Fix null pointer dereferences when using a link built with clang.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
224 {
225 abfd = ibfd;
226 break;
227 }
228 }
229 hash_table->dynobj = abfd;
230 }
231
232 if (hash_table->dynstr == NULL)
233 {
234 hash_table->dynstr = _bfd_elf_strtab_init ();
235 if (hash_table->dynstr == NULL)
236 return FALSE;
237 }
238 return TRUE;
239 }
240
241 /* Create some sections which will be filled in with dynamic linking
242 information. ABFD is an input file which requires dynamic sections
243 to be created. The dynamic sections take up virtual memory space
244 when the final executable is run, so we need to create them before
245 addresses are assigned to the output sections. We work out the
246 actual contents and size of these sections later. */
247
248 bfd_boolean
249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 {
251 flagword flags;
252 asection *s;
253 const struct elf_backend_data *bed;
254 struct elf_link_hash_entry *h;
255
256 if (! is_elf_hash_table (info->hash))
257 return FALSE;
258
259 if (elf_hash_table (info)->dynamic_sections_created)
260 return TRUE;
261
262 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
263 return FALSE;
264
265 abfd = elf_hash_table (info)->dynobj;
266 bed = get_elf_backend_data (abfd);
267
268 flags = bed->dynamic_sec_flags;
269
270 /* A dynamically linked executable has a .interp section, but a
271 shared library does not. */
272 if (bfd_link_executable (info) && !info->nointerp)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 flags | SEC_READONLY);
276 if (s == NULL)
277 return FALSE;
278 }
279
280 /* Create sections to hold version informations. These are removed
281 if they are not needed. */
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, 1))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299
300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 flags | SEC_READONLY);
302 if (s == NULL
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 return FALSE;
305 elf_hash_table (info)->dynsym = s;
306
307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 flags | SEC_READONLY);
309 if (s == NULL)
310 return FALSE;
311
312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
313 if (s == NULL
314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
315 return FALSE;
316
317 /* The special symbol _DYNAMIC is always set to the start of the
318 .dynamic section. We could set _DYNAMIC in a linker script, but we
319 only want to define it if we are, in fact, creating a .dynamic
320 section. We don't want to define it if there is no .dynamic
321 section, since on some ELF platforms the start up code examines it
322 to decide how to initialize the process. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324 elf_hash_table (info)->hdynamic = h;
325 if (h == NULL)
326 return FALSE;
327
328 if (info->emit_hash)
329 {
330 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 flags | SEC_READONLY);
332 if (s == NULL
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
334 return FALSE;
335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
336 }
337
338 if (info->emit_gnu_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 4 32-bit words followed by variable count of 64-bit words, then
347 variable count of 32-bit words. */
348 if (bed->s->arch_size == 64)
349 elf_section_data (s)->this_hdr.sh_entsize = 0;
350 else
351 elf_section_data (s)->this_hdr.sh_entsize = 4;
352 }
353
354 /* Let the backend create the rest of the sections. This lets the
355 backend set the right flags. The backend will normally create
356 the .got and .plt sections. */
357 if (bed->elf_backend_create_dynamic_sections == NULL
358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
359 return FALSE;
360
361 elf_hash_table (info)->dynamic_sections_created = TRUE;
362
363 return TRUE;
364 }
365
366 /* Create dynamic sections when linking against a dynamic object. */
367
368 bfd_boolean
369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
370 {
371 flagword flags, pltflags;
372 struct elf_link_hash_entry *h;
373 asection *s;
374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375 struct elf_link_hash_table *htab = elf_hash_table (info);
376
377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378 .rel[a].bss sections. */
379 flags = bed->dynamic_sec_flags;
380
381 pltflags = flags;
382 if (bed->plt_not_loaded)
383 /* We do not clear SEC_ALLOC here because we still want the OS to
384 allocate space for the section; it's just that there's nothing
385 to read in from the object file. */
386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
387 else
388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389 if (bed->plt_readonly)
390 pltflags |= SEC_READONLY;
391
392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
393 if (s == NULL
394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
395 return FALSE;
396 htab->splt = s;
397
398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
399 .plt section. */
400 if (bed->want_plt_sym)
401 {
402 h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 "_PROCEDURE_LINKAGE_TABLE_");
404 elf_hash_table (info)->hplt = h;
405 if (h == NULL)
406 return FALSE;
407 }
408
409 s = bfd_make_section_anyway_with_flags (abfd,
410 (bed->rela_plts_and_copies_p
411 ? ".rela.plt" : ".rel.plt"),
412 flags | SEC_READONLY);
413 if (s == NULL
414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
415 return FALSE;
416 htab->srelplt = s;
417
418 if (! _bfd_elf_create_got_section (abfd, info))
419 return FALSE;
420
421 if (bed->want_dynbss)
422 {
423 /* The .dynbss section is a place to put symbols which are defined
424 by dynamic objects, are referenced by regular objects, and are
425 not functions. We must allocate space for them in the process
426 image and use a R_*_COPY reloc to tell the dynamic linker to
427 initialize them at run time. The linker script puts the .dynbss
428 section into the .bss section of the final image. */
429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 SEC_ALLOC | SEC_LINKER_CREATED);
431 if (s == NULL)
432 return FALSE;
433 htab->sdynbss = s;
434
435 if (bed->want_dynrelro)
436 {
437 /* Similarly, but for symbols that were originally in read-only
438 sections. This section doesn't really need to have contents,
439 but make it like other .data.rel.ro sections. */
440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
441 flags);
442 if (s == NULL)
443 return FALSE;
444 htab->sdynrelro = s;
445 }
446
447 /* The .rel[a].bss section holds copy relocs. This section is not
448 normally needed. We need to create it here, though, so that the
449 linker will map it to an output section. We can't just create it
450 only if we need it, because we will not know whether we need it
451 until we have seen all the input files, and the first time the
452 main linker code calls BFD after examining all the input files
453 (size_dynamic_sections) the input sections have already been
454 mapped to the output sections. If the section turns out not to
455 be needed, we can discard it later. We will never need this
456 section when generating a shared object, since they do not use
457 copy relocs. */
458 if (bfd_link_executable (info))
459 {
460 s = bfd_make_section_anyway_with_flags (abfd,
461 (bed->rela_plts_and_copies_p
462 ? ".rela.bss" : ".rel.bss"),
463 flags | SEC_READONLY);
464 if (s == NULL
465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
466 return FALSE;
467 htab->srelbss = s;
468
469 if (bed->want_dynrelro)
470 {
471 s = (bfd_make_section_anyway_with_flags
472 (abfd, (bed->rela_plts_and_copies_p
473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 flags | SEC_READONLY));
475 if (s == NULL
476 || ! bfd_set_section_alignment (abfd, s,
477 bed->s->log_file_align))
478 return FALSE;
479 htab->sreldynrelro = s;
480 }
481 }
482 }
483
484 return TRUE;
485 }
486 \f
487 /* Record a new dynamic symbol. We record the dynamic symbols as we
488 read the input files, since we need to have a list of all of them
489 before we can determine the final sizes of the output sections.
490 Note that we may actually call this function even though we are not
491 going to output any dynamic symbols; in some cases we know that a
492 symbol should be in the dynamic symbol table, but only if there is
493 one. */
494
495 bfd_boolean
496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_hash_entry *h)
498 {
499 if (h->dynindx == -1)
500 {
501 struct elf_strtab_hash *dynstr;
502 char *p;
503 const char *name;
504 size_t indx;
505
506 /* XXX: The ABI draft says the linker must turn hidden and
507 internal symbols into STB_LOCAL symbols when producing the
508 DSO. However, if ld.so honors st_other in the dynamic table,
509 this would not be necessary. */
510 switch (ELF_ST_VISIBILITY (h->other))
511 {
512 case STV_INTERNAL:
513 case STV_HIDDEN:
514 if (h->root.type != bfd_link_hash_undefined
515 && h->root.type != bfd_link_hash_undefweak)
516 {
517 h->forced_local = 1;
518 if (!elf_hash_table (info)->is_relocatable_executable)
519 return TRUE;
520 }
521
522 default:
523 break;
524 }
525
526 h->dynindx = elf_hash_table (info)->dynsymcount;
527 ++elf_hash_table (info)->dynsymcount;
528
529 dynstr = elf_hash_table (info)->dynstr;
530 if (dynstr == NULL)
531 {
532 /* Create a strtab to hold the dynamic symbol names. */
533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
534 if (dynstr == NULL)
535 return FALSE;
536 }
537
538 /* We don't put any version information in the dynamic string
539 table. */
540 name = h->root.root.string;
541 p = strchr (name, ELF_VER_CHR);
542 if (p != NULL)
543 /* We know that the p points into writable memory. In fact,
544 there are only a few symbols that have read-only names, being
545 those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 by the backends. Most symbols will have names pointing into
547 an ELF string table read from a file, or to objalloc memory. */
548 *p = 0;
549
550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
551
552 if (p != NULL)
553 *p = ELF_VER_CHR;
554
555 if (indx == (size_t) -1)
556 return FALSE;
557 h->dynstr_index = indx;
558 }
559
560 return TRUE;
561 }
562 \f
563 /* Mark a symbol dynamic. */
564
565 static void
566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 struct elf_link_hash_entry *h,
568 Elf_Internal_Sym *sym)
569 {
570 struct bfd_elf_dynamic_list *d = info->dynamic_list;
571
572 /* It may be called more than once on the same H. */
573 if(h->dynamic || bfd_link_relocatable (info))
574 return;
575
576 if ((info->dynamic_data
577 && (h->type == STT_OBJECT
578 || h->type == STT_COMMON
579 || (sym != NULL
580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
582 || (d != NULL
583 && h->root.type == bfd_link_hash_new
584 && (*d->match) (&d->head, NULL, h->root.root.string)))
585 h->dynamic = 1;
586 }
587
588 /* Record an assignment to a symbol made by a linker script. We need
589 this in case some dynamic object refers to this symbol. */
590
591 bfd_boolean
592 bfd_elf_record_link_assignment (bfd *output_bfd,
593 struct bfd_link_info *info,
594 const char *name,
595 bfd_boolean provide,
596 bfd_boolean hidden)
597 {
598 struct elf_link_hash_entry *h, *hv;
599 struct elf_link_hash_table *htab;
600 const struct elf_backend_data *bed;
601
602 if (!is_elf_hash_table (info->hash))
603 return TRUE;
604
605 htab = elf_hash_table (info);
606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
607 if (h == NULL)
608 return provide;
609
610 if (h->root.type == bfd_link_hash_warning)
611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
612
613 if (h->versioned == unknown)
614 {
615 /* Set versioned if symbol version is unknown. */
616 char *version = strrchr (name, ELF_VER_CHR);
617 if (version)
618 {
619 if (version > name && version[-1] != ELF_VER_CHR)
620 h->versioned = versioned_hidden;
621 else
622 h->versioned = versioned;
623 }
624 }
625
626 switch (h->root.type)
627 {
628 case bfd_link_hash_defined:
629 case bfd_link_hash_defweak:
630 case bfd_link_hash_common:
631 break;
632 case bfd_link_hash_undefweak:
633 case bfd_link_hash_undefined:
634 /* Since we're defining the symbol, don't let it seem to have not
635 been defined. record_dynamic_symbol and size_dynamic_sections
636 may depend on this. */
637 h->root.type = bfd_link_hash_new;
638 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
639 bfd_link_repair_undef_list (&htab->root);
640 break;
641 case bfd_link_hash_new:
642 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
643 h->non_elf = 0;
644 break;
645 case bfd_link_hash_indirect:
646 /* We had a versioned symbol in a dynamic library. We make the
647 the versioned symbol point to this one. */
648 bed = get_elf_backend_data (output_bfd);
649 hv = h;
650 while (hv->root.type == bfd_link_hash_indirect
651 || hv->root.type == bfd_link_hash_warning)
652 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
653 /* We don't need to update h->root.u since linker will set them
654 later. */
655 h->root.type = bfd_link_hash_undefined;
656 hv->root.type = bfd_link_hash_indirect;
657 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
658 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
659 break;
660 default:
661 BFD_FAIL ();
662 return FALSE;
663 }
664
665 /* If this symbol is being provided by the linker script, and it is
666 currently defined by a dynamic object, but not by a regular
667 object, then mark it as undefined so that the generic linker will
668 force the correct value. */
669 if (provide
670 && h->def_dynamic
671 && !h->def_regular)
672 h->root.type = bfd_link_hash_undefined;
673
674 /* If this symbol is not being provided by the linker script, and it is
675 currently defined by a dynamic object, but not by a regular object,
676 then clear out any version information because the symbol will not be
677 associated with the dynamic object any more. */
678 if (!provide
679 && h->def_dynamic
680 && !h->def_regular)
681 h->verinfo.verdef = NULL;
682
683 /* Make sure this symbol is not garbage collected. */
684 h->mark = 1;
685
686 h->def_regular = 1;
687
688 if (hidden)
689 {
690 bed = get_elf_backend_data (output_bfd);
691 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
692 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
694 }
695
696 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
697 and executables. */
698 if (!bfd_link_relocatable (info)
699 && h->dynindx != -1
700 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
701 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
702 h->forced_local = 1;
703
704 if ((h->def_dynamic
705 || h->ref_dynamic
706 || bfd_link_dll (info)
707 || elf_hash_table (info)->is_relocatable_executable)
708 && h->dynindx == -1)
709 {
710 if (! bfd_elf_link_record_dynamic_symbol (info, h))
711 return FALSE;
712
713 /* If this is a weak defined symbol, and we know a corresponding
714 real symbol from the same dynamic object, make sure the real
715 symbol is also made into a dynamic symbol. */
716 if (h->u.weakdef != NULL
717 && h->u.weakdef->dynindx == -1)
718 {
719 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
720 return FALSE;
721 }
722 }
723
724 return TRUE;
725 }
726
727 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
728 success, and 2 on a failure caused by attempting to record a symbol
729 in a discarded section, eg. a discarded link-once section symbol. */
730
731 int
732 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
733 bfd *input_bfd,
734 long input_indx)
735 {
736 bfd_size_type amt;
737 struct elf_link_local_dynamic_entry *entry;
738 struct elf_link_hash_table *eht;
739 struct elf_strtab_hash *dynstr;
740 size_t dynstr_index;
741 char *name;
742 Elf_External_Sym_Shndx eshndx;
743 char esym[sizeof (Elf64_External_Sym)];
744
745 if (! is_elf_hash_table (info->hash))
746 return 0;
747
748 /* See if the entry exists already. */
749 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
750 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
751 return 1;
752
753 amt = sizeof (*entry);
754 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
755 if (entry == NULL)
756 return 0;
757
758 /* Go find the symbol, so that we can find it's name. */
759 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
760 1, input_indx, &entry->isym, esym, &eshndx))
761 {
762 bfd_release (input_bfd, entry);
763 return 0;
764 }
765
766 if (entry->isym.st_shndx != SHN_UNDEF
767 && entry->isym.st_shndx < SHN_LORESERVE)
768 {
769 asection *s;
770
771 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
772 if (s == NULL || bfd_is_abs_section (s->output_section))
773 {
774 /* We can still bfd_release here as nothing has done another
775 bfd_alloc. We can't do this later in this function. */
776 bfd_release (input_bfd, entry);
777 return 2;
778 }
779 }
780
781 name = (bfd_elf_string_from_elf_section
782 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
783 entry->isym.st_name));
784
785 dynstr = elf_hash_table (info)->dynstr;
786 if (dynstr == NULL)
787 {
788 /* Create a strtab to hold the dynamic symbol names. */
789 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
790 if (dynstr == NULL)
791 return 0;
792 }
793
794 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
795 if (dynstr_index == (size_t) -1)
796 return 0;
797 entry->isym.st_name = dynstr_index;
798
799 eht = elf_hash_table (info);
800
801 entry->next = eht->dynlocal;
802 eht->dynlocal = entry;
803 entry->input_bfd = input_bfd;
804 entry->input_indx = input_indx;
805 eht->dynsymcount++;
806
807 /* Whatever binding the symbol had before, it's now local. */
808 entry->isym.st_info
809 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
810
811 /* The dynindx will be set at the end of size_dynamic_sections. */
812
813 return 1;
814 }
815
816 /* Return the dynindex of a local dynamic symbol. */
817
818 long
819 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
820 bfd *input_bfd,
821 long input_indx)
822 {
823 struct elf_link_local_dynamic_entry *e;
824
825 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
826 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
827 return e->dynindx;
828 return -1;
829 }
830
831 /* This function is used to renumber the dynamic symbols, if some of
832 them are removed because they are marked as local. This is called
833 via elf_link_hash_traverse. */
834
835 static bfd_boolean
836 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
837 void *data)
838 {
839 size_t *count = (size_t *) data;
840
841 if (h->forced_local)
842 return TRUE;
843
844 if (h->dynindx != -1)
845 h->dynindx = ++(*count);
846
847 return TRUE;
848 }
849
850
851 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
852 STB_LOCAL binding. */
853
854 static bfd_boolean
855 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
856 void *data)
857 {
858 size_t *count = (size_t *) data;
859
860 if (!h->forced_local)
861 return TRUE;
862
863 if (h->dynindx != -1)
864 h->dynindx = ++(*count);
865
866 return TRUE;
867 }
868
869 /* Return true if the dynamic symbol for a given section should be
870 omitted when creating a shared library. */
871 bfd_boolean
872 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
873 struct bfd_link_info *info,
874 asection *p)
875 {
876 struct elf_link_hash_table *htab;
877 asection *ip;
878
879 switch (elf_section_data (p)->this_hdr.sh_type)
880 {
881 case SHT_PROGBITS:
882 case SHT_NOBITS:
883 /* If sh_type is yet undecided, assume it could be
884 SHT_PROGBITS/SHT_NOBITS. */
885 case SHT_NULL:
886 htab = elf_hash_table (info);
887 if (p == htab->tls_sec)
888 return FALSE;
889
890 if (htab->text_index_section != NULL)
891 return p != htab->text_index_section && p != htab->data_index_section;
892
893 return (htab->dynobj != NULL
894 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
895 && ip->output_section == p);
896
897 /* There shouldn't be section relative relocations
898 against any other section. */
899 default:
900 return TRUE;
901 }
902 }
903
904 /* Assign dynsym indices. In a shared library we generate a section
905 symbol for each output section, which come first. Next come symbols
906 which have been forced to local binding. Then all of the back-end
907 allocated local dynamic syms, followed by the rest of the global
908 symbols. */
909
910 static unsigned long
911 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
912 struct bfd_link_info *info,
913 unsigned long *section_sym_count)
914 {
915 unsigned long dynsymcount = 0;
916
917 if (bfd_link_pic (info)
918 || elf_hash_table (info)->is_relocatable_executable)
919 {
920 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
921 asection *p;
922 for (p = output_bfd->sections; p ; p = p->next)
923 if ((p->flags & SEC_EXCLUDE) == 0
924 && (p->flags & SEC_ALLOC) != 0
925 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
926 elf_section_data (p)->dynindx = ++dynsymcount;
927 else
928 elf_section_data (p)->dynindx = 0;
929 }
930 *section_sym_count = dynsymcount;
931
932 elf_link_hash_traverse (elf_hash_table (info),
933 elf_link_renumber_local_hash_table_dynsyms,
934 &dynsymcount);
935
936 if (elf_hash_table (info)->dynlocal)
937 {
938 struct elf_link_local_dynamic_entry *p;
939 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
940 p->dynindx = ++dynsymcount;
941 }
942 elf_hash_table (info)->local_dynsymcount = dynsymcount;
943
944 elf_link_hash_traverse (elf_hash_table (info),
945 elf_link_renumber_hash_table_dynsyms,
946 &dynsymcount);
947
948 /* There is an unused NULL entry at the head of the table which we
949 must account for in our count even if the table is empty since it
950 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
951 .dynamic section. */
952 dynsymcount++;
953
954 elf_hash_table (info)->dynsymcount = dynsymcount;
955 return dynsymcount;
956 }
957
958 /* Merge st_other field. */
959
960 static void
961 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
962 const Elf_Internal_Sym *isym, asection *sec,
963 bfd_boolean definition, bfd_boolean dynamic)
964 {
965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
966
967 /* If st_other has a processor-specific meaning, specific
968 code might be needed here. */
969 if (bed->elf_backend_merge_symbol_attribute)
970 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
971 dynamic);
972
973 if (!dynamic)
974 {
975 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
976 unsigned hvis = ELF_ST_VISIBILITY (h->other);
977
978 /* Keep the most constraining visibility. Leave the remainder
979 of the st_other field to elf_backend_merge_symbol_attribute. */
980 if (symvis - 1 < hvis - 1)
981 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
982 }
983 else if (definition
984 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
985 && (sec->flags & SEC_READONLY) == 0)
986 h->protected_def = 1;
987 }
988
989 /* This function is called when we want to merge a new symbol with an
990 existing symbol. It handles the various cases which arise when we
991 find a definition in a dynamic object, or when there is already a
992 definition in a dynamic object. The new symbol is described by
993 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
994 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
995 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
996 of an old common symbol. We set OVERRIDE if the old symbol is
997 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
998 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
999 to change. By OK to change, we mean that we shouldn't warn if the
1000 type or size does change. */
1001
1002 static bfd_boolean
1003 _bfd_elf_merge_symbol (bfd *abfd,
1004 struct bfd_link_info *info,
1005 const char *name,
1006 Elf_Internal_Sym *sym,
1007 asection **psec,
1008 bfd_vma *pvalue,
1009 struct elf_link_hash_entry **sym_hash,
1010 bfd **poldbfd,
1011 bfd_boolean *pold_weak,
1012 unsigned int *pold_alignment,
1013 bfd_boolean *skip,
1014 bfd_boolean *override,
1015 bfd_boolean *type_change_ok,
1016 bfd_boolean *size_change_ok,
1017 bfd_boolean *matched)
1018 {
1019 asection *sec, *oldsec;
1020 struct elf_link_hash_entry *h;
1021 struct elf_link_hash_entry *hi;
1022 struct elf_link_hash_entry *flip;
1023 int bind;
1024 bfd *oldbfd;
1025 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1026 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1027 const struct elf_backend_data *bed;
1028 char *new_version;
1029
1030 *skip = FALSE;
1031 *override = FALSE;
1032
1033 sec = *psec;
1034 bind = ELF_ST_BIND (sym->st_info);
1035
1036 if (! bfd_is_und_section (sec))
1037 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1038 else
1039 h = ((struct elf_link_hash_entry *)
1040 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1041 if (h == NULL)
1042 return FALSE;
1043 *sym_hash = h;
1044
1045 bed = get_elf_backend_data (abfd);
1046
1047 /* NEW_VERSION is the symbol version of the new symbol. */
1048 if (h->versioned != unversioned)
1049 {
1050 /* Symbol version is unknown or versioned. */
1051 new_version = strrchr (name, ELF_VER_CHR);
1052 if (new_version)
1053 {
1054 if (h->versioned == unknown)
1055 {
1056 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1057 h->versioned = versioned_hidden;
1058 else
1059 h->versioned = versioned;
1060 }
1061 new_version += 1;
1062 if (new_version[0] == '\0')
1063 new_version = NULL;
1064 }
1065 else
1066 h->versioned = unversioned;
1067 }
1068 else
1069 new_version = NULL;
1070
1071 /* For merging, we only care about real symbols. But we need to make
1072 sure that indirect symbol dynamic flags are updated. */
1073 hi = h;
1074 while (h->root.type == bfd_link_hash_indirect
1075 || h->root.type == bfd_link_hash_warning)
1076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1077
1078 if (!*matched)
1079 {
1080 if (hi == h || h->root.type == bfd_link_hash_new)
1081 *matched = TRUE;
1082 else
1083 {
1084 /* OLD_HIDDEN is true if the existing symbol is only visible
1085 to the symbol with the same symbol version. NEW_HIDDEN is
1086 true if the new symbol is only visible to the symbol with
1087 the same symbol version. */
1088 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1089 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1090 if (!old_hidden && !new_hidden)
1091 /* The new symbol matches the existing symbol if both
1092 aren't hidden. */
1093 *matched = TRUE;
1094 else
1095 {
1096 /* OLD_VERSION is the symbol version of the existing
1097 symbol. */
1098 char *old_version;
1099
1100 if (h->versioned >= versioned)
1101 old_version = strrchr (h->root.root.string,
1102 ELF_VER_CHR) + 1;
1103 else
1104 old_version = NULL;
1105
1106 /* The new symbol matches the existing symbol if they
1107 have the same symbol version. */
1108 *matched = (old_version == new_version
1109 || (old_version != NULL
1110 && new_version != NULL
1111 && strcmp (old_version, new_version) == 0));
1112 }
1113 }
1114 }
1115
1116 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1117 existing symbol. */
1118
1119 oldbfd = NULL;
1120 oldsec = NULL;
1121 switch (h->root.type)
1122 {
1123 default:
1124 break;
1125
1126 case bfd_link_hash_undefined:
1127 case bfd_link_hash_undefweak:
1128 oldbfd = h->root.u.undef.abfd;
1129 break;
1130
1131 case bfd_link_hash_defined:
1132 case bfd_link_hash_defweak:
1133 oldbfd = h->root.u.def.section->owner;
1134 oldsec = h->root.u.def.section;
1135 break;
1136
1137 case bfd_link_hash_common:
1138 oldbfd = h->root.u.c.p->section->owner;
1139 oldsec = h->root.u.c.p->section;
1140 if (pold_alignment)
1141 *pold_alignment = h->root.u.c.p->alignment_power;
1142 break;
1143 }
1144 if (poldbfd && *poldbfd == NULL)
1145 *poldbfd = oldbfd;
1146
1147 /* Differentiate strong and weak symbols. */
1148 newweak = bind == STB_WEAK;
1149 oldweak = (h->root.type == bfd_link_hash_defweak
1150 || h->root.type == bfd_link_hash_undefweak);
1151 if (pold_weak)
1152 *pold_weak = oldweak;
1153
1154 /* This code is for coping with dynamic objects, and is only useful
1155 if we are doing an ELF link. */
1156 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1157 return TRUE;
1158
1159 /* We have to check it for every instance since the first few may be
1160 references and not all compilers emit symbol type for undefined
1161 symbols. */
1162 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1163
1164 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1165 respectively, is from a dynamic object. */
1166
1167 newdyn = (abfd->flags & DYNAMIC) != 0;
1168
1169 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1170 syms and defined syms in dynamic libraries respectively.
1171 ref_dynamic on the other hand can be set for a symbol defined in
1172 a dynamic library, and def_dynamic may not be set; When the
1173 definition in a dynamic lib is overridden by a definition in the
1174 executable use of the symbol in the dynamic lib becomes a
1175 reference to the executable symbol. */
1176 if (newdyn)
1177 {
1178 if (bfd_is_und_section (sec))
1179 {
1180 if (bind != STB_WEAK)
1181 {
1182 h->ref_dynamic_nonweak = 1;
1183 hi->ref_dynamic_nonweak = 1;
1184 }
1185 }
1186 else
1187 {
1188 /* Update the existing symbol only if they match. */
1189 if (*matched)
1190 h->dynamic_def = 1;
1191 hi->dynamic_def = 1;
1192 }
1193 }
1194
1195 /* If we just created the symbol, mark it as being an ELF symbol.
1196 Other than that, there is nothing to do--there is no merge issue
1197 with a newly defined symbol--so we just return. */
1198
1199 if (h->root.type == bfd_link_hash_new)
1200 {
1201 h->non_elf = 0;
1202 return TRUE;
1203 }
1204
1205 /* In cases involving weak versioned symbols, we may wind up trying
1206 to merge a symbol with itself. Catch that here, to avoid the
1207 confusion that results if we try to override a symbol with
1208 itself. The additional tests catch cases like
1209 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1210 dynamic object, which we do want to handle here. */
1211 if (abfd == oldbfd
1212 && (newweak || oldweak)
1213 && ((abfd->flags & DYNAMIC) == 0
1214 || !h->def_regular))
1215 return TRUE;
1216
1217 olddyn = FALSE;
1218 if (oldbfd != NULL)
1219 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1220 else if (oldsec != NULL)
1221 {
1222 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1223 indices used by MIPS ELF. */
1224 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1225 }
1226
1227 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1228 respectively, appear to be a definition rather than reference. */
1229
1230 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1231
1232 olddef = (h->root.type != bfd_link_hash_undefined
1233 && h->root.type != bfd_link_hash_undefweak
1234 && h->root.type != bfd_link_hash_common);
1235
1236 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1237 respectively, appear to be a function. */
1238
1239 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1240 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1241
1242 oldfunc = (h->type != STT_NOTYPE
1243 && bed->is_function_type (h->type));
1244
1245 /* If creating a default indirect symbol ("foo" or "foo@") from a
1246 dynamic versioned definition ("foo@@") skip doing so if there is
1247 an existing regular definition with a different type. We don't
1248 want, for example, a "time" variable in the executable overriding
1249 a "time" function in a shared library. */
1250 if (pold_alignment == NULL
1251 && newdyn
1252 && newdef
1253 && !olddyn
1254 && (olddef || h->root.type == bfd_link_hash_common)
1255 && ELF_ST_TYPE (sym->st_info) != h->type
1256 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1257 && h->type != STT_NOTYPE
1258 && !(newfunc && oldfunc))
1259 {
1260 *skip = TRUE;
1261 return TRUE;
1262 }
1263
1264 /* Check TLS symbols. We don't check undefined symbols introduced
1265 by "ld -u" which have no type (and oldbfd NULL), and we don't
1266 check symbols from plugins because they also have no type. */
1267 if (oldbfd != NULL
1268 && (oldbfd->flags & BFD_PLUGIN) == 0
1269 && (abfd->flags & BFD_PLUGIN) == 0
1270 && ELF_ST_TYPE (sym->st_info) != h->type
1271 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1272 {
1273 bfd *ntbfd, *tbfd;
1274 bfd_boolean ntdef, tdef;
1275 asection *ntsec, *tsec;
1276
1277 if (h->type == STT_TLS)
1278 {
1279 ntbfd = abfd;
1280 ntsec = sec;
1281 ntdef = newdef;
1282 tbfd = oldbfd;
1283 tsec = oldsec;
1284 tdef = olddef;
1285 }
1286 else
1287 {
1288 ntbfd = oldbfd;
1289 ntsec = oldsec;
1290 ntdef = olddef;
1291 tbfd = abfd;
1292 tsec = sec;
1293 tdef = newdef;
1294 }
1295
1296 if (tdef && ntdef)
1297 _bfd_error_handler
1298 /* xgettext:c-format */
1299 (_("%s: TLS definition in %B section %A "
1300 "mismatches non-TLS definition in %B section %A"),
1301 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1302 else if (!tdef && !ntdef)
1303 _bfd_error_handler
1304 /* xgettext:c-format */
1305 (_("%s: TLS reference in %B "
1306 "mismatches non-TLS reference in %B"),
1307 tbfd, ntbfd, h->root.root.string);
1308 else if (tdef)
1309 _bfd_error_handler
1310 /* xgettext:c-format */
1311 (_("%s: TLS definition in %B section %A "
1312 "mismatches non-TLS reference in %B"),
1313 tbfd, tsec, ntbfd, h->root.root.string);
1314 else
1315 _bfd_error_handler
1316 /* xgettext:c-format */
1317 (_("%s: TLS reference in %B "
1318 "mismatches non-TLS definition in %B section %A"),
1319 tbfd, ntbfd, ntsec, h->root.root.string);
1320
1321 bfd_set_error (bfd_error_bad_value);
1322 return FALSE;
1323 }
1324
1325 /* If the old symbol has non-default visibility, we ignore the new
1326 definition from a dynamic object. */
1327 if (newdyn
1328 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1329 && !bfd_is_und_section (sec))
1330 {
1331 *skip = TRUE;
1332 /* Make sure this symbol is dynamic. */
1333 h->ref_dynamic = 1;
1334 hi->ref_dynamic = 1;
1335 /* A protected symbol has external availability. Make sure it is
1336 recorded as dynamic.
1337
1338 FIXME: Should we check type and size for protected symbol? */
1339 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1340 return bfd_elf_link_record_dynamic_symbol (info, h);
1341 else
1342 return TRUE;
1343 }
1344 else if (!newdyn
1345 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1346 && h->def_dynamic)
1347 {
1348 /* If the new symbol with non-default visibility comes from a
1349 relocatable file and the old definition comes from a dynamic
1350 object, we remove the old definition. */
1351 if (hi->root.type == bfd_link_hash_indirect)
1352 {
1353 /* Handle the case where the old dynamic definition is
1354 default versioned. We need to copy the symbol info from
1355 the symbol with default version to the normal one if it
1356 was referenced before. */
1357 if (h->ref_regular)
1358 {
1359 hi->root.type = h->root.type;
1360 h->root.type = bfd_link_hash_indirect;
1361 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1362
1363 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1364 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1365 {
1366 /* If the new symbol is hidden or internal, completely undo
1367 any dynamic link state. */
1368 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1369 h->forced_local = 0;
1370 h->ref_dynamic = 0;
1371 }
1372 else
1373 h->ref_dynamic = 1;
1374
1375 h->def_dynamic = 0;
1376 /* FIXME: Should we check type and size for protected symbol? */
1377 h->size = 0;
1378 h->type = 0;
1379
1380 h = hi;
1381 }
1382 else
1383 h = hi;
1384 }
1385
1386 /* If the old symbol was undefined before, then it will still be
1387 on the undefs list. If the new symbol is undefined or
1388 common, we can't make it bfd_link_hash_new here, because new
1389 undefined or common symbols will be added to the undefs list
1390 by _bfd_generic_link_add_one_symbol. Symbols may not be
1391 added twice to the undefs list. Also, if the new symbol is
1392 undefweak then we don't want to lose the strong undef. */
1393 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1394 {
1395 h->root.type = bfd_link_hash_undefined;
1396 h->root.u.undef.abfd = abfd;
1397 }
1398 else
1399 {
1400 h->root.type = bfd_link_hash_new;
1401 h->root.u.undef.abfd = NULL;
1402 }
1403
1404 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1405 {
1406 /* If the new symbol is hidden or internal, completely undo
1407 any dynamic link state. */
1408 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1409 h->forced_local = 0;
1410 h->ref_dynamic = 0;
1411 }
1412 else
1413 h->ref_dynamic = 1;
1414 h->def_dynamic = 0;
1415 /* FIXME: Should we check type and size for protected symbol? */
1416 h->size = 0;
1417 h->type = 0;
1418 return TRUE;
1419 }
1420
1421 /* If a new weak symbol definition comes from a regular file and the
1422 old symbol comes from a dynamic library, we treat the new one as
1423 strong. Similarly, an old weak symbol definition from a regular
1424 file is treated as strong when the new symbol comes from a dynamic
1425 library. Further, an old weak symbol from a dynamic library is
1426 treated as strong if the new symbol is from a dynamic library.
1427 This reflects the way glibc's ld.so works.
1428
1429 Do this before setting *type_change_ok or *size_change_ok so that
1430 we warn properly when dynamic library symbols are overridden. */
1431
1432 if (newdef && !newdyn && olddyn)
1433 newweak = FALSE;
1434 if (olddef && newdyn)
1435 oldweak = FALSE;
1436
1437 /* Allow changes between different types of function symbol. */
1438 if (newfunc && oldfunc)
1439 *type_change_ok = TRUE;
1440
1441 /* It's OK to change the type if either the existing symbol or the
1442 new symbol is weak. A type change is also OK if the old symbol
1443 is undefined and the new symbol is defined. */
1444
1445 if (oldweak
1446 || newweak
1447 || (newdef
1448 && h->root.type == bfd_link_hash_undefined))
1449 *type_change_ok = TRUE;
1450
1451 /* It's OK to change the size if either the existing symbol or the
1452 new symbol is weak, or if the old symbol is undefined. */
1453
1454 if (*type_change_ok
1455 || h->root.type == bfd_link_hash_undefined)
1456 *size_change_ok = TRUE;
1457
1458 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1459 symbol, respectively, appears to be a common symbol in a dynamic
1460 object. If a symbol appears in an uninitialized section, and is
1461 not weak, and is not a function, then it may be a common symbol
1462 which was resolved when the dynamic object was created. We want
1463 to treat such symbols specially, because they raise special
1464 considerations when setting the symbol size: if the symbol
1465 appears as a common symbol in a regular object, and the size in
1466 the regular object is larger, we must make sure that we use the
1467 larger size. This problematic case can always be avoided in C,
1468 but it must be handled correctly when using Fortran shared
1469 libraries.
1470
1471 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1472 likewise for OLDDYNCOMMON and OLDDEF.
1473
1474 Note that this test is just a heuristic, and that it is quite
1475 possible to have an uninitialized symbol in a shared object which
1476 is really a definition, rather than a common symbol. This could
1477 lead to some minor confusion when the symbol really is a common
1478 symbol in some regular object. However, I think it will be
1479 harmless. */
1480
1481 if (newdyn
1482 && newdef
1483 && !newweak
1484 && (sec->flags & SEC_ALLOC) != 0
1485 && (sec->flags & SEC_LOAD) == 0
1486 && sym->st_size > 0
1487 && !newfunc)
1488 newdyncommon = TRUE;
1489 else
1490 newdyncommon = FALSE;
1491
1492 if (olddyn
1493 && olddef
1494 && h->root.type == bfd_link_hash_defined
1495 && h->def_dynamic
1496 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1497 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1498 && h->size > 0
1499 && !oldfunc)
1500 olddyncommon = TRUE;
1501 else
1502 olddyncommon = FALSE;
1503
1504 /* We now know everything about the old and new symbols. We ask the
1505 backend to check if we can merge them. */
1506 if (bed->merge_symbol != NULL)
1507 {
1508 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1509 return FALSE;
1510 sec = *psec;
1511 }
1512
1513 /* If both the old and the new symbols look like common symbols in a
1514 dynamic object, set the size of the symbol to the larger of the
1515 two. */
1516
1517 if (olddyncommon
1518 && newdyncommon
1519 && sym->st_size != h->size)
1520 {
1521 /* Since we think we have two common symbols, issue a multiple
1522 common warning if desired. Note that we only warn if the
1523 size is different. If the size is the same, we simply let
1524 the old symbol override the new one as normally happens with
1525 symbols defined in dynamic objects. */
1526
1527 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1528 bfd_link_hash_common, sym->st_size);
1529 if (sym->st_size > h->size)
1530 h->size = sym->st_size;
1531
1532 *size_change_ok = TRUE;
1533 }
1534
1535 /* If we are looking at a dynamic object, and we have found a
1536 definition, we need to see if the symbol was already defined by
1537 some other object. If so, we want to use the existing
1538 definition, and we do not want to report a multiple symbol
1539 definition error; we do this by clobbering *PSEC to be
1540 bfd_und_section_ptr.
1541
1542 We treat a common symbol as a definition if the symbol in the
1543 shared library is a function, since common symbols always
1544 represent variables; this can cause confusion in principle, but
1545 any such confusion would seem to indicate an erroneous program or
1546 shared library. We also permit a common symbol in a regular
1547 object to override a weak symbol in a shared object. A common
1548 symbol in executable also overrides a symbol in a shared object. */
1549
1550 if (newdyn
1551 && newdef
1552 && (olddef
1553 || (h->root.type == bfd_link_hash_common
1554 && (newweak
1555 || newfunc
1556 || (!olddyn && bfd_link_executable (info))))))
1557 {
1558 *override = TRUE;
1559 newdef = FALSE;
1560 newdyncommon = FALSE;
1561
1562 *psec = sec = bfd_und_section_ptr;
1563 *size_change_ok = TRUE;
1564
1565 /* If we get here when the old symbol is a common symbol, then
1566 we are explicitly letting it override a weak symbol or
1567 function in a dynamic object, and we don't want to warn about
1568 a type change. If the old symbol is a defined symbol, a type
1569 change warning may still be appropriate. */
1570
1571 if (h->root.type == bfd_link_hash_common)
1572 *type_change_ok = TRUE;
1573 }
1574
1575 /* Handle the special case of an old common symbol merging with a
1576 new symbol which looks like a common symbol in a shared object.
1577 We change *PSEC and *PVALUE to make the new symbol look like a
1578 common symbol, and let _bfd_generic_link_add_one_symbol do the
1579 right thing. */
1580
1581 if (newdyncommon
1582 && h->root.type == bfd_link_hash_common)
1583 {
1584 *override = TRUE;
1585 newdef = FALSE;
1586 newdyncommon = FALSE;
1587 *pvalue = sym->st_size;
1588 *psec = sec = bed->common_section (oldsec);
1589 *size_change_ok = TRUE;
1590 }
1591
1592 /* Skip weak definitions of symbols that are already defined. */
1593 if (newdef && olddef && newweak)
1594 {
1595 /* Don't skip new non-IR weak syms. */
1596 if (!(oldbfd != NULL
1597 && (oldbfd->flags & BFD_PLUGIN) != 0
1598 && (abfd->flags & BFD_PLUGIN) == 0))
1599 {
1600 newdef = FALSE;
1601 *skip = TRUE;
1602 }
1603
1604 /* Merge st_other. If the symbol already has a dynamic index,
1605 but visibility says it should not be visible, turn it into a
1606 local symbol. */
1607 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1608 if (h->dynindx != -1)
1609 switch (ELF_ST_VISIBILITY (h->other))
1610 {
1611 case STV_INTERNAL:
1612 case STV_HIDDEN:
1613 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1614 break;
1615 }
1616 }
1617
1618 /* If the old symbol is from a dynamic object, and the new symbol is
1619 a definition which is not from a dynamic object, then the new
1620 symbol overrides the old symbol. Symbols from regular files
1621 always take precedence over symbols from dynamic objects, even if
1622 they are defined after the dynamic object in the link.
1623
1624 As above, we again permit a common symbol in a regular object to
1625 override a definition in a shared object if the shared object
1626 symbol is a function or is weak. */
1627
1628 flip = NULL;
1629 if (!newdyn
1630 && (newdef
1631 || (bfd_is_com_section (sec)
1632 && (oldweak || oldfunc)))
1633 && olddyn
1634 && olddef
1635 && h->def_dynamic)
1636 {
1637 /* Change the hash table entry to undefined, and let
1638 _bfd_generic_link_add_one_symbol do the right thing with the
1639 new definition. */
1640
1641 h->root.type = bfd_link_hash_undefined;
1642 h->root.u.undef.abfd = h->root.u.def.section->owner;
1643 *size_change_ok = TRUE;
1644
1645 olddef = FALSE;
1646 olddyncommon = FALSE;
1647
1648 /* We again permit a type change when a common symbol may be
1649 overriding a function. */
1650
1651 if (bfd_is_com_section (sec))
1652 {
1653 if (oldfunc)
1654 {
1655 /* If a common symbol overrides a function, make sure
1656 that it isn't defined dynamically nor has type
1657 function. */
1658 h->def_dynamic = 0;
1659 h->type = STT_NOTYPE;
1660 }
1661 *type_change_ok = TRUE;
1662 }
1663
1664 if (hi->root.type == bfd_link_hash_indirect)
1665 flip = hi;
1666 else
1667 /* This union may have been set to be non-NULL when this symbol
1668 was seen in a dynamic object. We must force the union to be
1669 NULL, so that it is correct for a regular symbol. */
1670 h->verinfo.vertree = NULL;
1671 }
1672
1673 /* Handle the special case of a new common symbol merging with an
1674 old symbol that looks like it might be a common symbol defined in
1675 a shared object. Note that we have already handled the case in
1676 which a new common symbol should simply override the definition
1677 in the shared library. */
1678
1679 if (! newdyn
1680 && bfd_is_com_section (sec)
1681 && olddyncommon)
1682 {
1683 /* It would be best if we could set the hash table entry to a
1684 common symbol, but we don't know what to use for the section
1685 or the alignment. */
1686 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1687 bfd_link_hash_common, sym->st_size);
1688
1689 /* If the presumed common symbol in the dynamic object is
1690 larger, pretend that the new symbol has its size. */
1691
1692 if (h->size > *pvalue)
1693 *pvalue = h->size;
1694
1695 /* We need to remember the alignment required by the symbol
1696 in the dynamic object. */
1697 BFD_ASSERT (pold_alignment);
1698 *pold_alignment = h->root.u.def.section->alignment_power;
1699
1700 olddef = FALSE;
1701 olddyncommon = FALSE;
1702
1703 h->root.type = bfd_link_hash_undefined;
1704 h->root.u.undef.abfd = h->root.u.def.section->owner;
1705
1706 *size_change_ok = TRUE;
1707 *type_change_ok = TRUE;
1708
1709 if (hi->root.type == bfd_link_hash_indirect)
1710 flip = hi;
1711 else
1712 h->verinfo.vertree = NULL;
1713 }
1714
1715 if (flip != NULL)
1716 {
1717 /* Handle the case where we had a versioned symbol in a dynamic
1718 library and now find a definition in a normal object. In this
1719 case, we make the versioned symbol point to the normal one. */
1720 flip->root.type = h->root.type;
1721 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1722 h->root.type = bfd_link_hash_indirect;
1723 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1724 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1725 if (h->def_dynamic)
1726 {
1727 h->def_dynamic = 0;
1728 flip->ref_dynamic = 1;
1729 }
1730 }
1731
1732 return TRUE;
1733 }
1734
1735 /* This function is called to create an indirect symbol from the
1736 default for the symbol with the default version if needed. The
1737 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1738 set DYNSYM if the new indirect symbol is dynamic. */
1739
1740 static bfd_boolean
1741 _bfd_elf_add_default_symbol (bfd *abfd,
1742 struct bfd_link_info *info,
1743 struct elf_link_hash_entry *h,
1744 const char *name,
1745 Elf_Internal_Sym *sym,
1746 asection *sec,
1747 bfd_vma value,
1748 bfd **poldbfd,
1749 bfd_boolean *dynsym)
1750 {
1751 bfd_boolean type_change_ok;
1752 bfd_boolean size_change_ok;
1753 bfd_boolean skip;
1754 char *shortname;
1755 struct elf_link_hash_entry *hi;
1756 struct bfd_link_hash_entry *bh;
1757 const struct elf_backend_data *bed;
1758 bfd_boolean collect;
1759 bfd_boolean dynamic;
1760 bfd_boolean override;
1761 char *p;
1762 size_t len, shortlen;
1763 asection *tmp_sec;
1764 bfd_boolean matched;
1765
1766 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1767 return TRUE;
1768
1769 /* If this symbol has a version, and it is the default version, we
1770 create an indirect symbol from the default name to the fully
1771 decorated name. This will cause external references which do not
1772 specify a version to be bound to this version of the symbol. */
1773 p = strchr (name, ELF_VER_CHR);
1774 if (h->versioned == unknown)
1775 {
1776 if (p == NULL)
1777 {
1778 h->versioned = unversioned;
1779 return TRUE;
1780 }
1781 else
1782 {
1783 if (p[1] != ELF_VER_CHR)
1784 {
1785 h->versioned = versioned_hidden;
1786 return TRUE;
1787 }
1788 else
1789 h->versioned = versioned;
1790 }
1791 }
1792 else
1793 {
1794 /* PR ld/19073: We may see an unversioned definition after the
1795 default version. */
1796 if (p == NULL)
1797 return TRUE;
1798 }
1799
1800 bed = get_elf_backend_data (abfd);
1801 collect = bed->collect;
1802 dynamic = (abfd->flags & DYNAMIC) != 0;
1803
1804 shortlen = p - name;
1805 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1806 if (shortname == NULL)
1807 return FALSE;
1808 memcpy (shortname, name, shortlen);
1809 shortname[shortlen] = '\0';
1810
1811 /* We are going to create a new symbol. Merge it with any existing
1812 symbol with this name. For the purposes of the merge, act as
1813 though we were defining the symbol we just defined, although we
1814 actually going to define an indirect symbol. */
1815 type_change_ok = FALSE;
1816 size_change_ok = FALSE;
1817 matched = TRUE;
1818 tmp_sec = sec;
1819 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1820 &hi, poldbfd, NULL, NULL, &skip, &override,
1821 &type_change_ok, &size_change_ok, &matched))
1822 return FALSE;
1823
1824 if (skip)
1825 goto nondefault;
1826
1827 if (hi->def_regular)
1828 {
1829 /* If the undecorated symbol will have a version added by a
1830 script different to H, then don't indirect to/from the
1831 undecorated symbol. This isn't ideal because we may not yet
1832 have seen symbol versions, if given by a script on the
1833 command line rather than via --version-script. */
1834 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1835 {
1836 bfd_boolean hide;
1837
1838 hi->verinfo.vertree
1839 = bfd_find_version_for_sym (info->version_info,
1840 hi->root.root.string, &hide);
1841 if (hi->verinfo.vertree != NULL && hide)
1842 {
1843 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1844 goto nondefault;
1845 }
1846 }
1847 if (hi->verinfo.vertree != NULL
1848 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1849 goto nondefault;
1850 }
1851
1852 if (! override)
1853 {
1854 /* Add the default symbol if not performing a relocatable link. */
1855 if (! bfd_link_relocatable (info))
1856 {
1857 bh = &hi->root;
1858 if (! (_bfd_generic_link_add_one_symbol
1859 (info, abfd, shortname, BSF_INDIRECT,
1860 bfd_ind_section_ptr,
1861 0, name, FALSE, collect, &bh)))
1862 return FALSE;
1863 hi = (struct elf_link_hash_entry *) bh;
1864 }
1865 }
1866 else
1867 {
1868 /* In this case the symbol named SHORTNAME is overriding the
1869 indirect symbol we want to add. We were planning on making
1870 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1871 is the name without a version. NAME is the fully versioned
1872 name, and it is the default version.
1873
1874 Overriding means that we already saw a definition for the
1875 symbol SHORTNAME in a regular object, and it is overriding
1876 the symbol defined in the dynamic object.
1877
1878 When this happens, we actually want to change NAME, the
1879 symbol we just added, to refer to SHORTNAME. This will cause
1880 references to NAME in the shared object to become references
1881 to SHORTNAME in the regular object. This is what we expect
1882 when we override a function in a shared object: that the
1883 references in the shared object will be mapped to the
1884 definition in the regular object. */
1885
1886 while (hi->root.type == bfd_link_hash_indirect
1887 || hi->root.type == bfd_link_hash_warning)
1888 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1889
1890 h->root.type = bfd_link_hash_indirect;
1891 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1892 if (h->def_dynamic)
1893 {
1894 h->def_dynamic = 0;
1895 hi->ref_dynamic = 1;
1896 if (hi->ref_regular
1897 || hi->def_regular)
1898 {
1899 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1900 return FALSE;
1901 }
1902 }
1903
1904 /* Now set HI to H, so that the following code will set the
1905 other fields correctly. */
1906 hi = h;
1907 }
1908
1909 /* Check if HI is a warning symbol. */
1910 if (hi->root.type == bfd_link_hash_warning)
1911 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1912
1913 /* If there is a duplicate definition somewhere, then HI may not
1914 point to an indirect symbol. We will have reported an error to
1915 the user in that case. */
1916
1917 if (hi->root.type == bfd_link_hash_indirect)
1918 {
1919 struct elf_link_hash_entry *ht;
1920
1921 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1922 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1923
1924 /* A reference to the SHORTNAME symbol from a dynamic library
1925 will be satisfied by the versioned symbol at runtime. In
1926 effect, we have a reference to the versioned symbol. */
1927 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1928 hi->dynamic_def |= ht->dynamic_def;
1929
1930 /* See if the new flags lead us to realize that the symbol must
1931 be dynamic. */
1932 if (! *dynsym)
1933 {
1934 if (! dynamic)
1935 {
1936 if (! bfd_link_executable (info)
1937 || hi->def_dynamic
1938 || hi->ref_dynamic)
1939 *dynsym = TRUE;
1940 }
1941 else
1942 {
1943 if (hi->ref_regular)
1944 *dynsym = TRUE;
1945 }
1946 }
1947 }
1948
1949 /* We also need to define an indirection from the nondefault version
1950 of the symbol. */
1951
1952 nondefault:
1953 len = strlen (name);
1954 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1955 if (shortname == NULL)
1956 return FALSE;
1957 memcpy (shortname, name, shortlen);
1958 memcpy (shortname + shortlen, p + 1, len - shortlen);
1959
1960 /* Once again, merge with any existing symbol. */
1961 type_change_ok = FALSE;
1962 size_change_ok = FALSE;
1963 tmp_sec = sec;
1964 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1965 &hi, poldbfd, NULL, NULL, &skip, &override,
1966 &type_change_ok, &size_change_ok, &matched))
1967 return FALSE;
1968
1969 if (skip)
1970 return TRUE;
1971
1972 if (override)
1973 {
1974 /* Here SHORTNAME is a versioned name, so we don't expect to see
1975 the type of override we do in the case above unless it is
1976 overridden by a versioned definition. */
1977 if (hi->root.type != bfd_link_hash_defined
1978 && hi->root.type != bfd_link_hash_defweak)
1979 _bfd_error_handler
1980 /* xgettext:c-format */
1981 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1982 abfd, shortname);
1983 }
1984 else
1985 {
1986 bh = &hi->root;
1987 if (! (_bfd_generic_link_add_one_symbol
1988 (info, abfd, shortname, BSF_INDIRECT,
1989 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1990 return FALSE;
1991 hi = (struct elf_link_hash_entry *) bh;
1992
1993 /* If there is a duplicate definition somewhere, then HI may not
1994 point to an indirect symbol. We will have reported an error
1995 to the user in that case. */
1996
1997 if (hi->root.type == bfd_link_hash_indirect)
1998 {
1999 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2000 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2001 hi->dynamic_def |= h->dynamic_def;
2002
2003 /* See if the new flags lead us to realize that the symbol
2004 must be dynamic. */
2005 if (! *dynsym)
2006 {
2007 if (! dynamic)
2008 {
2009 if (! bfd_link_executable (info)
2010 || hi->ref_dynamic)
2011 *dynsym = TRUE;
2012 }
2013 else
2014 {
2015 if (hi->ref_regular)
2016 *dynsym = TRUE;
2017 }
2018 }
2019 }
2020 }
2021
2022 return TRUE;
2023 }
2024 \f
2025 /* This routine is used to export all defined symbols into the dynamic
2026 symbol table. It is called via elf_link_hash_traverse. */
2027
2028 static bfd_boolean
2029 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2030 {
2031 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2032
2033 /* Ignore indirect symbols. These are added by the versioning code. */
2034 if (h->root.type == bfd_link_hash_indirect)
2035 return TRUE;
2036
2037 /* Ignore this if we won't export it. */
2038 if (!eif->info->export_dynamic && !h->dynamic)
2039 return TRUE;
2040
2041 if (h->dynindx == -1
2042 && (h->def_regular || h->ref_regular)
2043 && ! bfd_hide_sym_by_version (eif->info->version_info,
2044 h->root.root.string))
2045 {
2046 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2047 {
2048 eif->failed = TRUE;
2049 return FALSE;
2050 }
2051 }
2052
2053 return TRUE;
2054 }
2055 \f
2056 /* Look through the symbols which are defined in other shared
2057 libraries and referenced here. Update the list of version
2058 dependencies. This will be put into the .gnu.version_r section.
