* hppa-dis.c (print_insn_hppa): Don't print '%' before register names.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
32 {
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
39
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
44
45 switch (bed->s->arch_size)
46 {
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
58 }
59
60 flags = bed->dynamic_sec_flags;
61
62 s = bfd_make_section_with_flags (abfd, ".got", flags);
63 if (s == NULL
64 || !bfd_set_section_alignment (abfd, s, ptralign))
65 return FALSE;
66
67 if (bed->want_got_plt)
68 {
69 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
70 if (s == NULL
71 || !bfd_set_section_alignment (abfd, s, ptralign))
72 return FALSE;
73 }
74
75 if (bed->want_got_sym)
76 {
77 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
78 (or .got.plt) section. We don't do this in the linker script
79 because we don't want to define the symbol if we are not creating
80 a global offset table. */
81 bh = NULL;
82 if (!(_bfd_generic_link_add_one_symbol
83 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
84 0, NULL, FALSE, bed->collect, &bh)))
85 return FALSE;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->type = STT_OBJECT;
89 h->other = STV_HIDDEN;
90
91 if (! info->executable
92 && ! bfd_elf_link_record_dynamic_symbol (info, h))
93 return FALSE;
94
95 elf_hash_table (info)->hgot = h;
96 }
97
98 /* The first bit of the global offset table is the header. */
99 s->size += bed->got_header_size;
100
101 return TRUE;
102 }
103 \f
104 /* Create a strtab to hold the dynamic symbol names. */
105 static bfd_boolean
106 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
107 {
108 struct elf_link_hash_table *hash_table;
109
110 hash_table = elf_hash_table (info);
111 if (hash_table->dynobj == NULL)
112 hash_table->dynobj = abfd;
113
114 if (hash_table->dynstr == NULL)
115 {
116 hash_table->dynstr = _bfd_elf_strtab_init ();
117 if (hash_table->dynstr == NULL)
118 return FALSE;
119 }
120 return TRUE;
121 }
122
123 /* Create some sections which will be filled in with dynamic linking
124 information. ABFD is an input file which requires dynamic sections
125 to be created. The dynamic sections take up virtual memory space
126 when the final executable is run, so we need to create them before
127 addresses are assigned to the output sections. We work out the
128 actual contents and size of these sections later. */
129
130 bfd_boolean
131 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
132 {
133 flagword flags;
134 register asection *s;
135 struct elf_link_hash_entry *h;
136 struct bfd_link_hash_entry *bh;
137 const struct elf_backend_data *bed;
138
139 if (! is_elf_hash_table (info->hash))
140 return FALSE;
141
142 if (elf_hash_table (info)->dynamic_sections_created)
143 return TRUE;
144
145 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
146 return FALSE;
147
148 abfd = elf_hash_table (info)->dynobj;
149 bed = get_elf_backend_data (abfd);
150
151 flags = bed->dynamic_sec_flags;
152
153 /* A dynamically linked executable has a .interp section, but a
154 shared library does not. */
155 if (info->executable)
156 {
157 s = bfd_make_section_with_flags (abfd, ".interp",
158 flags | SEC_READONLY);
159 if (s == NULL)
160 return FALSE;
161 }
162
163 if (! info->traditional_format)
164 {
165 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
166 flags | SEC_READONLY);
167 if (s == NULL
168 || ! bfd_set_section_alignment (abfd, s, 2))
169 return FALSE;
170 elf_hash_table (info)->eh_info.hdr_sec = s;
171 }
172
173 /* Create sections to hold version informations. These are removed
174 if they are not needed. */
175 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
176 flags | SEC_READONLY);
177 if (s == NULL
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
180
181 s = bfd_make_section_with_flags (abfd, ".gnu.version",
182 flags | SEC_READONLY);
183 if (s == NULL
184 || ! bfd_set_section_alignment (abfd, s, 1))
185 return FALSE;
186
187 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
188 flags | SEC_READONLY);
189 if (s == NULL
190 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
191 return FALSE;
192
193 s = bfd_make_section_with_flags (abfd, ".dynsym",
194 flags | SEC_READONLY);
195 if (s == NULL
196 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
197 return FALSE;
198
199 s = bfd_make_section_with_flags (abfd, ".dynstr",
200 flags | SEC_READONLY);
201 if (s == NULL)
202 return FALSE;
203
204 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 /* The special symbol _DYNAMIC is always set to the start of the
210 .dynamic section. We could set _DYNAMIC in a linker script, but we
211 only want to define it if we are, in fact, creating a .dynamic
212 section. We don't want to define it if there is no .dynamic
213 section, since on some ELF platforms the start up code examines it
214 to decide how to initialize the process. */
215 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
216 FALSE, FALSE, FALSE);
217 if (h != NULL)
218 {
219 /* Zap symbol defined in an as-needed lib that wasn't linked.
220 This is a symptom of a larger problem: Absolute symbols
221 defined in shared libraries can't be overridden, because we
222 lose the link to the bfd which is via the symbol section. */
223 h->root.type = bfd_link_hash_new;
224 }
225 bh = &h->root;
226 if (! (_bfd_generic_link_add_one_symbol
227 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
228 get_elf_backend_data (abfd)->collect, &bh)))
229 return FALSE;
230 h = (struct elf_link_hash_entry *) bh;
231 h->def_regular = 1;
232 h->type = STT_OBJECT;
233
234 if (! info->executable
235 && ! bfd_elf_link_record_dynamic_symbol (info, h))
236 return FALSE;
237
238 s = bfd_make_section_with_flags (abfd, ".hash",
239 flags | SEC_READONLY);
240 if (s == NULL
241 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 return FALSE;
243 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
244
245 /* Let the backend create the rest of the sections. This lets the
246 backend set the right flags. The backend will normally create
247 the .got and .plt sections. */
248 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
249 return FALSE;
250
251 elf_hash_table (info)->dynamic_sections_created = TRUE;
252
253 return TRUE;
254 }
255
256 /* Create dynamic sections when linking against a dynamic object. */
257
258 bfd_boolean
259 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
260 {
261 flagword flags, pltflags;
262 asection *s;
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264
265 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
266 .rel[a].bss sections. */
267 flags = bed->dynamic_sec_flags;
268
269 pltflags = flags;
270 if (bed->plt_not_loaded)
271 /* We do not clear SEC_ALLOC here because we still want the OS to
272 allocate space for the section; it's just that there's nothing
273 to read in from the object file. */
274 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
275 else
276 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
277 if (bed->plt_readonly)
278 pltflags |= SEC_READONLY;
279
280 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
281 if (s == NULL
282 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
283 return FALSE;
284
285 if (bed->want_plt_sym)
286 {
287 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
288 .plt section. */
289 struct elf_link_hash_entry *h;
290 struct bfd_link_hash_entry *bh = NULL;
291
292 if (! (_bfd_generic_link_add_one_symbol
293 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
294 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
295 return FALSE;
296 h = (struct elf_link_hash_entry *) bh;
297 h->def_regular = 1;
298 h->type = STT_OBJECT;
299
300 if (! info->executable
301 && ! bfd_elf_link_record_dynamic_symbol (info, h))
302 return FALSE;
303 }
304
305 s = bfd_make_section_with_flags (abfd,
306 (bed->default_use_rela_p
307 ? ".rela.plt" : ".rel.plt"),
308 flags | SEC_READONLY);
309 if (s == NULL
310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
311 return FALSE;
312
313 if (! _bfd_elf_create_got_section (abfd, info))
314 return FALSE;
315
316 if (bed->want_dynbss)
317 {
318 /* The .dynbss section is a place to put symbols which are defined
319 by dynamic objects, are referenced by regular objects, and are
320 not functions. We must allocate space for them in the process
321 image and use a R_*_COPY reloc to tell the dynamic linker to
322 initialize them at run time. The linker script puts the .dynbss
323 section into the .bss section of the final image. */
324 s = bfd_make_section_with_flags (abfd, ".dynbss",
325 (SEC_ALLOC
326 | SEC_LINKER_CREATED));
327 if (s == NULL)
328 return FALSE;
329
330 /* The .rel[a].bss section holds copy relocs. This section is not
331 normally needed. We need to create it here, though, so that the
332 linker will map it to an output section. We can't just create it
333 only if we need it, because we will not know whether we need it
334 until we have seen all the input files, and the first time the
335 main linker code calls BFD after examining all the input files
336 (size_dynamic_sections) the input sections have already been
337 mapped to the output sections. If the section turns out not to
338 be needed, we can discard it later. We will never need this
339 section when generating a shared object, since they do not use
340 copy relocs. */
341 if (! info->shared)
342 {
343 s = bfd_make_section_with_flags (abfd,
344 (bed->default_use_rela_p
345 ? ".rela.bss" : ".rel.bss"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 }
351 }
352
353 return TRUE;
354 }
355 \f
356 /* Record a new dynamic symbol. We record the dynamic symbols as we
357 read the input files, since we need to have a list of all of them
358 before we can determine the final sizes of the output sections.
359 Note that we may actually call this function even though we are not
360 going to output any dynamic symbols; in some cases we know that a
361 symbol should be in the dynamic symbol table, but only if there is
362 one. */
363
364 bfd_boolean
365 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
366 struct elf_link_hash_entry *h)
367 {
368 if (h->dynindx == -1)
369 {
370 struct elf_strtab_hash *dynstr;
371 char *p;
372 const char *name;
373 bfd_size_type indx;
374
375 /* XXX: The ABI draft says the linker must turn hidden and
376 internal symbols into STB_LOCAL symbols when producing the
377 DSO. However, if ld.so honors st_other in the dynamic table,
378 this would not be necessary. */
379 switch (ELF_ST_VISIBILITY (h->other))
380 {
381 case STV_INTERNAL:
382 case STV_HIDDEN:
383 if (h->root.type != bfd_link_hash_undefined
384 && h->root.type != bfd_link_hash_undefweak)
385 {
386 h->forced_local = 1;
387 if (!elf_hash_table (info)->is_relocatable_executable)
388 return TRUE;
389 }
390
391 default:
392 break;
393 }
394
395 h->dynindx = elf_hash_table (info)->dynsymcount;
396 ++elf_hash_table (info)->dynsymcount;
397
398 dynstr = elf_hash_table (info)->dynstr;
399 if (dynstr == NULL)
400 {
401 /* Create a strtab to hold the dynamic symbol names. */
402 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
403 if (dynstr == NULL)
404 return FALSE;
405 }
406
407 /* We don't put any version information in the dynamic string
408 table. */
409 name = h->root.root.string;
410 p = strchr (name, ELF_VER_CHR);
411 if (p != NULL)
412 /* We know that the p points into writable memory. In fact,
413 there are only a few symbols that have read-only names, being
414 those like _GLOBAL_OFFSET_TABLE_ that are created specially
415 by the backends. Most symbols will have names pointing into
416 an ELF string table read from a file, or to objalloc memory. */
417 *p = 0;
418
419 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
420
421 if (p != NULL)
422 *p = ELF_VER_CHR;
423
424 if (indx == (bfd_size_type) -1)
425 return FALSE;
426 h->dynstr_index = indx;
427 }
428
429 return TRUE;
430 }
431 \f
432 /* Record an assignment to a symbol made by a linker script. We need
433 this in case some dynamic object refers to this symbol. */
434
435 bfd_boolean
436 bfd_elf_record_link_assignment (struct bfd_link_info *info,
437 const char *name,
438 bfd_boolean provide)
439 {
440 struct elf_link_hash_entry *h;
441 struct elf_link_hash_table *htab;
442
443 if (!is_elf_hash_table (info->hash))
444 return TRUE;
445
446 htab = elf_hash_table (info);
447 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
448 if (h == NULL)
449 return provide;
450
451 /* Since we're defining the symbol, don't let it seem to have not
452 been defined. record_dynamic_symbol and size_dynamic_sections
453 may depend on this. */
454 if (h->root.type == bfd_link_hash_undefweak
455 || h->root.type == bfd_link_hash_undefined)
456 {
457 h->root.type = bfd_link_hash_new;
458 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
459 bfd_link_repair_undef_list (&htab->root);
460 }
461
462 if (h->root.type == bfd_link_hash_new)
463 h->non_elf = 0;
464
465 /* If this symbol is being provided by the linker script, and it is
466 currently defined by a dynamic object, but not by a regular
467 object, then mark it as undefined so that the generic linker will
468 force the correct value. */
469 if (provide
470 && h->def_dynamic
471 && !h->def_regular)
472 h->root.type = bfd_link_hash_undefined;
473
474 /* If this symbol is not being provided by the linker script, and it is
475 currently defined by a dynamic object, but not by a regular object,
476 then clear out any version information because the symbol will not be
477 associated with the dynamic object any more. */
478 if (!provide
479 && h->def_dynamic
480 && !h->def_regular)
481 h->verinfo.verdef = NULL;
482
483 h->def_regular = 1;
484
485 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
486 and executables. */
487 if (!info->relocatable
488 && h->dynindx != -1
489 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
490 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
491 h->forced_local = 1;
492
493 if ((h->def_dynamic
494 || h->ref_dynamic
495 || info->shared
496 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
497 && h->dynindx == -1)
498 {
499 if (! bfd_elf_link_record_dynamic_symbol (info, h))
500 return FALSE;
501
502 /* If this is a weak defined symbol, and we know a corresponding
503 real symbol from the same dynamic object, make sure the real
504 symbol is also made into a dynamic symbol. */
505 if (h->u.weakdef != NULL
506 && h->u.weakdef->dynindx == -1)
507 {
508 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
509 return FALSE;
510 }
511 }
512
513 return TRUE;
514 }
515
516 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
517 success, and 2 on a failure caused by attempting to record a symbol
518 in a discarded section, eg. a discarded link-once section symbol. */
519
520 int
521 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
522 bfd *input_bfd,
523 long input_indx)
524 {
525 bfd_size_type amt;
526 struct elf_link_local_dynamic_entry *entry;
527 struct elf_link_hash_table *eht;
528 struct elf_strtab_hash *dynstr;
529 unsigned long dynstr_index;
530 char *name;
531 Elf_External_Sym_Shndx eshndx;
532 char esym[sizeof (Elf64_External_Sym)];
533
534 if (! is_elf_hash_table (info->hash))
535 return 0;
536
537 /* See if the entry exists already. */
538 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
539 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
540 return 1;
541
542 amt = sizeof (*entry);
543 entry = bfd_alloc (input_bfd, amt);
544 if (entry == NULL)
545 return 0;
546
547 /* Go find the symbol, so that we can find it's name. */
548 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
549 1, input_indx, &entry->isym, esym, &eshndx))
550 {
551 bfd_release (input_bfd, entry);
552 return 0;
553 }
554
555 if (entry->isym.st_shndx != SHN_UNDEF
556 && (entry->isym.st_shndx < SHN_LORESERVE
557 || entry->isym.st_shndx > SHN_HIRESERVE))
558 {
559 asection *s;
560
561 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
562 if (s == NULL || bfd_is_abs_section (s->output_section))
563 {
564 /* We can still bfd_release here as nothing has done another
565 bfd_alloc. We can't do this later in this function. */
566 bfd_release (input_bfd, entry);
567 return 2;
568 }
569 }
570
571 name = (bfd_elf_string_from_elf_section
572 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
573 entry->isym.st_name));
574
575 dynstr = elf_hash_table (info)->dynstr;
576 if (dynstr == NULL)
577 {
578 /* Create a strtab to hold the dynamic symbol names. */
579 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
580 if (dynstr == NULL)
581 return 0;
582 }
583
584 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
585 if (dynstr_index == (unsigned long) -1)
586 return 0;
587 entry->isym.st_name = dynstr_index;
588
589 eht = elf_hash_table (info);
590
591 entry->next = eht->dynlocal;
592 eht->dynlocal = entry;
593 entry->input_bfd = input_bfd;
594 entry->input_indx = input_indx;
595 eht->dynsymcount++;
596
597 /* Whatever binding the symbol had before, it's now local. */
598 entry->isym.st_info
599 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
600
601 /* The dynindx will be set at the end of size_dynamic_sections. */
602
603 return 1;
604 }
605
606 /* Return the dynindex of a local dynamic symbol. */
607
608 long
609 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
610 bfd *input_bfd,
611 long input_indx)
612 {
613 struct elf_link_local_dynamic_entry *e;
614
615 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
616 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
617 return e->dynindx;
618 return -1;
619 }
620
621 /* This function is used to renumber the dynamic symbols, if some of
622 them are removed because they are marked as local. This is called
623 via elf_link_hash_traverse. */
624
625 static bfd_boolean
626 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
627 void *data)
628 {
629 size_t *count = data;
630
631 if (h->root.type == bfd_link_hash_warning)
632 h = (struct elf_link_hash_entry *) h->root.u.i.link;
633
634 if (h->forced_local)
635 return TRUE;
636
637 if (h->dynindx != -1)
638 h->dynindx = ++(*count);
639
640 return TRUE;
641 }
642
643
644 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
645 STB_LOCAL binding. */
646
647 static bfd_boolean
648 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
649 void *data)
650 {
651 size_t *count = data;
652
653 if (h->root.type == bfd_link_hash_warning)
654 h = (struct elf_link_hash_entry *) h->root.u.i.link;
655
656 if (!h->forced_local)
657 return TRUE;
658
659 if (h->dynindx != -1)
660 h->dynindx = ++(*count);
661
662 return TRUE;
663 }
664
665 /* Return true if the dynamic symbol for a given section should be
666 omitted when creating a shared library. */
667 bfd_boolean
668 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
669 struct bfd_link_info *info,
670 asection *p)
671 {
672 switch (elf_section_data (p)->this_hdr.sh_type)
673 {
674 case SHT_PROGBITS:
675 case SHT_NOBITS:
676 /* If sh_type is yet undecided, assume it could be
677 SHT_PROGBITS/SHT_NOBITS. */
678 case SHT_NULL:
679 if (strcmp (p->name, ".got") == 0
680 || strcmp (p->name, ".got.plt") == 0
681 || strcmp (p->name, ".plt") == 0)
682 {
683 asection *ip;
684 bfd *dynobj = elf_hash_table (info)->dynobj;
685
686 if (dynobj != NULL
687 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
688 && (ip->flags & SEC_LINKER_CREATED)
689 && ip->output_section == p)
690 return TRUE;
691 }
692 return FALSE;
693
694 /* There shouldn't be section relative relocations
695 against any other section. */
696 default:
697 return TRUE;
698 }
699 }
700
701 /* Assign dynsym indices. In a shared library we generate a section
702 symbol for each output section, which come first. Next come symbols
703 which have been forced to local binding. Then all of the back-end
704 allocated local dynamic syms, followed by the rest of the global
705 symbols. */
706
707 static unsigned long
708 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
709 struct bfd_link_info *info,
710 unsigned long *section_sym_count)
711 {
712 unsigned long dynsymcount = 0;
713
714 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
715 {
716 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
717 asection *p;
718 for (p = output_bfd->sections; p ; p = p->next)
719 if ((p->flags & SEC_EXCLUDE) == 0
720 && (p->flags & SEC_ALLOC) != 0
721 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
722 elf_section_data (p)->dynindx = ++dynsymcount;
723 }
724 *section_sym_count = dynsymcount;
725
726 elf_link_hash_traverse (elf_hash_table (info),
727 elf_link_renumber_local_hash_table_dynsyms,
728 &dynsymcount);
729
730 if (elf_hash_table (info)->dynlocal)
731 {
732 struct elf_link_local_dynamic_entry *p;
733 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
734 p->dynindx = ++dynsymcount;
735 }
736
737 elf_link_hash_traverse (elf_hash_table (info),
738 elf_link_renumber_hash_table_dynsyms,
739 &dynsymcount);
740
741 /* There is an unused NULL entry at the head of the table which
742 we must account for in our count. Unless there weren't any
743 symbols, which means we'll have no table at all. */
744 if (dynsymcount != 0)
745 ++dynsymcount;
746
747 return elf_hash_table (info)->dynsymcount = dynsymcount;
748 }
749
750 /* This function is called when we want to define a new symbol. It
751 handles the various cases which arise when we find a definition in
752 a dynamic object, or when there is already a definition in a
753 dynamic object. The new symbol is described by NAME, SYM, PSEC,
754 and PVALUE. We set SYM_HASH to the hash table entry. We set
755 OVERRIDE if the old symbol is overriding a new definition. We set
756 TYPE_CHANGE_OK if it is OK for the type to change. We set
757 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
758 change, we mean that we shouldn't warn if the type or size does
759 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
760 object is overridden by a regular object. */
761
762 bfd_boolean
763 _bfd_elf_merge_symbol (bfd *abfd,
764 struct bfd_link_info *info,
765 const char *name,
766 Elf_Internal_Sym *sym,
767 asection **psec,
768 bfd_vma *pvalue,
769 unsigned int *pold_alignment,
770 struct elf_link_hash_entry **sym_hash,
771 bfd_boolean *skip,
772 bfd_boolean *override,
773 bfd_boolean *type_change_ok,
774 bfd_boolean *size_change_ok)
775 {
776 asection *sec, *oldsec;
777 struct elf_link_hash_entry *h;
778 struct elf_link_hash_entry *flip;
779 int bind;
780 bfd *oldbfd;
781 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
782 bfd_boolean newweak, oldweak;
783 const struct elf_backend_data *bed;
784
785 *skip = FALSE;
786 *override = FALSE;
787
788 sec = *psec;
789 bind = ELF_ST_BIND (sym->st_info);
790
791 if (! bfd_is_und_section (sec))
792 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
793 else
794 h = ((struct elf_link_hash_entry *)
795 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
796 if (h == NULL)
797 return FALSE;
798 *sym_hash = h;
799
800 /* This code is for coping with dynamic objects, and is only useful
801 if we are doing an ELF link. */
802 if (info->hash->creator != abfd->xvec)
803 return TRUE;
804
805 /* For merging, we only care about real symbols. */
806
807 while (h->root.type == bfd_link_hash_indirect
808 || h->root.type == bfd_link_hash_warning)
809 h = (struct elf_link_hash_entry *) h->root.u.i.link;
810
811 /* If we just created the symbol, mark it as being an ELF symbol.
812 Other than that, there is nothing to do--there is no merge issue
813 with a newly defined symbol--so we just return. */
814
815 if (h->root.type == bfd_link_hash_new)
816 {
817 h->non_elf = 0;
818 return TRUE;
819 }
820
821 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
822 existing symbol. */
823
824 switch (h->root.type)
825 {
826 default:
827 oldbfd = NULL;
828 oldsec = NULL;
829 break;
830
831 case bfd_link_hash_undefined:
832 case bfd_link_hash_undefweak:
833 oldbfd = h->root.u.undef.abfd;
834 oldsec = NULL;
835 break;
836
837 case bfd_link_hash_defined:
838 case bfd_link_hash_defweak:
839 oldbfd = h->root.u.def.section->owner;
840 oldsec = h->root.u.def.section;
841 break;
842
843 case bfd_link_hash_common:
844 oldbfd = h->root.u.c.p->section->owner;
845 oldsec = h->root.u.c.p->section;
846 break;
847 }
848
849 /* In cases involving weak versioned symbols, we may wind up trying
850 to merge a symbol with itself. Catch that here, to avoid the
851 confusion that results if we try to override a symbol with
852 itself. The additional tests catch cases like
853 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
854 dynamic object, which we do want to handle here. */
855 if (abfd == oldbfd
856 && ((abfd->flags & DYNAMIC) == 0
857 || !h->def_regular))
858 return TRUE;
859
860 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
861 respectively, is from a dynamic object. */
862
863 if ((abfd->flags & DYNAMIC) != 0)
864 newdyn = TRUE;
865 else
866 newdyn = FALSE;
867
868 if (oldbfd != NULL)
869 olddyn = (oldbfd->flags & DYNAMIC) != 0;
870 else
871 {
872 asection *hsec;
873
874 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
875 indices used by MIPS ELF. */
876 switch (h->root.type)
877 {
878 default:
879 hsec = NULL;
880 break;
881
882 case bfd_link_hash_defined:
883 case bfd_link_hash_defweak:
884 hsec = h->root.u.def.section;
885 break;
886
887 case bfd_link_hash_common:
888 hsec = h->root.u.c.p->section;
889 break;
890 }
891
892 if (hsec == NULL)
893 olddyn = FALSE;
894 else
895 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
896 }
897
898 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
899 respectively, appear to be a definition rather than reference. */
900
901 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
902 newdef = FALSE;
903 else
904 newdef = TRUE;
905
906 if (h->root.type == bfd_link_hash_undefined
907 || h->root.type == bfd_link_hash_undefweak
908 || h->root.type == bfd_link_hash_common)
909 olddef = FALSE;
910 else
911 olddef = TRUE;
912
913 /* Check TLS symbol. */
914 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
915 && ELF_ST_TYPE (sym->st_info) != h->type)
916 {
917 bfd *ntbfd, *tbfd;
918 bfd_boolean ntdef, tdef;
919 asection *ntsec, *tsec;
920
921 if (h->type == STT_TLS)
922 {
923 ntbfd = abfd;
924 ntsec = sec;
925 ntdef = newdef;
926 tbfd = oldbfd;
927 tsec = oldsec;
928 tdef = olddef;
929 }
930 else
931 {
932 ntbfd = oldbfd;
933 ntsec = oldsec;
934 ntdef = olddef;
935 tbfd = abfd;
936 tsec = sec;
937 tdef = newdef;
938 }
939
940 if (tdef && ntdef)
941 (*_bfd_error_handler)
942 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
943 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
944 else if (!tdef && !ntdef)
945 (*_bfd_error_handler)
946 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
947 tbfd, ntbfd, h->root.root.string);
948 else if (tdef)
949 (*_bfd_error_handler)
950 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
951 tbfd, tsec, ntbfd, h->root.root.string);
952 else
953 (*_bfd_error_handler)
954 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
955 tbfd, ntbfd, ntsec, h->root.root.string);
956
957 bfd_set_error (bfd_error_bad_value);
958 return FALSE;
959 }
960
961 /* We need to remember if a symbol has a definition in a dynamic
962 object or is weak in all dynamic objects. Internal and hidden
963 visibility will make it unavailable to dynamic objects. */
964 if (newdyn && !h->dynamic_def)
965 {
966 if (!bfd_is_und_section (sec))
967 h->dynamic_def = 1;
968 else
969 {
970 /* Check if this symbol is weak in all dynamic objects. If it
971 is the first time we see it in a dynamic object, we mark
972 if it is weak. Otherwise, we clear it. */
973 if (!h->ref_dynamic)
974 {
975 if (bind == STB_WEAK)
976 h->dynamic_weak = 1;
977 }
978 else if (bind != STB_WEAK)
979 h->dynamic_weak = 0;
980 }
981 }
982
983 /* If the old symbol has non-default visibility, we ignore the new
984 definition from a dynamic object. */
985 if (newdyn
986 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
987 && !bfd_is_und_section (sec))
988 {
989 *skip = TRUE;
990 /* Make sure this symbol is dynamic. */
991 h->ref_dynamic = 1;
992 /* A protected symbol has external availability. Make sure it is
993 recorded as dynamic.
994
995 FIXME: Should we check type and size for protected symbol? */
996 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
997 return bfd_elf_link_record_dynamic_symbol (info, h);
998 else
999 return TRUE;
1000 }
1001 else if (!newdyn
1002 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1003 && h->def_dynamic)
1004 {
1005 /* If the new symbol with non-default visibility comes from a
1006 relocatable file and the old definition comes from a dynamic
1007 object, we remove the old definition. */
1008 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1009 h = *sym_hash;
1010
1011 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1012 && bfd_is_und_section (sec))
1013 {
1014 /* If the new symbol is undefined and the old symbol was
1015 also undefined before, we need to make sure
1016 _bfd_generic_link_add_one_symbol doesn't mess
1017 up the linker hash table undefs list. Since the old
1018 definition came from a dynamic object, it is still on the
1019 undefs list. */
1020 h->root.type = bfd_link_hash_undefined;
1021 h->root.u.undef.abfd = abfd;
1022 }
1023 else
1024 {
1025 h->root.type = bfd_link_hash_new;
1026 h->root.u.undef.abfd = NULL;
1027 }
1028
1029 if (h->def_dynamic)
1030 {
1031 h->def_dynamic = 0;
1032 h->ref_dynamic = 1;
1033 h->dynamic_def = 1;
1034 }
1035 /* FIXME: Should we check type and size for protected symbol? */
1036 h->size = 0;
1037 h->type = 0;
1038 return TRUE;
1039 }
1040
1041 /* Differentiate strong and weak symbols. */
1042 newweak = bind == STB_WEAK;
1043 oldweak = (h->root.type == bfd_link_hash_defweak
1044 || h->root.type == bfd_link_hash_undefweak);
1045
1046 /* If a new weak symbol definition comes from a regular file and the
1047 old symbol comes from a dynamic library, we treat the new one as
1048 strong. Similarly, an old weak symbol definition from a regular
1049 file is treated as strong when the new symbol comes from a dynamic
1050 library. Further, an old weak symbol from a dynamic library is
1051 treated as strong if the new symbol is from a dynamic library.
1052 This reflects the way glibc's ld.so works.
1053
1054 Do this before setting *type_change_ok or *size_change_ok so that
1055 we warn properly when dynamic library symbols are overridden. */
1056
1057 if (newdef && !newdyn && olddyn)
1058 newweak = FALSE;
1059 if (olddef && newdyn)
1060 oldweak = FALSE;
1061
1062 /* It's OK to change the type if either the existing symbol or the
1063 new symbol is weak. A type change is also OK if the old symbol
1064 is undefined and the new symbol is defined. */
1065
1066 if (oldweak
1067 || newweak
1068 || (newdef
1069 && h->root.type == bfd_link_hash_undefined))
1070 *type_change_ok = TRUE;
1071
1072 /* It's OK to change the size if either the existing symbol or the
1073 new symbol is weak, or if the old symbol is undefined. */
1074
1075 if (*type_change_ok
1076 || h->root.type == bfd_link_hash_undefined)
1077 *size_change_ok = TRUE;
1078
1079 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1080 symbol, respectively, appears to be a common symbol in a dynamic
1081 object. If a symbol appears in an uninitialized section, and is
1082 not weak, and is not a function, then it may be a common symbol
1083 which was resolved when the dynamic object was created. We want
1084 to treat such symbols specially, because they raise special
1085 considerations when setting the symbol size: if the symbol
1086 appears as a common symbol in a regular object, and the size in
1087 the regular object is larger, we must make sure that we use the
1088 larger size. This problematic case can always be avoided in C,
1089 but it must be handled correctly when using Fortran shared
1090 libraries.
1091
1092 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1093 likewise for OLDDYNCOMMON and OLDDEF.
1094
1095 Note that this test is just a heuristic, and that it is quite
1096 possible to have an uninitialized symbol in a shared object which
1097 is really a definition, rather than a common symbol. This could
1098 lead to some minor confusion when the symbol really is a common
1099 symbol in some regular object. However, I think it will be
1100 harmless. */
1101
1102 if (newdyn
1103 && newdef
1104 && !newweak
1105 && (sec->flags & SEC_ALLOC) != 0
1106 && (sec->flags & SEC_LOAD) == 0
1107 && sym->st_size > 0
1108 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1109 newdyncommon = TRUE;
1110 else
1111 newdyncommon = FALSE;
1112
1113 if (olddyn
1114 && olddef
1115 && h->root.type == bfd_link_hash_defined
1116 && h->def_dynamic
1117 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1118 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1119 && h->size > 0
1120 && h->type != STT_FUNC)
1121 olddyncommon = TRUE;
1122 else
1123 olddyncommon = FALSE;
1124
1125 /* We now know everything about the old and new symbols. We ask the
1126 backend to check if we can merge them. */
1127 bed = get_elf_backend_data (abfd);
1128 if (bed->merge_symbol
1129 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1130 pold_alignment, skip, override,
1131 type_change_ok, size_change_ok,
1132 &newdyn, &newdef, &newdyncommon, &newweak,
1133 abfd, &sec,
1134 &olddyn, &olddef, &olddyncommon, &oldweak,
1135 oldbfd, &oldsec))
1136 return FALSE;
1137
1138 /* If both the old and the new symbols look like common symbols in a
1139 dynamic object, set the size of the symbol to the larger of the
1140 two. */
1141
1142 if (olddyncommon
1143 && newdyncommon
1144 && sym->st_size != h->size)
1145 {
1146 /* Since we think we have two common symbols, issue a multiple
1147 common warning if desired. Note that we only warn if the
1148 size is different. If the size is the same, we simply let
1149 the old symbol override the new one as normally happens with
1150 symbols defined in dynamic objects. */
1151
1152 if (! ((*info->callbacks->multiple_common)
1153 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1154 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1155 return FALSE;
1156
1157 if (sym->st_size > h->size)
1158 h->size = sym->st_size;
1159
1160 *size_change_ok = TRUE;
1161 }
1162
1163 /* If we are looking at a dynamic object, and we have found a
1164 definition, we need to see if the symbol was already defined by
1165 some other object. If so, we want to use the existing
1166 definition, and we do not want to report a multiple symbol
1167 definition error; we do this by clobbering *PSEC to be
1168 bfd_und_section_ptr.
1169
1170 We treat a common symbol as a definition if the symbol in the
1171 shared library is a function, since common symbols always
1172 represent variables; this can cause confusion in principle, but
1173 any such confusion would seem to indicate an erroneous program or
1174 shared library. We also permit a common symbol in a regular
1175 object to override a weak symbol in a shared object. */
1176
1177 if (newdyn
1178 && newdef
1179 && (olddef
1180 || (h->root.type == bfd_link_hash_common
1181 && (newweak
1182 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1183 {
1184 *override = TRUE;
1185 newdef = FALSE;
1186 newdyncommon = FALSE;
1187
1188 *psec = sec = bfd_und_section_ptr;
1189 *size_change_ok = TRUE;
1190
1191 /* If we get here when the old symbol is a common symbol, then
1192 we are explicitly letting it override a weak symbol or
1193 function in a dynamic object, and we don't want to warn about
1194 a type change. If the old symbol is a defined symbol, a type
1195 change warning may still be appropriate. */
1196
1197 if (h->root.type == bfd_link_hash_common)
1198 *type_change_ok = TRUE;
1199 }
1200
1201 /* Handle the special case of an old common symbol merging with a
1202 new symbol which looks like a common symbol in a shared object.
1203 We change *PSEC and *PVALUE to make the new symbol look like a
1204 common symbol, and let _bfd_generic_link_add_one_symbol do the
1205 right thing. */
1206
1207 if (newdyncommon
1208 && h->root.type == bfd_link_hash_common)
1209 {
1210 *override = TRUE;
1211 newdef = FALSE;
1212 newdyncommon = FALSE;
1213 *pvalue = sym->st_size;
1214 *psec = sec = bed->common_section (oldsec);
1215 *size_change_ok = TRUE;
1216 }
1217
1218 /* Skip weak definitions of symbols that are already defined. */
1219 if (newdef && olddef && newweak)
1220 *skip = TRUE;
1221
1222 /* If the old symbol is from a dynamic object, and the new symbol is
1223 a definition which is not from a dynamic object, then the new
1224 symbol overrides the old symbol. Symbols from regular files
1225 always take precedence over symbols from dynamic objects, even if
1226 they are defined after the dynamic object in the link.
