2009-07-07 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 register asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
574
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 "ld -u". */
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1086 && oldbfd != NULL)
1087 {
1088 bfd *ntbfd, *tbfd;
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1091
1092 if (h->type == STT_TLS)
1093 {
1094 ntbfd = abfd;
1095 ntsec = sec;
1096 ntdef = newdef;
1097 tbfd = oldbfd;
1098 tsec = oldsec;
1099 tdef = olddef;
1100 }
1101 else
1102 {
1103 ntbfd = oldbfd;
1104 ntsec = oldsec;
1105 ntdef = olddef;
1106 tbfd = abfd;
1107 tsec = sec;
1108 tdef = newdef;
1109 }
1110
1111 if (tdef && ntdef)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1119 else if (tdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1123 else
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1127
1128 bfd_set_error (bfd_error_bad_value);
1129 return FALSE;
1130 }
1131
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1136 {
1137 if (!bfd_is_und_section (sec))
1138 h->dynamic_def = 1;
1139 else
1140 {
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1145 {
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1148 }
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1151 }
1152 }
1153
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1156 if (newdyn
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1159 {
1160 *skip = TRUE;
1161 /* Make sure this symbol is dynamic. */
1162 h->ref_dynamic = 1;
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1165
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1169 else
1170 return TRUE;
1171 }
1172 else if (!newdyn
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 && h->def_dynamic)
1175 {
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1180 {
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1185 if (h->ref_regular)
1186 {
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1196 {
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1200 }
1201 else
1202 {
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1209 }
1210 h = vh;
1211 }
1212 else
1213 h = *sym_hash;
1214 }
1215
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1218 {
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1224 undefs list. */
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1227 }
1228 else
1229 {
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1232 }
1233
1234 if (h->def_dynamic)
1235 {
1236 h->def_dynamic = 0;
1237 h->ref_dynamic = 1;
1238 h->dynamic_def = 1;
1239 }
1240 /* FIXME: Should we check type and size for protected symbol? */
1241 h->size = 0;
1242 h->type = 0;
1243 return TRUE;
1244 }
1245
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1362 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1363 return FALSE;
1364
1365 if (sym->st_size > h->size)
1366 h->size = sym->st_size;
1367
1368 *size_change_ok = TRUE;
1369 }
1370
1371 /* If we are looking at a dynamic object, and we have found a
1372 definition, we need to see if the symbol was already defined by
1373 some other object. If so, we want to use the existing
1374 definition, and we do not want to report a multiple symbol
1375 definition error; we do this by clobbering *PSEC to be
1376 bfd_und_section_ptr.
1377
1378 We treat a common symbol as a definition if the symbol in the
1379 shared library is a function, since common symbols always
1380 represent variables; this can cause confusion in principle, but
1381 any such confusion would seem to indicate an erroneous program or
1382 shared library. We also permit a common symbol in a regular
1383 object to override a weak symbol in a shared object. */
1384
1385 if (newdyn
1386 && newdef
1387 && (olddef
1388 || (h->root.type == bfd_link_hash_common
1389 && (newweak || newfunc))))
1390 {
1391 *override = TRUE;
1392 newdef = FALSE;
1393 newdyncommon = FALSE;
1394
1395 *psec = sec = bfd_und_section_ptr;
1396 *size_change_ok = TRUE;
1397
1398 /* If we get here when the old symbol is a common symbol, then
1399 we are explicitly letting it override a weak symbol or
1400 function in a dynamic object, and we don't want to warn about
1401 a type change. If the old symbol is a defined symbol, a type
1402 change warning may still be appropriate. */
1403
1404 if (h->root.type == bfd_link_hash_common)
1405 *type_change_ok = TRUE;
1406 }
1407
1408 /* Handle the special case of an old common symbol merging with a
1409 new symbol which looks like a common symbol in a shared object.
1410 We change *PSEC and *PVALUE to make the new symbol look like a
1411 common symbol, and let _bfd_generic_link_add_one_symbol do the
1412 right thing. */
1413
1414 if (newdyncommon
1415 && h->root.type == bfd_link_hash_common)
1416 {
1417 *override = TRUE;
1418 newdef = FALSE;
1419 newdyncommon = FALSE;
1420 *pvalue = sym->st_size;
1421 *psec = sec = bed->common_section (oldsec);
1422 *size_change_ok = TRUE;
1423 }
1424
1425 /* Skip weak definitions of symbols that are already defined. */
1426 if (newdef && olddef && newweak)
1427 {
1428 *skip = TRUE;
1429
1430 /* Merge st_other. If the symbol already has a dynamic index,
1431 but visibility says it should not be visible, turn it into a
1432 local symbol. */
1433 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1434 if (h->dynindx != -1)
1435 switch (ELF_ST_VISIBILITY (h->other))
1436 {
1437 case STV_INTERNAL:
1438 case STV_HIDDEN:
1439 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1440 break;
1441 }
1442 }
1443
1444 /* If the old symbol is from a dynamic object, and the new symbol is
1445 a definition which is not from a dynamic object, then the new
1446 symbol overrides the old symbol. Symbols from regular files
1447 always take precedence over symbols from dynamic objects, even if
1448 they are defined after the dynamic object in the link.
1449
1450 As above, we again permit a common symbol in a regular object to
1451 override a definition in a shared object if the shared object
1452 symbol is a function or is weak. */
1453
1454 flip = NULL;
1455 if (!newdyn
1456 && (newdef
1457 || (bfd_is_com_section (sec)
1458 && (oldweak || oldfunc)))
1459 && olddyn
1460 && olddef
1461 && h->def_dynamic)
1462 {
1463 /* Change the hash table entry to undefined, and let
1464 _bfd_generic_link_add_one_symbol do the right thing with the
1465 new definition. */
1466
1467 h->root.type = bfd_link_hash_undefined;
1468 h->root.u.undef.abfd = h->root.u.def.section->owner;
1469 *size_change_ok = TRUE;
1470
1471 olddef = FALSE;
1472 olddyncommon = FALSE;
1473
1474 /* We again permit a type change when a common symbol may be
1475 overriding a function. */
1476
1477 if (bfd_is_com_section (sec))
1478 {
1479 if (oldfunc)
1480 {
1481 /* If a common symbol overrides a function, make sure
1482 that it isn't defined dynamically nor has type
1483 function. */
1484 h->def_dynamic = 0;
1485 h->type = STT_NOTYPE;
1486 }
1487 *type_change_ok = TRUE;
1488 }
1489
1490 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1491 flip = *sym_hash;
1492 else
1493 /* This union may have been set to be non-NULL when this symbol
1494 was seen in a dynamic object. We must force the union to be
1495 NULL, so that it is correct for a regular symbol. */
1496 h->verinfo.vertree = NULL;
1497 }
1498
1499 /* Handle the special case of a new common symbol merging with an
1500 old symbol that looks like it might be a common symbol defined in
1501 a shared object. Note that we have already handled the case in
1502 which a new common symbol should simply override the definition
1503 in the shared library. */
1504
1505 if (! newdyn
1506 && bfd_is_com_section (sec)
1507 && olddyncommon)
1508 {
1509 /* It would be best if we could set the hash table entry to a
1510 common symbol, but we don't know what to use for the section
1511 or the alignment. */
1512 if (! ((*info->callbacks->multiple_common)
1513 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1514 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1515 return FALSE;
1516
1517 /* If the presumed common symbol in the dynamic object is
1518 larger, pretend that the new symbol has its size. */
1519
1520 if (h->size > *pvalue)
1521 *pvalue = h->size;
1522
1523 /* We need to remember the alignment required by the symbol
1524 in the dynamic object. */
1525 BFD_ASSERT (pold_alignment);
1526 *pold_alignment = h->root.u.def.section->alignment_power;
1527
1528 olddef = FALSE;
1529 olddyncommon = FALSE;
1530
1531 h->root.type = bfd_link_hash_undefined;
1532 h->root.u.undef.abfd = h->root.u.def.section->owner;
1533
1534 *size_change_ok = TRUE;
1535 *type_change_ok = TRUE;
1536
1537 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1538 flip = *sym_hash;
1539 else
1540 h->verinfo.vertree = NULL;
1541 }
1542
1543 if (flip != NULL)
1544 {
1545 /* Handle the case where we had a versioned symbol in a dynamic
1546 library and now find a definition in a normal object. In this
1547 case, we make the versioned symbol point to the normal one. */
1548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1549 flip->root.type = h->root.type;
1550 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1551 h->root.type = bfd_link_hash_indirect;
1552 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1553 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1554 if (h->def_dynamic)
1555 {
1556 h->def_dynamic = 0;
1557 flip->ref_dynamic = 1;
1558 }
1559 }
1560
1561 return TRUE;
1562 }
1563
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1568
1569 static bfd_boolean
1570 _bfd_elf_add_default_symbol (bfd *abfd,
1571 struct bfd_link_info *info,
1572 struct elf_link_hash_entry *h,
1573 const char *name,
1574 Elf_Internal_Sym *sym,
1575 asection **psec,
1576 bfd_vma *value,
1577 bfd_boolean *dynsym,
1578 bfd_boolean override)
1579 {
1580 bfd_boolean type_change_ok;
1581 bfd_boolean size_change_ok;
1582 bfd_boolean skip;
1583 char *shortname;
1584 struct elf_link_hash_entry *hi;
1585 struct bfd_link_hash_entry *bh;
1586 const struct elf_backend_data *bed;
1587 bfd_boolean collect;
1588 bfd_boolean dynamic;
1589 char *p;
1590 size_t len, shortlen;
1591 asection *sec;
1592
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p = strchr (name, ELF_VER_CHR);
1598 if (p == NULL || p[1] != ELF_VER_CHR)
1599 return TRUE;
1600
1601 if (override)
1602 {
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1606 FALSE, FALSE);
1607 BFD_ASSERT (hi != NULL);
1608 if (hi == h)
1609 return TRUE;
1610 while (hi->root.type == bfd_link_hash_indirect
1611 || hi->root.type == bfd_link_hash_warning)
1612 {
1613 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1614 if (hi == h)
1615 return TRUE;
1616 }
1617 }
1618
1619 bed = get_elf_backend_data (abfd);
1620 collect = bed->collect;
1621 dynamic = (abfd->flags & DYNAMIC) != 0;
1622
1623 shortlen = p - name;
1624 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1625 if (shortname == NULL)
1626 return FALSE;
1627 memcpy (shortname, name, shortlen);
1628 shortname[shortlen] = '\0';
1629
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 goto nondefault;
1644
1645 if (! override)
1646 {
1647 bh = &hi->root;
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1650 0, name, FALSE, collect, &bh)))
1651 return FALSE;
1652 hi = (struct elf_link_hash_entry *) bh;
1653 }
1654 else
1655 {
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1661
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1665
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1673
1674 while (hi->root.type == bfd_link_hash_indirect
1675 || hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1677
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1680 if (h->def_dynamic)
1681 {
1682 h->def_dynamic = 0;
1683 hi->ref_dynamic = 1;
1684 if (hi->ref_regular
1685 || hi->def_regular)
1686 {
1687 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1688 return FALSE;
1689 }
1690 }
1691
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1694 hi = h;
1695 }
1696
1697 /* Check if HI is a warning symbol. */
1698 if (hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1700
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1704
1705 if (hi->root.type == bfd_link_hash_indirect)
1706 {
1707 struct elf_link_hash_entry *ht;
1708
1709 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1711
1712 /* See if the new flags lead us to realize that the symbol must
1713 be dynamic. */
1714 if (! *dynsym)
1715 {
1716 if (! dynamic)
1717 {
1718 if (info->shared
1719 || hi->ref_dynamic)
1720 *dynsym = TRUE;
1721 }
1722 else
1723 {
1724 if (hi->ref_regular)
1725 *dynsym = TRUE;
1726 }
1727 }
1728 }
1729
1730 /* We also need to define an indirection from the nondefault version
1731 of the symbol. */
1732
1733 nondefault:
1734 len = strlen (name);
1735 shortname = bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1737 return FALSE;
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1740
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1744 sec = *psec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1746 NULL, &hi, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1748 return FALSE;
1749
1750 if (skip)
1751 return TRUE;
1752
1753 if (override)
1754 {
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1762 abfd, shortname);
1763 }
1764 else
1765 {
1766 bh = &hi->root;
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1770 return FALSE;
1771 hi = (struct elf_link_hash_entry *) bh;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1780
1781 /* See if the new flags lead us to realize that the symbol
1782 must be dynamic. */
1783 if (! *dynsym)
1784 {
1785 if (! dynamic)
1786 {
1787 if (info->shared
1788 || hi->ref_dynamic)
1789 *dynsym = TRUE;
1790 }
1791 else
1792 {
1793 if (hi->ref_regular)
1794 *dynsym = TRUE;
1795 }
1796 }
1797 }
1798 }
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1805
1806 static bfd_boolean
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1808 {
1809 struct elf_info_failed *eif = data;
1810
1811 /* Ignore this if we won't export it. */
1812 if (!eif->info->export_dynamic && !h->dynamic)
1813 return TRUE;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 if (h->root.type == bfd_link_hash_warning)
1820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular
1824 || h->ref_regular))
1825 {
1826 bfd_boolean hide;
1827
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830 && !hide))
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833 {
1834 eif->failed = TRUE;
1835 return FALSE;
1836 }
1837 }
1838 }
1839
1840 return TRUE;
1841 }
1842 \f
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1847
1848 static bfd_boolean
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850 void *data)
1851 {
1852 struct elf_find_verdep_info *rinfo = data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1855 bfd_size_type amt;
1856
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859
1860 /* We only care about symbols defined in shared objects with version
1861 information. */
1862 if (!h->def_dynamic
1863 || h->def_regular
1864 || h->dynindx == -1
1865 || h->verinfo.verdef == NULL)
1866 return TRUE;
1867
1868 /* See if we already know about this version. */
1869 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1870 t != NULL;
1871 t = t->vn_nextref)
1872 {
1873 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1874 continue;
1875
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1878 return TRUE;
1879
1880 break;
1881 }
1882
1883 /* This is a new version. Add it to tree we are building. */
1884
1885 if (t == NULL)
1886 {
1887 amt = sizeof *t;
1888 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1889 if (t == NULL)
1890 {
1891 rinfo->failed = TRUE;
1892 return FALSE;
1893 }
1894
1895 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1896 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1897 elf_tdata (rinfo->info->output_bfd)->verref = t;
1898 }
1899
1900 amt = sizeof *a;
1901 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1902 if (a == NULL)
1903 {
1904 rinfo->failed = TRUE;
1905 return FALSE;
1906 }
1907
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1911 fixed. */
1912 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1913
1914 a->vna_flags = h->verinfo.verdef->vd_flags;
1915 a->vna_nextptr = t->vn_auxptr;
1916
1917 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1918 ++rinfo->vers;
1919
1920 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1921
1922 t->vn_auxptr = a;
1923
1924 return TRUE;
1925 }
1926
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1931
1932 static bfd_boolean
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1934 {
1935 struct elf_info_failed *sinfo;
1936 struct bfd_link_info *info;
1937 const struct elf_backend_data *bed;
1938 struct elf_info_failed eif;
1939 char *p;
1940 bfd_size_type amt;
1941
1942 sinfo = data;
1943 info = sinfo->info;
1944
1945 if (h->root.type == bfd_link_hash_warning)
1946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1947
1948 /* Fix the symbol flags. */
1949 eif.failed = FALSE;
1950 eif.info = info;
1951 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1952 {
1953 if (eif.failed)
1954 sinfo->failed = TRUE;
1955 return FALSE;
1956 }
1957
1958 /* We only need version numbers for symbols defined in regular
1959 objects. */
1960 if (!h->def_regular)
1961 return TRUE;
1962
1963 bed = get_elf_backend_data (info->output_bfd);
1964 p = strchr (h->root.root.string, ELF_VER_CHR);
1965 if (p != NULL && h->verinfo.vertree == NULL)
1966 {
1967 struct bfd_elf_version_tree *t;
1968 bfd_boolean hidden;
1969
1970 hidden = TRUE;
1971
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1974 ++p;
1975 if (*p == ELF_VER_CHR)
1976 {
1977 hidden = FALSE;
1978 ++p;
1979 }
1980
1981 /* If there is no version string, we can just return out. */
1982 if (*p == '\0')
1983 {
1984 if (hidden)
1985 h->hidden = 1;
1986 return TRUE;
1987 }
1988
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t = sinfo->verdefs; t != NULL; t = t->next)
1991 {
1992 if (strcmp (t->name, p) == 0)
1993 {
1994 size_t len;
1995 char *alc;
1996 struct bfd_elf_version_expr *d;
1997
1998 len = p - h->root.root.string;
1999 alc = bfd_malloc (len);
2000 if (alc == NULL)
2001 {
2002 sinfo->failed = TRUE;
2003 return FALSE;
2004 }
2005 memcpy (alc, h->root.root.string, len - 1);
2006 alc[len - 1] = '\0';
2007 if (alc[len - 2] == ELF_VER_CHR)
2008 alc[len - 2] = '\0';
2009
2010 h->verinfo.vertree = t;
2011 t->used = TRUE;
2012 d = NULL;
2013
2014 if (t->globals.list != NULL)
2015 d = (*t->match) (&t->globals, NULL, alc);
2016
2017 /* See if there is anything to force this symbol to
2018 local scope. */
2019 if (d == NULL && t->locals.list != NULL)
2020 {
2021 d = (*t->match) (&t->locals, NULL, alc);
2022 if (d != NULL
2023 && h->dynindx != -1
2024 && ! info->export_dynamic)
2025 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2026 }
2027
2028 free (alc);
2029 break;
2030 }
2031 }
2032
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t == NULL && info->executable)
2036 {
2037 struct bfd_elf_version_tree **pp;
2038 int version_index;
2039
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h->dynindx == -1)
2043 return TRUE;
2044
2045 amt = sizeof *t;
2046 t = bfd_zalloc (info->output_bfd, amt);
2047 if (t == NULL)
2048 {
2049 sinfo->failed = TRUE;
2050 return FALSE;
2051 }
2052
2053 t->name = p;
2054 t->name_indx = (unsigned int) -1;
2055 t->used = TRUE;
2056
2057 version_index = 1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2060 version_index = 0;
2061 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2062 ++version_index;
2063 t->vernum = version_index;
2064
2065 *pp = t;
2066
2067 h->verinfo.vertree = t;
2068 }
2069 else if (t == NULL)
2070 {
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler)
2074 (_("%B: version node not found for symbol %s"),
2075 info->output_bfd, h->root.root.string);
2076 bfd_set_error (bfd_error_bad_value);
2077 sinfo->failed = TRUE;
2078 return FALSE;
2079 }
2080
2081 if (hidden)
2082 h->hidden = 1;
2083 }
2084
2085 /* If we don't have a version for this symbol, see if we can find
2086 something. */
2087 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2088 {
2089 bfd_boolean hide;
2090
2091 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2092 h->root.root.string, &hide);
2093 if (h->verinfo.vertree != NULL && hide)
2094 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2106
2107 Returns FALSE if something goes wrong. */
2108
2109 static bfd_boolean
2110 elf_link_read_relocs_from_section (bfd *abfd,
2111 asection *sec,
2112 Elf_Internal_Shdr *shdr,
2113 void *external_relocs,
2114 Elf_Internal_Rela *internal_relocs)
2115 {
2116 const struct elf_backend_data *bed;
2117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2118 const bfd_byte *erela;
2119 const bfd_byte *erelaend;
2120 Elf_Internal_Rela *irela;
2121 Elf_Internal_Shdr *symtab_hdr;
2122 size_t nsyms;
2123
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2126 return FALSE;
2127
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2130 return FALSE;
2131
2132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2133 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2134
2135 bed = get_elf_backend_data (abfd);
2136
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr->sh_entsize == bed->s->sizeof_rel)
2139 swap_in = bed->s->swap_reloc_in;
2140 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2141 swap_in = bed->s->swap_reloca_in;
2142 else
2143 {
2144 bfd_set_error (bfd_error_wrong_format);
2145 return FALSE;
2146 }
2147
2148 erela = external_relocs;
2149 erelaend = erela + shdr->sh_size;
2150 irela = internal_relocs;
2151 while (erela < erelaend)
2152 {
2153 bfd_vma r_symndx;
2154
2155 (*swap_in) (abfd, erela, irela);
2156 r_symndx = ELF32_R_SYM (irela->r_info);
2157 if (bed->s->arch_size == 64)
2158 r_symndx >>= 24;
2159 if (nsyms > 0)
2160 {
2161 if ((size_t) r_symndx >= nsyms)
2162 {
2163 (*_bfd_error_handler)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2166 abfd, sec,
2167 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 }
2172 else if (r_symndx != 0)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 irela += bed->s->int_rels_per_ext_rel;
2183 erela += shdr->sh_entsize;
2184 }
2185
2186 return TRUE;
2187 }
2188
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2198
2199 Elf_Internal_Rela *
2200 _bfd_elf_link_read_relocs (bfd *abfd,
2201 asection *o,
2202 void *external_relocs,
2203 Elf_Internal_Rela *internal_relocs,
2204 bfd_boolean keep_memory)
2205 {
2206 Elf_Internal_Shdr *rel_hdr;
2207 void *alloc1 = NULL;
2208 Elf_Internal_Rela *alloc2 = NULL;
2209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2210
2211 if (elf_section_data (o)->relocs != NULL)
2212 return elf_section_data (o)->relocs;
2213
2214 if (o->reloc_count == 0)
2215 return NULL;
2216
2217 rel_hdr = &elf_section_data (o)->rel_hdr;
2218
2219 if (internal_relocs == NULL)
2220 {
2221 bfd_size_type size;
2222
2223 size = o->reloc_count;
2224 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2225 if (keep_memory)
2226 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2227 else
2228 internal_relocs = alloc2 = bfd_malloc (size);
2229 if (internal_relocs == NULL)
2230 goto error_return;
2231 }
2232
2233 if (external_relocs == NULL)
2234 {
2235 bfd_size_type size = rel_hdr->sh_size;
2236
2237 if (elf_section_data (o)->rel_hdr2)
2238 size += elf_section_data (o)->rel_hdr2->sh_size;
2239 alloc1 = bfd_malloc (size);
2240 if (alloc1 == NULL)
2241 goto error_return;
2242 external_relocs = alloc1;
2243 }
2244
2245 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2246 external_relocs,
2247 internal_relocs))
2248 goto error_return;
2249 if (elf_section_data (o)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2251 (abfd, o,
2252 elf_section_data (o)->rel_hdr2,
2253 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2254 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2255 * bed->s->int_rels_per_ext_rel))))
2256 goto error_return;
2257
2258 /* Cache the results for next time, if we can. */
2259 if (keep_memory)
2260 elf_section_data (o)->relocs = internal_relocs;
2261
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2267
2268 return internal_relocs;
2269
2270 error_return:
2271 if (alloc1 != NULL)
2272 free (alloc1);
2273 if (alloc2 != NULL)
2274 {
2275 if (keep_memory)
2276 bfd_release (abfd, alloc2);
2277 else
2278 free (alloc2);
2279 }
2280 return NULL;
2281 }
2282
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2285
2286 static bfd_boolean
2287 _bfd_elf_link_size_reloc_section (bfd *abfd,
2288 Elf_Internal_Shdr *rel_hdr,
2289 asection *o)
2290 {
2291 bfd_size_type reloc_count;
2292 bfd_size_type num_rel_hashes;
2293
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2296 reloc_count = elf_section_data (o)->rel_count;
2297 else
2298 reloc_count = elf_section_data (o)->rel_count2;
2299
2300 num_rel_hashes = o->reloc_count;
2301 if (num_rel_hashes < reloc_count)
2302 num_rel_hashes = reloc_count;
2303
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2306
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2312 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2313 return FALSE;
2314
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o)->rel_hashes == NULL
2318 && num_rel_hashes)
2319 {
2320 struct elf_link_hash_entry **p;
2321
2322 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2323 if (p == NULL)
2324 return FALSE;
2325
2326 elf_section_data (o)->rel_hashes = p;
2327 }
2328
2329 return TRUE;
2330 }
2331
2332 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2333 originated from the section given by INPUT_REL_HDR) to the
2334 OUTPUT_BFD. */
2335
2336 bfd_boolean
2337 _bfd_elf_link_output_relocs (bfd *output_bfd,
2338 asection *input_section,
2339 Elf_Internal_Shdr *input_rel_hdr,
2340 Elf_Internal_Rela *internal_relocs,
2341 struct elf_link_hash_entry **rel_hash
2342 ATTRIBUTE_UNUSED)
2343 {
2344 Elf_Internal_Rela *irela;
2345 Elf_Internal_Rela *irelaend;
2346 bfd_byte *erel;
2347 Elf_Internal_Shdr *output_rel_hdr;
2348 asection *output_section;
2349 unsigned int *rel_countp = NULL;
2350 const struct elf_backend_data *bed;
2351 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2352
2353 output_section = input_section->output_section;
2354 output_rel_hdr = NULL;
2355
2356 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2357 == input_rel_hdr->sh_entsize)
2358 {
2359 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2360 rel_countp = &elf_section_data (output_section)->rel_count;
2361 }
2362 else if (elf_section_data (output_section)->rel_hdr2
2363 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2364 == input_rel_hdr->sh_entsize))
2365 {
2366 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2367 rel_countp = &elf_section_data (output_section)->rel_count2;
2368 }
2369 else
2370 {
2371 (*_bfd_error_handler)
2372 (_("%B: relocation size mismatch in %B section %A"),
2373 output_bfd, input_section->owner, input_section);
2374 bfd_set_error (bfd_error_wrong_format);
2375 return FALSE;
2376 }
2377
2378 bed = get_elf_backend_data (output_bfd);
2379 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2380 swap_out = bed->s->swap_reloc_out;
2381 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2382 swap_out = bed->s->swap_reloca_out;
2383 else
2384 abort ();
2385
2386 erel = output_rel_hdr->contents;
2387 erel += *rel_countp * input_rel_hdr->sh_entsize;
2388 irela = internal_relocs;
2389 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2390 * bed->s->int_rels_per_ext_rel);
2391 while (irela < irelaend)
2392 {
2393 (*swap_out) (output_bfd, irela, erel);
2394 irela += bed->s->int_rels_per_ext_rel;
2395 erel += input_rel_hdr->sh_entsize;
2396 }
2397
2398 /* Bump the counter, so that we know where to add the next set of
2399 relocations. */
2400 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2401
2402 return TRUE;
2403 }
2404 \f
2405 /* Make weak undefined symbols in PIE dynamic. */
2406
2407 bfd_boolean
2408 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2409 struct elf_link_hash_entry *h)
2410 {
2411 if (info->pie
2412 && h->dynindx == -1
2413 && h->root.type == bfd_link_hash_undefweak)
2414 return bfd_elf_link_record_dynamic_symbol (info, h);
2415
2416 return TRUE;
2417 }
2418
2419 /* Fix up the flags for a symbol. This handles various cases which
2420 can only be fixed after all the input files are seen. This is
2421 currently called by both adjust_dynamic_symbol and
2422 assign_sym_version, which is unnecessary but perhaps more robust in
2423 the face of future changes. */
2424
2425 static bfd_boolean
2426 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2427 struct elf_info_failed *eif)
2428 {
2429 const struct elf_backend_data *bed;
2430
2431 /* If this symbol was mentioned in a non-ELF file, try to set
2432 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2433 permit a non-ELF file to correctly refer to a symbol defined in
2434 an ELF dynamic object. */
2435 if (h->non_elf)
2436 {
2437 while (h->root.type == bfd_link_hash_indirect)
2438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2439
2440 if (h->root.type != bfd_link_hash_defined
2441 && h->root.type != bfd_link_hash_defweak)
2442 {
2443 h->ref_regular = 1;
2444 h->ref_regular_nonweak = 1;
2445 }
2446 else
2447 {
2448 if (h->root.u.def.section->owner != NULL
2449 && (bfd_get_flavour (h->root.u.def.section->owner)
2450 == bfd_target_elf_flavour))
2451 {
2452 h->ref_regular = 1;
2453 h->ref_regular_nonweak = 1;
2454 }
2455 else
2456 h->def_regular = 1;
2457 }
2458
2459 if (h->dynindx == -1
2460 && (h->def_dynamic
2461 || h->ref_dynamic))
2462 {
2463 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2464 {
2465 eif->failed = TRUE;
2466 return FALSE;
2467 }
2468 }
2469 }
2470 else
2471 {
2472 /* Unfortunately, NON_ELF is only correct if the symbol
2473 was first seen in a non-ELF file. Fortunately, if the symbol
2474 was first seen in an ELF file, we're probably OK unless the
2475 symbol was defined in a non-ELF file. Catch that case here.
2476 FIXME: We're still in trouble if the symbol was first seen in
2477 a dynamic object, and then later in a non-ELF regular object. */
2478 if ((h->root.type == bfd_link_hash_defined
2479 || h->root.type == bfd_link_hash_defweak)
2480 && !h->def_regular
2481 && (h->root.u.def.section->owner != NULL
2482 ? (bfd_get_flavour (h->root.u.def.section->owner)
2483 != bfd_target_elf_flavour)
2484 : (bfd_is_abs_section (h->root.u.def.section)
2485 && !h->def_dynamic)))
2486 h->def_regular = 1;
2487 }
2488
2489 /* Backend specific symbol fixup. */
2490 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2491 if (bed->elf_backend_fixup_symbol
2492 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2493 return FALSE;
2494
2495 /* If this is a final link, and the symbol was defined as a common
2496 symbol in a regular object file, and there was no definition in
2497 any dynamic object, then the linker will have allocated space for
2498 the symbol in a common section but the DEF_REGULAR
2499 flag will not have been set. */
2500 if (h->root.type == bfd_link_hash_defined
2501 && !h->def_regular
2502 && h->ref_regular
2503 && !h->def_dynamic
2504 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2505 h->def_regular = 1;
2506
2507 /* If -Bsymbolic was used (which means to bind references to global
2508 symbols to the definition within the shared object), and this
2509 symbol was defined in a regular object, then it actually doesn't
2510 need a PLT entry. Likewise, if the symbol has non-default
2511 visibility. If the symbol has hidden or internal visibility, we
2512 will force it local. */
2513 if (h->needs_plt
2514 && eif->info->shared
2515 && is_elf_hash_table (eif->info->hash)
2516 && (SYMBOLIC_BIND (eif->info, h)
2517 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2518 && h->def_regular)
2519 {
2520 bfd_boolean force_local;
2521
2522 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2523 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2525 }
2526
2527 /* If a weak undefined symbol has non-default visibility, we also
2528 hide it from the dynamic linker. */
2529 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2530 && h->root.type == bfd_link_hash_undefweak)
2531 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2532
2533 /* If this is a weak defined symbol in a dynamic object, and we know
2534 the real definition in the dynamic object, copy interesting flags
2535 over to the real definition. */
2536 if (h->u.weakdef != NULL)
2537 {
2538 struct elf_link_hash_entry *weakdef;
2539
2540 weakdef = h->u.weakdef;
2541 if (h->root.type == bfd_link_hash_indirect)
2542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2543
2544 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2545 || h->root.type == bfd_link_hash_defweak);
2546 BFD_ASSERT (weakdef->def_dynamic);
2547
2548 /* If the real definition is defined by a regular object file,
2549 don't do anything special. See the longer description in
2550 _bfd_elf_adjust_dynamic_symbol, below. */
2551 if (weakdef->def_regular)
2552 h->u.weakdef = NULL;
2553 else
2554 {
2555 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2556 || weakdef->root.type == bfd_link_hash_defweak);
2557 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2558 }
2559 }
2560
2561 return TRUE;
2562 }
2563
2564 /* Make the backend pick a good value for a dynamic symbol. This is
2565 called via elf_link_hash_traverse, and also calls itself
2566 recursively. */
2567
2568 static bfd_boolean
2569 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2570 {
2571 struct elf_info_failed *eif = data;
2572 bfd *dynobj;
2573 const struct elf_backend_data *bed;
2574
2575 if (! is_elf_hash_table (eif->info->hash))
2576 return FALSE;
2577
2578 if (h->root.type == bfd_link_hash_warning)
2579 {
2580 h->got = elf_hash_table (eif->info)->init_got_offset;
2581 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2582
2583 /* When warning symbols are created, they **replace** the "real"
2584 entry in the hash table, thus we never get to see the real
2585 symbol in a hash traversal. So look at it now. */
2586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2587 }
2588
2589 /* Ignore indirect symbols. These are added by the versioning code. */
2590 if (h->root.type == bfd_link_hash_indirect)
2591 return TRUE;
2592
2593 /* Fix the symbol flags. */
2594 if (! _bfd_elf_fix_symbol_flags (h, eif))
2595 return FALSE;
2596
2597 /* If this symbol does not require a PLT entry, and it is not
2598 defined by a dynamic object, or is not referenced by a regular
2599 object, ignore it. We do have to handle a weak defined symbol,
2600 even if no regular object refers to it, if we decided to add it
2601 to the dynamic symbol table. FIXME: Do we normally need to worry
2602 about symbols which are defined by one dynamic object and
2603 referenced by another one? */
2604 if (!h->needs_plt
2605 && (h->def_regular
2606 || !h->def_dynamic
2607 || (!h->ref_regular
2608 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2609 {
2610 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2611 return TRUE;
2612 }
2613
2614 /* If we've already adjusted this symbol, don't do it again. This
2615 can happen via a recursive call. */
2616 if (h->dynamic_adjusted)
2617 return TRUE;
2618
2619 /* Don't look at this symbol again. Note that we must set this
2620 after checking the above conditions, because we may look at a
2621 symbol once, decide not to do anything, and then get called
2622 recursively later after REF_REGULAR is set below. */
2623 h->dynamic_adjusted = 1;
2624
2625 /* If this is a weak definition, and we know a real definition, and
2626 the real symbol is not itself defined by a regular object file,
2627 then get a good value for the real definition. We handle the
2628 real symbol first, for the convenience of the backend routine.
2629
2630 Note that there is a confusing case here. If the real definition
2631 is defined by a regular object file, we don't get the real symbol
2632 from the dynamic object, but we do get the weak symbol. If the
2633 processor backend uses a COPY reloc, then if some routine in the
2634 dynamic object changes the real symbol, we will not see that
2635 change in the corresponding weak symbol. This is the way other
2636 ELF linkers work as well, and seems to be a result of the shared
2637 library model.
2638
2639 I will clarify this issue. Most SVR4 shared libraries define the
2640 variable _timezone and define timezone as a weak synonym. The
2641 tzset call changes _timezone. If you write
2642 extern int timezone;
2643 int _timezone = 5;
2644 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2645 you might expect that, since timezone is a synonym for _timezone,
2646 the same number will print both times. However, if the processor
2647 backend uses a COPY reloc, then actually timezone will be copied
2648 into your process image, and, since you define _timezone
2649 yourself, _timezone will not. Thus timezone and _timezone will
2650 wind up at different memory locations. The tzset call will set
2651 _timezone, leaving timezone unchanged. */
2652
2653 if (h->u.weakdef != NULL)
2654 {
2655 /* If we get to this point, we know there is an implicit
2656 reference by a regular object file via the weak symbol H.
2657 FIXME: Is this really true? What if the traversal finds
2658 H->U.WEAKDEF before it finds H? */
2659 h->u.weakdef->ref_regular = 1;
2660
2661 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2662 return FALSE;
2663 }
2664
2665 /* If a symbol has no type and no size and does not require a PLT
2666 entry, then we are probably about to do the wrong thing here: we
2667 are probably going to create a COPY reloc for an empty object.
