol corresponding to a
4155 weak symbol, and the information is time consuming to
4156 figure out. If the weakdef field is not already NULL,
4157 then this symbol was already defined by some previous
4158 dynamic object, and we will be using that previous
4159 definition anyhow. */
4160
4161 h->u.weakdef = weaks;
4162 weaks = h;
4163 new_weakdef = TRUE;
4164 }
4165
4166 /* Set the alignment of a common symbol. */
4167 if ((common || bfd_is_com_section (sec))
4168 && h->root.type == bfd_link_hash_common)
4169 {
4170 unsigned int align;
4171
4172 if (common)
4173 align = bfd_log2 (isym->st_value);
4174 else
4175 {
4176 /* The new symbol is a common symbol in a shared object.
4177 We need to get the alignment from the section. */
4178 align = new_sec->alignment_power;
4179 }
4180 if (align > old_alignment)
4181 h->root.u.c.p->alignment_power = align;
4182 else
4183 h->root.u.c.p->alignment_power = old_alignment;
4184 }
4185
4186 if (is_elf_hash_table (htab))
4187 {
4188 /* Set a flag in the hash table entry indicating the type of
4189 reference or definition we just found. A dynamic symbol
4190 is one which is referenced or defined by both a regular
4191 object and a shared object. */
4192 bfd_boolean dynsym = FALSE;
4193
4194 /* Plugin symbols aren't normal. Don't set def_regular or
4195 ref_regular for them, or make them dynamic. */
4196 if ((abfd->flags & BFD_PLUGIN) != 0)
4197 ;
4198 else if (! dynamic)
4199 {
4200 if (! definition)
4201 {
4202 h->ref_regular = 1;
4203 if (bind != STB_WEAK)
4204 h->ref_regular_nonweak = 1;
4205 }
4206 else
4207 {
4208 h->def_regular = 1;
4209 if (h->def_dynamic)
4210 {
4211 h->def_dynamic = 0;
4212 h->ref_dynamic = 1;
4213 }
4214 }
4215
4216 /* If the indirect symbol has been forced local, don't
4217 make the real symbol dynamic. */
4218 if ((h == hi || !hi->forced_local)
4219 && (! info->executable
4220 || h->def_dynamic
4221 || h->ref_dynamic))
4222 dynsym = TRUE;
4223 }
4224 else
4225 {
4226 if (! definition)
4227 {
4228 h->ref_dynamic = 1;
4229 hi->ref_dynamic = 1;
4230 }
4231 else
4232 {
4233 h->def_dynamic = 1;
4234 hi->def_dynamic = 1;
4235 }
4236
4237 /* If the indirect symbol has been forced local, don't
4238 make the real symbol dynamic. */
4239 if ((h == hi || !hi->forced_local)
4240 && (h->def_regular
4241 || h->ref_regular
4242 || (h->u.weakdef != NULL
4243 && ! new_weakdef
4244 && h->u.weakdef->dynindx != -1)))
4245 dynsym = TRUE;
4246 }
4247
4248 /* Check to see if we need to add an indirect symbol for
4249 the default name. */
4250 if (definition
4251 || (!override && h->root.type == bfd_link_hash_common))
4252 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4253 sec, value, &old_bfd, &dynsym))
4254 goto error_free_vers;
4255
4256 /* Check the alignment when a common symbol is involved. This
4257 can change when a common symbol is overridden by a normal
4258 definition or a common symbol is ignored due to the old
4259 normal definition. We need to make sure the maximum
4260 alignment is maintained. */
4261 if ((old_alignment || common)
4262 && h->root.type != bfd_link_hash_common)
4263 {
4264 unsigned int common_align;
4265 unsigned int normal_align;
4266 unsigned int symbol_align;
4267 bfd *normal_bfd;
4268 bfd *common_bfd;
4269
4270 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4271 || h->root.type == bfd_link_hash_defweak);
4272
4273 symbol_align = ffs (h->root.u.def.value) - 1;
4274 if (h->root.u.def.section->owner != NULL
4275 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4276 {
4277 normal_align = h->root.u.def.section->alignment_power;
4278 if (normal_align > symbol_align)
4279 normal_align = symbol_align;
4280 }
4281 else
4282 normal_align = symbol_align;
4283
4284 if (old_alignment)
4285 {
4286 common_align = old_alignment;
4287 common_bfd = old_bfd;
4288 normal_bfd = abfd;
4289 }
4290 else
4291 {
4292 common_align = bfd_log2 (isym->st_value);
4293 common_bfd = abfd;
4294 normal_bfd = old_bfd;
4295 }
4296
4297 if (normal_align < common_align)
4298 {
4299 /* PR binutils/2735 */
4300 if (normal_bfd == NULL)
4301 (*_bfd_error_handler)
4302 (_("Warning: alignment %u of common symbol `%s' in %B is"
4303 " greater than the alignment (%u) of its section %A"),
4304 common_bfd, h->root.u.def.section,
4305 1 << common_align, name, 1 << normal_align);
4306 else
4307 (*_bfd_error_handler)
4308 (_("Warning: alignment %u of symbol `%s' in %B"
4309 " is smaller than %u in %B"),
4310 normal_bfd, common_bfd,
4311 1 << normal_align, name, 1 << common_align);
4312 }
4313 }
4314
4315 /* Remember the symbol size if it isn't undefined. */
4316 if (isym->st_size != 0
4317 && isym->st_shndx != SHN_UNDEF
4318 && (definition || h->size == 0))
4319 {
4320 if (h->size != 0
4321 && h->size != isym->st_size
4322 && ! size_change_ok)
4323 (*_bfd_error_handler)
4324 (_("Warning: size of symbol `%s' changed"
4325 " from %lu in %B to %lu in %B"),
4326 old_bfd, abfd,
4327 name, (unsigned long) h->size,
4328 (unsigned long) isym->st_size);
4329
4330 h->size = isym->st_size;
4331 }
4332
4333 /* If this is a common symbol, then we always want H->SIZE
4334 to be the size of the common symbol. The code just above
4335 won't fix the size if a common symbol becomes larger. We
4336 don't warn about a size change here, because that is
4337 covered by --warn-common. Allow changes between different
4338 function types. */
4339 if (h->root.type == bfd_link_hash_common)
4340 h->size = h->root.u.c.size;
4341
4342 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4343 && ((definition && !new_weak)
4344 || (old_weak && h->root.type == bfd_link_hash_common)
4345 || h->type == STT_NOTYPE))
4346 {
4347 unsigned int type = ELF_ST_TYPE (isym->st_info);
4348
4349 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4350 symbol. */
4351 if (type == STT_GNU_IFUNC
4352 && (abfd->flags & DYNAMIC) != 0)
4353 type = STT_FUNC;
4354
4355 if (h->type != type)
4356 {
4357 if (h->type != STT_NOTYPE && ! type_change_ok)
4358 (*_bfd_error_handler)
4359 (_("Warning: type of symbol `%s' changed"
4360 " from %d to %d in %B"),
4361 abfd, name, h->type, type);
4362
4363 h->type = type;
4364 }
4365 }
4366
4367 /* Merge st_other field. */
4368 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4369
4370 /* We don't want to make debug symbol dynamic. */
4371 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4372 dynsym = FALSE;
4373
4374 /* Nor should we make plugin symbols dynamic. */
4375 if ((abfd->flags & BFD_PLUGIN) != 0)
4376 dynsym = FALSE;
4377
4378 if (definition)
4379 {
4380 h->target_internal = isym->st_target_internal;
4381 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4382 }
4383
4384 if (definition && !dynamic)
4385 {
4386 char *p = strchr (name, ELF_VER_CHR);
4387 if (p != NULL && p[1] != ELF_VER_CHR)
4388 {
4389 /* Queue non-default versions so that .symver x, x@FOO
4390 aliases can be checked. */
4391 if (!nondeflt_vers)
4392 {
4393 amt = ((isymend - isym + 1)
4394 * sizeof (struct elf_link_hash_entry *));
4395 nondeflt_vers =
4396 (struct elf_link_hash_entry **) bfd_malloc (amt);
4397 if (!nondeflt_vers)
4398 goto error_free_vers;
4399 }
4400 nondeflt_vers[nondeflt_vers_cnt++] = h;
4401 }
4402 }
4403
4404 if (dynsym && h->dynindx == -1)
4405 {
4406 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4407 goto error_free_vers;
4408 if (h->u.weakdef != NULL
4409 && ! new_weakdef
4410 && h->u.weakdef->dynindx == -1)
4411 {
4412 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4413 goto error_free_vers;
4414 }
4415 }
4416 else if (dynsym && h->dynindx != -1)
4417 /* If the symbol already has a dynamic index, but
4418 visibility says it should not be visible, turn it into
4419 a local symbol. */
4420 switch (ELF_ST_VISIBILITY (h->other))
4421 {
4422 case STV_INTERNAL:
4423 case STV_HIDDEN:
4424 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4425 dynsym = FALSE;
4426 break;
4427 }
4428
4429 /* Don't add DT_NEEDED for references from the dummy bfd. */
4430 if (!add_needed
4431 && definition
4432 && ((dynsym
4433 && h->ref_regular_nonweak
4434 && (old_bfd == NULL
4435 || (old_bfd->flags & BFD_PLUGIN) == 0))
4436 || (h->ref_dynamic_nonweak
4437 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4438 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4439 {
4440 int ret;
4441 const char *soname = elf_dt_name (abfd);
4442
4443 info->callbacks->minfo ("%!", soname, old_bfd,
4444 h->root.root.string);
4445
4446 /* A symbol from a library loaded via DT_NEEDED of some
4447 other library is referenced by a regular object.
4448 Add a DT_NEEDED entry for it. Issue an error if
4449 --no-add-needed is used and the reference was not
4450 a weak one. */
4451 if (old_bfd != NULL
4452 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4453 {
4454 (*_bfd_error_handler)
4455 (_("%B: undefined reference to symbol '%s'"),
4456 old_bfd, name);
4457 bfd_set_error (bfd_error_missing_dso);
4458 goto error_free_vers;
4459 }
4460
4461 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4462 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4463
4464 add_needed = TRUE;
4465 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4466 if (ret < 0)
4467 goto error_free_vers;
4468
4469 BFD_ASSERT (ret == 0);
4470 }
4471 }
4472 }
4473
4474 if (extversym != NULL)
4475 {
4476 free (extversym);
4477 extversym = NULL;
4478 }
4479
4480 if (isymbuf != NULL)
4481 {
4482 free (isymbuf);
4483 isymbuf = NULL;
4484 }
4485
4486 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4487 {
4488 unsigned int i;
4489
4490 /* Restore the symbol table. */
4491 old_ent = (char *) old_tab + tabsize;
4492 memset (elf_sym_hashes (abfd), 0,
4493 extsymcount * sizeof (struct elf_link_hash_entry *));
4494 htab->root.table.table = old_table;
4495 htab->root.table.size = old_size;
4496 htab->root.table.count = old_count;
4497 memcpy (htab->root.table.table, old_tab, tabsize);
4498 htab->root.undefs = old_undefs;
4499 htab->root.undefs_tail = old_undefs_tail;
4500 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4501 for (i = 0; i < htab->root.table.size; i++)
4502 {
4503 struct bfd_hash_entry *p;
4504 struct elf_link_hash_entry *h;
4505 bfd_size_type size;
4506 unsigned int alignment_power;
4507
4508 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4509 {
4510 h = (struct elf_link_hash_entry *) p;
4511 if (h->root.type == bfd_link_hash_warning)
4512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4513 if (h->dynindx >= old_dynsymcount
4514 && h->dynstr_index < old_dynstr_size)
4515 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4516
4517 /* Preserve the maximum alignment and size for common
4518 symbols even if this dynamic lib isn't on DT_NEEDED
4519 since it can still be loaded at run time by another
4520 dynamic lib. */
4521 if (h->root.type == bfd_link_hash_common)
4522 {
4523 size = h->root.u.c.size;
4524 alignment_power = h->root.u.c.p->alignment_power;
4525 }
4526 else
4527 {
4528 size = 0;
4529 alignment_power = 0;
4530 }
4531 memcpy (p, old_ent, htab->root.table.entsize);
4532 old_ent = (char *) old_ent + htab->root.table.entsize;
4533 h = (struct elf_link_hash_entry *) p;
4534 if (h->root.type == bfd_link_hash_warning)
4535 {
4536 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4537 old_ent = (char *) old_ent + htab->root.table.entsize;
4538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4539 }
4540 if (h->root.type == bfd_link_hash_common)
4541 {
4542 if (size > h->root.u.c.size)
4543 h->root.u.c.size = size;
4544 if (alignment_power > h->root.u.c.p->alignment_power)
4545 h->root.u.c.p->alignment_power = alignment_power;
4546 }
4547 }
4548 }
4549
4550 /* Make a special call to the linker "notice" function to
4551 tell it that symbols added for crefs may need to be removed. */
4552 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4553 goto error_free_vers;
4554
4555 free (old_tab);
4556 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4557 alloc_mark);
4558 if (nondeflt_vers != NULL)
4559 free (nondeflt_vers);
4560 return TRUE;
4561 }
4562
4563 if (old_tab != NULL)
4564 {
4565 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4566 goto error_free_vers;
4567 free (old_tab);
4568 old_tab = NULL;
4569 }
4570
4571 /* Now that all the symbols from this input file are created, handle
4572 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4573 if (nondeflt_vers != NULL)
4574 {
4575 bfd_size_type cnt, symidx;
4576
4577 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4578 {
4579 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4580 char *shortname, *p;
4581
4582 p = strchr (h->root.root.string, ELF_VER_CHR);
4583 if (p == NULL
4584 || (h->root.type != bfd_link_hash_defined
4585 && h->root.type != bfd_link_hash_defweak))
4586 continue;
4587
4588 amt = p - h->root.root.string;
4589 shortname = (char *) bfd_malloc (amt + 1);
4590 if (!shortname)
4591 goto error_free_vers;
4592 memcpy (shortname, h->root.root.string, amt);
4593 shortname[amt] = '\0';
4594
4595 hi = (struct elf_link_hash_entry *)
4596 bfd_link_hash_lookup (&htab->root, shortname,
4597 FALSE, FALSE, FALSE);
4598 if (hi != NULL
4599 && hi->root.type == h->root.type
4600 && hi->root.u.def.value == h->root.u.def.value
4601 && hi->root.u.def.section == h->root.u.def.section)
4602 {
4603 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4604 hi->root.type = bfd_link_hash_indirect;
4605 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4606 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4607 sym_hash = elf_sym_hashes (abfd);
4608 if (sym_hash)
4609 for (symidx = 0; symidx < extsymcount; ++symidx)
4610 if (sym_hash[symidx] == hi)
4611 {
4612 sym_hash[symidx] = h;
4613 break;
4614 }
4615 }
4616 free (shortname);
4617 }
4618 free (nondeflt_vers);
4619 nondeflt_vers = NULL;
4620 }
4621
4622 /* Now set the weakdefs field correctly for all the weak defined
4623 symbols we found. The only way to do this is to search all the
4624 symbols. Since we only need the information for non functions in
4625 dynamic objects, that's the only time we actually put anything on
4626 the list WEAKS. We need this information so that if a regular
4627 object refers to a symbol defined weakly in a dynamic object, the
4628 real symbol in the dynamic object is also put in the dynamic
4629 symbols; we also must arrange for both symbols to point to the
4630 same memory location. We could handle the general case of symbol
4631 aliasing, but a general symbol alias can only be generated in
4632 assembler code, handling it correctly would be very time
4633 consuming, and other ELF linkers don't handle general aliasing
4634 either. */
4635 if (weaks != NULL)
4636 {
4637 struct elf_link_hash_entry **hpp;
4638 struct elf_link_hash_entry **hppend;
4639 struct elf_link_hash_entry **sorted_sym_hash;
4640 struct elf_link_hash_entry *h;
4641 size_t sym_count;
4642
4643 /* Since we have to search the whole symbol list for each weak
4644 defined symbol, search time for N weak defined symbols will be
4645 O(N^2). Binary search will cut it down to O(NlogN). */
4646 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4647 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4648 if (sorted_sym_hash == NULL)
4649 goto error_return;
4650 sym_hash = sorted_sym_hash;
4651 hpp = elf_sym_hashes (abfd);
4652 hppend = hpp + extsymcount;
4653 sym_count = 0;
4654 for (; hpp < hppend; hpp++)
4655 {
4656 h = *hpp;
4657 if (h != NULL
4658 && h->root.type == bfd_link_hash_defined
4659 && !bed->is_function_type (h->type))
4660 {
4661 *sym_hash = h;
4662 sym_hash++;
4663 sym_count++;
4664 }
4665 }
4666
4667 qsort (sorted_sym_hash, sym_count,
4668 sizeof (struct elf_link_hash_entry *),
4669 elf_sort_symbol);
4670
4671 while (weaks != NULL)
4672 {
4673 struct elf_link_hash_entry *hlook;
4674 asection *slook;
4675 bfd_vma vlook;
4676 size_t i, j, idx = 0;
4677
4678 hlook = weaks;
4679 weaks = hlook->u.weakdef;
4680 hlook->u.weakdef = NULL;
4681
4682 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4683 || hlook->root.type == bfd_link_hash_defweak
4684 || hlook->root.type == bfd_link_hash_common
4685 || hlook->root.type == bfd_link_hash_indirect);
4686 slook = hlook->root.u.def.section;
4687 vlook = hlook->root.u.def.value;
4688
4689 i = 0;
4690 j = sym_count;
4691 while (i != j)
4692 {
4693 bfd_signed_vma vdiff;
4694 idx = (i + j) / 2;
4695 h = sorted_sym_hash[idx];
4696 vdiff = vlook - h->root.u.def.value;
4697 if (vdiff < 0)
4698 j = idx;
4699 else if (vdiff > 0)
4700 i = idx + 1;
4701 else
4702 {
4703 long sdiff = slook->id - h->root.u.def.section->id;
4704 if (sdiff < 0)
4705 j = idx;
4706 else if (sdiff > 0)
4707 i = idx + 1;
4708 else
4709 break;
4710 }
4711 }
4712
4713 /* We didn't find a value/section match. */
4714 if (i == j)
4715 continue;
4716
4717 /* With multiple aliases, or when the weak symbol is already
4718 strongly defined, we have multiple matching symbols and
4719 the binary search above may land on any of them. Step
4720 one past the matching symbol(s). */
4721 while (++idx != j)
4722 {
4723 h = sorted_sym_hash[idx];
4724 if (h->root.u.def.section != slook
4725 || h->root.u.def.value != vlook)
4726 break;
4727 }
4728
4729 /* Now look back over the aliases. Since we sorted by size
4730 as well as value and section, we'll choose the one with
4731 the largest size. */
4732 while (idx-- != i)
4733 {
4734 h = sorted_sym_hash[idx];
4735
4736 /* Stop if value or section doesn't match. */
4737 if (h->root.u.def.section != slook
4738 || h->root.u.def.value != vlook)
4739 break;
4740 else if (h != hlook)
4741 {
4742 hlook->u.weakdef = h;
4743
4744 /* If the weak definition is in the list of dynamic
4745 symbols, make sure the real definition is put
4746 there as well. */
4747 if (hlook->dynindx != -1 && h->dynindx == -1)
4748 {
4749 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4750 {
4751 err_free_sym_hash:
4752 free (sorted_sym_hash);
4753 goto error_return;
4754 }
4755 }
4756
4757 /* If the real definition is in the list of dynamic
4758 symbols, make sure the weak definition is put
4759 there as well. If we don't do this, then the
4760 dynamic loader might not merge the entries for the
4761 real definition and the weak definition. */
4762 if (h->dynindx != -1 && hlook->dynindx == -1)
4763 {
4764 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4765 goto err_free_sym_hash;
4766 }
4767 break;
4768 }
4769 }
4770 }
4771
4772 free (sorted_sym_hash);
4773 }
4774
4775 if (bed->check_directives
4776 && !(*bed->check_directives) (abfd, info))
4777 return FALSE;
4778
4779 /* If this object is the same format as the output object, and it is
4780 not a shared library, then let the backend look through the
4781 relocs.
4782
4783 This is required to build global offset table entries and to
4784 arrange for dynamic relocs. It is not required for the
4785 particular common case of linking non PIC code, even when linking
4786 against shared libraries, but unfortunately there is no way of
4787 knowing whether an object file has been compiled PIC or not.
4788 Looking through the relocs is not particularly time consuming.
4789 The problem is that we must either (1) keep the relocs in memory,
4790 which causes the linker to require additional runtime memory or
4791 (2) read the relocs twice from the input file, which wastes time.
4792 This would be a good case for using mmap.
4793
4794 I have no idea how to handle linking PIC code into a file of a
4795 different format. It probably can't be done. */
4796 if (! dynamic
4797 && is_elf_hash_table (htab)
4798 && bed->check_relocs != NULL
4799 && elf_object_id (abfd) == elf_hash_table_id (htab)
4800 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4801 {
4802 asection *o;
4803
4804 for (o = abfd->sections; o != NULL; o = o->next)
4805 {
4806 Elf_Internal_Rela *internal_relocs;
4807 bfd_boolean ok;
4808
4809 if ((o->flags & SEC_RELOC) == 0
4810 || o->reloc_count == 0
4811 || ((info->strip == strip_all || info->strip == strip_debugger)
4812 && (o->flags & SEC_DEBUGGING) != 0)
4813 || bfd_is_abs_section (o->output_section))
4814 continue;
4815
4816 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4817 info->keep_memory);
4818 if (internal_relocs == NULL)
4819 goto error_return;
4820
4821 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4822
4823 if (elf_section_data (o)->relocs != internal_relocs)
4824 free (internal_relocs);
4825
4826 if (! ok)
4827 goto error_return;
4828 }
4829 }
4830
4831 /* If this is a non-traditional link, try to optimize the handling
4832 of the .stab/.stabstr sections. */
4833 if (! dynamic
4834 && ! info->traditional_format
4835 && is_elf_hash_table (htab)
4836 && (info->strip != strip_all && info->strip != strip_debugger))
4837 {
4838 asection *stabstr;
4839
4840 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4841 if (stabstr != NULL)
4842 {
4843 bfd_size_type string_offset = 0;
4844 asection *stab;
4845
4846 for (stab = abfd->sections; stab; stab = stab->next)
4847 if (CONST_STRNEQ (stab->name, ".stab")
4848 && (!stab->name[5] ||
4849 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4850 && (stab->flags & SEC_MERGE) == 0
4851 && !bfd_is_abs_section (stab->output_section))
4852 {
4853 struct bfd_elf_section_data *secdata;
4854
4855 secdata = elf_section_data (stab);
4856 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4857 stabstr, &secdata->sec_info,
4858 &string_offset))
4859 goto error_return;
4860 if (secdata->sec_info)
4861 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4862 }
4863 }
4864 }
4865
4866 if (is_elf_hash_table (htab) && add_needed)
4867 {
4868 /* Add this bfd to the loaded list. */
4869 struct elf_link_loaded_list *n;
4870
4871 n = (struct elf_link_loaded_list *)
4872 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4873 if (n == NULL)
4874 goto error_return;
4875 n->abfd = abfd;
4876 n->next = htab->loaded;
4877 htab->loaded = n;
4878 }
4879
4880 return TRUE;
4881
4882 error_free_vers:
4883 if (old_tab != NULL)
4884 free (old_tab);
4885 if (nondeflt_vers != NULL)
4886 free (nondeflt_vers);
4887 if (extversym != NULL)
4888 free (extversym);
4889 error_free_sym:
4890 if (isymbuf != NULL)
4891 free (isymbuf);
4892 error_return:
4893 return FALSE;
4894 }
4895
4896 /* Return the linker hash table entry of a symbol that might be
4897 satisfied by an archive symbol. Return -1 on error. */
4898
4899 struct elf_link_hash_entry *
4900 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4901 struct bfd_link_info *info,
4902 const char *name)
4903 {
4904 struct elf_link_hash_entry *h;
4905 char *p, *copy;
4906 size_t len, first;
4907
4908 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4909 if (h != NULL)
4910 return h;
4911
4912 /* If this is a default version (the name contains @@), look up the
4913 symbol again with only one `@' as well as without the version.
4914 The effect is that references to the symbol with and without the
4915 version will be matched by the default symbol in the archive. */
4916
4917 p = strchr (name, ELF_VER_CHR);
4918 if (p == NULL || p[1] != ELF_VER_CHR)
4919 return h;
4920
4921 /* First check with only one `@'. */
4922 len = strlen (name);
4923 copy = (char *) bfd_alloc (abfd, len);
4924 if (copy == NULL)
4925 return (struct elf_link_hash_entry *) 0 - 1;
4926
4927 first = p - name + 1;
4928 memcpy (copy, name, first);
4929 memcpy (copy + first, name + first + 1, len - first);
4930
4931 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4932 if (h == NULL)
4933 {
4934 /* We also need to check references to the symbol without the
4935 version. */
4936 copy[first - 1] = '\0';
4937 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4938 FALSE, FALSE, TRUE);
4939 }
4940
4941 bfd_release (abfd, copy);
4942 return h;
4943 }
4944
4945 /* Add symbols from an ELF archive file to the linker hash table. We
4946 don't use _bfd_generic_link_add_archive_symbols because we need to
4947 handle versioned symbols.
4948
4949 Fortunately, ELF archive handling is simpler than that done by
4950 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4951 oddities. In ELF, if we find a symbol in the archive map, and the
4952 symbol is currently undefined, we know that we must pull in that
4953 object file.
4954
4955 Unfortunately, we do have to make multiple passes over the symbol
4956 table until nothing further is resolved. */
4957
4958 static bfd_boolean
4959 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4960 {
4961 symindex c;
4962 unsigned char *included = NULL;
4963 carsym *symdefs;
4964 bfd_boolean loop;
4965 bfd_size_type amt;
4966 const struct elf_backend_data *bed;
4967 struct elf_link_hash_entry * (*archive_symbol_lookup)
4968 (bfd *, struct bfd_link_info *, const char *);
4969
4970 if (! bfd_has_map (abfd))
4971 {
4972 /* An empty archive is a special case. */
4973 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4974 return TRUE;
4975 bfd_set_error (bfd_error_no_armap);
4976 return FALSE;
4977 }
4978
4979 /* Keep track of all symbols we know to be already defined, and all
4980 files we know to be already included. This is to speed up the
4981 second and subsequent passes. */
4982 c = bfd_ardata (abfd)->symdef_count;
4983 if (c == 0)
4984 return TRUE;
4985 amt = c;
4986 amt *= sizeof (*included);
4987 included = (unsigned char *) bfd_zmalloc (amt);
4988 if (included == NULL)
4989 return FALSE;
4990
4991 symdefs = bfd_ardata (abfd)->symdefs;
4992 bed = get_elf_backend_data (abfd);
4993 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4994
4995 do
4996 {
4997 file_ptr last;
4998 symindex i;
4999 carsym *symdef;
5000 carsym *symdefend;
5001
5002 loop = FALSE;
5003 last = -1;
5004
5005 symdef = symdefs;
5006 symdefend = symdef + c;
5007 for (i = 0; symdef < symdefend; symdef++, i++)
5008 {
5009 struct elf_link_hash_entry *h;
5010 bfd *element;
5011 struct bfd_link_hash_entry *undefs_tail;
5012 symindex mark;
5013
5014 if (included[i])
5015 continue;
5016 if (symdef->file_offset == last)
5017 {
5018 included[i] = TRUE;
5019 continue;
5020 }
5021
5022 h = archive_symbol_lookup (abfd, info, symdef->name);
5023 if (h == (struct elf_link_hash_entry *) 0 - 1)
5024 goto error_return;
5025
5026 if (h == NULL)
5027 continue;
5028
5029 if (h->root.type == bfd_link_hash_common)
5030 {
5031 /* We currently have a common symbol. The archive map contains
5032 a reference to this symbol, so we may want to include it. We
5033 only want to include it however, if this archive element
5034 contains a definition of the symbol, not just another common
5035 declaration of it.
5036
5037 Unfortunately some archivers (including GNU ar) will put
5038 declarations of common symbols into their archive maps, as
5039 well as real definitions, so we cannot just go by the archive
5040 map alone. Instead we must read in the element's symbol
5041 table and check that to see what kind of symbol definition
5042 this is. */
5043 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5044 continue;
5045 }
5046 else if (h->root.type != bfd_link_hash_undefined)
5047 {
5048 if (h->root.type != bfd_link_hash_undefweak)
5049 /* Symbol must be defined. Don't check it again. */
5050 included[i] = TRUE;
5051 continue;
5052 }
5053
5054 /* We need to include this archive member. */
5055 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5056 if (element == NULL)
5057 goto error_return;
5058
5059 if (! bfd_check_format (element, bfd_object))
5060 goto error_return;
5061
5062 undefs_tail = info->hash->undefs_tail;
5063
5064 if (!(*info->callbacks
5065 ->add_archive_element) (info, element, symdef->name, &element))
5066 goto error_return;
5067 if (!bfd_link_add_symbols (element, info))
5068 goto error_return;
5069
5070 /* If there are any new undefined symbols, we need to make
5071 another pass through the archive in order to see whether
5072 they can be defined. FIXME: This isn't perfect, because
5073 common symbols wind up on undefs_tail and because an
5074 undefined symbol which is defined later on in this pass
5075 does not require another pass. This isn't a bug, but it
5076 does make the code less efficient than it could be. */
5077 if (undefs_tail != info->hash->undefs_tail)
5078 loop = TRUE;
5079
5080 /* Look backward to mark all symbols from this object file
5081 which we have already seen in this pass. */
5082 mark = i;
5083 do
5084 {
5085 included[mark] = TRUE;
5086 if (mark == 0)
5087 break;
5088 --mark;
5089 }
5090 while (symdefs[mark].file_offset == symdef->file_offset);
5091
5092 /* We mark subsequent symbols from this object file as we go
5093 on through the loop. */
5094 last = symdef->file_offset;
5095 }
5096 }
5097 while (loop);
5098
5099 free (included);
5100
5101 return TRUE;
5102
5103 error_return:
5104 if (included != NULL)
5105 free (included);
5106 return FALSE;
5107 }
5108
5109 /* Given an ELF BFD, add symbols to the global hash table as
5110 appropriate. */
5111
5112 bfd_boolean
5113 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5114 {
5115 switch (bfd_get_format (abfd))
5116 {
5117 case bfd_object:
5118 return elf_link_add_object_symbols (abfd, info);
5119 case bfd_archive:
5120 return elf_link_add_archive_symbols (abfd, info);
5121 default:
5122 bfd_set_error (bfd_error_wrong_format);
5123 return FALSE;
5124 }
5125 }
5126 \f
5127 struct hash_codes_info
5128 {
5129 unsigned long *hashcodes;
5130 bfd_boolean error;
5131 };
5132
5133 /* This function will be called though elf_link_hash_traverse to store
5134 all hash value of the exported symbols in an array. */
5135
5136 static bfd_boolean
5137 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5138 {
5139 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5140 const char *name;
5141 char *p;
5142 unsigned long ha;
5143 char *alc = NULL;
5144
5145 /* Ignore indirect symbols. These are added by the versioning code. */
5146 if (h->dynindx == -1)
5147 return TRUE;
5148
5149 name = h->root.root.string;
5150 p = strchr (name, ELF_VER_CHR);
5151 if (p != NULL)
5152 {
5153 alc = (char *) bfd_malloc (p - name + 1);
5154 if (alc == NULL)
5155 {
5156 inf->error = TRUE;
5157 return FALSE;
5158 }
5159 memcpy (alc, name, p - name);
5160 alc[p - name] = '\0';
5161 name = alc;
5162 }
5163
5164 /* Compute the hash value. */
5165 ha = bfd_elf_hash (name);
5166
5167 /* Store the found hash value in the array given as the argument. */
5168 *(inf->hashcodes)++ = ha;
5169
5170 /* And store it in the struct so that we can put it in the hash table
5171 later. */
5172 h->u.elf_hash_value = ha;
5173
5174 if (alc != NULL)
5175 free (alc);
5176
5177 return TRUE;
5178 }
5179
5180 struct collect_gnu_hash_codes
5181 {
5182 bfd *output_bfd;
5183 const struct elf_backend_data *bed;
5184 unsigned long int nsyms;
5185 unsigned long int maskbits;
5186 unsigned long int *hashcodes;
5187 unsigned long int *hashval;
5188 unsigned long int *indx;
5189 unsigned long int *counts;
5190 bfd_vma *bitmask;
5191 bfd_byte *contents;
5192 long int min_dynindx;
5193 unsigned long int bucketcount;
5194 unsigned long int symindx;
5195 long int local_indx;
5196 long int shift1, shift2;
5197 unsigned long int mask;
5198 bfd_boolean error;
5199 };
5200
5201 /* This function will be called though elf_link_hash_traverse to store
5202 all hash value of the exported symbols in an array. */
5203
5204 static bfd_boolean
5205 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5206 {
5207 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5208 const char *name;
5209 char *p;
5210 unsigned long ha;
5211 char *alc = NULL;
5212
5213 /* Ignore indirect symbols. These are added by the versioning code. */
5214 if (h->dynindx == -1)
5215 return TRUE;
5216
5217 /* Ignore also local symbols and undefined symbols. */
5218 if (! (*s->bed->elf_hash_symbol) (h))
5219 return TRUE;
5220
5221 name = h->root.root.string;
5222 p = strchr (name, ELF_VER_CHR);
5223 if (p != NULL)
5224 {
5225 alc = (char *) bfd_malloc (p - name + 1);
5226 if (alc == NULL)
5227 {
5228 s->error = TRUE;
5229 return FALSE;
5230 }
5231 memcpy (alc, name, p - name);
5232 alc[p - name] = '\0';
5233 name = alc;
5234 }
5235
5236 /* Compute the hash value. */
5237 ha = bfd_elf_gnu_hash (name);
5238
5239 /* Store the found hash value in the array for compute_bucket_count,
5240 and also for .dynsym reordering purposes. */
5241 s->hashcodes[s->nsyms] = ha;
5242 s->hashval[h->dynindx] = ha;
5243 ++s->nsyms;
5244 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5245 s->min_dynindx = h->dynindx;
5246
5247 if (alc != NULL)
5248 free (alc);
5249
5250 return TRUE;
5251 }
5252
5253 /* This function will be called though elf_link_hash_traverse to do
5254 final dynaminc symbol renumbering. */
5255
5256 static bfd_boolean
5257 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5258 {
5259 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5260 unsigned long int bucket;
5261 unsigned long int val;
5262
5263 /* Ignore indirect symbols. */
5264 if (h->dynindx == -1)
5265 return TRUE;
5266
5267 /* Ignore also local symbols and undefined symbols. */
5268 if (! (*s->bed->elf_hash_symbol) (h))
5269 {
5270 if (h->dynindx >= s->min_dynindx)
5271 h->dynindx = s->local_indx++;
5272 return TRUE;
5273 }
5274
5275 bucket = s->hashval[h->dynindx] % s->bucketcount;
5276 val = (s->hashval[h->dynindx] >> s->shift1)
5277 & ((s->maskbits >> s->shift1) - 1);
5278 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5279 s->bitmask[val]
5280 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5281 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5282 if (s->counts[bucket] == 1)
5283 /* Last element terminates the chain. */
5284 val |= 1;
5285 bfd_put_32 (s->output_bfd, val,
5286 s->contents + (s->indx[bucket] - s->symindx) * 4);
5287 --s->counts[bucket];
5288 h->dynindx = s->indx[bucket]++;
5289 return TRUE;
5290 }
5291
5292 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5293
5294 bfd_boolean
5295 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5296 {
5297 return !(h->forced_local
5298 || h->root.type == bfd_link_hash_undefined
5299 || h->root.type == bfd_link_hash_undefweak
5300 || ((h->root.type == bfd_link_hash_defined
5301 || h->root.type == bfd_link_hash_defweak)
5302 && h->root.u.def.section->output_section == NULL));
5303 }
5304
5305 /* Array used to determine the number of hash table buckets to use
5306 based on the number of symbols there are. If there are fewer than
5307 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5308 fewer than 37 we use 17 buckets, and so forth. We never use more
5309 than 32771 buckets. */
5310
5311 static const size_t elf_buckets[] =
5312 {
5313 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5314 16411, 32771, 0
5315 };
5316
5317 /* Compute bucket count for hashing table. We do not use a static set
5318 of possible tables sizes anymore. Instead we determine for all
5319 possible reasonable sizes of the table the outcome (i.e., the
5320 number of collisions etc) and choose the best solution. The
5321 weighting functions are not too simple to allow the table to grow
5322 without bounds. Instead one of the weighting factors is the size.