1227
1228 As above, we again permit a common symbol in a regular object to
1229 override a definition in a shared object if the shared object
1230 symbol is a function or is weak. */
1231
1232 flip = NULL;
1233 if (!newdyn
1234 && (newdef
1235 || (bfd_is_com_section (sec)
1236 && (oldweak
1237 || h->type == STT_FUNC)))
1238 && olddyn
1239 && olddef
1240 && h->def_dynamic)
1241 {
1242 /* Change the hash table entry to undefined, and let
1243 _bfd_generic_link_add_one_symbol do the right thing with the
1244 new definition. */
1245
1246 h->root.type = bfd_link_hash_undefined;
1247 h->root.u.undef.abfd = h->root.u.def.section->owner;
1248 *size_change_ok = TRUE;
1249
1250 olddef = FALSE;
1251 olddyncommon = FALSE;
1252
1253 /* We again permit a type change when a common symbol may be
1254 overriding a function. */
1255
1256 if (bfd_is_com_section (sec))
1257 *type_change_ok = TRUE;
1258
1259 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1260 flip = *sym_hash;
1261 else
1262 /* This union may have been set to be non-NULL when this symbol
1263 was seen in a dynamic object. We must force the union to be
1264 NULL, so that it is correct for a regular symbol. */
1265 h->verinfo.vertree = NULL;
1266 }
1267
1268 /* Handle the special case of a new common symbol merging with an
1269 old symbol that looks like it might be a common symbol defined in
1270 a shared object. Note that we have already handled the case in
1271 which a new common symbol should simply override the definition
1272 in the shared library. */
1273
1274 if (! newdyn
1275 && bfd_is_com_section (sec)
1276 && olddyncommon)
1277 {
1278 /* It would be best if we could set the hash table entry to a
1279 common symbol, but we don't know what to use for the section
1280 or the alignment. */
1281 if (! ((*info->callbacks->multiple_common)
1282 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1283 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1284 return FALSE;
1285
1286 /* If the presumed common symbol in the dynamic object is
1287 larger, pretend that the new symbol has its size. */
1288
1289 if (h->size > *pvalue)
1290 *pvalue = h->size;
1291
1292 /* We need to remember the alignment required by the symbol
1293 in the dynamic object. */
1294 BFD_ASSERT (pold_alignment);
1295 *pold_alignment = h->root.u.def.section->alignment_power;
1296
1297 olddef = FALSE;
1298 olddyncommon = FALSE;
1299
1300 h->root.type = bfd_link_hash_undefined;
1301 h->root.u.undef.abfd = h->root.u.def.section->owner;
1302
1303 *size_change_ok = TRUE;
1304 *type_change_ok = TRUE;
1305
1306 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1307 flip = *sym_hash;
1308 else
1309 h->verinfo.vertree = NULL;
1310 }
1311
1312 if (flip != NULL)
1313 {
1314 /* Handle the case where we had a versioned symbol in a dynamic
1315 library and now find a definition in a normal object. In this
1316 case, we make the versioned symbol point to the normal one. */
1317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1318 flip->root.type = h->root.type;
1319 h->root.type = bfd_link_hash_indirect;
1320 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1321 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1322 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1323 if (h->def_dynamic)
1324 {
1325 h->def_dynamic = 0;
1326 flip->ref_dynamic = 1;
1327 }
1328 }
1329
1330 return TRUE;
1331 }
1332
1333 /* This function is called to create an indirect symbol from the
1334 default for the symbol with the default version if needed. The
1335 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1336 set DYNSYM if the new indirect symbol is dynamic. */
1337
1338 bfd_boolean
1339 _bfd_elf_add_default_symbol (bfd *abfd,
1340 struct bfd_link_info *info,
1341 struct elf_link_hash_entry *h,
1342 const char *name,
1343 Elf_Internal_Sym *sym,
1344 asection **psec,
1345 bfd_vma *value,
1346 bfd_boolean *dynsym,
1347 bfd_boolean override)
1348 {
1349 bfd_boolean type_change_ok;
1350 bfd_boolean size_change_ok;
1351 bfd_boolean skip;
1352 char *shortname;
1353 struct elf_link_hash_entry *hi;
1354 struct bfd_link_hash_entry *bh;
1355 const struct elf_backend_data *bed;
1356 bfd_boolean collect;
1357 bfd_boolean dynamic;
1358 char *p;
1359 size_t len, shortlen;
1360 asection *sec;
1361
1362 /* If this symbol has a version, and it is the default version, we
1363 create an indirect symbol from the default name to the fully
1364 decorated name. This will cause external references which do not
1365 specify a version to be bound to this version of the symbol. */
1366 p = strchr (name, ELF_VER_CHR);
1367 if (p == NULL || p[1] != ELF_VER_CHR)
1368 return TRUE;
1369
1370 if (override)
1371 {
1372 /* We are overridden by an old definition. We need to check if we
1373 need to create the indirect symbol from the default name. */
1374 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1375 FALSE, FALSE);
1376 BFD_ASSERT (hi != NULL);
1377 if (hi == h)
1378 return TRUE;
1379 while (hi->root.type == bfd_link_hash_indirect
1380 || hi->root.type == bfd_link_hash_warning)
1381 {
1382 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1383 if (hi == h)
1384 return TRUE;
1385 }
1386 }
1387
1388 bed = get_elf_backend_data (abfd);
1389 collect = bed->collect;
1390 dynamic = (abfd->flags & DYNAMIC) != 0;
1391
1392 shortlen = p - name;
1393 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1394 if (shortname == NULL)
1395 return FALSE;
1396 memcpy (shortname, name, shortlen);
1397 shortname[shortlen] = '\0';
1398
1399 /* We are going to create a new symbol. Merge it with any existing
1400 symbol with this name. For the purposes of the merge, act as
1401 though we were defining the symbol we just defined, although we
1402 actually going to define an indirect symbol. */
1403 type_change_ok = FALSE;
1404 size_change_ok = FALSE;
1405 sec = *psec;
1406 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1407 NULL, &hi, &skip, &override,
1408 &type_change_ok, &size_change_ok))
1409 return FALSE;
1410
1411 if (skip)
1412 goto nondefault;
1413
1414 if (! override)
1415 {
1416 bh = &hi->root;
1417 if (! (_bfd_generic_link_add_one_symbol
1418 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1419 0, name, FALSE, collect, &bh)))
1420 return FALSE;
1421 hi = (struct elf_link_hash_entry *) bh;
1422 }
1423 else
1424 {
1425 /* In this case the symbol named SHORTNAME is overriding the
1426 indirect symbol we want to add. We were planning on making
1427 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1428 is the name without a version. NAME is the fully versioned
1429 name, and it is the default version.
1430
1431 Overriding means that we already saw a definition for the
1432 symbol SHORTNAME in a regular object, and it is overriding
1433 the symbol defined in the dynamic object.
1434
1435 When this happens, we actually want to change NAME, the
1436 symbol we just added, to refer to SHORTNAME. This will cause
1437 references to NAME in the shared object to become references
1438 to SHORTNAME in the regular object. This is what we expect
1439 when we override a function in a shared object: that the
1440 references in the shared object will be mapped to the
1441 definition in the regular object. */
1442
1443 while (hi->root.type == bfd_link_hash_indirect
1444 || hi->root.type == bfd_link_hash_warning)
1445 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1446
1447 h->root.type = bfd_link_hash_indirect;
1448 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1449 if (h->def_dynamic)
1450 {
1451 h->def_dynamic = 0;
1452 hi->ref_dynamic = 1;
1453 if (hi->ref_regular
1454 || hi->def_regular)
1455 {
1456 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1457 return FALSE;
1458 }
1459 }
1460
1461 /* Now set HI to H, so that the following code will set the
1462 other fields correctly. */
1463 hi = h;
1464 }
1465
1466 /* If there is a duplicate definition somewhere, then HI may not
1467 point to an indirect symbol. We will have reported an error to
1468 the user in that case. */
1469
1470 if (hi->root.type == bfd_link_hash_indirect)
1471 {
1472 struct elf_link_hash_entry *ht;
1473
1474 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1475 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1476
1477 /* See if the new flags lead us to realize that the symbol must
1478 be dynamic. */
1479 if (! *dynsym)
1480 {
1481 if (! dynamic)
1482 {
1483 if (info->shared
1484 || hi->ref_dynamic)
1485 *dynsym = TRUE;
1486 }
1487 else
1488 {
1489 if (hi->ref_regular)
1490 *dynsym = TRUE;
1491 }
1492 }
1493 }
1494
1495 /* We also need to define an indirection from the nondefault version
1496 of the symbol. */
1497
1498 nondefault:
1499 len = strlen (name);
1500 shortname = bfd_hash_allocate (&info->hash->table, len);
1501 if (shortname == NULL)
1502 return FALSE;
1503 memcpy (shortname, name, shortlen);
1504 memcpy (shortname + shortlen, p + 1, len - shortlen);
1505
1506 /* Once again, merge with any existing symbol. */
1507 type_change_ok = FALSE;
1508 size_change_ok = FALSE;
1509 sec = *psec;
1510 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1511 NULL, &hi, &skip, &override,
1512 &type_change_ok, &size_change_ok))
1513 return FALSE;
1514
1515 if (skip)
1516 return TRUE;
1517
1518 if (override)
1519 {
1520 /* Here SHORTNAME is a versioned name, so we don't expect to see
1521 the type of override we do in the case above unless it is
1522 overridden by a versioned definition. */
1523 if (hi->root.type != bfd_link_hash_defined
1524 && hi->root.type != bfd_link_hash_defweak)
1525 (*_bfd_error_handler)
1526 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1527 abfd, shortname);
1528 }
1529 else
1530 {
1531 bh = &hi->root;
1532 if (! (_bfd_generic_link_add_one_symbol
1533 (info, abfd, shortname, BSF_INDIRECT,
1534 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1535 return FALSE;
1536 hi = (struct elf_link_hash_entry *) bh;
1537
1538 /* If there is a duplicate definition somewhere, then HI may not
1539 point to an indirect symbol. We will have reported an error
1540 to the user in that case. */
1541
1542 if (hi->root.type == bfd_link_hash_indirect)
1543 {
1544 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1545
1546 /* See if the new flags lead us to realize that the symbol
1547 must be dynamic. */
1548 if (! *dynsym)
1549 {
1550 if (! dynamic)
1551 {
1552 if (info->shared
1553 || hi->ref_dynamic)
1554 *dynsym = TRUE;
1555 }
1556 else
1557 {
1558 if (hi->ref_regular)
1559 *dynsym = TRUE;
1560 }
1561 }
1562 }
1563 }
1564
1565 return TRUE;
1566 }
1567 \f
1568 /* This routine is used to export all defined symbols into the dynamic
1569 symbol table. It is called via elf_link_hash_traverse. */
1570
1571 bfd_boolean
1572 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1573 {
1574 struct elf_info_failed *eif = data;
1575
1576 /* Ignore indirect symbols. These are added by the versioning code. */
1577 if (h->root.type == bfd_link_hash_indirect)
1578 return TRUE;
1579
1580 if (h->root.type == bfd_link_hash_warning)
1581 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1582
1583 if (h->dynindx == -1
1584 && (h->def_regular
1585 || h->ref_regular))
1586 {
1587 struct bfd_elf_version_tree *t;
1588 struct bfd_elf_version_expr *d;
1589
1590 for (t = eif->verdefs; t != NULL; t = t->next)
1591 {
1592 if (t->globals.list != NULL)
1593 {
1594 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1595 if (d != NULL)
1596 goto doit;
1597 }
1598
1599 if (t->locals.list != NULL)
1600 {
1601 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1602 if (d != NULL)
1603 return TRUE;
1604 }
1605 }
1606
1607 if (!eif->verdefs)
1608 {
1609 doit:
1610 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1611 {
1612 eif->failed = TRUE;
1613 return FALSE;
1614 }
1615 }
1616 }
1617
1618 return TRUE;
1619 }
1620 \f
1621 /* Look through the symbols which are defined in other shared
1622 libraries and referenced here. Update the list of version
1623 dependencies. This will be put into the .gnu.version_r section.
1624 This function is called via elf_link_hash_traverse. */
1625
1626 bfd_boolean
1627 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1628 void *data)
1629 {
1630 struct elf_find_verdep_info *rinfo = data;
1631 Elf_Internal_Verneed *t;
1632 Elf_Internal_Vernaux *a;
1633 bfd_size_type amt;
1634
1635 if (h->root.type == bfd_link_hash_warning)
1636 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1637
1638 /* We only care about symbols defined in shared objects with version
1639 information. */
1640 if (!h->def_dynamic
1641 || h->def_regular
1642 || h->dynindx == -1
1643 || h->verinfo.verdef == NULL)
1644 return TRUE;
1645
1646 /* See if we already know about this version. */
1647 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1648 {
1649 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1650 continue;
1651
1652 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1653 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1654 return TRUE;
1655
1656 break;
1657 }
1658
1659 /* This is a new version. Add it to tree we are building. */
1660
1661 if (t == NULL)
1662 {
1663 amt = sizeof *t;
1664 t = bfd_zalloc (rinfo->output_bfd, amt);
1665 if (t == NULL)
1666 {
1667 rinfo->failed = TRUE;
1668 return FALSE;
1669 }
1670
1671 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1672 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1673 elf_tdata (rinfo->output_bfd)->verref = t;
1674 }
1675
1676 amt = sizeof *a;
1677 a = bfd_zalloc (rinfo->output_bfd, amt);
1678
1679 /* Note that we are copying a string pointer here, and testing it
1680 above. If bfd_elf_string_from_elf_section is ever changed to
1681 discard the string data when low in memory, this will have to be
1682 fixed. */
1683 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1684
1685 a->vna_flags = h->verinfo.verdef->vd_flags;
1686 a->vna_nextptr = t->vn_auxptr;
1687
1688 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1689 ++rinfo->vers;
1690
1691 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1692
1693 t->vn_auxptr = a;
1694
1695 return TRUE;
1696 }
1697
1698 /* Figure out appropriate versions for all the symbols. We may not
1699 have the version number script until we have read all of the input
1700 files, so until that point we don't know which symbols should be
1701 local. This function is called via elf_link_hash_traverse. */
1702
1703 bfd_boolean
1704 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1705 {
1706 struct elf_assign_sym_version_info *sinfo;
1707 struct bfd_link_info *info;
1708 const struct elf_backend_data *bed;
1709 struct elf_info_failed eif;
1710 char *p;
1711 bfd_size_type amt;
1712
1713 sinfo = data;
1714 info = sinfo->info;
1715
1716 if (h->root.type == bfd_link_hash_warning)
1717 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1718
1719 /* Fix the symbol flags. */
1720 eif.failed = FALSE;
1721 eif.info = info;
1722 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1723 {
1724 if (eif.failed)
1725 sinfo->failed = TRUE;
1726 return FALSE;
1727 }
1728
1729 /* We only need version numbers for symbols defined in regular
1730 objects. */
1731 if (!h->def_regular)
1732 return TRUE;
1733
1734 bed = get_elf_backend_data (sinfo->output_bfd);
1735 p = strchr (h->root.root.string, ELF_VER_CHR);
1736 if (p != NULL && h->verinfo.vertree == NULL)
1737 {
1738 struct bfd_elf_version_tree *t;
1739 bfd_boolean hidden;
1740
1741 hidden = TRUE;
1742
1743 /* There are two consecutive ELF_VER_CHR characters if this is
1744 not a hidden symbol. */
1745 ++p;
1746 if (*p == ELF_VER_CHR)
1747 {
1748 hidden = FALSE;
1749 ++p;
1750 }
1751
1752 /* If there is no version string, we can just return out. */
1753 if (*p == '\0')
1754 {
1755 if (hidden)
1756 h->hidden = 1;
1757 return TRUE;
1758 }
1759
1760 /* Look for the version. If we find it, it is no longer weak. */
1761 for (t = sinfo->verdefs; t != NULL; t = t->next)
1762 {
1763 if (strcmp (t->name, p) == 0)
1764 {
1765 size_t len;
1766 char *alc;
1767 struct bfd_elf_version_expr *d;
1768
1769 len = p - h->root.root.string;
1770 alc = bfd_malloc (len);
1771 if (alc == NULL)
1772 return FALSE;
1773 memcpy (alc, h->root.root.string, len - 1);
1774 alc[len - 1] = '\0';
1775 if (alc[len - 2] == ELF_VER_CHR)
1776 alc[len - 2] = '\0';
1777
1778 h->verinfo.vertree = t;
1779 t->used = TRUE;
1780 d = NULL;
1781
1782 if (t->globals.list != NULL)
1783 d = (*t->match) (&t->globals, NULL, alc);
1784
1785 /* See if there is anything to force this symbol to
1786 local scope. */
1787 if (d == NULL && t->locals.list != NULL)
1788 {
1789 d = (*t->match) (&t->locals, NULL, alc);
1790 if (d != NULL
1791 && h->dynindx != -1
1792 && ! info->export_dynamic)
1793 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1794 }
1795
1796 free (alc);
1797 break;
1798 }
1799 }
1800
1801 /* If we are building an application, we need to create a
1802 version node for this version. */
1803 if (t == NULL && info->executable)
1804 {
1805 struct bfd_elf_version_tree **pp;
1806 int version_index;
1807
1808 /* If we aren't going to export this symbol, we don't need
1809 to worry about it. */
1810 if (h->dynindx == -1)
1811 return TRUE;
1812
1813 amt = sizeof *t;
1814 t = bfd_zalloc (sinfo->output_bfd, amt);
1815 if (t == NULL)
1816 {
1817 sinfo->failed = TRUE;
1818 return FALSE;
1819 }
1820
1821 t->name = p;
1822 t->name_indx = (unsigned int) -1;
1823 t->used = TRUE;
1824
1825 version_index = 1;
1826 /* Don't count anonymous version tag. */
1827 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1828 version_index = 0;
1829 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1830 ++version_index;
1831 t->vernum = version_index;
1832
1833 *pp = t;
1834
1835 h->verinfo.vertree = t;
1836 }
1837 else if (t == NULL)
1838 {
1839 /* We could not find the version for a symbol when
1840 generating a shared archive. Return an error. */
1841 (*_bfd_error_handler)
1842 (_("%B: undefined versioned symbol name %s"),
1843 sinfo->output_bfd, h->root.root.string);
1844 bfd_set_error (bfd_error_bad_value);
1845 sinfo->failed = TRUE;
1846 return FALSE;
1847 }
1848
1849 if (hidden)
1850 h->hidden = 1;
1851 }
1852
1853 /* If we don't have a version for this symbol, see if we can find
1854 something. */
1855 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1856 {
1857 struct bfd_elf_version_tree *t;
1858 struct bfd_elf_version_tree *local_ver;
1859 struct bfd_elf_version_expr *d;
1860
1861 /* See if can find what version this symbol is in. If the
1862 symbol is supposed to be local, then don't actually register
1863 it. */
1864 local_ver = NULL;
1865 for (t = sinfo->verdefs; t != NULL; t = t->next)
1866 {
1867 if (t->globals.list != NULL)
1868 {
1869 bfd_boolean matched;
1870
1871 matched = FALSE;
1872 d = NULL;
1873 while ((d = (*t->match) (&t->globals, d,
1874 h->root.root.string)) != NULL)
1875 if (d->symver)
1876 matched = TRUE;
1877 else
1878 {
1879 /* There is a version without definition. Make
1880 the symbol the default definition for this
1881 version. */
1882 h->verinfo.vertree = t;
1883 local_ver = NULL;
1884 d->script = 1;
1885 break;
1886 }
1887 if (d != NULL)
1888 break;
1889 else if (matched)
1890 /* There is no undefined version for this symbol. Hide the
1891 default one. */
1892 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1893 }
1894
1895 if (t->locals.list != NULL)
1896 {
1897 d = NULL;
1898 while ((d = (*t->match) (&t->locals, d,
1899 h->root.root.string)) != NULL)
1900 {
1901 local_ver = t;
1902 /* If the match is "*", keep looking for a more
1903 explicit, perhaps even global, match.
1904 XXX: Shouldn't this be !d->wildcard instead? */
1905 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1906 break;
1907 }
1908
1909 if (d != NULL)
1910 break;
1911 }
1912 }
1913
1914 if (local_ver != NULL)
1915 {
1916 h->verinfo.vertree = local_ver;
1917 if (h->dynindx != -1
1918 && ! info->export_dynamic)
1919 {
1920 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1921 }
1922 }
1923 }
1924
1925 return TRUE;
1926 }
1927 \f
1928 /* Read and swap the relocs from the section indicated by SHDR. This
1929 may be either a REL or a RELA section. The relocations are
1930 translated into RELA relocations and stored in INTERNAL_RELOCS,
1931 which should have already been allocated to contain enough space.
1932 The EXTERNAL_RELOCS are a buffer where the external form of the
1933 relocations should be stored.
1934
1935 Returns FALSE if something goes wrong. */
1936
1937 static bfd_boolean
1938 elf_link_read_relocs_from_section (bfd *abfd,
1939 asection *sec,
1940 Elf_Internal_Shdr *shdr,
1941 void *external_relocs,
1942 Elf_Internal_Rela *internal_relocs)
1943 {
1944 const struct elf_backend_data *bed;
1945 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1946 const bfd_byte *erela;
1947 const bfd_byte *erelaend;
1948 Elf_Internal_Rela *irela;
1949 Elf_Internal_Shdr *symtab_hdr;
1950 size_t nsyms;
1951
1952 /* Position ourselves at the start of the section. */
1953 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1954 return FALSE;
1955
1956 /* Read the relocations. */
1957 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1958 return FALSE;
1959
1960 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1961 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1962
1963 bed = get_elf_backend_data (abfd);
1964
1965 /* Convert the external relocations to the internal format. */
1966 if (shdr->sh_entsize == bed->s->sizeof_rel)
1967 swap_in = bed->s->swap_reloc_in;
1968 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1969 swap_in = bed->s->swap_reloca_in;
1970 else
1971 {
1972 bfd_set_error (bfd_error_wrong_format);
1973 return FALSE;
1974 }
1975
1976 erela = external_relocs;
1977 erelaend = erela + shdr->sh_size;
1978 irela = internal_relocs;
1979 while (erela < erelaend)
1980 {
1981 bfd_vma r_symndx;
1982
1983 (*swap_in) (abfd, erela, irela);
1984 r_symndx = ELF32_R_SYM (irela->r_info);
1985 if (bed->s->arch_size == 64)
1986 r_symndx >>= 24;
1987 if ((size_t) r_symndx >= nsyms)
1988 {
1989 (*_bfd_error_handler)
1990 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1991 " for offset 0x%lx in section `%A'"),
1992 abfd, sec,
1993 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1994 bfd_set_error (bfd_error_bad_value);
1995 return FALSE;
1996 }
1997 irela += bed->s->int_rels_per_ext_rel;
1998 erela += shdr->sh_entsize;
1999 }
2000
2001 return TRUE;
2002 }
2003
2004 /* Read and swap the relocs for a section O. They may have been
2005 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2006 not NULL, they are used as buffers to read into. They are known to
2007 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2008 the return value is allocated using either malloc or bfd_alloc,
2009 according to the KEEP_MEMORY argument. If O has two relocation
2010 sections (both REL and RELA relocations), then the REL_HDR
2011 relocations will appear first in INTERNAL_RELOCS, followed by the
2012 REL_HDR2 relocations. */
2013
2014 Elf_Internal_Rela *
2015 _bfd_elf_link_read_relocs (bfd *abfd,
2016 asection *o,
2017 void *external_relocs,
2018 Elf_Internal_Rela *internal_relocs,
2019 bfd_boolean keep_memory)
2020 {
2021 Elf_Internal_Shdr *rel_hdr;
2022 void *alloc1 = NULL;
2023 Elf_Internal_Rela *alloc2 = NULL;
2024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2025
2026 if (elf_section_data (o)->relocs != NULL)
2027 return elf_section_data (o)->relocs;
2028
2029 if (o->reloc_count == 0)
2030 return NULL;
2031
2032 rel_hdr = &elf_section_data (o)->rel_hdr;
2033
2034 if (internal_relocs == NULL)
2035 {
2036 bfd_size_type size;
2037
2038 size = o->reloc_count;
2039 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2040 if (keep_memory)
2041 internal_relocs = bfd_alloc (abfd, size);
2042 else
2043 internal_relocs = alloc2 = bfd_malloc (size);
2044 if (internal_relocs == NULL)
2045 goto error_return;
2046 }
2047
2048 if (external_relocs == NULL)
2049 {
2050 bfd_size_type size = rel_hdr->sh_size;
2051
2052 if (elf_section_data (o)->rel_hdr2)
2053 size += elf_section_data (o)->rel_hdr2->sh_size;
2054 alloc1 = bfd_malloc (size);
2055 if (alloc1 == NULL)
2056 goto error_return;
2057 external_relocs = alloc1;
2058 }
2059
2060 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2061 external_relocs,
2062 internal_relocs))
2063 goto error_return;
2064 if (elf_section_data (o)->rel_hdr2
2065 && (!elf_link_read_relocs_from_section
2066 (abfd, o,
2067 elf_section_data (o)->rel_hdr2,
2068 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2069 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2070 * bed->s->int_rels_per_ext_rel))))
2071 goto error_return;
2072
2073 /* Cache the results for next time, if we can. */
2074 if (keep_memory)
2075 elf_section_data (o)->relocs = internal_relocs;
2076
2077 if (alloc1 != NULL)
2078 free (alloc1);
2079
2080 /* Don't free alloc2, since if it was allocated we are passing it
2081 back (under the name of internal_relocs). */
2082
2083 return internal_relocs;
2084
2085 error_return:
2086 if (alloc1 != NULL)
2087 free (alloc1);
2088 if (alloc2 != NULL)
2089 free (alloc2);
2090 return NULL;
2091 }
2092
2093 /* Compute the size of, and allocate space for, REL_HDR which is the
2094 section header for a section containing relocations for O. */
2095
2096 bfd_boolean
2097 _bfd_elf_link_size_reloc_section (bfd *abfd,
2098 Elf_Internal_Shdr *rel_hdr,
2099 asection *o)
2100 {
2101 bfd_size_type reloc_count;
2102 bfd_size_type num_rel_hashes;
2103
2104 /* Figure out how many relocations there will be. */
2105 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2106 reloc_count = elf_section_data (o)->rel_count;
2107 else
2108 reloc_count = elf_section_data (o)->rel_count2;
2109
2110 num_rel_hashes = o->reloc_count;
2111 if (num_rel_hashes < reloc_count)
2112 num_rel_hashes = reloc_count;
2113
2114 /* That allows us to calculate the size of the section. */
2115 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2116
2117 /* The contents field must last into write_object_contents, so we
2118 allocate it with bfd_alloc rather than malloc. Also since we
2119 cannot be sure that the contents will actually be filled in,
2120 we zero the allocated space. */
2121 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2122 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2123 return FALSE;
2124
2125 /* We only allocate one set of hash entries, so we only do it the
2126 first time we are called. */
2127 if (elf_section_data (o)->rel_hashes == NULL
2128 && num_rel_hashes)
2129 {
2130 struct elf_link_hash_entry **p;
2131
2132 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2133 if (p == NULL)
2134 return FALSE;
2135
2136 elf_section_data (o)->rel_hashes = p;
2137 }
2138
2139 return TRUE;
2140 }
2141
2142 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2143 originated from the section given by INPUT_REL_HDR) to the
2144 OUTPUT_BFD. */
2145
2146 bfd_boolean
2147 _bfd_elf_link_output_relocs (bfd *output_bfd,
2148 asection *input_section,
2149 Elf_Internal_Shdr *input_rel_hdr,
2150 Elf_Internal_Rela *internal_relocs,
2151 struct elf_link_hash_entry **rel_hash
2152 ATTRIBUTE_UNUSED)
2153 {
2154 Elf_Internal_Rela *irela;
2155 Elf_Internal_Rela *irelaend;
2156 bfd_byte *erel;
2157 Elf_Internal_Shdr *output_rel_hdr;
2158 asection *output_section;
2159 unsigned int *rel_countp = NULL;
2160 const struct elf_backend_data *bed;
2161 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2162
2163 output_section = input_section->output_section;
2164 output_rel_hdr = NULL;
2165
2166 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2167 == input_rel_hdr->sh_entsize)
2168 {
2169 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2170 rel_countp = &elf_section_data (output_section)->rel_count;
2171 }
2172 else if (elf_section_data (output_section)->rel_hdr2
2173 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2174 == input_rel_hdr->sh_entsize))
2175 {
2176 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2177 rel_countp = &elf_section_data (output_section)->rel_count2;
2178 }
2179 else
2180 {
2181 (*_bfd_error_handler)
2182 (_("%B: relocation size mismatch in %B section %A"),
2183 output_bfd, input_section->owner, input_section);
2184 bfd_set_error (bfd_error_wrong_object_format);
2185 return FALSE;
2186 }
2187
2188 bed = get_elf_backend_data (output_bfd);
2189 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2190 swap_out = bed->s->swap_reloc_out;
2191 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2192 swap_out = bed->s->swap_reloca_out;
2193 else
2194 abort ();
2195
2196 erel = output_rel_hdr->contents;
2197 erel += *rel_countp * input_rel_hdr->sh_entsize;
2198 irela = internal_relocs;
2199 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2200 * bed->s->int_rels_per_ext_rel);
2201 while (irela < irelaend)
2202 {
2203 (*swap_out) (output_bfd, irela, erel);
2204 irela += bed->s->int_rels_per_ext_rel;
2205 erel += input_rel_hdr->sh_entsize;
2206 }
2207
2208 /* Bump the counter, so that we know where to add the next set of
2209 relocations. */
2210 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2211
2212 return TRUE;
2213 }
2214 \f
2215 /* Fix up the flags for a symbol. This handles various cases which
2216 can only be fixed after all the input files are seen. This is
2217 currently called by both adjust_dynamic_symbol and
2218 assign_sym_version, which is unnecessary but perhaps more robust in
2219 the face of future changes. */
2220
2221 bfd_boolean
2222 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2223 struct elf_info_failed *eif)
2224 {
2225 /* If this symbol was mentioned in a non-ELF file, try to set
2226 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2227 permit a non-ELF file to correctly refer to a symbol defined in
2228 an ELF dynamic object. */
2229 if (h->non_elf)
2230 {
2231 while (h->root.type == bfd_link_hash_indirect)
2232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2233
2234 if (h->root.type != bfd_link_hash_defined
2235 && h->root.type != bfd_link_hash_defweak)
2236 {
2237 h->ref_regular = 1;
2238 h->ref_regular_nonweak = 1;
2239 }
2240 else
2241 {
2242 if (h->root.u.def.section->owner != NULL
2243 && (bfd_get_flavour (h->root.u.def.section->owner)
2244 == bfd_target_elf_flavour))
2245 {
2246 h->ref_regular = 1;
2247 h->ref_regular_nonweak = 1;
2248 }
2249 else
2250 h->def_regular = 1;
2251 }
2252
2253 if (h->dynindx == -1
2254 && (h->def_dynamic
2255 || h->ref_dynamic))
2256 {
2257 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2258 {
2259 eif->failed = TRUE;
2260 return FALSE;
2261 }
2262 }
2263 }
2264 else
2265 {
2266 /* Unfortunately, NON_ELF is only correct if the symbol
2267 was first seen in a non-ELF file. Fortunately, if the symbol
2268 was first seen in an ELF file, we're probably OK unless the
2269 symbol was defined in a non-ELF file. Catch that case here.
2270 FIXME: We're still in trouble if the symbol was first seen in
2271 a dynamic object, and then later in a non-ELF regular object. */
2272 if ((h->root.type == bfd_link_hash_defined
2273 || h->root.type == bfd_link_hash_defweak)
2274 && !h->def_regular
2275 && (h->root.u.def.section->owner != NULL
2276 ? (bfd_get_flavour (h->root.u.def.section->owner)
2277 != bfd_target_elf_flavour)
2278 : (bfd_is_abs_section (h->root.u.def.section)
2279 && !h->def_dynamic)))
2280 h->def_regular = 1;
2281 }
2282
2283 /* If this is a final link, and the symbol was defined as a common
2284 symbol in a regular object file, and there was no definition in
2285 any dynamic object, then the linker will have allocated space for
2286 the symbol in a common section but the DEF_REGULAR
2287 flag will not have been set. */
2288 if (h->root.type == bfd_link_hash_defined
2289 && !h->def_regular
2290 && h->ref_regular
2291 && !h->def_dynamic
2292 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2293 h->def_regular = 1;
2294
2295 /* If -Bsymbolic was used (which means to bind references to global
2296 symbols to the definition within the shared object), and this
2297 symbol was defined in a regular object, then it actually doesn't
2298 need a PLT entry. Likewise, if the symbol has non-default
2299 visibility. If the symbol has hidden or internal visibility, we
2300 will force it local. */
2301 if (h->needs_plt
2302 && eif->info->shared
2303 && is_elf_hash_table (eif->info->hash)
2304 && (eif->info->symbolic
2305 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2306 && h->def_regular)
2307 {
2308 const struct elf_backend_data *bed;
2309 bfd_boolean force_local;
2310
2311 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2312
2313 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2314 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2315 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2316 }
2317
2318 /* If a weak undefined symbol has non-default visibility, we also
2319 hide it from the dynamic linker. */
2320 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2321 && h->root.type == bfd_link_hash_undefweak)
2322 {
2323 const struct elf_backend_data *bed;
2324 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2325 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2326 }
2327
2328 /* If this is a weak defined symbol in a dynamic object, and we know
2329 the real definition in the dynamic object, copy interesting flags
2330 over to the real definition. */
2331 if (h->u.weakdef != NULL)
2332 {
2333 struct elf_link_hash_entry *weakdef;
2334
2335 weakdef = h->u.weakdef;
2336 if (h->root.type == bfd_link_hash_indirect)
2337 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2338
2339 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2340 || h->root.type == bfd_link_hash_defweak);
2341 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2342 || weakdef->root.type == bfd_link_hash_defweak);
2343 BFD_ASSERT (weakdef->def_dynamic);
2344
2345 /* If the real definition is defined by a regular object file,
2346 don't do anything special. See the longer description in
2347 _bfd_elf_adjust_dynamic_symbol, below. */
2348 if (weakdef->def_regular)
2349 h->u.weakdef = NULL;
2350 else
2351 {
2352 const struct elf_backend_data *bed;
2353
2354 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2355 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2356 }
2357 }
2358
2359 return TRUE;
2360 }
2361
2362 /* Make the backend pick a good value for a dynamic symbol. This is
2363 called via elf_link_hash_traverse, and also calls itself
2364 recursively. */
2365
2366 bfd_boolean
2367 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2368 {
2369 struct elf_info_failed *eif = data;
2370 bfd *dynobj;
2371 const struct elf_backend_data *bed;
2372
2373 if (! is_elf_hash_table (eif->info->hash))
2374 return FALSE;
2375
2376 if (h->root.type == bfd_link_hash_warning)
2377 {
2378 h->got = elf_hash_table (eif->info)->init_got_offset;
2379 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2380
2381 /* When warning symbols are created, they **replace** the "real"
2382 entry in the hash table, thus we never get to see the real
2383 symbol in a hash traversal. So look at it now. */
2384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2385 }
2386
2387 /* Ignore indirect symbols. These are added by the versioning code. */
2388 if (h->root.type == bfd_link_hash_indirect)
2389 return TRUE;
2390
2391 /* Fix the symbol flags. */
2392 if (! _bfd_elf_fix_symbol_flags (h, eif))
2393 return FALSE;
2394
2395 /* If this symbol does not require a PLT entry, and it is not
2396 defined by a dynamic object, or is not referenced by a regular
2397 object, ignore it. We do have to handle a weak defined symbol,
2398 even if no regular object refers to it, if we decided to add it
2399 to the dynamic symbol table. FIXME: Do we normally need to worry
2400 about symbols which are defined by one dynamic object and
2401 referenced by another one? */
2402 if (!h->needs_plt
2403 && (h->def_regular
2404 || !h->def_dynamic
2405 || (!h->ref_regular
2406 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2407 {
2408 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2409 return TRUE;
2410 }
2411
2412 /* If we've already adjusted this symbol, don't do it again. This
2413 can happen via a recursive call. */
2414 if (h->dynamic_adjusted)
2415 return TRUE;
2416
2417 /* Don't look at this symbol again. Note that we must set this
2418 after checking the above conditions, because we may look at a
2419 symbol once, decide not to do anything, and then get called
2420 recursively later after REF_REGULAR is set below. */
2421 h->dynamic_adjusted = 1;
2422
2423 /* If this is a weak definition, and we know a real definition, and
2424 the real symbol is not itself defined by a regular object file,
2425 then get a good value for the real definition. We handle the
2426 real symbol first, for the convenience of the backend routine.
2427
2428 Note that there is a confusing case here. If the real definition
2429 is defined by a regular object file, we don't get the real symbol
2430 from the dynamic object, but we do get the weak symbol. If the
2431 processor backend uses a COPY reloc, then if some routine in the
2432 dynamic object changes the real symbol, we will not see that
2433 change in the corresponding weak symbol. This is the way other
2434 ELF linkers work as well, and seems to be a result of the shared
2435 library model.
2436
2437 I will clarify this issue. Most SVR4 shared libraries define the
2438 variable _timezone and define timezone as a weak synonym. The
2439 tzset call changes _timezone. If you write
2440 extern int timezone;
2441 int _timezone = 5;
2442 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2443 you might expect that, since timezone is a synonym for _timezone,
2444 the same number will print both times. However, if the processor
2445 backend uses a COPY reloc, then actually timezone will be copied
2446 into your process image, and, since you define _timezone
2447 yourself, _timezone will not. Thus timezone and _timezone will
2448 wind up at different memory locations. The tzset call will set
2449 _timezone, leaving timezone unchanged. */
2450
2451 if (h->u.weakdef != NULL)
2452 {
2453 /* If we get to this point, we know there is an implicit
2454 reference by a regular object file via the weak symbol H.
2455 FIXME: Is this really true? What if the traversal finds
2456 H->U.WEAKDEF before it finds H? */
2457 h->u.weakdef->ref_regular = 1;
2458
2459 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2460 return FALSE;
2461 }
2462
2463 /* If a symbol has no type and no size and does not require a PLT
2464 entry, then we are probably about to do the wrong thing here: we
2465 are probably going to create a COPY reloc for an empty object.