2668 This case can arise when a shared object is built with assembly
2669 code, and the assembly code fails to set the symbol type. */
2670 if (h->size == 0
2671 && h->type == STT_NOTYPE
2672 && !h->needs_plt)
2673 (*_bfd_error_handler)
2674 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2675 h->root.root.string);
2676
2677 dynobj = elf_hash_table (eif->info)->dynobj;
2678 bed = get_elf_backend_data (dynobj);
2679
2680 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2681 {
2682 eif->failed = TRUE;
2683 return FALSE;
2684 }
2685
2686 return TRUE;
2687 }
2688
2689 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2690 DYNBSS. */
2691
2692 bfd_boolean
2693 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2694 asection *dynbss)
2695 {
2696 unsigned int power_of_two;
2697 bfd_vma mask;
2698 asection *sec = h->root.u.def.section;
2699
2700 /* The section aligment of definition is the maximum alignment
2701 requirement of symbols defined in the section. Since we don't
2702 know the symbol alignment requirement, we start with the
2703 maximum alignment and check low bits of the symbol address
2704 for the minimum alignment. */
2705 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2706 mask = ((bfd_vma) 1 << power_of_two) - 1;
2707 while ((h->root.u.def.value & mask) != 0)
2708 {
2709 mask >>= 1;
2710 --power_of_two;
2711 }
2712
2713 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2714 dynbss))
2715 {
2716 /* Adjust the section alignment if needed. */
2717 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2718 power_of_two))
2719 return FALSE;
2720 }
2721
2722 /* We make sure that the symbol will be aligned properly. */
2723 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2724
2725 /* Define the symbol as being at this point in DYNBSS. */
2726 h->root.u.def.section = dynbss;
2727 h->root.u.def.value = dynbss->size;
2728
2729 /* Increment the size of DYNBSS to make room for the symbol. */
2730 dynbss->size += h->size;
2731
2732 return TRUE;
2733 }
2734
2735 /* Adjust all external symbols pointing into SEC_MERGE sections
2736 to reflect the object merging within the sections. */
2737
2738 static bfd_boolean
2739 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2740 {
2741 asection *sec;
2742
2743 if (h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2745
2746 if ((h->root.type == bfd_link_hash_defined
2747 || h->root.type == bfd_link_hash_defweak)
2748 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2749 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2750 {
2751 bfd *output_bfd = data;
2752
2753 h->root.u.def.value =
2754 _bfd_merged_section_offset (output_bfd,
2755 &h->root.u.def.section,
2756 elf_section_data (sec)->sec_info,
2757 h->root.u.def.value);
2758 }
2759
2760 return TRUE;
2761 }
2762
2763 /* Returns false if the symbol referred to by H should be considered
2764 to resolve local to the current module, and true if it should be
2765 considered to bind dynamically. */
2766
2767 bfd_boolean
2768 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2769 struct bfd_link_info *info,
2770 bfd_boolean ignore_protected)
2771 {
2772 bfd_boolean binding_stays_local_p;
2773 const struct elf_backend_data *bed;
2774 struct elf_link_hash_table *hash_table;
2775
2776 if (h == NULL)
2777 return FALSE;
2778
2779 while (h->root.type == bfd_link_hash_indirect
2780 || h->root.type == bfd_link_hash_warning)
2781 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2782
2783 /* If it was forced local, then clearly it's not dynamic. */
2784 if (h->dynindx == -1)
2785 return FALSE;
2786 if (h->forced_local)
2787 return FALSE;
2788
2789 /* Identify the cases where name binding rules say that a
2790 visible symbol resolves locally. */
2791 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2792
2793 switch (ELF_ST_VISIBILITY (h->other))
2794 {
2795 case STV_INTERNAL:
2796 case STV_HIDDEN:
2797 return FALSE;
2798
2799 case STV_PROTECTED:
2800 hash_table = elf_hash_table (info);
2801 if (!is_elf_hash_table (hash_table))
2802 return FALSE;
2803
2804 bed = get_elf_backend_data (hash_table->dynobj);
2805
2806 /* Proper resolution for function pointer equality may require
2807 that these symbols perhaps be resolved dynamically, even though
2808 we should be resolving them to the current module. */
2809 if (!ignore_protected || !bed->is_function_type (h->type))
2810 binding_stays_local_p = TRUE;
2811 break;
2812
2813 default:
2814 break;
2815 }
2816
2817 /* If it isn't defined locally, then clearly it's dynamic. */
2818 if (!h->def_regular)
2819 return TRUE;
2820
2821 /* Otherwise, the symbol is dynamic if binding rules don't tell
2822 us that it remains local. */
2823 return !binding_stays_local_p;
2824 }
2825
2826 /* Return true if the symbol referred to by H should be considered
2827 to resolve local to the current module, and false otherwise. Differs
2828 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2829 undefined symbols and weak symbols. */
2830
2831 bfd_boolean
2832 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2833 struct bfd_link_info *info,
2834 bfd_boolean local_protected)
2835 {
2836 const struct elf_backend_data *bed;
2837 struct elf_link_hash_table *hash_table;
2838
2839 /* If it's a local sym, of course we resolve locally. */
2840 if (h == NULL)
2841 return TRUE;
2842
2843 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2845 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2846 return TRUE;
2847
2848 /* Common symbols that become definitions don't get the DEF_REGULAR
2849 flag set, so test it first, and don't bail out. */
2850 if (ELF_COMMON_DEF_P (h))
2851 /* Do nothing. */;
2852 /* If we don't have a definition in a regular file, then we can't
2853 resolve locally. The sym is either undefined or dynamic. */
2854 else if (!h->def_regular)
2855 return FALSE;
2856
2857 /* Forced local symbols resolve locally. */
2858 if (h->forced_local)
2859 return TRUE;
2860
2861 /* As do non-dynamic symbols. */
2862 if (h->dynindx == -1)
2863 return TRUE;
2864
2865 /* At this point, we know the symbol is defined and dynamic. In an
2866 executable it must resolve locally, likewise when building symbolic
2867 shared libraries. */
2868 if (info->executable || SYMBOLIC_BIND (info, h))
2869 return TRUE;
2870
2871 /* Now deal with defined dynamic symbols in shared libraries. Ones
2872 with default visibility might not resolve locally. */
2873 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2874 return FALSE;
2875
2876 hash_table = elf_hash_table (info);
2877 if (!is_elf_hash_table (hash_table))
2878 return TRUE;
2879
2880 bed = get_elf_backend_data (hash_table->dynobj);
2881
2882 /* STV_PROTECTED non-function symbols are local. */
2883 if (!bed->is_function_type (h->type))
2884 return TRUE;
2885
2886 /* Function pointer equality tests may require that STV_PROTECTED
2887 symbols be treated as dynamic symbols, even when we know that the
2888 dynamic linker will resolve them locally. */
2889 return local_protected;
2890 }
2891
2892 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2893 aligned. Returns the first TLS output section. */
2894
2895 struct bfd_section *
2896 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2897 {
2898 struct bfd_section *sec, *tls;
2899 unsigned int align = 0;
2900
2901 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2902 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2903 break;
2904 tls = sec;
2905
2906 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2907 if (sec->alignment_power > align)
2908 align = sec->alignment_power;
2909
2910 elf_hash_table (info)->tls_sec = tls;
2911
2912 /* Ensure the alignment of the first section is the largest alignment,
2913 so that the tls segment starts aligned. */
2914 if (tls != NULL)
2915 tls->alignment_power = align;
2916
2917 return tls;
2918 }
2919
2920 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2921 static bfd_boolean
2922 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2923 Elf_Internal_Sym *sym)
2924 {
2925 const struct elf_backend_data *bed;
2926
2927 /* Local symbols do not count, but target specific ones might. */
2928 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2929 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2930 return FALSE;
2931
2932 bed = get_elf_backend_data (abfd);
2933 /* Function symbols do not count. */
2934 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2935 return FALSE;
2936
2937 /* If the section is undefined, then so is the symbol. */
2938 if (sym->st_shndx == SHN_UNDEF)
2939 return FALSE;
2940
2941 /* If the symbol is defined in the common section, then
2942 it is a common definition and so does not count. */
2943 if (bed->common_definition (sym))
2944 return FALSE;
2945
2946 /* If the symbol is in a target specific section then we
2947 must rely upon the backend to tell us what it is. */
2948 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2949 /* FIXME - this function is not coded yet:
2950
2951 return _bfd_is_global_symbol_definition (abfd, sym);
2952
2953 Instead for now assume that the definition is not global,
2954 Even if this is wrong, at least the linker will behave
2955 in the same way that it used to do. */
2956 return FALSE;
2957
2958 return TRUE;
2959 }
2960
2961 /* Search the symbol table of the archive element of the archive ABFD
2962 whose archive map contains a mention of SYMDEF, and determine if
2963 the symbol is defined in this element. */
2964 static bfd_boolean
2965 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2966 {
2967 Elf_Internal_Shdr * hdr;
2968 bfd_size_type symcount;
2969 bfd_size_type extsymcount;
2970 bfd_size_type extsymoff;
2971 Elf_Internal_Sym *isymbuf;
2972 Elf_Internal_Sym *isym;
2973 Elf_Internal_Sym *isymend;
2974 bfd_boolean result;
2975
2976 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2977 if (abfd == NULL)
2978 return FALSE;
2979
2980 if (! bfd_check_format (abfd, bfd_object))
2981 return FALSE;
2982
2983 /* If we have already included the element containing this symbol in the
2984 link then we do not need to include it again. Just claim that any symbol
2985 it contains is not a definition, so that our caller will not decide to
2986 (re)include this element. */
2987 if (abfd->archive_pass)
2988 return FALSE;
2989
2990 /* Select the appropriate symbol table. */
2991 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2992 hdr = &elf_tdata (abfd)->symtab_hdr;
2993 else
2994 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2995
2996 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2997
2998 /* The sh_info field of the symtab header tells us where the
2999 external symbols start. We don't care about the local symbols. */
3000 if (elf_bad_symtab (abfd))
3001 {
3002 extsymcount = symcount;
3003 extsymoff = 0;
3004 }
3005 else
3006 {
3007 extsymcount = symcount - hdr->sh_info;
3008 extsymoff = hdr->sh_info;
3009 }
3010
3011 if (extsymcount == 0)
3012 return FALSE;
3013
3014 /* Read in the symbol table. */
3015 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3016 NULL, NULL, NULL);
3017 if (isymbuf == NULL)
3018 return FALSE;
3019
3020 /* Scan the symbol table looking for SYMDEF. */
3021 result = FALSE;
3022 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3023 {
3024 const char *name;
3025
3026 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3027 isym->st_name);
3028 if (name == NULL)
3029 break;
3030
3031 if (strcmp (name, symdef->name) == 0)
3032 {
3033 result = is_global_data_symbol_definition (abfd, isym);
3034 break;
3035 }
3036 }
3037
3038 free (isymbuf);
3039
3040 return result;
3041 }
3042 \f
3043 /* Add an entry to the .dynamic table. */
3044
3045 bfd_boolean
3046 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3047 bfd_vma tag,
3048 bfd_vma val)
3049 {
3050 struct elf_link_hash_table *hash_table;
3051 const struct elf_backend_data *bed;
3052 asection *s;
3053 bfd_size_type newsize;
3054 bfd_byte *newcontents;
3055 Elf_Internal_Dyn dyn;
3056
3057 hash_table = elf_hash_table (info);
3058 if (! is_elf_hash_table (hash_table))
3059 return FALSE;
3060
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3063 BFD_ASSERT (s != NULL);
3064
3065 newsize = s->size + bed->s->sizeof_dyn;
3066 newcontents = bfd_realloc (s->contents, newsize);
3067 if (newcontents == NULL)
3068 return FALSE;
3069
3070 dyn.d_tag = tag;
3071 dyn.d_un.d_val = val;
3072 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3073
3074 s->size = newsize;
3075 s->contents = newcontents;
3076
3077 return TRUE;
3078 }
3079
3080 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3081 otherwise just check whether one already exists. Returns -1 on error,
3082 1 if a DT_NEEDED tag already exists, and 0 on success. */
3083
3084 static int
3085 elf_add_dt_needed_tag (bfd *abfd,
3086 struct bfd_link_info *info,
3087 const char *soname,
3088 bfd_boolean do_it)
3089 {
3090 struct elf_link_hash_table *hash_table;
3091 bfd_size_type oldsize;
3092 bfd_size_type strindex;
3093
3094 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3095 return -1;
3096
3097 hash_table = elf_hash_table (info);
3098 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3099 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3100 if (strindex == (bfd_size_type) -1)
3101 return -1;
3102
3103 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3104 {
3105 asection *sdyn;
3106 const struct elf_backend_data *bed;
3107 bfd_byte *extdyn;
3108
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3111 if (sdyn != NULL)
3112 for (extdyn = sdyn->contents;
3113 extdyn < sdyn->contents + sdyn->size;
3114 extdyn += bed->s->sizeof_dyn)
3115 {
3116 Elf_Internal_Dyn dyn;
3117
3118 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3119 if (dyn.d_tag == DT_NEEDED
3120 && dyn.d_un.d_val == strindex)
3121 {
3122 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3123 return 1;
3124 }
3125 }
3126 }
3127
3128 if (do_it)
3129 {
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3131 return -1;
3132
3133 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3134 return -1;
3135 }
3136 else
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3139
3140 return 0;
3141 }
3142
3143 static bfd_boolean
3144 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3145 {
3146 for (; needed != NULL; needed = needed->next)
3147 if (strcmp (soname, needed->name) == 0)
3148 return TRUE;
3149
3150 return FALSE;
3151 }
3152
3153 /* Sort symbol by value and section. */
3154 static int
3155 elf_sort_symbol (const void *arg1, const void *arg2)
3156 {
3157 const struct elf_link_hash_entry *h1;
3158 const struct elf_link_hash_entry *h2;
3159 bfd_signed_vma vdiff;
3160
3161 h1 = *(const struct elf_link_hash_entry **) arg1;
3162 h2 = *(const struct elf_link_hash_entry **) arg2;
3163 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3164 if (vdiff != 0)
3165 return vdiff > 0 ? 1 : -1;
3166 else
3167 {
3168 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3169 if (sdiff != 0)
3170 return sdiff > 0 ? 1 : -1;
3171 }
3172 return 0;
3173 }
3174
3175 /* This function is used to adjust offsets into .dynstr for
3176 dynamic symbols. This is called via elf_link_hash_traverse. */
3177
3178 static bfd_boolean
3179 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3180 {
3181 struct elf_strtab_hash *dynstr = data;
3182
3183 if (h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3185
3186 if (h->dynindx != -1)
3187 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3188 return TRUE;
3189 }
3190
3191 /* Assign string offsets in .dynstr, update all structures referencing
3192 them. */
3193
3194 static bfd_boolean
3195 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3196 {
3197 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3198 struct elf_link_local_dynamic_entry *entry;
3199 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3200 bfd *dynobj = hash_table->dynobj;
3201 asection *sdyn;
3202 bfd_size_type size;
3203 const struct elf_backend_data *bed;
3204 bfd_byte *extdyn;
3205
3206 _bfd_elf_strtab_finalize (dynstr);
3207 size = _bfd_elf_strtab_size (dynstr);
3208
3209 bed = get_elf_backend_data (dynobj);
3210 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3211 BFD_ASSERT (sdyn != NULL);
3212
3213 /* Update all .dynamic entries referencing .dynstr strings. */
3214 for (extdyn = sdyn->contents;
3215 extdyn < sdyn->contents + sdyn->size;
3216 extdyn += bed->s->sizeof_dyn)
3217 {
3218 Elf_Internal_Dyn dyn;
3219
3220 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3221 switch (dyn.d_tag)
3222 {
3223 case DT_STRSZ:
3224 dyn.d_un.d_val = size;
3225 break;
3226 case DT_NEEDED:
3227 case DT_SONAME:
3228 case DT_RPATH:
3229 case DT_RUNPATH:
3230 case DT_FILTER:
3231 case DT_AUXILIARY:
3232 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3233 break;
3234 default:
3235 continue;
3236 }
3237 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3238 }
3239
3240 /* Now update local dynamic symbols. */
3241 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3242 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3243 entry->isym.st_name);
3244
3245 /* And the rest of dynamic symbols. */
3246 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3247
3248 /* Adjust version definitions. */
3249 if (elf_tdata (output_bfd)->cverdefs)
3250 {
3251 asection *s;
3252 bfd_byte *p;
3253 bfd_size_type i;
3254 Elf_Internal_Verdef def;
3255 Elf_Internal_Verdaux defaux;
3256
3257 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3258 p = s->contents;
3259 do
3260 {
3261 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3262 &def);
3263 p += sizeof (Elf_External_Verdef);
3264 if (def.vd_aux != sizeof (Elf_External_Verdef))
3265 continue;
3266 for (i = 0; i < def.vd_cnt; ++i)
3267 {
3268 _bfd_elf_swap_verdaux_in (output_bfd,
3269 (Elf_External_Verdaux *) p, &defaux);
3270 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3271 defaux.vda_name);
3272 _bfd_elf_swap_verdaux_out (output_bfd,
3273 &defaux, (Elf_External_Verdaux *) p);
3274 p += sizeof (Elf_External_Verdaux);
3275 }
3276 }
3277 while (def.vd_next);
3278 }
3279
3280 /* Adjust version references. */
3281 if (elf_tdata (output_bfd)->verref)
3282 {
3283 asection *s;
3284 bfd_byte *p;
3285 bfd_size_type i;
3286 Elf_Internal_Verneed need;
3287 Elf_Internal_Vernaux needaux;
3288
3289 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3290 p = s->contents;
3291 do
3292 {
3293 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3294 &need);
3295 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3296 _bfd_elf_swap_verneed_out (output_bfd, &need,
3297 (Elf_External_Verneed *) p);
3298 p += sizeof (Elf_External_Verneed);
3299 for (i = 0; i < need.vn_cnt; ++i)
3300 {
3301 _bfd_elf_swap_vernaux_in (output_bfd,
3302 (Elf_External_Vernaux *) p, &needaux);
3303 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3304 needaux.vna_name);
3305 _bfd_elf_swap_vernaux_out (output_bfd,
3306 &needaux,
3307 (Elf_External_Vernaux *) p);
3308 p += sizeof (Elf_External_Vernaux);
3309 }
3310 }
3311 while (need.vn_next);
3312 }
3313
3314 return TRUE;
3315 }
3316 \f
3317 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3318 The default is to only match when the INPUT and OUTPUT are exactly
3319 the same target. */
3320
3321 bfd_boolean
3322 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3323 const bfd_target *output)
3324 {
3325 return input == output;
3326 }
3327
3328 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3329 This version is used when different targets for the same architecture
3330 are virtually identical. */
3331
3332 bfd_boolean
3333 _bfd_elf_relocs_compatible (const bfd_target *input,
3334 const bfd_target *output)
3335 {
3336 const struct elf_backend_data *obed, *ibed;
3337
3338 if (input == output)
3339 return TRUE;
3340
3341 ibed = xvec_get_elf_backend_data (input);
3342 obed = xvec_get_elf_backend_data (output);
3343
3344 if (ibed->arch != obed->arch)
3345 return FALSE;
3346
3347 /* If both backends are using this function, deem them compatible. */
3348 return ibed->relocs_compatible == obed->relocs_compatible;
3349 }
3350
3351 /* Add symbols from an ELF object file to the linker hash table. */
3352
3353 static bfd_boolean
3354 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3355 {
3356 Elf_Internal_Ehdr *ehdr;
3357 Elf_Internal_Shdr *hdr;
3358 bfd_size_type symcount;
3359 bfd_size_type extsymcount;
3360 bfd_size_type extsymoff;
3361 struct elf_link_hash_entry **sym_hash;
3362 bfd_boolean dynamic;
3363 Elf_External_Versym *extversym = NULL;
3364 Elf_External_Versym *ever;
3365 struct elf_link_hash_entry *weaks;
3366 struct elf_link_hash_entry **nondeflt_vers = NULL;
3367 bfd_size_type nondeflt_vers_cnt = 0;
3368 Elf_Internal_Sym *isymbuf = NULL;
3369 Elf_Internal_Sym *isym;
3370 Elf_Internal_Sym *isymend;
3371 const struct elf_backend_data *bed;
3372 bfd_boolean add_needed;
3373 struct elf_link_hash_table *htab;
3374 bfd_size_type amt;
3375 void *alloc_mark = NULL;
3376 struct bfd_hash_entry **old_table = NULL;
3377 unsigned int old_size = 0;
3378 unsigned int old_count = 0;
3379 void *old_tab = NULL;
3380 void *old_hash;
3381 void *old_ent;
3382 struct bfd_link_hash_entry *old_undefs = NULL;
3383 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3384 long old_dynsymcount = 0;
3385 size_t tabsize = 0;
3386 size_t hashsize = 0;
3387
3388 htab = elf_hash_table (info);
3389 bed = get_elf_backend_data (abfd);
3390
3391 if ((abfd->flags & DYNAMIC) == 0)
3392 dynamic = FALSE;
3393 else
3394 {
3395 dynamic = TRUE;
3396
3397 /* You can't use -r against a dynamic object. Also, there's no
3398 hope of using a dynamic object which does not exactly match
3399 the format of the output file. */
3400 if (info->relocatable
3401 || !is_elf_hash_table (htab)
3402 || info->output_bfd->xvec != abfd->xvec)
3403 {
3404 if (info->relocatable)
3405 bfd_set_error (bfd_error_invalid_operation);
3406 else
3407 bfd_set_error (bfd_error_wrong_format);
3408 goto error_return;
3409 }
3410 }
3411
3412 ehdr = elf_elfheader (abfd);
3413 if (info->warn_alternate_em
3414 && bed->elf_machine_code != ehdr->e_machine
3415 && ((bed->elf_machine_alt1 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt1)
3417 || (bed->elf_machine_alt2 != 0
3418 && ehdr->e_machine == bed->elf_machine_alt2)))
3419 info->callbacks->einfo
3420 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3421 ehdr->e_machine, abfd, bed->elf_machine_code);
3422
3423 /* As a GNU extension, any input sections which are named
3424 .gnu.warning.SYMBOL are treated as warning symbols for the given
3425 symbol. This differs from .gnu.warning sections, which generate
3426 warnings when they are included in an output file. */
3427 if (info->executable)
3428 {
3429 asection *s;
3430
3431 for (s = abfd->sections; s != NULL; s = s->next)
3432 {
3433 const char *name;
3434
3435 name = bfd_get_section_name (abfd, s);
3436 if (CONST_STRNEQ (name, ".gnu.warning."))
3437 {
3438 char *msg;
3439 bfd_size_type sz;
3440
3441 name += sizeof ".gnu.warning." - 1;
3442
3443 /* If this is a shared object, then look up the symbol
3444 in the hash table. If it is there, and it is already
3445 been defined, then we will not be using the entry
3446 from this shared object, so we don't need to warn.
3447 FIXME: If we see the definition in a regular object
3448 later on, we will warn, but we shouldn't. The only
3449 fix is to keep track of what warnings we are supposed
3450 to emit, and then handle them all at the end of the
3451 link. */
3452 if (dynamic)
3453 {
3454 struct elf_link_hash_entry *h;
3455
3456 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3457
3458 /* FIXME: What about bfd_link_hash_common? */
3459 if (h != NULL
3460 && (h->root.type == bfd_link_hash_defined
3461 || h->root.type == bfd_link_hash_defweak))
3462 {
3463 /* We don't want to issue this warning. Clobber
3464 the section size so that the warning does not
3465 get copied into the output file. */
3466 s->size = 0;
3467 continue;
3468 }
3469 }
3470
3471 sz = s->size;
3472 msg = bfd_alloc (abfd, sz + 1);
3473 if (msg == NULL)
3474 goto error_return;
3475
3476 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3477 goto error_return;
3478
3479 msg[sz] = '\0';
3480
3481 if (! (_bfd_generic_link_add_one_symbol
3482 (info, abfd, name, BSF_WARNING, s, 0, msg,
3483 FALSE, bed->collect, NULL)))
3484 goto error_return;
3485
3486 if (! info->relocatable)
3487 {
3488 /* Clobber the section size so that the warning does
3489 not get copied into the output file. */
3490 s->size = 0;
3491
3492 /* Also set SEC_EXCLUDE, so that symbols defined in
3493 the warning section don't get copied to the output. */
3494 s->flags |= SEC_EXCLUDE;
3495 }
3496 }
3497 }
3498 }
3499
3500 add_needed = TRUE;
3501 if (! dynamic)
3502 {
3503 /* If we are creating a shared library, create all the dynamic
3504 sections immediately. We need to attach them to something,
3505 so we attach them to this BFD, provided it is the right
3506 format. FIXME: If there are no input BFD's of the same
3507 format as the output, we can't make a shared library. */
3508 if (info->shared
3509 && is_elf_hash_table (htab)
3510 && info->output_bfd->xvec == abfd->xvec
3511 && !htab->dynamic_sections_created)
3512 {
3513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3514 goto error_return;
3515 }
3516 }
3517 else if (!is_elf_hash_table (htab))
3518 goto error_return;
3519 else
3520 {
3521 asection *s;
3522 const char *soname = NULL;
3523 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3524 int ret;
3525
3526 /* ld --just-symbols and dynamic objects don't mix very well.
3527 ld shouldn't allow it. */
3528 if ((s = abfd->sections) != NULL
3529 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3530 abort ();
3531
3532 /* If this dynamic lib was specified on the command line with
3533 --as-needed in effect, then we don't want to add a DT_NEEDED
3534 tag unless the lib is actually used. Similary for libs brought
3535 in by another lib's DT_NEEDED. When --no-add-needed is used
3536 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3537 any dynamic library in DT_NEEDED tags in the dynamic lib at
3538 all. */
3539 add_needed = (elf_dyn_lib_class (abfd)
3540 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3541 | DYN_NO_NEEDED)) == 0;
3542
3543 s = bfd_get_section_by_name (abfd, ".dynamic");
3544 if (s != NULL)
3545 {
3546 bfd_byte *dynbuf;
3547 bfd_byte *extdyn;
3548 unsigned int elfsec;
3549 unsigned long shlink;
3550
3551 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3552 {
3553 error_free_dyn:
3554 free (dynbuf);
3555 goto error_return;
3556 }
3557
3558 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3559 if (elfsec == SHN_BAD)
3560 goto error_free_dyn;
3561 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3562
3563 for (extdyn = dynbuf;
3564 extdyn < dynbuf + s->size;
3565 extdyn += bed->s->sizeof_dyn)
3566 {
3567 Elf_Internal_Dyn dyn;
3568
3569 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3570 if (dyn.d_tag == DT_SONAME)
3571 {
3572 unsigned int tagv = dyn.d_un.d_val;
3573 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3574 if (soname == NULL)
3575 goto error_free_dyn;
3576 }
3577 if (dyn.d_tag == DT_NEEDED)
3578 {
3579 struct bfd_link_needed_list *n, **pn;
3580 char *fnm, *anm;
3581 unsigned int tagv = dyn.d_un.d_val;
3582
3583 amt = sizeof (struct bfd_link_needed_list);
3584 n = bfd_alloc (abfd, amt);
3585 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3586 if (n == NULL || fnm == NULL)
3587 goto error_free_dyn;
3588 amt = strlen (fnm) + 1;
3589 anm = bfd_alloc (abfd, amt);
3590 if (anm == NULL)
3591 goto error_free_dyn;
3592 memcpy (anm, fnm, amt);
3593 n->name = anm;
3594 n->by = abfd;
3595 n->next = NULL;
3596 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3597 ;
3598 *pn = n;
3599 }
3600 if (dyn.d_tag == DT_RUNPATH)
3601 {
3602 struct bfd_link_needed_list *n, **pn;
3603 char *fnm, *anm;
3604 unsigned int tagv = dyn.d_un.d_val;
3605
3606 amt = sizeof (struct bfd_link_needed_list);
3607 n = bfd_alloc (abfd, amt);
3608 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3609 if (n == NULL || fnm == NULL)
3610 goto error_free_dyn;
3611 amt = strlen (fnm) + 1;
3612 anm = bfd_alloc (abfd, amt);
3613 if (anm == NULL)
3614 goto error_free_dyn;
3615 memcpy (anm, fnm, amt);
3616 n->name = anm;
3617 n->by = abfd;
3618 n->next = NULL;
3619 for (pn = & runpath;
3620 *pn != NULL;
3621 pn = &(*pn)->next)
3622 ;
3623 *pn = n;
3624 }
3625 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3626 if (!runpath && dyn.d_tag == DT_RPATH)
3627 {
3628 struct bfd_link_needed_list *n, **pn;
3629 char *fnm, *anm;
3630 unsigned int tagv = dyn.d_un.d_val;
3631
3632 amt = sizeof (struct bfd_link_needed_list);
3633 n = bfd_alloc (abfd, amt);
3634 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3635 if (n == NULL || fnm == NULL)
3636 goto error_free_dyn;
3637 amt = strlen (fnm) + 1;
3638 anm = bfd_alloc (abfd, amt);
3639 if (anm == NULL)
3640 goto error_free_dyn;
3641 memcpy (anm, fnm, amt);
3642 n->name = anm;
3643 n->by = abfd;
3644 n->next = NULL;
3645 for (pn = & rpath;
3646 *pn != NULL;
3647 pn = &(*pn)->next)
3648 ;
3649 *pn = n;
3650 }
3651 }
3652
3653 free (dynbuf);
3654 }
3655
3656 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3657 frees all more recently bfd_alloc'd blocks as well. */
3658 if (runpath)
3659 rpath = runpath;
3660
3661 if (rpath)
3662 {
3663 struct bfd_link_needed_list **pn;
3664 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3665 ;
3666 *pn = rpath;
3667 }
3668
3669 /* We do not want to include any of the sections in a dynamic
3670 object in the output file. We hack by simply clobbering the
3671 list of sections in the BFD. This could be handled more
3672 cleanly by, say, a new section flag; the existing
3673 SEC_NEVER_LOAD flag is not the one we want, because that one
3674 still implies that the section takes up space in the output
3675 file. */
3676 bfd_section_list_clear (abfd);
3677
3678 /* Find the name to use in a DT_NEEDED entry that refers to this
3679 object. If the object has a DT_SONAME entry, we use it.
3680 Otherwise, if the generic linker stuck something in
3681 elf_dt_name, we use that. Otherwise, we just use the file
3682 name. */
3683 if (soname == NULL || *soname == '\0')
3684 {
3685 soname = elf_dt_name (abfd);
3686 if (soname == NULL || *soname == '\0')
3687 soname = bfd_get_filename (abfd);
3688 }
3689
3690 /* Save the SONAME because sometimes the linker emulation code
3691 will need to know it. */
3692 elf_dt_name (abfd) = soname;
3693
3694 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3695 if (ret < 0)
3696 goto error_return;
3697
3698 /* If we have already included this dynamic object in the
3699 link, just ignore it. There is no reason to include a
3700 particular dynamic object more than once. */
3701 if (ret > 0)
3702 return TRUE;
3703 }
3704
3705 /* If this is a dynamic object, we always link against the .dynsym
3706 symbol table, not the .symtab symbol table. The dynamic linker
3707 will only see the .dynsym symbol table, so there is no reason to
3708 look at .symtab for a dynamic object. */
3709
3710 if (! dynamic || elf_dynsymtab (abfd) == 0)
3711 hdr = &elf_tdata (abfd)->symtab_hdr;
3712 else
3713 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3714
3715 symcount = hdr->sh_size / bed->s->sizeof_sym;
3716
3717 /* The sh_info field of the symtab header tells us where the
3718 external symbols start. We don't care about the local symbols at
3719 this point. */
3720 if (elf_bad_symtab (abfd))
3721 {
3722 extsymcount = symcount;
3723 extsymoff = 0;
3724 }
3725 else
3726 {
3727 extsymcount = symcount - hdr->sh_info;
3728 extsymoff = hdr->sh_info;
3729 }
3730
3731 sym_hash = NULL;
3732 if (extsymcount != 0)
3733 {
3734 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3735 NULL, NULL, NULL);
3736 if (isymbuf == NULL)
3737 goto error_return;
3738
3739 /* We store a pointer to the hash table entry for each external
3740 symbol. */
3741 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3742 sym_hash = bfd_alloc (abfd, amt);
3743 if (sym_hash == NULL)
3744 goto error_free_sym;
3745 elf_sym_hashes (abfd) = sym_hash;
3746 }
3747
3748 if (dynamic)
3749 {
3750 /* Read in any version definitions. */
3751 if (!_bfd_elf_slurp_version_tables (abfd,
3752 info->default_imported_symver))
3753 goto error_free_sym;
3754
3755 /* Read in the symbol versions, but don't bother to convert them
3756 to internal format. */
3757 if (elf_dynversym (abfd) != 0)
3758 {
3759 Elf_Internal_Shdr *versymhdr;
3760
3761 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3762 extversym = bfd_malloc (versymhdr->sh_size);
3763 if (extversym == NULL)
3764 goto error_free_sym;
3765 amt = versymhdr->sh_size;
3766 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3767 || bfd_bread (extversym, amt, abfd) != amt)
3768 goto error_free_vers;
3769 }
3770 }
3771
3772 /* If we are loading an as-needed shared lib, save the symbol table
3773 state before we start adding symbols. If the lib turns out
3774 to be unneeded, restore the state. */
3775 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3776 {
3777 unsigned int i;
3778 size_t entsize;
3779
3780 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3781 {
3782 struct bfd_hash_entry *p;
3783 struct elf_link_hash_entry *h;
3784
3785 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3786 {
3787 h = (struct elf_link_hash_entry *) p;
3788 entsize += htab->root.table.entsize;
3789 if (h->root.type == bfd_link_hash_warning)
3790 entsize += htab->root.table.entsize;
3791 }
3792 }
3793
3794 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3795 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3796 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3797 if (old_tab == NULL)
3798 goto error_free_vers;
3799
3800 /* Remember the current objalloc pointer, so that all mem for
3801 symbols added can later be reclaimed. */
3802 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3803 if (alloc_mark == NULL)
3804 goto error_free_vers;
3805
3806 /* Make a special call to the linker "notice" function to
3807 tell it that we are about to handle an as-needed lib. */
3808 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3809 notice_as_needed))
3810 goto error_free_vers;
3811
3812 /* Clone the symbol table and sym hashes. Remember some
3813 pointers into the symbol table, and dynamic symbol count. */
3814 old_hash = (char *) old_tab + tabsize;
3815 old_ent = (char *) old_hash + hashsize;
3816 memcpy (old_tab, htab->root.table.table, tabsize);
3817 memcpy (old_hash, sym_hash, hashsize);
3818 old_undefs = htab->root.undefs;
3819 old_undefs_tail = htab->root.undefs_tail;
3820 old_table = htab->root.table.table;
3821 old_size = htab->root.table.size;
3822 old_count = htab->root.table.count;
3823 old_dynsymcount = htab->dynsymcount;
3824
3825 for (i = 0; i < htab->root.table.size; i++)
3826 {
3827 struct bfd_hash_entry *p;
3828 struct elf_link_hash_entry *h;
3829
3830 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3831 {
3832 memcpy (old_ent, p, htab->root.table.entsize);
3833 old_ent = (char *) old_ent + htab->root.table.entsize;
3834 h = (struct elf_link_hash_entry *) p;
3835 if (h->root.type == bfd_link_hash_warning)
3836 {
3837 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3838 old_ent = (char *) old_ent + htab->root.table.entsize;
3839 }
3840 }
3841 }
3842 }
3843
3844 weaks = NULL;
3845 ever = extversym != NULL ? extversym + extsymoff : NULL;
3846 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3847 isym < isymend;
3848 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3849 {
3850 int bind;
3851 bfd_vma value;
3852 asection *sec, *new_sec;
3853 flagword flags;
3854 const char *name;
3855 struct elf_link_hash_entry *h;
3856 bfd_boolean definition;
3857 bfd_boolean size_change_ok;
3858 bfd_boolean type_change_ok;
3859 bfd_boolean new_weakdef;
3860 bfd_boolean override;
3861 bfd_boolean common;
3862 unsigned int old_alignment;
3863 bfd *old_bfd;
3864
3865 override = FALSE;
3866
3867 flags = BSF_NO_FLAGS;
3868 sec = NULL;
3869 value = isym->st_value;
3870 *sym_hash = NULL;
3871 common = bed->common_definition (isym);
3872
3873 bind = ELF_ST_BIND (isym->st_info);
3874 if (bind == STB_LOCAL)
3875 {
3876 /* This should be impossible, since ELF requires that all
3877 global symbols follow all local symbols, and that sh_info
3878 point to the first global symbol. Unfortunately, Irix 5
3879 screws this up. */
3880 continue;
3881 }
3882 else if (bind == STB_GLOBAL)
3883 {
3884 if (isym->st_shndx != SHN_UNDEF && !common)
3885 flags = BSF_GLOBAL;
3886 }
3887 else if (bind == STB_WEAK)
3888 flags = BSF_WEAK;
3889 else
3890 {
3891 /* Leave it up to the processor backend. */
3892 }
3893
3894 if (isym->st_shndx == SHN_UNDEF)
3895 sec = bfd_und_section_ptr;
3896 else if (isym->st_shndx == SHN_ABS)
3897 sec = bfd_abs_section_ptr;
3898 else if (isym->st_shndx == SHN_COMMON)
3899 {
3900 sec = bfd_com_section_ptr;
3901 /* What ELF calls the size we call the value. What ELF
3902 calls the value we call the alignment. */
3903 value = isym->st_size;
3904 }
3905 else
3906 {
3907 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3908 if (sec == NULL)
3909 sec = bfd_abs_section_ptr;
3910 else if (sec->kept_section)
3911 {
3912 /* Symbols from discarded section are undefined. We keep
3913 its visibility. */
3914 sec = bfd_und_section_ptr;
3915 isym->st_shndx = SHN_UNDEF;
3916 }
3917 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3918 value -= sec->vma;
3919 }
3920
3921 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3922 isym->st_name);
3923 if (name == NULL)
3924 goto error_free_vers;
3925
3926 if (isym->st_shndx == SHN_COMMON
3927 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3928 && !info->relocatable)
3929 {
3930 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3931
3932 if (tcomm == NULL)
3933 {
3934 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3935 (SEC_ALLOC
3936 | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED
3938 | SEC_THREAD_LOCAL));
3939 if (tcomm == NULL)
3940 goto error_free_vers;
3941 }
3942 sec = tcomm;
3943 }
3944 else if (bed->elf_add_symbol_hook)
3945 {
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3947 &sec, &value))
3948 goto error_free_vers;
3949
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3952 if (name == NULL)
3953 continue;
3954 }
3955
3956 /* Sanity check that all possibilities were handled. */
3957 if (sec == NULL)
3958 {
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3961 }
3962
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3968
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_alignment = 0;
3972 old_bfd = NULL;
3973 new_sec = sec;
3974
3975 if (is_elf_hash_table (htab))
3976 {
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3979 bfd_boolean skip;
3980
3981 if (ever == NULL)
3982 {
3983 if (info->default_imported_symver)
3984 /* Use the default symbol version created earlier. */
3985 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3986 else
3987 iver.vs_vers = 0;
3988 }
3989 else
3990 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3991
3992 vernum = iver.vs_vers & VERSYM_VERSION;
3993
3994 /* If this is a hidden symbol, or if it is not version
3995 1, we append the version name to the symbol name.
3996 However, we do not modify a non-hidden absolute symbol
3997 if it is not a function, because it might be the version
3998 symbol itself. FIXME: What if it isn't? */
3999 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4000 || (vernum > 1
4001 && (!bfd_is_abs_section (sec)
4002 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4003 {
4004 const char *verstr;
4005 size_t namelen, verlen, newlen;
4006 char *newname, *p;
4007
4008 if (isym->st_shndx != SHN_UNDEF)
4009 {
4010 if (vernum > elf_tdata (abfd)->cverdefs)
4011 verstr = NULL;
4012 else if (vernum > 1)
4013 verstr =
4014 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4015 else
4016 verstr = "";
4017
4018 if (verstr == NULL)
4019 {
4020 (*_bfd_error_handler)
4021 (_("%B: %s: invalid version %u (max %d)"),
4022 abfd, name, vernum,
4023 elf_tdata (abfd)->cverdefs);
4024 bfd_set_error (bfd_error_bad_value);
4025 goto error_free_vers;
4026 }
4027 }
4028 else
4029 {
4030 /* We cannot simply test for the number of
4031 entries in the VERNEED section since the
4032 numbers for the needed versions do not start
4033 at 0. */
4034 Elf_Internal_Verneed *t;
4035
4036 verstr = NULL;
4037 for (t = elf_tdata (abfd)->verref;
4038 t != NULL;
4039 t = t->vn_nextref)
4040 {
4041 Elf_Internal_Vernaux *a;
4042
4043 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4044 {
4045 if (a->vna_other == vernum)
4046 {
4047 verstr = a->vna_nodename;
4048 break;
4049 }
4050 }
4051 if (a != NULL)
4052 break;
4053 }
4054 if (verstr == NULL)
4055 {
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid needed version %d"),
4058 abfd, name, vernum);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4061 }
4062 }
4063
4064 namelen = strlen (name);
4065 verlen = strlen (verstr);
4066 newlen = namelen + verlen + 2;
4067 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4068 && isym->st_shndx != SHN_UNDEF)
4069 ++newlen;
4070
4071 newname = bfd_hash_allocate (&htab->root.table, newlen);
4072 if (newname == NULL)
4073 goto error_free_vers;
4074 memcpy (newname, name, namelen);
4075 p = newname + namelen;
4076 *p++ = ELF_VER_CHR;
4077 /* If this is a defined non-hidden version symbol,
4078 we add another @ to the name. This indicates the
4079 default version of the symbol. */
4080 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4081 && isym->st_shndx != SHN_UNDEF)
4082 *p++ = ELF_VER_CHR;
4083 memcpy (p, verstr, verlen + 1);
4084
4085 name = newname;
4086 }
4087
4088 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4089 &value, &old_alignment,
4090 sym_hash, &skip, &override,
4091 &type_change_ok, &size_change_ok))
4092 goto error_free_vers;
4093
4094 if (skip)
4095 continue;
4096
4097 if (override)
4098 definition = FALSE;
4099
4100 h = *sym_hash;
4101 while (h->root.type == bfd_link_hash_indirect
4102 || h->root.type == bfd_link_hash_warning)
4103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4104
4105 /* Remember the old alignment if this is a common symbol, so
4106 that we don't reduce the alignment later on. We can't
4107 check later, because _bfd_generic_link_add_one_symbol
4108 will set a default for the alignment which we want to
4109 override. We also remember the old bfd where the existing
4110 definition comes from. */
4111 switch (h->root.type)
4112 {
4113 default:
4114 break;
4115
4116 case bfd_link_hash_defined:
4117 case bfd_link_hash_defweak:
4118 old_bfd = h->root.u.def.section->owner;
4119 break;
4120
4121 case bfd_link_hash_common:
4122 old_bfd = h->root.u.c.p->section->owner;
4123 old_alignment = h->root.u.c.p->alignment_power;
4124 break;
4125 }
4126
4127 if (elf_tdata (abfd)->verdef != NULL
4128 && ! override
4129 && vernum > 1
4130 && definition)
4131 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4132 }
4133
4134 if (! (_bfd_generic_link_add_one_symbol
4135 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4136 (struct bfd_link_hash_entry **) sym_hash)))
4137 goto error_free_vers;
4138
4139 h = *sym_hash;
4140 while (h->root.type == bfd_link_hash_indirect
4141 || h->root.type == bfd_link_hash_warning)
4142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4143 *sym_hash = h;
4144
4145 new_weakdef = FALSE;
4146 if (dynamic
4147 && definition
4148 && (flags & BSF_WEAK) != 0
4149 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4150 && is_elf_hash_table (htab)
4151 && h->u.weakdef == NULL)
4152 {
4153 /* Keep a list of all weak defined non function symbols from
4154 a dynamic object, using the weakdef field. Later in this
4155 function we will set the weakdef field to the correct
4156 value. We only put non-function symbols from dynamic
4157 objects on this list, because that happens to be the only
4158 time we need to know the normal symbol corresponding to a
4159 weak symbol, and the information is time consuming to
4160 figure out. If the weakdef field is not already NULL,
4161 then this symbol was already defined by some previous
4162 dynamic object, and we will be using that previous
4163 definition anyhow. */
4164
4165 h->u.weakdef = weaks;
4166 weaks = h;
4167 new_weakdef = TRUE;
4168 }
4169
4170 /* Set the alignment of a common symbol. */
4171 if ((common || bfd_is_com_section (sec))
4172 && h->root.type == bfd_link_hash_common)
4173 {
4174 unsigned int align;
4175
4176 if (common)
4177 align = bfd_log2 (isym->st_value);
4178 else
4179 {
4180 /* The new symbol is a common symbol in a shared object.