2059 This function is called via elf_link_hash_traverse. */
2060
2061 static bfd_boolean
2062 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2063 void *data)
2064 {
2065 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2066 Elf_Internal_Verneed *t;
2067 Elf_Internal_Vernaux *a;
2068 bfd_size_type amt;
2069
2070 /* We only care about symbols defined in shared objects with version
2071 information. */
2072 if (!h->def_dynamic
2073 || h->def_regular
2074 || h->dynindx == -1
2075 || h->verinfo.verdef == NULL
2076 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2077 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2078 return TRUE;
2079
2080 /* See if we already know about this version. */
2081 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2082 t != NULL;
2083 t = t->vn_nextref)
2084 {
2085 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2086 continue;
2087
2088 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2089 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2090 return TRUE;
2091
2092 break;
2093 }
2094
2095 /* This is a new version. Add it to tree we are building. */
2096
2097 if (t == NULL)
2098 {
2099 amt = sizeof *t;
2100 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2101 if (t == NULL)
2102 {
2103 rinfo->failed = TRUE;
2104 return FALSE;
2105 }
2106
2107 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2108 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2109 elf_tdata (rinfo->info->output_bfd)->verref = t;
2110 }
2111
2112 amt = sizeof *a;
2113 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2114 if (a == NULL)
2115 {
2116 rinfo->failed = TRUE;
2117 return FALSE;
2118 }
2119
2120 /* Note that we are copying a string pointer here, and testing it
2121 above. If bfd_elf_string_from_elf_section is ever changed to
2122 discard the string data when low in memory, this will have to be
2123 fixed. */
2124 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2125
2126 a->vna_flags = h->verinfo.verdef->vd_flags;
2127 a->vna_nextptr = t->vn_auxptr;
2128
2129 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2130 ++rinfo->vers;
2131
2132 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2133
2134 t->vn_auxptr = a;
2135
2136 return TRUE;
2137 }
2138
2139 /* Figure out appropriate versions for all the symbols. We may not
2140 have the version number script until we have read all of the input
2141 files, so until that point we don't know which symbols should be
2142 local. This function is called via elf_link_hash_traverse. */
2143
2144 static bfd_boolean
2145 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2146 {
2147 struct elf_info_failed *sinfo;
2148 struct bfd_link_info *info;
2149 const struct elf_backend_data *bed;
2150 struct elf_info_failed eif;
2151 char *p;
2152
2153 sinfo = (struct elf_info_failed *) data;
2154 info = sinfo->info;
2155
2156 /* Fix the symbol flags. */
2157 eif.failed = FALSE;
2158 eif.info = info;
2159 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2160 {
2161 if (eif.failed)
2162 sinfo->failed = TRUE;
2163 return FALSE;
2164 }
2165
2166 /* We only need version numbers for symbols defined in regular
2167 objects. */
2168 if (!h->def_regular)
2169 return TRUE;
2170
2171 bed = get_elf_backend_data (info->output_bfd);
2172 p = strchr (h->root.root.string, ELF_VER_CHR);
2173 if (p != NULL && h->verinfo.vertree == NULL)
2174 {
2175 struct bfd_elf_version_tree *t;
2176
2177 ++p;
2178 if (*p == ELF_VER_CHR)
2179 ++p;
2180
2181 /* If there is no version string, we can just return out. */
2182 if (*p == '\0')
2183 return TRUE;
2184
2185 /* Look for the version. If we find it, it is no longer weak. */
2186 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2187 {
2188 if (strcmp (t->name, p) == 0)
2189 {
2190 size_t len;
2191 char *alc;
2192 struct bfd_elf_version_expr *d;
2193
2194 len = p - h->root.root.string;
2195 alc = (char *) bfd_malloc (len);
2196 if (alc == NULL)
2197 {
2198 sinfo->failed = TRUE;
2199 return FALSE;
2200 }
2201 memcpy (alc, h->root.root.string, len - 1);
2202 alc[len - 1] = '\0';
2203 if (alc[len - 2] == ELF_VER_CHR)
2204 alc[len - 2] = '\0';
2205
2206 h->verinfo.vertree = t;
2207 t->used = TRUE;
2208 d = NULL;
2209
2210 if (t->globals.list != NULL)
2211 d = (*t->match) (&t->globals, NULL, alc);
2212
2213 /* See if there is anything to force this symbol to
2214 local scope. */
2215 if (d == NULL && t->locals.list != NULL)
2216 {
2217 d = (*t->match) (&t->locals, NULL, alc);
2218 if (d != NULL
2219 && h->dynindx != -1
2220 && ! info->export_dynamic)
2221 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2222 }
2223
2224 free (alc);
2225 break;
2226 }
2227 }
2228
2229 /* If we are building an application, we need to create a
2230 version node for this version. */
2231 if (t == NULL && bfd_link_executable (info))
2232 {
2233 struct bfd_elf_version_tree **pp;
2234 int version_index;
2235
2236 /* If we aren't going to export this symbol, we don't need
2237 to worry about it. */
2238 if (h->dynindx == -1)
2239 return TRUE;
2240
2241 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2242 sizeof *t);
2243 if (t == NULL)
2244 {
2245 sinfo->failed = TRUE;
2246 return FALSE;
2247 }
2248
2249 t->name = p;
2250 t->name_indx = (unsigned int) -1;
2251 t->used = TRUE;
2252
2253 version_index = 1;
2254 /* Don't count anonymous version tag. */
2255 if (sinfo->info->version_info != NULL
2256 && sinfo->info->version_info->vernum == 0)
2257 version_index = 0;
2258 for (pp = &sinfo->info->version_info;
2259 *pp != NULL;
2260 pp = &(*pp)->next)
2261 ++version_index;
2262 t->vernum = version_index;
2263
2264 *pp = t;
2265
2266 h->verinfo.vertree = t;
2267 }
2268 else if (t == NULL)
2269 {
2270 /* We could not find the version for a symbol when
2271 generating a shared archive. Return an error. */
2272 _bfd_error_handler
2273 /* xgettext:c-format */
2274 (_("%B: version node not found for symbol %s"),
2275 info->output_bfd, h->root.root.string);
2276 bfd_set_error (bfd_error_bad_value);
2277 sinfo->failed = TRUE;
2278 return FALSE;
2279 }
2280 }
2281
2282 /* If we don't have a version for this symbol, see if we can find
2283 something. */
2284 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2285 {
2286 bfd_boolean hide;
2287
2288 h->verinfo.vertree
2289 = bfd_find_version_for_sym (sinfo->info->version_info,
2290 h->root.root.string, &hide);
2291 if (h->verinfo.vertree != NULL && hide)
2292 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2293 }
2294
2295 return TRUE;
2296 }
2297 \f
2298 /* Read and swap the relocs from the section indicated by SHDR. This
2299 may be either a REL or a RELA section. The relocations are
2300 translated into RELA relocations and stored in INTERNAL_RELOCS,
2301 which should have already been allocated to contain enough space.
2302 The EXTERNAL_RELOCS are a buffer where the external form of the
2303 relocations should be stored.
2304
2305 Returns FALSE if something goes wrong. */
2306
2307 static bfd_boolean
2308 elf_link_read_relocs_from_section (bfd *abfd,
2309 asection *sec,
2310 Elf_Internal_Shdr *shdr,
2311 void *external_relocs,
2312 Elf_Internal_Rela *internal_relocs)
2313 {
2314 const struct elf_backend_data *bed;
2315 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2316 const bfd_byte *erela;
2317 const bfd_byte *erelaend;
2318 Elf_Internal_Rela *irela;
2319 Elf_Internal_Shdr *symtab_hdr;
2320 size_t nsyms;
2321
2322 /* Position ourselves at the start of the section. */
2323 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2324 return FALSE;
2325
2326 /* Read the relocations. */
2327 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2328 return FALSE;
2329
2330 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2331 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2332
2333 bed = get_elf_backend_data (abfd);
2334
2335 /* Convert the external relocations to the internal format. */
2336 if (shdr->sh_entsize == bed->s->sizeof_rel)
2337 swap_in = bed->s->swap_reloc_in;
2338 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2339 swap_in = bed->s->swap_reloca_in;
2340 else
2341 {
2342 bfd_set_error (bfd_error_wrong_format);
2343 return FALSE;
2344 }
2345
2346 erela = (const bfd_byte *) external_relocs;
2347 erelaend = erela + shdr->sh_size;
2348 irela = internal_relocs;
2349 while (erela < erelaend)
2350 {
2351 bfd_vma r_symndx;
2352
2353 (*swap_in) (abfd, erela, irela);
2354 r_symndx = ELF32_R_SYM (irela->r_info);
2355 if (bed->s->arch_size == 64)
2356 r_symndx >>= 24;
2357 if (nsyms > 0)
2358 {
2359 if ((size_t) r_symndx >= nsyms)
2360 {
2361 _bfd_error_handler
2362 /* xgettext:c-format */
2363 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2364 " for offset 0x%lx in section `%A'"),
2365 abfd, sec,
2366 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2367 bfd_set_error (bfd_error_bad_value);
2368 return FALSE;
2369 }
2370 }
2371 else if (r_symndx != STN_UNDEF)
2372 {
2373 _bfd_error_handler
2374 /* xgettext:c-format */
2375 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2376 " when the object file has no symbol table"),
2377 abfd, sec,
2378 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2379 bfd_set_error (bfd_error_bad_value);
2380 return FALSE;
2381 }
2382 irela += bed->s->int_rels_per_ext_rel;
2383 erela += shdr->sh_entsize;
2384 }
2385
2386 return TRUE;
2387 }
2388
2389 /* Read and swap the relocs for a section O. They may have been
2390 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2391 not NULL, they are used as buffers to read into. They are known to
2392 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2393 the return value is allocated using either malloc or bfd_alloc,
2394 according to the KEEP_MEMORY argument. If O has two relocation
2395 sections (both REL and RELA relocations), then the REL_HDR
2396 relocations will appear first in INTERNAL_RELOCS, followed by the
2397 RELA_HDR relocations. */
2398
2399 Elf_Internal_Rela *
2400 _bfd_elf_link_read_relocs (bfd *abfd,
2401 asection *o,
2402 void *external_relocs,
2403 Elf_Internal_Rela *internal_relocs,
2404 bfd_boolean keep_memory)
2405 {
2406 void *alloc1 = NULL;
2407 Elf_Internal_Rela *alloc2 = NULL;
2408 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2409 struct bfd_elf_section_data *esdo = elf_section_data (o);
2410 Elf_Internal_Rela *internal_rela_relocs;
2411
2412 if (esdo->relocs != NULL)
2413 return esdo->relocs;
2414
2415 if (o->reloc_count == 0)
2416 return NULL;
2417
2418 if (internal_relocs == NULL)
2419 {
2420 bfd_size_type size;
2421
2422 size = o->reloc_count;
2423 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2424 if (keep_memory)
2425 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2426 else
2427 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2428 if (internal_relocs == NULL)
2429 goto error_return;
2430 }
2431
2432 if (external_relocs == NULL)
2433 {
2434 bfd_size_type size = 0;
2435
2436 if (esdo->rel.hdr)
2437 size += esdo->rel.hdr->sh_size;
2438 if (esdo->rela.hdr)
2439 size += esdo->rela.hdr->sh_size;
2440
2441 alloc1 = bfd_malloc (size);
2442 if (alloc1 == NULL)
2443 goto error_return;
2444 external_relocs = alloc1;
2445 }
2446
2447 internal_rela_relocs = internal_relocs;
2448 if (esdo->rel.hdr)
2449 {
2450 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2451 external_relocs,
2452 internal_relocs))
2453 goto error_return;
2454 external_relocs = (((bfd_byte *) external_relocs)
2455 + esdo->rel.hdr->sh_size);
2456 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2457 * bed->s->int_rels_per_ext_rel);
2458 }
2459
2460 if (esdo->rela.hdr
2461 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2462 external_relocs,
2463 internal_rela_relocs)))
2464 goto error_return;
2465
2466 /* Cache the results for next time, if we can. */
2467 if (keep_memory)
2468 esdo->relocs = internal_relocs;
2469
2470 if (alloc1 != NULL)
2471 free (alloc1);
2472
2473 /* Don't free alloc2, since if it was allocated we are passing it
2474 back (under the name of internal_relocs). */
2475
2476 return internal_relocs;
2477
2478 error_return:
2479 if (alloc1 != NULL)
2480 free (alloc1);
2481 if (alloc2 != NULL)
2482 {
2483 if (keep_memory)
2484 bfd_release (abfd, alloc2);
2485 else
2486 free (alloc2);
2487 }
2488 return NULL;
2489 }
2490
2491 /* Compute the size of, and allocate space for, REL_HDR which is the
2492 section header for a section containing relocations for O. */
2493
2494 static bfd_boolean
2495 _bfd_elf_link_size_reloc_section (bfd *abfd,
2496 struct bfd_elf_section_reloc_data *reldata)
2497 {
2498 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2499
2500 /* That allows us to calculate the size of the section. */
2501 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2502
2503 /* The contents field must last into write_object_contents, so we
2504 allocate it with bfd_alloc rather than malloc. Also since we
2505 cannot be sure that the contents will actually be filled in,
2506 we zero the allocated space. */
2507 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2508 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2509 return FALSE;
2510
2511 if (reldata->hashes == NULL && reldata->count)
2512 {
2513 struct elf_link_hash_entry **p;
2514
2515 p = ((struct elf_link_hash_entry **)
2516 bfd_zmalloc (reldata->count * sizeof (*p)));
2517 if (p == NULL)
2518 return FALSE;
2519
2520 reldata->hashes = p;
2521 }
2522
2523 return TRUE;
2524 }
2525
2526 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2527 originated from the section given by INPUT_REL_HDR) to the
2528 OUTPUT_BFD. */
2529
2530 bfd_boolean
2531 _bfd_elf_link_output_relocs (bfd *output_bfd,
2532 asection *input_section,
2533 Elf_Internal_Shdr *input_rel_hdr,
2534 Elf_Internal_Rela *internal_relocs,
2535 struct elf_link_hash_entry **rel_hash
2536 ATTRIBUTE_UNUSED)
2537 {
2538 Elf_Internal_Rela *irela;
2539 Elf_Internal_Rela *irelaend;
2540 bfd_byte *erel;
2541 struct bfd_elf_section_reloc_data *output_reldata;
2542 asection *output_section;
2543 const struct elf_backend_data *bed;
2544 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2545 struct bfd_elf_section_data *esdo;
2546
2547 output_section = input_section->output_section;
2548
2549 bed = get_elf_backend_data (output_bfd);
2550 esdo = elf_section_data (output_section);
2551 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2552 {
2553 output_reldata = &esdo->rel;
2554 swap_out = bed->s->swap_reloc_out;
2555 }
2556 else if (esdo->rela.hdr
2557 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2558 {
2559 output_reldata = &esdo->rela;
2560 swap_out = bed->s->swap_reloca_out;
2561 }
2562 else
2563 {
2564 _bfd_error_handler
2565 /* xgettext:c-format */
2566 (_("%B: relocation size mismatch in %B section %A"),
2567 output_bfd, input_section->owner, input_section);
2568 bfd_set_error (bfd_error_wrong_format);
2569 return FALSE;
2570 }
2571
2572 erel = output_reldata->hdr->contents;
2573 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2574 irela = internal_relocs;
2575 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2576 * bed->s->int_rels_per_ext_rel);
2577 while (irela < irelaend)
2578 {
2579 (*swap_out) (output_bfd, irela, erel);
2580 irela += bed->s->int_rels_per_ext_rel;
2581 erel += input_rel_hdr->sh_entsize;
2582 }
2583
2584 /* Bump the counter, so that we know where to add the next set of
2585 relocations. */
2586 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2587
2588 return TRUE;
2589 }
2590 \f
2591 /* Make weak undefined symbols in PIE dynamic. */
2592
2593 bfd_boolean
2594 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2595 struct elf_link_hash_entry *h)
2596 {
2597 if (bfd_link_pie (info)
2598 && h->dynindx == -1
2599 && h->root.type == bfd_link_hash_undefweak)
2600 return bfd_elf_link_record_dynamic_symbol (info, h);
2601
2602 return TRUE;
2603 }
2604
2605 /* Fix up the flags for a symbol. This handles various cases which
2606 can only be fixed after all the input files are seen. This is
2607 currently called by both adjust_dynamic_symbol and
2608 assign_sym_version, which is unnecessary but perhaps more robust in
2609 the face of future changes. */
2610
2611 static bfd_boolean
2612 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2613 struct elf_info_failed *eif)
2614 {
2615 const struct elf_backend_data *bed;
2616
2617 /* If this symbol was mentioned in a non-ELF file, try to set
2618 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2619 permit a non-ELF file to correctly refer to a symbol defined in
2620 an ELF dynamic object. */
2621 if (h->non_elf)
2622 {
2623 while (h->root.type == bfd_link_hash_indirect)
2624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2625
2626 if (h->root.type != bfd_link_hash_defined
2627 && h->root.type != bfd_link_hash_defweak)
2628 {
2629 h->ref_regular = 1;
2630 h->ref_regular_nonweak = 1;
2631 }
2632 else
2633 {
2634 if (h->root.u.def.section->owner != NULL
2635 && (bfd_get_flavour (h->root.u.def.section->owner)
2636 == bfd_target_elf_flavour))
2637 {
2638 h->ref_regular = 1;
2639 h->ref_regular_nonweak = 1;
2640 }
2641 else
2642 h->def_regular = 1;
2643 }
2644
2645 if (h->dynindx == -1
2646 && (h->def_dynamic
2647 || h->ref_dynamic))
2648 {
2649 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2650 {
2651 eif->failed = TRUE;
2652 return FALSE;
2653 }
2654 }
2655 }
2656 else
2657 {
2658 /* Unfortunately, NON_ELF is only correct if the symbol
2659 was first seen in a non-ELF file. Fortunately, if the symbol
2660 was first seen in an ELF file, we're probably OK unless the
2661 symbol was defined in a non-ELF file. Catch that case here.
2662 FIXME: We're still in trouble if the symbol was first seen in
2663 a dynamic object, and then later in a non-ELF regular object. */
2664 if ((h->root.type == bfd_link_hash_defined
2665 || h->root.type == bfd_link_hash_defweak)
2666 && !h->def_regular
2667 && (h->root.u.def.section->owner != NULL
2668 ? (bfd_get_flavour (h->root.u.def.section->owner)
2669 != bfd_target_elf_flavour)
2670 : (bfd_is_abs_section (h->root.u.def.section)
2671 && !h->def_dynamic)))
2672 h->def_regular = 1;
2673 }
2674
2675 /* Backend specific symbol fixup. */
2676 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2677 if (bed->elf_backend_fixup_symbol
2678 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2679 return FALSE;
2680
2681 /* If this is a final link, and the symbol was defined as a common
2682 symbol in a regular object file, and there was no definition in
2683 any dynamic object, then the linker will have allocated space for
2684 the symbol in a common section but the DEF_REGULAR
2685 flag will not have been set. */
2686 if (h->root.type == bfd_link_hash_defined
2687 && !h->def_regular
2688 && h->ref_regular
2689 && !h->def_dynamic
2690 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2691 h->def_regular = 1;
2692
2693 /* If a weak undefined symbol has non-default visibility, we also
2694 hide it from the dynamic linker. */
2695 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2696 && h->root.type == bfd_link_hash_undefweak)
2697 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2698
2699 /* A hidden versioned symbol in executable should be forced local if
2700 it is is locally defined, not referenced by shared library and not
2701 exported. */
2702 else if (bfd_link_executable (eif->info)
2703 && h->versioned == versioned_hidden
2704 && !eif->info->export_dynamic
2705 && !h->dynamic
2706 && !h->ref_dynamic
2707 && h->def_regular)
2708 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2709
2710 /* If -Bsymbolic was used (which means to bind references to global
2711 symbols to the definition within the shared object), and this
2712 symbol was defined in a regular object, then it actually doesn't
2713 need a PLT entry. Likewise, if the symbol has non-default
2714 visibility. If the symbol has hidden or internal visibility, we
2715 will force it local. */
2716 else if (h->needs_plt
2717 && bfd_link_pic (eif->info)
2718 && is_elf_hash_table (eif->info->hash)
2719 && (SYMBOLIC_BIND (eif->info, h)
2720 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2721 && h->def_regular)
2722 {
2723 bfd_boolean force_local;
2724
2725 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2726 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2727 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2728 }
2729
2730 /* If this is a weak defined symbol in a dynamic object, and we know
2731 the real definition in the dynamic object, copy interesting flags
2732 over to the real definition. */
2733 if (h->u.weakdef != NULL)
2734 {
2735 /* If the real definition is defined by a regular object file,
2736 don't do anything special. See the longer description in
2737 _bfd_elf_adjust_dynamic_symbol, below. */
2738 if (h->u.weakdef->def_regular)
2739 h->u.weakdef = NULL;
2740 else
2741 {
2742 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2743
2744 while (h->root.type == bfd_link_hash_indirect)
2745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2746
2747 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2748 || h->root.type == bfd_link_hash_defweak);
2749 BFD_ASSERT (weakdef->def_dynamic);
2750 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2751 || weakdef->root.type == bfd_link_hash_defweak);
2752 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2753 }
2754 }
2755
2756 return TRUE;
2757 }
2758
2759 /* Make the backend pick a good value for a dynamic symbol. This is
2760 called via elf_link_hash_traverse, and also calls itself
2761 recursively. */
2762
2763 static bfd_boolean
2764 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2765 {
2766 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2767 bfd *dynobj;
2768 const struct elf_backend_data *bed;
2769
2770 if (! is_elf_hash_table (eif->info->hash))
2771 return FALSE;
2772
2773 /* Ignore indirect symbols. These are added by the versioning code. */
2774 if (h->root.type == bfd_link_hash_indirect)
2775 return TRUE;
2776
2777 /* Fix the symbol flags. */
2778 if (! _bfd_elf_fix_symbol_flags (h, eif))
2779 return FALSE;
2780
2781 /* If this symbol does not require a PLT entry, and it is not
2782 defined by a dynamic object, or is not referenced by a regular
2783 object, ignore it. We do have to handle a weak defined symbol,
2784 even if no regular object refers to it, if we decided to add it
2785 to the dynamic symbol table. FIXME: Do we normally need to worry
2786 about symbols which are defined by one dynamic object and
2787 referenced by another one? */
2788 if (!h->needs_plt
2789 && h->type != STT_GNU_IFUNC
2790 && (h->def_regular
2791 || !h->def_dynamic
2792 || (!h->ref_regular
2793 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2794 {
2795 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2796 return TRUE;
2797 }
2798
2799 /* If we've already adjusted this symbol, don't do it again. This
2800 can happen via a recursive call. */
2801 if (h->dynamic_adjusted)
2802 return TRUE;
2803
2804 /* Don't look at this symbol again. Note that we must set this
2805 after checking the above conditions, because we may look at a
2806 symbol once, decide not to do anything, and then get called
2807 recursively later after REF_REGULAR is set below. */
2808 h->dynamic_adjusted = 1;
2809
2810 /* If this is a weak definition, and we know a real definition, and
2811 the real symbol is not itself defined by a regular object file,
2812 then get a good value for the real definition. We handle the
2813 real symbol first, for the convenience of the backend routine.
2814
2815 Note that there is a confusing case here. If the real definition
2816 is defined by a regular object file, we don't get the real symbol
2817 from the dynamic object, but we do get the weak symbol. If the
2818 processor backend uses a COPY reloc, then if some routine in the
2819 dynamic object changes the real symbol, we will not see that
2820 change in the corresponding weak symbol. This is the way other
2821 ELF linkers work as well, and seems to be a result of the shared
2822 library model.
2823
2824 I will clarify this issue. Most SVR4 shared libraries define the
2825 variable _timezone and define timezone as a weak synonym. The
2826 tzset call changes _timezone. If you write
2827 extern int timezone;
2828 int _timezone = 5;
2829 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2830 you might expect that, since timezone is a synonym for _timezone,
2831 the same number will print both times. However, if the processor
2832 backend uses a COPY reloc, then actually timezone will be copied
2833 into your process image, and, since you define _timezone
2834 yourself, _timezone will not. Thus timezone and _timezone will
2835 wind up at different memory locations. The tzset call will set
2836 _timezone, leaving timezone unchanged. */
2837
2838 if (h->u.weakdef != NULL)
2839 {
2840 /* If we get to this point, there is an implicit reference to
2841 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2842 h->u.weakdef->ref_regular = 1;
2843
2844 /* Ensure that the backend adjust_dynamic_symbol function sees
2845 H->U.WEAKDEF before H by recursively calling ourselves. */
2846 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2847 return FALSE;
2848 }
2849
2850 /* If a symbol has no type and no size and does not require a PLT
2851 entry, then we are probably about to do the wrong thing here: we
2852 are probably going to create a COPY reloc for an empty object.
2853 This case can arise when a shared object is built with assembly
2854 code, and the assembly code fails to set the symbol type. */
2855 if (h->size == 0
2856 && h->type == STT_NOTYPE
2857 && !h->needs_plt)
2858 _bfd_error_handler
2859 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2860 h->root.root.string);
2861
2862 dynobj = elf_hash_table (eif->info)->dynobj;
2863 bed = get_elf_backend_data (dynobj);
2864
2865 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2866 {
2867 eif->failed = TRUE;
2868 return FALSE;
2869 }
2870
2871 return TRUE;
2872 }
2873
2874 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2875 DYNBSS. */
2876
2877 bfd_boolean
2878 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2879 struct elf_link_hash_entry *h,
2880 asection *dynbss)
2881 {
2882 unsigned int power_of_two;
2883 bfd_vma mask;
2884 asection *sec = h->root.u.def.section;
2885
2886 /* The section aligment of definition is the maximum alignment
2887 requirement of symbols defined in the section. Since we don't
2888 know the symbol alignment requirement, we start with the
2889 maximum alignment and check low bits of the symbol address
2890 for the minimum alignment. */
2891 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2892 mask = ((bfd_vma) 1 << power_of_two) - 1;
2893 while ((h->root.u.def.value & mask) != 0)
2894 {
2895 mask >>= 1;
2896 --power_of_two;
2897 }
2898
2899 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2900 dynbss))
2901 {
2902 /* Adjust the section alignment if needed. */
2903 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2904 power_of_two))
2905 return FALSE;
2906 }
2907
2908 /* We make sure that the symbol will be aligned properly. */
2909 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2910
2911 /* Define the symbol as being at this point in DYNBSS. */
2912 h->root.u.def.section = dynbss;
2913 h->root.u.def.value = dynbss->size;
2914
2915 /* Increment the size of DYNBSS to make room for the symbol. */
2916 dynbss->size += h->size;
2917
2918 /* No error if extern_protected_data is true. */
2919 if (h->protected_def
2920 && (!info->extern_protected_data
2921 || (info->extern_protected_data < 0
2922 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2923 info->callbacks->einfo
2924 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2925 h->root.root.string);
2926
2927 return TRUE;
2928 }
2929
2930 /* Adjust all external symbols pointing into SEC_MERGE sections
2931 to reflect the object merging within the sections. */
2932
2933 static bfd_boolean
2934 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2935 {
2936 asection *sec;
2937
2938 if ((h->root.type == bfd_link_hash_defined
2939 || h->root.type == bfd_link_hash_defweak)
2940 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2941 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2942 {
2943 bfd *output_bfd = (bfd *) data;
2944
2945 h->root.u.def.value =
2946 _bfd_merged_section_offset (output_bfd,
2947 &h->root.u.def.section,
2948 elf_section_data (sec)->sec_info,
2949 h->root.u.def.value);
2950 }
2951
2952 return TRUE;
2953 }
2954
2955 /* Returns false if the symbol referred to by H should be considered
2956 to resolve local to the current module, and true if it should be
2957 considered to bind dynamically. */
2958
2959 bfd_boolean
2960 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2961 struct bfd_link_info *info,
2962 bfd_boolean not_local_protected)
2963 {
2964 bfd_boolean binding_stays_local_p;
2965 const struct elf_backend_data *bed;
2966 struct elf_link_hash_table *hash_table;
2967
2968 if (h == NULL)
2969 return FALSE;
2970
2971 while (h->root.type == bfd_link_hash_indirect
2972 || h->root.type == bfd_link_hash_warning)
2973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2974
2975 /* If it was forced local, then clearly it's not dynamic. */
2976 if (h->dynindx == -1)
2977 return FALSE;
2978 if (h->forced_local)
2979 return FALSE;
2980
2981 /* Identify the cases where name binding rules say that a
2982 visible symbol resolves locally. */
2983 binding_stays_local_p = (bfd_link_executable (info)
2984 || SYMBOLIC_BIND (info, h));
2985
2986 switch (ELF_ST_VISIBILITY (h->other))
2987 {
2988 case STV_INTERNAL:
2989 case STV_HIDDEN:
2990 return FALSE;
2991
2992 case STV_PROTECTED:
2993 hash_table = elf_hash_table (info);
2994 if (!is_elf_hash_table (hash_table))
2995 return FALSE;
2996
2997 bed = get_elf_backend_data (hash_table->dynobj);
2998
2999 /* Proper resolution for function pointer equality may require
3000 that these symbols perhaps be resolved dynamically, even though
3001 we should be resolving them to the current module. */
3002 if (!not_local_protected || !bed->is_function_type (h->type))
3003 binding_stays_local_p = TRUE;
3004 break;
3005
3006 default:
3007 break;
3008 }
3009
3010 /* If it isn't defined locally, then clearly it's dynamic. */
3011 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3012 return TRUE;
3013
3014 /* Otherwise, the symbol is dynamic if binding rules don't tell
3015 us that it remains local. */
3016 return !binding_stays_local_p;
3017 }
3018
3019 /* Return true if the symbol referred to by H should be considered
3020 to resolve local to the current module, and false otherwise. Differs
3021 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3022 undefined symbols. The two functions are virtually identical except
3023 for the place where forced_local and dynindx == -1 are tested. If
3024 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
3025 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
3026 the symbol is local only for defined symbols.
3027 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3028 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3029 treatment of undefined weak symbols. For those that do not make
3030 undefined weak symbols dynamic, both functions may return false. */
3031
3032 bfd_boolean
3033 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3034 struct bfd_link_info *info,
3035 bfd_boolean local_protected)
3036 {
3037 const struct elf_backend_data *bed;
3038 struct elf_link_hash_table *hash_table;
3039
3040 /* If it's a local sym, of course we resolve locally. */
3041 if (h == NULL)
3042 return TRUE;
3043
3044 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3045 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3046 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3047 return TRUE;
3048
3049 /* Common symbols that become definitions don't get the DEF_REGULAR
3050 flag set, so test it first, and don't bail out. */
3051 if (ELF_COMMON_DEF_P (h))
3052 /* Do nothing. */;
3053 /* If we don't have a definition in a regular file, then we can't
3054 resolve locally. The sym is either undefined or dynamic. */
3055 else if (!h->def_regular)
3056 return FALSE;
3057
3058 /* Forced local symbols resolve locally. */
3059 if (h->forced_local)
3060 return TRUE;
3061
3062 /* As do non-dynamic symbols. */
3063 if (h->dynindx == -1)
3064 return TRUE;
3065
3066 /* At this point, we know the symbol is defined and dynamic. In an
3067 executable it must resolve locally, likewise when building symbolic
3068 shared libraries. */
3069 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3070 return TRUE;
3071
3072 /* Now deal with defined dynamic symbols in shared libraries. Ones
3073 with default visibility might not resolve locally. */
3074 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3075 return FALSE;
3076
3077 hash_table = elf_hash_table (info);
3078 if (!is_elf_hash_table (hash_table))
3079 return TRUE;
3080
3081 bed = get_elf_backend_data (hash_table->dynobj);
3082
3083 /* If extern_protected_data is false, STV_PROTECTED non-function
3084 symbols are local. */
3085 if ((!info->extern_protected_data
3086 || (info->extern_protected_data < 0
3087 && !bed->extern_protected_data))
3088 && !bed->is_function_type (h->type))
3089 return TRUE;
3090
3091 /* Function pointer equality tests may require that STV_PROTECTED
3092 symbols be treated as dynamic symbols. If the address of a
3093 function not defined in an executable is set to that function's
3094 plt entry in the executable, then the address of the function in
3095 a shared library must also be the plt entry in the executable. */
3096 return local_protected;
3097 }
3098
3099 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3100 aligned. Returns the first TLS output section. */
3101
3102 struct bfd_section *
3103 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3104 {
3105 struct bfd_section *sec, *tls;
3106 unsigned int align = 0;
3107
3108 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3109 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3110 break;
3111 tls = sec;
3112
3113 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3114 if (sec->alignment_power > align)
3115 align = sec->alignment_power;
3116
3117 elf_hash_table (info)->tls_sec = tls;
3118
3119 /* Ensure the alignment of the first section is the largest alignment,
3120 so that the tls segment starts aligned. */
3121 if (tls != NULL)
3122 tls->alignment_power = align;
3123
3124 return tls;
3125 }
3126
3127 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3128 static bfd_boolean
3129 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3130 Elf_Internal_Sym *sym)
3131 {
3132 const struct elf_backend_data *bed;
3133
3134 /* Local symbols do not count, but target specific ones might. */
3135 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3136 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3137 return FALSE;
3138
3139 bed = get_elf_backend_data (abfd);
3140 /* Function symbols do not count. */
3141 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3142 return FALSE;
3143
3144 /* If the section is undefined, then so is the symbol. */
3145 if (sym->st_shndx == SHN_UNDEF)
3146 return FALSE;
3147
3148 /* If the symbol is defined in the common section, then
3149 it is a common definition and so does not count. */
3150 if (bed->common_definition (sym))
3151 return FALSE;
3152
3153 /* If the symbol is in a target specific section then we
3154 must rely upon the backend to tell us what it is. */
3155 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3156 /* FIXME - this function is not coded yet:
3157
3158 return _bfd_is_global_symbol_definition (abfd, sym);
3159
3160 Instead for now assume that the definition is not global,
3161 Even if this is wrong, at least the linker will behave
3162 in the same way that it used to do. */
3163 return FALSE;
3164
3165 return TRUE;
3166 }
3167
3168 /* Search the symbol table of the archive element of the archive ABFD
3169 whose archive map contains a mention of SYMDEF, and determine if
3170 the symbol is defined in this element. */
3171 static bfd_boolean
3172 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3173 {
3174 Elf_Internal_Shdr * hdr;
3175 size_t symcount;
3176 size_t extsymcount;
3177 size_t extsymoff;
3178 Elf_Internal_Sym *isymbuf;
3179 Elf_Internal_Sym *isym;
3180 Elf_Internal_Sym *isymend;
3181 bfd_boolean result;
3182
3183 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3184 if (abfd == NULL)
3185 return FALSE;
3186
3187 if (! bfd_check_format (abfd, bfd_object))
3188 return FALSE;
3189
3190 /* Select the appropriate symbol table. If we don't know if the
3191 object file is an IR object, give linker LTO plugin a chance to
3192 get the correct symbol table. */
3193 if (abfd->plugin_format == bfd_plugin_yes
3194 #if BFD_SUPPORTS_PLUGINS
3195 || (abfd->plugin_format == bfd_plugin_unknown
3196 && bfd_link_plugin_object_p (abfd))
3197 #endif
3198 )
3199 {
3200 /* Use the IR symbol table if the object has been claimed by
3201 plugin. */
3202 abfd = abfd->plugin_dummy_bfd;
3203 hdr = &elf_tdata (abfd)->symtab_hdr;
3204 }
3205 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3206 hdr = &elf_tdata (abfd)->symtab_hdr;
3207 else
3208 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3209
3210 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3211
3212 /* The sh_info field of the symtab header tells us where the
3213 external symbols start. We don't care about the local symbols. */
3214 if (elf_bad_symtab (abfd))
3215 {
3216 extsymcount = symcount;
3217 extsymoff = 0;
3218 }
3219 else
3220 {
3221 extsymcount = symcount - hdr->sh_info;
3222 extsymoff = hdr->sh_info;
3223 }
3224
3225 if (extsymcount == 0)
3226 return FALSE;
3227
3228 /* Read in the symbol table. */
3229 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3230 NULL, NULL, NULL);
3231 if (isymbuf == NULL)
3232 return FALSE;
3233
3234 /* Scan the symbol table looking for SYMDEF. */
3235 result = FALSE;
3236 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3237 {
3238 const char *name;
3239
3240 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3241 isym->st_name);
3242 if (name == NULL)
3243 break;
3244
3245 if (strcmp (name, symdef->name) == 0)
3246 {
3247 result = is_global_data_symbol_definition (abfd, isym);
3248 break;
3249 }
3250 }
3251
3252 free (isymbuf);
3253
3254 return result;
3255 }
3256 \f
3257 /* Add an entry to the .dynamic table. */
3258
3259 bfd_boolean
3260 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3261 bfd_vma tag,
3262 bfd_vma val)
3263 {
3264 struct elf_link_hash_table *hash_table;
3265 const struct elf_backend_data *bed;
3266 asection *s;
3267 bfd_size_type newsize;
3268 bfd_byte *newcontents;
3269 Elf_Internal_Dyn dyn;
3270
3271 hash_table = elf_hash_table (info);
3272 if (! is_elf_hash_table (hash_table))
3273 return FALSE;
3274
3275 bed = get_elf_backend_data (hash_table->dynobj);
3276 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3277 BFD_ASSERT (s != NULL);
3278
3279 newsize = s->size + bed->s->sizeof_dyn;
3280 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3281 if (newcontents == NULL)
3282 return FALSE;
3283
3284 dyn.d_tag = tag;
3285 dyn.d_un.d_val = val;
3286 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3287
3288 s->size = newsize;
3289 s->contents = newcontents;
3290
3291 return TRUE;
3292 }
3293
3294 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3295 otherwise just check whether one already exists. Returns -1 on error,
3296 1 if a DT_NEEDED tag already exists, and 0 on success. */
3297
3298 static int
3299 elf_add_dt_needed_tag (bfd *abfd,
3300 struct bfd_link_info *info,
3301 const char *soname,
3302 bfd_boolean do_it)
3303 {
3304 struct elf_link_hash_table *hash_table;
3305 size_t strindex;
3306
3307 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3308 return -1;
3309
3310 hash_table = elf_hash_table (info);
3311 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3312 if (strindex == (size_t) -1)
3313 return -1;
3314
3315 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3316 {
3317 asection *sdyn;
3318 const struct elf_backend_data *bed;
3319 bfd_byte *extdyn;
3320
3321 bed = get_elf_backend_data (hash_table->dynobj);
3322 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3323 if (sdyn != NULL)
3324 for (extdyn = sdyn->contents;
3325 extdyn < sdyn->contents + sdyn->size;
3326 extdyn += bed->s->sizeof_dyn)
3327 {
3328 Elf_Internal_Dyn dyn;
3329
3330 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3331 if (dyn.d_tag == DT_NEEDED
3332 && dyn.d_un.d_val == strindex)
3333 {
3334 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3335 return 1;
3336 }
3337 }
3338 }
3339
3340 if (do_it)
3341 {
3342 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3343 return -1;
3344
3345 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3346 return -1;
3347 }
3348 else
3349 /* We were just checking for existence of the tag. */
3350 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3351
3352 return 0;
3353 }
3354
3355 /* Return true if SONAME is on the needed list between NEEDED and STOP
3356 (or the end of list if STOP is NULL), and needed by a library that
3357 will be loaded. */
3358
3359 static bfd_boolean
3360 on_needed_list (const char *soname,
3361 struct bfd_link_needed_list *needed,
3362 struct bfd_link_needed_list *stop)
3363 {
3364 struct bfd_link_needed_list *look;
3365 for (look = needed; look != stop; look = look->next)
3366 if (strcmp (soname, look->name) == 0
3367 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3368 /* If needed by a library that itself is not directly
3369 needed, recursively check whether that library is
3370 indirectly needed. Since we add DT_NEEDED entries to
3371 the end of the list, library dependencies appear after
3372 the library. Therefore search prior to the current
3373 LOOK, preventing possible infinite recursion. */
3374 || on_needed_list (elf_dt_name (look->by), needed, look)))
3375 return TRUE;
3376
3377 return FALSE;
3378 }
3379
3380 /* Sort symbol by value, section, and size. */
3381 static int
3382 elf_sort_symbol (const void *arg1, const void *arg2)
3383 {
3384 const struct elf_link_hash_entry *h1;
3385 const struct elf_link_hash_entry *h2;
3386 bfd_signed_vma vdiff;
3387
3388 h1 = *(const struct elf_link_hash_entry **) arg1;
3389 h2 = *(const struct elf_link_hash_entry **) arg2;
3390 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3391 if (vdiff != 0)
3392 return vdiff > 0 ? 1 : -1;
3393 else
3394 {
3395 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3396 if (sdiff != 0)
3397 return sdiff > 0 ? 1 : -1;
3398 }
3399 vdiff = h1->size - h2->size;
3400 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3401 }
3402
3403 /* This function is used to adjust offsets into .dynstr for
3404 dynamic symbols. This is called via elf_link_hash_traverse. */
3405
3406 static bfd_boolean
3407 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3408 {
3409 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3410
3411 if (h->dynindx != -1)
3412 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3413 return TRUE;
3414 }
3415
3416 /* Assign string offsets in .dynstr, update all structures referencing
3417 them. */
3418
3419 static bfd_boolean
3420 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3421 {
3422 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3423 struct elf_link_local_dynamic_entry *entry;
3424 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3425 bfd *dynobj = hash_table->dynobj;
3426 asection *sdyn;
3427 bfd_size_type size;
3428 const struct elf_backend_data *bed;
3429 bfd_byte *extdyn;
3430
3431 _bfd_elf_strtab_finalize (dynstr);
3432 size = _bfd_elf_strtab_size (dynstr);
3433
3434 bed = get_elf_backend_data (dynobj);
3435 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3436 BFD_ASSERT (sdyn != NULL);
3437
3438 /* Update all .dynamic entries referencing .dynstr strings. */
3439 for (extdyn = sdyn->contents;
3440 extdyn < sdyn->contents + sdyn->size;
3441 extdyn += bed->s->sizeof_dyn)
3442 {
3443 Elf_Internal_Dyn dyn;
3444
3445 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3446 switch (dyn.d_tag)
3447 {
3448 case DT_STRSZ:
3449 dyn.d_un.d_val = size;
3450 break;
3451 case DT_NEEDED:
3452 case DT_SONAME:
3453 case DT_RPATH:
3454 case DT_RUNPATH:
3455 case DT_FILTER:
3456 case DT_AUXILIARY:
3457 case DT_AUDIT:
3458 case DT_DEPAUDIT:
3459 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3460 break;
3461 default:
3462 continue;
3463 }
3464 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3465 }
3466
3467 /* Now update local dynamic symbols. */
3468 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3469 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3470 entry->isym.st_name);
3471
3472 /* And the rest of dynamic symbols. */
3473 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3474
3475 /* Adjust version definitions. */
3476 if (elf_tdata (output_bfd)->cverdefs)
3477 {
3478 asection *s;
3479 bfd_byte *p;
3480 size_t i;
3481 Elf_Internal_Verdef def;
3482 Elf_Internal_Verdaux defaux;
3483
3484 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3485 p = s->contents;
3486 do
3487 {
3488 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3489 &def);
3490 p += sizeof (Elf_External_Verdef);
3491 if (def.vd_aux != sizeof (Elf_External_Verdef))
3492 continue;
3493 for (i = 0; i < def.vd_cnt; ++i)
3494 {
3495 _bfd_elf_swap_verdaux_in (output_bfd,
3496 (Elf_External_Verdaux *) p, &defaux);
3497 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3498 defaux.vda_name);
3499 _bfd_elf_swap_verdaux_out (output_bfd,
3500 &defaux, (Elf_External_Verdaux *) p);
3501 p += sizeof (Elf_External_Verdaux);
3502 }
3503 }
3504 while (def.vd_next);
3505 }
3506
3507 /* Adjust version references. */
3508 if (elf_tdata (output_bfd)->verref)
3509 {
3510 asection *s;
3511 bfd_byte *p;
3512 size_t i;
3513 Elf_Internal_Verneed need;
3514 Elf_Internal_Vernaux needaux;
3515
3516 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3517 p = s->contents;
3518 do
3519 {
3520 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3521 &need);
3522 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3523 _bfd_elf_swap_verneed_out (output_bfd, &need,
3524 (Elf_External_Verneed *) p);
3525 p += sizeof (Elf_External_Verneed);
3526 for (i = 0; i < need.vn_cnt; ++i)
3527 {
3528 _bfd_elf_swap_vernaux_in (output_bfd,
3529 (Elf_External_Vernaux *) p, &needaux);
3530 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3531 needaux.vna_name);
3532 _bfd_elf_swap_vernaux_out (output_bfd,
3533 &needaux,
3534 (Elf_External_Vernaux *) p);
3535 p += sizeof (Elf_External_Vernaux);
3536 }
3537 }
3538 while (need.vn_next);
3539 }
3540
3541 return TRUE;
3542 }
3543 \f
3544 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3545 The default is to only match when the INPUT and OUTPUT are exactly
3546 the same target. */
3547
3548 bfd_boolean
3549 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3550 const bfd_target *output)
3551 {
3552 return input == output;
3553 }
3554
3555 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3556 This version is used when different targets for the same architecture
3557 are virtually identical. */
3558
3559 bfd_boolean
3560 _bfd_elf_relocs_compatible (const bfd_target *input,
3561 const bfd_target *output)
3562 {
3563 const struct elf_backend_data *obed, *ibed;
3564
3565 if (input == output)
3566 return TRUE;
3567
3568 ibed = xvec_get_elf_backend_data (input);
3569 obed = xvec_get_elf_backend_data (output);
3570
3571 if (ibed->arch != obed->arch)
3572 return FALSE;
3573
3574 /* If both backends are using this function, deem them compatible. */
3575 return ibed->relocs_compatible == obed->relocs_compatible;
3576 }
3577
3578 /* Make a special call to the linker "notice" function to tell it that
3579 we are about to handle an as-needed lib, or have finished
3580 processing the lib. */
3581
3582 bfd_boolean
3583 _bfd_elf_notice_as_needed (bfd *ibfd,
3584 struct bfd_link_info *info,
3585 enum notice_asneeded_action act)
3586 {
3587 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3588 }
3589
3590 /* Check relocations an ELF object file. */
3591
3592 bfd_boolean
3593 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3594 {
3595 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3596 struct elf_link_hash_table *htab = elf_hash_table (info);
3597
3598 /* If this object is the same format as the output object, and it is
3599 not a shared library, then let the backend look through the
3600 relocs.
3601
3602 This is required to build global offset table entries and to
3603 arrange for dynamic relocs. It is not required for the
3604 particular common case of linking non PIC code, even when linking
3605 against shared libraries, but unfortunately there is no way of
3606 knowing whether an object file has been compiled PIC or not.
3607 Looking through the relocs is not particularly time consuming.
3608 The problem is that we must either (1) keep the relocs in memory,
3609 which causes the linker to require additional runtime memory or
3610 (2) read the relocs twice from the input file, which wastes time.
3611 This would be a good case for using mmap.
3612
3613 I have no idea how to handle linking PIC code into a file of a
3614 different format. It probably can't be done. */
3615 if ((abfd->flags & DYNAMIC) == 0
3616 && is_elf_hash_table (htab)
3617 && bed->check_relocs != NULL
3618 && elf_object_id (abfd) == elf_hash_table_id (htab)
3619 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3620 {
3621 asection *o;
3622
3623 for (o = abfd->sections; o != NULL; o = o->next)
3624 {
3625 Elf_Internal_Rela *internal_relocs;
3626 bfd_boolean ok;
3627
3628 /* Don't check relocations in excluded sections. */
3629 if ((o->flags & SEC_RELOC) == 0
3630 || (o->flags & SEC_EXCLUDE) != 0
3631 || o->reloc_count == 0
3632 || ((info->strip == strip_all || info->strip == strip_debugger)
3633 && (o->flags & SEC_DEBUGGING) != 0)
3634 || bfd_is_abs_section (o->output_section))
3635 continue;
3636
3637 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3638 info->keep_memory);
3639 if (internal_relocs == NULL)
3640 return FALSE;
3641
3642 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3643
3644 if (elf_section_data (o)->relocs != internal_relocs)
3645 free (internal_relocs);
3646
3647 if (! ok)
3648 return FALSE;
3649 }
3650 }
3651
3652 return TRUE;
3653 }
3654
3655 /* Add symbols from an ELF object file to the linker hash table. */
3656
3657 static bfd_boolean
3658 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3659 {
3660 Elf_Internal_Ehdr *ehdr;
3661 Elf_Internal_Shdr *hdr;
3662 size_t symcount;
3663 size_t extsymcount;
3664 size_t extsymoff;
3665 struct elf_link_hash_entry **sym_hash;
3666 bfd_boolean dynamic;
3667 Elf_External_Versym *extversym = NULL;
3668 Elf_External_Versym *ever;
3669 struct elf_link_hash_entry *weaks;
3670 struct elf_link_hash_entry **nondeflt_vers = NULL;
3671 size_t nondeflt_vers_cnt = 0;
3672 Elf_Internal_Sym *isymbuf = NULL;
3673 Elf_Internal_Sym *isym;
3674 Elf_Internal_Sym *isymend;
3675 const struct elf_backend_data *bed;
3676 bfd_boolean add_needed;
3677 struct elf_link_hash_table *htab;
3678 bfd_size_type amt;
3679 void *alloc_mark = NULL;
3680 struct bfd_hash_entry **old_table = NULL;
3681 unsigned int old_size = 0;
3682 unsigned int old_count = 0;
3683 void *old_tab = NULL;
3684 void *old_ent;
3685 struct bfd_link_hash_entry *old_undefs = NULL;
3686 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3687 void *old_strtab = NULL;
3688 size_t tabsize = 0;
3689 asection *s;
3690 bfd_boolean just_syms;
3691
3692 htab = elf_hash_table (info);
3693 bed = get_elf_backend_data (abfd);
3694
3695 if ((abfd->flags & DYNAMIC) == 0)
3696 dynamic = FALSE;
3697 else
3698 {
3699 dynamic = TRUE;
3700
3701 /* You can't use -r against a dynamic object. Also, there's no
3702 hope of using a dynamic object which does not exactly match
3703 the format of the output file. */
3704 if (bfd_link_relocatable (info)
3705 || !is_elf_hash_table (htab)
3706 || info->output_bfd->xvec != abfd->xvec)
3707 {
3708 if (bfd_link_relocatable (info))
3709 bfd_set_error (bfd_error_invalid_operation);
3710 else
3711 bfd_set_error (bfd_error_wrong_format);
3712 goto error_return;
3713 }
3714 }
3715
3716 ehdr = elf_elfheader (abfd);
3717 if (info->warn_alternate_em
3718 && bed->elf_machine_code != ehdr->e_machine
3719 && ((bed->elf_machine_alt1 != 0
3720 && ehdr->e_machine == bed->elf_machine_alt1)
3721 || (bed->elf_machine_alt2 != 0
3722 && ehdr->e_machine == bed->elf_machine_alt2)))
3723 info->callbacks->einfo
3724 /* xgettext:c-format */
3725 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3726 ehdr->e_machine, abfd, bed->elf_machine_code);
3727
3728 /* As a GNU extension, any input sections which are named
3729 .gnu.warning.SYMBOL are treated as warning symbols for the given
3730 symbol. This differs from .gnu.warning sections, which generate
3731 warnings when they are included in an output file. */
3732 /* PR 12761: Also generate this warning when building shared libraries. */
3733 for (s = abfd->sections; s != NULL; s = s->next)
3734 {
3735 const char *name;
3736
3737 name = bfd_get_section_name (abfd, s);
3738 if (CONST_STRNEQ (name, ".gnu.warning."))