2466 This case can arise when a shared object is built with assembly
2467 code, and the assembly code fails to set the symbol type. */
2468 if (h->size == 0
2469 && h->type == STT_NOTYPE
2470 && !h->needs_plt)
2471 (*_bfd_error_handler)
2472 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2473 h->root.root.string);
2474
2475 dynobj = elf_hash_table (eif->info)->dynobj;
2476 bed = get_elf_backend_data (dynobj);
2477 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2478 {
2479 eif->failed = TRUE;
2480 return FALSE;
2481 }
2482
2483 return TRUE;
2484 }
2485
2486 /* Adjust all external symbols pointing into SEC_MERGE sections
2487 to reflect the object merging within the sections. */
2488
2489 bfd_boolean
2490 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2491 {
2492 asection *sec;
2493
2494 if (h->root.type == bfd_link_hash_warning)
2495 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2496
2497 if ((h->root.type == bfd_link_hash_defined
2498 || h->root.type == bfd_link_hash_defweak)
2499 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2500 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2501 {
2502 bfd *output_bfd = data;
2503
2504 h->root.u.def.value =
2505 _bfd_merged_section_offset (output_bfd,
2506 &h->root.u.def.section,
2507 elf_section_data (sec)->sec_info,
2508 h->root.u.def.value);
2509 }
2510
2511 return TRUE;
2512 }
2513
2514 /* Returns false if the symbol referred to by H should be considered
2515 to resolve local to the current module, and true if it should be
2516 considered to bind dynamically. */
2517
2518 bfd_boolean
2519 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2520 struct bfd_link_info *info,
2521 bfd_boolean ignore_protected)
2522 {
2523 bfd_boolean binding_stays_local_p;
2524
2525 if (h == NULL)
2526 return FALSE;
2527
2528 while (h->root.type == bfd_link_hash_indirect
2529 || h->root.type == bfd_link_hash_warning)
2530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2531
2532 /* If it was forced local, then clearly it's not dynamic. */
2533 if (h->dynindx == -1)
2534 return FALSE;
2535 if (h->forced_local)
2536 return FALSE;
2537
2538 /* Identify the cases where name binding rules say that a
2539 visible symbol resolves locally. */
2540 binding_stays_local_p = info->executable || info->symbolic;
2541
2542 switch (ELF_ST_VISIBILITY (h->other))
2543 {
2544 case STV_INTERNAL:
2545 case STV_HIDDEN:
2546 return FALSE;
2547
2548 case STV_PROTECTED:
2549 /* Proper resolution for function pointer equality may require
2550 that these symbols perhaps be resolved dynamically, even though
2551 we should be resolving them to the current module. */
2552 if (!ignore_protected || h->type != STT_FUNC)
2553 binding_stays_local_p = TRUE;
2554 break;
2555
2556 default:
2557 break;
2558 }
2559
2560 /* If it isn't defined locally, then clearly it's dynamic. */
2561 if (!h->def_regular)
2562 return TRUE;
2563
2564 /* Otherwise, the symbol is dynamic if binding rules don't tell
2565 us that it remains local. */
2566 return !binding_stays_local_p;
2567 }
2568
2569 /* Return true if the symbol referred to by H should be considered
2570 to resolve local to the current module, and false otherwise. Differs
2571 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2572 undefined symbols and weak symbols. */
2573
2574 bfd_boolean
2575 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2576 struct bfd_link_info *info,
2577 bfd_boolean local_protected)
2578 {
2579 /* If it's a local sym, of course we resolve locally. */
2580 if (h == NULL)
2581 return TRUE;
2582
2583 /* Common symbols that become definitions don't get the DEF_REGULAR
2584 flag set, so test it first, and don't bail out. */
2585 if (ELF_COMMON_DEF_P (h))
2586 /* Do nothing. */;
2587 /* If we don't have a definition in a regular file, then we can't
2588 resolve locally. The sym is either undefined or dynamic. */
2589 else if (!h->def_regular)
2590 return FALSE;
2591
2592 /* Forced local symbols resolve locally. */
2593 if (h->forced_local)
2594 return TRUE;
2595
2596 /* As do non-dynamic symbols. */
2597 if (h->dynindx == -1)
2598 return TRUE;
2599
2600 /* At this point, we know the symbol is defined and dynamic. In an
2601 executable it must resolve locally, likewise when building symbolic
2602 shared libraries. */
2603 if (info->executable || info->symbolic)
2604 return TRUE;
2605
2606 /* Now deal with defined dynamic symbols in shared libraries. Ones
2607 with default visibility might not resolve locally. */
2608 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2609 return FALSE;
2610
2611 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2612 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2613 return TRUE;
2614
2615 /* STV_PROTECTED non-function symbols are local. */
2616 if (h->type != STT_FUNC)
2617 return TRUE;
2618
2619 /* Function pointer equality tests may require that STV_PROTECTED
2620 symbols be treated as dynamic symbols, even when we know that the
2621 dynamic linker will resolve them locally. */
2622 return local_protected;
2623 }
2624
2625 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2626 aligned. Returns the first TLS output section. */
2627
2628 struct bfd_section *
2629 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2630 {
2631 struct bfd_section *sec, *tls;
2632 unsigned int align = 0;
2633
2634 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2635 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2636 break;
2637 tls = sec;
2638
2639 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2640 if (sec->alignment_power > align)
2641 align = sec->alignment_power;
2642
2643 elf_hash_table (info)->tls_sec = tls;
2644
2645 /* Ensure the alignment of the first section is the largest alignment,
2646 so that the tls segment starts aligned. */
2647 if (tls != NULL)
2648 tls->alignment_power = align;
2649
2650 return tls;
2651 }
2652
2653 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2654 static bfd_boolean
2655 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2656 Elf_Internal_Sym *sym)
2657 {
2658 const struct elf_backend_data *bed;
2659
2660 /* Local symbols do not count, but target specific ones might. */
2661 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2662 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2663 return FALSE;
2664
2665 /* Function symbols do not count. */
2666 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2667 return FALSE;
2668
2669 /* If the section is undefined, then so is the symbol. */
2670 if (sym->st_shndx == SHN_UNDEF)
2671 return FALSE;
2672
2673 /* If the symbol is defined in the common section, then
2674 it is a common definition and so does not count. */
2675 bed = get_elf_backend_data (abfd);
2676 if (bed->common_definition (sym))
2677 return FALSE;
2678
2679 /* If the symbol is in a target specific section then we
2680 must rely upon the backend to tell us what it is. */
2681 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2682 /* FIXME - this function is not coded yet:
2683
2684 return _bfd_is_global_symbol_definition (abfd, sym);
2685
2686 Instead for now assume that the definition is not global,
2687 Even if this is wrong, at least the linker will behave
2688 in the same way that it used to do. */
2689 return FALSE;
2690
2691 return TRUE;
2692 }
2693
2694 /* Search the symbol table of the archive element of the archive ABFD
2695 whose archive map contains a mention of SYMDEF, and determine if
2696 the symbol is defined in this element. */
2697 static bfd_boolean
2698 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2699 {
2700 Elf_Internal_Shdr * hdr;
2701 bfd_size_type symcount;
2702 bfd_size_type extsymcount;
2703 bfd_size_type extsymoff;
2704 Elf_Internal_Sym *isymbuf;
2705 Elf_Internal_Sym *isym;
2706 Elf_Internal_Sym *isymend;
2707 bfd_boolean result;
2708
2709 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2710 if (abfd == NULL)
2711 return FALSE;
2712
2713 if (! bfd_check_format (abfd, bfd_object))
2714 return FALSE;
2715
2716 /* If we have already included the element containing this symbol in the
2717 link then we do not need to include it again. Just claim that any symbol
2718 it contains is not a definition, so that our caller will not decide to
2719 (re)include this element. */
2720 if (abfd->archive_pass)
2721 return FALSE;
2722
2723 /* Select the appropriate symbol table. */
2724 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2725 hdr = &elf_tdata (abfd)->symtab_hdr;
2726 else
2727 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2728
2729 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2730
2731 /* The sh_info field of the symtab header tells us where the
2732 external symbols start. We don't care about the local symbols. */
2733 if (elf_bad_symtab (abfd))
2734 {
2735 extsymcount = symcount;
2736 extsymoff = 0;
2737 }
2738 else
2739 {
2740 extsymcount = symcount - hdr->sh_info;
2741 extsymoff = hdr->sh_info;
2742 }
2743
2744 if (extsymcount == 0)
2745 return FALSE;
2746
2747 /* Read in the symbol table. */
2748 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2749 NULL, NULL, NULL);
2750 if (isymbuf == NULL)
2751 return FALSE;
2752
2753 /* Scan the symbol table looking for SYMDEF. */
2754 result = FALSE;
2755 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2756 {
2757 const char *name;
2758
2759 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2760 isym->st_name);
2761 if (name == NULL)
2762 break;
2763
2764 if (strcmp (name, symdef->name) == 0)
2765 {
2766 result = is_global_data_symbol_definition (abfd, isym);
2767 break;
2768 }
2769 }
2770
2771 free (isymbuf);
2772
2773 return result;
2774 }
2775 \f
2776 /* Add an entry to the .dynamic table. */
2777
2778 bfd_boolean
2779 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2780 bfd_vma tag,
2781 bfd_vma val)
2782 {
2783 struct elf_link_hash_table *hash_table;
2784 const struct elf_backend_data *bed;
2785 asection *s;
2786 bfd_size_type newsize;
2787 bfd_byte *newcontents;
2788 Elf_Internal_Dyn dyn;
2789
2790 hash_table = elf_hash_table (info);
2791 if (! is_elf_hash_table (hash_table))
2792 return FALSE;
2793
2794 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2795 _bfd_error_handler
2796 (_("warning: creating a DT_TEXTREL in a shared object."));
2797
2798 bed = get_elf_backend_data (hash_table->dynobj);
2799 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2800 BFD_ASSERT (s != NULL);
2801
2802 newsize = s->size + bed->s->sizeof_dyn;
2803 newcontents = bfd_realloc (s->contents, newsize);
2804 if (newcontents == NULL)
2805 return FALSE;
2806
2807 dyn.d_tag = tag;
2808 dyn.d_un.d_val = val;
2809 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2810
2811 s->size = newsize;
2812 s->contents = newcontents;
2813
2814 return TRUE;
2815 }
2816
2817 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2818 otherwise just check whether one already exists. Returns -1 on error,
2819 1 if a DT_NEEDED tag already exists, and 0 on success. */
2820
2821 static int
2822 elf_add_dt_needed_tag (bfd *abfd,
2823 struct bfd_link_info *info,
2824 const char *soname,
2825 bfd_boolean do_it)
2826 {
2827 struct elf_link_hash_table *hash_table;
2828 bfd_size_type oldsize;
2829 bfd_size_type strindex;
2830
2831 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2832 return -1;
2833
2834 hash_table = elf_hash_table (info);
2835 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2836 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2837 if (strindex == (bfd_size_type) -1)
2838 return -1;
2839
2840 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2841 {
2842 asection *sdyn;
2843 const struct elf_backend_data *bed;
2844 bfd_byte *extdyn;
2845
2846 bed = get_elf_backend_data (hash_table->dynobj);
2847 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2848 if (sdyn != NULL)
2849 for (extdyn = sdyn->contents;
2850 extdyn < sdyn->contents + sdyn->size;
2851 extdyn += bed->s->sizeof_dyn)
2852 {
2853 Elf_Internal_Dyn dyn;
2854
2855 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2856 if (dyn.d_tag == DT_NEEDED
2857 && dyn.d_un.d_val == strindex)
2858 {
2859 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2860 return 1;
2861 }
2862 }
2863 }
2864
2865 if (do_it)
2866 {
2867 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2868 return -1;
2869
2870 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2871 return -1;
2872 }
2873 else
2874 /* We were just checking for existence of the tag. */
2875 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2876
2877 return 0;
2878 }
2879
2880 /* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2881 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
2882 references from regular objects to these symbols.
2883
2884 ??? Should we do something about references from other dynamic
2885 obects? If not, we potentially lose some warnings about undefined
2886 symbols. But how can we recover the initial undefined / undefweak
2887 state? */
2888
2889 struct elf_smash_syms_data
2890 {
2891 bfd *not_needed;
2892 struct elf_link_hash_table *htab;
2893 bfd_boolean twiddled;
2894 };
2895
2896 static bfd_boolean
2897 elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2898 {
2899 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2900 struct bfd_link_hash_entry *bh;
2901
2902 switch (h->root.type)
2903 {
2904 default:
2905 case bfd_link_hash_new:
2906 return TRUE;
2907
2908 case bfd_link_hash_undefined:
2909 if (h->root.u.undef.abfd != inf->not_needed)
2910 return TRUE;
2911 if (h->root.u.undef.weak != NULL
2912 && h->root.u.undef.weak != inf->not_needed)
2913 {
2914 /* Symbol was undefweak in u.undef.weak bfd, and has become
2915 undefined in as-needed lib. Restore weak. */
2916 h->root.type = bfd_link_hash_undefweak;
2917 h->root.u.undef.abfd = h->root.u.undef.weak;
2918 if (h->root.u.undef.next != NULL
2919 || inf->htab->root.undefs_tail == &h->root)
2920 inf->twiddled = TRUE;
2921 return TRUE;
2922 }
2923 break;
2924
2925 case bfd_link_hash_undefweak:
2926 if (h->root.u.undef.abfd != inf->not_needed)
2927 return TRUE;
2928 break;
2929
2930 case bfd_link_hash_defined:
2931 case bfd_link_hash_defweak:
2932 if (h->root.u.def.section->owner != inf->not_needed)
2933 return TRUE;
2934 break;
2935
2936 case bfd_link_hash_common:
2937 if (h->root.u.c.p->section->owner != inf->not_needed)
2938 return TRUE;
2939 break;
2940
2941 case bfd_link_hash_warning:
2942 case bfd_link_hash_indirect:
2943 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2944 if (h->root.u.i.link->type != bfd_link_hash_new)
2945 return TRUE;
2946 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2947 return TRUE;
2948 break;
2949 }
2950
2951 /* There is no way we can undo symbol table state from defined or
2952 defweak back to undefined. */
2953 if (h->ref_regular)
2954 abort ();
2955
2956 /* Set sym back to newly created state, but keep undef.next if it is
2957 being used as a list pointer. */
2958 bh = h->root.u.undef.next;
2959 if (bh == &h->root)
2960 bh = NULL;
2961 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2962 inf->twiddled = TRUE;
2963 (*inf->htab->root.table.newfunc) (&h->root.root,
2964 &inf->htab->root.table,
2965 h->root.root.string);
2966 h->root.u.undef.next = bh;
2967 h->root.u.undef.abfd = inf->not_needed;
2968 h->non_elf = 0;
2969 return TRUE;
2970 }
2971
2972 /* Sort symbol by value and section. */
2973 static int
2974 elf_sort_symbol (const void *arg1, const void *arg2)
2975 {
2976 const struct elf_link_hash_entry *h1;
2977 const struct elf_link_hash_entry *h2;
2978 bfd_signed_vma vdiff;
2979
2980 h1 = *(const struct elf_link_hash_entry **) arg1;
2981 h2 = *(const struct elf_link_hash_entry **) arg2;
2982 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2983 if (vdiff != 0)
2984 return vdiff > 0 ? 1 : -1;
2985 else
2986 {
2987 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2988 if (sdiff != 0)
2989 return sdiff > 0 ? 1 : -1;
2990 }
2991 return 0;
2992 }
2993
2994 /* This function is used to adjust offsets into .dynstr for
2995 dynamic symbols. This is called via elf_link_hash_traverse. */
2996
2997 static bfd_boolean
2998 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2999 {
3000 struct elf_strtab_hash *dynstr = data;
3001
3002 if (h->root.type == bfd_link_hash_warning)
3003 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3004
3005 if (h->dynindx != -1)
3006 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3007 return TRUE;
3008 }
3009
3010 /* Assign string offsets in .dynstr, update all structures referencing
3011 them. */
3012
3013 static bfd_boolean
3014 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3015 {
3016 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3017 struct elf_link_local_dynamic_entry *entry;
3018 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3019 bfd *dynobj = hash_table->dynobj;
3020 asection *sdyn;
3021 bfd_size_type size;
3022 const struct elf_backend_data *bed;
3023 bfd_byte *extdyn;
3024
3025 _bfd_elf_strtab_finalize (dynstr);
3026 size = _bfd_elf_strtab_size (dynstr);
3027
3028 bed = get_elf_backend_data (dynobj);
3029 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3030 BFD_ASSERT (sdyn != NULL);
3031
3032 /* Update all .dynamic entries referencing .dynstr strings. */
3033 for (extdyn = sdyn->contents;
3034 extdyn < sdyn->contents + sdyn->size;
3035 extdyn += bed->s->sizeof_dyn)
3036 {
3037 Elf_Internal_Dyn dyn;
3038
3039 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3040 switch (dyn.d_tag)
3041 {
3042 case DT_STRSZ:
3043 dyn.d_un.d_val = size;
3044 break;
3045 case DT_NEEDED:
3046 case DT_SONAME:
3047 case DT_RPATH:
3048 case DT_RUNPATH:
3049 case DT_FILTER:
3050 case DT_AUXILIARY:
3051 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3052 break;
3053 default:
3054 continue;
3055 }
3056 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3057 }
3058
3059 /* Now update local dynamic symbols. */
3060 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3061 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3062 entry->isym.st_name);
3063
3064 /* And the rest of dynamic symbols. */
3065 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3066
3067 /* Adjust version definitions. */
3068 if (elf_tdata (output_bfd)->cverdefs)
3069 {
3070 asection *s;
3071 bfd_byte *p;
3072 bfd_size_type i;
3073 Elf_Internal_Verdef def;
3074 Elf_Internal_Verdaux defaux;
3075
3076 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3077 p = s->contents;
3078 do
3079 {
3080 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3081 &def);
3082 p += sizeof (Elf_External_Verdef);
3083 if (def.vd_aux != sizeof (Elf_External_Verdef))
3084 continue;
3085 for (i = 0; i < def.vd_cnt; ++i)
3086 {
3087 _bfd_elf_swap_verdaux_in (output_bfd,
3088 (Elf_External_Verdaux *) p, &defaux);
3089 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3090 defaux.vda_name);
3091 _bfd_elf_swap_verdaux_out (output_bfd,
3092 &defaux, (Elf_External_Verdaux *) p);
3093 p += sizeof (Elf_External_Verdaux);
3094 }
3095 }
3096 while (def.vd_next);
3097 }
3098
3099 /* Adjust version references. */
3100 if (elf_tdata (output_bfd)->verref)
3101 {
3102 asection *s;
3103 bfd_byte *p;
3104 bfd_size_type i;
3105 Elf_Internal_Verneed need;
3106 Elf_Internal_Vernaux needaux;
3107
3108 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3109 p = s->contents;
3110 do
3111 {
3112 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3113 &need);
3114 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3115 _bfd_elf_swap_verneed_out (output_bfd, &need,
3116 (Elf_External_Verneed *) p);
3117 p += sizeof (Elf_External_Verneed);
3118 for (i = 0; i < need.vn_cnt; ++i)
3119 {
3120 _bfd_elf_swap_vernaux_in (output_bfd,
3121 (Elf_External_Vernaux *) p, &needaux);
3122 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3123 needaux.vna_name);
3124 _bfd_elf_swap_vernaux_out (output_bfd,
3125 &needaux,
3126 (Elf_External_Vernaux *) p);
3127 p += sizeof (Elf_External_Vernaux);
3128 }
3129 }
3130 while (need.vn_next);
3131 }
3132
3133 return TRUE;
3134 }
3135 \f
3136 /* Add symbols from an ELF object file to the linker hash table. */
3137
3138 static bfd_boolean
3139 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3140 {
3141 bfd_boolean (*add_symbol_hook)
3142 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3143 const char **, flagword *, asection **, bfd_vma *);
3144 bfd_boolean (*check_relocs)
3145 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
3146 bfd_boolean (*check_directives)
3147 (bfd *, struct bfd_link_info *);
3148 bfd_boolean collect;
3149 Elf_Internal_Shdr *hdr;
3150 bfd_size_type symcount;
3151 bfd_size_type extsymcount;
3152 bfd_size_type extsymoff;
3153 struct elf_link_hash_entry **sym_hash;
3154 bfd_boolean dynamic;
3155 Elf_External_Versym *extversym = NULL;
3156 Elf_External_Versym *ever;
3157 struct elf_link_hash_entry *weaks;
3158 struct elf_link_hash_entry **nondeflt_vers = NULL;
3159 bfd_size_type nondeflt_vers_cnt = 0;
3160 Elf_Internal_Sym *isymbuf = NULL;
3161 Elf_Internal_Sym *isym;
3162 Elf_Internal_Sym *isymend;
3163 const struct elf_backend_data *bed;
3164 bfd_boolean add_needed;
3165 struct elf_link_hash_table * hash_table;
3166 bfd_size_type amt;
3167
3168 hash_table = elf_hash_table (info);
3169
3170 bed = get_elf_backend_data (abfd);
3171 add_symbol_hook = bed->elf_add_symbol_hook;
3172 collect = bed->collect;
3173
3174 if ((abfd->flags & DYNAMIC) == 0)
3175 dynamic = FALSE;
3176 else
3177 {
3178 dynamic = TRUE;
3179
3180 /* You can't use -r against a dynamic object. Also, there's no
3181 hope of using a dynamic object which does not exactly match
3182 the format of the output file. */
3183 if (info->relocatable
3184 || !is_elf_hash_table (hash_table)
3185 || hash_table->root.creator != abfd->xvec)
3186 {
3187 if (info->relocatable)
3188 bfd_set_error (bfd_error_invalid_operation);
3189 else
3190 bfd_set_error (bfd_error_wrong_format);
3191 goto error_return;
3192 }
3193 }
3194
3195 /* As a GNU extension, any input sections which are named
3196 .gnu.warning.SYMBOL are treated as warning symbols for the given
3197 symbol. This differs from .gnu.warning sections, which generate
3198 warnings when they are included in an output file. */
3199 if (info->executable)
3200 {
3201 asection *s;
3202
3203 for (s = abfd->sections; s != NULL; s = s->next)
3204 {
3205 const char *name;
3206
3207 name = bfd_get_section_name (abfd, s);
3208 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3209 {
3210 char *msg;
3211 bfd_size_type sz;
3212
3213 name += sizeof ".gnu.warning." - 1;
3214
3215 /* If this is a shared object, then look up the symbol
3216 in the hash table. If it is there, and it is already
3217 been defined, then we will not be using the entry
3218 from this shared object, so we don't need to warn.
3219 FIXME: If we see the definition in a regular object
3220 later on, we will warn, but we shouldn't. The only
3221 fix is to keep track of what warnings we are supposed
3222 to emit, and then handle them all at the end of the
3223 link. */
3224 if (dynamic)
3225 {
3226 struct elf_link_hash_entry *h;
3227
3228 h = elf_link_hash_lookup (hash_table, name,
3229 FALSE, FALSE, TRUE);
3230
3231 /* FIXME: What about bfd_link_hash_common? */
3232 if (h != NULL
3233 && (h->root.type == bfd_link_hash_defined
3234 || h->root.type == bfd_link_hash_defweak))
3235 {
3236 /* We don't want to issue this warning. Clobber
3237 the section size so that the warning does not
3238 get copied into the output file. */
3239 s->size = 0;
3240 continue;
3241 }
3242 }
3243
3244 sz = s->size;
3245 msg = bfd_alloc (abfd, sz + 1);
3246 if (msg == NULL)
3247 goto error_return;
3248
3249 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3250 goto error_return;
3251
3252 msg[sz] = '\0';
3253
3254 if (! (_bfd_generic_link_add_one_symbol
3255 (info, abfd, name, BSF_WARNING, s, 0, msg,
3256 FALSE, collect, NULL)))
3257 goto error_return;
3258
3259 if (! info->relocatable)
3260 {
3261 /* Clobber the section size so that the warning does
3262 not get copied into the output file. */
3263 s->size = 0;
3264
3265 /* Also set SEC_EXCLUDE, so that symbols defined in
3266 the warning section don't get copied to the output. */
3267 s->flags |= SEC_EXCLUDE;
3268 }
3269 }
3270 }
3271 }
3272
3273 add_needed = TRUE;
3274 if (! dynamic)
3275 {
3276 /* If we are creating a shared library, create all the dynamic
3277 sections immediately. We need to attach them to something,
3278 so we attach them to this BFD, provided it is the right
3279 format. FIXME: If there are no input BFD's of the same
3280 format as the output, we can't make a shared library. */
3281 if (info->shared
3282 && is_elf_hash_table (hash_table)
3283 && hash_table->root.creator == abfd->xvec
3284 && ! hash_table->dynamic_sections_created)
3285 {
3286 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3287 goto error_return;
3288 }
3289 }
3290 else if (!is_elf_hash_table (hash_table))
3291 goto error_return;
3292 else
3293 {
3294 asection *s;
3295 const char *soname = NULL;
3296 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3297 int ret;
3298
3299 /* ld --just-symbols and dynamic objects don't mix very well.
3300 Test for --just-symbols by looking at info set up by
3301 _bfd_elf_link_just_syms. */
3302 if ((s = abfd->sections) != NULL
3303 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3304 goto error_return;
3305
3306 /* If this dynamic lib was specified on the command line with
3307 --as-needed in effect, then we don't want to add a DT_NEEDED
3308 tag unless the lib is actually used. Similary for libs brought
3309 in by another lib's DT_NEEDED. When --no-add-needed is used
3310 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3311 any dynamic library in DT_NEEDED tags in the dynamic lib at
3312 all. */
3313 add_needed = (elf_dyn_lib_class (abfd)
3314 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3315 | DYN_NO_NEEDED)) == 0;
3316
3317 s = bfd_get_section_by_name (abfd, ".dynamic");
3318 if (s != NULL)
3319 {
3320 bfd_byte *dynbuf;
3321 bfd_byte *extdyn;
3322 int elfsec;
3323 unsigned long shlink;
3324
3325 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3326 goto error_free_dyn;
3327
3328 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3329 if (elfsec == -1)
3330 goto error_free_dyn;
3331 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3332
3333 for (extdyn = dynbuf;
3334 extdyn < dynbuf + s->size;
3335 extdyn += bed->s->sizeof_dyn)
3336 {
3337 Elf_Internal_Dyn dyn;
3338
3339 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3340 if (dyn.d_tag == DT_SONAME)
3341 {
3342 unsigned int tagv = dyn.d_un.d_val;
3343 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3344 if (soname == NULL)
3345 goto error_free_dyn;
3346 }
3347 if (dyn.d_tag == DT_NEEDED)
3348 {
3349 struct bfd_link_needed_list *n, **pn;
3350 char *fnm, *anm;
3351 unsigned int tagv = dyn.d_un.d_val;
3352
3353 amt = sizeof (struct bfd_link_needed_list);
3354 n = bfd_alloc (abfd, amt);
3355 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3356 if (n == NULL || fnm == NULL)
3357 goto error_free_dyn;
3358 amt = strlen (fnm) + 1;
3359 anm = bfd_alloc (abfd, amt);
3360 if (anm == NULL)
3361 goto error_free_dyn;
3362 memcpy (anm, fnm, amt);
3363 n->name = anm;
3364 n->by = abfd;
3365 n->next = NULL;
3366 for (pn = & hash_table->needed;
3367 *pn != NULL;
3368 pn = &(*pn)->next)
3369 ;
3370 *pn = n;
3371 }
3372 if (dyn.d_tag == DT_RUNPATH)
3373 {
3374 struct bfd_link_needed_list *n, **pn;
3375 char *fnm, *anm;
3376 unsigned int tagv = dyn.d_un.d_val;
3377
3378 amt = sizeof (struct bfd_link_needed_list);
3379 n = bfd_alloc (abfd, amt);
3380 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3381 if (n == NULL || fnm == NULL)
3382 goto error_free_dyn;
3383 amt = strlen (fnm) + 1;
3384 anm = bfd_alloc (abfd, amt);
3385 if (anm == NULL)
3386 goto error_free_dyn;
3387 memcpy (anm, fnm, amt);
3388 n->name = anm;
3389 n->by = abfd;
3390 n->next = NULL;
3391 for (pn = & runpath;
3392 *pn != NULL;
3393 pn = &(*pn)->next)
3394 ;
3395 *pn = n;
3396 }
3397 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3398 if (!runpath && dyn.d_tag == DT_RPATH)
3399 {
3400 struct bfd_link_needed_list *n, **pn;
3401 char *fnm, *anm;
3402 unsigned int tagv = dyn.d_un.d_val;
3403
3404 amt = sizeof (struct bfd_link_needed_list);
3405 n = bfd_alloc (abfd, amt);
3406 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3407 if (n == NULL || fnm == NULL)
3408 goto error_free_dyn;
3409 amt = strlen (fnm) + 1;
3410 anm = bfd_alloc (abfd, amt);
3411 if (anm == NULL)
3412 {
3413 error_free_dyn:
3414 free (dynbuf);
3415 goto error_return;
3416 }
3417 memcpy (anm, fnm, amt);
3418 n->name = anm;
3419 n->by = abfd;
3420 n->next = NULL;
3421 for (pn = & rpath;
3422 *pn != NULL;
3423 pn = &(*pn)->next)
3424 ;
3425 *pn = n;
3426 }
3427 }
3428
3429 free (dynbuf);
3430 }
3431
3432 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3433 frees all more recently bfd_alloc'd blocks as well. */
3434 if (runpath)
3435 rpath = runpath;
3436
3437 if (rpath)
3438 {
3439 struct bfd_link_needed_list **pn;
3440 for (pn = & hash_table->runpath;
3441 *pn != NULL;
3442 pn = &(*pn)->next)
3443 ;
3444 *pn = rpath;
3445 }
3446
3447 /* We do not want to include any of the sections in a dynamic
3448 object in the output file. We hack by simply clobbering the
3449 list of sections in the BFD. This could be handled more
3450 cleanly by, say, a new section flag; the existing
3451 SEC_NEVER_LOAD flag is not the one we want, because that one
3452 still implies that the section takes up space in the output
3453 file. */
3454 bfd_section_list_clear (abfd);
3455
3456 /* Find the name to use in a DT_NEEDED entry that refers to this
3457 object. If the object has a DT_SONAME entry, we use it.
3458 Otherwise, if the generic linker stuck something in
3459 elf_dt_name, we use that. Otherwise, we just use the file
3460 name. */
3461 if (soname == NULL || *soname == '\0')
3462 {
3463 soname = elf_dt_name (abfd);
3464 if (soname == NULL || *soname == '\0')
3465 soname = bfd_get_filename (abfd);
3466 }
3467
3468 /* Save the SONAME because sometimes the linker emulation code
3469 will need to know it. */
3470 elf_dt_name (abfd) = soname;
3471
3472 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3473 if (ret < 0)
3474 goto error_return;
3475
3476 /* If we have already included this dynamic object in the
3477 link, just ignore it. There is no reason to include a
3478 particular dynamic object more than once. */
3479 if (ret > 0)
3480 return TRUE;
3481 }
3482
3483 /* If this is a dynamic object, we always link against the .dynsym
3484 symbol table, not the .symtab symbol table. The dynamic linker
3485 will only see the .dynsym symbol table, so there is no reason to
3486 look at .symtab for a dynamic object. */
3487
3488 if (! dynamic || elf_dynsymtab (abfd) == 0)
3489 hdr = &elf_tdata (abfd)->symtab_hdr;
3490 else
3491 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3492
3493 symcount = hdr->sh_size / bed->s->sizeof_sym;
3494
3495 /* The sh_info field of the symtab header tells us where the
3496 external symbols start. We don't care about the local symbols at
3497 this point. */
3498 if (elf_bad_symtab (abfd))
3499 {
3500 extsymcount = symcount;
3501 extsymoff = 0;
3502 }
3503 else
3504 {
3505 extsymcount = symcount - hdr->sh_info;
3506 extsymoff = hdr->sh_info;
3507 }
3508
3509 sym_hash = NULL;
3510 if (extsymcount != 0)
3511 {
3512 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3513 NULL, NULL, NULL);
3514 if (isymbuf == NULL)
3515 goto error_return;
3516
3517 /* We store a pointer to the hash table entry for each external
3518 symbol. */
3519 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3520 sym_hash = bfd_alloc (abfd, amt);
3521 if (sym_hash == NULL)
3522 goto error_free_sym;
3523 elf_sym_hashes (abfd) = sym_hash;
3524 }
3525
3526 if (dynamic)
3527 {
3528 /* Read in any version definitions. */
3529 if (!_bfd_elf_slurp_version_tables (abfd,
3530 info->default_imported_symver))
3531 goto error_free_sym;
3532
3533 /* Read in the symbol versions, but don't bother to convert them
3534 to internal format. */
3535 if (elf_dynversym (abfd) != 0)
3536 {
3537 Elf_Internal_Shdr *versymhdr;
3538
3539 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3540 extversym = bfd_malloc (versymhdr->sh_size);
3541 if (extversym == NULL)
3542 goto error_free_sym;
3543 amt = versymhdr->sh_size;
3544 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3545 || bfd_bread (extversym, amt, abfd) != amt)
3546 goto error_free_vers;
3547 }
3548 }
3549
3550 weaks = NULL;
3551
3552 ever = extversym != NULL ? extversym + extsymoff : NULL;
3553 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3554 isym < isymend;
3555 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3556 {
3557 int bind;
3558 bfd_vma value;
3559 asection *sec, *new_sec;
3560 flagword flags;
3561 const char *name;
3562 struct elf_link_hash_entry *h;
3563 bfd_boolean definition;
3564 bfd_boolean size_change_ok;
3565 bfd_boolean type_change_ok;
3566 bfd_boolean new_weakdef;
3567 bfd_boolean override;
3568 bfd_boolean common;
3569 unsigned int old_alignment;
3570 bfd *old_bfd;
3571
3572 override = FALSE;
3573
3574 flags = BSF_NO_FLAGS;
3575 sec = NULL;
3576 value = isym->st_value;
3577 *sym_hash = NULL;
3578 common = bed->common_definition (isym);
3579
3580 bind = ELF_ST_BIND (isym->st_info);
3581 if (bind == STB_LOCAL)
3582 {
3583 /* This should be impossible, since ELF requires that all
3584 global symbols follow all local symbols, and that sh_info
3585 point to the first global symbol. Unfortunately, Irix 5
3586 screws this up. */
3587 continue;
3588 }
3589 else if (bind == STB_GLOBAL)
3590 {
3591 if (isym->st_shndx != SHN_UNDEF && !common)
3592 flags = BSF_GLOBAL;
3593 }
3594 else if (bind == STB_WEAK)
3595 flags = BSF_WEAK;
3596 else
3597 {
3598 /* Leave it up to the processor backend. */
3599 }
3600
3601 if (isym->st_shndx == SHN_UNDEF)
3602 sec = bfd_und_section_ptr;
3603 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3604 {
3605 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3606 if (sec == NULL)
3607 sec = bfd_abs_section_ptr;
3608 else if (sec->kept_section)
3609 {
3610 /* Symbols from discarded section are undefined, and have
3611 default visibility. */
3612 sec = bfd_und_section_ptr;
3613 isym->st_shndx = SHN_UNDEF;
3614 isym->st_other = STV_DEFAULT
3615 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
3616 }
3617 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3618 value -= sec->vma;
3619 }
3620 else if (isym->st_shndx == SHN_ABS)
3621 sec = bfd_abs_section_ptr;
3622 else if (isym->st_shndx == SHN_COMMON)
3623 {
3624 sec = bfd_com_section_ptr;
3625 /* What ELF calls the size we call the value. What ELF
3626 calls the value we call the alignment. */
3627 value = isym->st_size;
3628 }
3629 else
3630 {
3631 /* Leave it up to the processor backend. */
3632 }
3633
3634 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3635 isym->st_name);
3636 if (name == NULL)
3637 goto error_free_vers;
3638
3639 if (isym->st_shndx == SHN_COMMON
3640 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3641 {
3642 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3643
3644 if (tcomm == NULL)
3645 {
3646 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3647 (SEC_ALLOC
3648 | SEC_IS_COMMON
3649 | SEC_LINKER_CREATED
3650 | SEC_THREAD_LOCAL));
3651 if (tcomm == NULL)
3652 goto error_free_vers;
3653 }
3654 sec = tcomm;
3655 }
3656 else if (add_symbol_hook)
3657 {
3658 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3659 &value))
3660 goto error_free_vers;
3661
3662 /* The hook function sets the name to NULL if this symbol
3663 should be skipped for some reason. */
3664 if (name == NULL)
3665 continue;
3666 }
3667
3668 /* Sanity check that all possibilities were handled. */
3669 if (sec == NULL)
3670 {
3671 bfd_set_error (bfd_error_bad_value);
3672 goto error_free_vers;
3673 }
3674
3675 if (bfd_is_und_section (sec)
3676 || bfd_is_com_section (sec))
3677 definition = FALSE;
3678 else
3679 definition = TRUE;
3680
3681 size_change_ok = FALSE;
3682 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3683 old_alignment = 0;
3684 old_bfd = NULL;
3685 new_sec = sec;
3686
3687 if (is_elf_hash_table (hash_table))
3688 {
3689 Elf_Internal_Versym iver;
3690 unsigned int vernum = 0;
3691 bfd_boolean skip;
3692
3693 if (ever == NULL)
3694 {
3695 if (info->default_imported_symver)
3696 /* Use the default symbol version created earlier. */
3697 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3698 else
3699 iver.vs_vers = 0;
3700 }
3701 else
3702 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3703
3704 vernum = iver.vs_vers & VERSYM_VERSION;
3705
3706 /* If this is a hidden symbol, or if it is not version
3707 1, we append the version name to the symbol name.