4181 We need to get the alignment from the section. */
4182 align = new_sec->alignment_power;
4183 }
4184 if (align > old_alignment
4185 /* Permit an alignment power of zero if an alignment of one
4186 is specified and no other alignments have been specified. */
4187 || (isym->st_value == 1 && old_alignment == 0))
4188 h->root.u.c.p->alignment_power = align;
4189 else
4190 h->root.u.c.p->alignment_power = old_alignment;
4191 }
4192
4193 if (is_elf_hash_table (htab))
4194 {
4195 bfd_boolean dynsym;
4196
4197 /* Check the alignment when a common symbol is involved. This
4198 can change when a common symbol is overridden by a normal
4199 definition or a common symbol is ignored due to the old
4200 normal definition. We need to make sure the maximum
4201 alignment is maintained. */
4202 if ((old_alignment || common)
4203 && h->root.type != bfd_link_hash_common)
4204 {
4205 unsigned int common_align;
4206 unsigned int normal_align;
4207 unsigned int symbol_align;
4208 bfd *normal_bfd;
4209 bfd *common_bfd;
4210
4211 symbol_align = ffs (h->root.u.def.value) - 1;
4212 if (h->root.u.def.section->owner != NULL
4213 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4214 {
4215 normal_align = h->root.u.def.section->alignment_power;
4216 if (normal_align > symbol_align)
4217 normal_align = symbol_align;
4218 }
4219 else
4220 normal_align = symbol_align;
4221
4222 if (old_alignment)
4223 {
4224 common_align = old_alignment;
4225 common_bfd = old_bfd;
4226 normal_bfd = abfd;
4227 }
4228 else
4229 {
4230 common_align = bfd_log2 (isym->st_value);
4231 common_bfd = abfd;
4232 normal_bfd = old_bfd;
4233 }
4234
4235 if (normal_align < common_align)
4236 {
4237 /* PR binutils/2735 */
4238 if (normal_bfd == NULL)
4239 (*_bfd_error_handler)
4240 (_("Warning: alignment %u of common symbol `%s' in %B"
4241 " is greater than the alignment (%u) of its section %A"),
4242 common_bfd, h->root.u.def.section,
4243 1 << common_align, name, 1 << normal_align);
4244 else
4245 (*_bfd_error_handler)
4246 (_("Warning: alignment %u of symbol `%s' in %B"
4247 " is smaller than %u in %B"),
4248 normal_bfd, common_bfd,
4249 1 << normal_align, name, 1 << common_align);
4250 }
4251 }
4252
4253 /* Remember the symbol size if it isn't undefined. */
4254 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4255 && (definition || h->size == 0))
4256 {
4257 if (h->size != 0
4258 && h->size != isym->st_size
4259 && ! size_change_ok)
4260 (*_bfd_error_handler)
4261 (_("Warning: size of symbol `%s' changed"
4262 " from %lu in %B to %lu in %B"),
4263 old_bfd, abfd,
4264 name, (unsigned long) h->size,
4265 (unsigned long) isym->st_size);
4266
4267 h->size = isym->st_size;
4268 }
4269
4270 /* If this is a common symbol, then we always want H->SIZE
4271 to be the size of the common symbol. The code just above
4272 won't fix the size if a common symbol becomes larger. We
4273 don't warn about a size change here, because that is
4274 covered by --warn-common. Allow changed between different
4275 function types. */
4276 if (h->root.type == bfd_link_hash_common)
4277 h->size = h->root.u.c.size;
4278
4279 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4280 && (definition || h->type == STT_NOTYPE))
4281 {
4282 if (h->type != STT_NOTYPE
4283 && h->type != ELF_ST_TYPE (isym->st_info)
4284 && ! type_change_ok)
4285 (*_bfd_error_handler)
4286 (_("Warning: type of symbol `%s' changed"
4287 " from %d to %d in %B"),
4288 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4289
4290 h->type = ELF_ST_TYPE (isym->st_info);
4291 }
4292
4293 /* STT_GNU_IFUNC symbol must go through PLT. */
4294 if (h->type == STT_GNU_IFUNC)
4295 h->needs_plt = 1;
4296
4297 /* Merge st_other field. */
4298 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4299
4300 /* Set a flag in the hash table entry indicating the type of
4301 reference or definition we just found. Keep a count of
4302 the number of dynamic symbols we find. A dynamic symbol
4303 is one which is referenced or defined by both a regular
4304 object and a shared object. */
4305 dynsym = FALSE;
4306 if (! dynamic)
4307 {
4308 if (! definition)
4309 {
4310 h->ref_regular = 1;
4311 if (bind != STB_WEAK)
4312 h->ref_regular_nonweak = 1;
4313 }
4314 else
4315 {
4316 h->def_regular = 1;
4317 if (h->def_dynamic)
4318 {
4319 h->def_dynamic = 0;
4320 h->ref_dynamic = 1;
4321 h->dynamic_def = 1;
4322 }
4323 }
4324 if (! info->executable
4325 || h->def_dynamic
4326 || h->ref_dynamic)
4327 dynsym = TRUE;
4328 }
4329 else
4330 {
4331 if (! definition)
4332 h->ref_dynamic = 1;
4333 else
4334 h->def_dynamic = 1;
4335 if (h->def_regular
4336 || h->ref_regular
4337 || (h->u.weakdef != NULL
4338 && ! new_weakdef
4339 && h->u.weakdef->dynindx != -1))
4340 dynsym = TRUE;
4341 }
4342
4343 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4344 {
4345 /* We don't want to make debug symbol dynamic. */
4346 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4347 dynsym = FALSE;
4348 }
4349
4350 /* Check to see if we need to add an indirect symbol for
4351 the default name. */
4352 if (definition || h->root.type == bfd_link_hash_common)
4353 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4354 &sec, &value, &dynsym,
4355 override))
4356 goto error_free_vers;
4357
4358 if (definition && !dynamic)
4359 {
4360 char *p = strchr (name, ELF_VER_CHR);
4361 if (p != NULL && p[1] != ELF_VER_CHR)
4362 {
4363 /* Queue non-default versions so that .symver x, x@FOO
4364 aliases can be checked. */
4365 if (!nondeflt_vers)
4366 {
4367 amt = ((isymend - isym + 1)
4368 * sizeof (struct elf_link_hash_entry *));
4369 nondeflt_vers = bfd_malloc (amt);
4370 if (!nondeflt_vers)
4371 goto error_free_vers;
4372 }
4373 nondeflt_vers[nondeflt_vers_cnt++] = h;
4374 }
4375 }
4376
4377 if (dynsym && h->dynindx == -1)
4378 {
4379 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4380 goto error_free_vers;
4381 if (h->u.weakdef != NULL
4382 && ! new_weakdef
4383 && h->u.weakdef->dynindx == -1)
4384 {
4385 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4386 goto error_free_vers;
4387 }
4388 }
4389 else if (dynsym && h->dynindx != -1)
4390 /* If the symbol already has a dynamic index, but
4391 visibility says it should not be visible, turn it into
4392 a local symbol. */
4393 switch (ELF_ST_VISIBILITY (h->other))
4394 {
4395 case STV_INTERNAL:
4396 case STV_HIDDEN:
4397 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4398 dynsym = FALSE;
4399 break;
4400 }
4401
4402 if (!add_needed
4403 && definition
4404 && ((dynsym
4405 && h->ref_regular)
4406 || (h->ref_dynamic
4407 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4408 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4409 {
4410 int ret;
4411 const char *soname = elf_dt_name (abfd);
4412
4413 /* A symbol from a library loaded via DT_NEEDED of some
4414 other library is referenced by a regular object.
4415 Add a DT_NEEDED entry for it. Issue an error if
4416 --no-add-needed is used. */
4417 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4418 {
4419 (*_bfd_error_handler)
4420 (_("%s: invalid DSO for symbol `%s' definition"),
4421 abfd, name);
4422 bfd_set_error (bfd_error_bad_value);
4423 goto error_free_vers;
4424 }
4425
4426 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4427
4428 add_needed = TRUE;
4429 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4430 if (ret < 0)
4431 goto error_free_vers;
4432
4433 BFD_ASSERT (ret == 0);
4434 }
4435 }
4436 }
4437
4438 if (extversym != NULL)
4439 {
4440 free (extversym);
4441 extversym = NULL;
4442 }
4443
4444 if (isymbuf != NULL)
4445 {
4446 free (isymbuf);
4447 isymbuf = NULL;
4448 }
4449
4450 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4451 {
4452 unsigned int i;
4453
4454 /* Restore the symbol table. */
4455 if (bed->as_needed_cleanup)
4456 (*bed->as_needed_cleanup) (abfd, info);
4457 old_hash = (char *) old_tab + tabsize;
4458 old_ent = (char *) old_hash + hashsize;
4459 sym_hash = elf_sym_hashes (abfd);
4460 htab->root.table.table = old_table;
4461 htab->root.table.size = old_size;
4462 htab->root.table.count = old_count;
4463 memcpy (htab->root.table.table, old_tab, tabsize);
4464 memcpy (sym_hash, old_hash, hashsize);
4465 htab->root.undefs = old_undefs;
4466 htab->root.undefs_tail = old_undefs_tail;
4467 for (i = 0; i < htab->root.table.size; i++)
4468 {
4469 struct bfd_hash_entry *p;
4470 struct elf_link_hash_entry *h;
4471
4472 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4473 {
4474 h = (struct elf_link_hash_entry *) p;
4475 if (h->root.type == bfd_link_hash_warning)
4476 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4477 if (h->dynindx >= old_dynsymcount)
4478 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4479
4480 memcpy (p, old_ent, htab->root.table.entsize);
4481 old_ent = (char *) old_ent + htab->root.table.entsize;
4482 h = (struct elf_link_hash_entry *) p;
4483 if (h->root.type == bfd_link_hash_warning)
4484 {
4485 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4486 old_ent = (char *) old_ent + htab->root.table.entsize;
4487 }
4488 }
4489 }
4490
4491 /* Make a special call to the linker "notice" function to
4492 tell it that symbols added for crefs may need to be removed. */
4493 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4494 notice_not_needed))
4495 goto error_free_vers;
4496
4497 free (old_tab);
4498 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4499 alloc_mark);
4500 if (nondeflt_vers != NULL)
4501 free (nondeflt_vers);
4502 return TRUE;
4503 }
4504
4505 if (old_tab != NULL)
4506 {
4507 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4508 notice_needed))
4509 goto error_free_vers;
4510 free (old_tab);
4511 old_tab = NULL;
4512 }
4513
4514 /* Now that all the symbols from this input file are created, handle
4515 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4516 if (nondeflt_vers != NULL)
4517 {
4518 bfd_size_type cnt, symidx;
4519
4520 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4521 {
4522 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4523 char *shortname, *p;
4524
4525 p = strchr (h->root.root.string, ELF_VER_CHR);
4526 if (p == NULL
4527 || (h->root.type != bfd_link_hash_defined
4528 && h->root.type != bfd_link_hash_defweak))
4529 continue;
4530
4531 amt = p - h->root.root.string;
4532 shortname = bfd_malloc (amt + 1);
4533 if (!shortname)
4534 goto error_free_vers;
4535 memcpy (shortname, h->root.root.string, amt);
4536 shortname[amt] = '\0';
4537
4538 hi = (struct elf_link_hash_entry *)
4539 bfd_link_hash_lookup (&htab->root, shortname,
4540 FALSE, FALSE, FALSE);
4541 if (hi != NULL
4542 && hi->root.type == h->root.type
4543 && hi->root.u.def.value == h->root.u.def.value
4544 && hi->root.u.def.section == h->root.u.def.section)
4545 {
4546 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4547 hi->root.type = bfd_link_hash_indirect;
4548 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4549 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4550 sym_hash = elf_sym_hashes (abfd);
4551 if (sym_hash)
4552 for (symidx = 0; symidx < extsymcount; ++symidx)
4553 if (sym_hash[symidx] == hi)
4554 {
4555 sym_hash[symidx] = h;
4556 break;
4557 }
4558 }
4559 free (shortname);
4560 }
4561 free (nondeflt_vers);
4562 nondeflt_vers = NULL;
4563 }
4564
4565 /* Now set the weakdefs field correctly for all the weak defined
4566 symbols we found. The only way to do this is to search all the
4567 symbols. Since we only need the information for non functions in
4568 dynamic objects, that's the only time we actually put anything on
4569 the list WEAKS. We need this information so that if a regular
4570 object refers to a symbol defined weakly in a dynamic object, the
4571 real symbol in the dynamic object is also put in the dynamic
4572 symbols; we also must arrange for both symbols to point to the
4573 same memory location. We could handle the general case of symbol
4574 aliasing, but a general symbol alias can only be generated in
4575 assembler code, handling it correctly would be very time
4576 consuming, and other ELF linkers don't handle general aliasing
4577 either. */
4578 if (weaks != NULL)
4579 {
4580 struct elf_link_hash_entry **hpp;
4581 struct elf_link_hash_entry **hppend;
4582 struct elf_link_hash_entry **sorted_sym_hash;
4583 struct elf_link_hash_entry *h;
4584 size_t sym_count;
4585
4586 /* Since we have to search the whole symbol list for each weak
4587 defined symbol, search time for N weak defined symbols will be
4588 O(N^2). Binary search will cut it down to O(NlogN). */
4589 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4590 sorted_sym_hash = bfd_malloc (amt);
4591 if (sorted_sym_hash == NULL)
4592 goto error_return;
4593 sym_hash = sorted_sym_hash;
4594 hpp = elf_sym_hashes (abfd);
4595 hppend = hpp + extsymcount;
4596 sym_count = 0;
4597 for (; hpp < hppend; hpp++)
4598 {
4599 h = *hpp;
4600 if (h != NULL
4601 && h->root.type == bfd_link_hash_defined
4602 && !bed->is_function_type (h->type))
4603 {
4604 *sym_hash = h;
4605 sym_hash++;
4606 sym_count++;
4607 }
4608 }
4609
4610 qsort (sorted_sym_hash, sym_count,
4611 sizeof (struct elf_link_hash_entry *),
4612 elf_sort_symbol);
4613
4614 while (weaks != NULL)
4615 {
4616 struct elf_link_hash_entry *hlook;
4617 asection *slook;
4618 bfd_vma vlook;
4619 long ilook;
4620 size_t i, j, idx;
4621
4622 hlook = weaks;
4623 weaks = hlook->u.weakdef;
4624 hlook->u.weakdef = NULL;
4625
4626 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4627 || hlook->root.type == bfd_link_hash_defweak
4628 || hlook->root.type == bfd_link_hash_common
4629 || hlook->root.type == bfd_link_hash_indirect);
4630 slook = hlook->root.u.def.section;
4631 vlook = hlook->root.u.def.value;
4632
4633 ilook = -1;
4634 i = 0;
4635 j = sym_count;
4636 while (i < j)
4637 {
4638 bfd_signed_vma vdiff;
4639 idx = (i + j) / 2;
4640 h = sorted_sym_hash [idx];
4641 vdiff = vlook - h->root.u.def.value;
4642 if (vdiff < 0)
4643 j = idx;
4644 else if (vdiff > 0)
4645 i = idx + 1;
4646 else
4647 {
4648 long sdiff = slook->id - h->root.u.def.section->id;
4649 if (sdiff < 0)
4650 j = idx;
4651 else if (sdiff > 0)
4652 i = idx + 1;
4653 else
4654 {
4655 ilook = idx;
4656 break;
4657 }
4658 }
4659 }
4660
4661 /* We didn't find a value/section match. */
4662 if (ilook == -1)
4663 continue;
4664
4665 for (i = ilook; i < sym_count; i++)
4666 {
4667 h = sorted_sym_hash [i];
4668
4669 /* Stop if value or section doesn't match. */
4670 if (h->root.u.def.value != vlook
4671 || h->root.u.def.section != slook)
4672 break;
4673 else if (h != hlook)
4674 {
4675 hlook->u.weakdef = h;
4676
4677 /* If the weak definition is in the list of dynamic
4678 symbols, make sure the real definition is put
4679 there as well. */
4680 if (hlook->dynindx != -1 && h->dynindx == -1)
4681 {
4682 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4683 {
4684 err_free_sym_hash:
4685 free (sorted_sym_hash);
4686 goto error_return;
4687 }
4688 }
4689
4690 /* If the real definition is in the list of dynamic
4691 symbols, make sure the weak definition is put
4692 there as well. If we don't do this, then the
4693 dynamic loader might not merge the entries for the
4694 real definition and the weak definition. */
4695 if (h->dynindx != -1 && hlook->dynindx == -1)
4696 {
4697 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4698 goto err_free_sym_hash;
4699 }
4700 break;
4701 }
4702 }
4703 }
4704
4705 free (sorted_sym_hash);
4706 }
4707
4708 if (bed->check_directives
4709 && !(*bed->check_directives) (abfd, info))
4710 return FALSE;
4711
4712 /* If this object is the same format as the output object, and it is
4713 not a shared library, then let the backend look through the
4714 relocs.
4715
4716 This is required to build global offset table entries and to
4717 arrange for dynamic relocs. It is not required for the
4718 particular common case of linking non PIC code, even when linking
4719 against shared libraries, but unfortunately there is no way of
4720 knowing whether an object file has been compiled PIC or not.
4721 Looking through the relocs is not particularly time consuming.
4722 The problem is that we must either (1) keep the relocs in memory,
4723 which causes the linker to require additional runtime memory or
4724 (2) read the relocs twice from the input file, which wastes time.
4725 This would be a good case for using mmap.
4726
4727 I have no idea how to handle linking PIC code into a file of a
4728 different format. It probably can't be done. */
4729 if (! dynamic
4730 && is_elf_hash_table (htab)
4731 && bed->check_relocs != NULL
4732 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4733 {
4734 asection *o;
4735
4736 for (o = abfd->sections; o != NULL; o = o->next)
4737 {
4738 Elf_Internal_Rela *internal_relocs;
4739 bfd_boolean ok;
4740
4741 if ((o->flags & SEC_RELOC) == 0
4742 || o->reloc_count == 0
4743 || ((info->strip == strip_all || info->strip == strip_debugger)
4744 && (o->flags & SEC_DEBUGGING) != 0)
4745 || bfd_is_abs_section (o->output_section))
4746 continue;
4747
4748 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4749 info->keep_memory);
4750 if (internal_relocs == NULL)
4751 goto error_return;
4752
4753 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4754
4755 if (elf_section_data (o)->relocs != internal_relocs)
4756 free (internal_relocs);
4757
4758 if (! ok)
4759 goto error_return;
4760 }
4761 }
4762
4763 /* If this is a non-traditional link, try to optimize the handling
4764 of the .stab/.stabstr sections. */
4765 if (! dynamic
4766 && ! info->traditional_format
4767 && is_elf_hash_table (htab)
4768 && (info->strip != strip_all && info->strip != strip_debugger))
4769 {
4770 asection *stabstr;
4771
4772 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4773 if (stabstr != NULL)
4774 {
4775 bfd_size_type string_offset = 0;
4776 asection *stab;
4777
4778 for (stab = abfd->sections; stab; stab = stab->next)
4779 if (CONST_STRNEQ (stab->name, ".stab")
4780 && (!stab->name[5] ||
4781 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4782 && (stab->flags & SEC_MERGE) == 0
4783 && !bfd_is_abs_section (stab->output_section))
4784 {
4785 struct bfd_elf_section_data *secdata;
4786
4787 secdata = elf_section_data (stab);
4788 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4789 stabstr, &secdata->sec_info,
4790 &string_offset))
4791 goto error_return;
4792 if (secdata->sec_info)
4793 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4794 }
4795 }
4796 }
4797
4798 if (is_elf_hash_table (htab) && add_needed)
4799 {
4800 /* Add this bfd to the loaded list. */
4801 struct elf_link_loaded_list *n;
4802
4803 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4804 if (n == NULL)
4805 goto error_return;
4806 n->abfd = abfd;
4807 n->next = htab->loaded;
4808 htab->loaded = n;
4809 }
4810
4811 return TRUE;
4812
4813 error_free_vers:
4814 if (old_tab != NULL)
4815 free (old_tab);
4816 if (nondeflt_vers != NULL)
4817 free (nondeflt_vers);
4818 if (extversym != NULL)
4819 free (extversym);
4820 error_free_sym:
4821 if (isymbuf != NULL)
4822 free (isymbuf);
4823 error_return:
4824 return FALSE;
4825 }
4826
4827 /* Return the linker hash table entry of a symbol that might be
4828 satisfied by an archive symbol. Return -1 on error. */
4829
4830 struct elf_link_hash_entry *
4831 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4832 struct bfd_link_info *info,
4833 const char *name)
4834 {
4835 struct elf_link_hash_entry *h;
4836 char *p, *copy;
4837 size_t len, first;
4838
4839 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4840 if (h != NULL)
4841 return h;
4842
4843 /* If this is a default version (the name contains @@), look up the
4844 symbol again with only one `@' as well as without the version.
4845 The effect is that references to the symbol with and without the
4846 version will be matched by the default symbol in the archive. */
4847
4848 p = strchr (name, ELF_VER_CHR);
4849 if (p == NULL || p[1] != ELF_VER_CHR)
4850 return h;
4851
4852 /* First check with only one `@'. */
4853 len = strlen (name);
4854 copy = bfd_alloc (abfd, len);
4855 if (copy == NULL)
4856 return (struct elf_link_hash_entry *) 0 - 1;
4857
4858 first = p - name + 1;
4859 memcpy (copy, name, first);
4860 memcpy (copy + first, name + first + 1, len - first);
4861
4862 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4863 if (h == NULL)
4864 {
4865 /* We also need to check references to the symbol without the
4866 version. */
4867 copy[first - 1] = '\0';
4868 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4869 FALSE, FALSE, FALSE);
4870 }
4871
4872 bfd_release (abfd, copy);
4873 return h;
4874 }
4875
4876 /* Add symbols from an ELF archive file to the linker hash table. We
4877 don't use _bfd_generic_link_add_archive_symbols because of a
4878 problem which arises on UnixWare. The UnixWare libc.so is an
4879 archive which includes an entry libc.so.1 which defines a bunch of
4880 symbols. The libc.so archive also includes a number of other
4881 object files, which also define symbols, some of which are the same
4882 as those defined in libc.so.1. Correct linking requires that we
4883 consider each object file in turn, and include it if it defines any
4884 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4885 this; it looks through the list of undefined symbols, and includes
4886 any object file which defines them. When this algorithm is used on
4887 UnixWare, it winds up pulling in libc.so.1 early and defining a
4888 bunch of symbols. This means that some of the other objects in the
4889 archive are not included in the link, which is incorrect since they
4890 precede libc.so.1 in the archive.
4891
4892 Fortunately, ELF archive handling is simpler than that done by
4893 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4894 oddities. In ELF, if we find a symbol in the archive map, and the
4895 symbol is currently undefined, we know that we must pull in that
4896 object file.
4897
4898 Unfortunately, we do have to make multiple passes over the symbol
4899 table until nothing further is resolved. */
4900
4901 static bfd_boolean
4902 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4903 {
4904 symindex c;
4905 bfd_boolean *defined = NULL;
4906 bfd_boolean *included = NULL;
4907 carsym *symdefs;
4908 bfd_boolean loop;
4909 bfd_size_type amt;
4910 const struct elf_backend_data *bed;
4911 struct elf_link_hash_entry * (*archive_symbol_lookup)
4912 (bfd *, struct bfd_link_info *, const char *);
4913
4914 if (! bfd_has_map (abfd))
4915 {
4916 /* An empty archive is a special case. */
4917 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4918 return TRUE;
4919 bfd_set_error (bfd_error_no_armap);
4920 return FALSE;
4921 }
4922
4923 /* Keep track of all symbols we know to be already defined, and all
4924 files we know to be already included. This is to speed up the
4925 second and subsequent passes. */
4926 c = bfd_ardata (abfd)->symdef_count;
4927 if (c == 0)
4928 return TRUE;
4929 amt = c;
4930 amt *= sizeof (bfd_boolean);
4931 defined = bfd_zmalloc (amt);
4932 included = bfd_zmalloc (amt);
4933 if (defined == NULL || included == NULL)
4934 goto error_return;
4935
4936 symdefs = bfd_ardata (abfd)->symdefs;
4937 bed = get_elf_backend_data (abfd);
4938 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4939
4940 do
4941 {
4942 file_ptr last;
4943 symindex i;
4944 carsym *symdef;
4945 carsym *symdefend;
4946
4947 loop = FALSE;
4948 last = -1;
4949
4950 symdef = symdefs;
4951 symdefend = symdef + c;
4952 for (i = 0; symdef < symdefend; symdef++, i++)
4953 {
4954 struct elf_link_hash_entry *h;
4955 bfd *element;
4956 struct bfd_link_hash_entry *undefs_tail;
4957 symindex mark;
4958
4959 if (defined[i] || included[i])
4960 continue;
4961 if (symdef->file_offset == last)
4962 {
4963 included[i] = TRUE;
4964 continue;
4965 }
4966
4967 h = archive_symbol_lookup (abfd, info, symdef->name);
4968 if (h == (struct elf_link_hash_entry *) 0 - 1)
4969 goto error_return;
4970
4971 if (h == NULL)
4972 continue;
4973
4974 if (h->root.type == bfd_link_hash_common)
4975 {
4976 /* We currently have a common symbol. The archive map contains
4977 a reference to this symbol, so we may want to include it. We
4978 only want to include it however, if this archive element
4979 contains a definition of the symbol, not just another common
4980 declaration of it.
4981
4982 Unfortunately some archivers (including GNU ar) will put
4983 declarations of common symbols into their archive maps, as
4984 well as real definitions, so we cannot just go by the archive
4985 map alone. Instead we must read in the element's symbol
4986 table and check that to see what kind of symbol definition
4987 this is. */
4988 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4989 continue;
4990 }
4991 else if (h->root.type != bfd_link_hash_undefined)
4992 {
4993 if (h->root.type != bfd_link_hash_undefweak)
4994 defined[i] = TRUE;
4995 continue;
4996 }
4997
4998 /* We need to include this archive member. */
4999 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5000 if (element == NULL)
5001 goto error_return;
5002
5003 if (! bfd_check_format (element, bfd_object))
5004 goto error_return;
5005
5006 /* Doublecheck that we have not included this object
5007 already--it should be impossible, but there may be
5008 something wrong with the archive. */
5009 if (element->archive_pass != 0)
5010 {
5011 bfd_set_error (bfd_error_bad_value);
5012 goto error_return;
5013 }
5014 element->archive_pass = 1;
5015
5016 undefs_tail = info->hash->undefs_tail;
5017
5018 if (! (*info->callbacks->add_archive_element) (info, element,
5019 symdef->name))
5020 goto error_return;
5021 if (! bfd_link_add_symbols (element, info))
5022 goto error_return;
5023
5024 /* If there are any new undefined symbols, we need to make
5025 another pass through the archive in order to see whether
5026 they can be defined. FIXME: This isn't perfect, because
5027 common symbols wind up on undefs_tail and because an
5028 undefined symbol which is defined later on in this pass
5029 does not require another pass. This isn't a bug, but it
5030 does make the code less efficient than it could be. */
5031 if (undefs_tail != info->hash->undefs_tail)
5032 loop = TRUE;
5033
5034 /* Look backward to mark all symbols from this object file
5035 which we have already seen in this pass. */
5036 mark = i;
5037 do
5038 {
5039 included[mark] = TRUE;
5040 if (mark == 0)
5041 break;
5042 --mark;
5043 }
5044 while (symdefs[mark].file_offset == symdef->file_offset);
5045
5046 /* We mark subsequent symbols from this object file as we go
5047 on through the loop. */
5048 last = symdef->file_offset;
5049 }
5050 }
5051 while (loop);
5052
5053 free (defined);
5054 free (included);
5055
5056 return TRUE;
5057
5058 error_return:
5059 if (defined != NULL)
5060 free (defined);
5061 if (included != NULL)
5062 free (included);
5063 return FALSE;
5064 }
5065
5066 /* Given an ELF BFD, add symbols to the global hash table as
5067 appropriate. */
5068
5069 bfd_boolean
5070 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5071 {
5072 switch (bfd_get_format (abfd))
5073 {
5074 case bfd_object:
5075 return elf_link_add_object_symbols (abfd, info);
5076 case bfd_archive:
5077 return elf_link_add_archive_symbols (abfd, info);
5078 default:
5079 bfd_set_error (bfd_error_wrong_format);
5080 return FALSE;
5081 }
5082 }
5083 \f
5084 struct hash_codes_info
5085 {
5086 unsigned long *hashcodes;
5087 bfd_boolean error;
5088 };
5089
5090 /* This function will be called though elf_link_hash_traverse to store
5091 all hash value of the exported symbols in an array. */
5092
5093 static bfd_boolean
5094 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5095 {
5096 struct hash_codes_info *inf = data;
5097 const char *name;
5098 char *p;
5099 unsigned long ha;
5100 char *alc = NULL;
5101
5102 if (h->root.type == bfd_link_hash_warning)
5103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5104
5105 /* Ignore indirect symbols. These are added by the versioning code. */
5106 if (h->dynindx == -1)
5107 return TRUE;
5108
5109 name = h->root.root.string;
5110 p = strchr (name, ELF_VER_CHR);
5111 if (p != NULL)
5112 {
5113 alc = bfd_malloc (p - name + 1);
5114 if (alc == NULL)
5115 {
5116 inf->error = TRUE;
5117 return FALSE;
5118 }
5119 memcpy (alc, name, p - name);
5120 alc[p - name] = '\0';
5121 name = alc;
5122 }
5123
5124 /* Compute the hash value. */
5125 ha = bfd_elf_hash (name);
5126
5127 /* Store the found hash value in the array given as the argument. */
5128 *(inf->hashcodes)++ = ha;
5129
5130 /* And store it in the struct so that we can put it in the hash table
5131 later. */
5132 h->u.elf_hash_value = ha;
5133
5134 if (alc != NULL)
5135 free (alc);
5136
5137 return TRUE;
5138 }
5139
5140 struct collect_gnu_hash_codes
5141 {
5142 bfd *output_bfd;
5143 const struct elf_backend_data *bed;
5144 unsigned long int nsyms;
5145 unsigned long int maskbits;
5146 unsigned long int *hashcodes;
5147 unsigned long int *hashval;
5148 unsigned long int *indx;
5149 unsigned long int *counts;
5150 bfd_vma *bitmask;
5151 bfd_byte *contents;
5152 long int min_dynindx;
5153 unsigned long int bucketcount;
5154 unsigned long int symindx;
5155 long int local_indx;
5156 long int shift1, shift2;
5157 unsigned long int mask;
5158 bfd_boolean error;
5159 };
5160
5161 /* This function will be called though elf_link_hash_traverse to store
5162 all hash value of the exported symbols in an array. */
5163
5164 static bfd_boolean
5165 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5166 {
5167 struct collect_gnu_hash_codes *s = data;
5168 const char *name;
5169 char *p;
5170 unsigned long ha;
5171 char *alc = NULL;
5172
5173 if (h->root.type == bfd_link_hash_warning)
5174 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5175
5176 /* Ignore indirect symbols. These are added by the versioning code. */
5177 if (h->dynindx == -1)
5178 return TRUE;
5179
5180 /* Ignore also local symbols and undefined symbols. */
5181 if (! (*s->bed->elf_hash_symbol) (h))
5182 return TRUE;
5183
5184 name = h->root.root.string;
5185 p = strchr (name, ELF_VER_CHR);
5186 if (p != NULL)
5187 {
5188 alc = bfd_malloc (p - name + 1);
5189 if (alc == NULL)
5190 {
5191 s->error = TRUE;
5192 return FALSE;
5193 }
5194 memcpy (alc, name, p - name);
5195 alc[p - name] = '\0';
5196 name = alc;
5197 }
5198
5199 /* Compute the hash value. */
5200 ha = bfd_elf_gnu_hash (name);
5201
5202 /* Store the found hash value in the array for compute_bucket_count,
5203 and also for .dynsym reordering purposes. */
5204 s->hashcodes[s->nsyms] = ha;
5205 s->hashval[h->dynindx] = ha;
5206 ++s->nsyms;
5207 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5208 s->min_dynindx = h->dynindx;
5209
5210 if (alc != NULL)
5211 free (alc);
5212
5213 return TRUE;
5214 }
5215
5216 /* This function will be called though elf_link_hash_traverse to do
5217 final dynaminc symbol renumbering. */
5218
5219 static bfd_boolean
5220 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5221 {
5222 struct collect_gnu_hash_codes *s = data;
5223 unsigned long int bucket;
5224 unsigned long int val;
5225
5226 if (h->root.type == bfd_link_hash_warning)
5227 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5228
5229 /* Ignore indirect symbols. */
5230 if (h->dynindx == -1)
5231 return TRUE;
5232
5233 /* Ignore also local symbols and undefined symbols. */
5234 if (! (*s->bed->elf_hash_symbol) (h))
5235 {
5236 if (h->dynindx >= s->min_dynindx)
5237 h->dynindx = s->local_indx++;
5238 return TRUE;
5239 }
5240
5241 bucket = s->hashval[h->dynindx] % s->bucketcount;
5242 val = (s->hashval[h->dynindx] >> s->shift1)
5243 & ((s->maskbits >> s->shift1) - 1);
5244 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5245 s->bitmask[val]
5246 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5247 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5248 if (s->counts[bucket] == 1)
5249 /* Last element terminates the chain. */
5250 val |= 1;
5251 bfd_put_32 (s->output_bfd, val,
5252 s->contents + (s->indx[bucket] - s->symindx) * 4);
5253 --s->counts[bucket];
5254 h->dynindx = s->indx[bucket]++;
5255 return TRUE;
5256 }
5257
5258 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5259
5260 bfd_boolean
5261 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5262 {
5263 return !(h->forced_local
5264 || h->root.type == bfd_link_hash_undefined
5265 || h->root.type == bfd_link_hash_undefweak
5266 || ((h->root.type == bfd_link_hash_defined
5267 || h->root.type == bfd_link_hash_defweak)
5268 && h->root.u.def.section->output_section == NULL));
5269 }
5270
5271 /* Array used to determine the number of hash table buckets to use
5272 based on the number of symbols there are. If there are fewer than
5273 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5274 fewer than 37 we use 17 buckets, and so forth. We never use more
5275 than 32771 buckets. */
5276
5277 static const size_t elf_buckets[] =
5278 {
5279 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5280 16411, 32771, 0
5281 };
5282
5283 /* Compute bucket count for hashing table. We do not use a static set
5284 of possible tables sizes anymore. Instead we determine for all
5285 possible reasonable sizes of the table the outcome (i.e., the
5286 number of collisions etc) and choose the best solution. The
5287 weighting functions are not too simple to allow the table to grow
5288 without bounds. Instead one of the weighting factors is the size.
