Skip gc-sections if relocation is incompatible
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764 asection *ip;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
783
784 /* There shouldn't be section relative relocations
785 against any other section. */
786 default:
787 return TRUE;
788 }
789 }
790
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
795 symbols. */
796
797 static unsigned long
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
801 {
802 unsigned long dynsymcount = 0;
803
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
805 {
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
807 asection *p;
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
813 else
814 elf_section_data (p)->dynindx = 0;
815 }
816 *section_sym_count = dynsymcount;
817
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
820 &dynsymcount);
821
822 if (elf_hash_table (info)->dynlocal)
823 {
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
827 }
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
831 &dynsymcount);
832
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
837 ++dynsymcount;
838
839 elf_hash_table (info)->dynsymcount = dynsymcount;
840 return dynsymcount;
841 }
842
843 /* Merge st_other field. */
844
845 static void
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym,
848 bfd_boolean definition, bfd_boolean dynamic)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
851
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
856 dynamic);
857
858 if (!dynamic)
859 {
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
862
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
867 }
868 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
869 h->protected_def = 1;
870 }
871
872 /* This function is called when we want to merge a new symbol with an
873 existing symbol. It handles the various cases which arise when we
874 find a definition in a dynamic object, or when there is already a
875 definition in a dynamic object. The new symbol is described by
876 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
877 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
878 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
879 of an old common symbol. We set OVERRIDE if the old symbol is
880 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
881 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
882 to change. By OK to change, we mean that we shouldn't warn if the
883 type or size does change. */
884
885 static bfd_boolean
886 _bfd_elf_merge_symbol (bfd *abfd,
887 struct bfd_link_info *info,
888 const char *name,
889 Elf_Internal_Sym *sym,
890 asection **psec,
891 bfd_vma *pvalue,
892 struct elf_link_hash_entry **sym_hash,
893 bfd **poldbfd,
894 bfd_boolean *pold_weak,
895 unsigned int *pold_alignment,
896 bfd_boolean *skip,
897 bfd_boolean *override,
898 bfd_boolean *type_change_ok,
899 bfd_boolean *size_change_ok)
900 {
901 asection *sec, *oldsec;
902 struct elf_link_hash_entry *h;
903 struct elf_link_hash_entry *hi;
904 struct elf_link_hash_entry *flip;
905 int bind;
906 bfd *oldbfd;
907 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
908 bfd_boolean newweak, oldweak, newfunc, oldfunc;
909 const struct elf_backend_data *bed;
910
911 *skip = FALSE;
912 *override = FALSE;
913
914 sec = *psec;
915 bind = ELF_ST_BIND (sym->st_info);
916
917 if (! bfd_is_und_section (sec))
918 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
919 else
920 h = ((struct elf_link_hash_entry *)
921 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
922 if (h == NULL)
923 return FALSE;
924 *sym_hash = h;
925
926 bed = get_elf_backend_data (abfd);
927
928 /* For merging, we only care about real symbols. But we need to make
929 sure that indirect symbol dynamic flags are updated. */
930 hi = h;
931 while (h->root.type == bfd_link_hash_indirect
932 || h->root.type == bfd_link_hash_warning)
933 h = (struct elf_link_hash_entry *) h->root.u.i.link;
934
935 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
936 existing symbol. */
937
938 oldbfd = NULL;
939 oldsec = NULL;
940 switch (h->root.type)
941 {
942 default:
943 break;
944
945 case bfd_link_hash_undefined:
946 case bfd_link_hash_undefweak:
947 oldbfd = h->root.u.undef.abfd;
948 break;
949
950 case bfd_link_hash_defined:
951 case bfd_link_hash_defweak:
952 oldbfd = h->root.u.def.section->owner;
953 oldsec = h->root.u.def.section;
954 break;
955
956 case bfd_link_hash_common:
957 oldbfd = h->root.u.c.p->section->owner;
958 oldsec = h->root.u.c.p->section;
959 if (pold_alignment)
960 *pold_alignment = h->root.u.c.p->alignment_power;
961 break;
962 }
963 if (poldbfd && *poldbfd == NULL)
964 *poldbfd = oldbfd;
965
966 /* Differentiate strong and weak symbols. */
967 newweak = bind == STB_WEAK;
968 oldweak = (h->root.type == bfd_link_hash_defweak
969 || h->root.type == bfd_link_hash_undefweak);
970 if (pold_weak)
971 *pold_weak = oldweak;
972
973 /* This code is for coping with dynamic objects, and is only useful
974 if we are doing an ELF link. */
975 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
976 return TRUE;
977
978 /* We have to check it for every instance since the first few may be
979 references and not all compilers emit symbol type for undefined
980 symbols. */
981 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
982
983 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
984 respectively, is from a dynamic object. */
985
986 newdyn = (abfd->flags & DYNAMIC) != 0;
987
988 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
989 syms and defined syms in dynamic libraries respectively.
990 ref_dynamic on the other hand can be set for a symbol defined in
991 a dynamic library, and def_dynamic may not be set; When the
992 definition in a dynamic lib is overridden by a definition in the
993 executable use of the symbol in the dynamic lib becomes a
994 reference to the executable symbol. */
995 if (newdyn)
996 {
997 if (bfd_is_und_section (sec))
998 {
999 if (bind != STB_WEAK)
1000 {
1001 h->ref_dynamic_nonweak = 1;
1002 hi->ref_dynamic_nonweak = 1;
1003 }
1004 }
1005 else
1006 {
1007 h->dynamic_def = 1;
1008 hi->dynamic_def = 1;
1009 }
1010 }
1011
1012 /* If we just created the symbol, mark it as being an ELF symbol.
1013 Other than that, there is nothing to do--there is no merge issue
1014 with a newly defined symbol--so we just return. */
1015
1016 if (h->root.type == bfd_link_hash_new)
1017 {
1018 h->non_elf = 0;
1019 return TRUE;
1020 }
1021
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1033
1034 olddyn = FALSE;
1035 if (oldbfd != NULL)
1036 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1037 else if (oldsec != NULL)
1038 {
1039 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1040 indices used by MIPS ELF. */
1041 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1042 }
1043
1044 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1045 respectively, appear to be a definition rather than reference. */
1046
1047 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048
1049 olddef = (h->root.type != bfd_link_hash_undefined
1050 && h->root.type != bfd_link_hash_undefweak
1051 && h->root.type != bfd_link_hash_common);
1052
1053 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1054 respectively, appear to be a function. */
1055
1056 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1057 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058
1059 oldfunc = (h->type != STT_NOTYPE
1060 && bed->is_function_type (h->type));
1061
1062 /* When we try to create a default indirect symbol from the dynamic
1063 definition with the default version, we skip it if its type and
1064 the type of existing regular definition mismatch. */
1065 if (pold_alignment == NULL
1066 && newdyn
1067 && newdef
1068 && !olddyn
1069 && (((olddef || h->root.type == bfd_link_hash_common)
1070 && ELF_ST_TYPE (sym->st_info) != h->type
1071 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1072 && h->type != STT_NOTYPE
1073 && !(newfunc && oldfunc))
1074 || (olddef
1075 && ((h->type == STT_GNU_IFUNC)
1076 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbols. We don't check undefined symbols introduced
1083 by "ld -u" which have no type (and oldbfd NULL), and we don't
1084 check symbols from plugins because they also have no type. */
1085 if (oldbfd != NULL
1086 && (oldbfd->flags & BFD_PLUGIN) == 0
1087 && (abfd->flags & BFD_PLUGIN) == 0
1088 && ELF_ST_TYPE (sym->st_info) != h->type
1089 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1090 {
1091 bfd *ntbfd, *tbfd;
1092 bfd_boolean ntdef, tdef;
1093 asection *ntsec, *tsec;
1094
1095 if (h->type == STT_TLS)
1096 {
1097 ntbfd = abfd;
1098 ntsec = sec;
1099 ntdef = newdef;
1100 tbfd = oldbfd;
1101 tsec = oldsec;
1102 tdef = olddef;
1103 }
1104 else
1105 {
1106 ntbfd = oldbfd;
1107 ntsec = oldsec;
1108 ntdef = olddef;
1109 tbfd = abfd;
1110 tsec = sec;
1111 tdef = newdef;
1112 }
1113
1114 if (tdef && ntdef)
1115 (*_bfd_error_handler)
1116 (_("%s: TLS definition in %B section %A "
1117 "mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B "
1122 "mismatches non-TLS reference in %B"),
1123 tbfd, ntbfd, h->root.root.string);
1124 else if (tdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS definition in %B section %A "
1127 "mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B "
1132 "mismatches non-TLS definition in %B section %A"),
1133 tbfd, ntbfd, ntsec, h->root.root.string);
1134
1135 bfd_set_error (bfd_error_bad_value);
1136 return FALSE;
1137 }
1138
1139 /* If the old symbol has non-default visibility, we ignore the new
1140 definition from a dynamic object. */
1141 if (newdyn
1142 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1143 && !bfd_is_und_section (sec))
1144 {
1145 *skip = TRUE;
1146 /* Make sure this symbol is dynamic. */
1147 h->ref_dynamic = 1;
1148 hi->ref_dynamic = 1;
1149 /* A protected symbol has external availability. Make sure it is
1150 recorded as dynamic.
1151
1152 FIXME: Should we check type and size for protected symbol? */
1153 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1154 return bfd_elf_link_record_dynamic_symbol (info, h);
1155 else
1156 return TRUE;
1157 }
1158 else if (!newdyn
1159 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1160 && h->def_dynamic)
1161 {
1162 /* If the new symbol with non-default visibility comes from a
1163 relocatable file and the old definition comes from a dynamic
1164 object, we remove the old definition. */
1165 if (hi->root.type == bfd_link_hash_indirect)
1166 {
1167 /* Handle the case where the old dynamic definition is
1168 default versioned. We need to copy the symbol info from
1169 the symbol with default version to the normal one if it
1170 was referenced before. */
1171 if (h->ref_regular)
1172 {
1173 hi->root.type = h->root.type;
1174 h->root.type = bfd_link_hash_indirect;
1175 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1176
1177 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1178 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1179 {
1180 /* If the new symbol is hidden or internal, completely undo
1181 any dynamic link state. */
1182 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1183 h->forced_local = 0;
1184 h->ref_dynamic = 0;
1185 }
1186 else
1187 h->ref_dynamic = 1;
1188
1189 h->def_dynamic = 0;
1190 /* FIXME: Should we check type and size for protected symbol? */
1191 h->size = 0;
1192 h->type = 0;
1193
1194 h = hi;
1195 }
1196 else
1197 h = hi;
1198 }
1199
1200 /* If the old symbol was undefined before, then it will still be
1201 on the undefs list. If the new symbol is undefined or
1202 common, we can't make it bfd_link_hash_new here, because new
1203 undefined or common symbols will be added to the undefs list
1204 by _bfd_generic_link_add_one_symbol. Symbols may not be
1205 added twice to the undefs list. Also, if the new symbol is
1206 undefweak then we don't want to lose the strong undef. */
1207 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1208 {
1209 h->root.type = bfd_link_hash_undefined;
1210 h->root.u.undef.abfd = abfd;
1211 }
1212 else
1213 {
1214 h->root.type = bfd_link_hash_new;
1215 h->root.u.undef.abfd = NULL;
1216 }
1217
1218 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1219 {
1220 /* If the new symbol is hidden or internal, completely undo
1221 any dynamic link state. */
1222 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1223 h->forced_local = 0;
1224 h->ref_dynamic = 0;
1225 }
1226 else
1227 h->ref_dynamic = 1;
1228 h->def_dynamic = 0;
1229 /* FIXME: Should we check type and size for protected symbol? */
1230 h->size = 0;
1231 h->type = 0;
1232 return TRUE;
1233 }
1234
1235 /* If a new weak symbol definition comes from a regular file and the
1236 old symbol comes from a dynamic library, we treat the new one as
1237 strong. Similarly, an old weak symbol definition from a regular
1238 file is treated as strong when the new symbol comes from a dynamic
1239 library. Further, an old weak symbol from a dynamic library is
1240 treated as strong if the new symbol is from a dynamic library.
1241 This reflects the way glibc's ld.so works.
1242
1243 Do this before setting *type_change_ok or *size_change_ok so that
1244 we warn properly when dynamic library symbols are overridden. */
1245
1246 if (newdef && !newdyn && olddyn)
1247 newweak = FALSE;
1248 if (olddef && newdyn)
1249 oldweak = FALSE;
1250
1251 /* Allow changes between different types of function symbol. */
1252 if (newfunc && oldfunc)
1253 *type_change_ok = TRUE;
1254
1255 /* It's OK to change the type if either the existing symbol or the
1256 new symbol is weak. A type change is also OK if the old symbol
1257 is undefined and the new symbol is defined. */
1258
1259 if (oldweak
1260 || newweak
1261 || (newdef
1262 && h->root.type == bfd_link_hash_undefined))
1263 *type_change_ok = TRUE;
1264
1265 /* It's OK to change the size if either the existing symbol or the
1266 new symbol is weak, or if the old symbol is undefined. */
1267
1268 if (*type_change_ok
1269 || h->root.type == bfd_link_hash_undefined)
1270 *size_change_ok = TRUE;
1271
1272 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1273 symbol, respectively, appears to be a common symbol in a dynamic
1274 object. If a symbol appears in an uninitialized section, and is
1275 not weak, and is not a function, then it may be a common symbol
1276 which was resolved when the dynamic object was created. We want
1277 to treat such symbols specially, because they raise special
1278 considerations when setting the symbol size: if the symbol
1279 appears as a common symbol in a regular object, and the size in
1280 the regular object is larger, we must make sure that we use the
1281 larger size. This problematic case can always be avoided in C,
1282 but it must be handled correctly when using Fortran shared
1283 libraries.
1284
1285 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1286 likewise for OLDDYNCOMMON and OLDDEF.
1287
1288 Note that this test is just a heuristic, and that it is quite
1289 possible to have an uninitialized symbol in a shared object which
1290 is really a definition, rather than a common symbol. This could
1291 lead to some minor confusion when the symbol really is a common
1292 symbol in some regular object. However, I think it will be
1293 harmless. */
1294
1295 if (newdyn
1296 && newdef
1297 && !newweak
1298 && (sec->flags & SEC_ALLOC) != 0
1299 && (sec->flags & SEC_LOAD) == 0
1300 && sym->st_size > 0
1301 && !newfunc)
1302 newdyncommon = TRUE;
1303 else
1304 newdyncommon = FALSE;
1305
1306 if (olddyn
1307 && olddef
1308 && h->root.type == bfd_link_hash_defined
1309 && h->def_dynamic
1310 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1311 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1312 && h->size > 0
1313 && !oldfunc)
1314 olddyncommon = TRUE;
1315 else
1316 olddyncommon = FALSE;
1317
1318 /* We now know everything about the old and new symbols. We ask the
1319 backend to check if we can merge them. */
1320 if (bed->merge_symbol != NULL)
1321 {
1322 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1323 return FALSE;
1324 sec = *psec;
1325 }
1326
1327 /* If both the old and the new symbols look like common symbols in a
1328 dynamic object, set the size of the symbol to the larger of the
1329 two. */
1330
1331 if (olddyncommon
1332 && newdyncommon
1333 && sym->st_size != h->size)
1334 {
1335 /* Since we think we have two common symbols, issue a multiple
1336 common warning if desired. Note that we only warn if the
1337 size is different. If the size is the same, we simply let
1338 the old symbol override the new one as normally happens with
1339 symbols defined in dynamic objects. */
1340
1341 if (! ((*info->callbacks->multiple_common)
1342 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1343 return FALSE;
1344
1345 if (sym->st_size > h->size)
1346 h->size = sym->st_size;
1347
1348 *size_change_ok = TRUE;
1349 }
1350
1351 /* If we are looking at a dynamic object, and we have found a
1352 definition, we need to see if the symbol was already defined by
1353 some other object. If so, we want to use the existing
1354 definition, and we do not want to report a multiple symbol
1355 definition error; we do this by clobbering *PSEC to be
1356 bfd_und_section_ptr.
1357
1358 We treat a common symbol as a definition if the symbol in the
1359 shared library is a function, since common symbols always
1360 represent variables; this can cause confusion in principle, but
1361 any such confusion would seem to indicate an erroneous program or
1362 shared library. We also permit a common symbol in a regular
1363 object to override a weak symbol in a shared object. */
1364
1365 if (newdyn
1366 && newdef
1367 && (olddef
1368 || (h->root.type == bfd_link_hash_common
1369 && (newweak || newfunc))))
1370 {
1371 *override = TRUE;
1372 newdef = FALSE;
1373 newdyncommon = FALSE;
1374
1375 *psec = sec = bfd_und_section_ptr;
1376 *size_change_ok = TRUE;
1377
1378 /* If we get here when the old symbol is a common symbol, then
1379 we are explicitly letting it override a weak symbol or
1380 function in a dynamic object, and we don't want to warn about
1381 a type change. If the old symbol is a defined symbol, a type
1382 change warning may still be appropriate. */
1383
1384 if (h->root.type == bfd_link_hash_common)
1385 *type_change_ok = TRUE;
1386 }
1387
1388 /* Handle the special case of an old common symbol merging with a
1389 new symbol which looks like a common symbol in a shared object.
1390 We change *PSEC and *PVALUE to make the new symbol look like a
1391 common symbol, and let _bfd_generic_link_add_one_symbol do the
1392 right thing. */
1393
1394 if (newdyncommon
1395 && h->root.type == bfd_link_hash_common)
1396 {
1397 *override = TRUE;
1398 newdef = FALSE;
1399 newdyncommon = FALSE;
1400 *pvalue = sym->st_size;
1401 *psec = sec = bed->common_section (oldsec);
1402 *size_change_ok = TRUE;
1403 }
1404
1405 /* Skip weak definitions of symbols that are already defined. */
1406 if (newdef && olddef && newweak)
1407 {
1408 /* Don't skip new non-IR weak syms. */
1409 if (!(oldbfd != NULL
1410 && (oldbfd->flags & BFD_PLUGIN) != 0
1411 && (abfd->flags & BFD_PLUGIN) == 0))
1412 {
1413 newdef = FALSE;
1414 *skip = TRUE;
1415 }
1416
1417 /* Merge st_other. If the symbol already has a dynamic index,
1418 but visibility says it should not be visible, turn it into a
1419 local symbol. */
1420 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1421 if (h->dynindx != -1)
1422 switch (ELF_ST_VISIBILITY (h->other))
1423 {
1424 case STV_INTERNAL:
1425 case STV_HIDDEN:
1426 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1427 break;
1428 }
1429 }
1430
1431 /* If the old symbol is from a dynamic object, and the new symbol is
1432 a definition which is not from a dynamic object, then the new
1433 symbol overrides the old symbol. Symbols from regular files
1434 always take precedence over symbols from dynamic objects, even if
1435 they are defined after the dynamic object in the link.
1436
1437 As above, we again permit a common symbol in a regular object to
1438 override a definition in a shared object if the shared object
1439 symbol is a function or is weak. */
1440
1441 flip = NULL;
1442 if (!newdyn
1443 && (newdef
1444 || (bfd_is_com_section (sec)
1445 && (oldweak || oldfunc)))
1446 && olddyn
1447 && olddef
1448 && h->def_dynamic)
1449 {
1450 /* Change the hash table entry to undefined, and let
1451 _bfd_generic_link_add_one_symbol do the right thing with the
1452 new definition. */
1453
1454 h->root.type = bfd_link_hash_undefined;
1455 h->root.u.undef.abfd = h->root.u.def.section->owner;
1456 *size_change_ok = TRUE;
1457
1458 olddef = FALSE;
1459 olddyncommon = FALSE;
1460
1461 /* We again permit a type change when a common symbol may be
1462 overriding a function. */
1463
1464 if (bfd_is_com_section (sec))
1465 {
1466 if (oldfunc)
1467 {
1468 /* If a common symbol overrides a function, make sure
1469 that it isn't defined dynamically nor has type
1470 function. */
1471 h->def_dynamic = 0;
1472 h->type = STT_NOTYPE;
1473 }
1474 *type_change_ok = TRUE;
1475 }
1476
1477 if (hi->root.type == bfd_link_hash_indirect)
1478 flip = hi;
1479 else
1480 /* This union may have been set to be non-NULL when this symbol
1481 was seen in a dynamic object. We must force the union to be
1482 NULL, so that it is correct for a regular symbol. */
1483 h->verinfo.vertree = NULL;
1484 }
1485
1486 /* Handle the special case of a new common symbol merging with an
1487 old symbol that looks like it might be a common symbol defined in
1488 a shared object. Note that we have already handled the case in
1489 which a new common symbol should simply override the definition
1490 in the shared library. */
1491
1492 if (! newdyn
1493 && bfd_is_com_section (sec)
1494 && olddyncommon)
1495 {
1496 /* It would be best if we could set the hash table entry to a
1497 common symbol, but we don't know what to use for the section
1498 or the alignment. */
1499 if (! ((*info->callbacks->multiple_common)
1500 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1501 return FALSE;
1502
1503 /* If the presumed common symbol in the dynamic object is
1504 larger, pretend that the new symbol has its size. */
1505
1506 if (h->size > *pvalue)
1507 *pvalue = h->size;
1508
1509 /* We need to remember the alignment required by the symbol
1510 in the dynamic object. */
1511 BFD_ASSERT (pold_alignment);
1512 *pold_alignment = h->root.u.def.section->alignment_power;
1513
1514 olddef = FALSE;
1515 olddyncommon = FALSE;
1516
1517 h->root.type = bfd_link_hash_undefined;
1518 h->root.u.undef.abfd = h->root.u.def.section->owner;
1519
1520 *size_change_ok = TRUE;
1521 *type_change_ok = TRUE;
1522
1523 if (hi->root.type == bfd_link_hash_indirect)
1524 flip = hi;
1525 else
1526 h->verinfo.vertree = NULL;
1527 }
1528
1529 if (flip != NULL)
1530 {
1531 /* Handle the case where we had a versioned symbol in a dynamic
1532 library and now find a definition in a normal object. In this
1533 case, we make the versioned symbol point to the normal one. */
1534 flip->root.type = h->root.type;
1535 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1536 h->root.type = bfd_link_hash_indirect;
1537 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1538 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1539 if (h->def_dynamic)
1540 {
1541 h->def_dynamic = 0;
1542 flip->ref_dynamic = 1;
1543 }
1544 }
1545
1546 return TRUE;
1547 }
1548
1549 /* This function is called to create an indirect symbol from the
1550 default for the symbol with the default version if needed. The
1551 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1552 set DYNSYM if the new indirect symbol is dynamic. */
1553
1554 static bfd_boolean
1555 _bfd_elf_add_default_symbol (bfd *abfd,
1556 struct bfd_link_info *info,
1557 struct elf_link_hash_entry *h,
1558 const char *name,
1559 Elf_Internal_Sym *sym,
1560 asection *sec,
1561 bfd_vma value,
1562 bfd **poldbfd,
1563 bfd_boolean *dynsym)
1564 {
1565 bfd_boolean type_change_ok;
1566 bfd_boolean size_change_ok;
1567 bfd_boolean skip;
1568 char *shortname;
1569 struct elf_link_hash_entry *hi;
1570 struct bfd_link_hash_entry *bh;
1571 const struct elf_backend_data *bed;
1572 bfd_boolean collect;
1573 bfd_boolean dynamic;
1574 bfd_boolean override;
1575 char *p;
1576 size_t len, shortlen;
1577 asection *tmp_sec;
1578
1579 /* If this symbol has a version, and it is the default version, we
1580 create an indirect symbol from the default name to the fully
1581 decorated name. This will cause external references which do not
1582 specify a version to be bound to this version of the symbol. */
1583 p = strchr (name, ELF_VER_CHR);
1584 if (p == NULL || p[1] != ELF_VER_CHR)
1585 return TRUE;
1586
1587 bed = get_elf_backend_data (abfd);
1588 collect = bed->collect;
1589 dynamic = (abfd->flags & DYNAMIC) != 0;
1590
1591 shortlen = p - name;
1592 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1593 if (shortname == NULL)
1594 return FALSE;
1595 memcpy (shortname, name, shortlen);
1596 shortname[shortlen] = '\0';
1597
1598 /* We are going to create a new symbol. Merge it with any existing
1599 symbol with this name. For the purposes of the merge, act as
1600 though we were defining the symbol we just defined, although we
1601 actually going to define an indirect symbol. */
1602 type_change_ok = FALSE;
1603 size_change_ok = FALSE;
1604 tmp_sec = sec;
1605 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1606 &hi, poldbfd, NULL, NULL, &skip, &override,
1607 &type_change_ok, &size_change_ok))
1608 return FALSE;
1609
1610 if (skip)
1611 goto nondefault;
1612
1613 if (! override)
1614 {
1615 bh = &hi->root;
1616 if (! (_bfd_generic_link_add_one_symbol
1617 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1618 0, name, FALSE, collect, &bh)))
1619 return FALSE;
1620 hi = (struct elf_link_hash_entry *) bh;
1621 }
1622 else
1623 {
1624 /* In this case the symbol named SHORTNAME is overriding the
1625 indirect symbol we want to add. We were planning on making
1626 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1627 is the name without a version. NAME is the fully versioned
1628 name, and it is the default version.
1629
1630 Overriding means that we already saw a definition for the
1631 symbol SHORTNAME in a regular object, and it is overriding
1632 the symbol defined in the dynamic object.
1633
1634 When this happens, we actually want to change NAME, the
1635 symbol we just added, to refer to SHORTNAME. This will cause
1636 references to NAME in the shared object to become references
1637 to SHORTNAME in the regular object. This is what we expect
1638 when we override a function in a shared object: that the
1639 references in the shared object will be mapped to the
1640 definition in the regular object. */
1641
1642 while (hi->root.type == bfd_link_hash_indirect
1643 || hi->root.type == bfd_link_hash_warning)
1644 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1645
1646 h->root.type = bfd_link_hash_indirect;
1647 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1648 if (h->def_dynamic)
1649 {
1650 h->def_dynamic = 0;
1651 hi->ref_dynamic = 1;
1652 if (hi->ref_regular
1653 || hi->def_regular)
1654 {
1655 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1656 return FALSE;
1657 }
1658 }
1659
1660 /* Now set HI to H, so that the following code will set the
1661 other fields correctly. */
1662 hi = h;
1663 }
1664
1665 /* Check if HI is a warning symbol. */
1666 if (hi->root.type == bfd_link_hash_warning)
1667 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1668
1669 /* If there is a duplicate definition somewhere, then HI may not
1670 point to an indirect symbol. We will have reported an error to
1671 the user in that case. */
1672
1673 if (hi->root.type == bfd_link_hash_indirect)
1674 {
1675 struct elf_link_hash_entry *ht;
1676
1677 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1679
1680 /* A reference to the SHORTNAME symbol from a dynamic library
1681 will be satisfied by the versioned symbol at runtime. In
1682 effect, we have a reference to the versioned symbol. */
1683 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1684 hi->dynamic_def |= ht->dynamic_def;
1685
1686 /* See if the new flags lead us to realize that the symbol must
1687 be dynamic. */
1688 if (! *dynsym)
1689 {
1690 if (! dynamic)
1691 {
1692 if (! info->executable
1693 || hi->def_dynamic
1694 || hi->ref_dynamic)
1695 *dynsym = TRUE;
1696 }
1697 else
1698 {
1699 if (hi->ref_regular)
1700 *dynsym = TRUE;
1701 }
1702 }
1703 }
1704
1705 /* We also need to define an indirection from the nondefault version
1706 of the symbol. */
1707
1708 nondefault:
1709 len = strlen (name);
1710 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1711 if (shortname == NULL)
1712 return FALSE;
1713 memcpy (shortname, name, shortlen);
1714 memcpy (shortname + shortlen, p + 1, len - shortlen);
1715
1716 /* Once again, merge with any existing symbol. */
1717 type_change_ok = FALSE;
1718 size_change_ok = FALSE;
1719 tmp_sec = sec;
1720 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1721 &hi, poldbfd, NULL, NULL, &skip, &override,
1722 &type_change_ok, &size_change_ok))
1723 return FALSE;
1724
1725 if (skip)
1726 return TRUE;
1727
1728 if (override)
1729 {
1730 /* Here SHORTNAME is a versioned name, so we don't expect to see
1731 the type of override we do in the case above unless it is
1732 overridden by a versioned definition. */
1733 if (hi->root.type != bfd_link_hash_defined
1734 && hi->root.type != bfd_link_hash_defweak)
1735 (*_bfd_error_handler)
1736 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1737 abfd, shortname);
1738 }
1739 else
1740 {
1741 bh = &hi->root;
1742 if (! (_bfd_generic_link_add_one_symbol
1743 (info, abfd, shortname, BSF_INDIRECT,
1744 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1745 return FALSE;
1746 hi = (struct elf_link_hash_entry *) bh;
1747
1748 /* If there is a duplicate definition somewhere, then HI may not
1749 point to an indirect symbol. We will have reported an error
1750 to the user in that case. */
1751
1752 if (hi->root.type == bfd_link_hash_indirect)
1753 {
1754 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1755 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1756 hi->dynamic_def |= h->dynamic_def;
1757
1758 /* See if the new flags lead us to realize that the symbol
1759 must be dynamic. */
1760 if (! *dynsym)
1761 {
1762 if (! dynamic)
1763 {
1764 if (! info->executable
1765 || hi->ref_dynamic)
1766 *dynsym = TRUE;
1767 }
1768 else
1769 {
1770 if (hi->ref_regular)
1771 *dynsym = TRUE;
1772 }
1773 }
1774 }
1775 }
1776
1777 return TRUE;
1778 }
1779 \f
1780 /* This routine is used to export all defined symbols into the dynamic
1781 symbol table. It is called via elf_link_hash_traverse. */
1782
1783 static bfd_boolean
1784 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1785 {
1786 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1787
1788 /* Ignore indirect symbols. These are added by the versioning code. */
1789 if (h->root.type == bfd_link_hash_indirect)
1790 return TRUE;
1791
1792 /* Ignore this if we won't export it. */
1793 if (!eif->info->export_dynamic && !h->dynamic)
1794 return TRUE;
1795
1796 if (h->dynindx == -1
1797 && (h->def_regular || h->ref_regular)
1798 && ! bfd_hide_sym_by_version (eif->info->version_info,
1799 h->root.root.string))
1800 {
1801 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1802 {
1803 eif->failed = TRUE;
1804 return FALSE;
1805 }
1806 }
1807
1808 return TRUE;
1809 }
1810 \f
1811 /* Look through the symbols which are defined in other shared
1812 libraries and referenced here. Update the list of version
1813 dependencies. This will be put into the .gnu.version_r section.
1814 This function is called via elf_link_hash_traverse. */
1815
1816 static bfd_boolean
1817 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1818 void *data)
1819 {
1820 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1821 Elf_Internal_Verneed *t;
1822 Elf_Internal_Vernaux *a;
1823 bfd_size_type amt;
1824
1825 /* We only care about symbols defined in shared objects with version
1826 information. */
1827 if (!h->def_dynamic
1828 || h->def_regular
1829 || h->dynindx == -1
1830 || h->verinfo.verdef == NULL
1831 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1832 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1833 return TRUE;
1834
1835 /* See if we already know about this version. */
1836 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1837 t != NULL;
1838 t = t->vn_nextref)
1839 {
1840 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1841 continue;
1842
1843 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1844 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1845 return TRUE;
1846
1847 break;
1848 }
1849
1850 /* This is a new version. Add it to tree we are building. */
1851
1852 if (t == NULL)
1853 {
1854 amt = sizeof *t;
1855 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1856 if (t == NULL)
1857 {
1858 rinfo->failed = TRUE;
1859 return FALSE;
1860 }
1861
1862 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1863 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1864 elf_tdata (rinfo->info->output_bfd)->verref = t;
1865 }
1866
1867 amt = sizeof *a;
1868 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1869 if (a == NULL)
1870 {
1871 rinfo->failed = TRUE;
1872 return FALSE;
1873 }
1874
1875 /* Note that we are copying a string pointer here, and testing it
1876 above. If bfd_elf_string_from_elf_section is ever changed to
1877 discard the string data when low in memory, this will have to be
1878 fixed. */
1879 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1880
1881 a->vna_flags = h->verinfo.verdef->vd_flags;
1882 a->vna_nextptr = t->vn_auxptr;
1883
1884 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1885 ++rinfo->vers;
1886
1887 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1888
1889 t->vn_auxptr = a;
1890
1891 return TRUE;
1892 }
1893
1894 /* Figure out appropriate versions for all the symbols. We may not
1895 have the version number script until we have read all of the input
1896 files, so until that point we don't know which symbols should be
1897 local. This function is called via elf_link_hash_traverse. */
1898
1899 static bfd_boolean
1900 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1901 {
1902 struct elf_info_failed *sinfo;
1903 struct bfd_link_info *info;
1904 const struct elf_backend_data *bed;
1905 struct elf_info_failed eif;
1906 char *p;
1907 bfd_size_type amt;
1908
1909 sinfo = (struct elf_info_failed *) data;
1910 info = sinfo->info;
1911
1912 /* Fix the symbol flags. */
1913 eif.failed = FALSE;
1914 eif.info = info;
1915 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1916 {
1917 if (eif.failed)
1918 sinfo->failed = TRUE;
1919 return FALSE;
1920 }
1921
1922 /* We only need version numbers for symbols defined in regular
1923 objects. */
1924 if (!h->def_regular)
1925 return TRUE;
1926
1927 bed = get_elf_backend_data (info->output_bfd);
1928 p = strchr (h->root.root.string, ELF_VER_CHR);
1929 if (p != NULL && h->verinfo.vertree == NULL)
1930 {
1931 struct bfd_elf_version_tree *t;
1932 bfd_boolean hidden;
1933
1934 hidden = TRUE;
1935
1936 /* There are two consecutive ELF_VER_CHR characters if this is
1937 not a hidden symbol. */
1938 ++p;
1939 if (*p == ELF_VER_CHR)
1940 {
1941 hidden = FALSE;
1942 ++p;
1943 }
1944
1945 /* If there is no version string, we can just return out. */
1946 if (*p == '\0')
1947 {
1948 if (hidden)
1949 h->hidden = 1;
1950 return TRUE;
1951 }
1952
1953 /* Look for the version. If we find it, it is no longer weak. */
1954 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1955 {
1956 if (strcmp (t->name, p) == 0)
1957 {
1958 size_t len;
1959 char *alc;
1960 struct bfd_elf_version_expr *d;
1961
1962 len = p - h->root.root.string;
1963 alc = (char *) bfd_malloc (len);
1964 if (alc == NULL)
1965 {
1966 sinfo->failed = TRUE;
1967 return FALSE;
1968 }
1969 memcpy (alc, h->root.root.string, len - 1);
1970 alc[len - 1] = '\0';
1971 if (alc[len - 2] == ELF_VER_CHR)
1972 alc[len - 2] = '\0';
1973
1974 h->verinfo.vertree = t;
1975 t->used = TRUE;
1976 d = NULL;
1977
1978 if (t->globals.list != NULL)
1979 d = (*t->match) (&t->globals, NULL, alc);
1980
1981 /* See if there is anything to force this symbol to
1982 local scope. */
1983 if (d == NULL && t->locals.list != NULL)
1984 {
1985 d = (*t->match) (&t->locals, NULL, alc);
1986 if (d != NULL
1987 && h->dynindx != -1
1988 && ! info->export_dynamic)
1989 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1990 }
1991
1992 free (alc);
1993 break;
1994 }
1995 }
1996
1997 /* If we are building an application, we need to create a
1998 version node for this version. */
1999 if (t == NULL && info->executable)
2000 {
2001 struct bfd_elf_version_tree **pp;
2002 int version_index;
2003
2004 /* If we aren't going to export this symbol, we don't need
2005 to worry about it. */
2006 if (h->dynindx == -1)
2007 return TRUE;
2008
2009 amt = sizeof *t;
2010 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2011 if (t == NULL)
2012 {
2013 sinfo->failed = TRUE;
2014 return FALSE;
2015 }
2016
2017 t->name = p;
2018 t->name_indx = (unsigned int) -1;
2019 t->used = TRUE;
2020
2021 version_index = 1;
2022 /* Don't count anonymous version tag. */
2023 if (sinfo->info->version_info != NULL
2024 && sinfo->info->version_info->vernum == 0)
2025 version_index = 0;
2026 for (pp = &sinfo->info->version_info;
2027 *pp != NULL;
2028 pp = &(*pp)->next)
2029 ++version_index;
2030 t->vernum = version_index;
2031
2032 *pp = t;
2033
2034 h->verinfo.vertree = t;
2035 }
2036 else if (t == NULL)
2037 {
2038 /* We could not find the version for a symbol when
2039 generating a shared archive. Return an error. */
2040 (*_bfd_error_handler)
2041 (_("%B: version node not found for symbol %s"),
2042 info->output_bfd, h->root.root.string);
2043 bfd_set_error (bfd_error_bad_value);
2044 sinfo->failed = TRUE;
2045 return FALSE;
2046 }
2047
2048 if (hidden)
2049 h->hidden = 1;
2050 }
2051
2052 /* If we don't have a version for this symbol, see if we can find
2053 something. */
2054 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2055 {
2056 bfd_boolean hide;
2057
2058 h->verinfo.vertree
2059 = bfd_find_version_for_sym (sinfo->info->version_info,
2060 h->root.root.string, &hide);
2061 if (h->verinfo.vertree != NULL && hide)
2062 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = (const bfd_byte *) external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if (nsyms > 0)
2128 {
2129 if ((size_t) r_symndx >= nsyms)
2130 {
2131 (*_bfd_error_handler)
2132 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2133 " for offset 0x%lx in section `%A'"),
2134 abfd, sec,
2135 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2136 bfd_set_error (bfd_error_bad_value);
2137 return FALSE;
2138 }
2139 }
2140 else if (r_symndx != STN_UNDEF)
2141 {
2142 (*_bfd_error_handler)
2143 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2144 " when the object file has no symbol table"),
2145 abfd, sec,
2146 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2147 bfd_set_error (bfd_error_bad_value);
2148 return FALSE;
2149 }
2150 irela += bed->s->int_rels_per_ext_rel;
2151 erela += shdr->sh_entsize;
2152 }
2153
2154 return TRUE;
2155 }
2156
2157 /* Read and swap the relocs for a section O. They may have been
2158 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2159 not NULL, they are used as buffers to read into. They are known to
2160 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2161 the return value is allocated using either malloc or bfd_alloc,
2162 according to the KEEP_MEMORY argument. If O has two relocation
2163 sections (both REL and RELA relocations), then the REL_HDR
2164 relocations will appear first in INTERNAL_RELOCS, followed by the
2165 RELA_HDR relocations. */
2166
2167 Elf_Internal_Rela *
2168 _bfd_elf_link_read_relocs (bfd *abfd,
2169 asection *o,
2170 void *external_relocs,
2171 Elf_Internal_Rela *internal_relocs,
2172 bfd_boolean keep_memory)
2173 {
2174 void *alloc1 = NULL;
2175 Elf_Internal_Rela *alloc2 = NULL;
2176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2177 struct bfd_elf_section_data *esdo = elf_section_data (o);
2178 Elf_Internal_Rela *internal_rela_relocs;
2179
2180 if (esdo->relocs != NULL)
2181 return esdo->relocs;
2182
2183 if (o->reloc_count == 0)
2184 return NULL;
2185
2186 if (internal_relocs == NULL)
2187 {
2188 bfd_size_type size;
2189
2190 size = o->reloc_count;
2191 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2192 if (keep_memory)
2193 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2194 else
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2196 if (internal_relocs == NULL)
2197 goto error_return;
2198 }
2199
2200 if (external_relocs == NULL)
2201 {
2202 bfd_size_type size = 0;
2203
2204 if (esdo->rel.hdr)
2205 size += esdo->rel.hdr->sh_size;
2206 if (esdo->rela.hdr)
2207 size += esdo->rela.hdr->sh_size;
2208
2209 alloc1 = bfd_malloc (size);
2210 if (alloc1 == NULL)
2211 goto error_return;
2212 external_relocs = alloc1;
2213 }
2214
2215 internal_rela_relocs = internal_relocs;
2216 if (esdo->rel.hdr)
2217 {
2218 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2219 external_relocs,
2220 internal_relocs))
2221 goto error_return;
2222 external_relocs = (((bfd_byte *) external_relocs)
2223 + esdo->rel.hdr->sh_size);
2224 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2225 * bed->s->int_rels_per_ext_rel);
2226 }
2227
2228 if (esdo->rela.hdr
2229 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2230 external_relocs,
2231 internal_rela_relocs)))
2232 goto error_return;
2233
2234 /* Cache the results for next time, if we can. */
2235 if (keep_memory)
2236 esdo->relocs = internal_relocs;
2237
2238 if (alloc1 != NULL)
2239 free (alloc1);
2240
2241 /* Don't free alloc2, since if it was allocated we are passing it
2242 back (under the name of internal_relocs). */
2243
2244 return internal_relocs;
2245
2246 error_return:
2247 if (alloc1 != NULL)
2248 free (alloc1);
2249 if (alloc2 != NULL)
2250 {
2251 if (keep_memory)
2252 bfd_release (abfd, alloc2);
2253 else
2254 free (alloc2);
2255 }
2256 return NULL;
2257 }
2258
2259 /* Compute the size of, and allocate space for, REL_HDR which is the
2260 section header for a section containing relocations for O. */
2261
2262 static bfd_boolean
2263 _bfd_elf_link_size_reloc_section (bfd *abfd,
2264 struct bfd_elf_section_reloc_data *reldata)
2265 {
2266 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2267
2268 /* That allows us to calculate the size of the section. */
2269 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2270
2271 /* The contents field must last into write_object_contents, so we
2272 allocate it with bfd_alloc rather than malloc. Also since we
2273 cannot be sure that the contents will actually be filled in,
2274 we zero the allocated space. */
2275 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2276 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2277 return FALSE;
2278
2279 if (reldata->hashes == NULL && reldata->count)
2280 {
2281 struct elf_link_hash_entry **p;
2282
2283 p = ((struct elf_link_hash_entry **)
2284 bfd_zmalloc (reldata->count * sizeof (*p)));
2285 if (p == NULL)
2286 return FALSE;
2287
2288 reldata->hashes = p;
2289 }
2290
2291 return TRUE;
2292 }
2293
2294 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2295 originated from the section given by INPUT_REL_HDR) to the
2296 OUTPUT_BFD. */
2297
2298 bfd_boolean
2299 _bfd_elf_link_output_relocs (bfd *output_bfd,
2300 asection *input_section,
2301 Elf_Internal_Shdr *input_rel_hdr,
2302 Elf_Internal_Rela *internal_relocs,
2303 struct elf_link_hash_entry **rel_hash
2304 ATTRIBUTE_UNUSED)
2305 {
2306 Elf_Internal_Rela *irela;
2307 Elf_Internal_Rela *irelaend;
2308 bfd_byte *erel;
2309 struct bfd_elf_section_reloc_data *output_reldata;
2310 asection *output_section;
2311 const struct elf_backend_data *bed;
2312 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2313 struct bfd_elf_section_data *esdo;
2314
2315 output_section = input_section->output_section;
2316
2317 bed = get_elf_backend_data (output_bfd);
2318 esdo = elf_section_data (output_section);
2319 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2320 {
2321 output_reldata = &esdo->rel;
2322 swap_out = bed->s->swap_reloc_out;
2323 }
2324 else if (esdo->rela.hdr
2325 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2326 {
2327 output_reldata = &esdo->rela;
2328 swap_out = bed->s->swap_reloca_out;
2329 }
2330 else
2331 {
2332 (*_bfd_error_handler)
2333 (_("%B: relocation size mismatch in %B section %A"),
2334 output_bfd, input_section->owner, input_section);
2335 bfd_set_error (bfd_error_wrong_format);
2336 return FALSE;
2337 }
2338
2339 erel = output_reldata->hdr->contents;
2340 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2341 irela = internal_relocs;
2342 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2343 * bed->s->int_rels_per_ext_rel);
2344 while (irela < irelaend)
2345 {
2346 (*swap_out) (output_bfd, irela, erel);
2347 irela += bed->s->int_rels_per_ext_rel;
2348 erel += input_rel_hdr->sh_entsize;
2349 }
2350
2351 /* Bump the counter, so that we know where to add the next set of
2352 relocations. */
2353 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2354
2355 return TRUE;
2356 }
2357 \f
2358 /* Make weak undefined symbols in PIE dynamic. */
2359
2360 bfd_boolean
2361 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2362 struct elf_link_hash_entry *h)
2363 {
2364 if (info->pie
2365 && h->dynindx == -1
2366 && h->root.type == bfd_link_hash_undefweak)
2367 return bfd_elf_link_record_dynamic_symbol (info, h);
2368
2369 return TRUE;
2370 }
2371
2372 /* Fix up the flags for a symbol. This handles various cases which
2373 can only be fixed after all the input files are seen. This is
2374 currently called by both adjust_dynamic_symbol and
2375 assign_sym_version, which is unnecessary but perhaps more robust in
2376 the face of future changes. */
2377
2378 static bfd_boolean
2379 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2380 struct elf_info_failed *eif)
2381 {
2382 const struct elf_backend_data *bed;
2383
2384 /* If this symbol was mentioned in a non-ELF file, try to set
2385 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2386 permit a non-ELF file to correctly refer to a symbol defined in
2387 an ELF dynamic object. */
2388 if (h->non_elf)
2389 {
2390 while (h->root.type == bfd_link_hash_indirect)
2391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2392
2393 if (h->root.type != bfd_link_hash_defined
2394 && h->root.type != bfd_link_hash_defweak)
2395 {
2396 h->ref_regular = 1;
2397 h->ref_regular_nonweak = 1;
2398 }
2399 else
2400 {
2401 if (h->root.u.def.section->owner != NULL
2402 && (bfd_get_flavour (h->root.u.def.section->owner)
2403 == bfd_target_elf_flavour))
2404 {
2405 h->ref_regular = 1;
2406 h->ref_regular_nonweak = 1;
2407 }
2408 else
2409 h->def_regular = 1;
2410 }
2411
2412 if (h->dynindx == -1
2413 && (h->def_dynamic
2414 || h->ref_dynamic))
2415 {
2416 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2417 {
2418 eif->failed = TRUE;
2419 return FALSE;
2420 }
2421 }
2422 }
2423 else
2424 {
2425 /* Unfortunately, NON_ELF is only correct if the symbol
2426 was first seen in a non-ELF file. Fortunately, if the symbol
2427 was first seen in an ELF file, we're probably OK unless the
2428 symbol was defined in a non-ELF file. Catch that case here.