3739 {
3740 char *msg;
3741 bfd_size_type sz;
3742
3743 name += sizeof ".gnu.warning." - 1;
3744
3745 /* If this is a shared object, then look up the symbol
3746 in the hash table. If it is there, and it is already
3747 been defined, then we will not be using the entry
3748 from this shared object, so we don't need to warn.
3749 FIXME: If we see the definition in a regular object
3750 later on, we will warn, but we shouldn't. The only
3751 fix is to keep track of what warnings we are supposed
3752 to emit, and then handle them all at the end of the
3753 link. */
3754 if (dynamic)
3755 {
3756 struct elf_link_hash_entry *h;
3757
3758 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3759
3760 /* FIXME: What about bfd_link_hash_common? */
3761 if (h != NULL
3762 && (h->root.type == bfd_link_hash_defined
3763 || h->root.type == bfd_link_hash_defweak))
3764 continue;
3765 }
3766
3767 sz = s->size;
3768 msg = (char *) bfd_alloc (abfd, sz + 1);
3769 if (msg == NULL)
3770 goto error_return;
3771
3772 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3773 goto error_return;
3774
3775 msg[sz] = '\0';
3776
3777 if (! (_bfd_generic_link_add_one_symbol
3778 (info, abfd, name, BSF_WARNING, s, 0, msg,
3779 FALSE, bed->collect, NULL)))
3780 goto error_return;
3781
3782 if (bfd_link_executable (info))
3783 {
3784 /* Clobber the section size so that the warning does
3785 not get copied into the output file. */
3786 s->size = 0;
3787
3788 /* Also set SEC_EXCLUDE, so that symbols defined in
3789 the warning section don't get copied to the output. */
3790 s->flags |= SEC_EXCLUDE;
3791 }
3792 }
3793 }
3794
3795 just_syms = ((s = abfd->sections) != NULL
3796 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3797
3798 add_needed = TRUE;
3799 if (! dynamic)
3800 {
3801 /* If we are creating a shared library, create all the dynamic
3802 sections immediately. We need to attach them to something,
3803 so we attach them to this BFD, provided it is the right
3804 format and is not from ld --just-symbols. Always create the
3805 dynamic sections for -E/--dynamic-list. FIXME: If there
3806 are no input BFD's of the same format as the output, we can't
3807 make a shared library. */
3808 if (!just_syms
3809 && (bfd_link_pic (info)
3810 || (!bfd_link_relocatable (info)
3811 && (info->export_dynamic || info->dynamic)))
3812 && is_elf_hash_table (htab)
3813 && info->output_bfd->xvec == abfd->xvec
3814 && !htab->dynamic_sections_created)
3815 {
3816 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3817 goto error_return;
3818 }
3819 }
3820 else if (!is_elf_hash_table (htab))
3821 goto error_return;
3822 else
3823 {
3824 const char *soname = NULL;
3825 char *audit = NULL;
3826 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3827 const Elf_Internal_Phdr *phdr;
3828 int ret;
3829
3830 /* ld --just-symbols and dynamic objects don't mix very well.
3831 ld shouldn't allow it. */
3832 if (just_syms)
3833 abort ();
3834
3835 /* If this dynamic lib was specified on the command line with
3836 --as-needed in effect, then we don't want to add a DT_NEEDED
3837 tag unless the lib is actually used. Similary for libs brought
3838 in by another lib's DT_NEEDED. When --no-add-needed is used
3839 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3840 any dynamic library in DT_NEEDED tags in the dynamic lib at
3841 all. */
3842 add_needed = (elf_dyn_lib_class (abfd)
3843 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3844 | DYN_NO_NEEDED)) == 0;
3845
3846 s = bfd_get_section_by_name (abfd, ".dynamic");
3847 if (s != NULL)
3848 {
3849 bfd_byte *dynbuf;
3850 bfd_byte *extdyn;
3851 unsigned int elfsec;
3852 unsigned long shlink;
3853
3854 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3855 {
3856 error_free_dyn:
3857 free (dynbuf);
3858 goto error_return;
3859 }
3860
3861 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3862 if (elfsec == SHN_BAD)
3863 goto error_free_dyn;
3864 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3865
3866 for (extdyn = dynbuf;
3867 extdyn < dynbuf + s->size;
3868 extdyn += bed->s->sizeof_dyn)
3869 {
3870 Elf_Internal_Dyn dyn;
3871
3872 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3873 if (dyn.d_tag == DT_SONAME)
3874 {
3875 unsigned int tagv = dyn.d_un.d_val;
3876 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3877 if (soname == NULL)
3878 goto error_free_dyn;
3879 }
3880 if (dyn.d_tag == DT_NEEDED)
3881 {
3882 struct bfd_link_needed_list *n, **pn;
3883 char *fnm, *anm;
3884 unsigned int tagv = dyn.d_un.d_val;
3885
3886 amt = sizeof (struct bfd_link_needed_list);
3887 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3888 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3889 if (n == NULL || fnm == NULL)
3890 goto error_free_dyn;
3891 amt = strlen (fnm) + 1;
3892 anm = (char *) bfd_alloc (abfd, amt);
3893 if (anm == NULL)
3894 goto error_free_dyn;
3895 memcpy (anm, fnm, amt);
3896 n->name = anm;
3897 n->by = abfd;
3898 n->next = NULL;
3899 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3900 ;
3901 *pn = n;
3902 }
3903 if (dyn.d_tag == DT_RUNPATH)
3904 {
3905 struct bfd_link_needed_list *n, **pn;
3906 char *fnm, *anm;
3907 unsigned int tagv = dyn.d_un.d_val;
3908
3909 amt = sizeof (struct bfd_link_needed_list);
3910 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3911 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3912 if (n == NULL || fnm == NULL)
3913 goto error_free_dyn;
3914 amt = strlen (fnm) + 1;
3915 anm = (char *) bfd_alloc (abfd, amt);
3916 if (anm == NULL)
3917 goto error_free_dyn;
3918 memcpy (anm, fnm, amt);
3919 n->name = anm;
3920 n->by = abfd;
3921 n->next = NULL;
3922 for (pn = & runpath;
3923 *pn != NULL;
3924 pn = &(*pn)->next)
3925 ;
3926 *pn = n;
3927 }
3928 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3929 if (!runpath && dyn.d_tag == DT_RPATH)
3930 {
3931 struct bfd_link_needed_list *n, **pn;
3932 char *fnm, *anm;
3933 unsigned int tagv = dyn.d_un.d_val;
3934
3935 amt = sizeof (struct bfd_link_needed_list);
3936 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3937 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3938 if (n == NULL || fnm == NULL)
3939 goto error_free_dyn;
3940 amt = strlen (fnm) + 1;
3941 anm = (char *) bfd_alloc (abfd, amt);
3942 if (anm == NULL)
3943 goto error_free_dyn;
3944 memcpy (anm, fnm, amt);
3945 n->name = anm;
3946 n->by = abfd;
3947 n->next = NULL;
3948 for (pn = & rpath;
3949 *pn != NULL;
3950 pn = &(*pn)->next)
3951 ;
3952 *pn = n;
3953 }
3954 if (dyn.d_tag == DT_AUDIT)
3955 {
3956 unsigned int tagv = dyn.d_un.d_val;
3957 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3958 }
3959 }
3960
3961 free (dynbuf);
3962 }
3963
3964 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3965 frees all more recently bfd_alloc'd blocks as well. */
3966 if (runpath)
3967 rpath = runpath;
3968
3969 if (rpath)
3970 {
3971 struct bfd_link_needed_list **pn;
3972 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3973 ;
3974 *pn = rpath;
3975 }
3976
3977 /* If we have a PT_GNU_RELRO program header, mark as read-only
3978 all sections contained fully therein. This makes relro
3979 shared library sections appear as they will at run-time. */
3980 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
3981 while (--phdr >= elf_tdata (abfd)->phdr)
3982 if (phdr->p_type == PT_GNU_RELRO)
3983 {
3984 for (s = abfd->sections; s != NULL; s = s->next)
3985 if ((s->flags & SEC_ALLOC) != 0
3986 && s->vma >= phdr->p_vaddr
3987 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
3988 s->flags |= SEC_READONLY;
3989 break;
3990 }
3991
3992 /* We do not want to include any of the sections in a dynamic
3993 object in the output file. We hack by simply clobbering the
3994 list of sections in the BFD. This could be handled more
3995 cleanly by, say, a new section flag; the existing
3996 SEC_NEVER_LOAD flag is not the one we want, because that one
3997 still implies that the section takes up space in the output
3998 file. */
3999 bfd_section_list_clear (abfd);
4000
4001 /* Find the name to use in a DT_NEEDED entry that refers to this
4002 object. If the object has a DT_SONAME entry, we use it.
4003 Otherwise, if the generic linker stuck something in
4004 elf_dt_name, we use that. Otherwise, we just use the file
4005 name. */
4006 if (soname == NULL || *soname == '\0')
4007 {
4008 soname = elf_dt_name (abfd);
4009 if (soname == NULL || *soname == '\0')
4010 soname = bfd_get_filename (abfd);
4011 }
4012
4013 /* Save the SONAME because sometimes the linker emulation code
4014 will need to know it. */
4015 elf_dt_name (abfd) = soname;
4016
4017 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4018 if (ret < 0)
4019 goto error_return;
4020
4021 /* If we have already included this dynamic object in the
4022 link, just ignore it. There is no reason to include a
4023 particular dynamic object more than once. */
4024 if (ret > 0)
4025 return TRUE;
4026
4027 /* Save the DT_AUDIT entry for the linker emulation code. */
4028 elf_dt_audit (abfd) = audit;
4029 }
4030
4031 /* If this is a dynamic object, we always link against the .dynsym
4032 symbol table, not the .symtab symbol table. The dynamic linker
4033 will only see the .dynsym symbol table, so there is no reason to
4034 look at .symtab for a dynamic object. */
4035
4036 if (! dynamic || elf_dynsymtab (abfd) == 0)
4037 hdr = &elf_tdata (abfd)->symtab_hdr;
4038 else
4039 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4040
4041 symcount = hdr->sh_size / bed->s->sizeof_sym;
4042
4043 /* The sh_info field of the symtab header tells us where the
4044 external symbols start. We don't care about the local symbols at
4045 this point. */
4046 if (elf_bad_symtab (abfd))
4047 {
4048 extsymcount = symcount;
4049 extsymoff = 0;
4050 }
4051 else
4052 {
4053 extsymcount = symcount - hdr->sh_info;
4054 extsymoff = hdr->sh_info;
4055 }
4056
4057 sym_hash = elf_sym_hashes (abfd);
4058 if (extsymcount != 0)
4059 {
4060 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4061 NULL, NULL, NULL);
4062 if (isymbuf == NULL)
4063 goto error_return;
4064
4065 if (sym_hash == NULL)
4066 {
4067 /* We store a pointer to the hash table entry for each
4068 external symbol. */
4069 amt = extsymcount;
4070 amt *= sizeof (struct elf_link_hash_entry *);
4071 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4072 if (sym_hash == NULL)
4073 goto error_free_sym;
4074 elf_sym_hashes (abfd) = sym_hash;
4075 }
4076 }
4077
4078 if (dynamic)
4079 {
4080 /* Read in any version definitions. */
4081 if (!_bfd_elf_slurp_version_tables (abfd,
4082 info->default_imported_symver))
4083 goto error_free_sym;
4084
4085 /* Read in the symbol versions, but don't bother to convert them
4086 to internal format. */
4087 if (elf_dynversym (abfd) != 0)
4088 {
4089 Elf_Internal_Shdr *versymhdr;
4090
4091 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4092 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4093 if (extversym == NULL)
4094 goto error_free_sym;
4095 amt = versymhdr->sh_size;
4096 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4097 || bfd_bread (extversym, amt, abfd) != amt)
4098 goto error_free_vers;
4099 }
4100 }
4101
4102 /* If we are loading an as-needed shared lib, save the symbol table
4103 state before we start adding symbols. If the lib turns out
4104 to be unneeded, restore the state. */
4105 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4106 {
4107 unsigned int i;
4108 size_t entsize;
4109
4110 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4111 {
4112 struct bfd_hash_entry *p;
4113 struct elf_link_hash_entry *h;
4114
4115 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4116 {
4117 h = (struct elf_link_hash_entry *) p;
4118 entsize += htab->root.table.entsize;
4119 if (h->root.type == bfd_link_hash_warning)
4120 entsize += htab->root.table.entsize;
4121 }
4122 }
4123
4124 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4125 old_tab = bfd_malloc (tabsize + entsize);
4126 if (old_tab == NULL)
4127 goto error_free_vers;
4128
4129 /* Remember the current objalloc pointer, so that all mem for
4130 symbols added can later be reclaimed. */
4131 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4132 if (alloc_mark == NULL)
4133 goto error_free_vers;
4134
4135 /* Make a special call to the linker "notice" function to
4136 tell it that we are about to handle an as-needed lib. */
4137 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4138 goto error_free_vers;
4139
4140 /* Clone the symbol table. Remember some pointers into the
4141 symbol table, and dynamic symbol count. */
4142 old_ent = (char *) old_tab + tabsize;
4143 memcpy (old_tab, htab->root.table.table, tabsize);
4144 old_undefs = htab->root.undefs;
4145 old_undefs_tail = htab->root.undefs_tail;
4146 old_table = htab->root.table.table;
4147 old_size = htab->root.table.size;
4148 old_count = htab->root.table.count;
4149 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4150 if (old_strtab == NULL)
4151 goto error_free_vers;
4152
4153 for (i = 0; i < htab->root.table.size; i++)
4154 {
4155 struct bfd_hash_entry *p;
4156 struct elf_link_hash_entry *h;
4157
4158 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4159 {
4160 memcpy (old_ent, p, htab->root.table.entsize);
4161 old_ent = (char *) old_ent + htab->root.table.entsize;
4162 h = (struct elf_link_hash_entry *) p;
4163 if (h->root.type == bfd_link_hash_warning)
4164 {
4165 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4166 old_ent = (char *) old_ent + htab->root.table.entsize;
4167 }
4168 }
4169 }
4170 }
4171
4172 weaks = NULL;
4173 ever = extversym != NULL ? extversym + extsymoff : NULL;
4174 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4175 isym < isymend;
4176 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4177 {
4178 int bind;
4179 bfd_vma value;
4180 asection *sec, *new_sec;
4181 flagword flags;
4182 const char *name;
4183 struct elf_link_hash_entry *h;
4184 struct elf_link_hash_entry *hi;
4185 bfd_boolean definition;
4186 bfd_boolean size_change_ok;
4187 bfd_boolean type_change_ok;
4188 bfd_boolean new_weakdef;
4189 bfd_boolean new_weak;
4190 bfd_boolean old_weak;
4191 bfd_boolean override;
4192 bfd_boolean common;
4193 bfd_boolean discarded;
4194 unsigned int old_alignment;
4195 bfd *old_bfd;
4196 bfd_boolean matched;
4197
4198 override = FALSE;
4199
4200 flags = BSF_NO_FLAGS;
4201 sec = NULL;
4202 value = isym->st_value;
4203 common = bed->common_definition (isym);
4204 discarded = FALSE;
4205
4206 bind = ELF_ST_BIND (isym->st_info);
4207 switch (bind)
4208 {
4209 case STB_LOCAL:
4210 /* This should be impossible, since ELF requires that all
4211 global symbols follow all local symbols, and that sh_info
4212 point to the first global symbol. Unfortunately, Irix 5
4213 screws this up. */
4214 continue;
4215
4216 case STB_GLOBAL:
4217 if (isym->st_shndx != SHN_UNDEF && !common)
4218 flags = BSF_GLOBAL;
4219 break;
4220
4221 case STB_WEAK:
4222 flags = BSF_WEAK;
4223 break;
4224
4225 case STB_GNU_UNIQUE:
4226 flags = BSF_GNU_UNIQUE;
4227 break;
4228
4229 default:
4230 /* Leave it up to the processor backend. */
4231 break;
4232 }
4233
4234 if (isym->st_shndx == SHN_UNDEF)
4235 sec = bfd_und_section_ptr;
4236 else if (isym->st_shndx == SHN_ABS)
4237 sec = bfd_abs_section_ptr;
4238 else if (isym->st_shndx == SHN_COMMON)
4239 {
4240 sec = bfd_com_section_ptr;
4241 /* What ELF calls the size we call the value. What ELF
4242 calls the value we call the alignment. */
4243 value = isym->st_size;
4244 }
4245 else
4246 {
4247 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4248 if (sec == NULL)
4249 sec = bfd_abs_section_ptr;
4250 else if (discarded_section (sec))
4251 {
4252 /* Symbols from discarded section are undefined. We keep
4253 its visibility. */
4254 sec = bfd_und_section_ptr;
4255 discarded = TRUE;
4256 isym->st_shndx = SHN_UNDEF;
4257 }
4258 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4259 value -= sec->vma;
4260 }
4261
4262 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4263 isym->st_name);
4264 if (name == NULL)
4265 goto error_free_vers;
4266
4267 if (isym->st_shndx == SHN_COMMON
4268 && (abfd->flags & BFD_PLUGIN) != 0)
4269 {
4270 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4271
4272 if (xc == NULL)
4273 {
4274 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4275 | SEC_EXCLUDE);
4276 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4277 if (xc == NULL)
4278 goto error_free_vers;
4279 }
4280 sec = xc;
4281 }
4282 else if (isym->st_shndx == SHN_COMMON
4283 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4284 && !bfd_link_relocatable (info))
4285 {
4286 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4287
4288 if (tcomm == NULL)
4289 {
4290 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4291 | SEC_LINKER_CREATED);
4292 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4293 if (tcomm == NULL)
4294 goto error_free_vers;
4295 }
4296 sec = tcomm;
4297 }
4298 else if (bed->elf_add_symbol_hook)
4299 {
4300 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4301 &sec, &value))
4302 goto error_free_vers;
4303
4304 /* The hook function sets the name to NULL if this symbol
4305 should be skipped for some reason. */
4306 if (name == NULL)
4307 continue;
4308 }
4309
4310 /* Sanity check that all possibilities were handled. */
4311 if (sec == NULL)
4312 {
4313 bfd_set_error (bfd_error_bad_value);
4314 goto error_free_vers;
4315 }
4316
4317 /* Silently discard TLS symbols from --just-syms. There's
4318 no way to combine a static TLS block with a new TLS block
4319 for this executable. */
4320 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4321 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4322 continue;
4323
4324 if (bfd_is_und_section (sec)
4325 || bfd_is_com_section (sec))
4326 definition = FALSE;
4327 else
4328 definition = TRUE;
4329
4330 size_change_ok = FALSE;
4331 type_change_ok = bed->type_change_ok;
4332 old_weak = FALSE;
4333 matched = FALSE;
4334 old_alignment = 0;
4335 old_bfd = NULL;
4336 new_sec = sec;
4337
4338 if (is_elf_hash_table (htab))
4339 {
4340 Elf_Internal_Versym iver;
4341 unsigned int vernum = 0;
4342 bfd_boolean skip;
4343
4344 if (ever == NULL)
4345 {
4346 if (info->default_imported_symver)
4347 /* Use the default symbol version created earlier. */
4348 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4349 else
4350 iver.vs_vers = 0;
4351 }
4352 else
4353 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4354
4355 vernum = iver.vs_vers & VERSYM_VERSION;
4356
4357 /* If this is a hidden symbol, or if it is not version
4358 1, we append the version name to the symbol name.
4359 However, we do not modify a non-hidden absolute symbol
4360 if it is not a function, because it might be the version
4361 symbol itself. FIXME: What if it isn't? */
4362 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4363 || (vernum > 1
4364 && (!bfd_is_abs_section (sec)
4365 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4366 {
4367 const char *verstr;
4368 size_t namelen, verlen, newlen;
4369 char *newname, *p;
4370
4371 if (isym->st_shndx != SHN_UNDEF)
4372 {
4373 if (vernum > elf_tdata (abfd)->cverdefs)
4374 verstr = NULL;
4375 else if (vernum > 1)
4376 verstr =
4377 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4378 else
4379 verstr = "";
4380
4381 if (verstr == NULL)
4382 {
4383 _bfd_error_handler
4384 /* xgettext:c-format */
4385 (_("%B: %s: invalid version %u (max %d)"),
4386 abfd, name, vernum,
4387 elf_tdata (abfd)->cverdefs);
4388 bfd_set_error (bfd_error_bad_value);
4389 goto error_free_vers;
4390 }
4391 }
4392 else
4393 {
4394 /* We cannot simply test for the number of
4395 entries in the VERNEED section since the
4396 numbers for the needed versions do not start
4397 at 0. */
4398 Elf_Internal_Verneed *t;
4399
4400 verstr = NULL;
4401 for (t = elf_tdata (abfd)->verref;
4402 t != NULL;
4403 t = t->vn_nextref)
4404 {
4405 Elf_Internal_Vernaux *a;
4406
4407 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4408 {
4409 if (a->vna_other == vernum)
4410 {
4411 verstr = a->vna_nodename;
4412 break;
4413 }
4414 }
4415 if (a != NULL)
4416 break;
4417 }
4418 if (verstr == NULL)
4419 {
4420 _bfd_error_handler
4421 /* xgettext:c-format */
4422 (_("%B: %s: invalid needed version %d"),
4423 abfd, name, vernum);
4424 bfd_set_error (bfd_error_bad_value);
4425 goto error_free_vers;
4426 }
4427 }
4428
4429 namelen = strlen (name);
4430 verlen = strlen (verstr);
4431 newlen = namelen + verlen + 2;
4432 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4433 && isym->st_shndx != SHN_UNDEF)
4434 ++newlen;
4435
4436 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4437 if (newname == NULL)
4438 goto error_free_vers;
4439 memcpy (newname, name, namelen);
4440 p = newname + namelen;
4441 *p++ = ELF_VER_CHR;
4442 /* If this is a defined non-hidden version symbol,
4443 we add another @ to the name. This indicates the
4444 default version of the symbol. */
4445 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4446 && isym->st_shndx != SHN_UNDEF)
4447 *p++ = ELF_VER_CHR;
4448 memcpy (p, verstr, verlen + 1);
4449
4450 name = newname;
4451 }
4452
4453 /* If this symbol has default visibility and the user has
4454 requested we not re-export it, then mark it as hidden. */
4455 if (!bfd_is_und_section (sec)
4456 && !dynamic
4457 && abfd->no_export
4458 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4459 isym->st_other = (STV_HIDDEN
4460 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4461
4462 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4463 sym_hash, &old_bfd, &old_weak,
4464 &old_alignment, &skip, &override,
4465 &type_change_ok, &size_change_ok,
4466 &matched))
4467 goto error_free_vers;
4468
4469 if (skip)
4470 continue;
4471
4472 /* Override a definition only if the new symbol matches the
4473 existing one. */
4474 if (override && matched)
4475 definition = FALSE;
4476
4477 h = *sym_hash;
4478 while (h->root.type == bfd_link_hash_indirect
4479 || h->root.type == bfd_link_hash_warning)
4480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4481
4482 if (elf_tdata (abfd)->verdef != NULL
4483 && vernum > 1
4484 && definition)
4485 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4486 }
4487
4488 if (! (_bfd_generic_link_add_one_symbol
4489 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4490 (struct bfd_link_hash_entry **) sym_hash)))
4491 goto error_free_vers;
4492
4493 if ((flags & BSF_GNU_UNIQUE)
4494 && (abfd->flags & DYNAMIC) == 0
4495 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4496 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4497
4498 h = *sym_hash;
4499 /* We need to make sure that indirect symbol dynamic flags are
4500 updated. */
4501 hi = h;
4502 while (h->root.type == bfd_link_hash_indirect
4503 || h->root.type == bfd_link_hash_warning)
4504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4505
4506 /* Setting the index to -3 tells elf_link_output_extsym that
4507 this symbol is defined in a discarded section. */
4508 if (discarded)
4509 h->indx = -3;
4510
4511 *sym_hash = h;
4512
4513 new_weak = (flags & BSF_WEAK) != 0;
4514 new_weakdef = FALSE;
4515 if (dynamic
4516 && definition
4517 && new_weak
4518 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4519 && is_elf_hash_table (htab)
4520 && h->u.weakdef == NULL)
4521 {
4522 /* Keep a list of all weak defined non function symbols from
4523 a dynamic object, using the weakdef field. Later in this
4524 function we will set the weakdef field to the correct
4525 value. We only put non-function symbols from dynamic
4526 objects on this list, because that happens to be the only
4527 time we need to know the normal symbol corresponding to a
4528 weak symbol, and the information is time consuming to
4529 figure out. If the weakdef field is not already NULL,
4530 then this symbol was already defined by some previous
4531 dynamic object, and we will be using that previous
4532 definition anyhow. */
4533
4534 h->u.weakdef = weaks;
4535 weaks = h;
4536 new_weakdef = TRUE;
4537 }
4538
4539 /* Set the alignment of a common symbol. */
4540 if ((common || bfd_is_com_section (sec))
4541 && h->root.type == bfd_link_hash_common)
4542 {
4543 unsigned int align;
4544
4545 if (common)
4546 align = bfd_log2 (isym->st_value);
4547 else
4548 {
4549 /* The new symbol is a common symbol in a shared object.
4550 We need to get the alignment from the section. */
4551 align = new_sec->alignment_power;
4552 }
4553 if (align > old_alignment)
4554 h->root.u.c.p->alignment_power = align;
4555 else
4556 h->root.u.c.p->alignment_power = old_alignment;
4557 }
4558
4559 if (is_elf_hash_table (htab))
4560 {
4561 /* Set a flag in the hash table entry indicating the type of
4562 reference or definition we just found. A dynamic symbol
4563 is one which is referenced or defined by both a regular
4564 object and a shared object. */
4565 bfd_boolean dynsym = FALSE;
4566
4567 /* Plugin symbols aren't normal. Don't set def_regular or
4568 ref_regular for them, or make them dynamic. */
4569 if ((abfd->flags & BFD_PLUGIN) != 0)
4570 ;
4571 else if (! dynamic)
4572 {
4573 if (! definition)
4574 {
4575 h->ref_regular = 1;
4576 if (bind != STB_WEAK)
4577 h->ref_regular_nonweak = 1;
4578 }
4579 else
4580 {
4581 h->def_regular = 1;
4582 if (h->def_dynamic)
4583 {
4584 h->def_dynamic = 0;
4585 h->ref_dynamic = 1;
4586 }
4587 }
4588
4589 /* If the indirect symbol has been forced local, don't
4590 make the real symbol dynamic. */
4591 if ((h == hi || !hi->forced_local)
4592 && (bfd_link_dll (info)
4593 || h->def_dynamic
4594 || h->ref_dynamic))
4595 dynsym = TRUE;
4596 }
4597 else
4598 {
4599 if (! definition)
4600 {
4601 h->ref_dynamic = 1;
4602 hi->ref_dynamic = 1;
4603 }
4604 else
4605 {
4606 h->def_dynamic = 1;
4607 hi->def_dynamic = 1;
4608 }
4609
4610 /* If the indirect symbol has been forced local, don't
4611 make the real symbol dynamic. */
4612 if ((h == hi || !hi->forced_local)
4613 && (h->def_regular
4614 || h->ref_regular
4615 || (h->u.weakdef != NULL
4616 && ! new_weakdef
4617 && h->u.weakdef->dynindx != -1)))
4618 dynsym = TRUE;
4619 }
4620
4621 /* Check to see if we need to add an indirect symbol for
4622 the default name. */
4623 if (definition
4624 || (!override && h->root.type == bfd_link_hash_common))
4625 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4626 sec, value, &old_bfd, &dynsym))
4627 goto error_free_vers;
4628
4629 /* Check the alignment when a common symbol is involved. This
4630 can change when a common symbol is overridden by a normal
4631 definition or a common symbol is ignored due to the old
4632 normal definition. We need to make sure the maximum
4633 alignment is maintained. */
4634 if ((old_alignment || common)
4635 && h->root.type != bfd_link_hash_common)
4636 {
4637 unsigned int common_align;
4638 unsigned int normal_align;
4639 unsigned int symbol_align;
4640 bfd *normal_bfd;
4641 bfd *common_bfd;
4642
4643 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4644 || h->root.type == bfd_link_hash_defweak);
4645
4646 symbol_align = ffs (h->root.u.def.value) - 1;
4647 if (h->root.u.def.section->owner != NULL
4648 && (h->root.u.def.section->owner->flags
4649 & (DYNAMIC | BFD_PLUGIN)) == 0)
4650 {
4651 normal_align = h->root.u.def.section->alignment_power;
4652 if (normal_align > symbol_align)
4653 normal_align = symbol_align;
4654 }
4655 else
4656 normal_align = symbol_align;
4657
4658 if (old_alignment)
4659 {
4660 common_align = old_alignment;
4661 common_bfd = old_bfd;
4662 normal_bfd = abfd;
4663 }
4664 else
4665 {
4666 common_align = bfd_log2 (isym->st_value);
4667 common_bfd = abfd;
4668 normal_bfd = old_bfd;
4669 }
4670
4671 if (normal_align < common_align)
4672 {
4673 /* PR binutils/2735 */
4674 if (normal_bfd == NULL)
4675 _bfd_error_handler
4676 /* xgettext:c-format */
4677 (_("Warning: alignment %u of common symbol `%s' in %B is"
4678 " greater than the alignment (%u) of its section %A"),
4679 common_bfd, h->root.u.def.section,
4680 1 << common_align, name, 1 << normal_align);
4681 else
4682 _bfd_error_handler
4683 /* xgettext:c-format */
4684 (_("Warning: alignment %u of symbol `%s' in %B"
4685 " is smaller than %u in %B"),
4686 normal_bfd, common_bfd,
4687 1 << normal_align, name, 1 << common_align);
4688 }
4689 }
4690
4691 /* Remember the symbol size if it isn't undefined. */
4692 if (isym->st_size != 0
4693 && isym->st_shndx != SHN_UNDEF
4694 && (definition || h->size == 0))
4695 {
4696 if (h->size != 0
4697 && h->size != isym->st_size
4698 && ! size_change_ok)
4699 _bfd_error_handler
4700 /* xgettext:c-format */
4701 (_("Warning: size of symbol `%s' changed"
4702 " from %lu in %B to %lu in %B"),
4703 old_bfd, abfd,
4704 name, (unsigned long) h->size,
4705 (unsigned long) isym->st_size);
4706
4707 h->size = isym->st_size;
4708 }
4709
4710 /* If this is a common symbol, then we always want H->SIZE
4711 to be the size of the common symbol. The code just above
4712 won't fix the size if a common symbol becomes larger. We
4713 don't warn about a size change here, because that is
4714 covered by --warn-common. Allow changes between different
4715 function types. */
4716 if (h->root.type == bfd_link_hash_common)
4717 h->size = h->root.u.c.size;
4718
4719 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4720 && ((definition && !new_weak)
4721 || (old_weak && h->root.type == bfd_link_hash_common)
4722 || h->type == STT_NOTYPE))
4723 {
4724 unsigned int type = ELF_ST_TYPE (isym->st_info);
4725
4726 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4727 symbol. */
4728 if (type == STT_GNU_IFUNC
4729 && (abfd->flags & DYNAMIC) != 0)
4730 type = STT_FUNC;
4731
4732 if (h->type != type)
4733 {
4734 if (h->type != STT_NOTYPE && ! type_change_ok)
4735 /* xgettext:c-format */
4736 _bfd_error_handler
4737 (_("Warning: type of symbol `%s' changed"
4738 " from %d to %d in %B"),
4739 abfd, name, h->type, type);
4740
4741 h->type = type;
4742 }
4743 }
4744
4745 /* Merge st_other field. */
4746 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4747
4748 /* We don't want to make debug symbol dynamic. */
4749 if (definition
4750 && (sec->flags & SEC_DEBUGGING)
4751 && !bfd_link_relocatable (info))
4752 dynsym = FALSE;
4753
4754 /* Nor should we make plugin symbols dynamic. */
4755 if ((abfd->flags & BFD_PLUGIN) != 0)
4756 dynsym = FALSE;
4757
4758 if (definition)
4759 {
4760 h->target_internal = isym->st_target_internal;
4761 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4762 }
4763
4764 if (definition && !dynamic)
4765 {
4766 char *p = strchr (name, ELF_VER_CHR);
4767 if (p != NULL && p[1] != ELF_VER_CHR)
4768 {
4769 /* Queue non-default versions so that .symver x, x@FOO
4770 aliases can be checked. */
4771 if (!nondeflt_vers)
4772 {
4773 amt = ((isymend - isym + 1)
4774 * sizeof (struct elf_link_hash_entry *));
4775 nondeflt_vers
4776 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4777 if (!nondeflt_vers)
4778 goto error_free_vers;
4779 }
4780 nondeflt_vers[nondeflt_vers_cnt++] = h;
4781 }
4782 }
4783
4784 if (dynsym && h->dynindx == -1)
4785 {
4786 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4787 goto error_free_vers;
4788 if (h->u.weakdef != NULL
4789 && ! new_weakdef
4790 && h->u.weakdef->dynindx == -1)
4791 {
4792 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4793 goto error_free_vers;
4794 }
4795 }
4796 else if (h->dynindx != -1)
4797 /* If the symbol already has a dynamic index, but
4798 visibility says it should not be visible, turn it into
4799 a local symbol. */
4800 switch (ELF_ST_VISIBILITY (h->other))
4801 {
4802 case STV_INTERNAL:
4803 case STV_HIDDEN:
4804 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4805 dynsym = FALSE;
4806 break;
4807 }
4808
4809 /* Don't add DT_NEEDED for references from the dummy bfd nor
4810 for unmatched symbol. */
4811 if (!add_needed
4812 && matched
4813 && definition
4814 && ((dynsym
4815 && h->ref_regular_nonweak
4816 && (old_bfd == NULL
4817 || (old_bfd->flags & BFD_PLUGIN) == 0))
4818 || (h->ref_dynamic_nonweak
4819 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4820 && !on_needed_list (elf_dt_name (abfd),
4821 htab->needed, NULL))))
4822 {
4823 int ret;
4824 const char *soname = elf_dt_name (abfd);
4825
4826 info->callbacks->minfo ("%!", soname, old_bfd,
4827 h->root.root.string);
4828
4829 /* A symbol from a library loaded via DT_NEEDED of some
4830 other library is referenced by a regular object.
4831 Add a DT_NEEDED entry for it. Issue an error if
4832 --no-add-needed is used and the reference was not
4833 a weak one. */
4834 if (old_bfd != NULL
4835 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4836 {
4837 _bfd_error_handler
4838 /* xgettext:c-format */
4839 (_("%B: undefined reference to symbol '%s'"),
4840 old_bfd, name);
4841 bfd_set_error (bfd_error_missing_dso);
4842 goto error_free_vers;
4843 }
4844
4845 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4846 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4847
4848 add_needed = TRUE;
4849 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4850 if (ret < 0)
4851 goto error_free_vers;
4852
4853 BFD_ASSERT (ret == 0);
4854 }
4855 }
4856 }
4857
4858 if (extversym != NULL)
4859 {
4860 free (extversym);
4861 extversym = NULL;
4862 }
4863
4864 if (isymbuf != NULL)
4865 {
4866 free (isymbuf);
4867 isymbuf = NULL;
4868 }
4869
4870 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4871 {
4872 unsigned int i;
4873
4874 /* Restore the symbol table. */
4875 old_ent = (char *) old_tab + tabsize;
4876 memset (elf_sym_hashes (abfd), 0,
4877 extsymcount * sizeof (struct elf_link_hash_entry *));
4878 htab->root.table.table = old_table;
4879 htab->root.table.size = old_size;
4880 htab->root.table.count = old_count;
4881 memcpy (htab->root.table.table, old_tab, tabsize);
4882 htab->root.undefs = old_undefs;
4883 htab->root.undefs_tail = old_undefs_tail;
4884 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4885 free (old_strtab);
4886 old_strtab = NULL;
4887 for (i = 0; i < htab->root.table.size; i++)
4888 {
4889 struct bfd_hash_entry *p;
4890 struct elf_link_hash_entry *h;
4891 bfd_size_type size;
4892 unsigned int alignment_power;
4893
4894 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4895 {
4896 h = (struct elf_link_hash_entry *) p;
4897 if (h->root.type == bfd_link_hash_warning)
4898 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4899
4900 /* Preserve the maximum alignment and size for common
4901 symbols even if this dynamic lib isn't on DT_NEEDED
4902 since it can still be loaded at run time by another
4903 dynamic lib. */
4904 if (h->root.type == bfd_link_hash_common)
4905 {
4906 size = h->root.u.c.size;
4907 alignment_power = h->root.u.c.p->alignment_power;
4908 }
4909 else
4910 {
4911 size = 0;
4912 alignment_power = 0;
4913 }
4914 memcpy (p, old_ent, htab->root.table.entsize);
4915 old_ent = (char *) old_ent + htab->root.table.entsize;
4916 h = (struct elf_link_hash_entry *) p;
4917 if (h->root.type == bfd_link_hash_warning)
4918 {
4919 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4920 old_ent = (char *) old_ent + htab->root.table.entsize;
4921 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4922 }
4923 if (h->root.type == bfd_link_hash_common)
4924 {
4925 if (size > h->root.u.c.size)
4926 h->root.u.c.size = size;
4927 if (alignment_power > h->root.u.c.p->alignment_power)
4928 h->root.u.c.p->alignment_power = alignment_power;
4929 }
4930 }
4931 }
4932
4933 /* Make a special call to the linker "notice" function to
4934 tell it that symbols added for crefs may need to be removed. */
4935 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4936 goto error_free_vers;
4937
4938 free (old_tab);
4939 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4940 alloc_mark);
4941 if (nondeflt_vers != NULL)
4942 free (nondeflt_vers);
4943 return TRUE;
4944 }
4945
4946 if (old_tab != NULL)
4947 {
4948 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4949 goto error_free_vers;
4950 free (old_tab);
4951 old_tab = NULL;
4952 }
4953
4954 /* Now that all the symbols from this input file are created, if
4955 not performing a relocatable link, handle .symver foo, foo@BAR
4956 such that any relocs against foo become foo@BAR. */
4957 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4958 {
4959 size_t cnt, symidx;
4960
4961 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4962 {
4963 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4964 char *shortname, *p;
4965
4966 p = strchr (h->root.root.string, ELF_VER_CHR);
4967 if (p == NULL
4968 || (h->root.type != bfd_link_hash_defined
4969 && h->root.type != bfd_link_hash_defweak))
4970 continue;
4971
4972 amt = p - h->root.root.string;
4973 shortname = (char *) bfd_malloc (amt + 1);
4974 if (!shortname)
4975 goto error_free_vers;
4976 memcpy (shortname, h->root.root.string, amt);
4977 shortname[amt] = '\0';
4978
4979 hi = (struct elf_link_hash_entry *)
4980 bfd_link_hash_lookup (&htab->root, shortname,
4981 FALSE, FALSE, FALSE);
4982 if (hi != NULL
4983 && hi->root.type == h->root.type
4984 && hi->root.u.def.value == h->root.u.def.value
4985 && hi->root.u.def.section == h->root.u.def.section)
4986 {
4987 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4988 hi->root.type = bfd_link_hash_indirect;
4989 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4990 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4991 sym_hash = elf_sym_hashes (abfd);
4992 if (sym_hash)
4993 for (symidx = 0; symidx < extsymcount; ++symidx)
4994 if (sym_hash[symidx] == hi)
4995 {
4996 sym_hash[symidx] = h;
4997 break;
4998 }
4999 }
5000 free (shortname);
5001 }
5002 free (nondeflt_vers);
5003 nondeflt_vers = NULL;
5004 }
5005
5006 /* Now set the weakdefs field correctly for all the weak defined
5007 symbols we found. The only way to do this is to search all the
5008 symbols. Since we only need the information for non functions in
5009 dynamic objects, that's the only time we actually put anything on
5010 the list WEAKS. We need this information so that if a regular
5011 object refers to a symbol defined weakly in a dynamic object, the
5012 real symbol in the dynamic object is also put in the dynamic
5013 symbols; we also must arrange for both symbols to point to the
5014 same memory location. We could handle the general case of symbol
5015 aliasing, but a general symbol alias can only be generated in
5016 assembler code, handling it correctly would be very time
5017 consuming, and other ELF linkers don't handle general aliasing
5018 either. */
5019 if (weaks != NULL)
5020 {
5021 struct elf_link_hash_entry **hpp;
5022 struct elf_link_hash_entry **hppend;
5023 struct elf_link_hash_entry **sorted_sym_hash;
5024 struct elf_link_hash_entry *h;
5025 size_t sym_count;
5026
5027 /* Since we have to search the whole symbol list for each weak
5028 defined symbol, search time for N weak defined symbols will be
5029 O(N^2). Binary search will cut it down to O(NlogN). */
5030 amt = extsymcount;
5031 amt *= sizeof (struct elf_link_hash_entry *);
5032 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5033 if (sorted_sym_hash == NULL)
5034 goto error_return;
5035 sym_hash = sorted_sym_hash;
5036 hpp = elf_sym_hashes (abfd);
5037 hppend = hpp + extsymcount;
5038 sym_count = 0;
5039 for (; hpp < hppend; hpp++)
5040 {
5041 h = *hpp;
5042 if (h != NULL
5043 && h->root.type == bfd_link_hash_defined
5044 && !bed->is_function_type (h->type))
5045 {
5046 *sym_hash = h;
5047 sym_hash++;
5048 sym_count++;
5049 }
5050 }
5051
5052 qsort (sorted_sym_hash, sym_count,
5053 sizeof (struct elf_link_hash_entry *),
5054 elf_sort_symbol);
5055
5056 while (weaks != NULL)
5057 {
5058 struct elf_link_hash_entry *hlook;
5059 asection *slook;
5060 bfd_vma vlook;
5061 size_t i, j, idx = 0;
5062
5063 hlook = weaks;
5064 weaks = hlook->u.weakdef;
5065 hlook->u.weakdef = NULL;
5066
5067 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5068 || hlook->root.type == bfd_link_hash_defweak
5069 || hlook->root.type == bfd_link_hash_common
5070 || hlook->root.type == bfd_link_hash_indirect);
5071 slook = hlook->root.u.def.section;
5072 vlook = hlook->root.u.def.value;
5073
5074 i = 0;
5075 j = sym_count;
5076 while (i != j)
5077 {
5078 bfd_signed_vma vdiff;
5079 idx = (i + j) / 2;
5080 h = sorted_sym_hash[idx];
5081 vdiff = vlook - h->root.u.def.value;
5082 if (vdiff < 0)
5083 j = idx;
5084 else if (vdiff > 0)
5085 i = idx + 1;
5086 else
5087 {
5088 int sdiff = slook->id - h->root.u.def.section->id;
5089 if (sdiff < 0)
5090 j = idx;
5091 else if (sdiff > 0)
5092 i = idx + 1;
5093 else
5094 break;
5095 }
5096 }
5097
5098 /* We didn't find a value/section match. */
5099 if (i == j)
5100 continue;
5101
5102 /* With multiple aliases, or when the weak symbol is already
5103 strongly defined, we have multiple matching symbols and
5104 the binary search above may land on any of them. Step
5105 one past the matching symbol(s). */
5106 while (++idx != j)
5107 {
5108 h = sorted_sym_hash[idx];
5109 if (h->root.u.def.section != slook
5110 || h->root.u.def.value != vlook)
5111 break;
5112 }
5113
5114 /* Now look back over the aliases. Since we sorted by size
5115 as well as value and section, we'll choose the one with
5116 the largest size. */
5117 while (idx-- != i)
5118 {
5119 h = sorted_sym_hash[idx];
5120
5121 /* Stop if value or section doesn't match. */
5122 if (h->root.u.def.section != slook
5123 || h->root.u.def.value != vlook)
5124 break;
5125 else if (h != hlook)
5126 {
5127 hlook->u.weakdef = h;
5128
5129 /* If the weak definition is in the list of dynamic
5130 symbols, make sure the real definition is put
5131 there as well. */
5132 if (hlook->dynindx != -1 && h->dynindx == -1)
5133 {
5134 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5135 {
5136 err_free_sym_hash:
5137 free (sorted_sym_hash);
5138 goto error_return;
5139 }
5140 }
5141
5142 /* If the real definition is in the list of dynamic
5143 symbols, make sure the weak definition is put
5144 there as well. If we don't do this, then the
5145 dynamic loader might not merge the entries for the
5146 real definition and the weak definition. */
5147 if (h->dynindx != -1 && hlook->dynindx == -1)
5148 {
5149 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5150 goto err_free_sym_hash;
5151 }
5152 break;
5153 }
5154 }
5155 }
5156
5157 free (sorted_sym_hash);
5158 }
5159
5160 if (bed->check_directives
5161 && !(*bed->check_directives) (abfd, info))
5162 return FALSE;
5163
5164 if (!info->check_relocs_after_open_input
5165 && !_bfd_elf_link_check_relocs (abfd, info))
5166 return FALSE;
5167
5168 /* If this is a non-traditional link, try to optimize the handling
5169 of the .stab/.stabstr sections. */
5170 if (! dynamic
5171 && ! info->traditional_format
5172 && is_elf_hash_table (htab)
5173 && (info->strip != strip_all && info->strip != strip_debugger))
5174 {
5175 asection *stabstr;
5176
5177 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5178 if (stabstr != NULL)
5179 {
5180 bfd_size_type string_offset = 0;
5181 asection *stab;
5182
5183 for (stab = abfd->sections; stab; stab = stab->next)
5184 if (CONST_STRNEQ (stab->name, ".stab")
5185 && (!stab->name[5] ||
5186 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5187 && (stab->flags & SEC_MERGE) == 0
5188 && !bfd_is_abs_section (stab->output_section))
5189 {
5190 struct bfd_elf_section_data *secdata;
5191
5192 secdata = elf_section_data (stab);
5193 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5194 stabstr, &secdata->sec_info,
5195 &string_offset))
5196 goto error_return;
5197 if (secdata->sec_info)
5198 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5199 }
5200 }
5201 }
5202
5203 if (is_elf_hash_table (htab) && add_needed)
5204 {
5205 /* Add this bfd to the loaded list. */
5206 struct elf_link_loaded_list *n;
5207
5208 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5209 if (n == NULL)
5210 goto error_return;
5211 n->abfd = abfd;
5212 n->next = htab->loaded;
5213 htab->loaded = n;
5214 }
5215
5216 return TRUE;
5217
5218 error_free_vers:
5219 if (old_tab != NULL)
5220 free (old_tab);
5221 if (old_strtab != NULL)
5222 free (old_strtab);
5223 if (nondeflt_vers != NULL)
5224 free (nondeflt_vers);
5225 if (extversym != NULL)
5226 free (extversym);
5227 error_free_sym:
5228 if (isymbuf != NULL)
5229 free (isymbuf);
5230 error_return:
5231 return FALSE;
5232 }
5233
5234 /* Return the linker hash table entry of a symbol that might be
5235 satisfied by an archive symbol. Return -1 on error. */
5236
5237 struct elf_link_hash_entry *
5238 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5239 struct bfd_link_info *info,
5240 const char *name)
5241 {
5242 struct elf_link_hash_entry *h;
5243 char *p, *copy;
5244 size_t len, first;
5245
5246 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5247 if (h != NULL)
5248 return h;
5249
5250 /* If this is a default version (the name contains @@), look up the
5251 symbol again with only one `@' as well as without the version.
5252 The effect is that references to the symbol with and without the
5253 version will be matched by the default symbol in the archive. */
5254
5255 p = strchr (name, ELF_VER_CHR);
5256 if (p == NULL || p[1] != ELF_VER_CHR)
5257 return h;
5258
5259 /* First check with only one `@'. */
5260 len = strlen (name);
5261 copy = (char *) bfd_alloc (abfd, len);
5262 if (copy == NULL)
5263 return (struct elf_link_hash_entry *) 0 - 1;
5264
5265 first = p - name + 1;
5266 memcpy (copy, name, first);
5267 memcpy (copy + first, name + first + 1, len - first);
5268
5269 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5270 if (h == NULL)
5271 {
5272 /* We also need to check references to the symbol without the
5273 version. */
5274 copy[first - 1] = '\0';
5275 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5276 FALSE, FALSE, TRUE);
5277 }
5278
5279 bfd_release (abfd, copy);
5280 return h;
5281 }
5282
5283 /* Add symbols from an ELF archive file to the linker hash table. We
5284 don't use _bfd_generic_link_add_archive_symbols because we need to
5285 handle versioned symbols.
5286
5287 Fortunately, ELF archive handling is simpler than that done by
5288 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5289 oddities. In ELF, if we find a symbol in the archive map, and the
5290 symbol is currently undefined, we know that we must pull in that
5291 object file.
5292
5293 Unfortunately, we do have to make multiple passes over the symbol
5294 table until nothing further is resolved. */
5295
5296 static bfd_boolean
5297 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5298 {
5299 symindex c;
5300 unsigned char *included = NULL;
5301 carsym *symdefs;
5302 bfd_boolean loop;
5303 bfd_size_type amt;
5304 const struct elf_backend_data *bed;
5305 struct elf_link_hash_entry * (*archive_symbol_lookup)
5306 (bfd *, struct bfd_link_info *, const char *);
5307
5308 if (! bfd_has_map (abfd))
5309 {
5310 /* An empty archive is a special case. */
5311 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5312 return TRUE;
5313 bfd_set_error (bfd_error_no_armap);
5314 return FALSE;
5315 }
5316
5317 /* Keep track of all symbols we know to be already defined, and all
5318 files we know to be already included. This is to speed up the
5319 second and subsequent passes. */
5320 c = bfd_ardata (abfd)->symdef_count;
5321 if (c == 0)
5322 return TRUE;
5323 amt = c;
5324 amt *= sizeof (*included);
5325 included = (unsigned char *) bfd_zmalloc (amt);
5326 if (included == NULL)
5327 return FALSE;
5328
5329 symdefs = bfd_ardata (abfd)->symdefs;
5330 bed = get_elf_backend_data (abfd);
5331 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5332
5333 do
5334 {
5335 file_ptr last;
5336 symindex i;
5337 carsym *symdef;
5338 carsym *symdefend;
5339
5340 loop = FALSE;
5341 last = -1;
5342
5343 symdef = symdefs;
5344 symdefend = symdef + c;
5345 for (i = 0; symdef < symdefend; symdef++, i++)
5346 {
5347 struct elf_link_hash_entry *h;
5348 bfd *element;
5349 struct bfd_link_hash_entry *undefs_tail;
5350 symindex mark;
5351
5352 if (included[i])
5353 continue;
5354 if (symdef->file_offset == last)
5355 {
5356 included[i] = TRUE;
5357 continue;
5358 }
5359
5360 h = archive_symbol_lookup (abfd, info, symdef->name);
5361 if (h == (struct elf_link_hash_entry *) 0 - 1)
5362 goto error_return;
5363
5364 if (h == NULL)
5365 continue;
5366
5367 if (h->root.type == bfd_link_hash_common)
5368 {
5369 /* We currently have a common symbol. The archive map contains
5370 a reference to this symbol, so we may want to include it. We
5371 only want to include it however, if this archive element
5372 contains a definition of the symbol, not just another common
5373 declaration of it.