5289 Therefore the result is always a good payoff between few collisions
5290 (= short chain lengths) and table size. */
5291 static size_t
5292 compute_bucket_count (struct bfd_link_info *info,
5293 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5294 unsigned long int nsyms,
5295 int gnu_hash)
5296 {
5297 size_t best_size = 0;
5298 unsigned long int i;
5299
5300 /* We have a problem here. The following code to optimize the table
5301 size requires an integer type with more the 32 bits. If
5302 BFD_HOST_U_64_BIT is set we know about such a type. */
5303 #ifdef BFD_HOST_U_64_BIT
5304 if (info->optimize)
5305 {
5306 size_t minsize;
5307 size_t maxsize;
5308 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5309 bfd *dynobj = elf_hash_table (info)->dynobj;
5310 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5311 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5312 unsigned long int *counts;
5313 bfd_size_type amt;
5314
5315 /* Possible optimization parameters: if we have NSYMS symbols we say
5316 that the hashing table must at least have NSYMS/4 and at most
5317 2*NSYMS buckets. */
5318 minsize = nsyms / 4;
5319 if (minsize == 0)
5320 minsize = 1;
5321 best_size = maxsize = nsyms * 2;
5322 if (gnu_hash)
5323 {
5324 if (minsize < 2)
5325 minsize = 2;
5326 if ((best_size & 31) == 0)
5327 ++best_size;
5328 }
5329
5330 /* Create array where we count the collisions in. We must use bfd_malloc
5331 since the size could be large. */
5332 amt = maxsize;
5333 amt *= sizeof (unsigned long int);
5334 counts = bfd_malloc (amt);
5335 if (counts == NULL)
5336 return 0;
5337
5338 /* Compute the "optimal" size for the hash table. The criteria is a
5339 minimal chain length. The minor criteria is (of course) the size
5340 of the table. */
5341 for (i = minsize; i < maxsize; ++i)
5342 {
5343 /* Walk through the array of hashcodes and count the collisions. */
5344 BFD_HOST_U_64_BIT max;
5345 unsigned long int j;
5346 unsigned long int fact;
5347
5348 if (gnu_hash && (i & 31) == 0)
5349 continue;
5350
5351 memset (counts, '\0', i * sizeof (unsigned long int));
5352
5353 /* Determine how often each hash bucket is used. */
5354 for (j = 0; j < nsyms; ++j)
5355 ++counts[hashcodes[j] % i];
5356
5357 /* For the weight function we need some information about the
5358 pagesize on the target. This is information need not be 100%
5359 accurate. Since this information is not available (so far) we
5360 define it here to a reasonable default value. If it is crucial
5361 to have a better value some day simply define this value. */
5362 # ifndef BFD_TARGET_PAGESIZE
5363 # define BFD_TARGET_PAGESIZE (4096)
5364 # endif
5365
5366 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5367 and the chains. */
5368 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5369
5370 # if 1
5371 /* Variant 1: optimize for short chains. We add the squares
5372 of all the chain lengths (which favors many small chain
5373 over a few long chains). */
5374 for (j = 0; j < i; ++j)
5375 max += counts[j] * counts[j];
5376
5377 /* This adds penalties for the overall size of the table. */
5378 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5379 max *= fact * fact;
5380 # else
5381 /* Variant 2: Optimize a lot more for small table. Here we
5382 also add squares of the size but we also add penalties for
5383 empty slots (the +1 term). */
5384 for (j = 0; j < i; ++j)
5385 max += (1 + counts[j]) * (1 + counts[j]);
5386
5387 /* The overall size of the table is considered, but not as
5388 strong as in variant 1, where it is squared. */
5389 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5390 max *= fact;
5391 # endif
5392
5393 /* Compare with current best results. */
5394 if (max < best_chlen)
5395 {
5396 best_chlen = max;
5397 best_size = i;
5398 }
5399 }
5400
5401 free (counts);
5402 }
5403 else
5404 #endif /* defined (BFD_HOST_U_64_BIT) */
5405 {
5406 /* This is the fallback solution if no 64bit type is available or if we
5407 are not supposed to spend much time on optimizations. We select the
5408 bucket count using a fixed set of numbers. */
5409 for (i = 0; elf_buckets[i] != 0; i++)
5410 {
5411 best_size = elf_buckets[i];
5412 if (nsyms < elf_buckets[i + 1])
5413 break;
5414 }
5415 if (gnu_hash && best_size < 2)
5416 best_size = 2;
5417 }
5418
5419 return best_size;
5420 }
5421
5422 /* Set up the sizes and contents of the ELF dynamic sections. This is
5423 called by the ELF linker emulation before_allocation routine. We
5424 must set the sizes of the sections before the linker sets the
5425 addresses of the various sections. */
5426
5427 bfd_boolean
5428 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5429 const char *soname,
5430 const char *rpath,
5431 const char *filter_shlib,
5432 const char * const *auxiliary_filters,
5433 struct bfd_link_info *info,
5434 asection **sinterpptr,
5435 struct bfd_elf_version_tree *verdefs)
5436 {
5437 bfd_size_type soname_indx;
5438 bfd *dynobj;
5439 const struct elf_backend_data *bed;
5440 struct elf_info_failed asvinfo;
5441
5442 *sinterpptr = NULL;
5443
5444 soname_indx = (bfd_size_type) -1;
5445
5446 if (!is_elf_hash_table (info->hash))
5447 return TRUE;
5448
5449 bed = get_elf_backend_data (output_bfd);
5450 if (info->execstack)
5451 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5452 else if (info->noexecstack)
5453 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5454 else
5455 {
5456 bfd *inputobj;
5457 asection *notesec = NULL;
5458 int exec = 0;
5459
5460 for (inputobj = info->input_bfds;
5461 inputobj;
5462 inputobj = inputobj->link_next)
5463 {
5464 asection *s;
5465
5466 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5467 continue;
5468 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5469 if (s)
5470 {
5471 if (s->flags & SEC_CODE)
5472 exec = PF_X;
5473 notesec = s;
5474 }
5475 else if (bed->default_execstack)
5476 exec = PF_X;
5477 }
5478 if (notesec)
5479 {
5480 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5481 if (exec && info->relocatable
5482 && notesec->output_section != bfd_abs_section_ptr)
5483 notesec->output_section->flags |= SEC_CODE;
5484 }
5485 }
5486
5487 /* Any syms created from now on start with -1 in
5488 got.refcount/offset and plt.refcount/offset. */
5489 elf_hash_table (info)->init_got_refcount
5490 = elf_hash_table (info)->init_got_offset;
5491 elf_hash_table (info)->init_plt_refcount
5492 = elf_hash_table (info)->init_plt_offset;
5493
5494 /* The backend may have to create some sections regardless of whether
5495 we're dynamic or not. */
5496 if (bed->elf_backend_always_size_sections
5497 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5498 return FALSE;
5499
5500 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5501 return FALSE;
5502
5503 dynobj = elf_hash_table (info)->dynobj;
5504
5505 /* If there were no dynamic objects in the link, there is nothing to
5506 do here. */
5507 if (dynobj == NULL)
5508 return TRUE;
5509
5510 if (elf_hash_table (info)->dynamic_sections_created)
5511 {
5512 struct elf_info_failed eif;
5513 struct elf_link_hash_entry *h;
5514 asection *dynstr;
5515 struct bfd_elf_version_tree *t;
5516 struct bfd_elf_version_expr *d;
5517 asection *s;
5518 bfd_boolean all_defined;
5519
5520 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5521 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5522
5523 if (soname != NULL)
5524 {
5525 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5526 soname, TRUE);
5527 if (soname_indx == (bfd_size_type) -1
5528 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5529 return FALSE;
5530 }
5531
5532 if (info->symbolic)
5533 {
5534 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5535 return FALSE;
5536 info->flags |= DF_SYMBOLIC;
5537 }
5538
5539 if (rpath != NULL)
5540 {
5541 bfd_size_type indx;
5542
5543 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5544 TRUE);
5545 if (indx == (bfd_size_type) -1
5546 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5547 return FALSE;
5548
5549 if (info->new_dtags)
5550 {
5551 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5552 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5553 return FALSE;
5554 }
5555 }
5556
5557 if (filter_shlib != NULL)
5558 {
5559 bfd_size_type indx;
5560
5561 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5562 filter_shlib, TRUE);
5563 if (indx == (bfd_size_type) -1
5564 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5565 return FALSE;
5566 }
5567
5568 if (auxiliary_filters != NULL)
5569 {
5570 const char * const *p;
5571
5572 for (p = auxiliary_filters; *p != NULL; p++)
5573 {
5574 bfd_size_type indx;
5575
5576 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5577 *p, TRUE);
5578 if (indx == (bfd_size_type) -1
5579 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5580 return FALSE;
5581 }
5582 }
5583
5584 eif.info = info;
5585 eif.verdefs = verdefs;
5586 eif.failed = FALSE;
5587
5588 /* If we are supposed to export all symbols into the dynamic symbol
5589 table (this is not the normal case), then do so. */
5590 if (info->export_dynamic
5591 || (info->executable && info->dynamic))
5592 {
5593 elf_link_hash_traverse (elf_hash_table (info),
5594 _bfd_elf_export_symbol,
5595 &eif);
5596 if (eif.failed)
5597 return FALSE;
5598 }
5599
5600 /* Make all global versions with definition. */
5601 for (t = verdefs; t != NULL; t = t->next)
5602 for (d = t->globals.list; d != NULL; d = d->next)
5603 if (!d->symver && d->literal)
5604 {
5605 const char *verstr, *name;
5606 size_t namelen, verlen, newlen;
5607 char *newname, *p;
5608 struct elf_link_hash_entry *newh;
5609
5610 name = d->pattern;
5611 namelen = strlen (name);
5612 verstr = t->name;
5613 verlen = strlen (verstr);
5614 newlen = namelen + verlen + 3;
5615
5616 newname = bfd_malloc (newlen);
5617 if (newname == NULL)
5618 return FALSE;
5619 memcpy (newname, name, namelen);
5620
5621 /* Check the hidden versioned definition. */
5622 p = newname + namelen;
5623 *p++ = ELF_VER_CHR;
5624 memcpy (p, verstr, verlen + 1);
5625 newh = elf_link_hash_lookup (elf_hash_table (info),
5626 newname, FALSE, FALSE,
5627 FALSE);
5628 if (newh == NULL
5629 || (newh->root.type != bfd_link_hash_defined
5630 && newh->root.type != bfd_link_hash_defweak))
5631 {
5632 /* Check the default versioned definition. */
5633 *p++ = ELF_VER_CHR;
5634 memcpy (p, verstr, verlen + 1);
5635 newh = elf_link_hash_lookup (elf_hash_table (info),
5636 newname, FALSE, FALSE,
5637 FALSE);
5638 }
5639 free (newname);
5640
5641 /* Mark this version if there is a definition and it is
5642 not defined in a shared object. */
5643 if (newh != NULL
5644 && !newh->def_dynamic
5645 && (newh->root.type == bfd_link_hash_defined
5646 || newh->root.type == bfd_link_hash_defweak))
5647 d->symver = 1;
5648 }
5649
5650 /* Attach all the symbols to their version information. */
5651 asvinfo.info = info;
5652 asvinfo.verdefs = verdefs;
5653 asvinfo.failed = FALSE;
5654
5655 elf_link_hash_traverse (elf_hash_table (info),
5656 _bfd_elf_link_assign_sym_version,
5657 &asvinfo);
5658 if (asvinfo.failed)
5659 return FALSE;
5660
5661 if (!info->allow_undefined_version)
5662 {
5663 /* Check if all global versions have a definition. */
5664 all_defined = TRUE;
5665 for (t = verdefs; t != NULL; t = t->next)
5666 for (d = t->globals.list; d != NULL; d = d->next)
5667 if (d->literal && !d->symver && !d->script)
5668 {
5669 (*_bfd_error_handler)
5670 (_("%s: undefined version: %s"),
5671 d->pattern, t->name);
5672 all_defined = FALSE;
5673 }
5674
5675 if (!all_defined)
5676 {
5677 bfd_set_error (bfd_error_bad_value);
5678 return FALSE;
5679 }
5680 }
5681
5682 /* Find all symbols which were defined in a dynamic object and make
5683 the backend pick a reasonable value for them. */
5684 elf_link_hash_traverse (elf_hash_table (info),
5685 _bfd_elf_adjust_dynamic_symbol,
5686 &eif);
5687 if (eif.failed)
5688 return FALSE;
5689
5690 /* Add some entries to the .dynamic section. We fill in some of the
5691 values later, in bfd_elf_final_link, but we must add the entries
5692 now so that we know the final size of the .dynamic section. */
5693
5694 /* If there are initialization and/or finalization functions to
5695 call then add the corresponding DT_INIT/DT_FINI entries. */
5696 h = (info->init_function
5697 ? elf_link_hash_lookup (elf_hash_table (info),
5698 info->init_function, FALSE,
5699 FALSE, FALSE)
5700 : NULL);
5701 if (h != NULL
5702 && (h->ref_regular
5703 || h->def_regular))
5704 {
5705 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5706 return FALSE;
5707 }
5708 h = (info->fini_function
5709 ? elf_link_hash_lookup (elf_hash_table (info),
5710 info->fini_function, FALSE,
5711 FALSE, FALSE)
5712 : NULL);
5713 if (h != NULL
5714 && (h->ref_regular
5715 || h->def_regular))
5716 {
5717 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5718 return FALSE;
5719 }
5720
5721 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5722 if (s != NULL && s->linker_has_input)
5723 {
5724 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5725 if (! info->executable)
5726 {
5727 bfd *sub;
5728 asection *o;
5729
5730 for (sub = info->input_bfds; sub != NULL;
5731 sub = sub->link_next)
5732 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5733 for (o = sub->sections; o != NULL; o = o->next)
5734 if (elf_section_data (o)->this_hdr.sh_type
5735 == SHT_PREINIT_ARRAY)
5736 {
5737 (*_bfd_error_handler)
5738 (_("%B: .preinit_array section is not allowed in DSO"),
5739 sub);
5740 break;
5741 }
5742
5743 bfd_set_error (bfd_error_nonrepresentable_section);
5744 return FALSE;
5745 }
5746
5747 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5748 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5749 return FALSE;
5750 }
5751 s = bfd_get_section_by_name (output_bfd, ".init_array");
5752 if (s != NULL && s->linker_has_input)
5753 {
5754 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5755 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5756 return FALSE;
5757 }
5758 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5759 if (s != NULL && s->linker_has_input)
5760 {
5761 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5762 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5763 return FALSE;
5764 }
5765
5766 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5767 /* If .dynstr is excluded from the link, we don't want any of
5768 these tags. Strictly, we should be checking each section
5769 individually; This quick check covers for the case where
5770 someone does a /DISCARD/ : { *(*) }. */
5771 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5772 {
5773 bfd_size_type strsize;
5774
5775 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5776 if ((info->emit_hash
5777 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5778 || (info->emit_gnu_hash
5779 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5780 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5781 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5782 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5783 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5784 bed->s->sizeof_sym))
5785 return FALSE;
5786 }
5787 }
5788
5789 /* The backend must work out the sizes of all the other dynamic
5790 sections. */
5791 if (bed->elf_backend_size_dynamic_sections
5792 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5793 return FALSE;
5794
5795 if (elf_hash_table (info)->dynamic_sections_created)
5796 {
5797 unsigned long section_sym_count;
5798 asection *s;
5799
5800 /* Set up the version definition section. */
5801 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5802 BFD_ASSERT (s != NULL);
5803
5804 /* We may have created additional version definitions if we are
5805 just linking a regular application. */
5806 verdefs = asvinfo.verdefs;
5807
5808 /* Skip anonymous version tag. */
5809 if (verdefs != NULL && verdefs->vernum == 0)
5810 verdefs = verdefs->next;
5811
5812 if (verdefs == NULL && !info->create_default_symver)
5813 s->flags |= SEC_EXCLUDE;
5814 else
5815 {
5816 unsigned int cdefs;
5817 bfd_size_type size;
5818 struct bfd_elf_version_tree *t;
5819 bfd_byte *p;
5820 Elf_Internal_Verdef def;
5821 Elf_Internal_Verdaux defaux;
5822 struct bfd_link_hash_entry *bh;
5823 struct elf_link_hash_entry *h;
5824 const char *name;
5825
5826 cdefs = 0;
5827 size = 0;
5828
5829 /* Make space for the base version. */
5830 size += sizeof (Elf_External_Verdef);
5831 size += sizeof (Elf_External_Verdaux);
5832 ++cdefs;
5833
5834 /* Make space for the default version. */
5835 if (info->create_default_symver)
5836 {
5837 size += sizeof (Elf_External_Verdef);
5838 ++cdefs;
5839 }
5840
5841 for (t = verdefs; t != NULL; t = t->next)
5842 {
5843 struct bfd_elf_version_deps *n;
5844
5845 size += sizeof (Elf_External_Verdef);
5846 size += sizeof (Elf_External_Verdaux);
5847 ++cdefs;
5848
5849 for (n = t->deps; n != NULL; n = n->next)
5850 size += sizeof (Elf_External_Verdaux);
5851 }
5852
5853 s->size = size;
5854 s->contents = bfd_alloc (output_bfd, s->size);
5855 if (s->contents == NULL && s->size != 0)
5856 return FALSE;
5857
5858 /* Fill in the version definition section. */
5859
5860 p = s->contents;
5861
5862 def.vd_version = VER_DEF_CURRENT;
5863 def.vd_flags = VER_FLG_BASE;
5864 def.vd_ndx = 1;
5865 def.vd_cnt = 1;
5866 if (info->create_default_symver)
5867 {
5868 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5869 def.vd_next = sizeof (Elf_External_Verdef);
5870 }
5871 else
5872 {
5873 def.vd_aux = sizeof (Elf_External_Verdef);
5874 def.vd_next = (sizeof (Elf_External_Verdef)
5875 + sizeof (Elf_External_Verdaux));
5876 }
5877
5878 if (soname_indx != (bfd_size_type) -1)
5879 {
5880 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5881 soname_indx);
5882 def.vd_hash = bfd_elf_hash (soname);
5883 defaux.vda_name = soname_indx;
5884 name = soname;
5885 }
5886 else
5887 {
5888 bfd_size_type indx;
5889
5890 name = lbasename (output_bfd->filename);
5891 def.vd_hash = bfd_elf_hash (name);
5892 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5893 name, FALSE);
5894 if (indx == (bfd_size_type) -1)
5895 return FALSE;
5896 defaux.vda_name = indx;
5897 }
5898 defaux.vda_next = 0;
5899
5900 _bfd_elf_swap_verdef_out (output_bfd, &def,
5901 (Elf_External_Verdef *) p);
5902 p += sizeof (Elf_External_Verdef);
5903 if (info->create_default_symver)
5904 {
5905 /* Add a symbol representing this version. */
5906 bh = NULL;
5907 if (! (_bfd_generic_link_add_one_symbol
5908 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5909 0, NULL, FALSE,
5910 get_elf_backend_data (dynobj)->collect, &bh)))
5911 return FALSE;
5912 h = (struct elf_link_hash_entry *) bh;
5913 h->non_elf = 0;
5914 h->def_regular = 1;
5915 h->type = STT_OBJECT;
5916 h->verinfo.vertree = NULL;
5917
5918 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5919 return FALSE;
5920
5921 /* Create a duplicate of the base version with the same
5922 aux block, but different flags. */
5923 def.vd_flags = 0;
5924 def.vd_ndx = 2;
5925 def.vd_aux = sizeof (Elf_External_Verdef);
5926 if (verdefs)
5927 def.vd_next = (sizeof (Elf_External_Verdef)
5928 + sizeof (Elf_External_Verdaux));
5929 else
5930 def.vd_next = 0;
5931 _bfd_elf_swap_verdef_out (output_bfd, &def,
5932 (Elf_External_Verdef *) p);
5933 p += sizeof (Elf_External_Verdef);
5934 }
5935 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5936 (Elf_External_Verdaux *) p);
5937 p += sizeof (Elf_External_Verdaux);
5938
5939 for (t = verdefs; t != NULL; t = t->next)
5940 {
5941 unsigned int cdeps;
5942 struct bfd_elf_version_deps *n;
5943
5944 cdeps = 0;
5945 for (n = t->deps; n != NULL; n = n->next)
5946 ++cdeps;
5947
5948 /* Add a symbol representing this version. */
5949 bh = NULL;
5950 if (! (_bfd_generic_link_add_one_symbol
5951 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5952 0, NULL, FALSE,
5953 get_elf_backend_data (dynobj)->collect, &bh)))
5954 return FALSE;
5955 h = (struct elf_link_hash_entry *) bh;
5956 h->non_elf = 0;
5957 h->def_regular = 1;
5958 h->type = STT_OBJECT;
5959 h->verinfo.vertree = t;
5960
5961 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5962 return FALSE;
5963
5964 def.vd_version = VER_DEF_CURRENT;
5965 def.vd_flags = 0;
5966 if (t->globals.list == NULL
5967 && t->locals.list == NULL
5968 && ! t->used)
5969 def.vd_flags |= VER_FLG_WEAK;
5970 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5971 def.vd_cnt = cdeps + 1;
5972 def.vd_hash = bfd_elf_hash (t->name);
5973 def.vd_aux = sizeof (Elf_External_Verdef);
5974 def.vd_next = 0;
5975 if (t->next != NULL)
5976 def.vd_next = (sizeof (Elf_External_Verdef)
5977 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5978
5979 _bfd_elf_swap_verdef_out (output_bfd, &def,
5980 (Elf_External_Verdef *) p);
5981 p += sizeof (Elf_External_Verdef);
5982
5983 defaux.vda_name = h->dynstr_index;
5984 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5985 h->dynstr_index);
5986 defaux.vda_next = 0;
5987 if (t->deps != NULL)
5988 defaux.vda_next = sizeof (Elf_External_Verdaux);
5989 t->name_indx = defaux.vda_name;
5990
5991 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5992 (Elf_External_Verdaux *) p);
5993 p += sizeof (Elf_External_Verdaux);
5994
5995 for (n = t->deps; n != NULL; n = n->next)
5996 {
5997 if (n->version_needed == NULL)
5998 {
5999 /* This can happen if there was an error in the
6000 version script. */
6001 defaux.vda_name = 0;
6002 }
6003 else
6004 {
6005 defaux.vda_name = n->version_needed->name_indx;
6006 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6007 defaux.vda_name);
6008 }
6009 if (n->next == NULL)
6010 defaux.vda_next = 0;
6011 else
6012 defaux.vda_next = sizeof (Elf_External_Verdaux);
6013
6014 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6015 (Elf_External_Verdaux *) p);
6016 p += sizeof (Elf_External_Verdaux);
6017 }
6018 }
6019
6020 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6021 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6022 return FALSE;
6023
6024 elf_tdata (output_bfd)->cverdefs = cdefs;
6025 }
6026
6027 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6028 {
6029 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6030 return FALSE;
6031 }
6032 else if (info->flags & DF_BIND_NOW)
6033 {
6034 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6035 return FALSE;
6036 }
6037
6038 if (info->flags_1)
6039 {
6040 if (info->executable)
6041 info->flags_1 &= ~ (DF_1_INITFIRST
6042 | DF_1_NODELETE
6043 | DF_1_NOOPEN);
6044 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6045 return FALSE;
6046 }
6047
6048 /* Work out the size of the version reference section. */
6049
6050 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6051 BFD_ASSERT (s != NULL);
6052 {
6053 struct elf_find_verdep_info sinfo;
6054
6055 sinfo.info = info;
6056 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6057 if (sinfo.vers == 0)
6058 sinfo.vers = 1;
6059 sinfo.failed = FALSE;
6060
6061 elf_link_hash_traverse (elf_hash_table (info),
6062 _bfd_elf_link_find_version_dependencies,
6063 &sinfo);
6064 if (sinfo.failed)
6065 return FALSE;
6066
6067 if (elf_tdata (output_bfd)->verref == NULL)
6068 s->flags |= SEC_EXCLUDE;
6069 else
6070 {
6071 Elf_Internal_Verneed *t;
6072 unsigned int size;
6073 unsigned int crefs;
6074 bfd_byte *p;
6075
6076 /* Build the version definition section. */
6077 size = 0;
6078 crefs = 0;
6079 for (t = elf_tdata (output_bfd)->verref;
6080 t != NULL;
6081 t = t->vn_nextref)
6082 {
6083 Elf_Internal_Vernaux *a;
6084
6085 size += sizeof (Elf_External_Verneed);
6086 ++crefs;
6087 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6088 size += sizeof (Elf_External_Vernaux);
6089 }
6090
6091 s->size = size;
6092 s->contents = bfd_alloc (output_bfd, s->size);
6093 if (s->contents == NULL)
6094 return FALSE;
6095
6096 p = s->contents;
6097 for (t = elf_tdata (output_bfd)->verref;
6098 t != NULL;
6099 t = t->vn_nextref)
6100 {
6101 unsigned int caux;
6102 Elf_Internal_Vernaux *a;
6103 bfd_size_type indx;
6104
6105 caux = 0;
6106 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6107 ++caux;
6108
6109 t->vn_version = VER_NEED_CURRENT;
6110 t->vn_cnt = caux;
6111 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6112 elf_dt_name (t->vn_bfd) != NULL
6113 ? elf_dt_name (t->vn_bfd)
6114 : lbasename (t->vn_bfd->filename),
6115 FALSE);
6116 if (indx == (bfd_size_type) -1)
6117 return FALSE;
6118 t->vn_file = indx;
6119 t->vn_aux = sizeof (Elf_External_Verneed);
6120 if (t->vn_nextref == NULL)
6121 t->vn_next = 0;
6122 else
6123 t->vn_next = (sizeof (Elf_External_Verneed)
6124 + caux * sizeof (Elf_External_Vernaux));
6125
6126 _bfd_elf_swap_verneed_out (output_bfd, t,
6127 (Elf_External_Verneed *) p);
6128 p += sizeof (Elf_External_Verneed);
6129
6130 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6131 {
6132 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6133 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6134 a->vna_nodename, FALSE);
6135 if (indx == (bfd_size_type) -1)
6136 return FALSE;
6137 a->vna_name = indx;
6138 if (a->vna_nextptr == NULL)
6139 a->vna_next = 0;
6140 else
6141 a->vna_next = sizeof (Elf_External_Vernaux);
6142
6143 _bfd_elf_swap_vernaux_out (output_bfd, a,
6144 (Elf_External_Vernaux *) p);
6145 p += sizeof (Elf_External_Vernaux);
6146 }
6147 }
6148
6149 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6150 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6151 return FALSE;
6152
6153 elf_tdata (output_bfd)->cverrefs = crefs;
6154 }
6155 }
6156
6157 if ((elf_tdata (output_bfd)->cverrefs == 0
6158 && elf_tdata (output_bfd)->cverdefs == 0)
6159 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6160 &section_sym_count) == 0)
6161 {
6162 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6163 s->flags |= SEC_EXCLUDE;
6164 }
6165 }
6166 return TRUE;
6167 }
6168
6169 /* Find the first non-excluded output section. We'll use its
6170 section symbol for some emitted relocs. */
6171 void
6172 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6173 {
6174 asection *s;
6175
6176 for (s = output_bfd->sections; s != NULL; s = s->next)
6177 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6178 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6179 {
6180 elf_hash_table (info)->text_index_section = s;
6181 break;
6182 }
6183 }
6184
6185 /* Find two non-excluded output sections, one for code, one for data.
6186 We'll use their section symbols for some emitted relocs. */
6187 void
6188 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6189 {
6190 asection *s;
6191
6192 /* Data first, since setting text_index_section changes
6193 _bfd_elf_link_omit_section_dynsym. */
6194 for (s = output_bfd->sections; s != NULL; s = s->next)
6195 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6196 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6197 {
6198 elf_hash_table (info)->data_index_section = s;
6199 break;
6200 }
6201
6202 for (s = output_bfd->sections; s != NULL; s = s->next)
6203 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6204 == (SEC_ALLOC | SEC_READONLY))
6205 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6206 {
6207 elf_hash_table (info)->text_index_section = s;
6208 break;
6209 }
6210
6211 if (elf_hash_table (info)->text_index_section == NULL)
6212 elf_hash_table (info)->text_index_section
6213 = elf_hash_table (info)->data_index_section;
6214 }
6215
6216 bfd_boolean
6217 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6218 {
6219 const struct elf_backend_data *bed;
6220
6221 if (!is_elf_hash_table (info->hash))
6222 return TRUE;
6223
6224 bed = get_elf_backend_data (output_bfd);
6225 (*bed->elf_backend_init_index_section) (output_bfd, info);
6226
6227 if (elf_hash_table (info)->dynamic_sections_created)
6228 {
6229 bfd *dynobj;
6230 asection *s;
6231 bfd_size_type dynsymcount;
6232 unsigned long section_sym_count;
6233 unsigned int dtagcount;
6234
6235 dynobj = elf_hash_table (info)->dynobj;
6236
6237 /* Assign dynsym indicies. In a shared library we generate a
6238 section symbol for each output section, which come first.
6239 Next come all of the back-end allocated local dynamic syms,
6240 followed by the rest of the global symbols. */
6241
6242 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6243 &section_sym_count);
6244
6245 /* Work out the size of the symbol version section. */
6246 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6247 BFD_ASSERT (s != NULL);
6248 if (dynsymcount != 0
6249 && (s->flags & SEC_EXCLUDE) == 0)
6250 {
6251 s->size = dynsymcount * sizeof (Elf_External_Versym);
6252 s->contents = bfd_zalloc (output_bfd, s->size);
6253 if (s->contents == NULL)
6254 return FALSE;
6255
6256 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6257 return FALSE;
6258 }
6259
6260 /* Set the size of the .dynsym and .hash sections. We counted
6261 the number of dynamic symbols in elf_link_add_object_symbols.
6262 We will build the contents of .dynsym and .hash when we build
6263 the final symbol table, because until then we do not know the
6264 correct value to give the symbols. We built the .dynstr
6265 section as we went along in elf_link_add_object_symbols. */
6266 s = bfd_get_section_by_name (dynobj, ".dynsym");
6267 BFD_ASSERT (s != NULL);
6268 s->size = dynsymcount * bed->s->sizeof_sym;
6269
6270 if (dynsymcount != 0)
6271 {
6272 s->contents = bfd_alloc (output_bfd, s->size);
6273 if (s->contents == NULL)
6274 return FALSE;
6275
6276 /* The first entry in .dynsym is a dummy symbol.
6277 Clear all the section syms, in case we don't output them all. */
6278 ++section_sym_count;
6279 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6280 }
6281
6282 elf_hash_table (info)->bucketcount = 0;
6283
6284 /* Compute the size of the hashing table. As a side effect this
6285 computes the hash values for all the names we export. */
6286 if (info->emit_hash)
6287 {
6288 unsigned long int *hashcodes;
6289 struct hash_codes_info hashinf;
6290 bfd_size_type amt;
6291 unsigned long int nsyms;
6292 size_t bucketcount;
6293 size_t hash_entry_size;
6294
6295 /* Compute the hash values for all exported symbols. At the same
6296 time store the values in an array so that we could use them for
6297 optimizations. */
6298 amt = dynsymcount * sizeof (unsigned long int);
6299 hashcodes = bfd_malloc (amt);
6300 if (hashcodes == NULL)
6301 return FALSE;
6302 hashinf.hashcodes = hashcodes;
6303 hashinf.error = FALSE;
6304
6305 /* Put all hash values in HASHCODES. */
6306 elf_link_hash_traverse (elf_hash_table (info),
6307 elf_collect_hash_codes, &hashinf);
6308 if (hashinf.error)
6309 {
6310 free (hashcodes);
6311 return FALSE;
6312 }
6313
6314 nsyms = hashinf.hashcodes - hashcodes;
6315 bucketcount
6316 = compute_bucket_count (info, hashcodes, nsyms, 0);
6317 free (hashcodes);
6318
6319 if (bucketcount == 0)
6320 return FALSE;
6321
6322 elf_hash_table (info)->bucketcount = bucketcount;
6323
6324 s = bfd_get_section_by_name (dynobj, ".hash");
6325 BFD_ASSERT (s != NULL);
6326 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6327 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6328 s->contents = bfd_zalloc (output_bfd, s->size);
6329 if (s->contents == NULL)
6330 return FALSE;
6331
6332 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6333 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6334 s->contents + hash_entry_size);
6335 }
6336
6337 if (info->emit_gnu_hash)
6338 {
6339 size_t i, cnt;
6340 unsigned char *contents;
6341 struct collect_gnu_hash_codes cinfo;
6342 bfd_size_type amt;
6343 size_t bucketcount;
6344
6345 memset (&cinfo, 0, sizeof (cinfo));
6346
6347 /* Compute the hash values for all exported symbols. At the same
6348 time store the values in an array so that we could use them for
6349 optimizations. */
6350 amt = dynsymcount * 2 * sizeof (unsigned long int);
6351 cinfo.hashcodes = bfd_malloc (amt);
6352 if (cinfo.hashcodes == NULL)
6353 return FALSE;
6354
6355 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6356 cinfo.min_dynindx = -1;
6357 cinfo.output_bfd = output_bfd;
6358 cinfo.bed = bed;
6359
6360 /* Put all hash values in HASHCODES. */
6361 elf_link_hash_traverse (elf_hash_table (info),
6362 elf_collect_gnu_hash_codes, &cinfo);
6363 if (cinfo.error)
6364 {
6365 free (cinfo.hashcodes);
6366 return FALSE;
6367 }
6368
6369 bucketcount
6370 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6371
6372 if (bucketcount == 0)
6373 {
6374 free (cinfo.hashcodes);
6375 return FALSE;
6376 }
6377
6378 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6379 BFD_ASSERT (s != NULL);
6380
6381 if (cinfo.nsyms == 0)
6382 {
6383 /* Empty .gnu.hash section is special. */
6384 BFD_ASSERT (cinfo.min_dynindx == -1);
6385 free (cinfo.hashcodes);
6386 s->size = 5 * 4 + bed->s->arch_size / 8;
6387 contents = bfd_zalloc (output_bfd, s->size);
6388 if (contents == NULL)
6389 return FALSE;
6390 s->contents = contents;
6391 /* 1 empty bucket. */
6392 bfd_put_32 (output_bfd, 1, contents);
6393 /* SYMIDX above the special symbol 0. */
6394 bfd_put_32 (output_bfd, 1, contents + 4);
6395 /* Just one word for bitmask. */
6396 bfd_put_32 (output_bfd, 1, contents + 8);
6397 /* Only hash fn bloom filter. */
6398 bfd_put_32 (output_bfd, 0, contents + 12);
6399 /* No hashes are valid - empty bitmask. */
6400 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6401 /* No hashes in the only bucket. */
6402 bfd_put_32 (output_bfd, 0,
6403 contents + 16 + bed->s->arch_size / 8);
6404 }
6405 else
6406 {
6407 unsigned long int maskwords, maskbitslog2;
6408 BFD_ASSERT (cinfo.min_dynindx != -1);
6409
6410 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6411 if (maskbitslog2 < 3)
6412 maskbitslog2 = 5;
6413 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6414 maskbitslog2 = maskbitslog2 + 3;
6415 else
6416 maskbitslog2 = maskbitslog2 + 2;
6417 if (bed->s->arch_size == 64)
6418 {
6419 if (maskbitslog2 == 5)
6420 maskbitslog2 = 6;
6421 cinfo.shift1 = 6;
6422 }
6423 else
6424 cinfo.shift1 = 5;
6425 cinfo.mask = (1 << cinfo.shift1) - 1;
6426 cinfo.shift2 = maskbitslog2;
6427 cinfo.maskbits = 1 << maskbitslog2;
6428 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6429 amt = bucketcount * sizeof (unsigned long int) * 2;
6430 amt += maskwords * sizeof (bfd_vma);
6431 cinfo.bitmask = bfd_malloc (amt);
6432 if (cinfo.bitmask == NULL)
6433 {
6434 free (cinfo.hashcodes);
6435 return FALSE;
6436 }
6437
6438 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6439 cinfo.indx = cinfo.counts + bucketcount;
6440 cinfo.symindx = dynsymcount - cinfo.nsyms;
6441 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6442
6443 /* Determine how often each hash bucket is used. */
6444 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6445 for (i = 0; i < cinfo.nsyms; ++i)
6446 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6447
6448 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6449 if (cinfo.counts[i] != 0)
6450 {
6451 cinfo.indx[i] = cnt;
6452 cnt += cinfo.counts[i];
6453 }
6454 BFD_ASSERT (cnt == dynsymcount);
6455 cinfo.bucketcount = bucketcount;
6456 cinfo.local_indx = cinfo.min_dynindx;
6457
6458 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6459 s->size += cinfo.maskbits / 8;
6460 contents = bfd_zalloc (output_bfd, s->size);
6461 if (contents == NULL)
6462 {
6463 free (cinfo.bitmask);
6464 free (cinfo.hashcodes);
6465 return FALSE;
6466 }
6467
6468 s->contents = contents;
6469 bfd_put_32 (output_bfd, bucketcount, contents);
6470 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6471 bfd_put_32 (output_bfd, maskwords, contents + 8);
6472 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6473 contents += 16 + cinfo.maskbits / 8;
6474
6475 for (i = 0; i < bucketcount; ++i)
6476 {
6477 if (cinfo.counts[i] == 0)
6478 bfd_put_32 (output_bfd, 0, contents);
6479 else
6480 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6481 contents += 4;
6482 }
6483
6484 cinfo.contents = contents;
6485
6486 /* Renumber dynamic symbols, populate .gnu.hash section. */
6487 elf_link_hash_traverse (elf_hash_table (info),
6488 elf_renumber_gnu_hash_syms, &cinfo);
6489
6490 contents = s->contents + 16;
6491 for (i = 0; i < maskwords; ++i)
6492 {
6493 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6494 contents);
6495 contents += bed->s->arch_size / 8;
6496 }
6497
6498 free (cinfo.bitmask);
6499 free (cinfo.hashcodes);
6500 }
6501 }
6502
6503 s = bfd_get_section_by_name (dynobj, ".dynstr");
6504 BFD_ASSERT (s != NULL);
6505
6506 elf_finalize_dynstr (output_bfd, info);
6507
6508 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6509
6510 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6511 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6512 return FALSE;
6513 }
6514
6515 return TRUE;
6516 }
6517 \f
6518 /* Indicate that we are only retrieving symbol values from this
6519 section. */
6520
6521 void
6522 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6523 {
6524 if (is_elf_hash_table (info->hash))
6525 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6526 _bfd_generic_link_just_syms (sec, info);
6527 }
6528
6529 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6530
6531 static void
6532 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6533 asection *sec)
6534 {
6535 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6536 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6537 }
6538
6539 /* Finish SHF_MERGE section merging. */
6540
6541 bfd_boolean
6542 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6543 {
6544 bfd *ibfd;
6545 asection *sec;
6546
6547 if (!is_elf_hash_table (info->hash))
6548 return FALSE;
6549
6550 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6551 if ((ibfd->flags & DYNAMIC) == 0)
6552 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6553 if ((sec->flags & SEC_MERGE) != 0
6554 && !bfd_is_abs_section (sec->output_section))
6555 {
6556 struct bfd_elf_section_data *secdata;
6557
6558 secdata = elf_section_data (sec);
6559 if (! _bfd_add_merge_section (abfd,
6560 &elf_hash_table (info)->merge_info,
6561 sec, &secdata->sec_info))
6562 return FALSE;
6563 else if (secdata->sec_info)
6564 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6565 }
6566
6567 if (elf_hash_table (info)->merge_info != NULL)
6568 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6569 merge_sections_remove_hook);
6570 return TRUE;
6571 }
6572
6573 /* Create an entry in an ELF linker hash table. */
6574
6575 struct bfd_hash_entry *
6576 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6577 struct bfd_hash_table *table,
6578 const char *string)
6579 {
6580 /* Allocate the structure if it has not already been allocated by a
6581 subclass. */
6582 if (entry == NULL)
6583 {
6584 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6585 if (entry == NULL)
6586 return entry;
6587 }
6588
6589 /* Call the allocation method of the superclass. */
6590 entry = _bfd_link_hash_newfunc (entry, table, string);
6591 if (entry != NULL)
6592 {
6593 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6594 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6595
6596 /* Set local fields. */
6597 ret->indx = -1;
6598 ret->dynindx = -1;
6599 ret->got = htab->init_got_refcount;
6600 ret->plt = htab->init_plt_refcount;
6601 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6602 - offsetof (struct elf_link_hash_entry, size)));
6603 /* Assume that we have been called by a non-ELF symbol reader.
6604 This flag is then reset by the code which reads an ELF input
6605 file. This ensures that a symbol created by a non-ELF symbol
6606 reader will have the flag set correctly. */
6607 ret->non_elf = 1;
6608 }
6609
6610 return entry;
6611 }
6612
6613 /* Copy data from an indirect symbol to its direct symbol, hiding the
6614 old indirect symbol. Also used for copying flags to a weakdef. */
6615
6616 void
6617 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6618 struct elf_link_hash_entry *dir,
6619 struct elf_link_hash_entry *ind)
6620 {
6621 struct elf_link_hash_table *htab;
6622
6623 /* Copy down any references that we may have already seen to the
6624 symbol which just became indirect. */
6625
6626 dir->ref_dynamic |= ind->ref_dynamic;
6627 dir->ref_regular |= ind->ref_regular;
6628 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6629 dir->non_got_ref |= ind->non_got_ref;
6630 dir->needs_plt |= ind->needs_plt;
6631 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6632
6633 if (ind->root.type != bfd_link_hash_indirect)
6634 return;
6635
6636 /* Copy over the global and procedure linkage table refcount entries.