2429 FIXME: We're still in trouble if the symbol was first seen in
2430 a dynamic object, and then later in a non-ELF regular object. */
2431 if ((h->root.type == bfd_link_hash_defined
2432 || h->root.type == bfd_link_hash_defweak)
2433 && !h->def_regular
2434 && (h->root.u.def.section->owner != NULL
2435 ? (bfd_get_flavour (h->root.u.def.section->owner)
2436 != bfd_target_elf_flavour)
2437 : (bfd_is_abs_section (h->root.u.def.section)
2438 && !h->def_dynamic)))
2439 h->def_regular = 1;
2440 }
2441
2442 /* Backend specific symbol fixup. */
2443 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2444 if (bed->elf_backend_fixup_symbol
2445 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2446 return FALSE;
2447
2448 /* If this is a final link, and the symbol was defined as a common
2449 symbol in a regular object file, and there was no definition in
2450 any dynamic object, then the linker will have allocated space for
2451 the symbol in a common section but the DEF_REGULAR
2452 flag will not have been set. */
2453 if (h->root.type == bfd_link_hash_defined
2454 && !h->def_regular
2455 && h->ref_regular
2456 && !h->def_dynamic
2457 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2458 h->def_regular = 1;
2459
2460 /* If -Bsymbolic was used (which means to bind references to global
2461 symbols to the definition within the shared object), and this
2462 symbol was defined in a regular object, then it actually doesn't
2463 need a PLT entry. Likewise, if the symbol has non-default
2464 visibility. If the symbol has hidden or internal visibility, we
2465 will force it local. */
2466 if (h->needs_plt
2467 && eif->info->shared
2468 && is_elf_hash_table (eif->info->hash)
2469 && (SYMBOLIC_BIND (eif->info, h)
2470 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2471 && h->def_regular)
2472 {
2473 bfd_boolean force_local;
2474
2475 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2476 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2477 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2478 }
2479
2480 /* If a weak undefined symbol has non-default visibility, we also
2481 hide it from the dynamic linker. */
2482 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2483 && h->root.type == bfd_link_hash_undefweak)
2484 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2485
2486 /* If this is a weak defined symbol in a dynamic object, and we know
2487 the real definition in the dynamic object, copy interesting flags
2488 over to the real definition. */
2489 if (h->u.weakdef != NULL)
2490 {
2491 /* If the real definition is defined by a regular object file,
2492 don't do anything special. See the longer description in
2493 _bfd_elf_adjust_dynamic_symbol, below. */
2494 if (h->u.weakdef->def_regular)
2495 h->u.weakdef = NULL;
2496 else
2497 {
2498 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2499
2500 while (h->root.type == bfd_link_hash_indirect)
2501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2502
2503 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2504 || h->root.type == bfd_link_hash_defweak);
2505 BFD_ASSERT (weakdef->def_dynamic);
2506 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2507 || weakdef->root.type == bfd_link_hash_defweak);
2508 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2509 }
2510 }
2511
2512 return TRUE;
2513 }
2514
2515 /* Make the backend pick a good value for a dynamic symbol. This is
2516 called via elf_link_hash_traverse, and also calls itself
2517 recursively. */
2518
2519 static bfd_boolean
2520 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2521 {
2522 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2523 bfd *dynobj;
2524 const struct elf_backend_data *bed;
2525
2526 if (! is_elf_hash_table (eif->info->hash))
2527 return FALSE;
2528
2529 /* Ignore indirect symbols. These are added by the versioning code. */
2530 if (h->root.type == bfd_link_hash_indirect)
2531 return TRUE;
2532
2533 /* Fix the symbol flags. */
2534 if (! _bfd_elf_fix_symbol_flags (h, eif))
2535 return FALSE;
2536
2537 /* If this symbol does not require a PLT entry, and it is not
2538 defined by a dynamic object, or is not referenced by a regular
2539 object, ignore it. We do have to handle a weak defined symbol,
2540 even if no regular object refers to it, if we decided to add it
2541 to the dynamic symbol table. FIXME: Do we normally need to worry
2542 about symbols which are defined by one dynamic object and
2543 referenced by another one? */
2544 if (!h->needs_plt
2545 && h->type != STT_GNU_IFUNC
2546 && (h->def_regular
2547 || !h->def_dynamic
2548 || (!h->ref_regular
2549 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2550 {
2551 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2552 return TRUE;
2553 }
2554
2555 /* If we've already adjusted this symbol, don't do it again. This
2556 can happen via a recursive call. */
2557 if (h->dynamic_adjusted)
2558 return TRUE;
2559
2560 /* Don't look at this symbol again. Note that we must set this
2561 after checking the above conditions, because we may look at a
2562 symbol once, decide not to do anything, and then get called
2563 recursively later after REF_REGULAR is set below. */
2564 h->dynamic_adjusted = 1;
2565
2566 /* If this is a weak definition, and we know a real definition, and
2567 the real symbol is not itself defined by a regular object file,
2568 then get a good value for the real definition. We handle the
2569 real symbol first, for the convenience of the backend routine.
2570
2571 Note that there is a confusing case here. If the real definition
2572 is defined by a regular object file, we don't get the real symbol
2573 from the dynamic object, but we do get the weak symbol. If the
2574 processor backend uses a COPY reloc, then if some routine in the
2575 dynamic object changes the real symbol, we will not see that
2576 change in the corresponding weak symbol. This is the way other
2577 ELF linkers work as well, and seems to be a result of the shared
2578 library model.
2579
2580 I will clarify this issue. Most SVR4 shared libraries define the
2581 variable _timezone and define timezone as a weak synonym. The
2582 tzset call changes _timezone. If you write
2583 extern int timezone;
2584 int _timezone = 5;
2585 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2586 you might expect that, since timezone is a synonym for _timezone,
2587 the same number will print both times. However, if the processor
2588 backend uses a COPY reloc, then actually timezone will be copied
2589 into your process image, and, since you define _timezone
2590 yourself, _timezone will not. Thus timezone and _timezone will
2591 wind up at different memory locations. The tzset call will set
2592 _timezone, leaving timezone unchanged. */
2593
2594 if (h->u.weakdef != NULL)
2595 {
2596 /* If we get to this point, there is an implicit reference to
2597 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2598 h->u.weakdef->ref_regular = 1;
2599
2600 /* Ensure that the backend adjust_dynamic_symbol function sees
2601 H->U.WEAKDEF before H by recursively calling ourselves. */
2602 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2603 return FALSE;
2604 }
2605
2606 /* If a symbol has no type and no size and does not require a PLT
2607 entry, then we are probably about to do the wrong thing here: we
2608 are probably going to create a COPY reloc for an empty object.
2609 This case can arise when a shared object is built with assembly
2610 code, and the assembly code fails to set the symbol type. */
2611 if (h->size == 0
2612 && h->type == STT_NOTYPE
2613 && !h->needs_plt)
2614 (*_bfd_error_handler)
2615 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2616 h->root.root.string);
2617
2618 dynobj = elf_hash_table (eif->info)->dynobj;
2619 bed = get_elf_backend_data (dynobj);
2620
2621 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2622 {
2623 eif->failed = TRUE;
2624 return FALSE;
2625 }
2626
2627 return TRUE;
2628 }
2629
2630 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2631 DYNBSS. */
2632
2633 bfd_boolean
2634 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2635 struct elf_link_hash_entry *h,
2636 asection *dynbss)
2637 {
2638 unsigned int power_of_two;
2639 bfd_vma mask;
2640 asection *sec = h->root.u.def.section;
2641
2642 /* The section aligment of definition is the maximum alignment
2643 requirement of symbols defined in the section. Since we don't
2644 know the symbol alignment requirement, we start with the
2645 maximum alignment and check low bits of the symbol address
2646 for the minimum alignment. */
2647 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2648 mask = ((bfd_vma) 1 << power_of_two) - 1;
2649 while ((h->root.u.def.value & mask) != 0)
2650 {
2651 mask >>= 1;
2652 --power_of_two;
2653 }
2654
2655 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2656 dynbss))
2657 {
2658 /* Adjust the section alignment if needed. */
2659 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2660 power_of_two))
2661 return FALSE;
2662 }
2663
2664 /* We make sure that the symbol will be aligned properly. */
2665 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2666
2667 /* Define the symbol as being at this point in DYNBSS. */
2668 h->root.u.def.section = dynbss;
2669 h->root.u.def.value = dynbss->size;
2670
2671 /* Increment the size of DYNBSS to make room for the symbol. */
2672 dynbss->size += h->size;
2673
2674 /* No error if extern_protected_data is true. */
2675 if (h->protected_def
2676 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)
2677 {
2678 info->callbacks->einfo
2679 (_("%P: copy reloc against protected `%T' is invalid\n"),
2680 h->root.root.string);
2681 bfd_set_error (bfd_error_bad_value);
2682 return FALSE;
2683 }
2684
2685 return TRUE;
2686 }
2687
2688 /* Adjust all external symbols pointing into SEC_MERGE sections
2689 to reflect the object merging within the sections. */
2690
2691 static bfd_boolean
2692 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2693 {
2694 asection *sec;
2695
2696 if ((h->root.type == bfd_link_hash_defined
2697 || h->root.type == bfd_link_hash_defweak)
2698 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2699 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2700 {
2701 bfd *output_bfd = (bfd *) data;
2702
2703 h->root.u.def.value =
2704 _bfd_merged_section_offset (output_bfd,
2705 &h->root.u.def.section,
2706 elf_section_data (sec)->sec_info,
2707 h->root.u.def.value);
2708 }
2709
2710 return TRUE;
2711 }
2712
2713 /* Returns false if the symbol referred to by H should be considered
2714 to resolve local to the current module, and true if it should be
2715 considered to bind dynamically. */
2716
2717 bfd_boolean
2718 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2719 struct bfd_link_info *info,
2720 bfd_boolean not_local_protected)
2721 {
2722 bfd_boolean binding_stays_local_p;
2723 const struct elf_backend_data *bed;
2724 struct elf_link_hash_table *hash_table;
2725
2726 if (h == NULL)
2727 return FALSE;
2728
2729 while (h->root.type == bfd_link_hash_indirect
2730 || h->root.type == bfd_link_hash_warning)
2731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2732
2733 /* If it was forced local, then clearly it's not dynamic. */
2734 if (h->dynindx == -1)
2735 return FALSE;
2736 if (h->forced_local)
2737 return FALSE;
2738
2739 /* Identify the cases where name binding rules say that a
2740 visible symbol resolves locally. */
2741 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2742
2743 switch (ELF_ST_VISIBILITY (h->other))
2744 {
2745 case STV_INTERNAL:
2746 case STV_HIDDEN:
2747 return FALSE;
2748
2749 case STV_PROTECTED:
2750 hash_table = elf_hash_table (info);
2751 if (!is_elf_hash_table (hash_table))
2752 return FALSE;
2753
2754 bed = get_elf_backend_data (hash_table->dynobj);
2755
2756 /* Proper resolution for function pointer equality may require
2757 that these symbols perhaps be resolved dynamically, even though
2758 we should be resolving them to the current module. */
2759 if (!not_local_protected || !bed->is_function_type (h->type))
2760 binding_stays_local_p = TRUE;
2761 break;
2762
2763 default:
2764 break;
2765 }
2766
2767 /* If it isn't defined locally, then clearly it's dynamic. */
2768 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2769 return TRUE;
2770
2771 /* Otherwise, the symbol is dynamic if binding rules don't tell
2772 us that it remains local. */
2773 return !binding_stays_local_p;
2774 }
2775
2776 /* Return true if the symbol referred to by H should be considered
2777 to resolve local to the current module, and false otherwise. Differs
2778 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2779 undefined symbols. The two functions are virtually identical except
2780 for the place where forced_local and dynindx == -1 are tested. If
2781 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2782 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2783 the symbol is local only for defined symbols.
2784 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2785 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2786 treatment of undefined weak symbols. For those that do not make
2787 undefined weak symbols dynamic, both functions may return false. */
2788
2789 bfd_boolean
2790 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2791 struct bfd_link_info *info,
2792 bfd_boolean local_protected)
2793 {
2794 const struct elf_backend_data *bed;
2795 struct elf_link_hash_table *hash_table;
2796
2797 /* If it's a local sym, of course we resolve locally. */
2798 if (h == NULL)
2799 return TRUE;
2800
2801 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2802 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2803 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2804 return TRUE;
2805
2806 /* Common symbols that become definitions don't get the DEF_REGULAR
2807 flag set, so test it first, and don't bail out. */
2808 if (ELF_COMMON_DEF_P (h))
2809 /* Do nothing. */;
2810 /* If we don't have a definition in a regular file, then we can't
2811 resolve locally. The sym is either undefined or dynamic. */
2812 else if (!h->def_regular)
2813 return FALSE;
2814
2815 /* Forced local symbols resolve locally. */
2816 if (h->forced_local)
2817 return TRUE;
2818
2819 /* As do non-dynamic symbols. */
2820 if (h->dynindx == -1)
2821 return TRUE;
2822
2823 /* At this point, we know the symbol is defined and dynamic. In an
2824 executable it must resolve locally, likewise when building symbolic
2825 shared libraries. */
2826 if (info->executable || SYMBOLIC_BIND (info, h))
2827 return TRUE;
2828
2829 /* Now deal with defined dynamic symbols in shared libraries. Ones
2830 with default visibility might not resolve locally. */
2831 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2832 return FALSE;
2833
2834 hash_table = elf_hash_table (info);
2835 if (!is_elf_hash_table (hash_table))
2836 return TRUE;
2837
2838 bed = get_elf_backend_data (hash_table->dynobj);
2839
2840 /* If extern_protected_data is false, STV_PROTECTED non-function
2841 symbols are local. */
2842 if (!bed->extern_protected_data && !bed->is_function_type (h->type))
2843 return TRUE;
2844
2845 /* Function pointer equality tests may require that STV_PROTECTED
2846 symbols be treated as dynamic symbols. If the address of a
2847 function not defined in an executable is set to that function's
2848 plt entry in the executable, then the address of the function in
2849 a shared library must also be the plt entry in the executable. */
2850 return local_protected;
2851 }
2852
2853 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2854 aligned. Returns the first TLS output section. */
2855
2856 struct bfd_section *
2857 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2858 {
2859 struct bfd_section *sec, *tls;
2860 unsigned int align = 0;
2861
2862 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2863 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2864 break;
2865 tls = sec;
2866
2867 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2868 if (sec->alignment_power > align)
2869 align = sec->alignment_power;
2870
2871 elf_hash_table (info)->tls_sec = tls;
2872
2873 /* Ensure the alignment of the first section is the largest alignment,
2874 so that the tls segment starts aligned. */
2875 if (tls != NULL)
2876 tls->alignment_power = align;
2877
2878 return tls;
2879 }
2880
2881 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2882 static bfd_boolean
2883 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2884 Elf_Internal_Sym *sym)
2885 {
2886 const struct elf_backend_data *bed;
2887
2888 /* Local symbols do not count, but target specific ones might. */
2889 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2890 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2891 return FALSE;
2892
2893 bed = get_elf_backend_data (abfd);
2894 /* Function symbols do not count. */
2895 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2896 return FALSE;
2897
2898 /* If the section is undefined, then so is the symbol. */
2899 if (sym->st_shndx == SHN_UNDEF)
2900 return FALSE;
2901
2902 /* If the symbol is defined in the common section, then
2903 it is a common definition and so does not count. */
2904 if (bed->common_definition (sym))
2905 return FALSE;
2906
2907 /* If the symbol is in a target specific section then we
2908 must rely upon the backend to tell us what it is. */
2909 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2910 /* FIXME - this function is not coded yet:
2911
2912 return _bfd_is_global_symbol_definition (abfd, sym);
2913
2914 Instead for now assume that the definition is not global,
2915 Even if this is wrong, at least the linker will behave
2916 in the same way that it used to do. */
2917 return FALSE;
2918
2919 return TRUE;
2920 }
2921
2922 /* Search the symbol table of the archive element of the archive ABFD
2923 whose archive map contains a mention of SYMDEF, and determine if
2924 the symbol is defined in this element. */
2925 static bfd_boolean
2926 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2927 {
2928 Elf_Internal_Shdr * hdr;
2929 bfd_size_type symcount;
2930 bfd_size_type extsymcount;
2931 bfd_size_type extsymoff;
2932 Elf_Internal_Sym *isymbuf;
2933 Elf_Internal_Sym *isym;
2934 Elf_Internal_Sym *isymend;
2935 bfd_boolean result;
2936
2937 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2938 if (abfd == NULL)
2939 return FALSE;
2940
2941 if (! bfd_check_format (abfd, bfd_object))
2942 return FALSE;
2943
2944 /* Select the appropriate symbol table. */
2945 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2946 hdr = &elf_tdata (abfd)->symtab_hdr;
2947 else
2948 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2949
2950 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2951
2952 /* The sh_info field of the symtab header tells us where the
2953 external symbols start. We don't care about the local symbols. */
2954 if (elf_bad_symtab (abfd))
2955 {
2956 extsymcount = symcount;
2957 extsymoff = 0;
2958 }
2959 else
2960 {
2961 extsymcount = symcount - hdr->sh_info;
2962 extsymoff = hdr->sh_info;
2963 }
2964
2965 if (extsymcount == 0)
2966 return FALSE;
2967
2968 /* Read in the symbol table. */
2969 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2970 NULL, NULL, NULL);
2971 if (isymbuf == NULL)
2972 return FALSE;
2973
2974 /* Scan the symbol table looking for SYMDEF. */
2975 result = FALSE;
2976 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2977 {
2978 const char *name;
2979
2980 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2981 isym->st_name);
2982 if (name == NULL)
2983 break;
2984
2985 if (strcmp (name, symdef->name) == 0)
2986 {
2987 result = is_global_data_symbol_definition (abfd, isym);
2988 break;
2989 }
2990 }
2991
2992 free (isymbuf);
2993
2994 return result;
2995 }
2996 \f
2997 /* Add an entry to the .dynamic table. */
2998
2999 bfd_boolean
3000 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3001 bfd_vma tag,
3002 bfd_vma val)
3003 {
3004 struct elf_link_hash_table *hash_table;
3005 const struct elf_backend_data *bed;
3006 asection *s;
3007 bfd_size_type newsize;
3008 bfd_byte *newcontents;
3009 Elf_Internal_Dyn dyn;
3010
3011 hash_table = elf_hash_table (info);
3012 if (! is_elf_hash_table (hash_table))
3013 return FALSE;
3014
3015 bed = get_elf_backend_data (hash_table->dynobj);
3016 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3017 BFD_ASSERT (s != NULL);
3018
3019 newsize = s->size + bed->s->sizeof_dyn;
3020 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3021 if (newcontents == NULL)
3022 return FALSE;
3023
3024 dyn.d_tag = tag;
3025 dyn.d_un.d_val = val;
3026 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3027
3028 s->size = newsize;
3029 s->contents = newcontents;
3030
3031 return TRUE;
3032 }
3033
3034 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3035 otherwise just check whether one already exists. Returns -1 on error,
3036 1 if a DT_NEEDED tag already exists, and 0 on success. */
3037
3038 static int
3039 elf_add_dt_needed_tag (bfd *abfd,
3040 struct bfd_link_info *info,
3041 const char *soname,
3042 bfd_boolean do_it)
3043 {
3044 struct elf_link_hash_table *hash_table;
3045 bfd_size_type strindex;
3046
3047 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3048 return -1;
3049
3050 hash_table = elf_hash_table (info);
3051 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3052 if (strindex == (bfd_size_type) -1)
3053 return -1;
3054
3055 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3056 {
3057 asection *sdyn;
3058 const struct elf_backend_data *bed;
3059 bfd_byte *extdyn;
3060
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3063 if (sdyn != NULL)
3064 for (extdyn = sdyn->contents;
3065 extdyn < sdyn->contents + sdyn->size;
3066 extdyn += bed->s->sizeof_dyn)
3067 {
3068 Elf_Internal_Dyn dyn;
3069
3070 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3071 if (dyn.d_tag == DT_NEEDED
3072 && dyn.d_un.d_val == strindex)
3073 {
3074 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3075 return 1;
3076 }
3077 }
3078 }
3079
3080 if (do_it)
3081 {
3082 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3083 return -1;
3084
3085 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3086 return -1;
3087 }
3088 else
3089 /* We were just checking for existence of the tag. */
3090 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3091
3092 return 0;
3093 }
3094
3095 static bfd_boolean
3096 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3097 {
3098 for (; needed != NULL; needed = needed->next)
3099 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3100 && strcmp (soname, needed->name) == 0)
3101 return TRUE;
3102
3103 return FALSE;
3104 }
3105
3106 /* Sort symbol by value, section, and size. */
3107 static int
3108 elf_sort_symbol (const void *arg1, const void *arg2)
3109 {
3110 const struct elf_link_hash_entry *h1;
3111 const struct elf_link_hash_entry *h2;
3112 bfd_signed_vma vdiff;
3113
3114 h1 = *(const struct elf_link_hash_entry **) arg1;
3115 h2 = *(const struct elf_link_hash_entry **) arg2;
3116 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3117 if (vdiff != 0)
3118 return vdiff > 0 ? 1 : -1;
3119 else
3120 {
3121 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3122 if (sdiff != 0)
3123 return sdiff > 0 ? 1 : -1;
3124 }
3125 vdiff = h1->size - h2->size;
3126 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3127 }
3128
3129 /* This function is used to adjust offsets into .dynstr for
3130 dynamic symbols. This is called via elf_link_hash_traverse. */
3131
3132 static bfd_boolean
3133 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3134 {
3135 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3136
3137 if (h->dynindx != -1)
3138 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3139 return TRUE;
3140 }
3141
3142 /* Assign string offsets in .dynstr, update all structures referencing
3143 them. */
3144
3145 static bfd_boolean
3146 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3147 {
3148 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3149 struct elf_link_local_dynamic_entry *entry;
3150 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3151 bfd *dynobj = hash_table->dynobj;
3152 asection *sdyn;
3153 bfd_size_type size;
3154 const struct elf_backend_data *bed;
3155 bfd_byte *extdyn;
3156
3157 _bfd_elf_strtab_finalize (dynstr);
3158 size = _bfd_elf_strtab_size (dynstr);
3159
3160 bed = get_elf_backend_data (dynobj);
3161 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3162 BFD_ASSERT (sdyn != NULL);
3163
3164 /* Update all .dynamic entries referencing .dynstr strings. */
3165 for (extdyn = sdyn->contents;
3166 extdyn < sdyn->contents + sdyn->size;
3167 extdyn += bed->s->sizeof_dyn)
3168 {
3169 Elf_Internal_Dyn dyn;
3170
3171 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3172 switch (dyn.d_tag)
3173 {
3174 case DT_STRSZ:
3175 dyn.d_un.d_val = size;
3176 break;
3177 case DT_NEEDED:
3178 case DT_SONAME:
3179 case DT_RPATH:
3180 case DT_RUNPATH:
3181 case DT_FILTER:
3182 case DT_AUXILIARY:
3183 case DT_AUDIT:
3184 case DT_DEPAUDIT:
3185 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3186 break;
3187 default:
3188 continue;
3189 }
3190 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3191 }
3192
3193 /* Now update local dynamic symbols. */
3194 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3195 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3196 entry->isym.st_name);
3197
3198 /* And the rest of dynamic symbols. */
3199 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3200
3201 /* Adjust version definitions. */
3202 if (elf_tdata (output_bfd)->cverdefs)
3203 {
3204 asection *s;
3205 bfd_byte *p;
3206 bfd_size_type i;
3207 Elf_Internal_Verdef def;
3208 Elf_Internal_Verdaux defaux;
3209
3210 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3211 p = s->contents;
3212 do
3213 {
3214 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3215 &def);
3216 p += sizeof (Elf_External_Verdef);
3217 if (def.vd_aux != sizeof (Elf_External_Verdef))
3218 continue;
3219 for (i = 0; i < def.vd_cnt; ++i)
3220 {
3221 _bfd_elf_swap_verdaux_in (output_bfd,
3222 (Elf_External_Verdaux *) p, &defaux);
3223 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3224 defaux.vda_name);
3225 _bfd_elf_swap_verdaux_out (output_bfd,
3226 &defaux, (Elf_External_Verdaux *) p);
3227 p += sizeof (Elf_External_Verdaux);
3228 }
3229 }
3230 while (def.vd_next);
3231 }
3232
3233 /* Adjust version references. */
3234 if (elf_tdata (output_bfd)->verref)
3235 {
3236 asection *s;
3237 bfd_byte *p;
3238 bfd_size_type i;
3239 Elf_Internal_Verneed need;
3240 Elf_Internal_Vernaux needaux;
3241
3242 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3243 p = s->contents;
3244 do
3245 {
3246 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3247 &need);
3248 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3249 _bfd_elf_swap_verneed_out (output_bfd, &need,
3250 (Elf_External_Verneed *) p);
3251 p += sizeof (Elf_External_Verneed);
3252 for (i = 0; i < need.vn_cnt; ++i)
3253 {
3254 _bfd_elf_swap_vernaux_in (output_bfd,
3255 (Elf_External_Vernaux *) p, &needaux);
3256 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3257 needaux.vna_name);
3258 _bfd_elf_swap_vernaux_out (output_bfd,
3259 &needaux,
3260 (Elf_External_Vernaux *) p);
3261 p += sizeof (Elf_External_Vernaux);
3262 }
3263 }
3264 while (need.vn_next);
3265 }
3266
3267 return TRUE;
3268 }
3269 \f
3270 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3271 The default is to only match when the INPUT and OUTPUT are exactly
3272 the same target. */
3273
3274 bfd_boolean
3275 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3276 const bfd_target *output)
3277 {
3278 return input == output;
3279 }
3280
3281 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3282 This version is used when different targets for the same architecture
3283 are virtually identical. */
3284
3285 bfd_boolean
3286 _bfd_elf_relocs_compatible (const bfd_target *input,
3287 const bfd_target *output)
3288 {
3289 const struct elf_backend_data *obed, *ibed;
3290
3291 if (input == output)
3292 return TRUE;
3293
3294 ibed = xvec_get_elf_backend_data (input);
3295 obed = xvec_get_elf_backend_data (output);
3296
3297 if (ibed->arch != obed->arch)
3298 return FALSE;
3299
3300 /* If both backends are using this function, deem them compatible. */
3301 return ibed->relocs_compatible == obed->relocs_compatible;
3302 }
3303
3304 /* Make a special call to the linker "notice" function to tell it that
3305 we are about to handle an as-needed lib, or have finished
3306 processing the lib. */
3307
3308 bfd_boolean
3309 _bfd_elf_notice_as_needed (bfd *ibfd,
3310 struct bfd_link_info *info,
3311 enum notice_asneeded_action act)
3312 {
3313 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3314 }
3315
3316 /* Add symbols from an ELF object file to the linker hash table. */
3317
3318 static bfd_boolean
3319 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3320 {
3321 Elf_Internal_Ehdr *ehdr;
3322 Elf_Internal_Shdr *hdr;
3323 bfd_size_type symcount;
3324 bfd_size_type extsymcount;
3325 bfd_size_type extsymoff;
3326 struct elf_link_hash_entry **sym_hash;
3327 bfd_boolean dynamic;
3328 Elf_External_Versym *extversym = NULL;
3329 Elf_External_Versym *ever;
3330 struct elf_link_hash_entry *weaks;
3331 struct elf_link_hash_entry **nondeflt_vers = NULL;
3332 bfd_size_type nondeflt_vers_cnt = 0;
3333 Elf_Internal_Sym *isymbuf = NULL;
3334 Elf_Internal_Sym *isym;
3335 Elf_Internal_Sym *isymend;
3336 const struct elf_backend_data *bed;
3337 bfd_boolean add_needed;
3338 struct elf_link_hash_table *htab;
3339 bfd_size_type amt;
3340 void *alloc_mark = NULL;
3341 struct bfd_hash_entry **old_table = NULL;
3342 unsigned int old_size = 0;
3343 unsigned int old_count = 0;
3344 void *old_tab = NULL;
3345 void *old_ent;
3346 struct bfd_link_hash_entry *old_undefs = NULL;
3347 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3348 long old_dynsymcount = 0;
3349 bfd_size_type old_dynstr_size = 0;
3350 size_t tabsize = 0;
3351 asection *s;
3352 bfd_boolean just_syms;
3353
3354 htab = elf_hash_table (info);
3355 bed = get_elf_backend_data (abfd);
3356
3357 if ((abfd->flags & DYNAMIC) == 0)
3358 dynamic = FALSE;
3359 else
3360 {
3361 dynamic = TRUE;
3362
3363 /* You can't use -r against a dynamic object. Also, there's no
3364 hope of using a dynamic object which does not exactly match
3365 the format of the output file. */
3366 if (info->relocatable
3367 || !is_elf_hash_table (htab)
3368 || info->output_bfd->xvec != abfd->xvec)
3369 {
3370 if (info->relocatable)
3371 bfd_set_error (bfd_error_invalid_operation);
3372 else
3373 bfd_set_error (bfd_error_wrong_format);
3374 goto error_return;
3375 }
3376 }
3377
3378 ehdr = elf_elfheader (abfd);
3379 if (info->warn_alternate_em
3380 && bed->elf_machine_code != ehdr->e_machine
3381 && ((bed->elf_machine_alt1 != 0
3382 && ehdr->e_machine == bed->elf_machine_alt1)
3383 || (bed->elf_machine_alt2 != 0
3384 && ehdr->e_machine == bed->elf_machine_alt2)))
3385 info->callbacks->einfo
3386 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3387 ehdr->e_machine, abfd, bed->elf_machine_code);
3388
3389 /* As a GNU extension, any input sections which are named
3390 .gnu.warning.SYMBOL are treated as warning symbols for the given
3391 symbol. This differs from .gnu.warning sections, which generate
3392 warnings when they are included in an output file. */
3393 /* PR 12761: Also generate this warning when building shared libraries. */
3394 for (s = abfd->sections; s != NULL; s = s->next)
3395 {
3396 const char *name;
3397
3398 name = bfd_get_section_name (abfd, s);
3399 if (CONST_STRNEQ (name, ".gnu.warning."))
3400 {
3401 char *msg;
3402 bfd_size_type sz;
3403
3404 name += sizeof ".gnu.warning." - 1;
3405
3406 /* If this is a shared object, then look up the symbol
3407 in the hash table. If it is there, and it is already
3408 been defined, then we will not be using the entry
3409 from this shared object, so we don't need to warn.
3410 FIXME: If we see the definition in a regular object
3411 later on, we will warn, but we shouldn't. The only
3412 fix is to keep track of what warnings we are supposed
3413 to emit, and then handle them all at the end of the
3414 link. */
3415 if (dynamic)
3416 {
3417 struct elf_link_hash_entry *h;
3418
3419 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3420
3421 /* FIXME: What about bfd_link_hash_common? */
3422 if (h != NULL
3423 && (h->root.type == bfd_link_hash_defined
3424 || h->root.type == bfd_link_hash_defweak))
3425 continue;
3426 }
3427
3428 sz = s->size;
3429 msg = (char *) bfd_alloc (abfd, sz + 1);
3430 if (msg == NULL)
3431 goto error_return;
3432
3433 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3434 goto error_return;
3435
3436 msg[sz] = '\0';
3437
3438 if (! (_bfd_generic_link_add_one_symbol
3439 (info, abfd, name, BSF_WARNING, s, 0, msg,
3440 FALSE, bed->collect, NULL)))
3441 goto error_return;
3442
3443 if (!info->relocatable && info->executable)
3444 {
3445 /* Clobber the section size so that the warning does
3446 not get copied into the output file. */
3447 s->size = 0;
3448
3449 /* Also set SEC_EXCLUDE, so that symbols defined in
3450 the warning section don't get copied to the output. */
3451 s->flags |= SEC_EXCLUDE;
3452 }
3453 }
3454 }
3455
3456 just_syms = ((s = abfd->sections) != NULL
3457 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3458
3459 add_needed = TRUE;
3460 if (! dynamic)
3461 {
3462 /* If we are creating a shared library, create all the dynamic
3463 sections immediately. We need to attach them to something,
3464 so we attach them to this BFD, provided it is the right
3465 format and is not from ld --just-symbols. FIXME: If there
3466 are no input BFD's of the same format as the output, we can't
3467 make a shared library. */
3468 if (!just_syms
3469 && info->shared
3470 && is_elf_hash_table (htab)
3471 && info->output_bfd->xvec == abfd->xvec
3472 && !htab->dynamic_sections_created)
3473 {
3474 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3475 goto error_return;
3476 }
3477 }
3478 else if (!is_elf_hash_table (htab))
3479 goto error_return;
3480 else
3481 {
3482 const char *soname = NULL;
3483 char *audit = NULL;
3484 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3485 int ret;
3486
3487 /* ld --just-symbols and dynamic objects don't mix very well.
3488 ld shouldn't allow it. */
3489 if (just_syms)
3490 abort ();
3491
3492 /* If this dynamic lib was specified on the command line with
3493 --as-needed in effect, then we don't want to add a DT_NEEDED
3494 tag unless the lib is actually used. Similary for libs brought
3495 in by another lib's DT_NEEDED. When --no-add-needed is used
3496 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3497 any dynamic library in DT_NEEDED tags in the dynamic lib at
3498 all. */
3499 add_needed = (elf_dyn_lib_class (abfd)
3500 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3501 | DYN_NO_NEEDED)) == 0;
3502
3503 s = bfd_get_section_by_name (abfd, ".dynamic");
3504 if (s != NULL)
3505 {
3506 bfd_byte *dynbuf;
3507 bfd_byte *extdyn;
3508 unsigned int elfsec;
3509 unsigned long shlink;
3510
3511 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3512 {
3513 error_free_dyn:
3514 free (dynbuf);
3515 goto error_return;
3516 }
3517
3518 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3519 if (elfsec == SHN_BAD)
3520 goto error_free_dyn;
3521 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3522
3523 for (extdyn = dynbuf;
3524 extdyn < dynbuf + s->size;
3525 extdyn += bed->s->sizeof_dyn)
3526 {
3527 Elf_Internal_Dyn dyn;
3528
3529 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3530 if (dyn.d_tag == DT_SONAME)
3531 {
3532 unsigned int tagv = dyn.d_un.d_val;
3533 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3534 if (soname == NULL)
3535 goto error_free_dyn;
3536 }
3537 if (dyn.d_tag == DT_NEEDED)
3538 {
3539 struct bfd_link_needed_list *n, **pn;
3540 char *fnm, *anm;
3541 unsigned int tagv = dyn.d_un.d_val;
3542
3543 amt = sizeof (struct bfd_link_needed_list);
3544 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3545 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3546 if (n == NULL || fnm == NULL)
3547 goto error_free_dyn;
3548 amt = strlen (fnm) + 1;
3549 anm = (char *) bfd_alloc (abfd, amt);
3550 if (anm == NULL)
3551 goto error_free_dyn;
3552 memcpy (anm, fnm, amt);
3553 n->name = anm;
3554 n->by = abfd;
3555 n->next = NULL;
3556 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3557 ;
3558 *pn = n;
3559 }
3560 if (dyn.d_tag == DT_RUNPATH)
3561 {
3562 struct bfd_link_needed_list *n, **pn;
3563 char *fnm, *anm;
3564 unsigned int tagv = dyn.d_un.d_val;
3565
3566 amt = sizeof (struct bfd_link_needed_list);
3567 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3568 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3569 if (n == NULL || fnm == NULL)
3570 goto error_free_dyn;
3571 amt = strlen (fnm) + 1;
3572 anm = (char *) bfd_alloc (abfd, amt);
3573 if (anm == NULL)
3574 goto error_free_dyn;
3575 memcpy (anm, fnm, amt);
3576 n->name = anm;
3577 n->by = abfd;
3578 n->next = NULL;
3579 for (pn = & runpath;
3580 *pn != NULL;
3581 pn = &(*pn)->next)
3582 ;
3583 *pn = n;
3584 }
3585 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3586 if (!runpath && dyn.d_tag == DT_RPATH)
3587 {
3588 struct bfd_link_needed_list *n, **pn;
3589 char *fnm, *anm;
3590 unsigned int tagv = dyn.d_un.d_val;
3591
3592 amt = sizeof (struct bfd_link_needed_list);
3593 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3594 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3595 if (n == NULL || fnm == NULL)
3596 goto error_free_dyn;
3597 amt = strlen (fnm) + 1;
3598 anm = (char *) bfd_alloc (abfd, amt);
3599 if (anm == NULL)
3600 goto error_free_dyn;
3601 memcpy (anm, fnm, amt);
3602 n->name = anm;
3603 n->by = abfd;
3604 n->next = NULL;
3605 for (pn = & rpath;
3606 *pn != NULL;
3607 pn = &(*pn)->next)
3608 ;
3609 *pn = n;
3610 }
3611 if (dyn.d_tag == DT_AUDIT)
3612 {
3613 unsigned int tagv = dyn.d_un.d_val;
3614 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 }
3616 }
3617
3618 free (dynbuf);
3619 }
3620
3621 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3622 frees all more recently bfd_alloc'd blocks as well. */
3623 if (runpath)
3624 rpath = runpath;
3625
3626 if (rpath)
3627 {
3628 struct bfd_link_needed_list **pn;
3629 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3630 ;
3631 *pn = rpath;
3632 }
3633
3634 /* We do not want to include any of the sections in a dynamic
3635 object in the output file. We hack by simply clobbering the
3636 list of sections in the BFD. This could be handled more
3637 cleanly by, say, a new section flag; the existing
3638 SEC_NEVER_LOAD flag is not the one we want, because that one
3639 still implies that the section takes up space in the output
3640 file. */
3641 bfd_section_list_clear (abfd);
3642
3643 /* Find the name to use in a DT_NEEDED entry that refers to this
3644 object. If the object has a DT_SONAME entry, we use it.
3645 Otherwise, if the generic linker stuck something in
3646 elf_dt_name, we use that. Otherwise, we just use the file
3647 name. */
3648 if (soname == NULL || *soname == '\0')
3649 {
3650 soname = elf_dt_name (abfd);
3651 if (soname == NULL || *soname == '\0')
3652 soname = bfd_get_filename (abfd);
3653 }
3654
3655 /* Save the SONAME because sometimes the linker emulation code
3656 will need to know it. */
3657 elf_dt_name (abfd) = soname;
3658
3659 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3660 if (ret < 0)
3661 goto error_return;
3662
3663 /* If we have already included this dynamic object in the
3664 link, just ignore it. There is no reason to include a
3665 particular dynamic object more than once. */
3666 if (ret > 0)
3667 return TRUE;
3668
3669 /* Save the DT_AUDIT entry for the linker emulation code. */
3670 elf_dt_audit (abfd) = audit;
3671 }
3672
3673 /* If this is a dynamic object, we always link against the .dynsym
3674 symbol table, not the .symtab symbol table. The dynamic linker
3675 will only see the .dynsym symbol table, so there is no reason to
3676 look at .symtab for a dynamic object. */
3677
3678 if (! dynamic || elf_dynsymtab (abfd) == 0)
3679 hdr = &elf_tdata (abfd)->symtab_hdr;
3680 else
3681 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3682
3683 symcount = hdr->sh_size / bed->s->sizeof_sym;
3684
3685 /* The sh_info field of the symtab header tells us where the
3686 external symbols start. We don't care about the local symbols at
3687 this point. */
3688 if (elf_bad_symtab (abfd))
3689 {
3690 extsymcount = symcount;
3691 extsymoff = 0;
3692 }
3693 else
3694 {
3695 extsymcount = symcount - hdr->sh_info;
3696 extsymoff = hdr->sh_info;
3697 }
3698
3699 sym_hash = elf_sym_hashes (abfd);
3700 if (extsymcount != 0)
3701 {
3702 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3703 NULL, NULL, NULL);
3704 if (isymbuf == NULL)
3705 goto error_return;
3706
3707 if (sym_hash == NULL)
3708 {
3709 /* We store a pointer to the hash table entry for each
3710 external symbol. */
3711 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3712 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3713 if (sym_hash == NULL)
3714 goto error_free_sym;
3715 elf_sym_hashes (abfd) = sym_hash;
3716 }
3717 }
3718
3719 if (dynamic)
3720 {
3721 /* Read in any version definitions. */
3722 if (!_bfd_elf_slurp_version_tables (abfd,
3723 info->default_imported_symver))
3724 goto error_free_sym;
3725
3726 /* Read in the symbol versions, but don't bother to convert them
3727 to internal format. */
3728 if (elf_dynversym (abfd) != 0)
3729 {
3730 Elf_Internal_Shdr *versymhdr;
3731
3732 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3733 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3734 if (extversym == NULL)
3735 goto error_free_sym;
3736 amt = versymhdr->sh_size;
3737 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3738 || bfd_bread (extversym, amt, abfd) != amt)
3739 goto error_free_vers;
3740 }
3741 }
3742
3743 /* If we are loading an as-needed shared lib, save the symbol table
3744 state before we start adding symbols. If the lib turns out
3745 to be unneeded, restore the state. */
3746 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3747 {
3748 unsigned int i;
3749 size_t entsize;
3750
3751 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3752 {
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3755
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 {
3758 h = (struct elf_link_hash_entry *) p;
3759 entsize += htab->root.table.entsize;
3760 if (h->root.type == bfd_link_hash_warning)
3761 entsize += htab->root.table.entsize;
3762 }
3763 }
3764
3765 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3766 old_tab = bfd_malloc (tabsize + entsize);
3767 if (old_tab == NULL)
3768 goto error_free_vers;
3769
3770 /* Remember the current objalloc pointer, so that all mem for
3771 symbols added can later be reclaimed. */
3772 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3773 if (alloc_mark == NULL)
3774 goto error_free_vers;
3775
3776 /* Make a special call to the linker "notice" function to
3777 tell it that we are about to handle an as-needed lib. */
3778 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3779 goto error_free_vers;
3780
3781 /* Clone the symbol table. Remember some pointers into the
3782 symbol table, and dynamic symbol count. */
3783 old_ent = (char *) old_tab + tabsize;
3784 memcpy (old_tab, htab->root.table.table, tabsize);
3785 old_undefs = htab->root.undefs;
3786 old_undefs_tail = htab->root.undefs_tail;
3787 old_table = htab->root.table.table;
3788 old_size = htab->root.table.size;
3789 old_count = htab->root.table.count;
3790 old_dynsymcount = htab->dynsymcount;
3791 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3792
3793 for (i = 0; i < htab->root.table.size; i++)
3794 {
3795 struct bfd_hash_entry *p;
3796 struct elf_link_hash_entry *h;
3797
3798 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3799 {
3800 memcpy (old_ent, p, htab->root.table.entsize);
3801 old_ent = (char *) old_ent + htab->root.table.entsize;
3802 h = (struct elf_link_hash_entry *) p;
3803 if (h->root.type == bfd_link_hash_warning)
3804 {
3805 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3806 old_ent = (char *) old_ent + htab->root.table.entsize;
3807 }
3808 }
3809 }
3810 }
3811
3812 weaks = NULL;
3813 ever = extversym != NULL ? extversym + extsymoff : NULL;
3814 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3815 isym < isymend;
3816 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3817 {
3818 int bind;
3819 bfd_vma value;
3820 asection *sec, *new_sec;
3821 flagword flags;
3822 const char *name;
3823 struct elf_link_hash_entry *h;
3824 struct elf_link_hash_entry *hi;
3825 bfd_boolean definition;
3826 bfd_boolean size_change_ok;
3827 bfd_boolean type_change_ok;
3828 bfd_boolean new_weakdef;
3829 bfd_boolean new_weak;
3830 bfd_boolean old_weak;
3831 bfd_boolean override;
3832 bfd_boolean common;
3833 unsigned int old_alignment;
3834 bfd *old_bfd;
3835
3836 override = FALSE;
3837
3838 flags = BSF_NO_FLAGS;
3839 sec = NULL;
3840 value = isym->st_value;
3841 common = bed->common_definition (isym);
3842
3843 bind = ELF_ST_BIND (isym->st_info);
3844 switch (bind)
3845 {
3846 case STB_LOCAL:
3847 /* This should be impossible, since ELF requires that all
3848 global symbols follow all local symbols, and that sh_info
3849 point to the first global symbol. Unfortunately, Irix 5
3850 screws this up. */
3851 continue;
3852
3853 case STB_GLOBAL:
3854 if (isym->st_shndx != SHN_UNDEF && !common)
3855 flags = BSF_GLOBAL;
3856 break;
3857
3858 case STB_WEAK:
3859 flags = BSF_WEAK;
3860 break;
3861
3862 case STB_GNU_UNIQUE:
3863 flags = BSF_GNU_UNIQUE;
3864 break;
3865
3866 default:
3867 /* Leave it up to the processor backend. */
3868 break;
3869 }
3870
3871 if (isym->st_shndx == SHN_UNDEF)
3872 sec = bfd_und_section_ptr;
3873 else if (isym->st_shndx == SHN_ABS)
3874 sec = bfd_abs_section_ptr;
3875 else if (isym->st_shndx == SHN_COMMON)
3876 {
3877 sec = bfd_com_section_ptr;
3878 /* What ELF calls the size we call the value. What ELF
3879 calls the value we call the alignment. */
3880 value = isym->st_size;
3881 }
3882 else
3883 {
3884 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3885 if (sec == NULL)
3886 sec = bfd_abs_section_ptr;
3887 else if (discarded_section (sec))
3888 {
3889 /* Symbols from discarded section are undefined. We keep
3890 its visibility. */
3891 sec = bfd_und_section_ptr;
3892 isym->st_shndx = SHN_UNDEF;
3893 }
3894 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3895 value -= sec->vma;
3896 }
3897
3898 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3899 isym->st_name);
3900 if (name == NULL)
3901 goto error_free_vers;
3902
3903 if (isym->st_shndx == SHN_COMMON
3904 && (abfd->flags & BFD_PLUGIN) != 0)
3905 {
3906 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3907
3908 if (xc == NULL)
3909 {
3910 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3911 | SEC_EXCLUDE);
3912 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3913 if (xc == NULL)
3914 goto error_free_vers;
3915 }
3916 sec = xc;
3917 }
3918 else if (isym->st_shndx == SHN_COMMON
3919 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3920 && !info->relocatable)
3921 {
3922 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3923
3924 if (tcomm == NULL)
3925 {
3926 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3927 | SEC_LINKER_CREATED);
3928 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3929 if (tcomm == NULL)
3930 goto error_free_vers;
3931 }
3932 sec = tcomm;
3933 }
3934 else if (bed->elf_add_symbol_hook)
3935 {
3936 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3937 &sec, &value))
3938 goto error_free_vers;
3939
3940 /* The hook function sets the name to NULL if this symbol
3941 should be skipped for some reason. */
3942 if (name == NULL)
3943 continue;
3944 }
3945
3946 /* Sanity check that all possibilities were handled. */
3947 if (sec == NULL)
3948 {
3949 bfd_set_error (bfd_error_bad_value);
3950 goto error_free_vers;
3951 }
3952
3953 /* Silently discard TLS symbols from --just-syms. There's
3954 no way to combine a static TLS block with a new TLS block
3955 for this executable. */
3956 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3957 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3958 continue;
3959
3960 if (bfd_is_und_section (sec)
3961 || bfd_is_com_section (sec))
3962 definition = FALSE;
3963 else
3964 definition = TRUE;
3965
3966 size_change_ok = FALSE;
3967 type_change_ok = bed->type_change_ok;
3968 old_weak = FALSE;
3969 old_alignment = 0;
3970 old_bfd = NULL;
3971 new_sec = sec;
3972
3973 if (is_elf_hash_table (htab))
3974 {
3975 Elf_Internal_Versym iver;
3976 unsigned int vernum = 0;
3977 bfd_boolean skip;
3978
3979 if (ever == NULL)
3980 {
3981 if (info->default_imported_symver)
3982 /* Use the default symbol version created earlier. */
3983 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3984 else
3985 iver.vs_vers = 0;
3986 }
3987 else
3988 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3989
3990 vernum = iver.vs_vers & VERSYM_VERSION;
3991
3992 /* If this is a hidden symbol, or if it is not version
3993 1, we append the version name to the symbol name.