5323 Therefore the result is always a good payoff between few collisions
5324 (= short chain lengths) and table size. */
5325 static size_t
5326 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5327 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5328 unsigned long int nsyms,
5329 int gnu_hash)
5330 {
5331 size_t best_size = 0;
5332 unsigned long int i;
5333
5334 /* We have a problem here. The following code to optimize the table
5335 size requires an integer type with more the 32 bits. If
5336 BFD_HOST_U_64_BIT is set we know about such a type. */
5337 #ifdef BFD_HOST_U_64_BIT
5338 if (info->optimize)
5339 {
5340 size_t minsize;
5341 size_t maxsize;
5342 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5343 bfd *dynobj = elf_hash_table (info)->dynobj;
5344 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5345 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5346 unsigned long int *counts;
5347 bfd_size_type amt;
5348 unsigned int no_improvement_count = 0;
5349
5350 /* Possible optimization parameters: if we have NSYMS symbols we say
5351 that the hashing table must at least have NSYMS/4 and at most
5352 2*NSYMS buckets. */
5353 minsize = nsyms / 4;
5354 if (minsize == 0)
5355 minsize = 1;
5356 best_size = maxsize = nsyms * 2;
5357 if (gnu_hash)
5358 {
5359 if (minsize < 2)
5360 minsize = 2;
5361 if ((best_size & 31) == 0)
5362 ++best_size;
5363 }
5364
5365 /* Create array where we count the collisions in. We must use bfd_malloc
5366 since the size could be large. */
5367 amt = maxsize;
5368 amt *= sizeof (unsigned long int);
5369 counts = (unsigned long int *) bfd_malloc (amt);
5370 if (counts == NULL)
5371 return 0;
5372
5373 /* Compute the "optimal" size for the hash table. The criteria is a
5374 minimal chain length. The minor criteria is (of course) the size
5375 of the table. */
5376 for (i = minsize; i < maxsize; ++i)
5377 {
5378 /* Walk through the array of hashcodes and count the collisions. */
5379 BFD_HOST_U_64_BIT max;
5380 unsigned long int j;
5381 unsigned long int fact;
5382
5383 if (gnu_hash && (i & 31) == 0)
5384 continue;
5385
5386 memset (counts, '\0', i * sizeof (unsigned long int));
5387
5388 /* Determine how often each hash bucket is used. */
5389 for (j = 0; j < nsyms; ++j)
5390 ++counts[hashcodes[j] % i];
5391
5392 /* For the weight function we need some information about the
5393 pagesize on the target. This is information need not be 100%
5394 accurate. Since this information is not available (so far) we
5395 define it here to a reasonable default value. If it is crucial
5396 to have a better value some day simply define this value. */
5397 # ifndef BFD_TARGET_PAGESIZE
5398 # define BFD_TARGET_PAGESIZE (4096)
5399 # endif
5400
5401 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5402 and the chains. */
5403 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5404
5405 # if 1
5406 /* Variant 1: optimize for short chains. We add the squares
5407 of all the chain lengths (which favors many small chain
5408 over a few long chains). */
5409 for (j = 0; j < i; ++j)
5410 max += counts[j] * counts[j];
5411
5412 /* This adds penalties for the overall size of the table. */
5413 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5414 max *= fact * fact;
5415 # else
5416 /* Variant 2: Optimize a lot more for small table. Here we
5417 also add squares of the size but we also add penalties for
5418 empty slots (the +1 term). */
5419 for (j = 0; j < i; ++j)
5420 max += (1 + counts[j]) * (1 + counts[j]);
5421
5422 /* The overall size of the table is considered, but not as
5423 strong as in variant 1, where it is squared. */
5424 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5425 max *= fact;
5426 # endif
5427
5428 /* Compare with current best results. */
5429 if (max < best_chlen)
5430 {
5431 best_chlen = max;
5432 best_size = i;
5433 no_improvement_count = 0;
5434 }
5435 /* PR 11843: Avoid futile long searches for the best bucket size
5436 when there are a large number of symbols. */
5437 else if (++no_improvement_count == 100)
5438 break;
5439 }
5440
5441 free (counts);
5442 }
5443 else
5444 #endif /* defined (BFD_HOST_U_64_BIT) */
5445 {
5446 /* This is the fallback solution if no 64bit type is available or if we
5447 are not supposed to spend much time on optimizations. We select the
5448 bucket count using a fixed set of numbers. */
5449 for (i = 0; elf_buckets[i] != 0; i++)
5450 {
5451 best_size = elf_buckets[i];
5452 if (nsyms < elf_buckets[i + 1])
5453 break;
5454 }
5455 if (gnu_hash && best_size < 2)
5456 best_size = 2;
5457 }
5458
5459 return best_size;
5460 }
5461
5462 /* Size any SHT_GROUP section for ld -r. */
5463
5464 bfd_boolean
5465 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5466 {
5467 bfd *ibfd;
5468
5469 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5470 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5471 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5472 return FALSE;
5473 return TRUE;
5474 }
5475
5476 /* Set a default stack segment size. The value in INFO wins. If it
5477 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5478 undefined it is initialized. */
5479
5480 bfd_boolean
5481 bfd_elf_stack_segment_size (bfd *output_bfd,
5482 struct bfd_link_info *info,
5483 const char *legacy_symbol,
5484 bfd_vma default_size)
5485 {
5486 struct elf_link_hash_entry *h = NULL;
5487
5488 /* Look for legacy symbol. */
5489 if (legacy_symbol)
5490 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5491 FALSE, FALSE, FALSE);
5492 if (h && (h->root.type == bfd_link_hash_defined
5493 || h->root.type == bfd_link_hash_defweak)
5494 && h->def_regular
5495 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5496 {
5497 /* The symbol has no type if specified on the command line. */
5498 h->type = STT_OBJECT;
5499 if (info->stacksize)
5500 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5501 output_bfd, legacy_symbol);
5502 else if (h->root.u.def.section != bfd_abs_section_ptr)
5503 (*_bfd_error_handler) (_("%B: %s not absolute"),
5504 output_bfd, legacy_symbol);
5505 else
5506 info->stacksize = h->root.u.def.value;
5507 }
5508
5509 if (!info->stacksize)
5510 /* If the user didn't set a size, or explicitly inhibit the
5511 size, set it now. */
5512 info->stacksize = default_size;
5513
5514 /* Provide the legacy symbol, if it is referenced. */
5515 if (h && (h->root.type == bfd_link_hash_undefined
5516 || h->root.type == bfd_link_hash_undefweak))
5517 {
5518 struct bfd_link_hash_entry *bh = NULL;
5519
5520 if (!(_bfd_generic_link_add_one_symbol
5521 (info, output_bfd, legacy_symbol,
5522 BSF_GLOBAL, bfd_abs_section_ptr,
5523 info->stacksize >= 0 ? info->stacksize : 0,
5524 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5525 return FALSE;
5526
5527 h = (struct elf_link_hash_entry *) bh;
5528 h->def_regular = 1;
5529 h->type = STT_OBJECT;
5530 }
5531
5532 return TRUE;
5533 }
5534
5535 /* Set up the sizes and contents of the ELF dynamic sections. This is
5536 called by the ELF linker emulation before_allocation routine. We
5537 must set the sizes of the sections before the linker sets the
5538 addresses of the various sections. */
5539
5540 bfd_boolean
5541 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5542 const char *soname,
5543 const char *rpath,
5544 const char *filter_shlib,
5545 const char *audit,
5546 const char *depaudit,
5547 const char * const *auxiliary_filters,
5548 struct bfd_link_info *info,
5549 asection **sinterpptr)
5550 {
5551 bfd_size_type soname_indx;
5552 bfd *dynobj;
5553 const struct elf_backend_data *bed;
5554 struct elf_info_failed asvinfo;
5555
5556 *sinterpptr = NULL;
5557
5558 soname_indx = (bfd_size_type) -1;
5559
5560 if (!is_elf_hash_table (info->hash))
5561 return TRUE;
5562
5563 bed = get_elf_backend_data (output_bfd);
5564
5565 /* Any syms created from now on start with -1 in
5566 got.refcount/offset and plt.refcount/offset. */
5567 elf_hash_table (info)->init_got_refcount
5568 = elf_hash_table (info)->init_got_offset;
5569 elf_hash_table (info)->init_plt_refcount
5570 = elf_hash_table (info)->init_plt_offset;
5571
5572 if (info->relocatable
5573 && !_bfd_elf_size_group_sections (info))
5574 return FALSE;
5575
5576 /* The backend may have to create some sections regardless of whether
5577 we're dynamic or not. */
5578 if (bed->elf_backend_always_size_sections
5579 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5580 return FALSE;
5581
5582 /* Determine any GNU_STACK segment requirements, after the backend
5583 has had a chance to set a default segment size. */
5584 if (info->execstack)
5585 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5586 else if (info->noexecstack)
5587 elf_stack_flags (output_bfd) = PF_R | PF_W;
5588 else
5589 {
5590 bfd *inputobj;
5591 asection *notesec = NULL;
5592 int exec = 0;
5593
5594 for (inputobj = info->input_bfds;
5595 inputobj;
5596 inputobj = inputobj->link.next)
5597 {
5598 asection *s;
5599
5600 if (inputobj->flags
5601 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5602 continue;
5603 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5604 if (s)
5605 {
5606 if (s->flags & SEC_CODE)
5607 exec = PF_X;
5608 notesec = s;
5609 }
5610 else if (bed->default_execstack)
5611 exec = PF_X;
5612 }
5613 if (notesec || info->stacksize > 0)
5614 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5615 if (notesec && exec && info->relocatable
5616 && notesec->output_section != bfd_abs_section_ptr)
5617 notesec->output_section->flags |= SEC_CODE;
5618 }
5619
5620 dynobj = elf_hash_table (info)->dynobj;
5621
5622 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5623 {
5624 struct elf_info_failed eif;
5625 struct elf_link_hash_entry *h;
5626 asection *dynstr;
5627 struct bfd_elf_version_tree *t;
5628 struct bfd_elf_version_expr *d;
5629 asection *s;
5630 bfd_boolean all_defined;
5631
5632 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5633 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5634
5635 if (soname != NULL)
5636 {
5637 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5638 soname, TRUE);
5639 if (soname_indx == (bfd_size_type) -1
5640 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5641 return FALSE;
5642 }
5643
5644 if (info->symbolic)
5645 {
5646 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5647 return FALSE;
5648 info->flags |= DF_SYMBOLIC;
5649 }
5650
5651 if (rpath != NULL)
5652 {
5653 bfd_size_type indx;
5654 bfd_vma tag;
5655
5656 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5657 TRUE);
5658 if (indx == (bfd_size_type) -1)
5659 return FALSE;
5660
5661 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5662 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5663 return FALSE;
5664 }
5665
5666 if (filter_shlib != NULL)
5667 {
5668 bfd_size_type indx;
5669
5670 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5671 filter_shlib, TRUE);
5672 if (indx == (bfd_size_type) -1
5673 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5674 return FALSE;
5675 }
5676
5677 if (auxiliary_filters != NULL)
5678 {
5679 const char * const *p;
5680
5681 for (p = auxiliary_filters; *p != NULL; p++)
5682 {
5683 bfd_size_type indx;
5684
5685 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5686 *p, TRUE);
5687 if (indx == (bfd_size_type) -1
5688 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5689 return FALSE;
5690 }
5691 }
5692
5693 if (audit != NULL)
5694 {
5695 bfd_size_type indx;
5696
5697 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5698 TRUE);
5699 if (indx == (bfd_size_type) -1
5700 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5701 return FALSE;
5702 }
5703
5704 if (depaudit != NULL)
5705 {
5706 bfd_size_type indx;
5707
5708 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5709 TRUE);
5710 if (indx == (bfd_size_type) -1
5711 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5712 return FALSE;
5713 }
5714
5715 eif.info = info;
5716 eif.failed = FALSE;
5717
5718 /* If we are supposed to export all symbols into the dynamic symbol
5719 table (this is not the normal case), then do so. */
5720 if (info->export_dynamic
5721 || (info->executable && info->dynamic))
5722 {
5723 elf_link_hash_traverse (elf_hash_table (info),
5724 _bfd_elf_export_symbol,
5725 &eif);
5726 if (eif.failed)
5727 return FALSE;
5728 }
5729
5730 /* Make all global versions with definition. */
5731 for (t = info->version_info; t != NULL; t = t->next)
5732 for (d = t->globals.list; d != NULL; d = d->next)
5733 if (!d->symver && d->literal)
5734 {
5735 const char *verstr, *name;
5736 size_t namelen, verlen, newlen;
5737 char *newname, *p, leading_char;
5738 struct elf_link_hash_entry *newh;
5739
5740 leading_char = bfd_get_symbol_leading_char (output_bfd);
5741 name = d->pattern;
5742 namelen = strlen (name) + (leading_char != '\0');
5743 verstr = t->name;
5744 verlen = strlen (verstr);
5745 newlen = namelen + verlen + 3;
5746
5747 newname = (char *) bfd_malloc (newlen);
5748 if (newname == NULL)
5749 return FALSE;
5750 newname[0] = leading_char;
5751 memcpy (newname + (leading_char != '\0'), name, namelen);
5752
5753 /* Check the hidden versioned definition. */
5754 p = newname + namelen;
5755 *p++ = ELF_VER_CHR;
5756 memcpy (p, verstr, verlen + 1);
5757 newh = elf_link_hash_lookup (elf_hash_table (info),
5758 newname, FALSE, FALSE,
5759 FALSE);
5760 if (newh == NULL
5761 || (newh->root.type != bfd_link_hash_defined
5762 && newh->root.type != bfd_link_hash_defweak))
5763 {
5764 /* Check the default versioned definition. */
5765 *p++ = ELF_VER_CHR;
5766 memcpy (p, verstr, verlen + 1);
5767 newh = elf_link_hash_lookup (elf_hash_table (info),
5768 newname, FALSE, FALSE,
5769 FALSE);
5770 }
5771 free (newname);
5772
5773 /* Mark this version if there is a definition and it is
5774 not defined in a shared object. */
5775 if (newh != NULL
5776 && !newh->def_dynamic
5777 && (newh->root.type == bfd_link_hash_defined
5778 || newh->root.type == bfd_link_hash_defweak))
5779 d->symver = 1;
5780 }
5781
5782 /* Attach all the symbols to their version information. */
5783 asvinfo.info = info;
5784 asvinfo.failed = FALSE;
5785
5786 elf_link_hash_traverse (elf_hash_table (info),
5787 _bfd_elf_link_assign_sym_version,
5788 &asvinfo);
5789 if (asvinfo.failed)
5790 return FALSE;
5791
5792 if (!info->allow_undefined_version)
5793 {
5794 /* Check if all global versions have a definition. */
5795 all_defined = TRUE;
5796 for (t = info->version_info; t != NULL; t = t->next)
5797 for (d = t->globals.list; d != NULL; d = d->next)
5798 if (d->literal && !d->symver && !d->script)
5799 {
5800 (*_bfd_error_handler)
5801 (_("%s: undefined version: %s"),
5802 d->pattern, t->name);
5803 all_defined = FALSE;
5804 }
5805
5806 if (!all_defined)
5807 {
5808 bfd_set_error (bfd_error_bad_value);
5809 return FALSE;
5810 }
5811 }
5812
5813 /* Find all symbols which were defined in a dynamic object and make
5814 the backend pick a reasonable value for them. */
5815 elf_link_hash_traverse (elf_hash_table (info),
5816 _bfd_elf_adjust_dynamic_symbol,
5817 &eif);
5818 if (eif.failed)
5819 return FALSE;
5820
5821 /* Add some entries to the .dynamic section. We fill in some of the
5822 values later, in bfd_elf_final_link, but we must add the entries
5823 now so that we know the final size of the .dynamic section. */
5824
5825 /* If there are initialization and/or finalization functions to
5826 call then add the corresponding DT_INIT/DT_FINI entries. */
5827 h = (info->init_function
5828 ? elf_link_hash_lookup (elf_hash_table (info),
5829 info->init_function, FALSE,
5830 FALSE, FALSE)
5831 : NULL);
5832 if (h != NULL
5833 && (h->ref_regular
5834 || h->def_regular))
5835 {
5836 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5837 return FALSE;
5838 }
5839 h = (info->fini_function
5840 ? elf_link_hash_lookup (elf_hash_table (info),
5841 info->fini_function, FALSE,
5842 FALSE, FALSE)
5843 : NULL);
5844 if (h != NULL
5845 && (h->ref_regular
5846 || h->def_regular))
5847 {
5848 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5849 return FALSE;
5850 }
5851
5852 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5853 if (s != NULL && s->linker_has_input)
5854 {
5855 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5856 if (! info->executable)
5857 {
5858 bfd *sub;
5859 asection *o;
5860
5861 for (sub = info->input_bfds; sub != NULL;
5862 sub = sub->link.next)
5863 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5864 for (o = sub->sections; o != NULL; o = o->next)
5865 if (elf_section_data (o)->this_hdr.sh_type
5866 == SHT_PREINIT_ARRAY)
5867 {
5868 (*_bfd_error_handler)
5869 (_("%B: .preinit_array section is not allowed in DSO"),
5870 sub);
5871 break;
5872 }
5873
5874 bfd_set_error (bfd_error_nonrepresentable_section);
5875 return FALSE;
5876 }
5877
5878 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5879 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5880 return FALSE;
5881 }
5882 s = bfd_get_section_by_name (output_bfd, ".init_array");
5883 if (s != NULL && s->linker_has_input)
5884 {
5885 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5886 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5887 return FALSE;
5888 }
5889 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5890 if (s != NULL && s->linker_has_input)
5891 {
5892 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5893 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5894 return FALSE;
5895 }
5896
5897 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5898 /* If .dynstr is excluded from the link, we don't want any of
5899 these tags. Strictly, we should be checking each section
5900 individually; This quick check covers for the case where
5901 someone does a /DISCARD/ : { *(*) }. */
5902 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5903 {
5904 bfd_size_type strsize;
5905
5906 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5907 if ((info->emit_hash
5908 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5909 || (info->emit_gnu_hash
5910 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5911 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5912 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5913 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5914 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5915 bed->s->sizeof_sym))
5916 return FALSE;
5917 }
5918 }
5919
5920 /* The backend must work out the sizes of all the other dynamic
5921 sections. */
5922 if (dynobj != NULL
5923 && bed->elf_backend_size_dynamic_sections != NULL
5924 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5925 return FALSE;
5926
5927 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5928 return FALSE;
5929
5930 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5931 {
5932 unsigned long section_sym_count;
5933 struct bfd_elf_version_tree *verdefs;
5934 asection *s;
5935
5936 /* Set up the version definition section. */
5937 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5938 BFD_ASSERT (s != NULL);
5939
5940 /* We may have created additional version definitions if we are
5941 just linking a regular application. */
5942 verdefs = info->version_info;
5943
5944 /* Skip anonymous version tag. */
5945 if (verdefs != NULL && verdefs->vernum == 0)
5946 verdefs = verdefs->next;
5947
5948 if (verdefs == NULL && !info->create_default_symver)
5949 s->flags |= SEC_EXCLUDE;
5950 else
5951 {
5952 unsigned int cdefs;
5953 bfd_size_type size;
5954 struct bfd_elf_version_tree *t;
5955 bfd_byte *p;
5956 Elf_Internal_Verdef def;
5957 Elf_Internal_Verdaux defaux;
5958 struct bfd_link_hash_entry *bh;
5959 struct elf_link_hash_entry *h;
5960 const char *name;
5961
5962 cdefs = 0;
5963 size = 0;
5964
5965 /* Make space for the base version. */
5966 size += sizeof (Elf_External_Verdef);
5967 size += sizeof (Elf_External_Verdaux);
5968 ++cdefs;
5969
5970 /* Make space for the default version. */
5971 if (info->create_default_symver)
5972 {
5973 size += sizeof (Elf_External_Verdef);
5974 ++cdefs;
5975 }
5976
5977 for (t = verdefs; t != NULL; t = t->next)
5978 {
5979 struct bfd_elf_version_deps *n;
5980
5981 /* Don't emit base version twice. */
5982 if (t->vernum == 0)
5983 continue;
5984
5985 size += sizeof (Elf_External_Verdef);
5986 size += sizeof (Elf_External_Verdaux);
5987 ++cdefs;
5988
5989 for (n = t->deps; n != NULL; n = n->next)
5990 size += sizeof (Elf_External_Verdaux);
5991 }
5992
5993 s->size = size;
5994 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5995 if (s->contents == NULL && s->size != 0)
5996 return FALSE;
5997
5998 /* Fill in the version definition section. */
5999
6000 p = s->contents;
6001
6002 def.vd_version = VER_DEF_CURRENT;
6003 def.vd_flags = VER_FLG_BASE;
6004 def.vd_ndx = 1;
6005 def.vd_cnt = 1;
6006 if (info->create_default_symver)
6007 {
6008 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6009 def.vd_next = sizeof (Elf_External_Verdef);
6010 }
6011 else
6012 {
6013 def.vd_aux = sizeof (Elf_External_Verdef);
6014 def.vd_next = (sizeof (Elf_External_Verdef)
6015 + sizeof (Elf_External_Verdaux));
6016 }
6017
6018 if (soname_indx != (bfd_size_type) -1)
6019 {
6020 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6021 soname_indx);
6022 def.vd_hash = bfd_elf_hash (soname);
6023 defaux.vda_name = soname_indx;
6024 name = soname;
6025 }
6026 else
6027 {
6028 bfd_size_type indx;
6029
6030 name = lbasename (output_bfd->filename);
6031 def.vd_hash = bfd_elf_hash (name);
6032 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6033 name, FALSE);
6034 if (indx == (bfd_size_type) -1)
6035 return FALSE;
6036 defaux.vda_name = indx;
6037 }
6038 defaux.vda_next = 0;
6039
6040 _bfd_elf_swap_verdef_out (output_bfd, &def,
6041 (Elf_External_Verdef *) p);
6042 p += sizeof (Elf_External_Verdef);
6043 if (info->create_default_symver)
6044 {
6045 /* Add a symbol representing this version. */
6046 bh = NULL;
6047 if (! (_bfd_generic_link_add_one_symbol
6048 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6049 0, NULL, FALSE,
6050 get_elf_backend_data (dynobj)->collect, &bh)))
6051 return FALSE;
6052 h = (struct elf_link_hash_entry *) bh;
6053 h->non_elf = 0;
6054 h->def_regular = 1;
6055 h->type = STT_OBJECT;
6056 h->verinfo.vertree = NULL;
6057
6058 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6059 return FALSE;
6060
6061 /* Create a duplicate of the base version with the same
6062 aux block, but different flags. */
6063 def.vd_flags = 0;
6064 def.vd_ndx = 2;
6065 def.vd_aux = sizeof (Elf_External_Verdef);
6066 if (verdefs)
6067 def.vd_next = (sizeof (Elf_External_Verdef)
6068 + sizeof (Elf_External_Verdaux));
6069 else
6070 def.vd_next = 0;
6071 _bfd_elf_swap_verdef_out (output_bfd, &def,
6072 (Elf_External_Verdef *) p);
6073 p += sizeof (Elf_External_Verdef);
6074 }
6075 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6076 (Elf_External_Verdaux *) p);
6077 p += sizeof (Elf_External_Verdaux);
6078
6079 for (t = verdefs; t != NULL; t = t->next)
6080 {
6081 unsigned int cdeps;
6082 struct bfd_elf_version_deps *n;
6083
6084 /* Don't emit the base version twice. */
6085 if (t->vernum == 0)
6086 continue;
6087
6088 cdeps = 0;
6089 for (n = t->deps; n != NULL; n = n->next)
6090 ++cdeps;
6091
6092 /* Add a symbol representing this version. */
6093 bh = NULL;
6094 if (! (_bfd_generic_link_add_one_symbol
6095 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6096 0, NULL, FALSE,
6097 get_elf_backend_data (dynobj)->collect, &bh)))
6098 return FALSE;
6099 h = (struct elf_link_hash_entry *) bh;
6100 h->non_elf = 0;
6101 h->def_regular = 1;
6102 h->type = STT_OBJECT;
6103 h->verinfo.vertree = t;
6104
6105 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6106 return FALSE;
6107
6108 def.vd_version = VER_DEF_CURRENT;
6109 def.vd_flags = 0;
6110 if (t->globals.list == NULL
6111 && t->locals.list == NULL
6112 && ! t->used)
6113 def.vd_flags |= VER_FLG_WEAK;
6114 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6115 def.vd_cnt = cdeps + 1;
6116 def.vd_hash = bfd_elf_hash (t->name);
6117 def.vd_aux = sizeof (Elf_External_Verdef);
6118 def.vd_next = 0;
6119
6120 /* If a basever node is next, it *must* be the last node in
6121 the chain, otherwise Verdef construction breaks. */
6122 if (t->next != NULL && t->next->vernum == 0)
6123 BFD_ASSERT (t->next->next == NULL);
6124
6125 if (t->next != NULL && t->next->vernum != 0)
6126 def.vd_next = (sizeof (Elf_External_Verdef)
6127 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6128
6129 _bfd_elf_swap_verdef_out (output_bfd, &def,
6130 (Elf_External_Verdef *) p);
6131 p += sizeof (Elf_External_Verdef);
6132
6133 defaux.vda_name = h->dynstr_index;
6134 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6135 h->dynstr_index);
6136 defaux.vda_next = 0;
6137 if (t->deps != NULL)
6138 defaux.vda_next = sizeof (Elf_External_Verdaux);
6139 t->name_indx = defaux.vda_name;
6140
6141 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6142 (Elf_External_Verdaux *) p);
6143 p += sizeof (Elf_External_Verdaux);
6144
6145 for (n = t->deps; n != NULL; n = n->next)
6146 {
6147 if (n->version_needed == NULL)
6148 {
6149 /* This can happen if there was an error in the
6150 version script. */
6151 defaux.vda_name = 0;
6152 }
6153 else
6154 {
6155 defaux.vda_name = n->version_needed->name_indx;
6156 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6157 defaux.vda_name);
6158 }
6159 if (n->next == NULL)
6160 defaux.vda_next = 0;
6161 else
6162 defaux.vda_next = sizeof (Elf_External_Verdaux);
6163
6164 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6165 (Elf_External_Verdaux *) p);
6166 p += sizeof (Elf_External_Verdaux);
6167 }
6168 }
6169
6170 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6171 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6172 return FALSE;
6173
6174 elf_tdata (output_bfd)->cverdefs = cdefs;
6175 }
6176
6177 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6178 {
6179 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6180 return FALSE;
6181 }
6182 else if (info->flags & DF_BIND_NOW)
6183 {
6184 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6185 return FALSE;
6186 }
6187
6188 if (info->flags_1)
6189 {
6190 if (info->executable)
6191 info->flags_1 &= ~ (DF_1_INITFIRST
6192 | DF_1_NODELETE
6193 | DF_1_NOOPEN);
6194 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6195 return FALSE;
6196 }
6197
6198 /* Work out the size of the version reference section. */
6199
6200 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6201 BFD_ASSERT (s != NULL);
6202 {
6203 struct elf_find_verdep_info sinfo;
6204
6205 sinfo.info = info;
6206 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6207 if (sinfo.vers == 0)
6208 sinfo.vers = 1;
6209 sinfo.failed = FALSE;
6210
6211 elf_link_hash_traverse (elf_hash_table (info),
6212 _bfd_elf_link_find_version_dependencies,
6213 &sinfo);
6214 if (sinfo.failed)
6215 return FALSE;
6216
6217 if (elf_tdata (output_bfd)->verref == NULL)
6218 s->flags |= SEC_EXCLUDE;
6219 else
6220 {
6221 Elf_Internal_Verneed *t;
6222 unsigned int size;
6223 unsigned int crefs;
6224 bfd_byte *p;
6225
6226 /* Build the version dependency section. */
6227 size = 0;
6228 crefs = 0;
6229 for (t = elf_tdata (output_bfd)->verref;
6230 t != NULL;
6231 t = t->vn_nextref)
6232 {
6233 Elf_Internal_Vernaux *a;
6234
6235 size += sizeof (Elf_External_Verneed);
6236 ++crefs;
6237 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6238 size += sizeof (Elf_External_Vernaux);
6239 }
6240
6241 s->size = size;
6242 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6243 if (s->contents == NULL)
6244 return FALSE;
6245
6246 p = s->contents;
6247 for (t = elf_tdata (output_bfd)->verref;
6248 t != NULL;
6249 t = t->vn_nextref)
6250 {
6251 unsigned int caux;
6252 Elf_Internal_Vernaux *a;
6253 bfd_size_type indx;
6254
6255 caux = 0;
6256 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6257 ++caux;
6258
6259 t->vn_version = VER_NEED_CURRENT;
6260 t->vn_cnt = caux;
6261 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6262 elf_dt_name (t->vn_bfd) != NULL
6263 ? elf_dt_name (t->vn_bfd)
6264 : lbasename (t->vn_bfd->filename),
6265 FALSE);
6266 if (indx == (bfd_size_type) -1)
6267 return FALSE;
6268 t->vn_file = indx;
6269 t->vn_aux = sizeof (Elf_External_Verneed);
6270 if (t->vn_nextref == NULL)
6271 t->vn_next = 0;
6272 else
6273 t->vn_next = (sizeof (Elf_External_Verneed)
6274 + caux * sizeof (Elf_External_Vernaux));
6275
6276 _bfd_elf_swap_verneed_out (output_bfd, t,
6277 (Elf_External_Verneed *) p);
6278 p += sizeof (Elf_External_Verneed);
6279
6280 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6281 {
6282 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6283 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6284 a->vna_nodename, FALSE);
6285 if (indx == (bfd_size_type) -1)
6286 return FALSE;
6287 a->vna_name = indx;
6288 if (a->vna_nextptr == NULL)
6289 a->vna_next = 0;
6290 else
6291 a->vna_next = sizeof (Elf_External_Vernaux);
6292
6293 _bfd_elf_swap_vernaux_out (output_bfd, a,
6294 (Elf_External_Vernaux *) p);
6295 p += sizeof (Elf_External_Vernaux);
6296 }
6297 }
6298
6299 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6300 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6301 return FALSE;
6302
6303 elf_tdata (output_bfd)->cverrefs = crefs;
6304 }
6305 }
6306
6307 if ((elf_tdata (output_bfd)->cverrefs == 0
6308 && elf_tdata (output_bfd)->cverdefs == 0)
6309 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6310 &section_sym_count) == 0)
6311 {
6312 s = bfd_get_linker_section (dynobj, ".gnu.version");
6313 s->flags |= SEC_EXCLUDE;
6314 }
6315 }
6316 return TRUE;
6317 }
6318
6319 /* Find the first non-excluded output section. We'll use its
6320 section symbol for some emitted relocs. */
6321 void
6322 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6323 {
6324 asection *s;
6325
6326 for (s = output_bfd->sections; s != NULL; s = s->next)
6327 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6328 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6329 {
6330 elf_hash_table (info)->text_index_section = s;
6331 break;
6332 }
6333 }
6334
6335 /* Find two non-excluded output sections, one for code, one for data.
6336 We'll use their section symbols for some emitted relocs. */
6337 void
6338 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6339 {
6340 asection *s;
6341
6342 /* Data first, since setting text_index_section changes
6343 _bfd_elf_link_omit_section_dynsym. */
6344 for (s = output_bfd->sections; s != NULL; s = s->next)
6345 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6346 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6347 {
6348 elf_hash_table (info)->data_index_section = s;
6349 break;
6350 }
6351
6352 for (s = output_bfd->sections; s != NULL; s = s->next)
6353 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6354 == (SEC_ALLOC | SEC_READONLY))
6355 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6356 {
6357 elf_hash_table (info)->text_index_section = s;
6358 break;
6359 }
6360
6361 if (elf_hash_table (info)->text_index_section == NULL)
6362 elf_hash_table (info)->text_index_section
6363 = elf_hash_table (info)->data_index_section;
6364 }
6365
6366 bfd_boolean
6367 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6368 {
6369 const struct elf_backend_data *bed;
6370
6371 if (!is_elf_hash_table (info->hash))
6372 return TRUE;
6373
6374 bed = get_elf_backend_data (output_bfd);
6375 (*bed->elf_backend_init_index_section) (output_bfd, info);
6376
6377 if (elf_hash_table (info)->dynamic_sections_created)
6378 {
6379 bfd *dynobj;
6380 asection *s;
6381 bfd_size_type dynsymcount;
6382 unsigned long section_sym_count;
6383 unsigned int dtagcount;
6384
6385 dynobj = elf_hash_table (info)->dynobj;
6386
6387 /* Assign dynsym indicies. In a shared library we generate a
6388 section symbol for each output section, which come first.
