Check incompatible existing default symbol definition
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* For merging, we only care about real symbols. But we need to make
955 sure that indirect symbol dynamic flags are updated. */
956 hi = h;
957 while (h->root.type == bfd_link_hash_indirect
958 || h->root.type == bfd_link_hash_warning)
959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
960
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962 existing symbol. */
963
964 oldbfd = NULL;
965 oldsec = NULL;
966 switch (h->root.type)
967 {
968 default:
969 break;
970
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
974 break;
975
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 oldbfd = h->root.u.def.section->owner;
979 oldsec = h->root.u.def.section;
980 break;
981
982 case bfd_link_hash_common:
983 oldbfd = h->root.u.c.p->section->owner;
984 oldsec = h->root.u.c.p->section;
985 if (pold_alignment)
986 *pold_alignment = h->root.u.c.p->alignment_power;
987 break;
988 }
989 if (poldbfd && *poldbfd == NULL)
990 *poldbfd = oldbfd;
991
992 /* Differentiate strong and weak symbols. */
993 newweak = bind == STB_WEAK;
994 oldweak = (h->root.type == bfd_link_hash_defweak
995 || h->root.type == bfd_link_hash_undefweak);
996 if (pold_weak)
997 *pold_weak = oldweak;
998
999 /* This code is for coping with dynamic objects, and is only useful
1000 if we are doing an ELF link. */
1001 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1002 return TRUE;
1003
1004 /* We have to check it for every instance since the first few may be
1005 references and not all compilers emit symbol type for undefined
1006 symbols. */
1007 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1008
1009 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010 respectively, is from a dynamic object. */
1011
1012 newdyn = (abfd->flags & DYNAMIC) != 0;
1013
1014 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015 syms and defined syms in dynamic libraries respectively.
1016 ref_dynamic on the other hand can be set for a symbol defined in
1017 a dynamic library, and def_dynamic may not be set; When the
1018 definition in a dynamic lib is overridden by a definition in the
1019 executable use of the symbol in the dynamic lib becomes a
1020 reference to the executable symbol. */
1021 if (newdyn)
1022 {
1023 if (bfd_is_und_section (sec))
1024 {
1025 if (bind != STB_WEAK)
1026 {
1027 h->ref_dynamic_nonweak = 1;
1028 hi->ref_dynamic_nonweak = 1;
1029 }
1030 }
1031 else
1032 {
1033 h->dynamic_def = 1;
1034 hi->dynamic_def = 1;
1035 }
1036 }
1037
1038 /* If we just created the symbol, mark it as being an ELF symbol.
1039 Other than that, there is nothing to do--there is no merge issue
1040 with a newly defined symbol--so we just return. */
1041
1042 if (h->root.type == bfd_link_hash_new)
1043 {
1044 h->non_elf = 0;
1045 return TRUE;
1046 }
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. */
1091 if (pold_alignment == NULL
1092 && newdyn
1093 && newdef
1094 && !olddyn
1095 && (((olddef || h->root.type == bfd_link_hash_common)
1096 && ELF_ST_TYPE (sym->st_info) != h->type
1097 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1098 && h->type != STT_NOTYPE
1099 && !(newfunc && oldfunc))
1100 || (olddef
1101 && ((h->type == STT_GNU_IFUNC)
1102 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1103 {
1104 *skip = TRUE;
1105 return TRUE;
1106 }
1107
1108 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1109 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1110 *type_change_ok = TRUE;
1111
1112 /* Check TLS symbol. We don't check undefined symbol introduced by
1113 "ld -u". */
1114 else if (oldbfd != NULL
1115 && ELF_ST_TYPE (sym->st_info) != h->type
1116 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1117 {
1118 bfd *ntbfd, *tbfd;
1119 bfd_boolean ntdef, tdef;
1120 asection *ntsec, *tsec;
1121
1122 if (h->type == STT_TLS)
1123 {
1124 ntbfd = abfd;
1125 ntsec = sec;
1126 ntdef = newdef;
1127 tbfd = oldbfd;
1128 tsec = oldsec;
1129 tdef = olddef;
1130 }
1131 else
1132 {
1133 ntbfd = oldbfd;
1134 ntsec = oldsec;
1135 ntdef = olddef;
1136 tbfd = abfd;
1137 tsec = sec;
1138 tdef = newdef;
1139 }
1140
1141 if (tdef && ntdef)
1142 (*_bfd_error_handler)
1143 (_("%s: TLS definition in %B section %A "
1144 "mismatches non-TLS definition in %B section %A"),
1145 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1146 else if (!tdef && !ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS reference in %B "
1149 "mismatches non-TLS reference in %B"),
1150 tbfd, ntbfd, h->root.root.string);
1151 else if (tdef)
1152 (*_bfd_error_handler)
1153 (_("%s: TLS definition in %B section %A "
1154 "mismatches non-TLS reference in %B"),
1155 tbfd, tsec, ntbfd, h->root.root.string);
1156 else
1157 (*_bfd_error_handler)
1158 (_("%s: TLS reference in %B "
1159 "mismatches non-TLS definition in %B section %A"),
1160 tbfd, ntbfd, ntsec, h->root.root.string);
1161
1162 bfd_set_error (bfd_error_bad_value);
1163 return FALSE;
1164 }
1165
1166 /* If the old symbol has non-default visibility, we ignore the new
1167 definition from a dynamic object. */
1168 if (newdyn
1169 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1170 && !bfd_is_und_section (sec))
1171 {
1172 *skip = TRUE;
1173 /* Make sure this symbol is dynamic. */
1174 h->ref_dynamic = 1;
1175 hi->ref_dynamic = 1;
1176 /* A protected symbol has external availability. Make sure it is
1177 recorded as dynamic.
1178
1179 FIXME: Should we check type and size for protected symbol? */
1180 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1181 return bfd_elf_link_record_dynamic_symbol (info, h);
1182 else
1183 return TRUE;
1184 }
1185 else if (!newdyn
1186 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1187 && h->def_dynamic)
1188 {
1189 /* If the new symbol with non-default visibility comes from a
1190 relocatable file and the old definition comes from a dynamic
1191 object, we remove the old definition. */
1192 if (hi->root.type == bfd_link_hash_indirect)
1193 {
1194 /* Handle the case where the old dynamic definition is
1195 default versioned. We need to copy the symbol info from
1196 the symbol with default version to the normal one if it
1197 was referenced before. */
1198 if (h->ref_regular)
1199 {
1200 hi->root.type = h->root.type;
1201 h->root.type = bfd_link_hash_indirect;
1202 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1203
1204 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1205 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1206 {
1207 /* If the new symbol is hidden or internal, completely undo
1208 any dynamic link state. */
1209 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1210 h->forced_local = 0;
1211 h->ref_dynamic = 0;
1212 }
1213 else
1214 h->ref_dynamic = 1;
1215
1216 h->def_dynamic = 0;
1217 /* FIXME: Should we check type and size for protected symbol? */
1218 h->size = 0;
1219 h->type = 0;
1220
1221 h = hi;
1222 }
1223 else
1224 h = hi;
1225 }
1226
1227 /* If the old symbol was undefined before, then it will still be
1228 on the undefs list. If the new symbol is undefined or
1229 common, we can't make it bfd_link_hash_new here, because new
1230 undefined or common symbols will be added to the undefs list
1231 by _bfd_generic_link_add_one_symbol. Symbols may not be
1232 added twice to the undefs list. Also, if the new symbol is
1233 undefweak then we don't want to lose the strong undef. */
1234 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1235 {
1236 h->root.type = bfd_link_hash_undefined;
1237 h->root.u.undef.abfd = abfd;
1238 }
1239 else
1240 {
1241 h->root.type = bfd_link_hash_new;
1242 h->root.u.undef.abfd = NULL;
1243 }
1244
1245 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1246 {
1247 /* If the new symbol is hidden or internal, completely undo
1248 any dynamic link state. */
1249 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1250 h->forced_local = 0;
1251 h->ref_dynamic = 0;
1252 }
1253 else
1254 h->ref_dynamic = 1;
1255 h->def_dynamic = 0;
1256 /* FIXME: Should we check type and size for protected symbol? */
1257 h->size = 0;
1258 h->type = 0;
1259 return TRUE;
1260 }
1261
1262 /* If a new weak symbol definition comes from a regular file and the
1263 old symbol comes from a dynamic library, we treat the new one as
1264 strong. Similarly, an old weak symbol definition from a regular
1265 file is treated as strong when the new symbol comes from a dynamic
1266 library. Further, an old weak symbol from a dynamic library is
1267 treated as strong if the new symbol is from a dynamic library.
1268 This reflects the way glibc's ld.so works.
1269
1270 Do this before setting *type_change_ok or *size_change_ok so that
1271 we warn properly when dynamic library symbols are overridden. */
1272
1273 if (newdef && !newdyn && olddyn)
1274 newweak = FALSE;
1275 if (olddef && newdyn)
1276 oldweak = FALSE;
1277
1278 /* Allow changes between different types of function symbol. */
1279 if (newfunc && oldfunc)
1280 *type_change_ok = TRUE;
1281
1282 /* It's OK to change the type if either the existing symbol or the
1283 new symbol is weak. A type change is also OK if the old symbol
1284 is undefined and the new symbol is defined. */
1285
1286 if (oldweak
1287 || newweak
1288 || (newdef
1289 && h->root.type == bfd_link_hash_undefined))
1290 *type_change_ok = TRUE;
1291
1292 /* It's OK to change the size if either the existing symbol or the
1293 new symbol is weak, or if the old symbol is undefined. */
1294
1295 if (*type_change_ok
1296 || h->root.type == bfd_link_hash_undefined)
1297 *size_change_ok = TRUE;
1298
1299 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1300 symbol, respectively, appears to be a common symbol in a dynamic
1301 object. If a symbol appears in an uninitialized section, and is
1302 not weak, and is not a function, then it may be a common symbol
1303 which was resolved when the dynamic object was created. We want
1304 to treat such symbols specially, because they raise special
1305 considerations when setting the symbol size: if the symbol
1306 appears as a common symbol in a regular object, and the size in
1307 the regular object is larger, we must make sure that we use the
1308 larger size. This problematic case can always be avoided in C,
1309 but it must be handled correctly when using Fortran shared
1310 libraries.
1311
1312 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1313 likewise for OLDDYNCOMMON and OLDDEF.
1314
1315 Note that this test is just a heuristic, and that it is quite
1316 possible to have an uninitialized symbol in a shared object which
1317 is really a definition, rather than a common symbol. This could
1318 lead to some minor confusion when the symbol really is a common
1319 symbol in some regular object. However, I think it will be
1320 harmless. */
1321
1322 if (newdyn
1323 && newdef
1324 && !newweak
1325 && (sec->flags & SEC_ALLOC) != 0
1326 && (sec->flags & SEC_LOAD) == 0
1327 && sym->st_size > 0
1328 && !newfunc)
1329 newdyncommon = TRUE;
1330 else
1331 newdyncommon = FALSE;
1332
1333 if (olddyn
1334 && olddef
1335 && h->root.type == bfd_link_hash_defined
1336 && h->def_dynamic
1337 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1338 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1339 && h->size > 0
1340 && !oldfunc)
1341 olddyncommon = TRUE;
1342 else
1343 olddyncommon = FALSE;
1344
1345 /* We now know everything about the old and new symbols. We ask the
1346 backend to check if we can merge them. */
1347 if (bed->merge_symbol != NULL)
1348 {
1349 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1350 return FALSE;
1351 sec = *psec;
1352 }
1353
1354 /* If both the old and the new symbols look like common symbols in a
1355 dynamic object, set the size of the symbol to the larger of the
1356 two. */
1357
1358 if (olddyncommon
1359 && newdyncommon
1360 && sym->st_size != h->size)
1361 {
1362 /* Since we think we have two common symbols, issue a multiple
1363 common warning if desired. Note that we only warn if the
1364 size is different. If the size is the same, we simply let
1365 the old symbol override the new one as normally happens with
1366 symbols defined in dynamic objects. */
1367
1368 if (! ((*info->callbacks->multiple_common)
1369 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1370 return FALSE;
1371
1372 if (sym->st_size > h->size)
1373 h->size = sym->st_size;
1374
1375 *size_change_ok = TRUE;
1376 }
1377
1378 /* If we are looking at a dynamic object, and we have found a
1379 definition, we need to see if the symbol was already defined by
1380 some other object. If so, we want to use the existing
1381 definition, and we do not want to report a multiple symbol
1382 definition error; we do this by clobbering *PSEC to be
1383 bfd_und_section_ptr.
1384
1385 We treat a common symbol as a definition if the symbol in the
1386 shared library is a function, since common symbols always
1387 represent variables; this can cause confusion in principle, but
1388 any such confusion would seem to indicate an erroneous program or
1389 shared library. We also permit a common symbol in a regular
1390 object to override a weak symbol in a shared object. */
1391
1392 if (newdyn
1393 && newdef
1394 && (olddef
1395 || (h->root.type == bfd_link_hash_common
1396 && (newweak || newfunc))))
1397 {
1398 *override = TRUE;
1399 newdef = FALSE;
1400 newdyncommon = FALSE;
1401
1402 *psec = sec = bfd_und_section_ptr;
1403 *size_change_ok = TRUE;
1404
1405 /* If we get here when the old symbol is a common symbol, then
1406 we are explicitly letting it override a weak symbol or
1407 function in a dynamic object, and we don't want to warn about
1408 a type change. If the old symbol is a defined symbol, a type
1409 change warning may still be appropriate. */
1410
1411 if (h->root.type == bfd_link_hash_common)
1412 *type_change_ok = TRUE;
1413 }
1414
1415 /* Handle the special case of an old common symbol merging with a
1416 new symbol which looks like a common symbol in a shared object.
1417 We change *PSEC and *PVALUE to make the new symbol look like a
1418 common symbol, and let _bfd_generic_link_add_one_symbol do the
1419 right thing. */
1420
1421 if (newdyncommon
1422 && h->root.type == bfd_link_hash_common)
1423 {
1424 *override = TRUE;
1425 newdef = FALSE;
1426 newdyncommon = FALSE;
1427 *pvalue = sym->st_size;
1428 *psec = sec = bed->common_section (oldsec);
1429 *size_change_ok = TRUE;
1430 }
1431
1432 /* Skip weak definitions of symbols that are already defined. */
1433 if (newdef && olddef && newweak)
1434 {
1435 /* Don't skip new non-IR weak syms. */
1436 if (!(oldbfd != NULL
1437 && (oldbfd->flags & BFD_PLUGIN) != 0
1438 && (abfd->flags & BFD_PLUGIN) == 0))
1439 {
1440 newdef = FALSE;
1441 *skip = TRUE;
1442 }
1443
1444 /* Merge st_other. If the symbol already has a dynamic index,
1445 but visibility says it should not be visible, turn it into a
1446 local symbol. */
1447 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1448 if (h->dynindx != -1)
1449 switch (ELF_ST_VISIBILITY (h->other))
1450 {
1451 case STV_INTERNAL:
1452 case STV_HIDDEN:
1453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1454 break;
1455 }
1456 }
1457
1458 /* If the old symbol is from a dynamic object, and the new symbol is
1459 a definition which is not from a dynamic object, then the new
1460 symbol overrides the old symbol. Symbols from regular files
1461 always take precedence over symbols from dynamic objects, even if
1462 they are defined after the dynamic object in the link.
1463
1464 As above, we again permit a common symbol in a regular object to
1465 override a definition in a shared object if the shared object
1466 symbol is a function or is weak. */
1467
1468 flip = NULL;
1469 if (!newdyn
1470 && (newdef
1471 || (bfd_is_com_section (sec)
1472 && (oldweak || oldfunc)))
1473 && olddyn
1474 && olddef
1475 && h->def_dynamic)
1476 {
1477 /* Change the hash table entry to undefined, and let
1478 _bfd_generic_link_add_one_symbol do the right thing with the
1479 new definition. */
1480
1481 h->root.type = bfd_link_hash_undefined;
1482 h->root.u.undef.abfd = h->root.u.def.section->owner;
1483 *size_change_ok = TRUE;
1484
1485 olddef = FALSE;
1486 olddyncommon = FALSE;
1487
1488 /* We again permit a type change when a common symbol may be
1489 overriding a function. */
1490
1491 if (bfd_is_com_section (sec))
1492 {
1493 if (oldfunc)
1494 {
1495 /* If a common symbol overrides a function, make sure
1496 that it isn't defined dynamically nor has type
1497 function. */
1498 h->def_dynamic = 0;
1499 h->type = STT_NOTYPE;
1500 }
1501 *type_change_ok = TRUE;
1502 }
1503
1504 if (hi->root.type == bfd_link_hash_indirect)
1505 flip = hi;
1506 else
1507 /* This union may have been set to be non-NULL when this symbol
1508 was seen in a dynamic object. We must force the union to be
1509 NULL, so that it is correct for a regular symbol. */
1510 h->verinfo.vertree = NULL;
1511 }
1512
1513 /* Handle the special case of a new common symbol merging with an
1514 old symbol that looks like it might be a common symbol defined in
1515 a shared object. Note that we have already handled the case in
1516 which a new common symbol should simply override the definition
1517 in the shared library. */
1518
1519 if (! newdyn
1520 && bfd_is_com_section (sec)
1521 && olddyncommon)
1522 {
1523 /* It would be best if we could set the hash table entry to a
1524 common symbol, but we don't know what to use for the section
1525 or the alignment. */
1526 if (! ((*info->callbacks->multiple_common)
1527 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1528 return FALSE;
1529
1530 /* If the presumed common symbol in the dynamic object is
1531 larger, pretend that the new symbol has its size. */
1532
1533 if (h->size > *pvalue)
1534 *pvalue = h->size;
1535
1536 /* We need to remember the alignment required by the symbol
1537 in the dynamic object. */
1538 BFD_ASSERT (pold_alignment);
1539 *pold_alignment = h->root.u.def.section->alignment_power;
1540
1541 olddef = FALSE;
1542 olddyncommon = FALSE;
1543
1544 h->root.type = bfd_link_hash_undefined;
1545 h->root.u.undef.abfd = h->root.u.def.section->owner;
1546
1547 *size_change_ok = TRUE;
1548 *type_change_ok = TRUE;
1549
1550 if (hi->root.type == bfd_link_hash_indirect)
1551 flip = hi;
1552 else
1553 h->verinfo.vertree = NULL;
1554 }
1555
1556 if (flip != NULL)
1557 {
1558 /* Handle the case where we had a versioned symbol in a dynamic
1559 library and now find a definition in a normal object. In this
1560 case, we make the versioned symbol point to the normal one. */
1561 flip->root.type = h->root.type;
1562 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1563 h->root.type = bfd_link_hash_indirect;
1564 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1565 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1566 if (h->def_dynamic)
1567 {
1568 h->def_dynamic = 0;
1569 flip->ref_dynamic = 1;
1570 }
1571 }
1572
1573 return TRUE;
1574 }
1575
1576 /* This function is called to create an indirect symbol from the
1577 default for the symbol with the default version if needed. The
1578 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1579 set DYNSYM if the new indirect symbol is dynamic. */
1580
1581 static bfd_boolean
1582 _bfd_elf_add_default_symbol (bfd *abfd,
1583 struct bfd_link_info *info,
1584 struct elf_link_hash_entry *h,
1585 const char *name,
1586 Elf_Internal_Sym *sym,
1587 asection *sec,
1588 bfd_vma value,
1589 bfd **poldbfd,
1590 bfd_boolean *dynsym)
1591 {
1592 bfd_boolean type_change_ok;
1593 bfd_boolean size_change_ok;
1594 bfd_boolean skip;
1595 char *shortname;
1596 struct elf_link_hash_entry *hi;
1597 struct bfd_link_hash_entry *bh;
1598 const struct elf_backend_data *bed;
1599 bfd_boolean collect;
1600 bfd_boolean dynamic;
1601 bfd_boolean override;
1602 char *p;
1603 size_t len, shortlen;
1604 asection *tmp_sec;
1605
1606 /* If this symbol has a version, and it is the default version, we
1607 create an indirect symbol from the default name to the fully
1608 decorated name. This will cause external references which do not
1609 specify a version to be bound to this version of the symbol. */
1610 p = strchr (name, ELF_VER_CHR);
1611 if (p == NULL || p[1] != ELF_VER_CHR)
1612 return TRUE;
1613
1614 bed = get_elf_backend_data (abfd);
1615 collect = bed->collect;
1616 dynamic = (abfd->flags & DYNAMIC) != 0;
1617
1618 shortlen = p - name;
1619 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1620 if (shortname == NULL)
1621 return FALSE;
1622 memcpy (shortname, name, shortlen);
1623 shortname[shortlen] = '\0';
1624
1625 /* We are going to create a new symbol. Merge it with any existing
1626 symbol with this name. For the purposes of the merge, act as
1627 though we were defining the symbol we just defined, although we
1628 actually going to define an indirect symbol. */
1629 type_change_ok = FALSE;
1630 size_change_ok = FALSE;
1631 tmp_sec = sec;
1632 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1633 &hi, poldbfd, NULL, NULL, &skip, &override,
1634 &type_change_ok, &size_change_ok))
1635 return FALSE;
1636
1637 if (skip)
1638 goto nondefault;
1639
1640 if (! override)
1641 {
1642 bh = &hi->root;
1643 if (! (_bfd_generic_link_add_one_symbol
1644 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1645 0, name, FALSE, collect, &bh)))
1646 return FALSE;
1647 hi = (struct elf_link_hash_entry *) bh;
1648 }
1649 else
1650 {
1651 /* In this case the symbol named SHORTNAME is overriding the
1652 indirect symbol we want to add. We were planning on making
1653 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1654 is the name without a version. NAME is the fully versioned
1655 name, and it is the default version.
1656
1657 Overriding means that we already saw a definition for the
1658 symbol SHORTNAME in a regular object, and it is overriding
1659 the symbol defined in the dynamic object.
1660
1661 When this happens, we actually want to change NAME, the
1662 symbol we just added, to refer to SHORTNAME. This will cause
1663 references to NAME in the shared object to become references
1664 to SHORTNAME in the regular object. This is what we expect
1665 when we override a function in a shared object: that the
1666 references in the shared object will be mapped to the
1667 definition in the regular object. */
1668
1669 while (hi->root.type == bfd_link_hash_indirect
1670 || hi->root.type == bfd_link_hash_warning)
1671 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1672
1673 h->root.type = bfd_link_hash_indirect;
1674 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1675 if (h->def_dynamic)
1676 {
1677 h->def_dynamic = 0;
1678 hi->ref_dynamic = 1;
1679 if (hi->ref_regular
1680 || hi->def_regular)
1681 {
1682 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1683 return FALSE;
1684 }
1685 }
1686
1687 /* Now set HI to H, so that the following code will set the
1688 other fields correctly. */
1689 hi = h;
1690 }
1691
1692 /* Check if HI is a warning symbol. */
1693 if (hi->root.type == bfd_link_hash_warning)
1694 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1695
1696 /* If there is a duplicate definition somewhere, then HI may not
1697 point to an indirect symbol. We will have reported an error to
1698 the user in that case. */
1699
1700 if (hi->root.type == bfd_link_hash_indirect)
1701 {
1702 struct elf_link_hash_entry *ht;
1703
1704 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1705 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1706
1707 /* A reference to the SHORTNAME symbol from a dynamic library
1708 will be satisfied by the versioned symbol at runtime. In
1709 effect, we have a reference to the versioned symbol. */
1710 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1711 hi->dynamic_def |= ht->dynamic_def;
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->def_dynamic
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1723 }
1724 else
1725 {
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1728 }
1729 }
1730 }
1731
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1734
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 tmp_sec = sec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1748 &hi, NULL, NULL, NULL, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1751
1752 if (skip)
1753 return TRUE;
1754
1755 if (override)
1756 {
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1765 }
1766 else
1767 {
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1774
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1778
1779 if (hi->root.type == bfd_link_hash_indirect)
1780 {
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1783 hi->dynamic_def |= h->dynamic_def;
1784
1785 /* See if the new flags lead us to realize that the symbol
1786 must be dynamic. */
1787 if (! *dynsym)
1788 {
1789 if (! dynamic)
1790 {
1791 if (! info->executable
1792 || hi->ref_dynamic)
1793 *dynsym = TRUE;
1794 }
1795 else
1796 {
1797 if (hi->ref_regular)
1798 *dynsym = TRUE;
1799 }
1800 }
1801 }
1802 }
1803
1804 return TRUE;
1805 }
1806 \f
1807 /* This routine is used to export all defined symbols into the dynamic
1808 symbol table. It is called via elf_link_hash_traverse. */
1809
1810 static bfd_boolean
1811 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1812 {
1813 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 /* Ignore this if we won't export it. */
1820 if (!eif->info->export_dynamic && !h->dynamic)
1821 return TRUE;
1822
1823 if (h->dynindx == -1
1824 && (h->def_regular || h->ref_regular)
1825 && ! bfd_hide_sym_by_version (eif->info->version_info,
1826 h->root.root.string))
1827 {
1828 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1829 {
1830 eif->failed = TRUE;
1831 return FALSE;
1832 }
1833 }
1834
1835 return TRUE;
1836 }
1837 \f
1838 /* Look through the symbols which are defined in other shared
1839 libraries and referenced here. Update the list of version
1840 dependencies. This will be put into the .gnu.version_r section.
1841 This function is called via elf_link_hash_traverse. */
1842
1843 static bfd_boolean
1844 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1845 void *data)
1846 {
1847 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1848 Elf_Internal_Verneed *t;
1849 Elf_Internal_Vernaux *a;
1850 bfd_size_type amt;
1851
1852 /* We only care about symbols defined in shared objects with version
1853 information. */
1854 if (!h->def_dynamic
1855 || h->def_regular
1856 || h->dynindx == -1
1857 || h->verinfo.verdef == NULL)
1858 return TRUE;
1859
1860 /* See if we already know about this version. */
1861 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1862 t != NULL;
1863 t = t->vn_nextref)
1864 {
1865 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1866 continue;
1867
1868 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1869 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1870 return TRUE;
1871
1872 break;
1873 }
1874
1875 /* This is a new version. Add it to tree we are building. */
1876
1877 if (t == NULL)
1878 {
1879 amt = sizeof *t;
1880 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1881 if (t == NULL)
1882 {
1883 rinfo->failed = TRUE;
1884 return FALSE;
1885 }
1886
1887 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1888 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1889 elf_tdata (rinfo->info->output_bfd)->verref = t;
1890 }
1891
1892 amt = sizeof *a;
1893 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1894 if (a == NULL)
1895 {
1896 rinfo->failed = TRUE;
1897 return FALSE;
1898 }
1899
1900 /* Note that we are copying a string pointer here, and testing it
1901 above. If bfd_elf_string_from_elf_section is ever changed to
1902 discard the string data when low in memory, this will have to be
1903 fixed. */
1904 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1905
1906 a->vna_flags = h->verinfo.verdef->vd_flags;
1907 a->vna_nextptr = t->vn_auxptr;
1908
1909 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1910 ++rinfo->vers;
1911
1912 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1913
1914 t->vn_auxptr = a;
1915
1916 return TRUE;
1917 }
1918
1919 /* Figure out appropriate versions for all the symbols. We may not
1920 have the version number script until we have read all of the input
1921 files, so until that point we don't know which symbols should be
1922 local. This function is called via elf_link_hash_traverse. */
1923
1924 static bfd_boolean
1925 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1926 {
1927 struct elf_info_failed *sinfo;
1928 struct bfd_link_info *info;
1929 const struct elf_backend_data *bed;
1930 struct elf_info_failed eif;
1931 char *p;
1932 bfd_size_type amt;
1933
1934 sinfo = (struct elf_info_failed *) data;
1935 info = sinfo->info;
1936
1937 /* Fix the symbol flags. */
1938 eif.failed = FALSE;
1939 eif.info = info;
1940 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1941 {
1942 if (eif.failed)
1943 sinfo->failed = TRUE;
1944 return FALSE;
1945 }
1946
1947 /* We only need version numbers for symbols defined in regular
1948 objects. */
1949 if (!h->def_regular)
1950 return TRUE;
1951
1952 bed = get_elf_backend_data (info->output_bfd);
1953 p = strchr (h->root.root.string, ELF_VER_CHR);
1954 if (p != NULL && h->verinfo.vertree == NULL)
1955 {
1956 struct bfd_elf_version_tree *t;
1957 bfd_boolean hidden;
1958
1959 hidden = TRUE;
1960
1961 /* There are two consecutive ELF_VER_CHR characters if this is
1962 not a hidden symbol. */
1963 ++p;
1964 if (*p == ELF_VER_CHR)
1965 {
1966 hidden = FALSE;
1967 ++p;
1968 }
1969
1970 /* If there is no version string, we can just return out. */
1971 if (*p == '\0')
1972 {
1973 if (hidden)
1974 h->hidden = 1;
1975 return TRUE;
1976 }
1977
1978 /* Look for the version. If we find it, it is no longer weak. */
1979 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1980 {
1981 if (strcmp (t->name, p) == 0)
1982 {
1983 size_t len;
1984 char *alc;
1985 struct bfd_elf_version_expr *d;
1986
1987 len = p - h->root.root.string;
1988 alc = (char *) bfd_malloc (len);
1989 if (alc == NULL)
1990 {
1991 sinfo->failed = TRUE;
1992 return FALSE;
1993 }
1994 memcpy (alc, h->root.root.string, len - 1);
1995 alc[len - 1] = '\0';
1996 if (alc[len - 2] == ELF_VER_CHR)
1997 alc[len - 2] = '\0';
1998
1999 h->verinfo.vertree = t;
2000 t->used = TRUE;
2001 d = NULL;
2002
2003 if (t->globals.list != NULL)
2004 d = (*t->match) (&t->globals, NULL, alc);
2005
2006 /* See if there is anything to force this symbol to
2007 local scope. */
2008 if (d == NULL && t->locals.list != NULL)
2009 {
2010 d = (*t->match) (&t->locals, NULL, alc);
2011 if (d != NULL
2012 && h->dynindx != -1
2013 && ! info->export_dynamic)
2014 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2015 }
2016
2017 free (alc);
2018 break;
2019 }
2020 }
2021
2022 /* If we are building an application, we need to create a
2023 version node for this version. */
2024 if (t == NULL && info->executable)
2025 {
2026 struct bfd_elf_version_tree **pp;
2027 int version_index;
2028
2029 /* If we aren't going to export this symbol, we don't need
2030 to worry about it. */
2031 if (h->dynindx == -1)
2032 return TRUE;
2033
2034 amt = sizeof *t;
2035 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2036 if (t == NULL)
2037 {
2038 sinfo->failed = TRUE;
2039 return FALSE;
2040 }
2041
2042 t->name = p;
2043 t->name_indx = (unsigned int) -1;
2044 t->used = TRUE;
2045
2046 version_index = 1;
2047 /* Don't count anonymous version tag. */
2048 if (sinfo->info->version_info != NULL
2049 && sinfo->info->version_info->vernum == 0)
2050 version_index = 0;
2051 for (pp = &sinfo->info->version_info;
2052 *pp != NULL;
2053 pp = &(*pp)->next)
2054 ++version_index;
2055 t->vernum = version_index;
2056
2057 *pp = t;
2058
2059 h->verinfo.vertree = t;
2060 }
2061 else if (t == NULL)
2062 {
2063 /* We could not find the version for a symbol when
2064 generating a shared archive. Return an error. */
2065 (*_bfd_error_handler)
2066 (_("%B: version node not found for symbol %s"),
2067 info->output_bfd, h->root.root.string);
2068 bfd_set_error (bfd_error_bad_value);
2069 sinfo->failed = TRUE;
2070 return FALSE;
2071 }
2072
2073 if (hidden)
2074 h->hidden = 1;
2075 }
2076
2077 /* If we don't have a version for this symbol, see if we can find
2078 something. */
2079 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2080 {
2081 bfd_boolean hide;
2082
2083 h->verinfo.vertree
2084 = bfd_find_version_for_sym (sinfo->info->version_info,
2085 h->root.root.string, &hide);
2086 if (h->verinfo.vertree != NULL && hide)
2087 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2088 }
2089
2090 return TRUE;
2091 }
2092 \f
2093 /* Read and swap the relocs from the section indicated by SHDR. This
2094 may be either a REL or a RELA section. The relocations are
2095 translated into RELA relocations and stored in INTERNAL_RELOCS,
2096 which should have already been allocated to contain enough space.
2097 The EXTERNAL_RELOCS are a buffer where the external form of the
2098 relocations should be stored.
2099
2100 Returns FALSE if something goes wrong. */
2101
2102 static bfd_boolean
2103 elf_link_read_relocs_from_section (bfd *abfd,
2104 asection *sec,
2105 Elf_Internal_Shdr *shdr,
2106 void *external_relocs,
2107 Elf_Internal_Rela *internal_relocs)
2108 {
2109 const struct elf_backend_data *bed;
2110 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2111 const bfd_byte *erela;
2112 const bfd_byte *erelaend;
2113 Elf_Internal_Rela *irela;
2114 Elf_Internal_Shdr *symtab_hdr;
2115 size_t nsyms;
2116
2117 /* Position ourselves at the start of the section. */
2118 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2119 return FALSE;
2120
2121 /* Read the relocations. */
2122 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2123 return FALSE;
2124
2125 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2126 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2127
2128 bed = get_elf_backend_data (abfd);
2129
2130 /* Convert the external relocations to the internal format. */
2131 if (shdr->sh_entsize == bed->s->sizeof_rel)
2132 swap_in = bed->s->swap_reloc_in;
2133 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2134 swap_in = bed->s->swap_reloca_in;
2135 else
2136 {
2137 bfd_set_error (bfd_error_wrong_format);
2138 return FALSE;
2139 }
2140
2141 erela = (const bfd_byte *) external_relocs;
2142 erelaend = erela + shdr->sh_size;
2143 irela = internal_relocs;
2144 while (erela < erelaend)
2145 {
2146 bfd_vma r_symndx;
2147
2148 (*swap_in) (abfd, erela, irela);
2149 r_symndx = ELF32_R_SYM (irela->r_info);
2150 if (bed->s->arch_size == 64)
2151 r_symndx >>= 24;
2152 if (nsyms > 0)
2153 {
2154 if ((size_t) r_symndx >= nsyms)
2155 {
2156 (*_bfd_error_handler)
2157 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2158 " for offset 0x%lx in section `%A'"),
2159 abfd, sec,
2160 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2161 bfd_set_error (bfd_error_bad_value);
2162 return FALSE;
2163 }
2164 }
2165 else if (r_symndx != STN_UNDEF)
2166 {
2167 (*_bfd_error_handler)
2168 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2169 " when the object file has no symbol table"),
2170 abfd, sec,
2171 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2172 bfd_set_error (bfd_error_bad_value);
2173 return FALSE;
2174 }
2175 irela += bed->s->int_rels_per_ext_rel;
2176 erela += shdr->sh_entsize;
2177 }
2178
2179 return TRUE;
2180 }
2181
2182 /* Read and swap the relocs for a section O. They may have been
2183 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2184 not NULL, they are used as buffers to read into. They are known to
2185 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2186 the return value is allocated using either malloc or bfd_alloc,
2187 according to the KEEP_MEMORY argument. If O has two relocation
2188 sections (both REL and RELA relocations), then the REL_HDR
2189 relocations will appear first in INTERNAL_RELOCS, followed by the
2190 RELA_HDR relocations. */
2191
2192 Elf_Internal_Rela *
2193 _bfd_elf_link_read_relocs (bfd *abfd,
2194 asection *o,
2195 void *external_relocs,
2196 Elf_Internal_Rela *internal_relocs,
2197 bfd_boolean keep_memory)
2198 {
2199 void *alloc1 = NULL;
2200 Elf_Internal_Rela *alloc2 = NULL;
2201 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2202 struct bfd_elf_section_data *esdo = elf_section_data (o);
2203 Elf_Internal_Rela *internal_rela_relocs;
2204
2205 if (esdo->relocs != NULL)
2206 return esdo->relocs;
2207
2208 if (o->reloc_count == 0)
2209 return NULL;
2210
2211 if (internal_relocs == NULL)
2212 {
2213 bfd_size_type size;
2214
2215 size = o->reloc_count;
2216 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2217 if (keep_memory)
2218 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2219 else
2220 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2221 if (internal_relocs == NULL)
2222 goto error_return;
2223 }
2224
2225 if (external_relocs == NULL)
2226 {
2227 bfd_size_type size = 0;
2228
2229 if (esdo->rel.hdr)
2230 size += esdo->rel.hdr->sh_size;
2231 if (esdo->rela.hdr)
2232 size += esdo->rela.hdr->sh_size;
2233
2234 alloc1 = bfd_malloc (size);
2235 if (alloc1 == NULL)
2236 goto error_return;
2237 external_relocs = alloc1;
2238 }
2239
2240 internal_rela_relocs = internal_relocs;
2241 if (esdo->rel.hdr)
2242 {
2243 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2244 external_relocs,
2245 internal_relocs))
2246 goto error_return;
2247 external_relocs = (((bfd_byte *) external_relocs)
2248 + esdo->rel.hdr->sh_size);
2249 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2250 * bed->s->int_rels_per_ext_rel);
2251 }
2252
2253 if (esdo->rela.hdr
2254 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2255 external_relocs,
2256 internal_rela_relocs)))
2257 goto error_return;
2258
2259 /* Cache the results for next time, if we can. */
2260 if (keep_memory)
2261 esdo->relocs = internal_relocs;
2262
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265
2266 /* Don't free alloc2, since if it was allocated we are passing it
2267 back (under the name of internal_relocs). */
2268
2269 return internal_relocs;
2270
2271 error_return:
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274 if (alloc2 != NULL)
2275 {
2276 if (keep_memory)
2277 bfd_release (abfd, alloc2);
2278 else
2279 free (alloc2);
2280 }
2281 return NULL;
2282 }
2283
2284 /* Compute the size of, and allocate space for, REL_HDR which is the
2285 section header for a section containing relocations for O. */
2286
2287 static bfd_boolean
2288 _bfd_elf_link_size_reloc_section (bfd *abfd,
2289 struct bfd_elf_section_reloc_data *reldata)
2290 {
2291 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2292
2293 /* That allows us to calculate the size of the section. */
2294 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2295
2296 /* The contents field must last into write_object_contents, so we
2297 allocate it with bfd_alloc rather than malloc. Also since we
2298 cannot be sure that the contents will actually be filled in,
2299 we zero the allocated space. */
2300 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2301 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2302 return FALSE;
2303
2304 if (reldata->hashes == NULL && reldata->count)
2305 {
2306 struct elf_link_hash_entry **p;
2307
2308 p = (struct elf_link_hash_entry **)
2309 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2310 if (p == NULL)
2311 return FALSE;
2312
2313 reldata->hashes = p;
2314 }
2315
2316 return TRUE;
2317 }
2318
2319 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2320 originated from the section given by INPUT_REL_HDR) to the
2321 OUTPUT_BFD. */
2322
2323 bfd_boolean
2324 _bfd_elf_link_output_relocs (bfd *output_bfd,
2325 asection *input_section,
2326 Elf_Internal_Shdr *input_rel_hdr,
2327 Elf_Internal_Rela *internal_relocs,
2328 struct elf_link_hash_entry **rel_hash
2329 ATTRIBUTE_UNUSED)
2330 {
2331 Elf_Internal_Rela *irela;
2332 Elf_Internal_Rela *irelaend;
2333 bfd_byte *erel;
2334 struct bfd_elf_section_reloc_data *output_reldata;
2335 asection *output_section;
2336 const struct elf_backend_data *bed;
2337 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2338 struct bfd_elf_section_data *esdo;
2339
2340 output_section = input_section->output_section;
2341
2342 bed = get_elf_backend_data (output_bfd);
2343 esdo = elf_section_data (output_section);
2344 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2345 {
2346 output_reldata = &esdo->rel;
2347 swap_out = bed->s->swap_reloc_out;
2348 }
2349 else if (esdo->rela.hdr
2350 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2351 {
2352 output_reldata = &esdo->rela;
2353 swap_out = bed->s->swap_reloca_out;
2354 }
2355 else
2356 {
2357 (*_bfd_error_handler)
2358 (_("%B: relocation size mismatch in %B section %A"),
2359 output_bfd, input_section->owner, input_section);
2360 bfd_set_error (bfd_error_wrong_format);
2361 return FALSE;
2362 }
2363
2364 erel = output_reldata->hdr->contents;
2365 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2366 irela = internal_relocs;
2367 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2368 * bed->s->int_rels_per_ext_rel);
2369 while (irela < irelaend)
2370 {
2371 (*swap_out) (output_bfd, irela, erel);
2372 irela += bed->s->int_rels_per_ext_rel;
2373 erel += input_rel_hdr->sh_entsize;
2374 }
2375
2376 /* Bump the counter, so that we know where to add the next set of
2377 relocations. */
2378 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2379
2380 return TRUE;
2381 }
2382 \f
2383 /* Make weak undefined symbols in PIE dynamic. */
2384
2385 bfd_boolean
2386 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2387 struct elf_link_hash_entry *h)
2388 {
2389 if (info->pie
2390 && h->dynindx == -1
2391 && h->root.type == bfd_link_hash_undefweak)
2392 return bfd_elf_link_record_dynamic_symbol (info, h);
2393
2394 return TRUE;
2395 }
2396
2397 /* Fix up the flags for a symbol. This handles various cases which
2398 can only be fixed after all the input files are seen. This is
2399 currently called by both adjust_dynamic_symbol and
2400 assign_sym_version, which is unnecessary but perhaps more robust in
2401 the face of future changes. */
2402
2403 static bfd_boolean
2404 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2405 struct elf_info_failed *eif)
2406 {
2407 const struct elf_backend_data *bed;
2408
2409 /* If this symbol was mentioned in a non-ELF file, try to set
2410 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2411 permit a non-ELF file to correctly refer to a symbol defined in
2412 an ELF dynamic object. */
2413 if (h->non_elf)
2414 {
2415 while (h->root.type == bfd_link_hash_indirect)
2416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2417
2418 if (h->root.type != bfd_link_hash_defined
2419 && h->root.type != bfd_link_hash_defweak)
2420 {
2421 h->ref_regular = 1;
2422 h->ref_regular_nonweak = 1;
2423 }
2424 else
2425 {
2426 if (h->root.u.def.section->owner != NULL
2427 && (bfd_get_flavour (h->root.u.def.section->owner)
2428 == bfd_target_elf_flavour))
2429 {
2430 h->ref_regular = 1;
2431 h->ref_regular_nonweak = 1;
2432 }
2433 else
2434 h->def_regular = 1;
2435 }
2436
2437 if (h->dynindx == -1
2438 && (h->def_dynamic
2439 || h->ref_dynamic))
2440 {
2441 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2442 {
2443 eif->failed = TRUE;
2444 return FALSE;
2445 }
2446 }
2447 }
2448 else
2449 {
2450 /* Unfortunately, NON_ELF is only correct if the symbol
2451 was first seen in a non-ELF file. Fortunately, if the symbol
2452 was first seen in an ELF file, we're probably OK unless the
2453 symbol was defined in a non-ELF file. Catch that case here.