3708 However, we do not modify a non-hidden absolute symbol
3709 if it is not a function, because it might be the version
3710 symbol itself. FIXME: What if it isn't? */
3711 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3712 || (vernum > 1 && (! bfd_is_abs_section (sec)
3713 || ELF_ST_TYPE (isym->st_info) == STT_FUNC)))
3714 {
3715 const char *verstr;
3716 size_t namelen, verlen, newlen;
3717 char *newname, *p;
3718
3719 if (isym->st_shndx != SHN_UNDEF)
3720 {
3721 if (vernum > elf_tdata (abfd)->cverdefs)
3722 verstr = NULL;
3723 else if (vernum > 1)
3724 verstr =
3725 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3726 else
3727 verstr = "";
3728
3729 if (verstr == NULL)
3730 {
3731 (*_bfd_error_handler)
3732 (_("%B: %s: invalid version %u (max %d)"),
3733 abfd, name, vernum,
3734 elf_tdata (abfd)->cverdefs);
3735 bfd_set_error (bfd_error_bad_value);
3736 goto error_free_vers;
3737 }
3738 }
3739 else
3740 {
3741 /* We cannot simply test for the number of
3742 entries in the VERNEED section since the
3743 numbers for the needed versions do not start
3744 at 0. */
3745 Elf_Internal_Verneed *t;
3746
3747 verstr = NULL;
3748 for (t = elf_tdata (abfd)->verref;
3749 t != NULL;
3750 t = t->vn_nextref)
3751 {
3752 Elf_Internal_Vernaux *a;
3753
3754 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3755 {
3756 if (a->vna_other == vernum)
3757 {
3758 verstr = a->vna_nodename;
3759 break;
3760 }
3761 }
3762 if (a != NULL)
3763 break;
3764 }
3765 if (verstr == NULL)
3766 {
3767 (*_bfd_error_handler)
3768 (_("%B: %s: invalid needed version %d"),
3769 abfd, name, vernum);
3770 bfd_set_error (bfd_error_bad_value);
3771 goto error_free_vers;
3772 }
3773 }
3774
3775 namelen = strlen (name);
3776 verlen = strlen (verstr);
3777 newlen = namelen + verlen + 2;
3778 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3779 && isym->st_shndx != SHN_UNDEF)
3780 ++newlen;
3781
3782 newname = bfd_alloc (abfd, newlen);
3783 if (newname == NULL)
3784 goto error_free_vers;
3785 memcpy (newname, name, namelen);
3786 p = newname + namelen;
3787 *p++ = ELF_VER_CHR;
3788 /* If this is a defined non-hidden version symbol,
3789 we add another @ to the name. This indicates the
3790 default version of the symbol. */
3791 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3792 && isym->st_shndx != SHN_UNDEF)
3793 *p++ = ELF_VER_CHR;
3794 memcpy (p, verstr, verlen + 1);
3795
3796 name = newname;
3797 }
3798
3799 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3800 &value, &old_alignment,
3801 sym_hash, &skip, &override,
3802 &type_change_ok, &size_change_ok))
3803 goto error_free_vers;
3804
3805 if (skip)
3806 continue;
3807
3808 if (override)
3809 definition = FALSE;
3810
3811 h = *sym_hash;
3812 while (h->root.type == bfd_link_hash_indirect
3813 || h->root.type == bfd_link_hash_warning)
3814 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3815
3816 /* Remember the old alignment if this is a common symbol, so
3817 that we don't reduce the alignment later on. We can't
3818 check later, because _bfd_generic_link_add_one_symbol
3819 will set a default for the alignment which we want to
3820 override. We also remember the old bfd where the existing
3821 definition comes from. */
3822 switch (h->root.type)
3823 {
3824 default:
3825 break;
3826
3827 case bfd_link_hash_defined:
3828 case bfd_link_hash_defweak:
3829 old_bfd = h->root.u.def.section->owner;
3830 break;
3831
3832 case bfd_link_hash_common:
3833 old_bfd = h->root.u.c.p->section->owner;
3834 old_alignment = h->root.u.c.p->alignment_power;
3835 break;
3836 }
3837
3838 if (elf_tdata (abfd)->verdef != NULL
3839 && ! override
3840 && vernum > 1
3841 && definition)
3842 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3843 }
3844
3845 if (! (_bfd_generic_link_add_one_symbol
3846 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3847 (struct bfd_link_hash_entry **) sym_hash)))
3848 goto error_free_vers;
3849
3850 h = *sym_hash;
3851 while (h->root.type == bfd_link_hash_indirect
3852 || h->root.type == bfd_link_hash_warning)
3853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3854 *sym_hash = h;
3855
3856 new_weakdef = FALSE;
3857 if (dynamic
3858 && definition
3859 && (flags & BSF_WEAK) != 0
3860 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3861 && is_elf_hash_table (hash_table)
3862 && h->u.weakdef == NULL)
3863 {
3864 /* Keep a list of all weak defined non function symbols from
3865 a dynamic object, using the weakdef field. Later in this
3866 function we will set the weakdef field to the correct
3867 value. We only put non-function symbols from dynamic
3868 objects on this list, because that happens to be the only
3869 time we need to know the normal symbol corresponding to a
3870 weak symbol, and the information is time consuming to
3871 figure out. If the weakdef field is not already NULL,
3872 then this symbol was already defined by some previous
3873 dynamic object, and we will be using that previous
3874 definition anyhow. */
3875
3876 h->u.weakdef = weaks;
3877 weaks = h;
3878 new_weakdef = TRUE;
3879 }
3880
3881 /* Set the alignment of a common symbol. */
3882 if ((common || bfd_is_com_section (sec))
3883 && h->root.type == bfd_link_hash_common)
3884 {
3885 unsigned int align;
3886
3887 if (common)
3888 align = bfd_log2 (isym->st_value);
3889 else
3890 {
3891 /* The new symbol is a common symbol in a shared object.
3892 We need to get the alignment from the section. */
3893 align = new_sec->alignment_power;
3894 }
3895 if (align > old_alignment
3896 /* Permit an alignment power of zero if an alignment of one
3897 is specified and no other alignments have been specified. */
3898 || (isym->st_value == 1 && old_alignment == 0))
3899 h->root.u.c.p->alignment_power = align;
3900 else
3901 h->root.u.c.p->alignment_power = old_alignment;
3902 }
3903
3904 if (is_elf_hash_table (hash_table))
3905 {
3906 bfd_boolean dynsym;
3907
3908 /* Check the alignment when a common symbol is involved. This
3909 can change when a common symbol is overridden by a normal
3910 definition or a common symbol is ignored due to the old
3911 normal definition. We need to make sure the maximum
3912 alignment is maintained. */
3913 if ((old_alignment || common)
3914 && h->root.type != bfd_link_hash_common)
3915 {
3916 unsigned int common_align;
3917 unsigned int normal_align;
3918 unsigned int symbol_align;
3919 bfd *normal_bfd;
3920 bfd *common_bfd;
3921
3922 symbol_align = ffs (h->root.u.def.value) - 1;
3923 if (h->root.u.def.section->owner != NULL
3924 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3925 {
3926 normal_align = h->root.u.def.section->alignment_power;
3927 if (normal_align > symbol_align)
3928 normal_align = symbol_align;
3929 }
3930 else
3931 normal_align = symbol_align;
3932
3933 if (old_alignment)
3934 {
3935 common_align = old_alignment;
3936 common_bfd = old_bfd;
3937 normal_bfd = abfd;
3938 }
3939 else
3940 {
3941 common_align = bfd_log2 (isym->st_value);
3942 common_bfd = abfd;
3943 normal_bfd = old_bfd;
3944 }
3945
3946 if (normal_align < common_align)
3947 (*_bfd_error_handler)
3948 (_("Warning: alignment %u of symbol `%s' in %B"
3949 " is smaller than %u in %B"),
3950 normal_bfd, common_bfd,
3951 1 << normal_align, name, 1 << common_align);
3952 }
3953
3954 /* Remember the symbol size and type. */
3955 if (isym->st_size != 0
3956 && (definition || h->size == 0))
3957 {
3958 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3959 (*_bfd_error_handler)
3960 (_("Warning: size of symbol `%s' changed"
3961 " from %lu in %B to %lu in %B"),
3962 old_bfd, abfd,
3963 name, (unsigned long) h->size,
3964 (unsigned long) isym->st_size);
3965
3966 h->size = isym->st_size;
3967 }
3968
3969 /* If this is a common symbol, then we always want H->SIZE
3970 to be the size of the common symbol. The code just above
3971 won't fix the size if a common symbol becomes larger. We
3972 don't warn about a size change here, because that is
3973 covered by --warn-common. */
3974 if (h->root.type == bfd_link_hash_common)
3975 h->size = h->root.u.c.size;
3976
3977 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3978 && (definition || h->type == STT_NOTYPE))
3979 {
3980 if (h->type != STT_NOTYPE
3981 && h->type != ELF_ST_TYPE (isym->st_info)
3982 && ! type_change_ok)
3983 (*_bfd_error_handler)
3984 (_("Warning: type of symbol `%s' changed"
3985 " from %d to %d in %B"),
3986 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3987
3988 h->type = ELF_ST_TYPE (isym->st_info);
3989 }
3990
3991 /* If st_other has a processor-specific meaning, specific
3992 code might be needed here. We never merge the visibility
3993 attribute with the one from a dynamic object. */
3994 if (bed->elf_backend_merge_symbol_attribute)
3995 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3996 dynamic);
3997
3998 /* If this symbol has default visibility and the user has requested
3999 we not re-export it, then mark it as hidden. */
4000 if (definition && !dynamic
4001 && (abfd->no_export
4002 || (abfd->my_archive && abfd->my_archive->no_export))
4003 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4004 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
4005
4006 if (isym->st_other != 0 && !dynamic)
4007 {
4008 unsigned char hvis, symvis, other, nvis;
4009
4010 /* Take the balance of OTHER from the definition. */
4011 other = (definition ? isym->st_other : h->other);
4012 other &= ~ ELF_ST_VISIBILITY (-1);
4013
4014 /* Combine visibilities, using the most constraining one. */
4015 hvis = ELF_ST_VISIBILITY (h->other);
4016 symvis = ELF_ST_VISIBILITY (isym->st_other);
4017 if (! hvis)
4018 nvis = symvis;
4019 else if (! symvis)
4020 nvis = hvis;
4021 else
4022 nvis = hvis < symvis ? hvis : symvis;
4023
4024 h->other = other | nvis;
4025 }
4026
4027 /* Set a flag in the hash table entry indicating the type of
4028 reference or definition we just found. Keep a count of
4029 the number of dynamic symbols we find. A dynamic symbol
4030 is one which is referenced or defined by both a regular
4031 object and a shared object. */
4032 dynsym = FALSE;
4033 if (! dynamic)
4034 {
4035 if (! definition)
4036 {
4037 h->ref_regular = 1;
4038 if (bind != STB_WEAK)
4039 h->ref_regular_nonweak = 1;
4040 }
4041 else
4042 h->def_regular = 1;
4043 if (! info->executable
4044 || h->def_dynamic
4045 || h->ref_dynamic)
4046 dynsym = TRUE;
4047 }
4048 else
4049 {
4050 if (! definition)
4051 h->ref_dynamic = 1;
4052 else
4053 h->def_dynamic = 1;
4054 if (h->def_regular
4055 || h->ref_regular
4056 || (h->u.weakdef != NULL
4057 && ! new_weakdef
4058 && h->u.weakdef->dynindx != -1))
4059 dynsym = TRUE;
4060 }
4061
4062 /* Check to see if we need to add an indirect symbol for
4063 the default name. */
4064 if (definition || h->root.type == bfd_link_hash_common)
4065 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4066 &sec, &value, &dynsym,
4067 override))
4068 goto error_free_vers;
4069
4070 if (definition && !dynamic)
4071 {
4072 char *p = strchr (name, ELF_VER_CHR);
4073 if (p != NULL && p[1] != ELF_VER_CHR)
4074 {
4075 /* Queue non-default versions so that .symver x, x@FOO
4076 aliases can be checked. */
4077 if (! nondeflt_vers)
4078 {
4079 amt = (isymend - isym + 1)
4080 * sizeof (struct elf_link_hash_entry *);
4081 nondeflt_vers = bfd_malloc (amt);
4082 }
4083 nondeflt_vers [nondeflt_vers_cnt++] = h;
4084 }
4085 }
4086
4087 if (dynsym && h->dynindx == -1)
4088 {
4089 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4090 goto error_free_vers;
4091 if (h->u.weakdef != NULL
4092 && ! new_weakdef
4093 && h->u.weakdef->dynindx == -1)
4094 {
4095 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4096 goto error_free_vers;
4097 }
4098 }
4099 else if (dynsym && h->dynindx != -1)
4100 /* If the symbol already has a dynamic index, but
4101 visibility says it should not be visible, turn it into
4102 a local symbol. */
4103 switch (ELF_ST_VISIBILITY (h->other))
4104 {
4105 case STV_INTERNAL:
4106 case STV_HIDDEN:
4107 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4108 dynsym = FALSE;
4109 break;
4110 }
4111
4112 if (!add_needed
4113 && definition
4114 && dynsym
4115 && h->ref_regular)
4116 {
4117 int ret;
4118 const char *soname = elf_dt_name (abfd);
4119
4120 /* A symbol from a library loaded via DT_NEEDED of some
4121 other library is referenced by a regular object.
4122 Add a DT_NEEDED entry for it. Issue an error if
4123 --no-add-needed is used. */
4124 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4125 {
4126 (*_bfd_error_handler)
4127 (_("%s: invalid DSO for symbol `%s' definition"),
4128 abfd, name);
4129 bfd_set_error (bfd_error_bad_value);
4130 goto error_free_vers;
4131 }
4132
4133 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4134
4135 add_needed = TRUE;
4136 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4137 if (ret < 0)
4138 goto error_free_vers;
4139
4140 BFD_ASSERT (ret == 0);
4141 }
4142 }
4143 }
4144
4145 /* Now that all the symbols from this input file are created, handle
4146 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4147 if (nondeflt_vers != NULL)
4148 {
4149 bfd_size_type cnt, symidx;
4150
4151 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4152 {
4153 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4154 char *shortname, *p;
4155
4156 p = strchr (h->root.root.string, ELF_VER_CHR);
4157 if (p == NULL
4158 || (h->root.type != bfd_link_hash_defined
4159 && h->root.type != bfd_link_hash_defweak))
4160 continue;
4161
4162 amt = p - h->root.root.string;
4163 shortname = bfd_malloc (amt + 1);
4164 memcpy (shortname, h->root.root.string, amt);
4165 shortname[amt] = '\0';
4166
4167 hi = (struct elf_link_hash_entry *)
4168 bfd_link_hash_lookup (&hash_table->root, shortname,
4169 FALSE, FALSE, FALSE);
4170 if (hi != NULL
4171 && hi->root.type == h->root.type
4172 && hi->root.u.def.value == h->root.u.def.value
4173 && hi->root.u.def.section == h->root.u.def.section)
4174 {
4175 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4176 hi->root.type = bfd_link_hash_indirect;
4177 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4178 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4179 sym_hash = elf_sym_hashes (abfd);
4180 if (sym_hash)
4181 for (symidx = 0; symidx < extsymcount; ++symidx)
4182 if (sym_hash[symidx] == hi)
4183 {
4184 sym_hash[symidx] = h;
4185 break;
4186 }
4187 }
4188 free (shortname);
4189 }
4190 free (nondeflt_vers);
4191 nondeflt_vers = NULL;
4192 }
4193
4194 if (extversym != NULL)
4195 {
4196 free (extversym);
4197 extversym = NULL;
4198 }
4199
4200 if (isymbuf != NULL)
4201 free (isymbuf);
4202 isymbuf = NULL;
4203
4204 if (!add_needed
4205 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4206 {
4207 /* Remove symbols defined in an as-needed shared lib that wasn't
4208 needed. */
4209 struct elf_smash_syms_data inf;
4210 inf.not_needed = abfd;
4211 inf.htab = hash_table;
4212 inf.twiddled = FALSE;
4213 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4214 if (inf.twiddled)
4215 bfd_link_repair_undef_list (&hash_table->root);
4216 weaks = NULL;
4217 }
4218
4219 /* Now set the weakdefs field correctly for all the weak defined
4220 symbols we found. The only way to do this is to search all the
4221 symbols. Since we only need the information for non functions in
4222 dynamic objects, that's the only time we actually put anything on
4223 the list WEAKS. We need this information so that if a regular
4224 object refers to a symbol defined weakly in a dynamic object, the
4225 real symbol in the dynamic object is also put in the dynamic
4226 symbols; we also must arrange for both symbols to point to the
4227 same memory location. We could handle the general case of symbol
4228 aliasing, but a general symbol alias can only be generated in
4229 assembler code, handling it correctly would be very time
4230 consuming, and other ELF linkers don't handle general aliasing
4231 either. */
4232 if (weaks != NULL)
4233 {
4234 struct elf_link_hash_entry **hpp;
4235 struct elf_link_hash_entry **hppend;
4236 struct elf_link_hash_entry **sorted_sym_hash;
4237 struct elf_link_hash_entry *h;
4238 size_t sym_count;
4239
4240 /* Since we have to search the whole symbol list for each weak
4241 defined symbol, search time for N weak defined symbols will be
4242 O(N^2). Binary search will cut it down to O(NlogN). */
4243 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4244 sorted_sym_hash = bfd_malloc (amt);
4245 if (sorted_sym_hash == NULL)
4246 goto error_return;
4247 sym_hash = sorted_sym_hash;
4248 hpp = elf_sym_hashes (abfd);
4249 hppend = hpp + extsymcount;
4250 sym_count = 0;
4251 for (; hpp < hppend; hpp++)
4252 {
4253 h = *hpp;
4254 if (h != NULL
4255 && h->root.type == bfd_link_hash_defined
4256 && h->type != STT_FUNC)
4257 {
4258 *sym_hash = h;
4259 sym_hash++;
4260 sym_count++;
4261 }
4262 }
4263
4264 qsort (sorted_sym_hash, sym_count,
4265 sizeof (struct elf_link_hash_entry *),
4266 elf_sort_symbol);
4267
4268 while (weaks != NULL)
4269 {
4270 struct elf_link_hash_entry *hlook;
4271 asection *slook;
4272 bfd_vma vlook;
4273 long ilook;
4274 size_t i, j, idx;
4275
4276 hlook = weaks;
4277 weaks = hlook->u.weakdef;
4278 hlook->u.weakdef = NULL;
4279
4280 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4281 || hlook->root.type == bfd_link_hash_defweak
4282 || hlook->root.type == bfd_link_hash_common
4283 || hlook->root.type == bfd_link_hash_indirect);
4284 slook = hlook->root.u.def.section;
4285 vlook = hlook->root.u.def.value;
4286
4287 ilook = -1;
4288 i = 0;
4289 j = sym_count;
4290 while (i < j)
4291 {
4292 bfd_signed_vma vdiff;
4293 idx = (i + j) / 2;
4294 h = sorted_sym_hash [idx];
4295 vdiff = vlook - h->root.u.def.value;
4296 if (vdiff < 0)
4297 j = idx;
4298 else if (vdiff > 0)
4299 i = idx + 1;
4300 else
4301 {
4302 long sdiff = slook->id - h->root.u.def.section->id;
4303 if (sdiff < 0)
4304 j = idx;
4305 else if (sdiff > 0)
4306 i = idx + 1;
4307 else
4308 {
4309 ilook = idx;
4310 break;
4311 }
4312 }
4313 }
4314
4315 /* We didn't find a value/section match. */
4316 if (ilook == -1)
4317 continue;
4318
4319 for (i = ilook; i < sym_count; i++)
4320 {
4321 h = sorted_sym_hash [i];
4322
4323 /* Stop if value or section doesn't match. */
4324 if (h->root.u.def.value != vlook
4325 || h->root.u.def.section != slook)
4326 break;
4327 else if (h != hlook)
4328 {
4329 hlook->u.weakdef = h;
4330
4331 /* If the weak definition is in the list of dynamic
4332 symbols, make sure the real definition is put
4333 there as well. */
4334 if (hlook->dynindx != -1 && h->dynindx == -1)
4335 {
4336 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4337 goto error_return;
4338 }
4339
4340 /* If the real definition is in the list of dynamic
4341 symbols, make sure the weak definition is put
4342 there as well. If we don't do this, then the
4343 dynamic loader might not merge the entries for the
4344 real definition and the weak definition. */
4345 if (h->dynindx != -1 && hlook->dynindx == -1)
4346 {
4347 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4348 goto error_return;
4349 }
4350 break;
4351 }
4352 }
4353 }
4354
4355 free (sorted_sym_hash);
4356 }
4357
4358 check_directives = get_elf_backend_data (abfd)->check_directives;
4359 if (check_directives)
4360 check_directives (abfd, info);
4361
4362 /* If this object is the same format as the output object, and it is
4363 not a shared library, then let the backend look through the
4364 relocs.
4365
4366 This is required to build global offset table entries and to
4367 arrange for dynamic relocs. It is not required for the
4368 particular common case of linking non PIC code, even when linking
4369 against shared libraries, but unfortunately there is no way of
4370 knowing whether an object file has been compiled PIC or not.
4371 Looking through the relocs is not particularly time consuming.
4372 The problem is that we must either (1) keep the relocs in memory,
4373 which causes the linker to require additional runtime memory or
4374 (2) read the relocs twice from the input file, which wastes time.
4375 This would be a good case for using mmap.
4376
4377 I have no idea how to handle linking PIC code into a file of a
4378 different format. It probably can't be done. */
4379 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4380 if (! dynamic
4381 && is_elf_hash_table (hash_table)
4382 && hash_table->root.creator == abfd->xvec
4383 && check_relocs != NULL)
4384 {
4385 asection *o;
4386
4387 for (o = abfd->sections; o != NULL; o = o->next)
4388 {
4389 Elf_Internal_Rela *internal_relocs;
4390 bfd_boolean ok;
4391
4392 if ((o->flags & SEC_RELOC) == 0
4393 || o->reloc_count == 0
4394 || ((info->strip == strip_all || info->strip == strip_debugger)
4395 && (o->flags & SEC_DEBUGGING) != 0)
4396 || bfd_is_abs_section (o->output_section))
4397 continue;
4398
4399 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4400 info->keep_memory);
4401 if (internal_relocs == NULL)
4402 goto error_return;
4403
4404 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4405
4406 if (elf_section_data (o)->relocs != internal_relocs)
4407 free (internal_relocs);
4408
4409 if (! ok)
4410 goto error_return;
4411 }
4412 }
4413
4414 /* If this is a non-traditional link, try to optimize the handling
4415 of the .stab/.stabstr sections. */
4416 if (! dynamic
4417 && ! info->traditional_format
4418 && is_elf_hash_table (hash_table)
4419 && (info->strip != strip_all && info->strip != strip_debugger))
4420 {
4421 asection *stabstr;
4422
4423 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4424 if (stabstr != NULL)
4425 {
4426 bfd_size_type string_offset = 0;
4427 asection *stab;
4428
4429 for (stab = abfd->sections; stab; stab = stab->next)
4430 if (strncmp (".stab", stab->name, 5) == 0
4431 && (!stab->name[5] ||
4432 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4433 && (stab->flags & SEC_MERGE) == 0
4434 && !bfd_is_abs_section (stab->output_section))
4435 {
4436 struct bfd_elf_section_data *secdata;
4437
4438 secdata = elf_section_data (stab);
4439 if (! _bfd_link_section_stabs (abfd,
4440 &hash_table->stab_info,
4441 stab, stabstr,
4442 &secdata->sec_info,
4443 &string_offset))
4444 goto error_return;
4445 if (secdata->sec_info)
4446 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4447 }
4448 }
4449 }
4450
4451 if (is_elf_hash_table (hash_table) && add_needed)
4452 {
4453 /* Add this bfd to the loaded list. */
4454 struct elf_link_loaded_list *n;
4455
4456 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4457 if (n == NULL)
4458 goto error_return;
4459 n->abfd = abfd;
4460 n->next = hash_table->loaded;
4461 hash_table->loaded = n;
4462 }
4463
4464 return TRUE;
4465
4466 error_free_vers:
4467 if (nondeflt_vers != NULL)
4468 free (nondeflt_vers);
4469 if (extversym != NULL)
4470 free (extversym);
4471 error_free_sym:
4472 if (isymbuf != NULL)
4473 free (isymbuf);
4474 error_return:
4475 return FALSE;
4476 }
4477
4478 /* Return the linker hash table entry of a symbol that might be
4479 satisfied by an archive symbol. Return -1 on error. */
4480
4481 struct elf_link_hash_entry *
4482 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4483 struct bfd_link_info *info,
4484 const char *name)
4485 {
4486 struct elf_link_hash_entry *h;
4487 char *p, *copy;
4488 size_t len, first;
4489
4490 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4491 if (h != NULL)
4492 return h;
4493
4494 /* If this is a default version (the name contains @@), look up the
4495 symbol again with only one `@' as well as without the version.
4496 The effect is that references to the symbol with and without the
4497 version will be matched by the default symbol in the archive. */
4498
4499 p = strchr (name, ELF_VER_CHR);
4500 if (p == NULL || p[1] != ELF_VER_CHR)
4501 return h;
4502
4503 /* First check with only one `@'. */
4504 len = strlen (name);
4505 copy = bfd_alloc (abfd, len);
4506 if (copy == NULL)
4507 return (struct elf_link_hash_entry *) 0 - 1;
4508
4509 first = p - name + 1;
4510 memcpy (copy, name, first);
4511 memcpy (copy + first, name + first + 1, len - first);
4512
4513 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4514 if (h == NULL)
4515 {
4516 /* We also need to check references to the symbol without the
4517 version. */
4518 copy[first - 1] = '\0';
4519 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4520 FALSE, FALSE, FALSE);
4521 }
4522
4523 bfd_release (abfd, copy);
4524 return h;
4525 }
4526
4527 /* Add symbols from an ELF archive file to the linker hash table. We
4528 don't use _bfd_generic_link_add_archive_symbols because of a
4529 problem which arises on UnixWare. The UnixWare libc.so is an
4530 archive which includes an entry libc.so.1 which defines a bunch of
4531 symbols. The libc.so archive also includes a number of other
4532 object files, which also define symbols, some of which are the same
4533 as those defined in libc.so.1. Correct linking requires that we
4534 consider each object file in turn, and include it if it defines any
4535 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4536 this; it looks through the list of undefined symbols, and includes
4537 any object file which defines them. When this algorithm is used on
4538 UnixWare, it winds up pulling in libc.so.1 early and defining a
4539 bunch of symbols. This means that some of the other objects in the
4540 archive are not included in the link, which is incorrect since they
4541 precede libc.so.1 in the archive.
4542
4543 Fortunately, ELF archive handling is simpler than that done by
4544 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4545 oddities. In ELF, if we find a symbol in the archive map, and the
4546 symbol is currently undefined, we know that we must pull in that
4547 object file.
4548
4549 Unfortunately, we do have to make multiple passes over the symbol
4550 table until nothing further is resolved. */
4551
4552 static bfd_boolean
4553 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4554 {
4555 symindex c;
4556 bfd_boolean *defined = NULL;
4557 bfd_boolean *included = NULL;
4558 carsym *symdefs;
4559 bfd_boolean loop;
4560 bfd_size_type amt;
4561 const struct elf_backend_data *bed;
4562 struct elf_link_hash_entry * (*archive_symbol_lookup)
4563 (bfd *, struct bfd_link_info *, const char *);
4564
4565 if (! bfd_has_map (abfd))
4566 {
4567 /* An empty archive is a special case. */
4568 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4569 return TRUE;
4570 bfd_set_error (bfd_error_no_armap);
4571 return FALSE;
4572 }
4573
4574 /* Keep track of all symbols we know to be already defined, and all
4575 files we know to be already included. This is to speed up the
4576 second and subsequent passes. */
4577 c = bfd_ardata (abfd)->symdef_count;
4578 if (c == 0)
4579 return TRUE;
4580 amt = c;
4581 amt *= sizeof (bfd_boolean);
4582 defined = bfd_zmalloc (amt);
4583 included = bfd_zmalloc (amt);
4584 if (defined == NULL || included == NULL)
4585 goto error_return;
4586
4587 symdefs = bfd_ardata (abfd)->symdefs;
4588 bed = get_elf_backend_data (abfd);
4589 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4590
4591 do
4592 {
4593 file_ptr last;
4594 symindex i;
4595 carsym *symdef;
4596 carsym *symdefend;
4597
4598 loop = FALSE;
4599 last = -1;
4600
4601 symdef = symdefs;
4602 symdefend = symdef + c;
4603 for (i = 0; symdef < symdefend; symdef++, i++)
4604 {
4605 struct elf_link_hash_entry *h;
4606 bfd *element;
4607 struct bfd_link_hash_entry *undefs_tail;
4608 symindex mark;
4609
4610 if (defined[i] || included[i])
4611 continue;
4612 if (symdef->file_offset == last)
4613 {
4614 included[i] = TRUE;
4615 continue;
4616 }
4617
4618 h = archive_symbol_lookup (abfd, info, symdef->name);
4619 if (h == (struct elf_link_hash_entry *) 0 - 1)
4620 goto error_return;
4621
4622 if (h == NULL)
4623 continue;
4624
4625 if (h->root.type == bfd_link_hash_common)
4626 {
4627 /* We currently have a common symbol. The archive map contains
4628 a reference to this symbol, so we may want to include it. We
4629 only want to include it however, if this archive element
4630 contains a definition of the symbol, not just another common
4631 declaration of it.
4632
4633 Unfortunately some archivers (including GNU ar) will put
4634 declarations of common symbols into their archive maps, as
4635 well as real definitions, so we cannot just go by the archive
4636 map alone. Instead we must read in the element's symbol
4637 table and check that to see what kind of symbol definition
4638 this is. */
4639 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4640 continue;
4641 }
4642 else if (h->root.type != bfd_link_hash_undefined)
4643 {
4644 if (h->root.type != bfd_link_hash_undefweak)
4645 defined[i] = TRUE;
4646 continue;
4647 }
4648
4649 /* We need to include this archive member. */
4650 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4651 if (element == NULL)
4652 goto error_return;
4653
4654 if (! bfd_check_format (element, bfd_object))
4655 goto error_return;
4656
4657 /* Doublecheck that we have not included this object
4658 already--it should be impossible, but there may be
4659 something wrong with the archive. */
4660 if (element->archive_pass != 0)
4661 {
4662 bfd_set_error (bfd_error_bad_value);
4663 goto error_return;
4664 }
4665 element->archive_pass = 1;
4666
4667 undefs_tail = info->hash->undefs_tail;
4668
4669 if (! (*info->callbacks->add_archive_element) (info, element,
4670 symdef->name))
4671 goto error_return;
4672 if (! bfd_link_add_symbols (element, info))
4673 goto error_return;
4674
4675 /* If there are any new undefined symbols, we need to make
4676 another pass through the archive in order to see whether
4677 they can be defined. FIXME: This isn't perfect, because
4678 common symbols wind up on undefs_tail and because an
4679 undefined symbol which is defined later on in this pass
4680 does not require another pass. This isn't a bug, but it
4681 does make the code less efficient than it could be. */
4682 if (undefs_tail != info->hash->undefs_tail)
4683 loop = TRUE;
4684
4685 /* Look backward to mark all symbols from this object file
4686 which we have already seen in this pass. */
4687 mark = i;
4688 do
4689 {
4690 included[mark] = TRUE;
4691 if (mark == 0)
4692 break;
4693 --mark;
4694 }
4695 while (symdefs[mark].file_offset == symdef->file_offset);
4696
4697 /* We mark subsequent symbols from this object file as we go
4698 on through the loop. */
4699 last = symdef->file_offset;
4700 }
4701 }
4702 while (loop);
4703
4704 free (defined);
4705 free (included);
4706
4707 return TRUE;
4708
4709 error_return:
4710 if (defined != NULL)
4711 free (defined);
4712 if (included != NULL)
4713 free (included);
4714 return FALSE;
4715 }
4716
4717 /* Given an ELF BFD, add symbols to the global hash table as
4718 appropriate. */
4719
4720 bfd_boolean
4721 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4722 {
4723 switch (bfd_get_format (abfd))
4724 {
4725 case bfd_object:
4726 return elf_link_add_object_symbols (abfd, info);
4727 case bfd_archive:
4728 return elf_link_add_archive_symbols (abfd, info);
4729 default:
4730 bfd_set_error (bfd_error_wrong_format);
4731 return FALSE;
4732 }
4733 }
4734 \f
4735 /* This function will be called though elf_link_hash_traverse to store
4736 all hash value of the exported symbols in an array. */
4737
4738 static bfd_boolean
4739 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4740 {
4741 unsigned long **valuep = data;
4742 const char *name;
4743 char *p;
4744 unsigned long ha;
4745 char *alc = NULL;
4746
4747 if (h->root.type == bfd_link_hash_warning)
4748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4749
4750 /* Ignore indirect symbols. These are added by the versioning code. */
4751 if (h->dynindx == -1)
4752 return TRUE;
4753
4754 name = h->root.root.string;
4755 p = strchr (name, ELF_VER_CHR);
4756 if (p != NULL)
4757 {
4758 alc = bfd_malloc (p - name + 1);
4759 memcpy (alc, name, p - name);
4760 alc[p - name] = '\0';
4761 name = alc;
4762 }
4763
4764 /* Compute the hash value. */
4765 ha = bfd_elf_hash (name);
4766
4767 /* Store the found hash value in the array given as the argument. */
4768 *(*valuep)++ = ha;
4769
4770 /* And store it in the struct so that we can put it in the hash table
4771 later. */
4772 h->u.elf_hash_value = ha;
4773
4774 if (alc != NULL)
4775 free (alc);
4776
4777 return TRUE;
4778 }
4779
4780 /* Array used to determine the number of hash table buckets to use
4781 based on the number of symbols there are. If there are fewer than
4782 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4783 fewer than 37 we use 17 buckets, and so forth. We never use more
4784 than 32771 buckets. */
4785
4786 static const size_t elf_buckets[] =
4787 {
4788 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4789 16411, 32771, 0
4790 };
4791
4792 /* Compute bucket count for hashing table. We do not use a static set
4793 of possible tables sizes anymore. Instead we determine for all
4794 possible reasonable sizes of the table the outcome (i.e., the
4795 number of collisions etc) and choose the best solution. The
4796 weighting functions are not too simple to allow the table to grow
4797 without bounds. Instead one of the weighting factors is the size.