5374
5375 Unfortunately some archivers (including GNU ar) will put
5376 declarations of common symbols into their archive maps, as
5377 well as real definitions, so we cannot just go by the archive
5378 map alone. Instead we must read in the element's symbol
5379 table and check that to see what kind of symbol definition
5380 this is. */
5381 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5382 continue;
5383 }
5384 else if (h->root.type != bfd_link_hash_undefined)
5385 {
5386 if (h->root.type != bfd_link_hash_undefweak)
5387 /* Symbol must be defined. Don't check it again. */
5388 included[i] = TRUE;
5389 continue;
5390 }
5391
5392 /* We need to include this archive member. */
5393 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5394 if (element == NULL)
5395 goto error_return;
5396
5397 if (! bfd_check_format (element, bfd_object))
5398 goto error_return;
5399
5400 undefs_tail = info->hash->undefs_tail;
5401
5402 if (!(*info->callbacks
5403 ->add_archive_element) (info, element, symdef->name, &element))
5404 continue;
5405 if (!bfd_link_add_symbols (element, info))
5406 goto error_return;
5407
5408 /* If there are any new undefined symbols, we need to make
5409 another pass through the archive in order to see whether
5410 they can be defined. FIXME: This isn't perfect, because
5411 common symbols wind up on undefs_tail and because an
5412 undefined symbol which is defined later on in this pass
5413 does not require another pass. This isn't a bug, but it
5414 does make the code less efficient than it could be. */
5415 if (undefs_tail != info->hash->undefs_tail)
5416 loop = TRUE;
5417
5418 /* Look backward to mark all symbols from this object file
5419 which we have already seen in this pass. */
5420 mark = i;
5421 do
5422 {
5423 included[mark] = TRUE;
5424 if (mark == 0)
5425 break;
5426 --mark;
5427 }
5428 while (symdefs[mark].file_offset == symdef->file_offset);
5429
5430 /* We mark subsequent symbols from this object file as we go
5431 on through the loop. */
5432 last = symdef->file_offset;
5433 }
5434 }
5435 while (loop);
5436
5437 free (included);
5438
5439 return TRUE;
5440
5441 error_return:
5442 if (included != NULL)
5443 free (included);
5444 return FALSE;
5445 }
5446
5447 /* Given an ELF BFD, add symbols to the global hash table as
5448 appropriate. */
5449
5450 bfd_boolean
5451 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5452 {
5453 switch (bfd_get_format (abfd))
5454 {
5455 case bfd_object:
5456 return elf_link_add_object_symbols (abfd, info);
5457 case bfd_archive:
5458 return elf_link_add_archive_symbols (abfd, info);
5459 default:
5460 bfd_set_error (bfd_error_wrong_format);
5461 return FALSE;
5462 }
5463 }
5464 \f
5465 struct hash_codes_info
5466 {
5467 unsigned long *hashcodes;
5468 bfd_boolean error;
5469 };
5470
5471 /* This function will be called though elf_link_hash_traverse to store
5472 all hash value of the exported symbols in an array. */
5473
5474 static bfd_boolean
5475 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5476 {
5477 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5478 const char *name;
5479 unsigned long ha;
5480 char *alc = NULL;
5481
5482 /* Ignore indirect symbols. These are added by the versioning code. */
5483 if (h->dynindx == -1)
5484 return TRUE;
5485
5486 name = h->root.root.string;
5487 if (h->versioned >= versioned)
5488 {
5489 char *p = strchr (name, ELF_VER_CHR);
5490 if (p != NULL)
5491 {
5492 alc = (char *) bfd_malloc (p - name + 1);
5493 if (alc == NULL)
5494 {
5495 inf->error = TRUE;
5496 return FALSE;
5497 }
5498 memcpy (alc, name, p - name);
5499 alc[p - name] = '\0';
5500 name = alc;
5501 }
5502 }
5503
5504 /* Compute the hash value. */
5505 ha = bfd_elf_hash (name);
5506
5507 /* Store the found hash value in the array given as the argument. */
5508 *(inf->hashcodes)++ = ha;
5509
5510 /* And store it in the struct so that we can put it in the hash table
5511 later. */
5512 h->u.elf_hash_value = ha;
5513
5514 if (alc != NULL)
5515 free (alc);
5516
5517 return TRUE;
5518 }
5519
5520 struct collect_gnu_hash_codes
5521 {
5522 bfd *output_bfd;
5523 const struct elf_backend_data *bed;
5524 unsigned long int nsyms;
5525 unsigned long int maskbits;
5526 unsigned long int *hashcodes;
5527 unsigned long int *hashval;
5528 unsigned long int *indx;
5529 unsigned long int *counts;
5530 bfd_vma *bitmask;
5531 bfd_byte *contents;
5532 long int min_dynindx;
5533 unsigned long int bucketcount;
5534 unsigned long int symindx;
5535 long int local_indx;
5536 long int shift1, shift2;
5537 unsigned long int mask;
5538 bfd_boolean error;
5539 };
5540
5541 /* This function will be called though elf_link_hash_traverse to store
5542 all hash value of the exported symbols in an array. */
5543
5544 static bfd_boolean
5545 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5546 {
5547 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5548 const char *name;
5549 unsigned long ha;
5550 char *alc = NULL;
5551
5552 /* Ignore indirect symbols. These are added by the versioning code. */
5553 if (h->dynindx == -1)
5554 return TRUE;
5555
5556 /* Ignore also local symbols and undefined symbols. */
5557 if (! (*s->bed->elf_hash_symbol) (h))
5558 return TRUE;
5559
5560 name = h->root.root.string;
5561 if (h->versioned >= versioned)
5562 {
5563 char *p = strchr (name, ELF_VER_CHR);
5564 if (p != NULL)
5565 {
5566 alc = (char *) bfd_malloc (p - name + 1);
5567 if (alc == NULL)
5568 {
5569 s->error = TRUE;
5570 return FALSE;
5571 }
5572 memcpy (alc, name, p - name);
5573 alc[p - name] = '\0';
5574 name = alc;
5575 }
5576 }
5577
5578 /* Compute the hash value. */
5579 ha = bfd_elf_gnu_hash (name);
5580
5581 /* Store the found hash value in the array for compute_bucket_count,
5582 and also for .dynsym reordering purposes. */
5583 s->hashcodes[s->nsyms] = ha;
5584 s->hashval[h->dynindx] = ha;
5585 ++s->nsyms;
5586 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5587 s->min_dynindx = h->dynindx;
5588
5589 if (alc != NULL)
5590 free (alc);
5591
5592 return TRUE;
5593 }
5594
5595 /* This function will be called though elf_link_hash_traverse to do
5596 final dynaminc symbol renumbering. */
5597
5598 static bfd_boolean
5599 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5600 {
5601 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5602 unsigned long int bucket;
5603 unsigned long int val;
5604
5605 /* Ignore indirect symbols. */
5606 if (h->dynindx == -1)
5607 return TRUE;
5608
5609 /* Ignore also local symbols and undefined symbols. */
5610 if (! (*s->bed->elf_hash_symbol) (h))
5611 {
5612 if (h->dynindx >= s->min_dynindx)
5613 h->dynindx = s->local_indx++;
5614 return TRUE;
5615 }
5616
5617 bucket = s->hashval[h->dynindx] % s->bucketcount;
5618 val = (s->hashval[h->dynindx] >> s->shift1)
5619 & ((s->maskbits >> s->shift1) - 1);
5620 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5621 s->bitmask[val]
5622 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5623 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5624 if (s->counts[bucket] == 1)
5625 /* Last element terminates the chain. */
5626 val |= 1;
5627 bfd_put_32 (s->output_bfd, val,
5628 s->contents + (s->indx[bucket] - s->symindx) * 4);
5629 --s->counts[bucket];
5630 h->dynindx = s->indx[bucket]++;
5631 return TRUE;
5632 }
5633
5634 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5635
5636 bfd_boolean
5637 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5638 {
5639 return !(h->forced_local
5640 || h->root.type == bfd_link_hash_undefined
5641 || h->root.type == bfd_link_hash_undefweak
5642 || ((h->root.type == bfd_link_hash_defined
5643 || h->root.type == bfd_link_hash_defweak)
5644 && h->root.u.def.section->output_section == NULL));
5645 }
5646
5647 /* Array used to determine the number of hash table buckets to use
5648 based on the number of symbols there are. If there are fewer than
5649 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5650 fewer than 37 we use 17 buckets, and so forth. We never use more
5651 than 32771 buckets. */
5652
5653 static const size_t elf_buckets[] =
5654 {
5655 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5656 16411, 32771, 0
5657 };
5658
5659 /* Compute bucket count for hashing table. We do not use a static set
5660 of possible tables sizes anymore. Instead we determine for all
5661 possible reasonable sizes of the table the outcome (i.e., the
5662 number of collisions etc) and choose the best solution. The
5663 weighting functions are not too simple to allow the table to grow
5664 without bounds. Instead one of the weighting factors is the size.
5665 Therefore the result is always a good payoff between few collisions
5666 (= short chain lengths) and table size. */
5667 static size_t
5668 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5669 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5670 unsigned long int nsyms,
5671 int gnu_hash)
5672 {
5673 size_t best_size = 0;
5674 unsigned long int i;
5675
5676 /* We have a problem here. The following code to optimize the table
5677 size requires an integer type with more the 32 bits. If
5678 BFD_HOST_U_64_BIT is set we know about such a type. */
5679 #ifdef BFD_HOST_U_64_BIT
5680 if (info->optimize)
5681 {
5682 size_t minsize;
5683 size_t maxsize;
5684 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5685 bfd *dynobj = elf_hash_table (info)->dynobj;
5686 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5687 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5688 unsigned long int *counts;
5689 bfd_size_type amt;
5690 unsigned int no_improvement_count = 0;
5691
5692 /* Possible optimization parameters: if we have NSYMS symbols we say
5693 that the hashing table must at least have NSYMS/4 and at most
5694 2*NSYMS buckets. */
5695 minsize = nsyms / 4;
5696 if (minsize == 0)
5697 minsize = 1;
5698 best_size = maxsize = nsyms * 2;
5699 if (gnu_hash)
5700 {
5701 if (minsize < 2)
5702 minsize = 2;
5703 if ((best_size & 31) == 0)
5704 ++best_size;
5705 }
5706
5707 /* Create array where we count the collisions in. We must use bfd_malloc
5708 since the size could be large. */
5709 amt = maxsize;
5710 amt *= sizeof (unsigned long int);
5711 counts = (unsigned long int *) bfd_malloc (amt);
5712 if (counts == NULL)
5713 return 0;
5714
5715 /* Compute the "optimal" size for the hash table. The criteria is a
5716 minimal chain length. The minor criteria is (of course) the size
5717 of the table. */
5718 for (i = minsize; i < maxsize; ++i)
5719 {
5720 /* Walk through the array of hashcodes and count the collisions. */
5721 BFD_HOST_U_64_BIT max;
5722 unsigned long int j;
5723 unsigned long int fact;
5724
5725 if (gnu_hash && (i & 31) == 0)
5726 continue;
5727
5728 memset (counts, '\0', i * sizeof (unsigned long int));
5729
5730 /* Determine how often each hash bucket is used. */
5731 for (j = 0; j < nsyms; ++j)
5732 ++counts[hashcodes[j] % i];
5733
5734 /* For the weight function we need some information about the
5735 pagesize on the target. This is information need not be 100%
5736 accurate. Since this information is not available (so far) we
5737 define it here to a reasonable default value. If it is crucial
5738 to have a better value some day simply define this value. */
5739 # ifndef BFD_TARGET_PAGESIZE
5740 # define BFD_TARGET_PAGESIZE (4096)
5741 # endif
5742
5743 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5744 and the chains. */
5745 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5746
5747 # if 1
5748 /* Variant 1: optimize for short chains. We add the squares
5749 of all the chain lengths (which favors many small chain
5750 over a few long chains). */
5751 for (j = 0; j < i; ++j)
5752 max += counts[j] * counts[j];
5753
5754 /* This adds penalties for the overall size of the table. */
5755 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5756 max *= fact * fact;
5757 # else
5758 /* Variant 2: Optimize a lot more for small table. Here we
5759 also add squares of the size but we also add penalties for
5760 empty slots (the +1 term). */
5761 for (j = 0; j < i; ++j)
5762 max += (1 + counts[j]) * (1 + counts[j]);
5763
5764 /* The overall size of the table is considered, but not as
5765 strong as in variant 1, where it is squared. */
5766 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5767 max *= fact;
5768 # endif
5769
5770 /* Compare with current best results. */
5771 if (max < best_chlen)
5772 {
5773 best_chlen = max;
5774 best_size = i;
5775 no_improvement_count = 0;
5776 }
5777 /* PR 11843: Avoid futile long searches for the best bucket size
5778 when there are a large number of symbols. */
5779 else if (++no_improvement_count == 100)
5780 break;
5781 }
5782
5783 free (counts);
5784 }
5785 else
5786 #endif /* defined (BFD_HOST_U_64_BIT) */
5787 {
5788 /* This is the fallback solution if no 64bit type is available or if we
5789 are not supposed to spend much time on optimizations. We select the
5790 bucket count using a fixed set of numbers. */
5791 for (i = 0; elf_buckets[i] != 0; i++)
5792 {
5793 best_size = elf_buckets[i];
5794 if (nsyms < elf_buckets[i + 1])
5795 break;
5796 }
5797 if (gnu_hash && best_size < 2)
5798 best_size = 2;
5799 }
5800
5801 return best_size;
5802 }
5803
5804 /* Size any SHT_GROUP section for ld -r. */
5805
5806 bfd_boolean
5807 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5808 {
5809 bfd *ibfd;
5810
5811 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5812 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5813 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5814 return FALSE;
5815 return TRUE;
5816 }
5817
5818 /* Set a default stack segment size. The value in INFO wins. If it
5819 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5820 undefined it is initialized. */
5821
5822 bfd_boolean
5823 bfd_elf_stack_segment_size (bfd *output_bfd,
5824 struct bfd_link_info *info,
5825 const char *legacy_symbol,
5826 bfd_vma default_size)
5827 {
5828 struct elf_link_hash_entry *h = NULL;
5829
5830 /* Look for legacy symbol. */
5831 if (legacy_symbol)
5832 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5833 FALSE, FALSE, FALSE);
5834 if (h && (h->root.type == bfd_link_hash_defined
5835 || h->root.type == bfd_link_hash_defweak)
5836 && h->def_regular
5837 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5838 {
5839 /* The symbol has no type if specified on the command line. */
5840 h->type = STT_OBJECT;
5841 if (info->stacksize)
5842 /* xgettext:c-format */
5843 _bfd_error_handler (_("%B: stack size specified and %s set"),
5844 output_bfd, legacy_symbol);
5845 else if (h->root.u.def.section != bfd_abs_section_ptr)
5846 /* xgettext:c-format */
5847 _bfd_error_handler (_("%B: %s not absolute"),
5848 output_bfd, legacy_symbol);
5849 else
5850 info->stacksize = h->root.u.def.value;
5851 }
5852
5853 if (!info->stacksize)
5854 /* If the user didn't set a size, or explicitly inhibit the
5855 size, set it now. */
5856 info->stacksize = default_size;
5857
5858 /* Provide the legacy symbol, if it is referenced. */
5859 if (h && (h->root.type == bfd_link_hash_undefined
5860 || h->root.type == bfd_link_hash_undefweak))
5861 {
5862 struct bfd_link_hash_entry *bh = NULL;
5863
5864 if (!(_bfd_generic_link_add_one_symbol
5865 (info, output_bfd, legacy_symbol,
5866 BSF_GLOBAL, bfd_abs_section_ptr,
5867 info->stacksize >= 0 ? info->stacksize : 0,
5868 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5869 return FALSE;
5870
5871 h = (struct elf_link_hash_entry *) bh;
5872 h->def_regular = 1;
5873 h->type = STT_OBJECT;
5874 }
5875
5876 return TRUE;
5877 }
5878
5879 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5880
5881 struct elf_gc_sweep_symbol_info
5882 {
5883 struct bfd_link_info *info;
5884 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5885 bfd_boolean);
5886 };
5887
5888 static bfd_boolean
5889 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5890 {
5891 if (!h->mark
5892 && (((h->root.type == bfd_link_hash_defined
5893 || h->root.type == bfd_link_hash_defweak)
5894 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5895 && h->root.u.def.section->gc_mark))
5896 || h->root.type == bfd_link_hash_undefined
5897 || h->root.type == bfd_link_hash_undefweak))
5898 {
5899 struct elf_gc_sweep_symbol_info *inf;
5900
5901 inf = (struct elf_gc_sweep_symbol_info *) data;
5902 (*inf->hide_symbol) (inf->info, h, TRUE);
5903 h->def_regular = 0;
5904 h->ref_regular = 0;
5905 h->ref_regular_nonweak = 0;
5906 }
5907
5908 return TRUE;
5909 }
5910
5911 /* Set up the sizes and contents of the ELF dynamic sections. This is
5912 called by the ELF linker emulation before_allocation routine. We
5913 must set the sizes of the sections before the linker sets the
5914 addresses of the various sections. */
5915
5916 bfd_boolean
5917 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5918 const char *soname,
5919 const char *rpath,
5920 const char *filter_shlib,
5921 const char *audit,
5922 const char *depaudit,
5923 const char * const *auxiliary_filters,
5924 struct bfd_link_info *info,
5925 asection **sinterpptr)
5926 {
5927 size_t soname_indx;
5928 bfd *dynobj;
5929 const struct elf_backend_data *bed;
5930
5931 *sinterpptr = NULL;
5932
5933 soname_indx = (size_t) -1;
5934
5935 if (!is_elf_hash_table (info->hash))
5936 return TRUE;
5937
5938 dynobj = elf_hash_table (info)->dynobj;
5939
5940 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5941 {
5942 struct bfd_elf_version_tree *verdefs;
5943 struct elf_info_failed asvinfo;
5944 struct bfd_elf_version_tree *t;
5945 struct bfd_elf_version_expr *d;
5946 struct elf_info_failed eif;
5947 bfd_boolean all_defined;
5948 asection *s;
5949
5950 eif.info = info;
5951 eif.failed = FALSE;
5952
5953 /* If we are supposed to export all symbols into the dynamic symbol
5954 table (this is not the normal case), then do so. */
5955 if (info->export_dynamic
5956 || (bfd_link_executable (info) && info->dynamic))
5957 {
5958 elf_link_hash_traverse (elf_hash_table (info),
5959 _bfd_elf_export_symbol,
5960 &eif);
5961 if (eif.failed)
5962 return FALSE;
5963 }
5964
5965 /* Make all global versions with definition. */
5966 for (t = info->version_info; t != NULL; t = t->next)
5967 for (d = t->globals.list; d != NULL; d = d->next)
5968 if (!d->symver && d->literal)
5969 {
5970 const char *verstr, *name;
5971 size_t namelen, verlen, newlen;
5972 char *newname, *p, leading_char;
5973 struct elf_link_hash_entry *newh;
5974
5975 leading_char = bfd_get_symbol_leading_char (output_bfd);
5976 name = d->pattern;
5977 namelen = strlen (name) + (leading_char != '\0');
5978 verstr = t->name;
5979 verlen = strlen (verstr);
5980 newlen = namelen + verlen + 3;
5981
5982 newname = (char *) bfd_malloc (newlen);
5983 if (newname == NULL)
5984 return FALSE;
5985 newname[0] = leading_char;
5986 memcpy (newname + (leading_char != '\0'), name, namelen);
5987
5988 /* Check the hidden versioned definition. */
5989 p = newname + namelen;
5990 *p++ = ELF_VER_CHR;
5991 memcpy (p, verstr, verlen + 1);
5992 newh = elf_link_hash_lookup (elf_hash_table (info),
5993 newname, FALSE, FALSE,
5994 FALSE);
5995 if (newh == NULL
5996 || (newh->root.type != bfd_link_hash_defined
5997 && newh->root.type != bfd_link_hash_defweak))
5998 {
5999 /* Check the default versioned definition. */
6000 *p++ = ELF_VER_CHR;
6001 memcpy (p, verstr, verlen + 1);
6002 newh = elf_link_hash_lookup (elf_hash_table (info),
6003 newname, FALSE, FALSE,
6004 FALSE);
6005 }
6006 free (newname);
6007
6008 /* Mark this version if there is a definition and it is
6009 not defined in a shared object. */
6010 if (newh != NULL
6011 && !newh->def_dynamic
6012 && (newh->root.type == bfd_link_hash_defined
6013 || newh->root.type == bfd_link_hash_defweak))
6014 d->symver = 1;
6015 }
6016
6017 /* Attach all the symbols to their version information. */
6018 asvinfo.info = info;
6019 asvinfo.failed = FALSE;
6020
6021 elf_link_hash_traverse (elf_hash_table (info),
6022 _bfd_elf_link_assign_sym_version,
6023 &asvinfo);
6024 if (asvinfo.failed)
6025 return FALSE;
6026
6027 if (!info->allow_undefined_version)
6028 {
6029 /* Check if all global versions have a definition. */
6030 all_defined = TRUE;
6031 for (t = info->version_info; t != NULL; t = t->next)
6032 for (d = t->globals.list; d != NULL; d = d->next)
6033 if (d->literal && !d->symver && !d->script)
6034 {
6035 _bfd_error_handler
6036 (_("%s: undefined version: %s"),
6037 d->pattern, t->name);
6038 all_defined = FALSE;
6039 }
6040
6041 if (!all_defined)
6042 {
6043 bfd_set_error (bfd_error_bad_value);
6044 return FALSE;
6045 }
6046 }
6047
6048 /* Set up the version definition section. */
6049 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6050 BFD_ASSERT (s != NULL);
6051
6052 /* We may have created additional version definitions if we are
6053 just linking a regular application. */
6054 verdefs = info->version_info;
6055
6056 /* Skip anonymous version tag. */
6057 if (verdefs != NULL && verdefs->vernum == 0)
6058 verdefs = verdefs->next;
6059
6060 if (verdefs == NULL && !info->create_default_symver)
6061 s->flags |= SEC_EXCLUDE;
6062 else
6063 {
6064 unsigned int cdefs;
6065 bfd_size_type size;
6066 bfd_byte *p;
6067 Elf_Internal_Verdef def;
6068 Elf_Internal_Verdaux defaux;
6069 struct bfd_link_hash_entry *bh;
6070 struct elf_link_hash_entry *h;
6071 const char *name;
6072
6073 cdefs = 0;
6074 size = 0;
6075
6076 /* Make space for the base version. */
6077 size += sizeof (Elf_External_Verdef);
6078 size += sizeof (Elf_External_Verdaux);
6079 ++cdefs;
6080
6081 /* Make space for the default version. */
6082 if (info->create_default_symver)
6083 {
6084 size += sizeof (Elf_External_Verdef);
6085 ++cdefs;
6086 }
6087
6088 for (t = verdefs; t != NULL; t = t->next)
6089 {
6090 struct bfd_elf_version_deps *n;
6091
6092 /* Don't emit base version twice. */
6093 if (t->vernum == 0)
6094 continue;
6095
6096 size += sizeof (Elf_External_Verdef);
6097 size += sizeof (Elf_External_Verdaux);
6098 ++cdefs;
6099
6100 for (n = t->deps; n != NULL; n = n->next)
6101 size += sizeof (Elf_External_Verdaux);
6102 }
6103
6104 s->size = size;
6105 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6106 if (s->contents == NULL && s->size != 0)
6107 return FALSE;
6108
6109 /* Fill in the version definition section. */
6110
6111 p = s->contents;
6112
6113 def.vd_version = VER_DEF_CURRENT;
6114 def.vd_flags = VER_FLG_BASE;
6115 def.vd_ndx = 1;
6116 def.vd_cnt = 1;
6117 if (info->create_default_symver)
6118 {
6119 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6120 def.vd_next = sizeof (Elf_External_Verdef);
6121 }
6122 else
6123 {
6124 def.vd_aux = sizeof (Elf_External_Verdef);
6125 def.vd_next = (sizeof (Elf_External_Verdef)
6126 + sizeof (Elf_External_Verdaux));
6127 }
6128
6129 if (soname_indx != (size_t) -1)
6130 {
6131 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6132 soname_indx);
6133 def.vd_hash = bfd_elf_hash (soname);
6134 defaux.vda_name = soname_indx;
6135 name = soname;
6136 }
6137 else
6138 {
6139 size_t indx;
6140
6141 name = lbasename (output_bfd->filename);
6142 def.vd_hash = bfd_elf_hash (name);
6143 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6144 name, FALSE);
6145 if (indx == (size_t) -1)
6146 return FALSE;
6147 defaux.vda_name = indx;
6148 }
6149 defaux.vda_next = 0;
6150
6151 _bfd_elf_swap_verdef_out (output_bfd, &def,
6152 (Elf_External_Verdef *) p);
6153 p += sizeof (Elf_External_Verdef);
6154 if (info->create_default_symver)
6155 {
6156 /* Add a symbol representing this version. */
6157 bh = NULL;
6158 if (! (_bfd_generic_link_add_one_symbol
6159 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6160 0, NULL, FALSE,
6161 get_elf_backend_data (dynobj)->collect, &bh)))
6162 return FALSE;
6163 h = (struct elf_link_hash_entry *) bh;
6164 h->non_elf = 0;
6165 h->def_regular = 1;
6166 h->type = STT_OBJECT;
6167 h->verinfo.vertree = NULL;
6168
6169 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6170 return FALSE;
6171
6172 /* Create a duplicate of the base version with the same
6173 aux block, but different flags. */
6174 def.vd_flags = 0;
6175 def.vd_ndx = 2;
6176 def.vd_aux = sizeof (Elf_External_Verdef);
6177 if (verdefs)
6178 def.vd_next = (sizeof (Elf_External_Verdef)
6179 + sizeof (Elf_External_Verdaux));
6180 else
6181 def.vd_next = 0;
6182 _bfd_elf_swap_verdef_out (output_bfd, &def,
6183 (Elf_External_Verdef *) p);
6184 p += sizeof (Elf_External_Verdef);
6185 }
6186 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6187 (Elf_External_Verdaux *) p);
6188 p += sizeof (Elf_External_Verdaux);
6189
6190 for (t = verdefs; t != NULL; t = t->next)
6191 {
6192 unsigned int cdeps;
6193 struct bfd_elf_version_deps *n;
6194
6195 /* Don't emit the base version twice. */
6196 if (t->vernum == 0)
6197 continue;
6198
6199 cdeps = 0;
6200 for (n = t->deps; n != NULL; n = n->next)
6201 ++cdeps;
6202
6203 /* Add a symbol representing this version. */
6204 bh = NULL;
6205 if (! (_bfd_generic_link_add_one_symbol
6206 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6207 0, NULL, FALSE,
6208 get_elf_backend_data (dynobj)->collect, &bh)))
6209 return FALSE;
6210 h = (struct elf_link_hash_entry *) bh;
6211 h->non_elf = 0;
6212 h->def_regular = 1;
6213 h->type = STT_OBJECT;
6214 h->verinfo.vertree = t;
6215
6216 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6217 return FALSE;
6218
6219 def.vd_version = VER_DEF_CURRENT;
6220 def.vd_flags = 0;
6221 if (t->globals.list == NULL
6222 && t->locals.list == NULL
6223 && ! t->used)
6224 def.vd_flags |= VER_FLG_WEAK;
6225 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6226 def.vd_cnt = cdeps + 1;
6227 def.vd_hash = bfd_elf_hash (t->name);
6228 def.vd_aux = sizeof (Elf_External_Verdef);
6229 def.vd_next = 0;
6230
6231 /* If a basever node is next, it *must* be the last node in
6232 the chain, otherwise Verdef construction breaks. */
6233 if (t->next != NULL && t->next->vernum == 0)
6234 BFD_ASSERT (t->next->next == NULL);
6235
6236 if (t->next != NULL && t->next->vernum != 0)
6237 def.vd_next = (sizeof (Elf_External_Verdef)
6238 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6239
6240 _bfd_elf_swap_verdef_out (output_bfd, &def,
6241 (Elf_External_Verdef *) p);
6242 p += sizeof (Elf_External_Verdef);
6243
6244 defaux.vda_name = h->dynstr_index;
6245 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6246 h->dynstr_index);
6247 defaux.vda_next = 0;
6248 if (t->deps != NULL)
6249 defaux.vda_next = sizeof (Elf_External_Verdaux);
6250 t->name_indx = defaux.vda_name;
6251
6252 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6253 (Elf_External_Verdaux *) p);
6254 p += sizeof (Elf_External_Verdaux);
6255
6256 for (n = t->deps; n != NULL; n = n->next)
6257 {
6258 if (n->version_needed == NULL)
6259 {
6260 /* This can happen if there was an error in the
6261 version script. */
6262 defaux.vda_name = 0;
6263 }
6264 else
6265 {
6266 defaux.vda_name = n->version_needed->name_indx;
6267 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6268 defaux.vda_name);
6269 }
6270 if (n->next == NULL)
6271 defaux.vda_next = 0;
6272 else
6273 defaux.vda_next = sizeof (Elf_External_Verdaux);
6274
6275 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6276 (Elf_External_Verdaux *) p);
6277 p += sizeof (Elf_External_Verdaux);
6278 }
6279 }
6280
6281 elf_tdata (output_bfd)->cverdefs = cdefs;
6282 }
6283
6284 /* Work out the size of the version reference section. */
6285
6286 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6287 BFD_ASSERT (s != NULL);
6288 {
6289 struct elf_find_verdep_info sinfo;
6290
6291 sinfo.info = info;
6292 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6293 if (sinfo.vers == 0)
6294 sinfo.vers = 1;
6295 sinfo.failed = FALSE;
6296
6297 elf_link_hash_traverse (elf_hash_table (info),
6298 _bfd_elf_link_find_version_dependencies,
6299 &sinfo);
6300 if (sinfo.failed)
6301 return FALSE;
6302
6303 if (elf_tdata (output_bfd)->verref == NULL)
6304 s->flags |= SEC_EXCLUDE;
6305 else
6306 {
6307 Elf_Internal_Verneed *vn;
6308 unsigned int size;
6309 unsigned int crefs;
6310 bfd_byte *p;
6311
6312 /* Build the version dependency section. */
6313 size = 0;
6314 crefs = 0;
6315 for (vn = elf_tdata (output_bfd)->verref;
6316 vn != NULL;
6317 vn = vn->vn_nextref)
6318 {
6319 Elf_Internal_Vernaux *a;
6320
6321 size += sizeof (Elf_External_Verneed);
6322 ++crefs;
6323 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6324 size += sizeof (Elf_External_Vernaux);
6325 }
6326
6327 s->size = size;
6328 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6329 if (s->contents == NULL)
6330 return FALSE;
6331
6332 p = s->contents;
6333 for (vn = elf_tdata (output_bfd)->verref;
6334 vn != NULL;
6335 vn = vn->vn_nextref)
6336 {
6337 unsigned int caux;
6338 Elf_Internal_Vernaux *a;
6339 size_t indx;
6340
6341 caux = 0;
6342 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6343 ++caux;
6344
6345 vn->vn_version = VER_NEED_CURRENT;
6346 vn->vn_cnt = caux;
6347 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6348 elf_dt_name (vn->vn_bfd) != NULL
6349 ? elf_dt_name (vn->vn_bfd)
6350 : lbasename (vn->vn_bfd->filename),
6351 FALSE);
6352 if (indx == (size_t) -1)
6353 return FALSE;
6354 vn->vn_file = indx;
6355 vn->vn_aux = sizeof (Elf_External_Verneed);
6356 if (vn->vn_nextref == NULL)
6357 vn->vn_next = 0;
6358 else
6359 vn->vn_next = (sizeof (Elf_External_Verneed)
6360 + caux * sizeof (Elf_External_Vernaux));
6361
6362 _bfd_elf_swap_verneed_out (output_bfd, vn,
6363 (Elf_External_Verneed *) p);
6364 p += sizeof (Elf_External_Verneed);
6365
6366 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6367 {
6368 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6369 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6370 a->vna_nodename, FALSE);
6371 if (indx == (size_t) -1)
6372 return FALSE;
6373 a->vna_name = indx;
6374 if (a->vna_nextptr == NULL)
6375 a->vna_next = 0;
6376 else
6377 a->vna_next = sizeof (Elf_External_Vernaux);
6378
6379 _bfd_elf_swap_vernaux_out (output_bfd, a,
6380 (Elf_External_Vernaux *) p);
6381 p += sizeof (Elf_External_Vernaux);
6382 }
6383 }
6384
6385 elf_tdata (output_bfd)->cverrefs = crefs;
6386 }
6387 }
6388 }
6389
6390 bed = get_elf_backend_data (output_bfd);
6391
6392 if (info->gc_sections && bed->can_gc_sections)
6393 {
6394 struct elf_gc_sweep_symbol_info sweep_info;
6395 unsigned long section_sym_count;
6396
6397 /* Remove the symbols that were in the swept sections from the
6398 dynamic symbol table. GCFIXME: Anyone know how to get them
6399 out of the static symbol table as well? */
6400 sweep_info.info = info;
6401 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6402 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6403 &sweep_info);
6404
6405 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6406 }
6407
6408 /* Any syms created from now on start with -1 in
6409 got.refcount/offset and plt.refcount/offset. */
6410 elf_hash_table (info)->init_got_refcount
6411 = elf_hash_table (info)->init_got_offset;
6412 elf_hash_table (info)->init_plt_refcount
6413 = elf_hash_table (info)->init_plt_offset;
6414
6415 if (bfd_link_relocatable (info)
6416 && !_bfd_elf_size_group_sections (info))
6417 return FALSE;
6418
6419 /* The backend may have to create some sections regardless of whether
6420 we're dynamic or not. */
6421 if (bed->elf_backend_always_size_sections
6422 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6423 return FALSE;
6424
6425 /* Determine any GNU_STACK segment requirements, after the backend
6426 has had a chance to set a default segment size. */
6427 if (info->execstack)
6428 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6429 else if (info->noexecstack)
6430 elf_stack_flags (output_bfd) = PF_R | PF_W;
6431 else
6432 {
6433 bfd *inputobj;
6434 asection *notesec = NULL;
6435 int exec = 0;
6436
6437 for (inputobj = info->input_bfds;
6438 inputobj;
6439 inputobj = inputobj->link.next)
6440 {
6441 asection *s;
6442
6443 if (inputobj->flags
6444 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6445 continue;
6446 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6447 if (s)
6448 {
6449 if (s->flags & SEC_CODE)
6450 exec = PF_X;
6451 notesec = s;
6452 }
6453 else if (bed->default_execstack)
6454 exec = PF_X;
6455 }
6456 if (notesec || info->stacksize > 0)
6457 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6458 if (notesec && exec && bfd_link_relocatable (info)
6459 && notesec->output_section != bfd_abs_section_ptr)
6460 notesec->output_section->flags |= SEC_CODE;
6461 }
6462
6463 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6464 {
6465 struct elf_info_failed eif;
6466 struct elf_link_hash_entry *h;
6467 asection *dynstr;
6468 asection *s;
6469
6470 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6471 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6472
6473 if (soname != NULL)
6474 {
6475 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6476 soname, TRUE);
6477 if (soname_indx == (size_t) -1
6478 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6479 return FALSE;
6480 }
6481
6482 if (info->symbolic)
6483 {
6484 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6485 return FALSE;
6486 info->flags |= DF_SYMBOLIC;
6487 }
6488
6489 if (rpath != NULL)
6490 {
6491 size_t indx;
6492 bfd_vma tag;
6493
6494 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6495 TRUE);
6496 if (indx == (size_t) -1)
6497 return FALSE;
6498
6499 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6500 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6501 return FALSE;
6502 }
6503
6504 if (filter_shlib != NULL)
6505 {
6506 size_t indx;
6507
6508 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6509 filter_shlib, TRUE);
6510 if (indx == (size_t) -1
6511 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6512 return FALSE;
6513 }
6514
6515 if (auxiliary_filters != NULL)
6516 {
6517 const char * const *p;
6518
6519 for (p = auxiliary_filters; *p != NULL; p++)
6520 {
6521 size_t indx;
6522
6523 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6524 *p, TRUE);
6525 if (indx == (size_t) -1
6526 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6527 return FALSE;
6528 }
6529 }
6530
6531 if (audit != NULL)
6532 {
6533 size_t indx;
6534
6535 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6536 TRUE);
6537 if (indx == (size_t) -1
6538 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6539 return FALSE;
6540 }
6541
6542 if (depaudit != NULL)
6543 {
6544 size_t indx;
6545
6546 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6547 TRUE);
6548 if (indx == (size_t) -1
6549 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6550 return FALSE;
6551 }
6552
6553 eif.info = info;
6554 eif.failed = FALSE;
6555
6556 /* Find all symbols which were defined in a dynamic object and make
6557 the backend pick a reasonable value for them. */
6558 elf_link_hash_traverse (elf_hash_table (info),
6559 _bfd_elf_adjust_dynamic_symbol,
6560 &eif);
6561 if (eif.failed)
6562 return FALSE;
6563
6564 /* Add some entries to the .dynamic section. We fill in some of the
6565 values later, in bfd_elf_final_link, but we must add the entries
6566 now so that we know the final size of the .dynamic section. */
6567
6568 /* If there are initialization and/or finalization functions to
6569 call then add the corresponding DT_INIT/DT_FINI entries. */
6570 h = (info->init_function
6571 ? elf_link_hash_lookup (elf_hash_table (info),
6572 info->init_function, FALSE,
6573 FALSE, FALSE)
6574 : NULL);
6575 if (h != NULL
6576 && (h->ref_regular
6577 || h->def_regular))
6578 {
6579 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6580 return FALSE;
6581 }
6582 h = (info->fini_function
6583 ? elf_link_hash_lookup (elf_hash_table (info),
6584 info->fini_function, FALSE,
6585 FALSE, FALSE)
6586 : NULL);
6587 if (h != NULL
6588 && (h->ref_regular
6589 || h->def_regular))
6590 {
6591 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6592 return FALSE;
6593 }
6594
6595 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6596 if (s != NULL && s->linker_has_input)
6597 {
6598 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6599 if (! bfd_link_executable (info))
6600 {
6601 bfd *sub;
6602 asection *o;
6603
6604 for (sub = info->input_bfds; sub != NULL;
6605 sub = sub->link.next)
6606 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6607 for (o = sub->sections; o != NULL; o = o->next)
6608 if (elf_section_data (o)->this_hdr.sh_type
6609 == SHT_PREINIT_ARRAY)
6610 {
6611 _bfd_error_handler
6612 (_("%B: .preinit_array section is not allowed in DSO"),
6613 sub);
6614 break;
6615 }
6616
6617 bfd_set_error (bfd_error_nonrepresentable_section);
6618 return FALSE;
6619 }
6620
6621 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6622 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6623 return FALSE;
6624 }
6625 s = bfd_get_section_by_name (output_bfd, ".init_array");
6626 if (s != NULL && s->linker_has_input)
6627 {
6628 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6629 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6630 return FALSE;
6631 }
6632 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6633 if (s != NULL && s->linker_has_input)
6634 {
6635 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6636 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6637 return FALSE;
6638 }
6639
6640 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6641 /* If .dynstr is excluded from the link, we don't want any of
6642 these tags. Strictly, we should be checking each section
6643 individually; This quick check covers for the case where
6644 someone does a /DISCARD/ : { *(*) }. */
6645 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6646 {
6647 bfd_size_type strsize;
6648
6649 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6650 if ((info->emit_hash
6651 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6652 || (info->emit_gnu_hash
6653 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6654 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6655 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6656 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6657 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6658 bed->s->sizeof_sym))
6659 return FALSE;
6660 }
6661 }
6662
6663 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6664 return FALSE;
6665
6666 /* The backend must work out the sizes of all the other dynamic
6667 sections. */
6668 if (dynobj != NULL
6669 && bed->elf_backend_size_dynamic_sections != NULL
6670 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6671 return FALSE;
6672
6673 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6674 {
6675 unsigned long section_sym_count;
6676
6677 if (elf_tdata (output_bfd)->cverdefs)
6678 {
6679 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6680
6681 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6682 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6683 return FALSE;
6684 }
6685
6686 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6687 {
6688 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6689 return FALSE;
6690 }
6691 else if (info->flags & DF_BIND_NOW)
6692 {
6693 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6694 return FALSE;
6695 }
6696
6697 if (info->flags_1)
6698 {
6699 if (bfd_link_executable (info))
6700 info->flags_1 &= ~ (DF_1_INITFIRST
6701 | DF_1_NODELETE
6702 | DF_1_NOOPEN);
6703 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6704 return FALSE;
6705 }
6706
6707 if (elf_tdata (output_bfd)->cverrefs)
6708 {
6709 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6710
6711 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6712 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6713 return FALSE;
6714 }
6715
6716 if ((elf_tdata (output_bfd)->cverrefs == 0
6717 && elf_tdata (output_bfd)->cverdefs == 0)
6718 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6719 &section_sym_count) == 0)
6720 {
6721 asection *s;
6722
6723 s = bfd_get_linker_section (dynobj, ".gnu.version");
6724 s->flags |= SEC_EXCLUDE;
6725 }
6726 }
6727 return TRUE;
6728 }
6729
6730 /* Find the first non-excluded output section. We'll use its
6731 section symbol for some emitted relocs. */
6732 void
6733 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6734 {
6735 asection *s;
6736
6737 for (s = output_bfd->sections; s != NULL; s = s->next)
6738 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6739 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6740 {
6741 elf_hash_table (info)->text_index_section = s;
6742 break;
6743 }
6744 }
6745
6746 /* Find two non-excluded output sections, one for code, one for data.
6747 We'll use their section symbols for some emitted relocs. */
6748 void
6749 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6750 {
6751 asection *s;
6752
6753 /* Data first, since setting text_index_section changes
6754 _bfd_elf_link_omit_section_dynsym. */
6755 for (s = output_bfd->sections; s != NULL; s = s->next)
6756 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6757 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6758 {
6759 elf_hash_table (info)->data_index_section = s;
6760 break;
6761 }
6762
6763 for (s = output_bfd->sections; s != NULL; s = s->next)
6764 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6765 == (SEC_ALLOC | SEC_READONLY))
6766 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6767 {
6768 elf_hash_table (info)->text_index_section = s;
6769 break;
6770 }
6771
6772 if (elf_hash_table (info)->text_index_section == NULL)
6773 elf_hash_table (info)->text_index_section
6774 = elf_hash_table (info)->data_index_section;
6775 }
6776
6777 bfd_boolean
6778 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6779 {
6780 const struct elf_backend_data *bed;
6781
6782 if (!is_elf_hash_table (info->hash))
6783 return TRUE;
6784
6785 bed = get_elf_backend_data (output_bfd);
6786 (*bed->elf_backend_init_index_section) (output_bfd, info);
6787
6788 if (elf_hash_table (info)->dynamic_sections_created)
6789 {
6790 bfd *dynobj;
6791 asection *s;
6792 bfd_size_type dynsymcount;
6793 unsigned long section_sym_count;
6794 unsigned int dtagcount;
6795
6796 dynobj = elf_hash_table (info)->dynobj;
6797
6798 /* Assign dynsym indicies. In a shared library we generate a
6799 section symbol for each output section, which come first.
6800 Next come all of the back-end allocated local dynamic syms,
6801 followed by the rest of the global symbols. */
6802
6803 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6804 &section_sym_count);
6805
6806 /* Work out the size of the symbol version section. */
6807 s = bfd_get_linker_section (dynobj, ".gnu.version");
6808 BFD_ASSERT (s != NULL);
6809 if ((s->flags & SEC_EXCLUDE) == 0)
6810 {
6811 s->size = dynsymcount * sizeof (Elf_External_Versym);
6812 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6813 if (s->contents == NULL)
6814 return FALSE;
6815
6816 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6817 return FALSE;
6818 }
6819
6820 /* Set the size of the .dynsym and .hash sections. We counted
6821 the number of dynamic symbols in elf_link_add_object_symbols.
6822 We will build the contents of .dynsym and .hash when we build
6823 the final symbol table, because until then we do not know the
6824 correct value to give the symbols. We built the .dynstr
6825 section as we went along in elf_link_add_object_symbols. */
6826 s = elf_hash_table (info)->dynsym;
6827 BFD_ASSERT (s != NULL);
6828 s->size = dynsymcount * bed->s->sizeof_sym;
6829
6830 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6831 if (s->contents == NULL)
6832 return FALSE;
6833
6834 /* The first entry in .dynsym is a dummy symbol. Clear all the
6835 section syms, in case we don't output them all. */
6836 ++section_sym_count;
6837 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6838
6839 elf_hash_table (info)->bucketcount = 0;
6840
6841 /* Compute the size of the hashing table. As a side effect this
6842 computes the hash values for all the names we export. */
6843 if (info->emit_hash)
6844 {
6845 unsigned long int *hashcodes;
6846 struct hash_codes_info hashinf;
6847 bfd_size_type amt;
6848 unsigned long int nsyms;
6849 size_t bucketcount;
6850 size_t hash_entry_size;
6851
6852 /* Compute the hash values for all exported symbols. At the same
6853 time store the values in an array so that we could use them for
6854 optimizations. */
6855 amt = dynsymcount * sizeof (unsigned long int);
6856 hashcodes = (unsigned long int *) bfd_malloc (amt);
6857 if (hashcodes == NULL)
6858 return FALSE;
6859 hashinf.hashcodes = hashcodes;
6860 hashinf.error = FALSE;
6861
6862 /* Put all hash values in HASHCODES. */
6863 elf_link_hash_traverse (elf_hash_table (info),
6864 elf_collect_hash_codes, &hashinf);
6865 if (hashinf.error)
6866 {
6867 free (hashcodes);
6868 return FALSE;
6869 }
6870
6871 nsyms = hashinf.hashcodes - hashcodes;
6872 bucketcount
6873 = compute_bucket_count (info, hashcodes, nsyms, 0);
6874 free (hashcodes);
6875
6876 if (bucketcount == 0)
6877 return FALSE;
6878
6879 elf_hash_table (info)->bucketcount = bucketcount;
6880
6881 s = bfd_get_linker_section (dynobj, ".hash");
6882 BFD_ASSERT (s != NULL);
6883 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6884 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6885 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6886 if (s->contents == NULL)
6887 return FALSE;
6888
6889 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6890 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6891 s->contents + hash_entry_size);
6892 }
6893
6894 if (info->emit_gnu_hash)
6895 {
6896 size_t i, cnt;
6897 unsigned char *contents;
6898 struct collect_gnu_hash_codes cinfo;
6899 bfd_size_type amt;
6900 size_t bucketcount;
6901
6902 memset (&cinfo, 0, sizeof (cinfo));
6903
6904 /* Compute the hash values for all exported symbols. At the same
6905 time store the values in an array so that we could use them for
6906 optimizations. */
6907 amt = dynsymcount * 2 * sizeof (unsigned long int);
6908 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6909 if (cinfo.hashcodes == NULL)
6910 return FALSE;
6911
6912 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6913 cinfo.min_dynindx = -1;
6914 cinfo.output_bfd = output_bfd;
6915 cinfo.bed = bed;
6916
6917 /* Put all hash values in HASHCODES. */
6918 elf_link_hash_traverse (elf_hash_table (info),
6919 elf_collect_gnu_hash_codes, &cinfo);
6920 if (cinfo.error)
6921 {
6922 free (cinfo.hashcodes);
6923 return FALSE;
6924 }
6925
6926 bucketcount
6927 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6928
6929 if (bucketcount == 0)
6930 {
6931 free (cinfo.hashcodes);
6932 return FALSE;
6933 }
6934
6935 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6936 BFD_ASSERT (s != NULL);
6937
6938 if (cinfo.nsyms == 0)
6939 {
6940 /* Empty .gnu.hash section is special. */
6941 BFD_ASSERT (cinfo.min_dynindx == -1);
6942 free (cinfo.hashcodes);
6943 s->size = 5 * 4 + bed->s->arch_size / 8;
6944 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6945 if (contents == NULL)
6946 return FALSE;
6947 s->contents = contents;
6948 /* 1 empty bucket. */
6949 bfd_put_32 (output_bfd, 1, contents);
6950 /* SYMIDX above the special symbol 0. */
6951 bfd_put_32 (output_bfd, 1, contents + 4);
6952 /* Just one word for bitmask. */
6953 bfd_put_32 (output_bfd, 1, contents + 8);
6954 /* Only hash fn bloom filter. */
6955 bfd_put_32 (output_bfd, 0, contents + 12);
6956 /* No hashes are valid - empty bitmask. */
6957 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6958 /* No hashes in the only bucket. */
6959 bfd_put_32 (output_bfd, 0,
6960 contents + 16 + bed->s->arch_size / 8);
6961 }
6962 else
6963 {
6964 unsigned long int maskwords, maskbitslog2, x;
6965 BFD_ASSERT (cinfo.min_dynindx != -1);
6966
6967 x = cinfo.nsyms;
6968 maskbitslog2 = 1;
6969 while ((x >>= 1) != 0)
6970 ++maskbitslog2;
6971 if (maskbitslog2 < 3)
6972 maskbitslog2 = 5;
6973 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6974 maskbitslog2 = maskbitslog2 + 3;
6975 else
6976 maskbitslog2 = maskbitslog2 + 2;
6977 if (bed->s->arch_size == 64)
6978 {
6979 if (maskbitslog2 == 5)
6980 maskbitslog2 = 6;
6981 cinfo.shift1 = 6;
6982 }
6983 else
6984 cinfo.shift1 = 5;
6985 cinfo.mask = (1 << cinfo.shift1) - 1;
6986 cinfo.shift2 = maskbitslog2;
6987 cinfo.maskbits = 1 << maskbitslog2;
6988 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6989 amt = bucketcount * sizeof (unsigned long int) * 2;
6990 amt += maskwords * sizeof (bfd_vma);
6991 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6992 if (cinfo.bitmask == NULL)
6993 {
6994 free (cinfo.hashcodes);
6995 return FALSE;
6996 }
6997
6998 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6999 cinfo.indx = cinfo.counts + bucketcount;
7000 cinfo.symindx = dynsymcount - cinfo.nsyms;
7001 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7002
7003 /* Determine how often each hash bucket is used. */
7004 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7005 for (i = 0; i < cinfo.nsyms; ++i)
7006 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7007
7008 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7009 if (cinfo.counts[i] != 0)
7010 {
7011 cinfo.indx[i] = cnt;
7012 cnt += cinfo.counts[i];
7013 }
7014 BFD_ASSERT (cnt == dynsymcount);
7015 cinfo.bucketcount = bucketcount;
7016 cinfo.local_indx = cinfo.min_dynindx;
7017
7018 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7019 s->size += cinfo.maskbits / 8;
7020 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7021 if (contents == NULL)
7022 {
7023 free (cinfo.bitmask);
7024 free (cinfo.hashcodes);
7025 return FALSE;
7026 }
7027
7028 s->contents = contents;
7029 bfd_put_32 (output_bfd, bucketcount, contents);
7030 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7031 bfd_put_32 (output_bfd, maskwords, contents + 8);
7032 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7033 contents += 16 + cinfo.maskbits / 8;
7034
7035 for (i = 0; i < bucketcount; ++i)
7036 {
7037 if (cinfo.counts[i] == 0)
7038 bfd_put_32 (output_bfd, 0, contents);
7039 else
7040 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7041 contents += 4;
7042 }
7043
7044 cinfo.contents = contents;
7045
7046 /* Renumber dynamic symbols, populate .gnu.hash section. */
7047 elf_link_hash_traverse (elf_hash_table (info),
7048 elf_renumber_gnu_hash_syms, &cinfo);
7049
7050 contents = s->contents + 16;
7051 for (i = 0; i < maskwords; ++i)
7052 {
7053 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7054 contents);
7055 contents += bed->s->arch_size / 8;
7056 }
7057
7058 free (cinfo.bitmask);
7059 free (cinfo.hashcodes);
7060 }
7061 }
7062
7063 s = bfd_get_linker_section (dynobj, ".dynstr");
7064 BFD_ASSERT (s != NULL);
7065
7066 elf_finalize_dynstr (output_bfd, info);
7067
7068 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7069
7070 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7071 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7072 return FALSE;
7073 }
7074
7075 return TRUE;
7076 }
7077 \f
7078 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7079
7080 static void
7081 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7082 asection *sec)
7083 {
7084 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7085 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7086 }
7087
7088 /* Finish SHF_MERGE section merging. */
7089
7090 bfd_boolean
7091 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7092 {
7093 bfd *ibfd;
7094 asection *sec;
7095
7096 if (!is_elf_hash_table (info->hash))
7097 return FALSE;
7098
7099 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7100 if ((ibfd->flags & DYNAMIC) == 0
7101 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7102 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7103 == get_elf_backend_data (obfd)->s->elfclass))
7104 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7105 if ((sec->flags & SEC_MERGE) != 0
7106 && !bfd_is_abs_section (sec->output_section))
7107 {
7108 struct bfd_elf_section_data *secdata;
7109
7110 secdata = elf_section_data (sec);
7111 if (! _bfd_add_merge_section (obfd,
7112 &elf_hash_table (info)->merge_info,
7113 sec, &secdata->sec_info))
7114 return FALSE;
7115 else if (secdata->sec_info)
7116 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7117 }
7118
7119 if (elf_hash_table (info)->merge_info != NULL)
7120 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7121 merge_sections_remove_hook);
7122 return TRUE;
7123 }
7124
7125 /* Create an entry in an ELF linker hash table. */
7126
7127 struct bfd_hash_entry *
7128 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7129 struct bfd_hash_table *table,
7130 const char *string)
7131 {
7132 /* Allocate the structure if it has not already been allocated by a
7133 subclass. */
7134 if (entry == NULL)
7135 {
7136 entry = (struct bfd_hash_entry *)
7137 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7138 if (entry == NULL)
7139 return entry;
7140 }
7141
7142 /* Call the allocation method of the superclass. */
7143 entry = _bfd_link_hash_newfunc (entry, table, string);
7144 if (entry != NULL)
7145 {
7146 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7147 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7148
7149 /* Set local fields. */
7150 ret->indx = -1;
7151 ret->dynindx = -1;
7152 ret->got = htab->init_got_refcount;
7153 ret->plt = htab->init_plt_refcount;
7154 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7155 - offsetof (struct elf_link_hash_entry, size)));
7156 /* Assume that we have been called by a non-ELF symbol reader.