3994 However, we do not modify a non-hidden absolute symbol
3995 if it is not a function, because it might be the version
3996 symbol itself. FIXME: What if it isn't? */
3997 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3998 || (vernum > 1
3999 && (!bfd_is_abs_section (sec)
4000 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4001 {
4002 const char *verstr;
4003 size_t namelen, verlen, newlen;
4004 char *newname, *p;
4005
4006 if (isym->st_shndx != SHN_UNDEF)
4007 {
4008 if (vernum > elf_tdata (abfd)->cverdefs)
4009 verstr = NULL;
4010 else if (vernum > 1)
4011 verstr =
4012 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4013 else
4014 verstr = "";
4015
4016 if (verstr == NULL)
4017 {
4018 (*_bfd_error_handler)
4019 (_("%B: %s: invalid version %u (max %d)"),
4020 abfd, name, vernum,
4021 elf_tdata (abfd)->cverdefs);
4022 bfd_set_error (bfd_error_bad_value);
4023 goto error_free_vers;
4024 }
4025 }
4026 else
4027 {
4028 /* We cannot simply test for the number of
4029 entries in the VERNEED section since the
4030 numbers for the needed versions do not start
4031 at 0. */
4032 Elf_Internal_Verneed *t;
4033
4034 verstr = NULL;
4035 for (t = elf_tdata (abfd)->verref;
4036 t != NULL;
4037 t = t->vn_nextref)
4038 {
4039 Elf_Internal_Vernaux *a;
4040
4041 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4042 {
4043 if (a->vna_other == vernum)
4044 {
4045 verstr = a->vna_nodename;
4046 break;
4047 }
4048 }
4049 if (a != NULL)
4050 break;
4051 }
4052 if (verstr == NULL)
4053 {
4054 (*_bfd_error_handler)
4055 (_("%B: %s: invalid needed version %d"),
4056 abfd, name, vernum);
4057 bfd_set_error (bfd_error_bad_value);
4058 goto error_free_vers;
4059 }
4060 }
4061
4062 namelen = strlen (name);
4063 verlen = strlen (verstr);
4064 newlen = namelen + verlen + 2;
4065 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4066 && isym->st_shndx != SHN_UNDEF)
4067 ++newlen;
4068
4069 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4070 if (newname == NULL)
4071 goto error_free_vers;
4072 memcpy (newname, name, namelen);
4073 p = newname + namelen;
4074 *p++ = ELF_VER_CHR;
4075 /* If this is a defined non-hidden version symbol,
4076 we add another @ to the name. This indicates the
4077 default version of the symbol. */
4078 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4079 && isym->st_shndx != SHN_UNDEF)
4080 *p++ = ELF_VER_CHR;
4081 memcpy (p, verstr, verlen + 1);
4082
4083 name = newname;
4084 }
4085
4086 /* If this symbol has default visibility and the user has
4087 requested we not re-export it, then mark it as hidden. */
4088 if (definition
4089 && !dynamic
4090 && abfd->no_export
4091 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4092 isym->st_other = (STV_HIDDEN
4093 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4094
4095 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4096 sym_hash, &old_bfd, &old_weak,
4097 &old_alignment, &skip, &override,
4098 &type_change_ok, &size_change_ok))
4099 goto error_free_vers;
4100
4101 if (skip)
4102 continue;
4103
4104 if (override)
4105 definition = FALSE;
4106
4107 h = *sym_hash;
4108 while (h->root.type == bfd_link_hash_indirect
4109 || h->root.type == bfd_link_hash_warning)
4110 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4111
4112 if (elf_tdata (abfd)->verdef != NULL
4113 && vernum > 1
4114 && definition)
4115 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4116 }
4117
4118 if (! (_bfd_generic_link_add_one_symbol
4119 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4120 (struct bfd_link_hash_entry **) sym_hash)))
4121 goto error_free_vers;
4122
4123 h = *sym_hash;
4124 /* We need to make sure that indirect symbol dynamic flags are
4125 updated. */
4126 hi = h;
4127 while (h->root.type == bfd_link_hash_indirect
4128 || h->root.type == bfd_link_hash_warning)
4129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4130
4131 *sym_hash = h;
4132
4133 new_weak = (flags & BSF_WEAK) != 0;
4134 new_weakdef = FALSE;
4135 if (dynamic
4136 && definition
4137 && new_weak
4138 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4139 && is_elf_hash_table (htab)
4140 && h->u.weakdef == NULL)
4141 {
4142 /* Keep a list of all weak defined non function symbols from
4143 a dynamic object, using the weakdef field. Later in this
4144 function we will set the weakdef field to the correct
4145 value. We only put non-function symbols from dynamic
4146 objects on this list, because that happens to be the only
4147 time we need to know the normal symbol corresponding to a
4148 weak symbol, and the information is time consuming to
4149 figure out. If the weakdef field is not already NULL,
4150 then this symbol was already defined by some previous
4151 dynamic object, and we will be using that previous
4152 definition anyhow. */
4153
4154 h->u.weakdef = weaks;
4155 weaks = h;
4156 new_weakdef = TRUE;
4157 }
4158
4159 /* Set the alignment of a common symbol. */
4160 if ((common || bfd_is_com_section (sec))
4161 && h->root.type == bfd_link_hash_common)
4162 {
4163 unsigned int align;
4164
4165 if (common)
4166 align = bfd_log2 (isym->st_value);
4167 else
4168 {
4169 /* The new symbol is a common symbol in a shared object.
4170 We need to get the alignment from the section. */
4171 align = new_sec->alignment_power;
4172 }
4173 if (align > old_alignment)
4174 h->root.u.c.p->alignment_power = align;
4175 else
4176 h->root.u.c.p->alignment_power = old_alignment;
4177 }
4178
4179 if (is_elf_hash_table (htab))
4180 {
4181 /* Set a flag in the hash table entry indicating the type of
4182 reference or definition we just found. A dynamic symbol
4183 is one which is referenced or defined by both a regular
4184 object and a shared object. */
4185 bfd_boolean dynsym = FALSE;
4186
4187 /* Plugin symbols aren't normal. Don't set def_regular or
4188 ref_regular for them, or make them dynamic. */
4189 if ((abfd->flags & BFD_PLUGIN) != 0)
4190 ;
4191 else if (! dynamic)
4192 {
4193 if (! definition)
4194 {
4195 h->ref_regular = 1;
4196 if (bind != STB_WEAK)
4197 h->ref_regular_nonweak = 1;
4198 }
4199 else
4200 {
4201 h->def_regular = 1;
4202 if (h->def_dynamic)
4203 {
4204 h->def_dynamic = 0;
4205 h->ref_dynamic = 1;
4206 }
4207 }
4208
4209 /* If the indirect symbol has been forced local, don't
4210 make the real symbol dynamic. */
4211 if ((h == hi || !hi->forced_local)
4212 && (! info->executable
4213 || h->def_dynamic
4214 || h->ref_dynamic))
4215 dynsym = TRUE;
4216 }
4217 else
4218 {
4219 if (! definition)
4220 {
4221 h->ref_dynamic = 1;
4222 hi->ref_dynamic = 1;
4223 }
4224 else
4225 {
4226 h->def_dynamic = 1;
4227 hi->def_dynamic = 1;
4228 }
4229
4230 /* If the indirect symbol has been forced local, don't
4231 make the real symbol dynamic. */
4232 if ((h == hi || !hi->forced_local)
4233 && (h->def_regular
4234 || h->ref_regular
4235 || (h->u.weakdef != NULL
4236 && ! new_weakdef
4237 && h->u.weakdef->dynindx != -1)))
4238 dynsym = TRUE;
4239 }
4240
4241 /* Check to see if we need to add an indirect symbol for
4242 the default name. */
4243 if (definition
4244 || (!override && h->root.type == bfd_link_hash_common))
4245 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4246 sec, value, &old_bfd, &dynsym))
4247 goto error_free_vers;
4248
4249 /* Check the alignment when a common symbol is involved. This
4250 can change when a common symbol is overridden by a normal
4251 definition or a common symbol is ignored due to the old
4252 normal definition. We need to make sure the maximum
4253 alignment is maintained. */
4254 if ((old_alignment || common)
4255 && h->root.type != bfd_link_hash_common)
4256 {
4257 unsigned int common_align;
4258 unsigned int normal_align;
4259 unsigned int symbol_align;
4260 bfd *normal_bfd;
4261 bfd *common_bfd;
4262
4263 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4264 || h->root.type == bfd_link_hash_defweak);
4265
4266 symbol_align = ffs (h->root.u.def.value) - 1;
4267 if (h->root.u.def.section->owner != NULL
4268 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4269 {
4270 normal_align = h->root.u.def.section->alignment_power;
4271 if (normal_align > symbol_align)
4272 normal_align = symbol_align;
4273 }
4274 else
4275 normal_align = symbol_align;
4276
4277 if (old_alignment)
4278 {
4279 common_align = old_alignment;
4280 common_bfd = old_bfd;
4281 normal_bfd = abfd;
4282 }
4283 else
4284 {
4285 common_align = bfd_log2 (isym->st_value);
4286 common_bfd = abfd;
4287 normal_bfd = old_bfd;
4288 }
4289
4290 if (normal_align < common_align)
4291 {
4292 /* PR binutils/2735 */
4293 if (normal_bfd == NULL)
4294 (*_bfd_error_handler)
4295 (_("Warning: alignment %u of common symbol `%s' in %B is"
4296 " greater than the alignment (%u) of its section %A"),
4297 common_bfd, h->root.u.def.section,
4298 1 << common_align, name, 1 << normal_align);
4299 else
4300 (*_bfd_error_handler)
4301 (_("Warning: alignment %u of symbol `%s' in %B"
4302 " is smaller than %u in %B"),
4303 normal_bfd, common_bfd,
4304 1 << normal_align, name, 1 << common_align);
4305 }
4306 }
4307
4308 /* Remember the symbol size if it isn't undefined. */
4309 if (isym->st_size != 0
4310 && isym->st_shndx != SHN_UNDEF
4311 && (definition || h->size == 0))
4312 {
4313 if (h->size != 0
4314 && h->size != isym->st_size
4315 && ! size_change_ok)
4316 (*_bfd_error_handler)
4317 (_("Warning: size of symbol `%s' changed"
4318 " from %lu in %B to %lu in %B"),
4319 old_bfd, abfd,
4320 name, (unsigned long) h->size,
4321 (unsigned long) isym->st_size);
4322
4323 h->size = isym->st_size;
4324 }
4325
4326 /* If this is a common symbol, then we always want H->SIZE
4327 to be the size of the common symbol. The code just above
4328 won't fix the size if a common symbol becomes larger. We
4329 don't warn about a size change here, because that is
4330 covered by --warn-common. Allow changes between different
4331 function types. */
4332 if (h->root.type == bfd_link_hash_common)
4333 h->size = h->root.u.c.size;
4334
4335 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4336 && ((definition && !new_weak)
4337 || (old_weak && h->root.type == bfd_link_hash_common)
4338 || h->type == STT_NOTYPE))
4339 {
4340 unsigned int type = ELF_ST_TYPE (isym->st_info);
4341
4342 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4343 symbol. */
4344 if (type == STT_GNU_IFUNC
4345 && (abfd->flags & DYNAMIC) != 0)
4346 type = STT_FUNC;
4347
4348 if (h->type != type)
4349 {
4350 if (h->type != STT_NOTYPE && ! type_change_ok)
4351 (*_bfd_error_handler)
4352 (_("Warning: type of symbol `%s' changed"
4353 " from %d to %d in %B"),
4354 abfd, name, h->type, type);
4355
4356 h->type = type;
4357 }
4358 }
4359
4360 /* Merge st_other field. */
4361 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4362
4363 /* We don't want to make debug symbol dynamic. */
4364 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4365 dynsym = FALSE;
4366
4367 /* Nor should we make plugin symbols dynamic. */
4368 if ((abfd->flags & BFD_PLUGIN) != 0)
4369 dynsym = FALSE;
4370
4371 if (definition)
4372 {
4373 h->target_internal = isym->st_target_internal;
4374 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4375 }
4376
4377 if (definition && !dynamic)
4378 {
4379 char *p = strchr (name, ELF_VER_CHR);
4380 if (p != NULL && p[1] != ELF_VER_CHR)
4381 {
4382 /* Queue non-default versions so that .symver x, x@FOO
4383 aliases can be checked. */
4384 if (!nondeflt_vers)
4385 {
4386 amt = ((isymend - isym + 1)
4387 * sizeof (struct elf_link_hash_entry *));
4388 nondeflt_vers
4389 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4390 if (!nondeflt_vers)
4391 goto error_free_vers;
4392 }
4393 nondeflt_vers[nondeflt_vers_cnt++] = h;
4394 }
4395 }
4396
4397 if (dynsym && h->dynindx == -1)
4398 {
4399 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4400 goto error_free_vers;
4401 if (h->u.weakdef != NULL
4402 && ! new_weakdef
4403 && h->u.weakdef->dynindx == -1)
4404 {
4405 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4406 goto error_free_vers;
4407 }
4408 }
4409 else if (dynsym && h->dynindx != -1)
4410 /* If the symbol already has a dynamic index, but
4411 visibility says it should not be visible, turn it into
4412 a local symbol. */
4413 switch (ELF_ST_VISIBILITY (h->other))
4414 {
4415 case STV_INTERNAL:
4416 case STV_HIDDEN:
4417 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4418 dynsym = FALSE;
4419 break;
4420 }
4421
4422 /* Don't add DT_NEEDED for references from the dummy bfd. */
4423 if (!add_needed
4424 && definition
4425 && ((dynsym
4426 && h->ref_regular_nonweak
4427 && (old_bfd == NULL
4428 || (old_bfd->flags & BFD_PLUGIN) == 0))
4429 || (h->ref_dynamic_nonweak
4430 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4431 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4432 {
4433 int ret;
4434 const char *soname = elf_dt_name (abfd);
4435
4436 info->callbacks->minfo ("%!", soname, old_bfd,
4437 h->root.root.string);
4438
4439 /* A symbol from a library loaded via DT_NEEDED of some
4440 other library is referenced by a regular object.
4441 Add a DT_NEEDED entry for it. Issue an error if
4442 --no-add-needed is used and the reference was not
4443 a weak one. */
4444 if (old_bfd != NULL
4445 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4446 {
4447 (*_bfd_error_handler)
4448 (_("%B: undefined reference to symbol '%s'"),
4449 old_bfd, name);
4450 bfd_set_error (bfd_error_missing_dso);
4451 goto error_free_vers;
4452 }
4453
4454 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4455 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4456
4457 add_needed = TRUE;
4458 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4459 if (ret < 0)
4460 goto error_free_vers;
4461
4462 BFD_ASSERT (ret == 0);
4463 }
4464 }
4465 }
4466
4467 if (extversym != NULL)
4468 {
4469 free (extversym);
4470 extversym = NULL;
4471 }
4472
4473 if (isymbuf != NULL)
4474 {
4475 free (isymbuf);
4476 isymbuf = NULL;
4477 }
4478
4479 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4480 {
4481 unsigned int i;
4482
4483 /* Restore the symbol table. */
4484 old_ent = (char *) old_tab + tabsize;
4485 memset (elf_sym_hashes (abfd), 0,
4486 extsymcount * sizeof (struct elf_link_hash_entry *));
4487 htab->root.table.table = old_table;
4488 htab->root.table.size = old_size;
4489 htab->root.table.count = old_count;
4490 memcpy (htab->root.table.table, old_tab, tabsize);
4491 htab->root.undefs = old_undefs;
4492 htab->root.undefs_tail = old_undefs_tail;
4493 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4494 for (i = 0; i < htab->root.table.size; i++)
4495 {
4496 struct bfd_hash_entry *p;
4497 struct elf_link_hash_entry *h;
4498 bfd_size_type size;
4499 unsigned int alignment_power;
4500
4501 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4502 {
4503 h = (struct elf_link_hash_entry *) p;
4504 if (h->root.type == bfd_link_hash_warning)
4505 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4506 if (h->dynindx >= old_dynsymcount
4507 && h->dynstr_index < old_dynstr_size)
4508 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4509
4510 /* Preserve the maximum alignment and size for common
4511 symbols even if this dynamic lib isn't on DT_NEEDED
4512 since it can still be loaded at run time by another
4513 dynamic lib. */
4514 if (h->root.type == bfd_link_hash_common)
4515 {
4516 size = h->root.u.c.size;
4517 alignment_power = h->root.u.c.p->alignment_power;
4518 }
4519 else
4520 {
4521 size = 0;
4522 alignment_power = 0;
4523 }
4524 memcpy (p, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 h = (struct elf_link_hash_entry *) p;
4527 if (h->root.type == bfd_link_hash_warning)
4528 {
4529 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4530 old_ent = (char *) old_ent + htab->root.table.entsize;
4531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4532 }
4533 if (h->root.type == bfd_link_hash_common)
4534 {
4535 if (size > h->root.u.c.size)
4536 h->root.u.c.size = size;
4537 if (alignment_power > h->root.u.c.p->alignment_power)
4538 h->root.u.c.p->alignment_power = alignment_power;
4539 }
4540 }
4541 }
4542
4543 /* Make a special call to the linker "notice" function to
4544 tell it that symbols added for crefs may need to be removed. */
4545 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4546 goto error_free_vers;
4547
4548 free (old_tab);
4549 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4550 alloc_mark);
4551 if (nondeflt_vers != NULL)
4552 free (nondeflt_vers);
4553 return TRUE;
4554 }
4555
4556 if (old_tab != NULL)
4557 {
4558 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4559 goto error_free_vers;
4560 free (old_tab);
4561 old_tab = NULL;
4562 }
4563
4564 /* Now that all the symbols from this input file are created, handle
4565 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4566 if (nondeflt_vers != NULL)
4567 {
4568 bfd_size_type cnt, symidx;
4569
4570 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4571 {
4572 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4573 char *shortname, *p;
4574
4575 p = strchr (h->root.root.string, ELF_VER_CHR);
4576 if (p == NULL
4577 || (h->root.type != bfd_link_hash_defined
4578 && h->root.type != bfd_link_hash_defweak))
4579 continue;
4580
4581 amt = p - h->root.root.string;
4582 shortname = (char *) bfd_malloc (amt + 1);
4583 if (!shortname)
4584 goto error_free_vers;
4585 memcpy (shortname, h->root.root.string, amt);
4586 shortname[amt] = '\0';
4587
4588 hi = (struct elf_link_hash_entry *)
4589 bfd_link_hash_lookup (&htab->root, shortname,
4590 FALSE, FALSE, FALSE);
4591 if (hi != NULL
4592 && hi->root.type == h->root.type
4593 && hi->root.u.def.value == h->root.u.def.value
4594 && hi->root.u.def.section == h->root.u.def.section)
4595 {
4596 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4597 hi->root.type = bfd_link_hash_indirect;
4598 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4599 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4600 sym_hash = elf_sym_hashes (abfd);
4601 if (sym_hash)
4602 for (symidx = 0; symidx < extsymcount; ++symidx)
4603 if (sym_hash[symidx] == hi)
4604 {
4605 sym_hash[symidx] = h;
4606 break;
4607 }
4608 }
4609 free (shortname);
4610 }
4611 free (nondeflt_vers);
4612 nondeflt_vers = NULL;
4613 }
4614
4615 /* Now set the weakdefs field correctly for all the weak defined
4616 symbols we found. The only way to do this is to search all the
4617 symbols. Since we only need the information for non functions in
4618 dynamic objects, that's the only time we actually put anything on
4619 the list WEAKS. We need this information so that if a regular
4620 object refers to a symbol defined weakly in a dynamic object, the
4621 real symbol in the dynamic object is also put in the dynamic
4622 symbols; we also must arrange for both symbols to point to the
4623 same memory location. We could handle the general case of symbol
4624 aliasing, but a general symbol alias can only be generated in
4625 assembler code, handling it correctly would be very time
4626 consuming, and other ELF linkers don't handle general aliasing
4627 either. */
4628 if (weaks != NULL)
4629 {
4630 struct elf_link_hash_entry **hpp;
4631 struct elf_link_hash_entry **hppend;
4632 struct elf_link_hash_entry **sorted_sym_hash;
4633 struct elf_link_hash_entry *h;
4634 size_t sym_count;
4635
4636 /* Since we have to search the whole symbol list for each weak
4637 defined symbol, search time for N weak defined symbols will be
4638 O(N^2). Binary search will cut it down to O(NlogN). */
4639 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4640 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4641 if (sorted_sym_hash == NULL)
4642 goto error_return;
4643 sym_hash = sorted_sym_hash;
4644 hpp = elf_sym_hashes (abfd);
4645 hppend = hpp + extsymcount;
4646 sym_count = 0;
4647 for (; hpp < hppend; hpp++)
4648 {
4649 h = *hpp;
4650 if (h != NULL
4651 && h->root.type == bfd_link_hash_defined
4652 && !bed->is_function_type (h->type))
4653 {
4654 *sym_hash = h;
4655 sym_hash++;
4656 sym_count++;
4657 }
4658 }
4659
4660 qsort (sorted_sym_hash, sym_count,
4661 sizeof (struct elf_link_hash_entry *),
4662 elf_sort_symbol);
4663
4664 while (weaks != NULL)
4665 {
4666 struct elf_link_hash_entry *hlook;
4667 asection *slook;
4668 bfd_vma vlook;
4669 size_t i, j, idx = 0;
4670
4671 hlook = weaks;
4672 weaks = hlook->u.weakdef;
4673 hlook->u.weakdef = NULL;
4674
4675 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4676 || hlook->root.type == bfd_link_hash_defweak
4677 || hlook->root.type == bfd_link_hash_common
4678 || hlook->root.type == bfd_link_hash_indirect);
4679 slook = hlook->root.u.def.section;
4680 vlook = hlook->root.u.def.value;
4681
4682 i = 0;
4683 j = sym_count;
4684 while (i != j)
4685 {
4686 bfd_signed_vma vdiff;
4687 idx = (i + j) / 2;
4688 h = sorted_sym_hash[idx];
4689 vdiff = vlook - h->root.u.def.value;
4690 if (vdiff < 0)
4691 j = idx;
4692 else if (vdiff > 0)
4693 i = idx + 1;
4694 else
4695 {
4696 long sdiff = slook->id - h->root.u.def.section->id;
4697 if (sdiff < 0)
4698 j = idx;
4699 else if (sdiff > 0)
4700 i = idx + 1;
4701 else
4702 break;
4703 }
4704 }
4705
4706 /* We didn't find a value/section match. */
4707 if (i == j)
4708 continue;
4709
4710 /* With multiple aliases, or when the weak symbol is already
4711 strongly defined, we have multiple matching symbols and
4712 the binary search above may land on any of them. Step
4713 one past the matching symbol(s). */
4714 while (++idx != j)
4715 {
4716 h = sorted_sym_hash[idx];
4717 if (h->root.u.def.section != slook
4718 || h->root.u.def.value != vlook)
4719 break;
4720 }
4721
4722 /* Now look back over the aliases. Since we sorted by size
4723 as well as value and section, we'll choose the one with
4724 the largest size. */
4725 while (idx-- != i)
4726 {
4727 h = sorted_sym_hash[idx];
4728
4729 /* Stop if value or section doesn't match. */
4730 if (h->root.u.def.section != slook
4731 || h->root.u.def.value != vlook)
4732 break;
4733 else if (h != hlook)
4734 {
4735 hlook->u.weakdef = h;
4736
4737 /* If the weak definition is in the list of dynamic
4738 symbols, make sure the real definition is put
4739 there as well. */
4740 if (hlook->dynindx != -1 && h->dynindx == -1)
4741 {
4742 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4743 {
4744 err_free_sym_hash:
4745 free (sorted_sym_hash);
4746 goto error_return;
4747 }
4748 }
4749
4750 /* If the real definition is in the list of dynamic
4751 symbols, make sure the weak definition is put
4752 there as well. If we don't do this, then the
4753 dynamic loader might not merge the entries for the
4754 real definition and the weak definition. */
4755 if (h->dynindx != -1 && hlook->dynindx == -1)
4756 {
4757 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4758 goto err_free_sym_hash;
4759 }
4760 break;
4761 }
4762 }
4763 }
4764
4765 free (sorted_sym_hash);
4766 }
4767
4768 if (bed->check_directives
4769 && !(*bed->check_directives) (abfd, info))
4770 return FALSE;
4771
4772 /* If this object is the same format as the output object, and it is
4773 not a shared library, then let the backend look through the
4774 relocs.
4775
4776 This is required to build global offset table entries and to
4777 arrange for dynamic relocs. It is not required for the
4778 particular common case of linking non PIC code, even when linking
4779 against shared libraries, but unfortunately there is no way of
4780 knowing whether an object file has been compiled PIC or not.
4781 Looking through the relocs is not particularly time consuming.
4782 The problem is that we must either (1) keep the relocs in memory,
4783 which causes the linker to require additional runtime memory or
4784 (2) read the relocs twice from the input file, which wastes time.
4785 This would be a good case for using mmap.
4786
4787 I have no idea how to handle linking PIC code into a file of a
4788 different format. It probably can't be done. */
4789 if (! dynamic
4790 && is_elf_hash_table (htab)
4791 && bed->check_relocs != NULL
4792 && elf_object_id (abfd) == elf_hash_table_id (htab)
4793 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4794 {
4795 asection *o;
4796
4797 for (o = abfd->sections; o != NULL; o = o->next)
4798 {
4799 Elf_Internal_Rela *internal_relocs;
4800 bfd_boolean ok;
4801
4802 if ((o->flags & SEC_RELOC) == 0
4803 || o->reloc_count == 0
4804 || ((info->strip == strip_all || info->strip == strip_debugger)
4805 && (o->flags & SEC_DEBUGGING) != 0)
4806 || bfd_is_abs_section (o->output_section))
4807 continue;
4808
4809 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4810 info->keep_memory);
4811 if (internal_relocs == NULL)
4812 goto error_return;
4813
4814 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4815
4816 if (elf_section_data (o)->relocs != internal_relocs)
4817 free (internal_relocs);
4818
4819 if (! ok)
4820 goto error_return;
4821 }
4822 }
4823
4824 /* If this is a non-traditional link, try to optimize the handling
4825 of the .stab/.stabstr sections. */
4826 if (! dynamic
4827 && ! info->traditional_format
4828 && is_elf_hash_table (htab)
4829 && (info->strip != strip_all && info->strip != strip_debugger))
4830 {
4831 asection *stabstr;
4832
4833 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4834 if (stabstr != NULL)
4835 {
4836 bfd_size_type string_offset = 0;
4837 asection *stab;
4838
4839 for (stab = abfd->sections; stab; stab = stab->next)
4840 if (CONST_STRNEQ (stab->name, ".stab")
4841 && (!stab->name[5] ||
4842 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4843 && (stab->flags & SEC_MERGE) == 0
4844 && !bfd_is_abs_section (stab->output_section))
4845 {
4846 struct bfd_elf_section_data *secdata;
4847
4848 secdata = elf_section_data (stab);
4849 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4850 stabstr, &secdata->sec_info,
4851 &string_offset))
4852 goto error_return;
4853 if (secdata->sec_info)
4854 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4855 }
4856 }
4857 }
4858
4859 if (is_elf_hash_table (htab) && add_needed)
4860 {
4861 /* Add this bfd to the loaded list. */
4862 struct elf_link_loaded_list *n;
4863
4864 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4865 if (n == NULL)
4866 goto error_return;
4867 n->abfd = abfd;
4868 n->next = htab->loaded;
4869 htab->loaded = n;
4870 }
4871
4872 return TRUE;
4873
4874 error_free_vers:
4875 if (old_tab != NULL)
4876 free (old_tab);
4877 if (nondeflt_vers != NULL)
4878 free (nondeflt_vers);
4879 if (extversym != NULL)
4880 free (extversym);
4881 error_free_sym:
4882 if (isymbuf != NULL)
4883 free (isymbuf);
4884 error_return:
4885 return FALSE;
4886 }
4887
4888 /* Return the linker hash table entry of a symbol that might be
4889 satisfied by an archive symbol. Return -1 on error. */
4890
4891 struct elf_link_hash_entry *
4892 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4893 struct bfd_link_info *info,
4894 const char *name)
4895 {
4896 struct elf_link_hash_entry *h;
4897 char *p, *copy;
4898 size_t len, first;
4899
4900 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4901 if (h != NULL)
4902 return h;
4903
4904 /* If this is a default version (the name contains @@), look up the
4905 symbol again with only one `@' as well as without the version.
4906 The effect is that references to the symbol with and without the
4907 version will be matched by the default symbol in the archive. */
4908
4909 p = strchr (name, ELF_VER_CHR);
4910 if (p == NULL || p[1] != ELF_VER_CHR)
4911 return h;
4912
4913 /* First check with only one `@'. */
4914 len = strlen (name);
4915 copy = (char *) bfd_alloc (abfd, len);
4916 if (copy == NULL)
4917 return (struct elf_link_hash_entry *) 0 - 1;
4918
4919 first = p - name + 1;
4920 memcpy (copy, name, first);
4921 memcpy (copy + first, name + first + 1, len - first);
4922
4923 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4924 if (h == NULL)
4925 {
4926 /* We also need to check references to the symbol without the
4927 version. */
4928 copy[first - 1] = '\0';
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4930 FALSE, FALSE, TRUE);
4931 }
4932
4933 bfd_release (abfd, copy);
4934 return h;
4935 }
4936
4937 /* Add symbols from an ELF archive file to the linker hash table. We
4938 don't use _bfd_generic_link_add_archive_symbols because we need to
4939 handle versioned symbols.
4940
4941 Fortunately, ELF archive handling is simpler than that done by
4942 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4943 oddities. In ELF, if we find a symbol in the archive map, and the
4944 symbol is currently undefined, we know that we must pull in that
4945 object file.
4946
4947 Unfortunately, we do have to make multiple passes over the symbol
4948 table until nothing further is resolved. */
4949
4950 static bfd_boolean
4951 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4952 {
4953 symindex c;
4954 unsigned char *included = NULL;
4955 carsym *symdefs;
4956 bfd_boolean loop;
4957 bfd_size_type amt;
4958 const struct elf_backend_data *bed;
4959 struct elf_link_hash_entry * (*archive_symbol_lookup)
4960 (bfd *, struct bfd_link_info *, const char *);
4961
4962 if (! bfd_has_map (abfd))
4963 {
4964 /* An empty archive is a special case. */
4965 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4966 return TRUE;
4967 bfd_set_error (bfd_error_no_armap);
4968 return FALSE;
4969 }
4970
4971 /* Keep track of all symbols we know to be already defined, and all
4972 files we know to be already included. This is to speed up the
4973 second and subsequent passes. */
4974 c = bfd_ardata (abfd)->symdef_count;
4975 if (c == 0)
4976 return TRUE;
4977 amt = c;
4978 amt *= sizeof (*included);
4979 included = (unsigned char *) bfd_zmalloc (amt);
4980 if (included == NULL)
4981 return FALSE;
4982
4983 symdefs = bfd_ardata (abfd)->symdefs;
4984 bed = get_elf_backend_data (abfd);
4985 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4986
4987 do
4988 {
4989 file_ptr last;
4990 symindex i;
4991 carsym *symdef;
4992 carsym *symdefend;
4993
4994 loop = FALSE;
4995 last = -1;
4996
4997 symdef = symdefs;
4998 symdefend = symdef + c;
4999 for (i = 0; symdef < symdefend; symdef++, i++)
5000 {
5001 struct elf_link_hash_entry *h;
5002 bfd *element;
5003 struct bfd_link_hash_entry *undefs_tail;
5004 symindex mark;
5005
5006 if (included[i])
5007 continue;
5008 if (symdef->file_offset == last)
5009 {
5010 included[i] = TRUE;
5011 continue;
5012 }
5013
5014 h = archive_symbol_lookup (abfd, info, symdef->name);
5015 if (h == (struct elf_link_hash_entry *) 0 - 1)
5016 goto error_return;
5017
5018 if (h == NULL)
5019 continue;
5020
5021 if (h->root.type == bfd_link_hash_common)
5022 {
5023 /* We currently have a common symbol. The archive map contains
5024 a reference to this symbol, so we may want to include it. We
5025 only want to include it however, if this archive element
5026 contains a definition of the symbol, not just another common
5027 declaration of it.
5028
5029 Unfortunately some archivers (including GNU ar) will put
5030 declarations of common symbols into their archive maps, as
5031 well as real definitions, so we cannot just go by the archive
5032 map alone. Instead we must read in the element's symbol
5033 table and check that to see what kind of symbol definition
5034 this is. */
5035 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5036 continue;
5037 }
5038 else if (h->root.type != bfd_link_hash_undefined)
5039 {
5040 if (h->root.type != bfd_link_hash_undefweak)
5041 /* Symbol must be defined. Don't check it again. */
5042 included[i] = TRUE;
5043 continue;
5044 }
5045
5046 /* We need to include this archive member. */
5047 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5048 if (element == NULL)
5049 goto error_return;
5050
5051 if (! bfd_check_format (element, bfd_object))
5052 goto error_return;
5053
5054 undefs_tail = info->hash->undefs_tail;
5055
5056 if (!(*info->callbacks
5057 ->add_archive_element) (info, element, symdef->name, &element))
5058 goto error_return;
5059 if (!bfd_link_add_symbols (element, info))
5060 goto error_return;
5061
5062 /* If there are any new undefined symbols, we need to make
5063 another pass through the archive in order to see whether
5064 they can be defined. FIXME: This isn't perfect, because
5065 common symbols wind up on undefs_tail and because an
5066 undefined symbol which is defined later on in this pass
5067 does not require another pass. This isn't a bug, but it
5068 does make the code less efficient than it could be. */
5069 if (undefs_tail != info->hash->undefs_tail)
5070 loop = TRUE;
5071
5072 /* Look backward to mark all symbols from this object file
5073 which we have already seen in this pass. */
5074 mark = i;
5075 do
5076 {
5077 included[mark] = TRUE;
5078 if (mark == 0)
5079 break;
5080 --mark;
5081 }
5082 while (symdefs[mark].file_offset == symdef->file_offset);
5083
5084 /* We mark subsequent symbols from this object file as we go
5085 on through the loop. */
5086 last = symdef->file_offset;
5087 }
5088 }
5089 while (loop);
5090
5091 free (included);
5092
5093 return TRUE;
5094
5095 error_return:
5096 if (included != NULL)
5097 free (included);
5098 return FALSE;
5099 }
5100
5101 /* Given an ELF BFD, add symbols to the global hash table as
5102 appropriate. */
5103
5104 bfd_boolean
5105 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5106 {
5107 switch (bfd_get_format (abfd))
5108 {
5109 case bfd_object:
5110 return elf_link_add_object_symbols (abfd, info);
5111 case bfd_archive:
5112 return elf_link_add_archive_symbols (abfd, info);
5113 default:
5114 bfd_set_error (bfd_error_wrong_format);
5115 return FALSE;
5116 }
5117 }
5118 \f
5119 struct hash_codes_info
5120 {
5121 unsigned long *hashcodes;
5122 bfd_boolean error;
5123 };
5124
5125 /* This function will be called though elf_link_hash_traverse to store
5126 all hash value of the exported symbols in an array. */
5127
5128 static bfd_boolean
5129 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5130 {
5131 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5132 const char *name;
5133 char *p;
5134 unsigned long ha;
5135 char *alc = NULL;
5136
5137 /* Ignore indirect symbols. These are added by the versioning code. */
5138 if (h->dynindx == -1)
5139 return TRUE;
5140
5141 name = h->root.root.string;
5142 p = strchr (name, ELF_VER_CHR);
5143 if (p != NULL)
5144 {
5145 alc = (char *) bfd_malloc (p - name + 1);
5146 if (alc == NULL)
5147 {
5148 inf->error = TRUE;
5149 return FALSE;
5150 }
5151 memcpy (alc, name, p - name);
5152 alc[p - name] = '\0';
5153 name = alc;
5154 }
5155
5156 /* Compute the hash value. */
5157 ha = bfd_elf_hash (name);
5158
5159 /* Store the found hash value in the array given as the argument. */
5160 *(inf->hashcodes)++ = ha;
5161
5162 /* And store it in the struct so that we can put it in the hash table
5163 later. */
5164 h->u.elf_hash_value = ha;
5165
5166 if (alc != NULL)
5167 free (alc);
5168
5169 return TRUE;
5170 }
5171
5172 struct collect_gnu_hash_codes
5173 {
5174 bfd *output_bfd;
5175 const struct elf_backend_data *bed;
5176 unsigned long int nsyms;
5177 unsigned long int maskbits;
5178 unsigned long int *hashcodes;
5179 unsigned long int *hashval;
5180 unsigned long int *indx;
5181 unsigned long int *counts;
5182 bfd_vma *bitmask;
5183 bfd_byte *contents;
5184 long int min_dynindx;
5185 unsigned long int bucketcount;
5186 unsigned long int symindx;
5187 long int local_indx;
5188 long int shift1, shift2;
5189 unsigned long int mask;
5190 bfd_boolean error;
5191 };
5192
5193 /* This function will be called though elf_link_hash_traverse to store
5194 all hash value of the exported symbols in an array. */
5195
5196 static bfd_boolean
5197 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5198 {
5199 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5200 const char *name;
5201 char *p;
5202 unsigned long ha;
5203 char *alc = NULL;
5204
5205 /* Ignore indirect symbols. These are added by the versioning code. */
5206 if (h->dynindx == -1)
5207 return TRUE;
5208
5209 /* Ignore also local symbols and undefined symbols. */
5210 if (! (*s->bed->elf_hash_symbol) (h))
5211 return TRUE;
5212
5213 name = h->root.root.string;
5214 p = strchr (name, ELF_VER_CHR);
5215 if (p != NULL)
5216 {
5217 alc = (char *) bfd_malloc (p - name + 1);
5218 if (alc == NULL)
5219 {
5220 s->error = TRUE;
5221 return FALSE;
5222 }
5223 memcpy (alc, name, p - name);
5224 alc[p - name] = '\0';
5225 name = alc;
5226 }
5227
5228 /* Compute the hash value. */
5229 ha = bfd_elf_gnu_hash (name);
5230
5231 /* Store the found hash value in the array for compute_bucket_count,
5232 and also for .dynsym reordering purposes. */
5233 s->hashcodes[s->nsyms] = ha;
5234 s->hashval[h->dynindx] = ha;
5235 ++s->nsyms;
5236 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5237 s->min_dynindx = h->dynindx;
5238
5239 if (alc != NULL)
5240 free (alc);
5241
5242 return TRUE;
5243 }
5244
5245 /* This function will be called though elf_link_hash_traverse to do
5246 final dynaminc symbol renumbering. */
5247
5248 static bfd_boolean
5249 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5250 {
5251 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5252 unsigned long int bucket;
5253 unsigned long int val;
5254
5255 /* Ignore indirect symbols. */
5256 if (h->dynindx == -1)
5257 return TRUE;
5258
5259 /* Ignore also local symbols and undefined symbols. */
5260 if (! (*s->bed->elf_hash_symbol) (h))
5261 {
5262 if (h->dynindx >= s->min_dynindx)
5263 h->dynindx = s->local_indx++;
5264 return TRUE;
5265 }
5266
5267 bucket = s->hashval[h->dynindx] % s->bucketcount;
5268 val = (s->hashval[h->dynindx] >> s->shift1)
5269 & ((s->maskbits >> s->shift1) - 1);
5270 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5271 s->bitmask[val]
5272 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5273 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5274 if (s->counts[bucket] == 1)
5275 /* Last element terminates the chain. */
5276 val |= 1;
5277 bfd_put_32 (s->output_bfd, val,
5278 s->contents + (s->indx[bucket] - s->symindx) * 4);
5279 --s->counts[bucket];
5280 h->dynindx = s->indx[bucket]++;
5281 return TRUE;
5282 }
5283
5284 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5285
5286 bfd_boolean
5287 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5288 {
5289 return !(h->forced_local
5290 || h->root.type == bfd_link_hash_undefined
5291 || h->root.type == bfd_link_hash_undefweak
5292 || ((h->root.type == bfd_link_hash_defined
5293 || h->root.type == bfd_link_hash_defweak)
5294 && h->root.u.def.section->output_section == NULL));
5295 }
5296
5297 /* Array used to determine the number of hash table buckets to use
5298 based on the number of symbols there are. If there are fewer than
5299 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5300 fewer than 37 we use 17 buckets, and so forth. We never use more
5301 than 32771 buckets. */
5302
5303 static const size_t elf_buckets[] =
5304 {
5305 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5306 16411, 32771, 0
5307 };
5308
5309 /* Compute bucket count for hashing table. We do not use a static set
5310 of possible tables sizes anymore. Instead we determine for all
5311 possible reasonable sizes of the table the outcome (i.e., the
5312 number of collisions etc) and choose the best solution. The
5313 weighting functions are not too simple to allow the table to grow
5314 without bounds. Instead one of the weighting factors is the size.