6389 Next come all of the back-end allocated local dynamic syms,
6390 followed by the rest of the global symbols. */
6391
6392 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6393 &section_sym_count);
6394
6395 /* Work out the size of the symbol version section. */
6396 s = bfd_get_linker_section (dynobj, ".gnu.version");
6397 BFD_ASSERT (s != NULL);
6398 if (dynsymcount != 0
6399 && (s->flags & SEC_EXCLUDE) == 0)
6400 {
6401 s->size = dynsymcount * sizeof (Elf_External_Versym);
6402 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6403 if (s->contents == NULL)
6404 return FALSE;
6405
6406 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6407 return FALSE;
6408 }
6409
6410 /* Set the size of the .dynsym and .hash sections. We counted
6411 the number of dynamic symbols in elf_link_add_object_symbols.
6412 We will build the contents of .dynsym and .hash when we build
6413 the final symbol table, because until then we do not know the
6414 correct value to give the symbols. We built the .dynstr
6415 section as we went along in elf_link_add_object_symbols. */
6416 s = bfd_get_linker_section (dynobj, ".dynsym");
6417 BFD_ASSERT (s != NULL);
6418 s->size = dynsymcount * bed->s->sizeof_sym;
6419
6420 if (dynsymcount != 0)
6421 {
6422 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6423 if (s->contents == NULL)
6424 return FALSE;
6425
6426 /* The first entry in .dynsym is a dummy symbol.
6427 Clear all the section syms, in case we don't output them all. */
6428 ++section_sym_count;
6429 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6430 }
6431
6432 elf_hash_table (info)->bucketcount = 0;
6433
6434 /* Compute the size of the hashing table. As a side effect this
6435 computes the hash values for all the names we export. */
6436 if (info->emit_hash)
6437 {
6438 unsigned long int *hashcodes;
6439 struct hash_codes_info hashinf;
6440 bfd_size_type amt;
6441 unsigned long int nsyms;
6442 size_t bucketcount;
6443 size_t hash_entry_size;
6444
6445 /* Compute the hash values for all exported symbols. At the same
6446 time store the values in an array so that we could use them for
6447 optimizations. */
6448 amt = dynsymcount * sizeof (unsigned long int);
6449 hashcodes = (unsigned long int *) bfd_malloc (amt);
6450 if (hashcodes == NULL)
6451 return FALSE;
6452 hashinf.hashcodes = hashcodes;
6453 hashinf.error = FALSE;
6454
6455 /* Put all hash values in HASHCODES. */
6456 elf_link_hash_traverse (elf_hash_table (info),
6457 elf_collect_hash_codes, &hashinf);
6458 if (hashinf.error)
6459 {
6460 free (hashcodes);
6461 return FALSE;
6462 }
6463
6464 nsyms = hashinf.hashcodes - hashcodes;
6465 bucketcount
6466 = compute_bucket_count (info, hashcodes, nsyms, 0);
6467 free (hashcodes);
6468
6469 if (bucketcount == 0)
6470 return FALSE;
6471
6472 elf_hash_table (info)->bucketcount = bucketcount;
6473
6474 s = bfd_get_linker_section (dynobj, ".hash");
6475 BFD_ASSERT (s != NULL);
6476 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6477 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6478 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6479 if (s->contents == NULL)
6480 return FALSE;
6481
6482 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6483 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6484 s->contents + hash_entry_size);
6485 }
6486
6487 if (info->emit_gnu_hash)
6488 {
6489 size_t i, cnt;
6490 unsigned char *contents;
6491 struct collect_gnu_hash_codes cinfo;
6492 bfd_size_type amt;
6493 size_t bucketcount;
6494
6495 memset (&cinfo, 0, sizeof (cinfo));
6496
6497 /* Compute the hash values for all exported symbols. At the same
6498 time store the values in an array so that we could use them for
6499 optimizations. */
6500 amt = dynsymcount * 2 * sizeof (unsigned long int);
6501 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6502 if (cinfo.hashcodes == NULL)
6503 return FALSE;
6504
6505 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6506 cinfo.min_dynindx = -1;
6507 cinfo.output_bfd = output_bfd;
6508 cinfo.bed = bed;
6509
6510 /* Put all hash values in HASHCODES. */
6511 elf_link_hash_traverse (elf_hash_table (info),
6512 elf_collect_gnu_hash_codes, &cinfo);
6513 if (cinfo.error)
6514 {
6515 free (cinfo.hashcodes);
6516 return FALSE;
6517 }
6518
6519 bucketcount
6520 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6521
6522 if (bucketcount == 0)
6523 {
6524 free (cinfo.hashcodes);
6525 return FALSE;
6526 }
6527
6528 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6529 BFD_ASSERT (s != NULL);
6530
6531 if (cinfo.nsyms == 0)
6532 {
6533 /* Empty .gnu.hash section is special. */
6534 BFD_ASSERT (cinfo.min_dynindx == -1);
6535 free (cinfo.hashcodes);
6536 s->size = 5 * 4 + bed->s->arch_size / 8;
6537 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6538 if (contents == NULL)
6539 return FALSE;
6540 s->contents = contents;
6541 /* 1 empty bucket. */
6542 bfd_put_32 (output_bfd, 1, contents);
6543 /* SYMIDX above the special symbol 0. */
6544 bfd_put_32 (output_bfd, 1, contents + 4);
6545 /* Just one word for bitmask. */
6546 bfd_put_32 (output_bfd, 1, contents + 8);
6547 /* Only hash fn bloom filter. */
6548 bfd_put_32 (output_bfd, 0, contents + 12);
6549 /* No hashes are valid - empty bitmask. */
6550 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6551 /* No hashes in the only bucket. */
6552 bfd_put_32 (output_bfd, 0,
6553 contents + 16 + bed->s->arch_size / 8);
6554 }
6555 else
6556 {
6557 unsigned long int maskwords, maskbitslog2, x;
6558 BFD_ASSERT (cinfo.min_dynindx != -1);
6559
6560 x = cinfo.nsyms;
6561 maskbitslog2 = 1;
6562 while ((x >>= 1) != 0)
6563 ++maskbitslog2;
6564 if (maskbitslog2 < 3)
6565 maskbitslog2 = 5;
6566 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6567 maskbitslog2 = maskbitslog2 + 3;
6568 else
6569 maskbitslog2 = maskbitslog2 + 2;
6570 if (bed->s->arch_size == 64)
6571 {
6572 if (maskbitslog2 == 5)
6573 maskbitslog2 = 6;
6574 cinfo.shift1 = 6;
6575 }
6576 else
6577 cinfo.shift1 = 5;
6578 cinfo.mask = (1 << cinfo.shift1) - 1;
6579 cinfo.shift2 = maskbitslog2;
6580 cinfo.maskbits = 1 << maskbitslog2;
6581 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6582 amt = bucketcount * sizeof (unsigned long int) * 2;
6583 amt += maskwords * sizeof (bfd_vma);
6584 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6585 if (cinfo.bitmask == NULL)
6586 {
6587 free (cinfo.hashcodes);
6588 return FALSE;
6589 }
6590
6591 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6592 cinfo.indx = cinfo.counts + bucketcount;
6593 cinfo.symindx = dynsymcount - cinfo.nsyms;
6594 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6595
6596 /* Determine how often each hash bucket is used. */
6597 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6598 for (i = 0; i < cinfo.nsyms; ++i)
6599 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6600
6601 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6602 if (cinfo.counts[i] != 0)
6603 {
6604 cinfo.indx[i] = cnt;
6605 cnt += cinfo.counts[i];
6606 }
6607 BFD_ASSERT (cnt == dynsymcount);
6608 cinfo.bucketcount = bucketcount;
6609 cinfo.local_indx = cinfo.min_dynindx;
6610
6611 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6612 s->size += cinfo.maskbits / 8;
6613 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6614 if (contents == NULL)
6615 {
6616 free (cinfo.bitmask);
6617 free (cinfo.hashcodes);
6618 return FALSE;
6619 }
6620
6621 s->contents = contents;
6622 bfd_put_32 (output_bfd, bucketcount, contents);
6623 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6624 bfd_put_32 (output_bfd, maskwords, contents + 8);
6625 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6626 contents += 16 + cinfo.maskbits / 8;
6627
6628 for (i = 0; i < bucketcount; ++i)
6629 {
6630 if (cinfo.counts[i] == 0)
6631 bfd_put_32 (output_bfd, 0, contents);
6632 else
6633 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6634 contents += 4;
6635 }
6636
6637 cinfo.contents = contents;
6638
6639 /* Renumber dynamic symbols, populate .gnu.hash section. */
6640 elf_link_hash_traverse (elf_hash_table (info),
6641 elf_renumber_gnu_hash_syms, &cinfo);
6642
6643 contents = s->contents + 16;
6644 for (i = 0; i < maskwords; ++i)
6645 {
6646 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6647 contents);
6648 contents += bed->s->arch_size / 8;
6649 }
6650
6651 free (cinfo.bitmask);
6652 free (cinfo.hashcodes);
6653 }
6654 }
6655
6656 s = bfd_get_linker_section (dynobj, ".dynstr");
6657 BFD_ASSERT (s != NULL);
6658
6659 elf_finalize_dynstr (output_bfd, info);
6660
6661 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6662
6663 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6664 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6665 return FALSE;
6666 }
6667
6668 return TRUE;
6669 }
6670 \f
6671 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6672
6673 static void
6674 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6675 asection *sec)
6676 {
6677 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6678 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6679 }
6680
6681 /* Finish SHF_MERGE section merging. */
6682
6683 bfd_boolean
6684 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6685 {
6686 bfd *ibfd;
6687 asection *sec;
6688
6689 if (!is_elf_hash_table (info->hash))
6690 return FALSE;
6691
6692 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6693 if ((ibfd->flags & DYNAMIC) == 0)
6694 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6695 if ((sec->flags & SEC_MERGE) != 0
6696 && !bfd_is_abs_section (sec->output_section))
6697 {
6698 struct bfd_elf_section_data *secdata;
6699
6700 secdata = elf_section_data (sec);
6701 if (! _bfd_add_merge_section (abfd,
6702 &elf_hash_table (info)->merge_info,
6703 sec, &secdata->sec_info))
6704 return FALSE;
6705 else if (secdata->sec_info)
6706 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6707 }
6708
6709 if (elf_hash_table (info)->merge_info != NULL)
6710 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6711 merge_sections_remove_hook);
6712 return TRUE;
6713 }
6714
6715 /* Create an entry in an ELF linker hash table. */
6716
6717 struct bfd_hash_entry *
6718 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6719 struct bfd_hash_table *table,
6720 const char *string)
6721 {
6722 /* Allocate the structure if it has not already been allocated by a
6723 subclass. */
6724 if (entry == NULL)
6725 {
6726 entry = (struct bfd_hash_entry *)
6727 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6728 if (entry == NULL)
6729 return entry;
6730 }
6731
6732 /* Call the allocation method of the superclass. */
6733 entry = _bfd_link_hash_newfunc (entry, table, string);
6734 if (entry != NULL)
6735 {
6736 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6737 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6738
6739 /* Set local fields. */
6740 ret->indx = -1;
6741 ret->dynindx = -1;
6742 ret->got = htab->init_got_refcount;
6743 ret->plt = htab->init_plt_refcount;
6744 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6745 - offsetof (struct elf_link_hash_entry, size)));
6746 /* Assume that we have been called by a non-ELF symbol reader.
6747 This flag is then reset by the code which reads an ELF input
6748 file. This ensures that a symbol created by a non-ELF symbol
6749 reader will have the flag set correctly. */
6750 ret->non_elf = 1;
6751 }
6752
6753 return entry;
6754 }
6755
6756 /* Copy data from an indirect symbol to its direct symbol, hiding the
6757 old indirect symbol. Also used for copying flags to a weakdef. */
6758
6759 void
6760 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6761 struct elf_link_hash_entry *dir,
6762 struct elf_link_hash_entry *ind)
6763 {
6764 struct elf_link_hash_table *htab;
6765
6766 /* Copy down any references that we may have already seen to the
6767 symbol which just became indirect. */
6768
6769 dir->ref_dynamic |= ind->ref_dynamic;
6770 dir->ref_regular |= ind->ref_regular;
6771 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6772 dir->non_got_ref |= ind->non_got_ref;
6773 dir->needs_plt |= ind->needs_plt;
6774 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6775
6776 if (ind->root.type != bfd_link_hash_indirect)
6777 return;
6778
6779 /* Copy over the global and procedure linkage table refcount entries.
6780 These may have been already set up by a check_relocs routine. */
6781 htab = elf_hash_table (info);
6782 if (ind->got.refcount > htab->init_got_refcount.refcount)
6783 {
6784 if (dir->got.refcount < 0)
6785 dir->got.refcount = 0;
6786 dir->got.refcount += ind->got.refcount;
6787 ind->got.refcount = htab->init_got_refcount.refcount;
6788 }
6789
6790 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6791 {
6792 if (dir->plt.refcount < 0)
6793 dir->plt.refcount = 0;
6794 dir->plt.refcount += ind->plt.refcount;
6795 ind->plt.refcount = htab->init_plt_refcount.refcount;
6796 }
6797
6798 if (ind->dynindx != -1)
6799 {
6800 if (dir->dynindx != -1)
6801 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6802 dir->dynindx = ind->dynindx;
6803 dir->dynstr_index = ind->dynstr_index;
6804 ind->dynindx = -1;
6805 ind->dynstr_index = 0;
6806 }
6807 }
6808
6809 void
6810 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6811 struct elf_link_hash_entry *h,
6812 bfd_boolean force_local)
6813 {
6814 /* STT_GNU_IFUNC symbol must go through PLT. */
6815 if (h->type != STT_GNU_IFUNC)
6816 {
6817 h->plt = elf_hash_table (info)->init_plt_offset;
6818 h->needs_plt = 0;
6819 }
6820 if (force_local)
6821 {
6822 h->forced_local = 1;
6823 if (h->dynindx != -1)
6824 {
6825 h->dynindx = -1;
6826 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6827 h->dynstr_index);
6828 }
6829 }
6830 }
6831
6832 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6833 caller. */
6834
6835 bfd_boolean
6836 _bfd_elf_link_hash_table_init
6837 (struct elf_link_hash_table *table,
6838 bfd *abfd,
6839 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6840 struct bfd_hash_table *,
6841 const char *),
6842 unsigned int entsize,
6843 enum elf_target_id target_id)
6844 {
6845 bfd_boolean ret;
6846 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6847
6848 table->init_got_refcount.refcount = can_refcount - 1;
6849 table->init_plt_refcount.refcount = can_refcount - 1;
6850 table->init_got_offset.offset = -(bfd_vma) 1;
6851 table->init_plt_offset.offset = -(bfd_vma) 1;
6852 /* The first dynamic symbol is a dummy. */
6853 table->dynsymcount = 1;
6854
6855 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6856
6857 table->root.type = bfd_link_elf_hash_table;
6858 table->hash_table_id = target_id;
6859
6860 return ret;
6861 }
6862
6863 /* Create an ELF linker hash table. */
6864
6865 struct bfd_link_hash_table *
6866 _bfd_elf_link_hash_table_create (bfd *abfd)
6867 {
6868 struct elf_link_hash_table *ret;
6869 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6870
6871 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6872 if (ret == NULL)
6873 return NULL;
6874
6875 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6876 sizeof (struct elf_link_hash_entry),
6877 GENERIC_ELF_DATA))
6878 {
6879 free (ret);
6880 return NULL;
6881 }
6882 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6883
6884 return &ret->root;
6885 }
6886
6887 /* Destroy an ELF linker hash table. */
6888
6889 void
6890 _bfd_elf_link_hash_table_free (bfd *obfd)
6891 {
6892 struct elf_link_hash_table *htab;
6893
6894 htab = (struct elf_link_hash_table *) obfd->link.hash;
6895 if (htab->dynstr != NULL)
6896 _bfd_elf_strtab_free (htab->dynstr);
6897 _bfd_merge_sections_free (htab->merge_info);
6898 _bfd_generic_link_hash_table_free (obfd);
6899 }
6900
6901 /* This is a hook for the ELF emulation code in the generic linker to
6902 tell the backend linker what file name to use for the DT_NEEDED
6903 entry for a dynamic object. */
6904
6905 void
6906 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6907 {
6908 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6909 && bfd_get_format (abfd) == bfd_object)
6910 elf_dt_name (abfd) = name;
6911 }
6912
6913 int
6914 bfd_elf_get_dyn_lib_class (bfd *abfd)
6915 {
6916 int lib_class;
6917 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6918 && bfd_get_format (abfd) == bfd_object)
6919 lib_class = elf_dyn_lib_class (abfd);
6920 else
6921 lib_class = 0;
6922 return lib_class;
6923 }
6924
6925 void
6926 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6927 {
6928 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6929 && bfd_get_format (abfd) == bfd_object)
6930 elf_dyn_lib_class (abfd) = lib_class;
6931 }
6932
6933 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6934 the linker ELF emulation code. */
6935
6936 struct bfd_link_needed_list *
6937 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6938 struct bfd_link_info *info)
6939 {
6940 if (! is_elf_hash_table (info->hash))
6941 return NULL;
6942 return elf_hash_table (info)->needed;
6943 }
6944
6945 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6946 hook for the linker ELF emulation code. */
6947
6948 struct bfd_link_needed_list *
6949 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6950 struct bfd_link_info *info)
6951 {
6952 if (! is_elf_hash_table (info->hash))
6953 return NULL;
6954 return elf_hash_table (info)->runpath;
6955 }
6956
6957 /* Get the name actually used for a dynamic object for a link. This
6958 is the SONAME entry if there is one. Otherwise, it is the string
6959 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6960
6961 const char *
6962 bfd_elf_get_dt_soname (bfd *abfd)
6963 {
6964 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6965 && bfd_get_format (abfd) == bfd_object)
6966 return elf_dt_name (abfd);
6967 return NULL;
6968 }
6969
6970 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6971 the ELF linker emulation code. */
6972
6973 bfd_boolean
6974 bfd_elf_get_bfd_needed_list (bfd *abfd,
6975 struct bfd_link_needed_list **pneeded)
6976 {
6977 asection *s;
6978 bfd_byte *dynbuf = NULL;
6979 unsigned int elfsec;
6980 unsigned long shlink;
6981 bfd_byte *extdyn, *extdynend;
6982 size_t extdynsize;
6983 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6984
6985 *pneeded = NULL;
6986
6987 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6988 || bfd_get_format (abfd) != bfd_object)
6989 return TRUE;
6990
6991 s = bfd_get_section_by_name (abfd, ".dynamic");
6992 if (s == NULL || s->size == 0)
6993 return TRUE;
6994
6995 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6996 goto error_return;
6997
6998 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6999 if (elfsec == SHN_BAD)
7000 goto error_return;
7001
7002 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7003
7004 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7005 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7006
7007 extdyn = dynbuf;
7008 extdynend = extdyn + s->size;
7009 for (; extdyn < extdynend; extdyn += extdynsize)
7010 {
7011 Elf_Internal_Dyn dyn;
7012
7013 (*swap_dyn_in) (abfd, extdyn, &dyn);
7014
7015 if (dyn.d_tag == DT_NULL)
7016 break;
7017
7018 if (dyn.d_tag == DT_NEEDED)
7019 {
7020 const char *string;
7021 struct bfd_link_needed_list *l;
7022 unsigned int tagv = dyn.d_un.d_val;
7023 bfd_size_type amt;
7024
7025 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7026 if (string == NULL)
7027 goto error_return;
7028
7029 amt = sizeof *l;
7030 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7031 if (l == NULL)
7032 goto error_return;
7033
7034 l->by = abfd;
7035 l->name = string;
7036 l->next = *pneeded;
7037 *pneeded = l;
7038 }
7039 }
7040
7041 free (dynbuf);
7042
7043 return TRUE;
7044
7045 error_return:
7046 if (dynbuf != NULL)
7047 free (dynbuf);
7048 return FALSE;
7049 }
7050
7051 struct elf_symbuf_symbol
7052 {
7053 unsigned long st_name; /* Symbol name, index in string tbl */
7054 unsigned char st_info; /* Type and binding attributes */
7055 unsigned char st_other; /* Visibilty, and target specific */
7056 };
7057
7058 struct elf_symbuf_head
7059 {
7060 struct elf_symbuf_symbol *ssym;
7061 bfd_size_type count;
7062 unsigned int st_shndx;
7063 };
7064
7065 struct elf_symbol
7066 {
7067 union
7068 {
7069 Elf_Internal_Sym *isym;
7070 struct elf_symbuf_symbol *ssym;
7071 } u;
7072 const char *name;
7073 };
7074
7075 /* Sort references to symbols by ascending section number. */
7076
7077 static int
7078 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7079 {
7080 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7081 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7082
7083 return s1->st_shndx - s2->st_shndx;
7084 }
7085
7086 static int
7087 elf_sym_name_compare (const void *arg1, const void *arg2)
7088 {
7089 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7090 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7091 return strcmp (s1->name, s2->name);
7092 }
7093
7094 static struct elf_symbuf_head *
7095 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7096 {
7097 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7098 struct elf_symbuf_symbol *ssym;
7099 struct elf_symbuf_head *ssymbuf, *ssymhead;
7100 bfd_size_type i, shndx_count, total_size;
7101
7102 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7103 if (indbuf == NULL)
7104 return NULL;
7105
7106 for (ind = indbuf, i = 0; i < symcount; i++)
7107 if (isymbuf[i].st_shndx != SHN_UNDEF)
7108 *ind++ = &isymbuf[i];
7109 indbufend = ind;
7110
7111 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7112 elf_sort_elf_symbol);
7113
7114 shndx_count = 0;
7115 if (indbufend > indbuf)
7116 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7117 if (ind[0]->st_shndx != ind[1]->st_shndx)
7118 shndx_count++;
7119
7120 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7121 + (indbufend - indbuf) * sizeof (*ssym));
7122 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7123 if (ssymbuf == NULL)
7124 {
7125 free (indbuf);
7126 return NULL;
7127 }
7128
7129 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7130 ssymbuf->ssym = NULL;
7131 ssymbuf->count = shndx_count;
7132 ssymbuf->st_shndx = 0;
7133 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7134 {
7135 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7136 {
7137 ssymhead++;
7138 ssymhead->ssym = ssym;
7139 ssymhead->count = 0;
7140 ssymhead->st_shndx = (*ind)->st_shndx;
7141 }
7142 ssym->st_name = (*ind)->st_name;
7143 ssym->st_info = (*ind)->st_info;
7144 ssym->st_other = (*ind)->st_other;
7145 ssymhead->count++;
7146 }
7147 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7148 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7149 == total_size));
7150
7151 free (indbuf);
7152 return ssymbuf;
7153 }
7154
7155 /* Check if 2 sections define the same set of local and global
7156 symbols. */
7157
7158 static bfd_boolean
7159 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7160 struct bfd_link_info *info)
7161 {
7162 bfd *bfd1, *bfd2;
7163 const struct elf_backend_data *bed1, *bed2;
7164 Elf_Internal_Shdr *hdr1, *hdr2;
7165 bfd_size_type symcount1, symcount2;
7166 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7167 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7168 Elf_Internal_Sym *isym, *isymend;
7169 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7170 bfd_size_type count1, count2, i;
7171 unsigned int shndx1, shndx2;
7172 bfd_boolean result;
7173
7174 bfd1 = sec1->owner;
7175 bfd2 = sec2->owner;
7176
7177 /* Both sections have to be in ELF. */
7178 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7179 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7180 return FALSE;
7181
7182 if (elf_section_type (sec1) != elf_section_type (sec2))
7183 return FALSE;
7184
7185 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7186 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7187 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7188 return FALSE;
7189
7190 bed1 = get_elf_backend_data (bfd1);
7191 bed2 = get_elf_backend_data (bfd2);
7192 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7193 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7194 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7195 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7196
7197 if (symcount1 == 0 || symcount2 == 0)
7198 return FALSE;
7199
7200 result = FALSE;
7201 isymbuf1 = NULL;
7202 isymbuf2 = NULL;
7203 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7204 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7205
7206 if (ssymbuf1 == NULL)
7207 {
7208 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7209 NULL, NULL, NULL);
7210 if (isymbuf1 == NULL)
7211 goto done;
7212
7213 if (!info->reduce_memory_overheads)
7214 elf_tdata (bfd1)->symbuf = ssymbuf1
7215 = elf_create_symbuf (symcount1, isymbuf1);
7216 }
7217
7218 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7219 {
7220 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7221 NULL, NULL, NULL);
7222 if (isymbuf2 == NULL)
7223 goto done;
7224
7225 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7226 elf_tdata (bfd2)->symbuf = ssymbuf2
7227 = elf_create_symbuf (symcount2, isymbuf2);
7228 }
7229
7230 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7231 {
7232 /* Optimized faster version. */
7233 bfd_size_type lo, hi, mid;
7234 struct elf_symbol *symp;
7235 struct elf_symbuf_symbol *ssym, *ssymend;
7236
7237 lo = 0;
7238 hi = ssymbuf1->count;
7239 ssymbuf1++;
7240 count1 = 0;
7241 while (lo < hi)
7242 {
7243 mid = (lo + hi) / 2;
7244 if (shndx1 < ssymbuf1[mid].st_shndx)
7245 hi = mid;
7246 else if (shndx1 > ssymbuf1[mid].st_shndx)
7247 lo = mid + 1;
7248 else
7249 {
7250 count1 = ssymbuf1[mid].count;
7251 ssymbuf1 += mid;
7252 break;
7253 }
7254 }
7255
7256 lo = 0;
7257 hi = ssymbuf2->count;
7258 ssymbuf2++;
7259 count2 = 0;
7260 while (lo < hi)
7261 {
7262 mid = (lo + hi) / 2;
7263 if (shndx2 < ssymbuf2[mid].st_shndx)
7264 hi = mid;
7265 else if (shndx2 > ssymbuf2[mid].st_shndx)
7266 lo = mid + 1;
7267 else
7268 {
7269 count2 = ssymbuf2[mid].count;
7270 ssymbuf2 += mid;
7271 break;
7272 }
7273 }
7274
7275 if (count1 == 0 || count2 == 0 || count1 != count2)
7276 goto done;
7277
7278 symtable1 = (struct elf_symbol *)
7279 bfd_malloc (count1 * sizeof (struct elf_symbol));
7280 symtable2 = (struct elf_symbol *)
7281 bfd_malloc (count2 * sizeof (struct elf_symbol));
7282 if (symtable1 == NULL || symtable2 == NULL)
7283 goto done;
7284
7285 symp = symtable1;
7286 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7287 ssym < ssymend; ssym++, symp++)
7288 {
7289 symp->u.ssym = ssym;
7290 symp->name = bfd_elf_string_from_elf_section (bfd1,
7291 hdr1->sh_link,
7292 ssym->st_name);
7293 }
7294
7295 symp = symtable2;
7296 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7297 ssym < ssymend; ssym++, symp++)
7298 {
7299 symp->u.ssym = ssym;
7300 symp->name = bfd_elf_string_from_elf_section (bfd2,
7301 hdr2->sh_link,
7302 ssym->st_name);
7303 }
7304
7305 /* Sort symbol by name. */
7306 qsort (symtable1, count1, sizeof (struct elf_symbol),
7307 elf_sym_name_compare);
7308 qsort (symtable2, count1, sizeof (struct elf_symbol),
7309 elf_sym_name_compare);
7310
7311 for (i = 0; i < count1; i++)
7312 /* Two symbols must have the same binding, type and name. */
7313 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7314 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7315 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7316 goto done;
7317
7318 result = TRUE;
7319 goto done;
7320 }
7321
7322 symtable1 = (struct elf_symbol *)
7323 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7324 symtable2 = (struct elf_symbol *)
7325 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7326 if (symtable1 == NULL || symtable2 == NULL)
7327 goto done;
7328
7329 /* Count definitions in the section. */
7330 count1 = 0;
7331 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7332 if (isym->st_shndx == shndx1)
7333 symtable1[count1++].u.isym = isym;
7334
7335 count2 = 0;
7336 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7337 if (isym->st_shndx == shndx2)
7338 symtable2[count2++].u.isym = isym;
7339
7340 if (count1 == 0 || count2 == 0 || count1 != count2)
7341 goto done;
7342
7343 for (i = 0; i < count1; i++)
7344 symtable1[i].name
7345 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7346 symtable1[i].u.isym->st_name);
7347
7348 for (i = 0; i < count2; i++)
7349 symtable2[i].name
7350 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7351 symtable2[i].u.isym->st_name);
7352
7353 /* Sort symbol by name. */
7354 qsort (symtable1, count1, sizeof (struct elf_symbol),
7355 elf_sym_name_compare);
7356 qsort (symtable2, count1, sizeof (struct elf_symbol),
7357 elf_sym_name_compare);
7358
7359 for (i = 0; i < count1; i++)
7360 /* Two symbols must have the same binding, type and name. */
7361 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7362 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7363 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7364 goto done;
7365
7366 result = TRUE;
7367
7368 done:
7369 if (symtable1)
7370 free (symtable1);
7371 if (symtable2)
7372 free (symtable2);
7373 if (isymbuf1)
7374 free (isymbuf1);
7375 if (isymbuf2)
7376 free (isymbuf2);
7377
7378 return result;
7379 }
7380
7381 /* Return TRUE if 2 section types are compatible. */
7382
7383 bfd_boolean
7384 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7385 bfd *bbfd, const asection *bsec)
7386 {
7387 if (asec == NULL
7388 || bsec == NULL
7389 || abfd->xvec->flavour != bfd_target_elf_flavour
7390 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7391 return TRUE;
7392
7393 return elf_section_type (asec) == elf_section_type (bsec);
7394 }
7395 \f
7396 /* Final phase of ELF linker. */
7397
7398 /* A structure we use to avoid passing large numbers of arguments. */
7399
7400 struct elf_final_link_info
7401 {
7402 /* General link information. */
7403 struct bfd_link_info *info;
7404 /* Output BFD. */
7405 bfd *output_bfd;
7406 /* Symbol string table. */
7407 struct bfd_strtab_hash *symstrtab;
7408 /* .dynsym section. */
7409 asection *dynsym_sec;
7410 /* .hash section. */
7411 asection *hash_sec;
7412 /* symbol version section (.gnu.version). */
7413 asection *symver_sec;
7414 /* Buffer large enough to hold contents of any section. */
7415 bfd_byte *contents;
7416 /* Buffer large enough to hold external relocs of any section. */
7417 void *external_relocs;
7418 /* Buffer large enough to hold internal relocs of any section. */
7419 Elf_Internal_Rela *internal_relocs;
7420 /* Buffer large enough to hold external local symbols of any input
7421 BFD. */
7422 bfd_byte *external_syms;
7423 /* And a buffer for symbol section indices. */
7424 Elf_External_Sym_Shndx *locsym_shndx;
7425 /* Buffer large enough to hold internal local symbols of any input
7426 BFD. */
7427 Elf_Internal_Sym *internal_syms;
7428 /* Array large enough to hold a symbol index for each local symbol
7429 of any input BFD. */
7430 long *indices;
7431 /* Array large enough to hold a section pointer for each local
7432 symbol of any input BFD. */
7433 asection **sections;
7434 /* Buffer to hold swapped out symbols. */
7435 bfd_byte *symbuf;
7436 /* And one for symbol section indices. */
7437 Elf_External_Sym_Shndx *symshndxbuf;
7438 /* Number of swapped out symbols in buffer. */
7439 size_t symbuf_count;
7440 /* Number of symbols which fit in symbuf. */
7441 size_t symbuf_size;
7442 /* And same for symshndxbuf. */
7443 size_t shndxbuf_size;
7444 /* Number of STT_FILE syms seen. */
7445 size_t filesym_count;
7446 };
7447
7448 /* This struct is used to pass information to elf_link_output_extsym. */
7449
7450 struct elf_outext_info
7451 {
7452 bfd_boolean failed;
7453 bfd_boolean localsyms;
7454 bfd_boolean need_second_pass;
7455 bfd_boolean second_pass;
7456 bfd_boolean file_sym_done;
7457 struct elf_final_link_info *flinfo;
7458 };
7459
7460
7461 /* Support for evaluating a complex relocation.
7462
7463 Complex relocations are generalized, self-describing relocations. The
7464 implementation of them consists of two parts: complex symbols, and the
7465 relocations themselves.
7466
7467 The relocations are use a reserved elf-wide relocation type code (R_RELC
7468 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7469 information (start bit, end bit, word width, etc) into the addend. This
7470 information is extracted from CGEN-generated operand tables within gas.