7157 This flag is then reset by the code which reads an ELF input
7158 file. This ensures that a symbol created by a non-ELF symbol
7159 reader will have the flag set correctly. */
7160 ret->non_elf = 1;
7161 }
7162
7163 return entry;
7164 }
7165
7166 /* Copy data from an indirect symbol to its direct symbol, hiding the
7167 old indirect symbol. Also used for copying flags to a weakdef. */
7168
7169 void
7170 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7171 struct elf_link_hash_entry *dir,
7172 struct elf_link_hash_entry *ind)
7173 {
7174 struct elf_link_hash_table *htab;
7175
7176 /* Copy down any references that we may have already seen to the
7177 symbol which just became indirect. */
7178
7179 if (dir->versioned != versioned_hidden)
7180 dir->ref_dynamic |= ind->ref_dynamic;
7181 dir->ref_regular |= ind->ref_regular;
7182 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7183 dir->non_got_ref |= ind->non_got_ref;
7184 dir->needs_plt |= ind->needs_plt;
7185 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7186
7187 if (ind->root.type != bfd_link_hash_indirect)
7188 return;
7189
7190 /* Copy over the global and procedure linkage table refcount entries.
7191 These may have been already set up by a check_relocs routine. */
7192 htab = elf_hash_table (info);
7193 if (ind->got.refcount > htab->init_got_refcount.refcount)
7194 {
7195 if (dir->got.refcount < 0)
7196 dir->got.refcount = 0;
7197 dir->got.refcount += ind->got.refcount;
7198 ind->got.refcount = htab->init_got_refcount.refcount;
7199 }
7200
7201 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7202 {
7203 if (dir->plt.refcount < 0)
7204 dir->plt.refcount = 0;
7205 dir->plt.refcount += ind->plt.refcount;
7206 ind->plt.refcount = htab->init_plt_refcount.refcount;
7207 }
7208
7209 if (ind->dynindx != -1)
7210 {
7211 if (dir->dynindx != -1)
7212 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7213 dir->dynindx = ind->dynindx;
7214 dir->dynstr_index = ind->dynstr_index;
7215 ind->dynindx = -1;
7216 ind->dynstr_index = 0;
7217 }
7218 }
7219
7220 void
7221 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7222 struct elf_link_hash_entry *h,
7223 bfd_boolean force_local)
7224 {
7225 /* STT_GNU_IFUNC symbol must go through PLT. */
7226 if (h->type != STT_GNU_IFUNC)
7227 {
7228 h->plt = elf_hash_table (info)->init_plt_offset;
7229 h->needs_plt = 0;
7230 }
7231 if (force_local)
7232 {
7233 h->forced_local = 1;
7234 if (h->dynindx != -1)
7235 {
7236 h->dynindx = -1;
7237 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7238 h->dynstr_index);
7239 }
7240 }
7241 }
7242
7243 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7244 caller. */
7245
7246 bfd_boolean
7247 _bfd_elf_link_hash_table_init
7248 (struct elf_link_hash_table *table,
7249 bfd *abfd,
7250 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7251 struct bfd_hash_table *,
7252 const char *),
7253 unsigned int entsize,
7254 enum elf_target_id target_id)
7255 {
7256 bfd_boolean ret;
7257 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7258
7259 table->init_got_refcount.refcount = can_refcount - 1;
7260 table->init_plt_refcount.refcount = can_refcount - 1;
7261 table->init_got_offset.offset = -(bfd_vma) 1;
7262 table->init_plt_offset.offset = -(bfd_vma) 1;
7263 /* The first dynamic symbol is a dummy. */
7264 table->dynsymcount = 1;
7265
7266 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7267
7268 table->root.type = bfd_link_elf_hash_table;
7269 table->hash_table_id = target_id;
7270
7271 return ret;
7272 }
7273
7274 /* Create an ELF linker hash table. */
7275
7276 struct bfd_link_hash_table *
7277 _bfd_elf_link_hash_table_create (bfd *abfd)
7278 {
7279 struct elf_link_hash_table *ret;
7280 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7281
7282 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7283 if (ret == NULL)
7284 return NULL;
7285
7286 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7287 sizeof (struct elf_link_hash_entry),
7288 GENERIC_ELF_DATA))
7289 {
7290 free (ret);
7291 return NULL;
7292 }
7293 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7294
7295 return &ret->root;
7296 }
7297
7298 /* Destroy an ELF linker hash table. */
7299
7300 void
7301 _bfd_elf_link_hash_table_free (bfd *obfd)
7302 {
7303 struct elf_link_hash_table *htab;
7304
7305 htab = (struct elf_link_hash_table *) obfd->link.hash;
7306 if (htab->dynstr != NULL)
7307 _bfd_elf_strtab_free (htab->dynstr);
7308 _bfd_merge_sections_free (htab->merge_info);
7309 _bfd_generic_link_hash_table_free (obfd);
7310 }
7311
7312 /* This is a hook for the ELF emulation code in the generic linker to
7313 tell the backend linker what file name to use for the DT_NEEDED
7314 entry for a dynamic object. */
7315
7316 void
7317 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7318 {
7319 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7320 && bfd_get_format (abfd) == bfd_object)
7321 elf_dt_name (abfd) = name;
7322 }
7323
7324 int
7325 bfd_elf_get_dyn_lib_class (bfd *abfd)
7326 {
7327 int lib_class;
7328 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7329 && bfd_get_format (abfd) == bfd_object)
7330 lib_class = elf_dyn_lib_class (abfd);
7331 else
7332 lib_class = 0;
7333 return lib_class;
7334 }
7335
7336 void
7337 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7338 {
7339 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7340 && bfd_get_format (abfd) == bfd_object)
7341 elf_dyn_lib_class (abfd) = lib_class;
7342 }
7343
7344 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7345 the linker ELF emulation code. */
7346
7347 struct bfd_link_needed_list *
7348 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7349 struct bfd_link_info *info)
7350 {
7351 if (! is_elf_hash_table (info->hash))
7352 return NULL;
7353 return elf_hash_table (info)->needed;
7354 }
7355
7356 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7357 hook for the linker ELF emulation code. */
7358
7359 struct bfd_link_needed_list *
7360 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7361 struct bfd_link_info *info)
7362 {
7363 if (! is_elf_hash_table (info->hash))
7364 return NULL;
7365 return elf_hash_table (info)->runpath;
7366 }
7367
7368 /* Get the name actually used for a dynamic object for a link. This
7369 is the SONAME entry if there is one. Otherwise, it is the string
7370 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7371
7372 const char *
7373 bfd_elf_get_dt_soname (bfd *abfd)
7374 {
7375 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7376 && bfd_get_format (abfd) == bfd_object)
7377 return elf_dt_name (abfd);
7378 return NULL;
7379 }
7380
7381 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7382 the ELF linker emulation code. */
7383
7384 bfd_boolean
7385 bfd_elf_get_bfd_needed_list (bfd *abfd,
7386 struct bfd_link_needed_list **pneeded)
7387 {
7388 asection *s;
7389 bfd_byte *dynbuf = NULL;
7390 unsigned int elfsec;
7391 unsigned long shlink;
7392 bfd_byte *extdyn, *extdynend;
7393 size_t extdynsize;
7394 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7395
7396 *pneeded = NULL;
7397
7398 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7399 || bfd_get_format (abfd) != bfd_object)
7400 return TRUE;
7401
7402 s = bfd_get_section_by_name (abfd, ".dynamic");
7403 if (s == NULL || s->size == 0)
7404 return TRUE;
7405
7406 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7407 goto error_return;
7408
7409 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7410 if (elfsec == SHN_BAD)
7411 goto error_return;
7412
7413 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7414
7415 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7416 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7417
7418 extdyn = dynbuf;
7419 extdynend = extdyn + s->size;
7420 for (; extdyn < extdynend; extdyn += extdynsize)
7421 {
7422 Elf_Internal_Dyn dyn;
7423
7424 (*swap_dyn_in) (abfd, extdyn, &dyn);
7425
7426 if (dyn.d_tag == DT_NULL)
7427 break;
7428
7429 if (dyn.d_tag == DT_NEEDED)
7430 {
7431 const char *string;
7432 struct bfd_link_needed_list *l;
7433 unsigned int tagv = dyn.d_un.d_val;
7434 bfd_size_type amt;
7435
7436 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7437 if (string == NULL)
7438 goto error_return;
7439
7440 amt = sizeof *l;
7441 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7442 if (l == NULL)
7443 goto error_return;
7444
7445 l->by = abfd;
7446 l->name = string;
7447 l->next = *pneeded;
7448 *pneeded = l;
7449 }
7450 }
7451
7452 free (dynbuf);
7453
7454 return TRUE;
7455
7456 error_return:
7457 if (dynbuf != NULL)
7458 free (dynbuf);
7459 return FALSE;
7460 }
7461
7462 struct elf_symbuf_symbol
7463 {
7464 unsigned long st_name; /* Symbol name, index in string tbl */
7465 unsigned char st_info; /* Type and binding attributes */
7466 unsigned char st_other; /* Visibilty, and target specific */
7467 };
7468
7469 struct elf_symbuf_head
7470 {
7471 struct elf_symbuf_symbol *ssym;
7472 size_t count;
7473 unsigned int st_shndx;
7474 };
7475
7476 struct elf_symbol
7477 {
7478 union
7479 {
7480 Elf_Internal_Sym *isym;
7481 struct elf_symbuf_symbol *ssym;
7482 } u;
7483 const char *name;
7484 };
7485
7486 /* Sort references to symbols by ascending section number. */
7487
7488 static int
7489 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7490 {
7491 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7492 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7493
7494 return s1->st_shndx - s2->st_shndx;
7495 }
7496
7497 static int
7498 elf_sym_name_compare (const void *arg1, const void *arg2)
7499 {
7500 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7501 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7502 return strcmp (s1->name, s2->name);
7503 }
7504
7505 static struct elf_symbuf_head *
7506 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7507 {
7508 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7509 struct elf_symbuf_symbol *ssym;
7510 struct elf_symbuf_head *ssymbuf, *ssymhead;
7511 size_t i, shndx_count, total_size;
7512
7513 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7514 if (indbuf == NULL)
7515 return NULL;
7516
7517 for (ind = indbuf, i = 0; i < symcount; i++)
7518 if (isymbuf[i].st_shndx != SHN_UNDEF)
7519 *ind++ = &isymbuf[i];
7520 indbufend = ind;
7521
7522 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7523 elf_sort_elf_symbol);
7524
7525 shndx_count = 0;
7526 if (indbufend > indbuf)
7527 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7528 if (ind[0]->st_shndx != ind[1]->st_shndx)
7529 shndx_count++;
7530
7531 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7532 + (indbufend - indbuf) * sizeof (*ssym));
7533 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7534 if (ssymbuf == NULL)
7535 {
7536 free (indbuf);
7537 return NULL;
7538 }
7539
7540 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7541 ssymbuf->ssym = NULL;
7542 ssymbuf->count = shndx_count;
7543 ssymbuf->st_shndx = 0;
7544 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7545 {
7546 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7547 {
7548 ssymhead++;
7549 ssymhead->ssym = ssym;
7550 ssymhead->count = 0;
7551 ssymhead->st_shndx = (*ind)->st_shndx;
7552 }
7553 ssym->st_name = (*ind)->st_name;
7554 ssym->st_info = (*ind)->st_info;
7555 ssym->st_other = (*ind)->st_other;
7556 ssymhead->count++;
7557 }
7558 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7559 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7560 == total_size));
7561
7562 free (indbuf);
7563 return ssymbuf;
7564 }
7565
7566 /* Check if 2 sections define the same set of local and global
7567 symbols. */
7568
7569 static bfd_boolean
7570 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7571 struct bfd_link_info *info)
7572 {
7573 bfd *bfd1, *bfd2;
7574 const struct elf_backend_data *bed1, *bed2;
7575 Elf_Internal_Shdr *hdr1, *hdr2;
7576 size_t symcount1, symcount2;
7577 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7578 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7579 Elf_Internal_Sym *isym, *isymend;
7580 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7581 size_t count1, count2, i;
7582 unsigned int shndx1, shndx2;
7583 bfd_boolean result;
7584
7585 bfd1 = sec1->owner;
7586 bfd2 = sec2->owner;
7587
7588 /* Both sections have to be in ELF. */
7589 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7590 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7591 return FALSE;
7592
7593 if (elf_section_type (sec1) != elf_section_type (sec2))
7594 return FALSE;
7595
7596 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7597 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7598 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7599 return FALSE;
7600
7601 bed1 = get_elf_backend_data (bfd1);
7602 bed2 = get_elf_backend_data (bfd2);
7603 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7604 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7605 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7606 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7607
7608 if (symcount1 == 0 || symcount2 == 0)
7609 return FALSE;
7610
7611 result = FALSE;
7612 isymbuf1 = NULL;
7613 isymbuf2 = NULL;
7614 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7615 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7616
7617 if (ssymbuf1 == NULL)
7618 {
7619 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7620 NULL, NULL, NULL);
7621 if (isymbuf1 == NULL)
7622 goto done;
7623
7624 if (!info->reduce_memory_overheads)
7625 elf_tdata (bfd1)->symbuf = ssymbuf1
7626 = elf_create_symbuf (symcount1, isymbuf1);
7627 }
7628
7629 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7630 {
7631 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7632 NULL, NULL, NULL);
7633 if (isymbuf2 == NULL)
7634 goto done;
7635
7636 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7637 elf_tdata (bfd2)->symbuf = ssymbuf2
7638 = elf_create_symbuf (symcount2, isymbuf2);
7639 }
7640
7641 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7642 {
7643 /* Optimized faster version. */
7644 size_t lo, hi, mid;
7645 struct elf_symbol *symp;
7646 struct elf_symbuf_symbol *ssym, *ssymend;
7647
7648 lo = 0;
7649 hi = ssymbuf1->count;
7650 ssymbuf1++;
7651 count1 = 0;
7652 while (lo < hi)
7653 {
7654 mid = (lo + hi) / 2;
7655 if (shndx1 < ssymbuf1[mid].st_shndx)
7656 hi = mid;
7657 else if (shndx1 > ssymbuf1[mid].st_shndx)
7658 lo = mid + 1;
7659 else
7660 {
7661 count1 = ssymbuf1[mid].count;
7662 ssymbuf1 += mid;
7663 break;
7664 }
7665 }
7666
7667 lo = 0;
7668 hi = ssymbuf2->count;
7669 ssymbuf2++;
7670 count2 = 0;
7671 while (lo < hi)
7672 {
7673 mid = (lo + hi) / 2;
7674 if (shndx2 < ssymbuf2[mid].st_shndx)
7675 hi = mid;
7676 else if (shndx2 > ssymbuf2[mid].st_shndx)
7677 lo = mid + 1;
7678 else
7679 {
7680 count2 = ssymbuf2[mid].count;
7681 ssymbuf2 += mid;
7682 break;
7683 }
7684 }
7685
7686 if (count1 == 0 || count2 == 0 || count1 != count2)
7687 goto done;
7688
7689 symtable1
7690 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7691 symtable2
7692 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7693 if (symtable1 == NULL || symtable2 == NULL)
7694 goto done;
7695
7696 symp = symtable1;
7697 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7698 ssym < ssymend; ssym++, symp++)
7699 {
7700 symp->u.ssym = ssym;
7701 symp->name = bfd_elf_string_from_elf_section (bfd1,
7702 hdr1->sh_link,
7703 ssym->st_name);
7704 }
7705
7706 symp = symtable2;
7707 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7708 ssym < ssymend; ssym++, symp++)
7709 {
7710 symp->u.ssym = ssym;
7711 symp->name = bfd_elf_string_from_elf_section (bfd2,
7712 hdr2->sh_link,
7713 ssym->st_name);
7714 }
7715
7716 /* Sort symbol by name. */
7717 qsort (symtable1, count1, sizeof (struct elf_symbol),
7718 elf_sym_name_compare);
7719 qsort (symtable2, count1, sizeof (struct elf_symbol),
7720 elf_sym_name_compare);
7721
7722 for (i = 0; i < count1; i++)
7723 /* Two symbols must have the same binding, type and name. */
7724 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7725 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7726 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7727 goto done;
7728
7729 result = TRUE;
7730 goto done;
7731 }
7732
7733 symtable1 = (struct elf_symbol *)
7734 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7735 symtable2 = (struct elf_symbol *)
7736 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7737 if (symtable1 == NULL || symtable2 == NULL)
7738 goto done;
7739
7740 /* Count definitions in the section. */
7741 count1 = 0;
7742 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7743 if (isym->st_shndx == shndx1)
7744 symtable1[count1++].u.isym = isym;
7745
7746 count2 = 0;
7747 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7748 if (isym->st_shndx == shndx2)
7749 symtable2[count2++].u.isym = isym;
7750
7751 if (count1 == 0 || count2 == 0 || count1 != count2)
7752 goto done;
7753
7754 for (i = 0; i < count1; i++)
7755 symtable1[i].name
7756 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7757 symtable1[i].u.isym->st_name);
7758
7759 for (i = 0; i < count2; i++)
7760 symtable2[i].name
7761 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7762 symtable2[i].u.isym->st_name);
7763
7764 /* Sort symbol by name. */
7765 qsort (symtable1, count1, sizeof (struct elf_symbol),
7766 elf_sym_name_compare);
7767 qsort (symtable2, count1, sizeof (struct elf_symbol),
7768 elf_sym_name_compare);
7769
7770 for (i = 0; i < count1; i++)
7771 /* Two symbols must have the same binding, type and name. */
7772 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7773 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7774 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7775 goto done;
7776
7777 result = TRUE;
7778
7779 done:
7780 if (symtable1)
7781 free (symtable1);
7782 if (symtable2)
7783 free (symtable2);
7784 if (isymbuf1)
7785 free (isymbuf1);
7786 if (isymbuf2)
7787 free (isymbuf2);
7788
7789 return result;
7790 }
7791
7792 /* Return TRUE if 2 section types are compatible. */
7793
7794 bfd_boolean
7795 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7796 bfd *bbfd, const asection *bsec)
7797 {
7798 if (asec == NULL
7799 || bsec == NULL
7800 || abfd->xvec->flavour != bfd_target_elf_flavour
7801 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7802 return TRUE;
7803
7804 return elf_section_type (asec) == elf_section_type (bsec);
7805 }
7806 \f
7807 /* Final phase of ELF linker. */
7808
7809 /* A structure we use to avoid passing large numbers of arguments. */
7810
7811 struct elf_final_link_info
7812 {
7813 /* General link information. */
7814 struct bfd_link_info *info;
7815 /* Output BFD. */
7816 bfd *output_bfd;
7817 /* Symbol string table. */
7818 struct elf_strtab_hash *symstrtab;
7819 /* .hash section. */
7820 asection *hash_sec;
7821 /* symbol version section (.gnu.version). */
7822 asection *symver_sec;
7823 /* Buffer large enough to hold contents of any section. */
7824 bfd_byte *contents;
7825 /* Buffer large enough to hold external relocs of any section. */
7826 void *external_relocs;
7827 /* Buffer large enough to hold internal relocs of any section. */
7828 Elf_Internal_Rela *internal_relocs;
7829 /* Buffer large enough to hold external local symbols of any input
7830 BFD. */
7831 bfd_byte *external_syms;
7832 /* And a buffer for symbol section indices. */
7833 Elf_External_Sym_Shndx *locsym_shndx;
7834 /* Buffer large enough to hold internal local symbols of any input
7835 BFD. */
7836 Elf_Internal_Sym *internal_syms;
7837 /* Array large enough to hold a symbol index for each local symbol
7838 of any input BFD. */
7839 long *indices;
7840 /* Array large enough to hold a section pointer for each local
7841 symbol of any input BFD. */
7842 asection **sections;
7843 /* Buffer for SHT_SYMTAB_SHNDX section. */
7844 Elf_External_Sym_Shndx *symshndxbuf;
7845 /* Number of STT_FILE syms seen. */
7846 size_t filesym_count;
7847 };
7848
7849 /* This struct is used to pass information to elf_link_output_extsym. */
7850
7851 struct elf_outext_info
7852 {
7853 bfd_boolean failed;
7854 bfd_boolean localsyms;
7855 bfd_boolean file_sym_done;
7856 struct elf_final_link_info *flinfo;
7857 };
7858
7859
7860 /* Support for evaluating a complex relocation.
7861
7862 Complex relocations are generalized, self-describing relocations. The
7863 implementation of them consists of two parts: complex symbols, and the
7864 relocations themselves.
7865
7866 The relocations are use a reserved elf-wide relocation type code (R_RELC
7867 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7868 information (start bit, end bit, word width, etc) into the addend. This
7869 information is extracted from CGEN-generated operand tables within gas.
7870
7871 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7872 internal) representing prefix-notation expressions, including but not
7873 limited to those sorts of expressions normally encoded as addends in the
7874 addend field. The symbol mangling format is:
7875
7876 <node> := <literal>
7877 | <unary-operator> ':' <node>
7878 | <binary-operator> ':' <node> ':' <node>
7879 ;
7880
7881 <literal> := 's' <digits=N> ':' <N character symbol name>
7882 | 'S' <digits=N> ':' <N character section name>
7883 | '#' <hexdigits>
7884 ;
7885
7886 <binary-operator> := as in C
7887 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7888
7889 static void
7890 set_symbol_value (bfd *bfd_with_globals,
7891 Elf_Internal_Sym *isymbuf,
7892 size_t locsymcount,
7893 size_t symidx,
7894 bfd_vma val)
7895 {
7896 struct elf_link_hash_entry **sym_hashes;
7897 struct elf_link_hash_entry *h;
7898 size_t extsymoff = locsymcount;
7899
7900 if (symidx < locsymcount)
7901 {
7902 Elf_Internal_Sym *sym;
7903
7904 sym = isymbuf + symidx;
7905 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7906 {
7907 /* It is a local symbol: move it to the
7908 "absolute" section and give it a value. */
7909 sym->st_shndx = SHN_ABS;
7910 sym->st_value = val;
7911 return;
7912 }
7913 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7914 extsymoff = 0;
7915 }
7916
7917 /* It is a global symbol: set its link type
7918 to "defined" and give it a value. */
7919
7920 sym_hashes = elf_sym_hashes (bfd_with_globals);
7921 h = sym_hashes [symidx - extsymoff];
7922 while (h->root.type == bfd_link_hash_indirect
7923 || h->root.type == bfd_link_hash_warning)
7924 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7925 h->root.type = bfd_link_hash_defined;
7926 h->root.u.def.value = val;
7927 h->root.u.def.section = bfd_abs_section_ptr;
7928 }
7929
7930 static bfd_boolean
7931 resolve_symbol (const char *name,
7932 bfd *input_bfd,
7933 struct elf_final_link_info *flinfo,
7934 bfd_vma *result,
7935 Elf_Internal_Sym *isymbuf,
7936 size_t locsymcount)
7937 {
7938 Elf_Internal_Sym *sym;
7939 struct bfd_link_hash_entry *global_entry;
7940 const char *candidate = NULL;
7941 Elf_Internal_Shdr *symtab_hdr;
7942 size_t i;
7943
7944 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7945
7946 for (i = 0; i < locsymcount; ++ i)
7947 {
7948 sym = isymbuf + i;
7949
7950 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7951 continue;
7952
7953 candidate = bfd_elf_string_from_elf_section (input_bfd,
7954 symtab_hdr->sh_link,
7955 sym->st_name);
7956 #ifdef DEBUG
7957 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7958 name, candidate, (unsigned long) sym->st_value);
7959 #endif
7960 if (candidate && strcmp (candidate, name) == 0)
7961 {
7962 asection *sec = flinfo->sections [i];
7963
7964 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7965 *result += sec->output_offset + sec->output_section->vma;
7966 #ifdef DEBUG
7967 printf ("Found symbol with value %8.8lx\n",
7968 (unsigned long) *result);
7969 #endif
7970 return TRUE;
7971 }
7972 }
7973
7974 /* Hmm, haven't found it yet. perhaps it is a global. */
7975 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7976 FALSE, FALSE, TRUE);
7977 if (!global_entry)
7978 return FALSE;
7979
7980 if (global_entry->type == bfd_link_hash_defined
7981 || global_entry->type == bfd_link_hash_defweak)
7982 {
7983 *result = (global_entry->u.def.value
7984 + global_entry->u.def.section->output_section->vma
7985 + global_entry->u.def.section->output_offset);
7986 #ifdef DEBUG
7987 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7988 global_entry->root.string, (unsigned long) *result);
7989 #endif
7990 return TRUE;
7991 }
7992
7993 return FALSE;
7994 }
7995
7996 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7997 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7998 names like "foo.end" which is the end address of section "foo". */
7999
8000 static bfd_boolean
8001 resolve_section (const char *name,
8002 asection *sections,
8003 bfd_vma *result,
8004 bfd * abfd)
8005 {
8006 asection *curr;
8007 unsigned int len;
8008
8009 for (curr = sections; curr; curr = curr->next)
8010 if (strcmp (curr->name, name) == 0)
8011 {
8012 *result = curr->vma;
8013 return TRUE;
8014 }
8015
8016 /* Hmm. still haven't found it. try pseudo-section names. */
8017 /* FIXME: This could be coded more efficiently... */
8018 for (curr = sections; curr; curr = curr->next)
8019 {
8020 len = strlen (curr->name);
8021 if (len > strlen (name))
8022 continue;
8023
8024 if (strncmp (curr->name, name, len) == 0)
8025 {
8026 if (strncmp (".end", name + len, 4) == 0)
8027 {
8028 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8029 return TRUE;
8030 }
8031
8032 /* Insert more pseudo-section names here, if you like. */
8033 }
8034 }
8035
8036 return FALSE;
8037 }
8038
8039 static void
8040 undefined_reference (const char *reftype, const char *name)
8041 {
8042 /* xgettext:c-format */
8043 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8044 reftype, name);
8045 }
8046
8047 static bfd_boolean
8048 eval_symbol (bfd_vma *result,
8049 const char **symp,
8050 bfd *input_bfd,
8051 struct elf_final_link_info *flinfo,
8052 bfd_vma dot,
8053 Elf_Internal_Sym *isymbuf,
8054 size_t locsymcount,
8055 int signed_p)
8056 {
8057 size_t len;
8058 size_t symlen;
8059 bfd_vma a;
8060 bfd_vma b;
8061 char symbuf[4096];
8062 const char *sym = *symp;
8063 const char *symend;
8064 bfd_boolean symbol_is_section = FALSE;
8065
8066 len = strlen (sym);
8067 symend = sym + len;
8068
8069 if (len < 1 || len > sizeof (symbuf))
8070 {
8071 bfd_set_error (bfd_error_invalid_operation);
8072 return FALSE;
8073 }
8074
8075 switch (* sym)
8076 {
8077 case '.':
8078 *result = dot;
8079 *symp = sym + 1;
8080 return TRUE;
8081
8082 case '#':
8083 ++sym;
8084 *result = strtoul (sym, (char **) symp, 16);
8085 return TRUE;
8086
8087 case 'S':
8088 symbol_is_section = TRUE;
8089 /* Fall through. */
8090 case 's':
8091 ++sym;
8092 symlen = strtol (sym, (char **) symp, 10);
8093 sym = *symp + 1; /* Skip the trailing ':'. */
8094
8095 if (symend < sym || symlen + 1 > sizeof (symbuf))
8096 {
8097 bfd_set_error (bfd_error_invalid_operation);
8098 return FALSE;
8099 }
8100
8101 memcpy (symbuf, sym, symlen);
8102 symbuf[symlen] = '\0';
8103 *symp = sym + symlen;
8104
8105 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8106 the symbol as a section, or vice-versa. so we're pretty liberal in our
8107 interpretation here; section means "try section first", not "must be a
8108 section", and likewise with symbol. */
8109
8110 if (symbol_is_section)
8111 {
8112 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8113 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8114 isymbuf, locsymcount))
8115 {
8116 undefined_reference ("section", symbuf);
8117 return FALSE;
8118 }
8119 }
8120 else
8121 {
8122 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8123 isymbuf, locsymcount)
8124 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8125 result, input_bfd))
8126 {
8127 undefined_reference ("symbol", symbuf);
8128 return FALSE;
8129 }
8130 }
8131
8132 return TRUE;
8133
8134 /* All that remains are operators. */
8135
8136 #define UNARY_OP(op) \
8137 if (strncmp (sym, #op, strlen (#op)) == 0) \
8138 { \
8139 sym += strlen (#op); \
8140 if (*sym == ':') \
8141 ++sym; \
8142 *symp = sym; \
8143 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8144 isymbuf, locsymcount, signed_p)) \
8145 return FALSE; \
8146 if (signed_p) \
8147 *result = op ((bfd_signed_vma) a); \
8148 else \
8149 *result = op a; \
8150 return TRUE; \
8151 }
8152
8153 #define BINARY_OP(op) \
8154 if (strncmp (sym, #op, strlen (#op)) == 0) \
8155 { \
8156 sym += strlen (#op); \
8157 if (*sym == ':') \
8158 ++sym; \
8159 *symp = sym; \
8160 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8161 isymbuf, locsymcount, signed_p)) \
8162 return FALSE; \
8163 ++*symp; \
8164 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8165 isymbuf, locsymcount, signed_p)) \
8166 return FALSE; \
8167 if (signed_p) \
8168 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8169 else \
8170 *result = a op b; \
8171 return TRUE; \
8172 }
8173
8174 default:
8175 UNARY_OP (0-);
8176 BINARY_OP (<<);
8177 BINARY_OP (>>);
8178 BINARY_OP (==);
8179 BINARY_OP (!=);
8180 BINARY_OP (<=);
8181 BINARY_OP (>=);
8182 BINARY_OP (&&);
8183 BINARY_OP (||);
8184 UNARY_OP (~);
8185 UNARY_OP (!);
8186 BINARY_OP (*);
8187 BINARY_OP (/);
8188 BINARY_OP (%);
8189 BINARY_OP (^);
8190 BINARY_OP (|);
8191 BINARY_OP (&);
8192 BINARY_OP (+);
8193 BINARY_OP (-);
8194 BINARY_OP (<);
8195 BINARY_OP (>);
8196 #undef UNARY_OP
8197 #undef BINARY_OP
8198 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8199 bfd_set_error (bfd_error_invalid_operation);
8200 return FALSE;
8201 }
8202 }
8203
8204 static void
8205 put_value (bfd_vma size,
8206 unsigned long chunksz,
8207 bfd *input_bfd,
8208 bfd_vma x,
8209 bfd_byte *location)
8210 {
8211 location += (size - chunksz);
8212
8213 for (; size; size -= chunksz, location -= chunksz)
8214 {
8215 switch (chunksz)
8216 {
8217 case 1:
8218 bfd_put_8 (input_bfd, x, location);
8219 x >>= 8;
8220 break;
8221 case 2:
8222 bfd_put_16 (input_bfd, x, location);
8223 x >>= 16;
8224 break;
8225 case 4:
8226 bfd_put_32 (input_bfd, x, location);
8227 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8228 x >>= 16;
8229 x >>= 16;
8230 break;
8231 #ifdef BFD64
8232 case 8:
8233 bfd_put_64 (input_bfd, x, location);
8234 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8235 x >>= 32;
8236 x >>= 32;
8237 break;
8238 #endif
8239 default:
8240 abort ();
8241 break;
8242 }
8243 }
8244 }
8245
8246 static bfd_vma
8247 get_value (bfd_vma size,
8248 unsigned long chunksz,
8249 bfd *input_bfd,
8250 bfd_byte *location)
8251 {
8252 int shift;
8253 bfd_vma x = 0;
8254
8255 /* Sanity checks. */
8256 BFD_ASSERT (chunksz <= sizeof (x)
8257 && size >= chunksz
8258 && chunksz != 0
8259 && (size % chunksz) == 0
8260 && input_bfd != NULL
8261 && location != NULL);
8262
8263 if (chunksz == sizeof (x))
8264 {
8265 BFD_ASSERT (size == chunksz);
8266
8267 /* Make sure that we do not perform an undefined shift operation.
8268 We know that size == chunksz so there will only be one iteration
8269 of the loop below. */
8270 shift = 0;
8271 }
8272 else
8273 shift = 8 * chunksz;
8274
8275 for (; size; size -= chunksz, location += chunksz)
8276 {
8277 switch (chunksz)
8278 {
8279 case 1:
8280 x = (x << shift) | bfd_get_8 (input_bfd, location);
8281 break;
8282 case 2:
8283 x = (x << shift) | bfd_get_16 (input_bfd, location);
8284 break;
8285 case 4:
8286 x = (x << shift) | bfd_get_32 (input_bfd, location);
8287 break;
8288 #ifdef BFD64
8289 case 8:
8290 x = (x << shift) | bfd_get_64 (input_bfd, location);
8291 break;
8292 #endif
8293 default:
8294 abort ();
8295 }
8296 }
8297 return x;
8298 }
8299
8300 static void
8301 decode_complex_addend (unsigned long *start, /* in bits */
8302 unsigned long *oplen, /* in bits */
8303 unsigned long *len, /* in bits */
8304 unsigned long *wordsz, /* in bytes */
8305 unsigned long *chunksz, /* in bytes */
8306 unsigned long *lsb0_p,
8307 unsigned long *signed_p,
8308 unsigned long *trunc_p,
8309 unsigned long encoded)
8310 {
8311 * start = encoded & 0x3F;
8312 * len = (encoded >> 6) & 0x3F;
8313 * oplen = (encoded >> 12) & 0x3F;
8314 * wordsz = (encoded >> 18) & 0xF;
8315 * chunksz = (encoded >> 22) & 0xF;
8316 * lsb0_p = (encoded >> 27) & 1;
8317 * signed_p = (encoded >> 28) & 1;
8318 * trunc_p = (encoded >> 29) & 1;
8319 }
8320
8321 bfd_reloc_status_type
8322 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8323 asection *input_section ATTRIBUTE_UNUSED,
8324 bfd_byte *contents,
8325 Elf_Internal_Rela *rel,
8326 bfd_vma relocation)
8327 {
8328 bfd_vma shift, x, mask;
8329 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8330 bfd_reloc_status_type r;
8331
8332 /* Perform this reloc, since it is complex.
8333 (this is not to say that it necessarily refers to a complex
8334 symbol; merely that it is a self-describing CGEN based reloc.
8335 i.e. the addend has the complete reloc information (bit start, end,
8336 word size, etc) encoded within it.). */
8337
8338 decode_complex_addend (&start, &oplen, &len, &wordsz,
8339 &chunksz, &lsb0_p, &signed_p,
8340 &trunc_p, rel->r_addend);
8341
8342 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8343
8344 if (lsb0_p)
8345 shift = (start + 1) - len;
8346 else
8347 shift = (8 * wordsz) - (start + len);
8348
8349 x = get_value (wordsz, chunksz, input_bfd,
8350 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8351
8352 #ifdef DEBUG
8353 printf ("Doing complex reloc: "
8354 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8355 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8356 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8357 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8358 oplen, (unsigned long) x, (unsigned long) mask,
8359 (unsigned long) relocation);
8360 #endif
8361
8362 r = bfd_reloc_ok;
8363 if (! trunc_p)
8364 /* Now do an overflow check. */
8365 r = bfd_check_overflow ((signed_p
8366 ? complain_overflow_signed
8367 : complain_overflow_unsigned),
8368 len, 0, (8 * wordsz),
8369 relocation);
8370
8371 /* Do the deed. */
8372 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8373
8374 #ifdef DEBUG
8375 printf (" relocation: %8.8lx\n"
8376 " shifted mask: %8.8lx\n"
8377 " shifted/masked reloc: %8.8lx\n"
8378 " result: %8.8lx\n",
8379 (unsigned long) relocation, (unsigned long) (mask << shift),
8380 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8381 #endif
8382 put_value (wordsz, chunksz, input_bfd, x,
8383 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8384 return r;
8385 }
8386
8387 /* Functions to read r_offset from external (target order) reloc
8388 entry. Faster than bfd_getl32 et al, because we let the compiler
8389 know the value is aligned. */
8390
8391 static bfd_vma
8392 ext32l_r_offset (const void *p)
8393 {
8394 union aligned32
8395 {
8396 uint32_t v;
8397 unsigned char c[4];
8398 };
8399 const union aligned32 *a
8400 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8401
8402 uint32_t aval = ( (uint32_t) a->c[0]
8403 | (uint32_t) a->c[1] << 8
8404 | (uint32_t) a->c[2] << 16
8405 | (uint32_t) a->c[3] << 24);
8406 return aval;
8407 }
8408
8409 static bfd_vma
8410 ext32b_r_offset (const void *p)
8411 {
8412 union aligned32
8413 {
8414 uint32_t v;
8415 unsigned char c[4];
8416 };
8417 const union aligned32 *a
8418 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8419
8420 uint32_t aval = ( (uint32_t) a->c[0] << 24
8421 | (uint32_t) a->c[1] << 16
8422 | (uint32_t) a->c[2] << 8
8423 | (uint32_t) a->c[3]);
8424 return aval;
8425 }
8426
8427 #ifdef BFD_HOST_64_BIT
8428 static bfd_vma
8429 ext64l_r_offset (const void *p)
8430 {
8431 union aligned64
8432 {
8433 uint64_t v;
8434 unsigned char c[8];
8435 };
8436 const union aligned64 *a
8437 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8438
8439 uint64_t aval = ( (uint64_t) a->c[0]
8440 | (uint64_t) a->c[1] << 8
8441 | (uint64_t) a->c[2] << 16
8442 | (uint64_t) a->c[3] << 24
8443 | (uint64_t) a->c[4] << 32
8444 | (uint64_t) a->c[5] << 40
8445 | (uint64_t) a->c[6] << 48
8446 | (uint64_t) a->c[7] << 56);
8447 return aval;
8448 }
8449
8450 static bfd_vma
8451 ext64b_r_offset (const void *p)
8452 {
8453 union aligned64
8454 {
8455 uint64_t v;
8456 unsigned char c[8];
8457 };
8458 const union aligned64 *a
8459 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8460
8461 uint64_t aval = ( (uint64_t) a->c[0] << 56
8462 | (uint64_t) a->c[1] << 48
8463 | (uint64_t) a->c[2] << 40
8464 | (uint64_t) a->c[3] << 32
8465 | (uint64_t) a->c[4] << 24
8466 | (uint64_t) a->c[5] << 16
8467 | (uint64_t) a->c[6] << 8
8468 | (uint64_t) a->c[7]);
8469 return aval;
8470 }
8471 #endif
8472
8473 /* When performing a relocatable link, the input relocations are
8474 preserved. But, if they reference global symbols, the indices
8475 referenced must be updated. Update all the relocations found in
8476 RELDATA. */
8477
8478 static bfd_boolean
8479 elf_link_adjust_relocs (bfd *abfd,
8480 asection *sec,
8481 struct bfd_elf_section_reloc_data *reldata,
8482 bfd_boolean sort)
8483 {
8484 unsigned int i;
8485 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8486 bfd_byte *erela;
8487 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8488 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8489 bfd_vma r_type_mask;
8490 int r_sym_shift;
8491 unsigned int count = reldata->count;
8492 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8493
8494 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8495 {
8496 swap_in = bed->s->swap_reloc_in;
8497 swap_out = bed->s->swap_reloc_out;
8498 }
8499 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8500 {
8501 swap_in = bed->s->swap_reloca_in;
8502 swap_out = bed->s->swap_reloca_out;
8503 }
8504 else
8505 abort ();
8506
8507 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8508 abort ();
8509
8510 if (bed->s->arch_size == 32)
8511 {
8512 r_type_mask = 0xff;
8513 r_sym_shift = 8;
8514 }
8515 else
8516 {
8517 r_type_mask = 0xffffffff;
8518 r_sym_shift = 32;
8519 }
8520
8521 erela = reldata->hdr->contents;
8522 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8523 {
8524 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8525 unsigned int j;
8526
8527 if (*rel_hash == NULL)
8528 continue;
8529
8530 BFD_ASSERT ((*rel_hash)->indx >= 0);
8531
8532 (*swap_in) (abfd, erela, irela);
8533 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8534 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8535 | (irela[j].r_info & r_type_mask));
8536 (*swap_out) (abfd, irela, erela);
8537 }
8538
8539 if (bed->elf_backend_update_relocs)
8540 (*bed->elf_backend_update_relocs) (sec, reldata);
8541
8542 if (sort && count != 0)
8543 {
8544 bfd_vma (*ext_r_off) (const void *);
8545 bfd_vma r_off;
8546 size_t elt_size;
8547 bfd_byte *base, *end, *p, *loc;
8548 bfd_byte *buf = NULL;
8549
8550 if (bed->s->arch_size == 32)
8551 {
8552 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8553 ext_r_off = ext32l_r_offset;
8554 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8555 ext_r_off = ext32b_r_offset;
8556 else
8557 abort ();
8558 }
8559 else
8560 {
8561 #ifdef BFD_HOST_64_BIT
8562 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8563 ext_r_off = ext64l_r_offset;
8564 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8565 ext_r_off = ext64b_r_offset;
8566 else
8567 #endif
8568 abort ();
8569 }
8570
8571 /* Must use a stable sort here. A modified insertion sort,
8572 since the relocs are mostly sorted already. */
8573 elt_size = reldata->hdr->sh_entsize;
8574 base = reldata->hdr->contents;
8575 end = base + count * elt_size;
8576 if (elt_size > sizeof (Elf64_External_Rela))
8577 abort ();
8578
8579 /* Ensure the first element is lowest. This acts as a sentinel,
8580 speeding the main loop below. */
8581 r_off = (*ext_r_off) (base);
8582 for (p = loc = base; (p += elt_size) < end; )
8583 {
8584 bfd_vma r_off2 = (*ext_r_off) (p);
8585 if (r_off > r_off2)
8586 {
8587 r_off = r_off2;
8588 loc = p;
8589 }
8590 }
8591 if (loc != base)
8592 {
8593 /* Don't just swap *base and *loc as that changes the order
8594 of the original base[0] and base[1] if they happen to
8595 have the same r_offset. */
8596 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8597 memcpy (onebuf, loc, elt_size);
8598 memmove (base + elt_size, base, loc - base);
8599 memcpy (base, onebuf, elt_size);
8600 }
8601
8602 for (p = base + elt_size; (p += elt_size) < end; )
8603 {
8604 /* base to p is sorted, *p is next to insert. */
8605 r_off = (*ext_r_off) (p);
8606 /* Search the sorted region for location to insert. */
8607 loc = p - elt_size;
8608 while (r_off < (*ext_r_off) (loc))
8609 loc -= elt_size;
8610 loc += elt_size;
8611 if (loc != p)
8612 {
8613 /* Chances are there is a run of relocs to insert here,
8614 from one of more input files. Files are not always
8615 linked in order due to the way elf_link_input_bfd is
8616 called. See pr17666. */
8617 size_t sortlen = p - loc;
8618 bfd_vma r_off2 = (*ext_r_off) (loc);
8619 size_t runlen = elt_size;
8620 size_t buf_size = 96 * 1024;
8621 while (p + runlen < end
8622 && (sortlen <= buf_size
8623 || runlen + elt_size <= buf_size)
8624 && r_off2 > (*ext_r_off) (p + runlen))
8625 runlen += elt_size;
8626 if (buf == NULL)
8627 {
8628 buf = bfd_malloc (buf_size);
8629 if (buf == NULL)
8630 return FALSE;
8631 }
8632 if (runlen < sortlen)
8633 {
8634 memcpy (buf, p, runlen);
8635 memmove (loc + runlen, loc, sortlen);
8636 memcpy (loc, buf, runlen);
8637 }
8638 else
8639 {
8640 memcpy (buf, loc, sortlen);
8641 memmove (loc, p, runlen);
8642 memcpy (loc + runlen, buf, sortlen);
8643 }
8644 p += runlen - elt_size;
8645 }
8646 }
8647 /* Hashes are no longer valid. */
8648 free (reldata->hashes);
8649 reldata->hashes = NULL;
8650 free (buf);
8651 }
8652 return TRUE;
8653 }
8654
8655 struct elf_link_sort_rela
8656 {
8657 union {
8658 bfd_vma offset;
8659 bfd_vma sym_mask;
8660 } u;
8661 enum elf_reloc_type_class type;
8662 /* We use this as an array of size int_rels_per_ext_rel. */
8663 Elf_Internal_Rela rela[1];
8664 };
8665
8666 static int
8667 elf_link_sort_cmp1 (const void *A, const void *B)
8668 {
8669 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8670 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8671 int relativea, relativeb;
8672
8673 relativea = a->type == reloc_class_relative;
8674 relativeb = b->type == reloc_class_relative;
8675
8676 if (relativea < relativeb)
8677 return 1;
8678 if (relativea > relativeb)
8679 return -1;
8680 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8681 return -1;
8682 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8683 return 1;
8684 if (a->rela->r_offset < b->rela->r_offset)
8685 return -1;
8686 if (a->rela->r_offset > b->rela->r_offset)
8687 return 1;
8688 return 0;
8689 }
8690
8691 static int
8692 elf_link_sort_cmp2 (const void *A, const void *B)
8693 {
8694 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8695 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8696
8697 if (a->type < b->type)
8698 return -1;
8699 if (a->type > b->type)
8700 return 1;
8701 if (a->u.offset < b->u.offset)
8702 return -1;
8703 if (a->u.offset > b->u.offset)
8704 return 1;
8705 if (a->rela->r_offset < b->rela->r_offset)
8706 return -1;
8707 if (a->rela->r_offset > b->rela->r_offset)
8708 return 1;
8709 return 0;
8710 }
8711
8712 static size_t
8713 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8714 {
8715 asection *dynamic_relocs;
8716 asection *rela_dyn;
8717 asection *rel_dyn;
8718 bfd_size_type count, size;
8719 size_t i, ret, sort_elt, ext_size;
8720 bfd_byte *sort, *s_non_relative, *p;
8721 struct elf_link_sort_rela *sq;
8722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8723 int i2e = bed->s->int_rels_per_ext_rel;
8724 unsigned int opb = bfd_octets_per_byte (abfd);
8725 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8726 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8727 struct bfd_link_order *lo;
8728 bfd_vma r_sym_mask;
8729 bfd_boolean use_rela;
8730
8731 /* Find a dynamic reloc section. */
8732 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8733 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8734 if (rela_dyn != NULL && rela_dyn->size > 0
8735 && rel_dyn != NULL && rel_dyn->size > 0)
8736 {
8737 bfd_boolean use_rela_initialised = FALSE;
8738
8739 /* This is just here to stop gcc from complaining.
8740 Its initialization checking code is not perfect. */
8741 use_rela = TRUE;
8742
8743 /* Both sections are present. Examine the sizes
8744 of the indirect sections to help us choose. */
8745 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8746 if (lo->type == bfd_indirect_link_order)
8747 {
8748 asection *o = lo->u.indirect.section;
8749
8750 if ((o->size % bed->s->sizeof_rela) == 0)
8751 {
8752 if ((o->size % bed->s->sizeof_rel) == 0)
8753 /* Section size is divisible by both rel and rela sizes.
8754 It is of no help to us. */
8755 ;
8756 else
8757 {
8758 /* Section size is only divisible by rela. */
8759 if (use_rela_initialised && (use_rela == FALSE))
8760 {
8761 _bfd_error_handler (_("%B: Unable to sort relocs - "
8762 "they are in more than one size"),
8763 abfd);
8764 bfd_set_error (bfd_error_invalid_operation);
8765 return 0;
8766 }
8767 else
8768 {
8769 use_rela = TRUE;
8770 use_rela_initialised = TRUE;
8771 }
8772 }
8773 }
8774 else if ((o->size % bed->s->sizeof_rel) == 0)
8775 {
8776 /* Section size is only divisible by rel. */
8777 if (use_rela_initialised && (use_rela == TRUE))
8778 {
8779 _bfd_error_handler (_("%B: Unable to sort relocs - "
8780 "they are in more than one size"),
8781 abfd);
8782 bfd_set_error (bfd_error_invalid_operation);
8783 return 0;
8784 }
8785 else
8786 {
8787 use_rela = FALSE;
8788 use_rela_initialised = TRUE;
8789 }
8790 }
8791 else
8792 {
8793 /* The section size is not divisible by either -
8794 something is wrong. */
8795 _bfd_error_handler (_("%B: Unable to sort relocs - "
8796 "they are of an unknown size"), abfd);
8797 bfd_set_error (bfd_error_invalid_operation);
8798 return 0;
8799 }
8800 }
8801
8802 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8803 if (lo->type == bfd_indirect_link_order)
8804 {
8805 asection *o = lo->u.indirect.section;
8806
8807 if ((o->size % bed->s->sizeof_rela) == 0)
8808 {
8809 if ((o->size % bed->s->sizeof_rel) == 0)
8810 /* Section size is divisible by both rel and rela sizes.