2454 FIXME: We're still in trouble if the symbol was first seen in
2455 a dynamic object, and then later in a non-ELF regular object. */
2456 if ((h->root.type == bfd_link_hash_defined
2457 || h->root.type == bfd_link_hash_defweak)
2458 && !h->def_regular
2459 && (h->root.u.def.section->owner != NULL
2460 ? (bfd_get_flavour (h->root.u.def.section->owner)
2461 != bfd_target_elf_flavour)
2462 : (bfd_is_abs_section (h->root.u.def.section)
2463 && !h->def_dynamic)))
2464 h->def_regular = 1;
2465 }
2466
2467 /* Backend specific symbol fixup. */
2468 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2469 if (bed->elf_backend_fixup_symbol
2470 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2471 return FALSE;
2472
2473 /* If this is a final link, and the symbol was defined as a common
2474 symbol in a regular object file, and there was no definition in
2475 any dynamic object, then the linker will have allocated space for
2476 the symbol in a common section but the DEF_REGULAR
2477 flag will not have been set. */
2478 if (h->root.type == bfd_link_hash_defined
2479 && !h->def_regular
2480 && h->ref_regular
2481 && !h->def_dynamic
2482 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2483 h->def_regular = 1;
2484
2485 /* If -Bsymbolic was used (which means to bind references to global
2486 symbols to the definition within the shared object), and this
2487 symbol was defined in a regular object, then it actually doesn't
2488 need a PLT entry. Likewise, if the symbol has non-default
2489 visibility. If the symbol has hidden or internal visibility, we
2490 will force it local. */
2491 if (h->needs_plt
2492 && eif->info->shared
2493 && is_elf_hash_table (eif->info->hash)
2494 && (SYMBOLIC_BIND (eif->info, h)
2495 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2496 && h->def_regular)
2497 {
2498 bfd_boolean force_local;
2499
2500 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2501 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2502 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2503 }
2504
2505 /* If a weak undefined symbol has non-default visibility, we also
2506 hide it from the dynamic linker. */
2507 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2508 && h->root.type == bfd_link_hash_undefweak)
2509 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2510
2511 /* If this is a weak defined symbol in a dynamic object, and we know
2512 the real definition in the dynamic object, copy interesting flags
2513 over to the real definition. */
2514 if (h->u.weakdef != NULL)
2515 {
2516 /* If the real definition is defined by a regular object file,
2517 don't do anything special. See the longer description in
2518 _bfd_elf_adjust_dynamic_symbol, below. */
2519 if (h->u.weakdef->def_regular)
2520 h->u.weakdef = NULL;
2521 else
2522 {
2523 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2524
2525 while (h->root.type == bfd_link_hash_indirect)
2526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2527
2528 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2529 || h->root.type == bfd_link_hash_defweak);
2530 BFD_ASSERT (weakdef->def_dynamic);
2531 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2532 || weakdef->root.type == bfd_link_hash_defweak);
2533 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2534 }
2535 }
2536
2537 return TRUE;
2538 }
2539
2540 /* Make the backend pick a good value for a dynamic symbol. This is
2541 called via elf_link_hash_traverse, and also calls itself
2542 recursively. */
2543
2544 static bfd_boolean
2545 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2546 {
2547 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2548 bfd *dynobj;
2549 const struct elf_backend_data *bed;
2550
2551 if (! is_elf_hash_table (eif->info->hash))
2552 return FALSE;
2553
2554 /* Ignore indirect symbols. These are added by the versioning code. */
2555 if (h->root.type == bfd_link_hash_indirect)
2556 return TRUE;
2557
2558 /* Fix the symbol flags. */
2559 if (! _bfd_elf_fix_symbol_flags (h, eif))
2560 return FALSE;
2561
2562 /* If this symbol does not require a PLT entry, and it is not
2563 defined by a dynamic object, or is not referenced by a regular
2564 object, ignore it. We do have to handle a weak defined symbol,
2565 even if no regular object refers to it, if we decided to add it
2566 to the dynamic symbol table. FIXME: Do we normally need to worry
2567 about symbols which are defined by one dynamic object and
2568 referenced by another one? */
2569 if (!h->needs_plt
2570 && h->type != STT_GNU_IFUNC
2571 && (h->def_regular
2572 || !h->def_dynamic
2573 || (!h->ref_regular
2574 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2575 {
2576 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2577 return TRUE;
2578 }
2579
2580 /* If we've already adjusted this symbol, don't do it again. This
2581 can happen via a recursive call. */
2582 if (h->dynamic_adjusted)
2583 return TRUE;
2584
2585 /* Don't look at this symbol again. Note that we must set this
2586 after checking the above conditions, because we may look at a
2587 symbol once, decide not to do anything, and then get called
2588 recursively later after REF_REGULAR is set below. */
2589 h->dynamic_adjusted = 1;
2590
2591 /* If this is a weak definition, and we know a real definition, and
2592 the real symbol is not itself defined by a regular object file,
2593 then get a good value for the real definition. We handle the
2594 real symbol first, for the convenience of the backend routine.
2595
2596 Note that there is a confusing case here. If the real definition
2597 is defined by a regular object file, we don't get the real symbol
2598 from the dynamic object, but we do get the weak symbol. If the
2599 processor backend uses a COPY reloc, then if some routine in the
2600 dynamic object changes the real symbol, we will not see that
2601 change in the corresponding weak symbol. This is the way other
2602 ELF linkers work as well, and seems to be a result of the shared
2603 library model.
2604
2605 I will clarify this issue. Most SVR4 shared libraries define the
2606 variable _timezone and define timezone as a weak synonym. The
2607 tzset call changes _timezone. If you write
2608 extern int timezone;
2609 int _timezone = 5;
2610 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2611 you might expect that, since timezone is a synonym for _timezone,
2612 the same number will print both times. However, if the processor
2613 backend uses a COPY reloc, then actually timezone will be copied
2614 into your process image, and, since you define _timezone
2615 yourself, _timezone will not. Thus timezone and _timezone will
2616 wind up at different memory locations. The tzset call will set
2617 _timezone, leaving timezone unchanged. */
2618
2619 if (h->u.weakdef != NULL)
2620 {
2621 /* If we get to this point, there is an implicit reference to
2622 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2623 h->u.weakdef->ref_regular = 1;
2624
2625 /* Ensure that the backend adjust_dynamic_symbol function sees
2626 H->U.WEAKDEF before H by recursively calling ourselves. */
2627 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2628 return FALSE;
2629 }
2630
2631 /* If a symbol has no type and no size and does not require a PLT
2632 entry, then we are probably about to do the wrong thing here: we
2633 are probably going to create a COPY reloc for an empty object.
2634 This case can arise when a shared object is built with assembly
2635 code, and the assembly code fails to set the symbol type. */
2636 if (h->size == 0
2637 && h->type == STT_NOTYPE
2638 && !h->needs_plt)
2639 (*_bfd_error_handler)
2640 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2641 h->root.root.string);
2642
2643 dynobj = elf_hash_table (eif->info)->dynobj;
2644 bed = get_elf_backend_data (dynobj);
2645
2646 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2647 {
2648 eif->failed = TRUE;
2649 return FALSE;
2650 }
2651
2652 return TRUE;
2653 }
2654
2655 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2656 DYNBSS. */
2657
2658 bfd_boolean
2659 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2660 asection *dynbss)
2661 {
2662 unsigned int power_of_two;
2663 bfd_vma mask;
2664 asection *sec = h->root.u.def.section;
2665
2666 /* The section aligment of definition is the maximum alignment
2667 requirement of symbols defined in the section. Since we don't
2668 know the symbol alignment requirement, we start with the
2669 maximum alignment and check low bits of the symbol address
2670 for the minimum alignment. */
2671 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2672 mask = ((bfd_vma) 1 << power_of_two) - 1;
2673 while ((h->root.u.def.value & mask) != 0)
2674 {
2675 mask >>= 1;
2676 --power_of_two;
2677 }
2678
2679 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2680 dynbss))
2681 {
2682 /* Adjust the section alignment if needed. */
2683 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2684 power_of_two))
2685 return FALSE;
2686 }
2687
2688 /* We make sure that the symbol will be aligned properly. */
2689 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2690
2691 /* Define the symbol as being at this point in DYNBSS. */
2692 h->root.u.def.section = dynbss;
2693 h->root.u.def.value = dynbss->size;
2694
2695 /* Increment the size of DYNBSS to make room for the symbol. */
2696 dynbss->size += h->size;
2697
2698 return TRUE;
2699 }
2700
2701 /* Adjust all external symbols pointing into SEC_MERGE sections
2702 to reflect the object merging within the sections. */
2703
2704 static bfd_boolean
2705 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2706 {
2707 asection *sec;
2708
2709 if ((h->root.type == bfd_link_hash_defined
2710 || h->root.type == bfd_link_hash_defweak)
2711 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2712 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2713 {
2714 bfd *output_bfd = (bfd *) data;
2715
2716 h->root.u.def.value =
2717 _bfd_merged_section_offset (output_bfd,
2718 &h->root.u.def.section,
2719 elf_section_data (sec)->sec_info,
2720 h->root.u.def.value);
2721 }
2722
2723 return TRUE;
2724 }
2725
2726 /* Returns false if the symbol referred to by H should be considered
2727 to resolve local to the current module, and true if it should be
2728 considered to bind dynamically. */
2729
2730 bfd_boolean
2731 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2732 struct bfd_link_info *info,
2733 bfd_boolean not_local_protected)
2734 {
2735 bfd_boolean binding_stays_local_p;
2736 const struct elf_backend_data *bed;
2737 struct elf_link_hash_table *hash_table;
2738
2739 if (h == NULL)
2740 return FALSE;
2741
2742 while (h->root.type == bfd_link_hash_indirect
2743 || h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2745
2746 /* If it was forced local, then clearly it's not dynamic. */
2747 if (h->dynindx == -1)
2748 return FALSE;
2749 if (h->forced_local)
2750 return FALSE;
2751
2752 /* Identify the cases where name binding rules say that a
2753 visible symbol resolves locally. */
2754 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2755
2756 switch (ELF_ST_VISIBILITY (h->other))
2757 {
2758 case STV_INTERNAL:
2759 case STV_HIDDEN:
2760 return FALSE;
2761
2762 case STV_PROTECTED:
2763 hash_table = elf_hash_table (info);
2764 if (!is_elf_hash_table (hash_table))
2765 return FALSE;
2766
2767 bed = get_elf_backend_data (hash_table->dynobj);
2768
2769 /* Proper resolution for function pointer equality may require
2770 that these symbols perhaps be resolved dynamically, even though
2771 we should be resolving them to the current module. */
2772 if (!not_local_protected || !bed->is_function_type (h->type))
2773 binding_stays_local_p = TRUE;
2774 break;
2775
2776 default:
2777 break;
2778 }
2779
2780 /* If it isn't defined locally, then clearly it's dynamic. */
2781 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2782 return TRUE;
2783
2784 /* Otherwise, the symbol is dynamic if binding rules don't tell
2785 us that it remains local. */
2786 return !binding_stays_local_p;
2787 }
2788
2789 /* Return true if the symbol referred to by H should be considered
2790 to resolve local to the current module, and false otherwise. Differs
2791 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2792 undefined symbols. The two functions are virtually identical except
2793 for the place where forced_local and dynindx == -1 are tested. If
2794 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2795 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2796 the symbol is local only for defined symbols.
2797 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2798 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2799 treatment of undefined weak symbols. For those that do not make
2800 undefined weak symbols dynamic, both functions may return false. */
2801
2802 bfd_boolean
2803 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2804 struct bfd_link_info *info,
2805 bfd_boolean local_protected)
2806 {
2807 const struct elf_backend_data *bed;
2808 struct elf_link_hash_table *hash_table;
2809
2810 /* If it's a local sym, of course we resolve locally. */
2811 if (h == NULL)
2812 return TRUE;
2813
2814 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2815 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2816 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2817 return TRUE;
2818
2819 /* Common symbols that become definitions don't get the DEF_REGULAR
2820 flag set, so test it first, and don't bail out. */
2821 if (ELF_COMMON_DEF_P (h))
2822 /* Do nothing. */;
2823 /* If we don't have a definition in a regular file, then we can't
2824 resolve locally. The sym is either undefined or dynamic. */
2825 else if (!h->def_regular)
2826 return FALSE;
2827
2828 /* Forced local symbols resolve locally. */
2829 if (h->forced_local)
2830 return TRUE;
2831
2832 /* As do non-dynamic symbols. */
2833 if (h->dynindx == -1)
2834 return TRUE;
2835
2836 /* At this point, we know the symbol is defined and dynamic. In an
2837 executable it must resolve locally, likewise when building symbolic
2838 shared libraries. */
2839 if (info->executable || SYMBOLIC_BIND (info, h))
2840 return TRUE;
2841
2842 /* Now deal with defined dynamic symbols in shared libraries. Ones
2843 with default visibility might not resolve locally. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2845 return FALSE;
2846
2847 hash_table = elf_hash_table (info);
2848 if (!is_elf_hash_table (hash_table))
2849 return TRUE;
2850
2851 bed = get_elf_backend_data (hash_table->dynobj);
2852
2853 /* STV_PROTECTED non-function symbols are local. */
2854 if (!bed->is_function_type (h->type))
2855 return TRUE;
2856
2857 /* Function pointer equality tests may require that STV_PROTECTED
2858 symbols be treated as dynamic symbols. If the address of a
2859 function not defined in an executable is set to that function's
2860 plt entry in the executable, then the address of the function in
2861 a shared library must also be the plt entry in the executable. */
2862 return local_protected;
2863 }
2864
2865 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2866 aligned. Returns the first TLS output section. */
2867
2868 struct bfd_section *
2869 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2870 {
2871 struct bfd_section *sec, *tls;
2872 unsigned int align = 0;
2873
2874 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2875 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2876 break;
2877 tls = sec;
2878
2879 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2880 if (sec->alignment_power > align)
2881 align = sec->alignment_power;
2882
2883 elf_hash_table (info)->tls_sec = tls;
2884
2885 /* Ensure the alignment of the first section is the largest alignment,
2886 so that the tls segment starts aligned. */
2887 if (tls != NULL)
2888 tls->alignment_power = align;
2889
2890 return tls;
2891 }
2892
2893 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2894 static bfd_boolean
2895 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2896 Elf_Internal_Sym *sym)
2897 {
2898 const struct elf_backend_data *bed;
2899
2900 /* Local symbols do not count, but target specific ones might. */
2901 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2902 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2903 return FALSE;
2904
2905 bed = get_elf_backend_data (abfd);
2906 /* Function symbols do not count. */
2907 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2908 return FALSE;
2909
2910 /* If the section is undefined, then so is the symbol. */
2911 if (sym->st_shndx == SHN_UNDEF)
2912 return FALSE;
2913
2914 /* If the symbol is defined in the common section, then
2915 it is a common definition and so does not count. */
2916 if (bed->common_definition (sym))
2917 return FALSE;
2918
2919 /* If the symbol is in a target specific section then we
2920 must rely upon the backend to tell us what it is. */
2921 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2922 /* FIXME - this function is not coded yet:
2923
2924 return _bfd_is_global_symbol_definition (abfd, sym);
2925
2926 Instead for now assume that the definition is not global,
2927 Even if this is wrong, at least the linker will behave
2928 in the same way that it used to do. */
2929 return FALSE;
2930
2931 return TRUE;
2932 }
2933
2934 /* Search the symbol table of the archive element of the archive ABFD
2935 whose archive map contains a mention of SYMDEF, and determine if
2936 the symbol is defined in this element. */
2937 static bfd_boolean
2938 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2939 {
2940 Elf_Internal_Shdr * hdr;
2941 bfd_size_type symcount;
2942 bfd_size_type extsymcount;
2943 bfd_size_type extsymoff;
2944 Elf_Internal_Sym *isymbuf;
2945 Elf_Internal_Sym *isym;
2946 Elf_Internal_Sym *isymend;
2947 bfd_boolean result;
2948
2949 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2950 if (abfd == NULL)
2951 return FALSE;
2952
2953 if (! bfd_check_format (abfd, bfd_object))
2954 return FALSE;
2955
2956 /* If we have already included the element containing this symbol in the
2957 link then we do not need to include it again. Just claim that any symbol
2958 it contains is not a definition, so that our caller will not decide to
2959 (re)include this element. */
2960 if (abfd->archive_pass)
2961 return FALSE;
2962
2963 /* Select the appropriate symbol table. */
2964 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2965 hdr = &elf_tdata (abfd)->symtab_hdr;
2966 else
2967 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2968
2969 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2970
2971 /* The sh_info field of the symtab header tells us where the
2972 external symbols start. We don't care about the local symbols. */
2973 if (elf_bad_symtab (abfd))
2974 {
2975 extsymcount = symcount;
2976 extsymoff = 0;
2977 }
2978 else
2979 {
2980 extsymcount = symcount - hdr->sh_info;
2981 extsymoff = hdr->sh_info;
2982 }
2983
2984 if (extsymcount == 0)
2985 return FALSE;
2986
2987 /* Read in the symbol table. */
2988 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2989 NULL, NULL, NULL);
2990 if (isymbuf == NULL)
2991 return FALSE;
2992
2993 /* Scan the symbol table looking for SYMDEF. */
2994 result = FALSE;
2995 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2996 {
2997 const char *name;
2998
2999 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3000 isym->st_name);
3001 if (name == NULL)
3002 break;
3003
3004 if (strcmp (name, symdef->name) == 0)
3005 {
3006 result = is_global_data_symbol_definition (abfd, isym);
3007 break;
3008 }
3009 }
3010
3011 free (isymbuf);
3012
3013 return result;
3014 }
3015 \f
3016 /* Add an entry to the .dynamic table. */
3017
3018 bfd_boolean
3019 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3020 bfd_vma tag,
3021 bfd_vma val)
3022 {
3023 struct elf_link_hash_table *hash_table;
3024 const struct elf_backend_data *bed;
3025 asection *s;
3026 bfd_size_type newsize;
3027 bfd_byte *newcontents;
3028 Elf_Internal_Dyn dyn;
3029
3030 hash_table = elf_hash_table (info);
3031 if (! is_elf_hash_table (hash_table))
3032 return FALSE;
3033
3034 bed = get_elf_backend_data (hash_table->dynobj);
3035 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3036 BFD_ASSERT (s != NULL);
3037
3038 newsize = s->size + bed->s->sizeof_dyn;
3039 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3040 if (newcontents == NULL)
3041 return FALSE;
3042
3043 dyn.d_tag = tag;
3044 dyn.d_un.d_val = val;
3045 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3046
3047 s->size = newsize;
3048 s->contents = newcontents;
3049
3050 return TRUE;
3051 }
3052
3053 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3054 otherwise just check whether one already exists. Returns -1 on error,
3055 1 if a DT_NEEDED tag already exists, and 0 on success. */
3056
3057 static int
3058 elf_add_dt_needed_tag (bfd *abfd,
3059 struct bfd_link_info *info,
3060 const char *soname,
3061 bfd_boolean do_it)
3062 {
3063 struct elf_link_hash_table *hash_table;
3064 bfd_size_type strindex;
3065
3066 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3067 return -1;
3068
3069 hash_table = elf_hash_table (info);
3070 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3071 if (strindex == (bfd_size_type) -1)
3072 return -1;
3073
3074 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3075 {
3076 asection *sdyn;
3077 const struct elf_backend_data *bed;
3078 bfd_byte *extdyn;
3079
3080 bed = get_elf_backend_data (hash_table->dynobj);
3081 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3082 if (sdyn != NULL)
3083 for (extdyn = sdyn->contents;
3084 extdyn < sdyn->contents + sdyn->size;
3085 extdyn += bed->s->sizeof_dyn)
3086 {
3087 Elf_Internal_Dyn dyn;
3088
3089 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3090 if (dyn.d_tag == DT_NEEDED
3091 && dyn.d_un.d_val == strindex)
3092 {
3093 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3094 return 1;
3095 }
3096 }
3097 }
3098
3099 if (do_it)
3100 {
3101 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3102 return -1;
3103
3104 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3105 return -1;
3106 }
3107 else
3108 /* We were just checking for existence of the tag. */
3109 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3110
3111 return 0;
3112 }
3113
3114 static bfd_boolean
3115 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3116 {
3117 for (; needed != NULL; needed = needed->next)
3118 if (strcmp (soname, needed->name) == 0)
3119 return TRUE;
3120
3121 return FALSE;
3122 }
3123
3124 /* Sort symbol by value, section, and size. */
3125 static int
3126 elf_sort_symbol (const void *arg1, const void *arg2)
3127 {
3128 const struct elf_link_hash_entry *h1;
3129 const struct elf_link_hash_entry *h2;
3130 bfd_signed_vma vdiff;
3131
3132 h1 = *(const struct elf_link_hash_entry **) arg1;
3133 h2 = *(const struct elf_link_hash_entry **) arg2;
3134 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3135 if (vdiff != 0)
3136 return vdiff > 0 ? 1 : -1;
3137 else
3138 {
3139 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3140 if (sdiff != 0)
3141 return sdiff > 0 ? 1 : -1;
3142 }
3143 vdiff = h1->size - h2->size;
3144 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3145 }
3146
3147 /* This function is used to adjust offsets into .dynstr for
3148 dynamic symbols. This is called via elf_link_hash_traverse. */
3149
3150 static bfd_boolean
3151 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3152 {
3153 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3154
3155 if (h->dynindx != -1)
3156 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3157 return TRUE;
3158 }
3159
3160 /* Assign string offsets in .dynstr, update all structures referencing
3161 them. */
3162
3163 static bfd_boolean
3164 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3165 {
3166 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3167 struct elf_link_local_dynamic_entry *entry;
3168 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3169 bfd *dynobj = hash_table->dynobj;
3170 asection *sdyn;
3171 bfd_size_type size;
3172 const struct elf_backend_data *bed;
3173 bfd_byte *extdyn;
3174
3175 _bfd_elf_strtab_finalize (dynstr);
3176 size = _bfd_elf_strtab_size (dynstr);
3177
3178 bed = get_elf_backend_data (dynobj);
3179 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3180 BFD_ASSERT (sdyn != NULL);
3181
3182 /* Update all .dynamic entries referencing .dynstr strings. */
3183 for (extdyn = sdyn->contents;
3184 extdyn < sdyn->contents + sdyn->size;
3185 extdyn += bed->s->sizeof_dyn)
3186 {
3187 Elf_Internal_Dyn dyn;
3188
3189 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3190 switch (dyn.d_tag)
3191 {
3192 case DT_STRSZ:
3193 dyn.d_un.d_val = size;
3194 break;
3195 case DT_NEEDED:
3196 case DT_SONAME:
3197 case DT_RPATH:
3198 case DT_RUNPATH:
3199 case DT_FILTER:
3200 case DT_AUXILIARY:
3201 case DT_AUDIT:
3202 case DT_DEPAUDIT:
3203 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3204 break;
3205 default:
3206 continue;
3207 }
3208 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3209 }
3210
3211 /* Now update local dynamic symbols. */
3212 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3213 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3214 entry->isym.st_name);
3215
3216 /* And the rest of dynamic symbols. */
3217 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3218
3219 /* Adjust version definitions. */
3220 if (elf_tdata (output_bfd)->cverdefs)
3221 {
3222 asection *s;
3223 bfd_byte *p;
3224 bfd_size_type i;
3225 Elf_Internal_Verdef def;
3226 Elf_Internal_Verdaux defaux;
3227
3228 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3229 p = s->contents;
3230 do
3231 {
3232 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3233 &def);
3234 p += sizeof (Elf_External_Verdef);
3235 if (def.vd_aux != sizeof (Elf_External_Verdef))
3236 continue;
3237 for (i = 0; i < def.vd_cnt; ++i)
3238 {
3239 _bfd_elf_swap_verdaux_in (output_bfd,
3240 (Elf_External_Verdaux *) p, &defaux);
3241 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3242 defaux.vda_name);
3243 _bfd_elf_swap_verdaux_out (output_bfd,
3244 &defaux, (Elf_External_Verdaux *) p);
3245 p += sizeof (Elf_External_Verdaux);
3246 }
3247 }
3248 while (def.vd_next);
3249 }
3250
3251 /* Adjust version references. */
3252 if (elf_tdata (output_bfd)->verref)
3253 {
3254 asection *s;
3255 bfd_byte *p;
3256 bfd_size_type i;
3257 Elf_Internal_Verneed need;
3258 Elf_Internal_Vernaux needaux;
3259
3260 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3261 p = s->contents;
3262 do
3263 {
3264 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3265 &need);
3266 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3267 _bfd_elf_swap_verneed_out (output_bfd, &need,
3268 (Elf_External_Verneed *) p);
3269 p += sizeof (Elf_External_Verneed);
3270 for (i = 0; i < need.vn_cnt; ++i)
3271 {
3272 _bfd_elf_swap_vernaux_in (output_bfd,
3273 (Elf_External_Vernaux *) p, &needaux);
3274 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3275 needaux.vna_name);
3276 _bfd_elf_swap_vernaux_out (output_bfd,
3277 &needaux,
3278 (Elf_External_Vernaux *) p);
3279 p += sizeof (Elf_External_Vernaux);
3280 }
3281 }
3282 while (need.vn_next);
3283 }
3284
3285 return TRUE;
3286 }
3287 \f
3288 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3289 The default is to only match when the INPUT and OUTPUT are exactly
3290 the same target. */
3291
3292 bfd_boolean
3293 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3294 const bfd_target *output)
3295 {
3296 return input == output;
3297 }
3298
3299 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3300 This version is used when different targets for the same architecture
3301 are virtually identical. */
3302
3303 bfd_boolean
3304 _bfd_elf_relocs_compatible (const bfd_target *input,
3305 const bfd_target *output)
3306 {
3307 const struct elf_backend_data *obed, *ibed;
3308
3309 if (input == output)
3310 return TRUE;
3311
3312 ibed = xvec_get_elf_backend_data (input);
3313 obed = xvec_get_elf_backend_data (output);
3314
3315 if (ibed->arch != obed->arch)
3316 return FALSE;
3317
3318 /* If both backends are using this function, deem them compatible. */
3319 return ibed->relocs_compatible == obed->relocs_compatible;
3320 }
3321
3322 /* Make a special call to the linker "notice" function to tell it that
3323 we are about to handle an as-needed lib, or have finished
3324 processing the lib. */
3325
3326 bfd_boolean
3327 _bfd_elf_notice_as_needed (bfd *ibfd,
3328 struct bfd_link_info *info,
3329 enum notice_asneeded_action act)
3330 {
3331 return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3332 }
3333
3334 /* Add symbols from an ELF object file to the linker hash table. */
3335
3336 static bfd_boolean
3337 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3338 {
3339 Elf_Internal_Ehdr *ehdr;
3340 Elf_Internal_Shdr *hdr;
3341 bfd_size_type symcount;
3342 bfd_size_type extsymcount;
3343 bfd_size_type extsymoff;
3344 struct elf_link_hash_entry **sym_hash;
3345 bfd_boolean dynamic;
3346 Elf_External_Versym *extversym = NULL;
3347 Elf_External_Versym *ever;
3348 struct elf_link_hash_entry *weaks;
3349 struct elf_link_hash_entry **nondeflt_vers = NULL;
3350 bfd_size_type nondeflt_vers_cnt = 0;
3351 Elf_Internal_Sym *isymbuf = NULL;
3352 Elf_Internal_Sym *isym;
3353 Elf_Internal_Sym *isymend;
3354 const struct elf_backend_data *bed;
3355 bfd_boolean add_needed;
3356 struct elf_link_hash_table *htab;
3357 bfd_size_type amt;
3358 void *alloc_mark = NULL;
3359 struct bfd_hash_entry **old_table = NULL;
3360 unsigned int old_size = 0;
3361 unsigned int old_count = 0;
3362 void *old_tab = NULL;
3363 void *old_ent;
3364 struct bfd_link_hash_entry *old_undefs = NULL;
3365 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3366 long old_dynsymcount = 0;
3367 bfd_size_type old_dynstr_size = 0;
3368 size_t tabsize = 0;
3369 asection *s;
3370
3371 htab = elf_hash_table (info);
3372 bed = get_elf_backend_data (abfd);
3373
3374 if ((abfd->flags & DYNAMIC) == 0)
3375 dynamic = FALSE;
3376 else
3377 {
3378 dynamic = TRUE;
3379
3380 /* You can't use -r against a dynamic object. Also, there's no
3381 hope of using a dynamic object which does not exactly match
3382 the format of the output file. */
3383 if (info->relocatable
3384 || !is_elf_hash_table (htab)
3385 || info->output_bfd->xvec != abfd->xvec)
3386 {
3387 if (info->relocatable)
3388 bfd_set_error (bfd_error_invalid_operation);
3389 else
3390 bfd_set_error (bfd_error_wrong_format);
3391 goto error_return;
3392 }
3393 }
3394
3395 ehdr = elf_elfheader (abfd);
3396 if (info->warn_alternate_em
3397 && bed->elf_machine_code != ehdr->e_machine
3398 && ((bed->elf_machine_alt1 != 0
3399 && ehdr->e_machine == bed->elf_machine_alt1)
3400 || (bed->elf_machine_alt2 != 0
3401 && ehdr->e_machine == bed->elf_machine_alt2)))
3402 info->callbacks->einfo
3403 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3404 ehdr->e_machine, abfd, bed->elf_machine_code);
3405
3406 /* As a GNU extension, any input sections which are named
3407 .gnu.warning.SYMBOL are treated as warning symbols for the given
3408 symbol. This differs from .gnu.warning sections, which generate
3409 warnings when they are included in an output file. */
3410 /* PR 12761: Also generate this warning when building shared libraries. */
3411 for (s = abfd->sections; s != NULL; s = s->next)
3412 {
3413 const char *name;
3414
3415 name = bfd_get_section_name (abfd, s);
3416 if (CONST_STRNEQ (name, ".gnu.warning."))
3417 {
3418 char *msg;
3419 bfd_size_type sz;
3420
3421 name += sizeof ".gnu.warning." - 1;
3422
3423 /* If this is a shared object, then look up the symbol
3424 in the hash table. If it is there, and it is already
3425 been defined, then we will not be using the entry
3426 from this shared object, so we don't need to warn.
3427 FIXME: If we see the definition in a regular object
3428 later on, we will warn, but we shouldn't. The only
3429 fix is to keep track of what warnings we are supposed
3430 to emit, and then handle them all at the end of the
3431 link. */
3432 if (dynamic)
3433 {
3434 struct elf_link_hash_entry *h;
3435
3436 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3437
3438 /* FIXME: What about bfd_link_hash_common? */
3439 if (h != NULL
3440 && (h->root.type == bfd_link_hash_defined
3441 || h->root.type == bfd_link_hash_defweak))
3442 continue;
3443 }
3444
3445 sz = s->size;
3446 msg = (char *) bfd_alloc (abfd, sz + 1);
3447 if (msg == NULL)
3448 goto error_return;
3449
3450 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3451 goto error_return;
3452
3453 msg[sz] = '\0';
3454
3455 if (! (_bfd_generic_link_add_one_symbol
3456 (info, abfd, name, BSF_WARNING, s, 0, msg,
3457 FALSE, bed->collect, NULL)))
3458 goto error_return;
3459
3460 if (!info->relocatable && info->executable)
3461 {
3462 /* Clobber the section size so that the warning does
3463 not get copied into the output file. */
3464 s->size = 0;
3465
3466 /* Also set SEC_EXCLUDE, so that symbols defined in
3467 the warning section don't get copied to the output. */
3468 s->flags |= SEC_EXCLUDE;
3469 }
3470 }
3471 }
3472
3473 add_needed = TRUE;
3474 if (! dynamic)
3475 {
3476 /* If we are creating a shared library, create all the dynamic
3477 sections immediately. We need to attach them to something,
3478 so we attach them to this BFD, provided it is the right
3479 format. FIXME: If there are no input BFD's of the same
3480 format as the output, we can't make a shared library. */
3481 if (info->shared
3482 && is_elf_hash_table (htab)
3483 && info->output_bfd->xvec == abfd->xvec
3484 && !htab->dynamic_sections_created)
3485 {
3486 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3487 goto error_return;
3488 }
3489 }
3490 else if (!is_elf_hash_table (htab))
3491 goto error_return;
3492 else
3493 {
3494 const char *soname = NULL;
3495 char *audit = NULL;
3496 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3497 int ret;
3498
3499 /* ld --just-symbols and dynamic objects don't mix very well.
3500 ld shouldn't allow it. */
3501 if ((s = abfd->sections) != NULL
3502 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3503 abort ();
3504
3505 /* If this dynamic lib was specified on the command line with
3506 --as-needed in effect, then we don't want to add a DT_NEEDED
3507 tag unless the lib is actually used. Similary for libs brought
3508 in by another lib's DT_NEEDED. When --no-add-needed is used
3509 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3510 any dynamic library in DT_NEEDED tags in the dynamic lib at
3511 all. */
3512 add_needed = (elf_dyn_lib_class (abfd)
3513 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3514 | DYN_NO_NEEDED)) == 0;
3515
3516 s = bfd_get_section_by_name (abfd, ".dynamic");
3517 if (s != NULL)
3518 {
3519 bfd_byte *dynbuf;
3520 bfd_byte *extdyn;
3521 unsigned int elfsec;
3522 unsigned long shlink;
3523
3524 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3525 {
3526 error_free_dyn:
3527 free (dynbuf);
3528 goto error_return;
3529 }
3530
3531 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3532 if (elfsec == SHN_BAD)
3533 goto error_free_dyn;
3534 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3535
3536 for (extdyn = dynbuf;
3537 extdyn < dynbuf + s->size;
3538 extdyn += bed->s->sizeof_dyn)
3539 {
3540 Elf_Internal_Dyn dyn;
3541
3542 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3543 if (dyn.d_tag == DT_SONAME)
3544 {
3545 unsigned int tagv = dyn.d_un.d_val;
3546 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3547 if (soname == NULL)
3548 goto error_free_dyn;
3549 }
3550 if (dyn.d_tag == DT_NEEDED)
3551 {
3552 struct bfd_link_needed_list *n, **pn;
3553 char *fnm, *anm;
3554 unsigned int tagv = dyn.d_un.d_val;
3555
3556 amt = sizeof (struct bfd_link_needed_list);
3557 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3558 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3559 if (n == NULL || fnm == NULL)
3560 goto error_free_dyn;
3561 amt = strlen (fnm) + 1;
3562 anm = (char *) bfd_alloc (abfd, amt);
3563 if (anm == NULL)
3564 goto error_free_dyn;
3565 memcpy (anm, fnm, amt);
3566 n->name = anm;
3567 n->by = abfd;
3568 n->next = NULL;
3569 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3570 ;
3571 *pn = n;
3572 }
3573 if (dyn.d_tag == DT_RUNPATH)
3574 {
3575 struct bfd_link_needed_list *n, **pn;
3576 char *fnm, *anm;
3577 unsigned int tagv = dyn.d_un.d_val;
3578
3579 amt = sizeof (struct bfd_link_needed_list);
3580 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3581 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (n == NULL || fnm == NULL)
3583 goto error_free_dyn;
3584 amt = strlen (fnm) + 1;
3585 anm = (char *) bfd_alloc (abfd, amt);
3586 if (anm == NULL)
3587 goto error_free_dyn;
3588 memcpy (anm, fnm, amt);
3589 n->name = anm;
3590 n->by = abfd;
3591 n->next = NULL;
3592 for (pn = & runpath;
3593 *pn != NULL;
3594 pn = &(*pn)->next)
3595 ;
3596 *pn = n;
3597 }
3598 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3599 if (!runpath && dyn.d_tag == DT_RPATH)
3600 {
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3604
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & rpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3621 ;
3622 *pn = n;
3623 }
3624 if (dyn.d_tag == DT_AUDIT)
3625 {
3626 unsigned int tagv = dyn.d_un.d_val;
3627 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3628 }
3629 }
3630
3631 free (dynbuf);
3632 }
3633
3634 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3635 frees all more recently bfd_alloc'd blocks as well. */
3636 if (runpath)
3637 rpath = runpath;
3638
3639 if (rpath)
3640 {
3641 struct bfd_link_needed_list **pn;
3642 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3643 ;
3644 *pn = rpath;
3645 }
3646
3647 /* We do not want to include any of the sections in a dynamic
3648 object in the output file. We hack by simply clobbering the
3649 list of sections in the BFD. This could be handled more
3650 cleanly by, say, a new section flag; the existing
3651 SEC_NEVER_LOAD flag is not the one we want, because that one
3652 still implies that the section takes up space in the output
3653 file. */
3654 bfd_section_list_clear (abfd);
3655
3656 /* Find the name to use in a DT_NEEDED entry that refers to this
3657 object. If the object has a DT_SONAME entry, we use it.
3658 Otherwise, if the generic linker stuck something in
3659 elf_dt_name, we use that. Otherwise, we just use the file
3660 name. */
3661 if (soname == NULL || *soname == '\0')
3662 {
3663 soname = elf_dt_name (abfd);
3664 if (soname == NULL || *soname == '\0')
3665 soname = bfd_get_filename (abfd);
3666 }
3667
3668 /* Save the SONAME because sometimes the linker emulation code
3669 will need to know it. */
3670 elf_dt_name (abfd) = soname;
3671
3672 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3673 if (ret < 0)
3674 goto error_return;
3675
3676 /* If we have already included this dynamic object in the
3677 link, just ignore it. There is no reason to include a
3678 particular dynamic object more than once. */
3679 if (ret > 0)
3680 return TRUE;
3681
3682 /* Save the DT_AUDIT entry for the linker emulation code. */
3683 elf_dt_audit (abfd) = audit;
3684 }
3685
3686 /* If this is a dynamic object, we always link against the .dynsym
3687 symbol table, not the .symtab symbol table. The dynamic linker
3688 will only see the .dynsym symbol table, so there is no reason to
3689 look at .symtab for a dynamic object. */
3690
3691 if (! dynamic || elf_dynsymtab (abfd) == 0)
3692 hdr = &elf_tdata (abfd)->symtab_hdr;
3693 else
3694 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3695
3696 symcount = hdr->sh_size / bed->s->sizeof_sym;
3697
3698 /* The sh_info field of the symtab header tells us where the
3699 external symbols start. We don't care about the local symbols at
3700 this point. */
3701 if (elf_bad_symtab (abfd))
3702 {
3703 extsymcount = symcount;
3704 extsymoff = 0;
3705 }
3706 else
3707 {
3708 extsymcount = symcount - hdr->sh_info;
3709 extsymoff = hdr->sh_info;
3710 }
3711
3712 sym_hash = elf_sym_hashes (abfd);
3713 if (extsymcount != 0)
3714 {
3715 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3716 NULL, NULL, NULL);
3717 if (isymbuf == NULL)
3718 goto error_return;
3719
3720 if (sym_hash == NULL)
3721 {
3722 /* We store a pointer to the hash table entry for each
3723 external symbol. */
3724 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3725 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3726 if (sym_hash == NULL)
3727 goto error_free_sym;
3728 elf_sym_hashes (abfd) = sym_hash;
3729 }
3730 }
3731
3732 if (dynamic)
3733 {
3734 /* Read in any version definitions. */
3735 if (!_bfd_elf_slurp_version_tables (abfd,
3736 info->default_imported_symver))
3737 goto error_free_sym;
3738
3739 /* Read in the symbol versions, but don't bother to convert them
3740 to internal format. */
3741 if (elf_dynversym (abfd) != 0)
3742 {
3743 Elf_Internal_Shdr *versymhdr;
3744
3745 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3746 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3747 if (extversym == NULL)
3748 goto error_free_sym;
3749 amt = versymhdr->sh_size;
3750 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3751 || bfd_bread (extversym, amt, abfd) != amt)
3752 goto error_free_vers;
3753 }
3754 }
3755
3756 /* If we are loading an as-needed shared lib, save the symbol table
3757 state before we start adding symbols. If the lib turns out
3758 to be unneeded, restore the state. */
3759 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3760 {
3761 unsigned int i;
3762 size_t entsize;
3763
3764 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3765 {
3766 struct bfd_hash_entry *p;
3767 struct elf_link_hash_entry *h;
3768
3769 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3770 {
3771 h = (struct elf_link_hash_entry *) p;
3772 entsize += htab->root.table.entsize;
3773 if (h->root.type == bfd_link_hash_warning)
3774 entsize += htab->root.table.entsize;
3775 }
3776 }
3777
3778 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3779 old_tab = bfd_malloc (tabsize + entsize);
3780 if (old_tab == NULL)
3781 goto error_free_vers;
3782
3783 /* Remember the current objalloc pointer, so that all mem for
3784 symbols added can later be reclaimed. */
3785 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3786 if (alloc_mark == NULL)
3787 goto error_free_vers;
3788
3789 /* Make a special call to the linker "notice" function to
3790 tell it that we are about to handle an as-needed lib. */
3791 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3792 goto error_free_vers;
3793
3794 /* Clone the symbol table. Remember some pointers into the
3795 symbol table, and dynamic symbol count. */
3796 old_ent = (char *) old_tab + tabsize;
3797 memcpy (old_tab, htab->root.table.table, tabsize);
3798 old_undefs = htab->root.undefs;
3799 old_undefs_tail = htab->root.undefs_tail;
3800 old_table = htab->root.table.table;
3801 old_size = htab->root.table.size;
3802 old_count = htab->root.table.count;
3803 old_dynsymcount = htab->dynsymcount;
3804 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3805
3806 for (i = 0; i < htab->root.table.size; i++)
3807 {
3808 struct bfd_hash_entry *p;
3809 struct elf_link_hash_entry *h;
3810
3811 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3812 {
3813 memcpy (old_ent, p, htab->root.table.entsize);
3814 old_ent = (char *) old_ent + htab->root.table.entsize;
3815 h = (struct elf_link_hash_entry *) p;
3816 if (h->root.type == bfd_link_hash_warning)
3817 {
3818 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3819 old_ent = (char *) old_ent + htab->root.table.entsize;
3820 }
3821 }
3822 }
3823 }
3824
3825 weaks = NULL;
3826 ever = extversym != NULL ? extversym + extsymoff : NULL;
3827 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3828 isym < isymend;
3829 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3830 {
3831 int bind;
3832 bfd_vma value;
3833 asection *sec, *new_sec;
3834 flagword flags;
3835 const char *name;
3836 struct elf_link_hash_entry *h;
3837 struct elf_link_hash_entry *hi;
3838 bfd_boolean definition;
3839 bfd_boolean size_change_ok;
3840 bfd_boolean type_change_ok;
3841 bfd_boolean new_weakdef;
3842 bfd_boolean new_weak;
3843 bfd_boolean old_weak;
3844 bfd_boolean override;
3845 bfd_boolean common;
3846 unsigned int old_alignment;
3847 bfd *old_bfd;
3848
3849 override = FALSE;
3850
3851 flags = BSF_NO_FLAGS;
3852 sec = NULL;
3853 value = isym->st_value;
3854 common = bed->common_definition (isym);
3855
3856 bind = ELF_ST_BIND (isym->st_info);
3857 switch (bind)
3858 {
3859 case STB_LOCAL:
3860 /* This should be impossible, since ELF requires that all
3861 global symbols follow all local symbols, and that sh_info
3862 point to the first global symbol. Unfortunately, Irix 5
3863 screws this up. */
3864 continue;
3865
3866 case STB_GLOBAL:
3867 if (isym->st_shndx != SHN_UNDEF && !common)
3868 flags = BSF_GLOBAL;
3869 break;
3870
3871 case STB_WEAK:
3872 flags = BSF_WEAK;
3873 break;
3874
3875 case STB_GNU_UNIQUE:
3876 flags = BSF_GNU_UNIQUE;
3877 break;
3878
3879 default:
3880 /* Leave it up to the processor backend. */
3881 break;
3882 }
3883
3884 if (isym->st_shndx == SHN_UNDEF)
3885 sec = bfd_und_section_ptr;
3886 else if (isym->st_shndx == SHN_ABS)
3887 sec = bfd_abs_section_ptr;
3888 else if (isym->st_shndx == SHN_COMMON)
3889 {
3890 sec = bfd_com_section_ptr;
3891 /* What ELF calls the size we call the value. What ELF
3892 calls the value we call the alignment. */
3893 value = isym->st_size;
3894 }
3895 else
3896 {
3897 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3898 if (sec == NULL)
3899 sec = bfd_abs_section_ptr;
3900 else if (discarded_section (sec))
3901 {
3902 /* Symbols from discarded section are undefined. We keep
3903 its visibility. */
3904 sec = bfd_und_section_ptr;
3905 isym->st_shndx = SHN_UNDEF;
3906 }
3907 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3908 value -= sec->vma;
3909 }
3910
3911 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3912 isym->st_name);
3913 if (name == NULL)
3914 goto error_free_vers;
3915
3916 if (isym->st_shndx == SHN_COMMON
3917 && (abfd->flags & BFD_PLUGIN) != 0)
3918 {
3919 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3920
3921 if (xc == NULL)
3922 {
3923 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3924 | SEC_EXCLUDE);
3925 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3926 if (xc == NULL)
3927 goto error_free_vers;
3928 }
3929 sec = xc;
3930 }
3931 else if (isym->st_shndx == SHN_COMMON
3932 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3933 && !info->relocatable)
3934 {
3935 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3936
3937 if (tcomm == NULL)
3938 {
3939 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3940 | SEC_LINKER_CREATED);
3941 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3942 if (tcomm == NULL)
3943 goto error_free_vers;
3944 }
3945 sec = tcomm;
3946 }
3947 else if (bed->elf_add_symbol_hook)
3948 {
3949 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3950 &sec, &value))
3951 goto error_free_vers;
3952
3953 /* The hook function sets the name to NULL if this symbol
3954 should be skipped for some reason. */
3955 if (name == NULL)
3956 continue;
3957 }
3958
3959 /* Sanity check that all possibilities were handled. */
3960 if (sec == NULL)
3961 {
3962 bfd_set_error (bfd_error_bad_value);
3963 goto error_free_vers;
3964 }
3965
3966 /* Silently discard TLS symbols from --just-syms. There's
3967 no way to combine a static TLS block with a new TLS block
3968 for this executable. */
3969 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3970 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3971 continue;
3972
3973 if (bfd_is_und_section (sec)
3974 || bfd_is_com_section (sec))
3975 definition = FALSE;
3976 else
3977 definition = TRUE;
3978
3979 size_change_ok = FALSE;
3980 type_change_ok = bed->type_change_ok;
3981 old_weak = FALSE;
3982 old_alignment = 0;
3983 old_bfd = NULL;
3984 new_sec = sec;
3985
3986 if (is_elf_hash_table (htab))
3987 {
3988 Elf_Internal_Versym iver;
3989 unsigned int vernum = 0;
3990 bfd_boolean skip;
3991
3992 if (ever == NULL)
3993 {
3994 if (info->default_imported_symver)
3995 /* Use the default symbol version created earlier. */
3996 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3997 else
3998 iver.vs_vers = 0;
3999 }
4000 else
4001 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4002
4003 vernum = iver.vs_vers & VERSYM_VERSION;
4004
4005 /* If this is a hidden symbol, or if it is not version
4006 1, we append the version name to the symbol name.