7471
7472 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7473 internal) representing prefix-notation expressions, including but not
7474 limited to those sorts of expressions normally encoded as addends in the
7475 addend field. The symbol mangling format is:
7476
7477 <node> := <literal>
7478 | <unary-operator> ':' <node>
7479 | <binary-operator> ':' <node> ':' <node>
7480 ;
7481
7482 <literal> := 's' <digits=N> ':' <N character symbol name>
7483 | 'S' <digits=N> ':' <N character section name>
7484 | '#' <hexdigits>
7485 ;
7486
7487 <binary-operator> := as in C
7488 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7489
7490 static void
7491 set_symbol_value (bfd *bfd_with_globals,
7492 Elf_Internal_Sym *isymbuf,
7493 size_t locsymcount,
7494 size_t symidx,
7495 bfd_vma val)
7496 {
7497 struct elf_link_hash_entry **sym_hashes;
7498 struct elf_link_hash_entry *h;
7499 size_t extsymoff = locsymcount;
7500
7501 if (symidx < locsymcount)
7502 {
7503 Elf_Internal_Sym *sym;
7504
7505 sym = isymbuf + symidx;
7506 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7507 {
7508 /* It is a local symbol: move it to the
7509 "absolute" section and give it a value. */
7510 sym->st_shndx = SHN_ABS;
7511 sym->st_value = val;
7512 return;
7513 }
7514 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7515 extsymoff = 0;
7516 }
7517
7518 /* It is a global symbol: set its link type
7519 to "defined" and give it a value. */
7520
7521 sym_hashes = elf_sym_hashes (bfd_with_globals);
7522 h = sym_hashes [symidx - extsymoff];
7523 while (h->root.type == bfd_link_hash_indirect
7524 || h->root.type == bfd_link_hash_warning)
7525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7526 h->root.type = bfd_link_hash_defined;
7527 h->root.u.def.value = val;
7528 h->root.u.def.section = bfd_abs_section_ptr;
7529 }
7530
7531 static bfd_boolean
7532 resolve_symbol (const char *name,
7533 bfd *input_bfd,
7534 struct elf_final_link_info *flinfo,
7535 bfd_vma *result,
7536 Elf_Internal_Sym *isymbuf,
7537 size_t locsymcount)
7538 {
7539 Elf_Internal_Sym *sym;
7540 struct bfd_link_hash_entry *global_entry;
7541 const char *candidate = NULL;
7542 Elf_Internal_Shdr *symtab_hdr;
7543 size_t i;
7544
7545 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7546
7547 for (i = 0; i < locsymcount; ++ i)
7548 {
7549 sym = isymbuf + i;
7550
7551 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7552 continue;
7553
7554 candidate = bfd_elf_string_from_elf_section (input_bfd,
7555 symtab_hdr->sh_link,
7556 sym->st_name);
7557 #ifdef DEBUG
7558 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7559 name, candidate, (unsigned long) sym->st_value);
7560 #endif
7561 if (candidate && strcmp (candidate, name) == 0)
7562 {
7563 asection *sec = flinfo->sections [i];
7564
7565 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7566 *result += sec->output_offset + sec->output_section->vma;
7567 #ifdef DEBUG
7568 printf ("Found symbol with value %8.8lx\n",
7569 (unsigned long) *result);
7570 #endif
7571 return TRUE;
7572 }
7573 }
7574
7575 /* Hmm, haven't found it yet. perhaps it is a global. */
7576 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7577 FALSE, FALSE, TRUE);
7578 if (!global_entry)
7579 return FALSE;
7580
7581 if (global_entry->type == bfd_link_hash_defined
7582 || global_entry->type == bfd_link_hash_defweak)
7583 {
7584 *result = (global_entry->u.def.value
7585 + global_entry->u.def.section->output_section->vma
7586 + global_entry->u.def.section->output_offset);
7587 #ifdef DEBUG
7588 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7589 global_entry->root.string, (unsigned long) *result);
7590 #endif
7591 return TRUE;
7592 }
7593
7594 return FALSE;
7595 }
7596
7597 static bfd_boolean
7598 resolve_section (const char *name,
7599 asection *sections,
7600 bfd_vma *result)
7601 {
7602 asection *curr;
7603 unsigned int len;
7604
7605 for (curr = sections; curr; curr = curr->next)
7606 if (strcmp (curr->name, name) == 0)
7607 {
7608 *result = curr->vma;
7609 return TRUE;
7610 }
7611
7612 /* Hmm. still haven't found it. try pseudo-section names. */
7613 for (curr = sections; curr; curr = curr->next)
7614 {
7615 len = strlen (curr->name);
7616 if (len > strlen (name))
7617 continue;
7618
7619 if (strncmp (curr->name, name, len) == 0)
7620 {
7621 if (strncmp (".end", name + len, 4) == 0)
7622 {
7623 *result = curr->vma + curr->size;
7624 return TRUE;
7625 }
7626
7627 /* Insert more pseudo-section names here, if you like. */
7628 }
7629 }
7630
7631 return FALSE;
7632 }
7633
7634 static void
7635 undefined_reference (const char *reftype, const char *name)
7636 {
7637 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7638 reftype, name);
7639 }
7640
7641 static bfd_boolean
7642 eval_symbol (bfd_vma *result,
7643 const char **symp,
7644 bfd *input_bfd,
7645 struct elf_final_link_info *flinfo,
7646 bfd_vma dot,
7647 Elf_Internal_Sym *isymbuf,
7648 size_t locsymcount,
7649 int signed_p)
7650 {
7651 size_t len;
7652 size_t symlen;
7653 bfd_vma a;
7654 bfd_vma b;
7655 char symbuf[4096];
7656 const char *sym = *symp;
7657 const char *symend;
7658 bfd_boolean symbol_is_section = FALSE;
7659
7660 len = strlen (sym);
7661 symend = sym + len;
7662
7663 if (len < 1 || len > sizeof (symbuf))
7664 {
7665 bfd_set_error (bfd_error_invalid_operation);
7666 return FALSE;
7667 }
7668
7669 switch (* sym)
7670 {
7671 case '.':
7672 *result = dot;
7673 *symp = sym + 1;
7674 return TRUE;
7675
7676 case '#':
7677 ++sym;
7678 *result = strtoul (sym, (char **) symp, 16);
7679 return TRUE;
7680
7681 case 'S':
7682 symbol_is_section = TRUE;
7683 case 's':
7684 ++sym;
7685 symlen = strtol (sym, (char **) symp, 10);
7686 sym = *symp + 1; /* Skip the trailing ':'. */
7687
7688 if (symend < sym || symlen + 1 > sizeof (symbuf))
7689 {
7690 bfd_set_error (bfd_error_invalid_operation);
7691 return FALSE;
7692 }
7693
7694 memcpy (symbuf, sym, symlen);
7695 symbuf[symlen] = '\0';
7696 *symp = sym + symlen;
7697
7698 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7699 the symbol as a section, or vice-versa. so we're pretty liberal in our
7700 interpretation here; section means "try section first", not "must be a
7701 section", and likewise with symbol. */
7702
7703 if (symbol_is_section)
7704 {
7705 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7706 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7707 isymbuf, locsymcount))
7708 {
7709 undefined_reference ("section", symbuf);
7710 return FALSE;
7711 }
7712 }
7713 else
7714 {
7715 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7716 isymbuf, locsymcount)
7717 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7718 result))
7719 {
7720 undefined_reference ("symbol", symbuf);
7721 return FALSE;
7722 }
7723 }
7724
7725 return TRUE;
7726
7727 /* All that remains are operators. */
7728
7729 #define UNARY_OP(op) \
7730 if (strncmp (sym, #op, strlen (#op)) == 0) \
7731 { \
7732 sym += strlen (#op); \
7733 if (*sym == ':') \
7734 ++sym; \
7735 *symp = sym; \
7736 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7737 isymbuf, locsymcount, signed_p)) \
7738 return FALSE; \
7739 if (signed_p) \
7740 *result = op ((bfd_signed_vma) a); \
7741 else \
7742 *result = op a; \
7743 return TRUE; \
7744 }
7745
7746 #define BINARY_OP(op) \
7747 if (strncmp (sym, #op, strlen (#op)) == 0) \
7748 { \
7749 sym += strlen (#op); \
7750 if (*sym == ':') \
7751 ++sym; \
7752 *symp = sym; \
7753 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7754 isymbuf, locsymcount, signed_p)) \
7755 return FALSE; \
7756 ++*symp; \
7757 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7758 isymbuf, locsymcount, signed_p)) \
7759 return FALSE; \
7760 if (signed_p) \
7761 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7762 else \
7763 *result = a op b; \
7764 return TRUE; \
7765 }
7766
7767 default:
7768 UNARY_OP (0-);
7769 BINARY_OP (<<);
7770 BINARY_OP (>>);
7771 BINARY_OP (==);
7772 BINARY_OP (!=);
7773 BINARY_OP (<=);
7774 BINARY_OP (>=);
7775 BINARY_OP (&&);
7776 BINARY_OP (||);
7777 UNARY_OP (~);
7778 UNARY_OP (!);
7779 BINARY_OP (*);
7780 BINARY_OP (/);
7781 BINARY_OP (%);
7782 BINARY_OP (^);
7783 BINARY_OP (|);
7784 BINARY_OP (&);
7785 BINARY_OP (+);
7786 BINARY_OP (-);
7787 BINARY_OP (<);
7788 BINARY_OP (>);
7789 #undef UNARY_OP
7790 #undef BINARY_OP
7791 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7792 bfd_set_error (bfd_error_invalid_operation);
7793 return FALSE;
7794 }
7795 }
7796
7797 static void
7798 put_value (bfd_vma size,
7799 unsigned long chunksz,
7800 bfd *input_bfd,
7801 bfd_vma x,
7802 bfd_byte *location)
7803 {
7804 location += (size - chunksz);
7805
7806 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7807 {
7808 switch (chunksz)
7809 {
7810 default:
7811 case 0:
7812 abort ();
7813 case 1:
7814 bfd_put_8 (input_bfd, x, location);
7815 break;
7816 case 2:
7817 bfd_put_16 (input_bfd, x, location);
7818 break;
7819 case 4:
7820 bfd_put_32 (input_bfd, x, location);
7821 break;
7822 case 8:
7823 #ifdef BFD64
7824 bfd_put_64 (input_bfd, x, location);
7825 #else
7826 abort ();
7827 #endif
7828 break;
7829 }
7830 }
7831 }
7832
7833 static bfd_vma
7834 get_value (bfd_vma size,
7835 unsigned long chunksz,
7836 bfd *input_bfd,
7837 bfd_byte *location)
7838 {
7839 int shift;
7840 bfd_vma x = 0;
7841
7842 /* Sanity checks. */
7843 BFD_ASSERT (chunksz <= sizeof (x)
7844 && size >= chunksz
7845 && chunksz != 0
7846 && (size % chunksz) == 0
7847 && input_bfd != NULL
7848 && location != NULL);
7849
7850 if (chunksz == sizeof (x))
7851 {
7852 BFD_ASSERT (size == chunksz);
7853
7854 /* Make sure that we do not perform an undefined shift operation.
7855 We know that size == chunksz so there will only be one iteration
7856 of the loop below. */
7857 shift = 0;
7858 }
7859 else
7860 shift = 8 * chunksz;
7861
7862 for (; size; size -= chunksz, location += chunksz)
7863 {
7864 switch (chunksz)
7865 {
7866 case 1:
7867 x = (x << shift) | bfd_get_8 (input_bfd, location);
7868 break;
7869 case 2:
7870 x = (x << shift) | bfd_get_16 (input_bfd, location);
7871 break;
7872 case 4:
7873 x = (x << shift) | bfd_get_32 (input_bfd, location);
7874 break;
7875 #ifdef BFD64
7876 case 8:
7877 x = (x << shift) | bfd_get_64 (input_bfd, location);
7878 break;
7879 #endif
7880 default:
7881 abort ();
7882 }
7883 }
7884 return x;
7885 }
7886
7887 static void
7888 decode_complex_addend (unsigned long *start, /* in bits */
7889 unsigned long *oplen, /* in bits */
7890 unsigned long *len, /* in bits */
7891 unsigned long *wordsz, /* in bytes */
7892 unsigned long *chunksz, /* in bytes */
7893 unsigned long *lsb0_p,
7894 unsigned long *signed_p,
7895 unsigned long *trunc_p,
7896 unsigned long encoded)
7897 {
7898 * start = encoded & 0x3F;
7899 * len = (encoded >> 6) & 0x3F;
7900 * oplen = (encoded >> 12) & 0x3F;
7901 * wordsz = (encoded >> 18) & 0xF;
7902 * chunksz = (encoded >> 22) & 0xF;
7903 * lsb0_p = (encoded >> 27) & 1;
7904 * signed_p = (encoded >> 28) & 1;
7905 * trunc_p = (encoded >> 29) & 1;
7906 }
7907
7908 bfd_reloc_status_type
7909 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7910 asection *input_section ATTRIBUTE_UNUSED,
7911 bfd_byte *contents,
7912 Elf_Internal_Rela *rel,
7913 bfd_vma relocation)
7914 {
7915 bfd_vma shift, x, mask;
7916 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7917 bfd_reloc_status_type r;
7918
7919 /* Perform this reloc, since it is complex.
7920 (this is not to say that it necessarily refers to a complex
7921 symbol; merely that it is a self-describing CGEN based reloc.
7922 i.e. the addend has the complete reloc information (bit start, end,
7923 word size, etc) encoded within it.). */
7924
7925 decode_complex_addend (&start, &oplen, &len, &wordsz,
7926 &chunksz, &lsb0_p, &signed_p,
7927 &trunc_p, rel->r_addend);
7928
7929 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7930
7931 if (lsb0_p)
7932 shift = (start + 1) - len;
7933 else
7934 shift = (8 * wordsz) - (start + len);
7935
7936 /* FIXME: octets_per_byte. */
7937 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7938
7939 #ifdef DEBUG
7940 printf ("Doing complex reloc: "
7941 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7942 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7943 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7944 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7945 oplen, (unsigned long) x, (unsigned long) mask,
7946 (unsigned long) relocation);
7947 #endif
7948
7949 r = bfd_reloc_ok;
7950 if (! trunc_p)
7951 /* Now do an overflow check. */
7952 r = bfd_check_overflow ((signed_p
7953 ? complain_overflow_signed
7954 : complain_overflow_unsigned),
7955 len, 0, (8 * wordsz),
7956 relocation);
7957
7958 /* Do the deed. */
7959 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7960
7961 #ifdef DEBUG
7962 printf (" relocation: %8.8lx\n"
7963 " shifted mask: %8.8lx\n"
7964 " shifted/masked reloc: %8.8lx\n"
7965 " result: %8.8lx\n",
7966 (unsigned long) relocation, (unsigned long) (mask << shift),
7967 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7968 #endif
7969 /* FIXME: octets_per_byte. */
7970 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7971 return r;
7972 }
7973
7974 /* qsort comparison functions sorting external relocs by r_offset. */
7975
7976 static int
7977 cmp_ext32l_r_offset (const void *p, const void *q)
7978 {
7979 union aligned32
7980 {
7981 uint32_t v;
7982 unsigned char c[4];
7983 };
7984 const union aligned32 *a
7985 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7986 const union aligned32 *b
7987 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7988
7989 uint32_t aval = ( (uint32_t) a->c[0]
7990 | (uint32_t) a->c[1] << 8
7991 | (uint32_t) a->c[2] << 16
7992 | (uint32_t) a->c[3] << 24);
7993 uint32_t bval = ( (uint32_t) b->c[0]
7994 | (uint32_t) b->c[1] << 8
7995 | (uint32_t) b->c[2] << 16
7996 | (uint32_t) b->c[3] << 24);
7997 if (aval < bval)
7998 return -1;
7999 else if (aval > bval)
8000 return 1;
8001 return 0;
8002 }
8003
8004 static int
8005 cmp_ext32b_r_offset (const void *p, const void *q)
8006 {
8007 union aligned32
8008 {
8009 uint32_t v;
8010 unsigned char c[4];
8011 };
8012 const union aligned32 *a
8013 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8014 const union aligned32 *b
8015 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8016
8017 uint32_t aval = ( (uint32_t) a->c[0] << 24
8018 | (uint32_t) a->c[1] << 16
8019 | (uint32_t) a->c[2] << 8
8020 | (uint32_t) a->c[3]);
8021 uint32_t bval = ( (uint32_t) b->c[0] << 24
8022 | (uint32_t) b->c[1] << 16
8023 | (uint32_t) b->c[2] << 8
8024 | (uint32_t) b->c[3]);
8025 if (aval < bval)
8026 return -1;
8027 else if (aval > bval)
8028 return 1;
8029 return 0;
8030 }
8031
8032 #ifdef BFD_HOST_64_BIT
8033 static int
8034 cmp_ext64l_r_offset (const void *p, const void *q)
8035 {
8036 union aligned64
8037 {
8038 uint64_t v;
8039 unsigned char c[8];
8040 };
8041 const union aligned64 *a
8042 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8043 const union aligned64 *b
8044 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8045
8046 uint64_t aval = ( (uint64_t) a->c[0]
8047 | (uint64_t) a->c[1] << 8
8048 | (uint64_t) a->c[2] << 16
8049 | (uint64_t) a->c[3] << 24
8050 | (uint64_t) a->c[4] << 32
8051 | (uint64_t) a->c[5] << 40
8052 | (uint64_t) a->c[6] << 48
8053 | (uint64_t) a->c[7] << 56);
8054 uint64_t bval = ( (uint64_t) b->c[0]
8055 | (uint64_t) b->c[1] << 8
8056 | (uint64_t) b->c[2] << 16
8057 | (uint64_t) b->c[3] << 24
8058 | (uint64_t) b->c[4] << 32
8059 | (uint64_t) b->c[5] << 40
8060 | (uint64_t) b->c[6] << 48
8061 | (uint64_t) b->c[7] << 56);
8062 if (aval < bval)
8063 return -1;
8064 else if (aval > bval)
8065 return 1;
8066 return 0;
8067 }
8068
8069 static int
8070 cmp_ext64b_r_offset (const void *p, const void *q)
8071 {
8072 union aligned64
8073 {
8074 uint64_t v;
8075 unsigned char c[8];
8076 };
8077 const union aligned64 *a
8078 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8079 const union aligned64 *b
8080 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8081
8082 uint64_t aval = ( (uint64_t) a->c[0] << 56
8083 | (uint64_t) a->c[1] << 48
8084 | (uint64_t) a->c[2] << 40
8085 | (uint64_t) a->c[3] << 32
8086 | (uint64_t) a->c[4] << 24
8087 | (uint64_t) a->c[5] << 16
8088 | (uint64_t) a->c[6] << 8
8089 | (uint64_t) a->c[7]);
8090 uint64_t bval = ( (uint64_t) b->c[0] << 56
8091 | (uint64_t) b->c[1] << 48
8092 | (uint64_t) b->c[2] << 40
8093 | (uint64_t) b->c[3] << 32
8094 | (uint64_t) b->c[4] << 24
8095 | (uint64_t) b->c[5] << 16
8096 | (uint64_t) b->c[6] << 8
8097 | (uint64_t) b->c[7]);
8098 if (aval < bval)
8099 return -1;
8100 else if (aval > bval)
8101 return 1;
8102 return 0;
8103 }
8104 #endif
8105
8106 /* When performing a relocatable link, the input relocations are
8107 preserved. But, if they reference global symbols, the indices
8108 referenced must be updated. Update all the relocations found in
8109 RELDATA. */
8110
8111 static void
8112 elf_link_adjust_relocs (bfd *abfd,
8113 struct bfd_elf_section_reloc_data *reldata,
8114 bfd_boolean sort)
8115 {
8116 unsigned int i;
8117 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8118 bfd_byte *erela;
8119 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8120 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8121 bfd_vma r_type_mask;
8122 int r_sym_shift;
8123 unsigned int count = reldata->count;
8124 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8125
8126 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8127 {
8128 swap_in = bed->s->swap_reloc_in;
8129 swap_out = bed->s->swap_reloc_out;
8130 }
8131 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8132 {
8133 swap_in = bed->s->swap_reloca_in;
8134 swap_out = bed->s->swap_reloca_out;
8135 }
8136 else
8137 abort ();
8138
8139 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8140 abort ();
8141
8142 if (bed->s->arch_size == 32)
8143 {
8144 r_type_mask = 0xff;
8145 r_sym_shift = 8;
8146 }
8147 else
8148 {
8149 r_type_mask = 0xffffffff;
8150 r_sym_shift = 32;
8151 }
8152
8153 erela = reldata->hdr->contents;
8154 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8155 {
8156 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8157 unsigned int j;
8158
8159 if (*rel_hash == NULL)
8160 continue;
8161
8162 BFD_ASSERT ((*rel_hash)->indx >= 0);
8163
8164 (*swap_in) (abfd, erela, irela);
8165 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8166 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8167 | (irela[j].r_info & r_type_mask));
8168 (*swap_out) (abfd, irela, erela);
8169 }
8170
8171 if (sort)
8172 {
8173 int (*compare) (const void *, const void *);
8174
8175 if (bed->s->arch_size == 32)
8176 {
8177 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8178 compare = cmp_ext32l_r_offset;
8179 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8180 compare = cmp_ext32b_r_offset;
8181 else
8182 abort ();
8183 }
8184 else
8185 {
8186 #ifdef BFD_HOST_64_BIT
8187 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8188 compare = cmp_ext64l_r_offset;
8189 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8190 compare = cmp_ext64b_r_offset;
8191 else
8192 #endif
8193 abort ();
8194 }
8195 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8196 free (reldata->hashes);
8197 reldata->hashes = NULL;
8198 }
8199 }
8200
8201 struct elf_link_sort_rela
8202 {
8203 union {
8204 bfd_vma offset;
8205 bfd_vma sym_mask;
8206 } u;
8207 enum elf_reloc_type_class type;
8208 /* We use this as an array of size int_rels_per_ext_rel. */
8209 Elf_Internal_Rela rela[1];
8210 };
8211
8212 static int
8213 elf_link_sort_cmp1 (const void *A, const void *B)
8214 {
8215 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8216 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8217 int relativea, relativeb;
8218
8219 relativea = a->type == reloc_class_relative;
8220 relativeb = b->type == reloc_class_relative;
8221
8222 if (relativea < relativeb)
8223 return 1;
8224 if (relativea > relativeb)
8225 return -1;
8226 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8227 return -1;
8228 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8229 return 1;
8230 if (a->rela->r_offset < b->rela->r_offset)
8231 return -1;
8232 if (a->rela->r_offset > b->rela->r_offset)
8233 return 1;
8234 return 0;
8235 }
8236
8237 static int
8238 elf_link_sort_cmp2 (const void *A, const void *B)
8239 {
8240 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8241 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8242
8243 if (a->type < b->type)
8244 return -1;
8245 if (a->type > b->type)
8246 return 1;
8247 if (a->u.offset < b->u.offset)
8248 return -1;
8249 if (a->u.offset > b->u.offset)
8250 return 1;
8251 if (a->rela->r_offset < b->rela->r_offset)
8252 return -1;
8253 if (a->rela->r_offset > b->rela->r_offset)
8254 return 1;
8255 return 0;
8256 }
8257
8258 static size_t
8259 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8260 {
8261 asection *dynamic_relocs;
8262 asection *rela_dyn;
8263 asection *rel_dyn;
8264 bfd_size_type count, size;
8265 size_t i, ret, sort_elt, ext_size;
8266 bfd_byte *sort, *s_non_relative, *p;
8267 struct elf_link_sort_rela *sq;
8268 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8269 int i2e = bed->s->int_rels_per_ext_rel;
8270 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8271 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8272 struct bfd_link_order *lo;
8273 bfd_vma r_sym_mask;
8274 bfd_boolean use_rela;
8275
8276 /* Find a dynamic reloc section. */
8277 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8278 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8279 if (rela_dyn != NULL && rela_dyn->size > 0
8280 && rel_dyn != NULL && rel_dyn->size > 0)
8281 {
8282 bfd_boolean use_rela_initialised = FALSE;
8283
8284 /* This is just here to stop gcc from complaining.
8285 It's initialization checking code is not perfect. */
8286 use_rela = TRUE;
8287
8288 /* Both sections are present. Examine the sizes
8289 of the indirect sections to help us choose. */
8290 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8291 if (lo->type == bfd_indirect_link_order)
8292 {
8293 asection *o = lo->u.indirect.section;
8294
8295 if ((o->size % bed->s->sizeof_rela) == 0)
8296 {
8297 if ((o->size % bed->s->sizeof_rel) == 0)
8298 /* Section size is divisible by both rel and rela sizes.
8299 It is of no help to us. */
8300 ;
8301 else
8302 {
8303 /* Section size is only divisible by rela. */
8304 if (use_rela_initialised && (use_rela == FALSE))
8305 {
8306 _bfd_error_handler
8307 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8308 bfd_set_error (bfd_error_invalid_operation);
8309 return 0;
8310 }
8311 else
8312 {
8313 use_rela = TRUE;
8314 use_rela_initialised = TRUE;
8315 }
8316 }
8317 }
8318 else if ((o->size % bed->s->sizeof_rel) == 0)
8319 {
8320 /* Section size is only divisible by rel. */
8321 if (use_rela_initialised && (use_rela == TRUE))
8322 {
8323 _bfd_error_handler
8324 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8325 bfd_set_error (bfd_error_invalid_operation);
8326 return 0;
8327 }
8328 else
8329 {
8330 use_rela = FALSE;
8331 use_rela_initialised = TRUE;
8332 }
8333 }
8334 else
8335 {
8336 /* The section size is not divisible by either - something is wrong. */
8337 _bfd_error_handler
8338 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8339 bfd_set_error (bfd_error_invalid_operation);
8340 return 0;
8341 }
8342 }
8343
8344 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8345 if (lo->type == bfd_indirect_link_order)
8346 {
8347 asection *o = lo->u.indirect.section;
8348
8349 if ((o->size % bed->s->sizeof_rela) == 0)
8350 {
8351 if ((o->size % bed->s->sizeof_rel) == 0)
8352 /* Section size is divisible by both rel and rela sizes.
8353 It is of no help to us. */
8354 ;
8355 else
8356 {
8357 /* Section size is only divisible by rela. */
8358 if (use_rela_initialised && (use_rela == FALSE))
8359 {
8360 _bfd_error_handler
8361 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8362 bfd_set_error (bfd_error_invalid_operation);
8363 return 0;
8364 }
8365 else
8366 {
8367 use_rela = TRUE;
8368 use_rela_initialised = TRUE;
8369 }
8370 }
8371 }
8372 else if ((o->size % bed->s->sizeof_rel) == 0)
8373 {
8374 /* Section size is only divisible by rel. */
8375 if (use_rela_initialised && (use_rela == TRUE))
8376 {
8377 _bfd_error_handler
8378 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8379 bfd_set_error (bfd_error_invalid_operation);
8380 return 0;
8381 }
8382 else
8383 {
8384 use_rela = FALSE;
8385 use_rela_initialised = TRUE;
8386 }
8387 }
8388 else
8389 {
8390 /* The section size is not divisible by either - something is wrong. */
8391 _bfd_error_handler
8392 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8393 bfd_set_error (bfd_error_invalid_operation);
8394 return 0;
8395 }
8396 }
8397
8398 if (! use_rela_initialised)
8399 /* Make a guess. */
8400 use_rela = TRUE;
8401 }
8402 else if (rela_dyn != NULL && rela_dyn->size > 0)
8403 use_rela = TRUE;
8404 else if (rel_dyn != NULL && rel_dyn->size > 0)
8405 use_rela = FALSE;
8406 else
8407 return 0;
8408
8409 if (use_rela)
8410 {
8411 dynamic_relocs = rela_dyn;
8412 ext_size = bed->s->sizeof_rela;
8413 swap_in = bed->s->swap_reloca_in;
8414 swap_out = bed->s->swap_reloca_out;
8415 }
8416 else
8417 {
8418 dynamic_relocs = rel_dyn;
8419 ext_size = bed->s->sizeof_rel;
8420 swap_in = bed->s->swap_reloc_in;
8421 swap_out = bed->s->swap_reloc_out;
8422 }
8423
8424 size = 0;
8425 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8426 if (lo->type == bfd_indirect_link_order)
8427 size += lo->u.indirect.section->size;
8428
8429 if (size != dynamic_relocs->size)
8430 return 0;
8431
8432 sort_elt = (sizeof (struct elf_link_sort_rela)
8433 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8434
8435 count = dynamic_relocs->size / ext_size;
8436 if (count == 0)
8437 return 0;
8438 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8439
8440 if (sort == NULL)
8441 {
8442 (*info->callbacks->warning)
8443 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8444 return 0;
8445 }
8446
8447 if (bed->s->arch_size == 32)
8448 r_sym_mask = ~(bfd_vma) 0xff;
8449 else
8450 r_sym_mask = ~(bfd_vma) 0xffffffff;
8451
8452 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8453 if (lo->type == bfd_indirect_link_order)
8454 {
8455 bfd_byte *erel, *erelend;
8456 asection *o = lo->u.indirect.section;
8457
8458 if (o->contents == NULL && o->size != 0)
8459 {
8460 /* This is a reloc section that is being handled as a normal
8461 section. See bfd_section_from_shdr. We can't combine
8462 relocs in this case. */
8463 free (sort);
8464 return 0;
8465 }
8466 erel = o->contents;
8467 erelend = o->contents + o->size;
8468 /* FIXME: octets_per_byte. */
8469 p = sort + o->output_offset / ext_size * sort_elt;
8470
8471 while (erel < erelend)
8472 {
8473 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8474
8475 (*swap_in) (abfd, erel, s->rela);
8476 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8477 s->u.sym_mask = r_sym_mask;
8478 p += sort_elt;
8479 erel += ext_size;
8480 }
8481 }
8482
8483 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8484
8485 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8486 {
8487 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8488 if (s->type != reloc_class_relative)
8489 break;
8490 }
8491 ret = i;
8492 s_non_relative = p;
8493
8494 sq = (struct elf_link_sort_rela *) s_non_relative;
8495 for (; i < count; i++, p += sort_elt)
8496 {
8497 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8498 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8499 sq = sp;
8500 sp->u.offset = sq->rela->r_offset;
8501 }
8502
8503 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8504
8505 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8506 if (lo->type == bfd_indirect_link_order)
8507 {
8508 bfd_byte *erel, *erelend;
8509 asection *o = lo->u.indirect.section;
8510
8511 erel = o->contents;
8512 erelend = o->contents + o->size;
8513 /* FIXME: octets_per_byte. */
8514 p = sort + o->output_offset / ext_size * sort_elt;
8515 while (erel < erelend)
8516 {
8517 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8518 (*swap_out) (abfd, s->rela, erel);
8519 p += sort_elt;
8520 erel += ext_size;
8521 }
8522 }
8523
8524 free (sort);
8525 *psec = dynamic_relocs;
8526 return ret;
8527 }
8528
8529 /* Flush the output symbols to the file. */
8530
8531 static bfd_boolean
8532 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8533 const struct elf_backend_data *bed)
8534 {
8535 if (flinfo->symbuf_count > 0)
8536 {
8537 Elf_Internal_Shdr *hdr;
8538 file_ptr pos;
8539 bfd_size_type amt;
8540
8541 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8542 pos = hdr->sh_offset + hdr->sh_size;
8543 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8544 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8545 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8546 return FALSE;
8547
8548 hdr->sh_size += amt;
8549 flinfo->symbuf_count = 0;
8550 }
8551
8552 return TRUE;
8553 }
8554
8555 /* Add a symbol to the output symbol table. */
8556
8557 static int
8558 elf_link_output_sym (struct elf_final_link_info *flinfo,
8559 const char *name,
8560 Elf_Internal_Sym *elfsym,
8561 asection *input_sec,
8562 struct elf_link_hash_entry *h)
8563 {
8564 bfd_byte *dest;
8565 Elf_External_Sym_Shndx *destshndx;
8566 int (*output_symbol_hook)
8567 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8568 struct elf_link_hash_entry *);
8569 const struct elf_backend_data *bed;
8570
8571 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8572
8573 bed = get_elf_backend_data (flinfo->output_bfd);
8574 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8575 if (output_symbol_hook != NULL)
8576 {
8577 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8578 if (ret != 1)
8579 return ret;
8580 }
8581
8582 if (name == NULL || *name == '\0')
8583 elfsym->st_name = 0;
8584 else if (input_sec->flags & SEC_EXCLUDE)
8585 elfsym->st_name = 0;
8586 else
8587 {
8588 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8589 name, TRUE, FALSE);
8590 if (elfsym->st_name == (unsigned long) -1)
8591 return 0;
8592 }
8593
8594 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8595 {
8596 if (! elf_link_flush_output_syms (flinfo, bed))
8597 return 0;
8598 }
8599
8600 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8601 destshndx = flinfo->symshndxbuf;
8602 if (destshndx != NULL)
8603 {
8604 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8605 {
8606 bfd_size_type amt;
8607
8608 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8609 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8610 amt * 2);
8611 if (destshndx == NULL)
8612 return 0;
8613 flinfo->symshndxbuf = destshndx;
8614 memset ((char *) destshndx + amt, 0, amt);
8615 flinfo->shndxbuf_size *= 2;
8616 }
8617 destshndx += bfd_get_symcount (flinfo->output_bfd);
8618 }
8619
8620 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8621 flinfo->symbuf_count += 1;
8622 bfd_get_symcount (flinfo->output_bfd) += 1;
8623
8624 return 1;
8625 }
8626
8627 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8628
8629 static bfd_boolean
8630 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8631 {
8632 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8633 && sym->st_shndx < SHN_LORESERVE)
8634 {
8635 /* The gABI doesn't support dynamic symbols in output sections
8636 beyond 64k. */
8637 (*_bfd_error_handler)
8638 (_("%B: Too many sections: %d (>= %d)"),
8639 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8640 bfd_set_error (bfd_error_nonrepresentable_section);
8641 return FALSE;
8642 }
8643 return TRUE;
8644 }
8645
8646 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8647 allowing an unsatisfied unversioned symbol in the DSO to match a
8648 versioned symbol that would normally require an explicit version.