5315 Therefore the result is always a good payoff between few collisions
5316 (= short chain lengths) and table size. */
5317 static size_t
5318 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5319 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5320 unsigned long int nsyms,
5321 int gnu_hash)
5322 {
5323 size_t best_size = 0;
5324 unsigned long int i;
5325
5326 /* We have a problem here. The following code to optimize the table
5327 size requires an integer type with more the 32 bits. If
5328 BFD_HOST_U_64_BIT is set we know about such a type. */
5329 #ifdef BFD_HOST_U_64_BIT
5330 if (info->optimize)
5331 {
5332 size_t minsize;
5333 size_t maxsize;
5334 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5335 bfd *dynobj = elf_hash_table (info)->dynobj;
5336 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5337 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5338 unsigned long int *counts;
5339 bfd_size_type amt;
5340 unsigned int no_improvement_count = 0;
5341
5342 /* Possible optimization parameters: if we have NSYMS symbols we say
5343 that the hashing table must at least have NSYMS/4 and at most
5344 2*NSYMS buckets. */
5345 minsize = nsyms / 4;
5346 if (minsize == 0)
5347 minsize = 1;
5348 best_size = maxsize = nsyms * 2;
5349 if (gnu_hash)
5350 {
5351 if (minsize < 2)
5352 minsize = 2;
5353 if ((best_size & 31) == 0)
5354 ++best_size;
5355 }
5356
5357 /* Create array where we count the collisions in. We must use bfd_malloc
5358 since the size could be large. */
5359 amt = maxsize;
5360 amt *= sizeof (unsigned long int);
5361 counts = (unsigned long int *) bfd_malloc (amt);
5362 if (counts == NULL)
5363 return 0;
5364
5365 /* Compute the "optimal" size for the hash table. The criteria is a
5366 minimal chain length. The minor criteria is (of course) the size
5367 of the table. */
5368 for (i = minsize; i < maxsize; ++i)
5369 {
5370 /* Walk through the array of hashcodes and count the collisions. */
5371 BFD_HOST_U_64_BIT max;
5372 unsigned long int j;
5373 unsigned long int fact;
5374
5375 if (gnu_hash && (i & 31) == 0)
5376 continue;
5377
5378 memset (counts, '\0', i * sizeof (unsigned long int));
5379
5380 /* Determine how often each hash bucket is used. */
5381 for (j = 0; j < nsyms; ++j)
5382 ++counts[hashcodes[j] % i];
5383
5384 /* For the weight function we need some information about the
5385 pagesize on the target. This is information need not be 100%
5386 accurate. Since this information is not available (so far) we
5387 define it here to a reasonable default value. If it is crucial
5388 to have a better value some day simply define this value. */
5389 # ifndef BFD_TARGET_PAGESIZE
5390 # define BFD_TARGET_PAGESIZE (4096)
5391 # endif
5392
5393 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5394 and the chains. */
5395 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5396
5397 # if 1
5398 /* Variant 1: optimize for short chains. We add the squares
5399 of all the chain lengths (which favors many small chain
5400 over a few long chains). */
5401 for (j = 0; j < i; ++j)
5402 max += counts[j] * counts[j];
5403
5404 /* This adds penalties for the overall size of the table. */
5405 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5406 max *= fact * fact;
5407 # else
5408 /* Variant 2: Optimize a lot more for small table. Here we
5409 also add squares of the size but we also add penalties for
5410 empty slots (the +1 term). */
5411 for (j = 0; j < i; ++j)
5412 max += (1 + counts[j]) * (1 + counts[j]);
5413
5414 /* The overall size of the table is considered, but not as
5415 strong as in variant 1, where it is squared. */
5416 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5417 max *= fact;
5418 # endif
5419
5420 /* Compare with current best results. */
5421 if (max < best_chlen)
5422 {
5423 best_chlen = max;
5424 best_size = i;
5425 no_improvement_count = 0;
5426 }
5427 /* PR 11843: Avoid futile long searches for the best bucket size
5428 when there are a large number of symbols. */
5429 else if (++no_improvement_count == 100)
5430 break;
5431 }
5432
5433 free (counts);
5434 }
5435 else
5436 #endif /* defined (BFD_HOST_U_64_BIT) */
5437 {
5438 /* This is the fallback solution if no 64bit type is available or if we
5439 are not supposed to spend much time on optimizations. We select the
5440 bucket count using a fixed set of numbers. */
5441 for (i = 0; elf_buckets[i] != 0; i++)
5442 {
5443 best_size = elf_buckets[i];
5444 if (nsyms < elf_buckets[i + 1])
5445 break;
5446 }
5447 if (gnu_hash && best_size < 2)
5448 best_size = 2;
5449 }
5450
5451 return best_size;
5452 }
5453
5454 /* Size any SHT_GROUP section for ld -r. */
5455
5456 bfd_boolean
5457 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5458 {
5459 bfd *ibfd;
5460
5461 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5462 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5463 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5464 return FALSE;
5465 return TRUE;
5466 }
5467
5468 /* Set a default stack segment size. The value in INFO wins. If it
5469 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5470 undefined it is initialized. */
5471
5472 bfd_boolean
5473 bfd_elf_stack_segment_size (bfd *output_bfd,
5474 struct bfd_link_info *info,
5475 const char *legacy_symbol,
5476 bfd_vma default_size)
5477 {
5478 struct elf_link_hash_entry *h = NULL;
5479
5480 /* Look for legacy symbol. */
5481 if (legacy_symbol)
5482 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5483 FALSE, FALSE, FALSE);
5484 if (h && (h->root.type == bfd_link_hash_defined
5485 || h->root.type == bfd_link_hash_defweak)
5486 && h->def_regular
5487 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5488 {
5489 /* The symbol has no type if specified on the command line. */
5490 h->type = STT_OBJECT;
5491 if (info->stacksize)
5492 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5493 output_bfd, legacy_symbol);
5494 else if (h->root.u.def.section != bfd_abs_section_ptr)
5495 (*_bfd_error_handler) (_("%B: %s not absolute"),
5496 output_bfd, legacy_symbol);
5497 else
5498 info->stacksize = h->root.u.def.value;
5499 }
5500
5501 if (!info->stacksize)
5502 /* If the user didn't set a size, or explicitly inhibit the
5503 size, set it now. */
5504 info->stacksize = default_size;
5505
5506 /* Provide the legacy symbol, if it is referenced. */
5507 if (h && (h->root.type == bfd_link_hash_undefined
5508 || h->root.type == bfd_link_hash_undefweak))
5509 {
5510 struct bfd_link_hash_entry *bh = NULL;
5511
5512 if (!(_bfd_generic_link_add_one_symbol
5513 (info, output_bfd, legacy_symbol,
5514 BSF_GLOBAL, bfd_abs_section_ptr,
5515 info->stacksize >= 0 ? info->stacksize : 0,
5516 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5517 return FALSE;
5518
5519 h = (struct elf_link_hash_entry *) bh;
5520 h->def_regular = 1;
5521 h->type = STT_OBJECT;
5522 }
5523
5524 return TRUE;
5525 }
5526
5527 /* Set up the sizes and contents of the ELF dynamic sections. This is
5528 called by the ELF linker emulation before_allocation routine. We
5529 must set the sizes of the sections before the linker sets the
5530 addresses of the various sections. */
5531
5532 bfd_boolean
5533 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5534 const char *soname,
5535 const char *rpath,
5536 const char *filter_shlib,
5537 const char *audit,
5538 const char *depaudit,
5539 const char * const *auxiliary_filters,
5540 struct bfd_link_info *info,
5541 asection **sinterpptr)
5542 {
5543 bfd_size_type soname_indx;
5544 bfd *dynobj;
5545 const struct elf_backend_data *bed;
5546 struct elf_info_failed asvinfo;
5547
5548 *sinterpptr = NULL;
5549
5550 soname_indx = (bfd_size_type) -1;
5551
5552 if (!is_elf_hash_table (info->hash))
5553 return TRUE;
5554
5555 bed = get_elf_backend_data (output_bfd);
5556
5557 /* Any syms created from now on start with -1 in
5558 got.refcount/offset and plt.refcount/offset. */
5559 elf_hash_table (info)->init_got_refcount
5560 = elf_hash_table (info)->init_got_offset;
5561 elf_hash_table (info)->init_plt_refcount
5562 = elf_hash_table (info)->init_plt_offset;
5563
5564 if (info->relocatable
5565 && !_bfd_elf_size_group_sections (info))
5566 return FALSE;
5567
5568 /* The backend may have to create some sections regardless of whether
5569 we're dynamic or not. */
5570 if (bed->elf_backend_always_size_sections
5571 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5572 return FALSE;
5573
5574 /* Determine any GNU_STACK segment requirements, after the backend
5575 has had a chance to set a default segment size. */
5576 if (info->execstack)
5577 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5578 else if (info->noexecstack)
5579 elf_stack_flags (output_bfd) = PF_R | PF_W;
5580 else
5581 {
5582 bfd *inputobj;
5583 asection *notesec = NULL;
5584 int exec = 0;
5585
5586 for (inputobj = info->input_bfds;
5587 inputobj;
5588 inputobj = inputobj->link.next)
5589 {
5590 asection *s;
5591
5592 if (inputobj->flags
5593 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5594 continue;
5595 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5596 if (s)
5597 {
5598 if (s->flags & SEC_CODE)
5599 exec = PF_X;
5600 notesec = s;
5601 }
5602 else if (bed->default_execstack)
5603 exec = PF_X;
5604 }
5605 if (notesec || info->stacksize > 0)
5606 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5607 if (notesec && exec && info->relocatable
5608 && notesec->output_section != bfd_abs_section_ptr)
5609 notesec->output_section->flags |= SEC_CODE;
5610 }
5611
5612 dynobj = elf_hash_table (info)->dynobj;
5613
5614 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5615 {
5616 struct elf_info_failed eif;
5617 struct elf_link_hash_entry *h;
5618 asection *dynstr;
5619 struct bfd_elf_version_tree *t;
5620 struct bfd_elf_version_expr *d;
5621 asection *s;
5622 bfd_boolean all_defined;
5623
5624 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5625 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5626
5627 if (soname != NULL)
5628 {
5629 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5630 soname, TRUE);
5631 if (soname_indx == (bfd_size_type) -1
5632 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5633 return FALSE;
5634 }
5635
5636 if (info->symbolic)
5637 {
5638 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5639 return FALSE;
5640 info->flags |= DF_SYMBOLIC;
5641 }
5642
5643 if (rpath != NULL)
5644 {
5645 bfd_size_type indx;
5646 bfd_vma tag;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5649 TRUE);
5650 if (indx == (bfd_size_type) -1)
5651 return FALSE;
5652
5653 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5654 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5655 return FALSE;
5656 }
5657
5658 if (filter_shlib != NULL)
5659 {
5660 bfd_size_type indx;
5661
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5663 filter_shlib, TRUE);
5664 if (indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5666 return FALSE;
5667 }
5668
5669 if (auxiliary_filters != NULL)
5670 {
5671 const char * const *p;
5672
5673 for (p = auxiliary_filters; *p != NULL; p++)
5674 {
5675 bfd_size_type indx;
5676
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5678 *p, TRUE);
5679 if (indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5681 return FALSE;
5682 }
5683 }
5684
5685 if (audit != NULL)
5686 {
5687 bfd_size_type indx;
5688
5689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5690 TRUE);
5691 if (indx == (bfd_size_type) -1
5692 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5693 return FALSE;
5694 }
5695
5696 if (depaudit != NULL)
5697 {
5698 bfd_size_type indx;
5699
5700 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5701 TRUE);
5702 if (indx == (bfd_size_type) -1
5703 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5704 return FALSE;
5705 }
5706
5707 eif.info = info;
5708 eif.failed = FALSE;
5709
5710 /* If we are supposed to export all symbols into the dynamic symbol
5711 table (this is not the normal case), then do so. */
5712 if (info->export_dynamic
5713 || (info->executable && info->dynamic))
5714 {
5715 elf_link_hash_traverse (elf_hash_table (info),
5716 _bfd_elf_export_symbol,
5717 &eif);
5718 if (eif.failed)
5719 return FALSE;
5720 }
5721
5722 /* Make all global versions with definition. */
5723 for (t = info->version_info; t != NULL; t = t->next)
5724 for (d = t->globals.list; d != NULL; d = d->next)
5725 if (!d->symver && d->literal)
5726 {
5727 const char *verstr, *name;
5728 size_t namelen, verlen, newlen;
5729 char *newname, *p, leading_char;
5730 struct elf_link_hash_entry *newh;
5731
5732 leading_char = bfd_get_symbol_leading_char (output_bfd);
5733 name = d->pattern;
5734 namelen = strlen (name) + (leading_char != '\0');
5735 verstr = t->name;
5736 verlen = strlen (verstr);
5737 newlen = namelen + verlen + 3;
5738
5739 newname = (char *) bfd_malloc (newlen);
5740 if (newname == NULL)
5741 return FALSE;
5742 newname[0] = leading_char;
5743 memcpy (newname + (leading_char != '\0'), name, namelen);
5744
5745 /* Check the hidden versioned definition. */
5746 p = newname + namelen;
5747 *p++ = ELF_VER_CHR;
5748 memcpy (p, verstr, verlen + 1);
5749 newh = elf_link_hash_lookup (elf_hash_table (info),
5750 newname, FALSE, FALSE,
5751 FALSE);
5752 if (newh == NULL
5753 || (newh->root.type != bfd_link_hash_defined
5754 && newh->root.type != bfd_link_hash_defweak))
5755 {
5756 /* Check the default versioned definition. */
5757 *p++ = ELF_VER_CHR;
5758 memcpy (p, verstr, verlen + 1);
5759 newh = elf_link_hash_lookup (elf_hash_table (info),
5760 newname, FALSE, FALSE,
5761 FALSE);
5762 }
5763 free (newname);
5764
5765 /* Mark this version if there is a definition and it is
5766 not defined in a shared object. */
5767 if (newh != NULL
5768 && !newh->def_dynamic
5769 && (newh->root.type == bfd_link_hash_defined
5770 || newh->root.type == bfd_link_hash_defweak))
5771 d->symver = 1;
5772 }
5773
5774 /* Attach all the symbols to their version information. */
5775 asvinfo.info = info;
5776 asvinfo.failed = FALSE;
5777
5778 elf_link_hash_traverse (elf_hash_table (info),
5779 _bfd_elf_link_assign_sym_version,
5780 &asvinfo);
5781 if (asvinfo.failed)
5782 return FALSE;
5783
5784 if (!info->allow_undefined_version)
5785 {
5786 /* Check if all global versions have a definition. */
5787 all_defined = TRUE;
5788 for (t = info->version_info; t != NULL; t = t->next)
5789 for (d = t->globals.list; d != NULL; d = d->next)
5790 if (d->literal && !d->symver && !d->script)
5791 {
5792 (*_bfd_error_handler)
5793 (_("%s: undefined version: %s"),
5794 d->pattern, t->name);
5795 all_defined = FALSE;
5796 }
5797
5798 if (!all_defined)
5799 {
5800 bfd_set_error (bfd_error_bad_value);
5801 return FALSE;
5802 }
5803 }
5804
5805 /* Find all symbols which were defined in a dynamic object and make
5806 the backend pick a reasonable value for them. */
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_adjust_dynamic_symbol,
5809 &eif);
5810 if (eif.failed)
5811 return FALSE;
5812
5813 /* Add some entries to the .dynamic section. We fill in some of the
5814 values later, in bfd_elf_final_link, but we must add the entries
5815 now so that we know the final size of the .dynamic section. */
5816
5817 /* If there are initialization and/or finalization functions to
5818 call then add the corresponding DT_INIT/DT_FINI entries. */
5819 h = (info->init_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->init_function, FALSE,
5822 FALSE, FALSE)
5823 : NULL);
5824 if (h != NULL
5825 && (h->ref_regular
5826 || h->def_regular))
5827 {
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5829 return FALSE;
5830 }
5831 h = (info->fini_function
5832 ? elf_link_hash_lookup (elf_hash_table (info),
5833 info->fini_function, FALSE,
5834 FALSE, FALSE)
5835 : NULL);
5836 if (h != NULL
5837 && (h->ref_regular
5838 || h->def_regular))
5839 {
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5841 return FALSE;
5842 }
5843
5844 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5845 if (s != NULL && s->linker_has_input)
5846 {
5847 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5848 if (! info->executable)
5849 {
5850 bfd *sub;
5851 asection *o;
5852
5853 for (sub = info->input_bfds; sub != NULL;
5854 sub = sub->link.next)
5855 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5856 for (o = sub->sections; o != NULL; o = o->next)
5857 if (elf_section_data (o)->this_hdr.sh_type
5858 == SHT_PREINIT_ARRAY)
5859 {
5860 (*_bfd_error_handler)
5861 (_("%B: .preinit_array section is not allowed in DSO"),
5862 sub);
5863 break;
5864 }
5865
5866 bfd_set_error (bfd_error_nonrepresentable_section);
5867 return FALSE;
5868 }
5869
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5872 return FALSE;
5873 }
5874 s = bfd_get_section_by_name (output_bfd, ".init_array");
5875 if (s != NULL && s->linker_has_input)
5876 {
5877 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5878 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5879 return FALSE;
5880 }
5881 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5882 if (s != NULL && s->linker_has_input)
5883 {
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5886 return FALSE;
5887 }
5888
5889 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5890 /* If .dynstr is excluded from the link, we don't want any of
5891 these tags. Strictly, we should be checking each section
5892 individually; This quick check covers for the case where
5893 someone does a /DISCARD/ : { *(*) }. */
5894 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5895 {
5896 bfd_size_type strsize;
5897
5898 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5899 if ((info->emit_hash
5900 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5901 || (info->emit_gnu_hash
5902 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5903 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5907 bed->s->sizeof_sym))
5908 return FALSE;
5909 }
5910 }
5911
5912 /* The backend must work out the sizes of all the other dynamic
5913 sections. */
5914 if (dynobj != NULL
5915 && bed->elf_backend_size_dynamic_sections != NULL
5916 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5917 return FALSE;
5918
5919 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5920 return FALSE;
5921
5922 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5923 {
5924 unsigned long section_sym_count;
5925 struct bfd_elf_version_tree *verdefs;
5926 asection *s;
5927
5928 /* Set up the version definition section. */
5929 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5930 BFD_ASSERT (s != NULL);
5931
5932 /* We may have created additional version definitions if we are
5933 just linking a regular application. */
5934 verdefs = info->version_info;
5935
5936 /* Skip anonymous version tag. */
5937 if (verdefs != NULL && verdefs->vernum == 0)
5938 verdefs = verdefs->next;
5939
5940 if (verdefs == NULL && !info->create_default_symver)
5941 s->flags |= SEC_EXCLUDE;
5942 else
5943 {
5944 unsigned int cdefs;
5945 bfd_size_type size;
5946 struct bfd_elf_version_tree *t;
5947 bfd_byte *p;
5948 Elf_Internal_Verdef def;
5949 Elf_Internal_Verdaux defaux;
5950 struct bfd_link_hash_entry *bh;
5951 struct elf_link_hash_entry *h;
5952 const char *name;
5953
5954 cdefs = 0;
5955 size = 0;
5956
5957 /* Make space for the base version. */
5958 size += sizeof (Elf_External_Verdef);
5959 size += sizeof (Elf_External_Verdaux);
5960 ++cdefs;
5961
5962 /* Make space for the default version. */
5963 if (info->create_default_symver)
5964 {
5965 size += sizeof (Elf_External_Verdef);
5966 ++cdefs;
5967 }
5968
5969 for (t = verdefs; t != NULL; t = t->next)
5970 {
5971 struct bfd_elf_version_deps *n;
5972
5973 /* Don't emit base version twice. */
5974 if (t->vernum == 0)
5975 continue;
5976
5977 size += sizeof (Elf_External_Verdef);
5978 size += sizeof (Elf_External_Verdaux);
5979 ++cdefs;
5980
5981 for (n = t->deps; n != NULL; n = n->next)
5982 size += sizeof (Elf_External_Verdaux);
5983 }
5984
5985 s->size = size;
5986 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5987 if (s->contents == NULL && s->size != 0)
5988 return FALSE;
5989
5990 /* Fill in the version definition section. */
5991
5992 p = s->contents;
5993
5994 def.vd_version = VER_DEF_CURRENT;
5995 def.vd_flags = VER_FLG_BASE;
5996 def.vd_ndx = 1;
5997 def.vd_cnt = 1;
5998 if (info->create_default_symver)
5999 {
6000 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6001 def.vd_next = sizeof (Elf_External_Verdef);
6002 }
6003 else
6004 {
6005 def.vd_aux = sizeof (Elf_External_Verdef);
6006 def.vd_next = (sizeof (Elf_External_Verdef)
6007 + sizeof (Elf_External_Verdaux));
6008 }
6009
6010 if (soname_indx != (bfd_size_type) -1)
6011 {
6012 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6013 soname_indx);
6014 def.vd_hash = bfd_elf_hash (soname);
6015 defaux.vda_name = soname_indx;
6016 name = soname;
6017 }
6018 else
6019 {
6020 bfd_size_type indx;
6021
6022 name = lbasename (output_bfd->filename);
6023 def.vd_hash = bfd_elf_hash (name);
6024 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6025 name, FALSE);
6026 if (indx == (bfd_size_type) -1)
6027 return FALSE;
6028 defaux.vda_name = indx;
6029 }
6030 defaux.vda_next = 0;
6031
6032 _bfd_elf_swap_verdef_out (output_bfd, &def,
6033 (Elf_External_Verdef *) p);
6034 p += sizeof (Elf_External_Verdef);
6035 if (info->create_default_symver)
6036 {
6037 /* Add a symbol representing this version. */
6038 bh = NULL;
6039 if (! (_bfd_generic_link_add_one_symbol
6040 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6041 0, NULL, FALSE,
6042 get_elf_backend_data (dynobj)->collect, &bh)))
6043 return FALSE;
6044 h = (struct elf_link_hash_entry *) bh;
6045 h->non_elf = 0;
6046 h->def_regular = 1;
6047 h->type = STT_OBJECT;
6048 h->verinfo.vertree = NULL;
6049
6050 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6051 return FALSE;
6052
6053 /* Create a duplicate of the base version with the same
6054 aux block, but different flags. */
6055 def.vd_flags = 0;
6056 def.vd_ndx = 2;
6057 def.vd_aux = sizeof (Elf_External_Verdef);
6058 if (verdefs)
6059 def.vd_next = (sizeof (Elf_External_Verdef)
6060 + sizeof (Elf_External_Verdaux));
6061 else
6062 def.vd_next = 0;
6063 _bfd_elf_swap_verdef_out (output_bfd, &def,
6064 (Elf_External_Verdef *) p);
6065 p += sizeof (Elf_External_Verdef);
6066 }
6067 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6068 (Elf_External_Verdaux *) p);
6069 p += sizeof (Elf_External_Verdaux);
6070
6071 for (t = verdefs; t != NULL; t = t->next)
6072 {
6073 unsigned int cdeps;
6074 struct bfd_elf_version_deps *n;
6075
6076 /* Don't emit the base version twice. */
6077 if (t->vernum == 0)
6078 continue;
6079
6080 cdeps = 0;
6081 for (n = t->deps; n != NULL; n = n->next)
6082 ++cdeps;
6083
6084 /* Add a symbol representing this version. */
6085 bh = NULL;
6086 if (! (_bfd_generic_link_add_one_symbol
6087 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6088 0, NULL, FALSE,
6089 get_elf_backend_data (dynobj)->collect, &bh)))
6090 return FALSE;
6091 h = (struct elf_link_hash_entry *) bh;
6092 h->non_elf = 0;
6093 h->def_regular = 1;
6094 h->type = STT_OBJECT;
6095 h->verinfo.vertree = t;
6096
6097 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6098 return FALSE;
6099
6100 def.vd_version = VER_DEF_CURRENT;
6101 def.vd_flags = 0;
6102 if (t->globals.list == NULL
6103 && t->locals.list == NULL
6104 && ! t->used)
6105 def.vd_flags |= VER_FLG_WEAK;
6106 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6107 def.vd_cnt = cdeps + 1;
6108 def.vd_hash = bfd_elf_hash (t->name);
6109 def.vd_aux = sizeof (Elf_External_Verdef);
6110 def.vd_next = 0;
6111
6112 /* If a basever node is next, it *must* be the last node in
6113 the chain, otherwise Verdef construction breaks. */
6114 if (t->next != NULL && t->next->vernum == 0)
6115 BFD_ASSERT (t->next->next == NULL);
6116
6117 if (t->next != NULL && t->next->vernum != 0)
6118 def.vd_next = (sizeof (Elf_External_Verdef)
6119 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6120
6121 _bfd_elf_swap_verdef_out (output_bfd, &def,
6122 (Elf_External_Verdef *) p);
6123 p += sizeof (Elf_External_Verdef);
6124
6125 defaux.vda_name = h->dynstr_index;
6126 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6127 h->dynstr_index);
6128 defaux.vda_next = 0;
6129 if (t->deps != NULL)
6130 defaux.vda_next = sizeof (Elf_External_Verdaux);
6131 t->name_indx = defaux.vda_name;
6132
6133 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6134 (Elf_External_Verdaux *) p);
6135 p += sizeof (Elf_External_Verdaux);
6136
6137 for (n = t->deps; n != NULL; n = n->next)
6138 {
6139 if (n->version_needed == NULL)
6140 {
6141 /* This can happen if there was an error in the
6142 version script. */
6143 defaux.vda_name = 0;
6144 }
6145 else
6146 {
6147 defaux.vda_name = n->version_needed->name_indx;
6148 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6149 defaux.vda_name);
6150 }
6151 if (n->next == NULL)
6152 defaux.vda_next = 0;
6153 else
6154 defaux.vda_next = sizeof (Elf_External_Verdaux);
6155
6156 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6157 (Elf_External_Verdaux *) p);
6158 p += sizeof (Elf_External_Verdaux);
6159 }
6160 }
6161
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6163 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6164 return FALSE;
6165
6166 elf_tdata (output_bfd)->cverdefs = cdefs;
6167 }
6168
6169 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6170 {
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6172 return FALSE;
6173 }
6174 else if (info->flags & DF_BIND_NOW)
6175 {
6176 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6177 return FALSE;
6178 }
6179
6180 if (info->flags_1)
6181 {
6182 if (info->executable)
6183 info->flags_1 &= ~ (DF_1_INITFIRST
6184 | DF_1_NODELETE
6185 | DF_1_NOOPEN);
6186 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6187 return FALSE;
6188 }
6189
6190 /* Work out the size of the version reference section. */
6191
6192 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6193 BFD_ASSERT (s != NULL);
6194 {
6195 struct elf_find_verdep_info sinfo;
6196
6197 sinfo.info = info;
6198 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6199 if (sinfo.vers == 0)
6200 sinfo.vers = 1;
6201 sinfo.failed = FALSE;
6202
6203 elf_link_hash_traverse (elf_hash_table (info),
6204 _bfd_elf_link_find_version_dependencies,
6205 &sinfo);
6206 if (sinfo.failed)
6207 return FALSE;
6208
6209 if (elf_tdata (output_bfd)->verref == NULL)
6210 s->flags |= SEC_EXCLUDE;
6211 else
6212 {
6213 Elf_Internal_Verneed *t;
6214 unsigned int size;
6215 unsigned int crefs;
6216 bfd_byte *p;
6217
6218 /* Build the version dependency section. */
6219 size = 0;
6220 crefs = 0;
6221 for (t = elf_tdata (output_bfd)->verref;
6222 t != NULL;
6223 t = t->vn_nextref)
6224 {
6225 Elf_Internal_Vernaux *a;
6226
6227 size += sizeof (Elf_External_Verneed);
6228 ++crefs;
6229 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6230 size += sizeof (Elf_External_Vernaux);
6231 }
6232
6233 s->size = size;
6234 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6235 if (s->contents == NULL)
6236 return FALSE;
6237
6238 p = s->contents;
6239 for (t = elf_tdata (output_bfd)->verref;
6240 t != NULL;
6241 t = t->vn_nextref)
6242 {
6243 unsigned int caux;
6244 Elf_Internal_Vernaux *a;
6245 bfd_size_type indx;
6246
6247 caux = 0;
6248 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6249 ++caux;
6250
6251 t->vn_version = VER_NEED_CURRENT;
6252 t->vn_cnt = caux;
6253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6254 elf_dt_name (t->vn_bfd) != NULL
6255 ? elf_dt_name (t->vn_bfd)
6256 : lbasename (t->vn_bfd->filename),
6257 FALSE);
6258 if (indx == (bfd_size_type) -1)
6259 return FALSE;
6260 t->vn_file = indx;
6261 t->vn_aux = sizeof (Elf_External_Verneed);
6262 if (t->vn_nextref == NULL)
6263 t->vn_next = 0;
6264 else
6265 t->vn_next = (sizeof (Elf_External_Verneed)
6266 + caux * sizeof (Elf_External_Vernaux));
6267
6268 _bfd_elf_swap_verneed_out (output_bfd, t,
6269 (Elf_External_Verneed *) p);
6270 p += sizeof (Elf_External_Verneed);
6271
6272 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6273 {
6274 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6275 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6276 a->vna_nodename, FALSE);
6277 if (indx == (bfd_size_type) -1)
6278 return FALSE;
6279 a->vna_name = indx;
6280 if (a->vna_nextptr == NULL)
6281 a->vna_next = 0;
6282 else
6283 a->vna_next = sizeof (Elf_External_Vernaux);
6284
6285 _bfd_elf_swap_vernaux_out (output_bfd, a,
6286 (Elf_External_Vernaux *) p);
6287 p += sizeof (Elf_External_Vernaux);
6288 }
6289 }
6290
6291 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6292 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6293 return FALSE;
6294
6295 elf_tdata (output_bfd)->cverrefs = crefs;
6296 }
6297 }
6298
6299 if ((elf_tdata (output_bfd)->cverrefs == 0
6300 && elf_tdata (output_bfd)->cverdefs == 0)
6301 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6302 &section_sym_count) == 0)
6303 {
6304 s = bfd_get_linker_section (dynobj, ".gnu.version");
6305 s->flags |= SEC_EXCLUDE;
6306 }
6307 }
6308 return TRUE;
6309 }
6310
6311 /* Find the first non-excluded output section. We'll use its
6312 section symbol for some emitted relocs. */
6313 void
6314 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6315 {
6316 asection *s;
6317
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6321 {
6322 elf_hash_table (info)->text_index_section = s;
6323 break;
6324 }
6325 }
6326
6327 /* Find two non-excluded output sections, one for code, one for data.
6328 We'll use their section symbols for some emitted relocs. */
6329 void
6330 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6331 {
6332 asection *s;
6333
6334 /* Data first, since setting text_index_section changes
6335 _bfd_elf_link_omit_section_dynsym. */
6336 for (s = output_bfd->sections; s != NULL; s = s->next)
6337 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6338 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6339 {
6340 elf_hash_table (info)->data_index_section = s;
6341 break;
6342 }
6343
6344 for (s = output_bfd->sections; s != NULL; s = s->next)
6345 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6346 == (SEC_ALLOC | SEC_READONLY))
6347 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6348 {
6349 elf_hash_table (info)->text_index_section = s;
6350 break;
6351 }
6352
6353 if (elf_hash_table (info)->text_index_section == NULL)
6354 elf_hash_table (info)->text_index_section
6355 = elf_hash_table (info)->data_index_section;
6356 }
6357
6358 bfd_boolean
6359 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6360 {
6361 const struct elf_backend_data *bed;
6362
6363 if (!is_elf_hash_table (info->hash))
6364 return TRUE;
6365
6366 bed = get_elf_backend_data (output_bfd);
6367 (*bed->elf_backend_init_index_section) (output_bfd, info);
6368
6369 if (elf_hash_table (info)->dynamic_sections_created)
6370 {
6371 bfd *dynobj;
6372 asection *s;
6373 bfd_size_type dynsymcount;
6374 unsigned long section_sym_count;
6375 unsigned int dtagcount;
6376
6377 dynobj = elf_hash_table (info)->dynobj;
6378
6379 /* Assign dynsym indicies. In a shared library we generate a
6380 section symbol for each output section, which come first.
6381 Next come all of the back-end allocated local dynamic syms,
6382 followed by the rest of the global symbols. */
6383
6384 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6385 &section_sym_count);
6386
6387 /* Work out the size of the symbol version section. */
6388 s = bfd_get_linker_section (dynobj, ".gnu.version");
6389 BFD_ASSERT (s != NULL);
6390 if (dynsymcount != 0
6391 && (s->flags & SEC_EXCLUDE) == 0)
6392 {
6393 s->size = dynsymcount * sizeof (Elf_External_Versym);
6394 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6395 if (s->contents == NULL)
6396 return FALSE;
6397
6398 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6399 return FALSE;
6400 }
6401
6402 /* Set the size of the .dynsym and .hash sections. We counted
6403 the number of dynamic symbols in elf_link_add_object_symbols.
6404 We will build the contents of .dynsym and .hash when we build
6405 the final symbol table, because until then we do not know the
6406 correct value to give the symbols. We built the .dynstr
6407 section as we went along in elf_link_add_object_symbols. */
6408 s = bfd_get_linker_section (dynobj, ".dynsym");
6409 BFD_ASSERT (s != NULL);
6410 s->size = dynsymcount * bed->s->sizeof_sym;
6411
6412 if (dynsymcount != 0)
6413 {
6414 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6415 if (s->contents == NULL)
6416 return FALSE;
6417
6418 /* The first entry in .dynsym is a dummy symbol.
6419 Clear all the section syms, in case we don't output them all. */
6420 ++section_sym_count;
6421 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6422 }
6423
6424 elf_hash_table (info)->bucketcount = 0;
6425
6426 /* Compute the size of the hashing table. As a side effect this
6427 computes the hash values for all the names we export. */
6428 if (info->emit_hash)
6429 {
6430 unsigned long int *hashcodes;
6431 struct hash_codes_info hashinf;
6432 bfd_size_type amt;
6433 unsigned long int nsyms;
6434 size_t bucketcount;
6435 size_t hash_entry_size;
6436
6437 /* Compute the hash values for all exported symbols. At the same
6438 time store the values in an array so that we could use them for
6439 optimizations. */
6440 amt = dynsymcount * sizeof (unsigned long int);
6441 hashcodes = (unsigned long int *) bfd_malloc (amt);
6442 if (hashcodes == NULL)
6443 return FALSE;
6444 hashinf.hashcodes = hashcodes;
6445 hashinf.error = FALSE;
6446
6447 /* Put all hash values in HASHCODES. */
6448 elf_link_hash_traverse (elf_hash_table (info),
6449 elf_collect_hash_codes, &hashinf);
6450 if (hashinf.error)
6451 {
6452 free (hashcodes);
6453 return FALSE;
6454 }
6455
6456 nsyms = hashinf.hashcodes - hashcodes;
6457 bucketcount
6458 = compute_bucket_count (info, hashcodes, nsyms, 0);
6459 free (hashcodes);
6460
6461 if (bucketcount == 0)
6462 return FALSE;
6463
6464 elf_hash_table (info)->bucketcount = bucketcount;
6465
6466 s = bfd_get_linker_section (dynobj, ".hash");
6467 BFD_ASSERT (s != NULL);
6468 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6469 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6470 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6471 if (s->contents == NULL)
6472 return FALSE;
6473
6474 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6475 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6476 s->contents + hash_entry_size);
6477 }
6478
6479 if (info->emit_gnu_hash)
6480 {
6481 size_t i, cnt;
6482 unsigned char *contents;
6483 struct collect_gnu_hash_codes cinfo;
6484 bfd_size_type amt;
6485 size_t bucketcount;
6486
6487 memset (&cinfo, 0, sizeof (cinfo));
6488
6489 /* Compute the hash values for all exported symbols. At the same
6490 time store the values in an array so that we could use them for
6491 optimizations. */
6492 amt = dynsymcount * 2 * sizeof (unsigned long int);
6493 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6494 if (cinfo.hashcodes == NULL)
6495 return FALSE;
6496
6497 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6498 cinfo.min_dynindx = -1;
6499 cinfo.output_bfd = output_bfd;
6500 cinfo.bed = bed;
6501
6502 /* Put all hash values in HASHCODES. */
6503 elf_link_hash_traverse (elf_hash_table (info),
6504 elf_collect_gnu_hash_codes, &cinfo);
6505 if (cinfo.error)
6506 {
6507 free (cinfo.hashcodes);
6508 return FALSE;
6509 }
6510
6511 bucketcount
6512 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6513
6514 if (bucketcount == 0)
6515 {
6516 free (cinfo.hashcodes);
6517 return FALSE;
6518 }
6519
6520 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6521 BFD_ASSERT (s != NULL);
6522
6523 if (cinfo.nsyms == 0)
6524 {
6525 /* Empty .gnu.hash section is special. */
6526 BFD_ASSERT (cinfo.min_dynindx == -1);
6527 free (cinfo.hashcodes);
6528 s->size = 5 * 4 + bed->s->arch_size / 8;
6529 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6530 if (contents == NULL)
6531 return FALSE;
6532 s->contents = contents;
6533 /* 1 empty bucket. */
6534 bfd_put_32 (output_bfd, 1, contents);
6535 /* SYMIDX above the special symbol 0. */
6536 bfd_put_32 (output_bfd, 1, contents + 4);
6537 /* Just one word for bitmask. */
6538 bfd_put_32 (output_bfd, 1, contents + 8);
6539 /* Only hash fn bloom filter. */
6540 bfd_put_32 (output_bfd, 0, contents + 12);
6541 /* No hashes are valid - empty bitmask. */
6542 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6543 /* No hashes in the only bucket. */
6544 bfd_put_32 (output_bfd, 0,
6545 contents + 16 + bed->s->arch_size / 8);
6546 }
6547 else
6548 {
6549 unsigned long int maskwords, maskbitslog2, x;
6550 BFD_ASSERT (cinfo.min_dynindx != -1);
6551
6552 x = cinfo.nsyms;
6553 maskbitslog2 = 1;
6554 while ((x >>= 1) != 0)
6555 ++maskbitslog2;
6556 if (maskbitslog2 < 3)
6557 maskbitslog2 = 5;
6558 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6559 maskbitslog2 = maskbitslog2 + 3;
6560 else
6561 maskbitslog2 = maskbitslog2 + 2;
6562 if (bed->s->arch_size == 64)
6563 {
6564 if (maskbitslog2 == 5)
6565 maskbitslog2 = 6;
6566 cinfo.shift1 = 6;
6567 }
6568 else
6569 cinfo.shift1 = 5;
6570 cinfo.mask = (1 << cinfo.shift1) - 1;
6571 cinfo.shift2 = maskbitslog2;
6572 cinfo.maskbits = 1 << maskbitslog2;
6573 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6574 amt = bucketcount * sizeof (unsigned long int) * 2;
6575 amt += maskwords * sizeof (bfd_vma);
6576 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6577 if (cinfo.bitmask == NULL)
6578 {
6579 free (cinfo.hashcodes);
6580 return FALSE;
6581 }
6582
6583 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6584 cinfo.indx = cinfo.counts + bucketcount;
6585 cinfo.symindx = dynsymcount - cinfo.nsyms;
6586 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6587
6588 /* Determine how often each hash bucket is used. */
6589 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6590 for (i = 0; i < cinfo.nsyms; ++i)
6591 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6592
6593 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6594 if (cinfo.counts[i] != 0)
6595 {
6596 cinfo.indx[i] = cnt;
6597 cnt += cinfo.counts[i];
6598 }
6599 BFD_ASSERT (cnt == dynsymcount);
6600 cinfo.bucketcount = bucketcount;
6601 cinfo.local_indx = cinfo.min_dynindx;
6602
6603 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6604 s->size += cinfo.maskbits / 8;
6605 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6606 if (contents == NULL)
6607 {
6608 free (cinfo.bitmask);
6609 free (cinfo.hashcodes);
6610 return FALSE;
6611 }
6612
6613 s->contents = contents;
6614 bfd_put_32 (output_bfd, bucketcount, contents);
6615 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6616 bfd_put_32 (output_bfd, maskwords, contents + 8);
6617 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6618 contents += 16 + cinfo.maskbits / 8;
6619
6620 for (i = 0; i < bucketcount; ++i)
6621 {
6622 if (cinfo.counts[i] == 0)
6623 bfd_put_32 (output_bfd, 0, contents);
6624 else
6625 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6626 contents += 4;
6627 }
6628
6629 cinfo.contents = contents;
6630
6631 /* Renumber dynamic symbols, populate .gnu.hash section. */
6632 elf_link_hash_traverse (elf_hash_table (info),
6633 elf_renumber_gnu_hash_syms, &cinfo);
6634
6635 contents = s->contents + 16;
6636 for (i = 0; i < maskwords; ++i)
6637 {
6638 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6639 contents);
6640 contents += bed->s->arch_size / 8;
6641 }
6642
6643 free (cinfo.bitmask);
6644 free (cinfo.hashcodes);
6645 }
6646 }
6647
6648 s = bfd_get_linker_section (dynobj, ".dynstr");
6649 BFD_ASSERT (s != NULL);
6650
6651 elf_finalize_dynstr (output_bfd, info);
6652
6653 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6654
6655 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6656 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6657 return FALSE;
6658 }
6659
6660 return TRUE;
6661 }
6662 \f
6663 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6664
6665 static void
6666 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6667 asection *sec)
6668 {
6669 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6670 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6671 }
6672
6673 /* Finish SHF_MERGE section merging. */
6674
6675 bfd_boolean
6676 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6677 {
6678 bfd *ibfd;
6679 asection *sec;
6680
6681 if (!is_elf_hash_table (info->hash))
6682 return FALSE;
6683
6684 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6685 if ((ibfd->flags & DYNAMIC) == 0)
6686 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6687 if ((sec->flags & SEC_MERGE) != 0
6688 && !bfd_is_abs_section (sec->output_section))
6689 {
6690 struct bfd_elf_section_data *secdata;
6691
6692 secdata = elf_section_data (sec);
6693 if (! _bfd_add_merge_section (abfd,
6694 &elf_hash_table (info)->merge_info,
6695 sec, &secdata->sec_info))
6696 return FALSE;
6697 else if (secdata->sec_info)
6698 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6699 }
6700
6701 if (elf_hash_table (info)->merge_info != NULL)
6702 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6703 merge_sections_remove_hook);
6704 return TRUE;
6705 }
6706
6707 /* Create an entry in an ELF linker hash table. */
6708
6709 struct bfd_hash_entry *
6710 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6711 struct bfd_hash_table *table,
6712 const char *string)
6713 {
6714 /* Allocate the structure if it has not already been allocated by a
6715 subclass. */
6716 if (entry == NULL)
6717 {
6718 entry = (struct bfd_hash_entry *)
6719 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6720 if (entry == NULL)
6721 return entry;
6722 }
6723
6724 /* Call the allocation method of the superclass. */
6725 entry = _bfd_link_hash_newfunc (entry, table, string);
6726 if (entry != NULL)
6727 {
6728 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6729 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6730
6731 /* Set local fields. */
6732 ret->indx = -1;
6733 ret->dynindx = -1;
6734 ret->got = htab->init_got_refcount;
6735 ret->plt = htab->init_plt_refcount;
6736 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6737 - offsetof (struct elf_link_hash_entry, size)));
6738 /* Assume that we have been called by a non-ELF symbol reader.
6739 This flag is then reset by the code which reads an ELF input
6740 file. This ensures that a symbol created by a non-ELF symbol
6741 reader will have the flag set correctly. */
6742 ret->non_elf = 1;
6743 }
6744
6745 return entry;
6746 }
6747
6748 /* Copy data from an indirect symbol to its direct symbol, hiding the
6749 old indirect symbol. Also used for copying flags to a weakdef. */
6750
6751 void
6752 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6753 struct elf_link_hash_entry *dir,
6754 struct elf_link_hash_entry *ind)
6755 {
6756 struct elf_link_hash_table *htab;
6757
6758 /* Copy down any references that we may have already seen to the
6759 symbol which just became indirect. */
6760
6761 dir->ref_dynamic |= ind->ref_dynamic;
6762 dir->ref_regular |= ind->ref_regular;
6763 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6764 dir->non_got_ref |= ind->non_got_ref;
6765 dir->needs_plt |= ind->needs_plt;
6766 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6767
6768 if (ind->root.type != bfd_link_hash_indirect)
6769 return;
6770
6771 /* Copy over the global and procedure linkage table refcount entries.