4007 However, we do not modify a non-hidden absolute symbol
4008 if it is not a function, because it might be the version
4009 symbol itself. FIXME: What if it isn't? */
4010 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4011 || (vernum > 1
4012 && (!bfd_is_abs_section (sec)
4013 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4014 {
4015 const char *verstr;
4016 size_t namelen, verlen, newlen;
4017 char *newname, *p;
4018
4019 if (isym->st_shndx != SHN_UNDEF)
4020 {
4021 if (vernum > elf_tdata (abfd)->cverdefs)
4022 verstr = NULL;
4023 else if (vernum > 1)
4024 verstr =
4025 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4026 else
4027 verstr = "";
4028
4029 if (verstr == NULL)
4030 {
4031 (*_bfd_error_handler)
4032 (_("%B: %s: invalid version %u (max %d)"),
4033 abfd, name, vernum,
4034 elf_tdata (abfd)->cverdefs);
4035 bfd_set_error (bfd_error_bad_value);
4036 goto error_free_vers;
4037 }
4038 }
4039 else
4040 {
4041 /* We cannot simply test for the number of
4042 entries in the VERNEED section since the
4043 numbers for the needed versions do not start
4044 at 0. */
4045 Elf_Internal_Verneed *t;
4046
4047 verstr = NULL;
4048 for (t = elf_tdata (abfd)->verref;
4049 t != NULL;
4050 t = t->vn_nextref)
4051 {
4052 Elf_Internal_Vernaux *a;
4053
4054 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4055 {
4056 if (a->vna_other == vernum)
4057 {
4058 verstr = a->vna_nodename;
4059 break;
4060 }
4061 }
4062 if (a != NULL)
4063 break;
4064 }
4065 if (verstr == NULL)
4066 {
4067 (*_bfd_error_handler)
4068 (_("%B: %s: invalid needed version %d"),
4069 abfd, name, vernum);
4070 bfd_set_error (bfd_error_bad_value);
4071 goto error_free_vers;
4072 }
4073 }
4074
4075 namelen = strlen (name);
4076 verlen = strlen (verstr);
4077 newlen = namelen + verlen + 2;
4078 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4079 && isym->st_shndx != SHN_UNDEF)
4080 ++newlen;
4081
4082 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4083 if (newname == NULL)
4084 goto error_free_vers;
4085 memcpy (newname, name, namelen);
4086 p = newname + namelen;
4087 *p++ = ELF_VER_CHR;
4088 /* If this is a defined non-hidden version symbol,
4089 we add another @ to the name. This indicates the
4090 default version of the symbol. */
4091 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4092 && isym->st_shndx != SHN_UNDEF)
4093 *p++ = ELF_VER_CHR;
4094 memcpy (p, verstr, verlen + 1);
4095
4096 name = newname;
4097 }
4098
4099 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4100 sym_hash, &old_bfd, &old_weak,
4101 &old_alignment, &skip, &override,
4102 &type_change_ok, &size_change_ok))
4103 goto error_free_vers;
4104
4105 if (skip)
4106 continue;
4107
4108 if (override)
4109 definition = FALSE;
4110
4111 h = *sym_hash;
4112 while (h->root.type == bfd_link_hash_indirect
4113 || h->root.type == bfd_link_hash_warning)
4114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4115
4116 if (elf_tdata (abfd)->verdef != NULL
4117 && vernum > 1
4118 && definition)
4119 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4120 }
4121
4122 if (! (_bfd_generic_link_add_one_symbol
4123 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4124 (struct bfd_link_hash_entry **) sym_hash)))
4125 goto error_free_vers;
4126
4127 h = *sym_hash;
4128 /* We need to make sure that indirect symbol dynamic flags are
4129 updated. */
4130 hi = h;
4131 while (h->root.type == bfd_link_hash_indirect
4132 || h->root.type == bfd_link_hash_warning)
4133 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4134
4135 *sym_hash = h;
4136
4137 new_weak = (flags & BSF_WEAK) != 0;
4138 new_weakdef = FALSE;
4139 if (dynamic
4140 && definition
4141 && new_weak
4142 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4143 && is_elf_hash_table (htab)
4144 && h->u.weakdef == NULL)
4145 {
4146 /* Keep a list of all weak defined non function symbols from
4147 a dynamic object, using the weakdef field. Later in this
4148 function we will set the weakdef field to the correct
4149 value. We only put non-function symbols from dynamic
4150 objects on this list, because that happens to be the only
4151 time we need to know the normal symbol corresponding to a
4152 weak symbol, and the information is time consuming to
4153 figure out. If the weakdef field is not already NULL,
4154 then this symbol was already defined by some previous
4155 dynamic object, and we will be using that previous
4156 definition anyhow. */
4157
4158 h->u.weakdef = weaks;
4159 weaks = h;
4160 new_weakdef = TRUE;
4161 }
4162
4163 /* Set the alignment of a common symbol. */
4164 if ((common || bfd_is_com_section (sec))
4165 && h->root.type == bfd_link_hash_common)
4166 {
4167 unsigned int align;
4168
4169 if (common)
4170 align = bfd_log2 (isym->st_value);
4171 else
4172 {
4173 /* The new symbol is a common symbol in a shared object.
4174 We need to get the alignment from the section. */
4175 align = new_sec->alignment_power;
4176 }
4177 if (align > old_alignment)
4178 h->root.u.c.p->alignment_power = align;
4179 else
4180 h->root.u.c.p->alignment_power = old_alignment;
4181 }
4182
4183 if (is_elf_hash_table (htab))
4184 {
4185 /* Set a flag in the hash table entry indicating the type of
4186 reference or definition we just found. A dynamic symbol
4187 is one which is referenced or defined by both a regular
4188 object and a shared object. */
4189 bfd_boolean dynsym = FALSE;
4190
4191 /* Plugin symbols aren't normal. Don't set def_regular or
4192 ref_regular for them, or make them dynamic. */
4193 if ((abfd->flags & BFD_PLUGIN) != 0)
4194 ;
4195 else if (! dynamic)
4196 {
4197 if (! definition)
4198 {
4199 h->ref_regular = 1;
4200 if (bind != STB_WEAK)
4201 h->ref_regular_nonweak = 1;
4202 }
4203 else
4204 {
4205 h->def_regular = 1;
4206 if (h->def_dynamic)
4207 {
4208 h->def_dynamic = 0;
4209 h->ref_dynamic = 1;
4210 }
4211 }
4212
4213 /* If the indirect symbol has been forced local, don't
4214 make the real symbol dynamic. */
4215 if ((h == hi || !hi->forced_local)
4216 && (! info->executable
4217 || h->def_dynamic
4218 || h->ref_dynamic))
4219 dynsym = TRUE;
4220 }
4221 else
4222 {
4223 if (! definition)
4224 {
4225 h->ref_dynamic = 1;
4226 hi->ref_dynamic = 1;
4227 }
4228 else
4229 {
4230 h->def_dynamic = 1;
4231 hi->def_dynamic = 1;
4232 }
4233
4234 /* If the indirect symbol has been forced local, don't
4235 make the real symbol dynamic. */
4236 if ((h == hi || !hi->forced_local)
4237 && (h->def_regular
4238 || h->ref_regular
4239 || (h->u.weakdef != NULL
4240 && ! new_weakdef
4241 && h->u.weakdef->dynindx != -1)))
4242 dynsym = TRUE;
4243 }
4244
4245 /* Check to see if we need to add an indirect symbol for
4246 the default name. */
4247 if (definition
4248 || (!override && h->root.type == bfd_link_hash_common))
4249 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4250 sec, value, &old_bfd, &dynsym))
4251 goto error_free_vers;
4252
4253 /* Check the alignment when a common symbol is involved. This
4254 can change when a common symbol is overridden by a normal
4255 definition or a common symbol is ignored due to the old
4256 normal definition. We need to make sure the maximum
4257 alignment is maintained. */
4258 if ((old_alignment || common)
4259 && h->root.type != bfd_link_hash_common)
4260 {
4261 unsigned int common_align;
4262 unsigned int normal_align;
4263 unsigned int symbol_align;
4264 bfd *normal_bfd;
4265 bfd *common_bfd;
4266
4267 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4268 || h->root.type == bfd_link_hash_defweak);
4269
4270 symbol_align = ffs (h->root.u.def.value) - 1;
4271 if (h->root.u.def.section->owner != NULL
4272 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4273 {
4274 normal_align = h->root.u.def.section->alignment_power;
4275 if (normal_align > symbol_align)
4276 normal_align = symbol_align;
4277 }
4278 else
4279 normal_align = symbol_align;
4280
4281 if (old_alignment)
4282 {
4283 common_align = old_alignment;
4284 common_bfd = old_bfd;
4285 normal_bfd = abfd;
4286 }
4287 else
4288 {
4289 common_align = bfd_log2 (isym->st_value);
4290 common_bfd = abfd;
4291 normal_bfd = old_bfd;
4292 }
4293
4294 if (normal_align < common_align)
4295 {
4296 /* PR binutils/2735 */
4297 if (normal_bfd == NULL)
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of common symbol `%s' in %B is"
4300 " greater than the alignment (%u) of its section %A"),
4301 common_bfd, h->root.u.def.section,
4302 1 << common_align, name, 1 << normal_align);
4303 else
4304 (*_bfd_error_handler)
4305 (_("Warning: alignment %u of symbol `%s' in %B"
4306 " is smaller than %u in %B"),
4307 normal_bfd, common_bfd,
4308 1 << normal_align, name, 1 << common_align);
4309 }
4310 }
4311
4312 /* Remember the symbol size if it isn't undefined. */
4313 if (isym->st_size != 0
4314 && isym->st_shndx != SHN_UNDEF
4315 && (definition || h->size == 0))
4316 {
4317 if (h->size != 0
4318 && h->size != isym->st_size
4319 && ! size_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: size of symbol `%s' changed"
4322 " from %lu in %B to %lu in %B"),
4323 old_bfd, abfd,
4324 name, (unsigned long) h->size,
4325 (unsigned long) isym->st_size);
4326
4327 h->size = isym->st_size;
4328 }
4329
4330 /* If this is a common symbol, then we always want H->SIZE
4331 to be the size of the common symbol. The code just above
4332 won't fix the size if a common symbol becomes larger. We
4333 don't warn about a size change here, because that is
4334 covered by --warn-common. Allow changes between different
4335 function types. */
4336 if (h->root.type == bfd_link_hash_common)
4337 h->size = h->root.u.c.size;
4338
4339 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4340 && ((definition && !new_weak)
4341 || (old_weak && h->root.type == bfd_link_hash_common)
4342 || h->type == STT_NOTYPE))
4343 {
4344 unsigned int type = ELF_ST_TYPE (isym->st_info);
4345
4346 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4347 symbol. */
4348 if (type == STT_GNU_IFUNC
4349 && (abfd->flags & DYNAMIC) != 0)
4350 type = STT_FUNC;
4351
4352 if (h->type != type)
4353 {
4354 if (h->type != STT_NOTYPE && ! type_change_ok)
4355 (*_bfd_error_handler)
4356 (_("Warning: type of symbol `%s' changed"
4357 " from %d to %d in %B"),
4358 abfd, name, h->type, type);
4359
4360 h->type = type;
4361 }
4362 }
4363
4364 /* Merge st_other field. */
4365 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4366
4367 /* We don't want to make debug symbol dynamic. */
4368 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4369 dynsym = FALSE;
4370
4371 /* Nor should we make plugin symbols dynamic. */
4372 if ((abfd->flags & BFD_PLUGIN) != 0)
4373 dynsym = FALSE;
4374
4375 if (definition)
4376 {
4377 h->target_internal = isym->st_target_internal;
4378 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4379 }
4380
4381 if (definition && !dynamic)
4382 {
4383 char *p = strchr (name, ELF_VER_CHR);
4384 if (p != NULL && p[1] != ELF_VER_CHR)
4385 {
4386 /* Queue non-default versions so that .symver x, x@FOO
4387 aliases can be checked. */
4388 if (!nondeflt_vers)
4389 {
4390 amt = ((isymend - isym + 1)
4391 * sizeof (struct elf_link_hash_entry *));
4392 nondeflt_vers =
4393 (struct elf_link_hash_entry **) bfd_malloc (amt);
4394 if (!nondeflt_vers)
4395 goto error_free_vers;
4396 }
4397 nondeflt_vers[nondeflt_vers_cnt++] = h;
4398 }
4399 }
4400
4401 if (dynsym && h->dynindx == -1)
4402 {
4403 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4404 goto error_free_vers;
4405 if (h->u.weakdef != NULL
4406 && ! new_weakdef
4407 && h->u.weakdef->dynindx == -1)
4408 {
4409 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4410 goto error_free_vers;
4411 }
4412 }
4413 else if (dynsym && h->dynindx != -1)
4414 /* If the symbol already has a dynamic index, but
4415 visibility says it should not be visible, turn it into
4416 a local symbol. */
4417 switch (ELF_ST_VISIBILITY (h->other))
4418 {
4419 case STV_INTERNAL:
4420 case STV_HIDDEN:
4421 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4422 dynsym = FALSE;
4423 break;
4424 }
4425
4426 /* Don't add DT_NEEDED for references from the dummy bfd. */
4427 if (!add_needed
4428 && definition
4429 && ((dynsym
4430 && h->ref_regular_nonweak
4431 && (old_bfd == NULL
4432 || (old_bfd->flags & BFD_PLUGIN) == 0))
4433 || (h->ref_dynamic_nonweak
4434 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4435 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4436 {
4437 int ret;
4438 const char *soname = elf_dt_name (abfd);
4439
4440 /* A symbol from a library loaded via DT_NEEDED of some
4441 other library is referenced by a regular object.
4442 Add a DT_NEEDED entry for it. Issue an error if
4443 --no-add-needed is used and the reference was not
4444 a weak one. */
4445 if (old_bfd != NULL
4446 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4447 {
4448 (*_bfd_error_handler)
4449 (_("%B: undefined reference to symbol '%s'"),
4450 old_bfd, name);
4451 bfd_set_error (bfd_error_missing_dso);
4452 goto error_free_vers;
4453 }
4454
4455 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4456 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4457
4458 add_needed = TRUE;
4459 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4460 if (ret < 0)
4461 goto error_free_vers;
4462
4463 BFD_ASSERT (ret == 0);
4464 }
4465 }
4466 }
4467
4468 if (extversym != NULL)
4469 {
4470 free (extversym);
4471 extversym = NULL;
4472 }
4473
4474 if (isymbuf != NULL)
4475 {
4476 free (isymbuf);
4477 isymbuf = NULL;
4478 }
4479
4480 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4481 {
4482 unsigned int i;
4483
4484 /* Restore the symbol table. */
4485 old_ent = (char *) old_tab + tabsize;
4486 memset (elf_sym_hashes (abfd), 0,
4487 extsymcount * sizeof (struct elf_link_hash_entry *));
4488 htab->root.table.table = old_table;
4489 htab->root.table.size = old_size;
4490 htab->root.table.count = old_count;
4491 memcpy (htab->root.table.table, old_tab, tabsize);
4492 htab->root.undefs = old_undefs;
4493 htab->root.undefs_tail = old_undefs_tail;
4494 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4495 for (i = 0; i < htab->root.table.size; i++)
4496 {
4497 struct bfd_hash_entry *p;
4498 struct elf_link_hash_entry *h;
4499 bfd_size_type size;
4500 unsigned int alignment_power;
4501
4502 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4503 {
4504 h = (struct elf_link_hash_entry *) p;
4505 if (h->root.type == bfd_link_hash_warning)
4506 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4507 if (h->dynindx >= old_dynsymcount
4508 && h->dynstr_index < old_dynstr_size)
4509 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4510
4511 /* Preserve the maximum alignment and size for common
4512 symbols even if this dynamic lib isn't on DT_NEEDED
4513 since it can still be loaded at run time by another
4514 dynamic lib. */
4515 if (h->root.type == bfd_link_hash_common)
4516 {
4517 size = h->root.u.c.size;
4518 alignment_power = h->root.u.c.p->alignment_power;
4519 }
4520 else
4521 {
4522 size = 0;
4523 alignment_power = 0;
4524 }
4525 memcpy (p, old_ent, htab->root.table.entsize);
4526 old_ent = (char *) old_ent + htab->root.table.entsize;
4527 h = (struct elf_link_hash_entry *) p;
4528 if (h->root.type == bfd_link_hash_warning)
4529 {
4530 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4531 old_ent = (char *) old_ent + htab->root.table.entsize;
4532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4533 }
4534 if (h->root.type == bfd_link_hash_common)
4535 {
4536 if (size > h->root.u.c.size)
4537 h->root.u.c.size = size;
4538 if (alignment_power > h->root.u.c.p->alignment_power)
4539 h->root.u.c.p->alignment_power = alignment_power;
4540 }
4541 }
4542 }
4543
4544 /* Make a special call to the linker "notice" function to
4545 tell it that symbols added for crefs may need to be removed. */
4546 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4547 goto error_free_vers;
4548
4549 free (old_tab);
4550 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4551 alloc_mark);
4552 if (nondeflt_vers != NULL)
4553 free (nondeflt_vers);
4554 return TRUE;
4555 }
4556
4557 if (old_tab != NULL)
4558 {
4559 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4560 goto error_free_vers;
4561 free (old_tab);
4562 old_tab = NULL;
4563 }
4564
4565 /* Now that all the symbols from this input file are created, handle
4566 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4567 if (nondeflt_vers != NULL)
4568 {
4569 bfd_size_type cnt, symidx;
4570
4571 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4572 {
4573 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4574 char *shortname, *p;
4575
4576 p = strchr (h->root.root.string, ELF_VER_CHR);
4577 if (p == NULL
4578 || (h->root.type != bfd_link_hash_defined
4579 && h->root.type != bfd_link_hash_defweak))
4580 continue;
4581
4582 amt = p - h->root.root.string;
4583 shortname = (char *) bfd_malloc (amt + 1);
4584 if (!shortname)
4585 goto error_free_vers;
4586 memcpy (shortname, h->root.root.string, amt);
4587 shortname[amt] = '\0';
4588
4589 hi = (struct elf_link_hash_entry *)
4590 bfd_link_hash_lookup (&htab->root, shortname,
4591 FALSE, FALSE, FALSE);
4592 if (hi != NULL
4593 && hi->root.type == h->root.type
4594 && hi->root.u.def.value == h->root.u.def.value
4595 && hi->root.u.def.section == h->root.u.def.section)
4596 {
4597 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4598 hi->root.type = bfd_link_hash_indirect;
4599 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4600 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4601 sym_hash = elf_sym_hashes (abfd);
4602 if (sym_hash)
4603 for (symidx = 0; symidx < extsymcount; ++symidx)
4604 if (sym_hash[symidx] == hi)
4605 {
4606 sym_hash[symidx] = h;
4607 break;
4608 }
4609 }
4610 free (shortname);
4611 }
4612 free (nondeflt_vers);
4613 nondeflt_vers = NULL;
4614 }
4615
4616 /* Now set the weakdefs field correctly for all the weak defined
4617 symbols we found. The only way to do this is to search all the
4618 symbols. Since we only need the information for non functions in
4619 dynamic objects, that's the only time we actually put anything on
4620 the list WEAKS. We need this information so that if a regular
4621 object refers to a symbol defined weakly in a dynamic object, the
4622 real symbol in the dynamic object is also put in the dynamic
4623 symbols; we also must arrange for both symbols to point to the
4624 same memory location. We could handle the general case of symbol
4625 aliasing, but a general symbol alias can only be generated in
4626 assembler code, handling it correctly would be very time
4627 consuming, and other ELF linkers don't handle general aliasing
4628 either. */
4629 if (weaks != NULL)
4630 {
4631 struct elf_link_hash_entry **hpp;
4632 struct elf_link_hash_entry **hppend;
4633 struct elf_link_hash_entry **sorted_sym_hash;
4634 struct elf_link_hash_entry *h;
4635 size_t sym_count;
4636
4637 /* Since we have to search the whole symbol list for each weak
4638 defined symbol, search time for N weak defined symbols will be
4639 O(N^2). Binary search will cut it down to O(NlogN). */
4640 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4641 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4642 if (sorted_sym_hash == NULL)
4643 goto error_return;
4644 sym_hash = sorted_sym_hash;
4645 hpp = elf_sym_hashes (abfd);
4646 hppend = hpp + extsymcount;
4647 sym_count = 0;
4648 for (; hpp < hppend; hpp++)
4649 {
4650 h = *hpp;
4651 if (h != NULL
4652 && h->root.type == bfd_link_hash_defined
4653 && !bed->is_function_type (h->type))
4654 {
4655 *sym_hash = h;
4656 sym_hash++;
4657 sym_count++;
4658 }
4659 }
4660
4661 qsort (sorted_sym_hash, sym_count,
4662 sizeof (struct elf_link_hash_entry *),
4663 elf_sort_symbol);
4664
4665 while (weaks != NULL)
4666 {
4667 struct elf_link_hash_entry *hlook;
4668 asection *slook;
4669 bfd_vma vlook;
4670 size_t i, j, idx = 0;
4671
4672 hlook = weaks;
4673 weaks = hlook->u.weakdef;
4674 hlook->u.weakdef = NULL;
4675
4676 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4677 || hlook->root.type == bfd_link_hash_defweak
4678 || hlook->root.type == bfd_link_hash_common
4679 || hlook->root.type == bfd_link_hash_indirect);
4680 slook = hlook->root.u.def.section;
4681 vlook = hlook->root.u.def.value;
4682
4683 i = 0;
4684 j = sym_count;
4685 while (i != j)
4686 {
4687 bfd_signed_vma vdiff;
4688 idx = (i + j) / 2;
4689 h = sorted_sym_hash[idx];
4690 vdiff = vlook - h->root.u.def.value;
4691 if (vdiff < 0)
4692 j = idx;
4693 else if (vdiff > 0)
4694 i = idx + 1;
4695 else
4696 {
4697 long sdiff = slook->id - h->root.u.def.section->id;
4698 if (sdiff < 0)
4699 j = idx;
4700 else if (sdiff > 0)
4701 i = idx + 1;
4702 else
4703 break;
4704 }
4705 }
4706
4707 /* We didn't find a value/section match. */
4708 if (i == j)
4709 continue;
4710
4711 /* With multiple aliases, or when the weak symbol is already
4712 strongly defined, we have multiple matching symbols and
4713 the binary search above may land on any of them. Step
4714 one past the matching symbol(s). */
4715 while (++idx != j)
4716 {
4717 h = sorted_sym_hash[idx];
4718 if (h->root.u.def.section != slook
4719 || h->root.u.def.value != vlook)
4720 break;
4721 }
4722
4723 /* Now look back over the aliases. Since we sorted by size
4724 as well as value and section, we'll choose the one with
4725 the largest size. */
4726 while (idx-- != i)
4727 {
4728 h = sorted_sym_hash[idx];
4729
4730 /* Stop if value or section doesn't match. */
4731 if (h->root.u.def.section != slook
4732 || h->root.u.def.value != vlook)
4733 break;
4734 else if (h != hlook)
4735 {
4736 hlook->u.weakdef = h;
4737
4738 /* If the weak definition is in the list of dynamic
4739 symbols, make sure the real definition is put
4740 there as well. */
4741 if (hlook->dynindx != -1 && h->dynindx == -1)
4742 {
4743 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4744 {
4745 err_free_sym_hash:
4746 free (sorted_sym_hash);
4747 goto error_return;
4748 }
4749 }
4750
4751 /* If the real definition is in the list of dynamic
4752 symbols, make sure the weak definition is put
4753 there as well. If we don't do this, then the
4754 dynamic loader might not merge the entries for the
4755 real definition and the weak definition. */
4756 if (h->dynindx != -1 && hlook->dynindx == -1)
4757 {
4758 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4759 goto err_free_sym_hash;
4760 }
4761 break;
4762 }
4763 }
4764 }
4765
4766 free (sorted_sym_hash);
4767 }
4768
4769 if (bed->check_directives
4770 && !(*bed->check_directives) (abfd, info))
4771 return FALSE;
4772
4773 /* If this object is the same format as the output object, and it is
4774 not a shared library, then let the backend look through the
4775 relocs.
4776
4777 This is required to build global offset table entries and to
4778 arrange for dynamic relocs. It is not required for the
4779 particular common case of linking non PIC code, even when linking
4780 against shared libraries, but unfortunately there is no way of
4781 knowing whether an object file has been compiled PIC or not.
4782 Looking through the relocs is not particularly time consuming.
4783 The problem is that we must either (1) keep the relocs in memory,
4784 which causes the linker to require additional runtime memory or
4785 (2) read the relocs twice from the input file, which wastes time.
4786 This would be a good case for using mmap.
4787
4788 I have no idea how to handle linking PIC code into a file of a
4789 different format. It probably can't be done. */
4790 if (! dynamic
4791 && is_elf_hash_table (htab)
4792 && bed->check_relocs != NULL
4793 && elf_object_id (abfd) == elf_hash_table_id (htab)
4794 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4795 {
4796 asection *o;
4797
4798 for (o = abfd->sections; o != NULL; o = o->next)
4799 {
4800 Elf_Internal_Rela *internal_relocs;
4801 bfd_boolean ok;
4802
4803 if ((o->flags & SEC_RELOC) == 0
4804 || o->reloc_count == 0
4805 || ((info->strip == strip_all || info->strip == strip_debugger)
4806 && (o->flags & SEC_DEBUGGING) != 0)
4807 || bfd_is_abs_section (o->output_section))
4808 continue;
4809
4810 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4811 info->keep_memory);
4812 if (internal_relocs == NULL)
4813 goto error_return;
4814
4815 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4816
4817 if (elf_section_data (o)->relocs != internal_relocs)
4818 free (internal_relocs);
4819
4820 if (! ok)
4821 goto error_return;
4822 }
4823 }
4824
4825 /* If this is a non-traditional link, try to optimize the handling
4826 of the .stab/.stabstr sections. */
4827 if (! dynamic
4828 && ! info->traditional_format
4829 && is_elf_hash_table (htab)
4830 && (info->strip != strip_all && info->strip != strip_debugger))
4831 {
4832 asection *stabstr;
4833
4834 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4835 if (stabstr != NULL)
4836 {
4837 bfd_size_type string_offset = 0;
4838 asection *stab;
4839
4840 for (stab = abfd->sections; stab; stab = stab->next)
4841 if (CONST_STRNEQ (stab->name, ".stab")
4842 && (!stab->name[5] ||
4843 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4844 && (stab->flags & SEC_MERGE) == 0
4845 && !bfd_is_abs_section (stab->output_section))
4846 {
4847 struct bfd_elf_section_data *secdata;
4848
4849 secdata = elf_section_data (stab);
4850 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4851 stabstr, &secdata->sec_info,
4852 &string_offset))
4853 goto error_return;
4854 if (secdata->sec_info)
4855 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4856 }
4857 }
4858 }
4859
4860 if (is_elf_hash_table (htab) && add_needed)
4861 {
4862 /* Add this bfd to the loaded list. */
4863 struct elf_link_loaded_list *n;
4864
4865 n = (struct elf_link_loaded_list *)
4866 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4867 if (n == NULL)
4868 goto error_return;
4869 n->abfd = abfd;
4870 n->next = htab->loaded;
4871 htab->loaded = n;
4872 }
4873
4874 return TRUE;
4875
4876 error_free_vers:
4877 if (old_tab != NULL)
4878 free (old_tab);
4879 if (nondeflt_vers != NULL)
4880 free (nondeflt_vers);
4881 if (extversym != NULL)
4882 free (extversym);
4883 error_free_sym:
4884 if (isymbuf != NULL)
4885 free (isymbuf);
4886 error_return:
4887 return FALSE;
4888 }
4889
4890 /* Return the linker hash table entry of a symbol that might be
4891 satisfied by an archive symbol. Return -1 on error. */
4892
4893 struct elf_link_hash_entry *
4894 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4895 struct bfd_link_info *info,
4896 const char *name)
4897 {
4898 struct elf_link_hash_entry *h;
4899 char *p, *copy;
4900 size_t len, first;
4901
4902 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4903 if (h != NULL)
4904 return h;
4905
4906 /* If this is a default version (the name contains @@), look up the
4907 symbol again with only one `@' as well as without the version.
4908 The effect is that references to the symbol with and without the
4909 version will be matched by the default symbol in the archive. */
4910
4911 p = strchr (name, ELF_VER_CHR);
4912 if (p == NULL || p[1] != ELF_VER_CHR)
4913 return h;
4914
4915 /* First check with only one `@'. */
4916 len = strlen (name);
4917 copy = (char *) bfd_alloc (abfd, len);
4918 if (copy == NULL)
4919 return (struct elf_link_hash_entry *) 0 - 1;
4920
4921 first = p - name + 1;
4922 memcpy (copy, name, first);
4923 memcpy (copy + first, name + first + 1, len - first);
4924
4925 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4926 if (h == NULL)
4927 {
4928 /* We also need to check references to the symbol without the
4929 version. */
4930 copy[first - 1] = '\0';
4931 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4932 FALSE, FALSE, TRUE);
4933 }
4934
4935 bfd_release (abfd, copy);
4936 return h;
4937 }
4938
4939 /* Add symbols from an ELF archive file to the linker hash table. We
4940 don't use _bfd_generic_link_add_archive_symbols because of a
4941 problem which arises on UnixWare. The UnixWare libc.so is an
4942 archive which includes an entry libc.so.1 which defines a bunch of
4943 symbols. The libc.so archive also includes a number of other
4944 object files, which also define symbols, some of which are the same
4945 as those defined in libc.so.1. Correct linking requires that we
4946 consider each object file in turn, and include it if it defines any
4947 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4948 this; it looks through the list of undefined symbols, and includes
4949 any object file which defines them. When this algorithm is used on
4950 UnixWare, it winds up pulling in libc.so.1 early and defining a
4951 bunch of symbols. This means that some of the other objects in the
4952 archive are not included in the link, which is incorrect since they
4953 precede libc.so.1 in the archive.
4954
4955 Fortunately, ELF archive handling is simpler than that done by
4956 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4957 oddities. In ELF, if we find a symbol in the archive map, and the
4958 symbol is currently undefined, we know that we must pull in that
4959 object file.
4960
4961 Unfortunately, we do have to make multiple passes over the symbol
4962 table until nothing further is resolved. */
4963
4964 static bfd_boolean
4965 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4966 {
4967 symindex c;
4968 bfd_boolean *defined = NULL;
4969 bfd_boolean *included = NULL;
4970 carsym *symdefs;
4971 bfd_boolean loop;
4972 bfd_size_type amt;
4973 const struct elf_backend_data *bed;
4974 struct elf_link_hash_entry * (*archive_symbol_lookup)
4975 (bfd *, struct bfd_link_info *, const char *);
4976
4977 if (! bfd_has_map (abfd))
4978 {
4979 /* An empty archive is a special case. */
4980 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4981 return TRUE;
4982 bfd_set_error (bfd_error_no_armap);
4983 return FALSE;
4984 }
4985
4986 /* Keep track of all symbols we know to be already defined, and all
4987 files we know to be already included. This is to speed up the
4988 second and subsequent passes. */
4989 c = bfd_ardata (abfd)->symdef_count;
4990 if (c == 0)
4991 return TRUE;
4992 amt = c;
4993 amt *= sizeof (bfd_boolean);
4994 defined = (bfd_boolean *) bfd_zmalloc (amt);
4995 included = (bfd_boolean *) bfd_zmalloc (amt);
4996 if (defined == NULL || included == NULL)
4997 goto error_return;
4998
4999 symdefs = bfd_ardata (abfd)->symdefs;
5000 bed = get_elf_backend_data (abfd);
5001 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5002
5003 do
5004 {
5005 file_ptr last;
5006 symindex i;
5007 carsym *symdef;
5008 carsym *symdefend;
5009
5010 loop = FALSE;
5011 last = -1;
5012
5013 symdef = symdefs;
5014 symdefend = symdef + c;
5015 for (i = 0; symdef < symdefend; symdef++, i++)
5016 {
5017 struct elf_link_hash_entry *h;
5018 bfd *element;
5019 struct bfd_link_hash_entry *undefs_tail;
5020 symindex mark;
5021
5022 if (defined[i] || included[i])
5023 continue;
5024 if (symdef->file_offset == last)
5025 {
5026 included[i] = TRUE;
5027 continue;
5028 }
5029
5030 h = archive_symbol_lookup (abfd, info, symdef->name);
5031 if (h == (struct elf_link_hash_entry *) 0 - 1)
5032 goto error_return;
5033
5034 if (h == NULL)
5035 continue;
5036
5037 if (h->root.type == bfd_link_hash_common)
5038 {
5039 /* We currently have a common symbol. The archive map contains
5040 a reference to this symbol, so we may want to include it. We
5041 only want to include it however, if this archive element
5042 contains a definition of the symbol, not just another common
5043 declaration of it.
5044
5045 Unfortunately some archivers (including GNU ar) will put
5046 declarations of common symbols into their archive maps, as
5047 well as real definitions, so we cannot just go by the archive
5048 map alone. Instead we must read in the element's symbol
5049 table and check that to see what kind of symbol definition
5050 this is. */
5051 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5052 continue;
5053 }
5054 else if (h->root.type != bfd_link_hash_undefined)
5055 {
5056 if (h->root.type != bfd_link_hash_undefweak)
5057 defined[i] = TRUE;
5058 continue;
5059 }
5060
5061 /* We need to include this archive member. */
5062 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5063 if (element == NULL)
5064 goto error_return;
5065
5066 if (! bfd_check_format (element, bfd_object))
5067 goto error_return;
5068
5069 /* Doublecheck that we have not included this object
5070 already--it should be impossible, but there may be
5071 something wrong with the archive. */
5072 if (element->archive_pass != 0)
5073 {
5074 bfd_set_error (bfd_error_bad_value);
5075 goto error_return;
5076 }
5077 element->archive_pass = 1;
5078
5079 undefs_tail = info->hash->undefs_tail;
5080
5081 if (!(*info->callbacks
5082 ->add_archive_element) (info, element, symdef->name, &element))
5083 goto error_return;
5084 if (!bfd_link_add_symbols (element, info))
5085 goto error_return;
5086
5087 /* If there are any new undefined symbols, we need to make
5088 another pass through the archive in order to see whether
5089 they can be defined. FIXME: This isn't perfect, because
5090 common symbols wind up on undefs_tail and because an
5091 undefined symbol which is defined later on in this pass
5092 does not require another pass. This isn't a bug, but it
5093 does make the code less efficient than it could be. */
5094 if (undefs_tail != info->hash->undefs_tail)
5095 loop = TRUE;
5096
5097 /* Look backward to mark all symbols from this object file
5098 which we have already seen in this pass. */
5099 mark = i;
5100 do
5101 {
5102 included[mark] = TRUE;
5103 if (mark == 0)
5104 break;
5105 --mark;
5106 }
5107 while (symdefs[mark].file_offset == symdef->file_offset);
5108
5109 /* We mark subsequent symbols from this object file as we go
5110 on through the loop. */
5111 last = symdef->file_offset;
5112 }
5113 }
5114 while (loop);
5115
5116 free (defined);
5117 free (included);
5118
5119 return TRUE;
5120
5121 error_return:
5122 if (defined != NULL)
5123 free (defined);
5124 if (included != NULL)
5125 free (included);
5126 return FALSE;
5127 }
5128
5129 /* Given an ELF BFD, add symbols to the global hash table as
5130 appropriate. */
5131
5132 bfd_boolean
5133 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5134 {
5135 switch (bfd_get_format (abfd))
5136 {
5137 case bfd_object:
5138 return elf_link_add_object_symbols (abfd, info);
5139 case bfd_archive:
5140 return elf_link_add_archive_symbols (abfd, info);
5141 default:
5142 bfd_set_error (bfd_error_wrong_format);
5143 return FALSE;
5144 }
5145 }
5146 \f
5147 struct hash_codes_info
5148 {
5149 unsigned long *hashcodes;
5150 bfd_boolean error;
5151 };
5152
5153 /* This function will be called though elf_link_hash_traverse to store
5154 all hash value of the exported symbols in an array. */
5155
5156 static bfd_boolean
5157 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5158 {
5159 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5160 const char *name;
5161 char *p;
5162 unsigned long ha;
5163 char *alc = NULL;
5164
5165 /* Ignore indirect symbols. These are added by the versioning code. */
5166 if (h->dynindx == -1)
5167 return TRUE;
5168
5169 name = h->root.root.string;
5170 p = strchr (name, ELF_VER_CHR);
5171 if (p != NULL)
5172 {
5173 alc = (char *) bfd_malloc (p - name + 1);
5174 if (alc == NULL)
5175 {
5176 inf->error = TRUE;
5177 return FALSE;
5178 }
5179 memcpy (alc, name, p - name);
5180 alc[p - name] = '\0';
5181 name = alc;
5182 }
5183
5184 /* Compute the hash value. */
5185 ha = bfd_elf_hash (name);
5186
5187 /* Store the found hash value in the array given as the argument. */
5188 *(inf->hashcodes)++ = ha;
5189
5190 /* And store it in the struct so that we can put it in the hash table
5191 later. */
5192 h->u.elf_hash_value = ha;
5193
5194 if (alc != NULL)
5195 free (alc);
5196
5197 return TRUE;
5198 }
5199
5200 struct collect_gnu_hash_codes
5201 {
5202 bfd *output_bfd;
5203 const struct elf_backend_data *bed;
5204 unsigned long int nsyms;
5205 unsigned long int maskbits;
5206 unsigned long int *hashcodes;
5207 unsigned long int *hashval;
5208 unsigned long int *indx;
5209 unsigned long int *counts;
5210 bfd_vma *bitmask;
5211 bfd_byte *contents;
5212 long int min_dynindx;
5213 unsigned long int bucketcount;
5214 unsigned long int symindx;
5215 long int local_indx;
5216 long int shift1, shift2;
5217 unsigned long int mask;
5218 bfd_boolean error;
5219 };
5220
5221 /* This function will be called though elf_link_hash_traverse to store
5222 all hash value of the exported symbols in an array. */
5223
5224 static bfd_boolean
5225 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5226 {
5227 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5228 const char *name;
5229 char *p;
5230 unsigned long ha;
5231 char *alc = NULL;
5232
5233 /* Ignore indirect symbols. These are added by the versioning code. */
5234 if (h->dynindx == -1)
5235 return TRUE;
5236
5237 /* Ignore also local symbols and undefined symbols. */
5238 if (! (*s->bed->elf_hash_symbol) (h))
5239 return TRUE;
5240
5241 name = h->root.root.string;
5242 p = strchr (name, ELF_VER_CHR);
5243 if (p != NULL)
5244 {
5245 alc = (char *) bfd_malloc (p - name + 1);
5246 if (alc == NULL)
5247 {
5248 s->error = TRUE;
5249 return FALSE;
5250 }
5251 memcpy (alc, name, p - name);
5252 alc[p - name] = '\0';
5253 name = alc;
5254 }
5255
5256 /* Compute the hash value. */
5257 ha = bfd_elf_gnu_hash (name);
5258
5259 /* Store the found hash value in the array for compute_bucket_count,
5260 and also for .dynsym reordering purposes. */
5261 s->hashcodes[s->nsyms] = ha;
5262 s->hashval[h->dynindx] = ha;
5263 ++s->nsyms;
5264 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5265 s->min_dynindx = h->dynindx;
5266
5267 if (alc != NULL)
5268 free (alc);
5269
5270 return TRUE;
5271 }
5272
5273 /* This function will be called though elf_link_hash_traverse to do
5274 final dynaminc symbol renumbering. */
5275
5276 static bfd_boolean
5277 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5278 {
5279 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5280 unsigned long int bucket;
5281 unsigned long int val;
5282
5283 /* Ignore indirect symbols. */
5284 if (h->dynindx == -1)
5285 return TRUE;
5286
5287 /* Ignore also local symbols and undefined symbols. */
5288 if (! (*s->bed->elf_hash_symbol) (h))
5289 {
5290 if (h->dynindx >= s->min_dynindx)
5291 h->dynindx = s->local_indx++;
5292 return TRUE;
5293 }
5294
5295 bucket = s->hashval[h->dynindx] % s->bucketcount;
5296 val = (s->hashval[h->dynindx] >> s->shift1)
5297 & ((s->maskbits >> s->shift1) - 1);
5298 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5299 s->bitmask[val]
5300 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5301 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5302 if (s->counts[bucket] == 1)
5303 /* Last element terminates the chain. */
5304 val |= 1;
5305 bfd_put_32 (s->output_bfd, val,
5306 s->contents + (s->indx[bucket] - s->symindx) * 4);
5307 --s->counts[bucket];
5308 h->dynindx = s->indx[bucket]++;
5309 return TRUE;
5310 }
5311
5312 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5313
5314 bfd_boolean
5315 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5316 {
5317 return !(h->forced_local
5318 || h->root.type == bfd_link_hash_undefined
5319 || h->root.type == bfd_link_hash_undefweak
5320 || ((h->root.type == bfd_link_hash_defined
5321 || h->root.type == bfd_link_hash_defweak)
5322 && h->root.u.def.section->output_section == NULL));
5323 }
5324
5325 /* Array used to determine the number of hash table buckets to use
5326 based on the number of symbols there are. If there are fewer than
5327 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5328 fewer than 37 we use 17 buckets, and so forth. We never use more
5329 than 32771 buckets. */
5330
5331 static const size_t elf_buckets[] =
5332 {
5333 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5334 16411, 32771, 0
5335 };
5336
5337 /* Compute bucket count for hashing table. We do not use a static set
5338 of possible tables sizes anymore. Instead we determine for all
5339 possible reasonable sizes of the table the outcome (i.e., the
5340 number of collisions etc) and choose the best solution. The
5341 weighting functions are not too simple to allow the table to grow
5342 without bounds. Instead one of the weighting factors is the size.