8649 We also handle the case that a DSO references a hidden symbol
8650 which may be satisfied by a versioned symbol in another DSO. */
8651
8652 static bfd_boolean
8653 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8654 const struct elf_backend_data *bed,
8655 struct elf_link_hash_entry *h)
8656 {
8657 bfd *abfd;
8658 struct elf_link_loaded_list *loaded;
8659
8660 if (!is_elf_hash_table (info->hash))
8661 return FALSE;
8662
8663 /* Check indirect symbol. */
8664 while (h->root.type == bfd_link_hash_indirect)
8665 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8666
8667 switch (h->root.type)
8668 {
8669 default:
8670 abfd = NULL;
8671 break;
8672
8673 case bfd_link_hash_undefined:
8674 case bfd_link_hash_undefweak:
8675 abfd = h->root.u.undef.abfd;
8676 if ((abfd->flags & DYNAMIC) == 0
8677 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8678 return FALSE;
8679 break;
8680
8681 case bfd_link_hash_defined:
8682 case bfd_link_hash_defweak:
8683 abfd = h->root.u.def.section->owner;
8684 break;
8685
8686 case bfd_link_hash_common:
8687 abfd = h->root.u.c.p->section->owner;
8688 break;
8689 }
8690 BFD_ASSERT (abfd != NULL);
8691
8692 for (loaded = elf_hash_table (info)->loaded;
8693 loaded != NULL;
8694 loaded = loaded->next)
8695 {
8696 bfd *input;
8697 Elf_Internal_Shdr *hdr;
8698 bfd_size_type symcount;
8699 bfd_size_type extsymcount;
8700 bfd_size_type extsymoff;
8701 Elf_Internal_Shdr *versymhdr;
8702 Elf_Internal_Sym *isym;
8703 Elf_Internal_Sym *isymend;
8704 Elf_Internal_Sym *isymbuf;
8705 Elf_External_Versym *ever;
8706 Elf_External_Versym *extversym;
8707
8708 input = loaded->abfd;
8709
8710 /* We check each DSO for a possible hidden versioned definition. */
8711 if (input == abfd
8712 || (input->flags & DYNAMIC) == 0
8713 || elf_dynversym (input) == 0)
8714 continue;
8715
8716 hdr = &elf_tdata (input)->dynsymtab_hdr;
8717
8718 symcount = hdr->sh_size / bed->s->sizeof_sym;
8719 if (elf_bad_symtab (input))
8720 {
8721 extsymcount = symcount;
8722 extsymoff = 0;
8723 }
8724 else
8725 {
8726 extsymcount = symcount - hdr->sh_info;
8727 extsymoff = hdr->sh_info;
8728 }
8729
8730 if (extsymcount == 0)
8731 continue;
8732
8733 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8734 NULL, NULL, NULL);
8735 if (isymbuf == NULL)
8736 return FALSE;
8737
8738 /* Read in any version definitions. */
8739 versymhdr = &elf_tdata (input)->dynversym_hdr;
8740 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8741 if (extversym == NULL)
8742 goto error_ret;
8743
8744 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8745 || (bfd_bread (extversym, versymhdr->sh_size, input)
8746 != versymhdr->sh_size))
8747 {
8748 free (extversym);
8749 error_ret:
8750 free (isymbuf);
8751 return FALSE;
8752 }
8753
8754 ever = extversym + extsymoff;
8755 isymend = isymbuf + extsymcount;
8756 for (isym = isymbuf; isym < isymend; isym++, ever++)
8757 {
8758 const char *name;
8759 Elf_Internal_Versym iver;
8760 unsigned short version_index;
8761
8762 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8763 || isym->st_shndx == SHN_UNDEF)
8764 continue;
8765
8766 name = bfd_elf_string_from_elf_section (input,
8767 hdr->sh_link,
8768 isym->st_name);
8769 if (strcmp (name, h->root.root.string) != 0)
8770 continue;
8771
8772 _bfd_elf_swap_versym_in (input, ever, &iver);
8773
8774 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8775 && !(h->def_regular
8776 && h->forced_local))
8777 {
8778 /* If we have a non-hidden versioned sym, then it should
8779 have provided a definition for the undefined sym unless
8780 it is defined in a non-shared object and forced local.
8781 */
8782 abort ();
8783 }
8784
8785 version_index = iver.vs_vers & VERSYM_VERSION;
8786 if (version_index == 1 || version_index == 2)
8787 {
8788 /* This is the base or first version. We can use it. */
8789 free (extversym);
8790 free (isymbuf);
8791 return TRUE;
8792 }
8793 }
8794
8795 free (extversym);
8796 free (isymbuf);
8797 }
8798
8799 return FALSE;
8800 }
8801
8802 /* Add an external symbol to the symbol table. This is called from
8803 the hash table traversal routine. When generating a shared object,
8804 we go through the symbol table twice. The first time we output
8805 anything that might have been forced to local scope in a version
8806 script. The second time we output the symbols that are still
8807 global symbols. */
8808
8809 static bfd_boolean
8810 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8811 {
8812 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8813 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8814 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8815 bfd_boolean strip;
8816 Elf_Internal_Sym sym;
8817 asection *input_sec;
8818 const struct elf_backend_data *bed;
8819 long indx;
8820 int ret;
8821
8822 if (h->root.type == bfd_link_hash_warning)
8823 {
8824 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8825 if (h->root.type == bfd_link_hash_new)
8826 return TRUE;
8827 }
8828
8829 /* Decide whether to output this symbol in this pass. */
8830 if (eoinfo->localsyms)
8831 {
8832 if (!h->forced_local)
8833 return TRUE;
8834 if (eoinfo->second_pass
8835 && !((h->root.type == bfd_link_hash_defined
8836 || h->root.type == bfd_link_hash_defweak)
8837 && h->root.u.def.section->output_section != NULL))
8838 return TRUE;
8839
8840 if (!eoinfo->file_sym_done
8841 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8842 : eoinfo->flinfo->filesym_count > 1))
8843 {
8844 /* Output a FILE symbol so that following locals are not associated
8845 with the wrong input file. */
8846 memset (&sym, 0, sizeof (sym));
8847 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8848 sym.st_shndx = SHN_ABS;
8849 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8850 bfd_und_section_ptr, NULL))
8851 return FALSE;
8852
8853 eoinfo->file_sym_done = TRUE;
8854 }
8855 }
8856 else
8857 {
8858 if (h->forced_local)
8859 return TRUE;
8860 }
8861
8862 bed = get_elf_backend_data (flinfo->output_bfd);
8863
8864 if (h->root.type == bfd_link_hash_undefined)
8865 {
8866 /* If we have an undefined symbol reference here then it must have
8867 come from a shared library that is being linked in. (Undefined
8868 references in regular files have already been handled unless
8869 they are in unreferenced sections which are removed by garbage
8870 collection). */
8871 bfd_boolean ignore_undef = FALSE;
8872
8873 /* Some symbols may be special in that the fact that they're
8874 undefined can be safely ignored - let backend determine that. */
8875 if (bed->elf_backend_ignore_undef_symbol)
8876 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8877
8878 /* If we are reporting errors for this situation then do so now. */
8879 if (!ignore_undef
8880 && h->ref_dynamic
8881 && (!h->ref_regular || flinfo->info->gc_sections)
8882 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8883 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8884 {
8885 if (!(flinfo->info->callbacks->undefined_symbol
8886 (flinfo->info, h->root.root.string,
8887 h->ref_regular ? NULL : h->root.u.undef.abfd,
8888 NULL, 0,
8889 (flinfo->info->unresolved_syms_in_shared_libs
8890 == RM_GENERATE_ERROR))))
8891 {
8892 bfd_set_error (bfd_error_bad_value);
8893 eoinfo->failed = TRUE;
8894 return FALSE;
8895 }
8896 }
8897 }
8898
8899 /* We should also warn if a forced local symbol is referenced from
8900 shared libraries. */
8901 if (!flinfo->info->relocatable
8902 && flinfo->info->executable
8903 && h->forced_local
8904 && h->ref_dynamic
8905 && h->def_regular
8906 && !h->dynamic_def
8907 && h->ref_dynamic_nonweak
8908 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8909 {
8910 bfd *def_bfd;
8911 const char *msg;
8912 struct elf_link_hash_entry *hi = h;
8913
8914 /* Check indirect symbol. */
8915 while (hi->root.type == bfd_link_hash_indirect)
8916 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8917
8918 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8919 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8920 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8921 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8922 else
8923 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8924 def_bfd = flinfo->output_bfd;
8925 if (hi->root.u.def.section != bfd_abs_section_ptr)
8926 def_bfd = hi->root.u.def.section->owner;
8927 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8928 h->root.root.string);
8929 bfd_set_error (bfd_error_bad_value);
8930 eoinfo->failed = TRUE;
8931 return FALSE;
8932 }
8933
8934 /* We don't want to output symbols that have never been mentioned by
8935 a regular file, or that we have been told to strip. However, if
8936 h->indx is set to -2, the symbol is used by a reloc and we must
8937 output it. */
8938 if (h->indx == -2)
8939 strip = FALSE;
8940 else if ((h->def_dynamic
8941 || h->ref_dynamic
8942 || h->root.type == bfd_link_hash_new)
8943 && !h->def_regular
8944 && !h->ref_regular)
8945 strip = TRUE;
8946 else if (flinfo->info->strip == strip_all)
8947 strip = TRUE;
8948 else if (flinfo->info->strip == strip_some
8949 && bfd_hash_lookup (flinfo->info->keep_hash,
8950 h->root.root.string, FALSE, FALSE) == NULL)
8951 strip = TRUE;
8952 else if ((h->root.type == bfd_link_hash_defined
8953 || h->root.type == bfd_link_hash_defweak)
8954 && ((flinfo->info->strip_discarded
8955 && discarded_section (h->root.u.def.section))
8956 || (h->root.u.def.section->owner != NULL
8957 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8958 strip = TRUE;
8959 else if ((h->root.type == bfd_link_hash_undefined
8960 || h->root.type == bfd_link_hash_undefweak)
8961 && h->root.u.undef.abfd != NULL
8962 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8963 strip = TRUE;
8964 else
8965 strip = FALSE;
8966
8967 /* If we're stripping it, and it's not a dynamic symbol, there's
8968 nothing else to do unless it is a forced local symbol or a
8969 STT_GNU_IFUNC symbol. */
8970 if (strip
8971 && h->dynindx == -1
8972 && h->type != STT_GNU_IFUNC
8973 && !h->forced_local)
8974 return TRUE;
8975
8976 sym.st_value = 0;
8977 sym.st_size = h->size;
8978 sym.st_other = h->other;
8979 if (h->forced_local)
8980 {
8981 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8982 /* Turn off visibility on local symbol. */
8983 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8984 }
8985 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8986 else if (h->unique_global && h->def_regular)
8987 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8988 else if (h->root.type == bfd_link_hash_undefweak
8989 || h->root.type == bfd_link_hash_defweak)
8990 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8991 else
8992 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8993 sym.st_target_internal = h->target_internal;
8994
8995 switch (h->root.type)
8996 {
8997 default:
8998 case bfd_link_hash_new:
8999 case bfd_link_hash_warning:
9000 abort ();
9001 return FALSE;
9002
9003 case bfd_link_hash_undefined:
9004 case bfd_link_hash_undefweak:
9005 input_sec = bfd_und_section_ptr;
9006 sym.st_shndx = SHN_UNDEF;
9007 break;
9008
9009 case bfd_link_hash_defined:
9010 case bfd_link_hash_defweak:
9011 {
9012 input_sec = h->root.u.def.section;
9013 if (input_sec->output_section != NULL)
9014 {
9015 if (eoinfo->localsyms && flinfo->filesym_count == 1)
9016 {
9017 bfd_boolean second_pass_sym
9018 = (input_sec->owner == flinfo->output_bfd
9019 || input_sec->owner == NULL
9020 || (input_sec->flags & SEC_LINKER_CREATED) != 0
9021 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
9022
9023 eoinfo->need_second_pass |= second_pass_sym;
9024 if (eoinfo->second_pass != second_pass_sym)
9025 return TRUE;
9026 }
9027
9028 sym.st_shndx =
9029 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9030 input_sec->output_section);
9031 if (sym.st_shndx == SHN_BAD)
9032 {
9033 (*_bfd_error_handler)
9034 (_("%B: could not find output section %A for input section %A"),
9035 flinfo->output_bfd, input_sec->output_section, input_sec);
9036 bfd_set_error (bfd_error_nonrepresentable_section);
9037 eoinfo->failed = TRUE;
9038 return FALSE;
9039 }
9040
9041 /* ELF symbols in relocatable files are section relative,
9042 but in nonrelocatable files they are virtual
9043 addresses. */
9044 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9045 if (!flinfo->info->relocatable)
9046 {
9047 sym.st_value += input_sec->output_section->vma;
9048 if (h->type == STT_TLS)
9049 {
9050 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9051 if (tls_sec != NULL)
9052 sym.st_value -= tls_sec->vma;
9053 else
9054 {
9055 /* The TLS section may have been garbage collected. */
9056 BFD_ASSERT (flinfo->info->gc_sections
9057 && !input_sec->gc_mark);
9058 }
9059 }
9060 }
9061 }
9062 else
9063 {
9064 BFD_ASSERT (input_sec->owner == NULL
9065 || (input_sec->owner->flags & DYNAMIC) != 0);
9066 sym.st_shndx = SHN_UNDEF;
9067 input_sec = bfd_und_section_ptr;
9068 }
9069 }
9070 break;
9071
9072 case bfd_link_hash_common:
9073 input_sec = h->root.u.c.p->section;
9074 sym.st_shndx = bed->common_section_index (input_sec);
9075 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9076 break;
9077
9078 case bfd_link_hash_indirect:
9079 /* These symbols are created by symbol versioning. They point
9080 to the decorated version of the name. For example, if the
9081 symbol foo@@GNU_1.2 is the default, which should be used when
9082 foo is used with no version, then we add an indirect symbol
9083 foo which points to foo@@GNU_1.2. We ignore these symbols,
9084 since the indirected symbol is already in the hash table. */
9085 return TRUE;
9086 }
9087
9088 /* Give the processor backend a chance to tweak the symbol value,
9089 and also to finish up anything that needs to be done for this
9090 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9091 forced local syms when non-shared is due to a historical quirk.
9092 STT_GNU_IFUNC symbol must go through PLT. */
9093 if ((h->type == STT_GNU_IFUNC
9094 && h->def_regular
9095 && !flinfo->info->relocatable)
9096 || ((h->dynindx != -1
9097 || h->forced_local)
9098 && ((flinfo->info->shared
9099 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9100 || h->root.type != bfd_link_hash_undefweak))
9101 || !h->forced_local)
9102 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9103 {
9104 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9105 (flinfo->output_bfd, flinfo->info, h, &sym)))
9106 {
9107 eoinfo->failed = TRUE;
9108 return FALSE;
9109 }
9110 }
9111
9112 /* If we are marking the symbol as undefined, and there are no
9113 non-weak references to this symbol from a regular object, then
9114 mark the symbol as weak undefined; if there are non-weak
9115 references, mark the symbol as strong. We can't do this earlier,
9116 because it might not be marked as undefined until the
9117 finish_dynamic_symbol routine gets through with it. */
9118 if (sym.st_shndx == SHN_UNDEF
9119 && h->ref_regular
9120 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9121 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9122 {
9123 int bindtype;
9124 unsigned int type = ELF_ST_TYPE (sym.st_info);
9125
9126 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9127 if (type == STT_GNU_IFUNC)
9128 type = STT_FUNC;
9129
9130 if (h->ref_regular_nonweak)
9131 bindtype = STB_GLOBAL;
9132 else
9133 bindtype = STB_WEAK;
9134 sym.st_info = ELF_ST_INFO (bindtype, type);
9135 }
9136
9137 /* If this is a symbol defined in a dynamic library, don't use the
9138 symbol size from the dynamic library. Relinking an executable
9139 against a new library may introduce gratuitous changes in the
9140 executable's symbols if we keep the size. */
9141 if (sym.st_shndx == SHN_UNDEF
9142 && !h->def_regular
9143 && h->def_dynamic)
9144 sym.st_size = 0;
9145
9146 /* If a non-weak symbol with non-default visibility is not defined
9147 locally, it is a fatal error. */
9148 if (!flinfo->info->relocatable
9149 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9150 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9151 && h->root.type == bfd_link_hash_undefined
9152 && !h->def_regular)
9153 {
9154 const char *msg;
9155
9156 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9157 msg = _("%B: protected symbol `%s' isn't defined");
9158 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9159 msg = _("%B: internal symbol `%s' isn't defined");
9160 else
9161 msg = _("%B: hidden symbol `%s' isn't defined");
9162 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9163 bfd_set_error (bfd_error_bad_value);
9164 eoinfo->failed = TRUE;
9165 return FALSE;
9166 }
9167
9168 /* If this symbol should be put in the .dynsym section, then put it
9169 there now. We already know the symbol index. We also fill in
9170 the entry in the .hash section. */
9171 if (flinfo->dynsym_sec != NULL
9172 && h->dynindx != -1
9173 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9174 {
9175 bfd_byte *esym;
9176
9177 /* Since there is no version information in the dynamic string,
9178 if there is no version info in symbol version section, we will
9179 have a run-time problem. */
9180 if (h->verinfo.verdef == NULL)
9181 {
9182 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9183
9184 if (p && p [1] != '\0')
9185 {
9186 (*_bfd_error_handler)
9187 (_("%B: No symbol version section for versioned symbol `%s'"),
9188 flinfo->output_bfd, h->root.root.string);
9189 eoinfo->failed = TRUE;
9190 return FALSE;
9191 }
9192 }
9193
9194 sym.st_name = h->dynstr_index;
9195 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9196 if (!check_dynsym (flinfo->output_bfd, &sym))
9197 {
9198 eoinfo->failed = TRUE;
9199 return FALSE;
9200 }
9201 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9202
9203 if (flinfo->hash_sec != NULL)
9204 {
9205 size_t hash_entry_size;
9206 bfd_byte *bucketpos;
9207 bfd_vma chain;
9208 size_t bucketcount;
9209 size_t bucket;
9210
9211 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9212 bucket = h->u.elf_hash_value % bucketcount;
9213
9214 hash_entry_size
9215 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9216 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9217 + (bucket + 2) * hash_entry_size);
9218 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9219 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9220 bucketpos);
9221 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9222 ((bfd_byte *) flinfo->hash_sec->contents
9223 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9224 }
9225
9226 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9227 {
9228 Elf_Internal_Versym iversym;
9229 Elf_External_Versym *eversym;
9230
9231 if (!h->def_regular)
9232 {
9233 if (h->verinfo.verdef == NULL
9234 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9235 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9236 iversym.vs_vers = 0;
9237 else
9238 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9239 }
9240 else
9241 {
9242 if (h->verinfo.vertree == NULL)
9243 iversym.vs_vers = 1;
9244 else
9245 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9246 if (flinfo->info->create_default_symver)
9247 iversym.vs_vers++;
9248 }
9249
9250 if (h->hidden)
9251 iversym.vs_vers |= VERSYM_HIDDEN;
9252
9253 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9254 eversym += h->dynindx;
9255 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9256 }
9257 }
9258
9259 /* If we're stripping it, then it was just a dynamic symbol, and
9260 there's nothing else to do. */
9261 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9262 return TRUE;
9263
9264 indx = bfd_get_symcount (flinfo->output_bfd);
9265 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9266 if (ret == 0)
9267 {
9268 eoinfo->failed = TRUE;
9269 return FALSE;
9270 }
9271 else if (ret == 1)
9272 h->indx = indx;
9273 else if (h->indx == -2)
9274 abort();
9275
9276 return TRUE;
9277 }
9278
9279 /* Return TRUE if special handling is done for relocs in SEC against
9280 symbols defined in discarded sections. */
9281
9282 static bfd_boolean
9283 elf_section_ignore_discarded_relocs (asection *sec)
9284 {
9285 const struct elf_backend_data *bed;
9286
9287 switch (sec->sec_info_type)
9288 {
9289 case SEC_INFO_TYPE_STABS:
9290 case SEC_INFO_TYPE_EH_FRAME:
9291 return TRUE;
9292 default:
9293 break;
9294 }
9295
9296 bed = get_elf_backend_data (sec->owner);
9297 if (bed->elf_backend_ignore_discarded_relocs != NULL
9298 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9299 return TRUE;
9300
9301 return FALSE;
9302 }
9303
9304 /* Return a mask saying how ld should treat relocations in SEC against
9305 symbols defined in discarded sections. If this function returns
9306 COMPLAIN set, ld will issue a warning message. If this function
9307 returns PRETEND set, and the discarded section was link-once and the
9308 same size as the kept link-once section, ld will pretend that the
9309 symbol was actually defined in the kept section. Otherwise ld will
9310 zero the reloc (at least that is the intent, but some cooperation by
9311 the target dependent code is needed, particularly for REL targets). */
9312
9313 unsigned int
9314 _bfd_elf_default_action_discarded (asection *sec)
9315 {
9316 if (sec->flags & SEC_DEBUGGING)
9317 return PRETEND;
9318
9319 if (strcmp (".eh_frame", sec->name) == 0)
9320 return 0;
9321
9322 if (strcmp (".gcc_except_table", sec->name) == 0)
9323 return 0;
9324
9325 return COMPLAIN | PRETEND;
9326 }
9327
9328 /* Find a match between a section and a member of a section group. */
9329
9330 static asection *
9331 match_group_member (asection *sec, asection *group,
9332 struct bfd_link_info *info)
9333 {
9334 asection *first = elf_next_in_group (group);
9335 asection *s = first;
9336
9337 while (s != NULL)
9338 {
9339 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9340 return s;
9341
9342 s = elf_next_in_group (s);
9343 if (s == first)
9344 break;
9345 }
9346
9347 return NULL;
9348 }
9349
9350 /* Check if the kept section of a discarded section SEC can be used
9351 to replace it. Return the replacement if it is OK. Otherwise return
9352 NULL. */
9353
9354 asection *
9355 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9356 {
9357 asection *kept;
9358
9359 kept = sec->kept_section;
9360 if (kept != NULL)
9361 {
9362 if ((kept->flags & SEC_GROUP) != 0)
9363 kept = match_group_member (sec, kept, info);
9364 if (kept != NULL
9365 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9366 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9367 kept = NULL;
9368 sec->kept_section = kept;
9369 }
9370 return kept;
9371 }
9372
9373 /* Link an input file into the linker output file. This function
9374 handles all the sections and relocations of the input file at once.
9375 This is so that we only have to read the local symbols once, and
9376 don't have to keep them in memory. */
9377
9378 static bfd_boolean
9379 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9380 {
9381 int (*relocate_section)
9382 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9383 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9384 bfd *output_bfd;
9385 Elf_Internal_Shdr *symtab_hdr;
9386 size_t locsymcount;
9387 size_t extsymoff;
9388 Elf_Internal_Sym *isymbuf;
9389 Elf_Internal_Sym *isym;
9390 Elf_Internal_Sym *isymend;
9391 long *pindex;
9392 asection **ppsection;
9393 asection *o;
9394 const struct elf_backend_data *bed;
9395 struct elf_link_hash_entry **sym_hashes;
9396 bfd_size_type address_size;
9397 bfd_vma r_type_mask;
9398 int r_sym_shift;
9399 bfd_boolean have_file_sym = FALSE;
9400
9401 output_bfd = flinfo->output_bfd;
9402 bed = get_elf_backend_data (output_bfd);
9403 relocate_section = bed->elf_backend_relocate_section;
9404
9405 /* If this is a dynamic object, we don't want to do anything here:
9406 we don't want the local symbols, and we don't want the section
9407 contents. */
9408 if ((input_bfd->flags & DYNAMIC) != 0)
9409 return TRUE;
9410
9411 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9412 if (elf_bad_symtab (input_bfd))
9413 {
9414 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9415 extsymoff = 0;
9416 }
9417 else
9418 {
9419 locsymcount = symtab_hdr->sh_info;
9420 extsymoff = symtab_hdr->sh_info;
9421 }
9422
9423 /* Read the local symbols. */
9424 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9425 if (isymbuf == NULL && locsymcount != 0)
9426 {
9427 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9428 flinfo->internal_syms,
9429 flinfo->external_syms,
9430 flinfo->locsym_shndx);
9431 if (isymbuf == NULL)
9432 return FALSE;
9433 }
9434
9435 /* Find local symbol sections and adjust values of symbols in
9436 SEC_MERGE sections. Write out those local symbols we know are
9437 going into the output file. */
9438 isymend = isymbuf + locsymcount;
9439 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9440 isym < isymend;
9441 isym++, pindex++, ppsection++)
9442 {
9443 asection *isec;
9444 const char *name;
9445 Elf_Internal_Sym osym;
9446 long indx;
9447 int ret;
9448
9449 *pindex = -1;
9450
9451 if (elf_bad_symtab (input_bfd))
9452 {
9453 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9454 {
9455 *ppsection = NULL;
9456 continue;
9457 }
9458 }
9459
9460 if (isym->st_shndx == SHN_UNDEF)
9461 isec = bfd_und_section_ptr;
9462 else if (isym->st_shndx == SHN_ABS)
9463 isec = bfd_abs_section_ptr;
9464 else if (isym->st_shndx == SHN_COMMON)
9465 isec = bfd_com_section_ptr;
9466 else
9467 {
9468 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9469 if (isec == NULL)
9470 {
9471 /* Don't attempt to output symbols with st_shnx in the
9472 reserved range other than SHN_ABS and SHN_COMMON. */
9473 *ppsection = NULL;
9474 continue;
9475 }
9476 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9477 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9478 isym->st_value =
9479 _bfd_merged_section_offset (output_bfd, &isec,
9480 elf_section_data (isec)->sec_info,
9481 isym->st_value);
9482 }
9483
9484 *ppsection = isec;
9485
9486 /* Don't output the first, undefined, symbol. */
9487 if (ppsection == flinfo->sections)
9488 continue;
9489
9490 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9491 {
9492 /* We never output section symbols. Instead, we use the
9493 section symbol of the corresponding section in the output
9494 file. */
9495 continue;
9496 }
9497
9498 /* If we are stripping all symbols, we don't want to output this
9499 one. */
9500 if (flinfo->info->strip == strip_all)
9501 continue;
9502
9503 /* If we are discarding all local symbols, we don't want to
9504 output this one. If we are generating a relocatable output
9505 file, then some of the local symbols may be required by
9506 relocs; we output them below as we discover that they are
9507 needed. */
9508 if (flinfo->info->discard == discard_all)
9509 continue;
9510
9511 /* If this symbol is defined in a section which we are
9512 discarding, we don't need to keep it. */
9513 if (isym->st_shndx != SHN_UNDEF
9514 && isym->st_shndx < SHN_LORESERVE
9515 && bfd_section_removed_from_list (output_bfd,
9516 isec->output_section))
9517 continue;
9518
9519 /* Get the name of the symbol. */
9520 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9521 isym->st_name);
9522 if (name == NULL)
9523 return FALSE;
9524
9525 /* See if we are discarding symbols with this name. */
9526 if ((flinfo->info->strip == strip_some
9527 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9528 == NULL))
9529 || (((flinfo->info->discard == discard_sec_merge
9530 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9531 || flinfo->info->discard == discard_l)
9532 && bfd_is_local_label_name (input_bfd, name)))
9533 continue;
9534
9535 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9536 {
9537 have_file_sym = TRUE;
9538 flinfo->filesym_count += 1;
9539 }
9540 if (!have_file_sym)
9541 {
9542 /* In the absence of debug info, bfd_find_nearest_line uses
9543 FILE symbols to determine the source file for local
9544 function symbols. Provide a FILE symbol here if input
9545 files lack such, so that their symbols won't be
9546 associated with a previous input file. It's not the
9547 source file, but the best we can do. */
9548 have_file_sym = TRUE;
9549 flinfo->filesym_count += 1;
9550 memset (&osym, 0, sizeof (osym));
9551 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9552 osym.st_shndx = SHN_ABS;
9553 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9554 bfd_abs_section_ptr, NULL))
9555 return FALSE;
9556 }
9557
9558 osym = *isym;
9559
9560 /* Adjust the section index for the output file. */
9561 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9562 isec->output_section);
9563 if (osym.st_shndx == SHN_BAD)
9564 return FALSE;
9565
9566 /* ELF symbols in relocatable files are section relative, but
9567 in executable files they are virtual addresses. Note that
9568 this code assumes that all ELF sections have an associated
9569 BFD section with a reasonable value for output_offset; below
9570 we assume that they also have a reasonable value for
9571 output_section. Any special sections must be set up to meet
9572 these requirements. */
9573 osym.st_value += isec->output_offset;
9574 if (!flinfo->info->relocatable)
9575 {
9576 osym.st_value += isec->output_section->vma;
9577 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9578 {
9579 /* STT_TLS symbols are relative to PT_TLS segment base. */
9580 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9581 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9582 }
9583 }
9584
9585 indx = bfd_get_symcount (output_bfd);
9586 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9587 if (ret == 0)
9588 return FALSE;
9589 else if (ret == 1)
9590 *pindex = indx;
9591 }
9592
9593 if (bed->s->arch_size == 32)
9594 {
9595 r_type_mask = 0xff;
9596 r_sym_shift = 8;
9597 address_size = 4;
9598 }
9599 else
9600 {
9601 r_type_mask = 0xffffffff;
9602 r_sym_shift = 32;
9603 address_size = 8;
9604 }
9605
9606 /* Relocate the contents of each section. */
9607 sym_hashes = elf_sym_hashes (input_bfd);
9608 for (o = input_bfd->sections; o != NULL; o = o->next)
9609 {
9610 bfd_byte *contents;
9611
9612 if (! o->linker_mark)
9613 {
9614 /* This section was omitted from the link. */
9615 continue;
9616 }
9617
9618 if (flinfo->info->relocatable
9619 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9620 {
9621 /* Deal with the group signature symbol. */
9622 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9623 unsigned long symndx = sec_data->this_hdr.sh_info;
9624 asection *osec = o->output_section;
9625
9626 if (symndx >= locsymcount
9627 || (elf_bad_symtab (input_bfd)
9628 && flinfo->sections[symndx] == NULL))
9629 {
9630 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9631 while (h->root.type == bfd_link_hash_indirect
9632 || h->root.type == bfd_link_hash_warning)
9633 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9634 /* Arrange for symbol to be output. */
9635 h->indx = -2;
9636 elf_section_data (osec)->this_hdr.sh_info = -2;
9637 }
9638 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9639 {
9640 /* We'll use the output section target_index. */
9641 asection *sec = flinfo->sections[symndx]->output_section;
9642 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9643 }
9644 else
9645 {
9646 if (flinfo->indices[symndx] == -1)
9647 {
9648 /* Otherwise output the local symbol now. */
9649 Elf_Internal_Sym sym = isymbuf[symndx];
9650 asection *sec = flinfo->sections[symndx]->output_section;
9651 const char *name;
9652 long indx;
9653 int ret;
9654
9655 name = bfd_elf_string_from_elf_section (input_bfd,
9656 symtab_hdr->sh_link,
9657 sym.st_name);
9658 if (name == NULL)
9659 return FALSE;
9660
9661 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9662 sec);
9663 if (sym.st_shndx == SHN_BAD)
9664 return FALSE;
9665
9666 sym.st_value += o->output_offset;
9667
9668 indx = bfd_get_symcount (output_bfd);
9669 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9670 if (ret == 0)
9671 return FALSE;
9672 else if (ret == 1)
9673 flinfo->indices[symndx] = indx;
9674 else
9675 abort ();
9676 }
9677 elf_section_data (osec)->this_hdr.sh_info
9678 = flinfo->indices[symndx];
9679 }
9680 }
9681
9682 if ((o->flags & SEC_HAS_CONTENTS) == 0
9683 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9684 continue;
9685
9686 if ((o->flags & SEC_LINKER_CREATED) != 0)
9687 {
9688 /* Section was created by _bfd_elf_link_create_dynamic_sections
9689 or somesuch. */
9690 continue;
9691 }
9692
9693 /* Get the contents of the section. They have been cached by a
9694 relaxation routine. Note that o is a section in an input
9695 file, so the contents field will not have been set by any of
9696 the routines which work on output files. */
9697 if (elf_section_data (o)->this_hdr.contents != NULL)
9698 {
9699 contents = elf_section_data (o)->this_hdr.contents;
9700 if (bed->caches_rawsize
9701 && o->rawsize != 0
9702 && o->rawsize < o->size)
9703 {
9704 memcpy (flinfo->contents, contents, o->rawsize);
9705 contents = flinfo->contents;
9706 }
9707 }
9708 else
9709 {
9710 contents = flinfo->contents;
9711 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9712 return FALSE;
9713 }
9714
9715 if ((o->flags & SEC_RELOC) != 0)
9716 {
9717 Elf_Internal_Rela *internal_relocs;
9718 Elf_Internal_Rela *rel, *relend;
9719 int action_discarded;
9720 int ret;
9721
9722 /* Get the swapped relocs. */
9723 internal_relocs
9724 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9725 flinfo->internal_relocs, FALSE);
9726 if (internal_relocs == NULL
9727 && o->reloc_count > 0)
9728 return FALSE;
9729
9730 /* We need to reverse-copy input .ctors/.dtors sections if
9731 they are placed in .init_array/.finit_array for output. */
9732 if (o->size > address_size
9733 && ((strncmp (o->name, ".ctors", 6) == 0
9734 && strcmp (o->output_section->name,
9735 ".init_array") == 0)
9736 || (strncmp (o->name, ".dtors", 6) == 0
9737 && strcmp (o->output_section->name,
9738 ".fini_array") == 0))
9739 && (o->name[6] == 0 || o->name[6] == '.'))
9740 {
9741 if (o->size != o->reloc_count * address_size)
9742 {
9743 (*_bfd_error_handler)
9744 (_("error: %B: size of section %A is not "
9745 "multiple of address size"),
9746 input_bfd, o);
9747 bfd_set_error (bfd_error_on_input);
9748 return FALSE;
9749 }
9750 o->flags |= SEC_ELF_REVERSE_COPY;
9751 }
9752
9753 action_discarded = -1;
9754 if (!elf_section_ignore_discarded_relocs (o))
9755 action_discarded = (*bed->action_discarded) (o);
9756
9757 /* Run through the relocs evaluating complex reloc symbols and
9758 looking for relocs against symbols from discarded sections
9759 or section symbols from removed link-once sections.
9760 Complain about relocs against discarded sections. Zero
9761 relocs against removed link-once sections. */
9762
9763 rel = internal_relocs;
9764 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9765 for ( ; rel < relend; rel++)
9766 {
9767 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9768 unsigned int s_type;
9769 asection **ps, *sec;
9770 struct elf_link_hash_entry *h = NULL;
9771 const char *sym_name;
9772
9773 if (r_symndx == STN_UNDEF)
9774 continue;
9775
9776 if (r_symndx >= locsymcount
9777 || (elf_bad_symtab (input_bfd)
9778 && flinfo->sections[r_symndx] == NULL))
9779 {
9780 h = sym_hashes[r_symndx - extsymoff];
9781
9782 /* Badly formatted input files can contain relocs that
9783 reference non-existant symbols. Check here so that
9784 we do not seg fault. */
9785 if (h == NULL)
9786 {
9787 char buffer [32];
9788
9789 sprintf_vma (buffer, rel->r_info);
9790 (*_bfd_error_handler)
9791 (_("error: %B contains a reloc (0x%s) for section %A "
9792 "that references a non-existent global symbol"),
9793 input_bfd, o, buffer);
9794 bfd_set_error (bfd_error_bad_value);
9795 return FALSE;
9796 }
9797
9798 while (h->root.type == bfd_link_hash_indirect
9799 || h->root.type == bfd_link_hash_warning)
9800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9801
9802 s_type = h->type;
9803
9804 ps = NULL;
9805 if (h->root.type == bfd_link_hash_defined
9806 || h->root.type == bfd_link_hash_defweak)
9807 ps = &h->root.u.def.section;
9808
9809 sym_name = h->root.root.string;
9810 }
9811 else
9812 {
9813 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9814
9815 s_type = ELF_ST_TYPE (sym->st_info);
9816 ps = &flinfo->sections[r_symndx];
9817 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9818 sym, *ps);
9819 }
9820
9821 if ((s_type == STT_RELC || s_type == STT_SRELC)
9822 && !flinfo->info->relocatable)
9823 {
9824 bfd_vma val;
9825 bfd_vma dot = (rel->r_offset
9826 + o->output_offset + o->output_section->vma);
9827 #ifdef DEBUG
9828 printf ("Encountered a complex symbol!");
9829 printf (" (input_bfd %s, section %s, reloc %ld\n",
9830 input_bfd->filename, o->name,
9831 (long) (rel - internal_relocs));
9832 printf (" symbol: idx %8.8lx, name %s\n",
9833 r_symndx, sym_name);
9834 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9835 (unsigned long) rel->r_info,
9836 (unsigned long) rel->r_offset);
9837 #endif
9838 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9839 isymbuf, locsymcount, s_type == STT_SRELC))
9840 return FALSE;
9841
9842 /* Symbol evaluated OK. Update to absolute value. */
9843 set_symbol_value (input_bfd, isymbuf, locsymcount,
9844 r_symndx, val);
9845 continue;
9846 }
9847
9848 if (action_discarded != -1 && ps != NULL)
9849 {
9850 /* Complain if the definition comes from a
9851 discarded section. */
9852 if ((sec = *ps) != NULL && discarded_section (sec))
9853 {
9854 BFD_ASSERT (r_symndx != STN_UNDEF);
9855 if (action_discarded & COMPLAIN)
9856 (*flinfo->info->callbacks->einfo)
9857 (_("%X`%s' referenced in section `%A' of %B: "
9858 "defined in discarded section `%A' of %B\n"),
9859 sym_name, o, input_bfd, sec, sec->owner);
9860
9861 /* Try to do the best we can to support buggy old
9862 versions of gcc. Pretend that the symbol is
9863 really defined in the kept linkonce section.