4798 Therefore the result is always a good payoff between few collisions
4799 (= short chain lengths) and table size. */
4800 static size_t
4801 compute_bucket_count (struct bfd_link_info *info)
4802 {
4803 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4804 size_t best_size = 0;
4805 unsigned long int *hashcodes;
4806 unsigned long int *hashcodesp;
4807 unsigned long int i;
4808 bfd_size_type amt;
4809
4810 /* Compute the hash values for all exported symbols. At the same
4811 time store the values in an array so that we could use them for
4812 optimizations. */
4813 amt = dynsymcount;
4814 amt *= sizeof (unsigned long int);
4815 hashcodes = bfd_malloc (amt);
4816 if (hashcodes == NULL)
4817 return 0;
4818 hashcodesp = hashcodes;
4819
4820 /* Put all hash values in HASHCODES. */
4821 elf_link_hash_traverse (elf_hash_table (info),
4822 elf_collect_hash_codes, &hashcodesp);
4823
4824 /* We have a problem here. The following code to optimize the table
4825 size requires an integer type with more the 32 bits. If
4826 BFD_HOST_U_64_BIT is set we know about such a type. */
4827 #ifdef BFD_HOST_U_64_BIT
4828 if (info->optimize)
4829 {
4830 unsigned long int nsyms = hashcodesp - hashcodes;
4831 size_t minsize;
4832 size_t maxsize;
4833 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4834 unsigned long int *counts ;
4835 bfd *dynobj = elf_hash_table (info)->dynobj;
4836 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4837
4838 /* Possible optimization parameters: if we have NSYMS symbols we say
4839 that the hashing table must at least have NSYMS/4 and at most
4840 2*NSYMS buckets. */
4841 minsize = nsyms / 4;
4842 if (minsize == 0)
4843 minsize = 1;
4844 best_size = maxsize = nsyms * 2;
4845
4846 /* Create array where we count the collisions in. We must use bfd_malloc
4847 since the size could be large. */
4848 amt = maxsize;
4849 amt *= sizeof (unsigned long int);
4850 counts = bfd_malloc (amt);
4851 if (counts == NULL)
4852 {
4853 free (hashcodes);
4854 return 0;
4855 }
4856
4857 /* Compute the "optimal" size for the hash table. The criteria is a
4858 minimal chain length. The minor criteria is (of course) the size
4859 of the table. */
4860 for (i = minsize; i < maxsize; ++i)
4861 {
4862 /* Walk through the array of hashcodes and count the collisions. */
4863 BFD_HOST_U_64_BIT max;
4864 unsigned long int j;
4865 unsigned long int fact;
4866
4867 memset (counts, '\0', i * sizeof (unsigned long int));
4868
4869 /* Determine how often each hash bucket is used. */
4870 for (j = 0; j < nsyms; ++j)
4871 ++counts[hashcodes[j] % i];
4872
4873 /* For the weight function we need some information about the
4874 pagesize on the target. This is information need not be 100%
4875 accurate. Since this information is not available (so far) we
4876 define it here to a reasonable default value. If it is crucial
4877 to have a better value some day simply define this value. */
4878 # ifndef BFD_TARGET_PAGESIZE
4879 # define BFD_TARGET_PAGESIZE (4096)
4880 # endif
4881
4882 /* We in any case need 2 + NSYMS entries for the size values and
4883 the chains. */
4884 max = (2 + nsyms) * (bed->s->arch_size / 8);
4885
4886 # if 1
4887 /* Variant 1: optimize for short chains. We add the squares
4888 of all the chain lengths (which favors many small chain
4889 over a few long chains). */
4890 for (j = 0; j < i; ++j)
4891 max += counts[j] * counts[j];
4892
4893 /* This adds penalties for the overall size of the table. */
4894 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4895 max *= fact * fact;
4896 # else
4897 /* Variant 2: Optimize a lot more for small table. Here we
4898 also add squares of the size but we also add penalties for
4899 empty slots (the +1 term). */
4900 for (j = 0; j < i; ++j)
4901 max += (1 + counts[j]) * (1 + counts[j]);
4902
4903 /* The overall size of the table is considered, but not as
4904 strong as in variant 1, where it is squared. */
4905 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4906 max *= fact;
4907 # endif
4908
4909 /* Compare with current best results. */
4910 if (max < best_chlen)
4911 {
4912 best_chlen = max;
4913 best_size = i;
4914 }
4915 }
4916
4917 free (counts);
4918 }
4919 else
4920 #endif /* defined (BFD_HOST_U_64_BIT) */
4921 {
4922 /* This is the fallback solution if no 64bit type is available or if we
4923 are not supposed to spend much time on optimizations. We select the
4924 bucket count using a fixed set of numbers. */
4925 for (i = 0; elf_buckets[i] != 0; i++)
4926 {
4927 best_size = elf_buckets[i];
4928 if (dynsymcount < elf_buckets[i + 1])
4929 break;
4930 }
4931 }
4932
4933 /* Free the arrays we needed. */
4934 free (hashcodes);
4935
4936 return best_size;
4937 }
4938
4939 /* Set up the sizes and contents of the ELF dynamic sections. This is
4940 called by the ELF linker emulation before_allocation routine. We
4941 must set the sizes of the sections before the linker sets the
4942 addresses of the various sections. */
4943
4944 bfd_boolean
4945 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4946 const char *soname,
4947 const char *rpath,
4948 const char *filter_shlib,
4949 const char * const *auxiliary_filters,
4950 struct bfd_link_info *info,
4951 asection **sinterpptr,
4952 struct bfd_elf_version_tree *verdefs)
4953 {
4954 bfd_size_type soname_indx;
4955 bfd *dynobj;
4956 const struct elf_backend_data *bed;
4957 struct elf_assign_sym_version_info asvinfo;
4958
4959 *sinterpptr = NULL;
4960
4961 soname_indx = (bfd_size_type) -1;
4962
4963 if (!is_elf_hash_table (info->hash))
4964 return TRUE;
4965
4966 elf_tdata (output_bfd)->relro = info->relro;
4967 if (info->execstack)
4968 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4969 else if (info->noexecstack)
4970 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4971 else
4972 {
4973 bfd *inputobj;
4974 asection *notesec = NULL;
4975 int exec = 0;
4976
4977 for (inputobj = info->input_bfds;
4978 inputobj;
4979 inputobj = inputobj->link_next)
4980 {
4981 asection *s;
4982
4983 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
4984 continue;
4985 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4986 if (s)
4987 {
4988 if (s->flags & SEC_CODE)
4989 exec = PF_X;
4990 notesec = s;
4991 }
4992 else
4993 exec = PF_X;
4994 }
4995 if (notesec)
4996 {
4997 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4998 if (exec && info->relocatable
4999 && notesec->output_section != bfd_abs_section_ptr)
5000 notesec->output_section->flags |= SEC_CODE;
5001 }
5002 }
5003
5004 /* Any syms created from now on start with -1 in
5005 got.refcount/offset and plt.refcount/offset. */
5006 elf_hash_table (info)->init_got_refcount
5007 = elf_hash_table (info)->init_got_offset;
5008 elf_hash_table (info)->init_plt_refcount
5009 = elf_hash_table (info)->init_plt_offset;
5010
5011 /* The backend may have to create some sections regardless of whether
5012 we're dynamic or not. */
5013 bed = get_elf_backend_data (output_bfd);
5014 if (bed->elf_backend_always_size_sections
5015 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5016 return FALSE;
5017
5018 dynobj = elf_hash_table (info)->dynobj;
5019
5020 /* If there were no dynamic objects in the link, there is nothing to
5021 do here. */
5022 if (dynobj == NULL)
5023 return TRUE;
5024
5025 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5026 return FALSE;
5027
5028 if (elf_hash_table (info)->dynamic_sections_created)
5029 {
5030 struct elf_info_failed eif;
5031 struct elf_link_hash_entry *h;
5032 asection *dynstr;
5033 struct bfd_elf_version_tree *t;
5034 struct bfd_elf_version_expr *d;
5035 asection *s;
5036 bfd_boolean all_defined;
5037
5038 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5039 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5040
5041 if (soname != NULL)
5042 {
5043 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5044 soname, TRUE);
5045 if (soname_indx == (bfd_size_type) -1
5046 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5047 return FALSE;
5048 }
5049
5050 if (info->symbolic)
5051 {
5052 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5053 return FALSE;
5054 info->flags |= DF_SYMBOLIC;
5055 }
5056
5057 if (rpath != NULL)
5058 {
5059 bfd_size_type indx;
5060
5061 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5062 TRUE);
5063 if (indx == (bfd_size_type) -1
5064 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5065 return FALSE;
5066
5067 if (info->new_dtags)
5068 {
5069 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5070 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5071 return FALSE;
5072 }
5073 }
5074
5075 if (filter_shlib != NULL)
5076 {
5077 bfd_size_type indx;
5078
5079 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5080 filter_shlib, TRUE);
5081 if (indx == (bfd_size_type) -1
5082 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5083 return FALSE;
5084 }
5085
5086 if (auxiliary_filters != NULL)
5087 {
5088 const char * const *p;
5089
5090 for (p = auxiliary_filters; *p != NULL; p++)
5091 {
5092 bfd_size_type indx;
5093
5094 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5095 *p, TRUE);
5096 if (indx == (bfd_size_type) -1
5097 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5098 return FALSE;
5099 }
5100 }
5101
5102 eif.info = info;
5103 eif.verdefs = verdefs;
5104 eif.failed = FALSE;
5105
5106 /* If we are supposed to export all symbols into the dynamic symbol
5107 table (this is not the normal case), then do so. */
5108 if (info->export_dynamic)
5109 {
5110 elf_link_hash_traverse (elf_hash_table (info),
5111 _bfd_elf_export_symbol,
5112 &eif);
5113 if (eif.failed)
5114 return FALSE;
5115 }
5116
5117 /* Make all global versions with definition. */
5118 for (t = verdefs; t != NULL; t = t->next)
5119 for (d = t->globals.list; d != NULL; d = d->next)
5120 if (!d->symver && d->symbol)
5121 {
5122 const char *verstr, *name;
5123 size_t namelen, verlen, newlen;
5124 char *newname, *p;
5125 struct elf_link_hash_entry *newh;
5126
5127 name = d->symbol;
5128 namelen = strlen (name);
5129 verstr = t->name;
5130 verlen = strlen (verstr);
5131 newlen = namelen + verlen + 3;
5132
5133 newname = bfd_malloc (newlen);
5134 if (newname == NULL)
5135 return FALSE;
5136 memcpy (newname, name, namelen);
5137
5138 /* Check the hidden versioned definition. */
5139 p = newname + namelen;
5140 *p++ = ELF_VER_CHR;
5141 memcpy (p, verstr, verlen + 1);
5142 newh = elf_link_hash_lookup (elf_hash_table (info),
5143 newname, FALSE, FALSE,
5144 FALSE);
5145 if (newh == NULL
5146 || (newh->root.type != bfd_link_hash_defined
5147 && newh->root.type != bfd_link_hash_defweak))
5148 {
5149 /* Check the default versioned definition. */
5150 *p++ = ELF_VER_CHR;
5151 memcpy (p, verstr, verlen + 1);
5152 newh = elf_link_hash_lookup (elf_hash_table (info),
5153 newname, FALSE, FALSE,
5154 FALSE);
5155 }
5156 free (newname);
5157
5158 /* Mark this version if there is a definition and it is
5159 not defined in a shared object. */
5160 if (newh != NULL
5161 && !newh->def_dynamic
5162 && (newh->root.type == bfd_link_hash_defined
5163 || newh->root.type == bfd_link_hash_defweak))
5164 d->symver = 1;
5165 }
5166
5167 /* Attach all the symbols to their version information. */
5168 asvinfo.output_bfd = output_bfd;
5169 asvinfo.info = info;
5170 asvinfo.verdefs = verdefs;
5171 asvinfo.failed = FALSE;
5172
5173 elf_link_hash_traverse (elf_hash_table (info),
5174 _bfd_elf_link_assign_sym_version,
5175 &asvinfo);
5176 if (asvinfo.failed)
5177 return FALSE;
5178
5179 if (!info->allow_undefined_version)
5180 {
5181 /* Check if all global versions have a definition. */
5182 all_defined = TRUE;
5183 for (t = verdefs; t != NULL; t = t->next)
5184 for (d = t->globals.list; d != NULL; d = d->next)
5185 if (!d->symver && !d->script)
5186 {
5187 (*_bfd_error_handler)
5188 (_("%s: undefined version: %s"),
5189 d->pattern, t->name);
5190 all_defined = FALSE;
5191 }
5192
5193 if (!all_defined)
5194 {
5195 bfd_set_error (bfd_error_bad_value);
5196 return FALSE;
5197 }
5198 }
5199
5200 /* Find all symbols which were defined in a dynamic object and make
5201 the backend pick a reasonable value for them. */
5202 elf_link_hash_traverse (elf_hash_table (info),
5203 _bfd_elf_adjust_dynamic_symbol,
5204 &eif);
5205 if (eif.failed)
5206 return FALSE;
5207
5208 /* Add some entries to the .dynamic section. We fill in some of the
5209 values later, in bfd_elf_final_link, but we must add the entries
5210 now so that we know the final size of the .dynamic section. */
5211
5212 /* If there are initialization and/or finalization functions to
5213 call then add the corresponding DT_INIT/DT_FINI entries. */
5214 h = (info->init_function
5215 ? elf_link_hash_lookup (elf_hash_table (info),
5216 info->init_function, FALSE,
5217 FALSE, FALSE)
5218 : NULL);
5219 if (h != NULL
5220 && (h->ref_regular
5221 || h->def_regular))
5222 {
5223 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5224 return FALSE;
5225 }
5226 h = (info->fini_function
5227 ? elf_link_hash_lookup (elf_hash_table (info),
5228 info->fini_function, FALSE,
5229 FALSE, FALSE)
5230 : NULL);
5231 if (h != NULL
5232 && (h->ref_regular
5233 || h->def_regular))
5234 {
5235 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5236 return FALSE;
5237 }
5238
5239 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5240 if (s != NULL && s->linker_has_input)
5241 {
5242 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5243 if (! info->executable)
5244 {
5245 bfd *sub;
5246 asection *o;
5247
5248 for (sub = info->input_bfds; sub != NULL;
5249 sub = sub->link_next)
5250 for (o = sub->sections; o != NULL; o = o->next)
5251 if (elf_section_data (o)->this_hdr.sh_type
5252 == SHT_PREINIT_ARRAY)
5253 {
5254 (*_bfd_error_handler)
5255 (_("%B: .preinit_array section is not allowed in DSO"),
5256 sub);
5257 break;
5258 }
5259
5260 bfd_set_error (bfd_error_nonrepresentable_section);
5261 return FALSE;
5262 }
5263
5264 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5265 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5266 return FALSE;
5267 }
5268 s = bfd_get_section_by_name (output_bfd, ".init_array");
5269 if (s != NULL && s->linker_has_input)
5270 {
5271 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5272 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5273 return FALSE;
5274 }
5275 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5276 if (s != NULL && s->linker_has_input)
5277 {
5278 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5279 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5280 return FALSE;
5281 }
5282
5283 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5284 /* If .dynstr is excluded from the link, we don't want any of
5285 these tags. Strictly, we should be checking each section
5286 individually; This quick check covers for the case where
5287 someone does a /DISCARD/ : { *(*) }. */
5288 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5289 {
5290 bfd_size_type strsize;
5291
5292 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5293 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5294 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5295 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5296 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5297 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5298 bed->s->sizeof_sym))
5299 return FALSE;
5300 }
5301 }
5302
5303 /* The backend must work out the sizes of all the other dynamic
5304 sections. */
5305 if (bed->elf_backend_size_dynamic_sections
5306 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5307 return FALSE;
5308
5309 if (elf_hash_table (info)->dynamic_sections_created)
5310 {
5311 unsigned long section_sym_count;
5312 asection *s;
5313
5314 /* Set up the version definition section. */
5315 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5316 BFD_ASSERT (s != NULL);
5317
5318 /* We may have created additional version definitions if we are
5319 just linking a regular application. */
5320 verdefs = asvinfo.verdefs;
5321
5322 /* Skip anonymous version tag. */
5323 if (verdefs != NULL && verdefs->vernum == 0)
5324 verdefs = verdefs->next;
5325
5326 if (verdefs == NULL && !info->create_default_symver)
5327 s->flags |= SEC_EXCLUDE;
5328 else
5329 {
5330 unsigned int cdefs;
5331 bfd_size_type size;
5332 struct bfd_elf_version_tree *t;
5333 bfd_byte *p;
5334 Elf_Internal_Verdef def;
5335 Elf_Internal_Verdaux defaux;
5336 struct bfd_link_hash_entry *bh;
5337 struct elf_link_hash_entry *h;
5338 const char *name;
5339
5340 cdefs = 0;
5341 size = 0;
5342
5343 /* Make space for the base version. */
5344 size += sizeof (Elf_External_Verdef);
5345 size += sizeof (Elf_External_Verdaux);
5346 ++cdefs;
5347
5348 /* Make space for the default version. */
5349 if (info->create_default_symver)
5350 {
5351 size += sizeof (Elf_External_Verdef);
5352 ++cdefs;
5353 }
5354
5355 for (t = verdefs; t != NULL; t = t->next)
5356 {
5357 struct bfd_elf_version_deps *n;
5358
5359 size += sizeof (Elf_External_Verdef);
5360 size += sizeof (Elf_External_Verdaux);
5361 ++cdefs;
5362
5363 for (n = t->deps; n != NULL; n = n->next)
5364 size += sizeof (Elf_External_Verdaux);
5365 }
5366
5367 s->size = size;
5368 s->contents = bfd_alloc (output_bfd, s->size);
5369 if (s->contents == NULL && s->size != 0)
5370 return FALSE;
5371
5372 /* Fill in the version definition section. */
5373
5374 p = s->contents;
5375
5376 def.vd_version = VER_DEF_CURRENT;
5377 def.vd_flags = VER_FLG_BASE;
5378 def.vd_ndx = 1;
5379 def.vd_cnt = 1;
5380 if (info->create_default_symver)
5381 {
5382 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5383 def.vd_next = sizeof (Elf_External_Verdef);
5384 }
5385 else
5386 {
5387 def.vd_aux = sizeof (Elf_External_Verdef);
5388 def.vd_next = (sizeof (Elf_External_Verdef)
5389 + sizeof (Elf_External_Verdaux));
5390 }
5391
5392 if (soname_indx != (bfd_size_type) -1)
5393 {
5394 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5395 soname_indx);
5396 def.vd_hash = bfd_elf_hash (soname);
5397 defaux.vda_name = soname_indx;
5398 name = soname;
5399 }
5400 else
5401 {
5402 bfd_size_type indx;
5403
5404 name = lbasename (output_bfd->filename);
5405 def.vd_hash = bfd_elf_hash (name);
5406 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5407 name, FALSE);
5408 if (indx == (bfd_size_type) -1)
5409 return FALSE;
5410 defaux.vda_name = indx;
5411 }
5412 defaux.vda_next = 0;
5413
5414 _bfd_elf_swap_verdef_out (output_bfd, &def,
5415 (Elf_External_Verdef *) p);
5416 p += sizeof (Elf_External_Verdef);
5417 if (info->create_default_symver)
5418 {
5419 /* Add a symbol representing this version. */
5420 bh = NULL;
5421 if (! (_bfd_generic_link_add_one_symbol
5422 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5423 0, NULL, FALSE,
5424 get_elf_backend_data (dynobj)->collect, &bh)))
5425 return FALSE;
5426 h = (struct elf_link_hash_entry *) bh;
5427 h->non_elf = 0;
5428 h->def_regular = 1;
5429 h->type = STT_OBJECT;
5430 h->verinfo.vertree = NULL;
5431
5432 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5433 return FALSE;
5434
5435 /* Create a duplicate of the base version with the same
5436 aux block, but different flags. */
5437 def.vd_flags = 0;
5438 def.vd_ndx = 2;
5439 def.vd_aux = sizeof (Elf_External_Verdef);
5440 if (verdefs)
5441 def.vd_next = (sizeof (Elf_External_Verdef)
5442 + sizeof (Elf_External_Verdaux));
5443 else
5444 def.vd_next = 0;
5445 _bfd_elf_swap_verdef_out (output_bfd, &def,
5446 (Elf_External_Verdef *) p);
5447 p += sizeof (Elf_External_Verdef);
5448 }
5449 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5450 (Elf_External_Verdaux *) p);
5451 p += sizeof (Elf_External_Verdaux);
5452
5453 for (t = verdefs; t != NULL; t = t->next)
5454 {
5455 unsigned int cdeps;
5456 struct bfd_elf_version_deps *n;
5457
5458 cdeps = 0;
5459 for (n = t->deps; n != NULL; n = n->next)
5460 ++cdeps;
5461
5462 /* Add a symbol representing this version. */
5463 bh = NULL;
5464 if (! (_bfd_generic_link_add_one_symbol
5465 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5466 0, NULL, FALSE,
5467 get_elf_backend_data (dynobj)->collect, &bh)))
5468 return FALSE;
5469 h = (struct elf_link_hash_entry *) bh;
5470 h->non_elf = 0;
5471 h->def_regular = 1;
5472 h->type = STT_OBJECT;
5473 h->verinfo.vertree = t;
5474
5475 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5476 return FALSE;
5477
5478 def.vd_version = VER_DEF_CURRENT;
5479 def.vd_flags = 0;
5480 if (t->globals.list == NULL
5481 && t->locals.list == NULL
5482 && ! t->used)
5483 def.vd_flags |= VER_FLG_WEAK;
5484 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5485 def.vd_cnt = cdeps + 1;
5486 def.vd_hash = bfd_elf_hash (t->name);
5487 def.vd_aux = sizeof (Elf_External_Verdef);
5488 def.vd_next = 0;
5489 if (t->next != NULL)
5490 def.vd_next = (sizeof (Elf_External_Verdef)
5491 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5492
5493 _bfd_elf_swap_verdef_out (output_bfd, &def,
5494 (Elf_External_Verdef *) p);
5495 p += sizeof (Elf_External_Verdef);
5496
5497 defaux.vda_name = h->dynstr_index;
5498 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5499 h->dynstr_index);
5500 defaux.vda_next = 0;
5501 if (t->deps != NULL)
5502 defaux.vda_next = sizeof (Elf_External_Verdaux);
5503 t->name_indx = defaux.vda_name;
5504
5505 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5506 (Elf_External_Verdaux *) p);
5507 p += sizeof (Elf_External_Verdaux);
5508
5509 for (n = t->deps; n != NULL; n = n->next)
5510 {
5511 if (n->version_needed == NULL)
5512 {
5513 /* This can happen if there was an error in the
5514 version script. */
5515 defaux.vda_name = 0;
5516 }
5517 else
5518 {
5519 defaux.vda_name = n->version_needed->name_indx;
5520 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5521 defaux.vda_name);
5522 }
5523 if (n->next == NULL)
5524 defaux.vda_next = 0;
5525 else
5526 defaux.vda_next = sizeof (Elf_External_Verdaux);
5527
5528 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5529 (Elf_External_Verdaux *) p);
5530 p += sizeof (Elf_External_Verdaux);
5531 }
5532 }
5533
5534 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5535 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5536 return FALSE;
5537
5538 elf_tdata (output_bfd)->cverdefs = cdefs;
5539 }
5540
5541 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5542 {
5543 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5544 return FALSE;
5545 }
5546 else if (info->flags & DF_BIND_NOW)
5547 {
5548 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5549 return FALSE;
5550 }
5551
5552 if (info->flags_1)
5553 {
5554 if (info->executable)
5555 info->flags_1 &= ~ (DF_1_INITFIRST
5556 | DF_1_NODELETE
5557 | DF_1_NOOPEN);
5558 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5559 return FALSE;
5560 }
5561
5562 /* Work out the size of the version reference section. */
5563
5564 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5565 BFD_ASSERT (s != NULL);
5566 {
5567 struct elf_find_verdep_info sinfo;
5568
5569 sinfo.output_bfd = output_bfd;
5570 sinfo.info = info;
5571 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5572 if (sinfo.vers == 0)
5573 sinfo.vers = 1;
5574 sinfo.failed = FALSE;
5575
5576 elf_link_hash_traverse (elf_hash_table (info),
5577 _bfd_elf_link_find_version_dependencies,
5578 &sinfo);
5579
5580 if (elf_tdata (output_bfd)->verref == NULL)
5581 s->flags |= SEC_EXCLUDE;
5582 else
5583 {
5584 Elf_Internal_Verneed *t;
5585 unsigned int size;
5586 unsigned int crefs;
5587 bfd_byte *p;
5588
5589 /* Build the version definition section. */
5590 size = 0;
5591 crefs = 0;
5592 for (t = elf_tdata (output_bfd)->verref;
5593 t != NULL;
5594 t = t->vn_nextref)
5595 {
5596 Elf_Internal_Vernaux *a;
5597
5598 size += sizeof (Elf_External_Verneed);
5599 ++crefs;
5600 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5601 size += sizeof (Elf_External_Vernaux);
5602 }
5603
5604 s->size = size;
5605 s->contents = bfd_alloc (output_bfd, s->size);
5606 if (s->contents == NULL)
5607 return FALSE;
5608
5609 p = s->contents;
5610 for (t = elf_tdata (output_bfd)->verref;
5611 t != NULL;
5612 t = t->vn_nextref)
5613 {
5614 unsigned int caux;
5615 Elf_Internal_Vernaux *a;
5616 bfd_size_type indx;
5617
5618 caux = 0;
5619 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5620 ++caux;
5621
5622 t->vn_version = VER_NEED_CURRENT;
5623 t->vn_cnt = caux;
5624 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5625 elf_dt_name (t->vn_bfd) != NULL
5626 ? elf_dt_name (t->vn_bfd)
5627 : lbasename (t->vn_bfd->filename),
5628 FALSE);
5629 if (indx == (bfd_size_type) -1)
5630 return FALSE;
5631 t->vn_file = indx;
5632 t->vn_aux = sizeof (Elf_External_Verneed);
5633 if (t->vn_nextref == NULL)
5634 t->vn_next = 0;
5635 else
5636 t->vn_next = (sizeof (Elf_External_Verneed)
5637 + caux * sizeof (Elf_External_Vernaux));
5638
5639 _bfd_elf_swap_verneed_out (output_bfd, t,
5640 (Elf_External_Verneed *) p);
5641 p += sizeof (Elf_External_Verneed);
5642
5643 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5644 {
5645 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5646 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5647 a->vna_nodename, FALSE);
5648 if (indx == (bfd_size_type) -1)
5649 return FALSE;
5650 a->vna_name = indx;
5651 if (a->vna_nextptr == NULL)
5652 a->vna_next = 0;
5653 else
5654 a->vna_next = sizeof (Elf_External_Vernaux);
5655
5656 _bfd_elf_swap_vernaux_out (output_bfd, a,
5657 (Elf_External_Vernaux *) p);
5658 p += sizeof (Elf_External_Vernaux);
5659 }
5660 }
5661
5662 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5663 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5664 return FALSE;
5665
5666 elf_tdata (output_bfd)->cverrefs = crefs;
5667 }
5668 }
5669
5670 if ((elf_tdata (output_bfd)->cverrefs == 0
5671 && elf_tdata (output_bfd)->cverdefs == 0)
5672 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5673 &section_sym_count) == 0)
5674 {
5675 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5676 s->flags |= SEC_EXCLUDE;
5677 }
5678 }
5679 return TRUE;
5680 }
5681
5682 bfd_boolean
5683 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5684 {
5685 if (!is_elf_hash_table (info->hash))
5686 return TRUE;
5687
5688 if (elf_hash_table (info)->dynamic_sections_created)
5689 {
5690 bfd *dynobj;
5691 const struct elf_backend_data *bed;
5692 asection *s;
5693 bfd_size_type dynsymcount;
5694 unsigned long section_sym_count;
5695 size_t bucketcount = 0;
5696 size_t hash_entry_size;
5697 unsigned int dtagcount;
5698
5699 dynobj = elf_hash_table (info)->dynobj;
5700
5701 /* Assign dynsym indicies. In a shared library we generate a
5702 section symbol for each output section, which come first.
5703 Next come all of the back-end allocated local dynamic syms,
5704 followed by the rest of the global symbols. */
5705
5706 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5707 &section_sym_count);
5708
5709 /* Work out the size of the symbol version section. */
5710 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5711 BFD_ASSERT (s != NULL);
5712 if (dynsymcount != 0
5713 && (s->flags & SEC_EXCLUDE) == 0)
5714 {
5715 s->size = dynsymcount * sizeof (Elf_External_Versym);
5716 s->contents = bfd_zalloc (output_bfd, s->size);
5717 if (s->contents == NULL)
5718 return FALSE;
5719
5720 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5721 return FALSE;
5722 }
5723
5724 /* Set the size of the .dynsym and .hash sections. We counted
5725 the number of dynamic symbols in elf_link_add_object_symbols.
5726 We will build the contents of .dynsym and .hash when we build
5727 the final symbol table, because until then we do not know the
5728 correct value to give the symbols. We built the .dynstr
5729 section as we went along in elf_link_add_object_symbols. */
5730 s = bfd_get_section_by_name (dynobj, ".dynsym");
5731 BFD_ASSERT (s != NULL);
5732 bed = get_elf_backend_data (output_bfd);
5733 s->size = dynsymcount * bed->s->sizeof_sym;
5734
5735 if (dynsymcount != 0)
5736 {
5737 s->contents = bfd_alloc (output_bfd, s->size);
5738 if (s->contents == NULL)
5739 return FALSE;
5740
5741 /* The first entry in .dynsym is a dummy symbol.
5742 Clear all the section syms, in case we don't output them all. */
5743 ++section_sym_count;
5744 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5745 }
5746
5747 /* Compute the size of the hashing table. As a side effect this
5748 computes the hash values for all the names we export. */
5749 bucketcount = compute_bucket_count (info);
5750
5751 s = bfd_get_section_by_name (dynobj, ".hash");
5752 BFD_ASSERT (s != NULL);
5753 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5754 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5755 s->contents = bfd_zalloc (output_bfd, s->size);
5756 if (s->contents == NULL)
5757 return FALSE;
5758
5759 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5760 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5761 s->contents + hash_entry_size);
5762
5763 elf_hash_table (info)->bucketcount = bucketcount;
5764
5765 s = bfd_get_section_by_name (dynobj, ".dynstr");
5766 BFD_ASSERT (s != NULL);
5767
5768 elf_finalize_dynstr (output_bfd, info);
5769
5770 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5771
5772 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5773 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5774 return FALSE;
5775 }
5776
5777 return TRUE;
5778 }
5779
5780 /* Final phase of ELF linker. */
5781
5782 /* A structure we use to avoid passing large numbers of arguments. */
5783
5784 struct elf_final_link_info
5785 {
5786 /* General link information. */
5787 struct bfd_link_info *info;
5788 /* Output BFD. */
5789 bfd *output_bfd;
5790 /* Symbol string table. */
5791 struct bfd_strtab_hash *symstrtab;
5792 /* .dynsym section. */
5793 asection *dynsym_sec;
5794 /* .hash section. */
5795 asection *hash_sec;
5796 /* symbol version section (.gnu.version). */
5797 asection *symver_sec;
5798 /* Buffer large enough to hold contents of any section. */
5799 bfd_byte *contents;
5800 /* Buffer large enough to hold external relocs of any section. */
5801 void *external_relocs;
5802 /* Buffer large enough to hold internal relocs of any section. */
5803 Elf_Internal_Rela *internal_relocs;
5804 /* Buffer large enough to hold external local symbols of any input
5805 BFD. */
5806 bfd_byte *external_syms;
5807 /* And a buffer for symbol section indices. */
5808 Elf_External_Sym_Shndx *locsym_shndx;
5809 /* Buffer large enough to hold internal local symbols of any input
5810 BFD. */
5811 Elf_Internal_Sym *internal_syms;
5812 /* Array large enough to hold a symbol index for each local symbol
5813 of any input BFD. */
5814 long *indices;
5815 /* Array large enough to hold a section pointer for each local
5816 symbol of any input BFD. */
5817 asection **sections;
5818 /* Buffer to hold swapped out symbols. */
5819 bfd_byte *symbuf;
5820 /* And one for symbol section indices. */
5821 Elf_External_Sym_Shndx *symshndxbuf;
5822 /* Number of swapped out symbols in buffer. */
5823 size_t symbuf_count;
5824 /* Number of symbols which fit in symbuf. */
5825 size_t symbuf_size;
5826 /* And same for symshndxbuf. */
5827 size_t shndxbuf_size;
5828 };
5829
5830 /* This struct is used to pass information to elf_link_output_extsym. */
5831
5832 struct elf_outext_info
5833 {
5834 bfd_boolean failed;
5835 bfd_boolean localsyms;
5836 struct elf_final_link_info *finfo;
5837 };
5838
5839 /* When performing a relocatable link, the input relocations are
5840 preserved. But, if they reference global symbols, the indices
5841 referenced must be updated. Update all the relocations in
5842 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5843
5844 static void
5845 elf_link_adjust_relocs (bfd *abfd,
5846 Elf_Internal_Shdr *rel_hdr,
5847 unsigned int count,
5848 struct elf_link_hash_entry **rel_hash)
5849 {
5850 unsigned int i;
5851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5852 bfd_byte *erela;
5853 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5854 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5855 bfd_vma r_type_mask;
5856 int r_sym_shift;
5857
5858 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5859 {
5860 swap_in = bed->s->swap_reloc_in;
5861 swap_out = bed->s->swap_reloc_out;
5862 }
5863 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5864 {
5865 swap_in = bed->s->swap_reloca_in;
5866 swap_out = bed->s->swap_reloca_out;
5867 }
5868 else
5869 abort ();
5870
5871 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5872 abort ();
5873
5874 if (bed->s->arch_size == 32)
5875 {
5876 r_type_mask = 0xff;
5877 r_sym_shift = 8;
5878 }
5879 else
5880 {
5881 r_type_mask = 0xffffffff;
5882 r_sym_shift = 32;
5883 }
5884
5885 erela = rel_hdr->contents;
5886 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5887 {
5888 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5889 unsigned int j;
5890
5891 if (*rel_hash == NULL)
5892 continue;
5893
5894 BFD_ASSERT ((*rel_hash)->indx >= 0);
5895
5896 (*swap_in) (abfd, erela, irela);
5897 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5898 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5899 | (irela[j].r_info & r_type_mask));
5900 (*swap_out) (abfd, irela, erela);
5901 }
5902 }
5903
5904 struct elf_link_sort_rela
5905 {
5906 union {
5907 bfd_vma offset;
5908 bfd_vma sym_mask;
5909 } u;
5910 enum elf_reloc_type_class type;
5911 /* We use this as an array of size int_rels_per_ext_rel. */
5912 Elf_Internal_Rela rela[1];
5913 };
5914
5915 static int
5916 elf_link_sort_cmp1 (const void *A, const void *B)
5917 {
5918 const struct elf_link_sort_rela *a = A;
5919 const struct elf_link_sort_rela *b = B;
5920 int relativea, relativeb;
5921
5922 relativea = a->type == reloc_class_relative;
5923 relativeb = b->type == reloc_class_relative;
5924
5925 if (relativea < relativeb)
5926 return 1;
5927 if (relativea > relativeb)
5928 return -1;
5929 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5930 return -1;
5931 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5932 return 1;
5933 if (a->rela->r_offset < b->rela->r_offset)
5934 return -1;
5935 if (a->rela->r_offset > b->rela->r_offset)
5936 return 1;
5937 return 0;
5938 }
5939
5940 static int
5941 elf_link_sort_cmp2 (const void *A, const void *B)
5942 {
5943 const struct elf_link_sort_rela *a = A;
5944 const struct elf_link_sort_rela *b = B;
5945 int copya, copyb;
5946
5947 if (a->u.offset < b->u.offset)
5948 return -1;
5949 if (a->u.offset > b->u.offset)
5950 return 1;
5951 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5952 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5953 if (copya < copyb)
5954 return -1;
5955 if (copya > copyb)
5956 return 1;
5957 if (a->rela->r_offset < b->rela->r_offset)
5958 return -1;
5959 if (a->rela->r_offset > b->rela->r_offset)
5960 return 1;
5961 return 0;
5962 }
5963
5964 static size_t
5965 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5966 {
5967 asection *reldyn;
5968 bfd_size_type count, size;
5969 size_t i, ret, sort_elt, ext_size;
5970 bfd_byte *sort, *s_non_relative, *p;
5971 struct elf_link_sort_rela *sq;
5972 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5973 int i2e = bed->s->int_rels_per_ext_rel;
5974 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5975 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5976 struct bfd_link_order *lo;
5977 bfd_vma r_sym_mask;
5978
5979 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5980 if (reldyn == NULL || reldyn->size == 0)
5981 {
5982 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5983 if (reldyn == NULL || reldyn->size == 0)
5984 return 0;
5985 ext_size = bed->s->sizeof_rel;
5986 swap_in = bed->s->swap_reloc_in;
5987 swap_out = bed->s->swap_reloc_out;
5988 }
5989 else
5990 {
5991 ext_size = bed->s->sizeof_rela;
5992 swap_in = bed->s->swap_reloca_in;
5993 swap_out = bed->s->swap_reloca_out;
5994 }
5995 count = reldyn->size / ext_size;
5996
5997 size = 0;
5998 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
5999 if (lo->type == bfd_indirect_link_order)
6000 {
6001 asection *o = lo->u.indirect.section;
6002 size += o->size;
6003 }
6004
6005 if (size != reldyn->size)
6006 return 0;
6007
6008 sort_elt = (sizeof (struct elf_link_sort_rela)
6009 + (i2e - 1) * sizeof (Elf_Internal_Rela));
6010 sort = bfd_zmalloc (sort_elt * count);
6011 if (sort == NULL)
6012 {
6013 (*info->callbacks->warning)
6014 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
6015 return 0;
6016 }
6017
6018 if (bed->s->arch_size == 32)
6019 r_sym_mask = ~(bfd_vma) 0xff;
6020 else
6021 r_sym_mask = ~(bfd_vma) 0xffffffff;
6022
6023 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6024 if (lo->type == bfd_indirect_link_order)
6025 {
6026 bfd_byte *erel, *erelend;
6027 asection *o = lo->u.indirect.section;
6028
6029 if (o->contents == NULL && o->size != 0)
6030 {
6031 /* This is a reloc section that is being handled as a normal
6032 section. See bfd_section_from_shdr. We can't combine
6033 relocs in this case. */
6034 free (sort);
6035 return 0;
6036 }
6037 erel = o->contents;
6038 erelend = o->contents + o->size;
6039 p = sort + o->output_offset / ext_size * sort_elt;
6040 while (erel < erelend)
6041 {
6042 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6043 (*swap_in) (abfd, erel, s->rela);
6044 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6045 s->u.sym_mask = r_sym_mask;
6046 p += sort_elt;
6047 erel += ext_size;
6048 }
6049 }
6050
6051 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6052
6053 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6054 {
6055 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6056 if (s->type != reloc_class_relative)
6057 break;
6058 }
6059 ret = i;
6060 s_non_relative = p;
6061
6062 sq = (struct elf_link_sort_rela *) s_non_relative;
6063 for (; i < count; i++, p += sort_elt)
6064 {
6065 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6066 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6067 sq = sp;
6068 sp->u.offset = sq->rela->r_offset;
6069 }
6070
6071 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6072
6073 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6074 if (lo->type == bfd_indirect_link_order)
6075 {
6076 bfd_byte *erel, *erelend;
6077 asection *o = lo->u.indirect.section;
6078
6079 erel = o->contents;
6080 erelend = o->contents + o->size;
6081 p = sort + o->output_offset / ext_size * sort_elt;
6082 while (erel < erelend)
6083 {
6084 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6085 (*swap_out) (abfd, s->rela, erel);
6086 p += sort_elt;
6087 erel += ext_size;
6088 }
6089 }
6090
6091 free (sort);
6092 *psec = reldyn;
6093 return ret;
6094 }
6095
6096 /* Flush the output symbols to the file. */
6097
6098 static bfd_boolean
6099 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6100 const struct elf_backend_data *bed)
6101 {
6102 if (finfo->symbuf_count > 0)
6103 {
6104 Elf_Internal_Shdr *hdr;
6105 file_ptr pos;
6106 bfd_size_type amt;
6107
6108 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6109 pos = hdr->sh_offset + hdr->sh_size;
6110 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6111 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6112 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6113 return FALSE;
6114
6115 hdr->sh_size += amt;
6116 finfo->symbuf_count = 0;
6117 }
6118
6119 return TRUE;
6120 }
6121
6122 /* Add a symbol to the output symbol table. */
6123
6124 static bfd_boolean
6125 elf_link_output_sym (struct elf_final_link_info *finfo,
6126 const char *name,
6127 Elf_Internal_Sym *elfsym,
6128 asection *input_sec,
6129 struct elf_link_hash_entry *h)
6130 {
6131 bfd_byte *dest;
6132 Elf_External_Sym_Shndx *destshndx;
6133 bfd_boolean (*output_symbol_hook)
6134 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6135 struct elf_link_hash_entry *);
6136 const struct elf_backend_data *bed;
6137
6138 bed = get_elf_backend_data (finfo->output_bfd);
6139 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6140 if (output_symbol_hook != NULL)
6141 {
6142 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6143 return FALSE;
6144 }
6145
6146 if (name == NULL || *name == '\0')
6147 elfsym->st_name = 0;
6148 else if (input_sec->flags & SEC_EXCLUDE)
6149 elfsym->st_name = 0;
6150 else
6151 {
6152 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6153 name, TRUE, FALSE);
6154 if (elfsym->st_name == (unsigned long) -1)
6155 return FALSE;
6156 }
6157
6158 if (finfo->symbuf_count >= finfo->symbuf_size)
6159 {
6160 if (! elf_link_flush_output_syms (finfo, bed))
6161 return FALSE;
6162 }
6163
6164 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6165 destshndx = finfo->symshndxbuf;
6166 if (destshndx != NULL)
6167 {
6168 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6169 {
6170 bfd_size_type amt;
6171
6172 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6173 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6174 if (destshndx == NULL)
6175 return FALSE;
6176 memset ((char *) destshndx + amt, 0, amt);
6177 finfo->shndxbuf_size *= 2;
6178 }
6179 destshndx += bfd_get_symcount (finfo->output_bfd);
6180 }
6181
6182 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6183 finfo->symbuf_count += 1;
6184 bfd_get_symcount (finfo->output_bfd) += 1;
6185
6186 return TRUE;
6187 }
6188
6189 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6190 allowing an unsatisfied unversioned symbol in the DSO to match a
6191 versioned symbol that would normally require an explicit version.