5343 Therefore the result is always a good payoff between few collisions
5344 (= short chain lengths) and table size. */
5345 static size_t
5346 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5347 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5348 unsigned long int nsyms,
5349 int gnu_hash)
5350 {
5351 size_t best_size = 0;
5352 unsigned long int i;
5353
5354 /* We have a problem here. The following code to optimize the table
5355 size requires an integer type with more the 32 bits. If
5356 BFD_HOST_U_64_BIT is set we know about such a type. */
5357 #ifdef BFD_HOST_U_64_BIT
5358 if (info->optimize)
5359 {
5360 size_t minsize;
5361 size_t maxsize;
5362 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5363 bfd *dynobj = elf_hash_table (info)->dynobj;
5364 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5365 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5366 unsigned long int *counts;
5367 bfd_size_type amt;
5368 unsigned int no_improvement_count = 0;
5369
5370 /* Possible optimization parameters: if we have NSYMS symbols we say
5371 that the hashing table must at least have NSYMS/4 and at most
5372 2*NSYMS buckets. */
5373 minsize = nsyms / 4;
5374 if (minsize == 0)
5375 minsize = 1;
5376 best_size = maxsize = nsyms * 2;
5377 if (gnu_hash)
5378 {
5379 if (minsize < 2)
5380 minsize = 2;
5381 if ((best_size & 31) == 0)
5382 ++best_size;
5383 }
5384
5385 /* Create array where we count the collisions in. We must use bfd_malloc
5386 since the size could be large. */
5387 amt = maxsize;
5388 amt *= sizeof (unsigned long int);
5389 counts = (unsigned long int *) bfd_malloc (amt);
5390 if (counts == NULL)
5391 return 0;
5392
5393 /* Compute the "optimal" size for the hash table. The criteria is a
5394 minimal chain length. The minor criteria is (of course) the size
5395 of the table. */
5396 for (i = minsize; i < maxsize; ++i)
5397 {
5398 /* Walk through the array of hashcodes and count the collisions. */
5399 BFD_HOST_U_64_BIT max;
5400 unsigned long int j;
5401 unsigned long int fact;
5402
5403 if (gnu_hash && (i & 31) == 0)
5404 continue;
5405
5406 memset (counts, '\0', i * sizeof (unsigned long int));
5407
5408 /* Determine how often each hash bucket is used. */
5409 for (j = 0; j < nsyms; ++j)
5410 ++counts[hashcodes[j] % i];
5411
5412 /* For the weight function we need some information about the
5413 pagesize on the target. This is information need not be 100%
5414 accurate. Since this information is not available (so far) we
5415 define it here to a reasonable default value. If it is crucial
5416 to have a better value some day simply define this value. */
5417 # ifndef BFD_TARGET_PAGESIZE
5418 # define BFD_TARGET_PAGESIZE (4096)
5419 # endif
5420
5421 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5422 and the chains. */
5423 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5424
5425 # if 1
5426 /* Variant 1: optimize for short chains. We add the squares
5427 of all the chain lengths (which favors many small chain
5428 over a few long chains). */
5429 for (j = 0; j < i; ++j)
5430 max += counts[j] * counts[j];
5431
5432 /* This adds penalties for the overall size of the table. */
5433 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5434 max *= fact * fact;
5435 # else
5436 /* Variant 2: Optimize a lot more for small table. Here we
5437 also add squares of the size but we also add penalties for
5438 empty slots (the +1 term). */
5439 for (j = 0; j < i; ++j)
5440 max += (1 + counts[j]) * (1 + counts[j]);
5441
5442 /* The overall size of the table is considered, but not as
5443 strong as in variant 1, where it is squared. */
5444 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5445 max *= fact;
5446 # endif
5447
5448 /* Compare with current best results. */
5449 if (max < best_chlen)
5450 {
5451 best_chlen = max;
5452 best_size = i;
5453 no_improvement_count = 0;
5454 }
5455 /* PR 11843: Avoid futile long searches for the best bucket size
5456 when there are a large number of symbols. */
5457 else if (++no_improvement_count == 100)
5458 break;
5459 }
5460
5461 free (counts);
5462 }
5463 else
5464 #endif /* defined (BFD_HOST_U_64_BIT) */
5465 {
5466 /* This is the fallback solution if no 64bit type is available or if we
5467 are not supposed to spend much time on optimizations. We select the
5468 bucket count using a fixed set of numbers. */
5469 for (i = 0; elf_buckets[i] != 0; i++)
5470 {
5471 best_size = elf_buckets[i];
5472 if (nsyms < elf_buckets[i + 1])
5473 break;
5474 }
5475 if (gnu_hash && best_size < 2)
5476 best_size = 2;
5477 }
5478
5479 return best_size;
5480 }
5481
5482 /* Size any SHT_GROUP section for ld -r. */
5483
5484 bfd_boolean
5485 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5486 {
5487 bfd *ibfd;
5488
5489 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5490 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5491 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5492 return FALSE;
5493 return TRUE;
5494 }
5495
5496 /* Set a default stack segment size. The value in INFO wins. If it
5497 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5498 undefined it is initialized. */
5499
5500 bfd_boolean
5501 bfd_elf_stack_segment_size (bfd *output_bfd,
5502 struct bfd_link_info *info,
5503 const char *legacy_symbol,
5504 bfd_vma default_size)
5505 {
5506 struct elf_link_hash_entry *h = NULL;
5507
5508 /* Look for legacy symbol. */
5509 if (legacy_symbol)
5510 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5511 FALSE, FALSE, FALSE);
5512 if (h && (h->root.type == bfd_link_hash_defined
5513 || h->root.type == bfd_link_hash_defweak)
5514 && h->def_regular
5515 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5516 {
5517 /* The symbol has no type if specified on the command line. */
5518 h->type = STT_OBJECT;
5519 if (info->stacksize)
5520 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5521 output_bfd, legacy_symbol);
5522 else if (h->root.u.def.section != bfd_abs_section_ptr)
5523 (*_bfd_error_handler) (_("%B: %s not absolute"),
5524 output_bfd, legacy_symbol);
5525 else
5526 info->stacksize = h->root.u.def.value;
5527 }
5528
5529 if (!info->stacksize)
5530 /* If the user didn't set a size, or explicitly inhibit the
5531 size, set it now. */
5532 info->stacksize = default_size;
5533
5534 /* Provide the legacy symbol, if it is referenced. */
5535 if (h && (h->root.type == bfd_link_hash_undefined
5536 || h->root.type == bfd_link_hash_undefweak))
5537 {
5538 struct bfd_link_hash_entry *bh = NULL;
5539
5540 if (!(_bfd_generic_link_add_one_symbol
5541 (info, output_bfd, legacy_symbol,
5542 BSF_GLOBAL, bfd_abs_section_ptr,
5543 info->stacksize >= 0 ? info->stacksize : 0,
5544 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5545 return FALSE;
5546
5547 h = (struct elf_link_hash_entry *) bh;
5548 h->def_regular = 1;
5549 h->type = STT_OBJECT;
5550 }
5551
5552 return TRUE;
5553 }
5554
5555 /* Set up the sizes and contents of the ELF dynamic sections. This is
5556 called by the ELF linker emulation before_allocation routine. We
5557 must set the sizes of the sections before the linker sets the
5558 addresses of the various sections. */
5559
5560 bfd_boolean
5561 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5562 const char *soname,
5563 const char *rpath,
5564 const char *filter_shlib,
5565 const char *audit,
5566 const char *depaudit,
5567 const char * const *auxiliary_filters,
5568 struct bfd_link_info *info,
5569 asection **sinterpptr)
5570 {
5571 bfd_size_type soname_indx;
5572 bfd *dynobj;
5573 const struct elf_backend_data *bed;
5574 struct elf_info_failed asvinfo;
5575
5576 *sinterpptr = NULL;
5577
5578 soname_indx = (bfd_size_type) -1;
5579
5580 if (!is_elf_hash_table (info->hash))
5581 return TRUE;
5582
5583 bed = get_elf_backend_data (output_bfd);
5584
5585 /* Any syms created from now on start with -1 in
5586 got.refcount/offset and plt.refcount/offset. */
5587 elf_hash_table (info)->init_got_refcount
5588 = elf_hash_table (info)->init_got_offset;
5589 elf_hash_table (info)->init_plt_refcount
5590 = elf_hash_table (info)->init_plt_offset;
5591
5592 if (info->relocatable
5593 && !_bfd_elf_size_group_sections (info))
5594 return FALSE;
5595
5596 /* The backend may have to create some sections regardless of whether
5597 we're dynamic or not. */
5598 if (bed->elf_backend_always_size_sections
5599 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5600 return FALSE;
5601
5602 /* Determine any GNU_STACK segment requirements, after the backend
5603 has had a chance to set a default segment size. */
5604 if (info->execstack)
5605 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5606 else if (info->noexecstack)
5607 elf_stack_flags (output_bfd) = PF_R | PF_W;
5608 else
5609 {
5610 bfd *inputobj;
5611 asection *notesec = NULL;
5612 int exec = 0;
5613
5614 for (inputobj = info->input_bfds;
5615 inputobj;
5616 inputobj = inputobj->link_next)
5617 {
5618 asection *s;
5619
5620 if (inputobj->flags
5621 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5622 continue;
5623 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5624 if (s)
5625 {
5626 if (s->flags & SEC_CODE)
5627 exec = PF_X;
5628 notesec = s;
5629 }
5630 else if (bed->default_execstack)
5631 exec = PF_X;
5632 }
5633 if (notesec || info->stacksize > 0)
5634 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5635 if (notesec && exec && info->relocatable
5636 && notesec->output_section != bfd_abs_section_ptr)
5637 notesec->output_section->flags |= SEC_CODE;
5638 }
5639
5640 dynobj = elf_hash_table (info)->dynobj;
5641
5642 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5643 {
5644 struct elf_info_failed eif;
5645 struct elf_link_hash_entry *h;
5646 asection *dynstr;
5647 struct bfd_elf_version_tree *t;
5648 struct bfd_elf_version_expr *d;
5649 asection *s;
5650 bfd_boolean all_defined;
5651
5652 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5653 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5654
5655 if (soname != NULL)
5656 {
5657 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5658 soname, TRUE);
5659 if (soname_indx == (bfd_size_type) -1
5660 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5661 return FALSE;
5662 }
5663
5664 if (info->symbolic)
5665 {
5666 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5667 return FALSE;
5668 info->flags |= DF_SYMBOLIC;
5669 }
5670
5671 if (rpath != NULL)
5672 {
5673 bfd_size_type indx;
5674 bfd_vma tag;
5675
5676 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5677 TRUE);
5678 if (indx == (bfd_size_type) -1)
5679 return FALSE;
5680
5681 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5682 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5683 return FALSE;
5684 }
5685
5686 if (filter_shlib != NULL)
5687 {
5688 bfd_size_type indx;
5689
5690 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5691 filter_shlib, TRUE);
5692 if (indx == (bfd_size_type) -1
5693 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5694 return FALSE;
5695 }
5696
5697 if (auxiliary_filters != NULL)
5698 {
5699 const char * const *p;
5700
5701 for (p = auxiliary_filters; *p != NULL; p++)
5702 {
5703 bfd_size_type indx;
5704
5705 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5706 *p, TRUE);
5707 if (indx == (bfd_size_type) -1
5708 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5709 return FALSE;
5710 }
5711 }
5712
5713 if (audit != NULL)
5714 {
5715 bfd_size_type indx;
5716
5717 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5718 TRUE);
5719 if (indx == (bfd_size_type) -1
5720 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5721 return FALSE;
5722 }
5723
5724 if (depaudit != NULL)
5725 {
5726 bfd_size_type indx;
5727
5728 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5729 TRUE);
5730 if (indx == (bfd_size_type) -1
5731 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5732 return FALSE;
5733 }
5734
5735 eif.info = info;
5736 eif.failed = FALSE;
5737
5738 /* If we are supposed to export all symbols into the dynamic symbol
5739 table (this is not the normal case), then do so. */
5740 if (info->export_dynamic
5741 || (info->executable && info->dynamic))
5742 {
5743 elf_link_hash_traverse (elf_hash_table (info),
5744 _bfd_elf_export_symbol,
5745 &eif);
5746 if (eif.failed)
5747 return FALSE;
5748 }
5749
5750 /* Make all global versions with definition. */
5751 for (t = info->version_info; t != NULL; t = t->next)
5752 for (d = t->globals.list; d != NULL; d = d->next)
5753 if (!d->symver && d->literal)
5754 {
5755 const char *verstr, *name;
5756 size_t namelen, verlen, newlen;
5757 char *newname, *p, leading_char;
5758 struct elf_link_hash_entry *newh;
5759
5760 leading_char = bfd_get_symbol_leading_char (output_bfd);
5761 name = d->pattern;
5762 namelen = strlen (name) + (leading_char != '\0');
5763 verstr = t->name;
5764 verlen = strlen (verstr);
5765 newlen = namelen + verlen + 3;
5766
5767 newname = (char *) bfd_malloc (newlen);
5768 if (newname == NULL)
5769 return FALSE;
5770 newname[0] = leading_char;
5771 memcpy (newname + (leading_char != '\0'), name, namelen);
5772
5773 /* Check the hidden versioned definition. */
5774 p = newname + namelen;
5775 *p++ = ELF_VER_CHR;
5776 memcpy (p, verstr, verlen + 1);
5777 newh = elf_link_hash_lookup (elf_hash_table (info),
5778 newname, FALSE, FALSE,
5779 FALSE);
5780 if (newh == NULL
5781 || (newh->root.type != bfd_link_hash_defined
5782 && newh->root.type != bfd_link_hash_defweak))
5783 {
5784 /* Check the default versioned definition. */
5785 *p++ = ELF_VER_CHR;
5786 memcpy (p, verstr, verlen + 1);
5787 newh = elf_link_hash_lookup (elf_hash_table (info),
5788 newname, FALSE, FALSE,
5789 FALSE);
5790 }
5791 free (newname);
5792
5793 /* Mark this version if there is a definition and it is
5794 not defined in a shared object. */
5795 if (newh != NULL
5796 && !newh->def_dynamic
5797 && (newh->root.type == bfd_link_hash_defined
5798 || newh->root.type == bfd_link_hash_defweak))
5799 d->symver = 1;
5800 }
5801
5802 /* Attach all the symbols to their version information. */
5803 asvinfo.info = info;
5804 asvinfo.failed = FALSE;
5805
5806 elf_link_hash_traverse (elf_hash_table (info),
5807 _bfd_elf_link_assign_sym_version,
5808 &asvinfo);
5809 if (asvinfo.failed)
5810 return FALSE;
5811
5812 if (!info->allow_undefined_version)
5813 {
5814 /* Check if all global versions have a definition. */
5815 all_defined = TRUE;
5816 for (t = info->version_info; t != NULL; t = t->next)
5817 for (d = t->globals.list; d != NULL; d = d->next)
5818 if (d->literal && !d->symver && !d->script)
5819 {
5820 (*_bfd_error_handler)
5821 (_("%s: undefined version: %s"),
5822 d->pattern, t->name);
5823 all_defined = FALSE;
5824 }
5825
5826 if (!all_defined)
5827 {
5828 bfd_set_error (bfd_error_bad_value);
5829 return FALSE;
5830 }
5831 }
5832
5833 /* Find all symbols which were defined in a dynamic object and make
5834 the backend pick a reasonable value for them. */
5835 elf_link_hash_traverse (elf_hash_table (info),
5836 _bfd_elf_adjust_dynamic_symbol,
5837 &eif);
5838 if (eif.failed)
5839 return FALSE;
5840
5841 /* Add some entries to the .dynamic section. We fill in some of the
5842 values later, in bfd_elf_final_link, but we must add the entries
5843 now so that we know the final size of the .dynamic section. */
5844
5845 /* If there are initialization and/or finalization functions to
5846 call then add the corresponding DT_INIT/DT_FINI entries. */
5847 h = (info->init_function
5848 ? elf_link_hash_lookup (elf_hash_table (info),
5849 info->init_function, FALSE,
5850 FALSE, FALSE)
5851 : NULL);
5852 if (h != NULL
5853 && (h->ref_regular
5854 || h->def_regular))
5855 {
5856 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5857 return FALSE;
5858 }
5859 h = (info->fini_function
5860 ? elf_link_hash_lookup (elf_hash_table (info),
5861 info->fini_function, FALSE,
5862 FALSE, FALSE)
5863 : NULL);
5864 if (h != NULL
5865 && (h->ref_regular
5866 || h->def_regular))
5867 {
5868 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5869 return FALSE;
5870 }
5871
5872 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5873 if (s != NULL && s->linker_has_input)
5874 {
5875 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5876 if (! info->executable)
5877 {
5878 bfd *sub;
5879 asection *o;
5880
5881 for (sub = info->input_bfds; sub != NULL;
5882 sub = sub->link_next)
5883 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5884 for (o = sub->sections; o != NULL; o = o->next)
5885 if (elf_section_data (o)->this_hdr.sh_type
5886 == SHT_PREINIT_ARRAY)
5887 {
5888 (*_bfd_error_handler)
5889 (_("%B: .preinit_array section is not allowed in DSO"),
5890 sub);
5891 break;
5892 }
5893
5894 bfd_set_error (bfd_error_nonrepresentable_section);
5895 return FALSE;
5896 }
5897
5898 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5899 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5900 return FALSE;
5901 }
5902 s = bfd_get_section_by_name (output_bfd, ".init_array");
5903 if (s != NULL && s->linker_has_input)
5904 {
5905 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5907 return FALSE;
5908 }
5909 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5910 if (s != NULL && s->linker_has_input)
5911 {
5912 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5913 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5914 return FALSE;
5915 }
5916
5917 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5918 /* If .dynstr is excluded from the link, we don't want any of
5919 these tags. Strictly, we should be checking each section
5920 individually; This quick check covers for the case where
5921 someone does a /DISCARD/ : { *(*) }. */
5922 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5923 {
5924 bfd_size_type strsize;
5925
5926 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5927 if ((info->emit_hash
5928 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5929 || (info->emit_gnu_hash
5930 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5931 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5932 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5933 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5934 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5935 bed->s->sizeof_sym))
5936 return FALSE;
5937 }
5938 }
5939
5940 /* The backend must work out the sizes of all the other dynamic
5941 sections. */
5942 if (dynobj != NULL
5943 && bed->elf_backend_size_dynamic_sections != NULL
5944 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5945 return FALSE;
5946
5947 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5948 return FALSE;
5949
5950 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5951 {
5952 unsigned long section_sym_count;
5953 struct bfd_elf_version_tree *verdefs;
5954 asection *s;
5955
5956 /* Set up the version definition section. */
5957 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5958 BFD_ASSERT (s != NULL);
5959
5960 /* We may have created additional version definitions if we are
5961 just linking a regular application. */
5962 verdefs = info->version_info;
5963
5964 /* Skip anonymous version tag. */
5965 if (verdefs != NULL && verdefs->vernum == 0)
5966 verdefs = verdefs->next;
5967
5968 if (verdefs == NULL && !info->create_default_symver)
5969 s->flags |= SEC_EXCLUDE;
5970 else
5971 {
5972 unsigned int cdefs;
5973 bfd_size_type size;
5974 struct bfd_elf_version_tree *t;
5975 bfd_byte *p;
5976 Elf_Internal_Verdef def;
5977 Elf_Internal_Verdaux defaux;
5978 struct bfd_link_hash_entry *bh;
5979 struct elf_link_hash_entry *h;
5980 const char *name;
5981
5982 cdefs = 0;
5983 size = 0;
5984
5985 /* Make space for the base version. */
5986 size += sizeof (Elf_External_Verdef);
5987 size += sizeof (Elf_External_Verdaux);
5988 ++cdefs;
5989
5990 /* Make space for the default version. */
5991 if (info->create_default_symver)
5992 {
5993 size += sizeof (Elf_External_Verdef);
5994 ++cdefs;
5995 }
5996
5997 for (t = verdefs; t != NULL; t = t->next)
5998 {
5999 struct bfd_elf_version_deps *n;
6000
6001 /* Don't emit base version twice. */
6002 if (t->vernum == 0)
6003 continue;
6004
6005 size += sizeof (Elf_External_Verdef);
6006 size += sizeof (Elf_External_Verdaux);
6007 ++cdefs;
6008
6009 for (n = t->deps; n != NULL; n = n->next)
6010 size += sizeof (Elf_External_Verdaux);
6011 }
6012
6013 s->size = size;
6014 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6015 if (s->contents == NULL && s->size != 0)
6016 return FALSE;
6017
6018 /* Fill in the version definition section. */
6019
6020 p = s->contents;
6021
6022 def.vd_version = VER_DEF_CURRENT;
6023 def.vd_flags = VER_FLG_BASE;
6024 def.vd_ndx = 1;
6025 def.vd_cnt = 1;
6026 if (info->create_default_symver)
6027 {
6028 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6029 def.vd_next = sizeof (Elf_External_Verdef);
6030 }
6031 else
6032 {
6033 def.vd_aux = sizeof (Elf_External_Verdef);
6034 def.vd_next = (sizeof (Elf_External_Verdef)
6035 + sizeof (Elf_External_Verdaux));
6036 }
6037
6038 if (soname_indx != (bfd_size_type) -1)
6039 {
6040 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6041 soname_indx);
6042 def.vd_hash = bfd_elf_hash (soname);
6043 defaux.vda_name = soname_indx;
6044 name = soname;
6045 }
6046 else
6047 {
6048 bfd_size_type indx;
6049
6050 name = lbasename (output_bfd->filename);
6051 def.vd_hash = bfd_elf_hash (name);
6052 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6053 name, FALSE);
6054 if (indx == (bfd_size_type) -1)
6055 return FALSE;
6056 defaux.vda_name = indx;
6057 }
6058 defaux.vda_next = 0;
6059
6060 _bfd_elf_swap_verdef_out (output_bfd, &def,
6061 (Elf_External_Verdef *) p);
6062 p += sizeof (Elf_External_Verdef);
6063 if (info->create_default_symver)
6064 {
6065 /* Add a symbol representing this version. */
6066 bh = NULL;
6067 if (! (_bfd_generic_link_add_one_symbol
6068 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6069 0, NULL, FALSE,
6070 get_elf_backend_data (dynobj)->collect, &bh)))
6071 return FALSE;
6072 h = (struct elf_link_hash_entry *) bh;
6073 h->non_elf = 0;
6074 h->def_regular = 1;
6075 h->type = STT_OBJECT;
6076 h->verinfo.vertree = NULL;
6077
6078 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6079 return FALSE;
6080
6081 /* Create a duplicate of the base version with the same
6082 aux block, but different flags. */
6083 def.vd_flags = 0;
6084 def.vd_ndx = 2;
6085 def.vd_aux = sizeof (Elf_External_Verdef);
6086 if (verdefs)
6087 def.vd_next = (sizeof (Elf_External_Verdef)
6088 + sizeof (Elf_External_Verdaux));
6089 else
6090 def.vd_next = 0;
6091 _bfd_elf_swap_verdef_out (output_bfd, &def,
6092 (Elf_External_Verdef *) p);
6093 p += sizeof (Elf_External_Verdef);
6094 }
6095 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6096 (Elf_External_Verdaux *) p);
6097 p += sizeof (Elf_External_Verdaux);
6098
6099 for (t = verdefs; t != NULL; t = t->next)
6100 {
6101 unsigned int cdeps;
6102 struct bfd_elf_version_deps *n;
6103
6104 /* Don't emit the base version twice. */
6105 if (t->vernum == 0)
6106 continue;
6107
6108 cdeps = 0;
6109 for (n = t->deps; n != NULL; n = n->next)
6110 ++cdeps;
6111
6112 /* Add a symbol representing this version. */
6113 bh = NULL;
6114 if (! (_bfd_generic_link_add_one_symbol
6115 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6116 0, NULL, FALSE,
6117 get_elf_backend_data (dynobj)->collect, &bh)))
6118 return FALSE;
6119 h = (struct elf_link_hash_entry *) bh;
6120 h->non_elf = 0;
6121 h->def_regular = 1;
6122 h->type = STT_OBJECT;
6123 h->verinfo.vertree = t;
6124
6125 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6126 return FALSE;
6127
6128 def.vd_version = VER_DEF_CURRENT;
6129 def.vd_flags = 0;
6130 if (t->globals.list == NULL
6131 && t->locals.list == NULL
6132 && ! t->used)
6133 def.vd_flags |= VER_FLG_WEAK;
6134 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6135 def.vd_cnt = cdeps + 1;
6136 def.vd_hash = bfd_elf_hash (t->name);
6137 def.vd_aux = sizeof (Elf_External_Verdef);
6138 def.vd_next = 0;
6139
6140 /* If a basever node is next, it *must* be the last node in
6141 the chain, otherwise Verdef construction breaks. */
6142 if (t->next != NULL && t->next->vernum == 0)
6143 BFD_ASSERT (t->next->next == NULL);
6144
6145 if (t->next != NULL && t->next->vernum != 0)
6146 def.vd_next = (sizeof (Elf_External_Verdef)
6147 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6148
6149 _bfd_elf_swap_verdef_out (output_bfd, &def,
6150 (Elf_External_Verdef *) p);
6151 p += sizeof (Elf_External_Verdef);
6152
6153 defaux.vda_name = h->dynstr_index;
6154 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6155 h->dynstr_index);
6156 defaux.vda_next = 0;
6157 if (t->deps != NULL)
6158 defaux.vda_next = sizeof (Elf_External_Verdaux);
6159 t->name_indx = defaux.vda_name;
6160
6161 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6162 (Elf_External_Verdaux *) p);
6163 p += sizeof (Elf_External_Verdaux);
6164
6165 for (n = t->deps; n != NULL; n = n->next)
6166 {
6167 if (n->version_needed == NULL)
6168 {
6169 /* This can happen if there was an error in the
6170 version script. */
6171 defaux.vda_name = 0;
6172 }
6173 else
6174 {
6175 defaux.vda_name = n->version_needed->name_indx;
6176 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6177 defaux.vda_name);
6178 }
6179 if (n->next == NULL)
6180 defaux.vda_next = 0;
6181 else
6182 defaux.vda_next = sizeof (Elf_External_Verdaux);
6183
6184 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6185 (Elf_External_Verdaux *) p);
6186 p += sizeof (Elf_External_Verdaux);
6187 }
6188 }
6189
6190 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6191 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6192 return FALSE;
6193
6194 elf_tdata (output_bfd)->cverdefs = cdefs;
6195 }
6196
6197 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6198 {
6199 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6200 return FALSE;
6201 }
6202 else if (info->flags & DF_BIND_NOW)
6203 {
6204 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6205 return FALSE;
6206 }
6207
6208 if (info->flags_1)
6209 {
6210 if (info->executable)
6211 info->flags_1 &= ~ (DF_1_INITFIRST
6212 | DF_1_NODELETE
6213 | DF_1_NOOPEN);
6214 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6215 return FALSE;
6216 }
6217
6218 /* Work out the size of the version reference section. */
6219
6220 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6221 BFD_ASSERT (s != NULL);
6222 {
6223 struct elf_find_verdep_info sinfo;
6224
6225 sinfo.info = info;
6226 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6227 if (sinfo.vers == 0)
6228 sinfo.vers = 1;
6229 sinfo.failed = FALSE;
6230
6231 elf_link_hash_traverse (elf_hash_table (info),
6232 _bfd_elf_link_find_version_dependencies,
6233 &sinfo);
6234 if (sinfo.failed)
6235 return FALSE;
6236
6237 if (elf_tdata (output_bfd)->verref == NULL)
6238 s->flags |= SEC_EXCLUDE;
6239 else
6240 {
6241 Elf_Internal_Verneed *t;
6242 unsigned int size;
6243 unsigned int crefs;
6244 bfd_byte *p;
6245
6246 /* Build the version dependency section. */
6247 size = 0;
6248 crefs = 0;
6249 for (t = elf_tdata (output_bfd)->verref;
6250 t != NULL;
6251 t = t->vn_nextref)
6252 {
6253 Elf_Internal_Vernaux *a;
6254
6255 size += sizeof (Elf_External_Verneed);
6256 ++crefs;
6257 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6258 size += sizeof (Elf_External_Vernaux);
6259 }
6260
6261 s->size = size;
6262 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6263 if (s->contents == NULL)
6264 return FALSE;
6265
6266 p = s->contents;
6267 for (t = elf_tdata (output_bfd)->verref;
6268 t != NULL;
6269 t = t->vn_nextref)
6270 {
6271 unsigned int caux;
6272 Elf_Internal_Vernaux *a;
6273 bfd_size_type indx;
6274
6275 caux = 0;
6276 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6277 ++caux;
6278
6279 t->vn_version = VER_NEED_CURRENT;
6280 t->vn_cnt = caux;
6281 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6282 elf_dt_name (t->vn_bfd) != NULL
6283 ? elf_dt_name (t->vn_bfd)
6284 : lbasename (t->vn_bfd->filename),
6285 FALSE);
6286 if (indx == (bfd_size_type) -1)
6287 return FALSE;
6288 t->vn_file = indx;
6289 t->vn_aux = sizeof (Elf_External_Verneed);
6290 if (t->vn_nextref == NULL)
6291 t->vn_next = 0;
6292 else
6293 t->vn_next = (sizeof (Elf_External_Verneed)
6294 + caux * sizeof (Elf_External_Vernaux));
6295
6296 _bfd_elf_swap_verneed_out (output_bfd, t,
6297 (Elf_External_Verneed *) p);
6298 p += sizeof (Elf_External_Verneed);
6299
6300 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6301 {
6302 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6303 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6304 a->vna_nodename, FALSE);
6305 if (indx == (bfd_size_type) -1)
6306 return FALSE;
6307 a->vna_name = indx;
6308 if (a->vna_nextptr == NULL)
6309 a->vna_next = 0;
6310 else
6311 a->vna_next = sizeof (Elf_External_Vernaux);
6312
6313 _bfd_elf_swap_vernaux_out (output_bfd, a,
6314 (Elf_External_Vernaux *) p);
6315 p += sizeof (Elf_External_Vernaux);
6316 }
6317 }
6318
6319 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6320 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6321 return FALSE;
6322
6323 elf_tdata (output_bfd)->cverrefs = crefs;
6324 }
6325 }
6326
6327 if ((elf_tdata (output_bfd)->cverrefs == 0
6328 && elf_tdata (output_bfd)->cverdefs == 0)
6329 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6330 &section_sym_count) == 0)
6331 {
6332 s = bfd_get_linker_section (dynobj, ".gnu.version");
6333 s->flags |= SEC_EXCLUDE;
6334 }
6335 }
6336 return TRUE;
6337 }
6338
6339 /* Find the first non-excluded output section. We'll use its
6340 section symbol for some emitted relocs. */
6341 void
6342 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6343 {
6344 asection *s;
6345
6346 for (s = output_bfd->sections; s != NULL; s = s->next)
6347 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6348 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6349 {
6350 elf_hash_table (info)->text_index_section = s;
6351 break;
6352 }
6353 }
6354
6355 /* Find two non-excluded output sections, one for code, one for data.
6356 We'll use their section symbols for some emitted relocs. */
6357 void
6358 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6359 {
6360 asection *s;
6361
6362 /* Data first, since setting text_index_section changes
6363 _bfd_elf_link_omit_section_dynsym. */
6364 for (s = output_bfd->sections; s != NULL; s = s->next)
6365 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6366 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6367 {
6368 elf_hash_table (info)->data_index_section = s;
6369 break;
6370 }
6371
6372 for (s = output_bfd->sections; s != NULL; s = s->next)
6373 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6374 == (SEC_ALLOC | SEC_READONLY))
6375 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6376 {
6377 elf_hash_table (info)->text_index_section = s;
6378 break;
6379 }
6380
6381 if (elf_hash_table (info)->text_index_section == NULL)
6382 elf_hash_table (info)->text_index_section
6383 = elf_hash_table (info)->data_index_section;
6384 }
6385
6386 bfd_boolean
6387 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6388 {
6389 const struct elf_backend_data *bed;
6390
6391 if (!is_elf_hash_table (info->hash))
6392 return TRUE;
6393
6394 bed = get_elf_backend_data (output_bfd);
6395 (*bed->elf_backend_init_index_section) (output_bfd, info);
6396
6397 if (elf_hash_table (info)->dynamic_sections_created)
6398 {
6399 bfd *dynobj;
6400 asection *s;
6401 bfd_size_type dynsymcount;
6402 unsigned long section_sym_count;
6403 unsigned int dtagcount;
6404
6405 dynobj = elf_hash_table (info)->dynobj;
6406
6407 /* Assign dynsym indicies. In a shared library we generate a
6408 section symbol for each output section, which come first.
6409 Next come all of the back-end allocated local dynamic syms,
6410 followed by the rest of the global symbols. */
6411
6412 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6413 &section_sym_count);
6414
6415 /* Work out the size of the symbol version section. */
6416 s = bfd_get_linker_section (dynobj, ".gnu.version");
6417 BFD_ASSERT (s != NULL);
6418 if (dynsymcount != 0
6419 && (s->flags & SEC_EXCLUDE) == 0)
6420 {
6421 s->size = dynsymcount * sizeof (Elf_External_Versym);
6422 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6423 if (s->contents == NULL)
6424 return FALSE;
6425
6426 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6427 return FALSE;
6428 }
6429
6430 /* Set the size of the .dynsym and .hash sections. We counted
6431 the number of dynamic symbols in elf_link_add_object_symbols.
6432 We will build the contents of .dynsym and .hash when we build
6433 the final symbol table, because until then we do not know the
6434 correct value to give the symbols. We built the .dynstr
6435 section as we went along in elf_link_add_object_symbols. */
6436 s = bfd_get_linker_section (dynobj, ".dynsym");
6437 BFD_ASSERT (s != NULL);
6438 s->size = dynsymcount * bed->s->sizeof_sym;
6439
6440 if (dynsymcount != 0)
6441 {
6442 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6443 if (s->contents == NULL)
6444 return FALSE;
6445
6446 /* The first entry in .dynsym is a dummy symbol.
6447 Clear all the section syms, in case we don't output them all. */
6448 ++section_sym_count;
6449 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6450 }
6451
6452 elf_hash_table (info)->bucketcount = 0;
6453
6454 /* Compute the size of the hashing table. As a side effect this
6455 computes the hash values for all the names we export. */
6456 if (info->emit_hash)
6457 {
6458 unsigned long int *hashcodes;
6459 struct hash_codes_info hashinf;
6460 bfd_size_type amt;
6461 unsigned long int nsyms;
6462 size_t bucketcount;
6463 size_t hash_entry_size;
6464
6465 /* Compute the hash values for all exported symbols. At the same
6466 time store the values in an array so that we could use them for
6467 optimizations. */
6468 amt = dynsymcount * sizeof (unsigned long int);
6469 hashcodes = (unsigned long int *) bfd_malloc (amt);
6470 if (hashcodes == NULL)
6471 return FALSE;
6472 hashinf.hashcodes = hashcodes;
6473 hashinf.error = FALSE;
6474
6475 /* Put all hash values in HASHCODES. */
6476 elf_link_hash_traverse (elf_hash_table (info),
6477 elf_collect_hash_codes, &hashinf);
6478 if (hashinf.error)
6479 {
6480 free (hashcodes);
6481 return FALSE;
6482 }
6483
6484 nsyms = hashinf.hashcodes - hashcodes;
6485 bucketcount
6486 = compute_bucket_count (info, hashcodes, nsyms, 0);
6487 free (hashcodes);
6488
6489 if (bucketcount == 0)
6490 return FALSE;
6491
6492 elf_hash_table (info)->bucketcount = bucketcount;
6493
6494 s = bfd_get_linker_section (dynobj, ".hash");
6495 BFD_ASSERT (s != NULL);
6496 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6497 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6498 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6499 if (s->contents == NULL)
6500 return FALSE;
6501
6502 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6503 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6504 s->contents + hash_entry_size);
6505 }
6506
6507 if (info->emit_gnu_hash)
6508 {
6509 size_t i, cnt;
6510 unsigned char *contents;
6511 struct collect_gnu_hash_codes cinfo;
6512 bfd_size_type amt;
6513 size_t bucketcount;
6514
6515 memset (&cinfo, 0, sizeof (cinfo));
6516
6517 /* Compute the hash values for all exported symbols. At the same
6518 time store the values in an array so that we could use them for
6519 optimizations. */
6520 amt = dynsymcount * 2 * sizeof (unsigned long int);
6521 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6522 if (cinfo.hashcodes == NULL)
6523 return FALSE;
6524
6525 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6526 cinfo.min_dynindx = -1;
6527 cinfo.output_bfd = output_bfd;
6528 cinfo.bed = bed;
6529
6530 /* Put all hash values in HASHCODES. */
6531 elf_link_hash_traverse (elf_hash_table (info),
6532 elf_collect_gnu_hash_codes, &cinfo);
6533 if (cinfo.error)
6534 {
6535 free (cinfo.hashcodes);
6536 return FALSE;
6537 }
6538
6539 bucketcount
6540 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6541
6542 if (bucketcount == 0)
6543 {
6544 free (cinfo.hashcodes);
6545 return FALSE;
6546 }
6547
6548 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6549 BFD_ASSERT (s != NULL);
6550
6551 if (cinfo.nsyms == 0)
6552 {
6553 /* Empty .gnu.hash section is special. */
6554 BFD_ASSERT (cinfo.min_dynindx == -1);
6555 free (cinfo.hashcodes);
6556 s->size = 5 * 4 + bed->s->arch_size / 8;
6557 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6558 if (contents == NULL)
6559 return FALSE;
6560 s->contents = contents;
6561 /* 1 empty bucket. */
6562 bfd_put_32 (output_bfd, 1, contents);
6563 /* SYMIDX above the special symbol 0. */
6564 bfd_put_32 (output_bfd, 1, contents + 4);
6565 /* Just one word for bitmask. */
6566 bfd_put_32 (output_bfd, 1, contents + 8);
6567 /* Only hash fn bloom filter. */
6568 bfd_put_32 (output_bfd, 0, contents + 12);
6569 /* No hashes are valid - empty bitmask. */
6570 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6571 /* No hashes in the only bucket. */
6572 bfd_put_32 (output_bfd, 0,
6573 contents + 16 + bed->s->arch_size / 8);
6574 }
6575 else
6576 {
6577 unsigned long int maskwords, maskbitslog2, x;
6578 BFD_ASSERT (cinfo.min_dynindx != -1);
6579
6580 x = cinfo.nsyms;
6581 maskbitslog2 = 1;
6582 while ((x >>= 1) != 0)
6583 ++maskbitslog2;
6584 if (maskbitslog2 < 3)
6585 maskbitslog2 = 5;
6586 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6587 maskbitslog2 = maskbitslog2 + 3;
6588 else
6589 maskbitslog2 = maskbitslog2 + 2;
6590 if (bed->s->arch_size == 64)
6591 {
6592 if (maskbitslog2 == 5)
6593 maskbitslog2 = 6;
6594 cinfo.shift1 = 6;
6595 }
6596 else
6597 cinfo.shift1 = 5;
6598 cinfo.mask = (1 << cinfo.shift1) - 1;
6599 cinfo.shift2 = maskbitslog2;
6600 cinfo.maskbits = 1 << maskbitslog2;
6601 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6602 amt = bucketcount * sizeof (unsigned long int) * 2;
6603 amt += maskwords * sizeof (bfd_vma);
6604 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6605 if (cinfo.bitmask == NULL)
6606 {
6607 free (cinfo.hashcodes);
6608 return FALSE;
6609 }
6610
6611 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6612 cinfo.indx = cinfo.counts + bucketcount;
6613 cinfo.symindx = dynsymcount - cinfo.nsyms;
6614 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6615
6616 /* Determine how often each hash bucket is used. */
6617 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6618 for (i = 0; i < cinfo.nsyms; ++i)
6619 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6620
6621 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6622 if (cinfo.counts[i] != 0)
6623 {
6624 cinfo.indx[i] = cnt;
6625 cnt += cinfo.counts[i];
6626 }
6627 BFD_ASSERT (cnt == dynsymcount);
6628 cinfo.bucketcount = bucketcount;
6629 cinfo.local_indx = cinfo.min_dynindx;
6630
6631 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6632 s->size += cinfo.maskbits / 8;
6633 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6634 if (contents == NULL)
6635 {
6636 free (cinfo.bitmask);
6637 free (cinfo.hashcodes);
6638 return FALSE;
6639 }
6640
6641 s->contents = contents;
6642 bfd_put_32 (output_bfd, bucketcount, contents);
6643 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6644 bfd_put_32 (output_bfd, maskwords, contents + 8);
6645 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6646 contents += 16 + cinfo.maskbits / 8;
6647
6648 for (i = 0; i < bucketcount; ++i)
6649 {
6650 if (cinfo.counts[i] == 0)
6651 bfd_put_32 (output_bfd, 0, contents);
6652 else
6653 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6654 contents += 4;
6655 }
6656
6657 cinfo.contents = contents;
6658
6659 /* Renumber dynamic symbols, populate .gnu.hash section. */
6660 elf_link_hash_traverse (elf_hash_table (info),
6661 elf_renumber_gnu_hash_syms, &cinfo);
6662
6663 contents = s->contents + 16;
6664 for (i = 0; i < maskwords; ++i)
6665 {
6666 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6667 contents);
6668 contents += bed->s->arch_size / 8;
6669 }
6670
6671 free (cinfo.bitmask);
6672 free (cinfo.hashcodes);
6673 }
6674 }
6675
6676 s = bfd_get_linker_section (dynobj, ".dynstr");
6677 BFD_ASSERT (s != NULL);
6678
6679 elf_finalize_dynstr (output_bfd, info);
6680
6681 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6682
6683 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6684 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6685 return FALSE;
6686 }
6687
6688 return TRUE;
6689 }
6690 \f
6691 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6692
6693 static void
6694 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6695 asection *sec)
6696 {
6697 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6698 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6699 }
6700
6701 /* Finish SHF_MERGE section merging. */
6702
6703 bfd_boolean
6704 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6705 {
6706 bfd *ibfd;
6707 asection *sec;
6708
6709 if (!is_elf_hash_table (info->hash))
6710 return FALSE;
6711
6712 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6713 if ((ibfd->flags & DYNAMIC) == 0)
6714 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6715 if ((sec->flags & SEC_MERGE) != 0
6716 && !bfd_is_abs_section (sec->output_section))
6717 {
6718 struct bfd_elf_section_data *secdata;
6719
6720 secdata = elf_section_data (sec);
6721 if (! _bfd_add_merge_section (abfd,
6722 &elf_hash_table (info)->merge_info,
6723 sec, &secdata->sec_info))
6724 return FALSE;
6725 else if (secdata->sec_info)
6726 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6727 }
6728
6729 if (elf_hash_table (info)->merge_info != NULL)
6730 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6731 merge_sections_remove_hook);
6732 return TRUE;
6733 }
6734
6735 /* Create an entry in an ELF linker hash table. */
6736
6737 struct bfd_hash_entry *
6738 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6739 struct bfd_hash_table *table,
6740 const char *string)
6741 {
6742 /* Allocate the structure if it has not already been allocated by a
6743 subclass. */
6744 if (entry == NULL)
6745 {
6746 entry = (struct bfd_hash_entry *)
6747 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6748 if (entry == NULL)
6749 return entry;
6750 }
6751
6752 /* Call the allocation method of the superclass. */
6753 entry = _bfd_link_hash_newfunc (entry, table, string);
6754 if (entry != NULL)
6755 {
6756 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6757 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6758
6759 /* Set local fields. */
6760 ret->indx = -1;
6761 ret->dynindx = -1;
6762 ret->got = htab->init_got_refcount;
6763 ret->plt = htab->init_plt_refcount;
6764 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6765 - offsetof (struct elf_link_hash_entry, size)));
6766 /* Assume that we have been called by a non-ELF symbol reader.
6767 This flag is then reset by the code which reads an ELF input
6768 file. This ensures that a symbol created by a non-ELF symbol
6769 reader will have the flag set correctly. */
6770 ret->non_elf = 1;
6771 }
6772
6773 return entry;
6774 }
6775
6776 /* Copy data from an indirect symbol to its direct symbol, hiding the
6777 old indirect symbol. Also used for copying flags to a weakdef. */
6778
6779 void
6780 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6781 struct elf_link_hash_entry *dir,
6782 struct elf_link_hash_entry *ind)
6783 {
6784 struct elf_link_hash_table *htab;
6785
6786 /* Copy down any references that we may have already seen to the
6787 symbol which just became indirect. */
6788
6789 dir->ref_dynamic |= ind->ref_dynamic;
6790 dir->ref_regular |= ind->ref_regular;
6791 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6792 dir->non_got_ref |= ind->non_got_ref;
6793 dir->needs_plt |= ind->needs_plt;
6794 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6795
6796 if (ind->root.type != bfd_link_hash_indirect)
6797 return;
6798
6799 /* Copy over the global and procedure linkage table refcount entries.