6772 These may have been already set up by a check_relocs routine. */
6773 htab = elf_hash_table (info);
6774 if (ind->got.refcount > htab->init_got_refcount.refcount)
6775 {
6776 if (dir->got.refcount < 0)
6777 dir->got.refcount = 0;
6778 dir->got.refcount += ind->got.refcount;
6779 ind->got.refcount = htab->init_got_refcount.refcount;
6780 }
6781
6782 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6783 {
6784 if (dir->plt.refcount < 0)
6785 dir->plt.refcount = 0;
6786 dir->plt.refcount += ind->plt.refcount;
6787 ind->plt.refcount = htab->init_plt_refcount.refcount;
6788 }
6789
6790 if (ind->dynindx != -1)
6791 {
6792 if (dir->dynindx != -1)
6793 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6794 dir->dynindx = ind->dynindx;
6795 dir->dynstr_index = ind->dynstr_index;
6796 ind->dynindx = -1;
6797 ind->dynstr_index = 0;
6798 }
6799 }
6800
6801 void
6802 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6803 struct elf_link_hash_entry *h,
6804 bfd_boolean force_local)
6805 {
6806 /* STT_GNU_IFUNC symbol must go through PLT. */
6807 if (h->type != STT_GNU_IFUNC)
6808 {
6809 h->plt = elf_hash_table (info)->init_plt_offset;
6810 h->needs_plt = 0;
6811 }
6812 if (force_local)
6813 {
6814 h->forced_local = 1;
6815 if (h->dynindx != -1)
6816 {
6817 h->dynindx = -1;
6818 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6819 h->dynstr_index);
6820 }
6821 }
6822 }
6823
6824 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6825 caller. */
6826
6827 bfd_boolean
6828 _bfd_elf_link_hash_table_init
6829 (struct elf_link_hash_table *table,
6830 bfd *abfd,
6831 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6832 struct bfd_hash_table *,
6833 const char *),
6834 unsigned int entsize,
6835 enum elf_target_id target_id)
6836 {
6837 bfd_boolean ret;
6838 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6839
6840 table->init_got_refcount.refcount = can_refcount - 1;
6841 table->init_plt_refcount.refcount = can_refcount - 1;
6842 table->init_got_offset.offset = -(bfd_vma) 1;
6843 table->init_plt_offset.offset = -(bfd_vma) 1;
6844 /* The first dynamic symbol is a dummy. */
6845 table->dynsymcount = 1;
6846
6847 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6848
6849 table->root.type = bfd_link_elf_hash_table;
6850 table->hash_table_id = target_id;
6851
6852 return ret;
6853 }
6854
6855 /* Create an ELF linker hash table. */
6856
6857 struct bfd_link_hash_table *
6858 _bfd_elf_link_hash_table_create (bfd *abfd)
6859 {
6860 struct elf_link_hash_table *ret;
6861 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6862
6863 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6864 if (ret == NULL)
6865 return NULL;
6866
6867 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6868 sizeof (struct elf_link_hash_entry),
6869 GENERIC_ELF_DATA))
6870 {
6871 free (ret);
6872 return NULL;
6873 }
6874 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6875
6876 return &ret->root;
6877 }
6878
6879 /* Destroy an ELF linker hash table. */
6880
6881 void
6882 _bfd_elf_link_hash_table_free (bfd *obfd)
6883 {
6884 struct elf_link_hash_table *htab;
6885
6886 htab = (struct elf_link_hash_table *) obfd->link.hash;
6887 if (htab->dynstr != NULL)
6888 _bfd_elf_strtab_free (htab->dynstr);
6889 _bfd_merge_sections_free (htab->merge_info);
6890 _bfd_generic_link_hash_table_free (obfd);
6891 }
6892
6893 /* This is a hook for the ELF emulation code in the generic linker to
6894 tell the backend linker what file name to use for the DT_NEEDED
6895 entry for a dynamic object. */
6896
6897 void
6898 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6899 {
6900 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd) == bfd_object)
6902 elf_dt_name (abfd) = name;
6903 }
6904
6905 int
6906 bfd_elf_get_dyn_lib_class (bfd *abfd)
6907 {
6908 int lib_class;
6909 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6910 && bfd_get_format (abfd) == bfd_object)
6911 lib_class = elf_dyn_lib_class (abfd);
6912 else
6913 lib_class = 0;
6914 return lib_class;
6915 }
6916
6917 void
6918 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6919 {
6920 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6921 && bfd_get_format (abfd) == bfd_object)
6922 elf_dyn_lib_class (abfd) = lib_class;
6923 }
6924
6925 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6926 the linker ELF emulation code. */
6927
6928 struct bfd_link_needed_list *
6929 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6930 struct bfd_link_info *info)
6931 {
6932 if (! is_elf_hash_table (info->hash))
6933 return NULL;
6934 return elf_hash_table (info)->needed;
6935 }
6936
6937 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6938 hook for the linker ELF emulation code. */
6939
6940 struct bfd_link_needed_list *
6941 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6942 struct bfd_link_info *info)
6943 {
6944 if (! is_elf_hash_table (info->hash))
6945 return NULL;
6946 return elf_hash_table (info)->runpath;
6947 }
6948
6949 /* Get the name actually used for a dynamic object for a link. This
6950 is the SONAME entry if there is one. Otherwise, it is the string
6951 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6952
6953 const char *
6954 bfd_elf_get_dt_soname (bfd *abfd)
6955 {
6956 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6957 && bfd_get_format (abfd) == bfd_object)
6958 return elf_dt_name (abfd);
6959 return NULL;
6960 }
6961
6962 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6963 the ELF linker emulation code. */
6964
6965 bfd_boolean
6966 bfd_elf_get_bfd_needed_list (bfd *abfd,
6967 struct bfd_link_needed_list **pneeded)
6968 {
6969 asection *s;
6970 bfd_byte *dynbuf = NULL;
6971 unsigned int elfsec;
6972 unsigned long shlink;
6973 bfd_byte *extdyn, *extdynend;
6974 size_t extdynsize;
6975 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6976
6977 *pneeded = NULL;
6978
6979 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6980 || bfd_get_format (abfd) != bfd_object)
6981 return TRUE;
6982
6983 s = bfd_get_section_by_name (abfd, ".dynamic");
6984 if (s == NULL || s->size == 0)
6985 return TRUE;
6986
6987 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6988 goto error_return;
6989
6990 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6991 if (elfsec == SHN_BAD)
6992 goto error_return;
6993
6994 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6995
6996 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6997 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6998
6999 extdyn = dynbuf;
7000 extdynend = extdyn + s->size;
7001 for (; extdyn < extdynend; extdyn += extdynsize)
7002 {
7003 Elf_Internal_Dyn dyn;
7004
7005 (*swap_dyn_in) (abfd, extdyn, &dyn);
7006
7007 if (dyn.d_tag == DT_NULL)
7008 break;
7009
7010 if (dyn.d_tag == DT_NEEDED)
7011 {
7012 const char *string;
7013 struct bfd_link_needed_list *l;
7014 unsigned int tagv = dyn.d_un.d_val;
7015 bfd_size_type amt;
7016
7017 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7018 if (string == NULL)
7019 goto error_return;
7020
7021 amt = sizeof *l;
7022 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7023 if (l == NULL)
7024 goto error_return;
7025
7026 l->by = abfd;
7027 l->name = string;
7028 l->next = *pneeded;
7029 *pneeded = l;
7030 }
7031 }
7032
7033 free (dynbuf);
7034
7035 return TRUE;
7036
7037 error_return:
7038 if (dynbuf != NULL)
7039 free (dynbuf);
7040 return FALSE;
7041 }
7042
7043 struct elf_symbuf_symbol
7044 {
7045 unsigned long st_name; /* Symbol name, index in string tbl */
7046 unsigned char st_info; /* Type and binding attributes */
7047 unsigned char st_other; /* Visibilty, and target specific */
7048 };
7049
7050 struct elf_symbuf_head
7051 {
7052 struct elf_symbuf_symbol *ssym;
7053 bfd_size_type count;
7054 unsigned int st_shndx;
7055 };
7056
7057 struct elf_symbol
7058 {
7059 union
7060 {
7061 Elf_Internal_Sym *isym;
7062 struct elf_symbuf_symbol *ssym;
7063 } u;
7064 const char *name;
7065 };
7066
7067 /* Sort references to symbols by ascending section number. */
7068
7069 static int
7070 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7071 {
7072 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7073 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7074
7075 return s1->st_shndx - s2->st_shndx;
7076 }
7077
7078 static int
7079 elf_sym_name_compare (const void *arg1, const void *arg2)
7080 {
7081 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7082 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7083 return strcmp (s1->name, s2->name);
7084 }
7085
7086 static struct elf_symbuf_head *
7087 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7088 {
7089 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7090 struct elf_symbuf_symbol *ssym;
7091 struct elf_symbuf_head *ssymbuf, *ssymhead;
7092 bfd_size_type i, shndx_count, total_size;
7093
7094 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7095 if (indbuf == NULL)
7096 return NULL;
7097
7098 for (ind = indbuf, i = 0; i < symcount; i++)
7099 if (isymbuf[i].st_shndx != SHN_UNDEF)
7100 *ind++ = &isymbuf[i];
7101 indbufend = ind;
7102
7103 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7104 elf_sort_elf_symbol);
7105
7106 shndx_count = 0;
7107 if (indbufend > indbuf)
7108 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7109 if (ind[0]->st_shndx != ind[1]->st_shndx)
7110 shndx_count++;
7111
7112 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7113 + (indbufend - indbuf) * sizeof (*ssym));
7114 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7115 if (ssymbuf == NULL)
7116 {
7117 free (indbuf);
7118 return NULL;
7119 }
7120
7121 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7122 ssymbuf->ssym = NULL;
7123 ssymbuf->count = shndx_count;
7124 ssymbuf->st_shndx = 0;
7125 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7126 {
7127 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7128 {
7129 ssymhead++;
7130 ssymhead->ssym = ssym;
7131 ssymhead->count = 0;
7132 ssymhead->st_shndx = (*ind)->st_shndx;
7133 }
7134 ssym->st_name = (*ind)->st_name;
7135 ssym->st_info = (*ind)->st_info;
7136 ssym->st_other = (*ind)->st_other;
7137 ssymhead->count++;
7138 }
7139 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7140 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7141 == total_size));
7142
7143 free (indbuf);
7144 return ssymbuf;
7145 }
7146
7147 /* Check if 2 sections define the same set of local and global
7148 symbols. */
7149
7150 static bfd_boolean
7151 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7152 struct bfd_link_info *info)
7153 {
7154 bfd *bfd1, *bfd2;
7155 const struct elf_backend_data *bed1, *bed2;
7156 Elf_Internal_Shdr *hdr1, *hdr2;
7157 bfd_size_type symcount1, symcount2;
7158 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7159 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7160 Elf_Internal_Sym *isym, *isymend;
7161 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7162 bfd_size_type count1, count2, i;
7163 unsigned int shndx1, shndx2;
7164 bfd_boolean result;
7165
7166 bfd1 = sec1->owner;
7167 bfd2 = sec2->owner;
7168
7169 /* Both sections have to be in ELF. */
7170 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7171 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7172 return FALSE;
7173
7174 if (elf_section_type (sec1) != elf_section_type (sec2))
7175 return FALSE;
7176
7177 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7178 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7179 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7180 return FALSE;
7181
7182 bed1 = get_elf_backend_data (bfd1);
7183 bed2 = get_elf_backend_data (bfd2);
7184 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7185 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7186 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7187 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7188
7189 if (symcount1 == 0 || symcount2 == 0)
7190 return FALSE;
7191
7192 result = FALSE;
7193 isymbuf1 = NULL;
7194 isymbuf2 = NULL;
7195 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7196 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7197
7198 if (ssymbuf1 == NULL)
7199 {
7200 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7201 NULL, NULL, NULL);
7202 if (isymbuf1 == NULL)
7203 goto done;
7204
7205 if (!info->reduce_memory_overheads)
7206 elf_tdata (bfd1)->symbuf = ssymbuf1
7207 = elf_create_symbuf (symcount1, isymbuf1);
7208 }
7209
7210 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7211 {
7212 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7213 NULL, NULL, NULL);
7214 if (isymbuf2 == NULL)
7215 goto done;
7216
7217 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7218 elf_tdata (bfd2)->symbuf = ssymbuf2
7219 = elf_create_symbuf (symcount2, isymbuf2);
7220 }
7221
7222 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7223 {
7224 /* Optimized faster version. */
7225 bfd_size_type lo, hi, mid;
7226 struct elf_symbol *symp;
7227 struct elf_symbuf_symbol *ssym, *ssymend;
7228
7229 lo = 0;
7230 hi = ssymbuf1->count;
7231 ssymbuf1++;
7232 count1 = 0;
7233 while (lo < hi)
7234 {
7235 mid = (lo + hi) / 2;
7236 if (shndx1 < ssymbuf1[mid].st_shndx)
7237 hi = mid;
7238 else if (shndx1 > ssymbuf1[mid].st_shndx)
7239 lo = mid + 1;
7240 else
7241 {
7242 count1 = ssymbuf1[mid].count;
7243 ssymbuf1 += mid;
7244 break;
7245 }
7246 }
7247
7248 lo = 0;
7249 hi = ssymbuf2->count;
7250 ssymbuf2++;
7251 count2 = 0;
7252 while (lo < hi)
7253 {
7254 mid = (lo + hi) / 2;
7255 if (shndx2 < ssymbuf2[mid].st_shndx)
7256 hi = mid;
7257 else if (shndx2 > ssymbuf2[mid].st_shndx)
7258 lo = mid + 1;
7259 else
7260 {
7261 count2 = ssymbuf2[mid].count;
7262 ssymbuf2 += mid;
7263 break;
7264 }
7265 }
7266
7267 if (count1 == 0 || count2 == 0 || count1 != count2)
7268 goto done;
7269
7270 symtable1
7271 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7272 symtable2
7273 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7274 if (symtable1 == NULL || symtable2 == NULL)
7275 goto done;
7276
7277 symp = symtable1;
7278 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7279 ssym < ssymend; ssym++, symp++)
7280 {
7281 symp->u.ssym = ssym;
7282 symp->name = bfd_elf_string_from_elf_section (bfd1,
7283 hdr1->sh_link,
7284 ssym->st_name);
7285 }
7286
7287 symp = symtable2;
7288 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7289 ssym < ssymend; ssym++, symp++)
7290 {
7291 symp->u.ssym = ssym;
7292 symp->name = bfd_elf_string_from_elf_section (bfd2,
7293 hdr2->sh_link,
7294 ssym->st_name);
7295 }
7296
7297 /* Sort symbol by name. */
7298 qsort (symtable1, count1, sizeof (struct elf_symbol),
7299 elf_sym_name_compare);
7300 qsort (symtable2, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7302
7303 for (i = 0; i < count1; i++)
7304 /* Two symbols must have the same binding, type and name. */
7305 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7306 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7307 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7308 goto done;
7309
7310 result = TRUE;
7311 goto done;
7312 }
7313
7314 symtable1 = (struct elf_symbol *)
7315 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7316 symtable2 = (struct elf_symbol *)
7317 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7318 if (symtable1 == NULL || symtable2 == NULL)
7319 goto done;
7320
7321 /* Count definitions in the section. */
7322 count1 = 0;
7323 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7324 if (isym->st_shndx == shndx1)
7325 symtable1[count1++].u.isym = isym;
7326
7327 count2 = 0;
7328 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7329 if (isym->st_shndx == shndx2)
7330 symtable2[count2++].u.isym = isym;
7331
7332 if (count1 == 0 || count2 == 0 || count1 != count2)
7333 goto done;
7334
7335 for (i = 0; i < count1; i++)
7336 symtable1[i].name
7337 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7338 symtable1[i].u.isym->st_name);
7339
7340 for (i = 0; i < count2; i++)
7341 symtable2[i].name
7342 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7343 symtable2[i].u.isym->st_name);
7344
7345 /* Sort symbol by name. */
7346 qsort (symtable1, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348 qsort (symtable2, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7350
7351 for (i = 0; i < count1; i++)
7352 /* Two symbols must have the same binding, type and name. */
7353 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7354 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7355 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7356 goto done;
7357
7358 result = TRUE;
7359
7360 done:
7361 if (symtable1)
7362 free (symtable1);
7363 if (symtable2)
7364 free (symtable2);
7365 if (isymbuf1)
7366 free (isymbuf1);
7367 if (isymbuf2)
7368 free (isymbuf2);
7369
7370 return result;
7371 }
7372
7373 /* Return TRUE if 2 section types are compatible. */
7374
7375 bfd_boolean
7376 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7377 bfd *bbfd, const asection *bsec)
7378 {
7379 if (asec == NULL
7380 || bsec == NULL
7381 || abfd->xvec->flavour != bfd_target_elf_flavour
7382 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7383 return TRUE;
7384
7385 return elf_section_type (asec) == elf_section_type (bsec);
7386 }
7387 \f
7388 /* Final phase of ELF linker. */
7389
7390 /* A structure we use to avoid passing large numbers of arguments. */
7391
7392 struct elf_final_link_info
7393 {
7394 /* General link information. */
7395 struct bfd_link_info *info;
7396 /* Output BFD. */
7397 bfd *output_bfd;
7398 /* Symbol string table. */
7399 struct bfd_strtab_hash *symstrtab;
7400 /* .dynsym section. */
7401 asection *dynsym_sec;
7402 /* .hash section. */
7403 asection *hash_sec;
7404 /* symbol version section (.gnu.version). */
7405 asection *symver_sec;
7406 /* Buffer large enough to hold contents of any section. */
7407 bfd_byte *contents;
7408 /* Buffer large enough to hold external relocs of any section. */
7409 void *external_relocs;
7410 /* Buffer large enough to hold internal relocs of any section. */
7411 Elf_Internal_Rela *internal_relocs;
7412 /* Buffer large enough to hold external local symbols of any input
7413 BFD. */
7414 bfd_byte *external_syms;
7415 /* And a buffer for symbol section indices. */
7416 Elf_External_Sym_Shndx *locsym_shndx;
7417 /* Buffer large enough to hold internal local symbols of any input
7418 BFD. */
7419 Elf_Internal_Sym *internal_syms;
7420 /* Array large enough to hold a symbol index for each local symbol
7421 of any input BFD. */
7422 long *indices;
7423 /* Array large enough to hold a section pointer for each local
7424 symbol of any input BFD. */
7425 asection **sections;
7426 /* Buffer to hold swapped out symbols. */
7427 bfd_byte *symbuf;
7428 /* And one for symbol section indices. */
7429 Elf_External_Sym_Shndx *symshndxbuf;
7430 /* Number of swapped out symbols in buffer. */
7431 size_t symbuf_count;
7432 /* Number of symbols which fit in symbuf. */
7433 size_t symbuf_size;
7434 /* And same for symshndxbuf. */
7435 size_t shndxbuf_size;
7436 /* Number of STT_FILE syms seen. */
7437 size_t filesym_count;
7438 };
7439
7440 /* This struct is used to pass information to elf_link_output_extsym. */
7441
7442 struct elf_outext_info
7443 {
7444 bfd_boolean failed;
7445 bfd_boolean localsyms;
7446 bfd_boolean file_sym_done;
7447 struct elf_final_link_info *flinfo;
7448 };
7449
7450
7451 /* Support for evaluating a complex relocation.
7452
7453 Complex relocations are generalized, self-describing relocations. The
7454 implementation of them consists of two parts: complex symbols, and the
7455 relocations themselves.
7456
7457 The relocations are use a reserved elf-wide relocation type code (R_RELC
7458 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7459 information (start bit, end bit, word width, etc) into the addend. This
7460 information is extracted from CGEN-generated operand tables within gas.
7461
7462 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7463 internal) representing prefix-notation expressions, including but not
7464 limited to those sorts of expressions normally encoded as addends in the
7465 addend field. The symbol mangling format is:
7466
7467 <node> := <literal>
7468 | <unary-operator> ':' <node>
7469 | <binary-operator> ':' <node> ':' <node>
7470 ;
7471
7472 <literal> := 's' <digits=N> ':' <N character symbol name>
7473 | 'S' <digits=N> ':' <N character section name>
7474 | '#' <hexdigits>
7475 ;
7476
7477 <binary-operator> := as in C
7478 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7479
7480 static void
7481 set_symbol_value (bfd *bfd_with_globals,
7482 Elf_Internal_Sym *isymbuf,
7483 size_t locsymcount,
7484 size_t symidx,
7485 bfd_vma val)
7486 {
7487 struct elf_link_hash_entry **sym_hashes;
7488 struct elf_link_hash_entry *h;
7489 size_t extsymoff = locsymcount;
7490
7491 if (symidx < locsymcount)
7492 {
7493 Elf_Internal_Sym *sym;
7494
7495 sym = isymbuf + symidx;
7496 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7497 {
7498 /* It is a local symbol: move it to the
7499 "absolute" section and give it a value. */
7500 sym->st_shndx = SHN_ABS;
7501 sym->st_value = val;
7502 return;
7503 }
7504 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7505 extsymoff = 0;
7506 }
7507
7508 /* It is a global symbol: set its link type
7509 to "defined" and give it a value. */
7510
7511 sym_hashes = elf_sym_hashes (bfd_with_globals);
7512 h = sym_hashes [symidx - extsymoff];
7513 while (h->root.type == bfd_link_hash_indirect
7514 || h->root.type == bfd_link_hash_warning)
7515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7516 h->root.type = bfd_link_hash_defined;
7517 h->root.u.def.value = val;
7518 h->root.u.def.section = bfd_abs_section_ptr;
7519 }
7520
7521 static bfd_boolean
7522 resolve_symbol (const char *name,
7523 bfd *input_bfd,
7524 struct elf_final_link_info *flinfo,
7525 bfd_vma *result,
7526 Elf_Internal_Sym *isymbuf,
7527 size_t locsymcount)
7528 {
7529 Elf_Internal_Sym *sym;
7530 struct bfd_link_hash_entry *global_entry;
7531 const char *candidate = NULL;
7532 Elf_Internal_Shdr *symtab_hdr;
7533 size_t i;
7534
7535 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7536
7537 for (i = 0; i < locsymcount; ++ i)
7538 {
7539 sym = isymbuf + i;
7540
7541 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7542 continue;
7543
7544 candidate = bfd_elf_string_from_elf_section (input_bfd,
7545 symtab_hdr->sh_link,
7546 sym->st_name);
7547 #ifdef DEBUG
7548 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7549 name, candidate, (unsigned long) sym->st_value);
7550 #endif
7551 if (candidate && strcmp (candidate, name) == 0)
7552 {
7553 asection *sec = flinfo->sections [i];
7554
7555 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7556 *result += sec->output_offset + sec->output_section->vma;
7557 #ifdef DEBUG
7558 printf ("Found symbol with value %8.8lx\n",
7559 (unsigned long) *result);
7560 #endif
7561 return TRUE;
7562 }
7563 }
7564
7565 /* Hmm, haven't found it yet. perhaps it is a global. */
7566 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7567 FALSE, FALSE, TRUE);
7568 if (!global_entry)
7569 return FALSE;
7570
7571 if (global_entry->type == bfd_link_hash_defined
7572 || global_entry->type == bfd_link_hash_defweak)
7573 {
7574 *result = (global_entry->u.def.value
7575 + global_entry->u.def.section->output_section->vma
7576 + global_entry->u.def.section->output_offset);
7577 #ifdef DEBUG
7578 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7579 global_entry->root.string, (unsigned long) *result);
7580 #endif
7581 return TRUE;
7582 }
7583
7584 return FALSE;
7585 }
7586
7587 static bfd_boolean
7588 resolve_section (const char *name,
7589 asection *sections,
7590 bfd_vma *result)
7591 {
7592 asection *curr;
7593 unsigned int len;
7594
7595 for (curr = sections; curr; curr = curr->next)
7596 if (strcmp (curr->name, name) == 0)
7597 {
7598 *result = curr->vma;
7599 return TRUE;
7600 }
7601
7602 /* Hmm. still haven't found it. try pseudo-section names. */
7603 for (curr = sections; curr; curr = curr->next)
7604 {
7605 len = strlen (curr->name);
7606 if (len > strlen (name))
7607 continue;
7608
7609 if (strncmp (curr->name, name, len) == 0)
7610 {
7611 if (strncmp (".end", name + len, 4) == 0)
7612 {
7613 *result = curr->vma + curr->size;
7614 return TRUE;
7615 }
7616
7617 /* Insert more pseudo-section names here, if you like. */
7618 }
7619 }
7620
7621 return FALSE;
7622 }
7623
7624 static void
7625 undefined_reference (const char *reftype, const char *name)
7626 {
7627 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7628 reftype, name);
7629 }
7630
7631 static bfd_boolean
7632 eval_symbol (bfd_vma *result,
7633 const char **symp,
7634 bfd *input_bfd,
7635 struct elf_final_link_info *flinfo,
7636 bfd_vma dot,
7637 Elf_Internal_Sym *isymbuf,
7638 size_t locsymcount,
7639 int signed_p)
7640 {
7641 size_t len;
7642 size_t symlen;
7643 bfd_vma a;
7644 bfd_vma b;
7645 char symbuf[4096];
7646 const char *sym = *symp;
7647 const char *symend;
7648 bfd_boolean symbol_is_section = FALSE;
7649
7650 len = strlen (sym);
7651 symend = sym + len;
7652
7653 if (len < 1 || len > sizeof (symbuf))
7654 {
7655 bfd_set_error (bfd_error_invalid_operation);
7656 return FALSE;
7657 }
7658
7659 switch (* sym)
7660 {
7661 case '.':
7662 *result = dot;
7663 *symp = sym + 1;
7664 return TRUE;
7665
7666 case '#':
7667 ++sym;
7668 *result = strtoul (sym, (char **) symp, 16);
7669 return TRUE;
7670
7671 case 'S':
7672 symbol_is_section = TRUE;
7673 case 's':
7674 ++sym;
7675 symlen = strtol (sym, (char **) symp, 10);
7676 sym = *symp + 1; /* Skip the trailing ':'. */
7677
7678 if (symend < sym || symlen + 1 > sizeof (symbuf))
7679 {
7680 bfd_set_error (bfd_error_invalid_operation);
7681 return FALSE;
7682 }
7683
7684 memcpy (symbuf, sym, symlen);
7685 symbuf[symlen] = '\0';
7686 *symp = sym + symlen;
7687
7688 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7689 the symbol as a section, or vice-versa. so we're pretty liberal in our
7690 interpretation here; section means "try section first", not "must be a
7691 section", and likewise with symbol. */
7692
7693 if (symbol_is_section)
7694 {
7695 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7696 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7697 isymbuf, locsymcount))
7698 {
7699 undefined_reference ("section", symbuf);
7700 return FALSE;
7701 }
7702 }
7703 else
7704 {
7705 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7706 isymbuf, locsymcount)
7707 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7708 result))
7709 {
7710 undefined_reference ("symbol", symbuf);
7711 return FALSE;
7712 }
7713 }
7714
7715 return TRUE;
7716
7717 /* All that remains are operators. */
7718
7719 #define UNARY_OP(op) \
7720 if (strncmp (sym, #op, strlen (#op)) == 0) \
7721 { \
7722 sym += strlen (#op); \
7723 if (*sym == ':') \
7724 ++sym; \
7725 *symp = sym; \
7726 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7727 isymbuf, locsymcount, signed_p)) \
7728 return FALSE; \
7729 if (signed_p) \
7730 *result = op ((bfd_signed_vma) a); \
7731 else \
7732 *result = op a; \
7733 return TRUE; \
7734 }
7735
7736 #define BINARY_OP(op) \
7737 if (strncmp (sym, #op, strlen (#op)) == 0) \
7738 { \
7739 sym += strlen (#op); \
7740 if (*sym == ':') \
7741 ++sym; \
7742 *symp = sym; \
7743 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7744 isymbuf, locsymcount, signed_p)) \
7745 return FALSE; \
7746 ++*symp; \
7747 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7748 isymbuf, locsymcount, signed_p)) \
7749 return FALSE; \
7750 if (signed_p) \
7751 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7752 else \
7753 *result = a op b; \
7754 return TRUE; \
7755 }
7756
7757 default:
7758 UNARY_OP (0-);
7759 BINARY_OP (<<);
7760 BINARY_OP (>>);
7761 BINARY_OP (==);
7762 BINARY_OP (!=);
7763 BINARY_OP (<=);
7764 BINARY_OP (>=);
7765 BINARY_OP (&&);
7766 BINARY_OP (||);
7767 UNARY_OP (~);
7768 UNARY_OP (!);
7769 BINARY_OP (*);
7770 BINARY_OP (/);
7771 BINARY_OP (%);
7772 BINARY_OP (^);
7773 BINARY_OP (|);
7774 BINARY_OP (&);
7775 BINARY_OP (+);
7776 BINARY_OP (-);
7777 BINARY_OP (<);
7778 BINARY_OP (>);
7779 #undef UNARY_OP
7780 #undef BINARY_OP
7781 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7782 bfd_set_error (bfd_error_invalid_operation);
7783 return FALSE;
7784 }
7785 }
7786
7787 static void
7788 put_value (bfd_vma size,
7789 unsigned long chunksz,
7790 bfd *input_bfd,
7791 bfd_vma x,
7792 bfd_byte *location)
7793 {
7794 location += (size - chunksz);
7795
7796 for (; size; size -= chunksz, location -= chunksz)
7797 {
7798 switch (chunksz)
7799 {
7800 case 1:
7801 bfd_put_8 (input_bfd, x, location);
7802 x >>= 8;
7803 break;
7804 case 2:
7805 bfd_put_16 (input_bfd, x, location);
7806 x >>= 16;
7807 break;
7808 case 4:
7809 bfd_put_32 (input_bfd, x, location);
7810 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7811 x >>= 16;
7812 x >>= 16;
7813 break;
7814 #ifdef BFD64
7815 case 8:
7816 bfd_put_64 (input_bfd, x, location);
7817 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7818 x >>= 32;
7819 x >>= 32;
7820 break;
7821 #endif
7822 default:
7823 abort ();
7824 break;
7825 }
7826 }
7827 }
7828
7829 static bfd_vma
7830 get_value (bfd_vma size,
7831 unsigned long chunksz,
7832 bfd *input_bfd,
7833 bfd_byte *location)
7834 {
7835 int shift;
7836 bfd_vma x = 0;
7837
7838 /* Sanity checks. */
7839 BFD_ASSERT (chunksz <= sizeof (x)
7840 && size >= chunksz
7841 && chunksz != 0
7842 && (size % chunksz) == 0
7843 && input_bfd != NULL
7844 && location != NULL);
7845
7846 if (chunksz == sizeof (x))
7847 {
7848 BFD_ASSERT (size == chunksz);
7849
7850 /* Make sure that we do not perform an undefined shift operation.
7851 We know that size == chunksz so there will only be one iteration
7852 of the loop below. */
7853 shift = 0;
7854 }
7855 else
7856 shift = 8 * chunksz;
7857
7858 for (; size; size -= chunksz, location += chunksz)
7859 {
7860 switch (chunksz)
7861 {
7862 case 1:
7863 x = (x << shift) | bfd_get_8 (input_bfd, location);
7864 break;
7865 case 2:
7866 x = (x << shift) | bfd_get_16 (input_bfd, location);
7867 break;
7868 case 4:
7869 x = (x << shift) | bfd_get_32 (input_bfd, location);
7870 break;
7871 #ifdef BFD64
7872 case 8:
7873 x = (x << shift) | bfd_get_64 (input_bfd, location);
7874 break;
7875 #endif
7876 default:
7877 abort ();
7878 }
7879 }
7880 return x;
7881 }
7882
7883 static void
7884 decode_complex_addend (unsigned long *start, /* in bits */
7885 unsigned long *oplen, /* in bits */
7886 unsigned long *len, /* in bits */
7887 unsigned long *wordsz, /* in bytes */
7888 unsigned long *chunksz, /* in bytes */
7889 unsigned long *lsb0_p,
7890 unsigned long *signed_p,
7891 unsigned long *trunc_p,
7892 unsigned long encoded)
7893 {
7894 * start = encoded & 0x3F;
7895 * len = (encoded >> 6) & 0x3F;
7896 * oplen = (encoded >> 12) & 0x3F;
7897 * wordsz = (encoded >> 18) & 0xF;
7898 * chunksz = (encoded >> 22) & 0xF;
7899 * lsb0_p = (encoded >> 27) & 1;
7900 * signed_p = (encoded >> 28) & 1;
7901 * trunc_p = (encoded >> 29) & 1;
7902 }
7903
7904 bfd_reloc_status_type
7905 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7906 asection *input_section ATTRIBUTE_UNUSED,
7907 bfd_byte *contents,
7908 Elf_Internal_Rela *rel,
7909 bfd_vma relocation)
7910 {
7911 bfd_vma shift, x, mask;
7912 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7913 bfd_reloc_status_type r;
7914
7915 /* Perform this reloc, since it is complex.
7916 (this is not to say that it necessarily refers to a complex
7917 symbol; merely that it is a self-describing CGEN based reloc.
7918 i.e. the addend has the complete reloc information (bit start, end,
7919 word size, etc) encoded within it.). */
7920
7921 decode_complex_addend (&start, &oplen, &len, &wordsz,
7922 &chunksz, &lsb0_p, &signed_p,
7923 &trunc_p, rel->r_addend);
7924
7925 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7926
7927 if (lsb0_p)
7928 shift = (start + 1) - len;
7929 else
7930 shift = (8 * wordsz) - (start + len);
7931
7932 /* FIXME: octets_per_byte. */
7933 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7934
7935 #ifdef DEBUG
7936 printf ("Doing complex reloc: "
7937 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7938 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7939 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7940 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7941 oplen, (unsigned long) x, (unsigned long) mask,
7942 (unsigned long) relocation);
7943 #endif
7944
7945 r = bfd_reloc_ok;
7946 if (! trunc_p)
7947 /* Now do an overflow check. */
7948 r = bfd_check_overflow ((signed_p
7949 ? complain_overflow_signed
7950 : complain_overflow_unsigned),
7951 len, 0, (8 * wordsz),
7952 relocation);
7953
7954 /* Do the deed. */
7955 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7956
7957 #ifdef DEBUG
7958 printf (" relocation: %8.8lx\n"
7959 " shifted mask: %8.8lx\n"
7960 " shifted/masked reloc: %8.8lx\n"
7961 " result: %8.8lx\n",
7962 (unsigned long) relocation, (unsigned long) (mask << shift),
7963 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7964 #endif
7965 /* FIXME: octets_per_byte. */
7966 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7967 return r;
7968 }
7969
7970 /* qsort comparison functions sorting external relocs by r_offset. */
7971
7972 static int
7973 cmp_ext32l_r_offset (const void *p, const void *q)
7974 {
7975 union aligned32
7976 {
7977 uint32_t v;
7978 unsigned char c[4];
7979 };
7980 const union aligned32 *a
7981 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7982 const union aligned32 *b
7983 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7984
7985 uint32_t aval = ( (uint32_t) a->c[0]
7986 | (uint32_t) a->c[1] << 8
7987 | (uint32_t) a->c[2] << 16
7988 | (uint32_t) a->c[3] << 24);
7989 uint32_t bval = ( (uint32_t) b->c[0]
7990 | (uint32_t) b->c[1] << 8
7991 | (uint32_t) b->c[2] << 16
7992 | (uint32_t) b->c[3] << 24);
7993 if (aval < bval)
7994 return -1;
7995 else if (aval > bval)
7996 return 1;
7997 return 0;
7998 }
7999
8000 static int
8001 cmp_ext32b_r_offset (const void *p, const void *q)
8002 {
8003 union aligned32
8004 {
8005 uint32_t v;
8006 unsigned char c[4];
8007 };
8008 const union aligned32 *a
8009 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8010 const union aligned32 *b
8011 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8012
8013 uint32_t aval = ( (uint32_t) a->c[0] << 24
8014 | (uint32_t) a->c[1] << 16
8015 | (uint32_t) a->c[2] << 8
8016 | (uint32_t) a->c[3]);
8017 uint32_t bval = ( (uint32_t) b->c[0] << 24
8018 | (uint32_t) b->c[1] << 16
8019 | (uint32_t) b->c[2] << 8
8020 | (uint32_t) b->c[3]);
8021 if (aval < bval)
8022 return -1;
8023 else if (aval > bval)
8024 return 1;
8025 return 0;
8026 }
8027
8028 #ifdef BFD_HOST_64_BIT
8029 static int
8030 cmp_ext64l_r_offset (const void *p, const void *q)
8031 {
8032 union aligned64
8033 {
8034 uint64_t v;
8035 unsigned char c[8];
8036 };
8037 const union aligned64 *a
8038 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8039 const union aligned64 *b
8040 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8041
8042 uint64_t aval = ( (uint64_t) a->c[0]
8043 | (uint64_t) a->c[1] << 8
8044 | (uint64_t) a->c[2] << 16
8045 | (uint64_t) a->c[3] << 24
8046 | (uint64_t) a->c[4] << 32
8047 | (uint64_t) a->c[5] << 40
8048 | (uint64_t) a->c[6] << 48
8049 | (uint64_t) a->c[7] << 56);
8050 uint64_t bval = ( (uint64_t) b->c[0]
8051 | (uint64_t) b->c[1] << 8
8052 | (uint64_t) b->c[2] << 16
8053 | (uint64_t) b->c[3] << 24
8054 | (uint64_t) b->c[4] << 32
8055 | (uint64_t) b->c[5] << 40
8056 | (uint64_t) b->c[6] << 48
8057 | (uint64_t) b->c[7] << 56);
8058 if (aval < bval)
8059 return -1;
8060 else if (aval > bval)
8061 return 1;
8062 return 0;
8063 }
8064
8065 static int
8066 cmp_ext64b_r_offset (const void *p, const void *q)
8067 {
8068 union aligned64
8069 {
8070 uint64_t v;
8071 unsigned char c[8];
8072 };
8073 const union aligned64 *a
8074 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8075 const union aligned64 *b
8076 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8077
8078 uint64_t aval = ( (uint64_t) a->c[0] << 56
8079 | (uint64_t) a->c[1] << 48
8080 | (uint64_t) a->c[2] << 40
8081 | (uint64_t) a->c[3] << 32
8082 | (uint64_t) a->c[4] << 24
8083 | (uint64_t) a->c[5] << 16
8084 | (uint64_t) a->c[6] << 8
8085 | (uint64_t) a->c[7]);
8086 uint64_t bval = ( (uint64_t) b->c[0] << 56
8087 | (uint64_t) b->c[1] << 48
8088 | (uint64_t) b->c[2] << 40
8089 | (uint64_t) b->c[3] << 32
8090 | (uint64_t) b->c[4] << 24
8091 | (uint64_t) b->c[5] << 16
8092 | (uint64_t) b->c[6] << 8
8093 | (uint64_t) b->c[7]);
8094 if (aval < bval)
8095 return -1;
8096 else if (aval > bval)
8097 return 1;
8098 return 0;
8099 }
8100 #endif
8101
8102 /* When performing a relocatable link, the input relocations are
8103 preserved. But, if they reference global symbols, the indices
8104 referenced must be updated. Update all the relocations found in
8105 RELDATA. */
8106
8107 static void
8108 elf_link_adjust_relocs (bfd *abfd,
8109 struct bfd_elf_section_reloc_data *reldata,
8110 bfd_boolean sort)
8111 {
8112 unsigned int i;
8113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8114 bfd_byte *erela;
8115 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8116 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8117 bfd_vma r_type_mask;
8118 int r_sym_shift;
8119 unsigned int count = reldata->count;
8120 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8121
8122 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8123 {
8124 swap_in = bed->s->swap_reloc_in;
8125 swap_out = bed->s->swap_reloc_out;
8126 }
8127 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8128 {
8129 swap_in = bed->s->swap_reloca_in;
8130 swap_out = bed->s->swap_reloca_out;
8131 }
8132 else
8133 abort ();
8134
8135 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8136 abort ();
8137
8138 if (bed->s->arch_size == 32)
8139 {
8140 r_type_mask = 0xff;
8141 r_sym_shift = 8;
8142 }
8143 else
8144 {
8145 r_type_mask = 0xffffffff;
8146 r_sym_shift = 32;
8147 }
8148
8149 erela = reldata->hdr->contents;
8150 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8151 {
8152 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8153 unsigned int j;
8154
8155 if (*rel_hash == NULL)
8156 continue;
8157
8158 BFD_ASSERT ((*rel_hash)->indx >= 0);
8159
8160 (*swap_in) (abfd, erela, irela);
8161 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8162 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8163 | (irela[j].r_info & r_type_mask));
8164 (*swap_out) (abfd, irela, erela);
8165 }
8166
8167 if (sort)
8168 {
8169 int (*compare) (const void *, const void *);
8170
8171 if (bed->s->arch_size == 32)
8172 {
8173 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8174 compare = cmp_ext32l_r_offset;
8175 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8176 compare = cmp_ext32b_r_offset;
8177 else
8178 abort ();
8179 }
8180 else
8181 {
8182 #ifdef BFD_HOST_64_BIT
8183 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8184 compare = cmp_ext64l_r_offset;
8185 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8186 compare = cmp_ext64b_r_offset;
8187 else
8188 #endif
8189 abort ();
8190 }
8191 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8192 free (reldata->hashes);
8193 reldata->hashes = NULL;
8194 }
8195 }
8196
8197 struct elf_link_sort_rela
8198 {
8199 union {
8200 bfd_vma offset;
8201 bfd_vma sym_mask;
8202 } u;
8203 enum elf_reloc_type_class type;
8204 /* We use this as an array of size int_rels_per_ext_rel. */
8205 Elf_Internal_Rela rela[1];
8206 };
8207
8208 static int
8209 elf_link_sort_cmp1 (const void *A, const void *B)
8210 {
8211 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8212 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8213 int relativea, relativeb;
8214
8215 relativea = a->type == reloc_class_relative;
8216 relativeb = b->type == reloc_class_relative;
8217
8218 if (relativea < relativeb)
8219 return 1;
8220 if (relativea > relativeb)
8221 return -1;
8222 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8223 return -1;
8224 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8225 return 1;
8226 if (a->rela->r_offset < b->rela->r_offset)
8227 return -1;
8228 if (a->rela->r_offset > b->rela->r_offset)
8229 return 1;
8230 return 0;
8231 }
8232
8233 static int
8234 elf_link_sort_cmp2 (const void *A, const void *B)
8235 {
8236 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8237 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8238
8239 if (a->type < b->type)
8240 return -1;
8241 if (a->type > b->type)
8242 return 1;
8243 if (a->u.offset < b->u.offset)
8244 return -1;
8245 if (a->u.offset > b->u.offset)
8246 return 1;
8247 if (a->rela->r_offset < b->rela->r_offset)
8248 return -1;
8249 if (a->rela->r_offset > b->rela->r_offset)
8250 return 1;
8251 return 0;
8252 }
8253
8254 static size_t
8255 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8256 {
8257 asection *dynamic_relocs;
8258 asection *rela_dyn;
8259 asection *rel_dyn;
8260 bfd_size_type count, size;
8261 size_t i, ret, sort_elt, ext_size;
8262 bfd_byte *sort, *s_non_relative, *p;
8263 struct elf_link_sort_rela *sq;
8264 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8265 int i2e = bed->s->int_rels_per_ext_rel;
8266 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8267 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8268 struct bfd_link_order *lo;
8269 bfd_vma r_sym_mask;
8270 bfd_boolean use_rela;
8271
8272 /* Find a dynamic reloc section. */
8273 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8274 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8275 if (rela_dyn != NULL && rela_dyn->size > 0
8276 && rel_dyn != NULL && rel_dyn->size > 0)
8277 {
8278 bfd_boolean use_rela_initialised = FALSE;
8279
8280 /* This is just here to stop gcc from complaining.
8281 It's initialization checking code is not perfect. */
8282 use_rela = TRUE;
8283
8284 /* Both sections are present. Examine the sizes
8285 of the indirect sections to help us choose. */
8286 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8287 if (lo->type == bfd_indirect_link_order)
8288 {
8289 asection *o = lo->u.indirect.section;
8290
8291 if ((o->size % bed->s->sizeof_rela) == 0)
8292 {
8293 if ((o->size % bed->s->sizeof_rel) == 0)
8294 /* Section size is divisible by both rel and rela sizes.
8295 It is of no help to us. */
8296 ;
8297 else
8298 {
8299 /* Section size is only divisible by rela. */
8300 if (use_rela_initialised && (use_rela == FALSE))
8301 {
8302 _bfd_error_handler
8303 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8304 bfd_set_error (bfd_error_invalid_operation);
8305 return 0;
8306 }
8307 else
8308 {
8309 use_rela = TRUE;
8310 use_rela_initialised = TRUE;
8311 }
8312 }
8313 }
8314 else if ((o->size % bed->s->sizeof_rel) == 0)
8315 {
8316 /* Section size is only divisible by rel. */
8317 if (use_rela_initialised && (use_rela == TRUE))
8318 {
8319 _bfd_error_handler
8320 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8321 bfd_set_error (bfd_error_invalid_operation);
8322 return 0;
8323 }
8324 else
8325 {
8326 use_rela = FALSE;
8327 use_rela_initialised = TRUE;
8328 }
8329 }
8330 else
8331 {
8332 /* The section size is not divisible by either - something is wrong. */
8333 _bfd_error_handler
8334 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8335 bfd_set_error (bfd_error_invalid_operation);
8336 return 0;
8337 }
8338 }
8339
8340 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8341 if (lo->type == bfd_indirect_link_order)
8342 {
8343 asection *o = lo->u.indirect.section;
8344
8345 if ((o->size % bed->s->sizeof_rela) == 0)
8346 {
8347 if ((o->size % bed->s->sizeof_rel) == 0)
8348 /* Section size is divisible by both rel and rela sizes.
8349 It is of no help to us. */
8350 ;
8351 else
8352 {
8353 /* Section size is only divisible by rela. */
8354 if (use_rela_initialised && (use_rela == FALSE))
8355 {
8356 _bfd_error_handler
8357 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8358 bfd_set_error (bfd_error_invalid_operation);
8359 return 0;
8360 }
8361 else
8362 {
8363 use_rela = TRUE;
8364 use_rela_initialised = TRUE;
8365 }
8366 }
8367 }
8368 else if ((o->size % bed->s->sizeof_rel) == 0)
8369 {
8370 /* Section size is only divisible by rel. */
8371 if (use_rela_initialised && (use_rela == TRUE))
8372 {
8373 _bfd_error_handler
8374 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8375 bfd_set_error (bfd_error_invalid_operation);
8376 return 0;
8377 }
8378 else
8379 {
8380 use_rela = FALSE;
8381 use_rela_initialised = TRUE;
8382 }
8383 }
8384 else
8385 {
8386 /* The section size is not divisible by either - something is wrong. */
8387 _bfd_error_handler
8388 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8389 bfd_set_error (bfd_error_invalid_operation);
8390 return 0;
8391 }
8392 }
8393
8394 if (! use_rela_initialised)
8395 /* Make a guess. */
8396 use_rela = TRUE;
8397 }
8398 else if (rela_dyn != NULL && rela_dyn->size > 0)
8399 use_rela = TRUE;
8400 else if (rel_dyn != NULL && rel_dyn->size > 0)
8401 use_rela = FALSE;
8402 else
8403 return 0;
8404
8405 if (use_rela)
8406 {
8407 dynamic_relocs = rela_dyn;
8408 ext_size = bed->s->sizeof_rela;
8409 swap_in = bed->s->swap_reloca_in;
8410 swap_out = bed->s->swap_reloca_out;
8411 }
8412 else
8413 {
8414 dynamic_relocs = rel_dyn;
8415 ext_size = bed->s->sizeof_rel;
8416 swap_in = bed->s->swap_reloc_in;
8417 swap_out = bed->s->swap_reloc_out;
8418 }
8419
8420 size = 0;
8421 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8422 if (lo->type == bfd_indirect_link_order)
8423 size += lo->u.indirect.section->size;
8424
8425 if (size != dynamic_relocs->size)
8426 return 0;
8427
8428 sort_elt = (sizeof (struct elf_link_sort_rela)
8429 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8430
8431 count = dynamic_relocs->size / ext_size;
8432 if (count == 0)
8433 return 0;
8434 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8435
8436 if (sort == NULL)
8437 {
8438 (*info->callbacks->warning)
8439 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8440 return 0;
8441 }
8442
8443 if (bed->s->arch_size == 32)
8444 r_sym_mask = ~(bfd_vma) 0xff;
8445 else
8446 r_sym_mask = ~(bfd_vma) 0xffffffff;
8447
8448 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8449 if (lo->type == bfd_indirect_link_order)
8450 {
8451 bfd_byte *erel, *erelend;
8452 asection *o = lo->u.indirect.section;
8453
8454 if (o->contents == NULL && o->size != 0)
8455 {
8456 /* This is a reloc section that is being handled as a normal
8457 section. See bfd_section_from_shdr. We can't combine
8458 relocs in this case. */
8459 free (sort);
8460 return 0;
8461 }
8462 erel = o->contents;
8463 erelend = o->contents + o->size;
8464 /* FIXME: octets_per_byte. */
8465 p = sort + o->output_offset / ext_size * sort_elt;
8466
8467 while (erel < erelend)
8468 {
8469 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8470
8471 (*swap_in) (abfd, erel, s->rela);
8472 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8473 s->u.sym_mask = r_sym_mask;
8474 p += sort_elt;
8475 erel += ext_size;
8476 }
8477 }
8478
8479 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8480
8481 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8482 {
8483 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8484 if (s->type != reloc_class_relative)
8485 break;
8486 }
8487 ret = i;
8488 s_non_relative = p;
8489
8490 sq = (struct elf_link_sort_rela *) s_non_relative;
8491 for (; i < count; i++, p += sort_elt)
8492 {
8493 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8494 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8495 sq = sp;
8496 sp->u.offset = sq->rela->r_offset;
8497 }
8498
8499 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8500
8501 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8502 if (lo->type == bfd_indirect_link_order)
8503 {
8504 bfd_byte *erel, *erelend;
8505 asection *o = lo->u.indirect.section;
8506
8507 erel = o->contents;
8508 erelend = o->contents + o->size;
8509 /* FIXME: octets_per_byte. */
8510 p = sort + o->output_offset / ext_size * sort_elt;
8511 while (erel < erelend)
8512 {
8513 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8514 (*swap_out) (abfd, s->rela, erel);
8515 p += sort_elt;
8516 erel += ext_size;
8517 }
8518 }
8519
8520 free (sort);
8521 *psec = dynamic_relocs;
8522 return ret;
8523 }
8524
8525 /* Flush the output symbols to the file. */
8526
8527 static bfd_boolean
8528 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8529 const struct elf_backend_data *bed)
8530 {
8531 if (flinfo->symbuf_count > 0)
8532 {
8533 Elf_Internal_Shdr *hdr;
8534 file_ptr pos;
8535 bfd_size_type amt;
8536
8537 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8538 pos = hdr->sh_offset + hdr->sh_size;
8539 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8540 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8541 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8542 return FALSE;
8543
8544 hdr->sh_size += amt;
8545 flinfo->symbuf_count = 0;
8546 }
8547
8548 return TRUE;
8549 }
8550
8551 /* Add a symbol to the output symbol table. */
8552
8553 static int
8554 elf_link_output_sym (struct elf_final_link_info *flinfo,
8555 const char *name,
8556 Elf_Internal_Sym *elfsym,
8557 asection *input_sec,
8558 struct elf_link_hash_entry *h)
8559 {
8560 bfd_byte *dest;
8561 Elf_External_Sym_Shndx *destshndx;
8562 int (*output_symbol_hook)
8563 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8564 struct elf_link_hash_entry *);
8565 const struct elf_backend_data *bed;
8566
8567 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8568
8569 bed = get_elf_backend_data (flinfo->output_bfd);
8570 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8571 if (output_symbol_hook != NULL)
8572 {
8573 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8574 if (ret != 1)
8575 return ret;
8576 }
8577
8578 if (name == NULL || *name == '\0')
8579 elfsym->st_name = 0;
8580 else if (input_sec->flags & SEC_EXCLUDE)
8581 elfsym->st_name = 0;
8582 else
8583 {
8584 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8585 name, TRUE, FALSE);
8586 if (elfsym->st_name == (unsigned long) -1)
8587 return 0;
8588 }
8589
8590 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8591 {
8592 if (! elf_link_flush_output_syms (flinfo, bed))
8593 return 0;
8594 }
8595
8596 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8597 destshndx = flinfo->symshndxbuf;
8598 if (destshndx != NULL)
8599 {
8600 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8601 {
8602 bfd_size_type amt;
8603
8604 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8605 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8606 amt * 2);
8607 if (destshndx == NULL)
8608 return 0;
8609 flinfo->symshndxbuf = destshndx;
8610 memset ((char *) destshndx + amt, 0, amt);
8611 flinfo->shndxbuf_size *= 2;
8612 }
8613 destshndx += bfd_get_symcount (flinfo->output_bfd);
8614 }
8615
8616 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8617 flinfo->symbuf_count += 1;
8618 bfd_get_symcount (flinfo->output_bfd) += 1;
8619
8620 return 1;
8621 }
8622
8623 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8624
8625 static bfd_boolean
8626 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8627 {
8628 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8629 && sym->st_shndx < SHN_LORESERVE)
8630 {
8631 /* The gABI doesn't support dynamic symbols in output sections
8632 beyond 64k. */
8633 (*_bfd_error_handler)
8634 (_("%B: Too many sections: %d (>= %d)"),
8635 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8636 bfd_set_error (bfd_error_nonrepresentable_section);
8637 return FALSE;
8638 }
8639 return TRUE;
8640 }
8641
8642 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8643 allowing an unsatisfied unversioned symbol in the DSO to match a
8644 versioned symbol that would normally require an explicit version.