8811 It is of no help to us. */
8812 ;
8813 else
8814 {
8815 /* Section size is only divisible by rela. */
8816 if (use_rela_initialised && (use_rela == FALSE))
8817 {
8818 _bfd_error_handler (_("%B: Unable to sort relocs - "
8819 "they are in more than one size"),
8820 abfd);
8821 bfd_set_error (bfd_error_invalid_operation);
8822 return 0;
8823 }
8824 else
8825 {
8826 use_rela = TRUE;
8827 use_rela_initialised = TRUE;
8828 }
8829 }
8830 }
8831 else if ((o->size % bed->s->sizeof_rel) == 0)
8832 {
8833 /* Section size is only divisible by rel. */
8834 if (use_rela_initialised && (use_rela == TRUE))
8835 {
8836 _bfd_error_handler (_("%B: Unable to sort relocs - "
8837 "they are in more than one size"),
8838 abfd);
8839 bfd_set_error (bfd_error_invalid_operation);
8840 return 0;
8841 }
8842 else
8843 {
8844 use_rela = FALSE;
8845 use_rela_initialised = TRUE;
8846 }
8847 }
8848 else
8849 {
8850 /* The section size is not divisible by either -
8851 something is wrong. */
8852 _bfd_error_handler (_("%B: Unable to sort relocs - "
8853 "they are of an unknown size"), abfd);
8854 bfd_set_error (bfd_error_invalid_operation);
8855 return 0;
8856 }
8857 }
8858
8859 if (! use_rela_initialised)
8860 /* Make a guess. */
8861 use_rela = TRUE;
8862 }
8863 else if (rela_dyn != NULL && rela_dyn->size > 0)
8864 use_rela = TRUE;
8865 else if (rel_dyn != NULL && rel_dyn->size > 0)
8866 use_rela = FALSE;
8867 else
8868 return 0;
8869
8870 if (use_rela)
8871 {
8872 dynamic_relocs = rela_dyn;
8873 ext_size = bed->s->sizeof_rela;
8874 swap_in = bed->s->swap_reloca_in;
8875 swap_out = bed->s->swap_reloca_out;
8876 }
8877 else
8878 {
8879 dynamic_relocs = rel_dyn;
8880 ext_size = bed->s->sizeof_rel;
8881 swap_in = bed->s->swap_reloc_in;
8882 swap_out = bed->s->swap_reloc_out;
8883 }
8884
8885 size = 0;
8886 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8887 if (lo->type == bfd_indirect_link_order)
8888 size += lo->u.indirect.section->size;
8889
8890 if (size != dynamic_relocs->size)
8891 return 0;
8892
8893 sort_elt = (sizeof (struct elf_link_sort_rela)
8894 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8895
8896 count = dynamic_relocs->size / ext_size;
8897 if (count == 0)
8898 return 0;
8899 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8900
8901 if (sort == NULL)
8902 {
8903 (*info->callbacks->warning)
8904 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8905 return 0;
8906 }
8907
8908 if (bed->s->arch_size == 32)
8909 r_sym_mask = ~(bfd_vma) 0xff;
8910 else
8911 r_sym_mask = ~(bfd_vma) 0xffffffff;
8912
8913 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8914 if (lo->type == bfd_indirect_link_order)
8915 {
8916 bfd_byte *erel, *erelend;
8917 asection *o = lo->u.indirect.section;
8918
8919 if (o->contents == NULL && o->size != 0)
8920 {
8921 /* This is a reloc section that is being handled as a normal
8922 section. See bfd_section_from_shdr. We can't combine
8923 relocs in this case. */
8924 free (sort);
8925 return 0;
8926 }
8927 erel = o->contents;
8928 erelend = o->contents + o->size;
8929 p = sort + o->output_offset * opb / ext_size * sort_elt;
8930
8931 while (erel < erelend)
8932 {
8933 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8934
8935 (*swap_in) (abfd, erel, s->rela);
8936 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8937 s->u.sym_mask = r_sym_mask;
8938 p += sort_elt;
8939 erel += ext_size;
8940 }
8941 }
8942
8943 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8944
8945 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8946 {
8947 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8948 if (s->type != reloc_class_relative)
8949 break;
8950 }
8951 ret = i;
8952 s_non_relative = p;
8953
8954 sq = (struct elf_link_sort_rela *) s_non_relative;
8955 for (; i < count; i++, p += sort_elt)
8956 {
8957 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8958 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8959 sq = sp;
8960 sp->u.offset = sq->rela->r_offset;
8961 }
8962
8963 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8964
8965 struct elf_link_hash_table *htab = elf_hash_table (info);
8966 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8967 {
8968 /* We have plt relocs in .rela.dyn. */
8969 sq = (struct elf_link_sort_rela *) sort;
8970 for (i = 0; i < count; i++)
8971 if (sq[count - i - 1].type != reloc_class_plt)
8972 break;
8973 if (i != 0 && htab->srelplt->size == i * ext_size)
8974 {
8975 struct bfd_link_order **plo;
8976 /* Put srelplt link_order last. This is so the output_offset
8977 set in the next loop is correct for DT_JMPREL. */
8978 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8979 if ((*plo)->type == bfd_indirect_link_order
8980 && (*plo)->u.indirect.section == htab->srelplt)
8981 {
8982 lo = *plo;
8983 *plo = lo->next;
8984 }
8985 else
8986 plo = &(*plo)->next;
8987 *plo = lo;
8988 lo->next = NULL;
8989 dynamic_relocs->map_tail.link_order = lo;
8990 }
8991 }
8992
8993 p = sort;
8994 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8995 if (lo->type == bfd_indirect_link_order)
8996 {
8997 bfd_byte *erel, *erelend;
8998 asection *o = lo->u.indirect.section;
8999
9000 erel = o->contents;
9001 erelend = o->contents + o->size;
9002 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9003 while (erel < erelend)
9004 {
9005 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9006 (*swap_out) (abfd, s->rela, erel);
9007 p += sort_elt;
9008 erel += ext_size;
9009 }
9010 }
9011
9012 free (sort);
9013 *psec = dynamic_relocs;
9014 return ret;
9015 }
9016
9017 /* Add a symbol to the output symbol string table. */
9018
9019 static int
9020 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9021 const char *name,
9022 Elf_Internal_Sym *elfsym,
9023 asection *input_sec,
9024 struct elf_link_hash_entry *h)
9025 {
9026 int (*output_symbol_hook)
9027 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9028 struct elf_link_hash_entry *);
9029 struct elf_link_hash_table *hash_table;
9030 const struct elf_backend_data *bed;
9031 bfd_size_type strtabsize;
9032
9033 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9034
9035 bed = get_elf_backend_data (flinfo->output_bfd);
9036 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9037 if (output_symbol_hook != NULL)
9038 {
9039 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9040 if (ret != 1)
9041 return ret;
9042 }
9043
9044 if (name == NULL
9045 || *name == '\0'
9046 || (input_sec->flags & SEC_EXCLUDE))
9047 elfsym->st_name = (unsigned long) -1;
9048 else
9049 {
9050 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9051 to get the final offset for st_name. */
9052 elfsym->st_name
9053 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9054 name, FALSE);
9055 if (elfsym->st_name == (unsigned long) -1)
9056 return 0;
9057 }
9058
9059 hash_table = elf_hash_table (flinfo->info);
9060 strtabsize = hash_table->strtabsize;
9061 if (strtabsize <= hash_table->strtabcount)
9062 {
9063 strtabsize += strtabsize;
9064 hash_table->strtabsize = strtabsize;
9065 strtabsize *= sizeof (*hash_table->strtab);
9066 hash_table->strtab
9067 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9068 strtabsize);
9069 if (hash_table->strtab == NULL)
9070 return 0;
9071 }
9072 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9073 hash_table->strtab[hash_table->strtabcount].dest_index
9074 = hash_table->strtabcount;
9075 hash_table->strtab[hash_table->strtabcount].destshndx_index
9076 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9077
9078 bfd_get_symcount (flinfo->output_bfd) += 1;
9079 hash_table->strtabcount += 1;
9080
9081 return 1;
9082 }
9083
9084 /* Swap symbols out to the symbol table and flush the output symbols to
9085 the file. */
9086
9087 static bfd_boolean
9088 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9089 {
9090 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9091 bfd_size_type amt;
9092 size_t i;
9093 const struct elf_backend_data *bed;
9094 bfd_byte *symbuf;
9095 Elf_Internal_Shdr *hdr;
9096 file_ptr pos;
9097 bfd_boolean ret;
9098
9099 if (!hash_table->strtabcount)
9100 return TRUE;
9101
9102 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9103
9104 bed = get_elf_backend_data (flinfo->output_bfd);
9105
9106 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9107 symbuf = (bfd_byte *) bfd_malloc (amt);
9108 if (symbuf == NULL)
9109 return FALSE;
9110
9111 if (flinfo->symshndxbuf)
9112 {
9113 amt = sizeof (Elf_External_Sym_Shndx);
9114 amt *= bfd_get_symcount (flinfo->output_bfd);
9115 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9116 if (flinfo->symshndxbuf == NULL)
9117 {
9118 free (symbuf);
9119 return FALSE;
9120 }
9121 }
9122
9123 for (i = 0; i < hash_table->strtabcount; i++)
9124 {
9125 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9126 if (elfsym->sym.st_name == (unsigned long) -1)
9127 elfsym->sym.st_name = 0;
9128 else
9129 elfsym->sym.st_name
9130 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9131 elfsym->sym.st_name);
9132 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9133 ((bfd_byte *) symbuf
9134 + (elfsym->dest_index
9135 * bed->s->sizeof_sym)),
9136 (flinfo->symshndxbuf
9137 + elfsym->destshndx_index));
9138 }
9139
9140 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9141 pos = hdr->sh_offset + hdr->sh_size;
9142 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9143 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9144 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9145 {
9146 hdr->sh_size += amt;
9147 ret = TRUE;
9148 }
9149 else
9150 ret = FALSE;
9151
9152 free (symbuf);
9153
9154 free (hash_table->strtab);
9155 hash_table->strtab = NULL;
9156
9157 return ret;
9158 }
9159
9160 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9161
9162 static bfd_boolean
9163 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9164 {
9165 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9166 && sym->st_shndx < SHN_LORESERVE)
9167 {
9168 /* The gABI doesn't support dynamic symbols in output sections
9169 beyond 64k. */
9170 _bfd_error_handler
9171 /* xgettext:c-format */
9172 (_("%B: Too many sections: %d (>= %d)"),
9173 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9174 bfd_set_error (bfd_error_nonrepresentable_section);
9175 return FALSE;
9176 }
9177 return TRUE;
9178 }
9179
9180 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9181 allowing an unsatisfied unversioned symbol in the DSO to match a
9182 versioned symbol that would normally require an explicit version.
9183 We also handle the case that a DSO references a hidden symbol
9184 which may be satisfied by a versioned symbol in another DSO. */
9185
9186 static bfd_boolean
9187 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9188 const struct elf_backend_data *bed,
9189 struct elf_link_hash_entry *h)
9190 {
9191 bfd *abfd;
9192 struct elf_link_loaded_list *loaded;
9193
9194 if (!is_elf_hash_table (info->hash))
9195 return FALSE;
9196
9197 /* Check indirect symbol. */
9198 while (h->root.type == bfd_link_hash_indirect)
9199 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9200
9201 switch (h->root.type)
9202 {
9203 default:
9204 abfd = NULL;
9205 break;
9206
9207 case bfd_link_hash_undefined:
9208 case bfd_link_hash_undefweak:
9209 abfd = h->root.u.undef.abfd;
9210 if (abfd == NULL
9211 || (abfd->flags & DYNAMIC) == 0
9212 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9213 return FALSE;
9214 break;
9215
9216 case bfd_link_hash_defined:
9217 case bfd_link_hash_defweak:
9218 abfd = h->root.u.def.section->owner;
9219 break;
9220
9221 case bfd_link_hash_common:
9222 abfd = h->root.u.c.p->section->owner;
9223 break;
9224 }
9225 BFD_ASSERT (abfd != NULL);
9226
9227 for (loaded = elf_hash_table (info)->loaded;
9228 loaded != NULL;
9229 loaded = loaded->next)
9230 {
9231 bfd *input;
9232 Elf_Internal_Shdr *hdr;
9233 size_t symcount;
9234 size_t extsymcount;
9235 size_t extsymoff;
9236 Elf_Internal_Shdr *versymhdr;
9237 Elf_Internal_Sym *isym;
9238 Elf_Internal_Sym *isymend;
9239 Elf_Internal_Sym *isymbuf;
9240 Elf_External_Versym *ever;
9241 Elf_External_Versym *extversym;
9242
9243 input = loaded->abfd;
9244
9245 /* We check each DSO for a possible hidden versioned definition. */
9246 if (input == abfd
9247 || (input->flags & DYNAMIC) == 0
9248 || elf_dynversym (input) == 0)
9249 continue;
9250
9251 hdr = &elf_tdata (input)->dynsymtab_hdr;
9252
9253 symcount = hdr->sh_size / bed->s->sizeof_sym;
9254 if (elf_bad_symtab (input))
9255 {
9256 extsymcount = symcount;
9257 extsymoff = 0;
9258 }
9259 else
9260 {
9261 extsymcount = symcount - hdr->sh_info;
9262 extsymoff = hdr->sh_info;
9263 }
9264
9265 if (extsymcount == 0)
9266 continue;
9267
9268 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9269 NULL, NULL, NULL);
9270 if (isymbuf == NULL)
9271 return FALSE;
9272
9273 /* Read in any version definitions. */
9274 versymhdr = &elf_tdata (input)->dynversym_hdr;
9275 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9276 if (extversym == NULL)
9277 goto error_ret;
9278
9279 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9280 || (bfd_bread (extversym, versymhdr->sh_size, input)
9281 != versymhdr->sh_size))
9282 {
9283 free (extversym);
9284 error_ret:
9285 free (isymbuf);
9286 return FALSE;
9287 }
9288
9289 ever = extversym + extsymoff;
9290 isymend = isymbuf + extsymcount;
9291 for (isym = isymbuf; isym < isymend; isym++, ever++)
9292 {
9293 const char *name;
9294 Elf_Internal_Versym iver;
9295 unsigned short version_index;
9296
9297 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9298 || isym->st_shndx == SHN_UNDEF)
9299 continue;
9300
9301 name = bfd_elf_string_from_elf_section (input,
9302 hdr->sh_link,
9303 isym->st_name);
9304 if (strcmp (name, h->root.root.string) != 0)
9305 continue;
9306
9307 _bfd_elf_swap_versym_in (input, ever, &iver);
9308
9309 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9310 && !(h->def_regular
9311 && h->forced_local))
9312 {
9313 /* If we have a non-hidden versioned sym, then it should
9314 have provided a definition for the undefined sym unless
9315 it is defined in a non-shared object and forced local.
9316 */
9317 abort ();
9318 }
9319
9320 version_index = iver.vs_vers & VERSYM_VERSION;
9321 if (version_index == 1 || version_index == 2)
9322 {
9323 /* This is the base or first version. We can use it. */
9324 free (extversym);
9325 free (isymbuf);
9326 return TRUE;
9327 }
9328 }
9329
9330 free (extversym);
9331 free (isymbuf);
9332 }
9333
9334 return FALSE;
9335 }
9336
9337 /* Convert ELF common symbol TYPE. */
9338
9339 static int
9340 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9341 {
9342 /* Commom symbol can only appear in relocatable link. */
9343 if (!bfd_link_relocatable (info))
9344 abort ();
9345 switch (info->elf_stt_common)
9346 {
9347 case unchanged:
9348 break;
9349 case elf_stt_common:
9350 type = STT_COMMON;
9351 break;
9352 case no_elf_stt_common:
9353 type = STT_OBJECT;
9354 break;
9355 }
9356 return type;
9357 }
9358
9359 /* Add an external symbol to the symbol table. This is called from
9360 the hash table traversal routine. When generating a shared object,
9361 we go through the symbol table twice. The first time we output
9362 anything that might have been forced to local scope in a version
9363 script. The second time we output the symbols that are still
9364 global symbols. */
9365
9366 static bfd_boolean
9367 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9368 {
9369 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9370 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9371 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9372 bfd_boolean strip;
9373 Elf_Internal_Sym sym;
9374 asection *input_sec;
9375 const struct elf_backend_data *bed;
9376 long indx;
9377 int ret;
9378 unsigned int type;
9379
9380 if (h->root.type == bfd_link_hash_warning)
9381 {
9382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9383 if (h->root.type == bfd_link_hash_new)
9384 return TRUE;
9385 }
9386
9387 /* Decide whether to output this symbol in this pass. */
9388 if (eoinfo->localsyms)
9389 {
9390 if (!h->forced_local)
9391 return TRUE;
9392 }
9393 else
9394 {
9395 if (h->forced_local)
9396 return TRUE;
9397 }
9398
9399 bed = get_elf_backend_data (flinfo->output_bfd);
9400
9401 if (h->root.type == bfd_link_hash_undefined)
9402 {
9403 /* If we have an undefined symbol reference here then it must have
9404 come from a shared library that is being linked in. (Undefined
9405 references in regular files have already been handled unless
9406 they are in unreferenced sections which are removed by garbage
9407 collection). */
9408 bfd_boolean ignore_undef = FALSE;
9409
9410 /* Some symbols may be special in that the fact that they're
9411 undefined can be safely ignored - let backend determine that. */
9412 if (bed->elf_backend_ignore_undef_symbol)
9413 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9414
9415 /* If we are reporting errors for this situation then do so now. */
9416 if (!ignore_undef
9417 && h->ref_dynamic
9418 && (!h->ref_regular || flinfo->info->gc_sections)
9419 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9420 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9421 (*flinfo->info->callbacks->undefined_symbol)
9422 (flinfo->info, h->root.root.string,
9423 h->ref_regular ? NULL : h->root.u.undef.abfd,
9424 NULL, 0,
9425 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9426
9427 /* Strip a global symbol defined in a discarded section. */
9428 if (h->indx == -3)
9429 return TRUE;
9430 }
9431
9432 /* We should also warn if a forced local symbol is referenced from
9433 shared libraries. */
9434 if (bfd_link_executable (flinfo->info)
9435 && h->forced_local
9436 && h->ref_dynamic
9437 && h->def_regular
9438 && !h->dynamic_def
9439 && h->ref_dynamic_nonweak
9440 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9441 {
9442 bfd *def_bfd;
9443 const char *msg;
9444 struct elf_link_hash_entry *hi = h;
9445
9446 /* Check indirect symbol. */
9447 while (hi->root.type == bfd_link_hash_indirect)
9448 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9449
9450 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9451 /* xgettext:c-format */
9452 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9453 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9454 /* xgettext:c-format */
9455 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9456 else
9457 /* xgettext:c-format */
9458 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9459 def_bfd = flinfo->output_bfd;
9460 if (hi->root.u.def.section != bfd_abs_section_ptr)
9461 def_bfd = hi->root.u.def.section->owner;
9462 _bfd_error_handler (msg, flinfo->output_bfd, def_bfd,
9463 h->root.root.string);
9464 bfd_set_error (bfd_error_bad_value);
9465 eoinfo->failed = TRUE;
9466 return FALSE;
9467 }
9468
9469 /* We don't want to output symbols that have never been mentioned by
9470 a regular file, or that we have been told to strip. However, if
9471 h->indx is set to -2, the symbol is used by a reloc and we must
9472 output it. */
9473 strip = FALSE;
9474 if (h->indx == -2)
9475 ;
9476 else if ((h->def_dynamic
9477 || h->ref_dynamic
9478 || h->root.type == bfd_link_hash_new)
9479 && !h->def_regular
9480 && !h->ref_regular)
9481 strip = TRUE;
9482 else if (flinfo->info->strip == strip_all)
9483 strip = TRUE;
9484 else if (flinfo->info->strip == strip_some
9485 && bfd_hash_lookup (flinfo->info->keep_hash,
9486 h->root.root.string, FALSE, FALSE) == NULL)
9487 strip = TRUE;
9488 else if ((h->root.type == bfd_link_hash_defined
9489 || h->root.type == bfd_link_hash_defweak)
9490 && ((flinfo->info->strip_discarded
9491 && discarded_section (h->root.u.def.section))
9492 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9493 && h->root.u.def.section->owner != NULL
9494 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9495 strip = TRUE;
9496 else if ((h->root.type == bfd_link_hash_undefined
9497 || h->root.type == bfd_link_hash_undefweak)
9498 && h->root.u.undef.abfd != NULL
9499 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9500 strip = TRUE;
9501
9502 type = h->type;
9503
9504 /* If we're stripping it, and it's not a dynamic symbol, there's
9505 nothing else to do. However, if it is a forced local symbol or
9506 an ifunc symbol we need to give the backend finish_dynamic_symbol
9507 function a chance to make it dynamic. */
9508 if (strip
9509 && h->dynindx == -1
9510 && type != STT_GNU_IFUNC
9511 && !h->forced_local)
9512 return TRUE;
9513
9514 sym.st_value = 0;
9515 sym.st_size = h->size;
9516 sym.st_other = h->other;
9517 switch (h->root.type)
9518 {
9519 default:
9520 case bfd_link_hash_new:
9521 case bfd_link_hash_warning:
9522 abort ();
9523 return FALSE;
9524
9525 case bfd_link_hash_undefined:
9526 case bfd_link_hash_undefweak:
9527 input_sec = bfd_und_section_ptr;
9528 sym.st_shndx = SHN_UNDEF;
9529 break;
9530
9531 case bfd_link_hash_defined:
9532 case bfd_link_hash_defweak:
9533 {
9534 input_sec = h->root.u.def.section;
9535 if (input_sec->output_section != NULL)
9536 {
9537 sym.st_shndx =
9538 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9539 input_sec->output_section);
9540 if (sym.st_shndx == SHN_BAD)
9541 {
9542 _bfd_error_handler
9543 /* xgettext:c-format */
9544 (_("%B: could not find output section %A for input section %A"),
9545 flinfo->output_bfd, input_sec->output_section, input_sec);
9546 bfd_set_error (bfd_error_nonrepresentable_section);
9547 eoinfo->failed = TRUE;
9548 return FALSE;
9549 }
9550
9551 /* ELF symbols in relocatable files are section relative,
9552 but in nonrelocatable files they are virtual
9553 addresses. */
9554 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9555 if (!bfd_link_relocatable (flinfo->info))
9556 {
9557 sym.st_value += input_sec->output_section->vma;
9558 if (h->type == STT_TLS)
9559 {
9560 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9561 if (tls_sec != NULL)
9562 sym.st_value -= tls_sec->vma;
9563 }
9564 }
9565 }
9566 else
9567 {
9568 BFD_ASSERT (input_sec->owner == NULL
9569 || (input_sec->owner->flags & DYNAMIC) != 0);
9570 sym.st_shndx = SHN_UNDEF;
9571 input_sec = bfd_und_section_ptr;
9572 }
9573 }
9574 break;
9575
9576 case bfd_link_hash_common:
9577 input_sec = h->root.u.c.p->section;
9578 sym.st_shndx = bed->common_section_index (input_sec);
9579 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9580 break;
9581
9582 case bfd_link_hash_indirect:
9583 /* These symbols are created by symbol versioning. They point
9584 to the decorated version of the name. For example, if the
9585 symbol foo@@GNU_1.2 is the default, which should be used when
9586 foo is used with no version, then we add an indirect symbol
9587 foo which points to foo@@GNU_1.2. We ignore these symbols,
9588 since the indirected symbol is already in the hash table. */
9589 return TRUE;
9590 }
9591
9592 if (type == STT_COMMON || type == STT_OBJECT)
9593 switch (h->root.type)
9594 {
9595 case bfd_link_hash_common:
9596 type = elf_link_convert_common_type (flinfo->info, type);
9597 break;
9598 case bfd_link_hash_defined:
9599 case bfd_link_hash_defweak:
9600 if (bed->common_definition (&sym))
9601 type = elf_link_convert_common_type (flinfo->info, type);
9602 else
9603 type = STT_OBJECT;
9604 break;
9605 case bfd_link_hash_undefined:
9606 case bfd_link_hash_undefweak:
9607 break;
9608 default:
9609 abort ();
9610 }
9611
9612 if (h->forced_local)
9613 {
9614 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9615 /* Turn off visibility on local symbol. */
9616 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9617 }
9618 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9619 else if (h->unique_global && h->def_regular)
9620 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9621 else if (h->root.type == bfd_link_hash_undefweak
9622 || h->root.type == bfd_link_hash_defweak)
9623 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9624 else
9625 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9626 sym.st_target_internal = h->target_internal;
9627
9628 /* Give the processor backend a chance to tweak the symbol value,
9629 and also to finish up anything that needs to be done for this
9630 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9631 forced local syms when non-shared is due to a historical quirk.
9632 STT_GNU_IFUNC symbol must go through PLT. */
9633 if ((h->type == STT_GNU_IFUNC
9634 && h->def_regular
9635 && !bfd_link_relocatable (flinfo->info))
9636 || ((h->dynindx != -1
9637 || h->forced_local)
9638 && ((bfd_link_pic (flinfo->info)
9639 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9640 || h->root.type != bfd_link_hash_undefweak))
9641 || !h->forced_local)
9642 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9643 {
9644 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9645 (flinfo->output_bfd, flinfo->info, h, &sym)))
9646 {
9647 eoinfo->failed = TRUE;
9648 return FALSE;
9649 }
9650 }
9651
9652 /* If we are marking the symbol as undefined, and there are no
9653 non-weak references to this symbol from a regular object, then
9654 mark the symbol as weak undefined; if there are non-weak
9655 references, mark the symbol as strong. We can't do this earlier,
9656 because it might not be marked as undefined until the
9657 finish_dynamic_symbol routine gets through with it. */
9658 if (sym.st_shndx == SHN_UNDEF
9659 && h->ref_regular
9660 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9661 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9662 {
9663 int bindtype;
9664 type = ELF_ST_TYPE (sym.st_info);
9665
9666 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9667 if (type == STT_GNU_IFUNC)
9668 type = STT_FUNC;
9669
9670 if (h->ref_regular_nonweak)
9671 bindtype = STB_GLOBAL;
9672 else
9673 bindtype = STB_WEAK;
9674 sym.st_info = ELF_ST_INFO (bindtype, type);
9675 }
9676
9677 /* If this is a symbol defined in a dynamic library, don't use the
9678 symbol size from the dynamic library. Relinking an executable
9679 against a new library may introduce gratuitous changes in the
9680 executable's symbols if we keep the size. */
9681 if (sym.st_shndx == SHN_UNDEF
9682 && !h->def_regular
9683 && h->def_dynamic)
9684 sym.st_size = 0;
9685
9686 /* If a non-weak symbol with non-default visibility is not defined
9687 locally, it is a fatal error. */
9688 if (!bfd_link_relocatable (flinfo->info)
9689 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9690 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9691 && h->root.type == bfd_link_hash_undefined
9692 && !h->def_regular)
9693 {
9694 const char *msg;
9695
9696 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9697 /* xgettext:c-format */
9698 msg = _("%B: protected symbol `%s' isn't defined");
9699 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9700 /* xgettext:c-format */
9701 msg = _("%B: internal symbol `%s' isn't defined");
9702 else
9703 /* xgettext:c-format */
9704 msg = _("%B: hidden symbol `%s' isn't defined");
9705 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9706 bfd_set_error (bfd_error_bad_value);
9707 eoinfo->failed = TRUE;
9708 return FALSE;
9709 }
9710
9711 /* If this symbol should be put in the .dynsym section, then put it
9712 there now. We already know the symbol index. We also fill in
9713 the entry in the .hash section. */
9714 if (elf_hash_table (flinfo->info)->dynsym != NULL
9715 && h->dynindx != -1
9716 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9717 {
9718 bfd_byte *esym;
9719
9720 /* Since there is no version information in the dynamic string,
9721 if there is no version info in symbol version section, we will
9722 have a run-time problem if not linking executable, referenced
9723 by shared library, or not bound locally. */
9724 if (h->verinfo.verdef == NULL
9725 && (!bfd_link_executable (flinfo->info)
9726 || h->ref_dynamic
9727 || !h->def_regular))
9728 {
9729 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9730
9731 if (p && p [1] != '\0')
9732 {
9733 _bfd_error_handler
9734 /* xgettext:c-format */
9735 (_("%B: No symbol version section for versioned symbol `%s'"),
9736 flinfo->output_bfd, h->root.root.string);
9737 eoinfo->failed = TRUE;
9738 return FALSE;
9739 }
9740 }
9741
9742 sym.st_name = h->dynstr_index;
9743 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9744 + h->dynindx * bed->s->sizeof_sym);
9745 if (!check_dynsym (flinfo->output_bfd, &sym))
9746 {
9747 eoinfo->failed = TRUE;
9748 return FALSE;
9749 }
9750 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9751
9752 if (flinfo->hash_sec != NULL)
9753 {
9754 size_t hash_entry_size;
9755 bfd_byte *bucketpos;
9756 bfd_vma chain;
9757 size_t bucketcount;
9758 size_t bucket;
9759
9760 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9761 bucket = h->u.elf_hash_value % bucketcount;
9762
9763 hash_entry_size
9764 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9765 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9766 + (bucket + 2) * hash_entry_size);
9767 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9768 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9769 bucketpos);
9770 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9771 ((bfd_byte *) flinfo->hash_sec->contents
9772 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9773 }
9774
9775 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9776 {
9777 Elf_Internal_Versym iversym;
9778 Elf_External_Versym *eversym;
9779
9780 if (!h->def_regular)
9781 {
9782 if (h->verinfo.verdef == NULL
9783 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9784 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9785 iversym.vs_vers = 0;
9786 else
9787 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9788 }
9789 else
9790 {
9791 if (h->verinfo.vertree == NULL)
9792 iversym.vs_vers = 1;
9793 else
9794 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9795 if (flinfo->info->create_default_symver)
9796 iversym.vs_vers++;
9797 }
9798
9799 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9800 defined locally. */
9801 if (h->versioned == versioned_hidden && h->def_regular)
9802 iversym.vs_vers |= VERSYM_HIDDEN;
9803
9804 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9805 eversym += h->dynindx;
9806 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9807 }
9808 }
9809
9810 /* If the symbol is undefined, and we didn't output it to .dynsym,
9811 strip it from .symtab too. Obviously we can't do this for
9812 relocatable output or when needed for --emit-relocs. */
9813 else if (input_sec == bfd_und_section_ptr
9814 && h->indx != -2
9815 && !bfd_link_relocatable (flinfo->info))
9816 return TRUE;
9817 /* Also strip others that we couldn't earlier due to dynamic symbol
9818 processing. */
9819 if (strip)
9820 return TRUE;
9821 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9822 return TRUE;
9823
9824 /* Output a FILE symbol so that following locals are not associated
9825 with the wrong input file. We need one for forced local symbols
9826 if we've seen more than one FILE symbol or when we have exactly
9827 one FILE symbol but global symbols are present in a file other
9828 than the one with the FILE symbol. We also need one if linker
9829 defined symbols are present. In practice these conditions are
9830 always met, so just emit the FILE symbol unconditionally. */
9831 if (eoinfo->localsyms
9832 && !eoinfo->file_sym_done
9833 && eoinfo->flinfo->filesym_count != 0)
9834 {
9835 Elf_Internal_Sym fsym;
9836
9837 memset (&fsym, 0, sizeof (fsym));
9838 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9839 fsym.st_shndx = SHN_ABS;
9840 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9841 bfd_und_section_ptr, NULL))
9842 return FALSE;
9843
9844 eoinfo->file_sym_done = TRUE;
9845 }
9846
9847 indx = bfd_get_symcount (flinfo->output_bfd);
9848 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9849 input_sec, h);
9850 if (ret == 0)
9851 {
9852 eoinfo->failed = TRUE;
9853 return FALSE;
9854 }
9855 else if (ret == 1)
9856 h->indx = indx;
9857 else if (h->indx == -2)
9858 abort();
9859
9860 return TRUE;
9861 }
9862
9863 /* Return TRUE if special handling is done for relocs in SEC against
9864 symbols defined in discarded sections. */
9865
9866 static bfd_boolean
9867 elf_section_ignore_discarded_relocs (asection *sec)
9868 {
9869 const struct elf_backend_data *bed;
9870
9871 switch (sec->sec_info_type)
9872 {
9873 case SEC_INFO_TYPE_STABS:
9874 case SEC_INFO_TYPE_EH_FRAME:
9875 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9876 return TRUE;
9877 default:
9878 break;
9879 }
9880
9881 bed = get_elf_backend_data (sec->owner);
9882 if (bed->elf_backend_ignore_discarded_relocs != NULL
9883 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9884 return TRUE;
9885
9886 return FALSE;
9887 }
9888
9889 /* Return a mask saying how ld should treat relocations in SEC against
9890 symbols defined in discarded sections. If this function returns
9891 COMPLAIN set, ld will issue a warning message. If this function
9892 returns PRETEND set, and the discarded section was link-once and the
9893 same size as the kept link-once section, ld will pretend that the
9894 symbol was actually defined in the kept section. Otherwise ld will
9895 zero the reloc (at least that is the intent, but some cooperation by
9896 the target dependent code is needed, particularly for REL targets). */
9897
9898 unsigned int
9899 _bfd_elf_default_action_discarded (asection *sec)
9900 {
9901 if (sec->flags & SEC_DEBUGGING)
9902 return PRETEND;
9903
9904 if (strcmp (".eh_frame", sec->name) == 0)
9905 return 0;
9906
9907 if (strcmp (".gcc_except_table", sec->name) == 0)
9908 return 0;
9909
9910 return COMPLAIN | PRETEND;
9911 }
9912
9913 /* Find a match between a section and a member of a section group. */
9914
9915 static asection *
9916 match_group_member (asection *sec, asection *group,
9917 struct bfd_link_info *info)
9918 {
9919 asection *first = elf_next_in_group (group);
9920 asection *s = first;
9921
9922 while (s != NULL)
9923 {
9924 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9925 return s;
9926
9927 s = elf_next_in_group (s);
9928 if (s == first)
9929 break;
9930 }
9931
9932 return NULL;
9933 }
9934
9935 /* Check if the kept section of a discarded section SEC can be used
9936 to replace it. Return the replacement if it is OK. Otherwise return
9937 NULL. */
9938
9939 asection *
9940 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9941 {
9942 asection *kept;
9943
9944 kept = sec->kept_section;
9945 if (kept != NULL)
9946 {
9947 if ((kept->flags & SEC_GROUP) != 0)
9948 kept = match_group_member (sec, kept, info);
9949 if (kept != NULL
9950 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9951 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9952 kept = NULL;
9953 sec->kept_section = kept;
9954 }
9955 return kept;
9956 }
9957
9958 /* Link an input file into the linker output file. This function
9959 handles all the sections and relocations of the input file at once.
9960 This is so that we only have to read the local symbols once, and
9961 don't have to keep them in memory. */
9962
9963 static bfd_boolean
9964 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9965 {
9966 int (*relocate_section)
9967 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9968 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9969 bfd *output_bfd;
9970 Elf_Internal_Shdr *symtab_hdr;
9971 size_t locsymcount;
9972 size_t extsymoff;
9973 Elf_Internal_Sym *isymbuf;
9974 Elf_Internal_Sym *isym;
9975 Elf_Internal_Sym *isymend;
9976 long *pindex;
9977 asection **ppsection;
9978 asection *o;
9979 const struct elf_backend_data *bed;
9980 struct elf_link_hash_entry **sym_hashes;
9981 bfd_size_type address_size;
9982 bfd_vma r_type_mask;
9983 int r_sym_shift;
9984 bfd_boolean have_file_sym = FALSE;
9985
9986 output_bfd = flinfo->output_bfd;
9987 bed = get_elf_backend_data (output_bfd);
9988 relocate_section = bed->elf_backend_relocate_section;
9989
9990 /* If this is a dynamic object, we don't want to do anything here:
9991 we don't want the local symbols, and we don't want the section
9992 contents. */
9993 if ((input_bfd->flags & DYNAMIC) != 0)
9994 return TRUE;
9995
9996 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9997 if (elf_bad_symtab (input_bfd))
9998 {
9999 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10000 extsymoff = 0;
10001 }
10002 else
10003 {
10004 locsymcount = symtab_hdr->sh_info;
10005 extsymoff = symtab_hdr->sh_info;
10006 }
10007
10008 /* Read the local symbols. */
10009 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10010 if (isymbuf == NULL && locsymcount != 0)
10011 {
10012 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10013 flinfo->internal_syms,
10014 flinfo->external_syms,
10015 flinfo->locsym_shndx);
10016 if (isymbuf == NULL)
10017 return FALSE;
10018 }
10019
10020 /* Find local symbol sections and adjust values of symbols in
10021 SEC_MERGE sections. Write out those local symbols we know are
10022 going into the output file. */
10023 isymend = isymbuf + locsymcount;
10024 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10025 isym < isymend;
10026 isym++, pindex++, ppsection++)
10027 {
10028 asection *isec;
10029 const char *name;
10030 Elf_Internal_Sym osym;
10031 long indx;
10032 int ret;
10033
10034 *pindex = -1;
10035
10036 if (elf_bad_symtab (input_bfd))
10037 {
10038 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10039 {
10040 *ppsection = NULL;
10041 continue;
10042 }
10043 }
10044
10045 if (isym->st_shndx == SHN_UNDEF)
10046 isec = bfd_und_section_ptr;
10047 else if (isym->st_shndx == SHN_ABS)
10048 isec = bfd_abs_section_ptr;
10049 else if (isym->st_shndx == SHN_COMMON)
10050 isec = bfd_com_section_ptr;
10051 else
10052 {
10053 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10054 if (isec == NULL)
10055 {
10056 /* Don't attempt to output symbols with st_shnx in the
10057 reserved range other than SHN_ABS and SHN_COMMON. */
10058 *ppsection = NULL;
10059 continue;
10060 }
10061 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10062 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10063 isym->st_value =
10064 _bfd_merged_section_offset (output_bfd, &isec,
10065 elf_section_data (isec)->sec_info,
10066 isym->st_value);
10067 }
10068
10069 *ppsection = isec;
10070
10071 /* Don't output the first, undefined, symbol. In fact, don't
10072 output any undefined local symbol. */
10073 if (isec == bfd_und_section_ptr)
10074 continue;
10075
10076 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10077 {
10078 /* We never output section symbols. Instead, we use the
10079 section symbol of the corresponding section in the output
10080 file. */
10081 continue;
10082 }
10083
10084 /* If we are stripping all symbols, we don't want to output this
10085 one. */
10086 if (flinfo->info->strip == strip_all)
10087 continue;
10088
10089 /* If we are discarding all local symbols, we don't want to
10090 output this one. If we are generating a relocatable output
10091 file, then some of the local symbols may be required by
10092 relocs; we output them below as we discover that they are
10093 needed. */
10094 if (flinfo->info->discard == discard_all)
10095 continue;
10096
10097 /* If this symbol is defined in a section which we are
10098 discarding, we don't need to keep it. */
10099 if (isym->st_shndx != SHN_UNDEF
10100 && isym->st_shndx < SHN_LORESERVE
10101 && bfd_section_removed_from_list (output_bfd,
10102 isec->output_section))
10103 continue;
10104
10105 /* Get the name of the symbol. */
10106 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10107 isym->st_name);
10108 if (name == NULL)
10109 return FALSE;
10110
10111 /* See if we are discarding symbols with this name. */
10112 if ((flinfo->info->strip == strip_some
10113 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10114 == NULL))
10115 || (((flinfo->info->discard == discard_sec_merge
10116 && (isec->flags & SEC_MERGE)
10117 && !bfd_link_relocatable (flinfo->info))
10118 || flinfo->info->discard == discard_l)
10119 && bfd_is_local_label_name (input_bfd, name)))
10120 continue;
10121
10122 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10123 {
10124 if (input_bfd->lto_output)
10125 /* -flto puts a temp file name here. This means builds
10126 are not reproducible. Discard the symbol. */
10127 continue;
10128 have_file_sym = TRUE;
10129 flinfo->filesym_count += 1;
10130 }
10131 if (!have_file_sym)
10132 {
10133 /* In the absence of debug info, bfd_find_nearest_line uses
10134 FILE symbols to determine the source file for local
10135 function symbols. Provide a FILE symbol here if input
10136 files lack such, so that their symbols won't be
10137 associated with a previous input file. It's not the
10138 source file, but the best we can do. */
10139 have_file_sym = TRUE;
10140 flinfo->filesym_count += 1;
10141 memset (&osym, 0, sizeof (osym));
10142 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10143 osym.st_shndx = SHN_ABS;
10144 if (!elf_link_output_symstrtab (flinfo,
10145 (input_bfd->lto_output ? NULL
10146 : input_bfd->filename),
10147 &osym, bfd_abs_section_ptr,
10148 NULL))
10149 return FALSE;
10150 }
10151
10152 osym = *isym;
10153
10154 /* Adjust the section index for the output file. */
10155 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10156 isec->output_section);
10157 if (osym.st_shndx == SHN_BAD)
10158 return FALSE;
10159
10160 /* ELF symbols in relocatable files are section relative, but
10161 in executable files they are virtual addresses. Note that
10162 this code assumes that all ELF sections have an associated
10163 BFD section with a reasonable value for output_offset; below
10164 we assume that they also have a reasonable value for
10165 output_section. Any special sections must be set up to meet
10166 these requirements. */
10167 osym.st_value += isec->output_offset;
10168 if (!bfd_link_relocatable (flinfo->info))
10169 {
10170 osym.st_value += isec->output_section->vma;
10171 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10172 {
10173 /* STT_TLS symbols are relative to PT_TLS segment base. */
10174 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10175 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10176 }
10177 }
10178
10179 indx = bfd_get_symcount (output_bfd);
10180 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10181 if (ret == 0)
10182 return FALSE;
10183 else if (ret == 1)
10184 *pindex = indx;
10185 }
10186
10187 if (bed->s->arch_size == 32)
10188 {
10189 r_type_mask = 0xff;
10190 r_sym_shift = 8;
10191 address_size = 4;
10192 }
10193 else
10194 {
10195 r_type_mask = 0xffffffff;
10196 r_sym_shift = 32;
10197 address_size = 8;
10198 }
10199
10200 /* Relocate the contents of each section. */
10201 sym_hashes = elf_sym_hashes (input_bfd);
10202 for (o = input_bfd->sections; o != NULL; o = o->next)
10203 {
10204 bfd_byte *contents;
10205
10206 if (! o->linker_mark)
10207 {
10208 /* This section was omitted from the link. */
10209 continue;
10210 }
10211
10212 if (bfd_link_relocatable (flinfo->info)
10213 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10214 {
10215 /* Deal with the group signature symbol. */
10216 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10217 unsigned long symndx = sec_data->this_hdr.sh_info;
10218 asection *osec = o->output_section;
10219
10220 if (symndx >= locsymcount
10221 || (elf_bad_symtab (input_bfd)
10222 && flinfo->sections[symndx] == NULL))
10223 {
10224 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10225 while (h->root.type == bfd_link_hash_indirect
10226 || h->root.type == bfd_link_hash_warning)
10227 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10228 /* Arrange for symbol to be output. */
10229 h->indx = -2;
10230 elf_section_data (osec)->this_hdr.sh_info = -2;
10231 }
10232 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10233 {
10234 /* We'll use the output section target_index. */
10235 asection *sec = flinfo->sections[symndx]->output_section;
10236 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10237 }
10238 else
10239 {
10240 if (flinfo->indices[symndx] == -1)
10241 {
10242 /* Otherwise output the local symbol now. */
10243 Elf_Internal_Sym sym = isymbuf[symndx];
10244 asection *sec = flinfo->sections[symndx]->output_section;
10245 const char *name;
10246 long indx;
10247 int ret;
10248
10249 name = bfd_elf_string_from_elf_section (input_bfd,
10250 symtab_hdr->sh_link,
10251 sym.st_name);
10252 if (name == NULL)
10253 return FALSE;
10254
10255 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10256 sec);
10257 if (sym.st_shndx == SHN_BAD)
10258 return FALSE;
10259
10260 sym.st_value += o->output_offset;
10261
10262 indx = bfd_get_symcount (output_bfd);
10263 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10264 NULL);
10265 if (ret == 0)
10266 return FALSE;
10267 else if (ret == 1)
10268 flinfo->indices[symndx] = indx;
10269 else
10270 abort ();
10271 }
10272 elf_section_data (osec)->this_hdr.sh_info
10273 = flinfo->indices[symndx];
10274 }
10275 }
10276
10277 if ((o->flags & SEC_HAS_CONTENTS) == 0
10278 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10279 continue;
10280
10281 if ((o->flags & SEC_LINKER_CREATED) != 0)
10282 {
10283 /* Section was created by _bfd_elf_link_create_dynamic_sections
10284 or somesuch. */
10285 continue;
10286 }
10287
10288 /* Get the contents of the section. They have been cached by a
10289 relaxation routine. Note that o is a section in an input
10290 file, so the contents field will not have been set by any of
10291 the routines which work on output files. */
10292 if (elf_section_data (o)->this_hdr.contents != NULL)
10293 {
10294 contents = elf_section_data (o)->this_hdr.contents;
10295 if (bed->caches_rawsize
10296 && o->rawsize != 0
10297 && o->rawsize < o->size)
10298 {
10299 memcpy (flinfo->contents, contents, o->rawsize);
10300 contents = flinfo->contents;
10301 }
10302 }
10303 else
10304 {
10305 contents = flinfo->contents;
10306 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10307 return FALSE;
10308 }
10309
10310 if ((o->flags & SEC_RELOC) != 0)
10311 {
10312 Elf_Internal_Rela *internal_relocs;
10313 Elf_Internal_Rela *rel, *relend;
10314 int action_discarded;
10315 int ret;
10316
10317 /* Get the swapped relocs. */
10318 internal_relocs
10319 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10320 flinfo->internal_relocs, FALSE);
10321 if (internal_relocs == NULL
10322 && o->reloc_count > 0)
10323 return FALSE;
10324
10325 /* We need to reverse-copy input .ctors/.dtors sections if
10326 they are placed in .init_array/.finit_array for output. */
10327 if (o->size > address_size
10328 && ((strncmp (o->name, ".ctors", 6) == 0
10329 && strcmp (o->output_section->name,
10330 ".init_array") == 0)
10331 || (strncmp (o->name, ".dtors", 6) == 0
10332 && strcmp (o->output_section->name,
10333 ".fini_array") == 0))
10334 && (o->name[6] == 0 || o->name[6] == '.'))
10335 {
10336 if (o->size != o->reloc_count * address_size)
10337 {
10338 _bfd_error_handler
10339 /* xgettext:c-format */
10340 (_("error: %B: size of section %A is not "
10341 "multiple of address size"),
10342 input_bfd, o);
10343 bfd_set_error (bfd_error_on_input);
10344 return FALSE;
10345 }
10346 o->flags |= SEC_ELF_REVERSE_COPY;
10347 }
10348
10349 action_discarded = -1;
10350 if (!elf_section_ignore_discarded_relocs (o))
10351 action_discarded = (*bed->action_discarded) (o);
10352
10353 /* Run through the relocs evaluating complex reloc symbols and
10354 looking for relocs against symbols from discarded sections
10355 or section symbols from removed link-once sections.
10356 Complain about relocs against discarded sections. Zero
10357 relocs against removed link-once sections. */
10358
10359 rel = internal_relocs;
10360 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10361 for ( ; rel < relend; rel++)
10362 {
10363 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10364 unsigned int s_type;
10365 asection **ps, *sec;
10366 struct elf_link_hash_entry *h = NULL;
10367 const char *sym_name;
10368
10369 if (r_symndx == STN_UNDEF)
10370 continue;
10371
10372 if (r_symndx >= locsymcount
10373 || (elf_bad_symtab (input_bfd)
10374 && flinfo->sections[r_symndx] == NULL))
10375 {
10376 h = sym_hashes[r_symndx - extsymoff];
10377
10378 /* Badly formatted input files can contain relocs that
10379 reference non-existant symbols. Check here so that
10380 we do not seg fault. */
10381 if (h == NULL)
10382 {
10383 char buffer [32];
10384
10385 sprintf_vma (buffer, rel->r_info);
10386 _bfd_error_handler
10387 /* xgettext:c-format */
10388 (_("error: %B contains a reloc (0x%s) for section %A "
10389 "that references a non-existent global symbol"),
10390 input_bfd, o, buffer);
10391 bfd_set_error (bfd_error_bad_value);
10392 return FALSE;
10393 }
10394
10395 while (h->root.type == bfd_link_hash_indirect
10396 || h->root.type == bfd_link_hash_warning)
10397 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10398
10399 s_type = h->type;
10400
10401 /* If a plugin symbol is referenced from a non-IR file,
10402 mark the symbol as undefined. Note that the
10403 linker may attach linker created dynamic sections
10404 to the plugin bfd. Symbols defined in linker
10405 created sections are not plugin symbols. */
10406 if (h->root.non_ir_ref
10407 && (h->root.type == bfd_link_hash_defined
10408 || h->root.type == bfd_link_hash_defweak)
10409 && (h->root.u.def.section->flags
10410 & SEC_LINKER_CREATED) == 0
10411 && h->root.u.def.section->owner != NULL
10412 && (h->root.u.def.section->owner->flags
10413 & BFD_PLUGIN) != 0)
10414 {
10415 h->root.type = bfd_link_hash_undefined;
10416 h->root.u.undef.abfd = h->root.u.def.section->owner;
10417 }
10418
10419 ps = NULL;
10420 if (h->root.type == bfd_link_hash_defined
10421 || h->root.type == bfd_link_hash_defweak)
10422 ps = &h->root.u.def.section;
10423
10424 sym_name = h->root.root.string;
10425 }
10426 else
10427 {
10428 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10429
10430 s_type = ELF_ST_TYPE (sym->st_info);
10431 ps = &flinfo->sections[r_symndx];
10432 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10433 sym, *ps);
10434 }
10435
10436 if ((s_type == STT_RELC || s_type == STT_SRELC)
10437 && !bfd_link_relocatable (flinfo->info))
10438 {
10439 bfd_vma val;
10440 bfd_vma dot = (rel->r_offset
10441 + o->output_offset + o->output_section->vma);
10442 #ifdef DEBUG
10443 printf ("Encountered a complex symbol!");
10444 printf (" (input_bfd %s, section %s, reloc %ld\n",
10445 input_bfd->filename, o->name,
10446 (long) (rel - internal_relocs));
10447 printf (" symbol: idx %8.8lx, name %s\n",
10448 r_symndx, sym_name);
10449 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10450 (unsigned long) rel->r_info,
10451 (unsigned long) rel->r_offset);
10452 #endif
10453 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10454 isymbuf, locsymcount, s_type == STT_SRELC))
10455 return FALSE;
10456
10457 /* Symbol evaluated OK. Update to absolute value. */
10458 set_symbol_value (input_bfd, isymbuf, locsymcount,
10459 r_symndx, val);
10460 continue;
10461 }
10462
10463 if (action_discarded != -1 && ps != NULL)
10464 {
10465 /* Complain if the definition comes from a
10466 discarded section. */
10467 if ((sec = *ps) != NULL && discarded_section (sec))
10468 {
10469 BFD_ASSERT (r_symndx != STN_UNDEF);
10470 if (action_discarded & COMPLAIN)
10471 (*flinfo->info->callbacks->einfo)
10472 /* xgettext:c-format */
10473 (_("%X`%s' referenced in section `%A' of %B: "
10474 "defined in discarded section `%A' of %B\n"),
10475 sym_name, o, input_bfd, sec, sec->owner);
10476
10477 /* Try to do the best we can to support buggy old
10478 versions of gcc. Pretend that the symbol is
10479 really defined in the kept linkonce section.
10480 FIXME: This is quite broken. Modifying the
10481 symbol here means we will be changing all later
10482 uses of the symbol, not just in this section. */
10483 if (action_discarded & PRETEND)
10484 {
10485 asection *kept;
10486
10487 kept = _bfd_elf_check_kept_section (sec,
10488 flinfo->info);
10489 if (kept != NULL)
10490 {
10491 *ps = kept;
10492 continue;
10493 }
10494 }
10495 }
10496 }
10497 }
10498
10499 /* Relocate the section by invoking a back end routine.
10500
10501 The back end routine is responsible for adjusting the
10502 section contents as necessary, and (if using Rela relocs
10503 and generating a relocatable output file) adjusting the
10504 reloc addend as necessary.
10505
10506 The back end routine does not have to worry about setting
10507 the reloc address or the reloc symbol index.
10508
10509 The back end routine is given a pointer to the swapped in
10510 internal symbols, and can access the hash table entries
10511 for the external symbols via elf_sym_hashes (input_bfd).