6192 We also handle the case that a DSO references a hidden symbol
6193 which may be satisfied by a versioned symbol in another DSO. */
6194
6195 static bfd_boolean
6196 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6197 const struct elf_backend_data *bed,
6198 struct elf_link_hash_entry *h)
6199 {
6200 bfd *abfd;
6201 struct elf_link_loaded_list *loaded;
6202
6203 if (!is_elf_hash_table (info->hash))
6204 return FALSE;
6205
6206 switch (h->root.type)
6207 {
6208 default:
6209 abfd = NULL;
6210 break;
6211
6212 case bfd_link_hash_undefined:
6213 case bfd_link_hash_undefweak:
6214 abfd = h->root.u.undef.abfd;
6215 if ((abfd->flags & DYNAMIC) == 0
6216 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6217 return FALSE;
6218 break;
6219
6220 case bfd_link_hash_defined:
6221 case bfd_link_hash_defweak:
6222 abfd = h->root.u.def.section->owner;
6223 break;
6224
6225 case bfd_link_hash_common:
6226 abfd = h->root.u.c.p->section->owner;
6227 break;
6228 }
6229 BFD_ASSERT (abfd != NULL);
6230
6231 for (loaded = elf_hash_table (info)->loaded;
6232 loaded != NULL;
6233 loaded = loaded->next)
6234 {
6235 bfd *input;
6236 Elf_Internal_Shdr *hdr;
6237 bfd_size_type symcount;
6238 bfd_size_type extsymcount;
6239 bfd_size_type extsymoff;
6240 Elf_Internal_Shdr *versymhdr;
6241 Elf_Internal_Sym *isym;
6242 Elf_Internal_Sym *isymend;
6243 Elf_Internal_Sym *isymbuf;
6244 Elf_External_Versym *ever;
6245 Elf_External_Versym *extversym;
6246
6247 input = loaded->abfd;
6248
6249 /* We check each DSO for a possible hidden versioned definition. */
6250 if (input == abfd
6251 || (input->flags & DYNAMIC) == 0
6252 || elf_dynversym (input) == 0)
6253 continue;
6254
6255 hdr = &elf_tdata (input)->dynsymtab_hdr;
6256
6257 symcount = hdr->sh_size / bed->s->sizeof_sym;
6258 if (elf_bad_symtab (input))
6259 {
6260 extsymcount = symcount;
6261 extsymoff = 0;
6262 }
6263 else
6264 {
6265 extsymcount = symcount - hdr->sh_info;
6266 extsymoff = hdr->sh_info;
6267 }
6268
6269 if (extsymcount == 0)
6270 continue;
6271
6272 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6273 NULL, NULL, NULL);
6274 if (isymbuf == NULL)
6275 return FALSE;
6276
6277 /* Read in any version definitions. */
6278 versymhdr = &elf_tdata (input)->dynversym_hdr;
6279 extversym = bfd_malloc (versymhdr->sh_size);
6280 if (extversym == NULL)
6281 goto error_ret;
6282
6283 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6284 || (bfd_bread (extversym, versymhdr->sh_size, input)
6285 != versymhdr->sh_size))
6286 {
6287 free (extversym);
6288 error_ret:
6289 free (isymbuf);
6290 return FALSE;
6291 }
6292
6293 ever = extversym + extsymoff;
6294 isymend = isymbuf + extsymcount;
6295 for (isym = isymbuf; isym < isymend; isym++, ever++)
6296 {
6297 const char *name;
6298 Elf_Internal_Versym iver;
6299 unsigned short version_index;
6300
6301 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6302 || isym->st_shndx == SHN_UNDEF)
6303 continue;
6304
6305 name = bfd_elf_string_from_elf_section (input,
6306 hdr->sh_link,
6307 isym->st_name);
6308 if (strcmp (name, h->root.root.string) != 0)
6309 continue;
6310
6311 _bfd_elf_swap_versym_in (input, ever, &iver);
6312
6313 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6314 {
6315 /* If we have a non-hidden versioned sym, then it should
6316 have provided a definition for the undefined sym. */
6317 abort ();
6318 }
6319
6320 version_index = iver.vs_vers & VERSYM_VERSION;
6321 if (version_index == 1 || version_index == 2)
6322 {
6323 /* This is the base or first version. We can use it. */
6324 free (extversym);
6325 free (isymbuf);
6326 return TRUE;
6327 }
6328 }
6329
6330 free (extversym);
6331 free (isymbuf);
6332 }
6333
6334 return FALSE;
6335 }
6336
6337 /* Add an external symbol to the symbol table. This is called from
6338 the hash table traversal routine. When generating a shared object,
6339 we go through the symbol table twice. The first time we output
6340 anything that might have been forced to local scope in a version
6341 script. The second time we output the symbols that are still
6342 global symbols. */
6343
6344 static bfd_boolean
6345 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6346 {
6347 struct elf_outext_info *eoinfo = data;
6348 struct elf_final_link_info *finfo = eoinfo->finfo;
6349 bfd_boolean strip;
6350 Elf_Internal_Sym sym;
6351 asection *input_sec;
6352 const struct elf_backend_data *bed;
6353
6354 if (h->root.type == bfd_link_hash_warning)
6355 {
6356 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6357 if (h->root.type == bfd_link_hash_new)
6358 return TRUE;
6359 }
6360
6361 /* Decide whether to output this symbol in this pass. */
6362 if (eoinfo->localsyms)
6363 {
6364 if (!h->forced_local)
6365 return TRUE;
6366 }
6367 else
6368 {
6369 if (h->forced_local)
6370 return TRUE;
6371 }
6372
6373 bed = get_elf_backend_data (finfo->output_bfd);
6374
6375 /* If we have an undefined symbol reference here then it must have
6376 come from a shared library that is being linked in. (Undefined
6377 references in regular files have already been handled). If we
6378 are reporting errors for this situation then do so now. */
6379 if (h->root.type == bfd_link_hash_undefined
6380 && h->ref_dynamic
6381 && !h->ref_regular
6382 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6383 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6384 {
6385 if (! ((*finfo->info->callbacks->undefined_symbol)
6386 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6387 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6388 {
6389 eoinfo->failed = TRUE;
6390 return FALSE;
6391 }
6392 }
6393
6394 /* We should also warn if a forced local symbol is referenced from
6395 shared libraries. */
6396 if (! finfo->info->relocatable
6397 && (! finfo->info->shared)
6398 && h->forced_local
6399 && h->ref_dynamic
6400 && !h->dynamic_def
6401 && !h->dynamic_weak
6402 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6403 {
6404 (*_bfd_error_handler)
6405 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6406 finfo->output_bfd,
6407 h->root.u.def.section == bfd_abs_section_ptr
6408 ? finfo->output_bfd : h->root.u.def.section->owner,
6409 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6410 ? "internal"
6411 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6412 ? "hidden" : "local",
6413 h->root.root.string);
6414 eoinfo->failed = TRUE;
6415 return FALSE;
6416 }
6417
6418 /* We don't want to output symbols that have never been mentioned by
6419 a regular file, or that we have been told to strip. However, if
6420 h->indx is set to -2, the symbol is used by a reloc and we must
6421 output it. */
6422 if (h->indx == -2)
6423 strip = FALSE;
6424 else if ((h->def_dynamic
6425 || h->ref_dynamic
6426 || h->root.type == bfd_link_hash_new)
6427 && !h->def_regular
6428 && !h->ref_regular)
6429 strip = TRUE;
6430 else if (finfo->info->strip == strip_all)
6431 strip = TRUE;
6432 else if (finfo->info->strip == strip_some
6433 && bfd_hash_lookup (finfo->info->keep_hash,
6434 h->root.root.string, FALSE, FALSE) == NULL)
6435 strip = TRUE;
6436 else if (finfo->info->strip_discarded
6437 && (h->root.type == bfd_link_hash_defined
6438 || h->root.type == bfd_link_hash_defweak)
6439 && elf_discarded_section (h->root.u.def.section))
6440 strip = TRUE;
6441 else
6442 strip = FALSE;
6443
6444 /* If we're stripping it, and it's not a dynamic symbol, there's
6445 nothing else to do unless it is a forced local symbol. */
6446 if (strip
6447 && h->dynindx == -1
6448 && !h->forced_local)
6449 return TRUE;
6450
6451 sym.st_value = 0;
6452 sym.st_size = h->size;
6453 sym.st_other = h->other;
6454 if (h->forced_local)
6455 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6456 else if (h->root.type == bfd_link_hash_undefweak
6457 || h->root.type == bfd_link_hash_defweak)
6458 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6459 else
6460 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6461
6462 switch (h->root.type)
6463 {
6464 default:
6465 case bfd_link_hash_new:
6466 case bfd_link_hash_warning:
6467 abort ();
6468 return FALSE;
6469
6470 case bfd_link_hash_undefined:
6471 case bfd_link_hash_undefweak:
6472 input_sec = bfd_und_section_ptr;
6473 sym.st_shndx = SHN_UNDEF;
6474 break;
6475
6476 case bfd_link_hash_defined:
6477 case bfd_link_hash_defweak:
6478 {
6479 input_sec = h->root.u.def.section;
6480 if (input_sec->output_section != NULL)
6481 {
6482 sym.st_shndx =
6483 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6484 input_sec->output_section);
6485 if (sym.st_shndx == SHN_BAD)
6486 {
6487 (*_bfd_error_handler)
6488 (_("%B: could not find output section %A for input section %A"),
6489 finfo->output_bfd, input_sec->output_section, input_sec);
6490 eoinfo->failed = TRUE;
6491 return FALSE;
6492 }
6493
6494 /* ELF symbols in relocatable files are section relative,
6495 but in nonrelocatable files they are virtual
6496 addresses. */
6497 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6498 if (! finfo->info->relocatable)
6499 {
6500 sym.st_value += input_sec->output_section->vma;
6501 if (h->type == STT_TLS)
6502 {
6503 /* STT_TLS symbols are relative to PT_TLS segment
6504 base. */
6505 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6506 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6507 }
6508 }
6509 }
6510 else
6511 {
6512 BFD_ASSERT (input_sec->owner == NULL
6513 || (input_sec->owner->flags & DYNAMIC) != 0);
6514 sym.st_shndx = SHN_UNDEF;
6515 input_sec = bfd_und_section_ptr;
6516 }
6517 }
6518 break;
6519
6520 case bfd_link_hash_common:
6521 input_sec = h->root.u.c.p->section;
6522 sym.st_shndx = bed->common_section_index (input_sec);
6523 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6524 break;
6525
6526 case bfd_link_hash_indirect:
6527 /* These symbols are created by symbol versioning. They point
6528 to the decorated version of the name. For example, if the
6529 symbol foo@@GNU_1.2 is the default, which should be used when
6530 foo is used with no version, then we add an indirect symbol
6531 foo which points to foo@@GNU_1.2. We ignore these symbols,
6532 since the indirected symbol is already in the hash table. */
6533 return TRUE;
6534 }
6535
6536 /* Give the processor backend a chance to tweak the symbol value,
6537 and also to finish up anything that needs to be done for this
6538 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6539 forced local syms when non-shared is due to a historical quirk. */
6540 if ((h->dynindx != -1
6541 || h->forced_local)
6542 && ((finfo->info->shared
6543 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6544 || h->root.type != bfd_link_hash_undefweak))
6545 || !h->forced_local)
6546 && elf_hash_table (finfo->info)->dynamic_sections_created)
6547 {
6548 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6549 (finfo->output_bfd, finfo->info, h, &sym)))
6550 {
6551 eoinfo->failed = TRUE;
6552 return FALSE;
6553 }
6554 }
6555
6556 /* If we are marking the symbol as undefined, and there are no
6557 non-weak references to this symbol from a regular object, then
6558 mark the symbol as weak undefined; if there are non-weak
6559 references, mark the symbol as strong. We can't do this earlier,
6560 because it might not be marked as undefined until the
6561 finish_dynamic_symbol routine gets through with it. */
6562 if (sym.st_shndx == SHN_UNDEF
6563 && h->ref_regular
6564 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6565 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6566 {
6567 int bindtype;
6568
6569 if (h->ref_regular_nonweak)
6570 bindtype = STB_GLOBAL;
6571 else
6572 bindtype = STB_WEAK;
6573 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6574 }
6575
6576 /* If a non-weak symbol with non-default visibility is not defined
6577 locally, it is a fatal error. */
6578 if (! finfo->info->relocatable
6579 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6580 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6581 && h->root.type == bfd_link_hash_undefined
6582 && !h->def_regular)
6583 {
6584 (*_bfd_error_handler)
6585 (_("%B: %s symbol `%s' isn't defined"),
6586 finfo->output_bfd,
6587 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6588 ? "protected"
6589 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6590 ? "internal" : "hidden",
6591 h->root.root.string);
6592 eoinfo->failed = TRUE;
6593 return FALSE;
6594 }
6595
6596 /* If this symbol should be put in the .dynsym section, then put it
6597 there now. We already know the symbol index. We also fill in
6598 the entry in the .hash section. */
6599 if (h->dynindx != -1
6600 && elf_hash_table (finfo->info)->dynamic_sections_created)
6601 {
6602 size_t bucketcount;
6603 size_t bucket;
6604 size_t hash_entry_size;
6605 bfd_byte *bucketpos;
6606 bfd_vma chain;
6607 bfd_byte *esym;
6608
6609 sym.st_name = h->dynstr_index;
6610 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6611 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6612
6613 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6614 bucket = h->u.elf_hash_value % bucketcount;
6615 hash_entry_size
6616 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6617 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6618 + (bucket + 2) * hash_entry_size);
6619 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6620 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6621 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6622 ((bfd_byte *) finfo->hash_sec->contents
6623 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6624
6625 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6626 {
6627 Elf_Internal_Versym iversym;
6628 Elf_External_Versym *eversym;
6629
6630 if (!h->def_regular)
6631 {
6632 if (h->verinfo.verdef == NULL)
6633 iversym.vs_vers = 0;
6634 else
6635 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6636 }
6637 else
6638 {
6639 if (h->verinfo.vertree == NULL)
6640 iversym.vs_vers = 1;
6641 else
6642 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6643 if (finfo->info->create_default_symver)
6644 iversym.vs_vers++;
6645 }
6646
6647 if (h->hidden)
6648 iversym.vs_vers |= VERSYM_HIDDEN;
6649
6650 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6651 eversym += h->dynindx;
6652 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6653 }
6654 }
6655
6656 /* If we're stripping it, then it was just a dynamic symbol, and
6657 there's nothing else to do. */
6658 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6659 return TRUE;
6660
6661 h->indx = bfd_get_symcount (finfo->output_bfd);
6662
6663 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6664 {
6665 eoinfo->failed = TRUE;
6666 return FALSE;
6667 }
6668
6669 return TRUE;
6670 }
6671
6672 /* Return TRUE if special handling is done for relocs in SEC against
6673 symbols defined in discarded sections. */
6674
6675 static bfd_boolean
6676 elf_section_ignore_discarded_relocs (asection *sec)
6677 {
6678 const struct elf_backend_data *bed;
6679
6680 switch (sec->sec_info_type)
6681 {
6682 case ELF_INFO_TYPE_STABS:
6683 case ELF_INFO_TYPE_EH_FRAME:
6684 return TRUE;
6685 default:
6686 break;
6687 }
6688
6689 bed = get_elf_backend_data (sec->owner);
6690 if (bed->elf_backend_ignore_discarded_relocs != NULL
6691 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6692 return TRUE;
6693
6694 return FALSE;
6695 }
6696
6697 /* Return a mask saying how ld should treat relocations in SEC against
6698 symbols defined in discarded sections. If this function returns
6699 COMPLAIN set, ld will issue a warning message. If this function
6700 returns PRETEND set, and the discarded section was link-once and the
6701 same size as the kept link-once section, ld will pretend that the
6702 symbol was actually defined in the kept section. Otherwise ld will
6703 zero the reloc (at least that is the intent, but some cooperation by
6704 the target dependent code is needed, particularly for REL targets). */
6705
6706 unsigned int
6707 _bfd_elf_default_action_discarded (asection *sec)
6708 {
6709 if (sec->flags & SEC_DEBUGGING)
6710 return PRETEND;
6711
6712 if (strcmp (".eh_frame", sec->name) == 0)
6713 return 0;
6714
6715 if (strcmp (".gcc_except_table", sec->name) == 0)
6716 return 0;
6717
6718 return COMPLAIN | PRETEND;
6719 }
6720
6721 /* Find a match between a section and a member of a section group. */
6722
6723 static asection *
6724 match_group_member (asection *sec, asection *group)
6725 {
6726 asection *first = elf_next_in_group (group);
6727 asection *s = first;
6728
6729 while (s != NULL)
6730 {
6731 if (bfd_elf_match_symbols_in_sections (s, sec))
6732 return s;
6733
6734 if (s == first)
6735 break;
6736 }
6737
6738 return NULL;
6739 }
6740
6741 /* Check if the kept section of a discarded section SEC can be used
6742 to replace it. Return the replacement if it is OK. Otherwise return
6743 NULL. */
6744
6745 asection *
6746 _bfd_elf_check_kept_section (asection *sec)
6747 {
6748 asection *kept;
6749
6750 kept = sec->kept_section;
6751 if (kept != NULL)
6752 {
6753 if (elf_sec_group (sec) != NULL)
6754 kept = match_group_member (sec, kept);
6755 if (kept != NULL && sec->size != kept->size)
6756 kept = NULL;
6757 }
6758 return kept;
6759 }
6760
6761 /* Link an input file into the linker output file. This function
6762 handles all the sections and relocations of the input file at once.
6763 This is so that we only have to read the local symbols once, and
6764 don't have to keep them in memory. */
6765
6766 static bfd_boolean
6767 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6768 {
6769 bfd_boolean (*relocate_section)
6770 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6771 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6772 bfd *output_bfd;
6773 Elf_Internal_Shdr *symtab_hdr;
6774 size_t locsymcount;
6775 size_t extsymoff;
6776 Elf_Internal_Sym *isymbuf;
6777 Elf_Internal_Sym *isym;
6778 Elf_Internal_Sym *isymend;
6779 long *pindex;
6780 asection **ppsection;
6781 asection *o;
6782 const struct elf_backend_data *bed;
6783 bfd_boolean emit_relocs;
6784 struct elf_link_hash_entry **sym_hashes;
6785
6786 output_bfd = finfo->output_bfd;
6787 bed = get_elf_backend_data (output_bfd);
6788 relocate_section = bed->elf_backend_relocate_section;
6789
6790 /* If this is a dynamic object, we don't want to do anything here:
6791 we don't want the local symbols, and we don't want the section
6792 contents. */
6793 if ((input_bfd->flags & DYNAMIC) != 0)
6794 return TRUE;
6795
6796 emit_relocs = (finfo->info->relocatable
6797 || finfo->info->emitrelocations);
6798
6799 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6800 if (elf_bad_symtab (input_bfd))
6801 {
6802 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6803 extsymoff = 0;
6804 }
6805 else
6806 {
6807 locsymcount = symtab_hdr->sh_info;
6808 extsymoff = symtab_hdr->sh_info;
6809 }
6810
6811 /* Read the local symbols. */
6812 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6813 if (isymbuf == NULL && locsymcount != 0)
6814 {
6815 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6816 finfo->internal_syms,
6817 finfo->external_syms,
6818 finfo->locsym_shndx);
6819 if (isymbuf == NULL)
6820 return FALSE;
6821 }
6822
6823 /* Find local symbol sections and adjust values of symbols in
6824 SEC_MERGE sections. Write out those local symbols we know are
6825 going into the output file. */
6826 isymend = isymbuf + locsymcount;
6827 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6828 isym < isymend;
6829 isym++, pindex++, ppsection++)
6830 {
6831 asection *isec;
6832 const char *name;
6833 Elf_Internal_Sym osym;
6834
6835 *pindex = -1;
6836
6837 if (elf_bad_symtab (input_bfd))
6838 {
6839 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6840 {
6841 *ppsection = NULL;
6842 continue;
6843 }
6844 }
6845
6846 if (isym->st_shndx == SHN_UNDEF)
6847 isec = bfd_und_section_ptr;
6848 else if (isym->st_shndx < SHN_LORESERVE
6849 || isym->st_shndx > SHN_HIRESERVE)
6850 {
6851 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6852 if (isec
6853 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6854 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6855 isym->st_value =
6856 _bfd_merged_section_offset (output_bfd, &isec,
6857 elf_section_data (isec)->sec_info,
6858 isym->st_value);
6859 }
6860 else if (isym->st_shndx == SHN_ABS)
6861 isec = bfd_abs_section_ptr;
6862 else if (isym->st_shndx == SHN_COMMON)
6863 isec = bfd_com_section_ptr;
6864 else
6865 {
6866 /* Who knows? */
6867 isec = NULL;
6868 }
6869
6870 *ppsection = isec;
6871
6872 /* Don't output the first, undefined, symbol. */
6873 if (ppsection == finfo->sections)
6874 continue;
6875
6876 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6877 {
6878 /* We never output section symbols. Instead, we use the
6879 section symbol of the corresponding section in the output
6880 file. */
6881 continue;
6882 }
6883
6884 /* If we are stripping all symbols, we don't want to output this
6885 one. */
6886 if (finfo->info->strip == strip_all)
6887 continue;
6888
6889 /* If we are discarding all local symbols, we don't want to
6890 output this one. If we are generating a relocatable output
6891 file, then some of the local symbols may be required by
6892 relocs; we output them below as we discover that they are
6893 needed. */
6894 if (finfo->info->discard == discard_all)
6895 continue;
6896
6897 /* If this symbol is defined in a section which we are
6898 discarding, we don't need to keep it, but note that
6899 linker_mark is only reliable for sections that have contents.
6900 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6901 as well as linker_mark. */
6902 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6903 && (isec == NULL
6904 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6905 || (! finfo->info->relocatable
6906 && (isec->flags & SEC_EXCLUDE) != 0)))
6907 continue;
6908
6909 /* If the section is not in the output BFD's section list, it is not
6910 being output. */
6911 if (bfd_section_removed_from_list (output_bfd, isec->output_section))
6912 continue;
6913
6914 /* Get the name of the symbol. */
6915 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6916 isym->st_name);
6917 if (name == NULL)
6918 return FALSE;
6919
6920 /* See if we are discarding symbols with this name. */
6921 if ((finfo->info->strip == strip_some
6922 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6923 == NULL))
6924 || (((finfo->info->discard == discard_sec_merge
6925 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6926 || finfo->info->discard == discard_l)
6927 && bfd_is_local_label_name (input_bfd, name)))
6928 continue;
6929
6930 /* If we get here, we are going to output this symbol. */
6931
6932 osym = *isym;
6933
6934 /* Adjust the section index for the output file. */
6935 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6936 isec->output_section);
6937 if (osym.st_shndx == SHN_BAD)
6938 return FALSE;
6939
6940 *pindex = bfd_get_symcount (output_bfd);
6941
6942 /* ELF symbols in relocatable files are section relative, but
6943 in executable files they are virtual addresses. Note that
6944 this code assumes that all ELF sections have an associated
6945 BFD section with a reasonable value for output_offset; below
6946 we assume that they also have a reasonable value for
6947 output_section. Any special sections must be set up to meet
6948 these requirements. */
6949 osym.st_value += isec->output_offset;
6950 if (! finfo->info->relocatable)
6951 {
6952 osym.st_value += isec->output_section->vma;
6953 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6954 {
6955 /* STT_TLS symbols are relative to PT_TLS segment base. */
6956 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6957 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6958 }
6959 }
6960
6961 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6962 return FALSE;
6963 }
6964
6965 /* Relocate the contents of each section. */
6966 sym_hashes = elf_sym_hashes (input_bfd);
6967 for (o = input_bfd->sections; o != NULL; o = o->next)
6968 {
6969 bfd_byte *contents;
6970
6971 if (! o->linker_mark)
6972 {
6973 /* This section was omitted from the link. */
6974 continue;
6975 }
6976
6977 if ((o->flags & SEC_HAS_CONTENTS) == 0
6978 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6979 continue;
6980
6981 if ((o->flags & SEC_LINKER_CREATED) != 0)
6982 {
6983 /* Section was created by _bfd_elf_link_create_dynamic_sections
6984 or somesuch. */
6985 continue;
6986 }
6987
6988 /* Get the contents of the section. They have been cached by a
6989 relaxation routine. Note that o is a section in an input
6990 file, so the contents field will not have been set by any of
6991 the routines which work on output files. */
6992 if (elf_section_data (o)->this_hdr.contents != NULL)
6993 contents = elf_section_data (o)->this_hdr.contents;
6994 else
6995 {
6996 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6997
6998 contents = finfo->contents;
6999 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
7000 return FALSE;
7001 }
7002
7003 if ((o->flags & SEC_RELOC) != 0)
7004 {
7005 Elf_Internal_Rela *internal_relocs;
7006 bfd_vma r_type_mask;
7007 int r_sym_shift;
7008
7009 /* Get the swapped relocs. */
7010 internal_relocs
7011 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
7012 finfo->internal_relocs, FALSE);
7013 if (internal_relocs == NULL
7014 && o->reloc_count > 0)
7015 return FALSE;
7016
7017 if (bed->s->arch_size == 32)
7018 {
7019 r_type_mask = 0xff;
7020 r_sym_shift = 8;
7021 }
7022 else
7023 {
7024 r_type_mask = 0xffffffff;
7025 r_sym_shift = 32;
7026 }
7027
7028 /* Run through the relocs looking for any against symbols
7029 from discarded sections and section symbols from
7030 removed link-once sections. Complain about relocs
7031 against discarded sections. Zero relocs against removed
7032 link-once sections. Preserve debug information as much
7033 as we can. */
7034 if (!elf_section_ignore_discarded_relocs (o))
7035 {
7036 Elf_Internal_Rela *rel, *relend;
7037 unsigned int action = (*bed->action_discarded) (o);
7038
7039 rel = internal_relocs;
7040 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7041 for ( ; rel < relend; rel++)
7042 {
7043 unsigned long r_symndx = rel->r_info >> r_sym_shift;
7044 asection **ps, *sec;
7045 struct elf_link_hash_entry *h = NULL;
7046 const char *sym_name;
7047
7048 if (r_symndx == STN_UNDEF)
7049 continue;
7050
7051 if (r_symndx >= locsymcount
7052 || (elf_bad_symtab (input_bfd)
7053 && finfo->sections[r_symndx] == NULL))
7054 {
7055 h = sym_hashes[r_symndx - extsymoff];
7056
7057 /* Badly formatted input files can contain relocs that
7058 reference non-existant symbols. Check here so that
7059 we do not seg fault. */
7060 if (h == NULL)
7061 {
7062 char buffer [32];
7063
7064 sprintf_vma (buffer, rel->r_info);
7065 (*_bfd_error_handler)
7066 (_("error: %B contains a reloc (0x%s) for section %A "
7067 "that references a non-existent global symbol"),
7068 input_bfd, o, buffer);
7069 bfd_set_error (bfd_error_bad_value);
7070 return FALSE;
7071 }
7072
7073 while (h->root.type == bfd_link_hash_indirect
7074 || h->root.type == bfd_link_hash_warning)
7075 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7076
7077 if (h->root.type != bfd_link_hash_defined
7078 && h->root.type != bfd_link_hash_defweak)
7079 continue;
7080
7081 ps = &h->root.u.def.section;
7082 sym_name = h->root.root.string;
7083 }
7084 else
7085 {
7086 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7087 ps = &finfo->sections[r_symndx];
7088 sym_name = bfd_elf_sym_name (input_bfd,
7089 symtab_hdr,
7090 sym, *ps);
7091 }
7092
7093 /* Complain if the definition comes from a
7094 discarded section. */
7095 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7096 {
7097 BFD_ASSERT (r_symndx != 0);
7098 if (action & COMPLAIN)
7099 (*finfo->info->callbacks->einfo)
7100 (_("%X`%s' referenced in section `%A' of %B: "
7101 "defined in discarded section `%A' of %B\n"),
7102 sym_name, o, input_bfd, sec, sec->owner);
7103
7104 /* Try to do the best we can to support buggy old
7105 versions of gcc. If we've warned, or this is
7106 debugging info, pretend that the symbol is
7107 really defined in the kept linkonce section.
7108 FIXME: This is quite broken. Modifying the
7109 symbol here means we will be changing all later
7110 uses of the symbol, not just in this section.
7111 The only thing that makes this half reasonable
7112 is that we warn in non-debug sections, and
7113 debug sections tend to come after other
7114 sections. */
7115 if (action & PRETEND)
7116 {
7117 asection *kept;
7118
7119 kept = _bfd_elf_check_kept_section (sec);
7120 if (kept != NULL)
7121 {
7122 *ps = kept;
7123 continue;
7124 }
7125 }
7126
7127 /* Remove the symbol reference from the reloc, but
7128 don't kill the reloc completely. This is so that
7129 a zero value will be written into the section,
7130 which may have non-zero contents put there by the
7131 assembler. Zero in things like an eh_frame fde
7132 pc_begin allows stack unwinders to recognize the
7133 fde as bogus. */
7134 rel->r_info &= r_type_mask;
7135 rel->r_addend = 0;
7136 }
7137 }
7138 }
7139
7140 /* Relocate the section by invoking a back end routine.
7141
7142 The back end routine is responsible for adjusting the
7143 section contents as necessary, and (if using Rela relocs
7144 and generating a relocatable output file) adjusting the
7145 reloc addend as necessary.
7146
7147 The back end routine does not have to worry about setting
7148 the reloc address or the reloc symbol index.
7149
7150 The back end routine is given a pointer to the swapped in
7151 internal symbols, and can access the hash table entries
7152 for the external symbols via elf_sym_hashes (input_bfd).
7153
7154 When generating relocatable output, the back end routine
7155 must handle STB_LOCAL/STT_SECTION symbols specially. The
7156 output symbol is going to be a section symbol
7157 corresponding to the output section, which will require
7158 the addend to be adjusted. */
7159
7160 if (! (*relocate_section) (output_bfd, finfo->info,
7161 input_bfd, o, contents,
7162 internal_relocs,
7163 isymbuf,
7164 finfo->sections))
7165 return FALSE;
7166
7167 if (emit_relocs)
7168 {
7169 Elf_Internal_Rela *irela;
7170 Elf_Internal_Rela *irelaend;
7171 bfd_vma last_offset;
7172 struct elf_link_hash_entry **rel_hash;
7173 struct elf_link_hash_entry **rel_hash_list;
7174 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7175 unsigned int next_erel;
7176 bfd_boolean rela_normal;
7177
7178 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7179 rela_normal = (bed->rela_normal
7180 && (input_rel_hdr->sh_entsize
7181 == bed->s->sizeof_rela));
7182
7183 /* Adjust the reloc addresses and symbol indices. */
7184
7185 irela = internal_relocs;
7186 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7187 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7188 + elf_section_data (o->output_section)->rel_count
7189 + elf_section_data (o->output_section)->rel_count2);
7190 rel_hash_list = rel_hash;
7191 last_offset = o->output_offset;
7192 if (!finfo->info->relocatable)
7193 last_offset += o->output_section->vma;
7194 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7195 {
7196 unsigned long r_symndx;
7197 asection *sec;
7198 Elf_Internal_Sym sym;
7199
7200 if (next_erel == bed->s->int_rels_per_ext_rel)
7201 {
7202 rel_hash++;
7203 next_erel = 0;
7204 }
7205
7206 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7207 finfo->info, o,
7208 irela->r_offset);
7209 if (irela->r_offset >= (bfd_vma) -2)
7210 {
7211 /* This is a reloc for a deleted entry or somesuch.