6637 These may have been already set up by a check_relocs routine. */
6638 htab = elf_hash_table (info);
6639 if (ind->got.refcount > htab->init_got_refcount.refcount)
6640 {
6641 if (dir->got.refcount < 0)
6642 dir->got.refcount = 0;
6643 dir->got.refcount += ind->got.refcount;
6644 ind->got.refcount = htab->init_got_refcount.refcount;
6645 }
6646
6647 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6648 {
6649 if (dir->plt.refcount < 0)
6650 dir->plt.refcount = 0;
6651 dir->plt.refcount += ind->plt.refcount;
6652 ind->plt.refcount = htab->init_plt_refcount.refcount;
6653 }
6654
6655 if (ind->dynindx != -1)
6656 {
6657 if (dir->dynindx != -1)
6658 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6659 dir->dynindx = ind->dynindx;
6660 dir->dynstr_index = ind->dynstr_index;
6661 ind->dynindx = -1;
6662 ind->dynstr_index = 0;
6663 }
6664 }
6665
6666 void
6667 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6668 struct elf_link_hash_entry *h,
6669 bfd_boolean force_local)
6670 {
6671 /* STT_GNU_IFUNC symbol must go through PLT. */
6672 if (h->type != STT_GNU_IFUNC)
6673 {
6674 h->plt = elf_hash_table (info)->init_plt_offset;
6675 h->needs_plt = 0;
6676 }
6677 if (force_local)
6678 {
6679 h->forced_local = 1;
6680 if (h->dynindx != -1)
6681 {
6682 h->dynindx = -1;
6683 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6684 h->dynstr_index);
6685 }
6686 }
6687 }
6688
6689 /* Initialize an ELF linker hash table. */
6690
6691 bfd_boolean
6692 _bfd_elf_link_hash_table_init
6693 (struct elf_link_hash_table *table,
6694 bfd *abfd,
6695 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6696 struct bfd_hash_table *,
6697 const char *),
6698 unsigned int entsize)
6699 {
6700 bfd_boolean ret;
6701 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6702
6703 memset (table, 0, sizeof * table);
6704 table->init_got_refcount.refcount = can_refcount - 1;
6705 table->init_plt_refcount.refcount = can_refcount - 1;
6706 table->init_got_offset.offset = -(bfd_vma) 1;
6707 table->init_plt_offset.offset = -(bfd_vma) 1;
6708 /* The first dynamic symbol is a dummy. */
6709 table->dynsymcount = 1;
6710
6711 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6712 table->root.type = bfd_link_elf_hash_table;
6713
6714 return ret;
6715 }
6716
6717 /* Create an ELF linker hash table. */
6718
6719 struct bfd_link_hash_table *
6720 _bfd_elf_link_hash_table_create (bfd *abfd)
6721 {
6722 struct elf_link_hash_table *ret;
6723 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6724
6725 ret = bfd_malloc (amt);
6726 if (ret == NULL)
6727 return NULL;
6728
6729 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6730 sizeof (struct elf_link_hash_entry)))
6731 {
6732 free (ret);
6733 return NULL;
6734 }
6735
6736 return &ret->root;
6737 }
6738
6739 /* This is a hook for the ELF emulation code in the generic linker to
6740 tell the backend linker what file name to use for the DT_NEEDED
6741 entry for a dynamic object. */
6742
6743 void
6744 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6745 {
6746 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6747 && bfd_get_format (abfd) == bfd_object)
6748 elf_dt_name (abfd) = name;
6749 }
6750
6751 int
6752 bfd_elf_get_dyn_lib_class (bfd *abfd)
6753 {
6754 int lib_class;
6755 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6756 && bfd_get_format (abfd) == bfd_object)
6757 lib_class = elf_dyn_lib_class (abfd);
6758 else
6759 lib_class = 0;
6760 return lib_class;
6761 }
6762
6763 void
6764 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6765 {
6766 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6767 && bfd_get_format (abfd) == bfd_object)
6768 elf_dyn_lib_class (abfd) = lib_class;
6769 }
6770
6771 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6772 the linker ELF emulation code. */
6773
6774 struct bfd_link_needed_list *
6775 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6776 struct bfd_link_info *info)
6777 {
6778 if (! is_elf_hash_table (info->hash))
6779 return NULL;
6780 return elf_hash_table (info)->needed;
6781 }
6782
6783 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6784 hook for the linker ELF emulation code. */
6785
6786 struct bfd_link_needed_list *
6787 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6788 struct bfd_link_info *info)
6789 {
6790 if (! is_elf_hash_table (info->hash))
6791 return NULL;
6792 return elf_hash_table (info)->runpath;
6793 }
6794
6795 /* Get the name actually used for a dynamic object for a link. This
6796 is the SONAME entry if there is one. Otherwise, it is the string
6797 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6798
6799 const char *
6800 bfd_elf_get_dt_soname (bfd *abfd)
6801 {
6802 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6803 && bfd_get_format (abfd) == bfd_object)
6804 return elf_dt_name (abfd);
6805 return NULL;
6806 }
6807
6808 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6809 the ELF linker emulation code. */
6810
6811 bfd_boolean
6812 bfd_elf_get_bfd_needed_list (bfd *abfd,
6813 struct bfd_link_needed_list **pneeded)
6814 {
6815 asection *s;
6816 bfd_byte *dynbuf = NULL;
6817 unsigned int elfsec;
6818 unsigned long shlink;
6819 bfd_byte *extdyn, *extdynend;
6820 size_t extdynsize;
6821 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6822
6823 *pneeded = NULL;
6824
6825 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6826 || bfd_get_format (abfd) != bfd_object)
6827 return TRUE;
6828
6829 s = bfd_get_section_by_name (abfd, ".dynamic");
6830 if (s == NULL || s->size == 0)
6831 return TRUE;
6832
6833 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6834 goto error_return;
6835
6836 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6837 if (elfsec == SHN_BAD)
6838 goto error_return;
6839
6840 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6841
6842 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6843 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6844
6845 extdyn = dynbuf;
6846 extdynend = extdyn + s->size;
6847 for (; extdyn < extdynend; extdyn += extdynsize)
6848 {
6849 Elf_Internal_Dyn dyn;
6850
6851 (*swap_dyn_in) (abfd, extdyn, &dyn);
6852
6853 if (dyn.d_tag == DT_NULL)
6854 break;
6855
6856 if (dyn.d_tag == DT_NEEDED)
6857 {
6858 const char *string;
6859 struct bfd_link_needed_list *l;
6860 unsigned int tagv = dyn.d_un.d_val;
6861 bfd_size_type amt;
6862
6863 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6864 if (string == NULL)
6865 goto error_return;
6866
6867 amt = sizeof *l;
6868 l = bfd_alloc (abfd, amt);
6869 if (l == NULL)
6870 goto error_return;
6871
6872 l->by = abfd;
6873 l->name = string;
6874 l->next = *pneeded;
6875 *pneeded = l;
6876 }
6877 }
6878
6879 free (dynbuf);
6880
6881 return TRUE;
6882
6883 error_return:
6884 if (dynbuf != NULL)
6885 free (dynbuf);
6886 return FALSE;
6887 }
6888
6889 struct elf_symbuf_symbol
6890 {
6891 unsigned long st_name; /* Symbol name, index in string tbl */
6892 unsigned char st_info; /* Type and binding attributes */
6893 unsigned char st_other; /* Visibilty, and target specific */
6894 };
6895
6896 struct elf_symbuf_head
6897 {
6898 struct elf_symbuf_symbol *ssym;
6899 bfd_size_type count;
6900 unsigned int st_shndx;
6901 };
6902
6903 struct elf_symbol
6904 {
6905 union
6906 {
6907 Elf_Internal_Sym *isym;
6908 struct elf_symbuf_symbol *ssym;
6909 } u;
6910 const char *name;
6911 };
6912
6913 /* Sort references to symbols by ascending section number. */
6914
6915 static int
6916 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6917 {
6918 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6919 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6920
6921 return s1->st_shndx - s2->st_shndx;
6922 }
6923
6924 static int
6925 elf_sym_name_compare (const void *arg1, const void *arg2)
6926 {
6927 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6928 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6929 return strcmp (s1->name, s2->name);
6930 }
6931
6932 static struct elf_symbuf_head *
6933 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6934 {
6935 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6936 struct elf_symbuf_symbol *ssym;
6937 struct elf_symbuf_head *ssymbuf, *ssymhead;
6938 bfd_size_type i, shndx_count, total_size;
6939
6940 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6941 if (indbuf == NULL)
6942 return NULL;
6943
6944 for (ind = indbuf, i = 0; i < symcount; i++)
6945 if (isymbuf[i].st_shndx != SHN_UNDEF)
6946 *ind++ = &isymbuf[i];
6947 indbufend = ind;
6948
6949 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6950 elf_sort_elf_symbol);
6951
6952 shndx_count = 0;
6953 if (indbufend > indbuf)
6954 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6955 if (ind[0]->st_shndx != ind[1]->st_shndx)
6956 shndx_count++;
6957
6958 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6959 + (indbufend - indbuf) * sizeof (*ssym));
6960 ssymbuf = bfd_malloc (total_size);
6961 if (ssymbuf == NULL)
6962 {
6963 free (indbuf);
6964 return NULL;
6965 }
6966
6967 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6968 ssymbuf->ssym = NULL;
6969 ssymbuf->count = shndx_count;
6970 ssymbuf->st_shndx = 0;
6971 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6972 {
6973 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6974 {
6975 ssymhead++;
6976 ssymhead->ssym = ssym;
6977 ssymhead->count = 0;
6978 ssymhead->st_shndx = (*ind)->st_shndx;
6979 }
6980 ssym->st_name = (*ind)->st_name;
6981 ssym->st_info = (*ind)->st_info;
6982 ssym->st_other = (*ind)->st_other;
6983 ssymhead->count++;
6984 }
6985 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6986 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6987 == total_size));
6988
6989 free (indbuf);
6990 return ssymbuf;
6991 }
6992
6993 /* Check if 2 sections define the same set of local and global
6994 symbols. */
6995
6996 static bfd_boolean
6997 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6998 struct bfd_link_info *info)
6999 {
7000 bfd *bfd1, *bfd2;
7001 const struct elf_backend_data *bed1, *bed2;
7002 Elf_Internal_Shdr *hdr1, *hdr2;
7003 bfd_size_type symcount1, symcount2;
7004 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7005 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7006 Elf_Internal_Sym *isym, *isymend;
7007 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7008 bfd_size_type count1, count2, i;
7009 unsigned int shndx1, shndx2;
7010 bfd_boolean result;
7011
7012 bfd1 = sec1->owner;
7013 bfd2 = sec2->owner;
7014
7015 /* Both sections have to be in ELF. */
7016 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7017 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7018 return FALSE;
7019
7020 if (elf_section_type (sec1) != elf_section_type (sec2))
7021 return FALSE;
7022
7023 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7024 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7025 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7026 return FALSE;
7027
7028 bed1 = get_elf_backend_data (bfd1);
7029 bed2 = get_elf_backend_data (bfd2);
7030 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7031 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7032 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7033 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7034
7035 if (symcount1 == 0 || symcount2 == 0)
7036 return FALSE;
7037
7038 result = FALSE;
7039 isymbuf1 = NULL;
7040 isymbuf2 = NULL;
7041 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7042 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7043
7044 if (ssymbuf1 == NULL)
7045 {
7046 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7047 NULL, NULL, NULL);
7048 if (isymbuf1 == NULL)
7049 goto done;
7050
7051 if (!info->reduce_memory_overheads)
7052 elf_tdata (bfd1)->symbuf = ssymbuf1
7053 = elf_create_symbuf (symcount1, isymbuf1);
7054 }
7055
7056 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7057 {
7058 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7059 NULL, NULL, NULL);
7060 if (isymbuf2 == NULL)
7061 goto done;
7062
7063 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7064 elf_tdata (bfd2)->symbuf = ssymbuf2
7065 = elf_create_symbuf (symcount2, isymbuf2);
7066 }
7067
7068 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7069 {
7070 /* Optimized faster version. */
7071 bfd_size_type lo, hi, mid;
7072 struct elf_symbol *symp;
7073 struct elf_symbuf_symbol *ssym, *ssymend;
7074
7075 lo = 0;
7076 hi = ssymbuf1->count;
7077 ssymbuf1++;
7078 count1 = 0;
7079 while (lo < hi)
7080 {
7081 mid = (lo + hi) / 2;
7082 if (shndx1 < ssymbuf1[mid].st_shndx)
7083 hi = mid;
7084 else if (shndx1 > ssymbuf1[mid].st_shndx)
7085 lo = mid + 1;
7086 else
7087 {
7088 count1 = ssymbuf1[mid].count;
7089 ssymbuf1 += mid;
7090 break;
7091 }
7092 }
7093
7094 lo = 0;
7095 hi = ssymbuf2->count;
7096 ssymbuf2++;
7097 count2 = 0;
7098 while (lo < hi)
7099 {
7100 mid = (lo + hi) / 2;
7101 if (shndx2 < ssymbuf2[mid].st_shndx)
7102 hi = mid;
7103 else if (shndx2 > ssymbuf2[mid].st_shndx)
7104 lo = mid + 1;
7105 else
7106 {
7107 count2 = ssymbuf2[mid].count;
7108 ssymbuf2 += mid;
7109 break;
7110 }
7111 }
7112
7113 if (count1 == 0 || count2 == 0 || count1 != count2)
7114 goto done;
7115
7116 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7117 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7118 if (symtable1 == NULL || symtable2 == NULL)
7119 goto done;
7120
7121 symp = symtable1;
7122 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7123 ssym < ssymend; ssym++, symp++)
7124 {
7125 symp->u.ssym = ssym;
7126 symp->name = bfd_elf_string_from_elf_section (bfd1,
7127 hdr1->sh_link,
7128 ssym->st_name);
7129 }
7130
7131 symp = symtable2;
7132 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7133 ssym < ssymend; ssym++, symp++)
7134 {
7135 symp->u.ssym = ssym;
7136 symp->name = bfd_elf_string_from_elf_section (bfd2,
7137 hdr2->sh_link,
7138 ssym->st_name);
7139 }
7140
7141 /* Sort symbol by name. */
7142 qsort (symtable1, count1, sizeof (struct elf_symbol),
7143 elf_sym_name_compare);
7144 qsort (symtable2, count1, sizeof (struct elf_symbol),
7145 elf_sym_name_compare);
7146
7147 for (i = 0; i < count1; i++)
7148 /* Two symbols must have the same binding, type and name. */
7149 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7150 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7151 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7152 goto done;
7153
7154 result = TRUE;
7155 goto done;
7156 }
7157
7158 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7159 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7160 if (symtable1 == NULL || symtable2 == NULL)
7161 goto done;
7162
7163 /* Count definitions in the section. */
7164 count1 = 0;
7165 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7166 if (isym->st_shndx == shndx1)
7167 symtable1[count1++].u.isym = isym;
7168
7169 count2 = 0;
7170 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7171 if (isym->st_shndx == shndx2)
7172 symtable2[count2++].u.isym = isym;
7173
7174 if (count1 == 0 || count2 == 0 || count1 != count2)
7175 goto done;
7176
7177 for (i = 0; i < count1; i++)
7178 symtable1[i].name
7179 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7180 symtable1[i].u.isym->st_name);
7181
7182 for (i = 0; i < count2; i++)
7183 symtable2[i].name
7184 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7185 symtable2[i].u.isym->st_name);
7186
7187 /* Sort symbol by name. */
7188 qsort (symtable1, count1, sizeof (struct elf_symbol),
7189 elf_sym_name_compare);
7190 qsort (symtable2, count1, sizeof (struct elf_symbol),
7191 elf_sym_name_compare);
7192
7193 for (i = 0; i < count1; i++)
7194 /* Two symbols must have the same binding, type and name. */
7195 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7196 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7197 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7198 goto done;
7199
7200 result = TRUE;
7201
7202 done:
7203 if (symtable1)
7204 free (symtable1);
7205 if (symtable2)
7206 free (symtable2);
7207 if (isymbuf1)
7208 free (isymbuf1);
7209 if (isymbuf2)
7210 free (isymbuf2);
7211
7212 return result;
7213 }
7214
7215 /* Return TRUE if 2 section types are compatible. */
7216
7217 bfd_boolean
7218 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7219 bfd *bbfd, const asection *bsec)
7220 {
7221 if (asec == NULL
7222 || bsec == NULL
7223 || abfd->xvec->flavour != bfd_target_elf_flavour
7224 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7225 return TRUE;
7226
7227 return elf_section_type (asec) == elf_section_type (bsec);
7228 }
7229 \f
7230 /* Final phase of ELF linker. */
7231
7232 /* A structure we use to avoid passing large numbers of arguments. */
7233
7234 struct elf_final_link_info
7235 {
7236 /* General link information. */
7237 struct bfd_link_info *info;
7238 /* Output BFD. */
7239 bfd *output_bfd;
7240 /* Symbol string table. */
7241 struct bfd_strtab_hash *symstrtab;
7242 /* .dynsym section. */
7243 asection *dynsym_sec;
7244 /* .hash section. */
7245 asection *hash_sec;
7246 /* symbol version section (.gnu.version). */
7247 asection *symver_sec;
7248 /* Buffer large enough to hold contents of any section. */
7249 bfd_byte *contents;
7250 /* Buffer large enough to hold external relocs of any section. */
7251 void *external_relocs;
7252 /* Buffer large enough to hold internal relocs of any section. */
7253 Elf_Internal_Rela *internal_relocs;
7254 /* Buffer large enough to hold external local symbols of any input
7255 BFD. */
7256 bfd_byte *external_syms;
7257 /* And a buffer for symbol section indices. */
7258 Elf_External_Sym_Shndx *locsym_shndx;
7259 /* Buffer large enough to hold internal local symbols of any input
7260 BFD. */
7261 Elf_Internal_Sym *internal_syms;
7262 /* Array large enough to hold a symbol index for each local symbol
7263 of any input BFD. */
7264 long *indices;
7265 /* Array large enough to hold a section pointer for each local
7266 symbol of any input BFD. */
7267 asection **sections;
7268 /* Buffer to hold swapped out symbols. */
7269 bfd_byte *symbuf;
7270 /* And one for symbol section indices. */
7271 Elf_External_Sym_Shndx *symshndxbuf;
7272 /* Number of swapped out symbols in buffer. */
7273 size_t symbuf_count;
7274 /* Number of symbols which fit in symbuf. */
7275 size_t symbuf_size;
7276 /* And same for symshndxbuf. */
7277 size_t shndxbuf_size;
7278 };
7279
7280 /* This struct is used to pass information to elf_link_output_extsym. */
7281
7282 struct elf_outext_info
7283 {
7284 bfd_boolean failed;
7285 bfd_boolean localsyms;
7286 struct elf_final_link_info *finfo;
7287 };
7288
7289
7290 /* Support for evaluating a complex relocation.
7291
7292 Complex relocations are generalized, self-describing relocations. The
7293 implementation of them consists of two parts: complex symbols, and the
7294 relocations themselves.
7295
7296 The relocations are use a reserved elf-wide relocation type code (R_RELC
7297 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7298 information (start bit, end bit, word width, etc) into the addend. This
7299 information is extracted from CGEN-generated operand tables within gas.
7300
7301 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7302 internal) representing prefix-notation expressions, including but not
7303 limited to those sorts of expressions normally encoded as addends in the
7304 addend field. The symbol mangling format is:
7305
7306 <node> := <literal>
7307 | <unary-operator> ':' <node>
7308 | <binary-operator> ':' <node> ':' <node>
7309 ;
7310
7311 <literal> := 's' <digits=N> ':' <N character symbol name>
7312 | 'S' <digits=N> ':' <N character section name>
7313 | '#' <hexdigits>
7314 ;
7315
7316 <binary-operator> := as in C
7317 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7318
7319 static void
7320 set_symbol_value (bfd *bfd_with_globals,
7321 Elf_Internal_Sym *isymbuf,
7322 size_t locsymcount,
7323 size_t symidx,
7324 bfd_vma val)
7325 {
7326 struct elf_link_hash_entry **sym_hashes;
7327 struct elf_link_hash_entry *h;
7328 size_t extsymoff = locsymcount;
7329
7330 if (symidx < locsymcount)
7331 {
7332 Elf_Internal_Sym *sym;
7333
7334 sym = isymbuf + symidx;
7335 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7336 {
7337 /* It is a local symbol: move it to the
7338 "absolute" section and give it a value. */
7339 sym->st_shndx = SHN_ABS;
7340 sym->st_value = val;
7341 return;
7342 }
7343 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7344 extsymoff = 0;
7345 }
7346
7347 /* It is a global symbol: set its link type
7348 to "defined" and give it a value. */
7349
7350 sym_hashes = elf_sym_hashes (bfd_with_globals);
7351 h = sym_hashes [symidx - extsymoff];
7352 while (h->root.type == bfd_link_hash_indirect
7353 || h->root.type == bfd_link_hash_warning)
7354 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7355 h->root.type = bfd_link_hash_defined;
7356 h->root.u.def.value = val;
7357 h->root.u.def.section = bfd_abs_section_ptr;
7358 }
7359
7360 static bfd_boolean
7361 resolve_symbol (const char *name,
7362 bfd *input_bfd,
7363 struct elf_final_link_info *finfo,
7364 bfd_vma *result,
7365 Elf_Internal_Sym *isymbuf,
7366 size_t locsymcount)
7367 {
7368 Elf_Internal_Sym *sym;
7369 struct bfd_link_hash_entry *global_entry;
7370 const char *candidate = NULL;
7371 Elf_Internal_Shdr *symtab_hdr;
7372 size_t i;
7373
7374 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7375
7376 for (i = 0; i < locsymcount; ++ i)
7377 {
7378 sym = isymbuf + i;
7379
7380 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7381 continue;
7382
7383 candidate = bfd_elf_string_from_elf_section (input_bfd,
7384 symtab_hdr->sh_link,
7385 sym->st_name);
7386 #ifdef DEBUG
7387 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7388 name, candidate, (unsigned long) sym->st_value);
7389 #endif
7390 if (candidate && strcmp (candidate, name) == 0)
7391 {
7392 asection *sec = finfo->sections [i];
7393
7394 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7395 *result += sec->output_offset + sec->output_section->vma;
7396 #ifdef DEBUG
7397 printf ("Found symbol with value %8.8lx\n",
7398 (unsigned long) *result);
7399 #endif
7400 return TRUE;
7401 }
7402 }
7403
7404 /* Hmm, haven't found it yet. perhaps it is a global. */
7405 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7406 FALSE, FALSE, TRUE);
7407 if (!global_entry)
7408 return FALSE;
7409
7410 if (global_entry->type == bfd_link_hash_defined
7411 || global_entry->type == bfd_link_hash_defweak)
7412 {
7413 *result = (global_entry->u.def.value
7414 + global_entry->u.def.section->output_section->vma
7415 + global_entry->u.def.section->output_offset);
7416 #ifdef DEBUG
7417 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7418 global_entry->root.string, (unsigned long) *result);
7419 #endif
7420 return TRUE;
7421 }
7422
7423 return FALSE;
7424 }
7425
7426 static bfd_boolean
7427 resolve_section (const char *name,
7428 asection *sections,
7429 bfd_vma *result)
7430 {
7431 asection *curr;
7432 unsigned int len;
7433
7434 for (curr = sections; curr; curr = curr->next)
7435 if (strcmp (curr->name, name) == 0)
7436 {
7437 *result = curr->vma;
7438 return TRUE;
7439 }
7440
7441 /* Hmm. still haven't found it. try pseudo-section names. */
7442 for (curr = sections; curr; curr = curr->next)
7443 {
7444 len = strlen (curr->name);
7445 if (len > strlen (name))
7446 continue;
7447
7448 if (strncmp (curr->name, name, len) == 0)
7449 {
7450 if (strncmp (".end", name + len, 4) == 0)
7451 {
7452 *result = curr->vma + curr->size;
7453 return TRUE;
7454 }
7455
7456 /* Insert more pseudo-section names here, if you like. */
7457 }
7458 }
7459
7460 return FALSE;
7461 }
7462
7463 static void
7464 undefined_reference (const char *reftype, const char *name)
7465 {
7466 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7467 reftype, name);
7468 }
7469
7470 static bfd_boolean
7471 eval_symbol (bfd_vma *result,
7472 const char **symp,
7473 bfd *input_bfd,
7474 struct elf_final_link_info *finfo,
7475 bfd_vma dot,
7476 Elf_Internal_Sym *isymbuf,
7477 size_t locsymcount,
7478 int signed_p)
7479 {
7480 size_t len;
7481 size_t symlen;
7482 bfd_vma a;
7483 bfd_vma b;
7484 char symbuf[4096];
7485 const char *sym = *symp;
7486 const char *symend;
7487 bfd_boolean symbol_is_section = FALSE;
7488
7489 len = strlen (sym);
7490 symend = sym + len;
7491
7492 if (len < 1 || len > sizeof (symbuf))
7493 {
7494 bfd_set_error (bfd_error_invalid_operation);
7495 return FALSE;
7496 }
7497
7498 switch (* sym)
7499 {
7500 case '.':
7501 *result = dot;
7502 *symp = sym + 1;
7503 return TRUE;
7504
7505 case '#':
7506 ++sym;
7507 *result = strtoul (sym, (char **) symp, 16);
7508 return TRUE;
7509
7510 case 'S':
7511 symbol_is_section = TRUE;
7512 case 's':
7513 ++sym;
7514 symlen = strtol (sym, (char **) symp, 10);
7515 sym = *symp + 1; /* Skip the trailing ':'. */
7516
7517 if (symend < sym || symlen + 1 > sizeof (symbuf))
7518 {
7519 bfd_set_error (bfd_error_invalid_operation);
7520 return FALSE;
7521 }
7522
7523 memcpy (symbuf, sym, symlen);
7524 symbuf[symlen] = '\0';
7525 *symp = sym + symlen;
7526
7527 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7528 the symbol as a section, or vice-versa. so we're pretty liberal in our
7529 interpretation here; section means "try section first", not "must be a
7530 section", and likewise with symbol. */
7531
7532 if (symbol_is_section)
7533 {
7534 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7535 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7536 isymbuf, locsymcount))
7537 {
7538 undefined_reference ("section", symbuf);
7539 return FALSE;
7540 }
7541 }
7542 else
7543 {
7544 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7545 isymbuf, locsymcount)
7546 && !resolve_section (symbuf, finfo->output_bfd->sections,
7547 result))
7548 {
7549 undefined_reference ("symbol", symbuf);
7550 return FALSE;
7551 }
7552 }
7553
7554 return TRUE;
7555
7556 /* All that remains are operators. */
7557
7558 #define UNARY_OP(op) \
7559 if (strncmp (sym, #op, strlen (#op)) == 0) \
7560 { \
7561 sym += strlen (#op); \
7562 if (*sym == ':') \
7563 ++sym; \
7564 *symp = sym; \
7565 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7566 isymbuf, locsymcount, signed_p)) \
7567 return FALSE; \
7568 if (signed_p) \
7569 *result = op ((bfd_signed_vma) a); \
7570 else \
7571 *result = op a; \
7572 return TRUE; \
7573 }
7574
7575 #define BINARY_OP(op) \
7576 if (strncmp (sym, #op, strlen (#op)) == 0) \
7577 { \
7578 sym += strlen (#op); \
7579 if (*sym == ':') \
7580 ++sym; \
7581 *symp = sym; \
7582 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7583 isymbuf, locsymcount, signed_p)) \
7584 return FALSE; \
7585 ++*symp; \
7586 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7587 isymbuf, locsymcount, signed_p)) \
7588 return FALSE; \
7589 if (signed_p) \
7590 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7591 else \
7592 *result = a op b; \
7593 return TRUE; \
7594 }
7595
7596 default:
7597 UNARY_OP (0-);
7598 BINARY_OP (<<);
7599 BINARY_OP (>>);
7600 BINARY_OP (==);
7601 BINARY_OP (!=);
7602 BINARY_OP (<=);
7603 BINARY_OP (>=);
7604 BINARY_OP (&&);
7605 BINARY_OP (||);
7606 UNARY_OP (~);
7607 UNARY_OP (!);
7608 BINARY_OP (*);
7609 BINARY_OP (/);
7610 BINARY_OP (%);
7611 BINARY_OP (^);
7612 BINARY_OP (|);
7613 BINARY_OP (&);
7614 BINARY_OP (+);
7615 BINARY_OP (-);
7616 BINARY_OP (<);
7617 BINARY_OP (>);
7618 #undef UNARY_OP
7619 #undef BINARY_OP
7620 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7621 bfd_set_error (bfd_error_invalid_operation);
7622 return FALSE;
7623 }
7624 }
7625
7626 static void
7627 put_value (bfd_vma size,
7628 unsigned long chunksz,
7629 bfd *input_bfd,
7630 bfd_vma x,
7631 bfd_byte *location)
7632 {
7633 location += (size - chunksz);
7634
7635 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7636 {
7637 switch (chunksz)
7638 {
7639 default:
7640 case 0:
7641 abort ();
7642 case 1:
7643 bfd_put_8 (input_bfd, x, location);
7644 break;
7645 case 2:
7646 bfd_put_16 (input_bfd, x, location);
7647 break;
7648 case 4:
7649 bfd_put_32 (input_bfd, x, location);
7650 break;
7651 case 8:
7652 #ifdef BFD64
7653 bfd_put_64 (input_bfd, x, location);
7654 #else
7655 abort ();
7656 #endif
7657 break;
7658 }
7659 }
7660 }
7661
7662 static bfd_vma
7663 get_value (bfd_vma size,
7664 unsigned long chunksz,
7665 bfd *input_bfd,
7666 bfd_byte *location)
7667 {
7668 bfd_vma x = 0;
7669
7670 for (; size; size -= chunksz, location += chunksz)
7671 {
7672 switch (chunksz)
7673 {
7674 default:
7675 case 0:
7676 abort ();
7677 case 1:
7678 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7679 break;
7680 case 2:
7681 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7682 break;
7683 case 4:
7684 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7685 break;
7686 case 8:
7687 #ifdef BFD64
7688 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7689 #else
7690 abort ();
7691 #endif
7692 break;
7693 }
7694 }
7695 return x;
7696 }
7697
7698 static void
7699 decode_complex_addend (unsigned long *start, /* in bits */
7700 unsigned long *oplen, /* in bits */
7701 unsigned long *len, /* in bits */
7702 unsigned long *wordsz, /* in bytes */
7703 unsigned long *chunksz, /* in bytes */
7704 unsigned long *lsb0_p,
7705 unsigned long *signed_p,
7706 unsigned long *trunc_p,
7707 unsigned long encoded)
7708 {
7709 * start = encoded & 0x3F;
7710 * len = (encoded >> 6) & 0x3F;
7711 * oplen = (encoded >> 12) & 0x3F;
7712 * wordsz = (encoded >> 18) & 0xF;
7713 * chunksz = (encoded >> 22) & 0xF;
7714 * lsb0_p = (encoded >> 27) & 1;
7715 * signed_p = (encoded >> 28) & 1;
7716 * trunc_p = (encoded >> 29) & 1;
7717 }
7718
7719 bfd_reloc_status_type
7720 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7721 asection *input_section ATTRIBUTE_UNUSED,
7722 bfd_byte *contents,
7723 Elf_Internal_Rela *rel,
7724 bfd_vma relocation)
7725 {
7726 bfd_vma shift, x, mask;
7727 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7728 bfd_reloc_status_type r;
7729
7730 /* Perform this reloc, since it is complex.
7731 (this is not to say that it necessarily refers to a complex
7732 symbol; merely that it is a self-describing CGEN based reloc.
7733 i.e. the addend has the complete reloc information (bit start, end,
7734 word size, etc) encoded within it.). */
7735
7736 decode_complex_addend (&start, &oplen, &len, &wordsz,
7737 &chunksz, &lsb0_p, &signed_p,
7738 &trunc_p, rel->r_addend);
7739
7740 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7741
7742 if (lsb0_p)
7743 shift = (start + 1) - len;
7744 else
7745 shift = (8 * wordsz) - (start + len);
7746
7747 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7748
7749 #ifdef DEBUG
7750 printf ("Doing complex reloc: "
7751 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7752 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7753 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7754 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7755 oplen, x, mask, relocation);
7756 #endif
7757
7758 r = bfd_reloc_ok;
7759 if (! trunc_p)
7760 /* Now do an overflow check. */
7761 r = bfd_check_overflow ((signed_p
7762 ? complain_overflow_signed
7763 : complain_overflow_unsigned),
7764 len, 0, (8 * wordsz),
7765 relocation);
7766
7767 /* Do the deed. */
7768 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7769
7770 #ifdef DEBUG
7771 printf (" relocation: %8.8lx\n"
7772 " shifted mask: %8.8lx\n"
7773 " shifted/masked reloc: %8.8lx\n"
7774 " result: %8.8lx\n",
7775 relocation, (mask << shift),
7776 ((relocation & mask) << shift), x);
7777 #endif
7778 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7779 return r;
7780 }
7781
7782 /* When performing a relocatable link, the input relocations are
7783 preserved. But, if they reference global symbols, the indices
7784 referenced must be updated. Update all the relocations in
7785 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7786
7787 static void
7788 elf_link_adjust_relocs (bfd *abfd,
7789 Elf_Internal_Shdr *rel_hdr,
7790 unsigned int count,
7791 struct elf_link_hash_entry **rel_hash)
7792 {
7793 unsigned int i;
7794 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7795 bfd_byte *erela;
7796 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7797 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7798 bfd_vma r_type_mask;
7799 int r_sym_shift;
7800
7801 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7802 {
7803 swap_in = bed->s->swap_reloc_in;
7804 swap_out = bed->s->swap_reloc_out;
7805 }
7806 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7807 {
7808 swap_in = bed->s->swap_reloca_in;
7809 swap_out = bed->s->swap_reloca_out;
7810 }
7811 else
7812 abort ();
7813
7814 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7815 abort ();
7816
7817 if (bed->s->arch_size == 32)
7818 {
7819 r_type_mask = 0xff;
7820 r_sym_shift = 8;
7821 }
7822 else
7823 {
7824 r_type_mask = 0xffffffff;
7825 r_sym_shift = 32;
7826 }
7827
7828 erela = rel_hdr->contents;
7829 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7830 {
7831 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7832 unsigned int j;
7833
7834 if (*rel_hash == NULL)
7835 continue;
7836
7837 BFD_ASSERT ((*rel_hash)->indx >= 0);
7838
7839 (*swap_in) (abfd, erela, irela);
7840 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7841 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7842 | (irela[j].r_info & r_type_mask));
7843 (*swap_out) (abfd, irela, erela);
7844 }
7845 }
7846
7847 struct elf_link_sort_rela
7848 {
7849 union {
7850 bfd_vma offset;
7851 bfd_vma sym_mask;
7852 } u;
7853 enum elf_reloc_type_class type;
7854 /* We use this as an array of size int_rels_per_ext_rel. */
7855 Elf_Internal_Rela rela[1];
7856 };
7857
7858 static int
7859 elf_link_sort_cmp1 (const void *A, const void *B)
7860 {
7861 const struct elf_link_sort_rela *a = A;
7862 const struct elf_link_sort_rela *b = B;
7863 int relativea, relativeb;
7864
7865 relativea = a->type == reloc_class_relative;
7866 relativeb = b->type == reloc_class_relative;
7867
7868 if (relativea < relativeb)
7869 return 1;
7870 if (relativea > relativeb)
7871 return -1;
7872 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7873 return -1;
7874 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7875 return 1;
7876 if (a->rela->r_offset < b->rela->r_offset)
7877 return -1;
7878 if (a->rela->r_offset > b->rela->r_offset)
7879 return 1;
7880 return 0;
7881 }
7882
7883 static int
7884 elf_link_sort_cmp2 (const void *A, const void *B)
7885 {
7886 const struct elf_link_sort_rela *a = A;
7887 const struct elf_link_sort_rela *b = B;
7888 int copya, copyb;
7889
7890 if (a->u.offset < b->u.offset)
7891 return -1;
7892 if (a->u.offset > b->u.offset)
7893 return 1;
7894 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7895 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7896 if (copya < copyb)
7897 return -1;
7898 if (copya > copyb)
7899 return 1;
7900 if (a->rela->r_offset < b->rela->r_offset)
7901 return -1;
7902 if (a->rela->r_offset > b->rela->r_offset)
7903 return 1;
7904 return 0;
7905 }
7906
7907 static size_t
7908 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7909 {
7910 asection *dynamic_relocs;
7911 asection *rela_dyn;
7912 asection *rel_dyn;
7913 bfd_size_type count, size;
7914 size_t i, ret, sort_elt, ext_size;
7915 bfd_byte *sort, *s_non_relative, *p;
7916 struct elf_link_sort_rela *sq;
7917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7918 int i2e = bed->s->int_rels_per_ext_rel;
7919 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7920 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7921 struct bfd_link_order *lo;
7922 bfd_vma r_sym_mask;
7923 bfd_boolean use_rela;
7924
7925 /* Find a dynamic reloc section. */
7926 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7927 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7928 if (rela_dyn != NULL && rela_dyn->size > 0
7929 && rel_dyn != NULL && rel_dyn->size > 0)
7930 {
7931 bfd_boolean use_rela_initialised = FALSE;
7932
7933 /* This is just here to stop gcc from complaining.
7934 It's initialization checking code is not perfect. */
7935 use_rela = TRUE;
7936
7937 /* Both sections are present. Examine the sizes
7938 of the indirect sections to help us choose. */
7939 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7940 if (lo->type == bfd_indirect_link_order)
7941 {
7942 asection *o = lo->u.indirect.section;
7943
7944 if ((o->size % bed->s->sizeof_rela) == 0)
7945 {
7946 if ((o->size % bed->s->sizeof_rel) == 0)
7947 /* Section size is divisible by both rel and rela sizes.
7948 It is of no help to us. */
7949 ;
7950 else
7951 {
7952 /* Section size is only divisible by rela. */
7953 if (use_rela_initialised && (use_rela == FALSE))
7954 {
7955 _bfd_error_handler
7956 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7957 bfd_set_error (bfd_error_invalid_operation);
7958 return 0;
7959 }
7960 else
7961 {
7962 use_rela = TRUE;
7963 use_rela_initialised = TRUE;
7964 }
7965 }
7966 }
7967 else if ((o->size % bed->s->sizeof_rel) == 0)
7968 {
7969 /* Section size is only divisible by rel. */
7970 if (use_rela_initialised && (use_rela == TRUE))
7971 {
7972 _bfd_error_handler
7973 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7974 bfd_set_error (bfd_error_invalid_operation);
7975 return 0;
7976 }
7977 else
7978 {
7979 use_rela = FALSE;
7980 use_rela_initialised = TRUE;
7981 }
7982 }
7983 else
7984 {
7985 /* The section size is not divisible by either - something is wrong. */
7986 _bfd_error_handler
7987 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7988 bfd_set_error (bfd_error_invalid_operation);
7989 return 0;
7990 }
7991 }
7992
7993 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7994 if (lo->type == bfd_indirect_link_order)
7995 {
7996 asection *o = lo->u.indirect.section;
7997
7998 if ((o->size % bed->s->sizeof_rela) == 0)
7999 {
8000 if ((o->size % bed->s->sizeof_rel) == 0)
8001 /* Section size is divisible by both rel and rela sizes.
8002 It is of no help to us. */
8003 ;
8004 else
8005 {
8006 /* Section size is only divisible by rela. */
8007 if (use_rela_initialised && (use_rela == FALSE))
8008 {
8009 _bfd_error_handler
8010 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8011 bfd_set_error (bfd_error_invalid_operation);
8012 return 0;
8013 }
8014 else
8015 {
8016 use_rela = TRUE;
8017 use_rela_initialised = TRUE;
8018 }
8019 }
8020 }
8021 else if ((o->size % bed->s->sizeof_rel) == 0)
8022 {
8023 /* Section size is only divisible by rel. */
8024 if (use_rela_initialised && (use_rela == TRUE))
8025 {
8026 _bfd_error_handler
8027 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8028 bfd_set_error (bfd_error_invalid_operation);
8029 return 0;
8030 }
8031 else
8032 {
8033 use_rela = FALSE;
8034 use_rela_initialised = TRUE;
8035 }
8036 }
8037 else
8038 {
8039 /* The section size is not divisible by either - something is wrong. */
8040 _bfd_error_handler
8041 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8042 bfd_set_error (bfd_error_invalid_operation);
8043 return 0;
8044 }
8045 }
8046
8047 if (! use_rela_initialised)
8048 /* Make a guess. */
8049 use_rela = TRUE;
8050 }
8051 else if (rela_dyn != NULL && rela_dyn->size > 0)
8052 use_rela = TRUE;
8053 else if (rel_dyn != NULL && rel_dyn->size > 0)
8054 use_rela = FALSE;
8055 else
8056 return 0;
8057
8058 if (use_rela)
8059 {
8060 dynamic_relocs = rela_dyn;
8061 ext_size = bed->s->sizeof_rela;
8062 swap_in = bed->s->swap_reloca_in;
8063 swap_out = bed->s->swap_reloca_out;
8064 }
8065 else
8066 {
8067 dynamic_relocs = rel_dyn;
8068 ext_size = bed->s->sizeof_rel;
8069 swap_in = bed->s->swap_reloc_in;
8070 swap_out = bed->s->swap_reloc_out;
8071 }
8072
8073 size = 0;
8074 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8075 if (lo->type == bfd_indirect_link_order)
8076 size += lo->u.indirect.section->size;
8077
8078 if (size != dynamic_relocs->size)
8079 return 0;
8080
8081 sort_elt = (sizeof (struct elf_link_sort_rela)
8082 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8083
8084 count = dynamic_relocs->size / ext_size;
8085 if (count == 0)
8086 return 0;
8087 sort = bfd_zmalloc (sort_elt * count);
8088
8089 if (sort == NULL)
8090 {
8091 (*info->callbacks->warning)
8092 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8093 return 0;
8094 }
8095
8096 if (bed->s->arch_size == 32)
8097 r_sym_mask = ~(bfd_vma) 0xff;
8098 else
8099 r_sym_mask = ~(bfd_vma) 0xffffffff;
8100
8101 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8102 if (lo->type == bfd_indirect_link_order)
8103 {
8104 bfd_byte *erel, *erelend;
8105 asection *o = lo->u.indirect.section;
8106
8107 if (o->contents == NULL && o->size != 0)
8108 {
8109 /* This is a reloc section that is being handled as a normal
8110 section. See bfd_section_from_shdr. We can't combine
8111 relocs in this case. */
8112 free (sort);
8113 return 0;
8114 }
8115 erel = o->contents;
8116 erelend = o->contents + o->size;
8117 p = sort + o->output_offset / ext_size * sort_elt;
8118
8119 while (erel < erelend)
8120 {
8121 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8122
8123 (*swap_in) (abfd, erel, s->rela);
8124 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8125 s->u.sym_mask = r_sym_mask;
8126 p += sort_elt;
8127 erel += ext_size;
8128 }
8129 }
8130
8131 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8132
8133 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8134 {
8135 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8136 if (s->type != reloc_class_relative)
8137 break;
8138 }
8139 ret = i;
8140 s_non_relative = p;
8141
8142 sq = (struct elf_link_sort_rela *) s_non_relative;
8143 for (; i < count; i++, p += sort_elt)
8144 {
8145 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8146 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8147 sq = sp;
8148 sp->u.offset = sq->rela->r_offset;
8149 }
8150
8151 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8152
8153 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8154 if (lo->type == bfd_indirect_link_order)
8155 {
8156 bfd_byte *erel, *erelend;
8157 asection *o = lo->u.indirect.section;
8158
8159 erel = o->contents;
8160 erelend = o->contents + o->size;
8161 p = sort + o->output_offset / ext_size * sort_elt;
8162 while (erel < erelend)
8163 {
8164 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8165 (*swap_out) (abfd, s->rela, erel);
8166 p += sort_elt;
8167 erel += ext_size;
8168 }
8169 }
8170
8171 free (sort);
8172 *psec = dynamic_relocs;
8173 return ret;
8174 }
8175
8176 /* Flush the output symbols to the file. */
8177
8178 static bfd_boolean
8179 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8180 const struct elf_backend_data *bed)
8181 {
8182 if (finfo->symbuf_count > 0)
8183 {
8184 Elf_Internal_Shdr *hdr;
8185 file_ptr pos;
8186 bfd_size_type amt;
8187
8188 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8189 pos = hdr->sh_offset + hdr->sh_size;
8190 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8191 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8192 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8193 return FALSE;
8194
8195 hdr->sh_size += amt;
8196 finfo->symbuf_count = 0;
8197 }
8198
8199 return TRUE;
8200 }
8201
8202 /* Add a symbol to the output symbol table. */
8203
8204 static int
8205 elf_link_output_sym (struct elf_final_link_info *finfo,
8206 const char *name,
8207 Elf_Internal_Sym *elfsym,
8208 asection *input_sec,
8209 struct elf_link_hash_entry *h)
8210 {
8211 bfd_byte *dest;
8212 Elf_External_Sym_Shndx *destshndx;
8213 int (*output_symbol_hook)
8214 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8215 struct elf_link_hash_entry *);
8216 const struct elf_backend_data *bed;
8217
8218 bed = get_elf_backend_data (finfo->output_bfd);
8219 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8220 if (output_symbol_hook != NULL)
8221 {
8222 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8223 if (ret != 1)
8224 return ret;
8225 }
8226
8227 if (name == NULL || *name == '\0')
8228 elfsym->st_name = 0;
8229 else if (input_sec->flags & SEC_EXCLUDE)
8230 elfsym->st_name = 0;
8231 else
8232 {
8233 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8234 name, TRUE, FALSE);
8235 if (elfsym->st_name == (unsigned long) -1)
8236 return 0;
8237 }
8238
8239 if (finfo->symbuf_count >= finfo->symbuf_size)
8240 {
8241 if (! elf_link_flush_output_syms (finfo, bed))
8242 return 0;
8243 }
8244
8245 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8246 destshndx = finfo->symshndxbuf;
8247 if (destshndx != NULL)
8248 {
8249 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8250 {
8251 bfd_size_type amt;
8252
8253 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8254 destshndx = bfd_realloc (destshndx, amt * 2);
8255 if (destshndx == NULL)
8256 return 0;
8257 finfo->symshndxbuf = destshndx;
8258 memset ((char *) destshndx + amt, 0, amt);
8259 finfo->shndxbuf_size *= 2;
8260 }
8261 destshndx += bfd_get_symcount (finfo->output_bfd);
8262 }
8263
8264 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8265 finfo->symbuf_count += 1;
8266 bfd_get_symcount (finfo->output_bfd) += 1;
8267
8268 return 1;
8269 }
8270
8271 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8272
8273 static bfd_boolean
8274 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8275 {
8276 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8277 && sym->st_shndx < SHN_LORESERVE)
8278 {
8279 /* The gABI doesn't support dynamic symbols in output sections
8280 beyond 64k. */
8281 (*_bfd_error_handler)
8282 (_("%B: Too many sections: %d (>= %d)"),
8283 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8284 bfd_set_error (bfd_error_nonrepresentable_section);
8285 return FALSE;
8286 }
8287 return TRUE;
8288 }
8289
8290 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8291 allowing an unsatisfied unversioned symbol in the DSO to match a
8292 versioned symbol that would normally require an explicit version.