6800 These may have been already set up by a check_relocs routine. */
6801 htab = elf_hash_table (info);
6802 if (ind->got.refcount > htab->init_got_refcount.refcount)
6803 {
6804 if (dir->got.refcount < 0)
6805 dir->got.refcount = 0;
6806 dir->got.refcount += ind->got.refcount;
6807 ind->got.refcount = htab->init_got_refcount.refcount;
6808 }
6809
6810 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6811 {
6812 if (dir->plt.refcount < 0)
6813 dir->plt.refcount = 0;
6814 dir->plt.refcount += ind->plt.refcount;
6815 ind->plt.refcount = htab->init_plt_refcount.refcount;
6816 }
6817
6818 if (ind->dynindx != -1)
6819 {
6820 if (dir->dynindx != -1)
6821 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6822 dir->dynindx = ind->dynindx;
6823 dir->dynstr_index = ind->dynstr_index;
6824 ind->dynindx = -1;
6825 ind->dynstr_index = 0;
6826 }
6827 }
6828
6829 void
6830 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6831 struct elf_link_hash_entry *h,
6832 bfd_boolean force_local)
6833 {
6834 /* STT_GNU_IFUNC symbol must go through PLT. */
6835 if (h->type != STT_GNU_IFUNC)
6836 {
6837 h->plt = elf_hash_table (info)->init_plt_offset;
6838 h->needs_plt = 0;
6839 }
6840 if (force_local)
6841 {
6842 h->forced_local = 1;
6843 if (h->dynindx != -1)
6844 {
6845 h->dynindx = -1;
6846 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6847 h->dynstr_index);
6848 }
6849 }
6850 }
6851
6852 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6853 caller. */
6854
6855 bfd_boolean
6856 _bfd_elf_link_hash_table_init
6857 (struct elf_link_hash_table *table,
6858 bfd *abfd,
6859 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6860 struct bfd_hash_table *,
6861 const char *),
6862 unsigned int entsize,
6863 enum elf_target_id target_id)
6864 {
6865 bfd_boolean ret;
6866 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6867
6868 table->init_got_refcount.refcount = can_refcount - 1;
6869 table->init_plt_refcount.refcount = can_refcount - 1;
6870 table->init_got_offset.offset = -(bfd_vma) 1;
6871 table->init_plt_offset.offset = -(bfd_vma) 1;
6872 /* The first dynamic symbol is a dummy. */
6873 table->dynsymcount = 1;
6874
6875 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6876
6877 table->root.type = bfd_link_elf_hash_table;
6878 table->hash_table_id = target_id;
6879
6880 return ret;
6881 }
6882
6883 /* Create an ELF linker hash table. */
6884
6885 struct bfd_link_hash_table *
6886 _bfd_elf_link_hash_table_create (bfd *abfd)
6887 {
6888 struct elf_link_hash_table *ret;
6889 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6890
6891 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6892 if (ret == NULL)
6893 return NULL;
6894
6895 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6896 sizeof (struct elf_link_hash_entry),
6897 GENERIC_ELF_DATA))
6898 {
6899 free (ret);
6900 return NULL;
6901 }
6902
6903 return &ret->root;
6904 }
6905
6906 /* Destroy an ELF linker hash table. */
6907
6908 void
6909 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6910 {
6911 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6912 if (htab->dynstr != NULL)
6913 _bfd_elf_strtab_free (htab->dynstr);
6914 _bfd_merge_sections_free (htab->merge_info);
6915 _bfd_generic_link_hash_table_free (hash);
6916 }
6917
6918 /* This is a hook for the ELF emulation code in the generic linker to
6919 tell the backend linker what file name to use for the DT_NEEDED
6920 entry for a dynamic object. */
6921
6922 void
6923 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6924 {
6925 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6926 && bfd_get_format (abfd) == bfd_object)
6927 elf_dt_name (abfd) = name;
6928 }
6929
6930 int
6931 bfd_elf_get_dyn_lib_class (bfd *abfd)
6932 {
6933 int lib_class;
6934 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6935 && bfd_get_format (abfd) == bfd_object)
6936 lib_class = elf_dyn_lib_class (abfd);
6937 else
6938 lib_class = 0;
6939 return lib_class;
6940 }
6941
6942 void
6943 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6944 {
6945 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6946 && bfd_get_format (abfd) == bfd_object)
6947 elf_dyn_lib_class (abfd) = lib_class;
6948 }
6949
6950 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6951 the linker ELF emulation code. */
6952
6953 struct bfd_link_needed_list *
6954 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6955 struct bfd_link_info *info)
6956 {
6957 if (! is_elf_hash_table (info->hash))
6958 return NULL;
6959 return elf_hash_table (info)->needed;
6960 }
6961
6962 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6963 hook for the linker ELF emulation code. */
6964
6965 struct bfd_link_needed_list *
6966 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6967 struct bfd_link_info *info)
6968 {
6969 if (! is_elf_hash_table (info->hash))
6970 return NULL;
6971 return elf_hash_table (info)->runpath;
6972 }
6973
6974 /* Get the name actually used for a dynamic object for a link. This
6975 is the SONAME entry if there is one. Otherwise, it is the string
6976 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6977
6978 const char *
6979 bfd_elf_get_dt_soname (bfd *abfd)
6980 {
6981 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6982 && bfd_get_format (abfd) == bfd_object)
6983 return elf_dt_name (abfd);
6984 return NULL;
6985 }
6986
6987 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6988 the ELF linker emulation code. */
6989
6990 bfd_boolean
6991 bfd_elf_get_bfd_needed_list (bfd *abfd,
6992 struct bfd_link_needed_list **pneeded)
6993 {
6994 asection *s;
6995 bfd_byte *dynbuf = NULL;
6996 unsigned int elfsec;
6997 unsigned long shlink;
6998 bfd_byte *extdyn, *extdynend;
6999 size_t extdynsize;
7000 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7001
7002 *pneeded = NULL;
7003
7004 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7005 || bfd_get_format (abfd) != bfd_object)
7006 return TRUE;
7007
7008 s = bfd_get_section_by_name (abfd, ".dynamic");
7009 if (s == NULL || s->size == 0)
7010 return TRUE;
7011
7012 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7013 goto error_return;
7014
7015 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7016 if (elfsec == SHN_BAD)
7017 goto error_return;
7018
7019 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7020
7021 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7022 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7023
7024 extdyn = dynbuf;
7025 extdynend = extdyn + s->size;
7026 for (; extdyn < extdynend; extdyn += extdynsize)
7027 {
7028 Elf_Internal_Dyn dyn;
7029
7030 (*swap_dyn_in) (abfd, extdyn, &dyn);
7031
7032 if (dyn.d_tag == DT_NULL)
7033 break;
7034
7035 if (dyn.d_tag == DT_NEEDED)
7036 {
7037 const char *string;
7038 struct bfd_link_needed_list *l;
7039 unsigned int tagv = dyn.d_un.d_val;
7040 bfd_size_type amt;
7041
7042 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7043 if (string == NULL)
7044 goto error_return;
7045
7046 amt = sizeof *l;
7047 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7048 if (l == NULL)
7049 goto error_return;
7050
7051 l->by = abfd;
7052 l->name = string;
7053 l->next = *pneeded;
7054 *pneeded = l;
7055 }
7056 }
7057
7058 free (dynbuf);
7059
7060 return TRUE;
7061
7062 error_return:
7063 if (dynbuf != NULL)
7064 free (dynbuf);
7065 return FALSE;
7066 }
7067
7068 struct elf_symbuf_symbol
7069 {
7070 unsigned long st_name; /* Symbol name, index in string tbl */
7071 unsigned char st_info; /* Type and binding attributes */
7072 unsigned char st_other; /* Visibilty, and target specific */
7073 };
7074
7075 struct elf_symbuf_head
7076 {
7077 struct elf_symbuf_symbol *ssym;
7078 bfd_size_type count;
7079 unsigned int st_shndx;
7080 };
7081
7082 struct elf_symbol
7083 {
7084 union
7085 {
7086 Elf_Internal_Sym *isym;
7087 struct elf_symbuf_symbol *ssym;
7088 } u;
7089 const char *name;
7090 };
7091
7092 /* Sort references to symbols by ascending section number. */
7093
7094 static int
7095 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7096 {
7097 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7098 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7099
7100 return s1->st_shndx - s2->st_shndx;
7101 }
7102
7103 static int
7104 elf_sym_name_compare (const void *arg1, const void *arg2)
7105 {
7106 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7107 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7108 return strcmp (s1->name, s2->name);
7109 }
7110
7111 static struct elf_symbuf_head *
7112 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7113 {
7114 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7115 struct elf_symbuf_symbol *ssym;
7116 struct elf_symbuf_head *ssymbuf, *ssymhead;
7117 bfd_size_type i, shndx_count, total_size;
7118
7119 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7120 if (indbuf == NULL)
7121 return NULL;
7122
7123 for (ind = indbuf, i = 0; i < symcount; i++)
7124 if (isymbuf[i].st_shndx != SHN_UNDEF)
7125 *ind++ = &isymbuf[i];
7126 indbufend = ind;
7127
7128 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7129 elf_sort_elf_symbol);
7130
7131 shndx_count = 0;
7132 if (indbufend > indbuf)
7133 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7134 if (ind[0]->st_shndx != ind[1]->st_shndx)
7135 shndx_count++;
7136
7137 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7138 + (indbufend - indbuf) * sizeof (*ssym));
7139 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7140 if (ssymbuf == NULL)
7141 {
7142 free (indbuf);
7143 return NULL;
7144 }
7145
7146 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7147 ssymbuf->ssym = NULL;
7148 ssymbuf->count = shndx_count;
7149 ssymbuf->st_shndx = 0;
7150 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7151 {
7152 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7153 {
7154 ssymhead++;
7155 ssymhead->ssym = ssym;
7156 ssymhead->count = 0;
7157 ssymhead->st_shndx = (*ind)->st_shndx;
7158 }
7159 ssym->st_name = (*ind)->st_name;
7160 ssym->st_info = (*ind)->st_info;
7161 ssym->st_other = (*ind)->st_other;
7162 ssymhead->count++;
7163 }
7164 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7165 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7166 == total_size));
7167
7168 free (indbuf);
7169 return ssymbuf;
7170 }
7171
7172 /* Check if 2 sections define the same set of local and global
7173 symbols. */
7174
7175 static bfd_boolean
7176 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7177 struct bfd_link_info *info)
7178 {
7179 bfd *bfd1, *bfd2;
7180 const struct elf_backend_data *bed1, *bed2;
7181 Elf_Internal_Shdr *hdr1, *hdr2;
7182 bfd_size_type symcount1, symcount2;
7183 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7184 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7185 Elf_Internal_Sym *isym, *isymend;
7186 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7187 bfd_size_type count1, count2, i;
7188 unsigned int shndx1, shndx2;
7189 bfd_boolean result;
7190
7191 bfd1 = sec1->owner;
7192 bfd2 = sec2->owner;
7193
7194 /* Both sections have to be in ELF. */
7195 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7196 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7197 return FALSE;
7198
7199 if (elf_section_type (sec1) != elf_section_type (sec2))
7200 return FALSE;
7201
7202 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7203 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7204 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7205 return FALSE;
7206
7207 bed1 = get_elf_backend_data (bfd1);
7208 bed2 = get_elf_backend_data (bfd2);
7209 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7210 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7211 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7212 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7213
7214 if (symcount1 == 0 || symcount2 == 0)
7215 return FALSE;
7216
7217 result = FALSE;
7218 isymbuf1 = NULL;
7219 isymbuf2 = NULL;
7220 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7221 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7222
7223 if (ssymbuf1 == NULL)
7224 {
7225 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7226 NULL, NULL, NULL);
7227 if (isymbuf1 == NULL)
7228 goto done;
7229
7230 if (!info->reduce_memory_overheads)
7231 elf_tdata (bfd1)->symbuf = ssymbuf1
7232 = elf_create_symbuf (symcount1, isymbuf1);
7233 }
7234
7235 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7236 {
7237 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7238 NULL, NULL, NULL);
7239 if (isymbuf2 == NULL)
7240 goto done;
7241
7242 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7243 elf_tdata (bfd2)->symbuf = ssymbuf2
7244 = elf_create_symbuf (symcount2, isymbuf2);
7245 }
7246
7247 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7248 {
7249 /* Optimized faster version. */
7250 bfd_size_type lo, hi, mid;
7251 struct elf_symbol *symp;
7252 struct elf_symbuf_symbol *ssym, *ssymend;
7253
7254 lo = 0;
7255 hi = ssymbuf1->count;
7256 ssymbuf1++;
7257 count1 = 0;
7258 while (lo < hi)
7259 {
7260 mid = (lo + hi) / 2;
7261 if (shndx1 < ssymbuf1[mid].st_shndx)
7262 hi = mid;
7263 else if (shndx1 > ssymbuf1[mid].st_shndx)
7264 lo = mid + 1;
7265 else
7266 {
7267 count1 = ssymbuf1[mid].count;
7268 ssymbuf1 += mid;
7269 break;
7270 }
7271 }
7272
7273 lo = 0;
7274 hi = ssymbuf2->count;
7275 ssymbuf2++;
7276 count2 = 0;
7277 while (lo < hi)
7278 {
7279 mid = (lo + hi) / 2;
7280 if (shndx2 < ssymbuf2[mid].st_shndx)
7281 hi = mid;
7282 else if (shndx2 > ssymbuf2[mid].st_shndx)
7283 lo = mid + 1;
7284 else
7285 {
7286 count2 = ssymbuf2[mid].count;
7287 ssymbuf2 += mid;
7288 break;
7289 }
7290 }
7291
7292 if (count1 == 0 || count2 == 0 || count1 != count2)
7293 goto done;
7294
7295 symtable1 = (struct elf_symbol *)
7296 bfd_malloc (count1 * sizeof (struct elf_symbol));
7297 symtable2 = (struct elf_symbol *)
7298 bfd_malloc (count2 * sizeof (struct elf_symbol));
7299 if (symtable1 == NULL || symtable2 == NULL)
7300 goto done;
7301
7302 symp = symtable1;
7303 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7304 ssym < ssymend; ssym++, symp++)
7305 {
7306 symp->u.ssym = ssym;
7307 symp->name = bfd_elf_string_from_elf_section (bfd1,
7308 hdr1->sh_link,
7309 ssym->st_name);
7310 }
7311
7312 symp = symtable2;
7313 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7314 ssym < ssymend; ssym++, symp++)
7315 {
7316 symp->u.ssym = ssym;
7317 symp->name = bfd_elf_string_from_elf_section (bfd2,
7318 hdr2->sh_link,
7319 ssym->st_name);
7320 }
7321
7322 /* Sort symbol by name. */
7323 qsort (symtable1, count1, sizeof (struct elf_symbol),
7324 elf_sym_name_compare);
7325 qsort (symtable2, count1, sizeof (struct elf_symbol),
7326 elf_sym_name_compare);
7327
7328 for (i = 0; i < count1; i++)
7329 /* Two symbols must have the same binding, type and name. */
7330 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7331 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7332 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7333 goto done;
7334
7335 result = TRUE;
7336 goto done;
7337 }
7338
7339 symtable1 = (struct elf_symbol *)
7340 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7341 symtable2 = (struct elf_symbol *)
7342 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7343 if (symtable1 == NULL || symtable2 == NULL)
7344 goto done;
7345
7346 /* Count definitions in the section. */
7347 count1 = 0;
7348 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7349 if (isym->st_shndx == shndx1)
7350 symtable1[count1++].u.isym = isym;
7351
7352 count2 = 0;
7353 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7354 if (isym->st_shndx == shndx2)
7355 symtable2[count2++].u.isym = isym;
7356
7357 if (count1 == 0 || count2 == 0 || count1 != count2)
7358 goto done;
7359
7360 for (i = 0; i < count1; i++)
7361 symtable1[i].name
7362 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7363 symtable1[i].u.isym->st_name);
7364
7365 for (i = 0; i < count2; i++)
7366 symtable2[i].name
7367 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7368 symtable2[i].u.isym->st_name);
7369
7370 /* Sort symbol by name. */
7371 qsort (symtable1, count1, sizeof (struct elf_symbol),
7372 elf_sym_name_compare);
7373 qsort (symtable2, count1, sizeof (struct elf_symbol),
7374 elf_sym_name_compare);
7375
7376 for (i = 0; i < count1; i++)
7377 /* Two symbols must have the same binding, type and name. */
7378 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7379 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7380 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7381 goto done;
7382
7383 result = TRUE;
7384
7385 done:
7386 if (symtable1)
7387 free (symtable1);
7388 if (symtable2)
7389 free (symtable2);
7390 if (isymbuf1)
7391 free (isymbuf1);
7392 if (isymbuf2)
7393 free (isymbuf2);
7394
7395 return result;
7396 }
7397
7398 /* Return TRUE if 2 section types are compatible. */
7399
7400 bfd_boolean
7401 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7402 bfd *bbfd, const asection *bsec)
7403 {
7404 if (asec == NULL
7405 || bsec == NULL
7406 || abfd->xvec->flavour != bfd_target_elf_flavour
7407 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7408 return TRUE;
7409
7410 return elf_section_type (asec) == elf_section_type (bsec);
7411 }
7412 \f
7413 /* Final phase of ELF linker. */
7414
7415 /* A structure we use to avoid passing large numbers of arguments. */
7416
7417 struct elf_final_link_info
7418 {
7419 /* General link information. */
7420 struct bfd_link_info *info;
7421 /* Output BFD. */
7422 bfd *output_bfd;
7423 /* Symbol string table. */
7424 struct bfd_strtab_hash *symstrtab;
7425 /* .dynsym section. */
7426 asection *dynsym_sec;
7427 /* .hash section. */
7428 asection *hash_sec;
7429 /* symbol version section (.gnu.version). */
7430 asection *symver_sec;
7431 /* Buffer large enough to hold contents of any section. */
7432 bfd_byte *contents;
7433 /* Buffer large enough to hold external relocs of any section. */
7434 void *external_relocs;
7435 /* Buffer large enough to hold internal relocs of any section. */
7436 Elf_Internal_Rela *internal_relocs;
7437 /* Buffer large enough to hold external local symbols of any input
7438 BFD. */
7439 bfd_byte *external_syms;
7440 /* And a buffer for symbol section indices. */
7441 Elf_External_Sym_Shndx *locsym_shndx;
7442 /* Buffer large enough to hold internal local symbols of any input
7443 BFD. */
7444 Elf_Internal_Sym *internal_syms;
7445 /* Array large enough to hold a symbol index for each local symbol
7446 of any input BFD. */
7447 long *indices;
7448 /* Array large enough to hold a section pointer for each local
7449 symbol of any input BFD. */
7450 asection **sections;
7451 /* Buffer to hold swapped out symbols. */
7452 bfd_byte *symbuf;
7453 /* And one for symbol section indices. */
7454 Elf_External_Sym_Shndx *symshndxbuf;
7455 /* Number of swapped out symbols in buffer. */
7456 size_t symbuf_count;
7457 /* Number of symbols which fit in symbuf. */
7458 size_t symbuf_size;
7459 /* And same for symshndxbuf. */
7460 size_t shndxbuf_size;
7461 /* Number of STT_FILE syms seen. */
7462 size_t filesym_count;
7463 };
7464
7465 /* This struct is used to pass information to elf_link_output_extsym. */
7466
7467 struct elf_outext_info
7468 {
7469 bfd_boolean failed;
7470 bfd_boolean localsyms;
7471 bfd_boolean need_second_pass;
7472 bfd_boolean second_pass;
7473 bfd_boolean file_sym_done;
7474 struct elf_final_link_info *flinfo;
7475 };
7476
7477
7478 /* Support for evaluating a complex relocation.
7479
7480 Complex relocations are generalized, self-describing relocations. The
7481 implementation of them consists of two parts: complex symbols, and the
7482 relocations themselves.
7483
7484 The relocations are use a reserved elf-wide relocation type code (R_RELC
7485 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7486 information (start bit, end bit, word width, etc) into the addend. This
7487 information is extracted from CGEN-generated operand tables within gas.
7488
7489 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7490 internal) representing prefix-notation expressions, including but not
7491 limited to those sorts of expressions normally encoded as addends in the
7492 addend field. The symbol mangling format is:
7493
7494 <node> := <literal>
7495 | <unary-operator> ':' <node>
7496 | <binary-operator> ':' <node> ':' <node>
7497 ;
7498
7499 <literal> := 's' <digits=N> ':' <N character symbol name>
7500 | 'S' <digits=N> ':' <N character section name>
7501 | '#' <hexdigits>
7502 ;
7503
7504 <binary-operator> := as in C
7505 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7506
7507 static void
7508 set_symbol_value (bfd *bfd_with_globals,
7509 Elf_Internal_Sym *isymbuf,
7510 size_t locsymcount,
7511 size_t symidx,
7512 bfd_vma val)
7513 {
7514 struct elf_link_hash_entry **sym_hashes;
7515 struct elf_link_hash_entry *h;
7516 size_t extsymoff = locsymcount;
7517
7518 if (symidx < locsymcount)
7519 {
7520 Elf_Internal_Sym *sym;
7521
7522 sym = isymbuf + symidx;
7523 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7524 {
7525 /* It is a local symbol: move it to the
7526 "absolute" section and give it a value. */
7527 sym->st_shndx = SHN_ABS;
7528 sym->st_value = val;
7529 return;
7530 }
7531 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7532 extsymoff = 0;
7533 }
7534
7535 /* It is a global symbol: set its link type
7536 to "defined" and give it a value. */
7537
7538 sym_hashes = elf_sym_hashes (bfd_with_globals);
7539 h = sym_hashes [symidx - extsymoff];
7540 while (h->root.type == bfd_link_hash_indirect
7541 || h->root.type == bfd_link_hash_warning)
7542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7543 h->root.type = bfd_link_hash_defined;
7544 h->root.u.def.value = val;
7545 h->root.u.def.section = bfd_abs_section_ptr;
7546 }
7547
7548 static bfd_boolean
7549 resolve_symbol (const char *name,
7550 bfd *input_bfd,
7551 struct elf_final_link_info *flinfo,
7552 bfd_vma *result,
7553 Elf_Internal_Sym *isymbuf,
7554 size_t locsymcount)
7555 {
7556 Elf_Internal_Sym *sym;
7557 struct bfd_link_hash_entry *global_entry;
7558 const char *candidate = NULL;
7559 Elf_Internal_Shdr *symtab_hdr;
7560 size_t i;
7561
7562 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7563
7564 for (i = 0; i < locsymcount; ++ i)
7565 {
7566 sym = isymbuf + i;
7567
7568 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7569 continue;
7570
7571 candidate = bfd_elf_string_from_elf_section (input_bfd,
7572 symtab_hdr->sh_link,
7573 sym->st_name);
7574 #ifdef DEBUG
7575 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7576 name, candidate, (unsigned long) sym->st_value);
7577 #endif
7578 if (candidate && strcmp (candidate, name) == 0)
7579 {
7580 asection *sec = flinfo->sections [i];
7581
7582 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7583 *result += sec->output_offset + sec->output_section->vma;
7584 #ifdef DEBUG
7585 printf ("Found symbol with value %8.8lx\n",
7586 (unsigned long) *result);
7587 #endif
7588 return TRUE;
7589 }
7590 }
7591
7592 /* Hmm, haven't found it yet. perhaps it is a global. */
7593 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7594 FALSE, FALSE, TRUE);
7595 if (!global_entry)
7596 return FALSE;
7597
7598 if (global_entry->type == bfd_link_hash_defined
7599 || global_entry->type == bfd_link_hash_defweak)
7600 {
7601 *result = (global_entry->u.def.value
7602 + global_entry->u.def.section->output_section->vma
7603 + global_entry->u.def.section->output_offset);
7604 #ifdef DEBUG
7605 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7606 global_entry->root.string, (unsigned long) *result);
7607 #endif
7608 return TRUE;
7609 }
7610
7611 return FALSE;
7612 }
7613
7614 static bfd_boolean
7615 resolve_section (const char *name,
7616 asection *sections,
7617 bfd_vma *result)
7618 {
7619 asection *curr;
7620 unsigned int len;
7621
7622 for (curr = sections; curr; curr = curr->next)
7623 if (strcmp (curr->name, name) == 0)
7624 {
7625 *result = curr->vma;
7626 return TRUE;
7627 }
7628
7629 /* Hmm. still haven't found it. try pseudo-section names. */
7630 for (curr = sections; curr; curr = curr->next)
7631 {
7632 len = strlen (curr->name);
7633 if (len > strlen (name))
7634 continue;
7635
7636 if (strncmp (curr->name, name, len) == 0)
7637 {
7638 if (strncmp (".end", name + len, 4) == 0)
7639 {
7640 *result = curr->vma + curr->size;
7641 return TRUE;
7642 }
7643
7644 /* Insert more pseudo-section names here, if you like. */
7645 }
7646 }
7647
7648 return FALSE;
7649 }
7650
7651 static void
7652 undefined_reference (const char *reftype, const char *name)
7653 {
7654 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7655 reftype, name);
7656 }
7657
7658 static bfd_boolean
7659 eval_symbol (bfd_vma *result,
7660 const char **symp,
7661 bfd *input_bfd,
7662 struct elf_final_link_info *flinfo,
7663 bfd_vma dot,
7664 Elf_Internal_Sym *isymbuf,
7665 size_t locsymcount,
7666 int signed_p)
7667 {
7668 size_t len;
7669 size_t symlen;
7670 bfd_vma a;
7671 bfd_vma b;
7672 char symbuf[4096];
7673 const char *sym = *symp;
7674 const char *symend;
7675 bfd_boolean symbol_is_section = FALSE;
7676
7677 len = strlen (sym);
7678 symend = sym + len;
7679
7680 if (len < 1 || len > sizeof (symbuf))
7681 {
7682 bfd_set_error (bfd_error_invalid_operation);
7683 return FALSE;
7684 }
7685
7686 switch (* sym)
7687 {
7688 case '.':
7689 *result = dot;
7690 *symp = sym + 1;
7691 return TRUE;
7692
7693 case '#':
7694 ++sym;
7695 *result = strtoul (sym, (char **) symp, 16);
7696 return TRUE;
7697
7698 case 'S':
7699 symbol_is_section = TRUE;
7700 case 's':
7701 ++sym;
7702 symlen = strtol (sym, (char **) symp, 10);
7703 sym = *symp + 1; /* Skip the trailing ':'. */
7704
7705 if (symend < sym || symlen + 1 > sizeof (symbuf))
7706 {
7707 bfd_set_error (bfd_error_invalid_operation);
7708 return FALSE;
7709 }
7710
7711 memcpy (symbuf, sym, symlen);
7712 symbuf[symlen] = '\0';
7713 *symp = sym + symlen;
7714
7715 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7716 the symbol as a section, or vice-versa. so we're pretty liberal in our
7717 interpretation here; section means "try section first", not "must be a
7718 section", and likewise with symbol. */
7719
7720 if (symbol_is_section)
7721 {
7722 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7723 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7724 isymbuf, locsymcount))
7725 {
7726 undefined_reference ("section", symbuf);
7727 return FALSE;
7728 }
7729 }
7730 else
7731 {
7732 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7733 isymbuf, locsymcount)
7734 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7735 result))
7736 {
7737 undefined_reference ("symbol", symbuf);
7738 return FALSE;
7739 }
7740 }
7741
7742 return TRUE;
7743
7744 /* All that remains are operators. */
7745
7746 #define UNARY_OP(op) \
7747 if (strncmp (sym, #op, strlen (#op)) == 0) \
7748 { \
7749 sym += strlen (#op); \
7750 if (*sym == ':') \
7751 ++sym; \
7752 *symp = sym; \
7753 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7754 isymbuf, locsymcount, signed_p)) \
7755 return FALSE; \
7756 if (signed_p) \
7757 *result = op ((bfd_signed_vma) a); \
7758 else \
7759 *result = op a; \
7760 return TRUE; \
7761 }
7762
7763 #define BINARY_OP(op) \
7764 if (strncmp (sym, #op, strlen (#op)) == 0) \
7765 { \
7766 sym += strlen (#op); \
7767 if (*sym == ':') \
7768 ++sym; \
7769 *symp = sym; \
7770 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7771 isymbuf, locsymcount, signed_p)) \
7772 return FALSE; \
7773 ++*symp; \
7774 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7775 isymbuf, locsymcount, signed_p)) \
7776 return FALSE; \
7777 if (signed_p) \
7778 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7779 else \
7780 *result = a op b; \
7781 return TRUE; \
7782 }
7783
7784 default:
7785 UNARY_OP (0-);
7786 BINARY_OP (<<);
7787 BINARY_OP (>>);
7788 BINARY_OP (==);
7789 BINARY_OP (!=);
7790 BINARY_OP (<=);
7791 BINARY_OP (>=);
7792 BINARY_OP (&&);
7793 BINARY_OP (||);
7794 UNARY_OP (~);
7795 UNARY_OP (!);
7796 BINARY_OP (*);
7797 BINARY_OP (/);
7798 BINARY_OP (%);
7799 BINARY_OP (^);
7800 BINARY_OP (|);
7801 BINARY_OP (&);
7802 BINARY_OP (+);
7803 BINARY_OP (-);
7804 BINARY_OP (<);
7805 BINARY_OP (>);
7806 #undef UNARY_OP
7807 #undef BINARY_OP
7808 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7809 bfd_set_error (bfd_error_invalid_operation);
7810 return FALSE;
7811 }
7812 }
7813
7814 static void
7815 put_value (bfd_vma size,
7816 unsigned long chunksz,
7817 bfd *input_bfd,
7818 bfd_vma x,
7819 bfd_byte *location)
7820 {
7821 location += (size - chunksz);
7822
7823 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7824 {
7825 switch (chunksz)
7826 {
7827 default:
7828 case 0:
7829 abort ();
7830 case 1:
7831 bfd_put_8 (input_bfd, x, location);
7832 break;
7833 case 2:
7834 bfd_put_16 (input_bfd, x, location);
7835 break;
7836 case 4:
7837 bfd_put_32 (input_bfd, x, location);
7838 break;
7839 case 8:
7840 #ifdef BFD64
7841 bfd_put_64 (input_bfd, x, location);
7842 #else
7843 abort ();
7844 #endif
7845 break;
7846 }
7847 }
7848 }
7849
7850 static bfd_vma
7851 get_value (bfd_vma size,
7852 unsigned long chunksz,
7853 bfd *input_bfd,
7854 bfd_byte *location)
7855 {
7856 int shift;
7857 bfd_vma x = 0;
7858
7859 /* Sanity checks. */
7860 BFD_ASSERT (chunksz <= sizeof (x)
7861 && size >= chunksz
7862 && chunksz != 0
7863 && (size % chunksz) == 0
7864 && input_bfd != NULL
7865 && location != NULL);
7866
7867 if (chunksz == sizeof (x))
7868 {
7869 BFD_ASSERT (size == chunksz);
7870
7871 /* Make sure that we do not perform an undefined shift operation.
7872 We know that size == chunksz so there will only be one iteration
7873 of the loop below. */
7874 shift = 0;
7875 }
7876 else
7877 shift = 8 * chunksz;
7878
7879 for (; size; size -= chunksz, location += chunksz)
7880 {
7881 switch (chunksz)
7882 {
7883 case 1:
7884 x = (x << shift) | bfd_get_8 (input_bfd, location);
7885 break;
7886 case 2:
7887 x = (x << shift) | bfd_get_16 (input_bfd, location);
7888 break;
7889 case 4:
7890 x = (x << shift) | bfd_get_32 (input_bfd, location);
7891 break;
7892 #ifdef BFD64
7893 case 8:
7894 x = (x << shift) | bfd_get_64 (input_bfd, location);
7895 break;
7896 #endif
7897 default:
7898 abort ();
7899 }
7900 }
7901 return x;
7902 }
7903
7904 static void
7905 decode_complex_addend (unsigned long *start, /* in bits */
7906 unsigned long *oplen, /* in bits */
7907 unsigned long *len, /* in bits */
7908 unsigned long *wordsz, /* in bytes */
7909 unsigned long *chunksz, /* in bytes */
7910 unsigned long *lsb0_p,
7911 unsigned long *signed_p,
7912 unsigned long *trunc_p,
7913 unsigned long encoded)
7914 {
7915 * start = encoded & 0x3F;
7916 * len = (encoded >> 6) & 0x3F;
7917 * oplen = (encoded >> 12) & 0x3F;
7918 * wordsz = (encoded >> 18) & 0xF;
7919 * chunksz = (encoded >> 22) & 0xF;
7920 * lsb0_p = (encoded >> 27) & 1;
7921 * signed_p = (encoded >> 28) & 1;
7922 * trunc_p = (encoded >> 29) & 1;
7923 }
7924
7925 bfd_reloc_status_type
7926 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7927 asection *input_section ATTRIBUTE_UNUSED,
7928 bfd_byte *contents,
7929 Elf_Internal_Rela *rel,
7930 bfd_vma relocation)
7931 {
7932 bfd_vma shift, x, mask;
7933 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7934 bfd_reloc_status_type r;
7935
7936 /* Perform this reloc, since it is complex.
7937 (this is not to say that it necessarily refers to a complex
7938 symbol; merely that it is a self-describing CGEN based reloc.
7939 i.e. the addend has the complete reloc information (bit start, end,
7940 word size, etc) encoded within it.). */
7941
7942 decode_complex_addend (&start, &oplen, &len, &wordsz,
7943 &chunksz, &lsb0_p, &signed_p,
7944 &trunc_p, rel->r_addend);
7945
7946 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7947
7948 if (lsb0_p)
7949 shift = (start + 1) - len;
7950 else
7951 shift = (8 * wordsz) - (start + len);
7952
7953 /* FIXME: octets_per_byte. */
7954 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7955
7956 #ifdef DEBUG
7957 printf ("Doing complex reloc: "
7958 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7959 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7960 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7961 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7962 oplen, (unsigned long) x, (unsigned long) mask,
7963 (unsigned long) relocation);
7964 #endif
7965
7966 r = bfd_reloc_ok;
7967 if (! trunc_p)
7968 /* Now do an overflow check. */
7969 r = bfd_check_overflow ((signed_p
7970 ? complain_overflow_signed
7971 : complain_overflow_unsigned),
7972 len, 0, (8 * wordsz),
7973 relocation);
7974
7975 /* Do the deed. */
7976 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7977
7978 #ifdef DEBUG
7979 printf (" relocation: %8.8lx\n"
7980 " shifted mask: %8.8lx\n"
7981 " shifted/masked reloc: %8.8lx\n"
7982 " result: %8.8lx\n",
7983 (unsigned long) relocation, (unsigned long) (mask << shift),
7984 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7985 #endif
7986 /* FIXME: octets_per_byte. */
7987 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7988 return r;
7989 }
7990
7991 /* When performing a relocatable link, the input relocations are
7992 preserved. But, if they reference global symbols, the indices
7993 referenced must be updated. Update all the relocations found in
7994 RELDATA. */
7995
7996 static void
7997 elf_link_adjust_relocs (bfd *abfd,
7998 struct bfd_elf_section_reloc_data *reldata)
7999 {
8000 unsigned int i;
8001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8002 bfd_byte *erela;
8003 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8004 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8005 bfd_vma r_type_mask;
8006 int r_sym_shift;
8007 unsigned int count = reldata->count;
8008 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8009
8010 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8011 {
8012 swap_in = bed->s->swap_reloc_in;
8013 swap_out = bed->s->swap_reloc_out;
8014 }
8015 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8016 {
8017 swap_in = bed->s->swap_reloca_in;
8018 swap_out = bed->s->swap_reloca_out;
8019 }
8020 else
8021 abort ();
8022
8023 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8024 abort ();
8025
8026 if (bed->s->arch_size == 32)
8027 {
8028 r_type_mask = 0xff;
8029 r_sym_shift = 8;
8030 }
8031 else
8032 {
8033 r_type_mask = 0xffffffff;
8034 r_sym_shift = 32;
8035 }
8036
8037 erela = reldata->hdr->contents;
8038 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8039 {
8040 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8041 unsigned int j;
8042
8043 if (*rel_hash == NULL)
8044 continue;
8045
8046 BFD_ASSERT ((*rel_hash)->indx >= 0);
8047
8048 (*swap_in) (abfd, erela, irela);
8049 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8050 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8051 | (irela[j].r_info & r_type_mask));
8052 (*swap_out) (abfd, irela, erela);
8053 }
8054 }
8055
8056 struct elf_link_sort_rela
8057 {
8058 union {
8059 bfd_vma offset;
8060 bfd_vma sym_mask;
8061 } u;
8062 enum elf_reloc_type_class type;
8063 /* We use this as an array of size int_rels_per_ext_rel. */
8064 Elf_Internal_Rela rela[1];
8065 };
8066
8067 static int
8068 elf_link_sort_cmp1 (const void *A, const void *B)
8069 {
8070 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8071 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8072 int relativea, relativeb;
8073
8074 relativea = a->type == reloc_class_relative;
8075 relativeb = b->type == reloc_class_relative;
8076
8077 if (relativea < relativeb)
8078 return 1;
8079 if (relativea > relativeb)
8080 return -1;
8081 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8082 return -1;
8083 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8084 return 1;
8085 if (a->rela->r_offset < b->rela->r_offset)
8086 return -1;
8087 if (a->rela->r_offset > b->rela->r_offset)
8088 return 1;
8089 return 0;
8090 }
8091
8092 static int
8093 elf_link_sort_cmp2 (const void *A, const void *B)
8094 {
8095 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8096 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8097
8098 if (a->type < b->type)
8099 return -1;
8100 if (a->type > b->type)
8101 return 1;
8102 if (a->u.offset < b->u.offset)
8103 return -1;
8104 if (a->u.offset > b->u.offset)
8105 return 1;
8106 if (a->rela->r_offset < b->rela->r_offset)
8107 return -1;
8108 if (a->rela->r_offset > b->rela->r_offset)
8109 return 1;
8110 return 0;
8111 }
8112
8113 static size_t
8114 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8115 {
8116 asection *dynamic_relocs;
8117 asection *rela_dyn;
8118 asection *rel_dyn;
8119 bfd_size_type count, size;
8120 size_t i, ret, sort_elt, ext_size;
8121 bfd_byte *sort, *s_non_relative, *p;
8122 struct elf_link_sort_rela *sq;
8123 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8124 int i2e = bed->s->int_rels_per_ext_rel;
8125 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8126 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8127 struct bfd_link_order *lo;
8128 bfd_vma r_sym_mask;
8129 bfd_boolean use_rela;
8130
8131 /* Find a dynamic reloc section. */
8132 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8133 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8134 if (rela_dyn != NULL && rela_dyn->size > 0
8135 && rel_dyn != NULL && rel_dyn->size > 0)
8136 {
8137 bfd_boolean use_rela_initialised = FALSE;
8138
8139 /* This is just here to stop gcc from complaining.
8140 It's initialization checking code is not perfect. */
8141 use_rela = TRUE;
8142
8143 /* Both sections are present. Examine the sizes
8144 of the indirect sections to help us choose. */
8145 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8146 if (lo->type == bfd_indirect_link_order)
8147 {
8148 asection *o = lo->u.indirect.section;
8149
8150 if ((o->size % bed->s->sizeof_rela) == 0)
8151 {
8152 if ((o->size % bed->s->sizeof_rel) == 0)
8153 /* Section size is divisible by both rel and rela sizes.
8154 It is of no help to us. */
8155 ;
8156 else
8157 {
8158 /* Section size is only divisible by rela. */
8159 if (use_rela_initialised && (use_rela == FALSE))
8160 {
8161 _bfd_error_handler
8162 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8163 bfd_set_error (bfd_error_invalid_operation);
8164 return 0;
8165 }
8166 else
8167 {
8168 use_rela = TRUE;
8169 use_rela_initialised = TRUE;
8170 }
8171 }
8172 }
8173 else if ((o->size % bed->s->sizeof_rel) == 0)
8174 {
8175 /* Section size is only divisible by rel. */
8176 if (use_rela_initialised && (use_rela == TRUE))
8177 {
8178 _bfd_error_handler
8179 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8180 bfd_set_error (bfd_error_invalid_operation);
8181 return 0;
8182 }
8183 else
8184 {
8185 use_rela = FALSE;
8186 use_rela_initialised = TRUE;
8187 }
8188 }
8189 else
8190 {
8191 /* The section size is not divisible by either - something is wrong. */
8192 _bfd_error_handler
8193 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8194 bfd_set_error (bfd_error_invalid_operation);
8195 return 0;
8196 }
8197 }
8198
8199 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8200 if (lo->type == bfd_indirect_link_order)
8201 {
8202 asection *o = lo->u.indirect.section;
8203
8204 if ((o->size % bed->s->sizeof_rela) == 0)
8205 {
8206 if ((o->size % bed->s->sizeof_rel) == 0)
8207 /* Section size is divisible by both rel and rela sizes.
8208 It is of no help to us. */
8209 ;
8210 else
8211 {
8212 /* Section size is only divisible by rela. */
8213 if (use_rela_initialised && (use_rela == FALSE))
8214 {
8215 _bfd_error_handler
8216 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8217 bfd_set_error (bfd_error_invalid_operation);
8218 return 0;
8219 }
8220 else
8221 {
8222 use_rela = TRUE;
8223 use_rela_initialised = TRUE;
8224 }
8225 }
8226 }
8227 else if ((o->size % bed->s->sizeof_rel) == 0)
8228 {
8229 /* Section size is only divisible by rel. */
8230 if (use_rela_initialised && (use_rela == TRUE))
8231 {
8232 _bfd_error_handler
8233 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8234 bfd_set_error (bfd_error_invalid_operation);
8235 return 0;
8236 }
8237 else
8238 {
8239 use_rela = FALSE;
8240 use_rela_initialised = TRUE;
8241 }
8242 }
8243 else
8244 {
8245 /* The section size is not divisible by either - something is wrong. */
8246 _bfd_error_handler
8247 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8248 bfd_set_error (bfd_error_invalid_operation);
8249 return 0;
8250 }
8251 }
8252
8253 if (! use_rela_initialised)
8254 /* Make a guess. */
8255 use_rela = TRUE;
8256 }
8257 else if (rela_dyn != NULL && rela_dyn->size > 0)
8258 use_rela = TRUE;
8259 else if (rel_dyn != NULL && rel_dyn->size > 0)
8260 use_rela = FALSE;
8261 else
8262 return 0;
8263
8264 if (use_rela)
8265 {
8266 dynamic_relocs = rela_dyn;
8267 ext_size = bed->s->sizeof_rela;
8268 swap_in = bed->s->swap_reloca_in;
8269 swap_out = bed->s->swap_reloca_out;
8270 }
8271 else
8272 {
8273 dynamic_relocs = rel_dyn;
8274 ext_size = bed->s->sizeof_rel;
8275 swap_in = bed->s->swap_reloc_in;
8276 swap_out = bed->s->swap_reloc_out;
8277 }
8278
8279 size = 0;
8280 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8281 if (lo->type == bfd_indirect_link_order)
8282 size += lo->u.indirect.section->size;
8283
8284 if (size != dynamic_relocs->size)
8285 return 0;
8286
8287 sort_elt = (sizeof (struct elf_link_sort_rela)
8288 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8289
8290 count = dynamic_relocs->size / ext_size;
8291 if (count == 0)
8292 return 0;
8293 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8294
8295 if (sort == NULL)
8296 {
8297 (*info->callbacks->warning)
8298 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8299 return 0;
8300 }
8301
8302 if (bed->s->arch_size == 32)
8303 r_sym_mask = ~(bfd_vma) 0xff;
8304 else
8305 r_sym_mask = ~(bfd_vma) 0xffffffff;
8306
8307 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8308 if (lo->type == bfd_indirect_link_order)
8309 {
8310 bfd_byte *erel, *erelend;
8311 asection *o = lo->u.indirect.section;
8312
8313 if (o->contents == NULL && o->size != 0)
8314 {
8315 /* This is a reloc section that is being handled as a normal
8316 section. See bfd_section_from_shdr. We can't combine
8317 relocs in this case. */
8318 free (sort);
8319 return 0;
8320 }
8321 erel = o->contents;
8322 erelend = o->contents + o->size;
8323 /* FIXME: octets_per_byte. */
8324 p = sort + o->output_offset / ext_size * sort_elt;
8325
8326 while (erel < erelend)
8327 {
8328 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8329
8330 (*swap_in) (abfd, erel, s->rela);
8331 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8332 s->u.sym_mask = r_sym_mask;
8333 p += sort_elt;
8334 erel += ext_size;
8335 }
8336 }
8337
8338 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8339
8340 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8341 {
8342 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8343 if (s->type != reloc_class_relative)
8344 break;
8345 }
8346 ret = i;
8347 s_non_relative = p;
8348
8349 sq = (struct elf_link_sort_rela *) s_non_relative;
8350 for (; i < count; i++, p += sort_elt)
8351 {
8352 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8353 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8354 sq = sp;
8355 sp->u.offset = sq->rela->r_offset;
8356 }
8357
8358 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8359
8360 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8361 if (lo->type == bfd_indirect_link_order)
8362 {
8363 bfd_byte *erel, *erelend;
8364 asection *o = lo->u.indirect.section;
8365
8366 erel = o->contents;
8367 erelend = o->contents + o->size;
8368 /* FIXME: octets_per_byte. */
8369 p = sort + o->output_offset / ext_size * sort_elt;
8370 while (erel < erelend)
8371 {
8372 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8373 (*swap_out) (abfd, s->rela, erel);
8374 p += sort_elt;
8375 erel += ext_size;
8376 }
8377 }
8378
8379 free (sort);
8380 *psec = dynamic_relocs;
8381 return ret;
8382 }
8383
8384 /* Flush the output symbols to the file. */
8385
8386 static bfd_boolean
8387 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8388 const struct elf_backend_data *bed)
8389 {
8390 if (flinfo->symbuf_count > 0)
8391 {
8392 Elf_Internal_Shdr *hdr;
8393 file_ptr pos;
8394 bfd_size_type amt;
8395
8396 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8397 pos = hdr->sh_offset + hdr->sh_size;
8398 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8399 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8400 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8401 return FALSE;
8402
8403 hdr->sh_size += amt;
8404 flinfo->symbuf_count = 0;
8405 }
8406
8407 return TRUE;
8408 }
8409
8410 /* Add a symbol to the output symbol table. */
8411
8412 static int
8413 elf_link_output_sym (struct elf_final_link_info *flinfo,
8414 const char *name,
8415 Elf_Internal_Sym *elfsym,
8416 asection *input_sec,
8417 struct elf_link_hash_entry *h)
8418 {
8419 bfd_byte *dest;
8420 Elf_External_Sym_Shndx *destshndx;
8421 int (*output_symbol_hook)
8422 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8423 struct elf_link_hash_entry *);
8424 const struct elf_backend_data *bed;
8425
8426 bed = get_elf_backend_data (flinfo->output_bfd);
8427 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8428 if (output_symbol_hook != NULL)
8429 {
8430 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8431 if (ret != 1)
8432 return ret;
8433 }
8434
8435 if (name == NULL || *name == '\0')
8436 elfsym->st_name = 0;
8437 else if (input_sec->flags & SEC_EXCLUDE)
8438 elfsym->st_name = 0;
8439 else
8440 {
8441 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8442 name, TRUE, FALSE);
8443 if (elfsym->st_name == (unsigned long) -1)
8444 return 0;
8445 }
8446
8447 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8448 {
8449 if (! elf_link_flush_output_syms (flinfo, bed))
8450 return 0;
8451 }
8452
8453 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8454 destshndx = flinfo->symshndxbuf;
8455 if (destshndx != NULL)
8456 {
8457 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8458 {
8459 bfd_size_type amt;
8460
8461 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8462 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8463 amt * 2);
8464 if (destshndx == NULL)
8465 return 0;
8466 flinfo->symshndxbuf = destshndx;
8467 memset ((char *) destshndx + amt, 0, amt);
8468 flinfo->shndxbuf_size *= 2;
8469 }
8470 destshndx += bfd_get_symcount (flinfo->output_bfd);
8471 }
8472
8473 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8474 flinfo->symbuf_count += 1;
8475 bfd_get_symcount (flinfo->output_bfd) += 1;
8476
8477 return 1;
8478 }
8479
8480 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8481
8482 static bfd_boolean
8483 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8484 {
8485 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8486 && sym->st_shndx < SHN_LORESERVE)
8487 {
8488 /* The gABI doesn't support dynamic symbols in output sections
8489 beyond 64k. */
8490 (*_bfd_error_handler)
8491 (_("%B: Too many sections: %d (>= %d)"),
8492 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8493 bfd_set_error (bfd_error_nonrepresentable_section);
8494 return FALSE;
8495 }
8496 return TRUE;
8497 }
8498
8499 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8500 allowing an unsatisfied unversioned symbol in the DSO to match a
8501 versioned symbol that would normally require an explicit version.