8645 We also handle the case that a DSO references a hidden symbol
8646 which may be satisfied by a versioned symbol in another DSO. */
8647
8648 static bfd_boolean
8649 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8650 const struct elf_backend_data *bed,
8651 struct elf_link_hash_entry *h)
8652 {
8653 bfd *abfd;
8654 struct elf_link_loaded_list *loaded;
8655
8656 if (!is_elf_hash_table (info->hash))
8657 return FALSE;
8658
8659 /* Check indirect symbol. */
8660 while (h->root.type == bfd_link_hash_indirect)
8661 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8662
8663 switch (h->root.type)
8664 {
8665 default:
8666 abfd = NULL;
8667 break;
8668
8669 case bfd_link_hash_undefined:
8670 case bfd_link_hash_undefweak:
8671 abfd = h->root.u.undef.abfd;
8672 if ((abfd->flags & DYNAMIC) == 0
8673 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8674 return FALSE;
8675 break;
8676
8677 case bfd_link_hash_defined:
8678 case bfd_link_hash_defweak:
8679 abfd = h->root.u.def.section->owner;
8680 break;
8681
8682 case bfd_link_hash_common:
8683 abfd = h->root.u.c.p->section->owner;
8684 break;
8685 }
8686 BFD_ASSERT (abfd != NULL);
8687
8688 for (loaded = elf_hash_table (info)->loaded;
8689 loaded != NULL;
8690 loaded = loaded->next)
8691 {
8692 bfd *input;
8693 Elf_Internal_Shdr *hdr;
8694 bfd_size_type symcount;
8695 bfd_size_type extsymcount;
8696 bfd_size_type extsymoff;
8697 Elf_Internal_Shdr *versymhdr;
8698 Elf_Internal_Sym *isym;
8699 Elf_Internal_Sym *isymend;
8700 Elf_Internal_Sym *isymbuf;
8701 Elf_External_Versym *ever;
8702 Elf_External_Versym *extversym;
8703
8704 input = loaded->abfd;
8705
8706 /* We check each DSO for a possible hidden versioned definition. */
8707 if (input == abfd
8708 || (input->flags & DYNAMIC) == 0
8709 || elf_dynversym (input) == 0)
8710 continue;
8711
8712 hdr = &elf_tdata (input)->dynsymtab_hdr;
8713
8714 symcount = hdr->sh_size / bed->s->sizeof_sym;
8715 if (elf_bad_symtab (input))
8716 {
8717 extsymcount = symcount;
8718 extsymoff = 0;
8719 }
8720 else
8721 {
8722 extsymcount = symcount - hdr->sh_info;
8723 extsymoff = hdr->sh_info;
8724 }
8725
8726 if (extsymcount == 0)
8727 continue;
8728
8729 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8730 NULL, NULL, NULL);
8731 if (isymbuf == NULL)
8732 return FALSE;
8733
8734 /* Read in any version definitions. */
8735 versymhdr = &elf_tdata (input)->dynversym_hdr;
8736 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8737 if (extversym == NULL)
8738 goto error_ret;
8739
8740 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8741 || (bfd_bread (extversym, versymhdr->sh_size, input)
8742 != versymhdr->sh_size))
8743 {
8744 free (extversym);
8745 error_ret:
8746 free (isymbuf);
8747 return FALSE;
8748 }
8749
8750 ever = extversym + extsymoff;
8751 isymend = isymbuf + extsymcount;
8752 for (isym = isymbuf; isym < isymend; isym++, ever++)
8753 {
8754 const char *name;
8755 Elf_Internal_Versym iver;
8756 unsigned short version_index;
8757
8758 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8759 || isym->st_shndx == SHN_UNDEF)
8760 continue;
8761
8762 name = bfd_elf_string_from_elf_section (input,
8763 hdr->sh_link,
8764 isym->st_name);
8765 if (strcmp (name, h->root.root.string) != 0)
8766 continue;
8767
8768 _bfd_elf_swap_versym_in (input, ever, &iver);
8769
8770 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8771 && !(h->def_regular
8772 && h->forced_local))
8773 {
8774 /* If we have a non-hidden versioned sym, then it should
8775 have provided a definition for the undefined sym unless
8776 it is defined in a non-shared object and forced local.
8777 */
8778 abort ();
8779 }
8780
8781 version_index = iver.vs_vers & VERSYM_VERSION;
8782 if (version_index == 1 || version_index == 2)
8783 {
8784 /* This is the base or first version. We can use it. */
8785 free (extversym);
8786 free (isymbuf);
8787 return TRUE;
8788 }
8789 }
8790
8791 free (extversym);
8792 free (isymbuf);
8793 }
8794
8795 return FALSE;
8796 }
8797
8798 /* Add an external symbol to the symbol table. This is called from
8799 the hash table traversal routine. When generating a shared object,
8800 we go through the symbol table twice. The first time we output
8801 anything that might have been forced to local scope in a version
8802 script. The second time we output the symbols that are still
8803 global symbols. */
8804
8805 static bfd_boolean
8806 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8807 {
8808 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8809 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8810 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8811 bfd_boolean strip;
8812 Elf_Internal_Sym sym;
8813 asection *input_sec;
8814 const struct elf_backend_data *bed;
8815 long indx;
8816 int ret;
8817
8818 if (h->root.type == bfd_link_hash_warning)
8819 {
8820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8821 if (h->root.type == bfd_link_hash_new)
8822 return TRUE;
8823 }
8824
8825 /* Decide whether to output this symbol in this pass. */
8826 if (eoinfo->localsyms)
8827 {
8828 if (!h->forced_local)
8829 return TRUE;
8830 }
8831 else
8832 {
8833 if (h->forced_local)
8834 return TRUE;
8835 }
8836
8837 bed = get_elf_backend_data (flinfo->output_bfd);
8838
8839 if (h->root.type == bfd_link_hash_undefined)
8840 {
8841 /* If we have an undefined symbol reference here then it must have
8842 come from a shared library that is being linked in. (Undefined
8843 references in regular files have already been handled unless
8844 they are in unreferenced sections which are removed by garbage
8845 collection). */
8846 bfd_boolean ignore_undef = FALSE;
8847
8848 /* Some symbols may be special in that the fact that they're
8849 undefined can be safely ignored - let backend determine that. */
8850 if (bed->elf_backend_ignore_undef_symbol)
8851 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8852
8853 /* If we are reporting errors for this situation then do so now. */
8854 if (!ignore_undef
8855 && h->ref_dynamic
8856 && (!h->ref_regular || flinfo->info->gc_sections)
8857 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8858 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8859 {
8860 if (!(flinfo->info->callbacks->undefined_symbol
8861 (flinfo->info, h->root.root.string,
8862 h->ref_regular ? NULL : h->root.u.undef.abfd,
8863 NULL, 0,
8864 (flinfo->info->unresolved_syms_in_shared_libs
8865 == RM_GENERATE_ERROR))))
8866 {
8867 bfd_set_error (bfd_error_bad_value);
8868 eoinfo->failed = TRUE;
8869 return FALSE;
8870 }
8871 }
8872 }
8873
8874 /* We should also warn if a forced local symbol is referenced from
8875 shared libraries. */
8876 if (!flinfo->info->relocatable
8877 && flinfo->info->executable
8878 && h->forced_local
8879 && h->ref_dynamic
8880 && h->def_regular
8881 && !h->dynamic_def
8882 && h->ref_dynamic_nonweak
8883 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8884 {
8885 bfd *def_bfd;
8886 const char *msg;
8887 struct elf_link_hash_entry *hi = h;
8888
8889 /* Check indirect symbol. */
8890 while (hi->root.type == bfd_link_hash_indirect)
8891 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8892
8893 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8894 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8895 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8896 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8897 else
8898 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8899 def_bfd = flinfo->output_bfd;
8900 if (hi->root.u.def.section != bfd_abs_section_ptr)
8901 def_bfd = hi->root.u.def.section->owner;
8902 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8903 h->root.root.string);
8904 bfd_set_error (bfd_error_bad_value);
8905 eoinfo->failed = TRUE;
8906 return FALSE;
8907 }
8908
8909 /* We don't want to output symbols that have never been mentioned by
8910 a regular file, or that we have been told to strip. However, if
8911 h->indx is set to -2, the symbol is used by a reloc and we must
8912 output it. */
8913 strip = FALSE;
8914 if (h->indx == -2)
8915 ;
8916 else if ((h->def_dynamic
8917 || h->ref_dynamic
8918 || h->root.type == bfd_link_hash_new)
8919 && !h->def_regular
8920 && !h->ref_regular)
8921 strip = TRUE;
8922 else if (flinfo->info->strip == strip_all)
8923 strip = TRUE;
8924 else if (flinfo->info->strip == strip_some
8925 && bfd_hash_lookup (flinfo->info->keep_hash,
8926 h->root.root.string, FALSE, FALSE) == NULL)
8927 strip = TRUE;
8928 else if ((h->root.type == bfd_link_hash_defined
8929 || h->root.type == bfd_link_hash_defweak)
8930 && ((flinfo->info->strip_discarded
8931 && discarded_section (h->root.u.def.section))
8932 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8933 && h->root.u.def.section->owner != NULL
8934 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8935 strip = TRUE;
8936 else if ((h->root.type == bfd_link_hash_undefined
8937 || h->root.type == bfd_link_hash_undefweak)
8938 && h->root.u.undef.abfd != NULL
8939 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8940 strip = TRUE;
8941
8942 /* If we're stripping it, and it's not a dynamic symbol, there's
8943 nothing else to do. However, if it is a forced local symbol or
8944 an ifunc symbol we need to give the backend finish_dynamic_symbol
8945 function a chance to make it dynamic. */
8946 if (strip
8947 && h->dynindx == -1
8948 && h->type != STT_GNU_IFUNC
8949 && !h->forced_local)
8950 return TRUE;
8951
8952 sym.st_value = 0;
8953 sym.st_size = h->size;
8954 sym.st_other = h->other;
8955 if (h->forced_local)
8956 {
8957 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8958 /* Turn off visibility on local symbol. */
8959 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8960 }
8961 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8962 else if (h->unique_global && h->def_regular)
8963 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8964 else if (h->root.type == bfd_link_hash_undefweak
8965 || h->root.type == bfd_link_hash_defweak)
8966 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8967 else
8968 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8969 sym.st_target_internal = h->target_internal;
8970
8971 switch (h->root.type)
8972 {
8973 default:
8974 case bfd_link_hash_new:
8975 case bfd_link_hash_warning:
8976 abort ();
8977 return FALSE;
8978
8979 case bfd_link_hash_undefined:
8980 case bfd_link_hash_undefweak:
8981 input_sec = bfd_und_section_ptr;
8982 sym.st_shndx = SHN_UNDEF;
8983 break;
8984
8985 case bfd_link_hash_defined:
8986 case bfd_link_hash_defweak:
8987 {
8988 input_sec = h->root.u.def.section;
8989 if (input_sec->output_section != NULL)
8990 {
8991 sym.st_shndx =
8992 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8993 input_sec->output_section);
8994 if (sym.st_shndx == SHN_BAD)
8995 {
8996 (*_bfd_error_handler)
8997 (_("%B: could not find output section %A for input section %A"),
8998 flinfo->output_bfd, input_sec->output_section, input_sec);
8999 bfd_set_error (bfd_error_nonrepresentable_section);
9000 eoinfo->failed = TRUE;
9001 return FALSE;
9002 }
9003
9004 /* ELF symbols in relocatable files are section relative,
9005 but in nonrelocatable files they are virtual
9006 addresses. */
9007 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9008 if (!flinfo->info->relocatable)
9009 {
9010 sym.st_value += input_sec->output_section->vma;
9011 if (h->type == STT_TLS)
9012 {
9013 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9014 if (tls_sec != NULL)
9015 sym.st_value -= tls_sec->vma;
9016 }
9017 }
9018 }
9019 else
9020 {
9021 BFD_ASSERT (input_sec->owner == NULL
9022 || (input_sec->owner->flags & DYNAMIC) != 0);
9023 sym.st_shndx = SHN_UNDEF;
9024 input_sec = bfd_und_section_ptr;
9025 }
9026 }
9027 break;
9028
9029 case bfd_link_hash_common:
9030 input_sec = h->root.u.c.p->section;
9031 sym.st_shndx = bed->common_section_index (input_sec);
9032 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9033 break;
9034
9035 case bfd_link_hash_indirect:
9036 /* These symbols are created by symbol versioning. They point
9037 to the decorated version of the name. For example, if the
9038 symbol foo@@GNU_1.2 is the default, which should be used when
9039 foo is used with no version, then we add an indirect symbol
9040 foo which points to foo@@GNU_1.2. We ignore these symbols,
9041 since the indirected symbol is already in the hash table. */
9042 return TRUE;
9043 }
9044
9045 /* Give the processor backend a chance to tweak the symbol value,
9046 and also to finish up anything that needs to be done for this
9047 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9048 forced local syms when non-shared is due to a historical quirk.
9049 STT_GNU_IFUNC symbol must go through PLT. */
9050 if ((h->type == STT_GNU_IFUNC
9051 && h->def_regular
9052 && !flinfo->info->relocatable)
9053 || ((h->dynindx != -1
9054 || h->forced_local)
9055 && ((flinfo->info->shared
9056 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9057 || h->root.type != bfd_link_hash_undefweak))
9058 || !h->forced_local)
9059 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9060 {
9061 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9062 (flinfo->output_bfd, flinfo->info, h, &sym)))
9063 {
9064 eoinfo->failed = TRUE;
9065 return FALSE;
9066 }
9067 }
9068
9069 /* If we are marking the symbol as undefined, and there are no
9070 non-weak references to this symbol from a regular object, then
9071 mark the symbol as weak undefined; if there are non-weak
9072 references, mark the symbol as strong. We can't do this earlier,
9073 because it might not be marked as undefined until the
9074 finish_dynamic_symbol routine gets through with it. */
9075 if (sym.st_shndx == SHN_UNDEF
9076 && h->ref_regular
9077 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9078 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9079 {
9080 int bindtype;
9081 unsigned int type = ELF_ST_TYPE (sym.st_info);
9082
9083 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9084 if (type == STT_GNU_IFUNC)
9085 type = STT_FUNC;
9086
9087 if (h->ref_regular_nonweak)
9088 bindtype = STB_GLOBAL;
9089 else
9090 bindtype = STB_WEAK;
9091 sym.st_info = ELF_ST_INFO (bindtype, type);
9092 }
9093
9094 /* If this is a symbol defined in a dynamic library, don't use the
9095 symbol size from the dynamic library. Relinking an executable
9096 against a new library may introduce gratuitous changes in the
9097 executable's symbols if we keep the size. */
9098 if (sym.st_shndx == SHN_UNDEF
9099 && !h->def_regular
9100 && h->def_dynamic)
9101 sym.st_size = 0;
9102
9103 /* If a non-weak symbol with non-default visibility is not defined
9104 locally, it is a fatal error. */
9105 if (!flinfo->info->relocatable
9106 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9107 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9108 && h->root.type == bfd_link_hash_undefined
9109 && !h->def_regular)
9110 {
9111 const char *msg;
9112
9113 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9114 msg = _("%B: protected symbol `%s' isn't defined");
9115 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9116 msg = _("%B: internal symbol `%s' isn't defined");
9117 else
9118 msg = _("%B: hidden symbol `%s' isn't defined");
9119 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9120 bfd_set_error (bfd_error_bad_value);
9121 eoinfo->failed = TRUE;
9122 return FALSE;
9123 }
9124
9125 /* If this symbol should be put in the .dynsym section, then put it
9126 there now. We already know the symbol index. We also fill in
9127 the entry in the .hash section. */
9128 if (flinfo->dynsym_sec != NULL
9129 && h->dynindx != -1
9130 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9131 {
9132 bfd_byte *esym;
9133
9134 /* Since there is no version information in the dynamic string,
9135 if there is no version info in symbol version section, we will
9136 have a run-time problem. */
9137 if (h->verinfo.verdef == NULL)
9138 {
9139 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9140
9141 if (p && p [1] != '\0')
9142 {
9143 (*_bfd_error_handler)
9144 (_("%B: No symbol version section for versioned symbol `%s'"),
9145 flinfo->output_bfd, h->root.root.string);
9146 eoinfo->failed = TRUE;
9147 return FALSE;
9148 }
9149 }
9150
9151 sym.st_name = h->dynstr_index;
9152 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9153 if (!check_dynsym (flinfo->output_bfd, &sym))
9154 {
9155 eoinfo->failed = TRUE;
9156 return FALSE;
9157 }
9158 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9159
9160 if (flinfo->hash_sec != NULL)
9161 {
9162 size_t hash_entry_size;
9163 bfd_byte *bucketpos;
9164 bfd_vma chain;
9165 size_t bucketcount;
9166 size_t bucket;
9167
9168 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9169 bucket = h->u.elf_hash_value % bucketcount;
9170
9171 hash_entry_size
9172 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9173 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9174 + (bucket + 2) * hash_entry_size);
9175 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9176 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9177 bucketpos);
9178 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9179 ((bfd_byte *) flinfo->hash_sec->contents
9180 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9181 }
9182
9183 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9184 {
9185 Elf_Internal_Versym iversym;
9186 Elf_External_Versym *eversym;
9187
9188 if (!h->def_regular)
9189 {
9190 if (h->verinfo.verdef == NULL
9191 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9192 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9193 iversym.vs_vers = 0;
9194 else
9195 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9196 }
9197 else
9198 {
9199 if (h->verinfo.vertree == NULL)
9200 iversym.vs_vers = 1;
9201 else
9202 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9203 if (flinfo->info->create_default_symver)
9204 iversym.vs_vers++;
9205 }
9206
9207 if (h->hidden)
9208 iversym.vs_vers |= VERSYM_HIDDEN;
9209
9210 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9211 eversym += h->dynindx;
9212 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9213 }
9214 }
9215
9216 /* If the symbol is undefined, and we didn't output it to .dynsym,
9217 strip it from .symtab too. Obviously we can't do this for
9218 relocatable output or when needed for --emit-relocs. */
9219 else if (input_sec == bfd_und_section_ptr
9220 && h->indx != -2
9221 && !flinfo->info->relocatable)
9222 return TRUE;
9223 /* Also strip others that we couldn't earlier due to dynamic symbol
9224 processing. */
9225 if (strip)
9226 return TRUE;
9227 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9228 return TRUE;
9229
9230 /* Output a FILE symbol so that following locals are not associated
9231 with the wrong input file. We need one for forced local symbols
9232 if we've seen more than one FILE symbol or when we have exactly
9233 one FILE symbol but global symbols are present in a file other
9234 than the one with the FILE symbol. We also need one if linker
9235 defined symbols are present. In practice these conditions are
9236 always met, so just emit the FILE symbol unconditionally. */
9237 if (eoinfo->localsyms
9238 && !eoinfo->file_sym_done
9239 && eoinfo->flinfo->filesym_count != 0)
9240 {
9241 Elf_Internal_Sym fsym;
9242
9243 memset (&fsym, 0, sizeof (fsym));
9244 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9245 fsym.st_shndx = SHN_ABS;
9246 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9247 bfd_und_section_ptr, NULL))
9248 return FALSE;
9249
9250 eoinfo->file_sym_done = TRUE;
9251 }
9252
9253 indx = bfd_get_symcount (flinfo->output_bfd);
9254 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9255 if (ret == 0)
9256 {
9257 eoinfo->failed = TRUE;
9258 return FALSE;
9259 }
9260 else if (ret == 1)
9261 h->indx = indx;
9262 else if (h->indx == -2)
9263 abort();
9264
9265 return TRUE;
9266 }
9267
9268 /* Return TRUE if special handling is done for relocs in SEC against
9269 symbols defined in discarded sections. */
9270
9271 static bfd_boolean
9272 elf_section_ignore_discarded_relocs (asection *sec)
9273 {
9274 const struct elf_backend_data *bed;
9275
9276 switch (sec->sec_info_type)
9277 {
9278 case SEC_INFO_TYPE_STABS:
9279 case SEC_INFO_TYPE_EH_FRAME:
9280 return TRUE;
9281 default:
9282 break;
9283 }
9284
9285 bed = get_elf_backend_data (sec->owner);
9286 if (bed->elf_backend_ignore_discarded_relocs != NULL
9287 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9288 return TRUE;
9289
9290 return FALSE;
9291 }
9292
9293 /* Return a mask saying how ld should treat relocations in SEC against
9294 symbols defined in discarded sections. If this function returns
9295 COMPLAIN set, ld will issue a warning message. If this function
9296 returns PRETEND set, and the discarded section was link-once and the
9297 same size as the kept link-once section, ld will pretend that the
9298 symbol was actually defined in the kept section. Otherwise ld will
9299 zero the reloc (at least that is the intent, but some cooperation by
9300 the target dependent code is needed, particularly for REL targets). */
9301
9302 unsigned int
9303 _bfd_elf_default_action_discarded (asection *sec)
9304 {
9305 if (sec->flags & SEC_DEBUGGING)
9306 return PRETEND;
9307
9308 if (strcmp (".eh_frame", sec->name) == 0)
9309 return 0;
9310
9311 if (strcmp (".gcc_except_table", sec->name) == 0)
9312 return 0;
9313
9314 return COMPLAIN | PRETEND;
9315 }
9316
9317 /* Find a match between a section and a member of a section group. */
9318
9319 static asection *
9320 match_group_member (asection *sec, asection *group,
9321 struct bfd_link_info *info)
9322 {
9323 asection *first = elf_next_in_group (group);
9324 asection *s = first;
9325
9326 while (s != NULL)
9327 {
9328 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9329 return s;
9330
9331 s = elf_next_in_group (s);
9332 if (s == first)
9333 break;
9334 }
9335
9336 return NULL;
9337 }
9338
9339 /* Check if the kept section of a discarded section SEC can be used
9340 to replace it. Return the replacement if it is OK. Otherwise return
9341 NULL. */
9342
9343 asection *
9344 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9345 {
9346 asection *kept;
9347
9348 kept = sec->kept_section;
9349 if (kept != NULL)
9350 {
9351 if ((kept->flags & SEC_GROUP) != 0)
9352 kept = match_group_member (sec, kept, info);
9353 if (kept != NULL
9354 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9355 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9356 kept = NULL;
9357 sec->kept_section = kept;
9358 }
9359 return kept;
9360 }
9361
9362 /* Link an input file into the linker output file. This function
9363 handles all the sections and relocations of the input file at once.
9364 This is so that we only have to read the local symbols once, and
9365 don't have to keep them in memory. */
9366
9367 static bfd_boolean
9368 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9369 {
9370 int (*relocate_section)
9371 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9372 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9373 bfd *output_bfd;
9374 Elf_Internal_Shdr *symtab_hdr;
9375 size_t locsymcount;
9376 size_t extsymoff;
9377 Elf_Internal_Sym *isymbuf;
9378 Elf_Internal_Sym *isym;
9379 Elf_Internal_Sym *isymend;
9380 long *pindex;
9381 asection **ppsection;
9382 asection *o;
9383 const struct elf_backend_data *bed;
9384 struct elf_link_hash_entry **sym_hashes;
9385 bfd_size_type address_size;
9386 bfd_vma r_type_mask;
9387 int r_sym_shift;
9388 bfd_boolean have_file_sym = FALSE;
9389
9390 output_bfd = flinfo->output_bfd;
9391 bed = get_elf_backend_data (output_bfd);
9392 relocate_section = bed->elf_backend_relocate_section;
9393
9394 /* If this is a dynamic object, we don't want to do anything here:
9395 we don't want the local symbols, and we don't want the section
9396 contents. */
9397 if ((input_bfd->flags & DYNAMIC) != 0)
9398 return TRUE;
9399
9400 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9401 if (elf_bad_symtab (input_bfd))
9402 {
9403 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9404 extsymoff = 0;
9405 }
9406 else
9407 {
9408 locsymcount = symtab_hdr->sh_info;
9409 extsymoff = symtab_hdr->sh_info;
9410 }
9411
9412 /* Read the local symbols. */
9413 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9414 if (isymbuf == NULL && locsymcount != 0)
9415 {
9416 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9417 flinfo->internal_syms,
9418 flinfo->external_syms,
9419 flinfo->locsym_shndx);
9420 if (isymbuf == NULL)
9421 return FALSE;
9422 }
9423
9424 /* Find local symbol sections and adjust values of symbols in
9425 SEC_MERGE sections. Write out those local symbols we know are
9426 going into the output file. */
9427 isymend = isymbuf + locsymcount;
9428 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9429 isym < isymend;
9430 isym++, pindex++, ppsection++)
9431 {
9432 asection *isec;
9433 const char *name;
9434 Elf_Internal_Sym osym;
9435 long indx;
9436 int ret;
9437
9438 *pindex = -1;
9439
9440 if (elf_bad_symtab (input_bfd))
9441 {
9442 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9443 {
9444 *ppsection = NULL;
9445 continue;
9446 }
9447 }
9448
9449 if (isym->st_shndx == SHN_UNDEF)
9450 isec = bfd_und_section_ptr;
9451 else if (isym->st_shndx == SHN_ABS)
9452 isec = bfd_abs_section_ptr;
9453 else if (isym->st_shndx == SHN_COMMON)
9454 isec = bfd_com_section_ptr;
9455 else
9456 {
9457 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9458 if (isec == NULL)
9459 {
9460 /* Don't attempt to output symbols with st_shnx in the
9461 reserved range other than SHN_ABS and SHN_COMMON. */
9462 *ppsection = NULL;
9463 continue;
9464 }
9465 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9466 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9467 isym->st_value =
9468 _bfd_merged_section_offset (output_bfd, &isec,
9469 elf_section_data (isec)->sec_info,
9470 isym->st_value);
9471 }
9472
9473 *ppsection = isec;
9474
9475 /* Don't output the first, undefined, symbol. In fact, don't
9476 output any undefined local symbol. */
9477 if (isec == bfd_und_section_ptr)
9478 continue;
9479
9480 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9481 {
9482 /* We never output section symbols. Instead, we use the
9483 section symbol of the corresponding section in the output
9484 file. */
9485 continue;
9486 }
9487
9488 /* If we are stripping all symbols, we don't want to output this
9489 one. */
9490 if (flinfo->info->strip == strip_all)
9491 continue;
9492
9493 /* If we are discarding all local symbols, we don't want to
9494 output this one. If we are generating a relocatable output
9495 file, then some of the local symbols may be required by
9496 relocs; we output them below as we discover that they are
9497 needed. */
9498 if (flinfo->info->discard == discard_all)
9499 continue;
9500
9501 /* If this symbol is defined in a section which we are
9502 discarding, we don't need to keep it. */
9503 if (isym->st_shndx != SHN_UNDEF
9504 && isym->st_shndx < SHN_LORESERVE
9505 && bfd_section_removed_from_list (output_bfd,
9506 isec->output_section))
9507 continue;
9508
9509 /* Get the name of the symbol. */
9510 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9511 isym->st_name);
9512 if (name == NULL)
9513 return FALSE;
9514
9515 /* See if we are discarding symbols with this name. */
9516 if ((flinfo->info->strip == strip_some
9517 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9518 == NULL))
9519 || (((flinfo->info->discard == discard_sec_merge
9520 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9521 || flinfo->info->discard == discard_l)
9522 && bfd_is_local_label_name (input_bfd, name)))
9523 continue;
9524
9525 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9526 {
9527 if (input_bfd->lto_output)
9528 /* -flto puts a temp file name here. This means builds
9529 are not reproducible. Discard the symbol. */
9530 continue;
9531 have_file_sym = TRUE;
9532 flinfo->filesym_count += 1;
9533 }
9534 if (!have_file_sym)
9535 {
9536 /* In the absence of debug info, bfd_find_nearest_line uses
9537 FILE symbols to determine the source file for local
9538 function symbols. Provide a FILE symbol here if input
9539 files lack such, so that their symbols won't be
9540 associated with a previous input file. It's not the
9541 source file, but the best we can do. */
9542 have_file_sym = TRUE;
9543 flinfo->filesym_count += 1;
9544 memset (&osym, 0, sizeof (osym));
9545 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9546 osym.st_shndx = SHN_ABS;
9547 if (!elf_link_output_sym (flinfo,
9548 (input_bfd->lto_output ? NULL
9549 : input_bfd->filename),
9550 &osym, bfd_abs_section_ptr, NULL))
9551 return FALSE;
9552 }
9553
9554 osym = *isym;
9555
9556 /* Adjust the section index for the output file. */
9557 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9558 isec->output_section);
9559 if (osym.st_shndx == SHN_BAD)
9560 return FALSE;
9561
9562 /* ELF symbols in relocatable files are section relative, but
9563 in executable files they are virtual addresses. Note that
9564 this code assumes that all ELF sections have an associated
9565 BFD section with a reasonable value for output_offset; below
9566 we assume that they also have a reasonable value for
9567 output_section. Any special sections must be set up to meet
9568 these requirements. */
9569 osym.st_value += isec->output_offset;
9570 if (!flinfo->info->relocatable)
9571 {
9572 osym.st_value += isec->output_section->vma;
9573 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9574 {
9575 /* STT_TLS symbols are relative to PT_TLS segment base. */
9576 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9577 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9578 }
9579 }
9580
9581 indx = bfd_get_symcount (output_bfd);
9582 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9583 if (ret == 0)
9584 return FALSE;
9585 else if (ret == 1)
9586 *pindex = indx;
9587 }
9588
9589 if (bed->s->arch_size == 32)
9590 {
9591 r_type_mask = 0xff;
9592 r_sym_shift = 8;
9593 address_size = 4;
9594 }
9595 else
9596 {
9597 r_type_mask = 0xffffffff;
9598 r_sym_shift = 32;
9599 address_size = 8;
9600 }
9601
9602 /* Relocate the contents of each section. */
9603 sym_hashes = elf_sym_hashes (input_bfd);
9604 for (o = input_bfd->sections; o != NULL; o = o->next)
9605 {
9606 bfd_byte *contents;
9607
9608 if (! o->linker_mark)
9609 {
9610 /* This section was omitted from the link. */
9611 continue;
9612 }
9613
9614 if (flinfo->info->relocatable
9615 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9616 {
9617 /* Deal with the group signature symbol. */
9618 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9619 unsigned long symndx = sec_data->this_hdr.sh_info;
9620 asection *osec = o->output_section;
9621
9622 if (symndx >= locsymcount
9623 || (elf_bad_symtab (input_bfd)
9624 && flinfo->sections[symndx] == NULL))
9625 {
9626 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9627 while (h->root.type == bfd_link_hash_indirect
9628 || h->root.type == bfd_link_hash_warning)
9629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9630 /* Arrange for symbol to be output. */
9631 h->indx = -2;
9632 elf_section_data (osec)->this_hdr.sh_info = -2;
9633 }
9634 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9635 {
9636 /* We'll use the output section target_index. */
9637 asection *sec = flinfo->sections[symndx]->output_section;
9638 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9639 }
9640 else
9641 {
9642 if (flinfo->indices[symndx] == -1)
9643 {
9644 /* Otherwise output the local symbol now. */
9645 Elf_Internal_Sym sym = isymbuf[symndx];
9646 asection *sec = flinfo->sections[symndx]->output_section;
9647 const char *name;
9648 long indx;
9649 int ret;
9650
9651 name = bfd_elf_string_from_elf_section (input_bfd,
9652 symtab_hdr->sh_link,
9653 sym.st_name);
9654 if (name == NULL)
9655 return FALSE;
9656
9657 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9658 sec);
9659 if (sym.st_shndx == SHN_BAD)
9660 return FALSE;
9661
9662 sym.st_value += o->output_offset;
9663
9664 indx = bfd_get_symcount (output_bfd);
9665 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9666 if (ret == 0)
9667 return FALSE;
9668 else if (ret == 1)
9669 flinfo->indices[symndx] = indx;
9670 else
9671 abort ();
9672 }
9673 elf_section_data (osec)->this_hdr.sh_info
9674 = flinfo->indices[symndx];
9675 }
9676 }
9677
9678 if ((o->flags & SEC_HAS_CONTENTS) == 0
9679 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9680 continue;
9681
9682 if ((o->flags & SEC_LINKER_CREATED) != 0)
9683 {
9684 /* Section was created by _bfd_elf_link_create_dynamic_sections
9685 or somesuch. */
9686 continue;
9687 }
9688
9689 /* Get the contents of the section. They have been cached by a
9690 relaxation routine. Note that o is a section in an input
9691 file, so the contents field will not have been set by any of
9692 the routines which work on output files. */
9693 if (elf_section_data (o)->this_hdr.contents != NULL)
9694 {
9695 contents = elf_section_data (o)->this_hdr.contents;
9696 if (bed->caches_rawsize
9697 && o->rawsize != 0
9698 && o->rawsize < o->size)
9699 {
9700 memcpy (flinfo->contents, contents, o->rawsize);
9701 contents = flinfo->contents;
9702 }
9703 }
9704 else
9705 {
9706 contents = flinfo->contents;
9707 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9708 return FALSE;
9709 }
9710
9711 if ((o->flags & SEC_RELOC) != 0)
9712 {
9713 Elf_Internal_Rela *internal_relocs;
9714 Elf_Internal_Rela *rel, *relend;
9715 int action_discarded;
9716 int ret;
9717
9718 /* Get the swapped relocs. */
9719 internal_relocs
9720 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9721 flinfo->internal_relocs, FALSE);
9722 if (internal_relocs == NULL
9723 && o->reloc_count > 0)
9724 return FALSE;
9725
9726 /* We need to reverse-copy input .ctors/.dtors sections if
9727 they are placed in .init_array/.finit_array for output. */
9728 if (o->size > address_size
9729 && ((strncmp (o->name, ".ctors", 6) == 0
9730 && strcmp (o->output_section->name,
9731 ".init_array") == 0)
9732 || (strncmp (o->name, ".dtors", 6) == 0
9733 && strcmp (o->output_section->name,
9734 ".fini_array") == 0))
9735 && (o->name[6] == 0 || o->name[6] == '.'))
9736 {
9737 if (o->size != o->reloc_count * address_size)
9738 {
9739 (*_bfd_error_handler)
9740 (_("error: %B: size of section %A is not "
9741 "multiple of address size"),
9742 input_bfd, o);
9743 bfd_set_error (bfd_error_on_input);
9744 return FALSE;
9745 }
9746 o->flags |= SEC_ELF_REVERSE_COPY;
9747 }
9748
9749 action_discarded = -1;
9750 if (!elf_section_ignore_discarded_relocs (o))
9751 action_discarded = (*bed->action_discarded) (o);
9752
9753 /* Run through the relocs evaluating complex reloc symbols and
9754 looking for relocs against symbols from discarded sections
9755 or section symbols from removed link-once sections.
9756 Complain about relocs against discarded sections. Zero
9757 relocs against removed link-once sections. */
9758
9759 rel = internal_relocs;
9760 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9761 for ( ; rel < relend; rel++)
9762 {
9763 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9764 unsigned int s_type;
9765 asection **ps, *sec;
9766 struct elf_link_hash_entry *h = NULL;
9767 const char *sym_name;
9768
9769 if (r_symndx == STN_UNDEF)
9770 continue;
9771
9772 if (r_symndx >= locsymcount
9773 || (elf_bad_symtab (input_bfd)
9774 && flinfo->sections[r_symndx] == NULL))
9775 {
9776 h = sym_hashes[r_symndx - extsymoff];
9777
9778 /* Badly formatted input files can contain relocs that
9779 reference non-existant symbols. Check here so that
9780 we do not seg fault. */
9781 if (h == NULL)
9782 {
9783 char buffer [32];
9784
9785 sprintf_vma (buffer, rel->r_info);
9786 (*_bfd_error_handler)
9787 (_("error: %B contains a reloc (0x%s) for section %A "
9788 "that references a non-existent global symbol"),
9789 input_bfd, o, buffer);
9790 bfd_set_error (bfd_error_bad_value);
9791 return FALSE;
9792 }
9793
9794 while (h->root.type == bfd_link_hash_indirect
9795 || h->root.type == bfd_link_hash_warning)
9796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9797
9798 s_type = h->type;
9799
9800 /* If a plugin symbol is referenced from a non-IR file,
9801 mark the symbol as undefined. Note that the
9802 linker may attach linker created dynamic sections
9803 to the plugin bfd. Symbols defined in linker
9804 created sections are not plugin symbols. */
9805 if (h->root.non_ir_ref
9806 && (h->root.type == bfd_link_hash_defined
9807 || h->root.type == bfd_link_hash_defweak)
9808 && (h->root.u.def.section->flags
9809 & SEC_LINKER_CREATED) == 0
9810 && h->root.u.def.section->owner != NULL
9811 && (h->root.u.def.section->owner->flags
9812 & BFD_PLUGIN) != 0)
9813 {
9814 h->root.type = bfd_link_hash_undefined;
9815 h->root.u.undef.abfd = h->root.u.def.section->owner;
9816 }
9817
9818 ps = NULL;
9819 if (h->root.type == bfd_link_hash_defined
9820 || h->root.type == bfd_link_hash_defweak)
9821 ps = &h->root.u.def.section;
9822
9823 sym_name = h->root.root.string;
9824 }
9825 else
9826 {
9827 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9828
9829 s_type = ELF_ST_TYPE (sym->st_info);
9830 ps = &flinfo->sections[r_symndx];
9831 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9832 sym, *ps);
9833 }
9834
9835 if ((s_type == STT_RELC || s_type == STT_SRELC)
9836 && !flinfo->info->relocatable)
9837 {
9838 bfd_vma val;
9839 bfd_vma dot = (rel->r_offset
9840 + o->output_offset + o->output_section->vma);
9841 #ifdef DEBUG
9842 printf ("Encountered a complex symbol!");
9843 printf (" (input_bfd %s, section %s, reloc %ld\n",
9844 input_bfd->filename, o->name,
9845 (long) (rel - internal_relocs));
9846 printf (" symbol: idx %8.8lx, name %s\n",
9847 r_symndx, sym_name);
9848 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9849 (unsigned long) rel->r_info,
9850 (unsigned long) rel->r_offset);
9851 #endif
9852 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9853 isymbuf, locsymcount, s_type == STT_SRELC))
9854 return FALSE;
9855
9856 /* Symbol evaluated OK. Update to absolute value. */
9857 set_symbol_value (input_bfd, isymbuf, locsymcount,
9858 r_symndx, val);
9859 continue;
9860 }
9861
9862 if (action_discarded != -1 && ps != NULL)
9863 {
9864 /* Complain if the definition comes from a
9865 discarded section. */
9866 if ((sec = *ps) != NULL && discarded_section (sec))
9867 {
9868 BFD_ASSERT (r_symndx != STN_UNDEF);
9869 if (action_discarded & COMPLAIN)
9870 (*flinfo->info->callbacks->einfo)
9871 (_("%X`%s' referenced in section `%A' of %B: "
9872 "defined in discarded section `%A' of %B\n"),
9873 sym_name, o, input_bfd, sec, sec->owner);
9874
9875 /* Try to do the best we can to support buggy old
9876 versions of gcc. Pretend that the symbol is
9877 really defined in the kept linkonce section.
9878 FIXME: This is quite broken. Modifying the
9879 symbol here means we will be changing all later
9880 uses of the symbol, not just in this section. */
9881 if (action_discarded & PRETEND)
9882 {
9883 asection *kept;
9884
9885 kept = _bfd_elf_check_kept_section (sec,
9886 flinfo->info);
9887 if (kept != NULL)
9888 {
9889 *ps = kept;
9890 continue;
9891 }
9892 }
9893 }
9894 }
9895 }
9896
9897 /* Relocate the section by invoking a back end routine.
9898
9899 The back end routine is responsible for adjusting the
9900 section contents as necessary, and (if using Rela relocs
9901 and generating a relocatable output file) adjusting the
9902 reloc addend as necessary.
9903
9904 The back end routine does not have to worry about setting
9905 the reloc address or the reloc symbol index.
9906
9907 The back end routine is given a pointer to the swapped in
9908 internal symbols, and can access the hash table entries
9909 for the external symbols via elf_sym_hashes (input_bfd).
9910
9911 When generating relocatable output, the back end routine
9912 must handle STB_LOCAL/STT_SECTION symbols specially. The
9913 output symbol is going to be a section symbol
9914 corresponding to the output section, which will require
9915 the addend to be adjusted. */
9916
9917 ret = (*relocate_section) (output_bfd, flinfo->info,
9918 input_bfd, o, contents,
9919 internal_relocs,
9920 isymbuf,
9921 flinfo->sections);
9922 if (!ret)
9923 return FALSE;
9924
9925 if (ret == 2
9926 || flinfo->info->relocatable
9927 || flinfo->info->emitrelocations)
9928 {
9929 Elf_Internal_Rela *irela;
9930 Elf_Internal_Rela *irelaend, *irelamid;
9931 bfd_vma last_offset;
9932 struct elf_link_hash_entry **rel_hash;
9933 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9934 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9935 unsigned int next_erel;
9936 bfd_boolean rela_normal;
9937 struct bfd_elf_section_data *esdi, *esdo;
9938
9939 esdi = elf_section_data (o);
9940 esdo = elf_section_data (o->output_section);
9941 rela_normal = FALSE;
9942
9943 /* Adjust the reloc addresses and symbol indices. */
9944
9945 irela = internal_relocs;
9946 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9947 rel_hash = esdo->rel.hashes + esdo->rel.count;
9948 /* We start processing the REL relocs, if any. When we reach
9949 IRELAMID in the loop, we switch to the RELA relocs. */
9950 irelamid = irela;
9951 if (esdi->rel.hdr != NULL)
9952 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9953 * bed->s->int_rels_per_ext_rel);
9954 rel_hash_list = rel_hash;
9955 rela_hash_list = NULL;
9956 last_offset = o->output_offset;
9957 if (!flinfo->info->relocatable)
9958 last_offset += o->output_section->vma;
9959 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9960 {
9961 unsigned long r_symndx;
9962 asection *sec;
9963 Elf_Internal_Sym sym;
9964
9965 if (next_erel == bed->s->int_rels_per_ext_rel)
9966 {
9967 rel_hash++;
9968 next_erel = 0;
9969 }
9970
9971 if (irela == irelamid)
9972 {
9973 rel_hash = esdo->rela.hashes + esdo->rela.count;
9974 rela_hash_list = rel_hash;
9975 rela_normal = bed->rela_normal;
9976 }
9977
9978 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9979 flinfo->info, o,
9980 irela->r_offset);
9981 if (irela->r_offset >= (bfd_vma) -2)
9982 {
9983 /* This is a reloc for a deleted entry or somesuch.