9864 FIXME: This is quite broken. Modifying the
9865 symbol here means we will be changing all later
9866 uses of the symbol, not just in this section. */
9867 if (action_discarded & PRETEND)
9868 {
9869 asection *kept;
9870
9871 kept = _bfd_elf_check_kept_section (sec,
9872 flinfo->info);
9873 if (kept != NULL)
9874 {
9875 *ps = kept;
9876 continue;
9877 }
9878 }
9879 }
9880 }
9881 }
9882
9883 /* Relocate the section by invoking a back end routine.
9884
9885 The back end routine is responsible for adjusting the
9886 section contents as necessary, and (if using Rela relocs
9887 and generating a relocatable output file) adjusting the
9888 reloc addend as necessary.
9889
9890 The back end routine does not have to worry about setting
9891 the reloc address or the reloc symbol index.
9892
9893 The back end routine is given a pointer to the swapped in
9894 internal symbols, and can access the hash table entries
9895 for the external symbols via elf_sym_hashes (input_bfd).
9896
9897 When generating relocatable output, the back end routine
9898 must handle STB_LOCAL/STT_SECTION symbols specially. The
9899 output symbol is going to be a section symbol
9900 corresponding to the output section, which will require
9901 the addend to be adjusted. */
9902
9903 ret = (*relocate_section) (output_bfd, flinfo->info,
9904 input_bfd, o, contents,
9905 internal_relocs,
9906 isymbuf,
9907 flinfo->sections);
9908 if (!ret)
9909 return FALSE;
9910
9911 if (ret == 2
9912 || flinfo->info->relocatable
9913 || flinfo->info->emitrelocations)
9914 {
9915 Elf_Internal_Rela *irela;
9916 Elf_Internal_Rela *irelaend, *irelamid;
9917 bfd_vma last_offset;
9918 struct elf_link_hash_entry **rel_hash;
9919 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9920 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9921 unsigned int next_erel;
9922 bfd_boolean rela_normal;
9923 struct bfd_elf_section_data *esdi, *esdo;
9924
9925 esdi = elf_section_data (o);
9926 esdo = elf_section_data (o->output_section);
9927 rela_normal = FALSE;
9928
9929 /* Adjust the reloc addresses and symbol indices. */
9930
9931 irela = internal_relocs;
9932 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9933 rel_hash = esdo->rel.hashes + esdo->rel.count;
9934 /* We start processing the REL relocs, if any. When we reach
9935 IRELAMID in the loop, we switch to the RELA relocs. */
9936 irelamid = irela;
9937 if (esdi->rel.hdr != NULL)
9938 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9939 * bed->s->int_rels_per_ext_rel);
9940 rel_hash_list = rel_hash;
9941 rela_hash_list = NULL;
9942 last_offset = o->output_offset;
9943 if (!flinfo->info->relocatable)
9944 last_offset += o->output_section->vma;
9945 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9946 {
9947 unsigned long r_symndx;
9948 asection *sec;
9949 Elf_Internal_Sym sym;
9950
9951 if (next_erel == bed->s->int_rels_per_ext_rel)
9952 {
9953 rel_hash++;
9954 next_erel = 0;
9955 }
9956
9957 if (irela == irelamid)
9958 {
9959 rel_hash = esdo->rela.hashes + esdo->rela.count;
9960 rela_hash_list = rel_hash;
9961 rela_normal = bed->rela_normal;
9962 }
9963
9964 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9965 flinfo->info, o,
9966 irela->r_offset);
9967 if (irela->r_offset >= (bfd_vma) -2)
9968 {
9969 /* This is a reloc for a deleted entry or somesuch.
9970 Turn it into an R_*_NONE reloc, at the same
9971 offset as the last reloc. elf_eh_frame.c and
9972 bfd_elf_discard_info rely on reloc offsets
9973 being ordered. */
9974 irela->r_offset = last_offset;
9975 irela->r_info = 0;
9976 irela->r_addend = 0;
9977 continue;
9978 }
9979
9980 irela->r_offset += o->output_offset;
9981
9982 /* Relocs in an executable have to be virtual addresses. */
9983 if (!flinfo->info->relocatable)
9984 irela->r_offset += o->output_section->vma;
9985
9986 last_offset = irela->r_offset;
9987
9988 r_symndx = irela->r_info >> r_sym_shift;
9989 if (r_symndx == STN_UNDEF)
9990 continue;
9991
9992 if (r_symndx >= locsymcount
9993 || (elf_bad_symtab (input_bfd)
9994 && flinfo->sections[r_symndx] == NULL))
9995 {
9996 struct elf_link_hash_entry *rh;
9997 unsigned long indx;
9998
9999 /* This is a reloc against a global symbol. We
10000 have not yet output all the local symbols, so
10001 we do not know the symbol index of any global
10002 symbol. We set the rel_hash entry for this
10003 reloc to point to the global hash table entry
10004 for this symbol. The symbol index is then
10005 set at the end of bfd_elf_final_link. */
10006 indx = r_symndx - extsymoff;
10007 rh = elf_sym_hashes (input_bfd)[indx];
10008 while (rh->root.type == bfd_link_hash_indirect
10009 || rh->root.type == bfd_link_hash_warning)
10010 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10011
10012 /* Setting the index to -2 tells
10013 elf_link_output_extsym that this symbol is
10014 used by a reloc. */
10015 BFD_ASSERT (rh->indx < 0);
10016 rh->indx = -2;
10017
10018 *rel_hash = rh;
10019
10020 continue;
10021 }
10022
10023 /* This is a reloc against a local symbol. */
10024
10025 *rel_hash = NULL;
10026 sym = isymbuf[r_symndx];
10027 sec = flinfo->sections[r_symndx];
10028 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10029 {
10030 /* I suppose the backend ought to fill in the
10031 section of any STT_SECTION symbol against a
10032 processor specific section. */
10033 r_symndx = STN_UNDEF;
10034 if (bfd_is_abs_section (sec))
10035 ;
10036 else if (sec == NULL || sec->owner == NULL)
10037 {
10038 bfd_set_error (bfd_error_bad_value);
10039 return FALSE;
10040 }
10041 else
10042 {
10043 asection *osec = sec->output_section;
10044
10045 /* If we have discarded a section, the output
10046 section will be the absolute section. In
10047 case of discarded SEC_MERGE sections, use
10048 the kept section. relocate_section should
10049 have already handled discarded linkonce
10050 sections. */
10051 if (bfd_is_abs_section (osec)
10052 && sec->kept_section != NULL
10053 && sec->kept_section->output_section != NULL)
10054 {
10055 osec = sec->kept_section->output_section;
10056 irela->r_addend -= osec->vma;
10057 }
10058
10059 if (!bfd_is_abs_section (osec))
10060 {
10061 r_symndx = osec->target_index;
10062 if (r_symndx == STN_UNDEF)
10063 {
10064 irela->r_addend += osec->vma;
10065 osec = _bfd_nearby_section (output_bfd, osec,
10066 osec->vma);
10067 irela->r_addend -= osec->vma;
10068 r_symndx = osec->target_index;
10069 }
10070 }
10071 }
10072
10073 /* Adjust the addend according to where the
10074 section winds up in the output section. */
10075 if (rela_normal)
10076 irela->r_addend += sec->output_offset;
10077 }
10078 else
10079 {
10080 if (flinfo->indices[r_symndx] == -1)
10081 {
10082 unsigned long shlink;
10083 const char *name;
10084 asection *osec;
10085 long indx;
10086
10087 if (flinfo->info->strip == strip_all)
10088 {
10089 /* You can't do ld -r -s. */
10090 bfd_set_error (bfd_error_invalid_operation);
10091 return FALSE;
10092 }
10093
10094 /* This symbol was skipped earlier, but
10095 since it is needed by a reloc, we
10096 must output it now. */
10097 shlink = symtab_hdr->sh_link;
10098 name = (bfd_elf_string_from_elf_section
10099 (input_bfd, shlink, sym.st_name));
10100 if (name == NULL)
10101 return FALSE;
10102
10103 osec = sec->output_section;
10104 sym.st_shndx =
10105 _bfd_elf_section_from_bfd_section (output_bfd,
10106 osec);
10107 if (sym.st_shndx == SHN_BAD)
10108 return FALSE;
10109
10110 sym.st_value += sec->output_offset;
10111 if (!flinfo->info->relocatable)
10112 {
10113 sym.st_value += osec->vma;
10114 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10115 {
10116 /* STT_TLS symbols are relative to PT_TLS
10117 segment base. */
10118 BFD_ASSERT (elf_hash_table (flinfo->info)
10119 ->tls_sec != NULL);
10120 sym.st_value -= (elf_hash_table (flinfo->info)
10121 ->tls_sec->vma);
10122 }
10123 }
10124
10125 indx = bfd_get_symcount (output_bfd);
10126 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10127 NULL);
10128 if (ret == 0)
10129 return FALSE;
10130 else if (ret == 1)
10131 flinfo->indices[r_symndx] = indx;
10132 else
10133 abort ();
10134 }
10135
10136 r_symndx = flinfo->indices[r_symndx];
10137 }
10138
10139 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10140 | (irela->r_info & r_type_mask));
10141 }
10142
10143 /* Swap out the relocs. */
10144 input_rel_hdr = esdi->rel.hdr;
10145 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10146 {
10147 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10148 input_rel_hdr,
10149 internal_relocs,
10150 rel_hash_list))
10151 return FALSE;
10152 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10153 * bed->s->int_rels_per_ext_rel);
10154 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10155 }
10156
10157 input_rela_hdr = esdi->rela.hdr;
10158 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10159 {
10160 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10161 input_rela_hdr,
10162 internal_relocs,
10163 rela_hash_list))
10164 return FALSE;
10165 }
10166 }
10167 }
10168
10169 /* Write out the modified section contents. */
10170 if (bed->elf_backend_write_section
10171 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10172 contents))
10173 {
10174 /* Section written out. */
10175 }
10176 else switch (o->sec_info_type)
10177 {
10178 case SEC_INFO_TYPE_STABS:
10179 if (! (_bfd_write_section_stabs
10180 (output_bfd,
10181 &elf_hash_table (flinfo->info)->stab_info,
10182 o, &elf_section_data (o)->sec_info, contents)))
10183 return FALSE;
10184 break;
10185 case SEC_INFO_TYPE_MERGE:
10186 if (! _bfd_write_merged_section (output_bfd, o,
10187 elf_section_data (o)->sec_info))
10188 return FALSE;
10189 break;
10190 case SEC_INFO_TYPE_EH_FRAME:
10191 {
10192 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10193 o, contents))
10194 return FALSE;
10195 }
10196 break;
10197 default:
10198 {
10199 /* FIXME: octets_per_byte. */
10200 if (! (o->flags & SEC_EXCLUDE))
10201 {
10202 file_ptr offset = (file_ptr) o->output_offset;
10203 bfd_size_type todo = o->size;
10204 if ((o->flags & SEC_ELF_REVERSE_COPY))
10205 {
10206 /* Reverse-copy input section to output. */
10207 do
10208 {
10209 todo -= address_size;
10210 if (! bfd_set_section_contents (output_bfd,
10211 o->output_section,
10212 contents + todo,
10213 offset,
10214 address_size))
10215 return FALSE;
10216 if (todo == 0)
10217 break;
10218 offset += address_size;
10219 }
10220 while (1);
10221 }
10222 else if (! bfd_set_section_contents (output_bfd,
10223 o->output_section,
10224 contents,
10225 offset, todo))
10226 return FALSE;
10227 }
10228 }
10229 break;
10230 }
10231 }
10232
10233 return TRUE;
10234 }
10235
10236 /* Generate a reloc when linking an ELF file. This is a reloc
10237 requested by the linker, and does not come from any input file. This
10238 is used to build constructor and destructor tables when linking
10239 with -Ur. */
10240
10241 static bfd_boolean
10242 elf_reloc_link_order (bfd *output_bfd,
10243 struct bfd_link_info *info,
10244 asection *output_section,
10245 struct bfd_link_order *link_order)
10246 {
10247 reloc_howto_type *howto;
10248 long indx;
10249 bfd_vma offset;
10250 bfd_vma addend;
10251 struct bfd_elf_section_reloc_data *reldata;
10252 struct elf_link_hash_entry **rel_hash_ptr;
10253 Elf_Internal_Shdr *rel_hdr;
10254 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10255 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10256 bfd_byte *erel;
10257 unsigned int i;
10258 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10259
10260 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10261 if (howto == NULL)
10262 {
10263 bfd_set_error (bfd_error_bad_value);
10264 return FALSE;
10265 }
10266
10267 addend = link_order->u.reloc.p->addend;
10268
10269 if (esdo->rel.hdr)
10270 reldata = &esdo->rel;
10271 else if (esdo->rela.hdr)
10272 reldata = &esdo->rela;
10273 else
10274 {
10275 reldata = NULL;
10276 BFD_ASSERT (0);
10277 }
10278
10279 /* Figure out the symbol index. */
10280 rel_hash_ptr = reldata->hashes + reldata->count;
10281 if (link_order->type == bfd_section_reloc_link_order)
10282 {
10283 indx = link_order->u.reloc.p->u.section->target_index;
10284 BFD_ASSERT (indx != 0);
10285 *rel_hash_ptr = NULL;
10286 }
10287 else
10288 {
10289 struct elf_link_hash_entry *h;
10290
10291 /* Treat a reloc against a defined symbol as though it were
10292 actually against the section. */
10293 h = ((struct elf_link_hash_entry *)
10294 bfd_wrapped_link_hash_lookup (output_bfd, info,
10295 link_order->u.reloc.p->u.name,
10296 FALSE, FALSE, TRUE));
10297 if (h != NULL
10298 && (h->root.type == bfd_link_hash_defined
10299 || h->root.type == bfd_link_hash_defweak))
10300 {
10301 asection *section;
10302
10303 section = h->root.u.def.section;
10304 indx = section->output_section->target_index;
10305 *rel_hash_ptr = NULL;
10306 /* It seems that we ought to add the symbol value to the
10307 addend here, but in practice it has already been added
10308 because it was passed to constructor_callback. */
10309 addend += section->output_section->vma + section->output_offset;
10310 }
10311 else if (h != NULL)
10312 {
10313 /* Setting the index to -2 tells elf_link_output_extsym that
10314 this symbol is used by a reloc. */
10315 h->indx = -2;
10316 *rel_hash_ptr = h;
10317 indx = 0;
10318 }
10319 else
10320 {
10321 if (! ((*info->callbacks->unattached_reloc)
10322 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10323 return FALSE;
10324 indx = 0;
10325 }
10326 }
10327
10328 /* If this is an inplace reloc, we must write the addend into the
10329 object file. */
10330 if (howto->partial_inplace && addend != 0)
10331 {
10332 bfd_size_type size;
10333 bfd_reloc_status_type rstat;
10334 bfd_byte *buf;
10335 bfd_boolean ok;
10336 const char *sym_name;
10337
10338 size = (bfd_size_type) bfd_get_reloc_size (howto);
10339 buf = (bfd_byte *) bfd_zmalloc (size);
10340 if (buf == NULL)
10341 return FALSE;
10342 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10343 switch (rstat)
10344 {
10345 case bfd_reloc_ok:
10346 break;
10347
10348 default:
10349 case bfd_reloc_outofrange:
10350 abort ();
10351
10352 case bfd_reloc_overflow:
10353 if (link_order->type == bfd_section_reloc_link_order)
10354 sym_name = bfd_section_name (output_bfd,
10355 link_order->u.reloc.p->u.section);
10356 else
10357 sym_name = link_order->u.reloc.p->u.name;
10358 if (! ((*info->callbacks->reloc_overflow)
10359 (info, NULL, sym_name, howto->name, addend, NULL,
10360 NULL, (bfd_vma) 0)))
10361 {
10362 free (buf);
10363 return FALSE;
10364 }
10365 break;
10366 }
10367 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10368 link_order->offset, size);
10369 free (buf);
10370 if (! ok)
10371 return FALSE;
10372 }
10373
10374 /* The address of a reloc is relative to the section in a
10375 relocatable file, and is a virtual address in an executable
10376 file. */
10377 offset = link_order->offset;
10378 if (! info->relocatable)
10379 offset += output_section->vma;
10380
10381 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10382 {
10383 irel[i].r_offset = offset;
10384 irel[i].r_info = 0;
10385 irel[i].r_addend = 0;
10386 }
10387 if (bed->s->arch_size == 32)
10388 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10389 else
10390 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10391
10392 rel_hdr = reldata->hdr;
10393 erel = rel_hdr->contents;
10394 if (rel_hdr->sh_type == SHT_REL)
10395 {
10396 erel += reldata->count * bed->s->sizeof_rel;
10397 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10398 }
10399 else
10400 {
10401 irel[0].r_addend = addend;
10402 erel += reldata->count * bed->s->sizeof_rela;
10403 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10404 }
10405
10406 ++reldata->count;
10407
10408 return TRUE;
10409 }
10410
10411
10412 /* Get the output vma of the section pointed to by the sh_link field. */
10413
10414 static bfd_vma
10415 elf_get_linked_section_vma (struct bfd_link_order *p)
10416 {
10417 Elf_Internal_Shdr **elf_shdrp;
10418 asection *s;
10419 int elfsec;
10420
10421 s = p->u.indirect.section;
10422 elf_shdrp = elf_elfsections (s->owner);
10423 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10424 elfsec = elf_shdrp[elfsec]->sh_link;
10425 /* PR 290:
10426 The Intel C compiler generates SHT_IA_64_UNWIND with
10427 SHF_LINK_ORDER. But it doesn't set the sh_link or
10428 sh_info fields. Hence we could get the situation
10429 where elfsec is 0. */
10430 if (elfsec == 0)
10431 {
10432 const struct elf_backend_data *bed
10433 = get_elf_backend_data (s->owner);
10434 if (bed->link_order_error_handler)
10435 bed->link_order_error_handler
10436 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10437 return 0;
10438 }
10439 else
10440 {
10441 s = elf_shdrp[elfsec]->bfd_section;
10442 return s->output_section->vma + s->output_offset;
10443 }
10444 }
10445
10446
10447 /* Compare two sections based on the locations of the sections they are
10448 linked to. Used by elf_fixup_link_order. */
10449
10450 static int
10451 compare_link_order (const void * a, const void * b)
10452 {
10453 bfd_vma apos;
10454 bfd_vma bpos;
10455
10456 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10457 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10458 if (apos < bpos)
10459 return -1;
10460 return apos > bpos;
10461 }
10462
10463
10464 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10465 order as their linked sections. Returns false if this could not be done
10466 because an output section includes both ordered and unordered
10467 sections. Ideally we'd do this in the linker proper. */
10468
10469 static bfd_boolean
10470 elf_fixup_link_order (bfd *abfd, asection *o)
10471 {
10472 int seen_linkorder;
10473 int seen_other;
10474 int n;
10475 struct bfd_link_order *p;
10476 bfd *sub;
10477 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10478 unsigned elfsec;
10479 struct bfd_link_order **sections;
10480 asection *s, *other_sec, *linkorder_sec;
10481 bfd_vma offset;
10482
10483 other_sec = NULL;
10484 linkorder_sec = NULL;
10485 seen_other = 0;
10486 seen_linkorder = 0;
10487 for (p = o->map_head.link_order; p != NULL; p = p->next)
10488 {
10489 if (p->type == bfd_indirect_link_order)
10490 {
10491 s = p->u.indirect.section;
10492 sub = s->owner;
10493 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10494 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10495 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10496 && elfsec < elf_numsections (sub)
10497 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10498 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10499 {
10500 seen_linkorder++;
10501 linkorder_sec = s;
10502 }
10503 else
10504 {
10505 seen_other++;
10506 other_sec = s;
10507 }
10508 }
10509 else
10510 seen_other++;
10511
10512 if (seen_other && seen_linkorder)
10513 {
10514 if (other_sec && linkorder_sec)
10515 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10516 o, linkorder_sec,
10517 linkorder_sec->owner, other_sec,
10518 other_sec->owner);
10519 else
10520 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10521 o);
10522 bfd_set_error (bfd_error_bad_value);
10523 return FALSE;
10524 }
10525 }
10526
10527 if (!seen_linkorder)
10528 return TRUE;
10529
10530 sections = (struct bfd_link_order **)
10531 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10532 if (sections == NULL)
10533 return FALSE;
10534 seen_linkorder = 0;
10535
10536 for (p = o->map_head.link_order; p != NULL; p = p->next)
10537 {
10538 sections[seen_linkorder++] = p;
10539 }
10540 /* Sort the input sections in the order of their linked section. */
10541 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10542 compare_link_order);
10543
10544 /* Change the offsets of the sections. */
10545 offset = 0;
10546 for (n = 0; n < seen_linkorder; n++)
10547 {
10548 s = sections[n]->u.indirect.section;
10549 offset &= ~(bfd_vma) 0 << s->alignment_power;
10550 s->output_offset = offset;
10551 sections[n]->offset = offset;
10552 /* FIXME: octets_per_byte. */
10553 offset += sections[n]->size;
10554 }
10555
10556 free (sections);
10557 return TRUE;
10558 }
10559
10560 static void
10561 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10562 {
10563 asection *o;
10564
10565 if (flinfo->symstrtab != NULL)
10566 _bfd_stringtab_free (flinfo->symstrtab);
10567 if (flinfo->contents != NULL)
10568 free (flinfo->contents);
10569 if (flinfo->external_relocs != NULL)
10570 free (flinfo->external_relocs);
10571 if (flinfo->internal_relocs != NULL)
10572 free (flinfo->internal_relocs);
10573 if (flinfo->external_syms != NULL)
10574 free (flinfo->external_syms);
10575 if (flinfo->locsym_shndx != NULL)
10576 free (flinfo->locsym_shndx);
10577 if (flinfo->internal_syms != NULL)
10578 free (flinfo->internal_syms);
10579 if (flinfo->indices != NULL)
10580 free (flinfo->indices);
10581 if (flinfo->sections != NULL)
10582 free (flinfo->sections);
10583 if (flinfo->symbuf != NULL)
10584 free (flinfo->symbuf);
10585 if (flinfo->symshndxbuf != NULL)
10586 free (flinfo->symshndxbuf);
10587 for (o = obfd->sections; o != NULL; o = o->next)
10588 {
10589 struct bfd_elf_section_data *esdo = elf_section_data (o);
10590 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10591 free (esdo->rel.hashes);
10592 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10593 free (esdo->rela.hashes);
10594 }
10595 }
10596
10597 /* Do the final step of an ELF link. */
10598
10599 bfd_boolean
10600 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10601 {
10602 bfd_boolean dynamic;
10603 bfd_boolean emit_relocs;
10604 bfd *dynobj;
10605 struct elf_final_link_info flinfo;
10606 asection *o;
10607 struct bfd_link_order *p;
10608 bfd *sub;
10609 bfd_size_type max_contents_size;
10610 bfd_size_type max_external_reloc_size;
10611 bfd_size_type max_internal_reloc_count;
10612 bfd_size_type max_sym_count;
10613 bfd_size_type max_sym_shndx_count;
10614 Elf_Internal_Sym elfsym;
10615 unsigned int i;
10616 Elf_Internal_Shdr *symtab_hdr;
10617 Elf_Internal_Shdr *symtab_shndx_hdr;
10618 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10619 struct elf_outext_info eoinfo;
10620 bfd_boolean merged;
10621 size_t relativecount = 0;
10622 asection *reldyn = 0;
10623 bfd_size_type amt;
10624 asection *attr_section = NULL;
10625 bfd_vma attr_size = 0;
10626 const char *std_attrs_section;
10627
10628 if (! is_elf_hash_table (info->hash))
10629 return FALSE;
10630
10631 if (info->shared)
10632 abfd->flags |= DYNAMIC;
10633
10634 dynamic = elf_hash_table (info)->dynamic_sections_created;
10635 dynobj = elf_hash_table (info)->dynobj;
10636
10637 emit_relocs = (info->relocatable
10638 || info->emitrelocations);
10639
10640 flinfo.info = info;
10641 flinfo.output_bfd = abfd;
10642 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10643 if (flinfo.symstrtab == NULL)
10644 return FALSE;
10645
10646 if (! dynamic)
10647 {
10648 flinfo.dynsym_sec = NULL;
10649 flinfo.hash_sec = NULL;
10650 flinfo.symver_sec = NULL;
10651 }
10652 else
10653 {
10654 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10655 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10656 /* Note that dynsym_sec can be NULL (on VMS). */
10657 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10658 /* Note that it is OK if symver_sec is NULL. */
10659 }
10660
10661 flinfo.contents = NULL;
10662 flinfo.external_relocs = NULL;
10663 flinfo.internal_relocs = NULL;
10664 flinfo.external_syms = NULL;
10665 flinfo.locsym_shndx = NULL;
10666 flinfo.internal_syms = NULL;
10667 flinfo.indices = NULL;
10668 flinfo.sections = NULL;
10669 flinfo.symbuf = NULL;
10670 flinfo.symshndxbuf = NULL;
10671 flinfo.symbuf_count = 0;
10672 flinfo.shndxbuf_size = 0;
10673 flinfo.filesym_count = 0;
10674
10675 /* The object attributes have been merged. Remove the input
10676 sections from the link, and set the contents of the output
10677 secton. */
10678 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10679 for (o = abfd->sections; o != NULL; o = o->next)
10680 {
10681 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10682 || strcmp (o->name, ".gnu.attributes") == 0)
10683 {
10684 for (p = o->map_head.link_order; p != NULL; p = p->next)
10685 {
10686 asection *input_section;
10687
10688 if (p->type != bfd_indirect_link_order)
10689 continue;
10690 input_section = p->u.indirect.section;
10691 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10692 elf_link_input_bfd ignores this section. */
10693 input_section->flags &= ~SEC_HAS_CONTENTS;
10694 }
10695
10696 attr_size = bfd_elf_obj_attr_size (abfd);
10697 if (attr_size)
10698 {
10699 bfd_set_section_size (abfd, o, attr_size);
10700 attr_section = o;
10701 /* Skip this section later on. */
10702 o->map_head.link_order = NULL;
10703 }
10704 else
10705 o->flags |= SEC_EXCLUDE;
10706 }
10707 }
10708
10709 /* Count up the number of relocations we will output for each output
10710 section, so that we know the sizes of the reloc sections. We
10711 also figure out some maximum sizes. */
10712 max_contents_size = 0;
10713 max_external_reloc_size = 0;
10714 max_internal_reloc_count = 0;
10715 max_sym_count = 0;
10716 max_sym_shndx_count = 0;
10717 merged = FALSE;
10718 for (o = abfd->sections; o != NULL; o = o->next)
10719 {
10720 struct bfd_elf_section_data *esdo = elf_section_data (o);
10721 o->reloc_count = 0;
10722
10723 for (p = o->map_head.link_order; p != NULL; p = p->next)
10724 {
10725 unsigned int reloc_count = 0;
10726 struct bfd_elf_section_data *esdi = NULL;
10727
10728 if (p->type == bfd_section_reloc_link_order
10729 || p->type == bfd_symbol_reloc_link_order)
10730 reloc_count = 1;
10731 else if (p->type == bfd_indirect_link_order)
10732 {
10733 asection *sec;
10734
10735 sec = p->u.indirect.section;
10736 esdi = elf_section_data (sec);
10737
10738 /* Mark all sections which are to be included in the
10739 link. This will normally be every section. We need
10740 to do this so that we can identify any sections which
10741 the linker has decided to not include. */
10742 sec->linker_mark = TRUE;
10743
10744 if (sec->flags & SEC_MERGE)
10745 merged = TRUE;
10746
10747 if (esdo->this_hdr.sh_type == SHT_REL
10748 || esdo->this_hdr.sh_type == SHT_RELA)
10749 /* Some backends use reloc_count in relocation sections
10750 to count particular types of relocs. Of course,
10751 reloc sections themselves can't have relocations. */
10752 reloc_count = 0;
10753 else if (info->relocatable || info->emitrelocations)
10754 reloc_count = sec->reloc_count;
10755 else if (bed->elf_backend_count_relocs)
10756 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10757
10758 if (sec->rawsize > max_contents_size)
10759 max_contents_size = sec->rawsize;
10760 if (sec->size > max_contents_size)
10761 max_contents_size = sec->size;
10762
10763 /* We are interested in just local symbols, not all
10764 symbols. */
10765 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10766 && (sec->owner->flags & DYNAMIC) == 0)
10767 {
10768 size_t sym_count;
10769
10770 if (elf_bad_symtab (sec->owner))
10771 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10772 / bed->s->sizeof_sym);
10773 else
10774 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10775
10776 if (sym_count > max_sym_count)
10777 max_sym_count = sym_count;
10778
10779 if (sym_count > max_sym_shndx_count
10780 && elf_symtab_shndx (sec->owner) != 0)
10781 max_sym_shndx_count = sym_count;
10782
10783 if ((sec->flags & SEC_RELOC) != 0)
10784 {
10785 size_t ext_size = 0;
10786
10787 if (esdi->rel.hdr != NULL)
10788 ext_size = esdi->rel.hdr->sh_size;
10789 if (esdi->rela.hdr != NULL)
10790 ext_size += esdi->rela.hdr->sh_size;
10791
10792 if (ext_size > max_external_reloc_size)
10793 max_external_reloc_size = ext_size;
10794 if (sec->reloc_count > max_internal_reloc_count)
10795 max_internal_reloc_count = sec->reloc_count;
10796 }
10797 }
10798 }
10799
10800 if (reloc_count == 0)
10801 continue;
10802
10803 o->reloc_count += reloc_count;
10804
10805 if (p->type == bfd_indirect_link_order
10806 && (info->relocatable || info->emitrelocations))
10807 {
10808 if (esdi->rel.hdr)
10809 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10810 if (esdi->rela.hdr)
10811 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10812 }
10813 else
10814 {
10815 if (o->use_rela_p)
10816 esdo->rela.count += reloc_count;
10817 else
10818 esdo->rel.count += reloc_count;
10819 }
10820 }
10821
10822 if (o->reloc_count > 0)
10823 o->flags |= SEC_RELOC;
10824 else
10825 {
10826 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10827 set it (this is probably a bug) and if it is set
10828 assign_section_numbers will create a reloc section. */
10829 o->flags &=~ SEC_RELOC;
10830 }
10831
10832 /* If the SEC_ALLOC flag is not set, force the section VMA to
10833 zero. This is done in elf_fake_sections as well, but forcing
10834 the VMA to 0 here will ensure that relocs against these
10835 sections are handled correctly. */
10836 if ((o->flags & SEC_ALLOC) == 0
10837 && ! o->user_set_vma)
10838 o->vma = 0;
10839 }
10840
10841 if (! info->relocatable && merged)
10842 elf_link_hash_traverse (elf_hash_table (info),
10843 _bfd_elf_link_sec_merge_syms, abfd);
10844
10845 /* Figure out the file positions for everything but the symbol table
10846 and the relocs. We set symcount to force assign_section_numbers
10847 to create a symbol table. */
10848 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10849 BFD_ASSERT (! abfd->output_has_begun);
10850 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10851 goto error_return;
10852
10853 /* Set sizes, and assign file positions for reloc sections. */
10854 for (o = abfd->sections; o != NULL; o = o->next)
10855 {
10856 struct bfd_elf_section_data *esdo = elf_section_data (o);
10857 if ((o->flags & SEC_RELOC) != 0)
10858 {
10859 if (esdo->rel.hdr
10860 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10861 goto error_return;
10862
10863 if (esdo->rela.hdr
10864 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10865 goto error_return;
10866 }
10867
10868 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10869 to count upwards while actually outputting the relocations. */
10870 esdo->rel.count = 0;
10871 esdo->rela.count = 0;
10872 }
10873
10874 /* We have now assigned file positions for all the sections except
10875 .symtab, .strtab, and non-loaded reloc sections. We start the
10876 .symtab section at the current file position, and write directly
10877 to it. We build the .strtab section in memory. */
10878 bfd_get_symcount (abfd) = 0;
10879 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10880 /* sh_name is set in prep_headers. */
10881 symtab_hdr->sh_type = SHT_SYMTAB;
10882 /* sh_flags, sh_addr and sh_size all start off zero. */
10883 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10884 /* sh_link is set in assign_section_numbers. */
10885 /* sh_info is set below. */
10886 /* sh_offset is set just below. */
10887 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10888
10889 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10890 continuously seeking to the right position in the file. */
10891 if (! info->keep_memory || max_sym_count < 20)
10892 flinfo.symbuf_size = 20;
10893 else
10894 flinfo.symbuf_size = max_sym_count;
10895 amt = flinfo.symbuf_size;
10896 amt *= bed->s->sizeof_sym;
10897 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10898 if (flinfo.symbuf == NULL)
10899 goto error_return;
10900 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10901 {
10902 /* Wild guess at number of output symbols. realloc'd as needed. */
10903 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10904 flinfo.shndxbuf_size = amt;
10905 amt *= sizeof (Elf_External_Sym_Shndx);
10906 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10907 if (flinfo.symshndxbuf == NULL)
10908 goto error_return;
10909 }
10910
10911 if (info->strip != strip_all || emit_relocs)
10912 {
10913 file_ptr off = elf_next_file_pos (abfd);
10914
10915 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10916
10917 /* Note that at this point elf_next_file_pos (abfd) is
10918 incorrect. We do not yet know the size of the .symtab section.