8502 We also handle the case that a DSO references a hidden symbol
8503 which may be satisfied by a versioned symbol in another DSO. */
8504
8505 static bfd_boolean
8506 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8507 const struct elf_backend_data *bed,
8508 struct elf_link_hash_entry *h)
8509 {
8510 bfd *abfd;
8511 struct elf_link_loaded_list *loaded;
8512
8513 if (!is_elf_hash_table (info->hash))
8514 return FALSE;
8515
8516 /* Check indirect symbol. */
8517 while (h->root.type == bfd_link_hash_indirect)
8518 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8519
8520 switch (h->root.type)
8521 {
8522 default:
8523 abfd = NULL;
8524 break;
8525
8526 case bfd_link_hash_undefined:
8527 case bfd_link_hash_undefweak:
8528 abfd = h->root.u.undef.abfd;
8529 if ((abfd->flags & DYNAMIC) == 0
8530 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8531 return FALSE;
8532 break;
8533
8534 case bfd_link_hash_defined:
8535 case bfd_link_hash_defweak:
8536 abfd = h->root.u.def.section->owner;
8537 break;
8538
8539 case bfd_link_hash_common:
8540 abfd = h->root.u.c.p->section->owner;
8541 break;
8542 }
8543 BFD_ASSERT (abfd != NULL);
8544
8545 for (loaded = elf_hash_table (info)->loaded;
8546 loaded != NULL;
8547 loaded = loaded->next)
8548 {
8549 bfd *input;
8550 Elf_Internal_Shdr *hdr;
8551 bfd_size_type symcount;
8552 bfd_size_type extsymcount;
8553 bfd_size_type extsymoff;
8554 Elf_Internal_Shdr *versymhdr;
8555 Elf_Internal_Sym *isym;
8556 Elf_Internal_Sym *isymend;
8557 Elf_Internal_Sym *isymbuf;
8558 Elf_External_Versym *ever;
8559 Elf_External_Versym *extversym;
8560
8561 input = loaded->abfd;
8562
8563 /* We check each DSO for a possible hidden versioned definition. */
8564 if (input == abfd
8565 || (input->flags & DYNAMIC) == 0
8566 || elf_dynversym (input) == 0)
8567 continue;
8568
8569 hdr = &elf_tdata (input)->dynsymtab_hdr;
8570
8571 symcount = hdr->sh_size / bed->s->sizeof_sym;
8572 if (elf_bad_symtab (input))
8573 {
8574 extsymcount = symcount;
8575 extsymoff = 0;
8576 }
8577 else
8578 {
8579 extsymcount = symcount - hdr->sh_info;
8580 extsymoff = hdr->sh_info;
8581 }
8582
8583 if (extsymcount == 0)
8584 continue;
8585
8586 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8587 NULL, NULL, NULL);
8588 if (isymbuf == NULL)
8589 return FALSE;
8590
8591 /* Read in any version definitions. */
8592 versymhdr = &elf_tdata (input)->dynversym_hdr;
8593 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8594 if (extversym == NULL)
8595 goto error_ret;
8596
8597 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8598 || (bfd_bread (extversym, versymhdr->sh_size, input)
8599 != versymhdr->sh_size))
8600 {
8601 free (extversym);
8602 error_ret:
8603 free (isymbuf);
8604 return FALSE;
8605 }
8606
8607 ever = extversym + extsymoff;
8608 isymend = isymbuf + extsymcount;
8609 for (isym = isymbuf; isym < isymend; isym++, ever++)
8610 {
8611 const char *name;
8612 Elf_Internal_Versym iver;
8613 unsigned short version_index;
8614
8615 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8616 || isym->st_shndx == SHN_UNDEF)
8617 continue;
8618
8619 name = bfd_elf_string_from_elf_section (input,
8620 hdr->sh_link,
8621 isym->st_name);
8622 if (strcmp (name, h->root.root.string) != 0)
8623 continue;
8624
8625 _bfd_elf_swap_versym_in (input, ever, &iver);
8626
8627 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8628 && !(h->def_regular
8629 && h->forced_local))
8630 {
8631 /* If we have a non-hidden versioned sym, then it should
8632 have provided a definition for the undefined sym unless
8633 it is defined in a non-shared object and forced local.
8634 */
8635 abort ();
8636 }
8637
8638 version_index = iver.vs_vers & VERSYM_VERSION;
8639 if (version_index == 1 || version_index == 2)
8640 {
8641 /* This is the base or first version. We can use it. */
8642 free (extversym);
8643 free (isymbuf);
8644 return TRUE;
8645 }
8646 }
8647
8648 free (extversym);
8649 free (isymbuf);
8650 }
8651
8652 return FALSE;
8653 }
8654
8655 /* Add an external symbol to the symbol table. This is called from
8656 the hash table traversal routine. When generating a shared object,
8657 we go through the symbol table twice. The first time we output
8658 anything that might have been forced to local scope in a version
8659 script. The second time we output the symbols that are still
8660 global symbols. */
8661
8662 static bfd_boolean
8663 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8664 {
8665 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8666 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8667 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8668 bfd_boolean strip;
8669 Elf_Internal_Sym sym;
8670 asection *input_sec;
8671 const struct elf_backend_data *bed;
8672 long indx;
8673 int ret;
8674
8675 if (h->root.type == bfd_link_hash_warning)
8676 {
8677 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8678 if (h->root.type == bfd_link_hash_new)
8679 return TRUE;
8680 }
8681
8682 /* Decide whether to output this symbol in this pass. */
8683 if (eoinfo->localsyms)
8684 {
8685 if (!h->forced_local)
8686 return TRUE;
8687 if (eoinfo->second_pass
8688 && !((h->root.type == bfd_link_hash_defined
8689 || h->root.type == bfd_link_hash_defweak)
8690 && h->root.u.def.section->output_section != NULL))
8691 return TRUE;
8692
8693 if (!eoinfo->file_sym_done
8694 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8695 : eoinfo->flinfo->filesym_count > 1))
8696 {
8697 /* Output a FILE symbol so that following locals are not associated
8698 with the wrong input file. */
8699 memset (&sym, 0, sizeof (sym));
8700 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8701 sym.st_shndx = SHN_ABS;
8702 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8703 bfd_und_section_ptr, NULL))
8704 return FALSE;
8705
8706 eoinfo->file_sym_done = TRUE;
8707 }
8708 }
8709 else
8710 {
8711 if (h->forced_local)
8712 return TRUE;
8713 }
8714
8715 bed = get_elf_backend_data (flinfo->output_bfd);
8716
8717 if (h->root.type == bfd_link_hash_undefined)
8718 {
8719 /* If we have an undefined symbol reference here then it must have
8720 come from a shared library that is being linked in. (Undefined
8721 references in regular files have already been handled unless
8722 they are in unreferenced sections which are removed by garbage
8723 collection). */
8724 bfd_boolean ignore_undef = FALSE;
8725
8726 /* Some symbols may be special in that the fact that they're
8727 undefined can be safely ignored - let backend determine that. */
8728 if (bed->elf_backend_ignore_undef_symbol)
8729 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8730
8731 /* If we are reporting errors for this situation then do so now. */
8732 if (!ignore_undef
8733 && h->ref_dynamic
8734 && (!h->ref_regular || flinfo->info->gc_sections)
8735 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8736 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8737 {
8738 if (!(flinfo->info->callbacks->undefined_symbol
8739 (flinfo->info, h->root.root.string,
8740 h->ref_regular ? NULL : h->root.u.undef.abfd,
8741 NULL, 0,
8742 (flinfo->info->unresolved_syms_in_shared_libs
8743 == RM_GENERATE_ERROR))))
8744 {
8745 bfd_set_error (bfd_error_bad_value);
8746 eoinfo->failed = TRUE;
8747 return FALSE;
8748 }
8749 }
8750 }
8751
8752 /* We should also warn if a forced local symbol is referenced from
8753 shared libraries. */
8754 if (!flinfo->info->relocatable
8755 && flinfo->info->executable
8756 && h->forced_local
8757 && h->ref_dynamic
8758 && h->def_regular
8759 && !h->dynamic_def
8760 && h->ref_dynamic_nonweak
8761 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8762 {
8763 bfd *def_bfd;
8764 const char *msg;
8765 struct elf_link_hash_entry *hi = h;
8766
8767 /* Check indirect symbol. */
8768 while (hi->root.type == bfd_link_hash_indirect)
8769 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8770
8771 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8772 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8773 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8774 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8775 else
8776 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8777 def_bfd = flinfo->output_bfd;
8778 if (hi->root.u.def.section != bfd_abs_section_ptr)
8779 def_bfd = hi->root.u.def.section->owner;
8780 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8781 h->root.root.string);
8782 bfd_set_error (bfd_error_bad_value);
8783 eoinfo->failed = TRUE;
8784 return FALSE;
8785 }
8786
8787 /* We don't want to output symbols that have never been mentioned by
8788 a regular file, or that we have been told to strip. However, if
8789 h->indx is set to -2, the symbol is used by a reloc and we must
8790 output it. */
8791 if (h->indx == -2)
8792 strip = FALSE;
8793 else if ((h->def_dynamic
8794 || h->ref_dynamic
8795 || h->root.type == bfd_link_hash_new)
8796 && !h->def_regular
8797 && !h->ref_regular)
8798 strip = TRUE;
8799 else if (flinfo->info->strip == strip_all)
8800 strip = TRUE;
8801 else if (flinfo->info->strip == strip_some
8802 && bfd_hash_lookup (flinfo->info->keep_hash,
8803 h->root.root.string, FALSE, FALSE) == NULL)
8804 strip = TRUE;
8805 else if ((h->root.type == bfd_link_hash_defined
8806 || h->root.type == bfd_link_hash_defweak)
8807 && ((flinfo->info->strip_discarded
8808 && discarded_section (h->root.u.def.section))
8809 || (h->root.u.def.section->owner != NULL
8810 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8811 strip = TRUE;
8812 else if ((h->root.type == bfd_link_hash_undefined
8813 || h->root.type == bfd_link_hash_undefweak)
8814 && h->root.u.undef.abfd != NULL
8815 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8816 strip = TRUE;
8817 else
8818 strip = FALSE;
8819
8820 /* If we're stripping it, and it's not a dynamic symbol, there's
8821 nothing else to do unless it is a forced local symbol or a
8822 STT_GNU_IFUNC symbol. */
8823 if (strip
8824 && h->dynindx == -1
8825 && h->type != STT_GNU_IFUNC
8826 && !h->forced_local)
8827 return TRUE;
8828
8829 sym.st_value = 0;
8830 sym.st_size = h->size;
8831 sym.st_other = h->other;
8832 if (h->forced_local)
8833 {
8834 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8835 /* Turn off visibility on local symbol. */
8836 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8837 }
8838 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8839 else if (h->unique_global && h->def_regular)
8840 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8841 else if (h->root.type == bfd_link_hash_undefweak
8842 || h->root.type == bfd_link_hash_defweak)
8843 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8844 else
8845 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8846 sym.st_target_internal = h->target_internal;
8847
8848 switch (h->root.type)
8849 {
8850 default:
8851 case bfd_link_hash_new:
8852 case bfd_link_hash_warning:
8853 abort ();
8854 return FALSE;
8855
8856 case bfd_link_hash_undefined:
8857 case bfd_link_hash_undefweak:
8858 input_sec = bfd_und_section_ptr;
8859 sym.st_shndx = SHN_UNDEF;
8860 break;
8861
8862 case bfd_link_hash_defined:
8863 case bfd_link_hash_defweak:
8864 {
8865 input_sec = h->root.u.def.section;
8866 if (input_sec->output_section != NULL)
8867 {
8868 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8869 {
8870 bfd_boolean second_pass_sym
8871 = (input_sec->owner == flinfo->output_bfd
8872 || input_sec->owner == NULL
8873 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8874 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8875
8876 eoinfo->need_second_pass |= second_pass_sym;
8877 if (eoinfo->second_pass != second_pass_sym)
8878 return TRUE;
8879 }
8880
8881 sym.st_shndx =
8882 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8883 input_sec->output_section);
8884 if (sym.st_shndx == SHN_BAD)
8885 {
8886 (*_bfd_error_handler)
8887 (_("%B: could not find output section %A for input section %A"),
8888 flinfo->output_bfd, input_sec->output_section, input_sec);
8889 bfd_set_error (bfd_error_nonrepresentable_section);
8890 eoinfo->failed = TRUE;
8891 return FALSE;
8892 }
8893
8894 /* ELF symbols in relocatable files are section relative,
8895 but in nonrelocatable files they are virtual
8896 addresses. */
8897 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8898 if (!flinfo->info->relocatable)
8899 {
8900 sym.st_value += input_sec->output_section->vma;
8901 if (h->type == STT_TLS)
8902 {
8903 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8904 if (tls_sec != NULL)
8905 sym.st_value -= tls_sec->vma;
8906 else
8907 {
8908 /* The TLS section may have been garbage collected. */
8909 BFD_ASSERT (flinfo->info->gc_sections
8910 && !input_sec->gc_mark);
8911 }
8912 }
8913 }
8914 }
8915 else
8916 {
8917 BFD_ASSERT (input_sec->owner == NULL
8918 || (input_sec->owner->flags & DYNAMIC) != 0);
8919 sym.st_shndx = SHN_UNDEF;
8920 input_sec = bfd_und_section_ptr;
8921 }
8922 }
8923 break;
8924
8925 case bfd_link_hash_common:
8926 input_sec = h->root.u.c.p->section;
8927 sym.st_shndx = bed->common_section_index (input_sec);
8928 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8929 break;
8930
8931 case bfd_link_hash_indirect:
8932 /* These symbols are created by symbol versioning. They point
8933 to the decorated version of the name. For example, if the
8934 symbol foo@@GNU_1.2 is the default, which should be used when
8935 foo is used with no version, then we add an indirect symbol
8936 foo which points to foo@@GNU_1.2. We ignore these symbols,
8937 since the indirected symbol is already in the hash table. */
8938 return TRUE;
8939 }
8940
8941 /* Give the processor backend a chance to tweak the symbol value,
8942 and also to finish up anything that needs to be done for this
8943 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8944 forced local syms when non-shared is due to a historical quirk.
8945 STT_GNU_IFUNC symbol must go through PLT. */
8946 if ((h->type == STT_GNU_IFUNC
8947 && h->def_regular
8948 && !flinfo->info->relocatable)
8949 || ((h->dynindx != -1
8950 || h->forced_local)
8951 && ((flinfo->info->shared
8952 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8953 || h->root.type != bfd_link_hash_undefweak))
8954 || !h->forced_local)
8955 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8956 {
8957 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8958 (flinfo->output_bfd, flinfo->info, h, &sym)))
8959 {
8960 eoinfo->failed = TRUE;
8961 return FALSE;
8962 }
8963 }
8964
8965 /* If we are marking the symbol as undefined, and there are no
8966 non-weak references to this symbol from a regular object, then
8967 mark the symbol as weak undefined; if there are non-weak
8968 references, mark the symbol as strong. We can't do this earlier,
8969 because it might not be marked as undefined until the
8970 finish_dynamic_symbol routine gets through with it. */
8971 if (sym.st_shndx == SHN_UNDEF
8972 && h->ref_regular
8973 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8974 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8975 {
8976 int bindtype;
8977 unsigned int type = ELF_ST_TYPE (sym.st_info);
8978
8979 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8980 if (type == STT_GNU_IFUNC)
8981 type = STT_FUNC;
8982
8983 if (h->ref_regular_nonweak)
8984 bindtype = STB_GLOBAL;
8985 else
8986 bindtype = STB_WEAK;
8987 sym.st_info = ELF_ST_INFO (bindtype, type);
8988 }
8989
8990 /* If this is a symbol defined in a dynamic library, don't use the
8991 symbol size from the dynamic library. Relinking an executable
8992 against a new library may introduce gratuitous changes in the
8993 executable's symbols if we keep the size. */
8994 if (sym.st_shndx == SHN_UNDEF
8995 && !h->def_regular
8996 && h->def_dynamic)
8997 sym.st_size = 0;
8998
8999 /* If a non-weak symbol with non-default visibility is not defined
9000 locally, it is a fatal error. */
9001 if (!flinfo->info->relocatable
9002 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9003 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9004 && h->root.type == bfd_link_hash_undefined
9005 && !h->def_regular)
9006 {
9007 const char *msg;
9008
9009 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9010 msg = _("%B: protected symbol `%s' isn't defined");
9011 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9012 msg = _("%B: internal symbol `%s' isn't defined");
9013 else
9014 msg = _("%B: hidden symbol `%s' isn't defined");
9015 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9016 bfd_set_error (bfd_error_bad_value);
9017 eoinfo->failed = TRUE;
9018 return FALSE;
9019 }
9020
9021 /* If this symbol should be put in the .dynsym section, then put it
9022 there now. We already know the symbol index. We also fill in
9023 the entry in the .hash section. */
9024 if (flinfo->dynsym_sec != NULL
9025 && h->dynindx != -1
9026 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9027 {
9028 bfd_byte *esym;
9029
9030 /* Since there is no version information in the dynamic string,
9031 if there is no version info in symbol version section, we will
9032 have a run-time problem. */
9033 if (h->verinfo.verdef == NULL)
9034 {
9035 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9036
9037 if (p && p [1] != '\0')
9038 {
9039 (*_bfd_error_handler)
9040 (_("%B: No symbol version section for versioned symbol `%s'"),
9041 flinfo->output_bfd, h->root.root.string);
9042 eoinfo->failed = TRUE;
9043 return FALSE;
9044 }
9045 }
9046
9047 sym.st_name = h->dynstr_index;
9048 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9049 if (!check_dynsym (flinfo->output_bfd, &sym))
9050 {
9051 eoinfo->failed = TRUE;
9052 return FALSE;
9053 }
9054 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9055
9056 if (flinfo->hash_sec != NULL)
9057 {
9058 size_t hash_entry_size;
9059 bfd_byte *bucketpos;
9060 bfd_vma chain;
9061 size_t bucketcount;
9062 size_t bucket;
9063
9064 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9065 bucket = h->u.elf_hash_value % bucketcount;
9066
9067 hash_entry_size
9068 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9069 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9070 + (bucket + 2) * hash_entry_size);
9071 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9072 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9073 bucketpos);
9074 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9075 ((bfd_byte *) flinfo->hash_sec->contents
9076 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9077 }
9078
9079 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9080 {
9081 Elf_Internal_Versym iversym;
9082 Elf_External_Versym *eversym;
9083
9084 if (!h->def_regular)
9085 {
9086 if (h->verinfo.verdef == NULL)
9087 iversym.vs_vers = 0;
9088 else
9089 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9090 }
9091 else
9092 {
9093 if (h->verinfo.vertree == NULL)
9094 iversym.vs_vers = 1;
9095 else
9096 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9097 if (flinfo->info->create_default_symver)
9098 iversym.vs_vers++;
9099 }
9100
9101 if (h->hidden)
9102 iversym.vs_vers |= VERSYM_HIDDEN;
9103
9104 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9105 eversym += h->dynindx;
9106 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9107 }
9108 }
9109
9110 /* If we're stripping it, then it was just a dynamic symbol, and
9111 there's nothing else to do. */
9112 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9113 return TRUE;
9114
9115 indx = bfd_get_symcount (flinfo->output_bfd);
9116 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9117 if (ret == 0)
9118 {
9119 eoinfo->failed = TRUE;
9120 return FALSE;
9121 }
9122 else if (ret == 1)
9123 h->indx = indx;
9124 else if (h->indx == -2)
9125 abort();
9126
9127 return TRUE;
9128 }
9129
9130 /* Return TRUE if special handling is done for relocs in SEC against
9131 symbols defined in discarded sections. */
9132
9133 static bfd_boolean
9134 elf_section_ignore_discarded_relocs (asection *sec)
9135 {
9136 const struct elf_backend_data *bed;
9137
9138 switch (sec->sec_info_type)
9139 {
9140 case SEC_INFO_TYPE_STABS:
9141 case SEC_INFO_TYPE_EH_FRAME:
9142 return TRUE;
9143 default:
9144 break;
9145 }
9146
9147 bed = get_elf_backend_data (sec->owner);
9148 if (bed->elf_backend_ignore_discarded_relocs != NULL
9149 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9150 return TRUE;
9151
9152 return FALSE;
9153 }
9154
9155 /* Return a mask saying how ld should treat relocations in SEC against
9156 symbols defined in discarded sections. If this function returns
9157 COMPLAIN set, ld will issue a warning message. If this function
9158 returns PRETEND set, and the discarded section was link-once and the
9159 same size as the kept link-once section, ld will pretend that the
9160 symbol was actually defined in the kept section. Otherwise ld will
9161 zero the reloc (at least that is the intent, but some cooperation by
9162 the target dependent code is needed, particularly for REL targets). */
9163
9164 unsigned int
9165 _bfd_elf_default_action_discarded (asection *sec)
9166 {
9167 if (sec->flags & SEC_DEBUGGING)
9168 return PRETEND;
9169
9170 if (strcmp (".eh_frame", sec->name) == 0)
9171 return 0;
9172
9173 if (strcmp (".gcc_except_table", sec->name) == 0)
9174 return 0;
9175
9176 return COMPLAIN | PRETEND;
9177 }
9178
9179 /* Find a match between a section and a member of a section group. */
9180
9181 static asection *
9182 match_group_member (asection *sec, asection *group,
9183 struct bfd_link_info *info)
9184 {
9185 asection *first = elf_next_in_group (group);
9186 asection *s = first;
9187
9188 while (s != NULL)
9189 {
9190 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9191 return s;
9192
9193 s = elf_next_in_group (s);
9194 if (s == first)
9195 break;
9196 }
9197
9198 return NULL;
9199 }
9200
9201 /* Check if the kept section of a discarded section SEC can be used
9202 to replace it. Return the replacement if it is OK. Otherwise return
9203 NULL. */
9204
9205 asection *
9206 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9207 {
9208 asection *kept;
9209
9210 kept = sec->kept_section;
9211 if (kept != NULL)
9212 {
9213 if ((kept->flags & SEC_GROUP) != 0)
9214 kept = match_group_member (sec, kept, info);
9215 if (kept != NULL
9216 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9217 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9218 kept = NULL;
9219 sec->kept_section = kept;
9220 }
9221 return kept;
9222 }
9223
9224 /* Link an input file into the linker output file. This function
9225 handles all the sections and relocations of the input file at once.
9226 This is so that we only have to read the local symbols once, and
9227 don't have to keep them in memory. */
9228
9229 static bfd_boolean
9230 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9231 {
9232 int (*relocate_section)
9233 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9234 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9235 bfd *output_bfd;
9236 Elf_Internal_Shdr *symtab_hdr;
9237 size_t locsymcount;
9238 size_t extsymoff;
9239 Elf_Internal_Sym *isymbuf;
9240 Elf_Internal_Sym *isym;
9241 Elf_Internal_Sym *isymend;
9242 long *pindex;
9243 asection **ppsection;
9244 asection *o;
9245 const struct elf_backend_data *bed;
9246 struct elf_link_hash_entry **sym_hashes;
9247 bfd_size_type address_size;
9248 bfd_vma r_type_mask;
9249 int r_sym_shift;
9250 bfd_boolean have_file_sym = FALSE;
9251
9252 output_bfd = flinfo->output_bfd;
9253 bed = get_elf_backend_data (output_bfd);
9254 relocate_section = bed->elf_backend_relocate_section;
9255
9256 /* If this is a dynamic object, we don't want to do anything here:
9257 we don't want the local symbols, and we don't want the section
9258 contents. */
9259 if ((input_bfd->flags & DYNAMIC) != 0)
9260 return TRUE;
9261
9262 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9263 if (elf_bad_symtab (input_bfd))
9264 {
9265 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9266 extsymoff = 0;
9267 }
9268 else
9269 {
9270 locsymcount = symtab_hdr->sh_info;
9271 extsymoff = symtab_hdr->sh_info;
9272 }
9273
9274 /* Read the local symbols. */
9275 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9276 if (isymbuf == NULL && locsymcount != 0)
9277 {
9278 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9279 flinfo->internal_syms,
9280 flinfo->external_syms,
9281 flinfo->locsym_shndx);
9282 if (isymbuf == NULL)
9283 return FALSE;
9284 }
9285
9286 /* Find local symbol sections and adjust values of symbols in
9287 SEC_MERGE sections. Write out those local symbols we know are
9288 going into the output file. */
9289 isymend = isymbuf + locsymcount;
9290 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9291 isym < isymend;
9292 isym++, pindex++, ppsection++)
9293 {
9294 asection *isec;
9295 const char *name;
9296 Elf_Internal_Sym osym;
9297 long indx;
9298 int ret;
9299
9300 *pindex = -1;
9301
9302 if (elf_bad_symtab (input_bfd))
9303 {
9304 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9305 {
9306 *ppsection = NULL;
9307 continue;
9308 }
9309 }
9310
9311 if (isym->st_shndx == SHN_UNDEF)
9312 isec = bfd_und_section_ptr;
9313 else if (isym->st_shndx == SHN_ABS)
9314 isec = bfd_abs_section_ptr;
9315 else if (isym->st_shndx == SHN_COMMON)
9316 isec = bfd_com_section_ptr;
9317 else
9318 {
9319 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9320 if (isec == NULL)
9321 {
9322 /* Don't attempt to output symbols with st_shnx in the
9323 reserved range other than SHN_ABS and SHN_COMMON. */
9324 *ppsection = NULL;
9325 continue;
9326 }
9327 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9328 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9329 isym->st_value =
9330 _bfd_merged_section_offset (output_bfd, &isec,
9331 elf_section_data (isec)->sec_info,
9332 isym->st_value);
9333 }
9334
9335 *ppsection = isec;
9336
9337 /* Don't output the first, undefined, symbol. */
9338 if (ppsection == flinfo->sections)
9339 continue;
9340
9341 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9342 {
9343 /* We never output section symbols. Instead, we use the
9344 section symbol of the corresponding section in the output
9345 file. */
9346 continue;
9347 }
9348
9349 /* If we are stripping all symbols, we don't want to output this
9350 one. */
9351 if (flinfo->info->strip == strip_all)
9352 continue;
9353
9354 /* If we are discarding all local symbols, we don't want to
9355 output this one. If we are generating a relocatable output
9356 file, then some of the local symbols may be required by
9357 relocs; we output them below as we discover that they are
9358 needed. */
9359 if (flinfo->info->discard == discard_all)
9360 continue;
9361
9362 /* If this symbol is defined in a section which we are
9363 discarding, we don't need to keep it. */
9364 if (isym->st_shndx != SHN_UNDEF
9365 && isym->st_shndx < SHN_LORESERVE
9366 && bfd_section_removed_from_list (output_bfd,
9367 isec->output_section))
9368 continue;
9369
9370 /* Get the name of the symbol. */
9371 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9372 isym->st_name);
9373 if (name == NULL)
9374 return FALSE;
9375
9376 /* See if we are discarding symbols with this name. */
9377 if ((flinfo->info->strip == strip_some
9378 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9379 == NULL))
9380 || (((flinfo->info->discard == discard_sec_merge
9381 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9382 || flinfo->info->discard == discard_l)
9383 && bfd_is_local_label_name (input_bfd, name)))
9384 continue;
9385
9386 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9387 {
9388 have_file_sym = TRUE;
9389 flinfo->filesym_count += 1;
9390 }
9391 if (!have_file_sym)
9392 {
9393 /* In the absence of debug info, bfd_find_nearest_line uses
9394 FILE symbols to determine the source file for local
9395 function symbols. Provide a FILE symbol here if input
9396 files lack such, so that their symbols won't be
9397 associated with a previous input file. It's not the
9398 source file, but the best we can do. */
9399 have_file_sym = TRUE;
9400 flinfo->filesym_count += 1;
9401 memset (&osym, 0, sizeof (osym));
9402 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9403 osym.st_shndx = SHN_ABS;
9404 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9405 bfd_abs_section_ptr, NULL))
9406 return FALSE;
9407 }
9408
9409 osym = *isym;
9410
9411 /* Adjust the section index for the output file. */
9412 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9413 isec->output_section);
9414 if (osym.st_shndx == SHN_BAD)
9415 return FALSE;
9416
9417 /* ELF symbols in relocatable files are section relative, but
9418 in executable files they are virtual addresses. Note that
9419 this code assumes that all ELF sections have an associated
9420 BFD section with a reasonable value for output_offset; below
9421 we assume that they also have a reasonable value for
9422 output_section. Any special sections must be set up to meet
9423 these requirements. */
9424 osym.st_value += isec->output_offset;
9425 if (!flinfo->info->relocatable)
9426 {
9427 osym.st_value += isec->output_section->vma;
9428 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9429 {
9430 /* STT_TLS symbols are relative to PT_TLS segment base. */
9431 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9432 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9433 }
9434 }
9435
9436 indx = bfd_get_symcount (output_bfd);
9437 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9438 if (ret == 0)
9439 return FALSE;
9440 else if (ret == 1)
9441 *pindex = indx;
9442 }
9443
9444 if (bed->s->arch_size == 32)
9445 {
9446 r_type_mask = 0xff;
9447 r_sym_shift = 8;
9448 address_size = 4;
9449 }
9450 else
9451 {
9452 r_type_mask = 0xffffffff;
9453 r_sym_shift = 32;
9454 address_size = 8;
9455 }
9456
9457 /* Relocate the contents of each section. */
9458 sym_hashes = elf_sym_hashes (input_bfd);
9459 for (o = input_bfd->sections; o != NULL; o = o->next)
9460 {
9461 bfd_byte *contents;
9462
9463 if (! o->linker_mark)
9464 {
9465 /* This section was omitted from the link. */
9466 continue;
9467 }
9468
9469 if (flinfo->info->relocatable
9470 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9471 {
9472 /* Deal with the group signature symbol. */
9473 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9474 unsigned long symndx = sec_data->this_hdr.sh_info;
9475 asection *osec = o->output_section;
9476
9477 if (symndx >= locsymcount
9478 || (elf_bad_symtab (input_bfd)
9479 && flinfo->sections[symndx] == NULL))
9480 {
9481 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9482 while (h->root.type == bfd_link_hash_indirect
9483 || h->root.type == bfd_link_hash_warning)
9484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9485 /* Arrange for symbol to be output. */
9486 h->indx = -2;
9487 elf_section_data (osec)->this_hdr.sh_info = -2;
9488 }
9489 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9490 {
9491 /* We'll use the output section target_index. */
9492 asection *sec = flinfo->sections[symndx]->output_section;
9493 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9494 }
9495 else
9496 {
9497 if (flinfo->indices[symndx] == -1)
9498 {
9499 /* Otherwise output the local symbol now. */
9500 Elf_Internal_Sym sym = isymbuf[symndx];
9501 asection *sec = flinfo->sections[symndx]->output_section;
9502 const char *name;
9503 long indx;
9504 int ret;
9505
9506 name = bfd_elf_string_from_elf_section (input_bfd,
9507 symtab_hdr->sh_link,
9508 sym.st_name);
9509 if (name == NULL)
9510 return FALSE;
9511
9512 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9513 sec);
9514 if (sym.st_shndx == SHN_BAD)
9515 return FALSE;
9516
9517 sym.st_value += o->output_offset;
9518
9519 indx = bfd_get_symcount (output_bfd);
9520 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9521 if (ret == 0)
9522 return FALSE;
9523 else if (ret == 1)
9524 flinfo->indices[symndx] = indx;
9525 else
9526 abort ();
9527 }
9528 elf_section_data (osec)->this_hdr.sh_info
9529 = flinfo->indices[symndx];
9530 }
9531 }
9532
9533 if ((o->flags & SEC_HAS_CONTENTS) == 0
9534 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9535 continue;
9536
9537 if ((o->flags & SEC_LINKER_CREATED) != 0)
9538 {
9539 /* Section was created by _bfd_elf_link_create_dynamic_sections
9540 or somesuch. */
9541 continue;
9542 }
9543
9544 /* Get the contents of the section. They have been cached by a
9545 relaxation routine. Note that o is a section in an input
9546 file, so the contents field will not have been set by any of
9547 the routines which work on output files. */
9548 if (elf_section_data (o)->this_hdr.contents != NULL)
9549 contents = elf_section_data (o)->this_hdr.contents;
9550 else
9551 {
9552 contents = flinfo->contents;
9553 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9554 return FALSE;
9555 }
9556
9557 if ((o->flags & SEC_RELOC) != 0)
9558 {
9559 Elf_Internal_Rela *internal_relocs;
9560 Elf_Internal_Rela *rel, *relend;
9561 int action_discarded;
9562 int ret;
9563
9564 /* Get the swapped relocs. */
9565 internal_relocs
9566 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9567 flinfo->internal_relocs, FALSE);
9568 if (internal_relocs == NULL
9569 && o->reloc_count > 0)
9570 return FALSE;
9571
9572 /* We need to reverse-copy input .ctors/.dtors sections if
9573 they are placed in .init_array/.finit_array for output. */
9574 if (o->size > address_size
9575 && ((strncmp (o->name, ".ctors", 6) == 0
9576 && strcmp (o->output_section->name,
9577 ".init_array") == 0)
9578 || (strncmp (o->name, ".dtors", 6) == 0
9579 && strcmp (o->output_section->name,
9580 ".fini_array") == 0))
9581 && (o->name[6] == 0 || o->name[6] == '.'))
9582 {
9583 if (o->size != o->reloc_count * address_size)
9584 {
9585 (*_bfd_error_handler)
9586 (_("error: %B: size of section %A is not "
9587 "multiple of address size"),
9588 input_bfd, o);
9589 bfd_set_error (bfd_error_on_input);
9590 return FALSE;
9591 }
9592 o->flags |= SEC_ELF_REVERSE_COPY;
9593 }
9594
9595 action_discarded = -1;
9596 if (!elf_section_ignore_discarded_relocs (o))
9597 action_discarded = (*bed->action_discarded) (o);
9598
9599 /* Run through the relocs evaluating complex reloc symbols and
9600 looking for relocs against symbols from discarded sections
9601 or section symbols from removed link-once sections.
9602 Complain about relocs against discarded sections. Zero
9603 relocs against removed link-once sections. */
9604
9605 rel = internal_relocs;
9606 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9607 for ( ; rel < relend; rel++)
9608 {
9609 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9610 unsigned int s_type;
9611 asection **ps, *sec;
9612 struct elf_link_hash_entry *h = NULL;
9613 const char *sym_name;
9614
9615 if (r_symndx == STN_UNDEF)
9616 continue;
9617
9618 if (r_symndx >= locsymcount
9619 || (elf_bad_symtab (input_bfd)
9620 && flinfo->sections[r_symndx] == NULL))
9621 {
9622 h = sym_hashes[r_symndx - extsymoff];
9623
9624 /* Badly formatted input files can contain relocs that
9625 reference non-existant symbols. Check here so that
9626 we do not seg fault. */
9627 if (h == NULL)
9628 {
9629 char buffer [32];
9630
9631 sprintf_vma (buffer, rel->r_info);
9632 (*_bfd_error_handler)
9633 (_("error: %B contains a reloc (0x%s) for section %A "
9634 "that references a non-existent global symbol"),
9635 input_bfd, o, buffer);
9636 bfd_set_error (bfd_error_bad_value);
9637 return FALSE;
9638 }
9639
9640 while (h->root.type == bfd_link_hash_indirect
9641 || h->root.type == bfd_link_hash_warning)
9642 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9643
9644 s_type = h->type;
9645
9646 ps = NULL;
9647 if (h->root.type == bfd_link_hash_defined
9648 || h->root.type == bfd_link_hash_defweak)
9649 ps = &h->root.u.def.section;
9650
9651 sym_name = h->root.root.string;
9652 }
9653 else
9654 {
9655 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9656
9657 s_type = ELF_ST_TYPE (sym->st_info);
9658 ps = &flinfo->sections[r_symndx];
9659 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9660 sym, *ps);
9661 }
9662
9663 if ((s_type == STT_RELC || s_type == STT_SRELC)
9664 && !flinfo->info->relocatable)
9665 {
9666 bfd_vma val;
9667 bfd_vma dot = (rel->r_offset
9668 + o->output_offset + o->output_section->vma);
9669 #ifdef DEBUG
9670 printf ("Encountered a complex symbol!");
9671 printf (" (input_bfd %s, section %s, reloc %ld\n",
9672 input_bfd->filename, o->name,
9673 (long) (rel - internal_relocs));
9674 printf (" symbol: idx %8.8lx, name %s\n",
9675 r_symndx, sym_name);
9676 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9677 (unsigned long) rel->r_info,
9678 (unsigned long) rel->r_offset);
9679 #endif
9680 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9681 isymbuf, locsymcount, s_type == STT_SRELC))
9682 return FALSE;
9683
9684 /* Symbol evaluated OK. Update to absolute value. */
9685 set_symbol_value (input_bfd, isymbuf, locsymcount,
9686 r_symndx, val);
9687 continue;
9688 }
9689
9690 if (action_discarded != -1 && ps != NULL)
9691 {
9692 /* Complain if the definition comes from a
9693 discarded section. */
9694 if ((sec = *ps) != NULL && discarded_section (sec))
9695 {
9696 BFD_ASSERT (r_symndx != STN_UNDEF);
9697 if (action_discarded & COMPLAIN)
9698 (*flinfo->info->callbacks->einfo)
9699 (_("%X`%s' referenced in section `%A' of %B: "
9700 "defined in discarded section `%A' of %B\n"),
9701 sym_name, o, input_bfd, sec, sec->owner);
9702
9703 /* Try to do the best we can to support buggy old
9704 versions of gcc. Pretend that the symbol is
9705 really defined in the kept linkonce section.
9706 FIXME: This is quite broken. Modifying the
9707 symbol here means we will be changing all later
9708 uses of the symbol, not just in this section. */
9709 if (action_discarded & PRETEND)
9710 {
9711 asection *kept;
9712
9713 kept = _bfd_elf_check_kept_section (sec,
9714 flinfo->info);
9715 if (kept != NULL)
9716 {
9717 *ps = kept;
9718 continue;
9719 }
9720 }
9721 }
9722 }
9723 }
9724
9725 /* Relocate the section by invoking a back end routine.
9726
9727 The back end routine is responsible for adjusting the
9728 section contents as necessary, and (if using Rela relocs
9729 and generating a relocatable output file) adjusting the
9730 reloc addend as necessary.
9731
9732 The back end routine does not have to worry about setting
9733 the reloc address or the reloc symbol index.
9734
9735 The back end routine is given a pointer to the swapped in
9736 internal symbols, and can access the hash table entries
9737 for the external symbols via elf_sym_hashes (input_bfd).
9738
9739 When generating relocatable output, the back end routine
9740 must handle STB_LOCAL/STT_SECTION symbols specially. The
9741 output symbol is going to be a section symbol
9742 corresponding to the output section, which will require
9743 the addend to be adjusted. */
9744
9745 ret = (*relocate_section) (output_bfd, flinfo->info,
9746 input_bfd, o, contents,
9747 internal_relocs,
9748 isymbuf,
9749 flinfo->sections);
9750 if (!ret)
9751 return FALSE;
9752
9753 if (ret == 2
9754 || flinfo->info->relocatable
9755 || flinfo->info->emitrelocations)
9756 {
9757 Elf_Internal_Rela *irela;
9758 Elf_Internal_Rela *irelaend, *irelamid;
9759 bfd_vma last_offset;
9760 struct elf_link_hash_entry **rel_hash;
9761 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9762 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9763 unsigned int next_erel;
9764 bfd_boolean rela_normal;
9765 struct bfd_elf_section_data *esdi, *esdo;
9766
9767 esdi = elf_section_data (o);
9768 esdo = elf_section_data (o->output_section);
9769 rela_normal = FALSE;
9770
9771 /* Adjust the reloc addresses and symbol indices. */
9772
9773 irela = internal_relocs;
9774 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9775 rel_hash = esdo->rel.hashes + esdo->rel.count;
9776 /* We start processing the REL relocs, if any. When we reach
9777 IRELAMID in the loop, we switch to the RELA relocs. */
9778 irelamid = irela;
9779 if (esdi->rel.hdr != NULL)
9780 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9781 * bed->s->int_rels_per_ext_rel);
9782 rel_hash_list = rel_hash;
9783 rela_hash_list = NULL;
9784 last_offset = o->output_offset;
9785 if (!flinfo->info->relocatable)
9786 last_offset += o->output_section->vma;
9787 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9788 {
9789 unsigned long r_symndx;
9790 asection *sec;
9791 Elf_Internal_Sym sym;
9792
9793 if (next_erel == bed->s->int_rels_per_ext_rel)
9794 {
9795 rel_hash++;
9796 next_erel = 0;
9797 }
9798
9799 if (irela == irelamid)
9800 {
9801 rel_hash = esdo->rela.hashes + esdo->rela.count;
9802 rela_hash_list = rel_hash;
9803 rela_normal = bed->rela_normal;
9804 }
9805
9806 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9807 flinfo->info, o,
9808 irela->r_offset);
9809 if (irela->r_offset >= (bfd_vma) -2)
9810 {
9811 /* This is a reloc for a deleted entry or somesuch.