7212 Turn it into an R_*_NONE reloc, at the same
7213 offset as the last reloc. elf_eh_frame.c and
7214 elf_bfd_discard_info rely on reloc offsets
7215 being ordered. */
7216 irela->r_offset = last_offset;
7217 irela->r_info = 0;
7218 irela->r_addend = 0;
7219 continue;
7220 }
7221
7222 irela->r_offset += o->output_offset;
7223
7224 /* Relocs in an executable have to be virtual addresses. */
7225 if (!finfo->info->relocatable)
7226 irela->r_offset += o->output_section->vma;
7227
7228 last_offset = irela->r_offset;
7229
7230 r_symndx = irela->r_info >> r_sym_shift;
7231 if (r_symndx == STN_UNDEF)
7232 continue;
7233
7234 if (r_symndx >= locsymcount
7235 || (elf_bad_symtab (input_bfd)
7236 && finfo->sections[r_symndx] == NULL))
7237 {
7238 struct elf_link_hash_entry *rh;
7239 unsigned long indx;
7240
7241 /* This is a reloc against a global symbol. We
7242 have not yet output all the local symbols, so
7243 we do not know the symbol index of any global
7244 symbol. We set the rel_hash entry for this
7245 reloc to point to the global hash table entry
7246 for this symbol. The symbol index is then
7247 set at the end of bfd_elf_final_link. */
7248 indx = r_symndx - extsymoff;
7249 rh = elf_sym_hashes (input_bfd)[indx];
7250 while (rh->root.type == bfd_link_hash_indirect
7251 || rh->root.type == bfd_link_hash_warning)
7252 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7253
7254 /* Setting the index to -2 tells
7255 elf_link_output_extsym that this symbol is
7256 used by a reloc. */
7257 BFD_ASSERT (rh->indx < 0);
7258 rh->indx = -2;
7259
7260 *rel_hash = rh;
7261
7262 continue;
7263 }
7264
7265 /* This is a reloc against a local symbol. */
7266
7267 *rel_hash = NULL;
7268 sym = isymbuf[r_symndx];
7269 sec = finfo->sections[r_symndx];
7270 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7271 {
7272 /* I suppose the backend ought to fill in the
7273 section of any STT_SECTION symbol against a
7274 processor specific section. */
7275 r_symndx = 0;
7276 if (bfd_is_abs_section (sec))
7277 ;
7278 else if (sec == NULL || sec->owner == NULL)
7279 {
7280 bfd_set_error (bfd_error_bad_value);
7281 return FALSE;
7282 }
7283 else
7284 {
7285 asection *osec = sec->output_section;
7286
7287 /* If we have discarded a section, the output
7288 section will be the absolute section. In
7289 case of discarded link-once and discarded
7290 SEC_MERGE sections, use the kept section. */
7291 if (bfd_is_abs_section (osec)
7292 && sec->kept_section != NULL
7293 && sec->kept_section->output_section != NULL)
7294 {
7295 osec = sec->kept_section->output_section;
7296 irela->r_addend -= osec->vma;
7297 }
7298
7299 if (!bfd_is_abs_section (osec))
7300 {
7301 r_symndx = osec->target_index;
7302 BFD_ASSERT (r_symndx != 0);
7303 }
7304 }
7305
7306 /* Adjust the addend according to where the
7307 section winds up in the output section. */
7308 if (rela_normal)
7309 irela->r_addend += sec->output_offset;
7310 }
7311 else
7312 {
7313 if (finfo->indices[r_symndx] == -1)
7314 {
7315 unsigned long shlink;
7316 const char *name;
7317 asection *osec;
7318
7319 if (finfo->info->strip == strip_all)
7320 {
7321 /* You can't do ld -r -s. */
7322 bfd_set_error (bfd_error_invalid_operation);
7323 return FALSE;
7324 }
7325
7326 /* This symbol was skipped earlier, but
7327 since it is needed by a reloc, we
7328 must output it now. */
7329 shlink = symtab_hdr->sh_link;
7330 name = (bfd_elf_string_from_elf_section
7331 (input_bfd, shlink, sym.st_name));
7332 if (name == NULL)
7333 return FALSE;
7334
7335 osec = sec->output_section;
7336 sym.st_shndx =
7337 _bfd_elf_section_from_bfd_section (output_bfd,
7338 osec);
7339 if (sym.st_shndx == SHN_BAD)
7340 return FALSE;
7341
7342 sym.st_value += sec->output_offset;
7343 if (! finfo->info->relocatable)
7344 {
7345 sym.st_value += osec->vma;
7346 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7347 {
7348 /* STT_TLS symbols are relative to PT_TLS
7349 segment base. */
7350 BFD_ASSERT (elf_hash_table (finfo->info)
7351 ->tls_sec != NULL);
7352 sym.st_value -= (elf_hash_table (finfo->info)
7353 ->tls_sec->vma);
7354 }
7355 }
7356
7357 finfo->indices[r_symndx]
7358 = bfd_get_symcount (output_bfd);
7359
7360 if (! elf_link_output_sym (finfo, name, &sym, sec,
7361 NULL))
7362 return FALSE;
7363 }
7364
7365 r_symndx = finfo->indices[r_symndx];
7366 }
7367
7368 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7369 | (irela->r_info & r_type_mask));
7370 }
7371
7372 /* Swap out the relocs. */
7373 if (input_rel_hdr->sh_size != 0
7374 && !bed->elf_backend_emit_relocs (output_bfd, o,
7375 input_rel_hdr,
7376 internal_relocs,
7377 rel_hash_list))
7378 return FALSE;
7379
7380 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7381 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7382 {
7383 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7384 * bed->s->int_rels_per_ext_rel);
7385 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7386 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7387 input_rel_hdr2,
7388 internal_relocs,
7389 rel_hash_list))
7390 return FALSE;
7391 }
7392 }
7393 }
7394
7395 /* Write out the modified section contents. */
7396 if (bed->elf_backend_write_section
7397 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7398 {
7399 /* Section written out. */
7400 }
7401 else switch (o->sec_info_type)
7402 {
7403 case ELF_INFO_TYPE_STABS:
7404 if (! (_bfd_write_section_stabs
7405 (output_bfd,
7406 &elf_hash_table (finfo->info)->stab_info,
7407 o, &elf_section_data (o)->sec_info, contents)))
7408 return FALSE;
7409 break;
7410 case ELF_INFO_TYPE_MERGE:
7411 if (! _bfd_write_merged_section (output_bfd, o,
7412 elf_section_data (o)->sec_info))
7413 return FALSE;
7414 break;
7415 case ELF_INFO_TYPE_EH_FRAME:
7416 {
7417 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7418 o, contents))
7419 return FALSE;
7420 }
7421 break;
7422 default:
7423 {
7424 if (! (o->flags & SEC_EXCLUDE)
7425 && ! bfd_set_section_contents (output_bfd, o->output_section,
7426 contents,
7427 (file_ptr) o->output_offset,
7428 o->size))
7429 return FALSE;
7430 }
7431 break;
7432 }
7433 }
7434
7435 return TRUE;
7436 }
7437
7438 /* Generate a reloc when linking an ELF file. This is a reloc
7439 requested by the linker, and does come from any input file. This
7440 is used to build constructor and destructor tables when linking
7441 with -Ur. */
7442
7443 static bfd_boolean
7444 elf_reloc_link_order (bfd *output_bfd,
7445 struct bfd_link_info *info,
7446 asection *output_section,
7447 struct bfd_link_order *link_order)
7448 {
7449 reloc_howto_type *howto;
7450 long indx;
7451 bfd_vma offset;
7452 bfd_vma addend;
7453 struct elf_link_hash_entry **rel_hash_ptr;
7454 Elf_Internal_Shdr *rel_hdr;
7455 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7456 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7457 bfd_byte *erel;
7458 unsigned int i;
7459
7460 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7461 if (howto == NULL)
7462 {
7463 bfd_set_error (bfd_error_bad_value);
7464 return FALSE;
7465 }
7466
7467 addend = link_order->u.reloc.p->addend;
7468
7469 /* Figure out the symbol index. */
7470 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7471 + elf_section_data (output_section)->rel_count
7472 + elf_section_data (output_section)->rel_count2);
7473 if (link_order->type == bfd_section_reloc_link_order)
7474 {
7475 indx = link_order->u.reloc.p->u.section->target_index;
7476 BFD_ASSERT (indx != 0);
7477 *rel_hash_ptr = NULL;
7478 }
7479 else
7480 {
7481 struct elf_link_hash_entry *h;
7482
7483 /* Treat a reloc against a defined symbol as though it were
7484 actually against the section. */
7485 h = ((struct elf_link_hash_entry *)
7486 bfd_wrapped_link_hash_lookup (output_bfd, info,
7487 link_order->u.reloc.p->u.name,
7488 FALSE, FALSE, TRUE));
7489 if (h != NULL
7490 && (h->root.type == bfd_link_hash_defined
7491 || h->root.type == bfd_link_hash_defweak))
7492 {
7493 asection *section;
7494
7495 section = h->root.u.def.section;
7496 indx = section->output_section->target_index;
7497 *rel_hash_ptr = NULL;
7498 /* It seems that we ought to add the symbol value to the
7499 addend here, but in practice it has already been added
7500 because it was passed to constructor_callback. */
7501 addend += section->output_section->vma + section->output_offset;
7502 }
7503 else if (h != NULL)
7504 {
7505 /* Setting the index to -2 tells elf_link_output_extsym that
7506 this symbol is used by a reloc. */
7507 h->indx = -2;
7508 *rel_hash_ptr = h;
7509 indx = 0;
7510 }
7511 else
7512 {
7513 if (! ((*info->callbacks->unattached_reloc)
7514 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7515 return FALSE;
7516 indx = 0;
7517 }
7518 }
7519
7520 /* If this is an inplace reloc, we must write the addend into the
7521 object file. */
7522 if (howto->partial_inplace && addend != 0)
7523 {
7524 bfd_size_type size;
7525 bfd_reloc_status_type rstat;
7526 bfd_byte *buf;
7527 bfd_boolean ok;
7528 const char *sym_name;
7529
7530 size = bfd_get_reloc_size (howto);
7531 buf = bfd_zmalloc (size);
7532 if (buf == NULL)
7533 return FALSE;
7534 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7535 switch (rstat)
7536 {
7537 case bfd_reloc_ok:
7538 break;
7539
7540 default:
7541 case bfd_reloc_outofrange:
7542 abort ();
7543
7544 case bfd_reloc_overflow:
7545 if (link_order->type == bfd_section_reloc_link_order)
7546 sym_name = bfd_section_name (output_bfd,
7547 link_order->u.reloc.p->u.section);
7548 else
7549 sym_name = link_order->u.reloc.p->u.name;
7550 if (! ((*info->callbacks->reloc_overflow)
7551 (info, NULL, sym_name, howto->name, addend, NULL,
7552 NULL, (bfd_vma) 0)))
7553 {
7554 free (buf);
7555 return FALSE;
7556 }
7557 break;
7558 }
7559 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7560 link_order->offset, size);
7561 free (buf);
7562 if (! ok)
7563 return FALSE;
7564 }
7565
7566 /* The address of a reloc is relative to the section in a
7567 relocatable file, and is a virtual address in an executable
7568 file. */
7569 offset = link_order->offset;
7570 if (! info->relocatable)
7571 offset += output_section->vma;
7572
7573 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7574 {
7575 irel[i].r_offset = offset;
7576 irel[i].r_info = 0;
7577 irel[i].r_addend = 0;
7578 }
7579 if (bed->s->arch_size == 32)
7580 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7581 else
7582 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7583
7584 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7585 erel = rel_hdr->contents;
7586 if (rel_hdr->sh_type == SHT_REL)
7587 {
7588 erel += (elf_section_data (output_section)->rel_count
7589 * bed->s->sizeof_rel);
7590 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7591 }
7592 else
7593 {
7594 irel[0].r_addend = addend;
7595 erel += (elf_section_data (output_section)->rel_count
7596 * bed->s->sizeof_rela);
7597 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7598 }
7599
7600 ++elf_section_data (output_section)->rel_count;
7601
7602 return TRUE;
7603 }
7604
7605
7606 /* Get the output vma of the section pointed to by the sh_link field. */
7607
7608 static bfd_vma
7609 elf_get_linked_section_vma (struct bfd_link_order *p)
7610 {
7611 Elf_Internal_Shdr **elf_shdrp;
7612 asection *s;
7613 int elfsec;
7614
7615 s = p->u.indirect.section;
7616 elf_shdrp = elf_elfsections (s->owner);
7617 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7618 elfsec = elf_shdrp[elfsec]->sh_link;
7619 /* PR 290:
7620 The Intel C compiler generates SHT_IA_64_UNWIND with
7621 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7622 sh_info fields. Hence we could get the situation
7623 where elfsec is 0. */
7624 if (elfsec == 0)
7625 {
7626 const struct elf_backend_data *bed
7627 = get_elf_backend_data (s->owner);
7628 if (bed->link_order_error_handler)
7629 bed->link_order_error_handler
7630 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7631 return 0;
7632 }
7633 else
7634 {
7635 s = elf_shdrp[elfsec]->bfd_section;
7636 return s->output_section->vma + s->output_offset;
7637 }
7638 }
7639
7640
7641 /* Compare two sections based on the locations of the sections they are
7642 linked to. Used by elf_fixup_link_order. */
7643
7644 static int
7645 compare_link_order (const void * a, const void * b)
7646 {
7647 bfd_vma apos;
7648 bfd_vma bpos;
7649
7650 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7651 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7652 if (apos < bpos)
7653 return -1;
7654 return apos > bpos;
7655 }
7656
7657
7658 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7659 order as their linked sections. Returns false if this could not be done
7660 because an output section includes both ordered and unordered
7661 sections. Ideally we'd do this in the linker proper. */
7662
7663 static bfd_boolean
7664 elf_fixup_link_order (bfd *abfd, asection *o)
7665 {
7666 int seen_linkorder;
7667 int seen_other;
7668 int n;
7669 struct bfd_link_order *p;
7670 bfd *sub;
7671 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7672 int elfsec;
7673 struct bfd_link_order **sections;
7674 asection *s;
7675 bfd_vma offset;
7676
7677 seen_other = 0;
7678 seen_linkorder = 0;
7679 for (p = o->map_head.link_order; p != NULL; p = p->next)
7680 {
7681 if (p->type == bfd_indirect_link_order
7682 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7683 == bfd_target_elf_flavour)
7684 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7685 {
7686 s = p->u.indirect.section;
7687 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7688 if (elfsec != -1
7689 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7690 seen_linkorder++;
7691 else
7692 seen_other++;
7693 }
7694 else
7695 seen_other++;
7696 }
7697
7698 if (!seen_linkorder)
7699 return TRUE;
7700
7701 if (seen_other && seen_linkorder)
7702 {
7703 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7704 o);
7705 bfd_set_error (bfd_error_bad_value);
7706 return FALSE;
7707 }
7708
7709 sections = (struct bfd_link_order **)
7710 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7711 seen_linkorder = 0;
7712
7713 for (p = o->map_head.link_order; p != NULL; p = p->next)
7714 {
7715 sections[seen_linkorder++] = p;
7716 }
7717 /* Sort the input sections in the order of their linked section. */
7718 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7719 compare_link_order);
7720
7721 /* Change the offsets of the sections. */
7722 offset = 0;
7723 for (n = 0; n < seen_linkorder; n++)
7724 {
7725 s = sections[n]->u.indirect.section;
7726 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7727 s->output_offset = offset;
7728 sections[n]->offset = offset;
7729 offset += sections[n]->size;
7730 }
7731
7732 return TRUE;
7733 }
7734
7735
7736 /* Do the final step of an ELF link. */
7737
7738 bfd_boolean
7739 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7740 {
7741 bfd_boolean dynamic;
7742 bfd_boolean emit_relocs;
7743 bfd *dynobj;
7744 struct elf_final_link_info finfo;
7745 register asection *o;
7746 register struct bfd_link_order *p;
7747 register bfd *sub;
7748 bfd_size_type max_contents_size;
7749 bfd_size_type max_external_reloc_size;
7750 bfd_size_type max_internal_reloc_count;
7751 bfd_size_type max_sym_count;
7752 bfd_size_type max_sym_shndx_count;
7753 file_ptr off;
7754 Elf_Internal_Sym elfsym;
7755 unsigned int i;
7756 Elf_Internal_Shdr *symtab_hdr;
7757 Elf_Internal_Shdr *symtab_shndx_hdr;
7758 Elf_Internal_Shdr *symstrtab_hdr;
7759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7760 struct elf_outext_info eoinfo;
7761 bfd_boolean merged;
7762 size_t relativecount = 0;
7763 asection *reldyn = 0;
7764 bfd_size_type amt;
7765
7766 if (! is_elf_hash_table (info->hash))
7767 return FALSE;
7768
7769 if (info->shared)
7770 abfd->flags |= DYNAMIC;
7771
7772 dynamic = elf_hash_table (info)->dynamic_sections_created;
7773 dynobj = elf_hash_table (info)->dynobj;
7774
7775 emit_relocs = (info->relocatable
7776 || info->emitrelocations
7777 || bed->elf_backend_emit_relocs);
7778
7779 finfo.info = info;
7780 finfo.output_bfd = abfd;
7781 finfo.symstrtab = _bfd_elf_stringtab_init ();
7782 if (finfo.symstrtab == NULL)
7783 return FALSE;
7784
7785 if (! dynamic)
7786 {
7787 finfo.dynsym_sec = NULL;
7788 finfo.hash_sec = NULL;
7789 finfo.symver_sec = NULL;
7790 }
7791 else
7792 {
7793 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7794 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7795 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7796 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7797 /* Note that it is OK if symver_sec is NULL. */
7798 }
7799
7800 finfo.contents = NULL;
7801 finfo.external_relocs = NULL;
7802 finfo.internal_relocs = NULL;
7803 finfo.external_syms = NULL;
7804 finfo.locsym_shndx = NULL;
7805 finfo.internal_syms = NULL;
7806 finfo.indices = NULL;
7807 finfo.sections = NULL;
7808 finfo.symbuf = NULL;
7809 finfo.symshndxbuf = NULL;
7810 finfo.symbuf_count = 0;
7811 finfo.shndxbuf_size = 0;
7812
7813 /* Count up the number of relocations we will output for each output
7814 section, so that we know the sizes of the reloc sections. We
7815 also figure out some maximum sizes. */
7816 max_contents_size = 0;
7817 max_external_reloc_size = 0;
7818 max_internal_reloc_count = 0;
7819 max_sym_count = 0;
7820 max_sym_shndx_count = 0;
7821 merged = FALSE;
7822 for (o = abfd->sections; o != NULL; o = o->next)
7823 {
7824 struct bfd_elf_section_data *esdo = elf_section_data (o);
7825 o->reloc_count = 0;
7826
7827 for (p = o->map_head.link_order; p != NULL; p = p->next)
7828 {
7829 unsigned int reloc_count = 0;
7830 struct bfd_elf_section_data *esdi = NULL;
7831 unsigned int *rel_count1;
7832
7833 if (p->type == bfd_section_reloc_link_order
7834 || p->type == bfd_symbol_reloc_link_order)
7835 reloc_count = 1;
7836 else if (p->type == bfd_indirect_link_order)
7837 {
7838 asection *sec;
7839
7840 sec = p->u.indirect.section;
7841 esdi = elf_section_data (sec);
7842
7843 /* Mark all sections which are to be included in the
7844 link. This will normally be every section. We need
7845 to do this so that we can identify any sections which
7846 the linker has decided to not include. */
7847 sec->linker_mark = TRUE;
7848
7849 if (sec->flags & SEC_MERGE)
7850 merged = TRUE;
7851
7852 if (info->relocatable || info->emitrelocations)
7853 reloc_count = sec->reloc_count;
7854 else if (bed->elf_backend_count_relocs)
7855 {
7856 Elf_Internal_Rela * relocs;
7857
7858 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7859 info->keep_memory);
7860
7861 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7862
7863 if (elf_section_data (o)->relocs != relocs)
7864 free (relocs);
7865 }
7866
7867 if (sec->rawsize > max_contents_size)
7868 max_contents_size = sec->rawsize;
7869 if (sec->size > max_contents_size)
7870 max_contents_size = sec->size;
7871
7872 /* We are interested in just local symbols, not all
7873 symbols. */
7874 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7875 && (sec->owner->flags & DYNAMIC) == 0)
7876 {
7877 size_t sym_count;
7878
7879 if (elf_bad_symtab (sec->owner))
7880 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7881 / bed->s->sizeof_sym);
7882 else
7883 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7884
7885 if (sym_count > max_sym_count)
7886 max_sym_count = sym_count;
7887
7888 if (sym_count > max_sym_shndx_count
7889 && elf_symtab_shndx (sec->owner) != 0)
7890 max_sym_shndx_count = sym_count;
7891
7892 if ((sec->flags & SEC_RELOC) != 0)
7893 {
7894 size_t ext_size;
7895
7896 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7897 if (ext_size > max_external_reloc_size)
7898 max_external_reloc_size = ext_size;
7899 if (sec->reloc_count > max_internal_reloc_count)
7900 max_internal_reloc_count = sec->reloc_count;
7901 }
7902 }
7903 }
7904
7905 if (reloc_count == 0)
7906 continue;
7907
7908 o->reloc_count += reloc_count;
7909
7910 /* MIPS may have a mix of REL and RELA relocs on sections.
7911 To support this curious ABI we keep reloc counts in
7912 elf_section_data too. We must be careful to add the
7913 relocations from the input section to the right output
7914 count. FIXME: Get rid of one count. We have
7915 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7916 rel_count1 = &esdo->rel_count;
7917 if (esdi != NULL)
7918 {
7919 bfd_boolean same_size;
7920 bfd_size_type entsize1;
7921
7922 entsize1 = esdi->rel_hdr.sh_entsize;
7923 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7924 || entsize1 == bed->s->sizeof_rela);
7925 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7926
7927 if (!same_size)
7928 rel_count1 = &esdo->rel_count2;
7929
7930 if (esdi->rel_hdr2 != NULL)
7931 {
7932 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7933 unsigned int alt_count;
7934 unsigned int *rel_count2;
7935
7936 BFD_ASSERT (entsize2 != entsize1
7937 && (entsize2 == bed->s->sizeof_rel
7938 || entsize2 == bed->s->sizeof_rela));
7939
7940 rel_count2 = &esdo->rel_count2;
7941 if (!same_size)
7942 rel_count2 = &esdo->rel_count;
7943
7944 /* The following is probably too simplistic if the
7945 backend counts output relocs unusually. */
7946 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7947 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7948 *rel_count2 += alt_count;
7949 reloc_count -= alt_count;
7950 }
7951 }
7952 *rel_count1 += reloc_count;
7953 }
7954
7955 if (o->reloc_count > 0)
7956 o->flags |= SEC_RELOC;
7957 else
7958 {
7959 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7960 set it (this is probably a bug) and if it is set
7961 assign_section_numbers will create a reloc section. */
7962 o->flags &=~ SEC_RELOC;
7963 }
7964
7965 /* If the SEC_ALLOC flag is not set, force the section VMA to
7966 zero. This is done in elf_fake_sections as well, but forcing
7967 the VMA to 0 here will ensure that relocs against these
7968 sections are handled correctly. */
7969 if ((o->flags & SEC_ALLOC) == 0
7970 && ! o->user_set_vma)
7971 o->vma = 0;
7972 }
7973
7974 if (! info->relocatable && merged)
7975 elf_link_hash_traverse (elf_hash_table (info),
7976 _bfd_elf_link_sec_merge_syms, abfd);
7977
7978 /* Figure out the file positions for everything but the symbol table
7979 and the relocs. We set symcount to force assign_section_numbers
7980 to create a symbol table. */
7981 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7982 BFD_ASSERT (! abfd->output_has_begun);
7983 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7984 goto error_return;
7985
7986 /* Set sizes, and assign file positions for reloc sections. */
7987 for (o = abfd->sections; o != NULL; o = o->next)
7988 {
7989 if ((o->flags & SEC_RELOC) != 0)
7990 {
7991 if (!(_bfd_elf_link_size_reloc_section
7992 (abfd, &elf_section_data (o)->rel_hdr, o)))
7993 goto error_return;
7994
7995 if (elf_section_data (o)->rel_hdr2
7996 && !(_bfd_elf_link_size_reloc_section
7997 (abfd, elf_section_data (o)->rel_hdr2, o)))
7998 goto error_return;
7999 }
8000
8001 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
8002 to count upwards while actually outputting the relocations. */
8003 elf_section_data (o)->rel_count = 0;
8004 elf_section_data (o)->rel_count2 = 0;
8005 }
8006
8007 _bfd_elf_assign_file_positions_for_relocs (abfd);
8008
8009 /* We have now assigned file positions for all the sections except
8010 .symtab and .strtab. We start the .symtab section at the current
8011 file position, and write directly to it. We build the .strtab
8012 section in memory. */
8013 bfd_get_symcount (abfd) = 0;
8014 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8015 /* sh_name is set in prep_headers. */
8016 symtab_hdr->sh_type = SHT_SYMTAB;
8017 /* sh_flags, sh_addr and sh_size all start off zero. */
8018 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8019 /* sh_link is set in assign_section_numbers. */
8020 /* sh_info is set below. */
8021 /* sh_offset is set just below. */
8022 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8023
8024 off = elf_tdata (abfd)->next_file_pos;
8025 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8026
8027 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8028 incorrect. We do not yet know the size of the .symtab section.
8029 We correct next_file_pos below, after we do know the size. */
8030
8031 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8032 continuously seeking to the right position in the file. */
8033 if (! info->keep_memory || max_sym_count < 20)
8034 finfo.symbuf_size = 20;
8035 else
8036 finfo.symbuf_size = max_sym_count;
8037 amt = finfo.symbuf_size;
8038 amt *= bed->s->sizeof_sym;
8039 finfo.symbuf = bfd_malloc (amt);
8040 if (finfo.symbuf == NULL)
8041 goto error_return;
8042 if (elf_numsections (abfd) > SHN_LORESERVE)
8043 {
8044 /* Wild guess at number of output symbols. realloc'd as needed. */
8045 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8046 finfo.shndxbuf_size = amt;
8047 amt *= sizeof (Elf_External_Sym_Shndx);
8048 finfo.symshndxbuf = bfd_zmalloc (amt);
8049 if (finfo.symshndxbuf == NULL)
8050 goto error_return;
8051 }
8052
8053 /* Start writing out the symbol table. The first symbol is always a
8054 dummy symbol. */
8055 if (info->strip != strip_all
8056 || emit_relocs)
8057 {
8058 elfsym.st_value = 0;
8059 elfsym.st_size = 0;
8060 elfsym.st_info = 0;
8061 elfsym.st_other = 0;
8062 elfsym.st_shndx = SHN_UNDEF;
8063 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8064 NULL))
8065 goto error_return;
8066 }
8067
8068 /* Output a symbol for each section. We output these even if we are
8069 discarding local symbols, since they are used for relocs. These
8070 symbols have no names. We store the index of each one in the
8071 index field of the section, so that we can find it again when
8072 outputting relocs. */
8073 if (info->strip != strip_all
8074 || emit_relocs)
8075 {
8076 elfsym.st_size = 0;
8077 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8078 elfsym.st_other = 0;
8079 for (i = 1; i < elf_numsections (abfd); i++)
8080 {
8081 o = bfd_section_from_elf_index (abfd, i);
8082 if (o != NULL)
8083 o->target_index = bfd_get_symcount (abfd);
8084 elfsym.st_shndx = i;
8085 if (info->relocatable || o == NULL)
8086 elfsym.st_value = 0;
8087 else
8088 elfsym.st_value = o->vma;
8089 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8090 goto error_return;
8091 if (i == SHN_LORESERVE - 1)
8092 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8093 }
8094 }
8095
8096 /* Allocate some memory to hold information read in from the input
8097 files. */
8098 if (max_contents_size != 0)
8099 {
8100 finfo.contents = bfd_malloc (max_contents_size);
8101 if (finfo.contents == NULL)
8102 goto error_return;
8103 }
8104
8105 if (max_external_reloc_size != 0)
8106 {
8107 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8108 if (finfo.external_relocs == NULL)
8109 goto error_return;
8110 }
8111
8112 if (max_internal_reloc_count != 0)
8113 {
8114 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8115 amt *= sizeof (Elf_Internal_Rela);
8116 finfo.internal_relocs = bfd_malloc (amt);
8117 if (finfo.internal_relocs == NULL)
8118 goto error_return;
8119 }
8120
8121 if (max_sym_count != 0)
8122 {
8123 amt = max_sym_count * bed->s->sizeof_sym;
8124 finfo.external_syms = bfd_malloc (amt);
8125 if (finfo.external_syms == NULL)
8126 goto error_return;
8127
8128 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8129 finfo.internal_syms = bfd_malloc (amt);
8130 if (finfo.internal_syms == NULL)
8131 goto error_return;
8132
8133 amt = max_sym_count * sizeof (long);
8134 finfo.indices = bfd_malloc (amt);
8135 if (finfo.indices == NULL)
8136 goto error_return;
8137
8138 amt = max_sym_count * sizeof (asection *);
8139 finfo.sections = bfd_malloc (amt);
8140 if (finfo.sections == NULL)
8141 goto error_return;
8142 }
8143
8144 if (max_sym_shndx_count != 0)
8145 {
8146 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8147 finfo.locsym_shndx = bfd_malloc (amt);
8148 if (finfo.locsym_shndx == NULL)
8149 goto error_return;
8150 }
8151
8152 if (elf_hash_table (info)->tls_sec)
8153 {
8154 bfd_vma base, end = 0;
8155 asection *sec;
8156
8157 for (sec = elf_hash_table (info)->tls_sec;
8158 sec && (sec->flags & SEC_THREAD_LOCAL);
8159 sec = sec->next)
8160 {
8161 bfd_vma size = sec->size;
8162
8163 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8164 {
8165 struct bfd_link_order *o;
8166
8167 for (o = sec->map_head.link_order; o != NULL; o = o->next)
8168 if (size < o->offset + o->size)
8169 size = o->offset + o->size;
8170 }
8171 end = sec->vma + size;
8172 }
8173 base = elf_hash_table (info)->tls_sec->vma;
8174 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8175 elf_hash_table (info)->tls_size = end - base;
8176 }
8177
8178 /* Reorder SHF_LINK_ORDER sections. */
8179 for (o = abfd->sections; o != NULL; o = o->next)
8180 {
8181 if (!elf_fixup_link_order (abfd, o))
8182 return FALSE;
8183 }
8184
8185 /* Since ELF permits relocations to be against local symbols, we
8186 must have the local symbols available when we do the relocations.
8187 Since we would rather only read the local symbols once, and we
8188 would rather not keep them in memory, we handle all the
8189 relocations for a single input file at the same time.
8190
8191 Unfortunately, there is no way to know the total number of local
8192 symbols until we have seen all of them, and the local symbol
8193 indices precede the global symbol indices. This means that when
8194 we are generating relocatable output, and we see a reloc against
8195 a global symbol, we can not know the symbol index until we have
8196 finished examining all the local symbols to see which ones we are
8197 going to output. To deal with this, we keep the relocations in
8198 memory, and don't output them until the end of the link. This is
8199 an unfortunate waste of memory, but I don't see a good way around
8200 it. Fortunately, it only happens when performing a relocatable
8201 link, which is not the common case. FIXME: If keep_memory is set
8202 we could write the relocs out and then read them again; I don't
8203 know how bad the memory loss will be. */
8204
8205 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8206 sub->output_has_begun = FALSE;
8207 for (o = abfd->sections; o != NULL; o = o->next)
8208 {
8209 for (p = o->map_head.link_order; p != NULL; p = p->next)
8210 {
8211 if (p->type == bfd_indirect_link_order
8212 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8213 == bfd_target_elf_flavour)
8214 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8215 {
8216 if (! sub->output_has_begun)
8217 {
8218 if (! elf_link_input_bfd (&finfo, sub))
8219 goto error_return;
8220 sub->output_has_begun = TRUE;
8221 }
8222 }
8223 else if (p->type == bfd_section_reloc_link_order
8224 || p->type == bfd_symbol_reloc_link_order)
8225 {
8226 if (! elf_reloc_link_order (abfd, info, o, p))
8227 goto error_return;
8228 }
8229 else
8230 {
8231 if (! _bfd_default_link_order (abfd, info, o, p))
8232 goto error_return;
8233 }
8234 }
8235 }
8236
8237 /* Output any global symbols that got converted to local in a
8238 version script or due to symbol visibility. We do this in a
8239 separate step since ELF requires all local symbols to appear
8240 prior to any global symbols. FIXME: We should only do this if
8241 some global symbols were, in fact, converted to become local.
8242 FIXME: Will this work correctly with the Irix 5 linker? */
8243 eoinfo.failed = FALSE;
8244 eoinfo.finfo = &finfo;
8245 eoinfo.localsyms = TRUE;
8246 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8247 &eoinfo);
8248 if (eoinfo.failed)
8249 return FALSE;
8250
8251 /* That wrote out all the local symbols. Finish up the symbol table
8252 with the global symbols. Even if we want to strip everything we
8253 can, we still need to deal with those global symbols that got
8254 converted to local in a version script. */
8255
8256 /* The sh_info field records the index of the first non local symbol. */
8257 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8258
8259 if (dynamic
8260 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8261 {
8262 Elf_Internal_Sym sym;
8263 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8264 long last_local = 0;
8265
8266 /* Write out the section symbols for the output sections. */
8267 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
8268 {
8269 asection *s;
8270
8271 sym.st_size = 0;
8272 sym.st_name = 0;
8273 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8274 sym.st_other = 0;
8275
8276 for (s = abfd->sections; s != NULL; s = s->next)
8277 {
8278 int indx;
8279 bfd_byte *dest;
8280 long dynindx;
8281
8282 dynindx = elf_section_data (s)->dynindx;
8283 if (dynindx <= 0)
8284 continue;
8285 indx = elf_section_data (s)->this_idx;
8286 BFD_ASSERT (indx > 0);
8287 sym.st_shndx = indx;
8288 sym.st_value = s->vma;
8289 dest = dynsym + dynindx * bed->s->sizeof_sym;
8290 if (last_local < dynindx)
8291 last_local = dynindx;
8292 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8293 }
8294 }
8295
8296 /* Write out the local dynsyms. */
8297 if (elf_hash_table (info)->dynlocal)
8298 {
8299 struct elf_link_local_dynamic_entry *e;
8300 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8301 {
8302 asection *s;
8303 bfd_byte *dest;
8304
8305 sym.st_size = e->isym.st_size;
8306 sym.st_other = e->isym.st_other;
8307
8308 /* Copy the internal symbol as is.