10512
10513 When generating relocatable output, the back end routine
10514 must handle STB_LOCAL/STT_SECTION symbols specially. The
10515 output symbol is going to be a section symbol
10516 corresponding to the output section, which will require
10517 the addend to be adjusted. */
10518
10519 ret = (*relocate_section) (output_bfd, flinfo->info,
10520 input_bfd, o, contents,
10521 internal_relocs,
10522 isymbuf,
10523 flinfo->sections);
10524 if (!ret)
10525 return FALSE;
10526
10527 if (ret == 2
10528 || bfd_link_relocatable (flinfo->info)
10529 || flinfo->info->emitrelocations)
10530 {
10531 Elf_Internal_Rela *irela;
10532 Elf_Internal_Rela *irelaend, *irelamid;
10533 bfd_vma last_offset;
10534 struct elf_link_hash_entry **rel_hash;
10535 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10536 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10537 unsigned int next_erel;
10538 bfd_boolean rela_normal;
10539 struct bfd_elf_section_data *esdi, *esdo;
10540
10541 esdi = elf_section_data (o);
10542 esdo = elf_section_data (o->output_section);
10543 rela_normal = FALSE;
10544
10545 /* Adjust the reloc addresses and symbol indices. */
10546
10547 irela = internal_relocs;
10548 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10549 rel_hash = esdo->rel.hashes + esdo->rel.count;
10550 /* We start processing the REL relocs, if any. When we reach
10551 IRELAMID in the loop, we switch to the RELA relocs. */
10552 irelamid = irela;
10553 if (esdi->rel.hdr != NULL)
10554 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10555 * bed->s->int_rels_per_ext_rel);
10556 rel_hash_list = rel_hash;
10557 rela_hash_list = NULL;
10558 last_offset = o->output_offset;
10559 if (!bfd_link_relocatable (flinfo->info))
10560 last_offset += o->output_section->vma;
10561 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10562 {
10563 unsigned long r_symndx;
10564 asection *sec;
10565 Elf_Internal_Sym sym;
10566
10567 if (next_erel == bed->s->int_rels_per_ext_rel)
10568 {
10569 rel_hash++;
10570 next_erel = 0;
10571 }
10572
10573 if (irela == irelamid)
10574 {
10575 rel_hash = esdo->rela.hashes + esdo->rela.count;
10576 rela_hash_list = rel_hash;
10577 rela_normal = bed->rela_normal;
10578 }
10579
10580 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10581 flinfo->info, o,
10582 irela->r_offset);
10583 if (irela->r_offset >= (bfd_vma) -2)
10584 {
10585 /* This is a reloc for a deleted entry or somesuch.
10586 Turn it into an R_*_NONE reloc, at the same
10587 offset as the last reloc. elf_eh_frame.c and
10588 bfd_elf_discard_info rely on reloc offsets
10589 being ordered. */
10590 irela->r_offset = last_offset;
10591 irela->r_info = 0;
10592 irela->r_addend = 0;
10593 continue;
10594 }
10595
10596 irela->r_offset += o->output_offset;
10597
10598 /* Relocs in an executable have to be virtual addresses. */
10599 if (!bfd_link_relocatable (flinfo->info))
10600 irela->r_offset += o->output_section->vma;
10601
10602 last_offset = irela->r_offset;
10603
10604 r_symndx = irela->r_info >> r_sym_shift;
10605 if (r_symndx == STN_UNDEF)
10606 continue;
10607
10608 if (r_symndx >= locsymcount
10609 || (elf_bad_symtab (input_bfd)
10610 && flinfo->sections[r_symndx] == NULL))
10611 {
10612 struct elf_link_hash_entry *rh;
10613 unsigned long indx;
10614
10615 /* This is a reloc against a global symbol. We
10616 have not yet output all the local symbols, so
10617 we do not know the symbol index of any global
10618 symbol. We set the rel_hash entry for this
10619 reloc to point to the global hash table entry
10620 for this symbol. The symbol index is then
10621 set at the end of bfd_elf_final_link. */
10622 indx = r_symndx - extsymoff;
10623 rh = elf_sym_hashes (input_bfd)[indx];
10624 while (rh->root.type == bfd_link_hash_indirect
10625 || rh->root.type == bfd_link_hash_warning)
10626 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10627
10628 /* Setting the index to -2 tells
10629 elf_link_output_extsym that this symbol is
10630 used by a reloc. */
10631 BFD_ASSERT (rh->indx < 0);
10632 rh->indx = -2;
10633
10634 *rel_hash = rh;
10635
10636 continue;
10637 }
10638
10639 /* This is a reloc against a local symbol. */
10640
10641 *rel_hash = NULL;
10642 sym = isymbuf[r_symndx];
10643 sec = flinfo->sections[r_symndx];
10644 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10645 {
10646 /* I suppose the backend ought to fill in the
10647 section of any STT_SECTION symbol against a
10648 processor specific section. */
10649 r_symndx = STN_UNDEF;
10650 if (bfd_is_abs_section (sec))
10651 ;
10652 else if (sec == NULL || sec->owner == NULL)
10653 {
10654 bfd_set_error (bfd_error_bad_value);
10655 return FALSE;
10656 }
10657 else
10658 {
10659 asection *osec = sec->output_section;
10660
10661 /* If we have discarded a section, the output
10662 section will be the absolute section. In
10663 case of discarded SEC_MERGE sections, use
10664 the kept section. relocate_section should
10665 have already handled discarded linkonce
10666 sections. */
10667 if (bfd_is_abs_section (osec)
10668 && sec->kept_section != NULL
10669 && sec->kept_section->output_section != NULL)
10670 {
10671 osec = sec->kept_section->output_section;
10672 irela->r_addend -= osec->vma;
10673 }
10674
10675 if (!bfd_is_abs_section (osec))
10676 {
10677 r_symndx = osec->target_index;
10678 if (r_symndx == STN_UNDEF)
10679 {
10680 irela->r_addend += osec->vma;
10681 osec = _bfd_nearby_section (output_bfd, osec,
10682 osec->vma);
10683 irela->r_addend -= osec->vma;
10684 r_symndx = osec->target_index;
10685 }
10686 }
10687 }
10688
10689 /* Adjust the addend according to where the
10690 section winds up in the output section. */
10691 if (rela_normal)
10692 irela->r_addend += sec->output_offset;
10693 }
10694 else
10695 {
10696 if (flinfo->indices[r_symndx] == -1)
10697 {
10698 unsigned long shlink;
10699 const char *name;
10700 asection *osec;
10701 long indx;
10702
10703 if (flinfo->info->strip == strip_all)
10704 {
10705 /* You can't do ld -r -s. */
10706 bfd_set_error (bfd_error_invalid_operation);
10707 return FALSE;
10708 }
10709
10710 /* This symbol was skipped earlier, but
10711 since it is needed by a reloc, we
10712 must output it now. */
10713 shlink = symtab_hdr->sh_link;
10714 name = (bfd_elf_string_from_elf_section
10715 (input_bfd, shlink, sym.st_name));
10716 if (name == NULL)
10717 return FALSE;
10718
10719 osec = sec->output_section;
10720 sym.st_shndx =
10721 _bfd_elf_section_from_bfd_section (output_bfd,
10722 osec);
10723 if (sym.st_shndx == SHN_BAD)
10724 return FALSE;
10725
10726 sym.st_value += sec->output_offset;
10727 if (!bfd_link_relocatable (flinfo->info))
10728 {
10729 sym.st_value += osec->vma;
10730 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10731 {
10732 /* STT_TLS symbols are relative to PT_TLS
10733 segment base. */
10734 BFD_ASSERT (elf_hash_table (flinfo->info)
10735 ->tls_sec != NULL);
10736 sym.st_value -= (elf_hash_table (flinfo->info)
10737 ->tls_sec->vma);
10738 }
10739 }
10740
10741 indx = bfd_get_symcount (output_bfd);
10742 ret = elf_link_output_symstrtab (flinfo, name,
10743 &sym, sec,
10744 NULL);
10745 if (ret == 0)
10746 return FALSE;
10747 else if (ret == 1)
10748 flinfo->indices[r_symndx] = indx;
10749 else
10750 abort ();
10751 }
10752
10753 r_symndx = flinfo->indices[r_symndx];
10754 }
10755
10756 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10757 | (irela->r_info & r_type_mask));
10758 }
10759
10760 /* Swap out the relocs. */
10761 input_rel_hdr = esdi->rel.hdr;
10762 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10763 {
10764 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10765 input_rel_hdr,
10766 internal_relocs,
10767 rel_hash_list))
10768 return FALSE;
10769 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10770 * bed->s->int_rels_per_ext_rel);
10771 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10772 }
10773
10774 input_rela_hdr = esdi->rela.hdr;
10775 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10776 {
10777 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10778 input_rela_hdr,
10779 internal_relocs,
10780 rela_hash_list))
10781 return FALSE;
10782 }
10783 }
10784 }
10785
10786 /* Write out the modified section contents. */
10787 if (bed->elf_backend_write_section
10788 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10789 contents))
10790 {
10791 /* Section written out. */
10792 }
10793 else switch (o->sec_info_type)
10794 {
10795 case SEC_INFO_TYPE_STABS:
10796 if (! (_bfd_write_section_stabs
10797 (output_bfd,
10798 &elf_hash_table (flinfo->info)->stab_info,
10799 o, &elf_section_data (o)->sec_info, contents)))
10800 return FALSE;
10801 break;
10802 case SEC_INFO_TYPE_MERGE:
10803 if (! _bfd_write_merged_section (output_bfd, o,
10804 elf_section_data (o)->sec_info))
10805 return FALSE;
10806 break;
10807 case SEC_INFO_TYPE_EH_FRAME:
10808 {
10809 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10810 o, contents))
10811 return FALSE;
10812 }
10813 break;
10814 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10815 {
10816 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10817 flinfo->info,
10818 o, contents))
10819 return FALSE;
10820 }
10821 break;
10822 default:
10823 {
10824 if (! (o->flags & SEC_EXCLUDE))
10825 {
10826 file_ptr offset = (file_ptr) o->output_offset;
10827 bfd_size_type todo = o->size;
10828
10829 offset *= bfd_octets_per_byte (output_bfd);
10830
10831 if ((o->flags & SEC_ELF_REVERSE_COPY))
10832 {
10833 /* Reverse-copy input section to output. */
10834 do
10835 {
10836 todo -= address_size;
10837 if (! bfd_set_section_contents (output_bfd,
10838 o->output_section,
10839 contents + todo,
10840 offset,
10841 address_size))
10842 return FALSE;
10843 if (todo == 0)
10844 break;
10845 offset += address_size;
10846 }
10847 while (1);
10848 }
10849 else if (! bfd_set_section_contents (output_bfd,
10850 o->output_section,
10851 contents,
10852 offset, todo))
10853 return FALSE;
10854 }
10855 }
10856 break;
10857 }
10858 }
10859
10860 return TRUE;
10861 }
10862
10863 /* Generate a reloc when linking an ELF file. This is a reloc
10864 requested by the linker, and does not come from any input file. This
10865 is used to build constructor and destructor tables when linking
10866 with -Ur. */
10867
10868 static bfd_boolean
10869 elf_reloc_link_order (bfd *output_bfd,
10870 struct bfd_link_info *info,
10871 asection *output_section,
10872 struct bfd_link_order *link_order)
10873 {
10874 reloc_howto_type *howto;
10875 long indx;
10876 bfd_vma offset;
10877 bfd_vma addend;
10878 struct bfd_elf_section_reloc_data *reldata;
10879 struct elf_link_hash_entry **rel_hash_ptr;
10880 Elf_Internal_Shdr *rel_hdr;
10881 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10882 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10883 bfd_byte *erel;
10884 unsigned int i;
10885 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10886
10887 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10888 if (howto == NULL)
10889 {
10890 bfd_set_error (bfd_error_bad_value);
10891 return FALSE;
10892 }
10893
10894 addend = link_order->u.reloc.p->addend;
10895
10896 if (esdo->rel.hdr)
10897 reldata = &esdo->rel;
10898 else if (esdo->rela.hdr)
10899 reldata = &esdo->rela;
10900 else
10901 {
10902 reldata = NULL;
10903 BFD_ASSERT (0);
10904 }
10905
10906 /* Figure out the symbol index. */
10907 rel_hash_ptr = reldata->hashes + reldata->count;
10908 if (link_order->type == bfd_section_reloc_link_order)
10909 {
10910 indx = link_order->u.reloc.p->u.section->target_index;
10911 BFD_ASSERT (indx != 0);
10912 *rel_hash_ptr = NULL;
10913 }
10914 else
10915 {
10916 struct elf_link_hash_entry *h;
10917
10918 /* Treat a reloc against a defined symbol as though it were
10919 actually against the section. */
10920 h = ((struct elf_link_hash_entry *)
10921 bfd_wrapped_link_hash_lookup (output_bfd, info,
10922 link_order->u.reloc.p->u.name,
10923 FALSE, FALSE, TRUE));
10924 if (h != NULL
10925 && (h->root.type == bfd_link_hash_defined
10926 || h->root.type == bfd_link_hash_defweak))
10927 {
10928 asection *section;
10929
10930 section = h->root.u.def.section;
10931 indx = section->output_section->target_index;
10932 *rel_hash_ptr = NULL;
10933 /* It seems that we ought to add the symbol value to the
10934 addend here, but in practice it has already been added
10935 because it was passed to constructor_callback. */
10936 addend += section->output_section->vma + section->output_offset;
10937 }
10938 else if (h != NULL)
10939 {
10940 /* Setting the index to -2 tells elf_link_output_extsym that
10941 this symbol is used by a reloc. */
10942 h->indx = -2;
10943 *rel_hash_ptr = h;
10944 indx = 0;
10945 }
10946 else
10947 {
10948 (*info->callbacks->unattached_reloc)
10949 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10950 indx = 0;
10951 }
10952 }
10953
10954 /* If this is an inplace reloc, we must write the addend into the
10955 object file. */
10956 if (howto->partial_inplace && addend != 0)
10957 {
10958 bfd_size_type size;
10959 bfd_reloc_status_type rstat;
10960 bfd_byte *buf;
10961 bfd_boolean ok;
10962 const char *sym_name;
10963
10964 size = (bfd_size_type) bfd_get_reloc_size (howto);
10965 buf = (bfd_byte *) bfd_zmalloc (size);
10966 if (buf == NULL && size != 0)
10967 return FALSE;
10968 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10969 switch (rstat)
10970 {
10971 case bfd_reloc_ok:
10972 break;
10973
10974 default:
10975 case bfd_reloc_outofrange:
10976 abort ();
10977
10978 case bfd_reloc_overflow:
10979 if (link_order->type == bfd_section_reloc_link_order)
10980 sym_name = bfd_section_name (output_bfd,
10981 link_order->u.reloc.p->u.section);
10982 else
10983 sym_name = link_order->u.reloc.p->u.name;
10984 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10985 howto->name, addend, NULL, NULL,
10986 (bfd_vma) 0);
10987 break;
10988 }
10989
10990 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10991 link_order->offset
10992 * bfd_octets_per_byte (output_bfd),
10993 size);
10994 free (buf);
10995 if (! ok)
10996 return FALSE;
10997 }
10998
10999 /* The address of a reloc is relative to the section in a
11000 relocatable file, and is a virtual address in an executable
11001 file. */
11002 offset = link_order->offset;
11003 if (! bfd_link_relocatable (info))
11004 offset += output_section->vma;
11005
11006 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11007 {
11008 irel[i].r_offset = offset;
11009 irel[i].r_info = 0;
11010 irel[i].r_addend = 0;
11011 }
11012 if (bed->s->arch_size == 32)
11013 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11014 else
11015 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11016
11017 rel_hdr = reldata->hdr;
11018 erel = rel_hdr->contents;
11019 if (rel_hdr->sh_type == SHT_REL)
11020 {
11021 erel += reldata->count * bed->s->sizeof_rel;
11022 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11023 }
11024 else
11025 {
11026 irel[0].r_addend = addend;
11027 erel += reldata->count * bed->s->sizeof_rela;
11028 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11029 }
11030
11031 ++reldata->count;
11032
11033 return TRUE;
11034 }
11035
11036
11037 /* Get the output vma of the section pointed to by the sh_link field. */
11038
11039 static bfd_vma
11040 elf_get_linked_section_vma (struct bfd_link_order *p)
11041 {
11042 Elf_Internal_Shdr **elf_shdrp;
11043 asection *s;
11044 int elfsec;
11045
11046 s = p->u.indirect.section;
11047 elf_shdrp = elf_elfsections (s->owner);
11048 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11049 elfsec = elf_shdrp[elfsec]->sh_link;
11050 /* PR 290:
11051 The Intel C compiler generates SHT_IA_64_UNWIND with
11052 SHF_LINK_ORDER. But it doesn't set the sh_link or
11053 sh_info fields. Hence we could get the situation
11054 where elfsec is 0. */
11055 if (elfsec == 0)
11056 {
11057 const struct elf_backend_data *bed
11058 = get_elf_backend_data (s->owner);
11059 if (bed->link_order_error_handler)
11060 bed->link_order_error_handler
11061 /* xgettext:c-format */
11062 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11063 return 0;
11064 }
11065 else
11066 {
11067 s = elf_shdrp[elfsec]->bfd_section;
11068 return s->output_section->vma + s->output_offset;
11069 }
11070 }
11071
11072
11073 /* Compare two sections based on the locations of the sections they are
11074 linked to. Used by elf_fixup_link_order. */
11075
11076 static int
11077 compare_link_order (const void * a, const void * b)
11078 {
11079 bfd_vma apos;
11080 bfd_vma bpos;
11081
11082 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11083 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11084 if (apos < bpos)
11085 return -1;
11086 return apos > bpos;
11087 }
11088
11089
11090 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11091 order as their linked sections. Returns false if this could not be done
11092 because an output section includes both ordered and unordered
11093 sections. Ideally we'd do this in the linker proper. */
11094
11095 static bfd_boolean
11096 elf_fixup_link_order (bfd *abfd, asection *o)
11097 {
11098 int seen_linkorder;
11099 int seen_other;
11100 int n;
11101 struct bfd_link_order *p;
11102 bfd *sub;
11103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11104 unsigned elfsec;
11105 struct bfd_link_order **sections;
11106 asection *s, *other_sec, *linkorder_sec;
11107 bfd_vma offset;
11108
11109 other_sec = NULL;
11110 linkorder_sec = NULL;
11111 seen_other = 0;
11112 seen_linkorder = 0;
11113 for (p = o->map_head.link_order; p != NULL; p = p->next)
11114 {
11115 if (p->type == bfd_indirect_link_order)
11116 {
11117 s = p->u.indirect.section;
11118 sub = s->owner;
11119 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11120 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11121 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11122 && elfsec < elf_numsections (sub)
11123 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11124 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11125 {
11126 seen_linkorder++;
11127 linkorder_sec = s;
11128 }
11129 else
11130 {
11131 seen_other++;
11132 other_sec = s;
11133 }
11134 }
11135 else
11136 seen_other++;
11137
11138 if (seen_other && seen_linkorder)
11139 {
11140 if (other_sec && linkorder_sec)
11141 _bfd_error_handler
11142 /* xgettext:c-format */
11143 (_("%A has both ordered [`%A' in %B] "
11144 "and unordered [`%A' in %B] sections"),
11145 o, linkorder_sec,
11146 linkorder_sec->owner, other_sec,
11147 other_sec->owner);
11148 else
11149 _bfd_error_handler
11150 (_("%A has both ordered and unordered sections"), o);
11151 bfd_set_error (bfd_error_bad_value);
11152 return FALSE;
11153 }
11154 }
11155
11156 if (!seen_linkorder)
11157 return TRUE;
11158
11159 sections = (struct bfd_link_order **)
11160 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11161 if (sections == NULL)
11162 return FALSE;
11163 seen_linkorder = 0;
11164
11165 for (p = o->map_head.link_order; p != NULL; p = p->next)
11166 {
11167 sections[seen_linkorder++] = p;
11168 }
11169 /* Sort the input sections in the order of their linked section. */
11170 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11171 compare_link_order);
11172
11173 /* Change the offsets of the sections. */
11174 offset = 0;
11175 for (n = 0; n < seen_linkorder; n++)
11176 {
11177 s = sections[n]->u.indirect.section;
11178 offset &= ~(bfd_vma) 0 << s->alignment_power;
11179 s->output_offset = offset / bfd_octets_per_byte (abfd);
11180 sections[n]->offset = offset;
11181 offset += sections[n]->size;
11182 }
11183
11184 free (sections);
11185 return TRUE;
11186 }
11187
11188 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11189 Returns TRUE upon success, FALSE otherwise. */
11190
11191 static bfd_boolean
11192 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11193 {
11194 bfd_boolean ret = FALSE;
11195 bfd *implib_bfd;
11196 const struct elf_backend_data *bed;
11197 flagword flags;
11198 enum bfd_architecture arch;
11199 unsigned int mach;
11200 asymbol **sympp = NULL;
11201 long symsize;
11202 long symcount;
11203 long src_count;
11204 elf_symbol_type *osymbuf;
11205
11206 implib_bfd = info->out_implib_bfd;
11207 bed = get_elf_backend_data (abfd);
11208
11209 if (!bfd_set_format (implib_bfd, bfd_object))
11210 return FALSE;
11211
11212 flags = bfd_get_file_flags (abfd);
11213 flags &= ~HAS_RELOC;
11214 if (!bfd_set_start_address (implib_bfd, 0)
11215 || !bfd_set_file_flags (implib_bfd, flags))
11216 return FALSE;
11217
11218 /* Copy architecture of output file to import library file. */
11219 arch = bfd_get_arch (abfd);
11220 mach = bfd_get_mach (abfd);
11221 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11222 && (abfd->target_defaulted
11223 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11224 return FALSE;
11225
11226 /* Get symbol table size. */
11227 symsize = bfd_get_symtab_upper_bound (abfd);
11228 if (symsize < 0)
11229 return FALSE;
11230
11231 /* Read in the symbol table. */
11232 sympp = (asymbol **) xmalloc (symsize);
11233 symcount = bfd_canonicalize_symtab (abfd, sympp);
11234 if (symcount < 0)
11235 goto free_sym_buf;
11236
11237 /* Allow the BFD backend to copy any private header data it
11238 understands from the output BFD to the import library BFD. */
11239 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11240 goto free_sym_buf;
11241
11242 /* Filter symbols to appear in the import library. */
11243 if (bed->elf_backend_filter_implib_symbols)
11244 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11245 symcount);
11246 else
11247 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11248 if (symcount == 0)
11249 {
11250 bfd_set_error (bfd_error_no_symbols);
11251 _bfd_error_handler (_("%B: no symbol found for import library"),
11252 implib_bfd);
11253 goto free_sym_buf;
11254 }
11255
11256
11257 /* Make symbols absolute. */
11258 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11259 sizeof (*osymbuf));
11260 for (src_count = 0; src_count < symcount; src_count++)
11261 {
11262 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11263 sizeof (*osymbuf));
11264 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11265 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11266 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11267 osymbuf[src_count].internal_elf_sym.st_value =
11268 osymbuf[src_count].symbol.value;
11269 sympp[src_count] = &osymbuf[src_count].symbol;
11270 }
11271
11272 bfd_set_symtab (implib_bfd, sympp, symcount);
11273
11274 /* Allow the BFD backend to copy any private data it understands
11275 from the output BFD to the import library BFD. This is done last
11276 to permit the routine to look at the filtered symbol table. */
11277 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11278 goto free_sym_buf;
11279
11280 if (!bfd_close (implib_bfd))
11281 goto free_sym_buf;
11282
11283 ret = TRUE;
11284
11285 free_sym_buf:
11286 free (sympp);
11287 return ret;
11288 }
11289
11290 static void
11291 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11292 {
11293 asection *o;
11294
11295 if (flinfo->symstrtab != NULL)
11296 _bfd_elf_strtab_free (flinfo->symstrtab);
11297 if (flinfo->contents != NULL)
11298 free (flinfo->contents);
11299 if (flinfo->external_relocs != NULL)
11300 free (flinfo->external_relocs);
11301 if (flinfo->internal_relocs != NULL)
11302 free (flinfo->internal_relocs);
11303 if (flinfo->external_syms != NULL)
11304 free (flinfo->external_syms);
11305 if (flinfo->locsym_shndx != NULL)
11306 free (flinfo->locsym_shndx);
11307 if (flinfo->internal_syms != NULL)
11308 free (flinfo->internal_syms);
11309 if (flinfo->indices != NULL)
11310 free (flinfo->indices);
11311 if (flinfo->sections != NULL)
11312 free (flinfo->sections);
11313 if (flinfo->symshndxbuf != NULL)
11314 free (flinfo->symshndxbuf);
11315 for (o = obfd->sections; o != NULL; o = o->next)
11316 {
11317 struct bfd_elf_section_data *esdo = elf_section_data (o);
11318 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11319 free (esdo->rel.hashes);
11320 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11321 free (esdo->rela.hashes);
11322 }
11323 }
11324
11325 /* Do the final step of an ELF link. */
11326
11327 bfd_boolean
11328 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11329 {
11330 bfd_boolean dynamic;
11331 bfd_boolean emit_relocs;
11332 bfd *dynobj;
11333 struct elf_final_link_info flinfo;
11334 asection *o;
11335 struct bfd_link_order *p;
11336 bfd *sub;
11337 bfd_size_type max_contents_size;
11338 bfd_size_type max_external_reloc_size;
11339 bfd_size_type max_internal_reloc_count;
11340 bfd_size_type max_sym_count;
11341 bfd_size_type max_sym_shndx_count;
11342 Elf_Internal_Sym elfsym;
11343 unsigned int i;
11344 Elf_Internal_Shdr *symtab_hdr;
11345 Elf_Internal_Shdr *symtab_shndx_hdr;
11346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11347 struct elf_outext_info eoinfo;
11348 bfd_boolean merged;
11349 size_t relativecount = 0;
11350 asection *reldyn = 0;
11351 bfd_size_type amt;
11352 asection *attr_section = NULL;
11353 bfd_vma attr_size = 0;
11354 const char *std_attrs_section;
11355 struct elf_link_hash_table *htab = elf_hash_table (info);
11356
11357 if (!is_elf_hash_table (htab))
11358 return FALSE;
11359
11360 if (bfd_link_pic (info))
11361 abfd->flags |= DYNAMIC;
11362
11363 dynamic = htab->dynamic_sections_created;
11364 dynobj = htab->dynobj;
11365
11366 emit_relocs = (bfd_link_relocatable (info)
11367 || info->emitrelocations);
11368
11369 flinfo.info = info;
11370 flinfo.output_bfd = abfd;
11371 flinfo.symstrtab = _bfd_elf_strtab_init ();
11372 if (flinfo.symstrtab == NULL)
11373 return FALSE;
11374
11375 if (! dynamic)
11376 {
11377 flinfo.hash_sec = NULL;
11378 flinfo.symver_sec = NULL;
11379 }
11380 else
11381 {
11382 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11383 /* Note that dynsym_sec can be NULL (on VMS). */
11384 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11385 /* Note that it is OK if symver_sec is NULL. */
11386 }
11387
11388 flinfo.contents = NULL;
11389 flinfo.external_relocs = NULL;
11390 flinfo.internal_relocs = NULL;
11391 flinfo.external_syms = NULL;
11392 flinfo.locsym_shndx = NULL;
11393 flinfo.internal_syms = NULL;
11394 flinfo.indices = NULL;
11395 flinfo.sections = NULL;
11396 flinfo.symshndxbuf = NULL;
11397 flinfo.filesym_count = 0;
11398
11399 /* The object attributes have been merged. Remove the input
11400 sections from the link, and set the contents of the output
11401 secton. */
11402 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11403 for (o = abfd->sections; o != NULL; o = o->next)
11404 {
11405 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11406 || strcmp (o->name, ".gnu.attributes") == 0)
11407 {
11408 for (p = o->map_head.link_order; p != NULL; p = p->next)
11409 {
11410 asection *input_section;
11411
11412 if (p->type != bfd_indirect_link_order)
11413 continue;
11414 input_section = p->u.indirect.section;
11415 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11416 elf_link_input_bfd ignores this section. */
11417 input_section->flags &= ~SEC_HAS_CONTENTS;
11418 }
11419
11420 attr_size = bfd_elf_obj_attr_size (abfd);
11421 if (attr_size)
11422 {
11423 bfd_set_section_size (abfd, o, attr_size);
11424 attr_section = o;
11425 /* Skip this section later on. */
11426 o->map_head.link_order = NULL;
11427 }
11428 else
11429 o->flags |= SEC_EXCLUDE;
11430 }
11431 }
11432
11433 /* Count up the number of relocations we will output for each output
11434 section, so that we know the sizes of the reloc sections. We
11435 also figure out some maximum sizes. */
11436 max_contents_size = 0;
11437 max_external_reloc_size = 0;
11438 max_internal_reloc_count = 0;
11439 max_sym_count = 0;
11440 max_sym_shndx_count = 0;
11441 merged = FALSE;
11442 for (o = abfd->sections; o != NULL; o = o->next)
11443 {
11444 struct bfd_elf_section_data *esdo = elf_section_data (o);
11445 o->reloc_count = 0;
11446
11447 for (p = o->map_head.link_order; p != NULL; p = p->next)
11448 {
11449 unsigned int reloc_count = 0;
11450 unsigned int additional_reloc_count = 0;
11451 struct bfd_elf_section_data *esdi = NULL;
11452
11453 if (p->type == bfd_section_reloc_link_order
11454 || p->type == bfd_symbol_reloc_link_order)
11455 reloc_count = 1;
11456 else if (p->type == bfd_indirect_link_order)
11457 {
11458 asection *sec;
11459
11460 sec = p->u.indirect.section;
11461
11462 /* Mark all sections which are to be included in the
11463 link. This will normally be every section. We need
11464 to do this so that we can identify any sections which
11465 the linker has decided to not include. */
11466 sec->linker_mark = TRUE;
11467
11468 if (sec->flags & SEC_MERGE)
11469 merged = TRUE;
11470
11471 if (sec->rawsize > max_contents_size)
11472 max_contents_size = sec->rawsize;
11473 if (sec->size > max_contents_size)
11474 max_contents_size = sec->size;
11475
11476 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11477 && (sec->owner->flags & DYNAMIC) == 0)
11478 {
11479 size_t sym_count;
11480
11481 /* We are interested in just local symbols, not all
11482 symbols. */
11483 if (elf_bad_symtab (sec->owner))
11484 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11485 / bed->s->sizeof_sym);
11486 else
11487 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11488
11489 if (sym_count > max_sym_count)
11490 max_sym_count = sym_count;
11491
11492 if (sym_count > max_sym_shndx_count
11493 && elf_symtab_shndx_list (sec->owner) != NULL)
11494 max_sym_shndx_count = sym_count;
11495
11496 if (esdo->this_hdr.sh_type == SHT_REL
11497 || esdo->this_hdr.sh_type == SHT_RELA)
11498 /* Some backends use reloc_count in relocation sections
11499 to count particular types of relocs. Of course,
11500 reloc sections themselves can't have relocations. */
11501 ;
11502 else if (emit_relocs)
11503 {
11504 reloc_count = sec->reloc_count;
11505 if (bed->elf_backend_count_additional_relocs)
11506 {
11507 int c;
11508 c = (*bed->elf_backend_count_additional_relocs) (sec);
11509 additional_reloc_count += c;
11510 }
11511 }
11512 else if (bed->elf_backend_count_relocs)
11513 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11514
11515 esdi = elf_section_data (sec);
11516
11517 if ((sec->flags & SEC_RELOC) != 0)
11518 {
11519 size_t ext_size = 0;
11520
11521 if (esdi->rel.hdr != NULL)
11522 ext_size = esdi->rel.hdr->sh_size;
11523 if (esdi->rela.hdr != NULL)
11524 ext_size += esdi->rela.hdr->sh_size;
11525
11526 if (ext_size > max_external_reloc_size)
11527 max_external_reloc_size = ext_size;
11528 if (sec->reloc_count > max_internal_reloc_count)
11529 max_internal_reloc_count = sec->reloc_count;
11530 }
11531 }
11532 }
11533
11534 if (reloc_count == 0)
11535 continue;
11536
11537 reloc_count += additional_reloc_count;
11538 o->reloc_count += reloc_count;
11539
11540 if (p->type == bfd_indirect_link_order && emit_relocs)
11541 {
11542 if (esdi->rel.hdr)
11543 {
11544 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11545 esdo->rel.count += additional_reloc_count;
11546 }
11547 if (esdi->rela.hdr)
11548 {
11549 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11550 esdo->rela.count += additional_reloc_count;
11551 }
11552 }
11553 else
11554 {
11555 if (o->use_rela_p)
11556 esdo->rela.count += reloc_count;
11557 else
11558 esdo->rel.count += reloc_count;
11559 }
11560 }
11561
11562 if (o->reloc_count > 0)
11563 o->flags |= SEC_RELOC;
11564 else
11565 {
11566 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11567 set it (this is probably a bug) and if it is set
11568 assign_section_numbers will create a reloc section. */
11569 o->flags &=~ SEC_RELOC;
11570 }
11571
11572 /* If the SEC_ALLOC flag is not set, force the section VMA to
11573 zero. This is done in elf_fake_sections as well, but forcing
11574 the VMA to 0 here will ensure that relocs against these
11575 sections are handled correctly. */
11576 if ((o->flags & SEC_ALLOC) == 0
11577 && ! o->user_set_vma)
11578 o->vma = 0;
11579 }
11580
11581 if (! bfd_link_relocatable (info) && merged)
11582 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11583
11584 /* Figure out the file positions for everything but the symbol table
11585 and the relocs. We set symcount to force assign_section_numbers
11586 to create a symbol table. */
11587 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11588 BFD_ASSERT (! abfd->output_has_begun);
11589 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11590 goto error_return;
11591
11592 /* Set sizes, and assign file positions for reloc sections. */
11593 for (o = abfd->sections; o != NULL; o = o->next)
11594 {
11595 struct bfd_elf_section_data *esdo = elf_section_data (o);
11596 if ((o->flags & SEC_RELOC) != 0)
11597 {
11598 if (esdo->rel.hdr
11599 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11600 goto error_return;
11601
11602 if (esdo->rela.hdr
11603 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11604 goto error_return;
11605 }
11606
11607 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11608 to count upwards while actually outputting the relocations. */
11609 esdo->rel.count = 0;
11610 esdo->rela.count = 0;
11611
11612 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11613 {
11614 /* Cache the section contents so that they can be compressed
11615 later. Use bfd_malloc since it will be freed by
11616 bfd_compress_section_contents. */
11617 unsigned char *contents = esdo->this_hdr.contents;
11618 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11619 abort ();
11620 contents
11621 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11622 if (contents == NULL)
11623 goto error_return;
11624 esdo->this_hdr.contents = contents;
11625 }
11626 }
11627
11628 /* We have now assigned file positions for all the sections except
11629 .symtab, .strtab, and non-loaded reloc sections. We start the
11630 .symtab section at the current file position, and write directly
11631 to it. We build the .strtab section in memory. */
11632 bfd_get_symcount (abfd) = 0;
11633 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11634 /* sh_name is set in prep_headers. */
11635 symtab_hdr->sh_type = SHT_SYMTAB;
11636 /* sh_flags, sh_addr and sh_size all start off zero. */
11637 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11638 /* sh_link is set in assign_section_numbers. */
11639 /* sh_info is set below. */
11640 /* sh_offset is set just below. */
11641 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11642
11643 if (max_sym_count < 20)
11644 max_sym_count = 20;
11645 htab->strtabsize = max_sym_count;
11646 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11647 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11648 if (htab->strtab == NULL)
11649 goto error_return;
11650 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11651 flinfo.symshndxbuf
11652 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11653 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11654
11655 if (info->strip != strip_all || emit_relocs)
11656 {
11657 file_ptr off = elf_next_file_pos (abfd);
11658
11659 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11660
11661 /* Note that at this point elf_next_file_pos (abfd) is
11662 incorrect. We do not yet know the size of the .symtab section.
11663 We correct next_file_pos below, after we do know the size. */
11664
11665 /* Start writing out the symbol table. The first symbol is always a
11666 dummy symbol. */
11667 elfsym.st_value = 0;
11668 elfsym.st_size = 0;
11669 elfsym.st_info = 0;
11670 elfsym.st_other = 0;
11671 elfsym.st_shndx = SHN_UNDEF;
11672 elfsym.st_target_internal = 0;
11673 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11674 bfd_und_section_ptr, NULL) != 1)
11675 goto error_return;
11676
11677 /* Output a symbol for each section. We output these even if we are
11678 discarding local symbols, since they are used for relocs. These
11679 symbols have no names. We store the index of each one in the
11680 index field of the section, so that we can find it again when
11681 outputting relocs. */
11682
11683 elfsym.st_size = 0;
11684 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11685 elfsym.st_other = 0;
11686 elfsym.st_value = 0;
11687 elfsym.st_target_internal = 0;
11688 for (i = 1; i < elf_numsections (abfd); i++)
11689 {
11690 o = bfd_section_from_elf_index (abfd, i);
11691 if (o != NULL)
11692 {
11693 o->target_index = bfd_get_symcount (abfd);
11694 elfsym.st_shndx = i;
11695 if (!bfd_link_relocatable (info))
11696 elfsym.st_value = o->vma;
11697 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11698 NULL) != 1)
11699 goto error_return;
11700 }
11701 }
11702 }
11703
11704 /* Allocate some memory to hold information read in from the input
11705 files. */
11706 if (max_contents_size != 0)
11707 {
11708 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11709 if (flinfo.contents == NULL)
11710 goto error_return;
11711 }
11712
11713 if (max_external_reloc_size != 0)
11714 {
11715 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11716 if (flinfo.external_relocs == NULL)
11717 goto error_return;
11718 }
11719
11720 if (max_internal_reloc_count != 0)
11721 {
11722 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11723 amt *= sizeof (Elf_Internal_Rela);
11724 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11725 if (flinfo.internal_relocs == NULL)
11726 goto error_return;
11727 }
11728
11729 if (max_sym_count != 0)
11730 {
11731 amt = max_sym_count * bed->s->sizeof_sym;
11732 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11733 if (flinfo.external_syms == NULL)
11734 goto error_return;
11735
11736 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11737 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11738 if (flinfo.internal_syms == NULL)
11739 goto error_return;
11740
11741 amt = max_sym_count * sizeof (long);
11742 flinfo.indices = (long int *) bfd_malloc (amt);
11743 if (flinfo.indices == NULL)
11744 goto error_return;
11745
11746 amt = max_sym_count * sizeof (asection *);
11747 flinfo.sections = (asection **) bfd_malloc (amt);
11748 if (flinfo.sections == NULL)
11749 goto error_return;
11750 }
11751
11752 if (max_sym_shndx_count != 0)
11753 {
11754 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11755 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11756 if (flinfo.locsym_shndx == NULL)
11757 goto error_return;
11758 }
11759
11760 if (htab->tls_sec)
11761 {
11762 bfd_vma base, end = 0;
11763 asection *sec;
11764
11765 for (sec = htab->tls_sec;
11766 sec && (sec->flags & SEC_THREAD_LOCAL);
11767 sec = sec->next)
11768 {
11769 bfd_size_type size = sec->size;
11770
11771 if (size == 0
11772 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11773 {
11774 struct bfd_link_order *ord = sec->map_tail.link_order;
11775
11776 if (ord != NULL)
11777 size = ord->offset + ord->size;
11778 }
11779 end = sec->vma + size;
11780 }
11781 base = htab->tls_sec->vma;
11782 /* Only align end of TLS section if static TLS doesn't have special
11783 alignment requirements. */
11784 if (bed->static_tls_alignment == 1)
11785 end = align_power (end, htab->tls_sec->alignment_power);
11786 htab->tls_size = end - base;
11787 }
11788
11789 /* Reorder SHF_LINK_ORDER sections. */
11790 for (o = abfd->sections; o != NULL; o = o->next)
11791 {
11792 if (!elf_fixup_link_order (abfd, o))
11793 return FALSE;
11794 }
11795
11796 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11797 return FALSE;
11798
11799 /* Since ELF permits relocations to be against local symbols, we
11800 must have the local symbols available when we do the relocations.
11801 Since we would rather only read the local symbols once, and we
11802 would rather not keep them in memory, we handle all the
11803 relocations for a single input file at the same time.
11804
11805 Unfortunately, there is no way to know the total number of local
11806 symbols until we have seen all of them, and the local symbol
11807 indices precede the global symbol indices. This means that when
11808 we are generating relocatable output, and we see a reloc against
11809 a global symbol, we can not know the symbol index until we have
11810 finished examining all the local symbols to see which ones we are
11811 going to output. To deal with this, we keep the relocations in
11812 memory, and don't output them until the end of the link. This is
11813 an unfortunate waste of memory, but I don't see a good way around
11814 it. Fortunately, it only happens when performing a relocatable
11815 link, which is not the common case. FIXME: If keep_memory is set
11816 we could write the relocs out and then read them again; I don't
11817 know how bad the memory loss will be. */
11818
11819 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11820 sub->output_has_begun = FALSE;
11821 for (o = abfd->sections; o != NULL; o = o->next)
11822 {
11823 for (p = o->map_head.link_order; p != NULL; p = p->next)
11824 {
11825 if (p->type == bfd_indirect_link_order
11826 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11827 == bfd_target_elf_flavour)
11828 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11829 {
11830 if (! sub->output_has_begun)
11831 {
11832 if (! elf_link_input_bfd (&flinfo, sub))
11833 goto error_return;
11834 sub->output_has_begun = TRUE;
11835 }
11836 }
11837 else if (p->type == bfd_section_reloc_link_order
11838 || p->type == bfd_symbol_reloc_link_order)
11839 {
11840 if (! elf_reloc_link_order (abfd, info, o, p))
11841 goto error_return;
11842 }
11843 else
11844 {
11845 if (! _bfd_default_link_order (abfd, info, o, p))
11846 {
11847 if (p->type == bfd_indirect_link_order
11848 && (bfd_get_flavour (sub)
11849 == bfd_target_elf_flavour)
11850 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11851 != bed->s->elfclass))
11852 {
11853 const char *iclass, *oclass;
11854
11855 switch (bed->s->elfclass)
11856 {
11857 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11858 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11859 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11860 default: abort ();
11861 }
11862
11863 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11864 {
11865 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11866 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11867 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11868 default: abort ();
11869 }
11870
11871 bfd_set_error (bfd_error_wrong_format);
11872 _bfd_error_handler
11873 /* xgettext:c-format */
11874 (_("%B: file class %s incompatible with %s"),
11875 sub, iclass, oclass);
11876 }
11877
11878 goto error_return;
11879 }
11880 }
11881 }
11882 }
11883
11884 /* Free symbol buffer if needed. */
11885 if (!info->reduce_memory_overheads)
11886 {
11887 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11888 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11889 && elf_tdata (sub)->symbuf)
11890 {
11891 free (elf_tdata (sub)->symbuf);
11892 elf_tdata (sub)->symbuf = NULL;
11893 }
11894 }
11895
11896 /* Output any global symbols that got converted to local in a
11897 version script or due to symbol visibility. We do this in a
11898 separate step since ELF requires all local symbols to appear
11899 prior to any global symbols. FIXME: We should only do this if
11900 some global symbols were, in fact, converted to become local.
11901 FIXME: Will this work correctly with the Irix 5 linker? */
11902 eoinfo.failed = FALSE;
11903 eoinfo.flinfo = &flinfo;
11904 eoinfo.localsyms = TRUE;
11905 eoinfo.file_sym_done = FALSE;
11906 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11907 if (eoinfo.failed)
11908 return FALSE;
11909
11910 /* If backend needs to output some local symbols not present in the hash
11911 table, do it now. */
11912 if (bed->elf_backend_output_arch_local_syms
11913 && (info->strip != strip_all || emit_relocs))
11914 {
11915 typedef int (*out_sym_func)
11916 (void *, const char *, Elf_Internal_Sym *, asection *,
11917 struct elf_link_hash_entry *);
11918
11919 if (! ((*bed->elf_backend_output_arch_local_syms)
11920 (abfd, info, &flinfo,
11921 (out_sym_func) elf_link_output_symstrtab)))
11922 return FALSE;
11923 }
11924
11925 /* That wrote out all the local symbols. Finish up the symbol table
11926 with the global symbols. Even if we want to strip everything we
11927 can, we still need to deal with those global symbols that got
11928 converted to local in a version script. */
11929
11930 /* The sh_info field records the index of the first non local symbol. */
11931 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11932
11933 if (dynamic
11934 && htab->dynsym != NULL
11935 && htab->dynsym->output_section != bfd_abs_section_ptr)
11936 {
11937 Elf_Internal_Sym sym;
11938 bfd_byte *dynsym = htab->dynsym->contents;
11939
11940 o = htab->dynsym->output_section;
11941 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11942
11943 /* Write out the section symbols for the output sections. */
11944 if (bfd_link_pic (info)
11945 || htab->is_relocatable_executable)
11946 {
11947 asection *s;
11948
11949 sym.st_size = 0;
11950 sym.st_name = 0;
11951 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11952 sym.st_other = 0;
11953 sym.st_target_internal = 0;
11954
11955 for (s = abfd->sections; s != NULL; s = s->next)
11956 {
11957 int indx;
11958 bfd_byte *dest;
11959 long dynindx;
11960
11961 dynindx = elf_section_data (s)->dynindx;
11962 if (dynindx <= 0)
11963 continue;
11964 indx = elf_section_data (s)->this_idx;
11965 BFD_ASSERT (indx > 0);
11966 sym.st_shndx = indx;
11967 if (! check_dynsym (abfd, &sym))
11968 return FALSE;
11969 sym.st_value = s->vma;
11970 dest = dynsym + dynindx * bed->s->sizeof_sym;
11971 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11972 }
11973 }
11974
11975 /* Write out the local dynsyms. */
11976 if (htab->dynlocal)
11977 {
11978 struct elf_link_local_dynamic_entry *e;
11979 for (e = htab->dynlocal; e ; e = e->next)
11980 {
11981 asection *s;
11982 bfd_byte *dest;
11983
11984 /* Copy the internal symbol and turn off visibility.
11985 Note that we saved a word of storage and overwrote
11986 the original st_name with the dynstr_index. */
11987 sym = e->isym;
11988 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11989
11990 s = bfd_section_from_elf_index (e->input_bfd,
11991 e->isym.st_shndx);
11992 if (s != NULL)
11993 {
11994 sym.st_shndx =
11995 elf_section_data (s->output_section)->this_idx;
11996 if (! check_dynsym (abfd, &sym))
11997 return FALSE;
11998 sym.st_value = (s->output_section->vma
11999 + s->output_offset
12000 + e->isym.st_value);
12001 }
12002
12003 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12004 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12005 }
12006 }
12007 }
12008
12009 /* We get the global symbols from the hash table. */
12010 eoinfo.failed = FALSE;
12011 eoinfo.localsyms = FALSE;
12012 eoinfo.flinfo = &flinfo;
12013 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12014 if (eoinfo.failed)
12015 return FALSE;
12016
12017 /* If backend needs to output some symbols not present in the hash
12018 table, do it now. */
12019 if (bed->elf_backend_output_arch_syms
12020 && (info->strip != strip_all || emit_relocs))
12021 {
12022 typedef int (*out_sym_func)
12023 (void *, const char *, Elf_Internal_Sym *, asection *,
12024 struct elf_link_hash_entry *);
12025
12026 if (! ((*bed->elf_backend_output_arch_syms)
12027 (abfd, info, &flinfo,
12028 (out_sym_func) elf_link_output_symstrtab)))
12029 return FALSE;
12030 }
12031
12032 /* Finalize the .strtab section. */
12033 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12034
12035 /* Swap out the .strtab section. */
12036 if (!elf_link_swap_symbols_out (&flinfo))
12037 return FALSE;
12038
12039 /* Now we know the size of the symtab section. */
12040 if (bfd_get_symcount (abfd) > 0)
12041 {
12042 /* Finish up and write out the symbol string table (.strtab)
12043 section. */
12044 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12045 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12046
12047 if (elf_symtab_shndx_list (abfd))
12048 {
12049 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12050
12051 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12052 {
12053 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12054 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12055 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12056 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12057 symtab_shndx_hdr->sh_size = amt;
12058
12059 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12060 off, TRUE);
12061
12062 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12063 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12064 return FALSE;
12065 }
12066 }
12067
12068 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12069 /* sh_name was set in prep_headers. */
12070 symstrtab_hdr->sh_type = SHT_STRTAB;
12071 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12072 symstrtab_hdr->sh_addr = 0;
12073 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12074 symstrtab_hdr->sh_entsize = 0;
12075 symstrtab_hdr->sh_link = 0;
12076 symstrtab_hdr->sh_info = 0;
12077 /* sh_offset is set just below. */
12078 symstrtab_hdr->sh_addralign = 1;
12079
12080 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12081 off, TRUE);
12082 elf_next_file_pos (abfd) = off;
12083
12084 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12085 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12086 return FALSE;
12087 }
12088
12089 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12090 {
12091 _bfd_error_handler (_("%B: failed to generate import library"),
12092 info->out_implib_bfd);
12093 return FALSE;
12094 }
12095
12096 /* Adjust the relocs to have the correct symbol indices. */
12097 for (o = abfd->sections; o != NULL; o = o->next)
12098 {
12099 struct bfd_elf_section_data *esdo = elf_section_data (o);
12100 bfd_boolean sort;
12101 if ((o->flags & SEC_RELOC) == 0)
12102 continue;
12103
12104 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12105 if (esdo->rel.hdr != NULL
12106 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12107 return FALSE;
12108 if (esdo->rela.hdr != NULL
12109 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12110 return FALSE;
12111
12112 /* Set the reloc_count field to 0 to prevent write_relocs from
12113 trying to swap the relocs out itself. */
12114 o->reloc_count = 0;
12115 }
12116
12117 if (dynamic && info->combreloc && dynobj != NULL)
12118 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12119
12120 /* If we are linking against a dynamic object, or generating a
12121 shared library, finish up the dynamic linking information. */
12122 if (dynamic)
12123 {
12124 bfd_byte *dyncon, *dynconend;
12125
12126 /* Fix up .dynamic entries. */
12127 o = bfd_get_linker_section (dynobj, ".dynamic");
12128 BFD_ASSERT (o != NULL);
12129
12130 dyncon = o->contents;
12131 dynconend = o->contents + o->size;
12132 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12133 {
12134 Elf_Internal_Dyn dyn;
12135 const char *name;
12136 unsigned int type;
12137 bfd_size_type sh_size;
12138 bfd_vma sh_addr;
12139
12140 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12141
12142 switch (dyn.d_tag)
12143 {
12144 default:
12145 continue;
12146 case DT_NULL:
12147 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12148 {
12149 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12150 {
12151 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12152 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12153 default: continue;
12154 }
12155 dyn.d_un.d_val = relativecount;
12156 relativecount = 0;
12157 break;
12158 }
12159 continue;
12160
12161 case DT_INIT:
12162 name = info->init_function;
12163 goto get_sym;
12164 case DT_FINI:
12165 name = info->fini_function;
12166 get_sym:
12167 {
12168 struct elf_link_hash_entry *h;
12169
12170 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12171 if (h != NULL
12172 && (h->root.type == bfd_link_hash_defined
12173 || h->root.type == bfd_link_hash_defweak))
12174 {
12175 dyn.d_un.d_ptr = h->root.u.def.value;
12176 o = h->root.u.def.section;
12177 if (o->output_section != NULL)
12178 dyn.d_un.d_ptr += (o->output_section->vma
12179 + o->output_offset);
12180 else
12181 {
12182 /* The symbol is imported from another shared
12183 library and does not apply to this one. */
12184 dyn.d_un.d_ptr = 0;
12185 }
12186 break;
12187 }
12188 }
12189 continue;
12190
12191 case DT_PREINIT_ARRAYSZ:
12192 name = ".preinit_array";
12193 goto get_out_size;
12194 case DT_INIT_ARRAYSZ:
12195 name = ".init_array";
12196 goto get_out_size;
12197 case DT_FINI_ARRAYSZ:
12198 name = ".fini_array";
12199 get_out_size:
12200 o = bfd_get_section_by_name (abfd, name);
12201 if (o == NULL)
12202 {
12203 _bfd_error_handler
12204 (_("could not find section %s"), name);
12205 goto error_return;
12206 }
12207 if (o->size == 0)
12208 _bfd_error_handler
12209 (_("warning: %s section has zero size"), name);
12210 dyn.d_un.d_val = o->size;
12211 break;
12212
12213 case DT_PREINIT_ARRAY:
12214 name = ".preinit_array";
12215 goto get_out_vma;
12216 case DT_INIT_ARRAY:
12217 name = ".init_array";
12218 goto get_out_vma;
12219 case DT_FINI_ARRAY:
12220 name = ".fini_array";
12221 get_out_vma:
12222 o = bfd_get_section_by_name (abfd, name);
12223 goto do_vma;
12224
12225 case DT_HASH:
12226 name = ".hash";
12227 goto get_vma;
12228 case DT_GNU_HASH:
12229 name = ".gnu.hash";
12230 goto get_vma;
12231 case DT_STRTAB:
12232 name = ".dynstr";
12233 goto get_vma;
12234 case DT_SYMTAB:
12235 name = ".dynsym";
12236 goto get_vma;
12237 case DT_VERDEF:
12238 name = ".gnu.version_d";
12239 goto get_vma;
12240 case DT_VERNEED:
12241 name = ".gnu.version_r";
12242 goto get_vma;
12243 case DT_VERSYM:
12244 name = ".gnu.version";
12245 get_vma:
12246 o = bfd_get_linker_section (dynobj, name);
12247 do_vma:
12248 if (o == NULL)
12249 {
12250 _bfd_error_handler
12251 (_("could not find section %s"), name);
12252 goto error_return;
12253 }
12254 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12255 {
12256 _bfd_error_handler
12257 (_("warning: section '%s' is being made into a note"), name);
12258 bfd_set_error (bfd_error_nonrepresentable_section);
12259 goto error_return;
12260 }
12261 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12262 break;
12263
12264 case DT_REL:
12265 case DT_RELA:
12266 case DT_RELSZ:
12267 case DT_RELASZ:
12268 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12269 type = SHT_REL;
12270 else
12271 type = SHT_RELA;
12272 sh_size = 0;
12273 sh_addr = 0;
12274 for (i = 1; i < elf_numsections (abfd); i++)
12275 {
12276 Elf_Internal_Shdr *hdr;
12277
12278 hdr = elf_elfsections (abfd)[i];
12279 if (hdr->sh_type == type
12280 && (hdr->sh_flags & SHF_ALLOC) != 0)
12281 {
12282 sh_size += hdr->sh_size;
12283 if (sh_addr == 0
12284 || sh_addr > hdr->sh_addr)
12285 sh_addr = hdr->sh_addr;
12286 }
12287 }
12288
12289 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12290 {
12291 /* Don't count procedure linkage table relocs in the
12292 overall reloc count. */
12293 sh_size -= htab->srelplt->size;
12294 if (sh_size == 0)
12295 /* If the size is zero, make the address zero too.