9812 Turn it into an R_*_NONE reloc, at the same
9813 offset as the last reloc. elf_eh_frame.c and
9814 bfd_elf_discard_info rely on reloc offsets
9815 being ordered. */
9816 irela->r_offset = last_offset;
9817 irela->r_info = 0;
9818 irela->r_addend = 0;
9819 continue;
9820 }
9821
9822 irela->r_offset += o->output_offset;
9823
9824 /* Relocs in an executable have to be virtual addresses. */
9825 if (!flinfo->info->relocatable)
9826 irela->r_offset += o->output_section->vma;
9827
9828 last_offset = irela->r_offset;
9829
9830 r_symndx = irela->r_info >> r_sym_shift;
9831 if (r_symndx == STN_UNDEF)
9832 continue;
9833
9834 if (r_symndx >= locsymcount
9835 || (elf_bad_symtab (input_bfd)
9836 && flinfo->sections[r_symndx] == NULL))
9837 {
9838 struct elf_link_hash_entry *rh;
9839 unsigned long indx;
9840
9841 /* This is a reloc against a global symbol. We
9842 have not yet output all the local symbols, so
9843 we do not know the symbol index of any global
9844 symbol. We set the rel_hash entry for this
9845 reloc to point to the global hash table entry
9846 for this symbol. The symbol index is then
9847 set at the end of bfd_elf_final_link. */
9848 indx = r_symndx - extsymoff;
9849 rh = elf_sym_hashes (input_bfd)[indx];
9850 while (rh->root.type == bfd_link_hash_indirect
9851 || rh->root.type == bfd_link_hash_warning)
9852 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9853
9854 /* Setting the index to -2 tells
9855 elf_link_output_extsym that this symbol is
9856 used by a reloc. */
9857 BFD_ASSERT (rh->indx < 0);
9858 rh->indx = -2;
9859
9860 *rel_hash = rh;
9861
9862 continue;
9863 }
9864
9865 /* This is a reloc against a local symbol. */
9866
9867 *rel_hash = NULL;
9868 sym = isymbuf[r_symndx];
9869 sec = flinfo->sections[r_symndx];
9870 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9871 {
9872 /* I suppose the backend ought to fill in the
9873 section of any STT_SECTION symbol against a
9874 processor specific section. */
9875 r_symndx = STN_UNDEF;
9876 if (bfd_is_abs_section (sec))
9877 ;
9878 else if (sec == NULL || sec->owner == NULL)
9879 {
9880 bfd_set_error (bfd_error_bad_value);
9881 return FALSE;
9882 }
9883 else
9884 {
9885 asection *osec = sec->output_section;
9886
9887 /* If we have discarded a section, the output
9888 section will be the absolute section. In
9889 case of discarded SEC_MERGE sections, use
9890 the kept section. relocate_section should
9891 have already handled discarded linkonce
9892 sections. */
9893 if (bfd_is_abs_section (osec)
9894 && sec->kept_section != NULL
9895 && sec->kept_section->output_section != NULL)
9896 {
9897 osec = sec->kept_section->output_section;
9898 irela->r_addend -= osec->vma;
9899 }
9900
9901 if (!bfd_is_abs_section (osec))
9902 {
9903 r_symndx = osec->target_index;
9904 if (r_symndx == STN_UNDEF)
9905 {
9906 irela->r_addend += osec->vma;
9907 osec = _bfd_nearby_section (output_bfd, osec,
9908 osec->vma);
9909 irela->r_addend -= osec->vma;
9910 r_symndx = osec->target_index;
9911 }
9912 }
9913 }
9914
9915 /* Adjust the addend according to where the
9916 section winds up in the output section. */
9917 if (rela_normal)
9918 irela->r_addend += sec->output_offset;
9919 }
9920 else
9921 {
9922 if (flinfo->indices[r_symndx] == -1)
9923 {
9924 unsigned long shlink;
9925 const char *name;
9926 asection *osec;
9927 long indx;
9928
9929 if (flinfo->info->strip == strip_all)
9930 {
9931 /* You can't do ld -r -s. */
9932 bfd_set_error (bfd_error_invalid_operation);
9933 return FALSE;
9934 }
9935
9936 /* This symbol was skipped earlier, but
9937 since it is needed by a reloc, we
9938 must output it now. */
9939 shlink = symtab_hdr->sh_link;
9940 name = (bfd_elf_string_from_elf_section
9941 (input_bfd, shlink, sym.st_name));
9942 if (name == NULL)
9943 return FALSE;
9944
9945 osec = sec->output_section;
9946 sym.st_shndx =
9947 _bfd_elf_section_from_bfd_section (output_bfd,
9948 osec);
9949 if (sym.st_shndx == SHN_BAD)
9950 return FALSE;
9951
9952 sym.st_value += sec->output_offset;
9953 if (!flinfo->info->relocatable)
9954 {
9955 sym.st_value += osec->vma;
9956 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9957 {
9958 /* STT_TLS symbols are relative to PT_TLS
9959 segment base. */
9960 BFD_ASSERT (elf_hash_table (flinfo->info)
9961 ->tls_sec != NULL);
9962 sym.st_value -= (elf_hash_table (flinfo->info)
9963 ->tls_sec->vma);
9964 }
9965 }
9966
9967 indx = bfd_get_symcount (output_bfd);
9968 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9969 NULL);
9970 if (ret == 0)
9971 return FALSE;
9972 else if (ret == 1)
9973 flinfo->indices[r_symndx] = indx;
9974 else
9975 abort ();
9976 }
9977
9978 r_symndx = flinfo->indices[r_symndx];
9979 }
9980
9981 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9982 | (irela->r_info & r_type_mask));
9983 }
9984
9985 /* Swap out the relocs. */
9986 input_rel_hdr = esdi->rel.hdr;
9987 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9988 {
9989 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9990 input_rel_hdr,
9991 internal_relocs,
9992 rel_hash_list))
9993 return FALSE;
9994 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9995 * bed->s->int_rels_per_ext_rel);
9996 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9997 }
9998
9999 input_rela_hdr = esdi->rela.hdr;
10000 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10001 {
10002 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10003 input_rela_hdr,
10004 internal_relocs,
10005 rela_hash_list))
10006 return FALSE;
10007 }
10008 }
10009 }
10010
10011 /* Write out the modified section contents. */
10012 if (bed->elf_backend_write_section
10013 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10014 contents))
10015 {
10016 /* Section written out. */
10017 }
10018 else switch (o->sec_info_type)
10019 {
10020 case SEC_INFO_TYPE_STABS:
10021 if (! (_bfd_write_section_stabs
10022 (output_bfd,
10023 &elf_hash_table (flinfo->info)->stab_info,
10024 o, &elf_section_data (o)->sec_info, contents)))
10025 return FALSE;
10026 break;
10027 case SEC_INFO_TYPE_MERGE:
10028 if (! _bfd_write_merged_section (output_bfd, o,
10029 elf_section_data (o)->sec_info))
10030 return FALSE;
10031 break;
10032 case SEC_INFO_TYPE_EH_FRAME:
10033 {
10034 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10035 o, contents))
10036 return FALSE;
10037 }
10038 break;
10039 default:
10040 {
10041 /* FIXME: octets_per_byte. */
10042 if (! (o->flags & SEC_EXCLUDE))
10043 {
10044 file_ptr offset = (file_ptr) o->output_offset;
10045 bfd_size_type todo = o->size;
10046 if ((o->flags & SEC_ELF_REVERSE_COPY))
10047 {
10048 /* Reverse-copy input section to output. */
10049 do
10050 {
10051 todo -= address_size;
10052 if (! bfd_set_section_contents (output_bfd,
10053 o->output_section,
10054 contents + todo,
10055 offset,
10056 address_size))
10057 return FALSE;
10058 if (todo == 0)
10059 break;
10060 offset += address_size;
10061 }
10062 while (1);
10063 }
10064 else if (! bfd_set_section_contents (output_bfd,
10065 o->output_section,
10066 contents,
10067 offset, todo))
10068 return FALSE;
10069 }
10070 }
10071 break;
10072 }
10073 }
10074
10075 return TRUE;
10076 }
10077
10078 /* Generate a reloc when linking an ELF file. This is a reloc
10079 requested by the linker, and does not come from any input file. This
10080 is used to build constructor and destructor tables when linking
10081 with -Ur. */
10082
10083 static bfd_boolean
10084 elf_reloc_link_order (bfd *output_bfd,
10085 struct bfd_link_info *info,
10086 asection *output_section,
10087 struct bfd_link_order *link_order)
10088 {
10089 reloc_howto_type *howto;
10090 long indx;
10091 bfd_vma offset;
10092 bfd_vma addend;
10093 struct bfd_elf_section_reloc_data *reldata;
10094 struct elf_link_hash_entry **rel_hash_ptr;
10095 Elf_Internal_Shdr *rel_hdr;
10096 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10097 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10098 bfd_byte *erel;
10099 unsigned int i;
10100 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10101
10102 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10103 if (howto == NULL)
10104 {
10105 bfd_set_error (bfd_error_bad_value);
10106 return FALSE;
10107 }
10108
10109 addend = link_order->u.reloc.p->addend;
10110
10111 if (esdo->rel.hdr)
10112 reldata = &esdo->rel;
10113 else if (esdo->rela.hdr)
10114 reldata = &esdo->rela;
10115 else
10116 {
10117 reldata = NULL;
10118 BFD_ASSERT (0);
10119 }
10120
10121 /* Figure out the symbol index. */
10122 rel_hash_ptr = reldata->hashes + reldata->count;
10123 if (link_order->type == bfd_section_reloc_link_order)
10124 {
10125 indx = link_order->u.reloc.p->u.section->target_index;
10126 BFD_ASSERT (indx != 0);
10127 *rel_hash_ptr = NULL;
10128 }
10129 else
10130 {
10131 struct elf_link_hash_entry *h;
10132
10133 /* Treat a reloc against a defined symbol as though it were
10134 actually against the section. */
10135 h = ((struct elf_link_hash_entry *)
10136 bfd_wrapped_link_hash_lookup (output_bfd, info,
10137 link_order->u.reloc.p->u.name,
10138 FALSE, FALSE, TRUE));
10139 if (h != NULL
10140 && (h->root.type == bfd_link_hash_defined
10141 || h->root.type == bfd_link_hash_defweak))
10142 {
10143 asection *section;
10144
10145 section = h->root.u.def.section;
10146 indx = section->output_section->target_index;
10147 *rel_hash_ptr = NULL;
10148 /* It seems that we ought to add the symbol value to the
10149 addend here, but in practice it has already been added
10150 because it was passed to constructor_callback. */
10151 addend += section->output_section->vma + section->output_offset;
10152 }
10153 else if (h != NULL)
10154 {
10155 /* Setting the index to -2 tells elf_link_output_extsym that
10156 this symbol is used by a reloc. */
10157 h->indx = -2;
10158 *rel_hash_ptr = h;
10159 indx = 0;
10160 }
10161 else
10162 {
10163 if (! ((*info->callbacks->unattached_reloc)
10164 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10165 return FALSE;
10166 indx = 0;
10167 }
10168 }
10169
10170 /* If this is an inplace reloc, we must write the addend into the
10171 object file. */
10172 if (howto->partial_inplace && addend != 0)
10173 {
10174 bfd_size_type size;
10175 bfd_reloc_status_type rstat;
10176 bfd_byte *buf;
10177 bfd_boolean ok;
10178 const char *sym_name;
10179
10180 size = (bfd_size_type) bfd_get_reloc_size (howto);
10181 buf = (bfd_byte *) bfd_zmalloc (size);
10182 if (buf == NULL)
10183 return FALSE;
10184 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10185 switch (rstat)
10186 {
10187 case bfd_reloc_ok:
10188 break;
10189
10190 default:
10191 case bfd_reloc_outofrange:
10192 abort ();
10193
10194 case bfd_reloc_overflow:
10195 if (link_order->type == bfd_section_reloc_link_order)
10196 sym_name = bfd_section_name (output_bfd,
10197 link_order->u.reloc.p->u.section);
10198 else
10199 sym_name = link_order->u.reloc.p->u.name;
10200 if (! ((*info->callbacks->reloc_overflow)
10201 (info, NULL, sym_name, howto->name, addend, NULL,
10202 NULL, (bfd_vma) 0)))
10203 {
10204 free (buf);
10205 return FALSE;
10206 }
10207 break;
10208 }
10209 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10210 link_order->offset, size);
10211 free (buf);
10212 if (! ok)
10213 return FALSE;
10214 }
10215
10216 /* The address of a reloc is relative to the section in a
10217 relocatable file, and is a virtual address in an executable
10218 file. */
10219 offset = link_order->offset;
10220 if (! info->relocatable)
10221 offset += output_section->vma;
10222
10223 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10224 {
10225 irel[i].r_offset = offset;
10226 irel[i].r_info = 0;
10227 irel[i].r_addend = 0;
10228 }
10229 if (bed->s->arch_size == 32)
10230 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10231 else
10232 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10233
10234 rel_hdr = reldata->hdr;
10235 erel = rel_hdr->contents;
10236 if (rel_hdr->sh_type == SHT_REL)
10237 {
10238 erel += reldata->count * bed->s->sizeof_rel;
10239 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10240 }
10241 else
10242 {
10243 irel[0].r_addend = addend;
10244 erel += reldata->count * bed->s->sizeof_rela;
10245 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10246 }
10247
10248 ++reldata->count;
10249
10250 return TRUE;
10251 }
10252
10253
10254 /* Get the output vma of the section pointed to by the sh_link field. */
10255
10256 static bfd_vma
10257 elf_get_linked_section_vma (struct bfd_link_order *p)
10258 {
10259 Elf_Internal_Shdr **elf_shdrp;
10260 asection *s;
10261 int elfsec;
10262
10263 s = p->u.indirect.section;
10264 elf_shdrp = elf_elfsections (s->owner);
10265 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10266 elfsec = elf_shdrp[elfsec]->sh_link;
10267 /* PR 290:
10268 The Intel C compiler generates SHT_IA_64_UNWIND with
10269 SHF_LINK_ORDER. But it doesn't set the sh_link or
10270 sh_info fields. Hence we could get the situation
10271 where elfsec is 0. */
10272 if (elfsec == 0)
10273 {
10274 const struct elf_backend_data *bed
10275 = get_elf_backend_data (s->owner);
10276 if (bed->link_order_error_handler)
10277 bed->link_order_error_handler
10278 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10279 return 0;
10280 }
10281 else
10282 {
10283 s = elf_shdrp[elfsec]->bfd_section;
10284 return s->output_section->vma + s->output_offset;
10285 }
10286 }
10287
10288
10289 /* Compare two sections based on the locations of the sections they are
10290 linked to. Used by elf_fixup_link_order. */
10291
10292 static int
10293 compare_link_order (const void * a, const void * b)
10294 {
10295 bfd_vma apos;
10296 bfd_vma bpos;
10297
10298 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10299 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10300 if (apos < bpos)
10301 return -1;
10302 return apos > bpos;
10303 }
10304
10305
10306 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10307 order as their linked sections. Returns false if this could not be done
10308 because an output section includes both ordered and unordered
10309 sections. Ideally we'd do this in the linker proper. */
10310
10311 static bfd_boolean
10312 elf_fixup_link_order (bfd *abfd, asection *o)
10313 {
10314 int seen_linkorder;
10315 int seen_other;
10316 int n;
10317 struct bfd_link_order *p;
10318 bfd *sub;
10319 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10320 unsigned elfsec;
10321 struct bfd_link_order **sections;
10322 asection *s, *other_sec, *linkorder_sec;
10323 bfd_vma offset;
10324
10325 other_sec = NULL;
10326 linkorder_sec = NULL;
10327 seen_other = 0;
10328 seen_linkorder = 0;
10329 for (p = o->map_head.link_order; p != NULL; p = p->next)
10330 {
10331 if (p->type == bfd_indirect_link_order)
10332 {
10333 s = p->u.indirect.section;
10334 sub = s->owner;
10335 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10336 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10337 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10338 && elfsec < elf_numsections (sub)
10339 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10340 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10341 {
10342 seen_linkorder++;
10343 linkorder_sec = s;
10344 }
10345 else
10346 {
10347 seen_other++;
10348 other_sec = s;
10349 }
10350 }
10351 else
10352 seen_other++;
10353
10354 if (seen_other && seen_linkorder)
10355 {
10356 if (other_sec && linkorder_sec)
10357 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10358 o, linkorder_sec,
10359 linkorder_sec->owner, other_sec,
10360 other_sec->owner);
10361 else
10362 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10363 o);
10364 bfd_set_error (bfd_error_bad_value);
10365 return FALSE;
10366 }
10367 }
10368
10369 if (!seen_linkorder)
10370 return TRUE;
10371
10372 sections = (struct bfd_link_order **)
10373 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10374 if (sections == NULL)
10375 return FALSE;
10376 seen_linkorder = 0;
10377
10378 for (p = o->map_head.link_order; p != NULL; p = p->next)
10379 {
10380 sections[seen_linkorder++] = p;
10381 }
10382 /* Sort the input sections in the order of their linked section. */
10383 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10384 compare_link_order);
10385
10386 /* Change the offsets of the sections. */
10387 offset = 0;
10388 for (n = 0; n < seen_linkorder; n++)
10389 {
10390 s = sections[n]->u.indirect.section;
10391 offset &= ~(bfd_vma) 0 << s->alignment_power;
10392 s->output_offset = offset;
10393 sections[n]->offset = offset;
10394 /* FIXME: octets_per_byte. */
10395 offset += sections[n]->size;
10396 }
10397
10398 free (sections);
10399 return TRUE;
10400 }
10401
10402 static void
10403 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10404 {
10405 asection *o;
10406
10407 if (flinfo->symstrtab != NULL)
10408 _bfd_stringtab_free (flinfo->symstrtab);
10409 if (flinfo->contents != NULL)
10410 free (flinfo->contents);
10411 if (flinfo->external_relocs != NULL)
10412 free (flinfo->external_relocs);
10413 if (flinfo->internal_relocs != NULL)
10414 free (flinfo->internal_relocs);
10415 if (flinfo->external_syms != NULL)
10416 free (flinfo->external_syms);
10417 if (flinfo->locsym_shndx != NULL)
10418 free (flinfo->locsym_shndx);
10419 if (flinfo->internal_syms != NULL)
10420 free (flinfo->internal_syms);
10421 if (flinfo->indices != NULL)
10422 free (flinfo->indices);
10423 if (flinfo->sections != NULL)
10424 free (flinfo->sections);
10425 if (flinfo->symbuf != NULL)
10426 free (flinfo->symbuf);
10427 if (flinfo->symshndxbuf != NULL)
10428 free (flinfo->symshndxbuf);
10429 for (o = obfd->sections; o != NULL; o = o->next)
10430 {
10431 struct bfd_elf_section_data *esdo = elf_section_data (o);
10432 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10433 free (esdo->rel.hashes);
10434 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10435 free (esdo->rela.hashes);
10436 }
10437 }
10438
10439 /* Do the final step of an ELF link. */
10440
10441 bfd_boolean
10442 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10443 {
10444 bfd_boolean dynamic;
10445 bfd_boolean emit_relocs;
10446 bfd *dynobj;
10447 struct elf_final_link_info flinfo;
10448 asection *o;
10449 struct bfd_link_order *p;
10450 bfd *sub;
10451 bfd_size_type max_contents_size;
10452 bfd_size_type max_external_reloc_size;
10453 bfd_size_type max_internal_reloc_count;
10454 bfd_size_type max_sym_count;
10455 bfd_size_type max_sym_shndx_count;
10456 file_ptr off;
10457 Elf_Internal_Sym elfsym;
10458 unsigned int i;
10459 Elf_Internal_Shdr *symtab_hdr;
10460 Elf_Internal_Shdr *symtab_shndx_hdr;
10461 Elf_Internal_Shdr *symstrtab_hdr;
10462 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10463 struct elf_outext_info eoinfo;
10464 bfd_boolean merged;
10465 size_t relativecount = 0;
10466 asection *reldyn = 0;
10467 bfd_size_type amt;
10468 asection *attr_section = NULL;
10469 bfd_vma attr_size = 0;
10470 const char *std_attrs_section;
10471
10472 if (! is_elf_hash_table (info->hash))
10473 return FALSE;
10474
10475 if (info->shared)
10476 abfd->flags |= DYNAMIC;
10477
10478 dynamic = elf_hash_table (info)->dynamic_sections_created;
10479 dynobj = elf_hash_table (info)->dynobj;
10480
10481 emit_relocs = (info->relocatable
10482 || info->emitrelocations);
10483
10484 flinfo.info = info;
10485 flinfo.output_bfd = abfd;
10486 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10487 if (flinfo.symstrtab == NULL)
10488 return FALSE;
10489
10490 if (! dynamic)
10491 {
10492 flinfo.dynsym_sec = NULL;
10493 flinfo.hash_sec = NULL;
10494 flinfo.symver_sec = NULL;
10495 }
10496 else
10497 {
10498 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10499 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10500 /* Note that dynsym_sec can be NULL (on VMS). */
10501 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10502 /* Note that it is OK if symver_sec is NULL. */
10503 }
10504
10505 flinfo.contents = NULL;
10506 flinfo.external_relocs = NULL;
10507 flinfo.internal_relocs = NULL;
10508 flinfo.external_syms = NULL;
10509 flinfo.locsym_shndx = NULL;
10510 flinfo.internal_syms = NULL;
10511 flinfo.indices = NULL;
10512 flinfo.sections = NULL;
10513 flinfo.symbuf = NULL;
10514 flinfo.symshndxbuf = NULL;
10515 flinfo.symbuf_count = 0;
10516 flinfo.shndxbuf_size = 0;
10517 flinfo.filesym_count = 0;
10518
10519 /* The object attributes have been merged. Remove the input
10520 sections from the link, and set the contents of the output
10521 secton. */
10522 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10523 for (o = abfd->sections; o != NULL; o = o->next)
10524 {
10525 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10526 || strcmp (o->name, ".gnu.attributes") == 0)
10527 {
10528 for (p = o->map_head.link_order; p != NULL; p = p->next)
10529 {
10530 asection *input_section;
10531
10532 if (p->type != bfd_indirect_link_order)
10533 continue;
10534 input_section = p->u.indirect.section;
10535 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10536 elf_link_input_bfd ignores this section. */
10537 input_section->flags &= ~SEC_HAS_CONTENTS;
10538 }
10539
10540 attr_size = bfd_elf_obj_attr_size (abfd);
10541 if (attr_size)
10542 {
10543 bfd_set_section_size (abfd, o, attr_size);
10544 attr_section = o;
10545 /* Skip this section later on. */
10546 o->map_head.link_order = NULL;
10547 }
10548 else
10549 o->flags |= SEC_EXCLUDE;
10550 }
10551 }
10552
10553 /* Count up the number of relocations we will output for each output
10554 section, so that we know the sizes of the reloc sections. We
10555 also figure out some maximum sizes. */
10556 max_contents_size = 0;
10557 max_external_reloc_size = 0;
10558 max_internal_reloc_count = 0;
10559 max_sym_count = 0;
10560 max_sym_shndx_count = 0;
10561 merged = FALSE;
10562 for (o = abfd->sections; o != NULL; o = o->next)
10563 {
10564 struct bfd_elf_section_data *esdo = elf_section_data (o);
10565 o->reloc_count = 0;
10566
10567 for (p = o->map_head.link_order; p != NULL; p = p->next)
10568 {
10569 unsigned int reloc_count = 0;
10570 struct bfd_elf_section_data *esdi = NULL;
10571
10572 if (p->type == bfd_section_reloc_link_order
10573 || p->type == bfd_symbol_reloc_link_order)
10574 reloc_count = 1;
10575 else if (p->type == bfd_indirect_link_order)
10576 {
10577 asection *sec;
10578
10579 sec = p->u.indirect.section;
10580 esdi = elf_section_data (sec);
10581
10582 /* Mark all sections which are to be included in the
10583 link. This will normally be every section. We need
10584 to do this so that we can identify any sections which
10585 the linker has decided to not include. */
10586 sec->linker_mark = TRUE;
10587
10588 if (sec->flags & SEC_MERGE)
10589 merged = TRUE;
10590
10591 if (esdo->this_hdr.sh_type == SHT_REL
10592 || esdo->this_hdr.sh_type == SHT_RELA)
10593 /* Some backends use reloc_count in relocation sections
10594 to count particular types of relocs. Of course,
10595 reloc sections themselves can't have relocations. */
10596 reloc_count = 0;
10597 else if (info->relocatable || info->emitrelocations)
10598 reloc_count = sec->reloc_count;
10599 else if (bed->elf_backend_count_relocs)
10600 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10601
10602 if (sec->rawsize > max_contents_size)
10603 max_contents_size = sec->rawsize;
10604 if (sec->size > max_contents_size)
10605 max_contents_size = sec->size;
10606
10607 /* We are interested in just local symbols, not all
10608 symbols. */
10609 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10610 && (sec->owner->flags & DYNAMIC) == 0)
10611 {
10612 size_t sym_count;
10613
10614 if (elf_bad_symtab (sec->owner))
10615 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10616 / bed->s->sizeof_sym);
10617 else
10618 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10619
10620 if (sym_count > max_sym_count)
10621 max_sym_count = sym_count;
10622
10623 if (sym_count > max_sym_shndx_count
10624 && elf_symtab_shndx (sec->owner) != 0)
10625 max_sym_shndx_count = sym_count;
10626
10627 if ((sec->flags & SEC_RELOC) != 0)
10628 {
10629 size_t ext_size = 0;
10630
10631 if (esdi->rel.hdr != NULL)
10632 ext_size = esdi->rel.hdr->sh_size;
10633 if (esdi->rela.hdr != NULL)
10634 ext_size += esdi->rela.hdr->sh_size;
10635
10636 if (ext_size > max_external_reloc_size)
10637 max_external_reloc_size = ext_size;
10638 if (sec->reloc_count > max_internal_reloc_count)
10639 max_internal_reloc_count = sec->reloc_count;
10640 }
10641 }
10642 }
10643
10644 if (reloc_count == 0)
10645 continue;
10646
10647 o->reloc_count += reloc_count;
10648
10649 if (p->type == bfd_indirect_link_order
10650 && (info->relocatable || info->emitrelocations))
10651 {
10652 if (esdi->rel.hdr)
10653 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10654 if (esdi->rela.hdr)
10655 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10656 }
10657 else
10658 {
10659 if (o->use_rela_p)
10660 esdo->rela.count += reloc_count;
10661 else
10662 esdo->rel.count += reloc_count;
10663 }
10664 }
10665
10666 if (o->reloc_count > 0)
10667 o->flags |= SEC_RELOC;
10668 else
10669 {
10670 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10671 set it (this is probably a bug) and if it is set
10672 assign_section_numbers will create a reloc section. */
10673 o->flags &=~ SEC_RELOC;
10674 }
10675
10676 /* If the SEC_ALLOC flag is not set, force the section VMA to
10677 zero. This is done in elf_fake_sections as well, but forcing
10678 the VMA to 0 here will ensure that relocs against these
10679 sections are handled correctly. */
10680 if ((o->flags & SEC_ALLOC) == 0
10681 && ! o->user_set_vma)
10682 o->vma = 0;
10683 }
10684
10685 if (! info->relocatable && merged)
10686 elf_link_hash_traverse (elf_hash_table (info),
10687 _bfd_elf_link_sec_merge_syms, abfd);
10688
10689 /* Figure out the file positions for everything but the symbol table
10690 and the relocs. We set symcount to force assign_section_numbers
10691 to create a symbol table. */
10692 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10693 BFD_ASSERT (! abfd->output_has_begun);
10694 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10695 goto error_return;
10696
10697 /* Set sizes, and assign file positions for reloc sections. */
10698 for (o = abfd->sections; o != NULL; o = o->next)
10699 {
10700 struct bfd_elf_section_data *esdo = elf_section_data (o);
10701 if ((o->flags & SEC_RELOC) != 0)
10702 {
10703 if (esdo->rel.hdr
10704 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10705 goto error_return;
10706
10707 if (esdo->rela.hdr
10708 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10709 goto error_return;
10710 }
10711
10712 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10713 to count upwards while actually outputting the relocations. */
10714 esdo->rel.count = 0;
10715 esdo->rela.count = 0;
10716 }
10717
10718 _bfd_elf_assign_file_positions_for_relocs (abfd);
10719
10720 /* We have now assigned file positions for all the sections except
10721 .symtab and .strtab. We start the .symtab section at the current
10722 file position, and write directly to it. We build the .strtab
10723 section in memory. */
10724 bfd_get_symcount (abfd) = 0;
10725 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10726 /* sh_name is set in prep_headers. */
10727 symtab_hdr->sh_type = SHT_SYMTAB;
10728 /* sh_flags, sh_addr and sh_size all start off zero. */
10729 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10730 /* sh_link is set in assign_section_numbers. */
10731 /* sh_info is set below. */
10732 /* sh_offset is set just below. */
10733 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10734
10735 off = elf_next_file_pos (abfd);
10736 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10737
10738 /* Note that at this point elf_next_file_pos (abfd) is
10739 incorrect. We do not yet know the size of the .symtab section.
10740 We correct next_file_pos below, after we do know the size. */
10741
10742 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10743 continuously seeking to the right position in the file. */
10744 if (! info->keep_memory || max_sym_count < 20)
10745 flinfo.symbuf_size = 20;
10746 else
10747 flinfo.symbuf_size = max_sym_count;
10748 amt = flinfo.symbuf_size;
10749 amt *= bed->s->sizeof_sym;
10750 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10751 if (flinfo.symbuf == NULL)
10752 goto error_return;
10753 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10754 {
10755 /* Wild guess at number of output symbols. realloc'd as needed. */
10756 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10757 flinfo.shndxbuf_size = amt;
10758 amt *= sizeof (Elf_External_Sym_Shndx);
10759 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10760 if (flinfo.symshndxbuf == NULL)
10761 goto error_return;
10762 }
10763
10764 /* Start writing out the symbol table. The first symbol is always a
10765 dummy symbol. */
10766 if (info->strip != strip_all
10767 || emit_relocs)
10768 {
10769 elfsym.st_value = 0;
10770 elfsym.st_size = 0;
10771 elfsym.st_info = 0;
10772 elfsym.st_other = 0;
10773 elfsym.st_shndx = SHN_UNDEF;
10774 elfsym.st_target_internal = 0;
10775 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10776 NULL) != 1)
10777 goto error_return;
10778 }
10779
10780 /* Output a symbol for each section. We output these even if we are
10781 discarding local symbols, since they are used for relocs. These
10782 symbols have no names. We store the index of each one in the
10783 index field of the section, so that we can find it again when
10784 outputting relocs. */
10785 if (info->strip != strip_all
10786 || emit_relocs)
10787 {
10788 elfsym.st_size = 0;
10789 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10790 elfsym.st_other = 0;
10791 elfsym.st_value = 0;
10792 elfsym.st_target_internal = 0;
10793 for (i = 1; i < elf_numsections (abfd); i++)
10794 {
10795 o = bfd_section_from_elf_index (abfd, i);
10796 if (o != NULL)
10797 {
10798 o->target_index = bfd_get_symcount (abfd);
10799 elfsym.st_shndx = i;
10800 if (!info->relocatable)
10801 elfsym.st_value = o->vma;
10802 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10803 goto error_return;
10804 }
10805 }
10806 }
10807
10808 /* Allocate some memory to hold information read in from the input
10809 files. */
10810 if (max_contents_size != 0)
10811 {
10812 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10813 if (flinfo.contents == NULL)
10814 goto error_return;
10815 }
10816
10817 if (max_external_reloc_size != 0)
10818 {
10819 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10820 if (flinfo.external_relocs == NULL)
10821 goto error_return;
10822 }
10823
10824 if (max_internal_reloc_count != 0)
10825 {
10826 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10827 amt *= sizeof (Elf_Internal_Rela);
10828 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10829 if (flinfo.internal_relocs == NULL)
10830 goto error_return;
10831 }
10832
10833 if (max_sym_count != 0)
10834 {
10835 amt = max_sym_count * bed->s->sizeof_sym;
10836 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10837 if (flinfo.external_syms == NULL)
10838 goto error_return;
10839
10840 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10841 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10842 if (flinfo.internal_syms == NULL)
10843 goto error_return;
10844
10845 amt = max_sym_count * sizeof (long);
10846 flinfo.indices = (long int *) bfd_malloc (amt);
10847 if (flinfo.indices == NULL)
10848 goto error_return;
10849
10850 amt = max_sym_count * sizeof (asection *);
10851 flinfo.sections = (asection **) bfd_malloc (amt);
10852 if (flinfo.sections == NULL)
10853 goto error_return;
10854 }
10855
10856 if (max_sym_shndx_count != 0)
10857 {
10858 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10859 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10860 if (flinfo.locsym_shndx == NULL)
10861 goto error_return;
10862 }
10863
10864 if (elf_hash_table (info)->tls_sec)
10865 {
10866 bfd_vma base, end = 0;
10867 asection *sec;
10868
10869 for (sec = elf_hash_table (info)->tls_sec;
10870 sec && (sec->flags & SEC_THREAD_LOCAL);
10871 sec = sec->next)
10872 {
10873 bfd_size_type size = sec->size;
10874
10875 if (size == 0
10876 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10877 {
10878 struct bfd_link_order *ord = sec->map_tail.link_order;
10879
10880 if (ord != NULL)
10881 size = ord->offset + ord->size;
10882 }
10883 end = sec->vma + size;
10884 }
10885 base = elf_hash_table (info)->tls_sec->vma;
10886 /* Only align end of TLS section if static TLS doesn't have special
10887 alignment requirements. */
10888 if (bed->static_tls_alignment == 1)
10889 end = align_power (end,
10890 elf_hash_table (info)->tls_sec->alignment_power);
10891 elf_hash_table (info)->tls_size = end - base;
10892 }
10893
10894 /* Reorder SHF_LINK_ORDER sections. */
10895 for (o = abfd->sections; o != NULL; o = o->next)
10896 {
10897 if (!elf_fixup_link_order (abfd, o))
10898 return FALSE;
10899 }
10900
10901 /* Since ELF permits relocations to be against local symbols, we
10902 must have the local symbols available when we do the relocations.
10903 Since we would rather only read the local symbols once, and we
10904 would rather not keep them in memory, we handle all the
10905 relocations for a single input file at the same time.
10906
10907 Unfortunately, there is no way to know the total number of local
10908 symbols until we have seen all of them, and the local symbol
10909 indices precede the global symbol indices. This means that when
10910 we are generating relocatable output, and we see a reloc against
10911 a global symbol, we can not know the symbol index until we have
10912 finished examining all the local symbols to see which ones we are
10913 going to output. To deal with this, we keep the relocations in
10914 memory, and don't output them until the end of the link. This is
10915 an unfortunate waste of memory, but I don't see a good way around
10916 it. Fortunately, it only happens when performing a relocatable
10917 link, which is not the common case. FIXME: If keep_memory is set
10918 we could write the relocs out and then read them again; I don't
10919 know how bad the memory loss will be. */
10920
10921 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10922 sub->output_has_begun = FALSE;
10923 for (o = abfd->sections; o != NULL; o = o->next)
10924 {
10925 for (p = o->map_head.link_order; p != NULL; p = p->next)
10926 {
10927 if (p->type == bfd_indirect_link_order
10928 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10929 == bfd_target_elf_flavour)
10930 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10931 {
10932 if (! sub->output_has_begun)
10933 {
10934 if (! elf_link_input_bfd (&flinfo, sub))
10935 goto error_return;
10936 sub->output_has_begun = TRUE;
10937 }
10938 }
10939 else if (p->type == bfd_section_reloc_link_order
10940 || p->type == bfd_symbol_reloc_link_order)
10941 {
10942 if (! elf_reloc_link_order (abfd, info, o, p))
10943 goto error_return;
10944 }
10945 else
10946 {
10947 if (! _bfd_default_link_order (abfd, info, o, p))
10948 {
10949 if (p->type == bfd_indirect_link_order
10950 && (bfd_get_flavour (sub)
10951 == bfd_target_elf_flavour)
10952 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10953 != bed->s->elfclass))
10954 {
10955 const char *iclass, *oclass;
10956
10957 if (bed->s->elfclass == ELFCLASS64)
10958 {
10959 iclass = "ELFCLASS32";
10960 oclass = "ELFCLASS64";
10961 }
10962 else
10963 {
10964 iclass = "ELFCLASS64";
10965 oclass = "ELFCLASS32";
10966 }
10967
10968 bfd_set_error (bfd_error_wrong_format);
10969 (*_bfd_error_handler)
10970 (_("%B: file class %s incompatible with %s"),
10971 sub, iclass, oclass);
10972 }
10973
10974 goto error_return;
10975 }
10976 }
10977 }
10978 }
10979
10980 /* Free symbol buffer if needed. */
10981 if (!info->reduce_memory_overheads)
10982 {
10983 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10984 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10985 && elf_tdata (sub)->symbuf)
10986 {
10987 free (elf_tdata (sub)->symbuf);
10988 elf_tdata (sub)->symbuf = NULL;
10989 }
10990 }
10991
10992 /* Output any global symbols that got converted to local in a
10993 version script or due to symbol visibility. We do this in a
10994 separate step since ELF requires all local symbols to appear
10995 prior to any global symbols. FIXME: We should only do this if
10996 some global symbols were, in fact, converted to become local.
10997 FIXME: Will this work correctly with the Irix 5 linker? */
10998 eoinfo.failed = FALSE;
10999 eoinfo.flinfo = &flinfo;
11000 eoinfo.localsyms = TRUE;
11001 eoinfo.need_second_pass = FALSE;
11002 eoinfo.second_pass = FALSE;
11003 eoinfo.file_sym_done = FALSE;
11004 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11005 if (eoinfo.failed)
11006 return FALSE;
11007
11008 if (eoinfo.need_second_pass)
11009 {
11010 eoinfo.second_pass = TRUE;
11011 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11012 if (eoinfo.failed)
11013 return FALSE;
11014 }
11015
11016 /* If backend needs to output some local symbols not present in the hash
11017 table, do it now. */
11018 if (bed->elf_backend_output_arch_local_syms)
11019 {
11020 typedef int (*out_sym_func)
11021 (void *, const char *, Elf_Internal_Sym *, asection *,
11022 struct elf_link_hash_entry *);
11023
11024 if (! ((*bed->elf_backend_output_arch_local_syms)
11025 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11026 return FALSE;
11027 }
11028
11029 /* That wrote out all the local symbols. Finish up the symbol table
11030 with the global symbols. Even if we want to strip everything we
11031 can, we still need to deal with those global symbols that got
11032 converted to local in a version script. */
11033
11034 /* The sh_info field records the index of the first non local symbol. */
11035 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11036
11037 if (dynamic
11038 && flinfo.dynsym_sec != NULL
11039 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11040 {
11041 Elf_Internal_Sym sym;
11042 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11043 long last_local = 0;
11044
11045 /* Write out the section symbols for the output sections. */
11046 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11047 {
11048 asection *s;
11049
11050 sym.st_size = 0;
11051 sym.st_name = 0;
11052 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11053 sym.st_other = 0;
11054 sym.st_target_internal = 0;
11055
11056 for (s = abfd->sections; s != NULL; s = s->next)
11057 {
11058 int indx;
11059 bfd_byte *dest;
11060 long dynindx;
11061
11062 dynindx = elf_section_data (s)->dynindx;
11063 if (dynindx <= 0)
11064 continue;
11065 indx = elf_section_data (s)->this_idx;
11066 BFD_ASSERT (indx > 0);
11067 sym.st_shndx = indx;
11068 if (! check_dynsym (abfd, &sym))
11069 return FALSE;
11070 sym.st_value = s->vma;
11071 dest = dynsym + dynindx * bed->s->sizeof_sym;
11072 if (last_local < dynindx)
11073 last_local = dynindx;
11074 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11075 }
11076 }
11077
11078 /* Write out the local dynsyms. */
11079 if (elf_hash_table (info)->dynlocal)
11080 {
11081 struct elf_link_local_dynamic_entry *e;
11082 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11083 {
11084 asection *s;
11085 bfd_byte *dest;
11086
11087 /* Copy the internal symbol and turn off visibility.
11088 Note that we saved a word of storage and overwrote
11089 the original st_name with the dynstr_index. */
11090 sym = e->isym;
11091 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11092
11093 s = bfd_section_from_elf_index (e->input_bfd,
11094 e->isym.st_shndx);
11095 if (s != NULL)
11096 {
11097 sym.st_shndx =
11098 elf_section_data (s->output_section)->this_idx;
11099 if (! check_dynsym (abfd, &sym))
11100 return FALSE;
11101 sym.st_value = (s->output_section->vma
11102 + s->output_offset
11103 + e->isym.st_value);
11104 }
11105
11106 if (last_local < e->dynindx)
11107 last_local = e->dynindx;
11108
11109 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11110 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11111 }
11112 }
11113
11114 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11115 last_local + 1;
11116 }
11117
11118 /* We get the global symbols from the hash table. */
11119 eoinfo.failed = FALSE;
11120 eoinfo.localsyms = FALSE;
11121 eoinfo.flinfo = &flinfo;
11122 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11123 if (eoinfo.failed)
11124 return FALSE;
11125
11126 /* If backend needs to output some symbols not present in the hash
11127 table, do it now. */
11128 if (bed->elf_backend_output_arch_syms)
11129 {
11130 typedef int (*out_sym_func)
11131 (void *, const char *, Elf_Internal_Sym *, asection *,
11132 struct elf_link_hash_entry *);
11133
11134 if (! ((*bed->elf_backend_output_arch_syms)
11135 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11136 return FALSE;
11137 }
11138
11139 /* Flush all symbols to the file. */
11140 if (! elf_link_flush_output_syms (&flinfo, bed))
11141 return FALSE;
11142
11143 /* Now we know the size of the symtab section. */
11144 off += symtab_hdr->sh_size;
11145
11146 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11147 if (symtab_shndx_hdr->sh_name != 0)
11148 {
11149 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11150 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11151 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11152 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11153 symtab_shndx_hdr->sh_size = amt;
11154
11155 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11156 off, TRUE);
11157
11158 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11159 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11160 return FALSE;
11161 }
11162
11163
11164 /* Finish up and write out the symbol string table (.strtab)
11165 section. */
11166 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11167 /* sh_name was set in prep_headers. */
11168 symstrtab_hdr->sh_type = SHT_STRTAB;
11169 symstrtab_hdr->sh_flags = 0;
11170 symstrtab_hdr->sh_addr = 0;
11171 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11172 symstrtab_hdr->sh_entsize = 0;
11173 symstrtab_hdr->sh_link = 0;
11174 symstrtab_hdr->sh_info = 0;
11175 /* sh_offset is set just below. */
11176 symstrtab_hdr->sh_addralign = 1;
11177
11178 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11179 elf_next_file_pos (abfd) = off;
11180
11181 if (bfd_get_symcount (abfd) > 0)
11182 {
11183 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11184 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11185 return FALSE;
11186 }
11187
11188 /* Adjust the relocs to have the correct symbol indices. */
11189 for (o = abfd->sections; o != NULL; o = o->next)
11190 {
11191 struct bfd_elf_section_data *esdo = elf_section_data (o);
11192 if ((o->flags & SEC_RELOC) == 0)
11193 continue;
11194
11195 if (esdo->rel.hdr != NULL)
11196 elf_link_adjust_relocs (abfd, &esdo->rel);
11197 if (esdo->rela.hdr != NULL)
11198 elf_link_adjust_relocs (abfd, &esdo->rela);
11199
11200 /* Set the reloc_count field to 0 to prevent write_relocs from
11201 trying to swap the relocs out itself. */
11202 o->reloc_count = 0;
11203 }
11204
11205 if (dynamic && info->combreloc && dynobj != NULL)
11206 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11207
11208 /* If we are linking against a dynamic object, or generating a
11209 shared library, finish up the dynamic linking information. */
11210 if (dynamic)
11211 {
11212 bfd_byte *dyncon, *dynconend;
11213
11214 /* Fix up .dynamic entries. */
11215 o = bfd_get_linker_section (dynobj, ".dynamic");
11216 BFD_ASSERT (o != NULL);
11217
11218 dyncon = o->contents;
11219 dynconend = o->contents + o->size;
11220 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11221 {
11222 Elf_Internal_Dyn dyn;
11223 const char *name;
11224 unsigned int type;
11225
11226 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11227
11228 switch (dyn.d_tag)
11229 {
11230 default:
11231 continue;
11232 case DT_NULL:
11233 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11234 {
11235 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11236 {
11237 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11238 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11239 default: continue;
11240 }
11241 dyn.d_un.d_val = relativecount;
11242 relativecount = 0;
11243 break;
11244 }
11245 continue;
11246
11247 case DT_INIT:
11248 name = info->init_function;
11249 goto get_sym;
11250 case DT_FINI:
11251 name = info->fini_function;
11252 get_sym:
11253 {
11254 struct elf_link_hash_entry *h;
11255
11256 h = elf_link_hash_lookup (elf_hash_table (info), name,
11257 FALSE, FALSE, TRUE);
11258 if (h != NULL
11259 && (h->root.type == bfd_link_hash_defined
11260 || h->root.type == bfd_link_hash_defweak))
11261 {
11262 dyn.d_un.d_ptr = h->root.u.def.value;
11263 o = h->root.u.def.section;
11264 if (o->output_section != NULL)
11265 dyn.d_un.d_ptr += (o->output_section->vma
11266 + o->output_offset);
11267 else
11268 {
11269 /* The symbol is imported from another shared
11270 library and does not apply to this one. */
11271 dyn.d_un.d_ptr = 0;
11272 }
11273 break;
11274 }
11275 }
11276 continue;
11277
11278 case DT_PREINIT_ARRAYSZ:
11279 name = ".preinit_array";
11280 goto get_size;
11281 case DT_INIT_ARRAYSZ:
11282 name = ".init_array";
11283 goto get_size;
11284 case DT_FINI_ARRAYSZ:
11285 name = ".fini_array";
11286 get_size:
11287 o = bfd_get_section_by_name (abfd, name);
11288 if (o == NULL)
11289 {
11290 (*_bfd_error_handler)
11291 (_("%B: could not find output section %s"), abfd, name);
11292 goto error_return;
11293 }
11294 if (o->size == 0)
11295 (*_bfd_error_handler)
11296 (_("warning: %s section has zero size"), name);
11297 dyn.d_un.d_val = o->size;
11298 break;
11299
11300 case DT_PREINIT_ARRAY:
11301 name = ".preinit_array";
11302 goto get_vma;
11303 case DT_INIT_ARRAY:
11304 name = ".init_array";
11305 goto get_vma;
11306 case DT_FINI_ARRAY:
11307 name = ".fini_array";
11308 goto get_vma;
11309
11310 case DT_HASH:
11311 name = ".hash";
11312 goto get_vma;
11313 case DT_GNU_HASH:
11314 name = ".gnu.hash";
11315 goto get_vma;
11316 case DT_STRTAB:
11317 name = ".dynstr";
11318 goto get_vma;
11319 case DT_SYMTAB:
11320 name = ".dynsym";
11321 goto get_vma;
11322 case DT_VERDEF:
11323 name = ".gnu.version_d";
11324 goto get_vma;
11325 case DT_VERNEED:
11326 name = ".gnu.version_r";
11327 goto get_vma;
11328 case DT_VERSYM:
11329 name = ".gnu.version";
11330 get_vma:
11331 o = bfd_get_section_by_name (abfd, name);
11332 if (o == NULL)
11333 {
11334 (*_bfd_error_handler)
11335 (_("%B: could not find output section %s"), abfd, name);
11336 goto error_return;
11337 }
11338 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11339 {
11340 (*_bfd_error_handler)
11341 (_("warning: section '%s' is being made into a note"), name);
11342 bfd_set_error (bfd_error_nonrepresentable_section);
11343 goto error_return;
11344 }
11345 dyn.d_un.d_ptr = o->vma;
11346 break;
11347
11348 case DT_REL:
11349 case DT_RELA:
11350 case DT_RELSZ:
11351 case DT_RELASZ:
11352 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11353 type = SHT_REL;
11354 else
11355 type = SHT_RELA;
11356 dyn.d_un.d_val = 0;
11357 dyn.d_un.d_ptr = 0;
11358 for (i = 1; i < elf_numsections (abfd); i++)
11359 {
11360 Elf_Internal_Shdr *hdr;
11361
11362 hdr = elf_elfsections (abfd)[i];
11363 if (hdr->sh_type == type
11364 && (hdr->sh_flags & SHF_ALLOC) != 0)
11365 {
11366 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11367 dyn.d_un.d_val += hdr->sh_size;
11368 else
11369 {
11370 if (dyn.d_un.d_ptr == 0
11371 || hdr->sh_addr < dyn.d_un.d_ptr)
11372 dyn.d_un.d_ptr = hdr->sh_addr;
11373 }
11374 }
11375 }
11376 break;
11377 }
11378 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11379 }
11380 }
11381
11382 /* If we have created any dynamic sections, then output them. */
11383 if (dynobj != NULL)
11384 {
11385 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11386 goto error_return;
11387
11388 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11389 if (((info->warn_shared_textrel && info->shared)
11390 || info->error_textrel)
11391 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11392 {
11393 bfd_byte *dyncon, *dynconend;
11394
11395 dyncon = o->contents;
11396 dynconend = o->contents + o->size;
11397 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11398 {
11399 Elf_Internal_Dyn dyn;
11400
11401 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11402
11403 if (dyn.d_tag == DT_TEXTREL)
11404 {
11405 if (info->error_textrel)
11406 info->callbacks->einfo
11407 (_("%P%X: read-only segment has dynamic relocations.\n"));
11408 else
11409 info->callbacks->einfo
11410 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11411 break;
11412 }
11413 }
11414 }
11415
11416 for (o = dynobj->sections; o != NULL; o = o->next)
11417 {
11418 if ((o->flags & SEC_HAS_CONTENTS) == 0
11419 || o->size == 0
11420 || o->output_section == bfd_abs_section_ptr)
11421 continue;
11422 if ((o->flags & SEC_LINKER_CREATED) == 0)
11423 {
11424 /* At this point, we are only interested in sections
11425 created by _bfd_elf_link_create_dynamic_sections. */
11426 continue;
11427 }
11428 if (elf_hash_table (info)->stab_info.stabstr == o)
11429 continue;
11430 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11431 continue;
11432 if (strcmp (o->name, ".dynstr") != 0)
11433 {
11434 /* FIXME: octets_per_byte. */
11435 if (! bfd_set_section_contents (abfd, o->output_section,
11436 o->contents,
11437 (file_ptr) o->output_offset,
11438 o->size))
11439 goto error_return;
11440 }
11441 else
11442 {
11443 /* The contents of the .dynstr section are actually in a
11444 stringtab. */
11445 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11446 if (bfd_seek (abfd, off, SEEK_SET) != 0
11447 || ! _bfd_elf_strtab_emit (abfd,
11448 elf_hash_table (info)->dynstr))
11449 goto error_return;
11450 }
11451 }
11452 }
11453
11454 if (info->relocatable)
11455 {
11456 bfd_boolean failed = FALSE;
11457
11458 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11459 if (failed)
11460 goto error_return;
11461 }
11462
11463 /* If we have optimized stabs strings, output them. */
11464 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11465 {
11466 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11467 goto error_return;
11468 }
11469
11470 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11471 goto error_return;
11472
11473 elf_final_link_free (abfd, &flinfo);
11474
11475 elf_linker (abfd) = TRUE;
11476
11477 if (attr_section)
11478 {
11479 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11480 if (contents == NULL)
11481 return FALSE; /* Bail out and fail. */
11482 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11483 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11484 free (contents);
11485 }
11486
11487 return TRUE;
11488
11489 error_return:
11490 elf_final_link_free (abfd, &flinfo);
11491 return FALSE;
11492 }
11493 \f
11494 /* Initialize COOKIE for input bfd ABFD. */
11495
11496 static bfd_boolean
11497 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11498 struct bfd_link_info *info, bfd *abfd)
11499 {
11500 Elf_Internal_Shdr *symtab_hdr;
11501 const struct elf_backend_data *bed;
11502
11503 bed = get_elf_backend_data (abfd);
11504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11505
11506 cookie->abfd = abfd;
11507 cookie->sym_hashes = elf_sym_hashes (abfd);
11508 cookie->bad_symtab = elf_bad_symtab (abfd);
11509 if (cookie->bad_symtab)
11510 {
11511 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11512 cookie->extsymoff = 0;
11513 }
11514 else
11515 {
11516 cookie->locsymcount = symtab_hdr->sh_info;
11517 cookie->extsymoff = symtab_hdr->sh_info;
11518 }
11519
11520 if (bed->s->arch_size == 32)
11521 cookie->r_sym_shift = 8;
11522 else
11523 cookie->r_sym_shift = 32;
11524
11525 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11526 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11527 {
11528 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11529 cookie->locsymcount, 0,
11530 NULL, NULL, NULL);
11531 if (cookie->locsyms == NULL)
11532 {
11533 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11534 return FALSE;
11535 }
11536 if (info->keep_memory)
11537 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11538 }
11539 return TRUE;
11540 }
11541
11542 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11543
11544 static void
11545 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11546 {
11547 Elf_Internal_Shdr *symtab_hdr;
11548
11549 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11550 if (cookie->locsyms != NULL
11551 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11552 free (cookie->locsyms);
11553 }
11554
11555 /* Initialize the relocation information in COOKIE for input section SEC
11556 of input bfd ABFD. */
11557
11558 static bfd_boolean
11559 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11560 struct bfd_link_info *info, bfd *abfd,
11561 asection *sec)
11562 {
11563 const struct elf_backend_data *bed;
11564
11565 if (sec->reloc_count == 0)
11566 {
11567 cookie->rels = NULL;
11568 cookie->relend = NULL;
11569 }
11570 else
11571 {
11572 bed = get_elf_backend_data (abfd);
11573
11574 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11575 info->keep_memory);
11576 if (cookie->rels == NULL)
11577 return FALSE;
11578 cookie->rel = cookie->rels;
11579 cookie->relend = (cookie->rels
11580 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11581 }
11582 cookie->rel = cookie->rels;
11583 return TRUE;
11584 }
11585
11586 /* Free the memory allocated by init_reloc_cookie_rels,
11587 if appropriate. */
11588
11589 static void
11590 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11591 asection *sec)
11592 {
11593 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11594 free (cookie->rels);
11595 }
11596
11597 /* Initialize the whole of COOKIE for input section SEC. */
11598
11599 static bfd_boolean
11600 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11601 struct bfd_link_info *info,
11602 asection *sec)
11603 {
11604 if (!init_reloc_cookie (cookie, info, sec->owner))
11605 goto error1;
11606 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11607 goto error2;
11608 return TRUE;
11609
11610 error2:
11611 fini_reloc_cookie (cookie, sec->owner);
11612 error1:
11613 return FALSE;
11614 }
11615
11616 /* Free the memory allocated by init_reloc_cookie_for_section,
11617 if appropriate. */
11618
11619 static void
11620 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11621 asection *sec)
11622 {
11623 fini_reloc_cookie_rels (cookie, sec);
11624 fini_reloc_cookie (cookie, sec->owner);
11625 }
11626 \f
11627 /* Garbage collect unused sections. */
11628
11629 /* Default gc_mark_hook. */
11630
11631 asection *
11632 _bfd_elf_gc_mark_hook (asection *sec,
11633 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11634 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11635 struct elf_link_hash_entry *h,
11636 Elf_Internal_Sym *sym)
11637 {
11638 const char *sec_name;
11639
11640 if (h != NULL)
11641 {
11642 switch (h->root.type)
11643 {
11644 case bfd_link_hash_defined:
11645 case bfd_link_hash_defweak:
11646 return h->root.u.def.section;
11647
11648 case bfd_link_hash_common:
11649 return h->root.u.c.p->section;
11650
11651 case bfd_link_hash_undefined:
11652 case bfd_link_hash_undefweak:
11653 /* To work around a glibc bug, keep all XXX input sections
11654 when there is an as yet undefined reference to __start_XXX
11655 or __stop_XXX symbols. The linker will later define such
11656 symbols for orphan input sections that have a name
11657 representable as a C identifier. */
11658 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11659 sec_name = h->root.root.string + 8;
11660 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11661 sec_name = h->root.root.string + 7;
11662 else
11663 sec_name = NULL;
11664
11665 if (sec_name && *sec_name != '\0')
11666 {
11667 bfd *i;
11668
11669 for (i = info->input_bfds; i; i = i->link_next)
11670 {
11671 sec = bfd_get_section_by_name (i, sec_name);
11672 if (sec)
11673 sec->flags |= SEC_KEEP;
11674 }
11675 }
11676 break;
11677
11678 default:
11679 break;
11680 }
11681 }
11682 else
11683 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11684
11685 return NULL;
11686 }
11687
11688 /* COOKIE->rel describes a relocation against section SEC, which is
11689 a section we've decided to keep. Return the section that contains
11690 the relocation symbol, or NULL if no section contains it. */
11691
11692 asection *
11693 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11694 elf_gc_mark_hook_fn gc_mark_hook,
11695 struct elf_reloc_cookie *cookie)
11696 {
11697 unsigned long r_symndx;
11698 struct elf_link_hash_entry *h;
11699
11700 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11701 if (r_symndx == STN_UNDEF)
11702 return NULL;
11703
11704 if (r_symndx >= cookie->locsymcount
11705 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11706 {
11707 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11708 while (h->root.type == bfd_link_hash_indirect
11709 || h->root.type == bfd_link_hash_warning)
11710 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11711 h->mark = 1;
11712 /* If this symbol is weak and there is a non-weak definition, we
11713 keep the non-weak definition because many backends put
11714 dynamic reloc info on the non-weak definition for code
11715 handling copy relocs. */
11716 if (h->u.weakdef != NULL)
11717 h->u.weakdef->mark = 1;
11718 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11719 }
11720
11721 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11722 &cookie->locsyms[r_symndx]);
11723 }
11724
11725 /* COOKIE->rel describes a relocation against section SEC, which is
11726 a section we've decided to keep. Mark the section that contains
11727 the relocation symbol. */
11728
11729 bfd_boolean
11730 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11731 asection *sec,
11732 elf_gc_mark_hook_fn gc_mark_hook,
11733 struct elf_reloc_cookie *cookie)
11734 {
11735 asection *rsec;
11736
11737 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11738 if (rsec && !rsec->gc_mark)
11739 {
11740 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11741 || (rsec->owner->flags & DYNAMIC) != 0)
11742 rsec->gc_mark = 1;
11743 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11744 return FALSE;
11745 }
11746 return TRUE;
11747 }
11748
11749 /* The mark phase of garbage collection. For a given section, mark
11750 it and any sections in this section's group, and all the sections
11751 which define symbols to which it refers. */
11752
11753 bfd_boolean
11754 _bfd_elf_gc_mark (struct bfd_link_info *info,
11755 asection *sec,
11756 elf_gc_mark_hook_fn gc_mark_hook)
11757 {
11758 bfd_boolean ret;
11759 asection *group_sec, *eh_frame;
11760
11761 sec->gc_mark = 1;
11762
11763 /* Mark all the sections in the group. */
11764 group_sec = elf_section_data (sec)->next_in_group;
11765 if (group_sec && !group_sec->gc_mark)
11766 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11767 return FALSE;
11768
11769 /* Look through the section relocs. */
11770 ret = TRUE;
11771 eh_frame = elf_eh_frame_section (sec->owner);
11772 if ((sec->flags & SEC_RELOC) != 0
11773 && sec->reloc_count > 0
11774 && sec != eh_frame)
11775 {
11776 struct elf_reloc_cookie cookie;
11777
11778 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11779 ret = FALSE;
11780 else
11781 {
11782 for (; cookie.rel < cookie.relend; cookie.rel++)
11783 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11784 {
11785 ret = FALSE;
11786 break;
11787 }
11788 fini_reloc_cookie_for_section (&cookie, sec);
11789 }
11790 }
11791
11792 if (ret && eh_frame && elf_fde_list (sec))
11793 {
11794 struct elf_reloc_cookie cookie;
11795
11796 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11797 ret = FALSE;
11798 else
11799 {
11800 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11801 gc_mark_hook, &cookie))
11802 ret = FALSE;
11803 fini_reloc_cookie_for_section (&cookie, eh_frame);
11804 }
11805 }
11806
11807 return ret;
11808 }
11809
11810 /* Keep debug and special sections. */
11811
11812 bfd_boolean
11813 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11814 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11815 {
11816 bfd *ibfd;
11817
11818 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11819 {
11820 asection *isec;
11821 bfd_boolean some_kept;
11822 bfd_boolean debug_frag_seen;
11823
11824 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11825 continue;
11826
11827 /* Ensure all linker created sections are kept,
11828 see if any other section is already marked,
11829 and note if we have any fragmented debug sections. */
11830 debug_frag_seen = some_kept = FALSE;
11831 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11832 {
11833 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11834 isec->gc_mark = 1;
11835 else if (isec->gc_mark)
11836 some_kept = TRUE;
11837
11838 if (debug_frag_seen == FALSE
11839 && (isec->flags & SEC_DEBUGGING)
11840 && CONST_STRNEQ (isec->name, ".debug_line."))