8309 Note that we saved a word of storage and overwrote
8310 the original st_name with the dynstr_index. */
8311 sym = e->isym;
8312
8313 if (e->isym.st_shndx != SHN_UNDEF
8314 && (e->isym.st_shndx < SHN_LORESERVE
8315 || e->isym.st_shndx > SHN_HIRESERVE))
8316 {
8317 s = bfd_section_from_elf_index (e->input_bfd,
8318 e->isym.st_shndx);
8319
8320 sym.st_shndx =
8321 elf_section_data (s->output_section)->this_idx;
8322 sym.st_value = (s->output_section->vma
8323 + s->output_offset
8324 + e->isym.st_value);
8325 }
8326
8327 if (last_local < e->dynindx)
8328 last_local = e->dynindx;
8329
8330 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8331 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8332 }
8333 }
8334
8335 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8336 last_local + 1;
8337 }
8338
8339 /* We get the global symbols from the hash table. */
8340 eoinfo.failed = FALSE;
8341 eoinfo.localsyms = FALSE;
8342 eoinfo.finfo = &finfo;
8343 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8344 &eoinfo);
8345 if (eoinfo.failed)
8346 return FALSE;
8347
8348 /* If backend needs to output some symbols not present in the hash
8349 table, do it now. */
8350 if (bed->elf_backend_output_arch_syms)
8351 {
8352 typedef bfd_boolean (*out_sym_func)
8353 (void *, const char *, Elf_Internal_Sym *, asection *,
8354 struct elf_link_hash_entry *);
8355
8356 if (! ((*bed->elf_backend_output_arch_syms)
8357 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8358 return FALSE;
8359 }
8360
8361 /* Flush all symbols to the file. */
8362 if (! elf_link_flush_output_syms (&finfo, bed))
8363 return FALSE;
8364
8365 /* Now we know the size of the symtab section. */
8366 off += symtab_hdr->sh_size;
8367
8368 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8369 if (symtab_shndx_hdr->sh_name != 0)
8370 {
8371 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8372 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8373 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8374 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8375 symtab_shndx_hdr->sh_size = amt;
8376
8377 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8378 off, TRUE);
8379
8380 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8381 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8382 return FALSE;
8383 }
8384
8385
8386 /* Finish up and write out the symbol string table (.strtab)
8387 section. */
8388 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8389 /* sh_name was set in prep_headers. */
8390 symstrtab_hdr->sh_type = SHT_STRTAB;
8391 symstrtab_hdr->sh_flags = 0;
8392 symstrtab_hdr->sh_addr = 0;
8393 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8394 symstrtab_hdr->sh_entsize = 0;
8395 symstrtab_hdr->sh_link = 0;
8396 symstrtab_hdr->sh_info = 0;
8397 /* sh_offset is set just below. */
8398 symstrtab_hdr->sh_addralign = 1;
8399
8400 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8401 elf_tdata (abfd)->next_file_pos = off;
8402
8403 if (bfd_get_symcount (abfd) > 0)
8404 {
8405 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8406 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8407 return FALSE;
8408 }
8409
8410 /* Adjust the relocs to have the correct symbol indices. */
8411 for (o = abfd->sections; o != NULL; o = o->next)
8412 {
8413 if ((o->flags & SEC_RELOC) == 0)
8414 continue;
8415
8416 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8417 elf_section_data (o)->rel_count,
8418 elf_section_data (o)->rel_hashes);
8419 if (elf_section_data (o)->rel_hdr2 != NULL)
8420 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8421 elf_section_data (o)->rel_count2,
8422 (elf_section_data (o)->rel_hashes
8423 + elf_section_data (o)->rel_count));
8424
8425 /* Set the reloc_count field to 0 to prevent write_relocs from
8426 trying to swap the relocs out itself. */
8427 o->reloc_count = 0;
8428 }
8429
8430 if (dynamic && info->combreloc && dynobj != NULL)
8431 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8432
8433 /* If we are linking against a dynamic object, or generating a
8434 shared library, finish up the dynamic linking information. */
8435 if (dynamic)
8436 {
8437 bfd_byte *dyncon, *dynconend;
8438
8439 /* Fix up .dynamic entries. */
8440 o = bfd_get_section_by_name (dynobj, ".dynamic");
8441 BFD_ASSERT (o != NULL);
8442
8443 dyncon = o->contents;
8444 dynconend = o->contents + o->size;
8445 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8446 {
8447 Elf_Internal_Dyn dyn;
8448 const char *name;
8449 unsigned int type;
8450
8451 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8452
8453 switch (dyn.d_tag)
8454 {
8455 default:
8456 continue;
8457 case DT_NULL:
8458 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8459 {
8460 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8461 {
8462 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8463 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8464 default: continue;
8465 }
8466 dyn.d_un.d_val = relativecount;
8467 relativecount = 0;
8468 break;
8469 }
8470 continue;
8471
8472 case DT_INIT:
8473 name = info->init_function;
8474 goto get_sym;
8475 case DT_FINI:
8476 name = info->fini_function;
8477 get_sym:
8478 {
8479 struct elf_link_hash_entry *h;
8480
8481 h = elf_link_hash_lookup (elf_hash_table (info), name,
8482 FALSE, FALSE, TRUE);
8483 if (h != NULL
8484 && (h->root.type == bfd_link_hash_defined
8485 || h->root.type == bfd_link_hash_defweak))
8486 {
8487 dyn.d_un.d_val = h->root.u.def.value;
8488 o = h->root.u.def.section;
8489 if (o->output_section != NULL)
8490 dyn.d_un.d_val += (o->output_section->vma
8491 + o->output_offset);
8492 else
8493 {
8494 /* The symbol is imported from another shared
8495 library and does not apply to this one. */
8496 dyn.d_un.d_val = 0;
8497 }
8498 break;
8499 }
8500 }
8501 continue;
8502
8503 case DT_PREINIT_ARRAYSZ:
8504 name = ".preinit_array";
8505 goto get_size;
8506 case DT_INIT_ARRAYSZ:
8507 name = ".init_array";
8508 goto get_size;
8509 case DT_FINI_ARRAYSZ:
8510 name = ".fini_array";
8511 get_size:
8512 o = bfd_get_section_by_name (abfd, name);
8513 if (o == NULL)
8514 {
8515 (*_bfd_error_handler)
8516 (_("%B: could not find output section %s"), abfd, name);
8517 goto error_return;
8518 }
8519 if (o->size == 0)
8520 (*_bfd_error_handler)
8521 (_("warning: %s section has zero size"), name);
8522 dyn.d_un.d_val = o->size;
8523 break;
8524
8525 case DT_PREINIT_ARRAY:
8526 name = ".preinit_array";
8527 goto get_vma;
8528 case DT_INIT_ARRAY:
8529 name = ".init_array";
8530 goto get_vma;
8531 case DT_FINI_ARRAY:
8532 name = ".fini_array";
8533 goto get_vma;
8534
8535 case DT_HASH:
8536 name = ".hash";
8537 goto get_vma;
8538 case DT_STRTAB:
8539 name = ".dynstr";
8540 goto get_vma;
8541 case DT_SYMTAB:
8542 name = ".dynsym";
8543 goto get_vma;
8544 case DT_VERDEF:
8545 name = ".gnu.version_d";
8546 goto get_vma;
8547 case DT_VERNEED:
8548 name = ".gnu.version_r";
8549 goto get_vma;
8550 case DT_VERSYM:
8551 name = ".gnu.version";
8552 get_vma:
8553 o = bfd_get_section_by_name (abfd, name);
8554 if (o == NULL)
8555 {
8556 (*_bfd_error_handler)
8557 (_("%B: could not find output section %s"), abfd, name);
8558 goto error_return;
8559 }
8560 dyn.d_un.d_ptr = o->vma;
8561 break;
8562
8563 case DT_REL:
8564 case DT_RELA:
8565 case DT_RELSZ:
8566 case DT_RELASZ:
8567 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8568 type = SHT_REL;
8569 else
8570 type = SHT_RELA;
8571 dyn.d_un.d_val = 0;
8572 for (i = 1; i < elf_numsections (abfd); i++)
8573 {
8574 Elf_Internal_Shdr *hdr;
8575
8576 hdr = elf_elfsections (abfd)[i];
8577 if (hdr->sh_type == type
8578 && (hdr->sh_flags & SHF_ALLOC) != 0)
8579 {
8580 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8581 dyn.d_un.d_val += hdr->sh_size;
8582 else
8583 {
8584 if (dyn.d_un.d_val == 0
8585 || hdr->sh_addr < dyn.d_un.d_val)
8586 dyn.d_un.d_val = hdr->sh_addr;
8587 }
8588 }
8589 }
8590 break;
8591 }
8592 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8593 }
8594 }
8595
8596 /* If we have created any dynamic sections, then output them. */
8597 if (dynobj != NULL)
8598 {
8599 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8600 goto error_return;
8601
8602 for (o = dynobj->sections; o != NULL; o = o->next)
8603 {
8604 if ((o->flags & SEC_HAS_CONTENTS) == 0
8605 || o->size == 0
8606 || o->output_section == bfd_abs_section_ptr)
8607 continue;
8608 if ((o->flags & SEC_LINKER_CREATED) == 0)
8609 {
8610 /* At this point, we are only interested in sections
8611 created by _bfd_elf_link_create_dynamic_sections. */
8612 continue;
8613 }
8614 if (elf_hash_table (info)->stab_info.stabstr == o)
8615 continue;
8616 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8617 continue;
8618 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8619 != SHT_STRTAB)
8620 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8621 {
8622 if (! bfd_set_section_contents (abfd, o->output_section,
8623 o->contents,
8624 (file_ptr) o->output_offset,
8625 o->size))
8626 goto error_return;
8627 }
8628 else
8629 {
8630 /* The contents of the .dynstr section are actually in a
8631 stringtab. */
8632 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8633 if (bfd_seek (abfd, off, SEEK_SET) != 0
8634 || ! _bfd_elf_strtab_emit (abfd,
8635 elf_hash_table (info)->dynstr))
8636 goto error_return;
8637 }
8638 }
8639 }
8640
8641 if (info->relocatable)
8642 {
8643 bfd_boolean failed = FALSE;
8644
8645 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8646 if (failed)
8647 goto error_return;
8648 }
8649
8650 /* If we have optimized stabs strings, output them. */
8651 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8652 {
8653 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8654 goto error_return;
8655 }
8656
8657 if (info->eh_frame_hdr)
8658 {
8659 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8660 goto error_return;
8661 }
8662
8663 if (finfo.symstrtab != NULL)
8664 _bfd_stringtab_free (finfo.symstrtab);
8665 if (finfo.contents != NULL)
8666 free (finfo.contents);
8667 if (finfo.external_relocs != NULL)
8668 free (finfo.external_relocs);
8669 if (finfo.internal_relocs != NULL)
8670 free (finfo.internal_relocs);
8671 if (finfo.external_syms != NULL)
8672 free (finfo.external_syms);
8673 if (finfo.locsym_shndx != NULL)
8674 free (finfo.locsym_shndx);
8675 if (finfo.internal_syms != NULL)
8676 free (finfo.internal_syms);
8677 if (finfo.indices != NULL)
8678 free (finfo.indices);
8679 if (finfo.sections != NULL)
8680 free (finfo.sections);
8681 if (finfo.symbuf != NULL)
8682 free (finfo.symbuf);
8683 if (finfo.symshndxbuf != NULL)
8684 free (finfo.symshndxbuf);
8685 for (o = abfd->sections; o != NULL; o = o->next)
8686 {
8687 if ((o->flags & SEC_RELOC) != 0
8688 && elf_section_data (o)->rel_hashes != NULL)
8689 free (elf_section_data (o)->rel_hashes);
8690 }
8691
8692 elf_tdata (abfd)->linker = TRUE;
8693
8694 return TRUE;
8695
8696 error_return:
8697 if (finfo.symstrtab != NULL)
8698 _bfd_stringtab_free (finfo.symstrtab);
8699 if (finfo.contents != NULL)
8700 free (finfo.contents);
8701 if (finfo.external_relocs != NULL)
8702 free (finfo.external_relocs);
8703 if (finfo.internal_relocs != NULL)
8704 free (finfo.internal_relocs);
8705 if (finfo.external_syms != NULL)
8706 free (finfo.external_syms);
8707 if (finfo.locsym_shndx != NULL)
8708 free (finfo.locsym_shndx);
8709 if (finfo.internal_syms != NULL)
8710 free (finfo.internal_syms);
8711 if (finfo.indices != NULL)
8712 free (finfo.indices);
8713 if (finfo.sections != NULL)
8714 free (finfo.sections);
8715 if (finfo.symbuf != NULL)
8716 free (finfo.symbuf);
8717 if (finfo.symshndxbuf != NULL)
8718 free (finfo.symshndxbuf);
8719 for (o = abfd->sections; o != NULL; o = o->next)
8720 {
8721 if ((o->flags & SEC_RELOC) != 0
8722 && elf_section_data (o)->rel_hashes != NULL)
8723 free (elf_section_data (o)->rel_hashes);
8724 }
8725
8726 return FALSE;
8727 }
8728 \f
8729 /* Garbage collect unused sections. */
8730
8731 /* The mark phase of garbage collection. For a given section, mark
8732 it and any sections in this section's group, and all the sections
8733 which define symbols to which it refers. */
8734
8735 typedef asection * (*gc_mark_hook_fn)
8736 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8737 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8738
8739 bfd_boolean
8740 _bfd_elf_gc_mark (struct bfd_link_info *info,
8741 asection *sec,
8742 gc_mark_hook_fn gc_mark_hook)
8743 {
8744 bfd_boolean ret;
8745 bfd_boolean is_eh;
8746 asection *group_sec;
8747
8748 sec->gc_mark = 1;
8749
8750 /* Mark all the sections in the group. */
8751 group_sec = elf_section_data (sec)->next_in_group;
8752 if (group_sec && !group_sec->gc_mark)
8753 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8754 return FALSE;
8755
8756 /* Look through the section relocs. */
8757 ret = TRUE;
8758 is_eh = strcmp (sec->name, ".eh_frame") == 0;
8759 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8760 {
8761 Elf_Internal_Rela *relstart, *rel, *relend;
8762 Elf_Internal_Shdr *symtab_hdr;
8763 struct elf_link_hash_entry **sym_hashes;
8764 size_t nlocsyms;
8765 size_t extsymoff;
8766 bfd *input_bfd = sec->owner;
8767 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8768 Elf_Internal_Sym *isym = NULL;
8769 int r_sym_shift;
8770
8771 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8772 sym_hashes = elf_sym_hashes (input_bfd);
8773
8774 /* Read the local symbols. */
8775 if (elf_bad_symtab (input_bfd))
8776 {
8777 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8778 extsymoff = 0;
8779 }
8780 else
8781 extsymoff = nlocsyms = symtab_hdr->sh_info;
8782
8783 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8784 if (isym == NULL && nlocsyms != 0)
8785 {
8786 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8787 NULL, NULL, NULL);
8788 if (isym == NULL)
8789 return FALSE;
8790 }
8791
8792 /* Read the relocations. */
8793 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8794 info->keep_memory);
8795 if (relstart == NULL)
8796 {
8797 ret = FALSE;
8798 goto out1;
8799 }
8800 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8801
8802 if (bed->s->arch_size == 32)
8803 r_sym_shift = 8;
8804 else
8805 r_sym_shift = 32;
8806
8807 for (rel = relstart; rel < relend; rel++)
8808 {
8809 unsigned long r_symndx;
8810 asection *rsec;
8811 struct elf_link_hash_entry *h;
8812
8813 r_symndx = rel->r_info >> r_sym_shift;
8814 if (r_symndx == 0)
8815 continue;
8816
8817 if (r_symndx >= nlocsyms
8818 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8819 {
8820 h = sym_hashes[r_symndx - extsymoff];
8821 while (h->root.type == bfd_link_hash_indirect
8822 || h->root.type == bfd_link_hash_warning)
8823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8824 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8825 }
8826 else
8827 {
8828 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8829 }
8830
8831 if (rsec && !rsec->gc_mark)
8832 {
8833 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8834 rsec->gc_mark = 1;
8835 else if (is_eh)
8836 rsec->gc_mark_from_eh = 1;
8837 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8838 {
8839 ret = FALSE;
8840 goto out2;
8841 }
8842 }
8843 }
8844
8845 out2:
8846 if (elf_section_data (sec)->relocs != relstart)
8847 free (relstart);
8848 out1:
8849 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8850 {
8851 if (! info->keep_memory)
8852 free (isym);
8853 else
8854 symtab_hdr->contents = (unsigned char *) isym;
8855 }
8856 }
8857
8858 return ret;
8859 }
8860
8861 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8862
8863 static bfd_boolean
8864 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8865 {
8866 int *idx = idxptr;
8867
8868 if (h->root.type == bfd_link_hash_warning)
8869 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8870
8871 if (h->dynindx != -1
8872 && ((h->root.type != bfd_link_hash_defined
8873 && h->root.type != bfd_link_hash_defweak)
8874 || h->root.u.def.section->gc_mark))
8875 h->dynindx = (*idx)++;
8876
8877 return TRUE;
8878 }
8879
8880 /* The sweep phase of garbage collection. Remove all garbage sections. */
8881
8882 typedef bfd_boolean (*gc_sweep_hook_fn)
8883 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8884
8885 static bfd_boolean
8886 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8887 {
8888 bfd *sub;
8889
8890 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8891 {
8892 asection *o;
8893
8894 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8895 continue;
8896
8897 for (o = sub->sections; o != NULL; o = o->next)
8898 {
8899 /* Keep debug and special sections. */
8900 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8901 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8902 o->gc_mark = 1;
8903
8904 if (o->gc_mark)
8905 continue;
8906
8907 /* Skip sweeping sections already excluded. */
8908 if (o->flags & SEC_EXCLUDE)
8909 continue;
8910
8911 /* Since this is early in the link process, it is simple
8912 to remove a section from the output. */
8913 o->flags |= SEC_EXCLUDE;
8914
8915 /* But we also have to update some of the relocation
8916 info we collected before. */
8917 if (gc_sweep_hook
8918 && (o->flags & SEC_RELOC) != 0
8919 && o->reloc_count > 0
8920 && !bfd_is_abs_section (o->output_section))
8921 {
8922 Elf_Internal_Rela *internal_relocs;
8923 bfd_boolean r;
8924
8925 internal_relocs
8926 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8927 info->keep_memory);
8928 if (internal_relocs == NULL)
8929 return FALSE;
8930
8931 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8932
8933 if (elf_section_data (o)->relocs != internal_relocs)
8934 free (internal_relocs);
8935
8936 if (!r)
8937 return FALSE;
8938 }
8939 }
8940 }
8941
8942 /* Remove the symbols that were in the swept sections from the dynamic
8943 symbol table. GCFIXME: Anyone know how to get them out of the
8944 static symbol table as well? */
8945 {
8946 int i = 0;
8947
8948 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8949
8950 /* There is an unused NULL entry at the head of the table which
8951 we must account for in our count. Unless there weren't any
8952 symbols, which means we'll have no table at all. */
8953 if (i != 0)
8954 ++i;
8955
8956 elf_hash_table (info)->dynsymcount = i;
8957 }
8958
8959 return TRUE;
8960 }
8961
8962 /* Propagate collected vtable information. This is called through
8963 elf_link_hash_traverse. */
8964
8965 static bfd_boolean
8966 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8967 {
8968 if (h->root.type == bfd_link_hash_warning)
8969 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8970
8971 /* Those that are not vtables. */
8972 if (h->vtable == NULL || h->vtable->parent == NULL)
8973 return TRUE;
8974
8975 /* Those vtables that do not have parents, we cannot merge. */
8976 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8977 return TRUE;
8978
8979 /* If we've already been done, exit. */
8980 if (h->vtable->used && h->vtable->used[-1])
8981 return TRUE;
8982
8983 /* Make sure the parent's table is up to date. */
8984 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8985
8986 if (h->vtable->used == NULL)
8987 {
8988 /* None of this table's entries were referenced. Re-use the
8989 parent's table. */
8990 h->vtable->used = h->vtable->parent->vtable->used;
8991 h->vtable->size = h->vtable->parent->vtable->size;
8992 }
8993 else
8994 {
8995 size_t n;
8996 bfd_boolean *cu, *pu;
8997
8998 /* Or the parent's entries into ours. */
8999 cu = h->vtable->used;
9000 cu[-1] = TRUE;
9001 pu = h->vtable->parent->vtable->used;
9002 if (pu != NULL)
9003 {
9004 const struct elf_backend_data *bed;
9005 unsigned int log_file_align;
9006
9007 bed = get_elf_backend_data (h->root.u.def.section->owner);
9008 log_file_align = bed->s->log_file_align;
9009 n = h->vtable->parent->vtable->size >> log_file_align;
9010 while (n--)
9011 {
9012 if (*pu)
9013 *cu = TRUE;
9014 pu++;
9015 cu++;
9016 }
9017 }
9018 }
9019
9020 return TRUE;
9021 }
9022
9023 static bfd_boolean
9024 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9025 {
9026 asection *sec;
9027 bfd_vma hstart, hend;
9028 Elf_Internal_Rela *relstart, *relend, *rel;
9029 const struct elf_backend_data *bed;
9030 unsigned int log_file_align;
9031
9032 if (h->root.type == bfd_link_hash_warning)
9033 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9034
9035 /* Take care of both those symbols that do not describe vtables as
9036 well as those that are not loaded. */
9037 if (h->vtable == NULL || h->vtable->parent == NULL)
9038 return TRUE;
9039
9040 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9041 || h->root.type == bfd_link_hash_defweak);
9042
9043 sec = h->root.u.def.section;
9044 hstart = h->root.u.def.value;
9045 hend = hstart + h->size;
9046
9047 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9048 if (!relstart)
9049 return *(bfd_boolean *) okp = FALSE;
9050 bed = get_elf_backend_data (sec->owner);
9051 log_file_align = bed->s->log_file_align;
9052
9053 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9054
9055 for (rel = relstart; rel < relend; ++rel)
9056 if (rel->r_offset >= hstart && rel->r_offset < hend)
9057 {
9058 /* If the entry is in use, do nothing. */
9059 if (h->vtable->used
9060 && (rel->r_offset - hstart) < h->vtable->size)
9061 {
9062 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
9063 if (h->vtable->used[entry])
9064 continue;
9065 }
9066 /* Otherwise, kill it. */
9067 rel->r_offset = rel->r_info = rel->r_addend = 0;
9068 }
9069
9070 return TRUE;
9071 }
9072
9073 /* Mark sections containing dynamically referenced symbols. When
9074 building shared libraries, we must assume that any visible symbol is
9075 referenced. */
9076
9077 static bfd_boolean
9078 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
9079 {
9080 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9081
9082 if (h->root.type == bfd_link_hash_warning)
9083 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9084
9085 if ((h->root.type == bfd_link_hash_defined
9086 || h->root.type == bfd_link_hash_defweak)
9087 && (h->ref_dynamic
9088 || (info->shared
9089 && h->def_regular
9090 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
9091 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
9092 h->root.u.def.section->flags |= SEC_KEEP;
9093
9094 return TRUE;
9095 }
9096
9097 /* Do mark and sweep of unused sections. */
9098
9099 bfd_boolean
9100 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9101 {
9102 bfd_boolean ok = TRUE;
9103 bfd *sub;
9104 asection * (*gc_mark_hook)
9105 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9106 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9107
9108 if (!get_elf_backend_data (abfd)->can_gc_sections
9109 || info->relocatable
9110 || info->emitrelocations
9111 || !is_elf_hash_table (info->hash))
9112 {
9113 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9114 return TRUE;
9115 }
9116
9117 /* Apply transitive closure to the vtable entry usage info. */
9118 elf_link_hash_traverse (elf_hash_table (info),
9119 elf_gc_propagate_vtable_entries_used,
9120 &ok);
9121 if (!ok)
9122 return FALSE;
9123
9124 /* Kill the vtable relocations that were not used. */
9125 elf_link_hash_traverse (elf_hash_table (info),
9126 elf_gc_smash_unused_vtentry_relocs,
9127 &ok);
9128 if (!ok)
9129 return FALSE;
9130
9131 /* Mark dynamically referenced symbols. */
9132 if (elf_hash_table (info)->dynamic_sections_created)
9133 elf_link_hash_traverse (elf_hash_table (info),
9134 elf_gc_mark_dynamic_ref_symbol,
9135 info);
9136
9137 /* Grovel through relocs to find out who stays ... */
9138 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9139 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9140 {
9141 asection *o;
9142
9143 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9144 continue;
9145
9146 for (o = sub->sections; o != NULL; o = o->next)
9147 if ((o->flags & SEC_KEEP) != 0 && !o->gc_mark)
9148 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9149 return FALSE;
9150 }
9151
9152 /* ... again for sections marked from eh_frame. */
9153 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9154 {
9155 asection *o;
9156
9157 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9158 continue;
9159
9160 /* Keep .gcc_except_table.* if the associated .text.* is
9161 marked. This isn't very nice, but the proper solution,
9162 splitting .eh_frame up and using comdat doesn't pan out
9163 easily due to needing special relocs to handle the
9164 difference of two symbols in separate sections.
9165 Don't keep code sections referenced by .eh_frame. */
9166 for (o = sub->sections; o != NULL; o = o->next)
9167 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
9168 {
9169 if (strncmp (o->name, ".gcc_except_table.", 18) == 0)
9170 {
9171 unsigned long len;
9172 char *fn_name;
9173 asection *fn_text;
9174
9175 len = strlen (o->name + 18) + 1;
9176 fn_name = bfd_malloc (len + 6);
9177 if (fn_name == NULL)
9178 return FALSE;
9179 memcpy (fn_name, ".text.", 6);
9180 memcpy (fn_name + 6, o->name + 18, len);
9181 fn_text = bfd_get_section_by_name (sub, fn_name);
9182 free (fn_name);
9183 if (fn_text == NULL || !fn_text->gc_mark)
9184 continue;
9185 }
9186
9187 /* If not using specially named exception table section,
9188 then keep whatever we are using. */
9189 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9190 return FALSE;
9191 }
9192 }
9193
9194 /* ... and mark SEC_EXCLUDE for those that go. */
9195 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9196 return FALSE;
9197
9198 return TRUE;
9199 }
9200 \f
9201 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9202
9203 bfd_boolean
9204 bfd_elf_gc_record_vtinherit (bfd *abfd,
9205 asection *sec,
9206 struct elf_link_hash_entry *h,
9207 bfd_vma offset)
9208 {
9209 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9210 struct elf_link_hash_entry **search, *child;
9211 bfd_size_type extsymcount;
9212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9213
9214 /* The sh_info field of the symtab header tells us where the
9215 external symbols start. We don't care about the local symbols at
9216 this point. */
9217 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9218 if (!elf_bad_symtab (abfd))
9219 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9220
9221 sym_hashes = elf_sym_hashes (abfd);
9222 sym_hashes_end = sym_hashes + extsymcount;
9223
9224 /* Hunt down the child symbol, which is in this section at the same
9225 offset as the relocation. */
9226 for (search = sym_hashes; search != sym_hashes_end; ++search)
9227 {
9228 if ((child = *search) != NULL
9229 && (child->root.type == bfd_link_hash_defined
9230 || child->root.type == bfd_link_hash_defweak)
9231 && child->root.u.def.section == sec
9232 && child->root.u.def.value == offset)
9233 goto win;
9234 }
9235
9236 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9237 abfd, sec, (unsigned long) offset);
9238 bfd_set_error (bfd_error_invalid_operation);
9239 return FALSE;
9240
9241 win:
9242 if (!child->vtable)
9243 {
9244 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9245 if (!child->vtable)
9246 return FALSE;
9247 }
9248 if (!h)
9249 {
9250 /* This *should* only be the absolute section. It could potentially
9251 be that someone has defined a non-global vtable though, which
9252 would be bad. It isn't worth paging in the local symbols to be
9253 sure though; that case should simply be handled by the assembler. */
9254
9255 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9256 }
9257 else
9258 child->vtable->parent = h;
9259
9260 return TRUE;
9261 }
9262
9263 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9264
9265 bfd_boolean
9266 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9267 asection *sec ATTRIBUTE_UNUSED,
9268 struct elf_link_hash_entry *h,
9269 bfd_vma addend)
9270 {
9271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9272 unsigned int log_file_align = bed->s->log_file_align;
9273
9274 if (!h->vtable)
9275 {
9276 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9277 if (!h->vtable)
9278 return FALSE;
9279 }
9280
9281 if (addend >= h->vtable->size)
9282 {
9283 size_t size, bytes, file_align;
9284 bfd_boolean *ptr = h->vtable->used;
9285
9286 /* While the symbol is undefined, we have to be prepared to handle
9287 a zero size. */
9288 file_align = 1 << log_file_align;
9289 if (h->root.type == bfd_link_hash_undefined)
9290 size = addend + file_align;
9291 else
9292 {
9293 size = h->size;
9294 if (addend >= size)
9295 {
9296 /* Oops! We've got a reference past the defined end of
9297 the table. This is probably a bug -- shall we warn? */
9298 size = addend + file_align;
9299 }
9300 }
9301 size = (size + file_align - 1) & -file_align;
9302
9303 /* Allocate one extra entry for use as a "done" flag for the
9304 consolidation pass. */
9305 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9306
9307 if (ptr)
9308 {
9309 ptr = bfd_realloc (ptr - 1, bytes);
9310
9311 if (ptr != NULL)
9312 {
9313 size_t oldbytes;
9314
9315 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9316 * sizeof (bfd_boolean));
9317 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9318 }
9319 }
9320 else
9321 ptr = bfd_zmalloc (bytes);
9322
9323 if (ptr == NULL)
9324 return FALSE;
9325
9326 /* And arrange for that done flag to be at index -1. */
9327 h->vtable->used = ptr + 1;
9328 h->vtable->size = size;
9329 }
9330
9331 h->vtable->used[addend >> log_file_align] = TRUE;
9332
9333 return TRUE;
9334 }
9335
9336 struct alloc_got_off_arg {
9337 bfd_vma gotoff;
9338 unsigned int got_elt_size;
9339 };
9340
9341 /* We need a special top-level link routine to convert got reference counts
9342 to real got offsets. */
9343
9344 static bfd_boolean
9345 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9346 {
9347 struct alloc_got_off_arg *gofarg = arg;
9348
9349 if (h->root.type == bfd_link_hash_warning)
9350 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9351
9352 if (h->got.refcount > 0)
9353 {
9354 h->got.offset = gofarg->gotoff;
9355 gofarg->gotoff += gofarg->got_elt_size;
9356 }
9357 else
9358 h->got.offset = (bfd_vma) -1;
9359
9360 return TRUE;
9361 }
9362
9363 /* And an accompanying bit to work out final got entry offsets once
9364 we're done. Should be called from final_link. */
9365
9366 bfd_boolean
9367 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9368 struct bfd_link_info *info)
9369 {
9370 bfd *i;
9371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9372 bfd_vma gotoff;
9373 unsigned int got_elt_size = bed->s->arch_size / 8;
9374 struct alloc_got_off_arg gofarg;
9375
9376 if (! is_elf_hash_table (info->hash))
9377 return FALSE;
9378
9379 /* The GOT offset is relative to the .got section, but the GOT header is
9380 put into the .got.plt section, if the backend uses it. */
9381 if (bed->want_got_plt)
9382 gotoff = 0;
9383 else
9384 gotoff = bed->got_header_size;
9385
9386 /* Do the local .got entries first. */
9387 for (i = info->input_bfds; i; i = i->link_next)
9388 {
9389 bfd_signed_vma *local_got;
9390 bfd_size_type j, locsymcount;
9391 Elf_Internal_Shdr *symtab_hdr;
9392
9393 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9394 continue;
9395
9396 local_got = elf_local_got_refcounts (i);
9397 if (!local_got)
9398 continue;
9399
9400 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9401 if (elf_bad_symtab (i))
9402 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9403 else
9404 locsymcount = symtab_hdr->sh_info;
9405
9406 for (j = 0; j < locsymcount; ++j)
9407 {
9408 if (local_got[j] > 0)
9409 {
9410 local_got[j] = gotoff;
9411 gotoff += got_elt_size;
9412 }
9413 else
9414 local_got[j] = (bfd_vma) -1;
9415 }
9416 }
9417
9418 /* Then the global .got entries. .plt refcounts are handled by
9419 adjust_dynamic_symbol */
9420 gofarg.gotoff = gotoff;
9421 gofarg.got_elt_size = got_elt_size;
9422 elf_link_hash_traverse (elf_hash_table (info),
9423 elf_gc_allocate_got_offsets,
9424 &gofarg);
9425 return TRUE;
9426 }
9427
9428 /* Many folk need no more in the way of final link than this, once
9429 got entry reference counting is enabled. */
9430
9431 bfd_boolean
9432 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9433 {
9434 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9435 return FALSE;
9436
9437 /* Invoke the regular ELF backend linker to do all the work. */
9438 return bfd_elf_final_link (abfd, info);
9439 }
9440
9441 bfd_boolean
9442 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9443 {
9444 struct elf_reloc_cookie *rcookie = cookie;
9445
9446 if (rcookie->bad_symtab)
9447 rcookie->rel = rcookie->rels;
9448
9449 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9450 {
9451 unsigned long r_symndx;
9452
9453 if (! rcookie->bad_symtab)
9454 if (rcookie->rel->r_offset > offset)
9455 return FALSE;
9456 if (rcookie->rel->r_offset != offset)
9457 continue;
9458
9459 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9460 if (r_symndx == SHN_UNDEF)
9461 return TRUE;
9462
9463 if (r_symndx >= rcookie->locsymcount
9464 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9465 {
9466 struct elf_link_hash_entry *h;
9467
9468 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9469
9470 while (h->root.type == bfd_link_hash_indirect
9471 || h->root.type == bfd_link_hash_warning)
9472 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9473
9474 if ((h->root.type == bfd_link_hash_defined
9475 || h->root.type == bfd_link_hash_defweak)
9476 && elf_discarded_section (h->root.u.def.section))
9477 return TRUE;
9478 else
9479 return FALSE;
9480 }
9481 else
9482 {
9483 /* It's not a relocation against a global symbol,
9484 but it could be a relocation against a local
9485 symbol for a discarded section. */
9486 asection *isec;
9487 Elf_Internal_Sym *isym;
9488
9489 /* Need to: get the symbol; get the section. */
9490 isym = &rcookie->locsyms[r_symndx];
9491 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9492 {
9493 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9494 if (isec != NULL && elf_discarded_section (isec))
9495 return TRUE;
9496 }
9497 }
9498 return FALSE;
9499 }
9500 return FALSE;
9501 }
9502
9503 /* Discard unneeded references to discarded sections.
9504 Returns TRUE if any section's size was changed. */
9505 /* This function assumes that the relocations are in sorted order,
9506 which is true for all known assemblers. */
9507
9508 bfd_boolean
9509 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9510 {
9511 struct elf_reloc_cookie cookie;
9512 asection *stab, *eh;
9513 Elf_Internal_Shdr *symtab_hdr;
9514 const struct elf_backend_data *bed;
9515 bfd *abfd;
9516 unsigned int count;
9517 bfd_boolean ret = FALSE;
9518
9519 if (info->traditional_format
9520 || !is_elf_hash_table (info->hash))
9521 return FALSE;
9522
9523 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9524 {
9525 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9526 continue;
9527
9528 bed = get_elf_backend_data (abfd);
9529
9530 if ((abfd->flags & DYNAMIC) != 0)
9531 continue;
9532
9533 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9534 if (info->relocatable
9535 || (eh != NULL
9536 && (eh->size == 0
9537 || bfd_is_abs_section (eh->output_section))))
9538 eh = NULL;
9539
9540 stab = bfd_get_section_by_name (abfd, ".stab");
9541 if (stab != NULL
9542 && (stab->size == 0
9543 || bfd_is_abs_section (stab->output_section)
9544 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9545 stab = NULL;
9546
9547 if (stab == NULL
9548 && eh == NULL
9549 && bed->elf_backend_discard_info == NULL)
9550 continue;
9551
9552 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9553 cookie.abfd = abfd;
9554 cookie.sym_hashes = elf_sym_hashes (abfd);
9555 cookie.bad_symtab = elf_bad_symtab (abfd);
9556 if (cookie.bad_symtab)
9557 {
9558 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9559 cookie.extsymoff = 0;
9560 }
9561 else
9562 {
9563 cookie.locsymcount = symtab_hdr->sh_info;
9564 cookie.extsymoff = symtab_hdr->sh_info;
9565 }
9566
9567 if (bed->s->arch_size == 32)
9568 cookie.r_sym_shift = 8;
9569 else
9570 cookie.r_sym_shift = 32;
9571
9572 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9573 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9574 {
9575 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9576 cookie.locsymcount, 0,
9577 NULL, NULL, NULL);
9578 if (cookie.locsyms == NULL)
9579 return FALSE;
9580 }
9581
9582 if (stab != NULL)
9583 {
9584 cookie.rels = NULL;
9585 count = stab->reloc_count;
9586 if (count != 0)
9587 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9588 info->keep_memory);
9589 if (cookie.rels != NULL)
9590 {
9591 cookie.rel = cookie.rels;
9592 cookie.relend = cookie.rels;
9593 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9594 if (_bfd_discard_section_stabs (abfd, stab,
9595 elf_section_data (stab)->sec_info,
9596 bfd_elf_reloc_symbol_deleted_p,
9597 &cookie))
9598 ret = TRUE;
9599 if (elf_section_data (stab)->relocs != cookie.rels)
9600 free (cookie.rels);
9601 }
9602 }
9603
9604 if (eh != NULL)
9605 {
9606 cookie.rels = NULL;
9607 count = eh->reloc_count;
9608 if (count != 0)
9609 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9610 info->keep_memory);
9611 cookie.rel = cookie.rels;
9612 cookie.relend = cookie.rels;
9613 if (cookie.rels != NULL)
9614 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9615
9616 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9617 bfd_elf_reloc_symbol_deleted_p,
9618 &cookie))
9619 ret = TRUE;
9620
9621 if (cookie.rels != NULL
9622 && elf_section_data (eh)->relocs != cookie.rels)
9623 free (cookie.rels);
9624 }
9625
9626 if (bed->elf_backend_discard_info != NULL
9627 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9628 ret = TRUE;
9629
9630 if (cookie.locsyms != NULL
9631 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9632 {
9633 if (! info->keep_memory)
9634 free (cookie.locsyms);
9635 else
9636 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9637 }
9638 }
9639
9640 if (info->eh_frame_hdr
9641 && !info->relocatable
9642 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9643 ret = TRUE;
9644
9645 return ret;
9646 }
9647
9648 void
9649 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9650 {
9651 flagword flags;
9652 const char *name, *p;
9653 struct bfd_section_already_linked *l;
9654 struct bfd_section_already_linked_hash_entry *already_linked_list;
9655 asection *group;
9656
9657 /* A single member comdat group section may be discarded by a
9658 linkonce section. See below. */
9659 if (sec->output_section == bfd_abs_section_ptr)
9660 return;
9661
9662 flags = sec->flags;
9663
9664 /* Check if it belongs to a section group. */
9665 group = elf_sec_group (sec);
9666
9667 /* Return if it isn't a linkonce section nor a member of a group. A
9668 comdat group section also has SEC_LINK_ONCE set. */
9669 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9670 return;
9671
9672 if (group)
9673 {
9674 /* If this is the member of a single member comdat group, check if
9675 the group should be discarded. */
9676 if (elf_next_in_group (sec) == sec
9677 && (group->flags & SEC_LINK_ONCE) != 0)
9678 sec = group;
9679 else
9680 return;
9681 }
9682
9683 /* FIXME: When doing a relocatable link, we may have trouble
9684 copying relocations in other sections that refer to local symbols
9685 in the section being discarded. Those relocations will have to
9686 be converted somehow; as of this writing I'm not sure that any of
9687 the backends handle that correctly.
9688
9689 It is tempting to instead not discard link once sections when
9690 doing a relocatable link (technically, they should be discarded
9691 whenever we are building constructors). However, that fails,
9692 because the linker winds up combining all the link once sections
9693 into a single large link once section, which defeats the purpose
9694 of having link once sections in the first place.
9695
9696 Also, not merging link once sections in a relocatable link
9697 causes trouble for MIPS ELF, which relies on link once semantics
9698 to handle the .reginfo section correctly. */
9699
9700 name = bfd_get_section_name (abfd, sec);
9701
9702 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9703 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9704 p++;
9705 else
9706 p = name;
9707
9708 already_linked_list = bfd_section_already_linked_table_lookup (p);
9709
9710 for (l = already_linked_list->entry; l != NULL; l = l->next)
9711 {
9712 /* We may have 3 different sections on the list: group section,
9713 comdat section and linkonce section. SEC may be a linkonce or
9714 group section. We match a group section with a group section,
9715 a linkonce section with a linkonce section, and ignore comdat
9716 section. */
9717 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9718 && strcmp (name, l->sec->name) == 0
9719 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9720 {
9721 /* The section has already been linked. See if we should
9722 issue a warning. */
9723 switch (flags & SEC_LINK_DUPLICATES)
9724 {
9725 default:
9726 abort ();
9727
9728 case SEC_LINK_DUPLICATES_DISCARD:
9729 break;
9730
9731 case SEC_LINK_DUPLICATES_ONE_ONLY:
9732 (*_bfd_error_handler)
9733 (_("%B: ignoring duplicate section `%A'"),
9734 abfd, sec);
9735 break;
9736
9737 case SEC_LINK_DUPLICATES_SAME_SIZE:
9738 if (sec->size != l->sec->size)
9739 (*_bfd_error_handler)
9740 (_("%B: duplicate section `%A' has different size"),
9741 abfd, sec);
9742 break;
9743
9744 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9745 if (sec->size != l->sec->size)
9746 (*_bfd_error_handler)
9747 (_("%B: duplicate section `%A' has different size"),
9748 abfd, sec);
9749 else if (sec->size != 0)
9750 {
9751 bfd_byte *sec_contents, *l_sec_contents;
9752
9753 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9754 (*_bfd_error_handler)
9755 (_("%B: warning: could not read contents of section `%A'"),
9756 abfd, sec);
9757 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9758 &l_sec_contents))
9759 (*_bfd_error_handler)
9760 (_("%B: warning: could not read contents of section `%A'"),
9761 l->sec->owner, l->sec);
9762 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9763 (*_bfd_error_handler)
9764 (_("%B: warning: duplicate section `%A' has different contents"),
9765 abfd, sec);
9766
9767 if (sec_contents)
9768 free (sec_contents);
9769 if (l_sec_contents)
9770 free (l_sec_contents);
9771 }
9772 break;
9773 }
9774
9775 /* Set the output_section field so that lang_add_section
9776 does not create a lang_input_section structure for this
9777 section. Since there might be a symbol in the section
9778 being discarded, we must retain a pointer to the section
9779 which we are really going to use. */
9780 sec->output_section = bfd_abs_section_ptr;
9781 sec->kept_section = l->sec;
9782
9783 if (flags & SEC_GROUP)
9784 {
9785 asection *first = elf_next_in_group (sec);
9786 asection *s = first;
9787
9788 while (s != NULL)
9789 {
9790 s->output_section = bfd_abs_section_ptr;
9791 /* Record which group discards it. */
9792 s->kept_section = l->sec;
9793 s = elf_next_in_group (s);
9794 /* These lists are circular. */
9795 if (s == first)
9796 break;
9797 }
9798 }
9799
9800 return;
9801 }
9802 }
9803
9804 if (group)
9805 {
9806 /* If this is the member of a single member comdat group and the
9807 group hasn't be discarded, we check if it matches a linkonce
9808 section. We only record the discarded comdat group. Otherwise
9809 the undiscarded group will be discarded incorrectly later since
9810 itself has been recorded. */
9811 for (l = already_linked_list->entry; l != NULL; l = l->next)
9812 if ((l->sec->flags & SEC_GROUP) == 0
9813 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9814 && bfd_elf_match_symbols_in_sections (l->sec,
9815 elf_next_in_group (sec)))
9816 {
9817 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9818 elf_next_in_group (sec)->kept_section = l->sec;
9819 group->output_section = bfd_abs_section_ptr;
9820 break;
9821 }
9822 if (l == NULL)
9823 return;
9824 }
9825 else
9826 /* There is no direct match. But for linkonce section, we should
9827 check if there is a match with comdat group member. We always
9828 record the linkonce section, discarded or not. */
9829 for (l = already_linked_list->entry; l != NULL; l = l->next)
9830 if (l->sec->flags & SEC_GROUP)
9831 {
9832 asection *first = elf_next_in_group (l->sec);
9833
9834 if (first != NULL
9835 && elf_next_in_group (first) == first
9836 && bfd_elf_match_symbols_in_sections (first, sec))
9837 {
9838 sec->output_section = bfd_abs_section_ptr;
9839 sec->kept_section = l->sec;
9840 break;
9841 }
9842 }
9843
9844 /* This is the first section with this name. Record it. */
9845 bfd_section_already_linked_table_insert (already_linked_list, sec);
9846 }
9847
9848 bfd_boolean
9849 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
9850 {
9851 return sym->st_shndx == SHN_COMMON;
9852 }
9853
9854 unsigned int
9855 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
9856 {
9857 return SHN_COMMON;
9858 }
9859
9860 asection *
9861 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
9862 {
9863 return bfd_com_section_ptr;
9864 }
This page took 0.244941 seconds and 4 git commands to generate.