8293 We also handle the case that a DSO references a hidden symbol
8294 which may be satisfied by a versioned symbol in another DSO. */
8295
8296 static bfd_boolean
8297 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8298 const struct elf_backend_data *bed,
8299 struct elf_link_hash_entry *h)
8300 {
8301 bfd *abfd;
8302 struct elf_link_loaded_list *loaded;
8303
8304 if (!is_elf_hash_table (info->hash))
8305 return FALSE;
8306
8307 switch (h->root.type)
8308 {
8309 default:
8310 abfd = NULL;
8311 break;
8312
8313 case bfd_link_hash_undefined:
8314 case bfd_link_hash_undefweak:
8315 abfd = h->root.u.undef.abfd;
8316 if ((abfd->flags & DYNAMIC) == 0
8317 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8318 return FALSE;
8319 break;
8320
8321 case bfd_link_hash_defined:
8322 case bfd_link_hash_defweak:
8323 abfd = h->root.u.def.section->owner;
8324 break;
8325
8326 case bfd_link_hash_common:
8327 abfd = h->root.u.c.p->section->owner;
8328 break;
8329 }
8330 BFD_ASSERT (abfd != NULL);
8331
8332 for (loaded = elf_hash_table (info)->loaded;
8333 loaded != NULL;
8334 loaded = loaded->next)
8335 {
8336 bfd *input;
8337 Elf_Internal_Shdr *hdr;
8338 bfd_size_type symcount;
8339 bfd_size_type extsymcount;
8340 bfd_size_type extsymoff;
8341 Elf_Internal_Shdr *versymhdr;
8342 Elf_Internal_Sym *isym;
8343 Elf_Internal_Sym *isymend;
8344 Elf_Internal_Sym *isymbuf;
8345 Elf_External_Versym *ever;
8346 Elf_External_Versym *extversym;
8347
8348 input = loaded->abfd;
8349
8350 /* We check each DSO for a possible hidden versioned definition. */
8351 if (input == abfd
8352 || (input->flags & DYNAMIC) == 0
8353 || elf_dynversym (input) == 0)
8354 continue;
8355
8356 hdr = &elf_tdata (input)->dynsymtab_hdr;
8357
8358 symcount = hdr->sh_size / bed->s->sizeof_sym;
8359 if (elf_bad_symtab (input))
8360 {
8361 extsymcount = symcount;
8362 extsymoff = 0;
8363 }
8364 else
8365 {
8366 extsymcount = symcount - hdr->sh_info;
8367 extsymoff = hdr->sh_info;
8368 }
8369
8370 if (extsymcount == 0)
8371 continue;
8372
8373 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8374 NULL, NULL, NULL);
8375 if (isymbuf == NULL)
8376 return FALSE;
8377
8378 /* Read in any version definitions. */
8379 versymhdr = &elf_tdata (input)->dynversym_hdr;
8380 extversym = bfd_malloc (versymhdr->sh_size);
8381 if (extversym == NULL)
8382 goto error_ret;
8383
8384 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8385 || (bfd_bread (extversym, versymhdr->sh_size, input)
8386 != versymhdr->sh_size))
8387 {
8388 free (extversym);
8389 error_ret:
8390 free (isymbuf);
8391 return FALSE;
8392 }
8393
8394 ever = extversym + extsymoff;
8395 isymend = isymbuf + extsymcount;
8396 for (isym = isymbuf; isym < isymend; isym++, ever++)
8397 {
8398 const char *name;
8399 Elf_Internal_Versym iver;
8400 unsigned short version_index;
8401
8402 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8403 || isym->st_shndx == SHN_UNDEF)
8404 continue;
8405
8406 name = bfd_elf_string_from_elf_section (input,
8407 hdr->sh_link,
8408 isym->st_name);
8409 if (strcmp (name, h->root.root.string) != 0)
8410 continue;
8411
8412 _bfd_elf_swap_versym_in (input, ever, &iver);
8413
8414 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8415 {
8416 /* If we have a non-hidden versioned sym, then it should
8417 have provided a definition for the undefined sym. */
8418 abort ();
8419 }
8420
8421 version_index = iver.vs_vers & VERSYM_VERSION;
8422 if (version_index == 1 || version_index == 2)
8423 {
8424 /* This is the base or first version. We can use it. */
8425 free (extversym);
8426 free (isymbuf);
8427 return TRUE;
8428 }
8429 }
8430
8431 free (extversym);
8432 free (isymbuf);
8433 }
8434
8435 return FALSE;
8436 }
8437
8438 /* Add an external symbol to the symbol table. This is called from
8439 the hash table traversal routine. When generating a shared object,
8440 we go through the symbol table twice. The first time we output
8441 anything that might have been forced to local scope in a version
8442 script. The second time we output the symbols that are still
8443 global symbols. */
8444
8445 static bfd_boolean
8446 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8447 {
8448 struct elf_outext_info *eoinfo = data;
8449 struct elf_final_link_info *finfo = eoinfo->finfo;
8450 bfd_boolean strip;
8451 Elf_Internal_Sym sym;
8452 asection *input_sec;
8453 const struct elf_backend_data *bed;
8454 long indx;
8455 int ret;
8456
8457 if (h->root.type == bfd_link_hash_warning)
8458 {
8459 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8460 if (h->root.type == bfd_link_hash_new)
8461 return TRUE;
8462 }
8463
8464 /* Decide whether to output this symbol in this pass. */
8465 if (eoinfo->localsyms)
8466 {
8467 if (!h->forced_local)
8468 return TRUE;
8469 }
8470 else
8471 {
8472 if (h->forced_local)
8473 return TRUE;
8474 }
8475
8476 bed = get_elf_backend_data (finfo->output_bfd);
8477
8478 if (h->root.type == bfd_link_hash_undefined)
8479 {
8480 /* If we have an undefined symbol reference here then it must have
8481 come from a shared library that is being linked in. (Undefined
8482 references in regular files have already been handled). */
8483 bfd_boolean ignore_undef = FALSE;
8484
8485 /* Some symbols may be special in that the fact that they're
8486 undefined can be safely ignored - let backend determine that. */
8487 if (bed->elf_backend_ignore_undef_symbol)
8488 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8489
8490 /* If we are reporting errors for this situation then do so now. */
8491 if (ignore_undef == FALSE
8492 && h->ref_dynamic
8493 && ! h->ref_regular
8494 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8495 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8496 {
8497 if (! (finfo->info->callbacks->undefined_symbol
8498 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8499 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8500 {
8501 eoinfo->failed = TRUE;
8502 return FALSE;
8503 }
8504 }
8505 }
8506
8507 /* We should also warn if a forced local symbol is referenced from
8508 shared libraries. */
8509 if (! finfo->info->relocatable
8510 && (! finfo->info->shared)
8511 && h->forced_local
8512 && h->ref_dynamic
8513 && !h->dynamic_def
8514 && !h->dynamic_weak
8515 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8516 {
8517 (*_bfd_error_handler)
8518 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8519 finfo->output_bfd,
8520 h->root.u.def.section == bfd_abs_section_ptr
8521 ? finfo->output_bfd : h->root.u.def.section->owner,
8522 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8523 ? "internal"
8524 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8525 ? "hidden" : "local",
8526 h->root.root.string);
8527 eoinfo->failed = TRUE;
8528 return FALSE;
8529 }
8530
8531 /* We don't want to output symbols that have never been mentioned by
8532 a regular file, or that we have been told to strip. However, if
8533 h->indx is set to -2, the symbol is used by a reloc and we must
8534 output it. */
8535 if (h->indx == -2)
8536 strip = FALSE;
8537 else if ((h->def_dynamic
8538 || h->ref_dynamic
8539 || h->root.type == bfd_link_hash_new)
8540 && !h->def_regular
8541 && !h->ref_regular)
8542 strip = TRUE;
8543 else if (finfo->info->strip == strip_all)
8544 strip = TRUE;
8545 else if (finfo->info->strip == strip_some
8546 && bfd_hash_lookup (finfo->info->keep_hash,
8547 h->root.root.string, FALSE, FALSE) == NULL)
8548 strip = TRUE;
8549 else if (finfo->info->strip_discarded
8550 && (h->root.type == bfd_link_hash_defined
8551 || h->root.type == bfd_link_hash_defweak)
8552 && elf_discarded_section (h->root.u.def.section))
8553 strip = TRUE;
8554 else
8555 strip = FALSE;
8556
8557 /* If we're stripping it, and it's not a dynamic symbol, there's
8558 nothing else to do unless it is a forced local symbol. */
8559 if (strip
8560 && h->dynindx == -1
8561 && !h->forced_local)
8562 return TRUE;
8563
8564 sym.st_value = 0;
8565 sym.st_size = h->size;
8566 sym.st_other = h->other;
8567 if (h->forced_local)
8568 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8569 else if (h->root.type == bfd_link_hash_undefweak
8570 || h->root.type == bfd_link_hash_defweak)
8571 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8572 else
8573 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8574
8575 switch (h->root.type)
8576 {
8577 default:
8578 case bfd_link_hash_new:
8579 case bfd_link_hash_warning:
8580 abort ();
8581 return FALSE;
8582
8583 case bfd_link_hash_undefined:
8584 case bfd_link_hash_undefweak:
8585 input_sec = bfd_und_section_ptr;
8586 sym.st_shndx = SHN_UNDEF;
8587 break;
8588
8589 case bfd_link_hash_defined:
8590 case bfd_link_hash_defweak:
8591 {
8592 input_sec = h->root.u.def.section;
8593 if (input_sec->output_section != NULL)
8594 {
8595 sym.st_shndx =
8596 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8597 input_sec->output_section);
8598 if (sym.st_shndx == SHN_BAD)
8599 {
8600 (*_bfd_error_handler)
8601 (_("%B: could not find output section %A for input section %A"),
8602 finfo->output_bfd, input_sec->output_section, input_sec);
8603 eoinfo->failed = TRUE;
8604 return FALSE;
8605 }
8606
8607 /* ELF symbols in relocatable files are section relative,
8608 but in nonrelocatable files they are virtual
8609 addresses. */
8610 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8611 if (! finfo->info->relocatable)
8612 {
8613 sym.st_value += input_sec->output_section->vma;
8614 if (h->type == STT_TLS)
8615 {
8616 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8617 if (tls_sec != NULL)
8618 sym.st_value -= tls_sec->vma;
8619 else
8620 {
8621 /* The TLS section may have been garbage collected. */
8622 BFD_ASSERT (finfo->info->gc_sections
8623 && !input_sec->gc_mark);
8624 }
8625 }
8626 }
8627 }
8628 else
8629 {
8630 BFD_ASSERT (input_sec->owner == NULL
8631 || (input_sec->owner->flags & DYNAMIC) != 0);
8632 sym.st_shndx = SHN_UNDEF;
8633 input_sec = bfd_und_section_ptr;
8634 }
8635 }
8636 break;
8637
8638 case bfd_link_hash_common:
8639 input_sec = h->root.u.c.p->section;
8640 sym.st_shndx = bed->common_section_index (input_sec);
8641 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8642 break;
8643
8644 case bfd_link_hash_indirect:
8645 /* These symbols are created by symbol versioning. They point
8646 to the decorated version of the name. For example, if the
8647 symbol foo@@GNU_1.2 is the default, which should be used when
8648 foo is used with no version, then we add an indirect symbol
8649 foo which points to foo@@GNU_1.2. We ignore these symbols,
8650 since the indirected symbol is already in the hash table. */
8651 return TRUE;
8652 }
8653
8654 /* Give the processor backend a chance to tweak the symbol value,
8655 and also to finish up anything that needs to be done for this
8656 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8657 forced local syms when non-shared is due to a historical quirk.
8658 STT_GNU_IFUNC symbol must go through PLT. */
8659 if ((h->type == STT_GNU_IFUNC
8660 && h->ref_regular
8661 && !finfo->info->relocatable)
8662 || ((h->dynindx != -1
8663 || h->forced_local)
8664 && ((finfo->info->shared
8665 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8666 || h->root.type != bfd_link_hash_undefweak))
8667 || !h->forced_local)
8668 && elf_hash_table (finfo->info)->dynamic_sections_created))
8669 {
8670 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8671 (finfo->output_bfd, finfo->info, h, &sym)))
8672 {
8673 eoinfo->failed = TRUE;
8674 return FALSE;
8675 }
8676 }
8677
8678 /* If we are marking the symbol as undefined, and there are no
8679 non-weak references to this symbol from a regular object, then
8680 mark the symbol as weak undefined; if there are non-weak
8681 references, mark the symbol as strong. We can't do this earlier,
8682 because it might not be marked as undefined until the
8683 finish_dynamic_symbol routine gets through with it. */
8684 if (sym.st_shndx == SHN_UNDEF
8685 && h->ref_regular
8686 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8687 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8688 {
8689 int bindtype;
8690
8691 if (h->ref_regular_nonweak)
8692 bindtype = STB_GLOBAL;
8693 else
8694 bindtype = STB_WEAK;
8695 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8696 }
8697
8698 /* If this is a symbol defined in a dynamic library, don't use the
8699 symbol size from the dynamic library. Relinking an executable
8700 against a new library may introduce gratuitous changes in the
8701 executable's symbols if we keep the size. */
8702 if (sym.st_shndx == SHN_UNDEF
8703 && !h->def_regular
8704 && h->def_dynamic)
8705 sym.st_size = 0;
8706
8707 /* If a non-weak symbol with non-default visibility is not defined
8708 locally, it is a fatal error. */
8709 if (! finfo->info->relocatable
8710 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8711 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8712 && h->root.type == bfd_link_hash_undefined
8713 && !h->def_regular)
8714 {
8715 (*_bfd_error_handler)
8716 (_("%B: %s symbol `%s' isn't defined"),
8717 finfo->output_bfd,
8718 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8719 ? "protected"
8720 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8721 ? "internal" : "hidden",
8722 h->root.root.string);
8723 eoinfo->failed = TRUE;
8724 return FALSE;
8725 }
8726
8727 /* If this symbol should be put in the .dynsym section, then put it
8728 there now. We already know the symbol index. We also fill in
8729 the entry in the .hash section. */
8730 if (h->dynindx != -1
8731 && elf_hash_table (finfo->info)->dynamic_sections_created)
8732 {
8733 bfd_byte *esym;
8734
8735 sym.st_name = h->dynstr_index;
8736 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8737 if (! check_dynsym (finfo->output_bfd, &sym))
8738 {
8739 eoinfo->failed = TRUE;
8740 return FALSE;
8741 }
8742 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8743
8744 if (finfo->hash_sec != NULL)
8745 {
8746 size_t hash_entry_size;
8747 bfd_byte *bucketpos;
8748 bfd_vma chain;
8749 size_t bucketcount;
8750 size_t bucket;
8751
8752 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8753 bucket = h->u.elf_hash_value % bucketcount;
8754
8755 hash_entry_size
8756 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8757 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8758 + (bucket + 2) * hash_entry_size);
8759 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8760 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8761 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8762 ((bfd_byte *) finfo->hash_sec->contents
8763 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8764 }
8765
8766 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8767 {
8768 Elf_Internal_Versym iversym;
8769 Elf_External_Versym *eversym;
8770
8771 if (!h->def_regular)
8772 {
8773 if (h->verinfo.verdef == NULL)
8774 iversym.vs_vers = 0;
8775 else
8776 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8777 }
8778 else
8779 {
8780 if (h->verinfo.vertree == NULL)
8781 iversym.vs_vers = 1;
8782 else
8783 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8784 if (finfo->info->create_default_symver)
8785 iversym.vs_vers++;
8786 }
8787
8788 if (h->hidden)
8789 iversym.vs_vers |= VERSYM_HIDDEN;
8790
8791 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8792 eversym += h->dynindx;
8793 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8794 }
8795 }
8796
8797 /* If we're stripping it, then it was just a dynamic symbol, and
8798 there's nothing else to do. */
8799 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8800 return TRUE;
8801
8802 indx = bfd_get_symcount (finfo->output_bfd);
8803 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8804 if (ret == 0)
8805 {
8806 eoinfo->failed = TRUE;
8807 return FALSE;
8808 }
8809 else if (ret == 1)
8810 h->indx = indx;
8811 else if (h->indx == -2)
8812 abort();
8813
8814 return TRUE;
8815 }
8816
8817 /* Return TRUE if special handling is done for relocs in SEC against
8818 symbols defined in discarded sections. */
8819
8820 static bfd_boolean
8821 elf_section_ignore_discarded_relocs (asection *sec)
8822 {
8823 const struct elf_backend_data *bed;
8824
8825 switch (sec->sec_info_type)
8826 {
8827 case ELF_INFO_TYPE_STABS:
8828 case ELF_INFO_TYPE_EH_FRAME:
8829 return TRUE;
8830 default:
8831 break;
8832 }
8833
8834 bed = get_elf_backend_data (sec->owner);
8835 if (bed->elf_backend_ignore_discarded_relocs != NULL
8836 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8837 return TRUE;
8838
8839 return FALSE;
8840 }
8841
8842 /* Return a mask saying how ld should treat relocations in SEC against
8843 symbols defined in discarded sections. If this function returns
8844 COMPLAIN set, ld will issue a warning message. If this function
8845 returns PRETEND set, and the discarded section was link-once and the
8846 same size as the kept link-once section, ld will pretend that the
8847 symbol was actually defined in the kept section. Otherwise ld will
8848 zero the reloc (at least that is the intent, but some cooperation by
8849 the target dependent code is needed, particularly for REL targets). */
8850
8851 unsigned int
8852 _bfd_elf_default_action_discarded (asection *sec)
8853 {
8854 if (sec->flags & SEC_DEBUGGING)
8855 return PRETEND;
8856
8857 if (strcmp (".eh_frame", sec->name) == 0)
8858 return 0;
8859
8860 if (strcmp (".gcc_except_table", sec->name) == 0)
8861 return 0;
8862
8863 return COMPLAIN | PRETEND;
8864 }
8865
8866 /* Find a match between a section and a member of a section group. */
8867
8868 static asection *
8869 match_group_member (asection *sec, asection *group,
8870 struct bfd_link_info *info)
8871 {
8872 asection *first = elf_next_in_group (group);
8873 asection *s = first;
8874
8875 while (s != NULL)
8876 {
8877 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8878 return s;
8879
8880 s = elf_next_in_group (s);
8881 if (s == first)
8882 break;
8883 }
8884
8885 return NULL;
8886 }
8887
8888 /* Check if the kept section of a discarded section SEC can be used
8889 to replace it. Return the replacement if it is OK. Otherwise return
8890 NULL. */
8891
8892 asection *
8893 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8894 {
8895 asection *kept;
8896
8897 kept = sec->kept_section;
8898 if (kept != NULL)
8899 {
8900 if ((kept->flags & SEC_GROUP) != 0)
8901 kept = match_group_member (sec, kept, info);
8902 if (kept != NULL
8903 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8904 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8905 kept = NULL;
8906 sec->kept_section = kept;
8907 }
8908 return kept;
8909 }
8910
8911 /* Link an input file into the linker output file. This function
8912 handles all the sections and relocations of the input file at once.
8913 This is so that we only have to read the local symbols once, and
8914 don't have to keep them in memory. */
8915
8916 static bfd_boolean
8917 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8918 {
8919 int (*relocate_section)
8920 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8921 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8922 bfd *output_bfd;
8923 Elf_Internal_Shdr *symtab_hdr;
8924 size_t locsymcount;
8925 size_t extsymoff;
8926 Elf_Internal_Sym *isymbuf;
8927 Elf_Internal_Sym *isym;
8928 Elf_Internal_Sym *isymend;
8929 long *pindex;
8930 asection **ppsection;
8931 asection *o;
8932 const struct elf_backend_data *bed;
8933 struct elf_link_hash_entry **sym_hashes;
8934
8935 output_bfd = finfo->output_bfd;
8936 bed = get_elf_backend_data (output_bfd);
8937 relocate_section = bed->elf_backend_relocate_section;
8938
8939 /* If this is a dynamic object, we don't want to do anything here:
8940 we don't want the local symbols, and we don't want the section
8941 contents. */
8942 if ((input_bfd->flags & DYNAMIC) != 0)
8943 return TRUE;
8944
8945 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8946 if (elf_bad_symtab (input_bfd))
8947 {
8948 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8949 extsymoff = 0;
8950 }
8951 else
8952 {
8953 locsymcount = symtab_hdr->sh_info;
8954 extsymoff = symtab_hdr->sh_info;
8955 }
8956
8957 /* Read the local symbols. */
8958 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8959 if (isymbuf == NULL && locsymcount != 0)
8960 {
8961 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8962 finfo->internal_syms,
8963 finfo->external_syms,
8964 finfo->locsym_shndx);
8965 if (isymbuf == NULL)
8966 return FALSE;
8967 }
8968
8969 /* Find local symbol sections and adjust values of symbols in
8970 SEC_MERGE sections. Write out those local symbols we know are
8971 going into the output file. */
8972 isymend = isymbuf + locsymcount;
8973 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8974 isym < isymend;
8975 isym++, pindex++, ppsection++)
8976 {
8977 asection *isec;
8978 const char *name;
8979 Elf_Internal_Sym osym;
8980 long indx;
8981 int ret;
8982
8983 *pindex = -1;
8984
8985 if (elf_bad_symtab (input_bfd))
8986 {
8987 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8988 {
8989 *ppsection = NULL;
8990 continue;
8991 }
8992 }
8993
8994 if (isym->st_shndx == SHN_UNDEF)
8995 isec = bfd_und_section_ptr;
8996 else if (isym->st_shndx == SHN_ABS)
8997 isec = bfd_abs_section_ptr;
8998 else if (isym->st_shndx == SHN_COMMON)
8999 isec = bfd_com_section_ptr;
9000 else
9001 {
9002 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9003 if (isec == NULL)
9004 {
9005 /* Don't attempt to output symbols with st_shnx in the
9006 reserved range other than SHN_ABS and SHN_COMMON. */
9007 *ppsection = NULL;
9008 continue;
9009 }
9010 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9011 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9012 isym->st_value =
9013 _bfd_merged_section_offset (output_bfd, &isec,
9014 elf_section_data (isec)->sec_info,
9015 isym->st_value);
9016 }
9017
9018 *ppsection = isec;
9019
9020 /* Don't output the first, undefined, symbol. */
9021 if (ppsection == finfo->sections)
9022 continue;
9023
9024 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9025 {
9026 /* We never output section symbols. Instead, we use the
9027 section symbol of the corresponding section in the output
9028 file. */
9029 continue;
9030 }
9031
9032 /* If we are stripping all symbols, we don't want to output this
9033 one. */
9034 if (finfo->info->strip == strip_all)
9035 continue;
9036
9037 /* If we are discarding all local symbols, we don't want to
9038 output this one. If we are generating a relocatable output
9039 file, then some of the local symbols may be required by
9040 relocs; we output them below as we discover that they are
9041 needed. */
9042 if (finfo->info->discard == discard_all)
9043 continue;
9044
9045 /* If this symbol is defined in a section which we are
9046 discarding, we don't need to keep it. */
9047 if (isym->st_shndx != SHN_UNDEF
9048 && isym->st_shndx < SHN_LORESERVE
9049 && bfd_section_removed_from_list (output_bfd,
9050 isec->output_section))
9051 continue;
9052
9053 /* Get the name of the symbol. */
9054 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9055 isym->st_name);
9056 if (name == NULL)
9057 return FALSE;
9058
9059 /* See if we are discarding symbols with this name. */
9060 if ((finfo->info->strip == strip_some
9061 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9062 == NULL))
9063 || (((finfo->info->discard == discard_sec_merge
9064 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9065 || finfo->info->discard == discard_l)
9066 && bfd_is_local_label_name (input_bfd, name)))
9067 continue;
9068
9069 osym = *isym;
9070
9071 /* Adjust the section index for the output file. */
9072 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9073 isec->output_section);
9074 if (osym.st_shndx == SHN_BAD)
9075 return FALSE;
9076
9077 /* ELF symbols in relocatable files are section relative, but
9078 in executable files they are virtual addresses. Note that
9079 this code assumes that all ELF sections have an associated
9080 BFD section with a reasonable value for output_offset; below
9081 we assume that they also have a reasonable value for
9082 output_section. Any special sections must be set up to meet
9083 these requirements. */
9084 osym.st_value += isec->output_offset;
9085 if (! finfo->info->relocatable)
9086 {
9087 osym.st_value += isec->output_section->vma;
9088 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9089 {
9090 /* STT_TLS symbols are relative to PT_TLS segment base. */
9091 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9092 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9093 }
9094 }
9095
9096 indx = bfd_get_symcount (output_bfd);
9097 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9098 if (ret == 0)
9099 return FALSE;
9100 else if (ret == 1)
9101 *pindex = indx;
9102 }
9103
9104 /* Relocate the contents of each section. */
9105 sym_hashes = elf_sym_hashes (input_bfd);
9106 for (o = input_bfd->sections; o != NULL; o = o->next)
9107 {
9108 bfd_byte *contents;
9109
9110 if (! o->linker_mark)
9111 {
9112 /* This section was omitted from the link. */
9113 continue;
9114 }
9115
9116 if (finfo->info->relocatable
9117 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9118 {
9119 /* Deal with the group signature symbol. */
9120 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9121 unsigned long symndx = sec_data->this_hdr.sh_info;
9122 asection *osec = o->output_section;
9123
9124 if (symndx >= locsymcount
9125 || (elf_bad_symtab (input_bfd)
9126 && finfo->sections[symndx] == NULL))
9127 {
9128 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9129 while (h->root.type == bfd_link_hash_indirect
9130 || h->root.type == bfd_link_hash_warning)
9131 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9132 /* Arrange for symbol to be output. */
9133 h->indx = -2;
9134 elf_section_data (osec)->this_hdr.sh_info = -2;
9135 }
9136 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9137 {
9138 /* We'll use the output section target_index. */
9139 asection *sec = finfo->sections[symndx]->output_section;
9140 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9141 }
9142 else
9143 {
9144 if (finfo->indices[symndx] == -1)
9145 {
9146 /* Otherwise output the local symbol now. */
9147 Elf_Internal_Sym sym = isymbuf[symndx];
9148 asection *sec = finfo->sections[symndx]->output_section;
9149 const char *name;
9150 long indx;
9151 int ret;
9152
9153 name = bfd_elf_string_from_elf_section (input_bfd,
9154 symtab_hdr->sh_link,
9155 sym.st_name);
9156 if (name == NULL)
9157 return FALSE;
9158
9159 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9160 sec);
9161 if (sym.st_shndx == SHN_BAD)
9162 return FALSE;
9163
9164 sym.st_value += o->output_offset;
9165
9166 indx = bfd_get_symcount (output_bfd);
9167 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9168 if (ret == 0)
9169 return FALSE;
9170 else if (ret == 1)
9171 finfo->indices[symndx] = indx;
9172 else
9173 abort ();
9174 }
9175 elf_section_data (osec)->this_hdr.sh_info
9176 = finfo->indices[symndx];
9177 }
9178 }
9179
9180 if ((o->flags & SEC_HAS_CONTENTS) == 0
9181 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9182 continue;
9183
9184 if ((o->flags & SEC_LINKER_CREATED) != 0)
9185 {
9186 /* Section was created by _bfd_elf_link_create_dynamic_sections
9187 or somesuch. */
9188 continue;
9189 }
9190
9191 /* Get the contents of the section. They have been cached by a
9192 relaxation routine. Note that o is a section in an input
9193 file, so the contents field will not have been set by any of
9194 the routines which work on output files. */
9195 if (elf_section_data (o)->this_hdr.contents != NULL)
9196 contents = elf_section_data (o)->this_hdr.contents;
9197 else
9198 {
9199 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9200
9201 contents = finfo->contents;
9202 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9203 return FALSE;
9204 }
9205
9206 if ((o->flags & SEC_RELOC) != 0)
9207 {
9208 Elf_Internal_Rela *internal_relocs;
9209 Elf_Internal_Rela *rel, *relend;
9210 bfd_vma r_type_mask;
9211 int r_sym_shift;
9212 int action_discarded;
9213 int ret;
9214
9215 /* Get the swapped relocs. */
9216 internal_relocs
9217 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9218 finfo->internal_relocs, FALSE);
9219 if (internal_relocs == NULL
9220 && o->reloc_count > 0)
9221 return FALSE;
9222
9223 if (bed->s->arch_size == 32)
9224 {
9225 r_type_mask = 0xff;
9226 r_sym_shift = 8;
9227 }
9228 else
9229 {
9230 r_type_mask = 0xffffffff;
9231 r_sym_shift = 32;
9232 }
9233
9234 action_discarded = -1;
9235 if (!elf_section_ignore_discarded_relocs (o))
9236 action_discarded = (*bed->action_discarded) (o);
9237
9238 /* Run through the relocs evaluating complex reloc symbols and
9239 looking for relocs against symbols from discarded sections
9240 or section symbols from removed link-once sections.
9241 Complain about relocs against discarded sections. Zero
9242 relocs against removed link-once sections. */
9243
9244 rel = internal_relocs;
9245 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9246 for ( ; rel < relend; rel++)
9247 {
9248 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9249 unsigned int s_type;
9250 asection **ps, *sec;
9251 struct elf_link_hash_entry *h = NULL;
9252 const char *sym_name;
9253
9254 if (r_symndx == STN_UNDEF)
9255 continue;
9256
9257 if (r_symndx >= locsymcount
9258 || (elf_bad_symtab (input_bfd)
9259 && finfo->sections[r_symndx] == NULL))
9260 {
9261 h = sym_hashes[r_symndx - extsymoff];
9262
9263 /* Badly formatted input files can contain relocs that
9264 reference non-existant symbols. Check here so that
9265 we do not seg fault. */
9266 if (h == NULL)
9267 {
9268 char buffer [32];
9269
9270 sprintf_vma (buffer, rel->r_info);
9271 (*_bfd_error_handler)
9272 (_("error: %B contains a reloc (0x%s) for section %A "
9273 "that references a non-existent global symbol"),
9274 input_bfd, o, buffer);
9275 bfd_set_error (bfd_error_bad_value);
9276 return FALSE;
9277 }
9278
9279 while (h->root.type == bfd_link_hash_indirect
9280 || h->root.type == bfd_link_hash_warning)
9281 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9282
9283 s_type = h->type;
9284
9285 ps = NULL;
9286 if (h->root.type == bfd_link_hash_defined
9287 || h->root.type == bfd_link_hash_defweak)
9288 ps = &h->root.u.def.section;
9289
9290 sym_name = h->root.root.string;
9291 }
9292 else
9293 {
9294 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9295
9296 s_type = ELF_ST_TYPE (sym->st_info);
9297 ps = &finfo->sections[r_symndx];
9298 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9299 sym, *ps);
9300 }
9301
9302 if ((s_type == STT_RELC || s_type == STT_SRELC)
9303 && !finfo->info->relocatable)
9304 {
9305 bfd_vma val;
9306 bfd_vma dot = (rel->r_offset
9307 + o->output_offset + o->output_section->vma);
9308 #ifdef DEBUG
9309 printf ("Encountered a complex symbol!");
9310 printf (" (input_bfd %s, section %s, reloc %ld\n",
9311 input_bfd->filename, o->name, rel - internal_relocs);
9312 printf (" symbol: idx %8.8lx, name %s\n",
9313 r_symndx, sym_name);
9314 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9315 (unsigned long) rel->r_info,
9316 (unsigned long) rel->r_offset);
9317 #endif
9318 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9319 isymbuf, locsymcount, s_type == STT_SRELC))
9320 return FALSE;
9321
9322 /* Symbol evaluated OK. Update to absolute value. */
9323 set_symbol_value (input_bfd, isymbuf, locsymcount,
9324 r_symndx, val);
9325 continue;
9326 }
9327
9328 if (action_discarded != -1 && ps != NULL)
9329 {
9330 /* Complain if the definition comes from a
9331 discarded section. */
9332 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9333 {
9334 BFD_ASSERT (r_symndx != 0);
9335 if (action_discarded & COMPLAIN)
9336 (*finfo->info->callbacks->einfo)
9337 (_("%X`%s' referenced in section `%A' of %B: "
9338 "defined in discarded section `%A' of %B\n"),
9339 sym_name, o, input_bfd, sec, sec->owner);
9340
9341 /* Try to do the best we can to support buggy old
9342 versions of gcc. Pretend that the symbol is
9343 really defined in the kept linkonce section.
9344 FIXME: This is quite broken. Modifying the
9345 symbol here means we will be changing all later
9346 uses of the symbol, not just in this section. */
9347 if (action_discarded & PRETEND)
9348 {
9349 asection *kept;
9350
9351 kept = _bfd_elf_check_kept_section (sec,
9352 finfo->info);
9353 if (kept != NULL)
9354 {
9355 *ps = kept;
9356 continue;
9357 }
9358 }
9359 }
9360 }
9361 }
9362
9363 /* Relocate the section by invoking a back end routine.
9364
9365 The back end routine is responsible for adjusting the
9366 section contents as necessary, and (if using Rela relocs
9367 and generating a relocatable output file) adjusting the
9368 reloc addend as necessary.
9369
9370 The back end routine does not have to worry about setting
9371 the reloc address or the reloc symbol index.
9372
9373 The back end routine is given a pointer to the swapped in
9374 internal symbols, and can access the hash table entries
9375 for the external symbols via elf_sym_hashes (input_bfd).
9376
9377 When generating relocatable output, the back end routine
9378 must handle STB_LOCAL/STT_SECTION symbols specially. The
9379 output symbol is going to be a section symbol
9380 corresponding to the output section, which will require
9381 the addend to be adjusted. */
9382
9383 ret = (*relocate_section) (output_bfd, finfo->info,
9384 input_bfd, o, contents,
9385 internal_relocs,
9386 isymbuf,
9387 finfo->sections);
9388 if (!ret)
9389 return FALSE;
9390
9391 if (ret == 2
9392 || finfo->info->relocatable
9393 || finfo->info->emitrelocations)
9394 {
9395 Elf_Internal_Rela *irela;
9396 Elf_Internal_Rela *irelaend;
9397 bfd_vma last_offset;
9398 struct elf_link_hash_entry **rel_hash;
9399 struct elf_link_hash_entry **rel_hash_list;
9400 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9401 unsigned int next_erel;
9402 bfd_boolean rela_normal;
9403
9404 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9405 rela_normal = (bed->rela_normal
9406 && (input_rel_hdr->sh_entsize
9407 == bed->s->sizeof_rela));
9408
9409 /* Adjust the reloc addresses and symbol indices. */
9410
9411 irela = internal_relocs;
9412 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9413 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9414 + elf_section_data (o->output_section)->rel_count
9415 + elf_section_data (o->output_section)->rel_count2);
9416 rel_hash_list = rel_hash;
9417 last_offset = o->output_offset;
9418 if (!finfo->info->relocatable)
9419 last_offset += o->output_section->vma;
9420 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9421 {
9422 unsigned long r_symndx;
9423 asection *sec;
9424 Elf_Internal_Sym sym;
9425
9426 if (next_erel == bed->s->int_rels_per_ext_rel)
9427 {
9428 rel_hash++;
9429 next_erel = 0;
9430 }
9431
9432 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9433 finfo->info, o,
9434 irela->r_offset);
9435 if (irela->r_offset >= (bfd_vma) -2)
9436 {
9437 /* This is a reloc for a deleted entry or somesuch.