12296 This is to avoid a glibc bug. If the backend
12297 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12298 zero, then we'll put DT_RELA at the end of
12299 DT_JMPREL. glibc will interpret the end of
12300 DT_RELA matching the end of DT_JMPREL as the
12301 case where DT_RELA includes DT_JMPREL, and for
12302 LD_BIND_NOW will decide that processing DT_RELA
12303 will process the PLT relocs too. Net result:
12304 No PLT relocs applied. */
12305 sh_addr = 0;
12306
12307 /* If .rela.plt is the first .rela section, exclude
12308 it from DT_RELA. */
12309 else if (sh_addr == (htab->srelplt->output_section->vma
12310 + htab->srelplt->output_offset))
12311 sh_addr += htab->srelplt->size;
12312 }
12313
12314 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12315 dyn.d_un.d_val = sh_size;
12316 else
12317 dyn.d_un.d_ptr = sh_addr;
12318 break;
12319 }
12320 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12321 }
12322 }
12323
12324 /* If we have created any dynamic sections, then output them. */
12325 if (dynobj != NULL)
12326 {
12327 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12328 goto error_return;
12329
12330 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12331 if (((info->warn_shared_textrel && bfd_link_pic (info))
12332 || info->error_textrel)
12333 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12334 {
12335 bfd_byte *dyncon, *dynconend;
12336
12337 dyncon = o->contents;
12338 dynconend = o->contents + o->size;
12339 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12340 {
12341 Elf_Internal_Dyn dyn;
12342
12343 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12344
12345 if (dyn.d_tag == DT_TEXTREL)
12346 {
12347 if (info->error_textrel)
12348 info->callbacks->einfo
12349 (_("%P%X: read-only segment has dynamic relocations.\n"));
12350 else
12351 info->callbacks->einfo
12352 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12353 break;
12354 }
12355 }
12356 }
12357
12358 for (o = dynobj->sections; o != NULL; o = o->next)
12359 {
12360 if ((o->flags & SEC_HAS_CONTENTS) == 0
12361 || o->size == 0
12362 || o->output_section == bfd_abs_section_ptr)
12363 continue;
12364 if ((o->flags & SEC_LINKER_CREATED) == 0)
12365 {
12366 /* At this point, we are only interested in sections
12367 created by _bfd_elf_link_create_dynamic_sections. */
12368 continue;
12369 }
12370 if (htab->stab_info.stabstr == o)
12371 continue;
12372 if (htab->eh_info.hdr_sec == o)
12373 continue;
12374 if (strcmp (o->name, ".dynstr") != 0)
12375 {
12376 if (! bfd_set_section_contents (abfd, o->output_section,
12377 o->contents,
12378 (file_ptr) o->output_offset
12379 * bfd_octets_per_byte (abfd),
12380 o->size))
12381 goto error_return;
12382 }
12383 else
12384 {
12385 /* The contents of the .dynstr section are actually in a
12386 stringtab. */
12387 file_ptr off;
12388
12389 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12390 if (bfd_seek (abfd, off, SEEK_SET) != 0
12391 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12392 goto error_return;
12393 }
12394 }
12395 }
12396
12397 if (bfd_link_relocatable (info))
12398 {
12399 bfd_boolean failed = FALSE;
12400
12401 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12402 if (failed)
12403 goto error_return;
12404 }
12405
12406 /* If we have optimized stabs strings, output them. */
12407 if (htab->stab_info.stabstr != NULL)
12408 {
12409 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12410 goto error_return;
12411 }
12412
12413 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12414 goto error_return;
12415
12416 elf_final_link_free (abfd, &flinfo);
12417
12418 elf_linker (abfd) = TRUE;
12419
12420 if (attr_section)
12421 {
12422 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12423 if (contents == NULL)
12424 return FALSE; /* Bail out and fail. */
12425 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12426 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12427 free (contents);
12428 }
12429
12430 return TRUE;
12431
12432 error_return:
12433 elf_final_link_free (abfd, &flinfo);
12434 return FALSE;
12435 }
12436 \f
12437 /* Initialize COOKIE for input bfd ABFD. */
12438
12439 static bfd_boolean
12440 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12441 struct bfd_link_info *info, bfd *abfd)
12442 {
12443 Elf_Internal_Shdr *symtab_hdr;
12444 const struct elf_backend_data *bed;
12445
12446 bed = get_elf_backend_data (abfd);
12447 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12448
12449 cookie->abfd = abfd;
12450 cookie->sym_hashes = elf_sym_hashes (abfd);
12451 cookie->bad_symtab = elf_bad_symtab (abfd);
12452 if (cookie->bad_symtab)
12453 {
12454 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12455 cookie->extsymoff = 0;
12456 }
12457 else
12458 {
12459 cookie->locsymcount = symtab_hdr->sh_info;
12460 cookie->extsymoff = symtab_hdr->sh_info;
12461 }
12462
12463 if (bed->s->arch_size == 32)
12464 cookie->r_sym_shift = 8;
12465 else
12466 cookie->r_sym_shift = 32;
12467
12468 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12469 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12470 {
12471 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12472 cookie->locsymcount, 0,
12473 NULL, NULL, NULL);
12474 if (cookie->locsyms == NULL)
12475 {
12476 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12477 return FALSE;
12478 }
12479 if (info->keep_memory)
12480 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12481 }
12482 return TRUE;
12483 }
12484
12485 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12486
12487 static void
12488 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12489 {
12490 Elf_Internal_Shdr *symtab_hdr;
12491
12492 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12493 if (cookie->locsyms != NULL
12494 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12495 free (cookie->locsyms);
12496 }
12497
12498 /* Initialize the relocation information in COOKIE for input section SEC
12499 of input bfd ABFD. */
12500
12501 static bfd_boolean
12502 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12503 struct bfd_link_info *info, bfd *abfd,
12504 asection *sec)
12505 {
12506 const struct elf_backend_data *bed;
12507
12508 if (sec->reloc_count == 0)
12509 {
12510 cookie->rels = NULL;
12511 cookie->relend = NULL;
12512 }
12513 else
12514 {
12515 bed = get_elf_backend_data (abfd);
12516
12517 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12518 info->keep_memory);
12519 if (cookie->rels == NULL)
12520 return FALSE;
12521 cookie->rel = cookie->rels;
12522 cookie->relend = (cookie->rels
12523 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12524 }
12525 cookie->rel = cookie->rels;
12526 return TRUE;
12527 }
12528
12529 /* Free the memory allocated by init_reloc_cookie_rels,
12530 if appropriate. */
12531
12532 static void
12533 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12534 asection *sec)
12535 {
12536 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12537 free (cookie->rels);
12538 }
12539
12540 /* Initialize the whole of COOKIE for input section SEC. */
12541
12542 static bfd_boolean
12543 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12544 struct bfd_link_info *info,
12545 asection *sec)
12546 {
12547 if (!init_reloc_cookie (cookie, info, sec->owner))
12548 goto error1;
12549 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12550 goto error2;
12551 return TRUE;
12552
12553 error2:
12554 fini_reloc_cookie (cookie, sec->owner);
12555 error1:
12556 return FALSE;
12557 }
12558
12559 /* Free the memory allocated by init_reloc_cookie_for_section,
12560 if appropriate. */
12561
12562 static void
12563 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12564 asection *sec)
12565 {
12566 fini_reloc_cookie_rels (cookie, sec);
12567 fini_reloc_cookie (cookie, sec->owner);
12568 }
12569 \f
12570 /* Garbage collect unused sections. */
12571
12572 /* Default gc_mark_hook. */
12573
12574 asection *
12575 _bfd_elf_gc_mark_hook (asection *sec,
12576 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12577 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12578 struct elf_link_hash_entry *h,
12579 Elf_Internal_Sym *sym)
12580 {
12581 if (h != NULL)
12582 {
12583 switch (h->root.type)
12584 {
12585 case bfd_link_hash_defined:
12586 case bfd_link_hash_defweak:
12587 return h->root.u.def.section;
12588
12589 case bfd_link_hash_common:
12590 return h->root.u.c.p->section;
12591
12592 default:
12593 break;
12594 }
12595 }
12596 else
12597 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12598
12599 return NULL;
12600 }
12601
12602 /* For undefined __start_<name> and __stop_<name> symbols, return the
12603 first input section matching <name>. Return NULL otherwise. */
12604
12605 asection *
12606 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12607 struct elf_link_hash_entry *h)
12608 {
12609 asection *s;
12610 const char *sec_name;
12611
12612 if (h->root.type != bfd_link_hash_undefined
12613 && h->root.type != bfd_link_hash_undefweak)
12614 return NULL;
12615
12616 s = h->root.u.undef.section;
12617 if (s != NULL)
12618 {
12619 if (s == (asection *) 0 - 1)
12620 return NULL;
12621 return s;
12622 }
12623
12624 sec_name = NULL;
12625 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12626 sec_name = h->root.root.string + 8;
12627 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12628 sec_name = h->root.root.string + 7;
12629
12630 if (sec_name != NULL && *sec_name != '\0')
12631 {
12632 bfd *i;
12633
12634 for (i = info->input_bfds; i != NULL; i = i->link.next)
12635 {
12636 s = bfd_get_section_by_name (i, sec_name);
12637 if (s != NULL)
12638 {
12639 h->root.u.undef.section = s;
12640 break;
12641 }
12642 }
12643 }
12644
12645 if (s == NULL)
12646 h->root.u.undef.section = (asection *) 0 - 1;
12647
12648 return s;
12649 }
12650
12651 /* COOKIE->rel describes a relocation against section SEC, which is
12652 a section we've decided to keep. Return the section that contains
12653 the relocation symbol, or NULL if no section contains it. */
12654
12655 asection *
12656 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12657 elf_gc_mark_hook_fn gc_mark_hook,
12658 struct elf_reloc_cookie *cookie,
12659 bfd_boolean *start_stop)
12660 {
12661 unsigned long r_symndx;
12662 struct elf_link_hash_entry *h;
12663
12664 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12665 if (r_symndx == STN_UNDEF)
12666 return NULL;
12667
12668 if (r_symndx >= cookie->locsymcount
12669 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12670 {
12671 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12672 if (h == NULL)
12673 {
12674 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12675 sec->owner);
12676 return NULL;
12677 }
12678 while (h->root.type == bfd_link_hash_indirect
12679 || h->root.type == bfd_link_hash_warning)
12680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12681 h->mark = 1;
12682 /* If this symbol is weak and there is a non-weak definition, we
12683 keep the non-weak definition because many backends put
12684 dynamic reloc info on the non-weak definition for code
12685 handling copy relocs. */
12686 if (h->u.weakdef != NULL)
12687 h->u.weakdef->mark = 1;
12688
12689 if (start_stop != NULL)
12690 {
12691 /* To work around a glibc bug, mark all XXX input sections
12692 when there is an as yet undefined reference to __start_XXX
12693 or __stop_XXX symbols. The linker will later define such
12694 symbols for orphan input sections that have a name
12695 representable as a C identifier. */
12696 asection *s = _bfd_elf_is_start_stop (info, h);
12697
12698 if (s != NULL)
12699 {
12700 *start_stop = !s->gc_mark;
12701 return s;
12702 }
12703 }
12704
12705 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12706 }
12707
12708 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12709 &cookie->locsyms[r_symndx]);
12710 }
12711
12712 /* COOKIE->rel describes a relocation against section SEC, which is
12713 a section we've decided to keep. Mark the section that contains
12714 the relocation symbol. */
12715
12716 bfd_boolean
12717 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12718 asection *sec,
12719 elf_gc_mark_hook_fn gc_mark_hook,
12720 struct elf_reloc_cookie *cookie)
12721 {
12722 asection *rsec;
12723 bfd_boolean start_stop = FALSE;
12724
12725 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12726 while (rsec != NULL)
12727 {
12728 if (!rsec->gc_mark)
12729 {
12730 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12731 || (rsec->owner->flags & DYNAMIC) != 0)
12732 rsec->gc_mark = 1;
12733 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12734 return FALSE;
12735 }
12736 if (!start_stop)
12737 break;
12738 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12739 }
12740 return TRUE;
12741 }
12742
12743 /* The mark phase of garbage collection. For a given section, mark
12744 it and any sections in this section's group, and all the sections
12745 which define symbols to which it refers. */
12746
12747 bfd_boolean
12748 _bfd_elf_gc_mark (struct bfd_link_info *info,
12749 asection *sec,
12750 elf_gc_mark_hook_fn gc_mark_hook)
12751 {
12752 bfd_boolean ret;
12753 asection *group_sec, *eh_frame;
12754
12755 sec->gc_mark = 1;
12756
12757 /* Mark all the sections in the group. */
12758 group_sec = elf_section_data (sec)->next_in_group;
12759 if (group_sec && !group_sec->gc_mark)
12760 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12761 return FALSE;
12762
12763 /* Look through the section relocs. */
12764 ret = TRUE;
12765 eh_frame = elf_eh_frame_section (sec->owner);
12766 if ((sec->flags & SEC_RELOC) != 0
12767 && sec->reloc_count > 0
12768 && sec != eh_frame)
12769 {
12770 struct elf_reloc_cookie cookie;
12771
12772 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12773 ret = FALSE;
12774 else
12775 {
12776 for (; cookie.rel < cookie.relend; cookie.rel++)
12777 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12778 {
12779 ret = FALSE;
12780 break;
12781 }
12782 fini_reloc_cookie_for_section (&cookie, sec);
12783 }
12784 }
12785
12786 if (ret && eh_frame && elf_fde_list (sec))
12787 {
12788 struct elf_reloc_cookie cookie;
12789
12790 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12791 ret = FALSE;
12792 else
12793 {
12794 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12795 gc_mark_hook, &cookie))
12796 ret = FALSE;
12797 fini_reloc_cookie_for_section (&cookie, eh_frame);
12798 }
12799 }
12800
12801 eh_frame = elf_section_eh_frame_entry (sec);
12802 if (ret && eh_frame && !eh_frame->gc_mark)
12803 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12804 ret = FALSE;
12805
12806 return ret;
12807 }
12808
12809 /* Scan and mark sections in a special or debug section group. */
12810
12811 static void
12812 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12813 {
12814 /* Point to first section of section group. */
12815 asection *ssec;
12816 /* Used to iterate the section group. */
12817 asection *msec;
12818
12819 bfd_boolean is_special_grp = TRUE;
12820 bfd_boolean is_debug_grp = TRUE;
12821
12822 /* First scan to see if group contains any section other than debug
12823 and special section. */
12824 ssec = msec = elf_next_in_group (grp);
12825 do
12826 {
12827 if ((msec->flags & SEC_DEBUGGING) == 0)
12828 is_debug_grp = FALSE;
12829
12830 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12831 is_special_grp = FALSE;
12832
12833 msec = elf_next_in_group (msec);
12834 }
12835 while (msec != ssec);
12836
12837 /* If this is a pure debug section group or pure special section group,
12838 keep all sections in this group. */
12839 if (is_debug_grp || is_special_grp)
12840 {
12841 do
12842 {
12843 msec->gc_mark = 1;
12844 msec = elf_next_in_group (msec);
12845 }
12846 while (msec != ssec);
12847 }
12848 }
12849
12850 /* Keep debug and special sections. */
12851
12852 bfd_boolean
12853 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12854 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12855 {
12856 bfd *ibfd;
12857
12858 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12859 {
12860 asection *isec;
12861 bfd_boolean some_kept;
12862 bfd_boolean debug_frag_seen;
12863
12864 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12865 continue;
12866
12867 /* Ensure all linker created sections are kept,
12868 see if any other section is already marked,
12869 and note if we have any fragmented debug sections. */
12870 debug_frag_seen = some_kept = FALSE;
12871 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12872 {
12873 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12874 isec->gc_mark = 1;
12875 else if (isec->gc_mark)
12876 some_kept = TRUE;
12877
12878 if (debug_frag_seen == FALSE
12879 && (isec->flags & SEC_DEBUGGING)
12880 && CONST_STRNEQ (isec->name, ".debug_line."))
12881 debug_frag_seen = TRUE;
12882 }
12883
12884 /* If no section in this file will be kept, then we can
12885 toss out the debug and special sections. */
12886 if (!some_kept)
12887 continue;
12888
12889 /* Keep debug and special sections like .comment when they are
12890 not part of a group. Also keep section groups that contain
12891 just debug sections or special sections. */
12892 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12893 {
12894 if ((isec->flags & SEC_GROUP) != 0)
12895 _bfd_elf_gc_mark_debug_special_section_group (isec);
12896 else if (((isec->flags & SEC_DEBUGGING) != 0
12897 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12898 && elf_next_in_group (isec) == NULL)
12899 isec->gc_mark = 1;
12900 }
12901
12902 if (! debug_frag_seen)
12903 continue;
12904
12905 /* Look for CODE sections which are going to be discarded,
12906 and find and discard any fragmented debug sections which
12907 are associated with that code section. */
12908 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12909 if ((isec->flags & SEC_CODE) != 0
12910 && isec->gc_mark == 0)
12911 {
12912 unsigned int ilen;
12913 asection *dsec;
12914
12915 ilen = strlen (isec->name);
12916
12917 /* Association is determined by the name of the debug section
12918 containing the name of the code section as a suffix. For
12919 example .debug_line.text.foo is a debug section associated
12920 with .text.foo. */
12921 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12922 {
12923 unsigned int dlen;
12924
12925 if (dsec->gc_mark == 0
12926 || (dsec->flags & SEC_DEBUGGING) == 0)
12927 continue;
12928
12929 dlen = strlen (dsec->name);
12930
12931 if (dlen > ilen
12932 && strncmp (dsec->name + (dlen - ilen),
12933 isec->name, ilen) == 0)
12934 {
12935 dsec->gc_mark = 0;
12936 }
12937 }
12938 }
12939 }
12940 return TRUE;
12941 }
12942
12943 /* The sweep phase of garbage collection. Remove all garbage sections. */
12944
12945 typedef bfd_boolean (*gc_sweep_hook_fn)
12946 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12947
12948 static bfd_boolean
12949 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12950 {
12951 bfd *sub;
12952 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12953 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12954
12955 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12956 {
12957 asection *o;
12958
12959 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12960 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12961 continue;
12962
12963 for (o = sub->sections; o != NULL; o = o->next)
12964 {
12965 /* When any section in a section group is kept, we keep all
12966 sections in the section group. If the first member of
12967 the section group is excluded, we will also exclude the
12968 group section. */
12969 if (o->flags & SEC_GROUP)
12970 {
12971 asection *first = elf_next_in_group (o);
12972 o->gc_mark = first->gc_mark;
12973 }
12974
12975 if (o->gc_mark)
12976 continue;
12977
12978 /* Skip sweeping sections already excluded. */
12979 if (o->flags & SEC_EXCLUDE)
12980 continue;
12981
12982 /* Since this is early in the link process, it is simple
12983 to remove a section from the output. */
12984 o->flags |= SEC_EXCLUDE;
12985
12986 if (info->print_gc_sections && o->size != 0)
12987 /* xgettext:c-format */
12988 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"),
12989 sub, o->name);
12990
12991 /* But we also have to update some of the relocation
12992 info we collected before. */
12993 if (gc_sweep_hook
12994 && (o->flags & SEC_RELOC) != 0
12995 && o->reloc_count != 0
12996 && !((info->strip == strip_all || info->strip == strip_debugger)
12997 && (o->flags & SEC_DEBUGGING) != 0)
12998 && !bfd_is_abs_section (o->output_section))
12999 {
13000 Elf_Internal_Rela *internal_relocs;
13001 bfd_boolean r;
13002
13003 internal_relocs
13004 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13005 info->keep_memory);
13006 if (internal_relocs == NULL)
13007 return FALSE;
13008
13009 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13010
13011 if (elf_section_data (o)->relocs != internal_relocs)
13012 free (internal_relocs);
13013
13014 if (!r)
13015 return FALSE;
13016 }
13017 }
13018 }
13019
13020 return TRUE;
13021 }
13022
13023 /* Propagate collected vtable information. This is called through
13024 elf_link_hash_traverse. */
13025
13026 static bfd_boolean
13027 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13028 {
13029 /* Those that are not vtables. */
13030 if (h->vtable == NULL || h->vtable->parent == NULL)
13031 return TRUE;
13032
13033 /* Those vtables that do not have parents, we cannot merge. */
13034 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13035 return TRUE;
13036
13037 /* If we've already been done, exit. */
13038 if (h->vtable->used && h->vtable->used[-1])
13039 return TRUE;
13040
13041 /* Make sure the parent's table is up to date. */
13042 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13043
13044 if (h->vtable->used == NULL)
13045 {
13046 /* None of this table's entries were referenced. Re-use the
13047 parent's table. */
13048 h->vtable->used = h->vtable->parent->vtable->used;
13049 h->vtable->size = h->vtable->parent->vtable->size;
13050 }
13051 else
13052 {
13053 size_t n;
13054 bfd_boolean *cu, *pu;
13055
13056 /* Or the parent's entries into ours. */
13057 cu = h->vtable->used;
13058 cu[-1] = TRUE;
13059 pu = h->vtable->parent->vtable->used;
13060 if (pu != NULL)
13061 {
13062 const struct elf_backend_data *bed;
13063 unsigned int log_file_align;
13064
13065 bed = get_elf_backend_data (h->root.u.def.section->owner);
13066 log_file_align = bed->s->log_file_align;
13067 n = h->vtable->parent->vtable->size >> log_file_align;
13068 while (n--)
13069 {
13070 if (*pu)
13071 *cu = TRUE;
13072 pu++;
13073 cu++;
13074 }
13075 }
13076 }
13077
13078 return TRUE;
13079 }
13080
13081 static bfd_boolean
13082 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13083 {
13084 asection *sec;
13085 bfd_vma hstart, hend;
13086 Elf_Internal_Rela *relstart, *relend, *rel;
13087 const struct elf_backend_data *bed;
13088 unsigned int log_file_align;
13089
13090 /* Take care of both those symbols that do not describe vtables as
13091 well as those that are not loaded. */
13092 if (h->vtable == NULL || h->vtable->parent == NULL)
13093 return TRUE;
13094
13095 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13096 || h->root.type == bfd_link_hash_defweak);
13097
13098 sec = h->root.u.def.section;
13099 hstart = h->root.u.def.value;
13100 hend = hstart + h->size;
13101
13102 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13103 if (!relstart)
13104 return *(bfd_boolean *) okp = FALSE;
13105 bed = get_elf_backend_data (sec->owner);
13106 log_file_align = bed->s->log_file_align;
13107
13108 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13109
13110 for (rel = relstart; rel < relend; ++rel)
13111 if (rel->r_offset >= hstart && rel->r_offset < hend)
13112 {
13113 /* If the entry is in use, do nothing. */
13114 if (h->vtable->used
13115 && (rel->r_offset - hstart) < h->vtable->size)
13116 {
13117 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13118 if (h->vtable->used[entry])
13119 continue;
13120 }
13121 /* Otherwise, kill it. */
13122 rel->r_offset = rel->r_info = rel->r_addend = 0;
13123 }
13124
13125 return TRUE;
13126 }
13127
13128 /* Mark sections containing dynamically referenced symbols. When
13129 building shared libraries, we must assume that any visible symbol is
13130 referenced. */
13131
13132 bfd_boolean
13133 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13134 {
13135 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13136 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13137
13138 if ((h->root.type == bfd_link_hash_defined
13139 || h->root.type == bfd_link_hash_defweak)
13140 && (h->ref_dynamic
13141 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13142 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13143 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13144 && (!bfd_link_executable (info)
13145 || info->gc_keep_exported
13146 || info->export_dynamic
13147 || (h->dynamic
13148 && d != NULL
13149 && (*d->match) (&d->head, NULL, h->root.root.string)))
13150 && (h->versioned >= versioned
13151 || !bfd_hide_sym_by_version (info->version_info,
13152 h->root.root.string)))))
13153 h->root.u.def.section->flags |= SEC_KEEP;
13154
13155 return TRUE;
13156 }
13157
13158 /* Keep all sections containing symbols undefined on the command-line,
13159 and the section containing the entry symbol. */
13160
13161 void
13162 _bfd_elf_gc_keep (struct bfd_link_info *info)
13163 {
13164 struct bfd_sym_chain *sym;
13165
13166 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13167 {
13168 struct elf_link_hash_entry *h;
13169
13170 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13171 FALSE, FALSE, FALSE);
13172
13173 if (h != NULL
13174 && (h->root.type == bfd_link_hash_defined
13175 || h->root.type == bfd_link_hash_defweak)
13176 && !bfd_is_abs_section (h->root.u.def.section)
13177 && !bfd_is_und_section (h->root.u.def.section))
13178 h->root.u.def.section->flags |= SEC_KEEP;
13179 }
13180 }
13181
13182 bfd_boolean
13183 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13184 struct bfd_link_info *info)
13185 {
13186 bfd *ibfd = info->input_bfds;
13187
13188 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13189 {
13190 asection *sec;
13191 struct elf_reloc_cookie cookie;
13192
13193 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13194 continue;
13195
13196 if (!init_reloc_cookie (&cookie, info, ibfd))
13197 return FALSE;
13198
13199 for (sec = ibfd->sections; sec; sec = sec->next)
13200 {
13201 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13202 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13203 {
13204 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13205 fini_reloc_cookie_rels (&cookie, sec);
13206 }
13207 }
13208 }
13209 return TRUE;
13210 }
13211
13212 /* Do mark and sweep of unused sections. */
13213
13214 bfd_boolean
13215 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13216 {
13217 bfd_boolean ok = TRUE;
13218 bfd *sub;
13219 elf_gc_mark_hook_fn gc_mark_hook;
13220 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13221 struct elf_link_hash_table *htab;
13222
13223 if (!bed->can_gc_sections
13224 || !is_elf_hash_table (info->hash))
13225 {
13226 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13227 return TRUE;
13228 }
13229
13230 bed->gc_keep (info);
13231 htab = elf_hash_table (info);
13232
13233 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13234 at the .eh_frame section if we can mark the FDEs individually. */
13235 for (sub = info->input_bfds;
13236 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13237 sub = sub->link.next)
13238 {
13239 asection *sec;
13240 struct elf_reloc_cookie cookie;
13241
13242 sec = bfd_get_section_by_name (sub, ".eh_frame");
13243 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13244 {
13245 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13246 if (elf_section_data (sec)->sec_info
13247 && (sec->flags & SEC_LINKER_CREATED) == 0)
13248 elf_eh_frame_section (sub) = sec;
13249 fini_reloc_cookie_for_section (&cookie, sec);
13250 sec = bfd_get_next_section_by_name (NULL, sec);
13251 }
13252 }
13253
13254 /* Apply transitive closure to the vtable entry usage info. */
13255 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13256 if (!ok)
13257 return FALSE;
13258
13259 /* Kill the vtable relocations that were not used. */
13260 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13261 if (!ok)
13262 return FALSE;
13263
13264 /* Mark dynamically referenced symbols. */
13265 if (htab->dynamic_sections_created || info->gc_keep_exported)
13266 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13267
13268 /* Grovel through relocs to find out who stays ... */
13269 gc_mark_hook = bed->gc_mark_hook;
13270 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13271 {
13272 asection *o;
13273
13274 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13275 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13276 continue;
13277
13278 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13279 Also treat note sections as a root, if the section is not part
13280 of a group. */
13281 for (o = sub->sections; o != NULL; o = o->next)
13282 if (!o->gc_mark
13283 && (o->flags & SEC_EXCLUDE) == 0
13284 && ((o->flags & SEC_KEEP) != 0
13285 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13286 && elf_next_in_group (o) == NULL )))
13287 {
13288 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13289 return FALSE;
13290 }
13291 }
13292
13293 /* Allow the backend to mark additional target specific sections. */
13294 bed->gc_mark_extra_sections (info, gc_mark_hook);
13295
13296 /* ... and mark SEC_EXCLUDE for those that go. */
13297 return elf_gc_sweep (abfd, info);
13298 }
13299 \f
13300 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13301
13302 bfd_boolean
13303 bfd_elf_gc_record_vtinherit (bfd *abfd,
13304 asection *sec,
13305 struct elf_link_hash_entry *h,
13306 bfd_vma offset)
13307 {
13308 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13309 struct elf_link_hash_entry **search, *child;
13310 size_t extsymcount;
13311 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13312
13313 /* The sh_info field of the symtab header tells us where the
13314 external symbols start. We don't care about the local symbols at
13315 this point. */
13316 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13317 if (!elf_bad_symtab (abfd))
13318 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13319
13320 sym_hashes = elf_sym_hashes (abfd);
13321 sym_hashes_end = sym_hashes + extsymcount;
13322
13323 /* Hunt down the child symbol, which is in this section at the same
13324 offset as the relocation. */
13325 for (search = sym_hashes; search != sym_hashes_end; ++search)
13326 {
13327 if ((child = *search) != NULL
13328 && (child->root.type == bfd_link_hash_defined
13329 || child->root.type == bfd_link_hash_defweak)
13330 && child->root.u.def.section == sec
13331 && child->root.u.def.value == offset)
13332 goto win;
13333 }
13334
13335 /* xgettext:c-format */
13336 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13337 abfd, sec, (unsigned long) offset);
13338 bfd_set_error (bfd_error_invalid_operation);
13339 return FALSE;
13340
13341 win:
13342 if (!child->vtable)
13343 {
13344 child->vtable = ((struct elf_link_virtual_table_entry *)
13345 bfd_zalloc (abfd, sizeof (*child->vtable)));
13346 if (!child->vtable)
13347 return FALSE;
13348 }
13349 if (!h)
13350 {
13351 /* This *should* only be the absolute section. It could potentially
13352 be that someone has defined a non-global vtable though, which
13353 would be bad. It isn't worth paging in the local symbols to be
13354 sure though; that case should simply be handled by the assembler. */
13355
13356 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13357 }
13358 else
13359 child->vtable->parent = h;
13360
13361 return TRUE;
13362 }
13363
13364 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13365
13366 bfd_boolean
13367 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13368 asection *sec ATTRIBUTE_UNUSED,
13369 struct elf_link_hash_entry *h,
13370 bfd_vma addend)
13371 {
13372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13373 unsigned int log_file_align = bed->s->log_file_align;
13374
13375 if (!h->vtable)
13376 {
13377 h->vtable = ((struct elf_link_virtual_table_entry *)
13378 bfd_zalloc (abfd, sizeof (*h->vtable)));
13379 if (!h->vtable)
13380 return FALSE;
13381 }
13382
13383 if (addend >= h->vtable->size)
13384 {
13385 size_t size, bytes, file_align;
13386 bfd_boolean *ptr = h->vtable->used;
13387
13388 /* While the symbol is undefined, we have to be prepared to handle
13389 a zero size. */
13390 file_align = 1 << log_file_align;
13391 if (h->root.type == bfd_link_hash_undefined)
13392 size = addend + file_align;
13393 else
13394 {
13395 size = h->size;
13396 if (addend >= size)
13397 {
13398 /* Oops! We've got a reference past the defined end of
13399 the table. This is probably a bug -- shall we warn? */
13400 size = addend + file_align;
13401 }
13402 }
13403 size = (size + file_align - 1) & -file_align;
13404
13405 /* Allocate one extra entry for use as a "done" flag for the
13406 consolidation pass. */
13407 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13408
13409 if (ptr)
13410 {
13411 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13412
13413 if (ptr != NULL)
13414 {
13415 size_t oldbytes;
13416
13417 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13418 * sizeof (bfd_boolean));
13419 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13420 }
13421 }
13422 else
13423 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13424
13425 if (ptr == NULL)
13426 return FALSE;
13427
13428 /* And arrange for that done flag to be at index -1. */
13429 h->vtable->used = ptr + 1;
13430 h->vtable->size = size;
13431 }
13432
13433 h->vtable->used[addend >> log_file_align] = TRUE;
13434
13435 return TRUE;
13436 }
13437
13438 /* Map an ELF section header flag to its corresponding string. */
13439 typedef struct
13440 {
13441 char *flag_name;
13442 flagword flag_value;
13443 } elf_flags_to_name_table;
13444
13445 static elf_flags_to_name_table elf_flags_to_names [] =
13446 {
13447 { "SHF_WRITE", SHF_WRITE },
13448 { "SHF_ALLOC", SHF_ALLOC },
13449 { "SHF_EXECINSTR", SHF_EXECINSTR },
13450 { "SHF_MERGE", SHF_MERGE },
13451 { "SHF_STRINGS", SHF_STRINGS },
13452 { "SHF_INFO_LINK", SHF_INFO_LINK},
13453 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13454 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13455 { "SHF_GROUP", SHF_GROUP },
13456 { "SHF_TLS", SHF_TLS },
13457 { "SHF_MASKOS", SHF_MASKOS },
13458 { "SHF_EXCLUDE", SHF_EXCLUDE },
13459 };
13460
13461 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13462 bfd_boolean
13463 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13464 struct flag_info *flaginfo,
13465 asection *section)
13466 {
13467 const bfd_vma sh_flags = elf_section_flags (section);
13468
13469 if (!flaginfo->flags_initialized)
13470 {
13471 bfd *obfd = info->output_bfd;
13472 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13473 struct flag_info_list *tf = flaginfo->flag_list;
13474 int with_hex = 0;
13475 int without_hex = 0;
13476
13477 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13478 {
13479 unsigned i;
13480 flagword (*lookup) (char *);
13481
13482 lookup = bed->elf_backend_lookup_section_flags_hook;
13483 if (lookup != NULL)
13484 {
13485 flagword hexval = (*lookup) ((char *) tf->name);
13486
13487 if (hexval != 0)
13488 {
13489 if (tf->with == with_flags)
13490 with_hex |= hexval;
13491 else if (tf->with == without_flags)
13492 without_hex |= hexval;
13493 tf->valid = TRUE;
13494 continue;
13495 }
13496 }
13497 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13498 {
13499 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13500 {
13501 if (tf->with == with_flags)
13502 with_hex |= elf_flags_to_names[i].flag_value;
13503 else if (tf->with == without_flags)
13504 without_hex |= elf_flags_to_names[i].flag_value;
13505 tf->valid = TRUE;
13506 break;
13507 }
13508 }
13509 if (!tf->valid)
13510 {
13511 info->callbacks->einfo
13512 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13513 return FALSE;
13514 }
13515 }
13516 flaginfo->flags_initialized = TRUE;
13517 flaginfo->only_with_flags |= with_hex;
13518 flaginfo->not_with_flags |= without_hex;
13519 }
13520
13521 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13522 return FALSE;
13523
13524 if ((flaginfo->not_with_flags & sh_flags) != 0)
13525 return FALSE;
13526
13527 return TRUE;
13528 }
13529
13530 struct alloc_got_off_arg {
13531 bfd_vma gotoff;
13532 struct bfd_link_info *info;
13533 };
13534
13535 /* We need a special top-level link routine to convert got reference counts
13536 to real got offsets. */
13537
13538 static bfd_boolean
13539 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13540 {
13541 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13542 bfd *obfd = gofarg->info->output_bfd;
13543 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13544
13545 if (h->got.refcount > 0)
13546 {
13547 h->got.offset = gofarg->gotoff;
13548 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13549 }
13550 else
13551 h->got.offset = (bfd_vma) -1;
13552
13553 return TRUE;
13554 }
13555
13556 /* And an accompanying bit to work out final got entry offsets once
13557 we're done. Should be called from final_link. */
13558
13559 bfd_boolean
13560 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13561 struct bfd_link_info *info)
13562 {
13563 bfd *i;
13564 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13565 bfd_vma gotoff;
13566 struct alloc_got_off_arg gofarg;
13567
13568 BFD_ASSERT (abfd == info->output_bfd);
13569
13570 if (! is_elf_hash_table (info->hash))
13571 return FALSE;
13572
13573 /* The GOT offset is relative to the .got section, but the GOT header is
13574 put into the .got.plt section, if the backend uses it. */
13575 if (bed->want_got_plt)
13576 gotoff = 0;
13577 else
13578 gotoff = bed->got_header_size;
13579
13580 /* Do the local .got entries first. */
13581 for (i = info->input_bfds; i; i = i->link.next)
13582 {
13583 bfd_signed_vma *local_got;
13584 size_t j, locsymcount;
13585 Elf_Internal_Shdr *symtab_hdr;
13586
13587 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13588 continue;
13589
13590 local_got = elf_local_got_refcounts (i);
13591 if (!local_got)
13592 continue;
13593
13594 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13595 if (elf_bad_symtab (i))
13596 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13597 else
13598 locsymcount = symtab_hdr->sh_info;
13599
13600 for (j = 0; j < locsymcount; ++j)
13601 {
13602 if (local_got[j] > 0)
13603 {
13604 local_got[j] = gotoff;
13605 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13606 }
13607 else
13608 local_got[j] = (bfd_vma) -1;
13609 }
13610 }
13611
13612 /* Then the global .got entries. .plt refcounts are handled by
13613 adjust_dynamic_symbol */
13614 gofarg.gotoff = gotoff;
13615 gofarg.info = info;
13616 elf_link_hash_traverse (elf_hash_table (info),
13617 elf_gc_allocate_got_offsets,
13618 &gofarg);
13619 return TRUE;
13620 }
13621
13622 /* Many folk need no more in the way of final link than this, once
13623 got entry reference counting is enabled. */
13624
13625 bfd_boolean
13626 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13627 {
13628 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13629 return FALSE;
13630
13631 /* Invoke the regular ELF backend linker to do all the work. */
13632 return bfd_elf_final_link (abfd, info);
13633 }
13634
13635 bfd_boolean
13636 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13637 {
13638 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13639
13640 if (rcookie->bad_symtab)
13641 rcookie->rel = rcookie->rels;
13642
13643 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13644 {
13645 unsigned long r_symndx;
13646
13647 if (! rcookie->bad_symtab)
13648 if (rcookie->rel->r_offset > offset)
13649 return FALSE;
13650 if (rcookie->rel->r_offset != offset)
13651 continue;
13652
13653 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13654 if (r_symndx == STN_UNDEF)
13655 return TRUE;
13656
13657 if (r_symndx >= rcookie->locsymcount
13658 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13659 {
13660 struct elf_link_hash_entry *h;
13661
13662 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13663
13664 while (h->root.type == bfd_link_hash_indirect
13665 || h->root.type == bfd_link_hash_warning)
13666 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13667
13668 if ((h->root.type == bfd_link_hash_defined
13669 || h->root.type == bfd_link_hash_defweak)
13670 && (h->root.u.def.section->owner != rcookie->abfd
13671 || h->root.u.def.section->kept_section != NULL
13672 || discarded_section (h->root.u.def.section)))
13673 return TRUE;
13674 }
13675 else
13676 {
13677 /* It's not a relocation against a global symbol,
13678 but it could be a relocation against a local
13679 symbol for a discarded section. */
13680 asection *isec;
13681 Elf_Internal_Sym *isym;
13682
13683 /* Need to: get the symbol; get the section. */
13684 isym = &rcookie->locsyms[r_symndx];
13685 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13686 if (isec != NULL
13687 && (isec->kept_section != NULL
13688 || discarded_section (isec)))
13689 return TRUE;
13690 }
13691 return FALSE;
13692 }
13693 return FALSE;
13694 }
13695
13696 /* Discard unneeded references to discarded sections.
13697 Returns -1 on error, 1 if any section's size was changed, 0 if
13698 nothing changed. This function assumes that the relocations are in
13699 sorted order, which is true for all known assemblers. */
13700
13701 int
13702 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13703 {
13704 struct elf_reloc_cookie cookie;
13705 asection *o;
13706 bfd *abfd;
13707 int changed = 0;
13708
13709 if (info->traditional_format
13710 || !is_elf_hash_table (info->hash))
13711 return 0;
13712
13713 o = bfd_get_section_by_name (output_bfd, ".stab");
13714 if (o != NULL)
13715 {
13716 asection *i;
13717
13718 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13719 {
13720 if (i->size == 0
13721 || i->reloc_count == 0
13722 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13723 continue;
13724
13725 abfd = i->owner;
13726 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13727 continue;
13728
13729 if (!init_reloc_cookie_for_section (&cookie, info, i))
13730 return -1;
13731
13732 if (_bfd_discard_section_stabs (abfd, i,
13733 elf_section_data (i)->sec_info,
13734 bfd_elf_reloc_symbol_deleted_p,
13735 &cookie))
13736 changed = 1;
13737
13738 fini_reloc_cookie_for_section (&cookie, i);
13739 }
13740 }
13741
13742 o = NULL;
13743 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13744 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13745 if (o != NULL)
13746 {
13747 asection *i;
13748
13749 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13750 {
13751 if (i->size == 0)
13752 continue;
13753
13754 abfd = i->owner;
13755 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13756 continue;
13757
13758 if (!init_reloc_cookie_for_section (&cookie, info, i))
13759 return -1;
13760
13761 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13762 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13763 bfd_elf_reloc_symbol_deleted_p,
13764 &cookie))
13765 changed = 1;
13766
13767 fini_reloc_cookie_for_section (&cookie, i);
13768 }
13769 }
13770
13771 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13772 {
13773 const struct elf_backend_data *bed;
13774
13775 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13776 continue;
13777
13778 bed = get_elf_backend_data (abfd);
13779
13780 if (bed->elf_backend_discard_info != NULL)
13781 {
13782 if (!init_reloc_cookie (&cookie, info, abfd))
13783 return -1;
13784
13785 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13786 changed = 1;
13787
13788 fini_reloc_cookie (&cookie, abfd);
13789 }
13790 }
13791
13792 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13793 _bfd_elf_end_eh_frame_parsing (info);
13794
13795 if (info->eh_frame_hdr_type
13796 && !bfd_link_relocatable (info)
13797 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13798 changed = 1;
13799
13800 return changed;
13801 }
13802
13803 bfd_boolean
13804 _bfd_elf_section_already_linked (bfd *abfd,
13805 asection *sec,
13806 struct bfd_link_info *info)
13807 {
13808 flagword flags;
13809 const char *name, *key;
13810 struct bfd_section_already_linked *l;
13811 struct bfd_section_already_linked_hash_entry *already_linked_list;
13812
13813 if (sec->output_section == bfd_abs_section_ptr)
13814 return FALSE;
13815
13816 flags = sec->flags;
13817
13818 /* Return if it isn't a linkonce section. A comdat group section
13819 also has SEC_LINK_ONCE set. */
13820 if ((flags & SEC_LINK_ONCE) == 0)
13821 return FALSE;
13822
13823 /* Don't put group member sections on our list of already linked
13824 sections. They are handled as a group via their group section. */
13825 if (elf_sec_group (sec) != NULL)
13826 return FALSE;
13827
13828 /* For a SHT_GROUP section, use the group signature as the key. */
13829 name = sec->name;
13830 if ((flags & SEC_GROUP) != 0
13831 && elf_next_in_group (sec) != NULL
13832 && elf_group_name (elf_next_in_group (sec)) != NULL)
13833 key = elf_group_name (elf_next_in_group (sec));
13834 else
13835 {
13836 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13837 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13838 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13839 key++;
13840 else
13841 /* Must be a user linkonce section that doesn't follow gcc's
13842 naming convention. In this case we won't be matching
13843 single member groups. */
13844 key = name;
13845 }
13846
13847 already_linked_list = bfd_section_already_linked_table_lookup (key);
13848
13849 for (l = already_linked_list->entry; l != NULL; l = l->next)
13850 {
13851 /* We may have 2 different types of sections on the list: group
13852 sections with a signature of <key> (<key> is some string),
13853 and linkonce sections named .gnu.linkonce.<type>.<key>.
13854 Match like sections. LTO plugin sections are an exception.
13855 They are always named .gnu.linkonce.t.<key> and match either
13856 type of section. */
13857 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13858 && ((flags & SEC_GROUP) != 0
13859 || strcmp (name, l->sec->name) == 0))
13860 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13861 {
13862 /* The section has already been linked. See if we should
13863 issue a warning. */
13864 if (!_bfd_handle_already_linked (sec, l, info))
13865 return FALSE;
13866
13867 if (flags & SEC_GROUP)
13868 {
13869 asection *first = elf_next_in_group (sec);
13870 asection *s = first;
13871
13872 while (s != NULL)
13873 {
13874 s->output_section = bfd_abs_section_ptr;
13875 /* Record which group discards it. */
13876 s->kept_section = l->sec;
13877 s = elf_next_in_group (s);
13878 /* These lists are circular. */
13879 if (s == first)
13880 break;
13881 }
13882 }
13883
13884 return TRUE;
13885 }
13886 }
13887
13888 /* A single member comdat group section may be discarded by a
13889 linkonce section and vice versa. */
13890 if ((flags & SEC_GROUP) != 0)
13891 {
13892 asection *first = elf_next_in_group (sec);
13893
13894 if (first != NULL && elf_next_in_group (first) == first)
13895 /* Check this single member group against linkonce sections. */
13896 for (l = already_linked_list->entry; l != NULL; l = l->next)
13897 if ((l->sec->flags & SEC_GROUP) == 0
13898 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13899 {
13900 first->output_section = bfd_abs_section_ptr;
13901 first->kept_section = l->sec;
13902 sec->output_section = bfd_abs_section_ptr;
13903 break;
13904 }
13905 }
13906 else
13907 /* Check this linkonce section against single member groups. */
13908 for (l = already_linked_list->entry; l != NULL; l = l->next)
13909 if (l->sec->flags & SEC_GROUP)
13910 {
13911 asection *first = elf_next_in_group (l->sec);
13912
13913 if (first != NULL
13914 && elf_next_in_group (first) == first
13915 && bfd_elf_match_symbols_in_sections (first, sec, info))
13916 {
13917 sec->output_section = bfd_abs_section_ptr;
13918 sec->kept_section = first;
13919 break;
13920 }
13921 }
13922
13923 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13924 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13925 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13926 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13927 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13928 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13929 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13930 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13931 The reverse order cannot happen as there is never a bfd with only the
13932 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13933 matter as here were are looking only for cross-bfd sections. */
13934
13935 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13936 for (l = already_linked_list->entry; l != NULL; l = l->next)
13937 if ((l->sec->flags & SEC_GROUP) == 0
13938 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13939 {
13940 if (abfd != l->sec->owner)
13941 sec->output_section = bfd_abs_section_ptr;
13942 break;
13943 }
13944
13945 /* This is the first section with this name. Record it. */
13946 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13947 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13948 return sec->output_section == bfd_abs_section_ptr;
13949 }
13950
13951 bfd_boolean
13952 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13953 {
13954 return sym->st_shndx == SHN_COMMON;
13955 }
13956
13957 unsigned int
13958 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13959 {
13960 return SHN_COMMON;
13961 }
13962
13963 asection *
13964 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13965 {
13966 return bfd_com_section_ptr;
13967 }
13968
13969 bfd_vma
13970 _bfd_elf_default_got_elt_size (bfd *abfd,
13971 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13972 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13973 bfd *ibfd ATTRIBUTE_UNUSED,
13974 unsigned long symndx ATTRIBUTE_UNUSED)
13975 {
13976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13977 return bed->s->arch_size / 8;
13978 }
13979
13980 /* Routines to support the creation of dynamic relocs. */
13981
13982 /* Returns the name of the dynamic reloc section associated with SEC. */
13983
13984 static const char *
13985 get_dynamic_reloc_section_name (bfd * abfd,
13986 asection * sec,
13987 bfd_boolean is_rela)
13988 {
13989 char *name;
13990 const char *old_name = bfd_get_section_name (NULL, sec);
13991 const char *prefix = is_rela ? ".rela" : ".rel";
13992
13993 if (old_name == NULL)
13994 return NULL;
13995
13996 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13997 sprintf (name, "%s%s", prefix, old_name);
13998
13999 return name;
14000 }
14001
14002 /* Returns the dynamic reloc section associated with SEC.
14003 If necessary compute the name of the dynamic reloc section based
14004 on SEC's name (looked up in ABFD's string table) and the setting
14005 of IS_RELA. */
14006
14007 asection *
14008 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14009 asection * sec,
14010 bfd_boolean is_rela)
14011 {
14012 asection * reloc_sec = elf_section_data (sec)->sreloc;
14013
14014 if (reloc_sec == NULL)
14015 {
14016 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14017
14018 if (name != NULL)
14019 {
14020 reloc_sec = bfd_get_linker_section (abfd, name);
14021
14022 if (reloc_sec != NULL)
14023 elf_section_data (sec)->sreloc = reloc_sec;
14024 }
14025 }
14026
14027 return reloc_sec;
14028 }
14029
14030 /* Returns the dynamic reloc section associated with SEC. If the
14031 section does not exist it is created and attached to the DYNOBJ
14032 bfd and stored in the SRELOC field of SEC's elf_section_data
14033 structure.
14034
14035 ALIGNMENT is the alignment for the newly created section and
14036 IS_RELA defines whether the name should be .rela.<SEC's name>
14037 or .rel.<SEC's name>. The section name is looked up in the
14038 string table associated with ABFD. */
14039
14040 asection *
14041 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14042 bfd *dynobj,
14043 unsigned int alignment,
14044 bfd *abfd,
14045 bfd_boolean is_rela)
14046 {
14047 asection * reloc_sec = elf_section_data (sec)->sreloc;
14048
14049 if (reloc_sec == NULL)
14050 {
14051 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14052
14053 if (name == NULL)
14054 return NULL;
14055
14056 reloc_sec = bfd_get_linker_section (dynobj, name);
14057
14058 if (reloc_sec == NULL)
14059 {
14060 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14061 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14062 if ((sec->flags & SEC_ALLOC) != 0)
14063 flags |= SEC_ALLOC | SEC_LOAD;
14064
14065 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14066 if (reloc_sec != NULL)
14067 {
14068 /* _bfd_elf_get_sec_type_attr chooses a section type by
14069 name. Override as it may be wrong, eg. for a user
14070 section named "auto" we'll get ".relauto" which is
14071 seen to be a .rela section. */
14072 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14073 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14074 reloc_sec = NULL;
14075 }
14076 }
14077
14078 elf_section_data (sec)->sreloc = reloc_sec;
14079 }
14080
14081 return reloc_sec;
14082 }
14083
14084 /* Copy the ELF symbol type and other attributes for a linker script
14085 assignment from HSRC to HDEST. Generally this should be treated as
14086 if we found a strong non-dynamic definition for HDEST (except that
14087 ld ignores multiple definition errors). */
14088 void
14089 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14090 struct bfd_link_hash_entry *hdest,
14091 struct bfd_link_hash_entry *hsrc)
14092 {
14093 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14094 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14095 Elf_Internal_Sym isym;
14096
14097 ehdest->type = ehsrc->type;
14098 ehdest->target_internal = ehsrc->target_internal;
14099
14100 isym.st_other = ehsrc->other;
14101 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14102 }
14103
14104 /* Append a RELA relocation REL to section S in BFD. */
14105
14106 void
14107 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14108 {
14109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14110 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14111 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14112 bed->s->swap_reloca_out (abfd, rel, loc);
14113 }
14114
14115 /* Append a REL relocation REL to section S in BFD. */
14116
14117 void
14118 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14119 {
14120 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14121 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14122 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14123 bed->s->swap_reloc_out (abfd, rel, loc);
14124 }
This page took 0.449463 seconds and 4 git commands to generate.