9984 Turn it into an R_*_NONE reloc, at the same
9985 offset as the last reloc. elf_eh_frame.c and
9986 bfd_elf_discard_info rely on reloc offsets
9987 being ordered. */
9988 irela->r_offset = last_offset;
9989 irela->r_info = 0;
9990 irela->r_addend = 0;
9991 continue;
9992 }
9993
9994 irela->r_offset += o->output_offset;
9995
9996 /* Relocs in an executable have to be virtual addresses. */
9997 if (!flinfo->info->relocatable)
9998 irela->r_offset += o->output_section->vma;
9999
10000 last_offset = irela->r_offset;
10001
10002 r_symndx = irela->r_info >> r_sym_shift;
10003 if (r_symndx == STN_UNDEF)
10004 continue;
10005
10006 if (r_symndx >= locsymcount
10007 || (elf_bad_symtab (input_bfd)
10008 && flinfo->sections[r_symndx] == NULL))
10009 {
10010 struct elf_link_hash_entry *rh;
10011 unsigned long indx;
10012
10013 /* This is a reloc against a global symbol. We
10014 have not yet output all the local symbols, so
10015 we do not know the symbol index of any global
10016 symbol. We set the rel_hash entry for this
10017 reloc to point to the global hash table entry
10018 for this symbol. The symbol index is then
10019 set at the end of bfd_elf_final_link. */
10020 indx = r_symndx - extsymoff;
10021 rh = elf_sym_hashes (input_bfd)[indx];
10022 while (rh->root.type == bfd_link_hash_indirect
10023 || rh->root.type == bfd_link_hash_warning)
10024 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10025
10026 /* Setting the index to -2 tells
10027 elf_link_output_extsym that this symbol is
10028 used by a reloc. */
10029 BFD_ASSERT (rh->indx < 0);
10030 rh->indx = -2;
10031
10032 *rel_hash = rh;
10033
10034 continue;
10035 }
10036
10037 /* This is a reloc against a local symbol. */
10038
10039 *rel_hash = NULL;
10040 sym = isymbuf[r_symndx];
10041 sec = flinfo->sections[r_symndx];
10042 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10043 {
10044 /* I suppose the backend ought to fill in the
10045 section of any STT_SECTION symbol against a
10046 processor specific section. */
10047 r_symndx = STN_UNDEF;
10048 if (bfd_is_abs_section (sec))
10049 ;
10050 else if (sec == NULL || sec->owner == NULL)
10051 {
10052 bfd_set_error (bfd_error_bad_value);
10053 return FALSE;
10054 }
10055 else
10056 {
10057 asection *osec = sec->output_section;
10058
10059 /* If we have discarded a section, the output
10060 section will be the absolute section. In
10061 case of discarded SEC_MERGE sections, use
10062 the kept section. relocate_section should
10063 have already handled discarded linkonce
10064 sections. */
10065 if (bfd_is_abs_section (osec)
10066 && sec->kept_section != NULL
10067 && sec->kept_section->output_section != NULL)
10068 {
10069 osec = sec->kept_section->output_section;
10070 irela->r_addend -= osec->vma;
10071 }
10072
10073 if (!bfd_is_abs_section (osec))
10074 {
10075 r_symndx = osec->target_index;
10076 if (r_symndx == STN_UNDEF)
10077 {
10078 irela->r_addend += osec->vma;
10079 osec = _bfd_nearby_section (output_bfd, osec,
10080 osec->vma);
10081 irela->r_addend -= osec->vma;
10082 r_symndx = osec->target_index;
10083 }
10084 }
10085 }
10086
10087 /* Adjust the addend according to where the
10088 section winds up in the output section. */
10089 if (rela_normal)
10090 irela->r_addend += sec->output_offset;
10091 }
10092 else
10093 {
10094 if (flinfo->indices[r_symndx] == -1)
10095 {
10096 unsigned long shlink;
10097 const char *name;
10098 asection *osec;
10099 long indx;
10100
10101 if (flinfo->info->strip == strip_all)
10102 {
10103 /* You can't do ld -r -s. */
10104 bfd_set_error (bfd_error_invalid_operation);
10105 return FALSE;
10106 }
10107
10108 /* This symbol was skipped earlier, but
10109 since it is needed by a reloc, we
10110 must output it now. */
10111 shlink = symtab_hdr->sh_link;
10112 name = (bfd_elf_string_from_elf_section
10113 (input_bfd, shlink, sym.st_name));
10114 if (name == NULL)
10115 return FALSE;
10116
10117 osec = sec->output_section;
10118 sym.st_shndx =
10119 _bfd_elf_section_from_bfd_section (output_bfd,
10120 osec);
10121 if (sym.st_shndx == SHN_BAD)
10122 return FALSE;
10123
10124 sym.st_value += sec->output_offset;
10125 if (!flinfo->info->relocatable)
10126 {
10127 sym.st_value += osec->vma;
10128 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10129 {
10130 /* STT_TLS symbols are relative to PT_TLS
10131 segment base. */
10132 BFD_ASSERT (elf_hash_table (flinfo->info)
10133 ->tls_sec != NULL);
10134 sym.st_value -= (elf_hash_table (flinfo->info)
10135 ->tls_sec->vma);
10136 }
10137 }
10138
10139 indx = bfd_get_symcount (output_bfd);
10140 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10141 NULL);
10142 if (ret == 0)
10143 return FALSE;
10144 else if (ret == 1)
10145 flinfo->indices[r_symndx] = indx;
10146 else
10147 abort ();
10148 }
10149
10150 r_symndx = flinfo->indices[r_symndx];
10151 }
10152
10153 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10154 | (irela->r_info & r_type_mask));
10155 }
10156
10157 /* Swap out the relocs. */
10158 input_rel_hdr = esdi->rel.hdr;
10159 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10160 {
10161 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10162 input_rel_hdr,
10163 internal_relocs,
10164 rel_hash_list))
10165 return FALSE;
10166 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10167 * bed->s->int_rels_per_ext_rel);
10168 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10169 }
10170
10171 input_rela_hdr = esdi->rela.hdr;
10172 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10173 {
10174 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10175 input_rela_hdr,
10176 internal_relocs,
10177 rela_hash_list))
10178 return FALSE;
10179 }
10180 }
10181 }
10182
10183 /* Write out the modified section contents. */
10184 if (bed->elf_backend_write_section
10185 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10186 contents))
10187 {
10188 /* Section written out. */
10189 }
10190 else switch (o->sec_info_type)
10191 {
10192 case SEC_INFO_TYPE_STABS:
10193 if (! (_bfd_write_section_stabs
10194 (output_bfd,
10195 &elf_hash_table (flinfo->info)->stab_info,
10196 o, &elf_section_data (o)->sec_info, contents)))
10197 return FALSE;
10198 break;
10199 case SEC_INFO_TYPE_MERGE:
10200 if (! _bfd_write_merged_section (output_bfd, o,
10201 elf_section_data (o)->sec_info))
10202 return FALSE;
10203 break;
10204 case SEC_INFO_TYPE_EH_FRAME:
10205 {
10206 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10207 o, contents))
10208 return FALSE;
10209 }
10210 break;
10211 default:
10212 {
10213 /* FIXME: octets_per_byte. */
10214 if (! (o->flags & SEC_EXCLUDE))
10215 {
10216 file_ptr offset = (file_ptr) o->output_offset;
10217 bfd_size_type todo = o->size;
10218 if ((o->flags & SEC_ELF_REVERSE_COPY))
10219 {
10220 /* Reverse-copy input section to output. */
10221 do
10222 {
10223 todo -= address_size;
10224 if (! bfd_set_section_contents (output_bfd,
10225 o->output_section,
10226 contents + todo,
10227 offset,
10228 address_size))
10229 return FALSE;
10230 if (todo == 0)
10231 break;
10232 offset += address_size;
10233 }
10234 while (1);
10235 }
10236 else if (! bfd_set_section_contents (output_bfd,
10237 o->output_section,
10238 contents,
10239 offset, todo))
10240 return FALSE;
10241 }
10242 }
10243 break;
10244 }
10245 }
10246
10247 return TRUE;
10248 }
10249
10250 /* Generate a reloc when linking an ELF file. This is a reloc
10251 requested by the linker, and does not come from any input file. This
10252 is used to build constructor and destructor tables when linking
10253 with -Ur. */
10254
10255 static bfd_boolean
10256 elf_reloc_link_order (bfd *output_bfd,
10257 struct bfd_link_info *info,
10258 asection *output_section,
10259 struct bfd_link_order *link_order)
10260 {
10261 reloc_howto_type *howto;
10262 long indx;
10263 bfd_vma offset;
10264 bfd_vma addend;
10265 struct bfd_elf_section_reloc_data *reldata;
10266 struct elf_link_hash_entry **rel_hash_ptr;
10267 Elf_Internal_Shdr *rel_hdr;
10268 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10269 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10270 bfd_byte *erel;
10271 unsigned int i;
10272 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10273
10274 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10275 if (howto == NULL)
10276 {
10277 bfd_set_error (bfd_error_bad_value);
10278 return FALSE;
10279 }
10280
10281 addend = link_order->u.reloc.p->addend;
10282
10283 if (esdo->rel.hdr)
10284 reldata = &esdo->rel;
10285 else if (esdo->rela.hdr)
10286 reldata = &esdo->rela;
10287 else
10288 {
10289 reldata = NULL;
10290 BFD_ASSERT (0);
10291 }
10292
10293 /* Figure out the symbol index. */
10294 rel_hash_ptr = reldata->hashes + reldata->count;
10295 if (link_order->type == bfd_section_reloc_link_order)
10296 {
10297 indx = link_order->u.reloc.p->u.section->target_index;
10298 BFD_ASSERT (indx != 0);
10299 *rel_hash_ptr = NULL;
10300 }
10301 else
10302 {
10303 struct elf_link_hash_entry *h;
10304
10305 /* Treat a reloc against a defined symbol as though it were
10306 actually against the section. */
10307 h = ((struct elf_link_hash_entry *)
10308 bfd_wrapped_link_hash_lookup (output_bfd, info,
10309 link_order->u.reloc.p->u.name,
10310 FALSE, FALSE, TRUE));
10311 if (h != NULL
10312 && (h->root.type == bfd_link_hash_defined
10313 || h->root.type == bfd_link_hash_defweak))
10314 {
10315 asection *section;
10316
10317 section = h->root.u.def.section;
10318 indx = section->output_section->target_index;
10319 *rel_hash_ptr = NULL;
10320 /* It seems that we ought to add the symbol value to the
10321 addend here, but in practice it has already been added
10322 because it was passed to constructor_callback. */
10323 addend += section->output_section->vma + section->output_offset;
10324 }
10325 else if (h != NULL)
10326 {
10327 /* Setting the index to -2 tells elf_link_output_extsym that
10328 this symbol is used by a reloc. */
10329 h->indx = -2;
10330 *rel_hash_ptr = h;
10331 indx = 0;
10332 }
10333 else
10334 {
10335 if (! ((*info->callbacks->unattached_reloc)
10336 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10337 return FALSE;
10338 indx = 0;
10339 }
10340 }
10341
10342 /* If this is an inplace reloc, we must write the addend into the
10343 object file. */
10344 if (howto->partial_inplace && addend != 0)
10345 {
10346 bfd_size_type size;
10347 bfd_reloc_status_type rstat;
10348 bfd_byte *buf;
10349 bfd_boolean ok;
10350 const char *sym_name;
10351
10352 size = (bfd_size_type) bfd_get_reloc_size (howto);
10353 buf = (bfd_byte *) bfd_zmalloc (size);
10354 if (buf == NULL && size != 0)
10355 return FALSE;
10356 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10357 switch (rstat)
10358 {
10359 case bfd_reloc_ok:
10360 break;
10361
10362 default:
10363 case bfd_reloc_outofrange:
10364 abort ();
10365
10366 case bfd_reloc_overflow:
10367 if (link_order->type == bfd_section_reloc_link_order)
10368 sym_name = bfd_section_name (output_bfd,
10369 link_order->u.reloc.p->u.section);
10370 else
10371 sym_name = link_order->u.reloc.p->u.name;
10372 if (! ((*info->callbacks->reloc_overflow)
10373 (info, NULL, sym_name, howto->name, addend, NULL,
10374 NULL, (bfd_vma) 0)))
10375 {
10376 free (buf);
10377 return FALSE;
10378 }
10379 break;
10380 }
10381 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10382 link_order->offset, size);
10383 free (buf);
10384 if (! ok)
10385 return FALSE;
10386 }
10387
10388 /* The address of a reloc is relative to the section in a
10389 relocatable file, and is a virtual address in an executable
10390 file. */
10391 offset = link_order->offset;
10392 if (! info->relocatable)
10393 offset += output_section->vma;
10394
10395 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10396 {
10397 irel[i].r_offset = offset;
10398 irel[i].r_info = 0;
10399 irel[i].r_addend = 0;
10400 }
10401 if (bed->s->arch_size == 32)
10402 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10403 else
10404 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10405
10406 rel_hdr = reldata->hdr;
10407 erel = rel_hdr->contents;
10408 if (rel_hdr->sh_type == SHT_REL)
10409 {
10410 erel += reldata->count * bed->s->sizeof_rel;
10411 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10412 }
10413 else
10414 {
10415 irel[0].r_addend = addend;
10416 erel += reldata->count * bed->s->sizeof_rela;
10417 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10418 }
10419
10420 ++reldata->count;
10421
10422 return TRUE;
10423 }
10424
10425
10426 /* Get the output vma of the section pointed to by the sh_link field. */
10427
10428 static bfd_vma
10429 elf_get_linked_section_vma (struct bfd_link_order *p)
10430 {
10431 Elf_Internal_Shdr **elf_shdrp;
10432 asection *s;
10433 int elfsec;
10434
10435 s = p->u.indirect.section;
10436 elf_shdrp = elf_elfsections (s->owner);
10437 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10438 elfsec = elf_shdrp[elfsec]->sh_link;
10439 /* PR 290:
10440 The Intel C compiler generates SHT_IA_64_UNWIND with
10441 SHF_LINK_ORDER. But it doesn't set the sh_link or
10442 sh_info fields. Hence we could get the situation
10443 where elfsec is 0. */
10444 if (elfsec == 0)
10445 {
10446 const struct elf_backend_data *bed
10447 = get_elf_backend_data (s->owner);
10448 if (bed->link_order_error_handler)
10449 bed->link_order_error_handler
10450 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10451 return 0;
10452 }
10453 else
10454 {
10455 s = elf_shdrp[elfsec]->bfd_section;
10456 return s->output_section->vma + s->output_offset;
10457 }
10458 }
10459
10460
10461 /* Compare two sections based on the locations of the sections they are
10462 linked to. Used by elf_fixup_link_order. */
10463
10464 static int
10465 compare_link_order (const void * a, const void * b)
10466 {
10467 bfd_vma apos;
10468 bfd_vma bpos;
10469
10470 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10471 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10472 if (apos < bpos)
10473 return -1;
10474 return apos > bpos;
10475 }
10476
10477
10478 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10479 order as their linked sections. Returns false if this could not be done
10480 because an output section includes both ordered and unordered
10481 sections. Ideally we'd do this in the linker proper. */
10482
10483 static bfd_boolean
10484 elf_fixup_link_order (bfd *abfd, asection *o)
10485 {
10486 int seen_linkorder;
10487 int seen_other;
10488 int n;
10489 struct bfd_link_order *p;
10490 bfd *sub;
10491 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10492 unsigned elfsec;
10493 struct bfd_link_order **sections;
10494 asection *s, *other_sec, *linkorder_sec;
10495 bfd_vma offset;
10496
10497 other_sec = NULL;
10498 linkorder_sec = NULL;
10499 seen_other = 0;
10500 seen_linkorder = 0;
10501 for (p = o->map_head.link_order; p != NULL; p = p->next)
10502 {
10503 if (p->type == bfd_indirect_link_order)
10504 {
10505 s = p->u.indirect.section;
10506 sub = s->owner;
10507 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10508 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10509 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10510 && elfsec < elf_numsections (sub)
10511 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10512 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10513 {
10514 seen_linkorder++;
10515 linkorder_sec = s;
10516 }
10517 else
10518 {
10519 seen_other++;
10520 other_sec = s;
10521 }
10522 }
10523 else
10524 seen_other++;
10525
10526 if (seen_other && seen_linkorder)
10527 {
10528 if (other_sec && linkorder_sec)
10529 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10530 o, linkorder_sec,
10531 linkorder_sec->owner, other_sec,
10532 other_sec->owner);
10533 else
10534 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10535 o);
10536 bfd_set_error (bfd_error_bad_value);
10537 return FALSE;
10538 }
10539 }
10540
10541 if (!seen_linkorder)
10542 return TRUE;
10543
10544 sections = (struct bfd_link_order **)
10545 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10546 if (sections == NULL)
10547 return FALSE;
10548 seen_linkorder = 0;
10549
10550 for (p = o->map_head.link_order; p != NULL; p = p->next)
10551 {
10552 sections[seen_linkorder++] = p;
10553 }
10554 /* Sort the input sections in the order of their linked section. */
10555 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10556 compare_link_order);
10557
10558 /* Change the offsets of the sections. */
10559 offset = 0;
10560 for (n = 0; n < seen_linkorder; n++)
10561 {
10562 s = sections[n]->u.indirect.section;
10563 offset &= ~(bfd_vma) 0 << s->alignment_power;
10564 s->output_offset = offset;
10565 sections[n]->offset = offset;
10566 /* FIXME: octets_per_byte. */
10567 offset += sections[n]->size;
10568 }
10569
10570 free (sections);
10571 return TRUE;
10572 }
10573
10574 static void
10575 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10576 {
10577 asection *o;
10578
10579 if (flinfo->symstrtab != NULL)
10580 _bfd_stringtab_free (flinfo->symstrtab);
10581 if (flinfo->contents != NULL)
10582 free (flinfo->contents);
10583 if (flinfo->external_relocs != NULL)
10584 free (flinfo->external_relocs);
10585 if (flinfo->internal_relocs != NULL)
10586 free (flinfo->internal_relocs);
10587 if (flinfo->external_syms != NULL)
10588 free (flinfo->external_syms);
10589 if (flinfo->locsym_shndx != NULL)
10590 free (flinfo->locsym_shndx);
10591 if (flinfo->internal_syms != NULL)
10592 free (flinfo->internal_syms);
10593 if (flinfo->indices != NULL)
10594 free (flinfo->indices);
10595 if (flinfo->sections != NULL)
10596 free (flinfo->sections);
10597 if (flinfo->symbuf != NULL)
10598 free (flinfo->symbuf);
10599 if (flinfo->symshndxbuf != NULL)
10600 free (flinfo->symshndxbuf);
10601 for (o = obfd->sections; o != NULL; o = o->next)
10602 {
10603 struct bfd_elf_section_data *esdo = elf_section_data (o);
10604 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10605 free (esdo->rel.hashes);
10606 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10607 free (esdo->rela.hashes);
10608 }
10609 }
10610
10611 /* Do the final step of an ELF link. */
10612
10613 bfd_boolean
10614 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10615 {
10616 bfd_boolean dynamic;
10617 bfd_boolean emit_relocs;
10618 bfd *dynobj;
10619 struct elf_final_link_info flinfo;
10620 asection *o;
10621 struct bfd_link_order *p;
10622 bfd *sub;
10623 bfd_size_type max_contents_size;
10624 bfd_size_type max_external_reloc_size;
10625 bfd_size_type max_internal_reloc_count;
10626 bfd_size_type max_sym_count;
10627 bfd_size_type max_sym_shndx_count;
10628 Elf_Internal_Sym elfsym;
10629 unsigned int i;
10630 Elf_Internal_Shdr *symtab_hdr;
10631 Elf_Internal_Shdr *symtab_shndx_hdr;
10632 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10633 struct elf_outext_info eoinfo;
10634 bfd_boolean merged;
10635 size_t relativecount = 0;
10636 asection *reldyn = 0;
10637 bfd_size_type amt;
10638 asection *attr_section = NULL;
10639 bfd_vma attr_size = 0;
10640 const char *std_attrs_section;
10641
10642 if (! is_elf_hash_table (info->hash))
10643 return FALSE;
10644
10645 if (info->shared)
10646 abfd->flags |= DYNAMIC;
10647
10648 dynamic = elf_hash_table (info)->dynamic_sections_created;
10649 dynobj = elf_hash_table (info)->dynobj;
10650
10651 emit_relocs = (info->relocatable
10652 || info->emitrelocations);
10653
10654 flinfo.info = info;
10655 flinfo.output_bfd = abfd;
10656 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10657 if (flinfo.symstrtab == NULL)
10658 return FALSE;
10659
10660 if (! dynamic)
10661 {
10662 flinfo.dynsym_sec = NULL;
10663 flinfo.hash_sec = NULL;
10664 flinfo.symver_sec = NULL;
10665 }
10666 else
10667 {
10668 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10669 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10670 /* Note that dynsym_sec can be NULL (on VMS). */
10671 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10672 /* Note that it is OK if symver_sec is NULL. */
10673 }
10674
10675 flinfo.contents = NULL;
10676 flinfo.external_relocs = NULL;
10677 flinfo.internal_relocs = NULL;
10678 flinfo.external_syms = NULL;
10679 flinfo.locsym_shndx = NULL;
10680 flinfo.internal_syms = NULL;
10681 flinfo.indices = NULL;
10682 flinfo.sections = NULL;
10683 flinfo.symbuf = NULL;
10684 flinfo.symshndxbuf = NULL;
10685 flinfo.symbuf_count = 0;
10686 flinfo.shndxbuf_size = 0;
10687 flinfo.filesym_count = 0;
10688
10689 /* The object attributes have been merged. Remove the input
10690 sections from the link, and set the contents of the output
10691 secton. */
10692 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10693 for (o = abfd->sections; o != NULL; o = o->next)
10694 {
10695 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10696 || strcmp (o->name, ".gnu.attributes") == 0)
10697 {
10698 for (p = o->map_head.link_order; p != NULL; p = p->next)
10699 {
10700 asection *input_section;
10701
10702 if (p->type != bfd_indirect_link_order)
10703 continue;
10704 input_section = p->u.indirect.section;
10705 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10706 elf_link_input_bfd ignores this section. */
10707 input_section->flags &= ~SEC_HAS_CONTENTS;
10708 }
10709
10710 attr_size = bfd_elf_obj_attr_size (abfd);
10711 if (attr_size)
10712 {
10713 bfd_set_section_size (abfd, o, attr_size);
10714 attr_section = o;
10715 /* Skip this section later on. */
10716 o->map_head.link_order = NULL;
10717 }
10718 else
10719 o->flags |= SEC_EXCLUDE;
10720 }
10721 }
10722
10723 /* Count up the number of relocations we will output for each output
10724 section, so that we know the sizes of the reloc sections. We
10725 also figure out some maximum sizes. */
10726 max_contents_size = 0;
10727 max_external_reloc_size = 0;
10728 max_internal_reloc_count = 0;
10729 max_sym_count = 0;
10730 max_sym_shndx_count = 0;
10731 merged = FALSE;
10732 for (o = abfd->sections; o != NULL; o = o->next)
10733 {
10734 struct bfd_elf_section_data *esdo = elf_section_data (o);
10735 o->reloc_count = 0;
10736
10737 for (p = o->map_head.link_order; p != NULL; p = p->next)
10738 {
10739 unsigned int reloc_count = 0;
10740 struct bfd_elf_section_data *esdi = NULL;
10741
10742 if (p->type == bfd_section_reloc_link_order
10743 || p->type == bfd_symbol_reloc_link_order)
10744 reloc_count = 1;
10745 else if (p->type == bfd_indirect_link_order)
10746 {
10747 asection *sec;
10748
10749 sec = p->u.indirect.section;
10750 esdi = elf_section_data (sec);
10751
10752 /* Mark all sections which are to be included in the
10753 link. This will normally be every section. We need
10754 to do this so that we can identify any sections which
10755 the linker has decided to not include. */
10756 sec->linker_mark = TRUE;
10757
10758 if (sec->flags & SEC_MERGE)
10759 merged = TRUE;
10760
10761 if (esdo->this_hdr.sh_type == SHT_REL
10762 || esdo->this_hdr.sh_type == SHT_RELA)
10763 /* Some backends use reloc_count in relocation sections
10764 to count particular types of relocs. Of course,
10765 reloc sections themselves can't have relocations. */
10766 reloc_count = 0;
10767 else if (info->relocatable || info->emitrelocations)
10768 reloc_count = sec->reloc_count;
10769 else if (bed->elf_backend_count_relocs)
10770 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10771
10772 if (sec->rawsize > max_contents_size)
10773 max_contents_size = sec->rawsize;
10774 if (sec->size > max_contents_size)
10775 max_contents_size = sec->size;
10776
10777 /* We are interested in just local symbols, not all
10778 symbols. */
10779 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10780 && (sec->owner->flags & DYNAMIC) == 0)
10781 {
10782 size_t sym_count;
10783
10784 if (elf_bad_symtab (sec->owner))
10785 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10786 / bed->s->sizeof_sym);
10787 else
10788 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10789
10790 if (sym_count > max_sym_count)
10791 max_sym_count = sym_count;
10792
10793 if (sym_count > max_sym_shndx_count
10794 && elf_symtab_shndx (sec->owner) != 0)
10795 max_sym_shndx_count = sym_count;
10796
10797 if ((sec->flags & SEC_RELOC) != 0)
10798 {
10799 size_t ext_size = 0;
10800
10801 if (esdi->rel.hdr != NULL)
10802 ext_size = esdi->rel.hdr->sh_size;
10803 if (esdi->rela.hdr != NULL)
10804 ext_size += esdi->rela.hdr->sh_size;
10805
10806 if (ext_size > max_external_reloc_size)
10807 max_external_reloc_size = ext_size;
10808 if (sec->reloc_count > max_internal_reloc_count)
10809 max_internal_reloc_count = sec->reloc_count;
10810 }
10811 }
10812 }
10813
10814 if (reloc_count == 0)
10815 continue;
10816
10817 o->reloc_count += reloc_count;
10818
10819 if (p->type == bfd_indirect_link_order
10820 && (info->relocatable || info->emitrelocations))
10821 {
10822 if (esdi->rel.hdr)
10823 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10824 if (esdi->rela.hdr)
10825 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10826 }
10827 else
10828 {
10829 if (o->use_rela_p)
10830 esdo->rela.count += reloc_count;
10831 else
10832 esdo->rel.count += reloc_count;
10833 }
10834 }
10835
10836 if (o->reloc_count > 0)
10837 o->flags |= SEC_RELOC;
10838 else
10839 {
10840 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10841 set it (this is probably a bug) and if it is set
10842 assign_section_numbers will create a reloc section. */
10843 o->flags &=~ SEC_RELOC;
10844 }
10845
10846 /* If the SEC_ALLOC flag is not set, force the section VMA to
10847 zero. This is done in elf_fake_sections as well, but forcing
10848 the VMA to 0 here will ensure that relocs against these
10849 sections are handled correctly. */
10850 if ((o->flags & SEC_ALLOC) == 0
10851 && ! o->user_set_vma)
10852 o->vma = 0;
10853 }
10854
10855 if (! info->relocatable && merged)
10856 elf_link_hash_traverse (elf_hash_table (info),
10857 _bfd_elf_link_sec_merge_syms, abfd);
10858
10859 /* Figure out the file positions for everything but the symbol table
10860 and the relocs. We set symcount to force assign_section_numbers
10861 to create a symbol table. */
10862 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10863 BFD_ASSERT (! abfd->output_has_begun);
10864 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10865 goto error_return;
10866
10867 /* Set sizes, and assign file positions for reloc sections. */
10868 for (o = abfd->sections; o != NULL; o = o->next)
10869 {
10870 struct bfd_elf_section_data *esdo = elf_section_data (o);
10871 if ((o->flags & SEC_RELOC) != 0)
10872 {
10873 if (esdo->rel.hdr
10874 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10875 goto error_return;
10876
10877 if (esdo->rela.hdr
10878 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10879 goto error_return;
10880 }
10881
10882 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10883 to count upwards while actually outputting the relocations. */
10884 esdo->rel.count = 0;
10885 esdo->rela.count = 0;
10886 }
10887
10888 /* We have now assigned file positions for all the sections except
10889 .symtab, .strtab, and non-loaded reloc sections. We start the
10890 .symtab section at the current file position, and write directly
10891 to it. We build the .strtab section in memory. */
10892 bfd_get_symcount (abfd) = 0;
10893 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10894 /* sh_name is set in prep_headers. */
10895 symtab_hdr->sh_type = SHT_SYMTAB;
10896 /* sh_flags, sh_addr and sh_size all start off zero. */
10897 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10898 /* sh_link is set in assign_section_numbers. */
10899 /* sh_info is set below. */
10900 /* sh_offset is set just below. */
10901 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10902
10903 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10904 continuously seeking to the right position in the file. */
10905 if (! info->keep_memory || max_sym_count < 20)
10906 flinfo.symbuf_size = 20;
10907 else
10908 flinfo.symbuf_size = max_sym_count;
10909 amt = flinfo.symbuf_size;
10910 amt *= bed->s->sizeof_sym;
10911 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10912 if (flinfo.symbuf == NULL)
10913 goto error_return;
10914 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10915 {
10916 /* Wild guess at number of output symbols. realloc'd as needed. */
10917 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10918 flinfo.shndxbuf_size = amt;
10919 amt *= sizeof (Elf_External_Sym_Shndx);
10920 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10921 if (flinfo.symshndxbuf == NULL)
10922 goto error_return;
10923 }
10924
10925 if (info->strip != strip_all || emit_relocs)
10926 {
10927 file_ptr off = elf_next_file_pos (abfd);
10928
10929 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10930
10931 /* Note that at this point elf_next_file_pos (abfd) is
10932 incorrect. We do not yet know the size of the .symtab section.
10933 We correct next_file_pos below, after we do know the size. */
10934
10935 /* Start writing out the symbol table. The first symbol is always a
10936 dummy symbol. */
10937 elfsym.st_value = 0;
10938 elfsym.st_size = 0;
10939 elfsym.st_info = 0;
10940 elfsym.st_other = 0;
10941 elfsym.st_shndx = SHN_UNDEF;
10942 elfsym.st_target_internal = 0;
10943 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10944 NULL) != 1)
10945 goto error_return;
10946
10947 /* Output a symbol for each section. We output these even if we are
10948 discarding local symbols, since they are used for relocs. These
10949 symbols have no names. We store the index of each one in the
10950 index field of the section, so that we can find it again when
10951 outputting relocs. */
10952
10953 elfsym.st_size = 0;
10954 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10955 elfsym.st_other = 0;
10956 elfsym.st_value = 0;
10957 elfsym.st_target_internal = 0;
10958 for (i = 1; i < elf_numsections (abfd); i++)
10959 {
10960 o = bfd_section_from_elf_index (abfd, i);
10961 if (o != NULL)
10962 {
10963 o->target_index = bfd_get_symcount (abfd);
10964 elfsym.st_shndx = i;
10965 if (!info->relocatable)
10966 elfsym.st_value = o->vma;
10967 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10968 goto error_return;
10969 }
10970 }
10971 }
10972
10973 /* Allocate some memory to hold information read in from the input
10974 files. */
10975 if (max_contents_size != 0)
10976 {
10977 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10978 if (flinfo.contents == NULL)
10979 goto error_return;
10980 }
10981
10982 if (max_external_reloc_size != 0)
10983 {
10984 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10985 if (flinfo.external_relocs == NULL)
10986 goto error_return;
10987 }
10988
10989 if (max_internal_reloc_count != 0)
10990 {
10991 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10992 amt *= sizeof (Elf_Internal_Rela);
10993 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10994 if (flinfo.internal_relocs == NULL)
10995 goto error_return;
10996 }
10997
10998 if (max_sym_count != 0)
10999 {
11000 amt = max_sym_count * bed->s->sizeof_sym;
11001 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11002 if (flinfo.external_syms == NULL)
11003 goto error_return;
11004
11005 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11006 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11007 if (flinfo.internal_syms == NULL)
11008 goto error_return;
11009
11010 amt = max_sym_count * sizeof (long);
11011 flinfo.indices = (long int *) bfd_malloc (amt);
11012 if (flinfo.indices == NULL)
11013 goto error_return;
11014
11015 amt = max_sym_count * sizeof (asection *);
11016 flinfo.sections = (asection **) bfd_malloc (amt);
11017 if (flinfo.sections == NULL)
11018 goto error_return;
11019 }
11020
11021 if (max_sym_shndx_count != 0)
11022 {
11023 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11024 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11025 if (flinfo.locsym_shndx == NULL)
11026 goto error_return;
11027 }
11028
11029 if (elf_hash_table (info)->tls_sec)
11030 {
11031 bfd_vma base, end = 0;
11032 asection *sec;
11033
11034 for (sec = elf_hash_table (info)->tls_sec;
11035 sec && (sec->flags & SEC_THREAD_LOCAL);
11036 sec = sec->next)
11037 {
11038 bfd_size_type size = sec->size;
11039
11040 if (size == 0
11041 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11042 {
11043 struct bfd_link_order *ord = sec->map_tail.link_order;
11044
11045 if (ord != NULL)
11046 size = ord->offset + ord->size;
11047 }
11048 end = sec->vma + size;
11049 }
11050 base = elf_hash_table (info)->tls_sec->vma;
11051 /* Only align end of TLS section if static TLS doesn't have special
11052 alignment requirements. */
11053 if (bed->static_tls_alignment == 1)
11054 end = align_power (end,
11055 elf_hash_table (info)->tls_sec->alignment_power);
11056 elf_hash_table (info)->tls_size = end - base;
11057 }
11058
11059 /* Reorder SHF_LINK_ORDER sections. */
11060 for (o = abfd->sections; o != NULL; o = o->next)
11061 {
11062 if (!elf_fixup_link_order (abfd, o))
11063 return FALSE;
11064 }
11065
11066 /* Since ELF permits relocations to be against local symbols, we
11067 must have the local symbols available when we do the relocations.
11068 Since we would rather only read the local symbols once, and we
11069 would rather not keep them in memory, we handle all the
11070 relocations for a single input file at the same time.
11071
11072 Unfortunately, there is no way to know the total number of local
11073 symbols until we have seen all of them, and the local symbol
11074 indices precede the global symbol indices. This means that when
11075 we are generating relocatable output, and we see a reloc against
11076 a global symbol, we can not know the symbol index until we have
11077 finished examining all the local symbols to see which ones we are
11078 going to output. To deal with this, we keep the relocations in
11079 memory, and don't output them until the end of the link. This is
11080 an unfortunate waste of memory, but I don't see a good way around
11081 it. Fortunately, it only happens when performing a relocatable
11082 link, which is not the common case. FIXME: If keep_memory is set
11083 we could write the relocs out and then read them again; I don't
11084 know how bad the memory loss will be. */
11085
11086 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11087 sub->output_has_begun = FALSE;
11088 for (o = abfd->sections; o != NULL; o = o->next)
11089 {
11090 for (p = o->map_head.link_order; p != NULL; p = p->next)
11091 {
11092 if (p->type == bfd_indirect_link_order
11093 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11094 == bfd_target_elf_flavour)
11095 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11096 {
11097 if (! sub->output_has_begun)
11098 {
11099 if (! elf_link_input_bfd (&flinfo, sub))
11100 goto error_return;
11101 sub->output_has_begun = TRUE;
11102 }
11103 }
11104 else if (p->type == bfd_section_reloc_link_order
11105 || p->type == bfd_symbol_reloc_link_order)
11106 {
11107 if (! elf_reloc_link_order (abfd, info, o, p))
11108 goto error_return;
11109 }
11110 else
11111 {
11112 if (! _bfd_default_link_order (abfd, info, o, p))
11113 {
11114 if (p->type == bfd_indirect_link_order
11115 && (bfd_get_flavour (sub)
11116 == bfd_target_elf_flavour)
11117 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11118 != bed->s->elfclass))
11119 {
11120 const char *iclass, *oclass;
11121
11122 if (bed->s->elfclass == ELFCLASS64)
11123 {
11124 iclass = "ELFCLASS32";
11125 oclass = "ELFCLASS64";
11126 }
11127 else
11128 {
11129 iclass = "ELFCLASS64";
11130 oclass = "ELFCLASS32";
11131 }
11132
11133 bfd_set_error (bfd_error_wrong_format);
11134 (*_bfd_error_handler)
11135 (_("%B: file class %s incompatible with %s"),
11136 sub, iclass, oclass);
11137 }
11138
11139 goto error_return;
11140 }
11141 }
11142 }
11143 }
11144
11145 /* Free symbol buffer if needed. */
11146 if (!info->reduce_memory_overheads)
11147 {
11148 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11149 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11150 && elf_tdata (sub)->symbuf)
11151 {
11152 free (elf_tdata (sub)->symbuf);
11153 elf_tdata (sub)->symbuf = NULL;
11154 }
11155 }
11156
11157 /* Output any global symbols that got converted to local in a
11158 version script or due to symbol visibility. We do this in a
11159 separate step since ELF requires all local symbols to appear
11160 prior to any global symbols. FIXME: We should only do this if
11161 some global symbols were, in fact, converted to become local.
11162 FIXME: Will this work correctly with the Irix 5 linker? */
11163 eoinfo.failed = FALSE;
11164 eoinfo.flinfo = &flinfo;
11165 eoinfo.localsyms = TRUE;
11166 eoinfo.file_sym_done = FALSE;
11167 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11168 if (eoinfo.failed)
11169 return FALSE;
11170
11171 /* If backend needs to output some local symbols not present in the hash
11172 table, do it now. */
11173 if (bed->elf_backend_output_arch_local_syms
11174 && (info->strip != strip_all || emit_relocs))
11175 {
11176 typedef int (*out_sym_func)
11177 (void *, const char *, Elf_Internal_Sym *, asection *,
11178 struct elf_link_hash_entry *);
11179
11180 if (! ((*bed->elf_backend_output_arch_local_syms)
11181 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11182 return FALSE;
11183 }
11184
11185 /* That wrote out all the local symbols. Finish up the symbol table
11186 with the global symbols. Even if we want to strip everything we
11187 can, we still need to deal with those global symbols that got
11188 converted to local in a version script. */
11189
11190 /* The sh_info field records the index of the first non local symbol. */
11191 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11192
11193 if (dynamic
11194 && flinfo.dynsym_sec != NULL
11195 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11196 {
11197 Elf_Internal_Sym sym;
11198 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11199 long last_local = 0;
11200
11201 /* Write out the section symbols for the output sections. */
11202 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11203 {
11204 asection *s;
11205
11206 sym.st_size = 0;
11207 sym.st_name = 0;
11208 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11209 sym.st_other = 0;
11210 sym.st_target_internal = 0;
11211
11212 for (s = abfd->sections; s != NULL; s = s->next)
11213 {
11214 int indx;
11215 bfd_byte *dest;
11216 long dynindx;
11217
11218 dynindx = elf_section_data (s)->dynindx;
11219 if (dynindx <= 0)
11220 continue;
11221 indx = elf_section_data (s)->this_idx;
11222 BFD_ASSERT (indx > 0);
11223 sym.st_shndx = indx;
11224 if (! check_dynsym (abfd, &sym))
11225 return FALSE;
11226 sym.st_value = s->vma;
11227 dest = dynsym + dynindx * bed->s->sizeof_sym;
11228 if (last_local < dynindx)
11229 last_local = dynindx;
11230 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11231 }
11232 }
11233
11234 /* Write out the local dynsyms. */
11235 if (elf_hash_table (info)->dynlocal)
11236 {
11237 struct elf_link_local_dynamic_entry *e;
11238 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11239 {
11240 asection *s;
11241 bfd_byte *dest;
11242
11243 /* Copy the internal symbol and turn off visibility.