9438 Turn it into an R_*_NONE reloc, at the same
9439 offset as the last reloc. elf_eh_frame.c and
9440 bfd_elf_discard_info rely on reloc offsets
9441 being ordered. */
9442 irela->r_offset = last_offset;
9443 irela->r_info = 0;
9444 irela->r_addend = 0;
9445 continue;
9446 }
9447
9448 irela->r_offset += o->output_offset;
9449
9450 /* Relocs in an executable have to be virtual addresses. */
9451 if (!finfo->info->relocatable)
9452 irela->r_offset += o->output_section->vma;
9453
9454 last_offset = irela->r_offset;
9455
9456 r_symndx = irela->r_info >> r_sym_shift;
9457 if (r_symndx == STN_UNDEF)
9458 continue;
9459
9460 if (r_symndx >= locsymcount
9461 || (elf_bad_symtab (input_bfd)
9462 && finfo->sections[r_symndx] == NULL))
9463 {
9464 struct elf_link_hash_entry *rh;
9465 unsigned long indx;
9466
9467 /* This is a reloc against a global symbol. We
9468 have not yet output all the local symbols, so
9469 we do not know the symbol index of any global
9470 symbol. We set the rel_hash entry for this
9471 reloc to point to the global hash table entry
9472 for this symbol. The symbol index is then
9473 set at the end of bfd_elf_final_link. */
9474 indx = r_symndx - extsymoff;
9475 rh = elf_sym_hashes (input_bfd)[indx];
9476 while (rh->root.type == bfd_link_hash_indirect
9477 || rh->root.type == bfd_link_hash_warning)
9478 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9479
9480 /* Setting the index to -2 tells
9481 elf_link_output_extsym that this symbol is
9482 used by a reloc. */
9483 BFD_ASSERT (rh->indx < 0);
9484 rh->indx = -2;
9485
9486 *rel_hash = rh;
9487
9488 continue;
9489 }
9490
9491 /* This is a reloc against a local symbol. */
9492
9493 *rel_hash = NULL;
9494 sym = isymbuf[r_symndx];
9495 sec = finfo->sections[r_symndx];
9496 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9497 {
9498 /* I suppose the backend ought to fill in the
9499 section of any STT_SECTION symbol against a
9500 processor specific section. */
9501 r_symndx = 0;
9502 if (bfd_is_abs_section (sec))
9503 ;
9504 else if (sec == NULL || sec->owner == NULL)
9505 {
9506 bfd_set_error (bfd_error_bad_value);
9507 return FALSE;
9508 }
9509 else
9510 {
9511 asection *osec = sec->output_section;
9512
9513 /* If we have discarded a section, the output
9514 section will be the absolute section. In
9515 case of discarded SEC_MERGE sections, use
9516 the kept section. relocate_section should
9517 have already handled discarded linkonce
9518 sections. */
9519 if (bfd_is_abs_section (osec)
9520 && sec->kept_section != NULL
9521 && sec->kept_section->output_section != NULL)
9522 {
9523 osec = sec->kept_section->output_section;
9524 irela->r_addend -= osec->vma;
9525 }
9526
9527 if (!bfd_is_abs_section (osec))
9528 {
9529 r_symndx = osec->target_index;
9530 if (r_symndx == 0)
9531 {
9532 struct elf_link_hash_table *htab;
9533 asection *oi;
9534
9535 htab = elf_hash_table (finfo->info);
9536 oi = htab->text_index_section;
9537 if ((osec->flags & SEC_READONLY) == 0
9538 && htab->data_index_section != NULL)
9539 oi = htab->data_index_section;
9540
9541 if (oi != NULL)
9542 {
9543 irela->r_addend += osec->vma - oi->vma;
9544 r_symndx = oi->target_index;
9545 }
9546 }
9547
9548 BFD_ASSERT (r_symndx != 0);
9549 }
9550 }
9551
9552 /* Adjust the addend according to where the
9553 section winds up in the output section. */
9554 if (rela_normal)
9555 irela->r_addend += sec->output_offset;
9556 }
9557 else
9558 {
9559 if (finfo->indices[r_symndx] == -1)
9560 {
9561 unsigned long shlink;
9562 const char *name;
9563 asection *osec;
9564 long indx;
9565
9566 if (finfo->info->strip == strip_all)
9567 {
9568 /* You can't do ld -r -s. */
9569 bfd_set_error (bfd_error_invalid_operation);
9570 return FALSE;
9571 }
9572
9573 /* This symbol was skipped earlier, but
9574 since it is needed by a reloc, we
9575 must output it now. */
9576 shlink = symtab_hdr->sh_link;
9577 name = (bfd_elf_string_from_elf_section
9578 (input_bfd, shlink, sym.st_name));
9579 if (name == NULL)
9580 return FALSE;
9581
9582 osec = sec->output_section;
9583 sym.st_shndx =
9584 _bfd_elf_section_from_bfd_section (output_bfd,
9585 osec);
9586 if (sym.st_shndx == SHN_BAD)
9587 return FALSE;
9588
9589 sym.st_value += sec->output_offset;
9590 if (! finfo->info->relocatable)
9591 {
9592 sym.st_value += osec->vma;
9593 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9594 {
9595 /* STT_TLS symbols are relative to PT_TLS
9596 segment base. */
9597 BFD_ASSERT (elf_hash_table (finfo->info)
9598 ->tls_sec != NULL);
9599 sym.st_value -= (elf_hash_table (finfo->info)
9600 ->tls_sec->vma);
9601 }
9602 }
9603
9604 indx = bfd_get_symcount (output_bfd);
9605 ret = elf_link_output_sym (finfo, name, &sym, sec,
9606 NULL);
9607 if (ret == 0)
9608 return FALSE;
9609 else if (ret == 1)
9610 finfo->indices[r_symndx] = indx;
9611 else
9612 abort ();
9613 }
9614
9615 r_symndx = finfo->indices[r_symndx];
9616 }
9617
9618 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9619 | (irela->r_info & r_type_mask));
9620 }
9621
9622 /* Swap out the relocs. */
9623 if (input_rel_hdr->sh_size != 0
9624 && !bed->elf_backend_emit_relocs (output_bfd, o,
9625 input_rel_hdr,
9626 internal_relocs,
9627 rel_hash_list))
9628 return FALSE;
9629
9630 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9631 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9632 {
9633 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9634 * bed->s->int_rels_per_ext_rel);
9635 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9636 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9637 input_rel_hdr2,
9638 internal_relocs,
9639 rel_hash_list))
9640 return FALSE;
9641 }
9642 }
9643 }
9644
9645 /* Write out the modified section contents. */
9646 if (bed->elf_backend_write_section
9647 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9648 contents))
9649 {
9650 /* Section written out. */
9651 }
9652 else switch (o->sec_info_type)
9653 {
9654 case ELF_INFO_TYPE_STABS:
9655 if (! (_bfd_write_section_stabs
9656 (output_bfd,
9657 &elf_hash_table (finfo->info)->stab_info,
9658 o, &elf_section_data (o)->sec_info, contents)))
9659 return FALSE;
9660 break;
9661 case ELF_INFO_TYPE_MERGE:
9662 if (! _bfd_write_merged_section (output_bfd, o,
9663 elf_section_data (o)->sec_info))
9664 return FALSE;
9665 break;
9666 case ELF_INFO_TYPE_EH_FRAME:
9667 {
9668 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9669 o, contents))
9670 return FALSE;
9671 }
9672 break;
9673 default:
9674 {
9675 if (! (o->flags & SEC_EXCLUDE)
9676 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9677 && ! bfd_set_section_contents (output_bfd, o->output_section,
9678 contents,
9679 (file_ptr) o->output_offset,
9680 o->size))
9681 return FALSE;
9682 }
9683 break;
9684 }
9685 }
9686
9687 return TRUE;
9688 }
9689
9690 /* Generate a reloc when linking an ELF file. This is a reloc
9691 requested by the linker, and does not come from any input file. This
9692 is used to build constructor and destructor tables when linking
9693 with -Ur. */
9694
9695 static bfd_boolean
9696 elf_reloc_link_order (bfd *output_bfd,
9697 struct bfd_link_info *info,
9698 asection *output_section,
9699 struct bfd_link_order *link_order)
9700 {
9701 reloc_howto_type *howto;
9702 long indx;
9703 bfd_vma offset;
9704 bfd_vma addend;
9705 struct elf_link_hash_entry **rel_hash_ptr;
9706 Elf_Internal_Shdr *rel_hdr;
9707 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9708 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9709 bfd_byte *erel;
9710 unsigned int i;
9711
9712 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9713 if (howto == NULL)
9714 {
9715 bfd_set_error (bfd_error_bad_value);
9716 return FALSE;
9717 }
9718
9719 addend = link_order->u.reloc.p->addend;
9720
9721 /* Figure out the symbol index. */
9722 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9723 + elf_section_data (output_section)->rel_count
9724 + elf_section_data (output_section)->rel_count2);
9725 if (link_order->type == bfd_section_reloc_link_order)
9726 {
9727 indx = link_order->u.reloc.p->u.section->target_index;
9728 BFD_ASSERT (indx != 0);
9729 *rel_hash_ptr = NULL;
9730 }
9731 else
9732 {
9733 struct elf_link_hash_entry *h;
9734
9735 /* Treat a reloc against a defined symbol as though it were
9736 actually against the section. */
9737 h = ((struct elf_link_hash_entry *)
9738 bfd_wrapped_link_hash_lookup (output_bfd, info,
9739 link_order->u.reloc.p->u.name,
9740 FALSE, FALSE, TRUE));
9741 if (h != NULL
9742 && (h->root.type == bfd_link_hash_defined
9743 || h->root.type == bfd_link_hash_defweak))
9744 {
9745 asection *section;
9746
9747 section = h->root.u.def.section;
9748 indx = section->output_section->target_index;
9749 *rel_hash_ptr = NULL;
9750 /* It seems that we ought to add the symbol value to the
9751 addend here, but in practice it has already been added
9752 because it was passed to constructor_callback. */
9753 addend += section->output_section->vma + section->output_offset;
9754 }
9755 else if (h != NULL)
9756 {
9757 /* Setting the index to -2 tells elf_link_output_extsym that
9758 this symbol is used by a reloc. */
9759 h->indx = -2;
9760 *rel_hash_ptr = h;
9761 indx = 0;
9762 }
9763 else
9764 {
9765 if (! ((*info->callbacks->unattached_reloc)
9766 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9767 return FALSE;
9768 indx = 0;
9769 }
9770 }
9771
9772 /* If this is an inplace reloc, we must write the addend into the
9773 object file. */
9774 if (howto->partial_inplace && addend != 0)
9775 {
9776 bfd_size_type size;
9777 bfd_reloc_status_type rstat;
9778 bfd_byte *buf;
9779 bfd_boolean ok;
9780 const char *sym_name;
9781
9782 size = bfd_get_reloc_size (howto);
9783 buf = bfd_zmalloc (size);
9784 if (buf == NULL)
9785 return FALSE;
9786 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9787 switch (rstat)
9788 {
9789 case bfd_reloc_ok:
9790 break;
9791
9792 default:
9793 case bfd_reloc_outofrange:
9794 abort ();
9795
9796 case bfd_reloc_overflow:
9797 if (link_order->type == bfd_section_reloc_link_order)
9798 sym_name = bfd_section_name (output_bfd,
9799 link_order->u.reloc.p->u.section);
9800 else
9801 sym_name = link_order->u.reloc.p->u.name;
9802 if (! ((*info->callbacks->reloc_overflow)
9803 (info, NULL, sym_name, howto->name, addend, NULL,
9804 NULL, (bfd_vma) 0)))
9805 {
9806 free (buf);
9807 return FALSE;
9808 }
9809 break;
9810 }
9811 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9812 link_order->offset, size);
9813 free (buf);
9814 if (! ok)
9815 return FALSE;
9816 }
9817
9818 /* The address of a reloc is relative to the section in a
9819 relocatable file, and is a virtual address in an executable
9820 file. */
9821 offset = link_order->offset;
9822 if (! info->relocatable)
9823 offset += output_section->vma;
9824
9825 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9826 {
9827 irel[i].r_offset = offset;
9828 irel[i].r_info = 0;
9829 irel[i].r_addend = 0;
9830 }
9831 if (bed->s->arch_size == 32)
9832 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9833 else
9834 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9835
9836 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9837 erel = rel_hdr->contents;
9838 if (rel_hdr->sh_type == SHT_REL)
9839 {
9840 erel += (elf_section_data (output_section)->rel_count
9841 * bed->s->sizeof_rel);
9842 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9843 }
9844 else
9845 {
9846 irel[0].r_addend = addend;
9847 erel += (elf_section_data (output_section)->rel_count
9848 * bed->s->sizeof_rela);
9849 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9850 }
9851
9852 ++elf_section_data (output_section)->rel_count;
9853
9854 return TRUE;
9855 }
9856
9857
9858 /* Get the output vma of the section pointed to by the sh_link field. */
9859
9860 static bfd_vma
9861 elf_get_linked_section_vma (struct bfd_link_order *p)
9862 {
9863 Elf_Internal_Shdr **elf_shdrp;
9864 asection *s;
9865 int elfsec;
9866
9867 s = p->u.indirect.section;
9868 elf_shdrp = elf_elfsections (s->owner);
9869 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9870 elfsec = elf_shdrp[elfsec]->sh_link;
9871 /* PR 290:
9872 The Intel C compiler generates SHT_IA_64_UNWIND with
9873 SHF_LINK_ORDER. But it doesn't set the sh_link or
9874 sh_info fields. Hence we could get the situation
9875 where elfsec is 0. */
9876 if (elfsec == 0)
9877 {
9878 const struct elf_backend_data *bed
9879 = get_elf_backend_data (s->owner);
9880 if (bed->link_order_error_handler)
9881 bed->link_order_error_handler
9882 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9883 return 0;
9884 }
9885 else
9886 {
9887 s = elf_shdrp[elfsec]->bfd_section;
9888 return s->output_section->vma + s->output_offset;
9889 }
9890 }
9891
9892
9893 /* Compare two sections based on the locations of the sections they are
9894 linked to. Used by elf_fixup_link_order. */
9895
9896 static int
9897 compare_link_order (const void * a, const void * b)
9898 {
9899 bfd_vma apos;
9900 bfd_vma bpos;
9901
9902 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9903 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9904 if (apos < bpos)
9905 return -1;
9906 return apos > bpos;
9907 }
9908
9909
9910 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9911 order as their linked sections. Returns false if this could not be done
9912 because an output section includes both ordered and unordered
9913 sections. Ideally we'd do this in the linker proper. */
9914
9915 static bfd_boolean
9916 elf_fixup_link_order (bfd *abfd, asection *o)
9917 {
9918 int seen_linkorder;
9919 int seen_other;
9920 int n;
9921 struct bfd_link_order *p;
9922 bfd *sub;
9923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9924 unsigned elfsec;
9925 struct bfd_link_order **sections;
9926 asection *s, *other_sec, *linkorder_sec;
9927 bfd_vma offset;
9928
9929 other_sec = NULL;
9930 linkorder_sec = NULL;
9931 seen_other = 0;
9932 seen_linkorder = 0;
9933 for (p = o->map_head.link_order; p != NULL; p = p->next)
9934 {
9935 if (p->type == bfd_indirect_link_order)
9936 {
9937 s = p->u.indirect.section;
9938 sub = s->owner;
9939 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9940 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9941 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9942 && elfsec < elf_numsections (sub)
9943 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9944 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9945 {
9946 seen_linkorder++;
9947 linkorder_sec = s;
9948 }
9949 else
9950 {
9951 seen_other++;
9952 other_sec = s;
9953 }
9954 }
9955 else
9956 seen_other++;
9957
9958 if (seen_other && seen_linkorder)
9959 {
9960 if (other_sec && linkorder_sec)
9961 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9962 o, linkorder_sec,
9963 linkorder_sec->owner, other_sec,
9964 other_sec->owner);
9965 else
9966 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9967 o);
9968 bfd_set_error (bfd_error_bad_value);
9969 return FALSE;
9970 }
9971 }
9972
9973 if (!seen_linkorder)
9974 return TRUE;
9975
9976 sections = (struct bfd_link_order **)
9977 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9978 if (sections == NULL)
9979 return FALSE;
9980 seen_linkorder = 0;
9981
9982 for (p = o->map_head.link_order; p != NULL; p = p->next)
9983 {
9984 sections[seen_linkorder++] = p;
9985 }
9986 /* Sort the input sections in the order of their linked section. */
9987 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9988 compare_link_order);
9989
9990 /* Change the offsets of the sections. */
9991 offset = 0;
9992 for (n = 0; n < seen_linkorder; n++)
9993 {
9994 s = sections[n]->u.indirect.section;
9995 offset &= ~(bfd_vma) 0 << s->alignment_power;
9996 s->output_offset = offset;
9997 sections[n]->offset = offset;
9998 offset += sections[n]->size;
9999 }
10000
10001 free (sections);
10002 return TRUE;
10003 }
10004
10005
10006 /* Do the final step of an ELF link. */
10007
10008 bfd_boolean
10009 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10010 {
10011 bfd_boolean dynamic;
10012 bfd_boolean emit_relocs;
10013 bfd *dynobj;
10014 struct elf_final_link_info finfo;
10015 register asection *o;
10016 register struct bfd_link_order *p;
10017 register bfd *sub;
10018 bfd_size_type max_contents_size;
10019 bfd_size_type max_external_reloc_size;
10020 bfd_size_type max_internal_reloc_count;
10021 bfd_size_type max_sym_count;
10022 bfd_size_type max_sym_shndx_count;
10023 file_ptr off;
10024 Elf_Internal_Sym elfsym;
10025 unsigned int i;
10026 Elf_Internal_Shdr *symtab_hdr;
10027 Elf_Internal_Shdr *symtab_shndx_hdr;
10028 Elf_Internal_Shdr *symstrtab_hdr;
10029 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10030 struct elf_outext_info eoinfo;
10031 bfd_boolean merged;
10032 size_t relativecount = 0;
10033 asection *reldyn = 0;
10034 bfd_size_type amt;
10035 asection *attr_section = NULL;
10036 bfd_vma attr_size = 0;
10037 const char *std_attrs_section;
10038
10039 if (! is_elf_hash_table (info->hash))
10040 return FALSE;
10041
10042 if (info->shared)
10043 abfd->flags |= DYNAMIC;
10044
10045 dynamic = elf_hash_table (info)->dynamic_sections_created;
10046 dynobj = elf_hash_table (info)->dynobj;
10047
10048 emit_relocs = (info->relocatable
10049 || info->emitrelocations);
10050
10051 finfo.info = info;
10052 finfo.output_bfd = abfd;
10053 finfo.symstrtab = _bfd_elf_stringtab_init ();
10054 if (finfo.symstrtab == NULL)
10055 return FALSE;
10056
10057 if (! dynamic)
10058 {
10059 finfo.dynsym_sec = NULL;
10060 finfo.hash_sec = NULL;
10061 finfo.symver_sec = NULL;
10062 }
10063 else
10064 {
10065 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10066 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10067 BFD_ASSERT (finfo.dynsym_sec != NULL);
10068 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10069 /* Note that it is OK if symver_sec is NULL. */
10070 }
10071
10072 finfo.contents = NULL;
10073 finfo.external_relocs = NULL;
10074 finfo.internal_relocs = NULL;
10075 finfo.external_syms = NULL;
10076 finfo.locsym_shndx = NULL;
10077 finfo.internal_syms = NULL;
10078 finfo.indices = NULL;
10079 finfo.sections = NULL;
10080 finfo.symbuf = NULL;
10081 finfo.symshndxbuf = NULL;
10082 finfo.symbuf_count = 0;
10083 finfo.shndxbuf_size = 0;
10084
10085 /* The object attributes have been merged. Remove the input
10086 sections from the link, and set the contents of the output
10087 secton. */
10088 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10089 for (o = abfd->sections; o != NULL; o = o->next)
10090 {
10091 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10092 || strcmp (o->name, ".gnu.attributes") == 0)
10093 {
10094 for (p = o->map_head.link_order; p != NULL; p = p->next)
10095 {
10096 asection *input_section;
10097
10098 if (p->type != bfd_indirect_link_order)
10099 continue;
10100 input_section = p->u.indirect.section;
10101 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10102 elf_link_input_bfd ignores this section. */
10103 input_section->flags &= ~SEC_HAS_CONTENTS;
10104 }
10105
10106 attr_size = bfd_elf_obj_attr_size (abfd);
10107 if (attr_size)
10108 {
10109 bfd_set_section_size (abfd, o, attr_size);
10110 attr_section = o;
10111 /* Skip this section later on. */
10112 o->map_head.link_order = NULL;
10113 }
10114 else
10115 o->flags |= SEC_EXCLUDE;
10116 }
10117 }
10118
10119 /* Count up the number of relocations we will output for each output
10120 section, so that we know the sizes of the reloc sections. We
10121 also figure out some maximum sizes. */
10122 max_contents_size = 0;
10123 max_external_reloc_size = 0;
10124 max_internal_reloc_count = 0;
10125 max_sym_count = 0;
10126 max_sym_shndx_count = 0;
10127 merged = FALSE;
10128 for (o = abfd->sections; o != NULL; o = o->next)
10129 {
10130 struct bfd_elf_section_data *esdo = elf_section_data (o);
10131 o->reloc_count = 0;
10132
10133 for (p = o->map_head.link_order; p != NULL; p = p->next)
10134 {
10135 unsigned int reloc_count = 0;
10136 struct bfd_elf_section_data *esdi = NULL;
10137 unsigned int *rel_count1;
10138
10139 if (p->type == bfd_section_reloc_link_order
10140 || p->type == bfd_symbol_reloc_link_order)
10141 reloc_count = 1;
10142 else if (p->type == bfd_indirect_link_order)
10143 {
10144 asection *sec;
10145
10146 sec = p->u.indirect.section;
10147 esdi = elf_section_data (sec);
10148
10149 /* Mark all sections which are to be included in the
10150 link. This will normally be every section. We need
10151 to do this so that we can identify any sections which
10152 the linker has decided to not include. */
10153 sec->linker_mark = TRUE;
10154
10155 if (sec->flags & SEC_MERGE)
10156 merged = TRUE;
10157
10158 if (info->relocatable || info->emitrelocations)
10159 reloc_count = sec->reloc_count;
10160 else if (bed->elf_backend_count_relocs)
10161 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10162
10163 if (sec->rawsize > max_contents_size)
10164 max_contents_size = sec->rawsize;
10165 if (sec->size > max_contents_size)
10166 max_contents_size = sec->size;
10167
10168 /* We are interested in just local symbols, not all
10169 symbols. */
10170 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10171 && (sec->owner->flags & DYNAMIC) == 0)
10172 {
10173 size_t sym_count;
10174
10175 if (elf_bad_symtab (sec->owner))
10176 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10177 / bed->s->sizeof_sym);
10178 else
10179 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10180
10181 if (sym_count > max_sym_count)
10182 max_sym_count = sym_count;
10183
10184 if (sym_count > max_sym_shndx_count
10185 && elf_symtab_shndx (sec->owner) != 0)
10186 max_sym_shndx_count = sym_count;
10187
10188 if ((sec->flags & SEC_RELOC) != 0)
10189 {
10190 size_t ext_size;
10191
10192 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10193 if (ext_size > max_external_reloc_size)
10194 max_external_reloc_size = ext_size;
10195 if (sec->reloc_count > max_internal_reloc_count)
10196 max_internal_reloc_count = sec->reloc_count;
10197 }
10198 }
10199 }
10200
10201 if (reloc_count == 0)
10202 continue;
10203
10204 o->reloc_count += reloc_count;
10205
10206 /* MIPS may have a mix of REL and RELA relocs on sections.
10207 To support this curious ABI we keep reloc counts in
10208 elf_section_data too. We must be careful to add the
10209 relocations from the input section to the right output
10210 count. FIXME: Get rid of one count. We have
10211 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10212 rel_count1 = &esdo->rel_count;
10213 if (esdi != NULL)
10214 {
10215 bfd_boolean same_size;
10216 bfd_size_type entsize1;
10217
10218 entsize1 = esdi->rel_hdr.sh_entsize;
10219 /* PR 9827: If the header size has not been set yet then
10220 assume that it will match the output section's reloc type. */
10221 if (entsize1 == 0)
10222 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10223 else
10224 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10225 || entsize1 == bed->s->sizeof_rela);
10226 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10227
10228 if (!same_size)
10229 rel_count1 = &esdo->rel_count2;
10230
10231 if (esdi->rel_hdr2 != NULL)
10232 {
10233 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10234 unsigned int alt_count;
10235 unsigned int *rel_count2;
10236
10237 BFD_ASSERT (entsize2 != entsize1
10238 && (entsize2 == bed->s->sizeof_rel
10239 || entsize2 == bed->s->sizeof_rela));
10240
10241 rel_count2 = &esdo->rel_count2;
10242 if (!same_size)
10243 rel_count2 = &esdo->rel_count;
10244
10245 /* The following is probably too simplistic if the
10246 backend counts output relocs unusually. */
10247 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10248 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10249 *rel_count2 += alt_count;
10250 reloc_count -= alt_count;
10251 }
10252 }
10253 *rel_count1 += reloc_count;
10254 }
10255
10256 if (o->reloc_count > 0)
10257 o->flags |= SEC_RELOC;
10258 else
10259 {
10260 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10261 set it (this is probably a bug) and if it is set
10262 assign_section_numbers will create a reloc section. */
10263 o->flags &=~ SEC_RELOC;
10264 }
10265
10266 /* If the SEC_ALLOC flag is not set, force the section VMA to
10267 zero. This is done in elf_fake_sections as well, but forcing
10268 the VMA to 0 here will ensure that relocs against these
10269 sections are handled correctly. */
10270 if ((o->flags & SEC_ALLOC) == 0
10271 && ! o->user_set_vma)
10272 o->vma = 0;
10273 }
10274
10275 if (! info->relocatable && merged)
10276 elf_link_hash_traverse (elf_hash_table (info),
10277 _bfd_elf_link_sec_merge_syms, abfd);
10278
10279 /* Figure out the file positions for everything but the symbol table
10280 and the relocs. We set symcount to force assign_section_numbers
10281 to create a symbol table. */
10282 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10283 BFD_ASSERT (! abfd->output_has_begun);
10284 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10285 goto error_return;
10286
10287 /* Set sizes, and assign file positions for reloc sections. */
10288 for (o = abfd->sections; o != NULL; o = o->next)
10289 {
10290 if ((o->flags & SEC_RELOC) != 0)
10291 {
10292 if (!(_bfd_elf_link_size_reloc_section
10293 (abfd, &elf_section_data (o)->rel_hdr, o)))
10294 goto error_return;
10295
10296 if (elf_section_data (o)->rel_hdr2
10297 && !(_bfd_elf_link_size_reloc_section
10298 (abfd, elf_section_data (o)->rel_hdr2, o)))
10299 goto error_return;
10300 }
10301
10302 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10303 to count upwards while actually outputting the relocations. */
10304 elf_section_data (o)->rel_count = 0;
10305 elf_section_data (o)->rel_count2 = 0;
10306 }
10307
10308 _bfd_elf_assign_file_positions_for_relocs (abfd);
10309
10310 /* We have now assigned file positions for all the sections except
10311 .symtab and .strtab. We start the .symtab section at the current
10312 file position, and write directly to it. We build the .strtab
10313 section in memory. */
10314 bfd_get_symcount (abfd) = 0;
10315 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10316 /* sh_name is set in prep_headers. */
10317 symtab_hdr->sh_type = SHT_SYMTAB;
10318 /* sh_flags, sh_addr and sh_size all start off zero. */
10319 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10320 /* sh_link is set in assign_section_numbers. */
10321 /* sh_info is set below. */
10322 /* sh_offset is set just below. */
10323 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10324
10325 off = elf_tdata (abfd)->next_file_pos;
10326 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10327
10328 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10329 incorrect. We do not yet know the size of the .symtab section.
10330 We correct next_file_pos below, after we do know the size. */
10331
10332 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10333 continuously seeking to the right position in the file. */
10334 if (! info->keep_memory || max_sym_count < 20)
10335 finfo.symbuf_size = 20;
10336 else
10337 finfo.symbuf_size = max_sym_count;
10338 amt = finfo.symbuf_size;
10339 amt *= bed->s->sizeof_sym;
10340 finfo.symbuf = bfd_malloc (amt);
10341 if (finfo.symbuf == NULL)
10342 goto error_return;
10343 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10344 {
10345 /* Wild guess at number of output symbols. realloc'd as needed. */
10346 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10347 finfo.shndxbuf_size = amt;
10348 amt *= sizeof (Elf_External_Sym_Shndx);
10349 finfo.symshndxbuf = bfd_zmalloc (amt);
10350 if (finfo.symshndxbuf == NULL)
10351 goto error_return;
10352 }
10353
10354 /* Start writing out the symbol table. The first symbol is always a
10355 dummy symbol. */
10356 if (info->strip != strip_all
10357 || emit_relocs)
10358 {
10359 elfsym.st_value = 0;
10360 elfsym.st_size = 0;
10361 elfsym.st_info = 0;
10362 elfsym.st_other = 0;
10363 elfsym.st_shndx = SHN_UNDEF;
10364 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10365 NULL) != 1)
10366 goto error_return;
10367 }
10368
10369 /* Output a symbol for each section. We output these even if we are
10370 discarding local symbols, since they are used for relocs. These
10371 symbols have no names. We store the index of each one in the
10372 index field of the section, so that we can find it again when
10373 outputting relocs. */
10374 if (info->strip != strip_all
10375 || emit_relocs)
10376 {
10377 elfsym.st_size = 0;
10378 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10379 elfsym.st_other = 0;
10380 elfsym.st_value = 0;
10381 for (i = 1; i < elf_numsections (abfd); i++)
10382 {
10383 o = bfd_section_from_elf_index (abfd, i);
10384 if (o != NULL)
10385 {
10386 o->target_index = bfd_get_symcount (abfd);
10387 elfsym.st_shndx = i;
10388 if (!info->relocatable)
10389 elfsym.st_value = o->vma;
10390 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10391 goto error_return;
10392 }
10393 }
10394 }
10395
10396 /* Allocate some memory to hold information read in from the input
10397 files. */
10398 if (max_contents_size != 0)
10399 {
10400 finfo.contents = bfd_malloc (max_contents_size);
10401 if (finfo.contents == NULL)
10402 goto error_return;
10403 }
10404
10405 if (max_external_reloc_size != 0)
10406 {
10407 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10408 if (finfo.external_relocs == NULL)
10409 goto error_return;
10410 }
10411
10412 if (max_internal_reloc_count != 0)
10413 {
10414 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10415 amt *= sizeof (Elf_Internal_Rela);
10416 finfo.internal_relocs = bfd_malloc (amt);
10417 if (finfo.internal_relocs == NULL)
10418 goto error_return;
10419 }
10420
10421 if (max_sym_count != 0)
10422 {
10423 amt = max_sym_count * bed->s->sizeof_sym;
10424 finfo.external_syms = bfd_malloc (amt);
10425 if (finfo.external_syms == NULL)
10426 goto error_return;
10427
10428 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10429 finfo.internal_syms = bfd_malloc (amt);
10430 if (finfo.internal_syms == NULL)
10431 goto error_return;
10432
10433 amt = max_sym_count * sizeof (long);
10434 finfo.indices = bfd_malloc (amt);
10435 if (finfo.indices == NULL)
10436 goto error_return;
10437
10438 amt = max_sym_count * sizeof (asection *);
10439 finfo.sections = bfd_malloc (amt);
10440 if (finfo.sections == NULL)
10441 goto error_return;
10442 }
10443
10444 if (max_sym_shndx_count != 0)
10445 {
10446 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10447 finfo.locsym_shndx = bfd_malloc (amt);
10448 if (finfo.locsym_shndx == NULL)
10449 goto error_return;
10450 }
10451
10452 if (elf_hash_table (info)->tls_sec)
10453 {
10454 bfd_vma base, end = 0;
10455 asection *sec;
10456
10457 for (sec = elf_hash_table (info)->tls_sec;
10458 sec && (sec->flags & SEC_THREAD_LOCAL);
10459 sec = sec->next)
10460 {
10461 bfd_size_type size = sec->size;
10462
10463 if (size == 0
10464 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10465 {
10466 struct bfd_link_order *o = sec->map_tail.link_order;
10467 if (o != NULL)
10468 size = o->offset + o->size;
10469 }
10470 end = sec->vma + size;
10471 }
10472 base = elf_hash_table (info)->tls_sec->vma;
10473 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10474 elf_hash_table (info)->tls_size = end - base;
10475 }
10476
10477 /* Reorder SHF_LINK_ORDER sections. */
10478 for (o = abfd->sections; o != NULL; o = o->next)
10479 {
10480 if (!elf_fixup_link_order (abfd, o))
10481 return FALSE;
10482 }
10483
10484 /* Since ELF permits relocations to be against local symbols, we
10485 must have the local symbols available when we do the relocations.
10486 Since we would rather only read the local symbols once, and we
10487 would rather not keep them in memory, we handle all the
10488 relocations for a single input file at the same time.
10489
10490 Unfortunately, there is no way to know the total number of local
10491 symbols until we have seen all of them, and the local symbol
10492 indices precede the global symbol indices. This means that when
10493 we are generating relocatable output, and we see a reloc against
10494 a global symbol, we can not know the symbol index until we have
10495 finished examining all the local symbols to see which ones we are
10496 going to output. To deal with this, we keep the relocations in
10497 memory, and don't output them until the end of the link. This is
10498 an unfortunate waste of memory, but I don't see a good way around
10499 it. Fortunately, it only happens when performing a relocatable
10500 link, which is not the common case. FIXME: If keep_memory is set
10501 we could write the relocs out and then read them again; I don't
10502 know how bad the memory loss will be. */
10503
10504 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10505 sub->output_has_begun = FALSE;
10506 for (o = abfd->sections; o != NULL; o = o->next)
10507 {
10508 for (p = o->map_head.link_order; p != NULL; p = p->next)
10509 {
10510 if (p->type == bfd_indirect_link_order
10511 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10512 == bfd_target_elf_flavour)
10513 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10514 {
10515 if (! sub->output_has_begun)
10516 {
10517 if (! elf_link_input_bfd (&finfo, sub))
10518 goto error_return;
10519 sub->output_has_begun = TRUE;
10520 }
10521 }
10522 else if (p->type == bfd_section_reloc_link_order
10523 || p->type == bfd_symbol_reloc_link_order)
10524 {
10525 if (! elf_reloc_link_order (abfd, info, o, p))
10526 goto error_return;
10527 }
10528 else
10529 {
10530 if (! _bfd_default_link_order (abfd, info, o, p))
10531 goto error_return;
10532 }
10533 }
10534 }
10535
10536 /* Free symbol buffer if needed. */
10537 if (!info->reduce_memory_overheads)
10538 {
10539 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10540 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10541 && elf_tdata (sub)->symbuf)
10542 {
10543 free (elf_tdata (sub)->symbuf);
10544 elf_tdata (sub)->symbuf = NULL;
10545 }
10546 }
10547
10548 /* Output any global symbols that got converted to local in a
10549 version script or due to symbol visibility. We do this in a
10550 separate step since ELF requires all local symbols to appear
10551 prior to any global symbols. FIXME: We should only do this if
10552 some global symbols were, in fact, converted to become local.
10553 FIXME: Will this work correctly with the Irix 5 linker? */
10554 eoinfo.failed = FALSE;
10555 eoinfo.finfo = &finfo;
10556 eoinfo.localsyms = TRUE;
10557 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10558 &eoinfo);
10559 if (eoinfo.failed)
10560 return FALSE;
10561
10562 /* If backend needs to output some local symbols not present in the hash
10563 table, do it now. */
10564 if (bed->elf_backend_output_arch_local_syms)
10565 {
10566 typedef int (*out_sym_func)
10567 (void *, const char *, Elf_Internal_Sym *, asection *,
10568 struct elf_link_hash_entry *);
10569
10570 if (! ((*bed->elf_backend_output_arch_local_syms)
10571 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10572 return FALSE;
10573 }
10574
10575 /* That wrote out all the local symbols. Finish up the symbol table
10576 with the global symbols. Even if we want to strip everything we
10577 can, we still need to deal with those global symbols that got
10578 converted to local in a version script. */
10579
10580 /* The sh_info field records the index of the first non local symbol. */
10581 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10582
10583 if (dynamic
10584 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10585 {
10586 Elf_Internal_Sym sym;
10587 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10588 long last_local = 0;
10589
10590 /* Write out the section symbols for the output sections. */
10591 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10592 {
10593 asection *s;
10594
10595 sym.st_size = 0;
10596 sym.st_name = 0;
10597 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10598 sym.st_other = 0;
10599
10600 for (s = abfd->sections; s != NULL; s = s->next)
10601 {
10602 int indx;
10603 bfd_byte *dest;
10604 long dynindx;
10605
10606 dynindx = elf_section_data (s)->dynindx;
10607 if (dynindx <= 0)
10608 continue;
10609 indx = elf_section_data (s)->this_idx;
10610 BFD_ASSERT (indx > 0);
10611 sym.st_shndx = indx;
10612 if (! check_dynsym (abfd, &sym))
10613 return FALSE;
10614 sym.st_value = s->vma;
10615 dest = dynsym + dynindx * bed->s->sizeof_sym;
10616 if (last_local < dynindx)
10617 last_local = dynindx;
10618 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10619 }
10620 }
10621
10622 /* Write out the local dynsyms. */
10623 if (elf_hash_table (info)->dynlocal)
10624 {
10625 struct elf_link_local_dynamic_entry *e;
10626 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10627 {
10628 asection *s;
10629 bfd_byte *dest;
10630
10631 sym.st_size = e->isym.st_size;
10632 sym.st_other = e->isym.st_other;
10633
10634 /* Copy the internal symbol as is.