10919 We correct next_file_pos below, after we do know the size. */
10920
10921 /* Start writing out the symbol table. The first symbol is always a
10922 dummy symbol. */
10923 elfsym.st_value = 0;
10924 elfsym.st_size = 0;
10925 elfsym.st_info = 0;
10926 elfsym.st_other = 0;
10927 elfsym.st_shndx = SHN_UNDEF;
10928 elfsym.st_target_internal = 0;
10929 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10930 NULL) != 1)
10931 goto error_return;
10932
10933 /* Output a symbol for each section. We output these even if we are
10934 discarding local symbols, since they are used for relocs. These
10935 symbols have no names. We store the index of each one in the
10936 index field of the section, so that we can find it again when
10937 outputting relocs. */
10938
10939 elfsym.st_size = 0;
10940 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10941 elfsym.st_other = 0;
10942 elfsym.st_value = 0;
10943 elfsym.st_target_internal = 0;
10944 for (i = 1; i < elf_numsections (abfd); i++)
10945 {
10946 o = bfd_section_from_elf_index (abfd, i);
10947 if (o != NULL)
10948 {
10949 o->target_index = bfd_get_symcount (abfd);
10950 elfsym.st_shndx = i;
10951 if (!info->relocatable)
10952 elfsym.st_value = o->vma;
10953 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10954 goto error_return;
10955 }
10956 }
10957 }
10958
10959 /* Allocate some memory to hold information read in from the input
10960 files. */
10961 if (max_contents_size != 0)
10962 {
10963 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10964 if (flinfo.contents == NULL)
10965 goto error_return;
10966 }
10967
10968 if (max_external_reloc_size != 0)
10969 {
10970 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10971 if (flinfo.external_relocs == NULL)
10972 goto error_return;
10973 }
10974
10975 if (max_internal_reloc_count != 0)
10976 {
10977 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10978 amt *= sizeof (Elf_Internal_Rela);
10979 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10980 if (flinfo.internal_relocs == NULL)
10981 goto error_return;
10982 }
10983
10984 if (max_sym_count != 0)
10985 {
10986 amt = max_sym_count * bed->s->sizeof_sym;
10987 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10988 if (flinfo.external_syms == NULL)
10989 goto error_return;
10990
10991 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10992 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10993 if (flinfo.internal_syms == NULL)
10994 goto error_return;
10995
10996 amt = max_sym_count * sizeof (long);
10997 flinfo.indices = (long int *) bfd_malloc (amt);
10998 if (flinfo.indices == NULL)
10999 goto error_return;
11000
11001 amt = max_sym_count * sizeof (asection *);
11002 flinfo.sections = (asection **) bfd_malloc (amt);
11003 if (flinfo.sections == NULL)
11004 goto error_return;
11005 }
11006
11007 if (max_sym_shndx_count != 0)
11008 {
11009 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11010 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11011 if (flinfo.locsym_shndx == NULL)
11012 goto error_return;
11013 }
11014
11015 if (elf_hash_table (info)->tls_sec)
11016 {
11017 bfd_vma base, end = 0;
11018 asection *sec;
11019
11020 for (sec = elf_hash_table (info)->tls_sec;
11021 sec && (sec->flags & SEC_THREAD_LOCAL);
11022 sec = sec->next)
11023 {
11024 bfd_size_type size = sec->size;
11025
11026 if (size == 0
11027 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11028 {
11029 struct bfd_link_order *ord = sec->map_tail.link_order;
11030
11031 if (ord != NULL)
11032 size = ord->offset + ord->size;
11033 }
11034 end = sec->vma + size;
11035 }
11036 base = elf_hash_table (info)->tls_sec->vma;
11037 /* Only align end of TLS section if static TLS doesn't have special
11038 alignment requirements. */
11039 if (bed->static_tls_alignment == 1)
11040 end = align_power (end,
11041 elf_hash_table (info)->tls_sec->alignment_power);
11042 elf_hash_table (info)->tls_size = end - base;
11043 }
11044
11045 /* Reorder SHF_LINK_ORDER sections. */
11046 for (o = abfd->sections; o != NULL; o = o->next)
11047 {
11048 if (!elf_fixup_link_order (abfd, o))
11049 return FALSE;
11050 }
11051
11052 /* Since ELF permits relocations to be against local symbols, we
11053 must have the local symbols available when we do the relocations.
11054 Since we would rather only read the local symbols once, and we
11055 would rather not keep them in memory, we handle all the
11056 relocations for a single input file at the same time.
11057
11058 Unfortunately, there is no way to know the total number of local
11059 symbols until we have seen all of them, and the local symbol
11060 indices precede the global symbol indices. This means that when
11061 we are generating relocatable output, and we see a reloc against
11062 a global symbol, we can not know the symbol index until we have
11063 finished examining all the local symbols to see which ones we are
11064 going to output. To deal with this, we keep the relocations in
11065 memory, and don't output them until the end of the link. This is
11066 an unfortunate waste of memory, but I don't see a good way around
11067 it. Fortunately, it only happens when performing a relocatable
11068 link, which is not the common case. FIXME: If keep_memory is set
11069 we could write the relocs out and then read them again; I don't
11070 know how bad the memory loss will be. */
11071
11072 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11073 sub->output_has_begun = FALSE;
11074 for (o = abfd->sections; o != NULL; o = o->next)
11075 {
11076 for (p = o->map_head.link_order; p != NULL; p = p->next)
11077 {
11078 if (p->type == bfd_indirect_link_order
11079 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11080 == bfd_target_elf_flavour)
11081 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11082 {
11083 if (! sub->output_has_begun)
11084 {
11085 if (! elf_link_input_bfd (&flinfo, sub))
11086 goto error_return;
11087 sub->output_has_begun = TRUE;
11088 }
11089 }
11090 else if (p->type == bfd_section_reloc_link_order
11091 || p->type == bfd_symbol_reloc_link_order)
11092 {
11093 if (! elf_reloc_link_order (abfd, info, o, p))
11094 goto error_return;
11095 }
11096 else
11097 {
11098 if (! _bfd_default_link_order (abfd, info, o, p))
11099 {
11100 if (p->type == bfd_indirect_link_order
11101 && (bfd_get_flavour (sub)
11102 == bfd_target_elf_flavour)
11103 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11104 != bed->s->elfclass))
11105 {
11106 const char *iclass, *oclass;
11107
11108 if (bed->s->elfclass == ELFCLASS64)
11109 {
11110 iclass = "ELFCLASS32";
11111 oclass = "ELFCLASS64";
11112 }
11113 else
11114 {
11115 iclass = "ELFCLASS64";
11116 oclass = "ELFCLASS32";
11117 }
11118
11119 bfd_set_error (bfd_error_wrong_format);
11120 (*_bfd_error_handler)
11121 (_("%B: file class %s incompatible with %s"),
11122 sub, iclass, oclass);
11123 }
11124
11125 goto error_return;
11126 }
11127 }
11128 }
11129 }
11130
11131 /* Free symbol buffer if needed. */
11132 if (!info->reduce_memory_overheads)
11133 {
11134 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11135 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11136 && elf_tdata (sub)->symbuf)
11137 {
11138 free (elf_tdata (sub)->symbuf);
11139 elf_tdata (sub)->symbuf = NULL;
11140 }
11141 }
11142
11143 /* Output any global symbols that got converted to local in a
11144 version script or due to symbol visibility. We do this in a
11145 separate step since ELF requires all local symbols to appear
11146 prior to any global symbols. FIXME: We should only do this if
11147 some global symbols were, in fact, converted to become local.
11148 FIXME: Will this work correctly with the Irix 5 linker? */
11149 eoinfo.failed = FALSE;
11150 eoinfo.flinfo = &flinfo;
11151 eoinfo.localsyms = TRUE;
11152 eoinfo.need_second_pass = FALSE;
11153 eoinfo.second_pass = FALSE;
11154 eoinfo.file_sym_done = FALSE;
11155 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11156 if (eoinfo.failed)
11157 return FALSE;
11158
11159 if (eoinfo.need_second_pass)
11160 {
11161 eoinfo.second_pass = TRUE;
11162 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11163 if (eoinfo.failed)
11164 return FALSE;
11165 }
11166
11167 /* If backend needs to output some local symbols not present in the hash
11168 table, do it now. */
11169 if (bed->elf_backend_output_arch_local_syms
11170 && (info->strip != strip_all || emit_relocs))
11171 {
11172 typedef int (*out_sym_func)
11173 (void *, const char *, Elf_Internal_Sym *, asection *,
11174 struct elf_link_hash_entry *);
11175
11176 if (! ((*bed->elf_backend_output_arch_local_syms)
11177 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11178 return FALSE;
11179 }
11180
11181 /* That wrote out all the local symbols. Finish up the symbol table
11182 with the global symbols. Even if we want to strip everything we
11183 can, we still need to deal with those global symbols that got
11184 converted to local in a version script. */
11185
11186 /* The sh_info field records the index of the first non local symbol. */
11187 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11188
11189 if (dynamic
11190 && flinfo.dynsym_sec != NULL
11191 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11192 {
11193 Elf_Internal_Sym sym;
11194 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11195 long last_local = 0;
11196
11197 /* Write out the section symbols for the output sections. */
11198 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11199 {
11200 asection *s;
11201
11202 sym.st_size = 0;
11203 sym.st_name = 0;
11204 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11205 sym.st_other = 0;
11206 sym.st_target_internal = 0;
11207
11208 for (s = abfd->sections; s != NULL; s = s->next)
11209 {
11210 int indx;
11211 bfd_byte *dest;
11212 long dynindx;
11213
11214 dynindx = elf_section_data (s)->dynindx;
11215 if (dynindx <= 0)
11216 continue;
11217 indx = elf_section_data (s)->this_idx;
11218 BFD_ASSERT (indx > 0);
11219 sym.st_shndx = indx;
11220 if (! check_dynsym (abfd, &sym))
11221 return FALSE;
11222 sym.st_value = s->vma;
11223 dest = dynsym + dynindx * bed->s->sizeof_sym;
11224 if (last_local < dynindx)
11225 last_local = dynindx;
11226 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11227 }
11228 }
11229
11230 /* Write out the local dynsyms. */
11231 if (elf_hash_table (info)->dynlocal)
11232 {
11233 struct elf_link_local_dynamic_entry *e;
11234 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11235 {
11236 asection *s;
11237 bfd_byte *dest;
11238
11239 /* Copy the internal symbol and turn off visibility.
11240 Note that we saved a word of storage and overwrote
11241 the original st_name with the dynstr_index. */
11242 sym = e->isym;
11243 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11244
11245 s = bfd_section_from_elf_index (e->input_bfd,
11246 e->isym.st_shndx);
11247 if (s != NULL)
11248 {
11249 sym.st_shndx =
11250 elf_section_data (s->output_section)->this_idx;
11251 if (! check_dynsym (abfd, &sym))
11252 return FALSE;
11253 sym.st_value = (s->output_section->vma
11254 + s->output_offset
11255 + e->isym.st_value);
11256 }
11257
11258 if (last_local < e->dynindx)
11259 last_local = e->dynindx;
11260
11261 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11262 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11263 }
11264 }
11265
11266 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11267 last_local + 1;
11268 }
11269
11270 /* We get the global symbols from the hash table. */
11271 eoinfo.failed = FALSE;
11272 eoinfo.localsyms = FALSE;
11273 eoinfo.flinfo = &flinfo;
11274 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11275 if (eoinfo.failed)
11276 return FALSE;
11277
11278 /* If backend needs to output some symbols not present in the hash
11279 table, do it now. */
11280 if (bed->elf_backend_output_arch_syms
11281 && (info->strip != strip_all || emit_relocs))
11282 {
11283 typedef int (*out_sym_func)
11284 (void *, const char *, Elf_Internal_Sym *, asection *,
11285 struct elf_link_hash_entry *);
11286
11287 if (! ((*bed->elf_backend_output_arch_syms)
11288 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11289 return FALSE;
11290 }
11291
11292 /* Flush all symbols to the file. */
11293 if (! elf_link_flush_output_syms (&flinfo, bed))
11294 return FALSE;
11295
11296 /* Now we know the size of the symtab section. */
11297 if (bfd_get_symcount (abfd) > 0)
11298 {
11299 /* Finish up and write out the symbol string table (.strtab)
11300 section. */
11301 Elf_Internal_Shdr *symstrtab_hdr;
11302 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11303
11304 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11305 if (symtab_shndx_hdr->sh_name != 0)
11306 {
11307 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11308 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11309 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11310 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11311 symtab_shndx_hdr->sh_size = amt;
11312
11313 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11314 off, TRUE);
11315
11316 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11317 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11318 return FALSE;
11319 }
11320
11321 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11322 /* sh_name was set in prep_headers. */
11323 symstrtab_hdr->sh_type = SHT_STRTAB;
11324 symstrtab_hdr->sh_flags = 0;
11325 symstrtab_hdr->sh_addr = 0;
11326 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11327 symstrtab_hdr->sh_entsize = 0;
11328 symstrtab_hdr->sh_link = 0;
11329 symstrtab_hdr->sh_info = 0;
11330 /* sh_offset is set just below. */
11331 symstrtab_hdr->sh_addralign = 1;
11332
11333 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11334 off, TRUE);
11335 elf_next_file_pos (abfd) = off;
11336
11337 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11338 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11339 return FALSE;
11340 }
11341
11342 /* Adjust the relocs to have the correct symbol indices. */
11343 for (o = abfd->sections; o != NULL; o = o->next)
11344 {
11345 struct bfd_elf_section_data *esdo = elf_section_data (o);
11346 bfd_boolean sort;
11347 if ((o->flags & SEC_RELOC) == 0)
11348 continue;
11349
11350 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11351 if (esdo->rel.hdr != NULL)
11352 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11353 if (esdo->rela.hdr != NULL)
11354 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11355
11356 /* Set the reloc_count field to 0 to prevent write_relocs from
11357 trying to swap the relocs out itself. */
11358 o->reloc_count = 0;
11359 }
11360
11361 if (dynamic && info->combreloc && dynobj != NULL)
11362 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11363
11364 /* If we are linking against a dynamic object, or generating a
11365 shared library, finish up the dynamic linking information. */
11366 if (dynamic)
11367 {
11368 bfd_byte *dyncon, *dynconend;
11369
11370 /* Fix up .dynamic entries. */
11371 o = bfd_get_linker_section (dynobj, ".dynamic");
11372 BFD_ASSERT (o != NULL);
11373
11374 dyncon = o->contents;
11375 dynconend = o->contents + o->size;
11376 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11377 {
11378 Elf_Internal_Dyn dyn;
11379 const char *name;
11380 unsigned int type;
11381
11382 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11383
11384 switch (dyn.d_tag)
11385 {
11386 default:
11387 continue;
11388 case DT_NULL:
11389 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11390 {
11391 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11392 {
11393 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11394 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11395 default: continue;
11396 }
11397 dyn.d_un.d_val = relativecount;
11398 relativecount = 0;
11399 break;
11400 }
11401 continue;
11402
11403 case DT_INIT:
11404 name = info->init_function;
11405 goto get_sym;
11406 case DT_FINI:
11407 name = info->fini_function;
11408 get_sym:
11409 {
11410 struct elf_link_hash_entry *h;
11411
11412 h = elf_link_hash_lookup (elf_hash_table (info), name,
11413 FALSE, FALSE, TRUE);
11414 if (h != NULL
11415 && (h->root.type == bfd_link_hash_defined
11416 || h->root.type == bfd_link_hash_defweak))
11417 {
11418 dyn.d_un.d_ptr = h->root.u.def.value;
11419 o = h->root.u.def.section;
11420 if (o->output_section != NULL)
11421 dyn.d_un.d_ptr += (o->output_section->vma
11422 + o->output_offset);
11423 else
11424 {
11425 /* The symbol is imported from another shared
11426 library and does not apply to this one. */
11427 dyn.d_un.d_ptr = 0;
11428 }
11429 break;
11430 }
11431 }
11432 continue;
11433
11434 case DT_PREINIT_ARRAYSZ:
11435 name = ".preinit_array";
11436 goto get_size;
11437 case DT_INIT_ARRAYSZ:
11438 name = ".init_array";
11439 goto get_size;
11440 case DT_FINI_ARRAYSZ:
11441 name = ".fini_array";
11442 get_size:
11443 o = bfd_get_section_by_name (abfd, name);
11444 if (o == NULL)
11445 {
11446 (*_bfd_error_handler)
11447 (_("%B: could not find output section %s"), abfd, name);
11448 goto error_return;
11449 }
11450 if (o->size == 0)
11451 (*_bfd_error_handler)
11452 (_("warning: %s section has zero size"), name);
11453 dyn.d_un.d_val = o->size;
11454 break;
11455
11456 case DT_PREINIT_ARRAY:
11457 name = ".preinit_array";
11458 goto get_vma;
11459 case DT_INIT_ARRAY:
11460 name = ".init_array";
11461 goto get_vma;
11462 case DT_FINI_ARRAY:
11463 name = ".fini_array";
11464 goto get_vma;
11465
11466 case DT_HASH:
11467 name = ".hash";
11468 goto get_vma;
11469 case DT_GNU_HASH:
11470 name = ".gnu.hash";
11471 goto get_vma;
11472 case DT_STRTAB:
11473 name = ".dynstr";
11474 goto get_vma;
11475 case DT_SYMTAB:
11476 name = ".dynsym";
11477 goto get_vma;
11478 case DT_VERDEF:
11479 name = ".gnu.version_d";
11480 goto get_vma;
11481 case DT_VERNEED:
11482 name = ".gnu.version_r";
11483 goto get_vma;
11484 case DT_VERSYM:
11485 name = ".gnu.version";
11486 get_vma:
11487 o = bfd_get_section_by_name (abfd, name);
11488 if (o == NULL)
11489 {
11490 (*_bfd_error_handler)
11491 (_("%B: could not find output section %s"), abfd, name);
11492 goto error_return;
11493 }
11494 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11495 {
11496 (*_bfd_error_handler)
11497 (_("warning: section '%s' is being made into a note"), name);
11498 bfd_set_error (bfd_error_nonrepresentable_section);
11499 goto error_return;
11500 }
11501 dyn.d_un.d_ptr = o->vma;
11502 break;
11503
11504 case DT_REL:
11505 case DT_RELA:
11506 case DT_RELSZ:
11507 case DT_RELASZ:
11508 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11509 type = SHT_REL;
11510 else
11511 type = SHT_RELA;
11512 dyn.d_un.d_val = 0;
11513 dyn.d_un.d_ptr = 0;
11514 for (i = 1; i < elf_numsections (abfd); i++)
11515 {
11516 Elf_Internal_Shdr *hdr;
11517
11518 hdr = elf_elfsections (abfd)[i];
11519 if (hdr->sh_type == type
11520 && (hdr->sh_flags & SHF_ALLOC) != 0)
11521 {
11522 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11523 dyn.d_un.d_val += hdr->sh_size;
11524 else
11525 {
11526 if (dyn.d_un.d_ptr == 0
11527 || hdr->sh_addr < dyn.d_un.d_ptr)
11528 dyn.d_un.d_ptr = hdr->sh_addr;
11529 }
11530 }
11531 }
11532 break;
11533 }
11534 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11535 }
11536 }
11537
11538 /* If we have created any dynamic sections, then output them. */
11539 if (dynobj != NULL)
11540 {
11541 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11542 goto error_return;
11543
11544 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11545 if (((info->warn_shared_textrel && info->shared)
11546 || info->error_textrel)
11547 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11548 {
11549 bfd_byte *dyncon, *dynconend;
11550
11551 dyncon = o->contents;
11552 dynconend = o->contents + o->size;
11553 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11554 {
11555 Elf_Internal_Dyn dyn;
11556
11557 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11558
11559 if (dyn.d_tag == DT_TEXTREL)
11560 {
11561 if (info->error_textrel)
11562 info->callbacks->einfo
11563 (_("%P%X: read-only segment has dynamic relocations.\n"));
11564 else
11565 info->callbacks->einfo
11566 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11567 break;
11568 }
11569 }
11570 }
11571
11572 for (o = dynobj->sections; o != NULL; o = o->next)
11573 {
11574 if ((o->flags & SEC_HAS_CONTENTS) == 0
11575 || o->size == 0
11576 || o->output_section == bfd_abs_section_ptr)
11577 continue;
11578 if ((o->flags & SEC_LINKER_CREATED) == 0)
11579 {
11580 /* At this point, we are only interested in sections
11581 created by _bfd_elf_link_create_dynamic_sections. */
11582 continue;
11583 }
11584 if (elf_hash_table (info)->stab_info.stabstr == o)
11585 continue;
11586 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11587 continue;
11588 if (strcmp (o->name, ".dynstr") != 0)
11589 {
11590 /* FIXME: octets_per_byte. */
11591 if (! bfd_set_section_contents (abfd, o->output_section,
11592 o->contents,
11593 (file_ptr) o->output_offset,
11594 o->size))
11595 goto error_return;
11596 }
11597 else
11598 {
11599 /* The contents of the .dynstr section are actually in a
11600 stringtab. */
11601 file_ptr off;
11602
11603 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11604 if (bfd_seek (abfd, off, SEEK_SET) != 0
11605 || ! _bfd_elf_strtab_emit (abfd,
11606 elf_hash_table (info)->dynstr))
11607 goto error_return;
11608 }
11609 }
11610 }
11611
11612 if (info->relocatable)
11613 {
11614 bfd_boolean failed = FALSE;
11615
11616 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11617 if (failed)
11618 goto error_return;
11619 }
11620
11621 /* If we have optimized stabs strings, output them. */
11622 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11623 {
11624 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11625 goto error_return;
11626 }
11627
11628 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11629 goto error_return;
11630
11631 elf_final_link_free (abfd, &flinfo);
11632
11633 elf_linker (abfd) = TRUE;
11634
11635 if (attr_section)
11636 {
11637 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11638 if (contents == NULL)
11639 return FALSE; /* Bail out and fail. */
11640 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11641 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11642 free (contents);
11643 }
11644
11645 return TRUE;
11646
11647 error_return:
11648 elf_final_link_free (abfd, &flinfo);
11649 return FALSE;
11650 }
11651 \f
11652 /* Initialize COOKIE for input bfd ABFD. */
11653
11654 static bfd_boolean
11655 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11656 struct bfd_link_info *info, bfd *abfd)
11657 {
11658 Elf_Internal_Shdr *symtab_hdr;
11659 const struct elf_backend_data *bed;
11660
11661 bed = get_elf_backend_data (abfd);
11662 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11663
11664 cookie->abfd = abfd;
11665 cookie->sym_hashes = elf_sym_hashes (abfd);
11666 cookie->bad_symtab = elf_bad_symtab (abfd);
11667 if (cookie->bad_symtab)
11668 {
11669 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11670 cookie->extsymoff = 0;
11671 }
11672 else
11673 {
11674 cookie->locsymcount = symtab_hdr->sh_info;
11675 cookie->extsymoff = symtab_hdr->sh_info;
11676 }
11677
11678 if (bed->s->arch_size == 32)
11679 cookie->r_sym_shift = 8;
11680 else
11681 cookie->r_sym_shift = 32;
11682
11683 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11684 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11685 {
11686 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11687 cookie->locsymcount, 0,
11688 NULL, NULL, NULL);
11689 if (cookie->locsyms == NULL)
11690 {
11691 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11692 return FALSE;
11693 }
11694 if (info->keep_memory)
11695 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11696 }
11697 return TRUE;
11698 }
11699
11700 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11701
11702 static void
11703 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11704 {
11705 Elf_Internal_Shdr *symtab_hdr;
11706
11707 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11708 if (cookie->locsyms != NULL
11709 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11710 free (cookie->locsyms);
11711 }
11712
11713 /* Initialize the relocation information in COOKIE for input section SEC
11714 of input bfd ABFD. */
11715
11716 static bfd_boolean
11717 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11718 struct bfd_link_info *info, bfd *abfd,
11719 asection *sec)
11720 {
11721 const struct elf_backend_data *bed;
11722
11723 if (sec->reloc_count == 0)
11724 {
11725 cookie->rels = NULL;
11726 cookie->relend = NULL;
11727 }
11728 else
11729 {
11730 bed = get_elf_backend_data (abfd);
11731
11732 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11733 info->keep_memory);
11734 if (cookie->rels == NULL)
11735 return FALSE;
11736 cookie->rel = cookie->rels;
11737 cookie->relend = (cookie->rels
11738 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11739 }
11740 cookie->rel = cookie->rels;
11741 return TRUE;
11742 }
11743
11744 /* Free the memory allocated by init_reloc_cookie_rels,
11745 if appropriate. */
11746
11747 static void
11748 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11749 asection *sec)
11750 {
11751 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11752 free (cookie->rels);
11753 }
11754
11755 /* Initialize the whole of COOKIE for input section SEC. */
11756
11757 static bfd_boolean
11758 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11759 struct bfd_link_info *info,
11760 asection *sec)
11761 {
11762 if (!init_reloc_cookie (cookie, info, sec->owner))
11763 goto error1;
11764 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11765 goto error2;
11766 return TRUE;
11767
11768 error2:
11769 fini_reloc_cookie (cookie, sec->owner);
11770 error1:
11771 return FALSE;
11772 }
11773
11774 /* Free the memory allocated by init_reloc_cookie_for_section,
11775 if appropriate. */
11776
11777 static void
11778 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11779 asection *sec)
11780 {
11781 fini_reloc_cookie_rels (cookie, sec);
11782 fini_reloc_cookie (cookie, sec->owner);
11783 }
11784 \f
11785 /* Garbage collect unused sections. */
11786
11787 /* Default gc_mark_hook. */
11788
11789 asection *
11790 _bfd_elf_gc_mark_hook (asection *sec,
11791 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11792 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11793 struct elf_link_hash_entry *h,
11794 Elf_Internal_Sym *sym)
11795 {
11796 const char *sec_name;
11797
11798 if (h != NULL)
11799 {
11800 switch (h->root.type)
11801 {
11802 case bfd_link_hash_defined:
11803 case bfd_link_hash_defweak:
11804 return h->root.u.def.section;
11805
11806 case bfd_link_hash_common:
11807 return h->root.u.c.p->section;
11808
11809 case bfd_link_hash_undefined:
11810 case bfd_link_hash_undefweak:
11811 /* To work around a glibc bug, keep all XXX input sections
11812 when there is an as yet undefined reference to __start_XXX
11813 or __stop_XXX symbols. The linker will later define such
11814 symbols for orphan input sections that have a name
11815 representable as a C identifier. */
11816 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11817 sec_name = h->root.root.string + 8;
11818 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11819 sec_name = h->root.root.string + 7;
11820 else
11821 sec_name = NULL;
11822
11823 if (sec_name && *sec_name != '\0')
11824 {
11825 bfd *i;
11826
11827 for (i = info->input_bfds; i; i = i->link.next)
11828 {
11829 sec = bfd_get_section_by_name (i, sec_name);
11830 if (sec)
11831 sec->flags |= SEC_KEEP;
11832 }
11833 }
11834 break;
11835
11836 default:
11837 break;
11838 }
11839 }
11840 else
11841 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11842
11843 return NULL;
11844 }
11845
11846 /* COOKIE->rel describes a relocation against section SEC, which is
11847 a section we've decided to keep. Return the section that contains
11848 the relocation symbol, or NULL if no section contains it. */
11849
11850 asection *
11851 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11852 elf_gc_mark_hook_fn gc_mark_hook,
11853 struct elf_reloc_cookie *cookie)
11854 {
11855 unsigned long r_symndx;
11856 struct elf_link_hash_entry *h;
11857
11858 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11859 if (r_symndx == STN_UNDEF)
11860 return NULL;
11861
11862 if (r_symndx >= cookie->locsymcount
11863 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11864 {
11865 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11866 if (h == NULL)
11867 {
11868 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11869 sec->owner);
11870 return NULL;
11871 }
11872 while (h->root.type == bfd_link_hash_indirect
11873 || h->root.type == bfd_link_hash_warning)
11874 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11875 h->mark = 1;
11876 /* If this symbol is weak and there is a non-weak definition, we
11877 keep the non-weak definition because many backends put
11878 dynamic reloc info on the non-weak definition for code
11879 handling copy relocs. */
11880 if (h->u.weakdef != NULL)
11881 h->u.weakdef->mark = 1;
11882 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11883 }
11884
11885 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11886 &cookie->locsyms[r_symndx]);
11887 }
11888
11889 /* COOKIE->rel describes a relocation against section SEC, which is
11890 a section we've decided to keep. Mark the section that contains
11891 the relocation symbol. */
11892
11893 bfd_boolean
11894 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11895 asection *sec,
11896 elf_gc_mark_hook_fn gc_mark_hook,
11897 struct elf_reloc_cookie *cookie)
11898 {
11899 asection *rsec;
11900
11901 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11902 if (rsec && !rsec->gc_mark)
11903 {
11904 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11905 || (rsec->owner->flags & DYNAMIC) != 0)
11906 rsec->gc_mark = 1;
11907 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11908 return FALSE;
11909 }
11910 return TRUE;
11911 }
11912
11913 /* The mark phase of garbage collection. For a given section, mark
11914 it and any sections in this section's group, and all the sections
11915 which define symbols to which it refers. */
11916
11917 bfd_boolean
11918 _bfd_elf_gc_mark (struct bfd_link_info *info,
11919 asection *sec,
11920 elf_gc_mark_hook_fn gc_mark_hook)
11921 {
11922 bfd_boolean ret;
11923 asection *group_sec, *eh_frame;
11924
11925 sec->gc_mark = 1;
11926
11927 /* Mark all the sections in the group. */
11928 group_sec = elf_section_data (sec)->next_in_group;
11929 if (group_sec && !group_sec->gc_mark)
11930 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11931 return FALSE;
11932
11933 /* Look through the section relocs. */
11934 ret = TRUE;
11935 eh_frame = elf_eh_frame_section (sec->owner);
11936 if ((sec->flags & SEC_RELOC) != 0
11937 && sec->reloc_count > 0
11938 && sec != eh_frame)
11939 {
11940 struct elf_reloc_cookie cookie;
11941
11942 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11943 ret = FALSE;
11944 else
11945 {
11946 for (; cookie.rel < cookie.relend; cookie.rel++)
11947 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11948 {
11949 ret = FALSE;
11950 break;
11951 }
11952 fini_reloc_cookie_for_section (&cookie, sec);
11953 }
11954 }
11955
11956 if (ret && eh_frame && elf_fde_list (sec))
11957 {
11958 struct elf_reloc_cookie cookie;
11959
11960 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11961 ret = FALSE;
11962 else
11963 {
11964 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11965 gc_mark_hook, &cookie))
11966 ret = FALSE;
11967 fini_reloc_cookie_for_section (&cookie, eh_frame);
11968 }
11969 }
11970
11971 return ret;
11972 }
11973
11974 /* Scan and mark sections in a special or debug section group. */
11975
11976 static void
11977 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11978 {
11979 /* Point to first section of section group. */
11980 asection *ssec;
11981 /* Used to iterate the section group. */
11982 asection *msec;
11983
11984 bfd_boolean is_special_grp = TRUE;
11985 bfd_boolean is_debug_grp = TRUE;
11986
11987 /* First scan to see if group contains any section other than debug
11988 and special section. */
11989 ssec = msec = elf_next_in_group (grp);
11990 do
11991 {
11992 if ((msec->flags & SEC_DEBUGGING) == 0)
11993 is_debug_grp = FALSE;
11994
11995 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11996 is_special_grp = FALSE;
11997
11998 msec = elf_next_in_group (msec);
11999 }
12000 while (msec != ssec);
12001
12002 /* If this is a pure debug section group or pure special section group,
12003 keep all sections in this group. */
12004 if (is_debug_grp || is_special_grp)
12005 {
12006 do
12007 {
12008 msec->gc_mark = 1;
12009 msec = elf_next_in_group (msec);
12010 }
12011 while (msec != ssec);
12012 }
12013 }
12014
12015 /* Keep debug and special sections. */
12016
12017 bfd_boolean
12018 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12019 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12020 {
12021 bfd *ibfd;
12022
12023 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12024 {
12025 asection *isec;
12026 bfd_boolean some_kept;
12027 bfd_boolean debug_frag_seen;
12028
12029 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12030 continue;
12031
12032 /* Ensure all linker created sections are kept,
12033 see if any other section is already marked,
12034 and note if we have any fragmented debug sections. */
12035 debug_frag_seen = some_kept = FALSE;
12036 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12037 {
12038 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12039 isec->gc_mark = 1;
12040 else if (isec->gc_mark)
12041 some_kept = TRUE;
12042
12043 if (debug_frag_seen == FALSE
12044 && (isec->flags & SEC_DEBUGGING)
12045 && CONST_STRNEQ (isec->name, ".debug_line."))