11244 Note that we saved a word of storage and overwrote
11245 the original st_name with the dynstr_index. */
11246 sym = e->isym;
11247 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11248
11249 s = bfd_section_from_elf_index (e->input_bfd,
11250 e->isym.st_shndx);
11251 if (s != NULL)
11252 {
11253 sym.st_shndx =
11254 elf_section_data (s->output_section)->this_idx;
11255 if (! check_dynsym (abfd, &sym))
11256 return FALSE;
11257 sym.st_value = (s->output_section->vma
11258 + s->output_offset
11259 + e->isym.st_value);
11260 }
11261
11262 if (last_local < e->dynindx)
11263 last_local = e->dynindx;
11264
11265 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11266 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11267 }
11268 }
11269
11270 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11271 last_local + 1;
11272 }
11273
11274 /* We get the global symbols from the hash table. */
11275 eoinfo.failed = FALSE;
11276 eoinfo.localsyms = FALSE;
11277 eoinfo.flinfo = &flinfo;
11278 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11279 if (eoinfo.failed)
11280 return FALSE;
11281
11282 /* If backend needs to output some symbols not present in the hash
11283 table, do it now. */
11284 if (bed->elf_backend_output_arch_syms
11285 && (info->strip != strip_all || emit_relocs))
11286 {
11287 typedef int (*out_sym_func)
11288 (void *, const char *, Elf_Internal_Sym *, asection *,
11289 struct elf_link_hash_entry *);
11290
11291 if (! ((*bed->elf_backend_output_arch_syms)
11292 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11293 return FALSE;
11294 }
11295
11296 /* Flush all symbols to the file. */
11297 if (! elf_link_flush_output_syms (&flinfo, bed))
11298 return FALSE;
11299
11300 /* Now we know the size of the symtab section. */
11301 if (bfd_get_symcount (abfd) > 0)
11302 {
11303 /* Finish up and write out the symbol string table (.strtab)
11304 section. */
11305 Elf_Internal_Shdr *symstrtab_hdr;
11306 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11307
11308 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11309 if (symtab_shndx_hdr->sh_name != 0)
11310 {
11311 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11312 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11313 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11314 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11315 symtab_shndx_hdr->sh_size = amt;
11316
11317 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11318 off, TRUE);
11319
11320 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11321 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11322 return FALSE;
11323 }
11324
11325 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11326 /* sh_name was set in prep_headers. */
11327 symstrtab_hdr->sh_type = SHT_STRTAB;
11328 symstrtab_hdr->sh_flags = 0;
11329 symstrtab_hdr->sh_addr = 0;
11330 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11331 symstrtab_hdr->sh_entsize = 0;
11332 symstrtab_hdr->sh_link = 0;
11333 symstrtab_hdr->sh_info = 0;
11334 /* sh_offset is set just below. */
11335 symstrtab_hdr->sh_addralign = 1;
11336
11337 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11338 off, TRUE);
11339 elf_next_file_pos (abfd) = off;
11340
11341 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11342 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11343 return FALSE;
11344 }
11345
11346 /* Adjust the relocs to have the correct symbol indices. */
11347 for (o = abfd->sections; o != NULL; o = o->next)
11348 {
11349 struct bfd_elf_section_data *esdo = elf_section_data (o);
11350 bfd_boolean sort;
11351 if ((o->flags & SEC_RELOC) == 0)
11352 continue;
11353
11354 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11355 if (esdo->rel.hdr != NULL)
11356 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11357 if (esdo->rela.hdr != NULL)
11358 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11359
11360 /* Set the reloc_count field to 0 to prevent write_relocs from
11361 trying to swap the relocs out itself. */
11362 o->reloc_count = 0;
11363 }
11364
11365 if (dynamic && info->combreloc && dynobj != NULL)
11366 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11367
11368 /* If we are linking against a dynamic object, or generating a
11369 shared library, finish up the dynamic linking information. */
11370 if (dynamic)
11371 {
11372 bfd_byte *dyncon, *dynconend;
11373
11374 /* Fix up .dynamic entries. */
11375 o = bfd_get_linker_section (dynobj, ".dynamic");
11376 BFD_ASSERT (o != NULL);
11377
11378 dyncon = o->contents;
11379 dynconend = o->contents + o->size;
11380 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11381 {
11382 Elf_Internal_Dyn dyn;
11383 const char *name;
11384 unsigned int type;
11385
11386 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11387
11388 switch (dyn.d_tag)
11389 {
11390 default:
11391 continue;
11392 case DT_NULL:
11393 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11394 {
11395 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11396 {
11397 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11398 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11399 default: continue;
11400 }
11401 dyn.d_un.d_val = relativecount;
11402 relativecount = 0;
11403 break;
11404 }
11405 continue;
11406
11407 case DT_INIT:
11408 name = info->init_function;
11409 goto get_sym;
11410 case DT_FINI:
11411 name = info->fini_function;
11412 get_sym:
11413 {
11414 struct elf_link_hash_entry *h;
11415
11416 h = elf_link_hash_lookup (elf_hash_table (info), name,
11417 FALSE, FALSE, TRUE);
11418 if (h != NULL
11419 && (h->root.type == bfd_link_hash_defined
11420 || h->root.type == bfd_link_hash_defweak))
11421 {
11422 dyn.d_un.d_ptr = h->root.u.def.value;
11423 o = h->root.u.def.section;
11424 if (o->output_section != NULL)
11425 dyn.d_un.d_ptr += (o->output_section->vma
11426 + o->output_offset);
11427 else
11428 {
11429 /* The symbol is imported from another shared
11430 library and does not apply to this one. */
11431 dyn.d_un.d_ptr = 0;
11432 }
11433 break;
11434 }
11435 }
11436 continue;
11437
11438 case DT_PREINIT_ARRAYSZ:
11439 name = ".preinit_array";
11440 goto get_size;
11441 case DT_INIT_ARRAYSZ:
11442 name = ".init_array";
11443 goto get_size;
11444 case DT_FINI_ARRAYSZ:
11445 name = ".fini_array";
11446 get_size:
11447 o = bfd_get_section_by_name (abfd, name);
11448 if (o == NULL)
11449 {
11450 (*_bfd_error_handler)
11451 (_("%B: could not find output section %s"), abfd, name);
11452 goto error_return;
11453 }
11454 if (o->size == 0)
11455 (*_bfd_error_handler)
11456 (_("warning: %s section has zero size"), name);
11457 dyn.d_un.d_val = o->size;
11458 break;
11459
11460 case DT_PREINIT_ARRAY:
11461 name = ".preinit_array";
11462 goto get_vma;
11463 case DT_INIT_ARRAY:
11464 name = ".init_array";
11465 goto get_vma;
11466 case DT_FINI_ARRAY:
11467 name = ".fini_array";
11468 goto get_vma;
11469
11470 case DT_HASH:
11471 name = ".hash";
11472 goto get_vma;
11473 case DT_GNU_HASH:
11474 name = ".gnu.hash";
11475 goto get_vma;
11476 case DT_STRTAB:
11477 name = ".dynstr";
11478 goto get_vma;
11479 case DT_SYMTAB:
11480 name = ".dynsym";
11481 goto get_vma;
11482 case DT_VERDEF:
11483 name = ".gnu.version_d";
11484 goto get_vma;
11485 case DT_VERNEED:
11486 name = ".gnu.version_r";
11487 goto get_vma;
11488 case DT_VERSYM:
11489 name = ".gnu.version";
11490 get_vma:
11491 o = bfd_get_section_by_name (abfd, name);
11492 if (o == NULL)
11493 {
11494 (*_bfd_error_handler)
11495 (_("%B: could not find output section %s"), abfd, name);
11496 goto error_return;
11497 }
11498 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11499 {
11500 (*_bfd_error_handler)
11501 (_("warning: section '%s' is being made into a note"), name);
11502 bfd_set_error (bfd_error_nonrepresentable_section);
11503 goto error_return;
11504 }
11505 dyn.d_un.d_ptr = o->vma;
11506 break;
11507
11508 case DT_REL:
11509 case DT_RELA:
11510 case DT_RELSZ:
11511 case DT_RELASZ:
11512 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11513 type = SHT_REL;
11514 else
11515 type = SHT_RELA;
11516 dyn.d_un.d_val = 0;
11517 dyn.d_un.d_ptr = 0;
11518 for (i = 1; i < elf_numsections (abfd); i++)
11519 {
11520 Elf_Internal_Shdr *hdr;
11521
11522 hdr = elf_elfsections (abfd)[i];
11523 if (hdr->sh_type == type
11524 && (hdr->sh_flags & SHF_ALLOC) != 0)
11525 {
11526 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11527 dyn.d_un.d_val += hdr->sh_size;
11528 else
11529 {
11530 if (dyn.d_un.d_ptr == 0
11531 || hdr->sh_addr < dyn.d_un.d_ptr)
11532 dyn.d_un.d_ptr = hdr->sh_addr;
11533 }
11534 }
11535 }
11536 break;
11537 }
11538 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11539 }
11540 }
11541
11542 /* If we have created any dynamic sections, then output them. */
11543 if (dynobj != NULL)
11544 {
11545 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11546 goto error_return;
11547
11548 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11549 if (((info->warn_shared_textrel && info->shared)
11550 || info->error_textrel)
11551 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11552 {
11553 bfd_byte *dyncon, *dynconend;
11554
11555 dyncon = o->contents;
11556 dynconend = o->contents + o->size;
11557 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11558 {
11559 Elf_Internal_Dyn dyn;
11560
11561 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11562
11563 if (dyn.d_tag == DT_TEXTREL)
11564 {
11565 if (info->error_textrel)
11566 info->callbacks->einfo
11567 (_("%P%X: read-only segment has dynamic relocations.\n"));
11568 else
11569 info->callbacks->einfo
11570 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11571 break;
11572 }
11573 }
11574 }
11575
11576 for (o = dynobj->sections; o != NULL; o = o->next)
11577 {
11578 if ((o->flags & SEC_HAS_CONTENTS) == 0
11579 || o->size == 0
11580 || o->output_section == bfd_abs_section_ptr)
11581 continue;
11582 if ((o->flags & SEC_LINKER_CREATED) == 0)
11583 {
11584 /* At this point, we are only interested in sections
11585 created by _bfd_elf_link_create_dynamic_sections. */
11586 continue;
11587 }
11588 if (elf_hash_table (info)->stab_info.stabstr == o)
11589 continue;
11590 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11591 continue;
11592 if (strcmp (o->name, ".dynstr") != 0)
11593 {
11594 /* FIXME: octets_per_byte. */
11595 if (! bfd_set_section_contents (abfd, o->output_section,
11596 o->contents,
11597 (file_ptr) o->output_offset,
11598 o->size))
11599 goto error_return;
11600 }
11601 else
11602 {
11603 /* The contents of the .dynstr section are actually in a
11604 stringtab. */
11605 file_ptr off;
11606
11607 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11608 if (bfd_seek (abfd, off, SEEK_SET) != 0
11609 || ! _bfd_elf_strtab_emit (abfd,
11610 elf_hash_table (info)->dynstr))
11611 goto error_return;
11612 }
11613 }
11614 }
11615
11616 if (info->relocatable)
11617 {
11618 bfd_boolean failed = FALSE;
11619
11620 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11621 if (failed)
11622 goto error_return;
11623 }
11624
11625 /* If we have optimized stabs strings, output them. */
11626 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11627 {
11628 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11629 goto error_return;
11630 }
11631
11632 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11633 goto error_return;
11634
11635 elf_final_link_free (abfd, &flinfo);
11636
11637 elf_linker (abfd) = TRUE;
11638
11639 if (attr_section)
11640 {
11641 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11642 if (contents == NULL)
11643 return FALSE; /* Bail out and fail. */
11644 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11645 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11646 free (contents);
11647 }
11648
11649 return TRUE;
11650
11651 error_return:
11652 elf_final_link_free (abfd, &flinfo);
11653 return FALSE;
11654 }
11655 \f
11656 /* Initialize COOKIE for input bfd ABFD. */
11657
11658 static bfd_boolean
11659 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11660 struct bfd_link_info *info, bfd *abfd)
11661 {
11662 Elf_Internal_Shdr *symtab_hdr;
11663 const struct elf_backend_data *bed;
11664
11665 bed = get_elf_backend_data (abfd);
11666 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11667
11668 cookie->abfd = abfd;
11669 cookie->sym_hashes = elf_sym_hashes (abfd);
11670 cookie->bad_symtab = elf_bad_symtab (abfd);
11671 if (cookie->bad_symtab)
11672 {
11673 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11674 cookie->extsymoff = 0;
11675 }
11676 else
11677 {
11678 cookie->locsymcount = symtab_hdr->sh_info;
11679 cookie->extsymoff = symtab_hdr->sh_info;
11680 }
11681
11682 if (bed->s->arch_size == 32)
11683 cookie->r_sym_shift = 8;
11684 else
11685 cookie->r_sym_shift = 32;
11686
11687 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11688 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11689 {
11690 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11691 cookie->locsymcount, 0,
11692 NULL, NULL, NULL);
11693 if (cookie->locsyms == NULL)
11694 {
11695 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11696 return FALSE;
11697 }
11698 if (info->keep_memory)
11699 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11700 }
11701 return TRUE;
11702 }
11703
11704 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11705
11706 static void
11707 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11708 {
11709 Elf_Internal_Shdr *symtab_hdr;
11710
11711 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11712 if (cookie->locsyms != NULL
11713 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11714 free (cookie->locsyms);
11715 }
11716
11717 /* Initialize the relocation information in COOKIE for input section SEC
11718 of input bfd ABFD. */
11719
11720 static bfd_boolean
11721 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11722 struct bfd_link_info *info, bfd *abfd,
11723 asection *sec)
11724 {
11725 const struct elf_backend_data *bed;
11726
11727 if (sec->reloc_count == 0)
11728 {
11729 cookie->rels = NULL;
11730 cookie->relend = NULL;
11731 }
11732 else
11733 {
11734 bed = get_elf_backend_data (abfd);
11735
11736 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11737 info->keep_memory);
11738 if (cookie->rels == NULL)
11739 return FALSE;
11740 cookie->rel = cookie->rels;
11741 cookie->relend = (cookie->rels
11742 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11743 }
11744 cookie->rel = cookie->rels;
11745 return TRUE;
11746 }
11747
11748 /* Free the memory allocated by init_reloc_cookie_rels,
11749 if appropriate. */
11750
11751 static void
11752 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11753 asection *sec)
11754 {
11755 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11756 free (cookie->rels);
11757 }
11758
11759 /* Initialize the whole of COOKIE for input section SEC. */
11760
11761 static bfd_boolean
11762 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11763 struct bfd_link_info *info,
11764 asection *sec)
11765 {
11766 if (!init_reloc_cookie (cookie, info, sec->owner))
11767 goto error1;
11768 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11769 goto error2;
11770 return TRUE;
11771
11772 error2:
11773 fini_reloc_cookie (cookie, sec->owner);
11774 error1:
11775 return FALSE;
11776 }
11777
11778 /* Free the memory allocated by init_reloc_cookie_for_section,
11779 if appropriate. */
11780
11781 static void
11782 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11783 asection *sec)
11784 {
11785 fini_reloc_cookie_rels (cookie, sec);
11786 fini_reloc_cookie (cookie, sec->owner);
11787 }
11788 \f
11789 /* Garbage collect unused sections. */
11790
11791 /* Default gc_mark_hook. */
11792
11793 asection *
11794 _bfd_elf_gc_mark_hook (asection *sec,
11795 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11796 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11797 struct elf_link_hash_entry *h,
11798 Elf_Internal_Sym *sym)
11799 {
11800 const char *sec_name;
11801
11802 if (h != NULL)
11803 {
11804 switch (h->root.type)
11805 {
11806 case bfd_link_hash_defined:
11807 case bfd_link_hash_defweak:
11808 return h->root.u.def.section;
11809
11810 case bfd_link_hash_common:
11811 return h->root.u.c.p->section;
11812
11813 case bfd_link_hash_undefined:
11814 case bfd_link_hash_undefweak:
11815 /* To work around a glibc bug, keep all XXX input sections
11816 when there is an as yet undefined reference to __start_XXX
11817 or __stop_XXX symbols. The linker will later define such
11818 symbols for orphan input sections that have a name
11819 representable as a C identifier. */
11820 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11821 sec_name = h->root.root.string + 8;
11822 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11823 sec_name = h->root.root.string + 7;
11824 else
11825 sec_name = NULL;
11826
11827 if (sec_name && *sec_name != '\0')
11828 {
11829 bfd *i;
11830
11831 for (i = info->input_bfds; i; i = i->link.next)
11832 {
11833 sec = bfd_get_section_by_name (i, sec_name);
11834 if (sec)
11835 sec->flags |= SEC_KEEP;
11836 }
11837 }
11838 break;
11839
11840 default:
11841 break;
11842 }
11843 }
11844 else
11845 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11846
11847 return NULL;
11848 }
11849
11850 /* COOKIE->rel describes a relocation against section SEC, which is
11851 a section we've decided to keep. Return the section that contains
11852 the relocation symbol, or NULL if no section contains it. */
11853
11854 asection *
11855 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11856 elf_gc_mark_hook_fn gc_mark_hook,
11857 struct elf_reloc_cookie *cookie)
11858 {
11859 unsigned long r_symndx;
11860 struct elf_link_hash_entry *h;
11861
11862 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11863 if (r_symndx == STN_UNDEF)
11864 return NULL;
11865
11866 if (r_symndx >= cookie->locsymcount
11867 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11868 {
11869 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11870 if (h == NULL)
11871 {
11872 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11873 sec->owner);
11874 return NULL;
11875 }
11876 while (h->root.type == bfd_link_hash_indirect
11877 || h->root.type == bfd_link_hash_warning)
11878 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11879 h->mark = 1;
11880 /* If this symbol is weak and there is a non-weak definition, we
11881 keep the non-weak definition because many backends put
11882 dynamic reloc info on the non-weak definition for code
11883 handling copy relocs. */
11884 if (h->u.weakdef != NULL)
11885 h->u.weakdef->mark = 1;
11886 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11887 }
11888
11889 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11890 &cookie->locsyms[r_symndx]);
11891 }
11892
11893 /* COOKIE->rel describes a relocation against section SEC, which is
11894 a section we've decided to keep. Mark the section that contains
11895 the relocation symbol. */
11896
11897 bfd_boolean
11898 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11899 asection *sec,
11900 elf_gc_mark_hook_fn gc_mark_hook,
11901 struct elf_reloc_cookie *cookie)
11902 {
11903 asection *rsec;
11904
11905 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11906 if (rsec && !rsec->gc_mark)
11907 {
11908 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11909 || (rsec->owner->flags & DYNAMIC) != 0)
11910 rsec->gc_mark = 1;
11911 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11912 return FALSE;
11913 }
11914 return TRUE;
11915 }
11916
11917 /* The mark phase of garbage collection. For a given section, mark
11918 it and any sections in this section's group, and all the sections
11919 which define symbols to which it refers. */
11920
11921 bfd_boolean
11922 _bfd_elf_gc_mark (struct bfd_link_info *info,
11923 asection *sec,
11924 elf_gc_mark_hook_fn gc_mark_hook)
11925 {
11926 bfd_boolean ret;
11927 asection *group_sec, *eh_frame;
11928
11929 sec->gc_mark = 1;
11930
11931 /* Mark all the sections in the group. */
11932 group_sec = elf_section_data (sec)->next_in_group;
11933 if (group_sec && !group_sec->gc_mark)
11934 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11935 return FALSE;
11936
11937 /* Look through the section relocs. */
11938 ret = TRUE;
11939 eh_frame = elf_eh_frame_section (sec->owner);
11940 if ((sec->flags & SEC_RELOC) != 0
11941 && sec->reloc_count > 0
11942 && sec != eh_frame)
11943 {
11944 struct elf_reloc_cookie cookie;
11945
11946 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11947 ret = FALSE;
11948 else
11949 {
11950 for (; cookie.rel < cookie.relend; cookie.rel++)
11951 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11952 {
11953 ret = FALSE;
11954 break;
11955 }
11956 fini_reloc_cookie_for_section (&cookie, sec);
11957 }
11958 }
11959
11960 if (ret && eh_frame && elf_fde_list (sec))
11961 {
11962 struct elf_reloc_cookie cookie;
11963
11964 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11965 ret = FALSE;
11966 else
11967 {
11968 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11969 gc_mark_hook, &cookie))
11970 ret = FALSE;
11971 fini_reloc_cookie_for_section (&cookie, eh_frame);
11972 }
11973 }
11974
11975 return ret;
11976 }
11977
11978 /* Scan and mark sections in a special or debug section group. */
11979
11980 static void
11981 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11982 {
11983 /* Point to first section of section group. */
11984 asection *ssec;
11985 /* Used to iterate the section group. */
11986 asection *msec;
11987
11988 bfd_boolean is_special_grp = TRUE;
11989 bfd_boolean is_debug_grp = TRUE;
11990
11991 /* First scan to see if group contains any section other than debug
11992 and special section. */
11993 ssec = msec = elf_next_in_group (grp);
11994 do
11995 {
11996 if ((msec->flags & SEC_DEBUGGING) == 0)
11997 is_debug_grp = FALSE;
11998
11999 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12000 is_special_grp = FALSE;
12001
12002 msec = elf_next_in_group (msec);
12003 }
12004 while (msec != ssec);
12005
12006 /* If this is a pure debug section group or pure special section group,
12007 keep all sections in this group. */
12008 if (is_debug_grp || is_special_grp)
12009 {
12010 do
12011 {
12012 msec->gc_mark = 1;
12013 msec = elf_next_in_group (msec);
12014 }
12015 while (msec != ssec);
12016 }
12017 }
12018
12019 /* Keep debug and special sections. */
12020
12021 bfd_boolean
12022 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12023 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12024 {
12025 bfd *ibfd;
12026
12027 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12028 {
12029 asection *isec;
12030 bfd_boolean some_kept;
12031 bfd_boolean debug_frag_seen;
12032
12033 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12034 continue;
12035
12036 /* Ensure all linker created sections are kept,
12037 see if any other section is already marked,
12038 and note if we have any fragmented debug sections. */
12039 debug_frag_seen = some_kept = FALSE;
12040 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12041 {
12042 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12043 isec->gc_mark = 1;
12044 else if (isec->gc_mark)
12045 some_kept = TRUE;
12046
12047 if (debug_frag_seen == FALSE
12048 && (isec->flags & SEC_DEBUGGING)
12049 && CONST_STRNEQ (isec->name, ".debug_line."))
12050 debug_frag_seen = TRUE;
12051 }
12052
12053 /* If no section in this file will be kept, then we can
12054 toss out the debug and special sections. */
12055 if (!some_kept)
12056 continue;
12057
12058 /* Keep debug and special sections like .comment when they are
12059 not part of a group. Also keep section groups that contain
12060 just debug sections or special sections. */
12061 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12062 {
12063 if ((isec->flags & SEC_GROUP) != 0)
12064 _bfd_elf_gc_mark_debug_special_section_group (isec);
12065 else if (((isec->flags & SEC_DEBUGGING) != 0
12066 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12067 && elf_next_in_group (isec) == NULL)
12068 isec->gc_mark = 1;
12069 }
12070
12071 if (! debug_frag_seen)
12072 continue;
12073
12074 /* Look for CODE sections which are going to be discarded,
12075 and find and discard any fragmented debug sections which
12076 are associated with that code section. */
12077 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12078 if ((isec->flags & SEC_CODE) != 0
12079 && isec->gc_mark == 0)
12080 {
12081 unsigned int ilen;
12082 asection *dsec;
12083
12084 ilen = strlen (isec->name);
12085
12086 /* Association is determined by the name of the debug section
12087 containing the name of the code section as a suffix. For
12088 example .debug_line.text.foo is a debug section associated
12089 with .text.foo. */
12090 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12091 {
12092 unsigned int dlen;
12093
12094 if (dsec->gc_mark == 0
12095 || (dsec->flags & SEC_DEBUGGING) == 0)
12096 continue;
12097
12098 dlen = strlen (dsec->name);
12099
12100 if (dlen > ilen
12101 && strncmp (dsec->name + (dlen - ilen),
12102 isec->name, ilen) == 0)
12103 {
12104 dsec->gc_mark = 0;
12105 }
12106 }
12107 }
12108 }
12109 return TRUE;
12110 }
12111
12112 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12113
12114 struct elf_gc_sweep_symbol_info
12115 {
12116 struct bfd_link_info *info;
12117 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12118 bfd_boolean);
12119 };
12120
12121 static bfd_boolean
12122 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12123 {
12124 if (!h->mark
12125 && (((h->root.type == bfd_link_hash_defined
12126 || h->root.type == bfd_link_hash_defweak)
12127 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12128 && h->root.u.def.section->gc_mark))
12129 || h->root.type == bfd_link_hash_undefined
12130 || h->root.type == bfd_link_hash_undefweak))
12131 {
12132 struct elf_gc_sweep_symbol_info *inf;
12133
12134 inf = (struct elf_gc_sweep_symbol_info *) data;
12135 (*inf->hide_symbol) (inf->info, h, TRUE);
12136 h->def_regular = 0;
12137 h->ref_regular = 0;
12138 h->ref_regular_nonweak = 0;
12139 }
12140
12141 return TRUE;
12142 }
12143
12144 /* The sweep phase of garbage collection. Remove all garbage sections. */
12145
12146 typedef bfd_boolean (*gc_sweep_hook_fn)
12147 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12148
12149 static bfd_boolean
12150 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12151 {
12152 bfd *sub;
12153 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12154 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12155 unsigned long section_sym_count;
12156 struct elf_gc_sweep_symbol_info sweep_info;
12157
12158 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12159 {
12160 asection *o;
12161
12162 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12163 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12164 continue;
12165
12166 for (o = sub->sections; o != NULL; o = o->next)
12167 {
12168 /* When any section in a section group is kept, we keep all
12169 sections in the section group. If the first member of
12170 the section group is excluded, we will also exclude the
12171 group section. */
12172 if (o->flags & SEC_GROUP)
12173 {
12174 asection *first = elf_next_in_group (o);
12175 o->gc_mark = first->gc_mark;
12176 }
12177
12178 if (o->gc_mark)
12179 continue;
12180
12181 /* Skip sweeping sections already excluded. */
12182 if (o->flags & SEC_EXCLUDE)
12183 continue;
12184
12185 /* Since this is early in the link process, it is simple
12186 to remove a section from the output. */
12187 o->flags |= SEC_EXCLUDE;
12188
12189 if (info->print_gc_sections && o->size != 0)
12190 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12191
12192 /* But we also have to update some of the relocation
12193 info we collected before. */
12194 if (gc_sweep_hook
12195 && (o->flags & SEC_RELOC) != 0
12196 && o->reloc_count != 0
12197 && !((info->strip == strip_all || info->strip == strip_debugger)
12198 && (o->flags & SEC_DEBUGGING) != 0)
12199 && !bfd_is_abs_section (o->output_section))
12200 {
12201 Elf_Internal_Rela *internal_relocs;
12202 bfd_boolean r;
12203
12204 internal_relocs
12205 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12206 info->keep_memory);
12207 if (internal_relocs == NULL)
12208 return FALSE;
12209
12210 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12211
12212 if (elf_section_data (o)->relocs != internal_relocs)
12213 free (internal_relocs);
12214
12215 if (!r)
12216 return FALSE;
12217 }
12218 }
12219 }
12220
12221 /* Remove the symbols that were in the swept sections from the dynamic
12222 symbol table. GCFIXME: Anyone know how to get them out of the
12223 static symbol table as well? */
12224 sweep_info.info = info;
12225 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12226 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12227 &sweep_info);
12228
12229 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12230 return TRUE;
12231 }
12232
12233 /* Propagate collected vtable information. This is called through
12234 elf_link_hash_traverse. */
12235
12236 static bfd_boolean
12237 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12238 {
12239 /* Those that are not vtables. */
12240 if (h->vtable == NULL || h->vtable->parent == NULL)
12241 return TRUE;
12242
12243 /* Those vtables that do not have parents, we cannot merge. */
12244 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12245 return TRUE;
12246
12247 /* If we've already been done, exit. */
12248 if (h->vtable->used && h->vtable->used[-1])
12249 return TRUE;
12250
12251 /* Make sure the parent's table is up to date. */
12252 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12253
12254 if (h->vtable->used == NULL)
12255 {
12256 /* None of this table's entries were referenced. Re-use the
12257 parent's table. */
12258 h->vtable->used = h->vtable->parent->vtable->used;
12259 h->vtable->size = h->vtable->parent->vtable->size;
12260 }
12261 else
12262 {
12263 size_t n;
12264 bfd_boolean *cu, *pu;
12265
12266 /* Or the parent's entries into ours. */
12267 cu = h->vtable->used;
12268 cu[-1] = TRUE;
12269 pu = h->vtable->parent->vtable->used;
12270 if (pu != NULL)
12271 {
12272 const struct elf_backend_data *bed;
12273 unsigned int log_file_align;
12274
12275 bed = get_elf_backend_data (h->root.u.def.section->owner);
12276 log_file_align = bed->s->log_file_align;
12277 n = h->vtable->parent->vtable->size >> log_file_align;
12278 while (n--)
12279 {
12280 if (*pu)
12281 *cu = TRUE;
12282 pu++;
12283 cu++;
12284 }
12285 }
12286 }
12287
12288 return TRUE;
12289 }
12290
12291 static bfd_boolean
12292 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12293 {
12294 asection *sec;
12295 bfd_vma hstart, hend;
12296 Elf_Internal_Rela *relstart, *relend, *rel;
12297 const struct elf_backend_data *bed;
12298 unsigned int log_file_align;
12299
12300 /* Take care of both those symbols that do not describe vtables as
12301 well as those that are not loaded. */
12302 if (h->vtable == NULL || h->vtable->parent == NULL)
12303 return TRUE;
12304
12305 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12306 || h->root.type == bfd_link_hash_defweak);
12307
12308 sec = h->root.u.def.section;
12309 hstart = h->root.u.def.value;
12310 hend = hstart + h->size;
12311
12312 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12313 if (!relstart)
12314 return *(bfd_boolean *) okp = FALSE;
12315 bed = get_elf_backend_data (sec->owner);
12316 log_file_align = bed->s->log_file_align;
12317
12318 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12319
12320 for (rel = relstart; rel < relend; ++rel)
12321 if (rel->r_offset >= hstart && rel->r_offset < hend)
12322 {
12323 /* If the entry is in use, do nothing. */
12324 if (h->vtable->used
12325 && (rel->r_offset - hstart) < h->vtable->size)
12326 {
12327 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12328 if (h->vtable->used[entry])
12329 continue;
12330 }
12331 /* Otherwise, kill it. */
12332 rel->r_offset = rel->r_info = rel->r_addend = 0;
12333 }
12334
12335 return TRUE;
12336 }
12337
12338 /* Mark sections containing dynamically referenced symbols. When
12339 building shared libraries, we must assume that any visible symbol is
12340 referenced. */
12341
12342 bfd_boolean
12343 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12344 {
12345 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12346 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12347
12348 if ((h->root.type == bfd_link_hash_defined
12349 || h->root.type == bfd_link_hash_defweak)
12350 && (h->ref_dynamic
12351 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12352 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12353 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12354 && (!info->executable
12355 || info->export_dynamic
12356 || (h->dynamic
12357 && d != NULL
12358 && (*d->match) (&d->head, NULL, h->root.root.string)))
12359 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12360 || !bfd_hide_sym_by_version (info->version_info,
12361 h->root.root.string)))))
12362 h->root.u.def.section->flags |= SEC_KEEP;
12363
12364 return TRUE;
12365 }
12366
12367 /* Keep all sections containing symbols undefined on the command-line,
12368 and the section containing the entry symbol. */
12369
12370 void
12371 _bfd_elf_gc_keep (struct bfd_link_info *info)
12372 {
12373 struct bfd_sym_chain *sym;
12374
12375 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12376 {
12377 struct elf_link_hash_entry *h;
12378
12379 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12380 FALSE, FALSE, FALSE);
12381
12382 if (h != NULL
12383 && (h->root.type == bfd_link_hash_defined
12384 || h->root.type == bfd_link_hash_defweak)
12385 && !bfd_is_abs_section (h->root.u.def.section))
12386 h->root.u.def.section->flags |= SEC_KEEP;
12387 }
12388 }
12389
12390 /* Do mark and sweep of unused sections. */
12391
12392 bfd_boolean
12393 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12394 {
12395 bfd_boolean ok = TRUE;
12396 bfd *sub;
12397 elf_gc_mark_hook_fn gc_mark_hook;
12398 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12399 struct elf_link_hash_table *htab;
12400
12401 if (!bed->can_gc_sections
12402 || !is_elf_hash_table (info->hash))
12403 {
12404 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12405 return TRUE;
12406 }
12407
12408 bed->gc_keep (info);
12409 htab = elf_hash_table (info);
12410
12411 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12412 at the .eh_frame section if we can mark the FDEs individually. */
12413 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12414 {
12415 asection *sec;
12416 struct elf_reloc_cookie cookie;
12417
12418 sec = bfd_get_section_by_name (sub, ".eh_frame");
12419 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12420 {
12421 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12422 if (elf_section_data (sec)->sec_info
12423 && (sec->flags & SEC_LINKER_CREATED) == 0)
12424 elf_eh_frame_section (sub) = sec;
12425 fini_reloc_cookie_for_section (&cookie, sec);
12426 sec = bfd_get_next_section_by_name (sec);
12427 }
12428 }
12429
12430 /* Apply transitive closure to the vtable entry usage info. */
12431 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12432 if (!ok)
12433 return FALSE;
12434
12435 /* Kill the vtable relocations that were not used. */
12436 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12437 if (!ok)
12438 return FALSE;
12439
12440 /* Mark dynamically referenced symbols. */
12441 if (htab->dynamic_sections_created)
12442 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12443
12444 /* Grovel through relocs to find out who stays ... */
12445 gc_mark_hook = bed->gc_mark_hook;
12446 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12447 {
12448 asection *o;
12449
12450 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12451 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12452 continue;
12453
12454 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12455 Also treat note sections as a root, if the section is not part
12456 of a group. */
12457 for (o = sub->sections; o != NULL; o = o->next)
12458 if (!o->gc_mark
12459 && (o->flags & SEC_EXCLUDE) == 0
12460 && ((o->flags & SEC_KEEP) != 0
12461 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12462 && elf_next_in_group (o) == NULL )))
12463 {
12464 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12465 return FALSE;
12466 }
12467 }
12468
12469 /* Allow the backend to mark additional target specific sections. */
12470 bed->gc_mark_extra_sections (info, gc_mark_hook);
12471
12472 /* ... and mark SEC_EXCLUDE for those that go. */
12473 return elf_gc_sweep (abfd, info);
12474 }
12475 \f
12476 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12477
12478 bfd_boolean
12479 bfd_elf_gc_record_vtinherit (bfd *abfd,
12480 asection *sec,
12481 struct elf_link_hash_entry *h,
12482 bfd_vma offset)
12483 {
12484 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12485 struct elf_link_hash_entry **search, *child;
12486 bfd_size_type extsymcount;
12487 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12488
12489 /* The sh_info field of the symtab header tells us where the
12490 external symbols start. We don't care about the local symbols at
12491 this point. */
12492 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12493 if (!elf_bad_symtab (abfd))
12494 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12495
12496 sym_hashes = elf_sym_hashes (abfd);
12497 sym_hashes_end = sym_hashes + extsymcount;
12498
12499 /* Hunt down the child symbol, which is in this section at the same
12500 offset as the relocation. */
12501 for (search = sym_hashes; search != sym_hashes_end; ++search)
12502 {
12503 if ((child = *search) != NULL
12504 && (child->root.type == bfd_link_hash_defined
12505 || child->root.type == bfd_link_hash_defweak)
12506 && child->root.u.def.section == sec
12507 && child->root.u.def.value == offset)
12508 goto win;
12509 }
12510
12511 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12512 abfd, sec, (unsigned long) offset);
12513 bfd_set_error (bfd_error_invalid_operation);
12514 return FALSE;
12515
12516 win:
12517 if (!child->vtable)
12518 {
12519 child->vtable = ((struct elf_link_virtual_table_entry *)
12520 bfd_zalloc (abfd, sizeof (*child->vtable)));
12521 if (!child->vtable)
12522 return FALSE;
12523 }
12524 if (!h)
12525 {
12526 /* This *should* only be the absolute section. It could potentially
12527 be that someone has defined a non-global vtable though, which
12528 would be bad. It isn't worth paging in the local symbols to be
12529 sure though; that case should simply be handled by the assembler. */
12530
12531 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12532 }
12533 else
12534 child->vtable->parent = h;
12535
12536 return TRUE;
12537 }
12538
12539 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12540
12541 bfd_boolean
12542 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12543 asection *sec ATTRIBUTE_UNUSED,
12544 struct elf_link_hash_entry *h,
12545 bfd_vma addend)
12546 {
12547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12548 unsigned int log_file_align = bed->s->log_file_align;
12549
12550 if (!h->vtable)
12551 {
12552 h->vtable = ((struct elf_link_virtual_table_entry *)
12553 bfd_zalloc (abfd, sizeof (*h->vtable)));
12554 if (!h->vtable)
12555 return FALSE;
12556 }
12557
12558 if (addend >= h->vtable->size)
12559 {
12560 size_t size, bytes, file_align;
12561 bfd_boolean *ptr = h->vtable->used;
12562
12563 /* While the symbol is undefined, we have to be prepared to handle
12564 a zero size. */
12565 file_align = 1 << log_file_align;
12566 if (h->root.type == bfd_link_hash_undefined)
12567 size = addend + file_align;
12568 else
12569 {
12570 size = h->size;
12571 if (addend >= size)
12572 {
12573 /* Oops! We've got a reference past the defined end of
12574 the table. This is probably a bug -- shall we warn? */
12575 size = addend + file_align;
12576 }
12577 }
12578 size = (size + file_align - 1) & -file_align;
12579
12580 /* Allocate one extra entry for use as a "done" flag for the
12581 consolidation pass. */
12582 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12583
12584 if (ptr)
12585 {
12586 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12587
12588 if (ptr != NULL)
12589 {
12590 size_t oldbytes;
12591
12592 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12593 * sizeof (bfd_boolean));
12594 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12595 }
12596 }
12597 else
12598 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12599
12600 if (ptr == NULL)
12601 return FALSE;
12602
12603 /* And arrange for that done flag to be at index -1. */
12604 h->vtable->used = ptr + 1;
12605 h->vtable->size = size;
12606 }
12607
12608 h->vtable->used[addend >> log_file_align] = TRUE;
12609
12610 return TRUE;
12611 }
12612
12613 /* Map an ELF section header flag to its corresponding string. */
12614 typedef struct
12615 {
12616 char *flag_name;
12617 flagword flag_value;
12618 } elf_flags_to_name_table;
12619
12620 static elf_flags_to_name_table elf_flags_to_names [] =
12621 {
12622 { "SHF_WRITE", SHF_WRITE },
12623 { "SHF_ALLOC", SHF_ALLOC },
12624 { "SHF_EXECINSTR", SHF_EXECINSTR },
12625 { "SHF_MERGE", SHF_MERGE },
12626 { "SHF_STRINGS", SHF_STRINGS },
12627 { "SHF_INFO_LINK", SHF_INFO_LINK},
12628 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12629 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12630 { "SHF_GROUP", SHF_GROUP },
12631 { "SHF_TLS", SHF_TLS },
12632 { "SHF_MASKOS", SHF_MASKOS },
12633 { "SHF_EXCLUDE", SHF_EXCLUDE },
12634 };
12635
12636 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12637 bfd_boolean
12638 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12639 struct flag_info *flaginfo,
12640 asection *section)
12641 {
12642 const bfd_vma sh_flags = elf_section_flags (section);
12643
12644 if (!flaginfo->flags_initialized)
12645 {
12646 bfd *obfd = info->output_bfd;
12647 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12648 struct flag_info_list *tf = flaginfo->flag_list;
12649 int with_hex = 0;
12650 int without_hex = 0;
12651
12652 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12653 {
12654 unsigned i;
12655 flagword (*lookup) (char *);
12656
12657 lookup = bed->elf_backend_lookup_section_flags_hook;
12658 if (lookup != NULL)
12659 {
12660 flagword hexval = (*lookup) ((char *) tf->name);
12661
12662 if (hexval != 0)
12663 {
12664 if (tf->with == with_flags)
12665 with_hex |= hexval;
12666 else if (tf->with == without_flags)
12667 without_hex |= hexval;
12668 tf->valid = TRUE;
12669 continue;
12670 }
12671 }
12672 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12673 {
12674 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12675 {
12676 if (tf->with == with_flags)
12677 with_hex |= elf_flags_to_names[i].flag_value;
12678 else if (tf->with == without_flags)
12679 without_hex |= elf_flags_to_names[i].flag_value;
12680 tf->valid = TRUE;
12681 break;
12682 }
12683 }
12684 if (!tf->valid)
12685 {
12686 info->callbacks->einfo
12687 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12688 return FALSE;
12689 }
12690 }
12691 flaginfo->flags_initialized = TRUE;
12692 flaginfo->only_with_flags |= with_hex;
12693 flaginfo->not_with_flags |= without_hex;
12694 }
12695
12696 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12697 return FALSE;
12698
12699 if ((flaginfo->not_with_flags & sh_flags) != 0)
12700 return FALSE;
12701
12702 return TRUE;
12703 }
12704
12705 struct alloc_got_off_arg {
12706 bfd_vma gotoff;
12707 struct bfd_link_info *info;
12708 };
12709
12710 /* We need a special top-level link routine to convert got reference counts
12711 to real got offsets. */
12712
12713 static bfd_boolean
12714 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12715 {
12716 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12717 bfd *obfd = gofarg->info->output_bfd;
12718 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12719
12720 if (h->got.refcount > 0)
12721 {
12722 h->got.offset = gofarg->gotoff;
12723 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12724 }
12725 else
12726 h->got.offset = (bfd_vma) -1;
12727
12728 return TRUE;
12729 }
12730
12731 /* And an accompanying bit to work out final got entry offsets once
12732 we're done. Should be called from final_link. */
12733
12734 bfd_boolean
12735 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12736 struct bfd_link_info *info)
12737 {
12738 bfd *i;
12739 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12740 bfd_vma gotoff;
12741 struct alloc_got_off_arg gofarg;
12742
12743 BFD_ASSERT (abfd == info->output_bfd);
12744
12745 if (! is_elf_hash_table (info->hash))
12746 return FALSE;
12747
12748 /* The GOT offset is relative to the .got section, but the GOT header is
12749 put into the .got.plt section, if the backend uses it. */
12750 if (bed->want_got_plt)
12751 gotoff = 0;
12752 else
12753 gotoff = bed->got_header_size;
12754
12755 /* Do the local .got entries first. */
12756 for (i = info->input_bfds; i; i = i->link.next)
12757 {
12758 bfd_signed_vma *local_got;
12759 bfd_size_type j, locsymcount;
12760 Elf_Internal_Shdr *symtab_hdr;
12761
12762 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12763 continue;
12764
12765 local_got = elf_local_got_refcounts (i);
12766 if (!local_got)
12767 continue;
12768
12769 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12770 if (elf_bad_symtab (i))
12771 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12772 else
12773 locsymcount = symtab_hdr->sh_info;
12774
12775 for (j = 0; j < locsymcount; ++j)
12776 {
12777 if (local_got[j] > 0)
12778 {
12779 local_got[j] = gotoff;
12780 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12781 }
12782 else
12783 local_got[j] = (bfd_vma) -1;
12784 }
12785 }
12786
12787 /* Then the global .got entries. .plt refcounts are handled by
12788 adjust_dynamic_symbol */
12789 gofarg.gotoff = gotoff;
12790 gofarg.info = info;
12791 elf_link_hash_traverse (elf_hash_table (info),
12792 elf_gc_allocate_got_offsets,
12793 &gofarg);
12794 return TRUE;
12795 }
12796
12797 /* Many folk need no more in the way of final link than this, once
12798 got entry reference counting is enabled. */
12799
12800 bfd_boolean
12801 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12802 {
12803 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12804 return FALSE;
12805
12806 /* Invoke the regular ELF backend linker to do all the work. */
12807 return bfd_elf_final_link (abfd, info);
12808 }
12809
12810 bfd_boolean
12811 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12812 {
12813 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12814
12815 if (rcookie->bad_symtab)
12816 rcookie->rel = rcookie->rels;
12817
12818 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12819 {
12820 unsigned long r_symndx;
12821
12822 if (! rcookie->bad_symtab)
12823 if (rcookie->rel->r_offset > offset)
12824 return FALSE;
12825 if (rcookie->rel->r_offset != offset)
12826 continue;
12827
12828 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12829 if (r_symndx == STN_UNDEF)
12830 return TRUE;
12831
12832 if (r_symndx >= rcookie->locsymcount
12833 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12834 {
12835 struct elf_link_hash_entry *h;
12836
12837 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12838
12839 while (h->root.type == bfd_link_hash_indirect
12840 || h->root.type == bfd_link_hash_warning)
12841 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12842
12843 if ((h->root.type == bfd_link_hash_defined
12844 || h->root.type == bfd_link_hash_defweak)
12845 && (h->root.u.def.section->owner != rcookie->abfd
12846 || h->root.u.def.section->kept_section != NULL
12847 || discarded_section (h->root.u.def.section)))
12848 return TRUE;
12849 }
12850 else
12851 {
12852 /* It's not a relocation against a global symbol,
12853 but it could be a relocation against a local
12854 symbol for a discarded section. */
12855 asection *isec;
12856 Elf_Internal_Sym *isym;
12857
12858 /* Need to: get the symbol; get the section. */
12859 isym = &rcookie->locsyms[r_symndx];
12860 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12861 if (isec != NULL
12862 && (isec->kept_section != NULL
12863 || discarded_section (isec)))
12864 return TRUE;
12865 }
12866 return FALSE;
12867 }
12868 return FALSE;
12869 }
12870
12871 /* Discard unneeded references to discarded sections.
12872 Returns -1 on error, 1 if any section's size was changed, 0 if
12873 nothing changed. This function assumes that the relocations are in
12874 sorted order, which is true for all known assemblers. */
12875
12876 int
12877 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12878 {
12879 struct elf_reloc_cookie cookie;
12880 asection *o;
12881 bfd *abfd;
12882 int changed = 0;
12883
12884 if (info->traditional_format
12885 || !is_elf_hash_table (info->hash))
12886 return 0;
12887
12888 o = bfd_get_section_by_name (output_bfd, ".stab");
12889 if (o != NULL)
12890 {
12891 asection *i;
12892
12893 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12894 {
12895 if (i->size == 0
12896 || i->reloc_count == 0
12897 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12898 continue;
12899
12900 abfd = i->owner;
12901 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12902 continue;
12903
12904 if (!init_reloc_cookie_for_section (&cookie, info, i))
12905 return -1;
12906
12907 if (_bfd_discard_section_stabs (abfd, i,
12908 elf_section_data (i)->sec_info,
12909 bfd_elf_reloc_symbol_deleted_p,
12910 &cookie))
12911 changed = 1;
12912
12913 fini_reloc_cookie_for_section (&cookie, i);
12914 }
12915 }
12916
12917 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12918 if (o != NULL)
12919 {
12920 asection *i;
12921
12922 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12923 {
12924 if (i->size == 0)
12925 continue;
12926
12927 abfd = i->owner;
12928 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12929 continue;
12930
12931 if (!init_reloc_cookie_for_section (&cookie, info, i))
12932 return -1;
12933
12934 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12935 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12936 bfd_elf_reloc_symbol_deleted_p,
12937 &cookie))
12938 changed = 1;
12939
12940 fini_reloc_cookie_for_section (&cookie, i);
12941 }
12942 }
12943
12944 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12945 {
12946 const struct elf_backend_data *bed;
12947
12948 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12949 continue;
12950
12951 bed = get_elf_backend_data (abfd);
12952
12953 if (bed->elf_backend_discard_info != NULL)
12954 {
12955 if (!init_reloc_cookie (&cookie, info, abfd))
12956 return -1;
12957
12958 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12959 changed = 1;
12960
12961 fini_reloc_cookie (&cookie, abfd);
12962 }
12963 }
12964
12965 if (info->eh_frame_hdr
12966 && !info->relocatable
12967 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12968 changed = 1;
12969
12970 return changed;
12971 }
12972
12973 bfd_boolean
12974 _bfd_elf_section_already_linked (bfd *abfd,
12975 asection *sec,
12976 struct bfd_link_info *info)
12977 {
12978 flagword flags;
12979 const char *name, *key;
12980 struct bfd_section_already_linked *l;
12981 struct bfd_section_already_linked_hash_entry *already_linked_list;
12982
12983 if (sec->output_section == bfd_abs_section_ptr)
12984 return FALSE;
12985
12986 flags = sec->flags;
12987
12988 /* Return if it isn't a linkonce section. A comdat group section
12989 also has SEC_LINK_ONCE set. */
12990 if ((flags & SEC_LINK_ONCE) == 0)
12991 return FALSE;
12992
12993 /* Don't put group member sections on our list of already linked
12994 sections. They are handled as a group via their group section. */
12995 if (elf_sec_group (sec) != NULL)
12996 return FALSE;
12997
12998 /* For a SHT_GROUP section, use the group signature as the key. */
12999 name = sec->name;
13000 if ((flags & SEC_GROUP) != 0
13001 && elf_next_in_group (sec) != NULL
13002 && elf_group_name (elf_next_in_group (sec)) != NULL)
13003 key = elf_group_name (elf_next_in_group (sec));
13004 else
13005 {
13006 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13007 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13008 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13009 key++;
13010 else
13011 /* Must be a user linkonce section that doesn't follow gcc's
13012 naming convention. In this case we won't be matching
13013 single member groups. */
13014 key = name;
13015 }
13016
13017 already_linked_list = bfd_section_already_linked_table_lookup (key);
13018
13019 for (l = already_linked_list->entry; l != NULL; l = l->next)
13020 {
13021 /* We may have 2 different types of sections on the list: group
13022 sections with a signature of <key> (<key> is some string),
13023 and linkonce sections named .gnu.linkonce.<type>.<key>.
13024 Match like sections. LTO plugin sections are an exception.
13025 They are always named .gnu.linkonce.t.<key> and match either
13026 type of section. */
13027 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13028 && ((flags & SEC_GROUP) != 0
13029 || strcmp (name, l->sec->name) == 0))
13030 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13031 {
13032 /* The section has already been linked. See if we should
13033 issue a warning. */
13034 if (!_bfd_handle_already_linked (sec, l, info))
13035 return FALSE;
13036
13037 if (flags & SEC_GROUP)
13038 {
13039 asection *first = elf_next_in_group (sec);
13040 asection *s = first;
13041
13042 while (s != NULL)
13043 {
13044 s->output_section = bfd_abs_section_ptr;
13045 /* Record which group discards it. */
13046 s->kept_section = l->sec;
13047 s = elf_next_in_group (s);
13048 /* These lists are circular. */
13049 if (s == first)
13050 break;
13051 }
13052 }
13053
13054 return TRUE;
13055 }
13056 }
13057
13058 /* A single member comdat group section may be discarded by a
13059 linkonce section and vice versa. */
13060 if ((flags & SEC_GROUP) != 0)
13061 {
13062 asection *first = elf_next_in_group (sec);
13063
13064 if (first != NULL && elf_next_in_group (first) == first)
13065 /* Check this single member group against linkonce sections. */
13066 for (l = already_linked_list->entry; l != NULL; l = l->next)
13067 if ((l->sec->flags & SEC_GROUP) == 0
13068 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13069 {
13070 first->output_section = bfd_abs_section_ptr;
13071 first->kept_section = l->sec;
13072 sec->output_section = bfd_abs_section_ptr;
13073 break;
13074 }
13075 }
13076 else
13077 /* Check this linkonce section against single member groups. */
13078 for (l = already_linked_list->entry; l != NULL; l = l->next)
13079 if (l->sec->flags & SEC_GROUP)
13080 {
13081 asection *first = elf_next_in_group (l->sec);
13082
13083 if (first != NULL
13084 && elf_next_in_group (first) == first
13085 && bfd_elf_match_symbols_in_sections (first, sec, info))
13086 {
13087 sec->output_section = bfd_abs_section_ptr;
13088 sec->kept_section = first;
13089 break;
13090 }
13091 }
13092
13093 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13094 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13095 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13096 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13097 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13098 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13099 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13100 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13101 The reverse order cannot happen as there is never a bfd with only the
13102 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13103 matter as here were are looking only for cross-bfd sections. */
13104
13105 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13106 for (l = already_linked_list->entry; l != NULL; l = l->next)
13107 if ((l->sec->flags & SEC_GROUP) == 0
13108 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13109 {
13110 if (abfd != l->sec->owner)
13111 sec->output_section = bfd_abs_section_ptr;
13112 break;
13113 }
13114
13115 /* This is the first section with this name. Record it. */
13116 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13117 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13118 return sec->output_section == bfd_abs_section_ptr;
13119 }
13120
13121 bfd_boolean
13122 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13123 {
13124 return sym->st_shndx == SHN_COMMON;
13125 }
13126
13127 unsigned int
13128 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13129 {
13130 return SHN_COMMON;
13131 }
13132
13133 asection *
13134 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13135 {
13136 return bfd_com_section_ptr;
13137 }
13138
13139 bfd_vma
13140 _bfd_elf_default_got_elt_size (bfd *abfd,
13141 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13142 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13143 bfd *ibfd ATTRIBUTE_UNUSED,
13144 unsigned long symndx ATTRIBUTE_UNUSED)
13145 {
13146 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13147 return bed->s->arch_size / 8;
13148 }
13149
13150 /* Routines to support the creation of dynamic relocs. */
13151
13152 /* Returns the name of the dynamic reloc section associated with SEC. */
13153
13154 static const char *
13155 get_dynamic_reloc_section_name (bfd * abfd,
13156 asection * sec,
13157 bfd_boolean is_rela)
13158 {
13159 char *name;
13160 const char *old_name = bfd_get_section_name (NULL, sec);
13161 const char *prefix = is_rela ? ".rela" : ".rel";
13162
13163 if (old_name == NULL)
13164 return NULL;
13165
13166 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13167 sprintf (name, "%s%s", prefix, old_name);
13168
13169 return name;
13170 }
13171
13172 /* Returns the dynamic reloc section associated with SEC.
13173 If necessary compute the name of the dynamic reloc section based
13174 on SEC's name (looked up in ABFD's string table) and the setting
13175 of IS_RELA. */
13176
13177 asection *
13178 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13179 asection * sec,
13180 bfd_boolean is_rela)
13181 {
13182 asection * reloc_sec = elf_section_data (sec)->sreloc;
13183
13184 if (reloc_sec == NULL)
13185 {
13186 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13187
13188 if (name != NULL)
13189 {
13190 reloc_sec = bfd_get_linker_section (abfd, name);
13191
13192 if (reloc_sec != NULL)
13193 elf_section_data (sec)->sreloc = reloc_sec;
13194 }
13195 }
13196
13197 return reloc_sec;
13198 }
13199
13200 /* Returns the dynamic reloc section associated with SEC. If the
13201 section does not exist it is created and attached to the DYNOBJ
13202 bfd and stored in the SRELOC field of SEC's elf_section_data
13203 structure.
13204
13205 ALIGNMENT is the alignment for the newly created section and
13206 IS_RELA defines whether the name should be .rela.<SEC's name>
13207 or .rel.<SEC's name>. The section name is looked up in the
13208 string table associated with ABFD. */
13209
13210 asection *
13211 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13212 bfd *dynobj,
13213 unsigned int alignment,
13214 bfd *abfd,
13215 bfd_boolean is_rela)
13216 {
13217 asection * reloc_sec = elf_section_data (sec)->sreloc;
13218
13219 if (reloc_sec == NULL)
13220 {
13221 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13222
13223 if (name == NULL)
13224 return NULL;
13225
13226 reloc_sec = bfd_get_linker_section (dynobj, name);
13227
13228 if (reloc_sec == NULL)
13229 {
13230 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13231 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13232 if ((sec->flags & SEC_ALLOC) != 0)
13233 flags |= SEC_ALLOC | SEC_LOAD;
13234
13235 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13236 if (reloc_sec != NULL)
13237 {
13238 /* _bfd_elf_get_sec_type_attr chooses a section type by
13239 name. Override as it may be wrong, eg. for a user
13240 section named "auto" we'll get ".relauto" which is
13241 seen to be a .rela section. */
13242 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13243 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13244 reloc_sec = NULL;
13245 }
13246 }
13247
13248 elf_section_data (sec)->sreloc = reloc_sec;
13249 }
13250
13251 return reloc_sec;
13252 }
13253
13254 /* Copy the ELF symbol type and other attributes for a linker script
13255 assignment from HSRC to HDEST. Generally this should be treated as
13256 if we found a strong non-dynamic definition for HDEST (except that
13257 ld ignores multiple definition errors). */
13258 void
13259 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13260 struct bfd_link_hash_entry *hdest,
13261 struct bfd_link_hash_entry *hsrc)
13262 {
13263 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13264 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13265 Elf_Internal_Sym isym;
13266
13267 ehdest->type = ehsrc->type;
13268 ehdest->target_internal = ehsrc->target_internal;
13269
13270 isym.st_other = ehsrc->other;
13271 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13272 }
13273
13274 /* Append a RELA relocation REL to section S in BFD. */
13275
13276 void
13277 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13278 {
13279 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13280 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13281 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13282 bed->s->swap_reloca_out (abfd, rel, loc);
13283 }
13284
13285 /* Append a REL relocation REL to section S in BFD. */
13286
13287 void
13288 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13289 {
13290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13291 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13292 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13293 bed->s->swap_reloc_out (abfd, rel, loc);
13294 }
This page took 0.329412 seconds and 4 git commands to generate.