10635 Note that we saved a word of storage and overwrote
10636 the original st_name with the dynstr_index. */
10637 sym = e->isym;
10638
10639 s = bfd_section_from_elf_index (e->input_bfd,
10640 e->isym.st_shndx);
10641 if (s != NULL)
10642 {
10643 sym.st_shndx =
10644 elf_section_data (s->output_section)->this_idx;
10645 if (! check_dynsym (abfd, &sym))
10646 return FALSE;
10647 sym.st_value = (s->output_section->vma
10648 + s->output_offset
10649 + e->isym.st_value);
10650 }
10651
10652 if (last_local < e->dynindx)
10653 last_local = e->dynindx;
10654
10655 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10656 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10657 }
10658 }
10659
10660 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10661 last_local + 1;
10662 }
10663
10664 /* We get the global symbols from the hash table. */
10665 eoinfo.failed = FALSE;
10666 eoinfo.localsyms = FALSE;
10667 eoinfo.finfo = &finfo;
10668 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10669 &eoinfo);
10670 if (eoinfo.failed)
10671 return FALSE;
10672
10673 /* If backend needs to output some symbols not present in the hash
10674 table, do it now. */
10675 if (bed->elf_backend_output_arch_syms)
10676 {
10677 typedef int (*out_sym_func)
10678 (void *, const char *, Elf_Internal_Sym *, asection *,
10679 struct elf_link_hash_entry *);
10680
10681 if (! ((*bed->elf_backend_output_arch_syms)
10682 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10683 return FALSE;
10684 }
10685
10686 /* Flush all symbols to the file. */
10687 if (! elf_link_flush_output_syms (&finfo, bed))
10688 return FALSE;
10689
10690 /* Now we know the size of the symtab section. */
10691 off += symtab_hdr->sh_size;
10692
10693 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10694 if (symtab_shndx_hdr->sh_name != 0)
10695 {
10696 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10697 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10698 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10699 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10700 symtab_shndx_hdr->sh_size = amt;
10701
10702 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10703 off, TRUE);
10704
10705 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10706 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10707 return FALSE;
10708 }
10709
10710
10711 /* Finish up and write out the symbol string table (.strtab)
10712 section. */
10713 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10714 /* sh_name was set in prep_headers. */
10715 symstrtab_hdr->sh_type = SHT_STRTAB;
10716 symstrtab_hdr->sh_flags = 0;
10717 symstrtab_hdr->sh_addr = 0;
10718 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10719 symstrtab_hdr->sh_entsize = 0;
10720 symstrtab_hdr->sh_link = 0;
10721 symstrtab_hdr->sh_info = 0;
10722 /* sh_offset is set just below. */
10723 symstrtab_hdr->sh_addralign = 1;
10724
10725 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10726 elf_tdata (abfd)->next_file_pos = off;
10727
10728 if (bfd_get_symcount (abfd) > 0)
10729 {
10730 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10731 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10732 return FALSE;
10733 }
10734
10735 /* Adjust the relocs to have the correct symbol indices. */
10736 for (o = abfd->sections; o != NULL; o = o->next)
10737 {
10738 if ((o->flags & SEC_RELOC) == 0)
10739 continue;
10740
10741 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10742 elf_section_data (o)->rel_count,
10743 elf_section_data (o)->rel_hashes);
10744 if (elf_section_data (o)->rel_hdr2 != NULL)
10745 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10746 elf_section_data (o)->rel_count2,
10747 (elf_section_data (o)->rel_hashes
10748 + elf_section_data (o)->rel_count));
10749
10750 /* Set the reloc_count field to 0 to prevent write_relocs from
10751 trying to swap the relocs out itself. */
10752 o->reloc_count = 0;
10753 }
10754
10755 if (dynamic && info->combreloc && dynobj != NULL)
10756 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10757
10758 /* If we are linking against a dynamic object, or generating a
10759 shared library, finish up the dynamic linking information. */
10760 if (dynamic)
10761 {
10762 bfd_byte *dyncon, *dynconend;
10763
10764 /* Fix up .dynamic entries. */
10765 o = bfd_get_section_by_name (dynobj, ".dynamic");
10766 BFD_ASSERT (o != NULL);
10767
10768 dyncon = o->contents;
10769 dynconend = o->contents + o->size;
10770 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10771 {
10772 Elf_Internal_Dyn dyn;
10773 const char *name;
10774 unsigned int type;
10775
10776 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10777
10778 switch (dyn.d_tag)
10779 {
10780 default:
10781 continue;
10782 case DT_NULL:
10783 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10784 {
10785 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10786 {
10787 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10788 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10789 default: continue;
10790 }
10791 dyn.d_un.d_val = relativecount;
10792 relativecount = 0;
10793 break;
10794 }
10795 continue;
10796
10797 case DT_INIT:
10798 name = info->init_function;
10799 goto get_sym;
10800 case DT_FINI:
10801 name = info->fini_function;
10802 get_sym:
10803 {
10804 struct elf_link_hash_entry *h;
10805
10806 h = elf_link_hash_lookup (elf_hash_table (info), name,
10807 FALSE, FALSE, TRUE);
10808 if (h != NULL
10809 && (h->root.type == bfd_link_hash_defined
10810 || h->root.type == bfd_link_hash_defweak))
10811 {
10812 dyn.d_un.d_ptr = h->root.u.def.value;
10813 o = h->root.u.def.section;
10814 if (o->output_section != NULL)
10815 dyn.d_un.d_ptr += (o->output_section->vma
10816 + o->output_offset);
10817 else
10818 {
10819 /* The symbol is imported from another shared
10820 library and does not apply to this one. */
10821 dyn.d_un.d_ptr = 0;
10822 }
10823 break;
10824 }
10825 }
10826 continue;
10827
10828 case DT_PREINIT_ARRAYSZ:
10829 name = ".preinit_array";
10830 goto get_size;
10831 case DT_INIT_ARRAYSZ:
10832 name = ".init_array";
10833 goto get_size;
10834 case DT_FINI_ARRAYSZ:
10835 name = ".fini_array";
10836 get_size:
10837 o = bfd_get_section_by_name (abfd, name);
10838 if (o == NULL)
10839 {
10840 (*_bfd_error_handler)
10841 (_("%B: could not find output section %s"), abfd, name);
10842 goto error_return;
10843 }
10844 if (o->size == 0)
10845 (*_bfd_error_handler)
10846 (_("warning: %s section has zero size"), name);
10847 dyn.d_un.d_val = o->size;
10848 break;
10849
10850 case DT_PREINIT_ARRAY:
10851 name = ".preinit_array";
10852 goto get_vma;
10853 case DT_INIT_ARRAY:
10854 name = ".init_array";
10855 goto get_vma;
10856 case DT_FINI_ARRAY:
10857 name = ".fini_array";
10858 goto get_vma;
10859
10860 case DT_HASH:
10861 name = ".hash";
10862 goto get_vma;
10863 case DT_GNU_HASH:
10864 name = ".gnu.hash";
10865 goto get_vma;
10866 case DT_STRTAB:
10867 name = ".dynstr";
10868 goto get_vma;
10869 case DT_SYMTAB:
10870 name = ".dynsym";
10871 goto get_vma;
10872 case DT_VERDEF:
10873 name = ".gnu.version_d";
10874 goto get_vma;
10875 case DT_VERNEED:
10876 name = ".gnu.version_r";
10877 goto get_vma;
10878 case DT_VERSYM:
10879 name = ".gnu.version";
10880 get_vma:
10881 o = bfd_get_section_by_name (abfd, name);
10882 if (o == NULL)
10883 {
10884 (*_bfd_error_handler)
10885 (_("%B: could not find output section %s"), abfd, name);
10886 goto error_return;
10887 }
10888 dyn.d_un.d_ptr = o->vma;
10889 break;
10890
10891 case DT_REL:
10892 case DT_RELA:
10893 case DT_RELSZ:
10894 case DT_RELASZ:
10895 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10896 type = SHT_REL;
10897 else
10898 type = SHT_RELA;
10899 dyn.d_un.d_val = 0;
10900 dyn.d_un.d_ptr = 0;
10901 for (i = 1; i < elf_numsections (abfd); i++)
10902 {
10903 Elf_Internal_Shdr *hdr;
10904
10905 hdr = elf_elfsections (abfd)[i];
10906 if (hdr->sh_type == type
10907 && (hdr->sh_flags & SHF_ALLOC) != 0)
10908 {
10909 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10910 dyn.d_un.d_val += hdr->sh_size;
10911 else
10912 {
10913 if (dyn.d_un.d_ptr == 0
10914 || hdr->sh_addr < dyn.d_un.d_ptr)
10915 dyn.d_un.d_ptr = hdr->sh_addr;
10916 }
10917 }
10918 }
10919 break;
10920 }
10921 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10922 }
10923 }
10924
10925 /* If we have created any dynamic sections, then output them. */
10926 if (dynobj != NULL)
10927 {
10928 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10929 goto error_return;
10930
10931 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10932 if (info->warn_shared_textrel && info->shared)
10933 {
10934 bfd_byte *dyncon, *dynconend;
10935
10936 /* Fix up .dynamic entries. */
10937 o = bfd_get_section_by_name (dynobj, ".dynamic");
10938 BFD_ASSERT (o != NULL);
10939
10940 dyncon = o->contents;
10941 dynconend = o->contents + o->size;
10942 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10943 {
10944 Elf_Internal_Dyn dyn;
10945
10946 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10947
10948 if (dyn.d_tag == DT_TEXTREL)
10949 {
10950 info->callbacks->einfo
10951 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10952 break;
10953 }
10954 }
10955 }
10956
10957 for (o = dynobj->sections; o != NULL; o = o->next)
10958 {
10959 if ((o->flags & SEC_HAS_CONTENTS) == 0
10960 || o->size == 0
10961 || o->output_section == bfd_abs_section_ptr)
10962 continue;
10963 if ((o->flags & SEC_LINKER_CREATED) == 0)
10964 {
10965 /* At this point, we are only interested in sections
10966 created by _bfd_elf_link_create_dynamic_sections. */
10967 continue;
10968 }
10969 if (elf_hash_table (info)->stab_info.stabstr == o)
10970 continue;
10971 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10972 continue;
10973 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10974 != SHT_STRTAB)
10975 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10976 {
10977 if (! bfd_set_section_contents (abfd, o->output_section,
10978 o->contents,
10979 (file_ptr) o->output_offset,
10980 o->size))
10981 goto error_return;
10982 }
10983 else
10984 {
10985 /* The contents of the .dynstr section are actually in a
10986 stringtab. */
10987 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10988 if (bfd_seek (abfd, off, SEEK_SET) != 0
10989 || ! _bfd_elf_strtab_emit (abfd,
10990 elf_hash_table (info)->dynstr))
10991 goto error_return;
10992 }
10993 }
10994 }
10995
10996 if (info->relocatable)
10997 {
10998 bfd_boolean failed = FALSE;
10999
11000 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11001 if (failed)
11002 goto error_return;
11003 }
11004
11005 /* If we have optimized stabs strings, output them. */
11006 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11007 {
11008 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11009 goto error_return;
11010 }
11011
11012 if (info->eh_frame_hdr)
11013 {
11014 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11015 goto error_return;
11016 }
11017
11018 if (finfo.symstrtab != NULL)
11019 _bfd_stringtab_free (finfo.symstrtab);
11020 if (finfo.contents != NULL)
11021 free (finfo.contents);
11022 if (finfo.external_relocs != NULL)
11023 free (finfo.external_relocs);
11024 if (finfo.internal_relocs != NULL)
11025 free (finfo.internal_relocs);
11026 if (finfo.external_syms != NULL)
11027 free (finfo.external_syms);
11028 if (finfo.locsym_shndx != NULL)
11029 free (finfo.locsym_shndx);
11030 if (finfo.internal_syms != NULL)
11031 free (finfo.internal_syms);
11032 if (finfo.indices != NULL)
11033 free (finfo.indices);
11034 if (finfo.sections != NULL)
11035 free (finfo.sections);
11036 if (finfo.symbuf != NULL)
11037 free (finfo.symbuf);
11038 if (finfo.symshndxbuf != NULL)
11039 free (finfo.symshndxbuf);
11040 for (o = abfd->sections; o != NULL; o = o->next)
11041 {
11042 if ((o->flags & SEC_RELOC) != 0
11043 && elf_section_data (o)->rel_hashes != NULL)
11044 free (elf_section_data (o)->rel_hashes);
11045 }
11046
11047 elf_tdata (abfd)->linker = TRUE;
11048
11049 if (attr_section)
11050 {
11051 bfd_byte *contents = bfd_malloc (attr_size);
11052 if (contents == NULL)
11053 return FALSE; /* Bail out and fail. */
11054 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11055 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11056 free (contents);
11057 }
11058
11059 return TRUE;
11060
11061 error_return:
11062 if (finfo.symstrtab != NULL)
11063 _bfd_stringtab_free (finfo.symstrtab);
11064 if (finfo.contents != NULL)
11065 free (finfo.contents);
11066 if (finfo.external_relocs != NULL)
11067 free (finfo.external_relocs);
11068 if (finfo.internal_relocs != NULL)
11069 free (finfo.internal_relocs);
11070 if (finfo.external_syms != NULL)
11071 free (finfo.external_syms);
11072 if (finfo.locsym_shndx != NULL)
11073 free (finfo.locsym_shndx);
11074 if (finfo.internal_syms != NULL)
11075 free (finfo.internal_syms);
11076 if (finfo.indices != NULL)
11077 free (finfo.indices);
11078 if (finfo.sections != NULL)
11079 free (finfo.sections);
11080 if (finfo.symbuf != NULL)
11081 free (finfo.symbuf);
11082 if (finfo.symshndxbuf != NULL)
11083 free (finfo.symshndxbuf);
11084 for (o = abfd->sections; o != NULL; o = o->next)
11085 {
11086 if ((o->flags & SEC_RELOC) != 0
11087 && elf_section_data (o)->rel_hashes != NULL)
11088 free (elf_section_data (o)->rel_hashes);
11089 }
11090
11091 return FALSE;
11092 }
11093 \f
11094 /* Initialize COOKIE for input bfd ABFD. */
11095
11096 static bfd_boolean
11097 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11098 struct bfd_link_info *info, bfd *abfd)
11099 {
11100 Elf_Internal_Shdr *symtab_hdr;
11101 const struct elf_backend_data *bed;
11102
11103 bed = get_elf_backend_data (abfd);
11104 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11105
11106 cookie->abfd = abfd;
11107 cookie->sym_hashes = elf_sym_hashes (abfd);
11108 cookie->bad_symtab = elf_bad_symtab (abfd);
11109 if (cookie->bad_symtab)
11110 {
11111 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11112 cookie->extsymoff = 0;
11113 }
11114 else
11115 {
11116 cookie->locsymcount = symtab_hdr->sh_info;
11117 cookie->extsymoff = symtab_hdr->sh_info;
11118 }
11119
11120 if (bed->s->arch_size == 32)
11121 cookie->r_sym_shift = 8;
11122 else
11123 cookie->r_sym_shift = 32;
11124
11125 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11126 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11127 {
11128 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11129 cookie->locsymcount, 0,
11130 NULL, NULL, NULL);
11131 if (cookie->locsyms == NULL)
11132 {
11133 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11134 return FALSE;
11135 }
11136 if (info->keep_memory)
11137 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11138 }
11139 return TRUE;
11140 }
11141
11142 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11143
11144 static void
11145 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11146 {
11147 Elf_Internal_Shdr *symtab_hdr;
11148
11149 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11150 if (cookie->locsyms != NULL
11151 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11152 free (cookie->locsyms);
11153 }
11154
11155 /* Initialize the relocation information in COOKIE for input section SEC
11156 of input bfd ABFD. */
11157
11158 static bfd_boolean
11159 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11160 struct bfd_link_info *info, bfd *abfd,
11161 asection *sec)
11162 {
11163 const struct elf_backend_data *bed;
11164
11165 if (sec->reloc_count == 0)
11166 {
11167 cookie->rels = NULL;
11168 cookie->relend = NULL;
11169 }
11170 else
11171 {
11172 bed = get_elf_backend_data (abfd);
11173
11174 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11175 info->keep_memory);
11176 if (cookie->rels == NULL)
11177 return FALSE;
11178 cookie->rel = cookie->rels;
11179 cookie->relend = (cookie->rels
11180 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11181 }
11182 cookie->rel = cookie->rels;
11183 return TRUE;
11184 }
11185
11186 /* Free the memory allocated by init_reloc_cookie_rels,
11187 if appropriate. */
11188
11189 static void
11190 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11191 asection *sec)
11192 {
11193 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11194 free (cookie->rels);
11195 }
11196
11197 /* Initialize the whole of COOKIE for input section SEC. */
11198
11199 static bfd_boolean
11200 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11201 struct bfd_link_info *info,
11202 asection *sec)
11203 {
11204 if (!init_reloc_cookie (cookie, info, sec->owner))
11205 goto error1;
11206 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11207 goto error2;
11208 return TRUE;
11209
11210 error2:
11211 fini_reloc_cookie (cookie, sec->owner);
11212 error1:
11213 return FALSE;
11214 }
11215
11216 /* Free the memory allocated by init_reloc_cookie_for_section,
11217 if appropriate. */
11218
11219 static void
11220 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11221 asection *sec)
11222 {
11223 fini_reloc_cookie_rels (cookie, sec);
11224 fini_reloc_cookie (cookie, sec->owner);
11225 }
11226 \f
11227 /* Garbage collect unused sections. */
11228
11229 /* Default gc_mark_hook. */
11230
11231 asection *
11232 _bfd_elf_gc_mark_hook (asection *sec,
11233 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11234 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11235 struct elf_link_hash_entry *h,
11236 Elf_Internal_Sym *sym)
11237 {
11238 if (h != NULL)
11239 {
11240 switch (h->root.type)
11241 {
11242 case bfd_link_hash_defined:
11243 case bfd_link_hash_defweak:
11244 return h->root.u.def.section;
11245
11246 case bfd_link_hash_common:
11247 return h->root.u.c.p->section;
11248
11249 default:
11250 break;
11251 }
11252 }
11253 else
11254 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11255
11256 return NULL;
11257 }
11258
11259 /* COOKIE->rel describes a relocation against section SEC, which is
11260 a section we've decided to keep. Return the section that contains
11261 the relocation symbol, or NULL if no section contains it. */
11262
11263 asection *
11264 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11265 elf_gc_mark_hook_fn gc_mark_hook,
11266 struct elf_reloc_cookie *cookie)
11267 {
11268 unsigned long r_symndx;
11269 struct elf_link_hash_entry *h;
11270
11271 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11272 if (r_symndx == 0)
11273 return NULL;
11274
11275 if (r_symndx >= cookie->locsymcount
11276 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11277 {
11278 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11279 while (h->root.type == bfd_link_hash_indirect
11280 || h->root.type == bfd_link_hash_warning)
11281 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11282 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11283 }
11284
11285 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11286 &cookie->locsyms[r_symndx]);
11287 }
11288
11289 /* COOKIE->rel describes a relocation against section SEC, which is
11290 a section we've decided to keep. Mark the section that contains
11291 the relocation symbol. */
11292
11293 bfd_boolean
11294 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11295 asection *sec,
11296 elf_gc_mark_hook_fn gc_mark_hook,
11297 struct elf_reloc_cookie *cookie)
11298 {
11299 asection *rsec;
11300
11301 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11302 if (rsec && !rsec->gc_mark)
11303 {
11304 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11305 rsec->gc_mark = 1;
11306 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11307 return FALSE;
11308 }
11309 return TRUE;
11310 }
11311
11312 /* The mark phase of garbage collection. For a given section, mark
11313 it and any sections in this section's group, and all the sections
11314 which define symbols to which it refers. */
11315
11316 bfd_boolean
11317 _bfd_elf_gc_mark (struct bfd_link_info *info,
11318 asection *sec,
11319 elf_gc_mark_hook_fn gc_mark_hook)
11320 {
11321 bfd_boolean ret;
11322 asection *group_sec, *eh_frame;
11323
11324 sec->gc_mark = 1;
11325
11326 /* Mark all the sections in the group. */
11327 group_sec = elf_section_data (sec)->next_in_group;
11328 if (group_sec && !group_sec->gc_mark)
11329 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11330 return FALSE;
11331
11332 /* Look through the section relocs. */
11333 ret = TRUE;
11334 eh_frame = elf_eh_frame_section (sec->owner);
11335 if ((sec->flags & SEC_RELOC) != 0
11336 && sec->reloc_count > 0
11337 && sec != eh_frame)
11338 {
11339 struct elf_reloc_cookie cookie;
11340
11341 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11342 ret = FALSE;
11343 else
11344 {
11345 for (; cookie.rel < cookie.relend; cookie.rel++)
11346 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11347 {
11348 ret = FALSE;
11349 break;
11350 }
11351 fini_reloc_cookie_for_section (&cookie, sec);
11352 }
11353 }
11354
11355 if (ret && eh_frame && elf_fde_list (sec))
11356 {
11357 struct elf_reloc_cookie cookie;
11358
11359 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11360 ret = FALSE;
11361 else
11362 {
11363 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11364 gc_mark_hook, &cookie))
11365 ret = FALSE;
11366 fini_reloc_cookie_for_section (&cookie, eh_frame);
11367 }
11368 }
11369
11370 return ret;
11371 }
11372
11373 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11374
11375 struct elf_gc_sweep_symbol_info
11376 {
11377 struct bfd_link_info *info;
11378 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11379 bfd_boolean);
11380 };
11381
11382 static bfd_boolean
11383 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11384 {
11385 if (h->root.type == bfd_link_hash_warning)
11386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11387
11388 if ((h->root.type == bfd_link_hash_defined
11389 || h->root.type == bfd_link_hash_defweak)
11390 && !h->root.u.def.section->gc_mark
11391 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11392 {
11393 struct elf_gc_sweep_symbol_info *inf = data;
11394 (*inf->hide_symbol) (inf->info, h, TRUE);
11395 }
11396
11397 return TRUE;
11398 }
11399
11400 /* The sweep phase of garbage collection. Remove all garbage sections. */
11401
11402 typedef bfd_boolean (*gc_sweep_hook_fn)
11403 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11404
11405 static bfd_boolean
11406 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11407 {
11408 bfd *sub;
11409 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11410 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11411 unsigned long section_sym_count;
11412 struct elf_gc_sweep_symbol_info sweep_info;
11413
11414 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11415 {
11416 asection *o;
11417
11418 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11419 continue;
11420
11421 for (o = sub->sections; o != NULL; o = o->next)
11422 {
11423 /* When any section in a section group is kept, we keep all
11424 sections in the section group. If the first member of
11425 the section group is excluded, we will also exclude the
11426 group section. */
11427 if (o->flags & SEC_GROUP)
11428 {
11429 asection *first = elf_next_in_group (o);
11430 o->gc_mark = first->gc_mark;
11431 }
11432 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11433 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11434 {
11435 /* Keep debug and special sections. */
11436 o->gc_mark = 1;
11437 }
11438
11439 if (o->gc_mark)
11440 continue;
11441
11442 /* Skip sweeping sections already excluded. */
11443 if (o->flags & SEC_EXCLUDE)
11444 continue;
11445
11446 /* Since this is early in the link process, it is simple
11447 to remove a section from the output. */
11448 o->flags |= SEC_EXCLUDE;
11449
11450 if (info->print_gc_sections && o->size != 0)
11451 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11452
11453 /* But we also have to update some of the relocation
11454 info we collected before. */
11455 if (gc_sweep_hook
11456 && (o->flags & SEC_RELOC) != 0
11457 && o->reloc_count > 0
11458 && !bfd_is_abs_section (o->output_section))
11459 {
11460 Elf_Internal_Rela *internal_relocs;
11461 bfd_boolean r;
11462
11463 internal_relocs
11464 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11465 info->keep_memory);
11466 if (internal_relocs == NULL)
11467 return FALSE;
11468
11469 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11470
11471 if (elf_section_data (o)->relocs != internal_relocs)
11472 free (internal_relocs);
11473
11474 if (!r)
11475 return FALSE;
11476 }
11477 }
11478 }
11479
11480 /* Remove the symbols that were in the swept sections from the dynamic
11481 symbol table. GCFIXME: Anyone know how to get them out of the
11482 static symbol table as well? */
11483 sweep_info.info = info;
11484 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11485 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11486 &sweep_info);
11487
11488 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11489 return TRUE;
11490 }
11491
11492 /* Propagate collected vtable information. This is called through
11493 elf_link_hash_traverse. */
11494
11495 static bfd_boolean
11496 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11497 {
11498 if (h->root.type == bfd_link_hash_warning)
11499 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11500
11501 /* Those that are not vtables. */
11502 if (h->vtable == NULL || h->vtable->parent == NULL)
11503 return TRUE;
11504
11505 /* Those vtables that do not have parents, we cannot merge. */
11506 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11507 return TRUE;
11508
11509 /* If we've already been done, exit. */
11510 if (h->vtable->used && h->vtable->used[-1])
11511 return TRUE;
11512
11513 /* Make sure the parent's table is up to date. */
11514 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11515
11516 if (h->vtable->used == NULL)
11517 {
11518 /* None of this table's entries were referenced. Re-use the
11519 parent's table. */
11520 h->vtable->used = h->vtable->parent->vtable->used;
11521 h->vtable->size = h->vtable->parent->vtable->size;
11522 }
11523 else
11524 {
11525 size_t n;
11526 bfd_boolean *cu, *pu;
11527
11528 /* Or the parent's entries into ours. */
11529 cu = h->vtable->used;
11530 cu[-1] = TRUE;
11531 pu = h->vtable->parent->vtable->used;
11532 if (pu != NULL)
11533 {
11534 const struct elf_backend_data *bed;
11535 unsigned int log_file_align;
11536
11537 bed = get_elf_backend_data (h->root.u.def.section->owner);
11538 log_file_align = bed->s->log_file_align;
11539 n = h->vtable->parent->vtable->size >> log_file_align;
11540 while (n--)
11541 {
11542 if (*pu)
11543 *cu = TRUE;
11544 pu++;
11545 cu++;
11546 }
11547 }
11548 }
11549
11550 return TRUE;
11551 }
11552
11553 static bfd_boolean
11554 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11555 {
11556 asection *sec;
11557 bfd_vma hstart, hend;
11558 Elf_Internal_Rela *relstart, *relend, *rel;
11559 const struct elf_backend_data *bed;
11560 unsigned int log_file_align;
11561
11562 if (h->root.type == bfd_link_hash_warning)
11563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11564
11565 /* Take care of both those symbols that do not describe vtables as
11566 well as those that are not loaded. */
11567 if (h->vtable == NULL || h->vtable->parent == NULL)
11568 return TRUE;
11569
11570 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11571 || h->root.type == bfd_link_hash_defweak);
11572
11573 sec = h->root.u.def.section;
11574 hstart = h->root.u.def.value;
11575 hend = hstart + h->size;
11576
11577 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11578 if (!relstart)
11579 return *(bfd_boolean *) okp = FALSE;
11580 bed = get_elf_backend_data (sec->owner);
11581 log_file_align = bed->s->log_file_align;
11582
11583 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11584
11585 for (rel = relstart; rel < relend; ++rel)
11586 if (rel->r_offset >= hstart && rel->r_offset < hend)
11587 {
11588 /* If the entry is in use, do nothing. */
11589 if (h->vtable->used
11590 && (rel->r_offset - hstart) < h->vtable->size)
11591 {
11592 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11593 if (h->vtable->used[entry])
11594 continue;
11595 }
11596 /* Otherwise, kill it. */
11597 rel->r_offset = rel->r_info = rel->r_addend = 0;
11598 }
11599
11600 return TRUE;
11601 }
11602
11603 /* Mark sections containing dynamically referenced symbols. When
11604 building shared libraries, we must assume that any visible symbol is
11605 referenced. */
11606
11607 bfd_boolean
11608 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11609 {
11610 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11611
11612 if (h->root.type == bfd_link_hash_warning)
11613 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11614
11615 if ((h->root.type == bfd_link_hash_defined
11616 || h->root.type == bfd_link_hash_defweak)
11617 && (h->ref_dynamic
11618 || (!info->executable
11619 && h->def_regular
11620 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11621 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11622 h->root.u.def.section->flags |= SEC_KEEP;
11623
11624 return TRUE;
11625 }
11626
11627 /* Keep all sections containing symbols undefined on the command-line,
11628 and the section containing the entry symbol. */
11629
11630 void
11631 _bfd_elf_gc_keep (struct bfd_link_info *info)
11632 {
11633 struct bfd_sym_chain *sym;
11634
11635 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11636 {
11637 struct elf_link_hash_entry *h;
11638
11639 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11640 FALSE, FALSE, FALSE);
11641
11642 if (h != NULL
11643 && (h->root.type == bfd_link_hash_defined
11644 || h->root.type == bfd_link_hash_defweak)
11645 && !bfd_is_abs_section (h->root.u.def.section))
11646 h->root.u.def.section->flags |= SEC_KEEP;
11647 }
11648 }
11649
11650 /* Do mark and sweep of unused sections. */
11651
11652 bfd_boolean
11653 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11654 {
11655 bfd_boolean ok = TRUE;
11656 bfd *sub;
11657 elf_gc_mark_hook_fn gc_mark_hook;
11658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11659
11660 if (!bed->can_gc_sections
11661 || !is_elf_hash_table (info->hash))
11662 {
11663 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11664 return TRUE;
11665 }
11666
11667 bed->gc_keep (info);
11668
11669 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11670 at the .eh_frame section if we can mark the FDEs individually. */
11671 _bfd_elf_begin_eh_frame_parsing (info);
11672 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11673 {
11674 asection *sec;
11675 struct elf_reloc_cookie cookie;
11676
11677 sec = bfd_get_section_by_name (sub, ".eh_frame");
11678 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11679 {
11680 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11681 if (elf_section_data (sec)->sec_info)
11682 elf_eh_frame_section (sub) = sec;
11683 fini_reloc_cookie_for_section (&cookie, sec);
11684 }
11685 }
11686 _bfd_elf_end_eh_frame_parsing (info);
11687
11688 /* Apply transitive closure to the vtable entry usage info. */
11689 elf_link_hash_traverse (elf_hash_table (info),
11690 elf_gc_propagate_vtable_entries_used,
11691 &ok);
11692 if (!ok)
11693 return FALSE;
11694
11695 /* Kill the vtable relocations that were not used. */
11696 elf_link_hash_traverse (elf_hash_table (info),
11697 elf_gc_smash_unused_vtentry_relocs,
11698 &ok);
11699 if (!ok)
11700 return FALSE;
11701
11702 /* Mark dynamically referenced symbols. */
11703 if (elf_hash_table (info)->dynamic_sections_created)
11704 elf_link_hash_traverse (elf_hash_table (info),
11705 bed->gc_mark_dynamic_ref,
11706 info);
11707
11708 /* Grovel through relocs to find out who stays ... */
11709 gc_mark_hook = bed->gc_mark_hook;
11710 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11711 {
11712 asection *o;
11713
11714 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11715 continue;
11716
11717 for (o = sub->sections; o != NULL; o = o->next)
11718 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11719 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11720 return FALSE;
11721 }
11722
11723 /* Allow the backend to mark additional target specific sections. */
11724 if (bed->gc_mark_extra_sections)
11725 bed->gc_mark_extra_sections (info, gc_mark_hook);
11726
11727 /* ... and mark SEC_EXCLUDE for those that go. */
11728 return elf_gc_sweep (abfd, info);
11729 }
11730 \f
11731 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11732
11733 bfd_boolean
11734 bfd_elf_gc_record_vtinherit (bfd *abfd,
11735 asection *sec,
11736 struct elf_link_hash_entry *h,
11737 bfd_vma offset)
11738 {
11739 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11740 struct elf_link_hash_entry **search, *child;
11741 bfd_size_type extsymcount;
11742 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11743
11744 /* The sh_info field of the symtab header tells us where the
11745 external symbols start. We don't care about the local symbols at
11746 this point. */
11747 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11748 if (!elf_bad_symtab (abfd))
11749 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11750
11751 sym_hashes = elf_sym_hashes (abfd);
11752 sym_hashes_end = sym_hashes + extsymcount;
11753
11754 /* Hunt down the child symbol, which is in this section at the same
11755 offset as the relocation. */
11756 for (search = sym_hashes; search != sym_hashes_end; ++search)
11757 {
11758 if ((child = *search) != NULL
11759 && (child->root.type == bfd_link_hash_defined
11760 || child->root.type == bfd_link_hash_defweak)
11761 && child->root.u.def.section == sec
11762 && child->root.u.def.value == offset)
11763 goto win;
11764 }
11765
11766 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11767 abfd, sec, (unsigned long) offset);
11768 bfd_set_error (bfd_error_invalid_operation);
11769 return FALSE;
11770
11771 win:
11772 if (!child->vtable)
11773 {
11774 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11775 if (!child->vtable)
11776 return FALSE;
11777 }
11778 if (!h)
11779 {
11780 /* This *should* only be the absolute section. It could potentially
11781 be that someone has defined a non-global vtable though, which
11782 would be bad. It isn't worth paging in the local symbols to be
11783 sure though; that case should simply be handled by the assembler. */
11784
11785 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11786 }
11787 else
11788 child->vtable->parent = h;
11789
11790 return TRUE;
11791 }
11792
11793 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11794
11795 bfd_boolean
11796 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11797 asection *sec ATTRIBUTE_UNUSED,
11798 struct elf_link_hash_entry *h,
11799 bfd_vma addend)
11800 {
11801 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11802 unsigned int log_file_align = bed->s->log_file_align;
11803
11804 if (!h->vtable)
11805 {
11806 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11807 if (!h->vtable)
11808 return FALSE;
11809 }
11810
11811 if (addend >= h->vtable->size)
11812 {
11813 size_t size, bytes, file_align;
11814 bfd_boolean *ptr = h->vtable->used;
11815
11816 /* While the symbol is undefined, we have to be prepared to handle
11817 a zero size. */
11818 file_align = 1 << log_file_align;
11819 if (h->root.type == bfd_link_hash_undefined)
11820 size = addend + file_align;
11821 else
11822 {
11823 size = h->size;
11824 if (addend >= size)
11825 {
11826 /* Oops! We've got a reference past the defined end of
11827 the table. This is probably a bug -- shall we warn? */
11828 size = addend + file_align;
11829 }
11830 }
11831 size = (size + file_align - 1) & -file_align;
11832
11833 /* Allocate one extra entry for use as a "done" flag for the
11834 consolidation pass. */
11835 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11836
11837 if (ptr)
11838 {
11839 ptr = bfd_realloc (ptr - 1, bytes);
11840
11841 if (ptr != NULL)
11842 {
11843 size_t oldbytes;
11844
11845 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11846 * sizeof (bfd_boolean));
11847 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11848 }
11849 }
11850 else
11851 ptr = bfd_zmalloc (bytes);
11852
11853 if (ptr == NULL)
11854 return FALSE;
11855
11856 /* And arrange for that done flag to be at index -1. */
11857 h->vtable->used = ptr + 1;
11858 h->vtable->size = size;
11859 }
11860
11861 h->vtable->used[addend >> log_file_align] = TRUE;
11862
11863 return TRUE;
11864 }
11865
11866 struct alloc_got_off_arg {
11867 bfd_vma gotoff;
11868 struct bfd_link_info *info;
11869 };
11870
11871 /* We need a special top-level link routine to convert got reference counts
11872 to real got offsets. */
11873
11874 static bfd_boolean
11875 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11876 {
11877 struct alloc_got_off_arg *gofarg = arg;
11878 bfd *obfd = gofarg->info->output_bfd;
11879 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11880
11881 if (h->root.type == bfd_link_hash_warning)
11882 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11883
11884 if (h->got.refcount > 0)
11885 {
11886 h->got.offset = gofarg->gotoff;
11887 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11888 }
11889 else
11890 h->got.offset = (bfd_vma) -1;
11891
11892 return TRUE;
11893 }
11894
11895 /* And an accompanying bit to work out final got entry offsets once
11896 we're done. Should be called from final_link. */
11897
11898 bfd_boolean
11899 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11900 struct bfd_link_info *info)
11901 {
11902 bfd *i;
11903 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11904 bfd_vma gotoff;
11905 struct alloc_got_off_arg gofarg;
11906
11907 BFD_ASSERT (abfd == info->output_bfd);
11908
11909 if (! is_elf_hash_table (info->hash))
11910 return FALSE;
11911
11912 /* The GOT offset is relative to the .got section, but the GOT header is
11913 put into the .got.plt section, if the backend uses it. */
11914 if (bed->want_got_plt)
11915 gotoff = 0;
11916 else
11917 gotoff = bed->got_header_size;
11918
11919 /* Do the local .got entries first. */
11920 for (i = info->input_bfds; i; i = i->link_next)
11921 {
11922 bfd_signed_vma *local_got;
11923 bfd_size_type j, locsymcount;
11924 Elf_Internal_Shdr *symtab_hdr;
11925
11926 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11927 continue;
11928
11929 local_got = elf_local_got_refcounts (i);
11930 if (!local_got)
11931 continue;
11932
11933 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11934 if (elf_bad_symtab (i))
11935 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11936 else
11937 locsymcount = symtab_hdr->sh_info;
11938
11939 for (j = 0; j < locsymcount; ++j)
11940 {
11941 if (local_got[j] > 0)
11942 {
11943 local_got[j] = gotoff;
11944 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11945 }
11946 else
11947 local_got[j] = (bfd_vma) -1;
11948 }
11949 }
11950
11951 /* Then the global .got entries. .plt refcounts are handled by
11952 adjust_dynamic_symbol */
11953 gofarg.gotoff = gotoff;
11954 gofarg.info = info;
11955 elf_link_hash_traverse (elf_hash_table (info),
11956 elf_gc_allocate_got_offsets,
11957 &gofarg);
11958 return TRUE;
11959 }
11960
11961 /* Many folk need no more in the way of final link than this, once
11962 got entry reference counting is enabled. */
11963
11964 bfd_boolean
11965 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11966 {
11967 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11968 return FALSE;
11969
11970 /* Invoke the regular ELF backend linker to do all the work. */
11971 return bfd_elf_final_link (abfd, info);
11972 }
11973
11974 bfd_boolean
11975 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11976 {
11977 struct elf_reloc_cookie *rcookie = cookie;
11978
11979 if (rcookie->bad_symtab)
11980 rcookie->rel = rcookie->rels;
11981
11982 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11983 {
11984 unsigned long r_symndx;
11985
11986 if (! rcookie->bad_symtab)
11987 if (rcookie->rel->r_offset > offset)
11988 return FALSE;
11989 if (rcookie->rel->r_offset != offset)
11990 continue;
11991
11992 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11993 if (r_symndx == SHN_UNDEF)
11994 return TRUE;
11995
11996 if (r_symndx >= rcookie->locsymcount
11997 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11998 {
11999 struct elf_link_hash_entry *h;
12000
12001 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12002
12003 while (h->root.type == bfd_link_hash_indirect
12004 || h->root.type == bfd_link_hash_warning)
12005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12006
12007 if ((h->root.type == bfd_link_hash_defined
12008 || h->root.type == bfd_link_hash_defweak)
12009 && elf_discarded_section (h->root.u.def.section))
12010 return TRUE;
12011 else
12012 return FALSE;
12013 }
12014 else
12015 {
12016 /* It's not a relocation against a global symbol,
12017 but it could be a relocation against a local
12018 symbol for a discarded section. */
12019 asection *isec;
12020 Elf_Internal_Sym *isym;
12021
12022 /* Need to: get the symbol; get the section. */
12023 isym = &rcookie->locsyms[r_symndx];
12024 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12025 if (isec != NULL && elf_discarded_section (isec))
12026 return TRUE;
12027 }
12028 return FALSE;
12029 }
12030 return FALSE;
12031 }
12032
12033 /* Discard unneeded references to discarded sections.
12034 Returns TRUE if any section's size was changed. */
12035 /* This function assumes that the relocations are in sorted order,
12036 which is true for all known assemblers. */
12037
12038 bfd_boolean
12039 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12040 {
12041 struct elf_reloc_cookie cookie;
12042 asection *stab, *eh;
12043 const struct elf_backend_data *bed;
12044 bfd *abfd;
12045 bfd_boolean ret = FALSE;
12046
12047 if (info->traditional_format
12048 || !is_elf_hash_table (info->hash))
12049 return FALSE;
12050
12051 _bfd_elf_begin_eh_frame_parsing (info);
12052 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12053 {
12054 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12055 continue;
12056
12057 bed = get_elf_backend_data (abfd);
12058
12059 if ((abfd->flags & DYNAMIC) != 0)
12060 continue;
12061
12062 eh = NULL;
12063 if (!info->relocatable)
12064 {
12065 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12066 if (eh != NULL
12067 && (eh->size == 0
12068 || bfd_is_abs_section (eh->output_section)))
12069 eh = NULL;
12070 }
12071
12072 stab = bfd_get_section_by_name (abfd, ".stab");
12073 if (stab != NULL
12074 && (stab->size == 0
12075 || bfd_is_abs_section (stab->output_section)
12076 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12077 stab = NULL;
12078
12079 if (stab == NULL
12080 && eh == NULL
12081 && bed->elf_backend_discard_info == NULL)
12082 continue;
12083
12084 if (!init_reloc_cookie (&cookie, info, abfd))
12085 return FALSE;
12086
12087 if (stab != NULL
12088 && stab->reloc_count > 0
12089 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12090 {
12091 if (_bfd_discard_section_stabs (abfd, stab,
12092 elf_section_data (stab)->sec_info,
12093 bfd_elf_reloc_symbol_deleted_p,
12094 &cookie))
12095 ret = TRUE;
12096 fini_reloc_cookie_rels (&cookie, stab);
12097 }
12098
12099 if (eh != NULL
12100 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12101 {
12102 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12103 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12104 bfd_elf_reloc_symbol_deleted_p,
12105 &cookie))
12106 ret = TRUE;
12107 fini_reloc_cookie_rels (&cookie, eh);
12108 }
12109
12110 if (bed->elf_backend_discard_info != NULL
12111 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12112 ret = TRUE;
12113
12114 fini_reloc_cookie (&cookie, abfd);
12115 }
12116 _bfd_elf_end_eh_frame_parsing (info);
12117
12118 if (info->eh_frame_hdr
12119 && !info->relocatable
12120 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12121 ret = TRUE;
12122
12123 return ret;
12124 }
12125
12126 /* For a SHT_GROUP section, return the group signature. For other
12127 sections, return the normal section name. */
12128
12129 static const char *
12130 section_signature (asection *sec)
12131 {
12132 if ((sec->flags & SEC_GROUP) != 0
12133 && elf_next_in_group (sec) != NULL
12134 && elf_group_name (elf_next_in_group (sec)) != NULL)
12135 return elf_group_name (elf_next_in_group (sec));
12136 return sec->name;
12137 }
12138
12139 void
12140 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12141 struct bfd_link_info *info)
12142 {
12143 flagword flags;
12144 const char *name, *p;
12145 struct bfd_section_already_linked *l;
12146 struct bfd_section_already_linked_hash_entry *already_linked_list;
12147
12148 if (sec->output_section == bfd_abs_section_ptr)
12149 return;
12150
12151 flags = sec->flags;
12152
12153 /* Return if it isn't a linkonce section. A comdat group section
12154 also has SEC_LINK_ONCE set. */
12155 if ((flags & SEC_LINK_ONCE) == 0)
12156 return;
12157
12158 /* Don't put group member sections on our list of already linked
12159 sections. They are handled as a group via their group section. */
12160 if (elf_sec_group (sec) != NULL)
12161 return;
12162
12163 /* FIXME: When doing a relocatable link, we may have trouble
12164 copying relocations in other sections that refer to local symbols
12165 in the section being discarded. Those relocations will have to
12166 be converted somehow; as of this writing I'm not sure that any of
12167 the backends handle that correctly.
12168
12169 It is tempting to instead not discard link once sections when
12170 doing a relocatable link (technically, they should be discarded
12171 whenever we are building constructors). However, that fails,
12172 because the linker winds up combining all the link once sections
12173 into a single large link once section, which defeats the purpose
12174 of having link once sections in the first place.
12175
12176 Also, not merging link once sections in a relocatable link
12177 causes trouble for MIPS ELF, which relies on link once semantics
12178 to handle the .reginfo section correctly. */
12179
12180 name = section_signature (sec);
12181
12182 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12183 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12184 p++;
12185 else
12186 p = name;
12187
12188 already_linked_list = bfd_section_already_linked_table_lookup (p);
12189
12190 for (l = already_linked_list->entry; l != NULL; l = l->next)
12191 {
12192 /* We may have 2 different types of sections on the list: group
12193 sections and linkonce sections. Match like sections. */
12194 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12195 && strcmp (name, section_signature (l->sec)) == 0
12196 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12197 {
12198 /* The section has already been linked. See if we should
12199 issue a warning. */
12200 switch (flags & SEC_LINK_DUPLICATES)
12201 {
12202 default:
12203 abort ();
12204
12205 case SEC_LINK_DUPLICATES_DISCARD:
12206 break;
12207
12208 case SEC_LINK_DUPLICATES_ONE_ONLY:
12209 (*_bfd_error_handler)
12210 (_("%B: ignoring duplicate section `%A'"),
12211 abfd, sec);
12212 break;
12213
12214 case SEC_LINK_DUPLICATES_SAME_SIZE:
12215 if (sec->size != l->sec->size)
12216 (*_bfd_error_handler)
12217 (_("%B: duplicate section `%A' has different size"),
12218 abfd, sec);
12219 break;
12220
12221 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12222 if (sec->size != l->sec->size)
12223 (*_bfd_error_handler)
12224 (_("%B: duplicate section `%A' has different size"),
12225 abfd, sec);
12226 else if (sec->size != 0)
12227 {
12228 bfd_byte *sec_contents, *l_sec_contents;
12229
12230 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12231 (*_bfd_error_handler)
12232 (_("%B: warning: could not read contents of section `%A'"),
12233 abfd, sec);
12234 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12235 &l_sec_contents))
12236 (*_bfd_error_handler)
12237 (_("%B: warning: could not read contents of section `%A'"),
12238 l->sec->owner, l->sec);
12239 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12240 (*_bfd_error_handler)
12241 (_("%B: warning: duplicate section `%A' has different contents"),
12242 abfd, sec);
12243
12244 if (sec_contents)
12245 free (sec_contents);
12246 if (l_sec_contents)
12247 free (l_sec_contents);
12248 }
12249 break;
12250 }
12251
12252 /* Set the output_section field so that lang_add_section
12253 does not create a lang_input_section structure for this
12254 section. Since there might be a symbol in the section
12255 being discarded, we must retain a pointer to the section
12256 which we are really going to use. */
12257 sec->output_section = bfd_abs_section_ptr;
12258 sec->kept_section = l->sec;
12259
12260 if (flags & SEC_GROUP)
12261 {
12262 asection *first = elf_next_in_group (sec);
12263 asection *s = first;
12264
12265 while (s != NULL)
12266 {
12267 s->output_section = bfd_abs_section_ptr;
12268 /* Record which group discards it. */
12269 s->kept_section = l->sec;
12270 s = elf_next_in_group (s);
12271 /* These lists are circular. */
12272 if (s == first)
12273 break;
12274 }
12275 }
12276
12277 return;
12278 }
12279 }
12280
12281 /* A single member comdat group section may be discarded by a
12282 linkonce section and vice versa. */
12283
12284 if ((flags & SEC_GROUP) != 0)
12285 {
12286 asection *first = elf_next_in_group (sec);
12287
12288 if (first != NULL && elf_next_in_group (first) == first)
12289 /* Check this single member group against linkonce sections. */
12290 for (l = already_linked_list->entry; l != NULL; l = l->next)
12291 if ((l->sec->flags & SEC_GROUP) == 0
12292 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12293 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12294 {
12295 first->output_section = bfd_abs_section_ptr;
12296 first->kept_section = l->sec;
12297 sec->output_section = bfd_abs_section_ptr;
12298 break;
12299 }
12300 }
12301 else
12302 /* Check this linkonce section against single member groups. */
12303 for (l = already_linked_list->entry; l != NULL; l = l->next)
12304 if (l->sec->flags & SEC_GROUP)
12305 {
12306 asection *first = elf_next_in_group (l->sec);
12307
12308 if (first != NULL
12309 && elf_next_in_group (first) == first
12310 && bfd_elf_match_symbols_in_sections (first, sec, info))
12311 {
12312 sec->output_section = bfd_abs_section_ptr;
12313 sec->kept_section = first;
12314 break;
12315 }
12316 }
12317
12318 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12319 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12320 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12321 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12322 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12323 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12324 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12325 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12326 The reverse order cannot happen as there is never a bfd with only the
12327 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12328 matter as here were are looking only for cross-bfd sections. */
12329
12330 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12331 for (l = already_linked_list->entry; l != NULL; l = l->next)
12332 if ((l->sec->flags & SEC_GROUP) == 0
12333 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12334 {
12335 if (abfd != l->sec->owner)
12336 sec->output_section = bfd_abs_section_ptr;
12337 break;
12338 }
12339
12340 /* This is the first section with this name. Record it. */
12341 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12342 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12343 }
12344
12345 bfd_boolean
12346 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12347 {
12348 return sym->st_shndx == SHN_COMMON;
12349 }
12350
12351 unsigned int
12352 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12353 {
12354 return SHN_COMMON;
12355 }
12356
12357 asection *
12358 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12359 {
12360 return bfd_com_section_ptr;
12361 }
12362
12363 bfd_vma
12364 _bfd_elf_default_got_elt_size (bfd *abfd,
12365 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12366 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12367 bfd *ibfd ATTRIBUTE_UNUSED,
12368 unsigned long symndx ATTRIBUTE_UNUSED)
12369 {
12370 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12371 return bed->s->arch_size / 8;
12372 }
12373
12374 /* Routines to support the creation of dynamic relocs. */
12375
12376 /* Return true if NAME is a name of a relocation
12377 section associated with section S. */
12378
12379 static bfd_boolean
12380 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12381 {
12382 if (rela)
12383 return CONST_STRNEQ (name, ".rela")
12384 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12385
12386 return CONST_STRNEQ (name, ".rel")
12387 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12388 }
12389
12390 /* Returns the name of the dynamic reloc section associated with SEC. */
12391
12392 static const char *
12393 get_dynamic_reloc_section_name (bfd * abfd,
12394 asection * sec,
12395 bfd_boolean is_rela)
12396 {
12397 const char * name;
12398 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12399 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12400
12401 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12402 if (name == NULL)
12403 return NULL;
12404
12405 if (! is_reloc_section (is_rela, name, sec))
12406 {
12407 static bfd_boolean complained = FALSE;
12408
12409 if (! complained)
12410 {
12411 (*_bfd_error_handler)
12412 (_("%B: bad relocation section name `%s\'"), abfd, name);
12413 complained = TRUE;
12414 }
12415 name = NULL;
12416 }
12417
12418 return name;
12419 }
12420
12421 /* Returns the dynamic reloc section associated with SEC.
12422 If necessary compute the name of the dynamic reloc section based
12423 on SEC's name (looked up in ABFD's string table) and the setting
12424 of IS_RELA. */
12425
12426 asection *
12427 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12428 asection * sec,
12429 bfd_boolean is_rela)
12430 {
12431 asection * reloc_sec = elf_section_data (sec)->sreloc;
12432
12433 if (reloc_sec == NULL)
12434 {
12435 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12436
12437 if (name != NULL)
12438 {
12439 reloc_sec = bfd_get_section_by_name (abfd, name);
12440
12441 if (reloc_sec != NULL)
12442 elf_section_data (sec)->sreloc = reloc_sec;
12443 }
12444 }
12445
12446 return reloc_sec;
12447 }
12448
12449 /* Returns the dynamic reloc section associated with SEC. If the
12450 section does not exist it is created and attached to the DYNOBJ
12451 bfd and stored in the SRELOC field of SEC's elf_section_data
12452 structure.
12453
12454 ALIGNMENT is the alignment for the newly created section and
12455 IS_RELA defines whether the name should be .rela.<SEC's name>
12456 or .rel.<SEC's name>. The section name is looked up in the
12457 string table associated with ABFD. */
12458
12459 asection *
12460 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12461 bfd * dynobj,
12462 unsigned int alignment,
12463 bfd * abfd,
12464 bfd_boolean is_rela)
12465 {
12466 asection * reloc_sec = elf_section_data (sec)->sreloc;
12467
12468 if (reloc_sec == NULL)
12469 {
12470 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12471
12472 if (name == NULL)
12473 return NULL;
12474
12475 reloc_sec = bfd_get_section_by_name (dynobj, name);
12476
12477 if (reloc_sec == NULL)
12478 {
12479 flagword flags;
12480
12481 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12482 if ((sec->flags & SEC_ALLOC) != 0)
12483 flags |= SEC_ALLOC | SEC_LOAD;
12484
12485 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12486 if (reloc_sec != NULL)
12487 {
12488 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12489 reloc_sec = NULL;
12490 }
12491 }
12492
12493 elf_section_data (sec)->sreloc = reloc_sec;
12494 }
12495
12496 return reloc_sec;
12497 }
This page took 0.316449 seconds and 4 git commands to generate.