12046 debug_frag_seen = TRUE;
12047 }
12048
12049 /* If no section in this file will be kept, then we can
12050 toss out the debug and special sections. */
12051 if (!some_kept)
12052 continue;
12053
12054 /* Keep debug and special sections like .comment when they are
12055 not part of a group. Also keep section groups that contain
12056 just debug sections or special sections. */
12057 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12058 {
12059 if ((isec->flags & SEC_GROUP) != 0)
12060 _bfd_elf_gc_mark_debug_special_section_group (isec);
12061 else if (((isec->flags & SEC_DEBUGGING) != 0
12062 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12063 && elf_next_in_group (isec) == NULL)
12064 isec->gc_mark = 1;
12065 }
12066
12067 if (! debug_frag_seen)
12068 continue;
12069
12070 /* Look for CODE sections which are going to be discarded,
12071 and find and discard any fragmented debug sections which
12072 are associated with that code section. */
12073 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12074 if ((isec->flags & SEC_CODE) != 0
12075 && isec->gc_mark == 0)
12076 {
12077 unsigned int ilen;
12078 asection *dsec;
12079
12080 ilen = strlen (isec->name);
12081
12082 /* Association is determined by the name of the debug section
12083 containing the name of the code section as a suffix. For
12084 example .debug_line.text.foo is a debug section associated
12085 with .text.foo. */
12086 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12087 {
12088 unsigned int dlen;
12089
12090 if (dsec->gc_mark == 0
12091 || (dsec->flags & SEC_DEBUGGING) == 0)
12092 continue;
12093
12094 dlen = strlen (dsec->name);
12095
12096 if (dlen > ilen
12097 && strncmp (dsec->name + (dlen - ilen),
12098 isec->name, ilen) == 0)
12099 {
12100 dsec->gc_mark = 0;
12101 break;
12102 }
12103 }
12104 }
12105 }
12106 return TRUE;
12107 }
12108
12109 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12110
12111 struct elf_gc_sweep_symbol_info
12112 {
12113 struct bfd_link_info *info;
12114 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12115 bfd_boolean);
12116 };
12117
12118 static bfd_boolean
12119 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12120 {
12121 if (!h->mark
12122 && (((h->root.type == bfd_link_hash_defined
12123 || h->root.type == bfd_link_hash_defweak)
12124 && !(h->def_regular
12125 && h->root.u.def.section->gc_mark))
12126 || h->root.type == bfd_link_hash_undefined
12127 || h->root.type == bfd_link_hash_undefweak))
12128 {
12129 struct elf_gc_sweep_symbol_info *inf;
12130
12131 inf = (struct elf_gc_sweep_symbol_info *) data;
12132 (*inf->hide_symbol) (inf->info, h, TRUE);
12133 h->def_regular = 0;
12134 h->ref_regular = 0;
12135 h->ref_regular_nonweak = 0;
12136 }
12137
12138 return TRUE;
12139 }
12140
12141 /* The sweep phase of garbage collection. Remove all garbage sections. */
12142
12143 typedef bfd_boolean (*gc_sweep_hook_fn)
12144 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12145
12146 static bfd_boolean
12147 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12148 {
12149 bfd *sub;
12150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12151 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12152 unsigned long section_sym_count;
12153 struct elf_gc_sweep_symbol_info sweep_info;
12154
12155 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12156 {
12157 asection *o;
12158
12159 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12160 continue;
12161
12162 for (o = sub->sections; o != NULL; o = o->next)
12163 {
12164 /* When any section in a section group is kept, we keep all
12165 sections in the section group. If the first member of
12166 the section group is excluded, we will also exclude the
12167 group section. */
12168 if (o->flags & SEC_GROUP)
12169 {
12170 asection *first = elf_next_in_group (o);
12171 o->gc_mark = first->gc_mark;
12172 }
12173
12174 if (o->gc_mark)
12175 continue;
12176
12177 /* Skip sweeping sections already excluded. */
12178 if (o->flags & SEC_EXCLUDE)
12179 continue;
12180
12181 /* Since this is early in the link process, it is simple
12182 to remove a section from the output. */
12183 o->flags |= SEC_EXCLUDE;
12184
12185 if (info->print_gc_sections && o->size != 0)
12186 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12187
12188 /* But we also have to update some of the relocation
12189 info we collected before. */
12190 if (gc_sweep_hook
12191 && (o->flags & SEC_RELOC) != 0
12192 && o->reloc_count != 0
12193 && !((info->strip == strip_all || info->strip == strip_debugger)
12194 && (o->flags & SEC_DEBUGGING) != 0)
12195 && !bfd_is_abs_section (o->output_section))
12196 {
12197 Elf_Internal_Rela *internal_relocs;
12198 bfd_boolean r;
12199
12200 internal_relocs
12201 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12202 info->keep_memory);
12203 if (internal_relocs == NULL)
12204 return FALSE;
12205
12206 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12207
12208 if (elf_section_data (o)->relocs != internal_relocs)
12209 free (internal_relocs);
12210
12211 if (!r)
12212 return FALSE;
12213 }
12214 }
12215 }
12216
12217 /* Remove the symbols that were in the swept sections from the dynamic
12218 symbol table. GCFIXME: Anyone know how to get them out of the
12219 static symbol table as well? */
12220 sweep_info.info = info;
12221 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12222 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12223 &sweep_info);
12224
12225 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12226 return TRUE;
12227 }
12228
12229 /* Propagate collected vtable information. This is called through
12230 elf_link_hash_traverse. */
12231
12232 static bfd_boolean
12233 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12234 {
12235 /* Those that are not vtables. */
12236 if (h->vtable == NULL || h->vtable->parent == NULL)
12237 return TRUE;
12238
12239 /* Those vtables that do not have parents, we cannot merge. */
12240 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12241 return TRUE;
12242
12243 /* If we've already been done, exit. */
12244 if (h->vtable->used && h->vtable->used[-1])
12245 return TRUE;
12246
12247 /* Make sure the parent's table is up to date. */
12248 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12249
12250 if (h->vtable->used == NULL)
12251 {
12252 /* None of this table's entries were referenced. Re-use the
12253 parent's table. */
12254 h->vtable->used = h->vtable->parent->vtable->used;
12255 h->vtable->size = h->vtable->parent->vtable->size;
12256 }
12257 else
12258 {
12259 size_t n;
12260 bfd_boolean *cu, *pu;
12261
12262 /* Or the parent's entries into ours. */
12263 cu = h->vtable->used;
12264 cu[-1] = TRUE;
12265 pu = h->vtable->parent->vtable->used;
12266 if (pu != NULL)
12267 {
12268 const struct elf_backend_data *bed;
12269 unsigned int log_file_align;
12270
12271 bed = get_elf_backend_data (h->root.u.def.section->owner);
12272 log_file_align = bed->s->log_file_align;
12273 n = h->vtable->parent->vtable->size >> log_file_align;
12274 while (n--)
12275 {
12276 if (*pu)
12277 *cu = TRUE;
12278 pu++;
12279 cu++;
12280 }
12281 }
12282 }
12283
12284 return TRUE;
12285 }
12286
12287 static bfd_boolean
12288 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12289 {
12290 asection *sec;
12291 bfd_vma hstart, hend;
12292 Elf_Internal_Rela *relstart, *relend, *rel;
12293 const struct elf_backend_data *bed;
12294 unsigned int log_file_align;
12295
12296 /* Take care of both those symbols that do not describe vtables as
12297 well as those that are not loaded. */
12298 if (h->vtable == NULL || h->vtable->parent == NULL)
12299 return TRUE;
12300
12301 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12302 || h->root.type == bfd_link_hash_defweak);
12303
12304 sec = h->root.u.def.section;
12305 hstart = h->root.u.def.value;
12306 hend = hstart + h->size;
12307
12308 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12309 if (!relstart)
12310 return *(bfd_boolean *) okp = FALSE;
12311 bed = get_elf_backend_data (sec->owner);
12312 log_file_align = bed->s->log_file_align;
12313
12314 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12315
12316 for (rel = relstart; rel < relend; ++rel)
12317 if (rel->r_offset >= hstart && rel->r_offset < hend)
12318 {
12319 /* If the entry is in use, do nothing. */
12320 if (h->vtable->used
12321 && (rel->r_offset - hstart) < h->vtable->size)
12322 {
12323 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12324 if (h->vtable->used[entry])
12325 continue;
12326 }
12327 /* Otherwise, kill it. */
12328 rel->r_offset = rel->r_info = rel->r_addend = 0;
12329 }
12330
12331 return TRUE;
12332 }
12333
12334 /* Mark sections containing dynamically referenced symbols. When
12335 building shared libraries, we must assume that any visible symbol is
12336 referenced. */
12337
12338 bfd_boolean
12339 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12340 {
12341 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12342 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12343
12344 if ((h->root.type == bfd_link_hash_defined
12345 || h->root.type == bfd_link_hash_defweak)
12346 && (h->ref_dynamic
12347 || (h->def_regular
12348 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12349 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12350 && (!info->executable
12351 || info->export_dynamic
12352 || (h->dynamic
12353 && d != NULL
12354 && (*d->match) (&d->head, NULL, h->root.root.string)))
12355 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12356 || !bfd_hide_sym_by_version (info->version_info,
12357 h->root.root.string)))))
12358 h->root.u.def.section->flags |= SEC_KEEP;
12359
12360 return TRUE;
12361 }
12362
12363 /* Keep all sections containing symbols undefined on the command-line,
12364 and the section containing the entry symbol. */
12365
12366 void
12367 _bfd_elf_gc_keep (struct bfd_link_info *info)
12368 {
12369 struct bfd_sym_chain *sym;
12370
12371 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12372 {
12373 struct elf_link_hash_entry *h;
12374
12375 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12376 FALSE, FALSE, FALSE);
12377
12378 if (h != NULL
12379 && (h->root.type == bfd_link_hash_defined
12380 || h->root.type == bfd_link_hash_defweak)
12381 && !bfd_is_abs_section (h->root.u.def.section))
12382 h->root.u.def.section->flags |= SEC_KEEP;
12383 }
12384 }
12385
12386 /* Do mark and sweep of unused sections. */
12387
12388 bfd_boolean
12389 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12390 {
12391 bfd_boolean ok = TRUE;
12392 bfd *sub;
12393 elf_gc_mark_hook_fn gc_mark_hook;
12394 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12395 struct elf_link_hash_table *htab;
12396
12397 if (!bed->can_gc_sections
12398 || !is_elf_hash_table (info->hash))
12399 {
12400 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12401 return TRUE;
12402 }
12403
12404 bed->gc_keep (info);
12405 htab = elf_hash_table (info);
12406
12407 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12408 at the .eh_frame section if we can mark the FDEs individually. */
12409 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12410 {
12411 asection *sec;
12412 struct elf_reloc_cookie cookie;
12413
12414 sec = bfd_get_section_by_name (sub, ".eh_frame");
12415 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12416 {
12417 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12418 if (elf_section_data (sec)->sec_info
12419 && (sec->flags & SEC_LINKER_CREATED) == 0)
12420 elf_eh_frame_section (sub) = sec;
12421 fini_reloc_cookie_for_section (&cookie, sec);
12422 sec = bfd_get_next_section_by_name (sec);
12423 }
12424 }
12425
12426 /* Apply transitive closure to the vtable entry usage info. */
12427 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12428 if (!ok)
12429 return FALSE;
12430
12431 /* Kill the vtable relocations that were not used. */
12432 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12433 if (!ok)
12434 return FALSE;
12435
12436 /* Mark dynamically referenced symbols. */
12437 if (htab->dynamic_sections_created)
12438 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12439
12440 /* Grovel through relocs to find out who stays ... */
12441 gc_mark_hook = bed->gc_mark_hook;
12442 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12443 {
12444 asection *o;
12445
12446 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12447 continue;
12448
12449 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12450 Also treat note sections as a root, if the section is not part
12451 of a group. */
12452 for (o = sub->sections; o != NULL; o = o->next)
12453 if (!o->gc_mark
12454 && (o->flags & SEC_EXCLUDE) == 0
12455 && ((o->flags & SEC_KEEP) != 0
12456 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12457 && elf_next_in_group (o) == NULL )))
12458 {
12459 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12460 return FALSE;
12461 }
12462 }
12463
12464 /* Allow the backend to mark additional target specific sections. */
12465 bed->gc_mark_extra_sections (info, gc_mark_hook);
12466
12467 /* ... and mark SEC_EXCLUDE for those that go. */
12468 return elf_gc_sweep (abfd, info);
12469 }
12470 \f
12471 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12472
12473 bfd_boolean
12474 bfd_elf_gc_record_vtinherit (bfd *abfd,
12475 asection *sec,
12476 struct elf_link_hash_entry *h,
12477 bfd_vma offset)
12478 {
12479 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12480 struct elf_link_hash_entry **search, *child;
12481 bfd_size_type extsymcount;
12482 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12483
12484 /* The sh_info field of the symtab header tells us where the
12485 external symbols start. We don't care about the local symbols at
12486 this point. */
12487 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12488 if (!elf_bad_symtab (abfd))
12489 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12490
12491 sym_hashes = elf_sym_hashes (abfd);
12492 sym_hashes_end = sym_hashes + extsymcount;
12493
12494 /* Hunt down the child symbol, which is in this section at the same
12495 offset as the relocation. */
12496 for (search = sym_hashes; search != sym_hashes_end; ++search)
12497 {
12498 if ((child = *search) != NULL
12499 && (child->root.type == bfd_link_hash_defined
12500 || child->root.type == bfd_link_hash_defweak)
12501 && child->root.u.def.section == sec
12502 && child->root.u.def.value == offset)
12503 goto win;
12504 }
12505
12506 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12507 abfd, sec, (unsigned long) offset);
12508 bfd_set_error (bfd_error_invalid_operation);
12509 return FALSE;
12510
12511 win:
12512 if (!child->vtable)
12513 {
12514 child->vtable = (struct elf_link_virtual_table_entry *)
12515 bfd_zalloc (abfd, sizeof (*child->vtable));
12516 if (!child->vtable)
12517 return FALSE;
12518 }
12519 if (!h)
12520 {
12521 /* This *should* only be the absolute section. It could potentially
12522 be that someone has defined a non-global vtable though, which
12523 would be bad. It isn't worth paging in the local symbols to be
12524 sure though; that case should simply be handled by the assembler. */
12525
12526 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12527 }
12528 else
12529 child->vtable->parent = h;
12530
12531 return TRUE;
12532 }
12533
12534 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12535
12536 bfd_boolean
12537 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12538 asection *sec ATTRIBUTE_UNUSED,
12539 struct elf_link_hash_entry *h,
12540 bfd_vma addend)
12541 {
12542 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12543 unsigned int log_file_align = bed->s->log_file_align;
12544
12545 if (!h->vtable)
12546 {
12547 h->vtable = (struct elf_link_virtual_table_entry *)
12548 bfd_zalloc (abfd, sizeof (*h->vtable));
12549 if (!h->vtable)
12550 return FALSE;
12551 }
12552
12553 if (addend >= h->vtable->size)
12554 {
12555 size_t size, bytes, file_align;
12556 bfd_boolean *ptr = h->vtable->used;
12557
12558 /* While the symbol is undefined, we have to be prepared to handle
12559 a zero size. */
12560 file_align = 1 << log_file_align;
12561 if (h->root.type == bfd_link_hash_undefined)
12562 size = addend + file_align;
12563 else
12564 {
12565 size = h->size;
12566 if (addend >= size)
12567 {
12568 /* Oops! We've got a reference past the defined end of
12569 the table. This is probably a bug -- shall we warn? */
12570 size = addend + file_align;
12571 }
12572 }
12573 size = (size + file_align - 1) & -file_align;
12574
12575 /* Allocate one extra entry for use as a "done" flag for the
12576 consolidation pass. */
12577 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12578
12579 if (ptr)
12580 {
12581 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12582
12583 if (ptr != NULL)
12584 {
12585 size_t oldbytes;
12586
12587 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12588 * sizeof (bfd_boolean));
12589 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12590 }
12591 }
12592 else
12593 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12594
12595 if (ptr == NULL)
12596 return FALSE;
12597
12598 /* And arrange for that done flag to be at index -1. */
12599 h->vtable->used = ptr + 1;
12600 h->vtable->size = size;
12601 }
12602
12603 h->vtable->used[addend >> log_file_align] = TRUE;
12604
12605 return TRUE;
12606 }
12607
12608 /* Map an ELF section header flag to its corresponding string. */
12609 typedef struct
12610 {
12611 char *flag_name;
12612 flagword flag_value;
12613 } elf_flags_to_name_table;
12614
12615 static elf_flags_to_name_table elf_flags_to_names [] =
12616 {
12617 { "SHF_WRITE", SHF_WRITE },
12618 { "SHF_ALLOC", SHF_ALLOC },
12619 { "SHF_EXECINSTR", SHF_EXECINSTR },
12620 { "SHF_MERGE", SHF_MERGE },
12621 { "SHF_STRINGS", SHF_STRINGS },
12622 { "SHF_INFO_LINK", SHF_INFO_LINK},
12623 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12624 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12625 { "SHF_GROUP", SHF_GROUP },
12626 { "SHF_TLS", SHF_TLS },
12627 { "SHF_MASKOS", SHF_MASKOS },
12628 { "SHF_EXCLUDE", SHF_EXCLUDE },
12629 };
12630
12631 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12632 bfd_boolean
12633 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12634 struct flag_info *flaginfo,
12635 asection *section)
12636 {
12637 const bfd_vma sh_flags = elf_section_flags (section);
12638
12639 if (!flaginfo->flags_initialized)
12640 {
12641 bfd *obfd = info->output_bfd;
12642 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12643 struct flag_info_list *tf = flaginfo->flag_list;
12644 int with_hex = 0;
12645 int without_hex = 0;
12646
12647 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12648 {
12649 unsigned i;
12650 flagword (*lookup) (char *);
12651
12652 lookup = bed->elf_backend_lookup_section_flags_hook;
12653 if (lookup != NULL)
12654 {
12655 flagword hexval = (*lookup) ((char *) tf->name);
12656
12657 if (hexval != 0)
12658 {
12659 if (tf->with == with_flags)
12660 with_hex |= hexval;
12661 else if (tf->with == without_flags)
12662 without_hex |= hexval;
12663 tf->valid = TRUE;
12664 continue;
12665 }
12666 }
12667 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12668 {
12669 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12670 {
12671 if (tf->with == with_flags)
12672 with_hex |= elf_flags_to_names[i].flag_value;
12673 else if (tf->with == without_flags)
12674 without_hex |= elf_flags_to_names[i].flag_value;
12675 tf->valid = TRUE;
12676 break;
12677 }
12678 }
12679 if (!tf->valid)
12680 {
12681 info->callbacks->einfo
12682 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12683 return FALSE;
12684 }
12685 }
12686 flaginfo->flags_initialized = TRUE;
12687 flaginfo->only_with_flags |= with_hex;
12688 flaginfo->not_with_flags |= without_hex;
12689 }
12690
12691 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12692 return FALSE;
12693
12694 if ((flaginfo->not_with_flags & sh_flags) != 0)
12695 return FALSE;
12696
12697 return TRUE;
12698 }
12699
12700 struct alloc_got_off_arg {
12701 bfd_vma gotoff;
12702 struct bfd_link_info *info;
12703 };
12704
12705 /* We need a special top-level link routine to convert got reference counts
12706 to real got offsets. */
12707
12708 static bfd_boolean
12709 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12710 {
12711 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12712 bfd *obfd = gofarg->info->output_bfd;
12713 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12714
12715 if (h->got.refcount > 0)
12716 {
12717 h->got.offset = gofarg->gotoff;
12718 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12719 }
12720 else
12721 h->got.offset = (bfd_vma) -1;
12722
12723 return TRUE;
12724 }
12725
12726 /* And an accompanying bit to work out final got entry offsets once
12727 we're done. Should be called from final_link. */
12728
12729 bfd_boolean
12730 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12731 struct bfd_link_info *info)
12732 {
12733 bfd *i;
12734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12735 bfd_vma gotoff;
12736 struct alloc_got_off_arg gofarg;
12737
12738 BFD_ASSERT (abfd == info->output_bfd);
12739
12740 if (! is_elf_hash_table (info->hash))
12741 return FALSE;
12742
12743 /* The GOT offset is relative to the .got section, but the GOT header is
12744 put into the .got.plt section, if the backend uses it. */
12745 if (bed->want_got_plt)
12746 gotoff = 0;
12747 else
12748 gotoff = bed->got_header_size;
12749
12750 /* Do the local .got entries first. */
12751 for (i = info->input_bfds; i; i = i->link.next)
12752 {
12753 bfd_signed_vma *local_got;
12754 bfd_size_type j, locsymcount;
12755 Elf_Internal_Shdr *symtab_hdr;
12756
12757 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12758 continue;
12759
12760 local_got = elf_local_got_refcounts (i);
12761 if (!local_got)
12762 continue;
12763
12764 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12765 if (elf_bad_symtab (i))
12766 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12767 else
12768 locsymcount = symtab_hdr->sh_info;
12769
12770 for (j = 0; j < locsymcount; ++j)
12771 {
12772 if (local_got[j] > 0)
12773 {
12774 local_got[j] = gotoff;
12775 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12776 }
12777 else
12778 local_got[j] = (bfd_vma) -1;
12779 }
12780 }
12781
12782 /* Then the global .got entries. .plt refcounts are handled by
12783 adjust_dynamic_symbol */
12784 gofarg.gotoff = gotoff;
12785 gofarg.info = info;
12786 elf_link_hash_traverse (elf_hash_table (info),
12787 elf_gc_allocate_got_offsets,
12788 &gofarg);
12789 return TRUE;
12790 }
12791
12792 /* Many folk need no more in the way of final link than this, once
12793 got entry reference counting is enabled. */
12794
12795 bfd_boolean
12796 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12797 {
12798 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12799 return FALSE;
12800
12801 /* Invoke the regular ELF backend linker to do all the work. */
12802 return bfd_elf_final_link (abfd, info);
12803 }
12804
12805 bfd_boolean
12806 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12807 {
12808 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12809
12810 if (rcookie->bad_symtab)
12811 rcookie->rel = rcookie->rels;
12812
12813 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12814 {
12815 unsigned long r_symndx;
12816
12817 if (! rcookie->bad_symtab)
12818 if (rcookie->rel->r_offset > offset)
12819 return FALSE;
12820 if (rcookie->rel->r_offset != offset)
12821 continue;
12822
12823 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12824 if (r_symndx == STN_UNDEF)
12825 return TRUE;
12826
12827 if (r_symndx >= rcookie->locsymcount
12828 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12829 {
12830 struct elf_link_hash_entry *h;
12831
12832 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12833
12834 while (h->root.type == bfd_link_hash_indirect
12835 || h->root.type == bfd_link_hash_warning)
12836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12837
12838 if ((h->root.type == bfd_link_hash_defined
12839 || h->root.type == bfd_link_hash_defweak)
12840 && (h->root.u.def.section->owner != rcookie->abfd
12841 || h->root.u.def.section->kept_section != NULL
12842 || discarded_section (h->root.u.def.section)))
12843 return TRUE;
12844 }
12845 else
12846 {
12847 /* It's not a relocation against a global symbol,
12848 but it could be a relocation against a local
12849 symbol for a discarded section. */
12850 asection *isec;
12851 Elf_Internal_Sym *isym;
12852
12853 /* Need to: get the symbol; get the section. */
12854 isym = &rcookie->locsyms[r_symndx];
12855 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12856 if (isec != NULL
12857 && (isec->kept_section != NULL
12858 || discarded_section (isec)))
12859 return TRUE;
12860 }
12861 return FALSE;
12862 }
12863 return FALSE;
12864 }
12865
12866 /* Discard unneeded references to discarded sections.
12867 Returns -1 on error, 1 if any section's size was changed, 0 if
12868 nothing changed. This function assumes that the relocations are in
12869 sorted order, which is true for all known assemblers. */
12870
12871 int
12872 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12873 {
12874 struct elf_reloc_cookie cookie;
12875 asection *o;
12876 bfd *abfd;
12877 int changed = 0;
12878
12879 if (info->traditional_format
12880 || !is_elf_hash_table (info->hash))
12881 return 0;
12882
12883 o = bfd_get_section_by_name (output_bfd, ".stab");
12884 if (o != NULL)
12885 {
12886 asection *i;
12887
12888 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12889 {
12890 if (i->size == 0
12891 || i->reloc_count == 0
12892 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12893 continue;
12894
12895 abfd = i->owner;
12896 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12897 continue;
12898
12899 if (!init_reloc_cookie_for_section (&cookie, info, i))
12900 return -1;
12901
12902 if (_bfd_discard_section_stabs (abfd, i,
12903 elf_section_data (i)->sec_info,
12904 bfd_elf_reloc_symbol_deleted_p,
12905 &cookie))
12906 changed = 1;
12907
12908 fini_reloc_cookie_for_section (&cookie, i);
12909 }
12910 }
12911
12912 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12913 if (o != NULL)
12914 {
12915 asection *i;
12916
12917 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12918 {
12919 if (i->size == 0)
12920 continue;
12921
12922 abfd = i->owner;
12923 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12924 continue;
12925
12926 if (!init_reloc_cookie_for_section (&cookie, info, i))
12927 return -1;
12928
12929 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12930 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12931 bfd_elf_reloc_symbol_deleted_p,
12932 &cookie))
12933 changed = 1;
12934
12935 fini_reloc_cookie_for_section (&cookie, i);
12936 }
12937 }
12938
12939 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12940 {
12941 const struct elf_backend_data *bed;
12942
12943 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12944 continue;
12945
12946 bed = get_elf_backend_data (abfd);
12947
12948 if (bed->elf_backend_discard_info != NULL)
12949 {
12950 if (!init_reloc_cookie (&cookie, info, abfd))
12951 return -1;
12952
12953 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12954 changed = 1;
12955
12956 fini_reloc_cookie (&cookie, abfd);
12957 }
12958 }
12959
12960 if (info->eh_frame_hdr
12961 && !info->relocatable
12962 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12963 changed = 1;
12964
12965 return changed;
12966 }
12967
12968 bfd_boolean
12969 _bfd_elf_section_already_linked (bfd *abfd,
12970 asection *sec,
12971 struct bfd_link_info *info)
12972 {
12973 flagword flags;
12974 const char *name, *key;
12975 struct bfd_section_already_linked *l;
12976 struct bfd_section_already_linked_hash_entry *already_linked_list;
12977
12978 if (sec->output_section == bfd_abs_section_ptr)
12979 return FALSE;
12980
12981 flags = sec->flags;
12982
12983 /* Return if it isn't a linkonce section. A comdat group section
12984 also has SEC_LINK_ONCE set. */
12985 if ((flags & SEC_LINK_ONCE) == 0)
12986 return FALSE;
12987
12988 /* Don't put group member sections on our list of already linked
12989 sections. They are handled as a group via their group section. */
12990 if (elf_sec_group (sec) != NULL)
12991 return FALSE;
12992
12993 /* For a SHT_GROUP section, use the group signature as the key. */
12994 name = sec->name;
12995 if ((flags & SEC_GROUP) != 0
12996 && elf_next_in_group (sec) != NULL
12997 && elf_group_name (elf_next_in_group (sec)) != NULL)
12998 key = elf_group_name (elf_next_in_group (sec));
12999 else
13000 {
13001 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13002 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13003 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13004 key++;
13005 else
13006 /* Must be a user linkonce section that doesn't follow gcc's
13007 naming convention. In this case we won't be matching
13008 single member groups. */
13009 key = name;
13010 }
13011
13012 already_linked_list = bfd_section_already_linked_table_lookup (key);
13013
13014 for (l = already_linked_list->entry; l != NULL; l = l->next)
13015 {
13016 /* We may have 2 different types of sections on the list: group
13017 sections with a signature of <key> (<key> is some string),
13018 and linkonce sections named .gnu.linkonce.<type>.<key>.
13019 Match like sections. LTO plugin sections are an exception.
13020 They are always named .gnu.linkonce.t.<key> and match either
13021 type of section. */
13022 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13023 && ((flags & SEC_GROUP) != 0
13024 || strcmp (name, l->sec->name) == 0))
13025 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13026 {
13027 /* The section has already been linked. See if we should
13028 issue a warning. */
13029 if (!_bfd_handle_already_linked (sec, l, info))
13030 return FALSE;
13031
13032 if (flags & SEC_GROUP)
13033 {
13034 asection *first = elf_next_in_group (sec);
13035 asection *s = first;
13036
13037 while (s != NULL)
13038 {
13039 s->output_section = bfd_abs_section_ptr;
13040 /* Record which group discards it. */
13041 s->kept_section = l->sec;
13042 s = elf_next_in_group (s);
13043 /* These lists are circular. */
13044 if (s == first)
13045 break;
13046 }
13047 }
13048
13049 return TRUE;
13050 }
13051 }
13052
13053 /* A single member comdat group section may be discarded by a
13054 linkonce section and vice versa. */
13055 if ((flags & SEC_GROUP) != 0)
13056 {
13057 asection *first = elf_next_in_group (sec);
13058
13059 if (first != NULL && elf_next_in_group (first) == first)
13060 /* Check this single member group against linkonce sections. */
13061 for (l = already_linked_list->entry; l != NULL; l = l->next)
13062 if ((l->sec->flags & SEC_GROUP) == 0
13063 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13064 {
13065 first->output_section = bfd_abs_section_ptr;
13066 first->kept_section = l->sec;
13067 sec->output_section = bfd_abs_section_ptr;
13068 break;
13069 }
13070 }
13071 else
13072 /* Check this linkonce section against single member groups. */
13073 for (l = already_linked_list->entry; l != NULL; l = l->next)
13074 if (l->sec->flags & SEC_GROUP)
13075 {
13076 asection *first = elf_next_in_group (l->sec);
13077
13078 if (first != NULL
13079 && elf_next_in_group (first) == first
13080 && bfd_elf_match_symbols_in_sections (first, sec, info))
13081 {
13082 sec->output_section = bfd_abs_section_ptr;
13083 sec->kept_section = first;
13084 break;
13085 }
13086 }
13087
13088 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13089 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13090 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13091 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13092 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13093 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13094 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13095 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13096 The reverse order cannot happen as there is never a bfd with only the
13097 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13098 matter as here were are looking only for cross-bfd sections. */
13099
13100 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13101 for (l = already_linked_list->entry; l != NULL; l = l->next)
13102 if ((l->sec->flags & SEC_GROUP) == 0
13103 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13104 {
13105 if (abfd != l->sec->owner)
13106 sec->output_section = bfd_abs_section_ptr;
13107 break;
13108 }
13109
13110 /* This is the first section with this name. Record it. */
13111 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13112 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13113 return sec->output_section == bfd_abs_section_ptr;
13114 }
13115
13116 bfd_boolean
13117 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13118 {
13119 return sym->st_shndx == SHN_COMMON;
13120 }
13121
13122 unsigned int
13123 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13124 {
13125 return SHN_COMMON;
13126 }
13127
13128 asection *
13129 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13130 {
13131 return bfd_com_section_ptr;
13132 }
13133
13134 bfd_vma
13135 _bfd_elf_default_got_elt_size (bfd *abfd,
13136 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13137 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13138 bfd *ibfd ATTRIBUTE_UNUSED,
13139 unsigned long symndx ATTRIBUTE_UNUSED)
13140 {
13141 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13142 return bed->s->arch_size / 8;
13143 }
13144
13145 /* Routines to support the creation of dynamic relocs. */
13146
13147 /* Returns the name of the dynamic reloc section associated with SEC. */
13148
13149 static const char *
13150 get_dynamic_reloc_section_name (bfd * abfd,
13151 asection * sec,
13152 bfd_boolean is_rela)
13153 {
13154 char *name;
13155 const char *old_name = bfd_get_section_name (NULL, sec);
13156 const char *prefix = is_rela ? ".rela" : ".rel";
13157
13158 if (old_name == NULL)
13159 return NULL;
13160
13161 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13162 sprintf (name, "%s%s", prefix, old_name);
13163
13164 return name;
13165 }
13166
13167 /* Returns the dynamic reloc section associated with SEC.
13168 If necessary compute the name of the dynamic reloc section based
13169 on SEC's name (looked up in ABFD's string table) and the setting
13170 of IS_RELA. */
13171
13172 asection *
13173 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13174 asection * sec,
13175 bfd_boolean is_rela)
13176 {
13177 asection * reloc_sec = elf_section_data (sec)->sreloc;
13178
13179 if (reloc_sec == NULL)
13180 {
13181 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13182
13183 if (name != NULL)
13184 {
13185 reloc_sec = bfd_get_linker_section (abfd, name);
13186
13187 if (reloc_sec != NULL)
13188 elf_section_data (sec)->sreloc = reloc_sec;
13189 }
13190 }
13191
13192 return reloc_sec;
13193 }
13194
13195 /* Returns the dynamic reloc section associated with SEC. If the
13196 section does not exist it is created and attached to the DYNOBJ
13197 bfd and stored in the SRELOC field of SEC's elf_section_data
13198 structure.
13199
13200 ALIGNMENT is the alignment for the newly created section and
13201 IS_RELA defines whether the name should be .rela.<SEC's name>
13202 or .rel.<SEC's name>. The section name is looked up in the
13203 string table associated with ABFD. */
13204
13205 asection *
13206 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13207 bfd * dynobj,
13208 unsigned int alignment,
13209 bfd * abfd,
13210 bfd_boolean is_rela)
13211 {
13212 asection * reloc_sec = elf_section_data (sec)->sreloc;
13213
13214 if (reloc_sec == NULL)
13215 {
13216 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13217
13218 if (name == NULL)
13219 return NULL;
13220
13221 reloc_sec = bfd_get_linker_section (dynobj, name);
13222
13223 if (reloc_sec == NULL)
13224 {
13225 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13226 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13227 if ((sec->flags & SEC_ALLOC) != 0)
13228 flags |= SEC_ALLOC | SEC_LOAD;
13229
13230 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13231 if (reloc_sec != NULL)
13232 {
13233 /* _bfd_elf_get_sec_type_attr chooses a section type by
13234 name. Override as it may be wrong, eg. for a user
13235 section named "auto" we'll get ".relauto" which is
13236 seen to be a .rela section. */
13237 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13238 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13239 reloc_sec = NULL;
13240 }
13241 }
13242
13243 elf_section_data (sec)->sreloc = reloc_sec;
13244 }
13245
13246 return reloc_sec;
13247 }
13248
13249 /* Copy the ELF symbol type and other attributes for a linker script
13250 assignment from HSRC to HDEST. Generally this should be treated as
13251 if we found a strong non-dynamic definition for HDEST (except that
13252 ld ignores multiple definition errors). */
13253 void
13254 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13255 struct bfd_link_hash_entry *hdest,
13256 struct bfd_link_hash_entry *hsrc)
13257 {
13258 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13259 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13260 Elf_Internal_Sym isym;
13261
13262 ehdest->type = ehsrc->type;
13263 ehdest->target_internal = ehsrc->target_internal;
13264
13265 isym.st_other = ehsrc->other;
13266 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13267 }
13268
13269 /* Append a RELA relocation REL to section S in BFD. */
13270
13271 void
13272 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13273 {
13274 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13275 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13276 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13277 bed->s->swap_reloca_out (abfd, rel, loc);
13278 }
13279
13280 /* Append a REL relocation REL to section S in BFD. */
13281
13282 void
13283 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13284 {
13285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13286 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13287 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13288 bed->s->swap_reloc_out (abfd, rel, loc);
13289 }
This page took 0.444176 seconds and 4 git commands to generate.