11841 debug_frag_seen = TRUE;
11842 }
11843
11844 /* If no section in this file will be kept, then we can
11845 toss out the debug and special sections. */
11846 if (!some_kept)
11847 continue;
11848
11849 /* Keep debug and special sections like .comment when they are
11850 not part of a group, or when we have single-member groups. */
11851 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11852 if ((elf_next_in_group (isec) == NULL
11853 || elf_next_in_group (isec) == isec)
11854 && ((isec->flags & SEC_DEBUGGING) != 0
11855 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11856 isec->gc_mark = 1;
11857
11858 if (! debug_frag_seen)
11859 continue;
11860
11861 /* Look for CODE sections which are going to be discarded,
11862 and find and discard any fragmented debug sections which
11863 are associated with that code section. */
11864 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11865 if ((isec->flags & SEC_CODE) != 0
11866 && isec->gc_mark == 0)
11867 {
11868 unsigned int ilen;
11869 asection *dsec;
11870
11871 ilen = strlen (isec->name);
11872
11873 /* Association is determined by the name of the debug section
11874 containing the name of the code section as a suffix. For
11875 example .debug_line.text.foo is a debug section associated
11876 with .text.foo. */
11877 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11878 {
11879 unsigned int dlen;
11880
11881 if (dsec->gc_mark == 0
11882 || (dsec->flags & SEC_DEBUGGING) == 0)
11883 continue;
11884
11885 dlen = strlen (dsec->name);
11886
11887 if (dlen > ilen
11888 && strncmp (dsec->name + (dlen - ilen),
11889 isec->name, ilen) == 0)
11890 {
11891 dsec->gc_mark = 0;
11892 break;
11893 }
11894 }
11895 }
11896 }
11897 return TRUE;
11898 }
11899
11900 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11901
11902 struct elf_gc_sweep_symbol_info
11903 {
11904 struct bfd_link_info *info;
11905 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11906 bfd_boolean);
11907 };
11908
11909 static bfd_boolean
11910 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11911 {
11912 if (!h->mark
11913 && (((h->root.type == bfd_link_hash_defined
11914 || h->root.type == bfd_link_hash_defweak)
11915 && !(h->def_regular
11916 && h->root.u.def.section->gc_mark))
11917 || h->root.type == bfd_link_hash_undefined
11918 || h->root.type == bfd_link_hash_undefweak))
11919 {
11920 struct elf_gc_sweep_symbol_info *inf;
11921
11922 inf = (struct elf_gc_sweep_symbol_info *) data;
11923 (*inf->hide_symbol) (inf->info, h, TRUE);
11924 h->def_regular = 0;
11925 h->ref_regular = 0;
11926 h->ref_regular_nonweak = 0;
11927 }
11928
11929 return TRUE;
11930 }
11931
11932 /* The sweep phase of garbage collection. Remove all garbage sections. */
11933
11934 typedef bfd_boolean (*gc_sweep_hook_fn)
11935 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11936
11937 static bfd_boolean
11938 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11939 {
11940 bfd *sub;
11941 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11942 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11943 unsigned long section_sym_count;
11944 struct elf_gc_sweep_symbol_info sweep_info;
11945
11946 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11947 {
11948 asection *o;
11949
11950 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11951 continue;
11952
11953 for (o = sub->sections; o != NULL; o = o->next)
11954 {
11955 /* When any section in a section group is kept, we keep all
11956 sections in the section group. If the first member of
11957 the section group is excluded, we will also exclude the
11958 group section. */
11959 if (o->flags & SEC_GROUP)
11960 {
11961 asection *first = elf_next_in_group (o);
11962 o->gc_mark = first->gc_mark;
11963 }
11964
11965 if (o->gc_mark)
11966 continue;
11967
11968 /* Skip sweeping sections already excluded. */
11969 if (o->flags & SEC_EXCLUDE)
11970 continue;
11971
11972 /* Since this is early in the link process, it is simple
11973 to remove a section from the output. */
11974 o->flags |= SEC_EXCLUDE;
11975
11976 if (info->print_gc_sections && o->size != 0)
11977 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11978
11979 /* But we also have to update some of the relocation
11980 info we collected before. */
11981 if (gc_sweep_hook
11982 && (o->flags & SEC_RELOC) != 0
11983 && o->reloc_count > 0
11984 && !bfd_is_abs_section (o->output_section))
11985 {
11986 Elf_Internal_Rela *internal_relocs;
11987 bfd_boolean r;
11988
11989 internal_relocs
11990 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11991 info->keep_memory);
11992 if (internal_relocs == NULL)
11993 return FALSE;
11994
11995 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11996
11997 if (elf_section_data (o)->relocs != internal_relocs)
11998 free (internal_relocs);
11999
12000 if (!r)
12001 return FALSE;
12002 }
12003 }
12004 }
12005
12006 /* Remove the symbols that were in the swept sections from the dynamic
12007 symbol table. GCFIXME: Anyone know how to get them out of the
12008 static symbol table as well? */
12009 sweep_info.info = info;
12010 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12011 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12012 &sweep_info);
12013
12014 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12015 return TRUE;
12016 }
12017
12018 /* Propagate collected vtable information. This is called through
12019 elf_link_hash_traverse. */
12020
12021 static bfd_boolean
12022 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12023 {
12024 /* Those that are not vtables. */
12025 if (h->vtable == NULL || h->vtable->parent == NULL)
12026 return TRUE;
12027
12028 /* Those vtables that do not have parents, we cannot merge. */
12029 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12030 return TRUE;
12031
12032 /* If we've already been done, exit. */
12033 if (h->vtable->used && h->vtable->used[-1])
12034 return TRUE;
12035
12036 /* Make sure the parent's table is up to date. */
12037 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12038
12039 if (h->vtable->used == NULL)
12040 {
12041 /* None of this table's entries were referenced. Re-use the
12042 parent's table. */
12043 h->vtable->used = h->vtable->parent->vtable->used;
12044 h->vtable->size = h->vtable->parent->vtable->size;
12045 }
12046 else
12047 {
12048 size_t n;
12049 bfd_boolean *cu, *pu;
12050
12051 /* Or the parent's entries into ours. */
12052 cu = h->vtable->used;
12053 cu[-1] = TRUE;
12054 pu = h->vtable->parent->vtable->used;
12055 if (pu != NULL)
12056 {
12057 const struct elf_backend_data *bed;
12058 unsigned int log_file_align;
12059
12060 bed = get_elf_backend_data (h->root.u.def.section->owner);
12061 log_file_align = bed->s->log_file_align;
12062 n = h->vtable->parent->vtable->size >> log_file_align;
12063 while (n--)
12064 {
12065 if (*pu)
12066 *cu = TRUE;
12067 pu++;
12068 cu++;
12069 }
12070 }
12071 }
12072
12073 return TRUE;
12074 }
12075
12076 static bfd_boolean
12077 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12078 {
12079 asection *sec;
12080 bfd_vma hstart, hend;
12081 Elf_Internal_Rela *relstart, *relend, *rel;
12082 const struct elf_backend_data *bed;
12083 unsigned int log_file_align;
12084
12085 /* Take care of both those symbols that do not describe vtables as
12086 well as those that are not loaded. */
12087 if (h->vtable == NULL || h->vtable->parent == NULL)
12088 return TRUE;
12089
12090 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12091 || h->root.type == bfd_link_hash_defweak);
12092
12093 sec = h->root.u.def.section;
12094 hstart = h->root.u.def.value;
12095 hend = hstart + h->size;
12096
12097 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12098 if (!relstart)
12099 return *(bfd_boolean *) okp = FALSE;
12100 bed = get_elf_backend_data (sec->owner);
12101 log_file_align = bed->s->log_file_align;
12102
12103 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12104
12105 for (rel = relstart; rel < relend; ++rel)
12106 if (rel->r_offset >= hstart && rel->r_offset < hend)
12107 {
12108 /* If the entry is in use, do nothing. */
12109 if (h->vtable->used
12110 && (rel->r_offset - hstart) < h->vtable->size)
12111 {
12112 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12113 if (h->vtable->used[entry])
12114 continue;
12115 }
12116 /* Otherwise, kill it. */
12117 rel->r_offset = rel->r_info = rel->r_addend = 0;
12118 }
12119
12120 return TRUE;
12121 }
12122
12123 /* Mark sections containing dynamically referenced symbols. When
12124 building shared libraries, we must assume that any visible symbol is
12125 referenced. */
12126
12127 bfd_boolean
12128 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12129 {
12130 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12131
12132 if ((h->root.type == bfd_link_hash_defined
12133 || h->root.type == bfd_link_hash_defweak)
12134 && (h->ref_dynamic
12135 || ((!info->executable || info->export_dynamic)
12136 && h->def_regular
12137 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12138 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12139 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12140 || !bfd_hide_sym_by_version (info->version_info,
12141 h->root.root.string)))))
12142 h->root.u.def.section->flags |= SEC_KEEP;
12143
12144 return TRUE;
12145 }
12146
12147 /* Keep all sections containing symbols undefined on the command-line,
12148 and the section containing the entry symbol. */
12149
12150 void
12151 _bfd_elf_gc_keep (struct bfd_link_info *info)
12152 {
12153 struct bfd_sym_chain *sym;
12154
12155 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12156 {
12157 struct elf_link_hash_entry *h;
12158
12159 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12160 FALSE, FALSE, FALSE);
12161
12162 if (h != NULL
12163 && (h->root.type == bfd_link_hash_defined
12164 || h->root.type == bfd_link_hash_defweak)
12165 && !bfd_is_abs_section (h->root.u.def.section))
12166 h->root.u.def.section->flags |= SEC_KEEP;
12167 }
12168 }
12169
12170 /* Do mark and sweep of unused sections. */
12171
12172 bfd_boolean
12173 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12174 {
12175 bfd_boolean ok = TRUE;
12176 bfd *sub;
12177 elf_gc_mark_hook_fn gc_mark_hook;
12178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12179
12180 if (!bed->can_gc_sections
12181 || !is_elf_hash_table (info->hash))
12182 {
12183 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12184 return TRUE;
12185 }
12186
12187 bed->gc_keep (info);
12188
12189 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12190 at the .eh_frame section if we can mark the FDEs individually. */
12191 _bfd_elf_begin_eh_frame_parsing (info);
12192 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12193 {
12194 asection *sec;
12195 struct elf_reloc_cookie cookie;
12196
12197 sec = bfd_get_section_by_name (sub, ".eh_frame");
12198 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12199 {
12200 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12201 if (elf_section_data (sec)->sec_info
12202 && (sec->flags & SEC_LINKER_CREATED) == 0)
12203 elf_eh_frame_section (sub) = sec;
12204 fini_reloc_cookie_for_section (&cookie, sec);
12205 sec = bfd_get_next_section_by_name (sec);
12206 }
12207 }
12208 _bfd_elf_end_eh_frame_parsing (info);
12209
12210 /* Apply transitive closure to the vtable entry usage info. */
12211 elf_link_hash_traverse (elf_hash_table (info),
12212 elf_gc_propagate_vtable_entries_used,
12213 &ok);
12214 if (!ok)
12215 return FALSE;
12216
12217 /* Kill the vtable relocations that were not used. */
12218 elf_link_hash_traverse (elf_hash_table (info),
12219 elf_gc_smash_unused_vtentry_relocs,
12220 &ok);
12221 if (!ok)
12222 return FALSE;
12223
12224 /* Mark dynamically referenced symbols. */
12225 if (elf_hash_table (info)->dynamic_sections_created)
12226 elf_link_hash_traverse (elf_hash_table (info),
12227 bed->gc_mark_dynamic_ref,
12228 info);
12229
12230 /* Grovel through relocs to find out who stays ... */
12231 gc_mark_hook = bed->gc_mark_hook;
12232 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12233 {
12234 asection *o;
12235
12236 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12237 continue;
12238
12239 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12240 Also treat note sections as a root, if the section is not part
12241 of a group. */
12242 for (o = sub->sections; o != NULL; o = o->next)
12243 if (!o->gc_mark
12244 && (o->flags & SEC_EXCLUDE) == 0
12245 && ((o->flags & SEC_KEEP) != 0
12246 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12247 && elf_next_in_group (o) == NULL )))
12248 {
12249 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12250 return FALSE;
12251 }
12252 }
12253
12254 /* Allow the backend to mark additional target specific sections. */
12255 bed->gc_mark_extra_sections (info, gc_mark_hook);
12256
12257 /* ... and mark SEC_EXCLUDE for those that go. */
12258 return elf_gc_sweep (abfd, info);
12259 }
12260 \f
12261 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12262
12263 bfd_boolean
12264 bfd_elf_gc_record_vtinherit (bfd *abfd,
12265 asection *sec,
12266 struct elf_link_hash_entry *h,
12267 bfd_vma offset)
12268 {
12269 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12270 struct elf_link_hash_entry **search, *child;
12271 bfd_size_type extsymcount;
12272 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12273
12274 /* The sh_info field of the symtab header tells us where the
12275 external symbols start. We don't care about the local symbols at
12276 this point. */
12277 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12278 if (!elf_bad_symtab (abfd))
12279 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12280
12281 sym_hashes = elf_sym_hashes (abfd);
12282 sym_hashes_end = sym_hashes + extsymcount;
12283
12284 /* Hunt down the child symbol, which is in this section at the same
12285 offset as the relocation. */
12286 for (search = sym_hashes; search != sym_hashes_end; ++search)
12287 {
12288 if ((child = *search) != NULL
12289 && (child->root.type == bfd_link_hash_defined
12290 || child->root.type == bfd_link_hash_defweak)
12291 && child->root.u.def.section == sec
12292 && child->root.u.def.value == offset)
12293 goto win;
12294 }
12295
12296 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12297 abfd, sec, (unsigned long) offset);
12298 bfd_set_error (bfd_error_invalid_operation);
12299 return FALSE;
12300
12301 win:
12302 if (!child->vtable)
12303 {
12304 child->vtable = (struct elf_link_virtual_table_entry *)
12305 bfd_zalloc (abfd, sizeof (*child->vtable));
12306 if (!child->vtable)
12307 return FALSE;
12308 }
12309 if (!h)
12310 {
12311 /* This *should* only be the absolute section. It could potentially
12312 be that someone has defined a non-global vtable though, which
12313 would be bad. It isn't worth paging in the local symbols to be
12314 sure though; that case should simply be handled by the assembler. */
12315
12316 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12317 }
12318 else
12319 child->vtable->parent = h;
12320
12321 return TRUE;
12322 }
12323
12324 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12325
12326 bfd_boolean
12327 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12328 asection *sec ATTRIBUTE_UNUSED,
12329 struct elf_link_hash_entry *h,
12330 bfd_vma addend)
12331 {
12332 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12333 unsigned int log_file_align = bed->s->log_file_align;
12334
12335 if (!h->vtable)
12336 {
12337 h->vtable = (struct elf_link_virtual_table_entry *)
12338 bfd_zalloc (abfd, sizeof (*h->vtable));
12339 if (!h->vtable)
12340 return FALSE;
12341 }
12342
12343 if (addend >= h->vtable->size)
12344 {
12345 size_t size, bytes, file_align;
12346 bfd_boolean *ptr = h->vtable->used;
12347
12348 /* While the symbol is undefined, we have to be prepared to handle
12349 a zero size. */
12350 file_align = 1 << log_file_align;
12351 if (h->root.type == bfd_link_hash_undefined)
12352 size = addend + file_align;
12353 else
12354 {
12355 size = h->size;
12356 if (addend >= size)
12357 {
12358 /* Oops! We've got a reference past the defined end of
12359 the table. This is probably a bug -- shall we warn? */
12360 size = addend + file_align;
12361 }
12362 }
12363 size = (size + file_align - 1) & -file_align;
12364
12365 /* Allocate one extra entry for use as a "done" flag for the
12366 consolidation pass. */
12367 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12368
12369 if (ptr)
12370 {
12371 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12372
12373 if (ptr != NULL)
12374 {
12375 size_t oldbytes;
12376
12377 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12378 * sizeof (bfd_boolean));
12379 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12380 }
12381 }
12382 else
12383 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12384
12385 if (ptr == NULL)
12386 return FALSE;
12387
12388 /* And arrange for that done flag to be at index -1. */
12389 h->vtable->used = ptr + 1;
12390 h->vtable->size = size;
12391 }
12392
12393 h->vtable->used[addend >> log_file_align] = TRUE;
12394
12395 return TRUE;
12396 }
12397
12398 /* Map an ELF section header flag to its corresponding string. */
12399 typedef struct
12400 {
12401 char *flag_name;
12402 flagword flag_value;
12403 } elf_flags_to_name_table;
12404
12405 static elf_flags_to_name_table elf_flags_to_names [] =
12406 {
12407 { "SHF_WRITE", SHF_WRITE },
12408 { "SHF_ALLOC", SHF_ALLOC },
12409 { "SHF_EXECINSTR", SHF_EXECINSTR },
12410 { "SHF_MERGE", SHF_MERGE },
12411 { "SHF_STRINGS", SHF_STRINGS },
12412 { "SHF_INFO_LINK", SHF_INFO_LINK},
12413 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12414 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12415 { "SHF_GROUP", SHF_GROUP },
12416 { "SHF_TLS", SHF_TLS },
12417 { "SHF_MASKOS", SHF_MASKOS },
12418 { "SHF_EXCLUDE", SHF_EXCLUDE },
12419 };
12420
12421 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12422 bfd_boolean
12423 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12424 struct flag_info *flaginfo,
12425 asection *section)
12426 {
12427 const bfd_vma sh_flags = elf_section_flags (section);
12428
12429 if (!flaginfo->flags_initialized)
12430 {
12431 bfd *obfd = info->output_bfd;
12432 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12433 struct flag_info_list *tf = flaginfo->flag_list;
12434 int with_hex = 0;
12435 int without_hex = 0;
12436
12437 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12438 {
12439 unsigned i;
12440 flagword (*lookup) (char *);
12441
12442 lookup = bed->elf_backend_lookup_section_flags_hook;
12443 if (lookup != NULL)
12444 {
12445 flagword hexval = (*lookup) ((char *) tf->name);
12446
12447 if (hexval != 0)
12448 {
12449 if (tf->with == with_flags)
12450 with_hex |= hexval;
12451 else if (tf->with == without_flags)
12452 without_hex |= hexval;
12453 tf->valid = TRUE;
12454 continue;
12455 }
12456 }
12457 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12458 {
12459 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12460 {
12461 if (tf->with == with_flags)
12462 with_hex |= elf_flags_to_names[i].flag_value;
12463 else if (tf->with == without_flags)
12464 without_hex |= elf_flags_to_names[i].flag_value;
12465 tf->valid = TRUE;
12466 break;
12467 }
12468 }
12469 if (!tf->valid)
12470 {
12471 info->callbacks->einfo
12472 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12473 return FALSE;
12474 }
12475 }
12476 flaginfo->flags_initialized = TRUE;
12477 flaginfo->only_with_flags |= with_hex;
12478 flaginfo->not_with_flags |= without_hex;
12479 }
12480
12481 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12482 return FALSE;
12483
12484 if ((flaginfo->not_with_flags & sh_flags) != 0)
12485 return FALSE;
12486
12487 return TRUE;
12488 }
12489
12490 struct alloc_got_off_arg {
12491 bfd_vma gotoff;
12492 struct bfd_link_info *info;
12493 };
12494
12495 /* We need a special top-level link routine to convert got reference counts
12496 to real got offsets. */
12497
12498 static bfd_boolean
12499 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12500 {
12501 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12502 bfd *obfd = gofarg->info->output_bfd;
12503 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12504
12505 if (h->got.refcount > 0)
12506 {
12507 h->got.offset = gofarg->gotoff;
12508 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12509 }
12510 else
12511 h->got.offset = (bfd_vma) -1;
12512
12513 return TRUE;
12514 }
12515
12516 /* And an accompanying bit to work out final got entry offsets once
12517 we're done. Should be called from final_link. */
12518
12519 bfd_boolean
12520 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12521 struct bfd_link_info *info)
12522 {
12523 bfd *i;
12524 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12525 bfd_vma gotoff;
12526 struct alloc_got_off_arg gofarg;
12527
12528 BFD_ASSERT (abfd == info->output_bfd);
12529
12530 if (! is_elf_hash_table (info->hash))
12531 return FALSE;
12532
12533 /* The GOT offset is relative to the .got section, but the GOT header is
12534 put into the .got.plt section, if the backend uses it. */
12535 if (bed->want_got_plt)
12536 gotoff = 0;
12537 else
12538 gotoff = bed->got_header_size;
12539
12540 /* Do the local .got entries first. */
12541 for (i = info->input_bfds; i; i = i->link_next)
12542 {
12543 bfd_signed_vma *local_got;
12544 bfd_size_type j, locsymcount;
12545 Elf_Internal_Shdr *symtab_hdr;
12546
12547 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12548 continue;
12549
12550 local_got = elf_local_got_refcounts (i);
12551 if (!local_got)
12552 continue;
12553
12554 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12555 if (elf_bad_symtab (i))
12556 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12557 else
12558 locsymcount = symtab_hdr->sh_info;
12559
12560 for (j = 0; j < locsymcount; ++j)
12561 {
12562 if (local_got[j] > 0)
12563 {
12564 local_got[j] = gotoff;
12565 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12566 }
12567 else
12568 local_got[j] = (bfd_vma) -1;
12569 }
12570 }
12571
12572 /* Then the global .got entries. .plt refcounts are handled by
12573 adjust_dynamic_symbol */
12574 gofarg.gotoff = gotoff;
12575 gofarg.info = info;
12576 elf_link_hash_traverse (elf_hash_table (info),
12577 elf_gc_allocate_got_offsets,
12578 &gofarg);
12579 return TRUE;
12580 }
12581
12582 /* Many folk need no more in the way of final link than this, once
12583 got entry reference counting is enabled. */
12584
12585 bfd_boolean
12586 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12587 {
12588 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12589 return FALSE;
12590
12591 /* Invoke the regular ELF backend linker to do all the work. */
12592 return bfd_elf_final_link (abfd, info);
12593 }
12594
12595 bfd_boolean
12596 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12597 {
12598 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12599
12600 if (rcookie->bad_symtab)
12601 rcookie->rel = rcookie->rels;
12602
12603 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12604 {
12605 unsigned long r_symndx;
12606
12607 if (! rcookie->bad_symtab)
12608 if (rcookie->rel->r_offset > offset)
12609 return FALSE;
12610 if (rcookie->rel->r_offset != offset)
12611 continue;
12612
12613 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12614 if (r_symndx == STN_UNDEF)
12615 return TRUE;
12616
12617 if (r_symndx >= rcookie->locsymcount
12618 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12619 {
12620 struct elf_link_hash_entry *h;
12621
12622 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12623
12624 while (h->root.type == bfd_link_hash_indirect
12625 || h->root.type == bfd_link_hash_warning)
12626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12627
12628 if ((h->root.type == bfd_link_hash_defined
12629 || h->root.type == bfd_link_hash_defweak)
12630 && discarded_section (h->root.u.def.section))
12631 return TRUE;
12632 else
12633 return FALSE;
12634 }
12635 else
12636 {
12637 /* It's not a relocation against a global symbol,
12638 but it could be a relocation against a local
12639 symbol for a discarded section. */
12640 asection *isec;
12641 Elf_Internal_Sym *isym;
12642
12643 /* Need to: get the symbol; get the section. */
12644 isym = &rcookie->locsyms[r_symndx];
12645 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12646 if (isec != NULL && discarded_section (isec))
12647 return TRUE;
12648 }
12649 return FALSE;
12650 }
12651 return FALSE;
12652 }
12653
12654 /* Discard unneeded references to discarded sections.
12655 Returns TRUE if any section's size was changed. */
12656 /* This function assumes that the relocations are in sorted order,
12657 which is true for all known assemblers. */
12658
12659 bfd_boolean
12660 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12661 {
12662 struct elf_reloc_cookie cookie;
12663 asection *stab, *eh;
12664 const struct elf_backend_data *bed;
12665 bfd *abfd;
12666 bfd_boolean ret = FALSE;
12667
12668 if (info->traditional_format
12669 || !is_elf_hash_table (info->hash))
12670 return FALSE;
12671
12672 _bfd_elf_begin_eh_frame_parsing (info);
12673 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12674 {
12675 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12676 continue;
12677
12678 bed = get_elf_backend_data (abfd);
12679
12680 eh = NULL;
12681 if (!info->relocatable)
12682 {
12683 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12684 while (eh != NULL
12685 && (eh->size == 0
12686 || bfd_is_abs_section (eh->output_section)))
12687 eh = bfd_get_next_section_by_name (eh);
12688 }
12689
12690 stab = bfd_get_section_by_name (abfd, ".stab");
12691 if (stab != NULL
12692 && (stab->size == 0
12693 || bfd_is_abs_section (stab->output_section)
12694 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12695 stab = NULL;
12696
12697 if (stab == NULL
12698 && eh == NULL
12699 && bed->elf_backend_discard_info == NULL)
12700 continue;
12701
12702 if (!init_reloc_cookie (&cookie, info, abfd))
12703 return FALSE;
12704
12705 if (stab != NULL
12706 && stab->reloc_count > 0
12707 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12708 {
12709 if (_bfd_discard_section_stabs (abfd, stab,
12710 elf_section_data (stab)->sec_info,
12711 bfd_elf_reloc_symbol_deleted_p,
12712 &cookie))
12713 ret = TRUE;
12714 fini_reloc_cookie_rels (&cookie, stab);
12715 }
12716
12717 while (eh != NULL
12718 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12719 {
12720 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12721 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12722 bfd_elf_reloc_symbol_deleted_p,
12723 &cookie))
12724 ret = TRUE;
12725 fini_reloc_cookie_rels (&cookie, eh);
12726 eh = bfd_get_next_section_by_name (eh);
12727 }
12728
12729 if (bed->elf_backend_discard_info != NULL
12730 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12731 ret = TRUE;
12732
12733 fini_reloc_cookie (&cookie, abfd);
12734 }
12735 _bfd_elf_end_eh_frame_parsing (info);
12736
12737 if (info->eh_frame_hdr
12738 && !info->relocatable
12739 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12740 ret = TRUE;
12741
12742 return ret;
12743 }
12744
12745 bfd_boolean
12746 _bfd_elf_section_already_linked (bfd *abfd,
12747 asection *sec,
12748 struct bfd_link_info *info)
12749 {
12750 flagword flags;
12751 const char *name, *key;
12752 struct bfd_section_already_linked *l;
12753 struct bfd_section_already_linked_hash_entry *already_linked_list;
12754
12755 if (sec->output_section == bfd_abs_section_ptr)
12756 return FALSE;
12757
12758 flags = sec->flags;
12759
12760 /* Return if it isn't a linkonce section. A comdat group section
12761 also has SEC_LINK_ONCE set. */
12762 if ((flags & SEC_LINK_ONCE) == 0)
12763 return FALSE;
12764
12765 /* Don't put group member sections on our list of already linked
12766 sections. They are handled as a group via their group section. */
12767 if (elf_sec_group (sec) != NULL)
12768 return FALSE;
12769
12770 /* For a SHT_GROUP section, use the group signature as the key. */
12771 name = sec->name;
12772 if ((flags & SEC_GROUP) != 0
12773 && elf_next_in_group (sec) != NULL
12774 && elf_group_name (elf_next_in_group (sec)) != NULL)
12775 key = elf_group_name (elf_next_in_group (sec));
12776 else
12777 {
12778 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12779 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12780 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12781 key++;
12782 else
12783 /* Must be a user linkonce section that doesn't follow gcc's
12784 naming convention. In this case we won't be matching
12785 single member groups. */
12786 key = name;
12787 }
12788
12789 already_linked_list = bfd_section_already_linked_table_lookup (key);
12790
12791 for (l = already_linked_list->entry; l != NULL; l = l->next)
12792 {
12793 /* We may have 2 different types of sections on the list: group
12794 sections with a signature of <key> (<key> is some string),
12795 and linkonce sections named .gnu.linkonce.<type>.<key>.
12796 Match like sections. LTO plugin sections are an exception.
12797 They are always named .gnu.linkonce.t.<key> and match either
12798 type of section. */
12799 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12800 && ((flags & SEC_GROUP) != 0
12801 || strcmp (name, l->sec->name) == 0))
12802 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12803 {
12804 /* The section has already been linked. See if we should
12805 issue a warning. */
12806 if (!_bfd_handle_already_linked (sec, l, info))
12807 return FALSE;
12808
12809 if (flags & SEC_GROUP)
12810 {
12811 asection *first = elf_next_in_group (sec);
12812 asection *s = first;
12813
12814 while (s != NULL)
12815 {
12816 s->output_section = bfd_abs_section_ptr;
12817 /* Record which group discards it. */
12818 s->kept_section = l->sec;
12819 s = elf_next_in_group (s);
12820 /* These lists are circular. */
12821 if (s == first)
12822 break;
12823 }
12824 }
12825
12826 return TRUE;
12827 }
12828 }
12829
12830 /* A single member comdat group section may be discarded by a
12831 linkonce section and vice versa. */
12832 if ((flags & SEC_GROUP) != 0)
12833 {
12834 asection *first = elf_next_in_group (sec);
12835
12836 if (first != NULL && elf_next_in_group (first) == first)
12837 /* Check this single member group against linkonce sections. */
12838 for (l = already_linked_list->entry; l != NULL; l = l->next)
12839 if ((l->sec->flags & SEC_GROUP) == 0
12840 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12841 {
12842 first->output_section = bfd_abs_section_ptr;
12843 first->kept_section = l->sec;
12844 sec->output_section = bfd_abs_section_ptr;
12845 break;
12846 }
12847 }
12848 else
12849 /* Check this linkonce section against single member groups. */
12850 for (l = already_linked_list->entry; l != NULL; l = l->next)
12851 if (l->sec->flags & SEC_GROUP)
12852 {
12853 asection *first = elf_next_in_group (l->sec);
12854
12855 if (first != NULL
12856 && elf_next_in_group (first) == first
12857 && bfd_elf_match_symbols_in_sections (first, sec, info))
12858 {
12859 sec->output_section = bfd_abs_section_ptr;
12860 sec->kept_section = first;
12861 break;
12862 }
12863 }
12864
12865 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12866 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12867 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12868 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12869 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12870 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12871 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12872 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12873 The reverse order cannot happen as there is never a bfd with only the
12874 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12875 matter as here were are looking only for cross-bfd sections. */
12876
12877 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12878 for (l = already_linked_list->entry; l != NULL; l = l->next)
12879 if ((l->sec->flags & SEC_GROUP) == 0
12880 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12881 {
12882 if (abfd != l->sec->owner)
12883 sec->output_section = bfd_abs_section_ptr;
12884 break;
12885 }
12886
12887 /* This is the first section with this name. Record it. */
12888 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12889 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12890 return sec->output_section == bfd_abs_section_ptr;
12891 }
12892
12893 bfd_boolean
12894 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12895 {
12896 return sym->st_shndx == SHN_COMMON;
12897 }
12898
12899 unsigned int
12900 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12901 {
12902 return SHN_COMMON;
12903 }
12904
12905 asection *
12906 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12907 {
12908 return bfd_com_section_ptr;
12909 }
12910
12911 bfd_vma
12912 _bfd_elf_default_got_elt_size (bfd *abfd,
12913 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12914 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12915 bfd *ibfd ATTRIBUTE_UNUSED,
12916 unsigned long symndx ATTRIBUTE_UNUSED)
12917 {
12918 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12919 return bed->s->arch_size / 8;
12920 }
12921
12922 /* Routines to support the creation of dynamic relocs. */
12923
12924 /* Returns the name of the dynamic reloc section associated with SEC. */
12925
12926 static const char *
12927 get_dynamic_reloc_section_name (bfd * abfd,
12928 asection * sec,
12929 bfd_boolean is_rela)
12930 {
12931 char *name;
12932 const char *old_name = bfd_get_section_name (NULL, sec);
12933 const char *prefix = is_rela ? ".rela" : ".rel";
12934
12935 if (old_name == NULL)
12936 return NULL;
12937
12938 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12939 sprintf (name, "%s%s", prefix, old_name);
12940
12941 return name;
12942 }
12943
12944 /* Returns the dynamic reloc section associated with SEC.
12945 If necessary compute the name of the dynamic reloc section based
12946 on SEC's name (looked up in ABFD's string table) and the setting
12947 of IS_RELA. */
12948
12949 asection *
12950 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12951 asection * sec,
12952 bfd_boolean is_rela)
12953 {
12954 asection * reloc_sec = elf_section_data (sec)->sreloc;
12955
12956 if (reloc_sec == NULL)
12957 {
12958 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12959
12960 if (name != NULL)
12961 {
12962 reloc_sec = bfd_get_linker_section (abfd, name);
12963
12964 if (reloc_sec != NULL)
12965 elf_section_data (sec)->sreloc = reloc_sec;
12966 }
12967 }
12968
12969 return reloc_sec;
12970 }
12971
12972 /* Returns the dynamic reloc section associated with SEC. If the
12973 section does not exist it is created and attached to the DYNOBJ
12974 bfd and stored in the SRELOC field of SEC's elf_section_data
12975 structure.
12976
12977 ALIGNMENT is the alignment for the newly created section and
12978 IS_RELA defines whether the name should be .rela.<SEC's name>
12979 or .rel.<SEC's name>. The section name is looked up in the
12980 string table associated with ABFD. */
12981
12982 asection *
12983 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12984 bfd * dynobj,
12985 unsigned int alignment,
12986 bfd * abfd,
12987 bfd_boolean is_rela)
12988 {
12989 asection * reloc_sec = elf_section_data (sec)->sreloc;
12990
12991 if (reloc_sec == NULL)
12992 {
12993 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12994
12995 if (name == NULL)
12996 return NULL;
12997
12998 reloc_sec = bfd_get_linker_section (dynobj, name);
12999
13000 if (reloc_sec == NULL)
13001 {
13002 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13003 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13004 if ((sec->flags & SEC_ALLOC) != 0)
13005 flags |= SEC_ALLOC | SEC_LOAD;
13006
13007 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13008 if (reloc_sec != NULL)
13009 {
13010 /* _bfd_elf_get_sec_type_attr chooses a section type by
13011 name. Override as it may be wrong, eg. for a user
13012 section named "auto" we'll get ".relauto" which is
13013 seen to be a .rela section. */
13014 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13015 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13016 reloc_sec = NULL;
13017 }
13018 }
13019
13020 elf_section_data (sec)->sreloc = reloc_sec;
13021 }
13022
13023 return reloc_sec;
13024 }
13025
13026 /* Copy the ELF symbol type associated with a linker hash entry. */
13027 void
13028 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13029 struct bfd_link_hash_entry * hdest,
13030 struct bfd_link_hash_entry * hsrc)
13031 {
13032 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13033 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13034
13035 ehdest->type = ehsrc->type;
13036 ehdest->target_internal = ehsrc->target_internal;
13037 }
13038
13039 /* Append a RELA relocation REL to section S in BFD. */
13040
13041 void
13042 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13043 {
13044 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13045 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13046 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13047 bed->s->swap_reloca_out (abfd, rel, loc);
13048 }
13049
13050 /* Append a REL relocation REL to section S in BFD. */
13051
13052 void
13053 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13054 {
13055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13056 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13057 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13058 bed->s->swap_reloc_out (abfd, rel, loc);
13059 }
This page took 0.504899 seconds and 4 git commands to generate.